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ABSTRACT OF THE DISSERTATION

Modeling Solute-Dislocation Interactions in Body-Centered Cubic Alloys Using Kinetic

Monte Carlo Simulations

by

Yue Zhao

Doctor of Philosophy in Materials Science and Engineering

University of California, Los Angeles, 2019

Professor Jaime Marian, Co-Chair

Professor Lucile Dezerald, Co-Chair

Interactions among dislocations and solute atoms are the basis of several important pro-

cesses in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature

plastic flow is controlled by screw dislocation glide, which is known to take place by the

nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In

alloys, dislocations and solutes affect each others kinetics via long-range stress field coupling

and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a

transition from solute softening to solute hardening is observed at a critical concentration.

In the first part of this work, we develop a kinetic Monte Carlo model of screw dislocation

glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics

is governed by two competing mechanisms. At low solute concentrations, nucleation is en-

hanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re

atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in

the flow stress that is concentration and temperature dependent. This minimum marks the

transition from solute softening to hardening, which is found to be in reasonable agreement

with experiments.

In the second part of this work, we extend our model to interstitial W–O alloys. we report
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for the first time on simulations of jerky flow in W-O as a representative bcc interstitial solid

solution. The simulations are carried out in a stochastic framework that naturally captures

rare events in a rigorous manner, enabling the study of solute diffusion and dislocation motion

concurrently. The model has no adjustable parameters, with all coefficients calculated using

first principles methods. We find that three regimes emerge from the stress-temperature

space: one representative of standard solid solution strengthening, another mimicking solute

cloud formation, and a third one, where the dynamic interaction of solutes and dislocations

results in jerky flow and dynamic strain aging. We show how the symbiosis between quantum

mechanical calculations and mesoscopic methods capable of furnishing diffusive timescales

is a powerful demonstration of the capacities of physical models to explain macroscopic

behavior.
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CHAPTER 1

Introduction

Tungsten(W) is one of the most promising material for fusion application, due to its high

strength and excellent high temperature properties [7, 37, 110, 163]. W and its alloys have

been widely discussed and investigated as the helium-cooled divertor and the protection

of the helium-cooled first wall in reactor designs going beyond ITER [9, 48, 55, 96, 116].

However, The applications of W have been limited to a great extent by their brittleness

at ambient temperatures [105, 130]. In order to increase the ductility, Rhennium(Re) is by

now the only element(or probably Iridium) can be used to form ductile tungsten alloys. W

is typically alloyed with 5-26 at.% Re to increase low temperature ductility and improve

high temperature strength and plasticity, which can increase Kc by up to one order of

magnitude [35, 88]. However, the cost and irradiation embrittlement of W–Re alloys has

limited its use for fusion energy applications [74]. Understanding the physical reasons behind

the Re-induced ductilization can be helpful to improve the application of W–Re alloy and

find other suitable W-based alloys.

The physical origins behind the Re-induced ductilization have been discussed in the

literature [75,114,130,154] and point in some way or another to alterations in the core struc-

ture of 1/2〈111〉 screw dislocations, which both reduce the effective Peierls stress and extend

the number of possible slip pathways. However, this is a highly local effect, concentrated

around the vicinity of screw dislocation cores, whereas plasticity involves both long-range

and local solute-core interactions. Although the softening of the Peierls stress, σP , can be

expected to lead to an increased screw dislocation mobility, factors such as kink-pair nu-

cleation enthalpies and kink velocities must be considered to accurately assess whether Re

additions result in global solute softening, hardening, or both. This was recognized early
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on for body-centered cubic (bcc) alloys in the experimental literature, where there is am-

ple evidence of a transition from solute softening to solute strengthening in substitutional

alloys [42,66,75,94,100,107,108]. This transition is usually rationalized as a competition be-

tween kink-pair nucleation and kink motion, which are thought to depend inversely on solute

content. Although early models built on this idea to successfully predict the softening-to-

hardening transition [58, 121], it was not until very recently that sophisticated electronic

structure calculations have revealed the local effect of Re alloying on the structure of screw

dislocation cores in W [68,114,118,154]. The effect on solute migration of dislocation stress

fields can now also be characterized by combining elasticity theory with electronic structure

calculations [49, 51, 137, 156]. In the first part of this work, we attempt to provide a multi-

scale modeling of the plastic properties of W based alloys from atomistic electronic structure

calculations of the dislocation core interaction with solute atoms to the screw dislocation

movement. We develop a kinetic Monte Carlo (kMC) model that accounts for thermally-

activated kink-pair nucleation and solute diffusion via stress-field coupling and short-range

inelastic interactions. Within our model the solute subsystem and the dislocation evolve

in a coupled fashion, with solute diffusion being sensitive to dislocation stress fields, and

kink-pair nucleation and propagation being influenced by the presence of solute. Our model

is parameterized entirely using electronic structure calculations, as described by Hossain and

Marian [49], and is significantly more efficient than direct atomistic simulations. This allows

us to study the relevant parameter space of stress, temperature, Re content, and dislocation

line length by simulating the motion of a screw dislocation in a random W-Re solid solution.

