
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning Fluents for Task Representation

Permalink
https://escholarship.org/uc/item/6c26p3pt

Author
Liu, Yang

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c26p3pt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Learning Fluents for Task Representation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Yang Liu

2019



c© Copyright by

Yang Liu

2019



ABSTRACT OF THE DISSERTATION

Learning Fluents for Task Representation

by

Yang Liu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

This dissertation focuses on a crucial challenge which hasn’t received enough attention in

past years - fluents change. Fluents are time-varying attributes of an entity or a group

of entities. Fluents describe the state change of humans, objects and environment, which

provides the interpretable representation of them in video analysis and task planing, while

popular method such as 3D convolution descriptor lacks such property and remains a black

box to people. This dissertation is mainly divided into two parts. In the first part, we are

discussing the nature of fluents, which can be further divided into appearance, geometry and

topology. We have developed a generative model with encoder-decoder mechanics to map

the fluents between image space and latent space. To disentangle fluents like appearance and

geometry, we have designed different encoder-decoder networks. With this kind of design,

the object in image will be mapped to appearance and geometric fluents vector separately.

Moreover, in the geometric fluents space, we are trying to learn the intuitive physics with

the synthesis datasets which includes object interactions like collision and gravity. In the

second part, we have proposed a framework to represent the task from the perspective of

fluents change, which is different from traditional approach. Task is a series of actions to

finish certain goal, which can be represented by a group of fluents change. We have collected

datasets in both real scene and VR scene, the experiments on both datasets demonstrate

the strength of our methods.
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CHAPTER 1

Introduction

In past years, task recognition and planning have been studied intensively. Early works [SLC04,

WKS11] use handcrafted features to capture spatial and temporal information. With the

development of deep neural networks, some deep learned features [SZ14a, FPW16, FPW17]

have been proposed with improved accuracy. Another trend is to characterize the task as an

ST-AOG [WZZ13a, WZZ17] with each node representing the component of the task.

However, little attention has been received on the fluent change of objects during the

task. Task is a set of actions to finish one or a series of goals. The goal of the task can

be represented by the fluents change of the task-related objects. A fluent is a time-varying

attribute of an entity or a group of entities, and its values are the specific states of the

attribute [FZ15, Mue15].

Fluents represent the object dynamics in an image pair or images sequence, which pro-

vides a new perspective to some traditional computer vision problems. Based on the nature

of fluents, we can group them into two categories: self fluents and mutual fluents. Self fluents

describe the variable nature of the entity group of entities itself while mutual fluents describe

the relationship between entities.

1.1 Self Fluents

From the perspective of computer vision, self fluents can be grouped into visible fluents which

we can perceive directly from images such as brightness and position and invisible fluents

like temperature, pressure or emotion of the humans. For invisible fluents, we treat them as

hidden state of the entity, which we may be able to infer from the visual information. For
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example, when we observe that the water has been heated for 10 minutes or the bubbles

begin to rise from the bottom, we can infer that the water should be ‘hot’.

Furtherer, visible fluents can be disentangled as appearance, geometry and topology ac-

cording to its nature which could act as actionable features for modeling the human activities

in vision community. Figure 1.1 illustrates the changes of these three types.

Appearance
Change

Geometric
Change

Topological
Change

Figure 1.1: Illustration

of three types of fluent

changes. Which are change

in color, change in bright-

ness, scaling, rotation, into

slices, into two parts respec-

tively.

• Appearance change is defined as the value change of pixels on object exterior. Based

on different change types, it can be divided into change in color, brightness and texture.

Pressing the button changes the color of button, and turning on the light changes the

brightness of the environment.

• Geometric change includes objects’ change in position, orientation and shape. Change

of position and orientation are also called rigid body motion in terms of physics, in-

cluding translation and rotation. The shape change includes affine transformation like

scaling and shear and non-affine transformation such as torsion and bending. Note

that all these changes don’t change the topological structure of objects.

• Topological change is defined on a group of entities. Topology is a corpus of multiple

entities and their connections as shown in Figure 1.2. Entities belong to the same group

share the self fluent of the group like the velocity. The topological change will add or

break some connections to change the topological structure of the group such as cutting

the apple, peeling the banana.

2



Figure 1.2: There are

four entities in this group,

each entity has its appear-

ance and geometric fluent.

These four entities together

with their connections de-

fine the topology of the

group. Cutting the connec-

tion between triangle and

square change the topology

of the group, making it into

two groups.

Disentangling the fluents change can be beneficial because different objects share the

same fluents change space like brightness, rigid body motion, splitting although the objects

are coming in various shapes, sizes and colors. Under certain human actions such as opening,

pulling or physics law like conservation of momentum, different objects will change following

the same pattern. With this we can:

• Recognize tasks from the object fluents change which are involved

• Predicting the future of objects after certain actions to help planning the task

Directly disentangling the fluents change from the raw images are difficult since they all

contain the change of pixels. We seek to use a generative network to encode the fluents

of objects into a latent space which can be disentangled into appearance, geometry and

topology.

We will use a generative model to learn the fluent space. The generative model is of

the following form X = g(x;W ) + ε, where X is the observed image of dimension D, x is

the latent vector of dimension d in fluent space. x has a prior distribution N(0, Id), and

ε ∼ N(0, σ2ID) is the noise, where Id, ID denote the identity matrix.
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θa θg θt

x1,a
x2,a

x1,g

x2,g x2,t
x1,t

X1,A X2,A X1,G X2,G X2,T X1,T

X1 X2

Image Space

Intrinsic Space

Appearance Geometry Topology

Figure 1.3: Illustration of

fluent changes of two im-

ages in fluent space. Image

X1 and X2 are firstly disen-

tangled as appearance, ge-

ometry and topology. Flu-

ent changes are represented

as the parameters that con-

trol the changing process in

each latent space.

We can use the generator network to generalize the model. Firstly, we use the following

network to model one category image:

XA = ga(xa;Wa);XG = gg(xg;Wg);XT = gt(xt;Wt); (1.1)

X = ω(XA;XG;XT ) + ε. (1.2)

We assume that the appearance vector xa, the geometry vector xg and the topology vector

xt are to be independent. This disentangles appearance, geometry and topology variations.

The appearance vector xa generates the canonical appearance (image) XA. The geometry

vector xg generates the shape (deformation) XG. The topology vector xt generates the

topology (structure) XT . The final image X is obtained by applying the shape deformation

XG and topological change XT to the canonical image XA, plus additive noise ε.

For fluents recognition in fluent space, suppose the images before/after an action are

X1 and X2. Their latent representations in appearance, geometry and topology space are

x1,a, x1,g, x1,t and x2,a, x2,g, x2,t respectively. Fluent changes in each intrinsic space are defined

as below:

x2,a = fa(x1,a; θa);x2,g = fg(x1,g; θg);x2,t = ft(x1,t; θt). (1.3)

Our goal is to recover the fluent changes in these three intrinsic spaces as shown in Fig-

ure 1.3. Fluent changes are represented by parameters Θ = (θa, θg, θt) that control the
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fluents changing process such as brightness, translation distance and rotation angle.

1.2 Mutual Fluents and Task Representation

In the last section, we have defined self fluents of objects which are the properties of entity

which can be an individual or a group. Mutual fluents describe the variable states of rela-

tionship between two entities, including visible fluents such as the relative position between

hand and tool and invisible fluents like human’s attention on task-related objects.

To do a task is to achieve certain goal, which can be represented by a set of fluents

change. For example, the fluents change of making a coffee can be represented by a cup full

of coffee which is empty before the task. However this kind of fluent change is impossible

to be achieved by one step with just one empty mug. We need a physically feasible way to

turn a empty cup to a cup of coffee, like first pouring the coffee powder into the cup, and

then fetch the water from dispenser. In another word, we need a plan to decompose making

coffee into several steps which represents making coffee as an STC-AOG, as illustrated in

Figure 1.4

Fluents change

Activity

Action
3D Pose

Input
video

Topological Change Appearance Change

Causal
Effects

Parse
graphs

Figure 1.4: Illustration of the parse graph to make a coffee, which can be represented by a

series of fluents change.
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In above figure, the 3D pose describe the spatial mutual fluents between human and

the objects. After each step, the self fluents of the involving objects will change like the

topological change for the coffee can. We use And-Or-Graph(AOG) to represent the task is

because we have many different ways to achieve the final fluents change, while each feasible

series of steps is a parse graph(PG).
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CHAPTER 2

Learning Objects and Attributes Relation in Latent

Space

2.1 Introduction

Attributes are the description of ‘objects’. To reach a higher level of vision understanding, we

hope that a computer can understand not only object categories but also their attributes. As

a result, recognizing objects with their attributes have been widely studied in various prob-

lems such as person re-identification [SZX16], scene understanding [LRT14], image caption

[WSW17], image search [KBN08], and image generation [YYS16].

Encouraged by the great success of the discriminative model implemented with deep

neural networks for object classification [SZ14b, HZR16, HLV17], some studies like [MGH17]

have tried to recognize attribute-object pairs by composing the discriminative models that

are separately trained for the object and attribute. Factually, the discriminative models

are trying to learn the attribute visual ‘prototype’ and object visual ‘prototype’. It is true

that an object always has a visual ‘prototype’. For example, when we ask people to draw

a dog, different people may draw beagles, collies, dalmatians or poodles, but the ‘dogs’

they draw always have two ears and four legs. However, if we ask people to draw ‘old’,

people may find difficulties to do because the ‘old’ is nonobjective and does not present clear

visual ‘prototype’. As illustrated in the upper row of Figure 2.1, the dogs with different

attributes present the similar visual feature. On the contrary, as shown in the lower row, the

visual feature of attribute ‘old’ varies dramatically for different object classes. As a result,

the discriminative model is not such successful for attribute recognition as that for object

recognition, which further results in the low accuracy of attribute-object pair recognition.
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In fact, attribute is highly dependent on object. For example, when we teach a baby to

recognize the attribute ‘old’, we often use instances like ‘old book’, ‘old bike’, and ‘old dog’

to show how ‘old’ looks like. Therefore, to better recognize attribute-object pair, we should

explore the inner relation of the attribute and object instead of composing the discriminative

models that are separately trained for the object and attribute.

old bear old book old bike old bridge

small dog wrinkled dog big dog wet dog

Figure 2.1: The upper row shows the same object ‘dog’ with the different attributes. Though

dogs can be small, big, wet, or wrinkled, they present similar visual properties. The lower

row shows the same attribute ‘old’ with the different objects, we can observe that the visual

properties greatly differ from each other.

Realizing this issue, some works like [CG14] have tried to process the attribute and object

as a whole to explore their inner relations. However, many of them still employ discriminative

models to tackle the problem, resulting in poor performance for recognizing unseen attribute-

object pairs. The major reason is that the individual property of the attribute and object are

not learned. For example, there are pairs like ‘old book’ and ‘small dog’ in the training set,

so the model are well fitted to these pairs. However, the model fails to learn the concept of

individual attribute and object like ‘old’, ‘book’, ‘small’, and ‘dog’, thus can hardly generalize

to unseen pairs like ‘old dog’ or ‘small book’.

Summing up the above, to recognize unseen attribute-object pairs, we should design

a model that should consider not only the individual property of the attribute and ob-
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ject but also the inner relation between them. To this end, in this work, we propose an

encoder-decoder generative model bridging visual and linguistic features in a unified end-to-

end network. We first obtain the visual feature of images using state-of-the-art deep neural

network, and the linguistic feature by extracting the semantic word embedding vectors of

object and attribute label. To explore the inner relation of the attribute and object, inspired

by the idea of ZSL (Zero-Shot Learning), we project the visual feature and the linguistic

feature into a latent space where the attribute and object are processed as a whole. During

the projection, to preserve the individual property of the attribute and object, the original

visual and linguistic features of the attribute and object are projected by different functions.

In the latent space, in order to minimize the ‘distance’ between the visual feature and lin-

guistic feature, we have exploited several loss functions to penalize the dissimilarity between

them. In addition, we propose the decoding loss which has been proved crucial to generalize

better to unseen pairs because it can find the natural and intrinsic feature representations.

In the experiments, we have compared with four state-of-the-art methods on two chal-

lenging datasets, MIT-States [ILA15] and UT-Zappos50K [YG14]. The experiments show

that our method outperforms other methods significantly. We also performed some ablation

experiments to study the effect of individual loss function, the influence of visual feature

extractor, and the interdependence of the attribute and object, from which we draw some

important conclusions.

our contributions in this work are as follows:

• We propose a generative model to recognize unseen attribute-object pairs instead of

composing multiple classifiers.

• Our model combines the visual and linguistic information in the same latent space,

which is significant for exploring the inner relation of the attribute and object.

• We apply the encoder-decoder mechanism to the problem of attribute-object pair recog-

nition.
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2.2 Related Work

Object and attribute. In recent years, object, attribute, and attribute-object composi-

tion recognition have been intensively studied in both image and video domains [LRT14,

ILA15, SZX16, WSW17, MGH17, LWZ17]. Attribute recognition is a basic problem, the

typical method for attribute recognition is similar to that for object classification, training

discriminative models using attribute-labeled samples [PG11, PH12, SKB12, SL16, LKZ17].

Attribute-object pair recognition is a more challenging problem. Some conventional methods

often use a classifier or compose multiple classifiers to tackle the problem [CG14, MGH17].

Some other studies assume object-attribute relationship is known and datasets are simple

that only contain one or few dominant object categories [WM10, MSN11, WJ13]. To make

the model applicable to complex datasets that cover various object and attribute classes,

some good models are proposed [WJW13, KPO13]. However, they are suffering from ‘do-

main shift’ problem - the test data distribution differs from that estimated by the training

data, leading to the low performance on testing data. To overcome this problem, the work

[NG18] proposes to take the attribute as the operator and attribute-object pair as a vector

that is transformed by this operator, then this transformed vector is compared with CNN

visual feature to recognize unseen pairs. In this work, we propose a generative model with

encoder-decoder mechanism which is significant for exploring the intrinsic feature represen-

tation, thus can better transfer the concept of object and attribute from training set to the

testing set.

Zero-shot learning. The goal of zero-shot learning (ZSL) is to recognize unseen/new

objects by utilizing their auxiliary information such as attribute or text description. One

major method for zero-shot learning is first mapping the input into a semantic space where

the auxiliary information like attributes of unseen objects are known, then finding the object

whose auxiliary feature is ‘closest’ to the input feature [LNH14, ARW15]. Another major

method learns a latent space that the input and the auxiliary feature of unseen objects

are simultaneously projected into [CCG16, WCC16], and the most likely unseen object is

recognized by measuring the ‘distance’ between input feature and auxiliary feature in the
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latent space. Some other methods predict unseen objects using the classifier that is composed

by seen object classifiers [NMB13, CCG16]. Recently, semantic autoencoder (SAE) has been

proposed for zero-shot learning, considering both projection from input space to semantic

space and the reverse, which demonstrates to be a simple but effective approach [KXG17].

Several other works like [WPV18] have explored more general generative methods using

highly nonlinear model instead of linear regression from the latent space to the input space

[VAM18]. Inspired by these works, in this work, we project both visual and linguistic features

into the same latent space where the most likely attribute-object pair is selected with the

least loss calculated by our self-defined loss function.

Vision and language combination. With the rapid development of vision and lan-

guage, vision and language combination has been studied to tackle many problems. For ex-

ample, as mentioned above, many ZSL models take linguistic text description [LSF15, ESE13]

as auxiliary information for unseen object recognition. However, text description annotation

is ‘expensive’, especially for large scale datasets. Therefore, it is intuitive to utilize linguistic

word embedding as auxiliary information because all words can be encoded as vectors with

the pre-trained model [SGM13, FCS13]. In this work, we represent object and attribute as

linguistic word embedding vectors. Different from one-hot vectors, word embedding vectors

imply the semantic similarity of their corresponding words. In another word, semantically

similar attribute and object will create similar word embedding vectors, which is significant

for learning the inner relation of the attribute and object.