Most usable metallic materials are cast as alloys, containing one or more elements in

concentrations ranging from trace amounts of solute up to several ten percent. Due to their

extraordinary importance in technology and society, understanding the mechanical behavior

of alloys is a primary research goal of the materials science community. Preventing plastic

localization is a chief concern of researchers to avoid brittle failure, and substantial efforts

have been devoted over the years to study processes that lead to localized deformation. The

Portevin-Le Chatelier (PLC) effect is one such phenomenon that occurs in certain metallic
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alloys by which plastic slip becomes unstable, resulting in serrated flow and the onset of

inhomogeneous deformation. The PLC effect is a well-known phenomenon in materials

science by which metallic alloys deform in an unstable manner, potentially leading to poor

ductility and premature failure [2,3,12,59,62,72,80,86,89,90,92,93,98,103,104,134,153,157].

Serrated flow is thought to be due to the dynamic interplay between dislocations and solute

atoms, which is favored in a particular temperature and strain rate regime. This interplay is

almost always inaccessible experimentally, which calls for the development of physical models

capable of bridging the relevant temporal and spatial scales involved in the process. However,

while phenomenological models of serrated flow have existed since the first observation of

the phenomenon, the direct simulation of the PLC effect in three dimensions has eluded the

materials and metallurgical science community for years. The difficulties to simulate serrated

flow are aggravated in body-centered cubic (bcc) metals, where the crystal structure of the

alloy brings an extra set of complexities that necessitate specific experimental and theoretical

treatments. In the second part of this work, we extent our kMC model to the interstitial W–

O system. We report for the first time on simulations of jerky flow in W-O as a representative

bcc interstitial solid solution. The simulations are carried out in a stochastic framework that

naturally captures rare events in a rigorous manner, enabling the study of solute diffusion

and dislocation motion concurrently. The model has no adjustable parameters, with all

coefficients calculated using first principles methods. We find that three regimes emerge from

the stress-temperature space: one representative of standard solid solution strengthening,

another mimicking solute cloud formation, and a third one, where the dynamic interaction

of solutes and dislocations results in jerky flow and dynamic strain aging. We show how

the symbiosis between quantum mechanical calculations and mesoscopic methods capable

of furnishing diffusive timescales is a powerful demonstration of the capacities of physical

models to explain macroscopic behavior.

In chapter 2, we develop a kinetic Monte Carlo model of screw dislocation glide and solute

diffusion in substitutional W–Re alloys. In chapter 3, we use electronic structure calculations

to obtain the energetics of oxygen diffusion under stress and its interaction energy with screw

3



dislocation cores in bcc tungsten. In chapter 4, we extent our kMC model to W–O systems

and try to explain the physical reason behind The PLC effect. In chapter 5, we give the

explanation and implementation details of Our kMC model.
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CHAPTER 2

Direct prediction of the solute softening-to-hardening

transition in W-Re alloys using stochastic simulations

of screw dislocation motion

2.1 Introduction

The applications of tungsten (W) and its alloys have been limited to a great extent by

their brittleness at ambient temperatures. Typical ductile-to-brittle transition temperatures

(DBTT) for arc-melted W range from approximately 475 to 525 K, whereas for wrought and

recrystallized metal the DBTT falls between 560 to 645 K [105, 130]. Some authors have

measured a DBTT in excess of 1000 K for sintered specimens [26,36]. At room temperature,

the fracture toughness Kc of polycrystalline W in ranges between 5.1 (sintered) and 9.1

(rolled) MPa·√m [44]. W is typically alloyed with 5-26 at.% Re to increase low temperature

ductility and improve high temperature strength and plasticity, which can increase Kc by

up to one order of magnitude [35,88].

The purpose of this study is to predict the softening-to-hardening transition in W-Re

alloys by directly simulating the interaction of screw dislocations with solute atoms. We

develop a kinetic Monte Carlo (kMC) model that accounts for thermally-activated kink-pair

nucleation and solute diffusion via stress-field coupling and short-range inelastic interactions.

Within our model the solute subsystem and the dislocation evolve in a coupled fashion,

with solute diffusion being sensitive to dislocation stress fields, and kink-pair nucleation

and propagation being influenced by the presence of solute. Our model is parameterized

entirely using electronic structure calculations, as described by Hossain and Marian [49],
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and is significantly more efficient than direct atomistic simulations. This allows us to study

the relevant parameter space of stress, temperature, Re content, and dislocation line length

by simulating the motion of a screw dislocation in a random W-Re solid solution. In Section

2.2, we provide a description of the methods employed, followed by the results of dislocation

mobility and critical stresses in Section 2.3. We conclude in Section 2.4 with a discussion of

our findings and the conclusions.

2.2 Numerical model and parameterization

Detailed descriptions of the kMC model and the electronic structure calculations of model

parameters have been published previously [49,133], and here we simply provide a brief review

and highlight the aspects that are most relevant to the coupling between the dislocation and

the solute subsystem. Suffice it to say that our approach is a three-dimensional, full-elasticity

model of arbitrary dislocation geometries in bcc lattices.

2.2.1 Effect of solute on kink-pair activation enthalpy

We start with the expression for the nucleation rate of a kink pair on a screw dislocation

segment in the pure material:

rkp = ν0
L− w
b

exp

(
−∆H(σ)

kT

)
(2.1)

where ν0 is an attempt frequency, L is the available segment length, w is the kink pair

separation, b = a
√

3/2 is the modulus of the Burgers vector~b (a is the lattice parameter), ∆H

is the activation enthalpy, which is a function of the local stress tensor σ, k is Boltzmann’s

constant and T is the absolute temperature. For its part, the kink-pair activation enthalpy

is assumed to follow the expression:

∆H(σ) = ∆H0 (1− [Θ(σ)]p)
q

(2.2)

where is ∆H0 the sum of the formation enthalpy of two opposite-signed kinks, Θ(σ) is a

stress ratio that depends on σ, and p and q are fitting parameters. The stress ratio is defined
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as:

Θ(σ) =
τMRSS

τc(σ)
(2.3)

where τMRSS is the maximum resolved shear stress (MRSS) and τc(σ) is the critical stress

for athermal dislocation motion. The stress factor includes in its formulation all non-Schmid

effects characteristic of bcc metals, given below.

Equation (2.2) is modified by the presence of solute. Specifically, when a Re atom is found

adjacent to the dislocation line, an extra (binding) energy has to be overcome to nucleate

the next kink-pair along that dislocation segment. This is shown in Figure 2.1, where a Re

atom is along the path of the dislocation. In such case, eq. (2.2) is modified as:

Re atom
W atom
dislocation line

{110} plane

b
L

h

Figure 2.1: Position of lattice atoms relative to a screw dislocation segment of length L containing

a kink-pair. The presence of a Re atom (red sphere) changes the activation enthalpy of subsequent

kink-pair nucleation events. W atoms are colored according to the 〈111〉 string they belong to.

∆H ′(σ) = ekp
b + ∆H(σ) (2.4)
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The binding energy ekp
b depends on the distance and position of the solute atom relative to

the dislocation core, and we have calculated it using DFT calculations [49]. It takes a value

of 0.25 eV for the configuration shown in Fig. 2.1 and decays quickly to zero thereafter,

taking a value of 0.04 eV for the next nearest atomic row.

2.2.2 Effect of solute on kink motion

In the pure metal, kinks move along the dislocation line with a velocity:

vk =
bmσ~b

B
(2.5)

where B is a friction coefficient. This reflects the fast viscous motion of nonscrew segments.

After nucleation, a kink will take an average time of:

δtk =
L− w

2vk

=
B(L− w)

2bmσ~b
(2.6)

to sweep half of the segment length of the dislocation. However, when a moving kink

encounters a Re atom, it binds to it with an energy that depends on their relative location.

From that moment on, kink motion ceases and detachment becomes thermally activated.

The corresponding detachment rate is:

rsk = ν1 exp

(
− e

sk
b

kT

)
(2.7)

where v1 is an attempt frequency (different from ν0) and esk
b is the binding energy between

the kink segment and the Re atom. Kink segments have partial edge dislocation character

and, as such, induce both tensile and compressive stresses. Re atoms are approximately 3%

larger than W atoms and therefore introduce a certain dilation strain. Therefore, Re binds

preferentially to the tensile lobe of a single kink segment deformation field, with a value of

esk
b = 0.45 eV. In any case, the binding energy in the compressive region is also attractive,

with a maximum value of 0.35 eV [49]. Thus, for simplicity, we take an average value of 0.40

eV regardless of solute atom relative location. We assume this energy to be independent of

stress.