2.3 Approach

In this work, we are studying the problem of identifying the attribute-object pair of the

given image. For example, given an image as shown in Figure 2.2, our task is to output the

attribute-object pair ‘wrinkled dog’. It is challenging for two reasons: 1) we are recognizing

unseen attribute-object pairs that are not included in training data, and 2) this is fine-grained

recognition problem and the number of possible attribute-object pairs is large.
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wrinkled

dog

Wrinkled Dog

tiger

small

building island

forest

wet
young

wrinkled dog

small dog

wet dog

young tiger

wet forest

small building

small island

d

Visual space

Latent space

Semantic linguistic space

Visual feature in visual space

Visual attribute feature in latent space

Visual object feature in latent space

Visual attribute-object pair feature in latent space

Reconstruction of visual feature in visual space

Linguistic attribute feature in semantic linguistic space

Linguistic object feature in semantic linguistic space

Linguistic attribute feature in latent space

Linguistic object feature in latent space

Linguistic attribute-object pair feature in latent space

ConvNet

Figure 2.2: Given an image with the attribute-object pair label ‘wrinkled dog’, our goal is to

correctly recognize this label. The challenge is that there are many possible pairs. As shown

in the black ellipse in latent space L, the pair may be ‘young tiger’, ‘small dog’, or others.

To find the correct one, we first extract the visual feature xV of the given image in visual

space V and project xV into latent space L. After some processing, we finally obtain xL that

represents the visual feature of the given image in L. At the same time, for all possible pairs,

we extract their linguistic representations Z = {zLi }Ni=1 in latent space L. Each element zLi

in Z corresponds to one possible pair, which is obtained by mapping the corresponding word

embedding vectors aS and oS from semantic linguistic space S to latent space L. Finally, we

take the label of zLi with closest distance to xL as recognition result.

2.3.1 Overview

Given an image I with the attribute label ya and object label yo, our goal is to correctly

choose its attribute-object label from the set Z = {zLi }Ni=1 that contains all possible N

attribute-object pairs. To realize this goal, the intuitive idea is combining the classifiers

that are separately trained for the attribute and object. For example, to recognize unseen

attribute-object pair ‘small dog’, some studies first learn the concept of ‘small’ from images

like ‘small cat’, ‘small horse’, and other small objects as well as the concept of ‘dog’ from

images like ‘wrinkled dog’, ‘big dog’ and other dogs using training set, and then combine
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the separate classifiers to recognize unseen attribute-object pair ‘small dog’. However, as

we have discussed previously that the attribute does not have clear visual ‘prototype’ and

is highly dependent on the object. Therefore, we propose a generative model that combine

the visual and linguistic information in the same latent space where the attribute and object

are processed as a whole. As shown in Figure 2.2, We first use deep neural networks [SZ14b,

HZR16] to extract the visual feature of I in visual space V and denote it as xV , which is then

projected into latent space L as xL. For all possible pairs, we extract their attribute vector

aS and object vector oS , and then project them into latent space L where they are merged

as linguistic attribute-object pair feature zL. In the training stage, we are trying to learn

the projection from V and S to L by minimizing the ‘distance’ between the visual feature

xL and its corresponding linguistic feature zL in the latent space. In the testing stage, we

predict the attribute-object label of zL that is the closest to the xL. To this end, we need

to consider two crucial problems: 1) how is original visual and linguistic data transitioned

between different spaces to obtain xL and zL, and 2) how to design the loss functions to

minimize their ‘distance’. We will tackle these two problems in the following sub-sections.

2.3.2 Data transitions

Figure 2.2 signals the data transition process of our method. In the figure, the red circles

represent the visual data flow, while green and blue waves represent the linguistic data

flow. For visual data flow, the visual feature xV in visual space V is projected into latent

space L as two flows representing visual attribute feature xLa and visual object feature xLo

respectively. xLa and xLo are then merged as visual attribute-object pair feature xL. To obtain

reconstruction of the original visual feature, xL is re-mapped back to visual space V , the re-

mapped feature is denoted as x̂V . For linguistic data flow, the linguistic attribute feature

aS and linguistic object feature oS in word embedding space S are projected into the latent

space as zLa and zLo , respectively. Then zLa and zLo are merged as linguistic attribute-object

pair feature zL.

For the projections of linguistic attribute and object features from S to L, we define two
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projection functions F a
S→L(·) and F o

S→L(·) as linguistic encoders:

zLa = F a
S→L(aS) (2.1)

zLo = F o
S→L(oS) (2.2)

Here, we define different projection functions for the attribute and object because object

(a noun in most cases) and attribute (an adjective to describe the noun in most cases) are

two different kinds of instances and should be processed differently to explore their potential

properties. The experiment results validate the effectiveness of this separate processing, the

details can be found in the experiment section.

Based on the above two transitions, we can get the attribute feature and object feature

individually. To explore their inner relation, we add them together:

zL = zLa + zLo (2.3)

For visual feature in V , we define two project functions F a
V→L(·) and F o

V→L(·) which

project xV to its attribute feature xLa and object feature xLo .

xLa = F a
V→L(xV) (2.4)

xLo = F o
V→L(xV) (2.5)

With the same manner as we combine latent attribute feature and object feature from

language. We get xL by:

xL = xLa + xLo (2.6)

Our decoder to re-map the visual feature from latent space L to original visual space V

is defined as:

x̂V = F pair
L→V(xL) (2.7)
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2.3.3 Loss functions

2.3.3.1 Encoding loss

The goal of encoding loss is to minimize the ‘distance’ between visual attribute-object pair

feature xL and linguistic attribute-object pair feature zL. There are multiple ways to define

the distance in the latent space. The most intuitive and common one is L2 distance. However,

when using L2 distance, the value of visual and linguistic features in latent space tend to be

extremely small during optimization which leads to poor performance. Therefore, we define

the encoding loss as cosine similarity between xL and zL:

Len = dist(xL, zL) = 1− < xL, zL >

‖xL‖2‖zL‖2
, (2.8)

From geometrical aspect, we measure the angle between two vectors, and encourage them to

have the same direction. The reason we do not consider the cosine similarity between xLo and

zLo as well as the similarity between xLa and zLa is that individual attribute or object feature

includes limited information for attribute-object pair estimation. In another word, we treat

the attribute and object in the latent space as a whole to explore their inner relation.

2.3.3.2 Triplet loss

The encoding loss defined in the Eq. 2.8 encourages the visual feature to be close to the

linguistic feature of the indexed attribute-object pair, but doesn’t consider that the visual

feature should be far from the linguistic feature of other attribute-object pairs. Therefore,

we add an extra loss called triplet loss, which impels the distance between xL and zL to be

smaller than the distance between xL and other linguistic attribute-object features z̃L by a

margin K:

Ltri = max

(
0,
dist(xL, zL)

dist(xL, z̃L)
−K

)
(2.9)
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2.3.3.3 Decoding loss

Inspired by recent zero-shot learning works using autoencoder [KXG17, WPV18], to explore

the intrinsic representation of the input image, we introduce the decoding loss which is

defined as the L2 distance between original visual feature xV and reconstructed visual feature

x̂V :

Lde = ‖xV − x̂V‖2 (2.10)

The decoding loss encourages x̂V to be same with xV rather than minimizing the angle

between x̂V and xV . Therefore, we utilize the L2 loss instead of cosine similarity. We did

not apply the decoding loss to linguistic features. The reason is that one attribute-object

class only corresponds to one linguistic vector, the number of attribute-object classes is too

small to learn a re-projection function with a huge number of parameters.

2.3.3.4 Discriminative loss

In the above, we have introduced the encoding loss to encourage the visual attribute-object

pair feature to be close to the indexed linguistic attribute-object pair feature. However,

this may lead to that the dominance effect of attribute or object. In another word, either

attribute or object tends to represent the whole pair. To avoid this imbalance case, we define

the discriminative loss to encourage to preserve the information for attributes and objects.

The discriminative loss consists of attribute discriminative loss and object discriminative

loss:

Ldis = Ldis,a + Ldis,o (2.11)

Ldis,a and Ldis,o are defined as

Ldis,a = h(xLa , ya), Ldis,o = h(xLo , yo)

where h(·) is a one fully connected layer network with cross-entropy loss.

The purpose of discriminative loss is to stress the individual property of the attribute
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and object in visual domain. The experiments validate the effectiveness of the discriminative

loss, the details can be found the in experiment section.

2.3.4 Learning and inference

The purpose of learning is to estimate the parameters of data transition functions defined

in Eq. 2.1-2.7. Let W be all parameters of functions involved in Eq. 2.1-2.7. Given a set of

images with the attribute and object labels, the estimation of W is equal to minimize the

losses defined in Eq. 2.8-2.11 where κ,α, β, γ are the weights for different losses:

W ∗ = arg min
W

(κLen + αLtri + βLde + γLdis) (2.12)

During inference, when a new image arrives, the visual feature is extracted and then

projected to latent space, producing the visual representation xL in latent space. At the

same time, the linguistic features of all N possible attribute-object pairs are also computed

to obtain a set of linguistic representations Z = {zLi }Ni=1. We compute the cosine similarity

between xL and every zLi , and select the indexed attribute-object pair label of the most

similar zLi as recognition result. In another word, we predict the attribute-object pair label

by choosing the zLi with the least encoding loss.

Methods MIT-States(%) UT-Zappos(%)

CHANCE 0.14 3.0

ANALOG[CG14] 1.4 18.3

SAE [KXG17] 14.0 31.0

REDWINE [MGH17] 12.5 40.3

ATTOPERATOR [NG18] 14.2 46.2

Ours 17.8 48.3

Table 2.1: Top-1 accuracy of methods tested on the MIT-States dataset and UT-Zap-

pos50k dataset. For fair comparison, all methods use the same visual feature extracted

with ResNet-18.

17



2.4 Experiments

2.4.1 Setup

2.4.1.1 Datasets

Two datasets, MIT-States [ILA15] and UT-Zappos50K [YG14], are used for evaluation.

The MIT-States is a big dataset with 63,440 images. Each image is annotated with an

attribute-object pair such as ‘small bus’. It covers 245 object classes and 115 attribute

classes. However, it does not have 245×115 attribute-object pairs as labels because not all

pairs are meaningful in real world. Following the same setting as in [MGH17] and [NG18],

1,262 attribute-object pairs are used for training and 700 pairs for test. The training pairs

and testing pairs are non-overlapping. UT-Zappos50k is a fine-grained shoe dataset with

50,025 images. Following the same setting as in [NG18] We use 83 attribute-object pairs

for training and 33 pairs for testing. The training pairs and testing pairs are also non-

overlapping.

2.4.1.2 Baselines and metric

We widely compare with four baseline methods, three of them are recently proposed state-of-

the-art methods. ANALOG [CG14] predicts unseen attribute-object pairs using a sparse set

of seen object-specific attribute classifiers. SAE [KXG17] predicts unseen pairs by project-

ing the input feature in a semantic space where the auxiliary information of unseen pairs is

known. REDWINE [MGH17] predicts unseen attribute-object pairs by composing existing

attribute and object classifiers. ATTOPERATOR [NG18] represents the attribute-object

pair as the object vector transformed by attribute operator, the transformed vector is com-

pared with CNN visual feature for unseen pair recognition. We use the top-1 accuracy on

testing images as evaluation metric.
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2.4.1.3 Implementation details

We extract 512 dimension visual feature of the image using ResNet-18 [HZR16] pre-trained

on ImageNet [RDS15]. The network is not fine-tuned on MIT-States or UT-Zappos50K

dataset. We extract 300 dimension linguistic feature for object and attribute using pre-

trained word vectors [PSM14], some not-included words are substituted by synonyms. All

these features are mapped into a 1024 dimension latent space. K in Eq. 2.9 is a parameter

that controls the margin, and is set to 0.9 in our experiment. κ,α, β, γ in Eq. 6.8 are with

the ratio of 1 : 0.2 : 2 : 2 for Mit-States dataset and 1 : 0.2 : 0.5 : 2 for UT-Zappos50K

dataset. We implement our end to end neural network with MXNet [CLL15]. For all the

projection functions, we implement each as one fully connected layer. For the projections

from visual space to latent space, to resolve overfitting problem, we add dropout layers after

each fully connected layer with dropout ratio as 0.3. We use ADAM as our optimizer with

the initial learning rate as 0.0001, which decays by 0.9 every two epochs. At every iteration

we feed the mini-batch to the network with the batch size as 128.

2.4.2 Quantitative results

As shown in Tab 2.1, our method outperform all recently proposed methods, achieving 25.4%

and 4.5% improvement over the second best methods respectively on MIT-States and UT-

Zappos50k datasets. Our method outperforms others for two reasons: 1) we introduce the

encoder-decoder mechanism that enables to learn the general and intrinsic representation of

attributes-object pair, and 2) our model considers not only the individual property of the

attribute and object but also the inner relation between them.

The average accuracy on UT-Zappos50k is higher than that on MIT-States. This mainly

results from the difference of data complexity. Images in UT-Zappos50k have single white

background as shown in Figure 2.3, and few attribute and object classes, while images in

MIT-States cover a variety of backgrounds, object classes, and attribute classes. In addition,

only 33 attribute-object pairs are used for testing in UT-Zappos50k, while 700 pairs are used

in MIT-States.
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Images in MIT-States Images in UT-Zappos50K
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Figure 2.3: Qualitative results on two datasets. For each dataset, the fifth column shows

some false recognitions and other columns show the true recognitions.

2.4.3 Qualitative results

Figure 2.3 shows some qualitative results on MIT-States dataset and UT-Zappos50K dataset.

Columns with the green mark show some true recognitions. We can observe that some

samples with extremely abstract attribute-object pairs are correctly recognized. For example,

some images like ‘wet forest’ and ‘dry forest’ are correctly recognized. However, the accuracy

is low. On one hand, forest is an abstract object sharing similar properties with objects like

tree, bush, plant, and jungle. On the other hand, wet and dry are abstract attributes sharing

the similar properties with attributes like damp, verdant, mossy, and barren. Factually for

some ‘wet forest’ testing images, our model has recognized them as ‘damp bush’, ‘mossy

jungle’, ‘verdant plant’ and other similar compositions. This demonstrates that our model

has learned some macro concepts for attribute-object pairs, but some micro concepts have

not been precisely distinguished.

20



Columns with the red mark shows some false recognitions. We can observe that some

images with the label of ‘scratched phone’ and ‘broken camera’ are wrongly recognized

as ‘broken phone’, and pairs like ‘synthetic ankle-boot’ are wrongly recognized as ‘rubber

ankle-boot’. One main reason is that some attributes are similar and some objects present

similar appearance. For example, the attribute of ‘scratched’ is similar with ‘broken’, the

appearance of some cameras is similar to that of phone, and some ‘synthetic’ boots also

present the attribute of ‘rubber’.

2.4.4 Attribute and object relation

To validate the relation of the attribute and object we have learned, we designed an experi-

ment that measures the attribute and object recognition accuracy under two conditions: 1)

not considering the relation of the attribute and object, as ‘Att’ and ‘Obj’ shown in Table.

2.2, and 2) considering the relation of the attribute and object in both visual and linguistic

domains, as ‘Att (pair)’ and ‘Obj (pair)’ shown in Table. 2.2. Actually, ‘Att (pair)’ and ‘Obj

(pair)’ correspond to the accuracy that are extracted from our attribute-object pair recog-

nition results. While for ‘Att’ and ‘Obj’, we have separately trained a 2-layer MLP model

to recognize attribute and object category. We can observe from Table. 2.2 that attribute

recognition accuracy of our model is always higher than that does not consider relation of

the attribute and object, which validates our claim that attribute is highly dependent on

object.