Once a dissociation event occurs for a kink-solute configuration, the kink resumes its

viscous motion according to eq. (2.5).
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2.2.3 The critical stress and non-Schmid effects

Our model includes non-Schmid effects from both sources commonly considered in the liter-

ature: the twinning/antitwinning effect and non-glide stresses [46]. We follow our previous

work on the topic [20,102] to define the stress ratio Θ as:

Θ(σ) =
τ(1̄01) + a1τ(01̄1)

a0σP (c)f
(
a2τ ′(1̄01)

+a3τ ′(01̄1)

a0σP (c)

) (2.8)

where

τ(1̄01) = σ : ~mα ⊗ ~nα

τ(01̄1) = σ : ~mα ⊗ ~nα1
τ ′(1̄01) = σ : (~nα × ~mα)⊗ ~nα

τ ′(01̄1) = σ : (~nα1 × ~mα)⊗ ~nα1 (2.9)

and f(x) = 2/ (1 + e2x) [102]. The vectors ~mα, ~nα, and ~nα1 refer, respectively, to the slip

direction, the glide plane, and the adjacent {110} plane forming +60◦ about the screw

direction to the glide plane. α refers to any one of the 12 independent slip systems in the

bcc crystal lattice [20]. Figure 2.2 shows the relative geometry for the particular case of the

1/2[111](1̄01) slip system. We assume that the only dependence of Θ on the Re concentration

c is via an explicit dependence of the Peierls stress on c, which we discuss below.

2.2.4 The Peierls stress

First principles calculations in pure W put the value of the Peierls stress between 1.7 and

2.8 GPa [31,114,119]. In this work, the key dependence of σP is on the solute concentration,

for which we use the calculations by Romaner et al. [114] and fit a numerical expression of

the type σP (c) = b1
c+b2

(where b1 and b2 are fitting constants) to their data. This softening of

the Peierls stress with Re content, together with a dislocation core transformation, has been

used by the authors in ref. [114] to explain the ductilization of W with Re in W-Re alloys.

The fit, shown in Figure 2.3, yields values of b1 = 1.07 (GPa) and b2 = 0.51. This is the
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Figure 2.2: Stress projections as defined in eq. (2.9) within the bcc unit cell. The dislocation line

is assumed to be along the [111] direction.

expression that we use in the remainder of this paper to carry out our kMC simulations in

the presence of solute.

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

σ P
 [

G
P

a
]

c

Romaner et al.

fit

Figure 2.3: Variation of the Peierls stress with Re concentration from ref. [114]. The data points

have been fitted to the expression σP (c) = 1.07
c+0.51 (in GPa).
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2.2.5 Solute diffusion

Re atoms occupying substitutional lattice sites in bcc W can diffuse by thermally activated

nearest-neighbor jumps. This jump rate can be expressed as:

rs = ν2 exp

(
−

∆Hv
f (σ) +Hm(σ) + eαb

kT

)
(2.10)

where ν2 is the attempt frequency for vacancy jumps –taken here as the Debye frequency,

cf. Table 2.1–, ∆Hv
f is the vacancy formation enthalpy, ∆Hm is the migration enthalpy,

both of which depend on the local stress tensor σ, and eαb is the binding energy either to a

screw segment (α ≡ kp) or to a kink segment (α ≡ sk). This last term is only appropriate

when the Re atom is bound to the dislocation core, otherwise it need not be included. The

functional dependencies of the activation enthalpies on stress have been given in our previous

publication [49], and they are based on the concept of formation or activation volume, which

is a tensor defined as;

V ∗ij =
∂H

∂σij

such that the enthalpy is in general defined as:

∆H(σ) = E − σ : V ∗

where the last term in the r.h.s of the above expression is known as the mechanical work.

The vacancy formation and activation volumes in W-Re alloys have also been calculated in

the dilute limit using DFT as given in ref. [49]. In the bcc lattice, each solute atom can

jump to eight different nearest neighbor positions, each with its own rate as given by the

local stress tensor at each location. To preserve detailed balance in the kMC simulations all

eight possible transitions are considered for each Re atom.

The above approach results in tracer diffusion with a drift produced by the dislocation

stress field, such that solute diffusion and dislocation motion are coupled to one another.

This is the basic premise underlying a series of phenomena categorized under the umbrella of

dynamic strain aging, whereby coupled dislocation-solute evolution may result in anomalous

mechanical behavior.
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Table 2.1: Parameter values employed in this work.

Parameter Units Value

a Å 3.16

b Å 2.74

h Å 2.58

ν0 Hz 9.1× 1011

ν1 Hz 1.5× 1012

ν2 Hz 6.4× 1012

w b 11

∆H0 eV 1.63

p - 0.86

q - 1.69

B Pa·s 8.3× 10−5

a0 - 1.45

a1 - 0.99

a2 - 2.36

a3 - 4.07

ekp
b eV 0.25

esk
b eV 0.40
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Figure 2.4: Magnitude of the three principal thermally-activated event rates as a function of

temperature at three stress points. In the range explored, solute diffusivity is markedly lower than

kink-pair nucleation and kink de-trapping.