2.4.5 Ablation study

We design two experiments. One is to study the importance of different loss functions, the

other is to study the effect of different visual features.

For the detail analysis of different loss functions, we report the accuracy corresponding

to different kinds of loss function compositions on both MIT-States and UT-Zappos50K

datasets as shown in Table. 2.3. If only encoding loss is used, the accuracy is 3.6% on the

MIT-States and 37.8% on the UT-Zappos50K. If we add triplet loss (+tri) to encoding loss,
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Item
MIT-States UT-Zappos

Top1 (%) Top5(%) Top1 (%) Top5(%)

Att 15.1 38.9 18.4 76.8

Att (pair) 25.1 55.3 52.0 92.7

Obj 27.7 56.4 68.1 96.7

Obj (pair) 29.9 51.6 77.3 93.9

Table 2.2: ‘Att’ and ‘Obj’ correspond to the accuracies that are trained using the original

visual feature, while ‘Att (pair)’ and ‘Obj (pair)’ correspond to the accuracies that are

extracted from our attribute-object pair recognition results.

we obtain significant performance improvement on both datasets, which validate our claim

that we should not only encourage the visual feature to be close to the linguistic feature of

its indexed attribute-object pair but also should let it to be away from the linguistic features

of the other attribute-object pairs. If we add discriminative loss (+dis) to encoding loss, we

obtain significant performance improvement on MIT-States but slight improvement on UT-

Zappos50K. On one hand, we can conclude that the discriminative loss allows to learn better

visual attribute-object representation by stressing individual attribute and object property.

On the other hand, it is based on certain condition. The MIT-States dataset is complex

and has many object and attribute classes, while the UT-Zappos50K is relatively simple

that the visual features already have good representations, so adding discriminative loss

only contributes slightly. If we add decoding loss (+de), we obtain impressive performance

improvement on the MIT-States, even better than adding both triplet loss and discriminative

loss (+tri+dis), which demonstrates that encoder-decoder mechanism can mine the essential

representation for attribute-object pair. On the UT-Zappos50K, the decoding loss is also

helpful.

From the Table. 2.3 we can observe that the performance is basically increasing when

adding more loss functions. Though in some cases adding more losses lead to worse results,

the best performance is achieved when using all loss functions (+de+dis+tri), from which

we can conclude that the four loss functions are complementary to each other. In the Table.
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Loss MIT-States(%) UT-Zappos(%)

en 3.6 37.8

+tri 11.2 45.5

+dis 15.3 37.9

+de 17.2 41.3

+tri+dis 15.7 41.4

+tri+de 17.4 46.7

+dis+de 17.5 43.5

+de+dis+tri* 16.5 47.5

+de+dis+tri 17.8 48.3

Table 2.3: Accuracy for loss function ablation study. ‘en’, ‘tri’, ‘dis’, and ‘de’ represent

the encoding loss, triplet loss, discriminative loss, and decoding loss, respectively. *means

sharing parameters for F a
S→L(·) and F o

S→L(·)

2.3, (+de+dis+tri*) corresponds to the accuracy when we impose the constraint that the

attribute and object are processed by the same projection function (sharing the parameters

in Eq. 2.1 and Eq. 2.2). We can observe that the accuracy of (+de+dis+tri*) is lower

than that of (+de+dis+tri) on both datasets, from which we can draw another important

conclusion that object and attribute are two different kinds of instances and should be

processed differently to better explore their individual properties. .

In Table. 2.4, we report the accuracy corresponding to different kinds of visual feature

extractors. We tested two kinds of network architectures, VGG [SZ14b] and ResNet [HZR16].

We can observe from table that the visual feature significantly affects the final performance.

VGG-19 presents similar performance with VGG-16. ResNet behaves better than VGG, and

basically achieves higher accuracy with deeper architectures.
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Network MIT-States(%) UT-Zappos(%)

VGG-16 15.4 40.7

VGG-19 15.3 40.8

ResNet-18 17.8 48.3

ResNet-50 19.7 52.0

ResNet-101 20.0 51.9

Table 2.4: Accuracy of our method with different visual feature extractors.

2.5 Conclusion

In this work, to recognize the unseen attribute-object pair of a given image, we propose

an encoder-decoder generative model to bridge visual and linguistic features in a unified

end-to-end network. By comparing our method with several state-of-the-art methods on

two datasets, we reach the conclusion that 1) the generative model is more competitive

than discriminative models to recognize unseen classes, 2) the encoder-decoder mechanism

is crucial for learning intrinsic feature representations, and 3) an appropriate model should

consider not only the individual property of the attribute and object but also the inner

relation between them.
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CHAPTER 3

Learning Geometric Fluents Change in Latent Space

3.1 Introduction

With the development of deep Convolution Neural Networks(CNNs), significant progress

has been made in recognizing categories of objects in images. However, how to recognize

the underlying transformation of objects between two or more images has not been well

addressed yet and stays challenging due to big variation of object appearance and noisy

background.

Transformations are dynamic changes of object states, which can be visually grouped into

changes in geometry and appearance, such as small → big and young → old respectively

. Understanding transformation is essential for recognizing objects under different states

and thus leads to concept formation of objects in semantic perspective. An intuitive way to

recognize the transformation of objects is to treat it as a classification problem like traditional

object recognition task by manually defining all possible transformations [ILA15, LWZ17].

But the defined categories may lack generality because most transformation are continuous

changes. The continuity of transformation space makes it difficult for human to determine

the exact degree of the transformations, for example to what extent should we label the door

’open’. Also some transformations described by same semantic word has a big variation in

appearance and geometry such as open book and open drawer.

Inspired by prior works [CDH16, HKW11, KWK15, WGT17, ZB16] which studied trans-

formation with generative networks, We seek to learn transformations in latent space, where

images are encoded by low dimensional ‘codes’. Transformation function F (Θ), which de-

scribes changes of object between images in real world, is controlled by parameters Θ. It can
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Image space

Latent space

F(Θ)

f(Θ)
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Figure 3.1: Illustration of transformation function F (Θ) and its mapping function f(Θ) in

latent space. F (Θ) transforms image in real world with parameters Θ, f(Θ) transforms

image code in latent space with the same parameter. Parameters describing the same trans-

formation are identical in both F and f .

be represented by an unknown function f(Θ) in latent space, which maps pre-transformation

image code to post-transformation image code, as illustrated in Figure 3.1. Instead of trying

to explore the transformation function f(Θ) in given latent space, we define the form of f(Θ)

in latent space explicitly and try to find the latent space where real world transformation

function F (Θ) is mapping to our designed form of f(Θ).

Following this spirit, we propose a 4-channel Siamese encoder-decoder networks which

has three properties listed as below. 1. This networks can predict the representation of

transformation of image pair. 2. It can apply desired transformation to the image through

explicit operation on image code and transformation code in latent space. 3. The represen-

tation of transformation is interpretable [WGT17] which means we can directly design the

representation of transformation with unit transformation code.

The transformations we study in this work includes rotation, translation, stretching (scal-

ing along single axis), uniform scaling and face size deformations. These transformations can

be further grouped into in-plane transformations and out-of-plane transformations, or linear

transformations and non-linear transformation in 3D Euclidean space. The data we use are

image pairs rendered from 3d models in graphics engine, with which we can precisely control

the parameters of transformations applied to the model.

In summary, our contributions are in three folds:
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1) We study the problem of learning transformations between image pairs with weakly-

supervised method from only raw image data which is easy to obtain from graphics

engine.

2) We have proposed a 4-channel Siamese convolutional encoder-decoder networks which

consists of transformation representation extracting networks and transformation ap-

plying networks.

3) We have learned an interpretable transformation space in which we can generate desired

transformations.

3.2 Related Work

Object state recognition. Object state recognition is closely related to object attribute

recognition. People define objects’ attributes with several semantic concepts. Each attribute

has its own state space, such as {male, female} for gender, {open,close} for door. Isola et

al. [ILA15] have collected a large dataset consisting of images described by various adjectives,

his learned images representations can be used to distinguish different states of the same

attribute independent of objects such as {raw, cooked} and retrieve middle-transformation

image. Misra et al. [MGH17] have developed a network which combined different object

classifiers and attributes classifiers to predict the label of unseen combinations of visual

primitive. Liu et al. [LWZ17] have jointly modeled objects fluents and action which changes

it to improve objects states recognition and action recognition. They all tackle the problem

of recognizing object states with a supervised method, although their learned attributes

representation can be generalized across different objects, they cannot tackle continuous

changes well because of the classification training method.

Encoder-decoder networks. As an unsupervised method, encode-decoder networks

have caught a lot of attentions during past years with the development of convolutional net-

works. They have been applied in many computer vision generation problems with attractive

visual results such as different styles image generation [IZZ17], future prediction from time-

lapse videos [ZB16], 3D models generated from 2D images [WZX16]. One problem that is
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close to our works is view synthesis [PYY17, YRY15, ZTS16], they coded transformation

parameters and apply it to the latent representation. Our work differs from them in the way

that we train the encoder-decoder networks by recovering transformation representation and

reconstructing images after transformation from two pairs of images simultaneously without

explicit parameter inputs such as angle of azimuth and elevation.

Interpretable transformation networks. There are several exciting works on the

study of interpretable representation of transformation between two images or video frames

[CDH16, HKW11, KWK15, WCK16, WGT17]. In deep convolutional inverse graphics

network(DC-IGN), Kulkarni et al. [KWK15] treat transformation learning as an inverse

graphics problem, the graphics code is a natural disentangle representation, however the data

need supervised organization during training process. Chen et al. [CDH16] managed to learn

the disentangle transformation code by maximizing mutual information through InfoGan.

But their network cannot output a new image which generated from some transformation

applied to an input image. Worrall et al. [WGT17] study the rigid body transformation

through encoder-decoder networks. They have designed a hidden state transformation layer

which takes in explicit geometry parameters as inputs besides original images, which generate

impressive images.

3.3 Methods

Images are very high dimensional data, whereas the transformations we study can be rep-

resented by several parameters, which guides us to seek a relatively low-dimensional space

where slightly changing or unchangeable appearance details are highly compressed. Inspired

by dimension deduction technology with autoencoder which maps raw data to a latent space

through convolutional layers and non-linear activation function such as ReLU, Tanh, we can

study the transformation in a low dimensional latent space. However the latent spaces di-

rectly learned from neural networks are always hard to interpretable, so we add constraints

to train the encoder-decoder which maps data to a latent space with our desired properties.
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Figure 3.2: Architecture of 4-channel Siamese encoder-decoder networks.

3.3.1 Encoder-decoder networks

Inspired by previous works on learning transformation through auto-encoders styles net-

works [KWK15, WGT17, ZB16]. We have designed a fully convolutional encoder-decoder

networks. Our input images are generated with the size 128 × 128 × 3, the values of each

channel are normalize to [−1, 1]. Both encoder and decoder are consisting of 7 convolu-

tion/deconvolution layers with symmetric channels and filters settings. The filter size for

each layer is 4 × 4, with the strides (2, 2). So the image size is dividing/multiplying by

2 after every convolution/deconvolution layer. The number of channels for each layer are

64,128,256,512,512,1024,1024. Each convolution/deconvolution is followed by batch normal-

ization layer and activation layer except first convolution layer. The activate function for

encoder are all LeakyReLUs with slope = 0.2, for decoder we use ReLUs with no slope. We

add an extra convolution layer with 3 channels and Tanh activation to make the output fit

the size of input images.

3.3.2 Transformations in latent space

Suppose X is a set of image pairs, the transformation for any given images pair (X1, X2) ∈

X is controlled by parameter Θ = (θ1, θ2, ..., θn), which can be very high-dimensional for
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complex non-linear transformations. The transformation of (X1, X2) in real world can be

described by a unified function F:

X2 = F (X1; Θ) (3.1)

we represent encoder networks and decoder networks as functions e and e−1 which map

between raw image X and its representation x in latent space V . Each encoder networks

can map X to its own space V .

eV (X) = x (3.2)

e−1V (x) ≈ X (3.3)

Eq 3.3 is not strictly equal due to the information loss in dimension reduction in Eq 3.2.

The transformation function fV in hidden space V satisfies:

∀(X1,X2) ∈ X,Θ when X2 = F (X1; Θ)

fV (e(X1); Θ) = e(X2)

There are multiple instances of (V, fV ) because each pair of eV and e−1V defines a latent

space V . In different latent space V , the transformation function fV can be in very different

forms. In this work we study a specific form of fV , where x and parameters Θ are decoupling

by encoders. We call A(Θ) as transformation vector.

fV (x; Θ) = x+ A(Θ) (3.4)

Suppose we are given two image pairs (X1, X2) and (X3, X4) which undergoing the same

transformation:

F (X1; Θ) = X2 F (X3; Θ) = X4

In space V , we have:

xi = eV (Xi), i = 1, 2, 3, 4

fV (x1; Θ) = x1 + A(Θ) = x2

fV (x3; Θ) = x3 + A(Θ) = x4
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So we have:

x2 = x1 + A(Θ) = x1 + (x4 − x3) (3.5)

So the transformation vector A(Θ) can be represented as the subtraction of x4 and

x3. Below, we will show one interesting properties of A(Θ) which is similar to linearity of

functions.

Transformation decomposition Suppose for three given images, X1, X2, X3, which

satisfy:

F (X1; Θ1) = X2

F (X2; Θ2) = X3

F (X1; Θ1 +©Θ2) = X3

+© is defined as the element-wise summation operator of Θ. In this work, for parameters

controlling rotation, translation and face size, it applies the arithmetic summation. For

parameters controlling scaling, it applies summation of logarithm of scaling coefficient. In

hidden space V, we have:

x2 = x1 + A(Θ1)

x3 = x2 + A(Θ2)

x3 = x1 + A(Θ1 +©Θ2)

From above we can derive that:

A(Θ1 +©Θ2) = A(Θ1) + A(Θ2) (3.6)

3.3.3 4-channel Siamese encoder-decoder networks

In all, our purpose is to find a hidden space V of which the transformation function fV has

the form as Eq. 3.4.

The latent space V is defined by the encoder networks and decoder networks because

encoder does the mapping eV : X→ V , and e−1V : V → X.
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As we show with Eq. 3.5, A(Θ) can be represented by subtraction of the latent code of

images pair. So we design a 4-channel Siamese encoder-decoder networks which is shown in

Figure 3.2. The inputs are 2 pairs of images (X1, X2), (X3, X4), the transformation in each

pair are identical. We use a Siamese style networks because (X1, X2), (X3, X4) should be

mapped into the same latent space V by feed them into the same encoder-networks. The

2-channel Siamese transformation generating networks take (X3, X4) as inputs, and produce

transformation vector A(Θ) = x4 − x3. x′2 is the latent code to reconstruct X2 where

x′2 = x1 + (x4 − x3). x2 is obtained for the comparison with x′2 to calculate reconstruction

loss in latent space.

3.3.4 Loss function

To get both accurate pos-transformation prediction in image and latent space, we have

introduced two main loss to minimize with back propagation.

3.3.4.1 Image reconstruction loss

The output of our model is the predicted image after transformation. We measure images

reconstruction loss with several metrics compared to the ground truth images.

Lp-norm loss. A typical loss is pixel-wise Mean Square Error(mse), also known as L2

loss. However it is only good at capturing low frequency information, the image generated

with only L2 loss is always blurred. We adopt L1 loss in our work which causes less blurring

meanwhile can still capture accurate low frequencies as suggested in [IZZ17].

Gradient difference loss. As suggested in [MCL15], Gradient Difference can capture

high frequencies such as edges and corners because it calculates the gradient between neigh-

boring pixels. Lowing Gradient Difference Loss(GDL) can sharpen the generated image.

The GDL loss between ground truth image X and predicted image X̂ is calculated as:

Lgdl =
∑
i,j

||Xi,j −Xi−1,j| − |X̂i,j − X̂i−1,j|‖2+

||Xi,j −Xi,j−1| − |X̂i,j − X̂i,j−1|‖2
(3.7)

32



Structural similarity loss. Structural similarity index(SSIM) [WBS04], which is also

widely used, has demonstrated its effectiveness for capturing structural information such as

luminance, contrast. We use structural dissimilarity(DSSIM) as structural loss function to

minimize:

Ldssim =
1− SSIM(X, X̂)

2
(3.8)

Our whole image reconstruction loss is defined as the weighted combination of the above

three losses.

Limg = λL1L1 + λgdlLgdl + λdssimLdssim (3.9)

3.3.4.2 Code reconstruction loss

We not only want to minimize the loss from ground truth image and generated image,

but also we design a loss to penalize the difference between ground truth image code and

reconstruction code in latent space V , which we call code reconstruction loss. The purpose

that we introduce this loss is to encourage our learned decoder networks mapping the same

space V as encoder networks mapping to the image space. We use L2 loss to measure the

difference between two vectors.

Lcode = L2(f(e(X1); Θ), e(X2)) (3.10)

So our final loss function is:

Lrec = Limg + λLcode
Lcode (3.11)

3.4 Experiments

Below we will show our settings for training, datasets, visual results and analysis.

3.4.1 Training settings

In training phase, we minimize our loss function with Adam Stochastic Optimization [KB14]

with initial learning rate lr = 0.0001, the mini-batch size is 64. The model is training
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with 40K iterations. We implemented our whole model in Keras [Cho15] environment, with

TensorFlow as back-end. We set [1, 2, 1, 1000] for hyper-parameters [λL1 , λgdl, λdssim, λcode].

3.4.2 Faces dataset

Basel Face dataset [PKA09] is a PCA based face model from which we can randomly gener-

ate 3D faces. We rendered the images from 3D models with perspective projection methods

to make the images more realistic. We augmented the face model with 4 types of transfor-

mations: scalings, rotations, translations and face size deformations and their combinations.

For scalings we generate separately for x-axis, y-axis, and uniform-scaling. For rotations we

generate 2D rotations(roll), 3D rotations(change azimuth and elevation). For translation,

we only perform in-plane translation, as out-of-plane translation is visually same as uniform

scaling from perspective view. For face size deformation, besides their main PCA model

which is used to generated faces, they offer another attributes PCA model through which we

can generate faces with different sizes (fatter or thinner). All rendered images are re-sized

to 128× 128 with 3 color channels.

For one sample of transformation in our training sets, we generate 4 images (a1,a2,b1,b2),

where the transformations of a1 → a2 and b1 → b2 are identical but a1 and b1 have different

initial weights in PCA components, positions and poses. Since all the transformations we

studied can be inverted, so we can further generate 3 training samples by simply re-ordering

the elements of the original tuple to get (b1,b2,a1,a2),(a2,a1,b2,b1), (b2,b1,a2,a1). We have

generated around 108K 4-elements tuple in total and split them into training and validation

sets with the ratio 8:2. An illustration of training sample is shown in Figure 3.3.

3.4.3 Image generation results

3.4.3.1 Image sequence generation

To show the generative ability of our trained networks, we generate face images by varying

only one transformation parameter for better visualization and comparison. Faces in the
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sample 1

sample 2

Figure 3.3: Illustration of training samples.

center of every row are the ’starting’ faces. First row and second row are showing reference

faces and ground truth faces respectively. Note that they are generated with different initial

parameters. The parameter intervals between every two adjacent columns are identical. The

range of each parameter, azimuth: [ -24◦, 24◦], elevation: [ -24◦, 24◦], roll:[ -45◦, 45◦], y-axis

translation:[-20px, 20px], x-axis scaling: [0.964, 0.96−4], size: [-80, 80].

We have used 3 methods to generated the faces. Directly mapping: This is exact

the same way how we trained our networks, our model predicts the faces based on two

reference faces in the first row. Image by image: We first generate images in 4-th and

6-th columns with directly mapping. Then we generate other columns recursively based on

former generated image. For example we generate images in 3-rd column based on 4-th

and 5-th faces for transformation reference in first row and the faces we just generated in

4-th column. Code by code: Rather than generating images by images, we extract the

transformation vector between 5-th image and 6-th image in first row as unit transformation

vector. Then we recursively generate images in the other columns by keeping adding unit

transformation vector or subtracting it.

The results are shown in Figure 3.4. From the results we can see all of the three methods

are giving visually satisfying results, despite of some details of faces cannot be recovered.

Besides, image by image method has shown that our learned transformations are indepen-

dent of the absolute poses and positions of two faces, which can truly represent the relative

change between two images. Code by code method further demonstrates that our learned

35



transformation space has the property of transformation decomposition and combination

just as we derive in Eq. 3.6, based on which we can generate more faces.

3.4.3.2 Transformation vector generation

As what we have shown in Eq. 3.6 and our image by image and code by code methods

demonstrates, we can precisely generate transformations by just generating transformation

vectors in hidden space instead of generating images pair which undergoing transformations

as our transformation reference. For azimuth, elevation, face size and x-axis scaling, we

generate 10 images pairs undergoing a certain degree of transformation for each, then we

extract their transformation vectors and average for each group to reduce variance. We

treat these four 1024-dim vectors as our unit transformation vectors. We randomly generate

9 pairs of images undergoing the transformation controlled only by azimuth angle, elevation

angle, face size coefficient and x-axis scaling coefficient. Then we generate transformation

vectors with arithmetic combination of our four learned unit transformation vectors, our

final faces generation results are shown in Figure 3.5. In spite of lack of some facial details,

the pose, position and shape of the generated faces look no different, which are crucial to

determine the transformations. These results demonstrate the interpretability of our learned

model, and we can generate faces with the latent code of unit transformation vectors.

3.4.4 Visualization of transformation space

In order to have a more straightforward visualization of the transformation space we have

learned. We have extracted all of the 1024-dimensional transformation vectors from our test-

ing sets. Since our transformations has a natural form indicating that it can be decomposed

as the summation of multiple sub-transformations, which is very similar to PCA. We do

the PCA analysis of our extracted transformation vectors and choose top 20 components,

so the transformation vectors are further deducted to 20 dimensions. We visualize it with

t-SNE [MH08], we set perplexity = 1000 since our dataset is large and we want to observe

the global geometry as suggested in [WVJ16]. The results are shown in Figure 3.6.
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(a) Azimuth

(d) Y-axis translation

(e) X-axis scaling

(b) Elevation

(c) Roll

(f) Size

Figure 3.4: Faces generation results with one parameter varied. For each subplot, Row 1:

Reference images for transformation; Row 2: Ground truth images; Row 3: Images generated

with directly mapping method; Row 4: Images generated with image by image method;

Row 5: Images generated with code by code method
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Figure 3.5: Illustration of faces generation results with transformation vectors constructed

with unit transformation vectors. Faces on the left are ground truth images. On the right

are our generated faces undergoing desired transformations.

The visualization looks very reasonable. First we can see transformations that only varies

one parameter cluster together and form two stripes, each of them represents the positive

or negative direction of parameters change. However the in-plane rotation tends to form a

circle because of its periodicity. Second, to check if our space is interpretable, which means

ordered transformations in real world are also ordered in our transformation space. We select

transformation vectors in 3 transformation categories: azimuth, elevation and face size, and

then apply them to a new generated face. The transformation vectors we selected are plotted

as red dots in Figure 3.6. As the absolute value of parameter increases, the dot tends to

get further from original point. We have put some generated face next to the dots which

represent their transformations from the original face at original point.

3.5 Conclusion

In this work, we study the problem of learning transformation space in 2D images. The

transformations we are studying includes both in-plane, out-of-plane, linear and non-linear
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Figure 3.6: t-SNE visualization of our learned transformation space. Each color represents

a certain transformation with only one parameter varied, while dots in orange mean the

complex transformations consisted of multiple parameters varied. The face at the junction

is the original face, the other faces at different places mean they are generated with the

transformation vectors(red dot) next to them.
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transformations. We have proposed a 4-channel Siamese encoder-decoder networks which

learns transformation space with 2 pairs of images undergoing identical transformations. We

show the strength of our model by demonstrating our generated images with three different

generating methods and the visualization of learned transformation space. For future works,

we will discover transformation function in more complex forms in latent space and study

more complex transformations in real scenes.
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CHAPTER 4

Learning Interpretable Fluents Change and Intuitive

Physics

4.1 Introduction

In last chapter we have discussed how to learn a set of implicit geometric fluents change

by providing designed quadruple to enforcing the linearity of parameters in latent space.

However it is hard to interpret the meaning of each dimension of the latent vector, and in

most of the case some single fluents such as rotation angle, scaling coefficient are represented

by multiple dimensions. In this chapter we are seeking a more natural way to learn the latent

fluents space with more meaningful dimensions in physics.

When humans in their infancy, they developed quickly how to perceive the world and

predict some simple physics phenomenon which is the so-called intuitive physics [SC94].

What will a physics system, such as a number of balls in a box, look like in 10 seconds? For

us, we may tell a short future of this system by our feeling. However for a physician, if the

system is ideal and the physical property for each entity are known, then the dynamics of

them can be calculated accurately although might be hard. The calculation for dynamics is

based on the well-known physics law like Newton’s law of motion. In this chapter, we are

interested in letting the computers make precise prediction of some physics phenomenon like

collision and gravity.

Just like how physicians proposed the hypothesis of law from daily observations and

verified it with designed experiments. In this work, we are trying to use computer vision

technique to learn the intuitive physics by observing the videos, and apply the law we have
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learnt in order to predict future in an unsupervised manner. The future of physics phe-

nomenon is affected by lots of physical properties like the touching point, elastic coefficient,

masses and shapes of the objects. It is expected that the latent space we learn will be capable

to have all these information encoded in order to learn a meaningful physics law represented

by the dimension in fluents space.

Following the procedure of solving a physics problem: 1. Finding interested objects 2.

Measuring physics properties for those objects 3. Calculating the future dynamics according

to the physics laws. We build up our system with segmentation module, physics state

encoder, physics state predictor respectively. We have further designed an rendering module

for purpose of calculating loss on raw images and visualization.

We have conducted our experiments on our newly collected dataset generated with a

graphics engine called Box2D with controllable parameters for each entity. Note that the

simulation in the graphics engine are based on the pre-defined rule, so what we are trying

to learn are the graphics rules in the simulation engine, making our problem as an inverse

graphics problem.

4.2 Related Work

Video prediction. With the development of generative networks such as autoencoder

and GAN, video prediction or interpolation have been studied intensively recently [MCL15,

FGL16]. Those works are focusing mainly on the motion information in the past frames

like velocity and acceleration or try to memorize a certain type of transformation [ZB16].

Although our work is a kind of future prediction, it is different from them in the aspect

that our model not only perceive motion information, but our model can also predict the

future based on the other perceived properties and the rule learnt from the system. Our

system doesn’t simply predict the future with linear extrapolation/interpolation of velocity

or acceleration, instead we predict the future position of objects based on the object states

and system rule. With this rule we can predict the future for a relatively large time span

compared to traditional video prediction which can only deal with simple motion.
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Inverse Graphics. Graphics engine produce the images with 2 stages: 1. Accept the

parameters that control the properties of objects such as color, shape, size 2. Render the

images with the controlling parameters. While computer vision in the inverse process of

graphics, by processing the images, computers can infer the parameters which is also called

representation learning. With the development of deep neural networks, a conventional

model for inverse graphics problem is autoencoder [KWK15]. The encoder networks serve

the role of perceiving module while the decoder networks can be seen as the rendering

module. The graphics code to learn are naturally lying in the latent space. In our works, to

predict future frames of objects in the physics phenomenon is equal to predict the graphics

code and input them to rendering engine.

Intuitive Physics. In real world, people can quickly judge if two objects will collide

or not by estimate their velocity, position and their friction with the environment. Works

on learning intuitive physics are mainly on three aspects. The first setting is with explicit

parameters and certain expression of equations such as polynomial, this is mainly a regression

problem in statistics. However the form of expression may be very complex or unknown,

hence they are approximate with probabilistic models [WYL15]. The most general setting is

with implicit parameters and expression forms, several works such as block towers [LGF16,

WLK17] and object collisions [BPL16, WZW17].

4.3 Dataset

In this work, we have collected a large dataset with an open source physics simulation engine

called Box2D. We simulate our data by placing multiple objects in a close box and giving each

object a random initial velocity. We collected the rendering images, and physical properties

such as mass, position and velocity for 40 frames in one run. The controlling parameters

which can be initialized randomly are numbers of objects, object size, position, velocity and

color. The physics interaction types we simulate are collision and n bodies gravity system.

A snippet of our data samples can be viewed in Figure 4.1.
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Figure 4.1: Each row contains the 1st, 4th, 7th, 10th, 13th, 16th frame of the corresponding

video.

4.4 Approach

To predict the future video frames, we design the network architecture following two steps:

1. Design the autoencoder networks which can encoder the video frame to latent vector and

also render it with the decoder. 2. Design the physics inference engine with can predict the

latent vector.

4.4.1 Autoencoder networks

First we will introduce the autoencoder networks. For the purpose of simplification, we

assume the segmentation of each object is available to us. For each object, we use the

identical autoencoder networks to transform the image with the object segmented out to a

low dimensional vector in latent space.

In this work, we have designed two branches for the encoder networks as illustrated in

Figure 4.2, which means the latent representation for each object is composited of two latent

vectors from two different branches. One part corresponds to variable fluents in the scenarios

of object interactions, such as position, orientation, typically the dimension of latent vector

for this branch can be very low. The other part corresponds to all the invariable fluents of

the objects including size and color.
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Figure 4.2: Illustration of autoencoder networks.

For the decoder networks, we utilize a 6-layer de-convolution networks to decode the

object vector which is basically the concatenation of two latent vectors from the encoder

networks. In addition, we hope the latent space for the variable fluents to share some similar

properties with those in image space like linearity, continuity. With the variable fluents space

with these kind of properties, the physics dynamics we learn in this latent space will have a

similar manifold with that in Cartesian coordinate system of image space. With the above

encoder-decoder networks, we can obtain the point to point mapping between image space

and latent space. Now we need a vector to vector mapping between these two spaces to
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Figure 4.3: Illustration for physics dynamics inference networks.

ensure some more properties. So we have designed an extra branch to decode the difference

between two variable vectors which are of the same object in two different frames to the

optical flow in the image space which describes the movement of this object in two frames.

4.4.2 Physics dynamics engine

Given first few frames of a video, we want to predict the position and orientation of the

objects in future frames. Since this problem is not simply a video frame extrapolation. We

have to learn the physics dynamics like law of collision to precisely infer the future states of

the objects.
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Follow the spirit of Newton’s law of motion.

∆x =x2 − x1

=(v1 + v2)×∆t/2

=v1 ×∆t+ 1/2a∆t2

=k1v1 + k2ΣF

The variable fluent vector contains the information of position, then we can approximate

velocity from the difference of two variable fluent vectors in consecutive frames. When

the object is moving, it will subject to the force from interaction with other objects and

environment. Hence for each object, we have designed mutual dynamics module to predict

the force brought by the other objects the environment. We add all the forces together to

predict the final variable fluent vector for this object in the next frame.

4.5 Experiment Results

In this section, we will describe the details in training. Our training procedure contains two

stages.