However, a quick inspection of the three principal thermally-activated event rates, namely

kink-pair nucleation, eq. (2.1), kink de-trapping, eq. (2.7), and solute hopping, eq. (2.10)

reveals a large gap in time scale between Re atom diffusion and the other two. This is

showcased in Figure 2.4, where the rates are plotted as a function of temperature at 0, 200,

and 1000 MPa. For this reason, in the following, we neglect solute diffusion and assume that

the dislocations move in a static solute field.

2.2.6 Solute distribution spatial update

Our simulations involve periodic boundary conditions along the Burgers vector direction

[133], while the other two dimensions are defined by the extent of the solute cloud around

the dislocation. For convenience, we construct an hexagonal prism centered along the axis

of the center-of-mass (COM) of the dislocation, with edges along the different glide planes of
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(a) (b)

Figure 2.5: Views of the solute prism containing a screw dislocation with a kink pair (a) along

the dislocation direction and (b) general view. The images correspond to a simulation at 300 K,

200 MPa of applied stress, and 5% Re concentration.

the [111] zone. Then solute is randomly placed with the appropriate concentration on lattice

sites contained within the prism prior to starting the simulations. Because solute strain fields

are short-ranged and solute diffusion occurs by way of discrete first-nearest-neighbor jumps,

the size of the prism is not very important. Rather, the critical aspect here is to ensure that

the prism is updated as the dislocation glides so that ‘fresh’ material is generated ahead of

the dislocation path. This is done to avoid periodic boundary artifacts resulting from prior

dislocation-solute interactions. In this fashion, after every time step, the prism is shifted by

the amount displaced by the dislocation COM, Re atoms belonging to the previous prism

are kept, atoms outside the new prism are discarded, and regions of the prism without solute

are populated randomly with the correct c. Figure 2.5 shows images of the solute prism for

a dislocation containing a kink-pair in W-5Re (at%).
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2.3 Results

The raw output of our method are dislocation velocities as a function of all the internal

variables of the model: T , c, σ, L, and MRSS plane. Here we study the variation of the flow

stress with Re content, as the impact of the other variables on dislocation motion has been

studied in depth in our previous work [133].

Here we define the flow stress as the stress required to accelerate a screw dislocation to a

velocity commensurate with the prescribed strain rate. This velocity can be calculated via

Orowan’s equation as:

v∗(τf ) =
ε̇

ρb

where τf is the aforementioned flow stress, and ρ is the dislocation density. For the nominal

conditions used by Stephens [130], i.e. a strain rate of ε̇ = 5.5× 10−4 s−1, and a dislocation

density ρ ≈ 1.4× 1014 m−2, we obtain a threshold dislocation velocity of 1.5 × 10−8 m s−1.

By way of example, we first show screw dislocation velocities as a function of temperature,

Re concentration, and MRSS plane in Figure 2.6. For consistency with the experimental

measurements, we consider only the case where L = ρ−1/2 ≈ 400b (≈100 nm), and so we

eliminate the dislocation length from consideration as a variable going forward. The figure

shows results for 0, 5, and 20% Re concentration at 150, 300, and 590 K. The yellow shaded

area marks the region where the dislocation velocity is not fast enough to activate slip,

i.e. v<v∗, and thus from the intercepts of the velocity curves with the v∗ abscissa one can

obtain the flow stress τf in each case. In other words, we obtain τf as the stress above which

the dislocation velocity for each simulation triad (L, T, c) is larger than v∗.

It is helpful to consider the analytical analog of this flow stress for 0% Re content to

better understand its meaning. A closed-form expression for τf can be obtained assuming

that the time employed by single kinks to sweep across the dislocation line, δtk (cf. eq. (2.6)),

is much shorter than the time required to nucleate kink pairs, δtk = r−1
kp (cf. eq. (2.1)). In

such a case, the dislocation velocity can be approximated by [20]:

v ≈ ν0h(L− w)

b
exp

{
∆H0

kT

(
1−

(
τRSS

σP

)p)q}
(2.11)
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Figure 2.6: Dislocation velocity as a function of stress, temperature, and Re content. The data

correspond to a screw dislocation segment 400b in length (∼100 nm). Results for (nominally) single

slip –MRSS plane is of the {110} family– (left) and multislip –{112}-type MRSS plane– (right)

conditions are shown. The yellow shaded area marks the region where the dislocation velocity is

not fast enough to activate slip, v<v∗ (see text).