We first train the invariable and variable autoencoders with three randomly picked images

I1, I2, I3 from the same sequences. We can get the invariable vectors for each objects in I1,

and variable vectors for each objects in I2 and I3. We have two ways to reconstruct I3: I
′
3

is constructed by decoding from the concatenation of invariable vector from I1 and variable

vector from I3; I
′′
3 is constructed by first getting the optical follow map from the difference

of variable vectors from I2 and I3, and then mapping I2 based on the optical flow map. The

loss function to train autoencoders is as follow:

Lautoencoder = ‖I3 − I ′3‖2 + ‖I3 − I ′′3 ‖2

Once the model converges in stage 1, we use the parameters in stage 1 as pre-trained

weights. We use the latent vectors in two consecutive frames to reconstruct the variable
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vector in the third frame, and then decode the images with latent vectors we get. The loss

is summation of MSE loss over all predicted frames.

4.5.1 Autoencoder

In order to evaluate the variable space we have learnt, we firstly generate invariable vector

by sampling from the normal distribution used in variational autoencoder. Then we vary the

value for each dimension in variable vector from -1.5 to 1.5 with 0.5 as interval. There are

49 decoding images in total and we have plotted them in Figure 4.4. We can observe that

the learnt dimension has some semantic meaning. When varying the value in one dimension,

the position of object is also shifting in one direction. More precisely in the figure, the two

dimensions in the variable fluent space are aligned with the diagonal and sub-diagonal of the

image space, which means the latent space we have learnt can transform to the image space

by just rotating about 45 degrees as shown in Figure 4.5.

Figure 4.4: This figure shows about the rendering objects by varying value linearly in each

dimension of variant fluent space. The varying range for both dimensions are [−1.5, 1.5] with

interval of 0.5.

48



Figure 4.5: This figures shows the coordinates projection from latent space to image space.

We can observe that the latent space is nearly uniform which can transform to image space

by merely affine transformation.

4.5.2 Physics dynamics

Given a sequence of frames, we initialize our system with first 3 frames of the video. We use

the variant encoder to extract variable vector for each object in the first three frames. Then

we rollout the variable vector one by one and use then to predict the future frames. The

results are shown in Figure 4.6 and Figure 4.7, for N bodies problem, the predicted results

are much more close to the ground truth while the results for collision are less precisely. This

is because the physics system for collision is more complex than the N bodies problem as it

involves sudden interaction between objects, while in N bodies problem all the objects are

governed by an unified gravity law across time. However, our model can still generate some
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qualitative results.

Figure 4.6: Images prediction results for three bodies problem.

Figure 4.7: Images prediction results for three balls collision.

4.6 Conclusion

In this work, we have seek the possibilities to learn a more disentangled fluent space with

each dimension has some semantic meaning. With the simulating dataset we have collected

and the model we have learnt, it is showing that understanding inner fluent of object in

the image with autoencoder is promising. However, there is still a long way to go and lots

of things to explore to rich the fluents space and apply them to more various objects and

fluents change.
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CHAPTER 5

Jointly Recognizing Object Fluents and Tasks in

Egocentric Videos

5.1 Introduction

Egocentric vision has attracted a growing attention with the advance of wearable camera

technologies, such as smart glasses and virtual reality headsets. The wearable cameras

mounted on the head enable a user to record the videos from the first-person view while

performing daily tasks.

Two significant issues related to egocentric vision are recognizing tasks and recognizing

object fluents. A task is a goal-oriented human activity which interacts with the objects in

an environment and changes some attributes of the objects, such as mop floor, make coffee,

and microwave food. A fluent is a time-varying attribute of an object or a group of objects,

and its values are the specific states of the attribute [FZ15, Mue15], as shown in Figure 5.1.

For example, a floor’s fluent takes the values dirty and clean over time as the floor is mopped.

In our work, fluents are divided into self fluents and mutual fluents. A self fluent describes

the attribute of a single object, such as dirty to the floor and full to the mug. A mutual

fluent describes the attribute of two objects as a whole, such as fastened to a lid and a coffee

can, contacting to a blackboard and an eraser, etc.

One of the most widely-used cues for activity recognition in egocentric videos is the

appearance information of related objects [FFR11, FLR12, PR12]. However, in complex

goal-oriented tasks, the appearance of the same object often dramatically changes in different

phases of the tasks, which may mislead object appearance based activity recognition. For
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drawer: closed drawer: open book: closed book: open

mug: empty mug: full monitor: off monitor: on

floor: cleanfloor: dirty

blackboard, 
eraser: contacting

blackboard,
eraser: apart

microwave,
food: containing

microwave,
food: separate

lid, coffee can: 
fastened

lid, coffee can: 
unfastened

Figure 5.1: Illustration of self and mutual object fluents. The blue italic words describe the

object fluents.
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example in Figure 5.1, the appearance of the drawer is vastly different before and after the

drawer is opened. This phenomenon motivates us to explore new methods to model and

recognize tasks.

We propose to model and understand tasks in egocentric videos from a new perspective

- the effects that a task causes. A task is a human activity which aims to change some

attributes of the objects in an environment. The accomplishment of a task indicates the

realization of one or multiple desired fluent changes, which we call the key fluent changes. For

example, the task sweep floor changes the floor from dirty to clean, as shown in Figure 5.2.

With the knowledge that the floor becomes clean from being dirty with some stains, we can

reasonably infer that the task mop floor might have occurred, even if we did not observe

any human activity features. In addition to the fluent of floor, the task sweep floor also

contains several other key fluents, such as apart or contacting with respect to broom and

trash, separate or containing with respect to dustpan and trash. All these fluents contribute

to define and discriminate the task sweep floor.

Furthermore, different fluents interact closely with each other both in spatial and tem-

poral domains. In spatial domain, the interaction is presented as fluent concurrence, which

means some states of two or more different fluents often occur together. For example, in the

task sweep floor, a dirty floor often means the trash is not contained in the dustpan. The

fluent dirty with respect to floor and the fluent separate (not contained) with respect to

dustpan and trash occur together. In temporal domain, the interaction is presented as fluent

transition, which means fluents in different tasks transition with different probabilities. For

example, in the task write on blackboard, it is likely that the blackboard changes from clean

to dirty, but unlikely to change in the opposite direction. This case is just the opposite in

the task clean blackboard.

In this work we propose a fluent-based task representation method to jointly recognize

object fluents and tasks in egocentric videos. A task is represented as several key object

fluents, which interact with each other by means of concurrence in spatial domain and

transition in temporal domain. The task, object fluents, video frames, and the relations

among them are described with a unified hierarchical graph. Given an egocentric video, a
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beam search algorithm [WZZ17] is adopted to jointly infer the object fluents in each video

frame and recognize the task of entire sequence. To evaluate the proposed method, we

collected a large scale egocentric video dataset of tasks and fluents in daily activity scenes.

The experimental results on this dataset show the effectiveness of our method.

This work makes three major contributions:

1) We represent tasks in egocentric videos from a new perspective - representing tasks

with object fluents.

2) We propose a hierarchical model to represent the task, object fluents, and their inter-

action relations in a unified framework.

3) We collected a new egocentric video dataset of tasks and object fluents. The experi-

ments on this dataset prove the strength of our method.

5.2 Related Work

Activity modeling and recognition. Human activity recognition is a classic problem

in computer vision and has been intensively studied for decades. Some early studies de-

scribe appearance and motion information in 2D images or videos with hand-drafted spatio-

temporal features [Lap05, LMS08, SLC04, WKS11, WS13]. Recently, deep learned features

from neural networks [KTS14, SZ14a, WQT15] have been applied for activity modeling and

produce impressive results. With the advance of motion and depth capture technology, such

as Kinect [SFC11], many studies model and analyze human activities in 3D space or RGBD

data [KGS13, WZZ17, WZZ13b].

To understand the inner contents of human activity videos, some studies model human

activities with hierarchical structures [BT11, RA09, SDN08, SPY11, WZZ17, XLL16]. Wei et

al. [WZZ17] proposed a 4D human-object interaction model to jointly recognize human

activities and localize objects, and they utilized a dynamic beam search algorithm to solve

the inference problem in the hierarchical graph. These hierarchical methods inspire us to

represent tasks and fluents in a hierarchical structure.
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Different from recognizing the activity of the entire video sequence, some studies recog-

nize activities with partial observation or make early detection [HT14, MSS16, Ryo11]. In

traditional activity recognition methods, classifiers are trained by encoding the information

of the whole video, which is not optimal for activity action recognition with partial obser-

vation. Ryoo [Ryo11] utilized sequential matching to early recognize human activities with

dynamic bag-of-words. Hoai et al. [HT14] used Structured SVM to learn a max-margin early

event detector. With the development of deep learning, Recurrent Neural Networks (RNN)

such as Long Short Term Memory (LSTM) [Gra12] have been applied to early detection of

activities. Ma et al. [MSS16] employed LSTM with a designed ranking loss for early activity

detection.

Activity recognition in egocentric video. Egocentric video analysis has been paid

growing attention with the prevalence of egocentric cameras [FFR11, FLR12, LYR15, MFK16,

PR12, SAJ16]. Activity recognition becomes more challenging in egocentric videos since the

movement of camera may lower the performance of the traditional hand-drafted spatial-

temporal features such as STIP [Lap05], Dense Trajectory [WKS11], and some deep learned

features [SZ14a]. Moreover, the human body features become weak or even invisible in

egocentric videos. To overcome these difficulties, several semantic egocentric cues have been

discovered, such as object cues [FFR11, FLR12, PR12], gaze cues obtained by eye-tracking

glasses [FLR12, LYR15], and hand cues [LYR15, MFK16, SAJ16]. Li et al. [LYR15] elabo-

rately evaluate various mid-level egocentric cues for action recognition and achieved impres-

sive results with different combinations of those cues. Inspired by previous works, descriptors

extracted from multi-stream networks [MFK16, SAJ16] encoding different cues have proved

efficient.

Object states and fluents. Object fluents are used to describe object states [FZ15,

Mue15]. Object state detection and recognition has been recently studied in still im-

ages [DPC12, ILA15, ZDG14]. Isola et al. [ILA15] studied the states and transformations of

objects /scenes on image collections, and the learned state representations can be extended

to different object classes. Fire and Zhu [FZ15] studied the causal relations between human

actions and object fluent changes. Fathi and Rehg [FR13] developed a weakly supervised
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method to recognize actions and states of manipulated objects before and after the action.

Wang et al. [WFG16] designed a Siamese network to model precondition states, effect states

and their associate actions. Alayrac et al. [ASL17] optimized a discriminative cost for joint

object state recognition and action localization.

5.3 Task-Fluent Dataset

Since there are no available public datasets for the proposed problem, we collected a new

egocentric video dataset about tasks and object fluents. 14 volunteers performed daily tasks

in 5 different indoor scenes freely with their own styles. A glasses camera, which can record

the videos from the first-person view, is worn by the volunteers when they were performing

the tasks. The video frame is at the resolution of 1280 × 960. Some frame samples in the

dataset are shown in Figure 5.1.

In summary, our dataset consists of 809 videos with approximately 333,000 egocentric

video frames. It contains 14 categories of tasks: sweep floor, mop floor, write on blackboard,

clean blackboard, use elevator, pour liquid from jug, make coffee, read book, throw paper,

microwave food, use computer, search drawer, move bottle to dispenser, and open door. These

tasks involve 25 classes of objects: broom, dustpan, trash, floor, bucket, mop, chalk, chalk

box, blackboard, eraser, elevator, mug, jug, lid, coffee can, book, paper, trash can, microwave,

food, monitor, drawer, bottle, dispenser, and door.

In addition to tasks and related objects, this dataset contains 21 categories of object

fluents, as shown in Table 5.1. These fluents are divided into self fluents and mutual fluents.

In this dataset, though some objects have the same name of fluent values, they are regarded

as different fluent values since their related objects are different. For example, clean with

respect to floor and clean with respect to blackboard are regarded as different fluent values.

We manually annotated the task label for each video sequence and the object fluent labels

in each video frame. A single video frame may contain multiple object fluents and all of the

task related fluents are annotated.
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Table 5.1: Object fluent categories.

Object Fluent

Single Object: Self Fluents

floor clean / dirty

blackboard clean / dirty

elevator open / closed

microwave open / closed

door open / closed

book open / closed

drawer open / closed

mug empty / filled / full

paper complete / split

monitor on / off

Two Objects: Mutual Fluents

broom, trash contacting / apart

eraser, blackboard contacting / apart

bottle, dispenser contacting / apart

bucket, mop containing / separate

dustpan, trash containing / separate

chalk box, chalk containing / separate

trash can, paper containing / separate

microwave, food containing / separate

lid, coffee can fastened / unfastened

bottle, dispenser aligned / misaligned

mug, jug coordinated / uncoor-

dinated
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5.4 Hierarchical Model of Tasks and Fluents

We use a hierarchical graph to represent tasks and object fluents in a unified framework,

as shown in Figure 5.2. In this representation, a task is composed of several concurrent

object fluent changes over time. These object fluents closely interact with each other both in

spatial and temporal domains. For example, in Figure 5.2, the task sweep floor is composed

of three categories of fluents. As time flows, the floor changes from dirty to clean; the group

of dustpan and trash changes from separate to containing, and the group of broom and trash

changes between apart and contacting. These fluents define the task from the perspective of

the effects caused by human activities.

5.4.1 Definition

Task. Y is an alphabet containing K task category labels, such as sweep floor, mop floor,

etc. There are a total of 14 task categories in our work, i.e. K = 14. Task recognition is to

assign an optimal task label for an input video sequence from the K values in Y .

Fluent. Let F = {Fm|m = 1, . . . ,M} be the set of all fluent categories, where M is the

number of fluent category and 21 in our work, as shown in Table 5.1. Fm is an alphabet

which denotes a fluent category, such as dirty or clean with respect to floor. The elements

in Fm are the possible fluent values, such as ‘dirty ’ and ‘clean’.

5.4.2 Formulation

Let X = {xt|t = 1, . . . , T} be a video sequence containing T frames, where xt is the video

frame at time t. Suppose Y ∈ Y is the task category label of the sequence X. Z = {zt|t =

1, . . . , T} is the sequence of the fluent labels for the video sequence X.

For a specific task class Y ∈ Y , it has NY categories of key fluents {FY,n|n = 1, . . . , NY },

where FY,n ∈ F is the nth key fluent category of the task Y . For example, the task sweep

floor has three categories of key fluents, as the three colorful bars show in Figure 5.2.

zt = {znt |n = 1, . . . , NY } is the fluent label set of the video frame xt. The NY elements
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… … … …

sweep floor

broom, trash

dustpan, trash

floor

apart

separate

contacting

containing

cleandirty

… …
task

frame

fluent

Figure 5.2: Joint model of tasks and object fluents.

of zt correspond to the NY key fluents, respectively. znt ∈ FY,n is the value of the nth key

fluent, such as znt = ‘clean’ in the fluent with respect to floor, znt = ‘apart ’ in the fluent with

respect to broom and trash, etc.

The score that the video sequence X is interpreted by the task category label Y and the

fluent label sequence Z is defined as

S(X, Y, Z) =
T∑
t=1

NY∑
n=1

ϕ(xt, z
n
t , Y )︸ ︷︷ ︸

feature matching

+

T∑
t=1

NY∑
n 6=n′

φ(Y, znt , z
n′

t )︸ ︷︷ ︸
spatial concurrence

+
T∑
t=2

NY∑
n=1

ψ(Y, znt−1, z
n
t )︸ ︷︷ ︸

temporal transition

,

(5.1)
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where ϕ(·), φ(·), and ψ(·) are the feature matching, spatial concurrence, and temporal tran-

sition functions, respectively. We elaborate on them as follows.

Feature matching. ϕ(xt, z
n
t , Y ) measures the compatibility between the fluent label znt

and the frame feature xt. Suppose oY,n = {oiY,n|i = 1, ..., |oY,n|} is the class label set of the

related objects to the nth key fluent in the task Y , where |oY,n| is the related object class

number. |oY,n| is 1 or 2 in our dataset. ôY,n is a set of bounding boxes of the objects in oY,n.

ϕ(xt, z
n
t , Y ) is rewritten as

ϕ(xt, z
n
t , Y ) = ϕ1(xt,oY,n) + ϕ2(xt, z

n
t , ôY,n). (5.2)

ϕ1(xt,oY,n) is the object detection term, which describes the occurrence belief of the

fluent-related objects in the video frame at time t. We trained object detectors by fine-

tuning Faster R-CNN [RHG15] on our dataset and use the trained detectors to generate the

object detection probabilities. Suppose p(oiY,n|xt) is the detection probability of the object

class oiY,n. The object detection term is

ϕ1(xt,oY,n) =
1

|oY,n|

|oY,n|∑
i=1

ln p(oiY,n|xt). (5.3)

ϕ2(xt, z
n
t , ôY,n) is the fluent labeling term, which measures the compatibility between

the object state feature and the fluent label. We define the fluent area as a bounding box

which covers all the bounding boxes in ôY,n with the minimum size. Using the features in

the fluent areas, we train a classifier for each fluent category with VGG-16 model [SZ14b].

Suppose p(znt |xt, ôY,n) is the classification probability output by the fluent classifier. The

fluent labeling term is defined as

ϕ2(xt, z
n
t , ôY,n) = ln p(znt |xt, ôY,n). (5.4)

Spatial concurrence. φ(Y, znt , z
n′
t ) measures the compatibility between different flu-

ent categories znt and zn
′

t in task Y. For each task category, we compute the average prior

frequencies that the values of different fluents occur together from the training videos. Sup-

pose q(znt , z
n′
t ) is the average prior frequency that znt and zn

′
t occur together. The spatial
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concurrence term is defined as:

φ(Y, znt , z
n′

t ) = ln q(znt , z
n′

t ) (5.5)

Temporal transition. ψ(Y, znt−1, z
n
t ) measures the continuity and transition relations of

the fluent values znt−1 and znt in two adjacent frames. We use a Markov chain to model the

fluent value transitions. Suppose r(znt−1, z
n
t ) is the probability of the transition from znt−1 to

znt . The temporal transition term is

φ(Y, znt−1, z
n
t ) = ln r(znt−1, z

n
t ). (5.6)

The transition probabilities are learned from video samples of each task.
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Figure 5.3: Dynamic programming beam search for jointly recognizing fluents and tasks.

(a)The input video sequence. (b) Illustration of expanding one parse tree to new parse trees.

(c) Parse tree expanding and pruning in one iteration.

5.5 Inference

Given a video sequence X = {xt|t = 1, . . . , T} , the goal is to compute its task label Y ∗

and the fluent label sequence Z∗ = {z∗t |t = 1, . . . , T} that maximize the score function
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S(X, Y, Z), which is formulated as

(Y ∗, Z∗) = arg max
Y,Z

S(X, Y, Z) (5.7)

The solution to Eq. 5.7 is a parse tree, in which the root node is the task label, and the

leaf nodes are the sequence of fluent labels. To obtain the optimal result, an intuitive idea is

to examine all the possible parse trees and output the one with the maximum score as the

optimal result. However, the huge size of the parse tree space makes such exhaustive search

method inapplicable. Inspired by the work in [WZZ17], we adopt a beam search algorithm

to solve the above problem 5.7.

The general procedures of this algorithm include: (1) proposing multiple object bounding

boxes with pre-trained object detectors in each video frame; (2) generating possible inter-

pretations of the current frame by expanding the parse trees of previous frames; (3) pruning

the parse trees with smaller scores and keeping the rest as the possible interpretations to the

current video sequences. The algorithm is illustrated in Figure 5.3.

At the first frame, we enumerate all possible task labels and the corresponding fluent

labels based on the task-related object proposals to initialize a parse tree set. At time t− 1,

suppose PTRt−1 = {ptrit−1|i = 1, . . . , Q} is the parse tree set with Q parse trees of labeling

the video clip from time 1 to time t − 1. With the frame at time t, we expand every parse

tree ptrit−1 ∈ PTRt−1 by adding new task-related object proposals and key fluent values in

the new frame, as shown in Figure 5.3 (b). After expanding all ptrit−1 ∈ PTRt−1, we obtain

an expanded parse tree set {eptr1t , ..., eptr
Q′

t } for the video clip from time 1 to time t, as

shown in Figure 5.3 (c).

The expanded set {eptr1t , ..., eptr
Q′

t } often contains large number of parse trees and many

of them with small scores are misleading interpretations to the video clip. To increase the

computational efficiency and improve the performance, we sort all the parse trees in the

expanded set by their scores and keep the first Q trees with the largest scores. In this way,

we obtain the parse tree set PTRt = {ptrit|i = 1, . . . , Q} at time t, as is shown in Figure 5.3

(c). This expanding and pruning process are iterated to the last frame of the sequence. The

optimal (Y ∗, Z∗) for the entire sequence is the parse tree in PTRT with the maximal score.
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5.6 Experiments

5.6.1 Experiments setup

We test our method on our newly collected Task-Fluent Dataset and the evaluations include

fluent recognition and task recognition. We use recognition accuracy as the evaluation metric.

For fluent recognition, the accuracy is defined as the ratio of the correctly recognized fluent

state number to the total testing fluent state number in all testing video frames. For the

task recognition, the accuracy is defined as the ratio of correctly recognized video number

to the total testing video number. The ratios for the training, validation, and testing video

numbers are 0.5, 0.25, and 0.25, respectively.

For object detection and proposal in Eq. 5.2, we fine-tune Faster R-CNN [RHG15] on

our dataset using VGG-16 [SZ14b] trained on ILSVRC2012 [RDS14] as pre-trained model.

The number of iterations we set for 2 stage training process are 80K, 40K, 80K, 40K. The

confidence threshold is 0.5 and the non-maximum suppression threshold is 0.6. Some object

proposal results are shown in Figure 5.4.

We use the ground truth object bounding boxes and fluent labels from the dataset to

train the fluent feature matching term in Eq. 5.2. For each fluent category, we crop the fluent

areas from video frames and trained classifiers by fine-tuning the VGG-16 model [SZ14b].

5.6.2 Fluent recognition

We compare our method with several baseline methods. (1) Single frame classification (SFC).

This method takes fluent recognition as a multi-class image classification problem. We train

an classifier by fine-tuning VGG-16 model [SZ14b] and replace soft-max with sigmoid to

adapt for multi-class output. We select the threshold = 0.1 by maximizing the fluent classi-

fication accuracy on validation set. (2) Spatial stream LSTM (Spatial LSTM). This method

uses a LSTM network [Gra12] with image appearance features for fluent recognition. Based

on the network we train in method SFC, for each frame in the video, we retrieve 4096 di-

mensional features from fc2 as the appearance descriptors. The videos are trimmed into
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Table 5.2: Comparison of different methods for fluent recognition.

Method Self
Mu-

tual

Over-

all

SFC 0.838 0.836 0.837

Spatial LSTM 0.859 0.820 0.843

Two-s LSTM 0.861 0.846 0.855

Our Method 0.909 0.869 0.896

video clips with length L = 60. The LSTM network was built by stacking three bidi-

rectional LSTM layers. (3) Two-stream LSTM (Two-s LSTM). Inspired by Two-stream

networks [SZ14a] and two recently studies which applied multi-stream to egocentric video

action recognition [MFK16, SAJ16], we use the two-stream LSTM for fluent recognition. We

train a multi-class classification network on optical flow features with a network architecture

similar to VGG-CNN-M [CSV14] as the temporal stream LSTM. We build a two-stream

LSTM network by combining the temporal LSTM and the spatial stream LSTM.

Table 5.3 and Table 5.4 show the accuracy comparison on each fluent category. Our

method achieves best performance on most fluent categories, which demonstrates the advan-

tage of our model.

Table 5.2 shows the overall accuracy comparison of our method with other baseline

methods. It also separately shows the self fluent recognition accuracy and mutual fluent

accuracy. Our method outperforms other baseline methods in each item, which demonstrates

the advantage and effectiveness of our joint modeling method. This table also shows that, to

each method, the recognition accuracy on self fluents is higher than that of mutual fluents.

One explanation is that the mutual fluents are related to the spatial relationships between

two objects. It is difficult to encode such spatial relationships on 2D images.

Some qualitative results are shown in Figure 5.4. In most of the cases, our method can

identify the task category, locate the objects, and recognize the fluents correctly. It should be

noted that our method can infer the object fluents without the fluent features. For example,
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Table 5.3: Comparison of different methods for self fluents.

Method

floor board
eleva-

tor mcwave
door book drawer mug paper

moni-

tor

clean clean open open open open open empty
com-

plete
on

dirty dirty closed closed closed closed closed
filled/full

split off

SFC 0.79 0.66 0.98 0.79 0.78 0.93 0.75 0.85 0.91 0.97

Spatial

LSTM
0.85 0.67 0.99 0.90 0.83 0.90 0.82 0.87 0.86 0.99

Two-s

LSTM
0.84 0.70 0.99 0.91 0.94 0.88 0.67 0.89 0.90 0.99

Our

Method
0.90 0.76 1.00 0.92 0.86 0.99 0.99 0.66 0.94 0.98

Table 5.4: Comparison of different methods for mutual fluents.

Method

broom eraser bucket
dust-

pan
box mug

trash-

can mcwave
lid bottle bottle

trash board mop trash chalk jug paper food coffcan
dis-

pens

dis-

pens

contact contact contain contain contain coord contain contain
fas-

tened
contact aligned

apart apart sep sep sep uncoord sep sep unfstn apart
mis-

align

SFC 0.58 0.89 0.87 0.67 0.84 0.86 0.93 0.89 0.82 0.80 0.87

Spatial

LSTM
0.51 0.92 0.77 0.86 0.74 0.80 0.94 0.94 0.78 0.82 0.92

Two-s

LSTM
0.73 0.89 0.86 0.81 0.78 0.71 0.99 0.89 0.87 0.83 0.88

Our

Method
0.88 0.95 0.98 0.90 0.81 0.95 0.93 0.94 0.58 0.89 0.92

* board = blackboard; box = chalk box; mcwave = microwave; coffcan = coffee can; coord = coordinate;

sep = separate; unfstn = unfastened.
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monitor: off monitor: off monitor: on

use computer

book: closed book: closed book: open

read book

dustpan, trash: separate

floor: dirty
broom, trash: apart

dustpan, trash: separate

floor: dirty
broom, trash: contacting

dustpan, trash: containing

floor: clean
broom, trash: apart

chalk box, chalk:
containing
blackboard: clean

chalk box, chalk: 
separate
blackboard: dirty blackboard: dirty

sweep floor write on blackboard

chalk box, chalk: 
separate

microwave, food:
separate
microwave: closed

microwave, food:
separate
microwave: open microwave: closed

microwave food

jug, mug: uncoordinate
mug: empty

jug, mug: coordinate
mug: empty

jug, mug: uncoordinate
mug: full

pour liquid from jug

microwave, food:
containing
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Figure 5.4: Some results of joint recognition of object fluents and tasks. The labels in the

bars are the tasks. For every two rows, the first row shows the object proposals; the second

row shows our output results, and the descriptions below the images are about the fluent

recognition.
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Table 5.5: Comparison of different methods for tasks recognition

Method Average

CNN hit@1 0.90

LSTM 0.87

Our Method 0.96

in the first image of the task sweep floor, although trash is not in the frame and floor is not

detected, our method can still infer the correct fluent label by reasoning about the spatial

concurrence and temporal transition relations among fluents. In the task read book, task-

unrelated object microwave is detected in the frame. Our joint model correctly recognizes

the task and outputs correct fluent label of book. This illustrates the advantage of the joint

modeling framework of tasks and fluents.

5.6.3 Task recognition

For task recognition, we compare our method with two baseline methods. (1) CNN hit@1.

This method uses the single frame features with hit@1 rule [KTS14] to recognize tasks of

videos. As described in Karpathy’s work on video classification [KTS14], we train a single

frame classifier by fine-tuning VGG-16 model with a 14-dimensional output layer at top. In

testing, each frame can output one task label, we average those predictions of frames and

output one explicit task label for each sequence. (2) LSTM. As the approach suggested

in [YHV15], we retrieve the output of the second fully connected layer of single frame model

we train in CNN hit@1. The video-level three stacked LSTM networks are trained with

video clips of length 10 for task recognition.

As shown in Table 5.5, our method outperforms the baseline methods, which shows

that the fluent-based representation of complex tasks is reasonable and effective. Table

5.5 shows that the CNN hit@1 method achieves a better accuracy than the LSTM method

incorporating the motion information. The main reason is that the egocentric videos contain

massive motion features which are not related to tasks but caused by the irregular movement
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of the user’s head. Such motion information will mislead task recognition.

Since our model has a hierarchical structure and our inference algorithm is an online

framework, our method can recognize the task with partial observation of a video sequence,

i.e. early recognition of tasks. We compare our method with above 2 baseline methods at

different observation ratios of each video sequence. At each ratio point, each method is fed

with a video clip from the first frame to the frame at the position corresponding to the ratio

length of the whole video length.

Figure 5.5 shows the accuracy comparison at different sequence length ratios. Our method

outperforms the other baseline methods at every observation ratio. This figure shows that

with fewer observation video frames our method can achieve a comparable accuracy with

other methods at a lager observation ratio. This is mainly because our fluent-based method

uses features of objects related to the tasks rather than the entire image features.

5.7 Conclusion

In this work, we study a new problem of jointly recognizing object fluents and tasks in

egocentric videos. We propose a unified fluent-based task representation framework, in

which tasks are modeled with object fluents. In each task, different fluents closely interact

with each other by means of spatial concurrence and temporal transition. Given a testing

egocentric video, a beam search algorithm is used to jointly recognize the object fluents in

each frame, and the task of the entire video. We collect a large-scale egocentric video dataset

including various fluents and tasks with detailed annotations. Our experiments have shown

that our model outperforms the baseline methods which proves the strength of our model.

Our future work will focus on the continuous fluents, object independent fluents, and the

fluent-based tasks in robotics.
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CHAPTER 6

Task Representation with Human Attention

6.1 Introduction

The human gaze, indicating where a human is physically looking at, has the clear definition

and is usually defined as a direction [PSH18, WBM16, ZSF15, ZSF17b], a location [RKV15],

or a direction along with a location [WXZ17]. However, attention does not have an uni-

versally accepted definition. In the past 30 years, visual attention mainly refers to the eye

fixation saliency map or saliency object, which is actually the attention of a human outside

images who is looking at images [IKN98, IK00, IK01, Itt05, BAA10, BSI14, ZZW16, WS18].

However, there is another case that humans inside images have their own attention. There-

fore, human attention can be roughly divided into two categories: 1) the attention of a

human outside images, and 2) the attention of a human inside images. In this work, we

are studying the attention of a human inside images, which is usually confused with human

gazes.

The foremost thing to clarify is what human attention is and how it differs from human

gazes. Originally, attention is a concept in philosophy. Nowadays, it is well known as a

concept in psychology. One dominant definition in psychology is that attention is something

that happens in the mind - a mental “inside” which is linked with the perceivable “outside”

[See11]. This definition indicates that attention is an internal invisible mental state in the

human mind, but it is linked with visible things. Another widely accepted definition is that

attention is the process of attending to objects [EDR94, Sch01]. This definition indicates that

the attention is based on objects. Actually, some other studies in psychophysics and biology

[Che12, CY12, PR14] as well as some inter-discipline studies such as neuro image [ZMJ17]
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Figure 6.1: The arrows in the upper row images represent the human’s gaze, and the bound-

ing boxes in the lower row images represent the human’s attention. The images are sampled

from a video in the public CAD120 dataset [KGS13]. From 1th frame to 6th frame, we can

observe that her left hand is leaving the cereal box. Based on the task the human is doing,

her hands will then approach to the milk box. Therefore, her attention has changed from

the cereal box to the milk bottle at 6th frame. However, we can observe that the human is

not gazing at her attentional object between 6th and 16th frame.

and brain image [MTV06, MK03, SB06] also claim the object-based attention. Especially,

Chou et al.[CY12] provides the evidence of object-based attention. These studies provide

the strong theory basis for object-based attention definition in computer vision.