where for simplicity we have replaced Θ(σ) in eq. (2.2) with the ratio τRSS/σP . Solving for

τ = τf when v=v∗ leads to:

τf = σP

[
1−

[
kT

∆H0

log

(
ν0h(L− w)

v∗b

)] 1
q

] 1
p

(2.12)

The above equation can be reduced to an expression of the type:

τf = σP

(
1− (b3T )

1
q

) 1
p

(2.13)

where the constant b3 = k
∆H0

log
(
ν0h(L−w)

v∗b

)
takes a value of 1.55×10−3 K−1 for L = 400b and

the parameters given in Table 2.1. Equation (2.13) is plotted as a contour map in Figure

2.7. The inset to the figure shows the temperature variation of τf for L=400b (marked
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Figure 2.7: Contour map of the flow stress τf as a function of dislocation length L and temperature

T according to eq. (2.13). The inset shows τf at L=400b (marked with a dashed line in the contour

plot), as well as the three points obtained from the intercepts for 0% Re in Fig. 2.6.

with a dashed line in the main plot). More importantly, the three points obtained via

kMC simulations in Fig. 2.6 for 0% Re are also plotted to confirm the consistency between

the analytical and numerical approaches1. Next, we calculate τf as a function of c and T

following the intercept technique discussed above.

The numerical results for τf as a function of Re content at 300 K under single slip

conditions are shown in Figure 2.8, with the minimum at c=1.5%. The general dependence

on temperature is shown in Figure 2.9. All curves show a region of softening at low solute

1The disagreement can be attributed to the absence of non-Schmid stresses in the analytical approach,
and the stochastic variability of the kMC simulations.
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Figure 2.8: Flow stress variation with Re concentration at 300 K under {110} loading conditions.

concentrations, with a gradual transition to a hardening regime at higher values of c. The

experimental data by Stephens [130] are shown in the figure for comparison. As shown, the

agreement with the measurements increases with temperature although it must be noted that

the experimental data were obtained from full stress-strain curves, while our definition of τf

is for a system with just one dislocation. The location of the minima at each temperature can

be plotted into a phase diagram that delineates the separation of the softening and hardening

regimes. This is seen in Figure 2.10, which can be considered a preliminary design map. We

do not expect a strong dependence of the transition stress on dislocation line length in the

laminar slip regime (only one kink-pair at a time on the dislocation), and so these results

are in principle extrapolable to systems with higher dislocation densities such as W-Re in

the cold-worked state.
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2.4 Discussion

The main purpose of this work is to assemble a computational model that incorporates

the main physical mechanisms of substitutional solute-screw dislocation interactions in a

bcc alloy. The motivation for the development of the model was to test the applicability

limits of the softening effect of Re solute atoms on the Peierls stress of screw dislocations

in W-Re, which is a general phenomenon known to occur in most bcc metals [138]. This

limit manifests itself as a minimum in the yield/flow stress-concentration curve, which is

known to cause shifts in the DBTT compared to pure W. Characterizing this transition

from solid solution softening to solute hardening in substitutional bcc alloys has been the

subject of much discussion in the literature [42, 66, 75, 94, 100, 107, 108]. It is generally well

19



0

100

200

300

400

500

600

0 1 2 3 4 5

T
 [

K
]

c [%]

solute softening

solute hardening

Figure 2.10: Solute softening/hardening map as a function of temperature and concentration

under multislip conditions.

accepted that, before the minimum, the presumed softening of the Peierls stress with solute

content aids kink-pair nucleation while having a negligible impact on kink-pair propagation.

Above the minimum concentration, however, nucleation cannot compensate for the continued

interference of solute atoms on kink motion. While there have been early semi-analytical

models that build on this idea to predict the transition temperature and solute content,

they have been mostly phenomenological due to a lack of understanding of the atomic-scale

mechanisms involving dislocation cores and solute atoms. For example, Sato et al. [121]

were among the first to develop models to explain the transition in terms of the motion of a

screw dislocation through a Peierls potential dotted with misfit strain centers representiing

solute atoms. As well, there are more recent studies that also capitalize on these basic

phenomenological premises [51, 58]. Here, not unlike the work by Sato et al., we develop

a model based on the motion of a screw dislocation line through a solid solution. What

separates our model from other approaches is the consideration of two of the most critical

features of screw dislocation glide in bcc metals: thermally-activated kink-pair nucleation

and non-Schmid effects. We have spent a great deal of time quantitatively characterizing

these two [20,102,133], as well as the solute-dislocation interaction energetics for W-Re from

first-principles calculations [49,114]. This has opened up the possibility to perform predictive
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simulations, which is what we report in this paper.