Based on these studies, we define human attention as the attentional objects that a human

is operating on or attending to. The attentional objects coincide with the human mind, and

are driven by the task a human is doing. The most significant difference between the gaze

and attention is that the gaze is what a person is physically gazing at while attention might

be the objects that a person is attending to but not necessarily gazing at. For example, as

shown in Figure 6.1, there are four images in each row, sampled from a video in which the

human is doing the task of making cereal. Based on the task, after her left hand leaves the

cereal box, her hand will approach to the milk bottle. Therefore, her attention (the bounding

boxes in the lower row images) has shifted from the cereal box to the milk bottle when her
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left hand begins to leave the cereal box. We can observe that her attention is not always

what she is gazing at (the arrows in the upper row images represents the gazes). Factually,

when a human is doing a complex task in large scenes, the attention may even be the objects

that a human is not operating on, or the objects that are far away from or at the behind of

the human. That is because human attention is driven by the ongoing task, coinciding with

the human mind which usually goes ahead of human gazes and human actions. As a result,

in many cases, attention is the objects that a human will gaze at or operate on in the future.

Benefiting from this characteristic, human attention is significant for many applications. For

example, it enables a robot to estimate the attentional objects that a human will operate on

in the short future, so that the robot can assist the human in advance or cooperate with the

human to finish the task.

Our method is based on two observations. First, human pose and motion significantly

signal human attention. For example, the objects, which a human is approaching to, are

more likely to be the attentional objects. Second, human attention is driven by the task.

Given a task, humans know what to do now and what to do next in the mind. This is also

why, in some cases, a human’s attention has shifted to another object even when he is still

operating on or gazing at the current object. Based on these two observations, we propose a

model that integrates low-level human pose and motion cues and high-level task information.

Our contributions are three-fold: 1) Different from previous studies which equate

human gazes as human attention, we formulate attention as the attentional objects that

coincide with the human mind. 2) We propose an architecture that incorporates both low-

level human body cues and high-level task information into a unified framework, and the

code will be released. 3) We collected and annotated two large-scale video datasets, and also

re-annotated a public dataset. To the best of our knowledge, the collected datasets are both

new ones for human attention research. The datasets will also be publicly available.
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6.2 Related work

In this section, we first review several related problems and the typical methods for solving

these problems. Then we analyze the datasets that are widely used for studying these

problems.

6.2.1 Related problems and methods

Gaze has two basic categories, first-person view gaze [FLR12, LWZ17] and third-person view

gaze [PBI15, RKV15, WXZ17, WLS18]. Classic gaze estimation methods usually operate in

the bottom-up manner. Low-level visual features extracted from human pupil, eye and face

are fed to a model to regress a gaze direction [PSH18, PZB18, ZSF15, ZSF17a] or used to fit

to a known model [WJ17, WBM16] to find the most possible gaze. In this work, we estimate

the attention of a human in the third-person view.

Saliency estimates the saliency object or eye fixation saliency map that signals the

regions of an image where human observer would pay attention at first glance. The typical

pipeline is to first predict a saliency map [KTB14, HSB15, KAB17, WS18], and then minimize

the difference between the saliency map prediction and the ground truth. The ground truth of

saliency is obtained based on human eye fixation locations recorded by the humans wearing

the eye-tracking equipment [WS18]. Therefore, saliency signals the attention of a human

outside images. Different from these studies, in this work, we study the attention of a

human inside images.

Human object interaction (HOI) involves two fundamental problems, HOI classifi-

cation and HOI detection. Given an image, the former outputs a binary label for each HOI

category, while the latter outputs a triplet of the human, object and HOI label [CLL18]. The

typical HOI detection and classification methods are based on the bottom-up information

that encodes the spatial relation between human skeleton key points and the object [KGS13],

extracts the CNN features from the bounding box enclosing both the human and the object

[QWJ18], or exploits the global context from the whole image [ML16]. Most HOI studies

are limited in still images, and the involved objects are those a human is directly interacting
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Figure 6.2: Overview of our method. Given an image sequence as input, the output is

human attention (a set of attentional objects marked by the red bounding boxes on the

output image sequence). Our model consists of two basic modules, the pose-motion module

and the task-driven module. The pose-motion module is composed of three sub-modules,

“encoder”, “ConvLSTM” (Convolution Long Short Term Memory), and “decoder”. The

task-driven module is composed of two sub-modules, “cnn” (convolution neural network)

and “fc” (fully connected neural network layers). The input image is concatenated with two

human body cues (human skeleton and optical flow), generating the concatenated feature

map x to serve as the input of “encoder”. The output xen of the “encoder” and the output

xtd of the “cnn” are fused as x+, which is then processed by “ConvLSTM” and “decoder”

to output the attention heat map m (a probability matrix). Human attention is finally

estimated based on the attention heat map and object candidates.

with at the current time. In this work, we study the attention of a human who is doing a

task in a video, and attentional objects might be the distant objects that a human is not

currently interacting with or gazing at.

Human action recognition/prediction estimates the action label from a video con-

taining complete action execution or predicts the action label from an incomplete video[KF18].

Human action recognition has witnessed the significant progress from hand-designed feature

based methods (e.g.the Improved Dense Trajectory (IDT) [WS13]) to deep learning based

methods. One successful deep learning method, termed as two-stream, is proposed in 2014

[SZ14a], with one stream to extract spatial information and the other stream to extract tem-

poral motion information. Beyond 2D models, 3D deep convolution neural network based
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models (e.g.I3D [CZ17]) have achieved better performance. Recently, graph-based reasoning

has sparked the interest of researchers [WG18]. Different from human action recognition and

prediction that infer human action labels, in this work, we estimate attentional objects.

6.2.2 Related datasets

Gaze datasets. EYE-DIAP [FMO14], MPIIGaze [ZSF17b], and Columbia Gaze [SYF13]

are three benchmark datasets. These datasets are collected in simple scenarios and the

humans inside images are restricted with limited head and body movements. As a result, the

detail facial information (e.g.pupil, eye, and face) of a human is fully observed. To stride to

large and complex scenes where humans are moving freely and the detail facial information

is not always available, some challenging and natural datasets like GazeFollow [RKV15],

Flickr gaze [PBI15] and VideoGaze[RVK17] are proposed. However, the annotations of

these datasets are gaze locations rather than objects, and no task is involved.

Saliency datasets. MIT1003 [JED09], TORONTO [BT06], PASCAL-S [LHK14], and

DUT-OMRON [YZL13] are four widely used datasets. These datasets are related with

human attention. However, they are proposed for studying the attention of a human outside

images.

HOI datasets. HICO-DET [CLL18] and V-COCO [GM15] are two benchmark datasets.

They are not suitable for studying task-driven human attention for two reasons: 1) the

datasets are composed of still images, and 2) the annotations are limited to the objects that

a human is directly interacting with. However, in this work, we estimate the attention of a

human in a video where a task is involved, and attentional objects might be the objects that

a human is not directly interacting with at the current time.

Human action dataset. Human action is an important research topic, thus existing a

large number of datasets such as KTH [SLC04], Hollywood2 [MLS09], and Kinetics [KCS17],

to name a few. However, the annotations are action labels rather than objects.

As a conclusion, these datasets are not suitable for estimating the attention of a human

inside images who is doing a task in a video. To our best knowledge, there exists no ap-
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propriate public dataset. Therefore, we collected and annotated two large-scale datasets. In

addition, we re-annotated a public dataset, CAD120 [KGS13].

6.3 Approach

In this section, we start with the overview of our model, then introduce the outline of our

network architecture, followed by the detail description of data transition flow, finally, we

explain our loss function.

6.3.1 Overview

Given an image sequence as input, the output is the human attention in the image sequence.

As shown in Figure 6.2, our model consists of two basic modules, the pose-motion module

and the task-driven module. The two basic modules are composed of five sub-modules,

‘encoder”, “ConvLSTM”, “decoder”, “cnn” and “fc”. The raw image, together with the

cues of human skeleton and optical flow, are concatenated as x to serve as the input of

the “encoder”. The output xen of the “encoder” is taken as the input of the “cnn” in the

task-driven module. The output xtd of the “cnn” is fed back to the pose-motion module to

fuse with the original output xen of the “encoder”, generating the fused feature map x+. x+

is processed by the “ConvLSTM” and the “decoder”, outputting the attention heat map m.

The attention heat map and object candidates are jointly inferred to finally output human

attention.

6.3.2 Network architecture outline

Our network architecture, consisting of the pose-motion module and the task-driven module,

is inspired by the studies that have demonstrated attention is controlled in both bottom-up

and top-down manner [CS02, KU87]. The motivation of this architecture is two-fold. On

one hand, the backward propagation of the task-driven module can update the parameters of

the pose-motion module, guiding the network to predict the task-driven attentional objects.
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On the other hand, the output of the task-driven module is fused with the low-level human

body cues in the pose-motion module, allowing the network to predict attentional objects

using both the low-level human body cues and the high-level task information.

The pose-motion module uses the encoder-decoder backbone, which is inspired by some

classic works of semantic segmentation [BKC17, LSD15] and saliency estimation [WSS18]. In

addition, we add a ConvLSTM (Convolution Long Short Term Memory) network [XCW15]

between the encoder and the decoder. This “Encoder-Decoder + ConvLSTM” architecture

is effective for spatial-temporal reasoning and some similar architectures have been widely

used [OGL15, SMS15].

For the task-driven module, as shown in Figure 6.2, we design a two-layer convolution

neural network (“cnn”), followed by two fully connected layers (“fc”). Studies like [CSV14]

have indicated that deep layers tend to capture the global context information while shallow

layers are more powerful to capture local detail information. “cnn” is two additionally deep

convolution layers, so its output xtd is supposed to carry more high-level task information.

6.3.3 Data transition flow

Input is the image sequence V = {It|t = 1, 2, ..., T}, and output is human attention A =

{at|t = 1, 2, ..., T}. For the convenience of expression, we omit the subscript t of all variables.

Now, the input is the image I with the size of 3 × H ×W (3 channels, H pixels in height,

and W pixels in width), and the output is human attention a that is defined as attentional

objects.

We first describe how we extract the low-level human body cues. Human skeleton is an

effective cue that has been widely used in the studies of human-object interaction detection

and human action recognition [WZZ17, SPS12, XLW18]. Inspired by these works, we use the

method proposed in [CSW17] to extract human skeleton as one of our low-level human body

cues, which is targeted to capture the human pose information. Another cue is the optical

flow that captures human motion information. The motion significantly signals attentional

objects. For example, when a human’s hand is approaching to an object, this object is more

77



Sub-module Input Output Input size Output size Layer

encoder x xen 6×H ×W 512× H
32
× W

32
VGG16 [SZ14b]

cnn xen xtd 512× H
32
× W

32
512× H

32
× W

32
Conv2D, (512, 1× 1)× 2

ConvLSTM x+ = [xen, xtd] xc 1024× H
32
× W

32
1024× H

32
× W

32
ConvLSTM cell, (1024, 3× 3)× 2

decoder xc xde 1024× H
32
× W

32
1×H ×W Deconvolution, (N1, N2)× 5

fc xtd y 512× H
32
× W

32
1×Ntask Linear, (Ntd, 4096)×1, (4096, Ntask)×1

Table 6.1: The data transition flow of five sub-modules in our network. In the items of

‘Input’ and ‘Output’, the notions of x, xen, xtd, y, x+, xc and xde are the same with that

shown in Figure 6.2. In the items of ‘Input size’ and ‘Output size’, H and W are the height

and width of the input image, and Ntask is the task number. The item ‘Layer’ denotes the

network layers of each sub-module. The sub-module “encoder” is the same with the VGG16

network [SZ14b]. The sub-module “cnn” is composed of 2 convolution layers, and each layer

has 512 filters with the kernel size of 1×1. The sub-module “ConvLSTM” has 2 convolution

layer in each ConvLSTM cell, each convolution layer has 1024 filters with the kernel size of

3 × 3. The sub-module “decoder” has 5 deconvolution layers, and each layer has different

number of filters so that we use (N1, N2) for unified representation. The sub-module “fc” is

composed of two fully connected layers, the first layer is with the size of (Ntd, 4096) and the

second layer is with the size of (4096, Ntask), where Ntd is the size of xtd.

likely to be the attentional object. In contrast, when a human’s hand is leaving an object,

this object is usually not the attentional object. Motion information is not included in the

single still image. We use OpenCV to extract the optical flow using adjacent two images. As

shown in Figure 6.3, the extracted human skeleton is binarized as a human skeleton mask hs

with the size of 1×H ×W . Optical flow of is with the size of 2×H ×W . We concatenate

I, hs, and of to obtain the fused feature map x with the size of 6×H ×W :

x = [I, hs, of ] (6.1)

[·, ·, ] denotes the concatenation operation.

As shown in Figure 6.2, the data transition starts from x, then flows through five sub-

modules: “encoder”, “ConvLSTM”, “decoder”,“cnn”, and “fc”. For a clearer representation,

we summarize the data transition detail (including the input, output, data size, and network
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Figure 6.3: The visualization of the low-level human pose and motion cues. Given an image

I, human skeleton is detected and binarized as a human skeleton mask hs. The optical flow

of is extracted using the input image I and its previously adjacent image. We concatenate

I, hs, and of together to generate the final feature map x.

layers) of the five sub-modules in Table. 6.1.

The output of the pose-motion module is the attention heat map m, which is computed

by adding a sigmoid activation layer σ after xde:

m = σ(xde) (6.2)

m is a probability map, and m ∈ [0, 1]H×W .

The output of the task-driven module is the task label y, which is computed by adding

the fully connected layers Fl after xtd:

y = Fl(xtd) (6.3)

Human attention a is inferred based on the attention heat map m and the object candi-

dates. The inference method will be detailed in the inference section.
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6.3.4 Loss function

The loss L consists of the pose-motion loss Lbu and the task-driven loss Ltd:

L = λ1Lbu + λ2Ltd (6.4)

The pose-motion loss Lbu is computed based on the attention heat map m defined in

Eq. 6.2 and the ground truth heat map M . m ∈ [0, 1]H×W is a probability map, and

M ∈ {0, 1}H×W is a binary map with attention region R+ assigned with ‘1’ and non-attention

region R− assigned with ‘0’. Let mij be the (i, j)th entry of m, and Mij be the (i, j)th entry

of M . One classic loss function is computing the loss (e.g.binary cross entropy loss) for every

local (i, j)th entry, and then add them up. However, in many cases, the proportion of the

attention region R+ and the non-attention region R− is imbalanced, which will lead to the

poor performance of this kind of loss function. Therefore, we design a loss function that

considers the global distribution of the attention heat map.

The motivation of our loss function is encouraging m to cover R+ as much as possible

and R− as less as possible. The probability summation of m inside and outside of R+ can

be respectively computed as:

Pin =
∑
i,j

mij ·Mij , Pout =
∑
i,j

mij · (1−Mij) (6.5)

To encourage the majority of heat map m to be inside of attention region R+ rather than

non-attention region R−, the pose-motion loss Lbu is defined as:

Lbu =
Pout

AR−
− Pin

AR+

(6.6)

AR+ is the acreage of R+ and AR− is the acreage of R−.

The task-driven loss Ltd is defined as standard cross-entropy loss:

Ltd = CE(y, Y ) (6.7)

y is the task label prediction defined in Eq. 6.3 and Y is the ground truth of task label.

80



Dataset Video Image Train Test Attention Object Task Scene Human

TaskAttention 770 308,958 230,116 78,842 378,509 649,315 14 5 14

TaskAttention-VR 76 79,976 59,941 20,035 88,458 1,191,349 5 4 4

Table 6.2: The statistics of our datasets. Video: video number, Image: image number,

Train: training image number, Test: testing image number, Attention: attention annotation

number, Object: object annotation number.

6.4 Learning and inference

Let W be all parameters involved in the network. Learning the optimal parameter W ∗ is

equal to minimize the loss defined in Eq. 6.4:

W ∗ = arg min
W

(λ1Lbu + λ2Ltd) (6.8)

Our network is implemented with PyTorch. We use ADAM algorithm to learn the pa-

rameters, the initial learning rate is set as 0.001 and with 10% decay after 5 epochs. Each

image sequence has 10 images, and the batch size is set as 2 with two NVIDIA TITAN X

GPUs. λ1 and λ2 are empirically set as 2 and 1, respectively.

For inference, given the input image, the goal is to estimate the score of each object

candidate being the attentional object. Let O = {ok|k = 1, 2, ..., N} be N object candidates,

detected by the RetinaNet [LGG17] pre-trained on the ImageNet dataset [DDS09] and fine-

tuned on our datasets. The score Sok of kth object candidate ok is computed as:

Sok =

∑
(i,j)∈ok

mij

Aok

(6.9)

Aok is the acreage of ok. This factually computing the proportion of the probability summa-

tion of m inside of ok.

6.5 Datasets

To our best knowledge, there exists no dataset that is targeted for studying the attention

of a human inside images who is doing a task. Therefore, we collected two large-scale
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video datasets. One is called “TaskAttention”, which is collected in various real indoor and

outdoor scenes like offices, classrooms and corridors. During collection, volunteers behave

freely to finish various tasks in different scenes with diverse camera views. Another is called

“TaskAttention-VR”, which is collected in the Virtual Reality (VR) scenes. We use Unreal

Engine 4 (UE4) to build four different kitchen scenes that consist of a large number of

objects. A human can perform different tasks using the objects. For example, to make

orange juice, a human first takes an orange from the refrigerator, then uses a knife to cut

the orange into pieces and puts them into a juicer. To our knowledge, this is the first VR

dataset for studying human attention. Some statistics of our datasets are summarized in

Table. 6.2 and some samples are shown in Figure 6.4.

We annotate attentional objects and other objects for each frame and the task label for

each video. When annotating attentional objects, the foremost thing is to guarantee that

attentional objects coincide with the human mind, which is driven by the task a human is

doing. To this end, when a human has finished a sub-task, attentional objects are imme-

diately annotated as the objects involved in the next sub-task, even if the human is not

gazing at or operating on the attentional objects in the current image. As a result, many

annotations are the objects far away from or at the behind of a human. This makes human

attention estimation to be a challenging yet meaningful problem. Note that we annotate

one or two attentional objects in each image. We split training set and testing set based on

the humans. For each task, we guarantee the humans in training set and testing set are not

overlapping.

In addition, we annotate a public dataset, CAD120 [KGS13], in which objects and task

labels have been annotated so that we only need to annotate the attentional objects.
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Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 All

GazeFollow [RKV15] 0.45 0.40 0.63 0.70 0.23 0.76 0.31 0.45 0.63 0.54

PRNet [FWS18] 0.30 0.74 0.82 0.59 0.41 0.71 0.36 0.80 0.80 0.66

Hopenet [RCR18] 0.19 0.80 0.67 0.73 0.31 0.51 0.48 0.55 0.57 0.59

Our 0.36 0.96 0.74 0.77 0.68 0.68 0.89 0.85 0.79 0.78

Table 6.3: Accuracies on the CAD120 dataset. “All” corresponds to the overall accuracy.

T1 to T9 correspond to the task categories. T1: arranging objects, T2: cleaning objects,

T3: making cereal, T4: microwaving food, T5: picking objects, T6: stacking objects, T7:

taking food, T8: taking medicine, and T9: unstacking objects.

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

GazeFollow [RKV15] 0.46 0.27 0.45 0.68 0.80 0.32 0.37 0.64 0.57 0.79

PRNet [FWS18] 0.24 0.36 0.33 0.38 0.83 0.17 0.41 0.77 0.35 0.59

Hopenet [RCR18] 0.16 0.22 0.10 0.24 0.73 0.01 0.01 0.77 0.06 0.02

Our 0.68 0.70 0.51 0.23 0.68 0.65 0.91 0.99 0.90 0.94

Methods T11 T12 T13 T14 All

GazeFollow [RKV15] 0.11 0.52 0.63 0.24 0.51

PRNet [FWS18] 0.53 0.79 0.56 0.58 0.52

Hopenet [RCR18] 0.53 0.45 0.06 0.57 0.30

Our 1.0 1.0 0.99 0.78 0.80

Table 6.4: Accuracies on the TaskAttention dataset. “All” corresponds to the overall ac-

curacy. T1 to T14 correspond to the task categories. T1: sweep floor, T2: mop floor, T3:

write on board, T4: clean board, T5: use elevator, T6: pour liquid, T7: make coffee, T8:

read book, T9: throw trash, T10: heat food, T11: use computer, T12: search drawer, T13:

move bottle, and T14: open door.

6.6 Experiments

6.6.1 Baselines and metric

Baselines. The gaze-related works are most relevant with the attention of a human inside

images. Therefore, we take one classic human gaze estimation method and two state-of-the-
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Figure 6.4: Samples of the TaskAttention dataset (upper) and the TaskAttention-VR dataset

(lower). The red boxes are the annotations of attentional objects and the green boxes are

the annotations of other objects.

art human face and head direction estimation methods as baselines. We briefly introduce

the baselines as follows.

-GazeFollow [RKV15] is a gaze estimation method that takes the raw image and human

head location as input. The output is the human gaze direction and location.

-PRNet [FWS18] is a face alignment method that can estimate human face direction.

It takes the raw image and human face as input, and the output is the dense (more than

40K) aligned face key points. These dense points are compared with a pre-trained model to

compute the camera matrix, which is further combined with 68 facial key points to estimate

the human face direction.

-Hopenet [RCR18] is a head pose estimation method. It takes the raw image and human

face as input, and the output is the three Euler angles that signal human head direction.

Metric. Assume there are n1 images for testing and human attention in n2 images is

correctly estimated, the metric is the accuracy defined as :

acc =
n2

n1

(6.10)
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Methods T1 T2 T3 T4 T5 All

GazeFollow [RKV15] 0.37 0.37 0.36 0.29 0.42 0.36

PRNet [FWS18] 0.43 0.43 0.43 0.48 0.43 0.44

Hopenet [RCR18] 0.58 0.60 0.54 0.55 0.55 0.56

Our 0.77 0.77 0.79 0.72 0.70 0.74

Table 6.5: Accuracies on the TaskAttention-VR dataset. “All” corresponds to the overall

accuracy. T1 to T5 correspond to the task categories. T1: cook meat, T2: cook soup, T3:

make juice, T4: make pizza, and T5: make sandwich.

model CAD TaskAttention-VR TaskAttention

Base 0.66 0.65 0.72

Our 0.78 0.74 0.80

Table 6.6: Overall accuracy comparison with a model named “Base” that takes raw image

as input and uses the “Encoder-Decoder+ConvLSTM” neural network architecture.

To evaluate whether an image is correctly estimated, we use the following method. For

baselines, the output is gaze/face/head direction, if the direction line intersects with the

ground truth attentional objects, the image is counted to be correctly estimated. For our

method, to use the same evaluation metric, we first generate a direction line. Let O =

{ok|k = 1, 2, ..., N} be N object candidates and oi be the object with the highest score that

is computed by Eq. 6.9. Let Po be the center point of oi, and Ph be the location of human

head. The line starting from Ph and passing through Po is taken as the direction line. Using

the same metric, if this direction line intersects with the ground truth attentional objects,

the image is counted to be correctly estimated.

To provide the accurate head location for our method and the baselines, we first use the

skeleton detector proposed in [CSW17] to detect a human’s five key points of nose, left eye,

right eye, left ear, and right ear. Then, the average location of the available key points is

taken as the head location. To provide the accurate human face for PRNet [FWS18] and

Hopenet [RCR18], instead of detecting faces on the whole image, we apply a face detector

on a small image region centered on the head location.
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Figure 6.5: Samples of the attention heat map (the red mask) and the most likely attentional

object (the blue bounding box) predicted by the “Base” model (upper) and our model

(lower). Yellow arrows point to the ground truth attentional objects.

6.6.2 Quantitative results

The quantitative results are summarized in Table. 6.3, Table. 6.4, and Table. 6.5. We

can observe that our method outperforms other methods by a large margin. The reasons

are two-fold. One one hand, we use the informative low-level human body cues, human

skeleton and optical flow, which tend to capture the global motion and pose information,

contributing to the good performance when the detail facial information (e.g.pupil and eye)

is weak. On the other hand, we design a task-driven module to learn the high-level task

information. Attention shifting procedure is a task-driven procedure of selecting attentional

objects. Therefore, integrating task information with low-level human body cues benefits to

accurate attention estimation.

Our method exhibits poor perform in some tasks such as “T1: arranging objects” in the

CAD120 dataset and “T4: clean board” in the TaskAttention dataset. After analyzing the

results, we found that the majority of objects involved in these tasks are not successfully

detected since the training samples of the objects in these tasks are not qualified as other

objects.
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Figure 6.6: Qualitative samples from the baselines and our method in three typical scenar-

ios, (a) the detail human facial information is fully observed, (b) the limited human facial

information is available, and c) the human is not gazing at or operating on the attentional

objects. In the images, the red bounding boxes are the ground truth attentional objects,

the green lines represent the gaze/face/head directions, and the blue bounding boxes are our

prediction of attentional objects.

We perform another experiment to further validate the effectiveness of our model. In the

experiment, we design a model named as “Base” that uses the “Encoder-Decoder+ConvLSTM”

neural network architecture, takes raw image as input, and adopts the same loss function as

ours. As shown in Table. 6.6, our model presents the distinct advantage, with 18.2% improve-

ment over the “Base” model on the CAD dataset, 13.8% improvement on the TaskAttention-

VR dataset, and 11.1% improvement on the TaskAttention dataset. In Figure 6.5, we show

some samples of attention heat map and the attentional object prediction of our model and

the “Base” model, from which we can also observe that our model outputs correct attentional

object and better attention heat map.
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6.6.3 Qualitative results

In some simple scenarios, as shown in Figure 6.6(a), all methods behave well. The reasons

are two-fold. On one hand, the humans are gazing at the attentional objects, so the gaze-

related methods are effective. On the other hand, the detail information of eyes and faces

are fully observed so that the gaze is easy to estimate.

However, in complex cases, as shown in Figure 6.6(b), the humans are not exactly facing

to the camera, so the detail facial information is not available. As a result, the methods

that heavily depend on facial features present poor performance. When we analyze the

experiment results, we found that the most failure of the PRNet [FWS18] and Hopenet

[RCR18] happens in these situations. In contrast, instead of using facial features, our model

takes human skeleton and optical flow as low-level human body cues. These cues are more

robust when the human face is partly or fully occluded, thus presenting better performance

in these scenarios.

In some more challenging cases, as shown in Figure 6.6(c), the attentional objects are far

from the human, and the human is not gazing at or operating on these objects at the current

time. In these cases, the high-level task information is important. For example, as we can

see in left column images in Figure 6.6(c), there are a bucket, a trash can, and some bottles

in the images. If given the task of mop floor, the attentional object is more likely to be

bucket. If given the task of throw trash, the attentional object is more likely to be trash can.

If given the task of move bottle, the attentional object is more likely to be bottles. In this

work, apart from the pose-motion module considering the low-level human body cues, we

design the task-driven module to learn the task information. Therefore, our model behaves

better in these cases.

6.7 Conclusion

Human attention can be roughly divided into two categories: 1) the attention of a human

outside images, and 2) the attention of a human inside images. Most existing attention-
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related studies are actually studying the attention of a human outside images. In this work,

we are studying the attention of a human inside images, which is related with yet different

from human gaze estimation, saliency estimation, human-object interaction detection, and

human action detection. The attention of a human inside images is a set of attentional

objects that coincide with the human mind and the task a human is doing. As many

psychology and biology studies show, human attention is controlled in both bottom-up and

top-down manner. Therefore, in this work, we propose a model that considers both low-level

human body cues and high-level task information. The experiment results show our model

is effective and outperforms other gaze-related methods.
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CHAPTER 7

Conclusion

In this dissertation, we have mainly studied the fluents space and their applications in task

representation.

Fluents are the time-varying attributes of entities. We first study the objects and their

attributes in discrete forms. We extract the feature vector for each image with pre-trained

image classification network, we also get the word vector for the object and its attribute

from pre-trained words embedding model. We have proposed an encoder-decoder model to

map both the image and its description in the same latent space, in which we can recognize

new combination of object and attribute which never appears in the training dataset. We

have achieve both state-of-art results on two popular datasets, MIT-States [ILA15] and UT-

Zappos50K [YG14]. With this model, we can conclude that the generative model is more

competitive than discriminative models to recognize unseen classes and the encoder-decoder

mechanism is crucial for learning intrinsic fluents representations.

With the idea that describing fluents in image space with latent vector from an encoder-

decoder framework. We further study the fluents in a continuous transformation space. In

our synthesis face dataset, we have proposed a 4-channel Siamese networks. We utilize a

semi-supervised training method with a pair of images as ‘teacher’, we are trying to predict

the image which undergoes the same fluents change as teacher’s when given a new image.

In this work, we are mainly studying the geometric change which includes both in-plane,

out-of-plane, linear and non-linear transformations. The latent space we have learned has

the nature of linearity, with which we can manipulate the vector in latent space to decode

the image undergoes our desire fluents change.

From the experiment on face datasets, we have demonstrated the mapping of fluents
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change between image space and latent space through an encoder-decoder generative model.

In previous work, fluents change apply to the whole representation of image, which is not

interpretable. Hence, on a simulation dataset of objects interaction, we try to disentangle the

appearance and geometric fluents, which means we have learned appearance and geometric

latent space separately. In the geometric space, we have learned the physics dynamics to

predict the position of objects in a long time range.

The process to finish a task is the process to make certain key fluents change step by

step. We represent the task with a novel fluent-based task representation framework, in

which tasks are modeled with object fluents. In each task, different fluents closely interact

with each other by means of spatial concurrence and temporal transition. Given a testing

egocentric video, a beam search algorithm is used to jointly recognize the object fluents in

each frame, and the task of the entire video. We collect a large-scale egocentric video dataset

including various fluents and tasks with detailed annotations. Our experiments have shown

that our model outperforms the baseline methods which proves the strength of our model.

Besides objects fluents change in the task, human-object fluent is another important

cue in representing a task. Specially, we have studied the human attention change during

the task. Human attention can be roughly divided into two categories: 1) the attention

of a human outside images, and 2) the attention of a human inside images. Most existing

attention-related studies are actually studying the attention of a human outside images. In

this work, we are studying the attention of a human inside images, which is related with

yet different from human gaze estimation, saliency estimation, human-object interaction

detection, and human action detection. The attention of a human inside images is a set of

attentional objects that coincide with the human mind and the task a human is doing. As

many psychology and biology studies show, human attention is controlled in both bottom-

up and top-down manner. We have proposed a model that considers both low-level human

body cues and task information. The experiment results show our model is effective and

outperforms other gaze-related methods.

This dissertation has provided a glance at the problem of fluents. There still remains

many challenges: 1) in spite of the appearance fluents and geometric fluents, topological
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fluents which can describe more complex changes is much more challenging to model and

learn. Topological changes involve the relationship change between entities in the group,

which will break of add the relation between entities. 2) To fully represent the task in real

life, how to learn a complete fluents space is still unknown. With the complete fluents space

landscape, we can discover different paths to finish the task such as with new tools.
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