Our method has two restrictions that are worth noting. First, it is limited to a single dislo-

cation, which ignores potential interactions with other dislocations and collective dislocation

effects. However, there is now a growing consensus that the plastic response of most bcc

metals and alloys can be characterized in terms of single-screw dislocation properties [?,?,?].

This is particularly true at low homologous temperatures, where the temperature dependence

of the flow stress is particularly pronounced and edge dislocations play no discernible role

on plastic flow. It is worth mentioning that experiments have shown that Re additions to

tungsten promote the formation of edge dipoles at temperatures which are otherwise too

low to hold any significant edge dislocation populations [130], e.g. 300 and 150 K, and in-

crease dislocation density at all temperatures. While this may change the global balance

of dislocation subpopulations, we believe that the softening-to-hardening transition is still

controlled by local dislocation-solute interactions, well captured in this model. Second, our

framework admits only {110} slip2, while it has been postulated that {112} slip may rep-

resent the primary slip plane at higher temperatures. While this has not been conclusively

established [10, 83, 123], we have shown in prior works that the temperature dependence of

the flow stress in single crystal W can be explained resorting solely to {110} slip [20]. Indeed,

the results reported here show that the transition can be captured considering {110} glide

only. It has been claimed that rhenium can increase the likelihood of slip on multiple {110}
planes, even when the MRSS plane itself belongs to the {110} family. We have conducted

analyses of the dislocation core trajectories as a function of concentration and have not found

significant differences between pure W and W-Re3. In any case, we take our method to be

strictly valid in the lower (homologous) temperature region of the flow stress curve, which is

the regime considered here.

Finally, this work follows the line of research initiated by Cai and Bulatov [14, 15] and

Deo and Srolovitz [27,29], where the foundations for the current model were laid. Extension

2That is, kink pairs can only form on {110} planes, regardless of the MRSS plane.

3Instead, temperature is found to have a more pronounced impact on trajectory.
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of the current methodology to interstitial solutes and the study of dynamic strain aging is

being currently pursued.
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CHAPTER 3

Electronic structure calculations of oxygen atom

transport energetics in the presence of screw

dislocations in tungsten

3.1 Introduction

Refractory transition metals such as those in groups V and VI of the periodic table belong to

a class of materials with important potential applications thanks to their high-temperature

strength and corrosion resistance [25, 64, 136]. However, they typically display poor low-

temperature fracture toughness and must be alloyed with other transition metal elements to

improve their ductility. For example, in the case of body-centered cubic (bcc) W, W-Re alloys

have been shown to lower the ductile-to-brittle transition temperature by up to hundreds

of degrees [63], resulting in commercially viable alloys. Interstitial impurities, however,

are known to produce marked increases in the ductile-to-brittle transition temperature of

polycrystalline specimens [129]. Specifically, oxygen is seen to lower both the tensile and

yield strengths, while promoting intergranular fracture at concentrations as low as 30 appm.

In single crystals, the effect is less pronounced, although some evidence suggests a hardening

effect at low temperatures [126,127,140]. As well, oxygen is known to be involved in dynamic

strain aging in tungsten-based alloys deformed within a certain strain rate and temperature

window [4,24]. In principle, O is soluble in tungsten up to the formation of the line compound

WO2 at 66.7 at.% [152], although embrittling second phases have been seen to form at grain

boundaries at only a few appm of concentration [128]. In single crystals, the effect can be

isolated to dislocation core/solute interactions, particularly screw dislocations, as they are
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known to control plasticity in bcc metals at low-to-intermediate temperatures [21, 23, 148].

By its very nature, this interaction can only be studied using atomistic resolution methods

to describe the large deformations found around the dislocation core. At the same time, the

method must capture the essential details of W-O chemistry, which may become important

in non-dilute conditions. These restrictions point to density functional theory (DFT) as the

technique of choice to investigate dislocation-O interactions in W.

Numerous studies have been performed on dislocation core/solute interactions using DFT

calculations. For substitutional solutes, several works including face and body-centered ma-

terials exist [53,69,87,113,114,119,139,159], while for interstitial impurities several calcula-

tions including a number of different solutes in Fe have been recently published [77,112,145],

as well as dislocation-C interactions in most bcc transition metals [76]. These calculations

show that solute atoms stabilize the hard core configuration of a screw dislocation when the

solutes are placed inside the triangular prism formed by the the three 〈111〉 atomic rows

enclosing the dislocation core.

Interestingly, despite its technological importance, no DFT studies have been performed

on the interactions between dislocation and O in W. The primary objective of this work

is to investigate the interactions of oxygen interstitial solute with screw dislocations in bcc

W. These interactions can be categorized as long-range, i.e. elastic interactions affecting the

diffusive behavior of oxygen atoms in the presence of dislocations, or short-range, i.e. local

binding of chemical nature between dislocation cores and impurities. Consequently, here we

study first the dependence on stress of the diffusivity of O interstitials atoms in bulk W,

followed by the calculation of interaction energies between O atoms and screw dislocation

cores. We end the paper with a discussion and the conclusions.

3.2 Computational details

All DFT calculations were carried out using the Vienna Ab Initio Simulation Package (VASP)

code [60] and the projector augmented wave (PAW) [8,61] pseudopotential scheme within the
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Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation and a 400 eV kinetic-

energy cutoff. The Hermite-Gaussian scheme was employed, with a smearing of 0.2 eV for

electronic occupation. Structure relaxation was performed until the forces on all the atoms

were less than 2× 10−2 eV/Å.

3.2.1 O solution and migration energies under strain

Calculations of O-atom solution and migration energy in bulk W were performed using 250

atoms bcc supercells with a 4×4×4 k-point grid. The migration barrier was calculated

between two neighboring configurations of lowest energy (tetrahedral sites in the present

case) using the nudged elastic band (NEB) method as implemented in VASP. O migration

in bulk W under strain was investigated by applying the following transformation matrices

to the supercell lattice vectors:

~a′ = (ε+ I)~a (3.1)

where ~a′ are the deformed lattice vectors, ε is the applied strain tensor, I is the identity

tensor, and ~a are the undeformed lattice vectors. The undeformed configuration is expressed

in a canonical cartesian reference system with ~a1 ≡ [a0 0 0], ~a2 =≡ [0 a0 0], and ~a3 ≡ [0 0 a0],

where a0 = 3.186 Å is the lattice parameter of W calculated with the pseudopotential

employed here. Two different strain tensors were applied for the simulations:

(i) Hydrostatic strain:

ε =


ε 0 0

0 ε 0

0 0 ε


(ii) Volume-conserving shear:

ε =


0 γ/2 0

γ/2 0 0

0 0 0


where ε and γ are the applied dilatational and shear strains, respectively. Positive values of

ε are taken to represent tensile distortions. Note that in the limit of small deformations, (i)
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the volumetric strain εv = ∆V/V ≈ Tr(ε) = 3ε, and (ii) γ = tan θ, with θ the shear angle

as defined in Figure 3.1. Note that shear deformation turns a symmetric cubic cell into a

monoclinic one, which results in a shortening of certain tetrahedral→tetrahedral paths and

in extension of others, as illustrated in the figure. This is equivalent to applying negative

shear strain and, consequently, we have investigated both reaction paths when calculating O

migration in sheared bcc W. We used 10 NEB images in the majority of the cases considered

here, the only exceptions being ε = 1%, 2% and γ = 1%, where 7 images where used.

3.2.2 Screw dislocation-O interaction

Simulations of dislocation-O interactions were performed using 135 W-atom supercells con-

taining two screw dislocation cores with Burgers vectors +~b and −~b (~b = a0/2[111]) arranged

in a balanced quadrupolar configuration, as is typically used for such simulations [22,32,144],

with a 1×2×16 k-point grid. The cell was first relaxed in the absence of oxygen to deter-

mine the reference configuration for dislocation-solute interactions. This results in a non-

degenerate, easy core configuration, consistent with a number of other independent DFT

calculations [32, 50, 52, 143, 144, 151]. Solute atoms were subsequently placed at various

tetrahedral sites around both dislocation cores to ensure symmetric structures with equiva-

lent energies. Figure 3.2 represents an expanded view of one of the dislocation cores of the

supercell in order to highlight the six tetrahedral sites investigated as initial positions of the

O atom. A differential displacement map is used to identify the position of the dislocation

in the figure [33, 147]. The use of periodic boundary conditions along the [111] direction

when placing an O atom in the supercell results in a row of atoms separated by a distance

of 1b (equal to the thickness of the box). We tested the impact of using such thin specimens

by repeating one of the calculations with a thickness of 2b to preliminarily quantify the box

thickness effect on the final results.
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3.3 Results

3.3.1 Oxygen atom stability in bulk tungsten

Oxygen stability in bulk W is evaluated by separately inserting one oxygen atom in tetrahe-

dral and octahedral sites of a bulk W bcc structure. Figure 3.3 shows the geometric location

of the interstices in a bcc unit cell. The solution energy Hs (heat of solution) is defined as:

Hs = EW-O − EW − µO (3.2)

where EW-O and EW are, respectively, the energies of a W cell with and without O, and µO

is the reference energy of a single O atom (chemical potential). In accordance with previous

works [53,56], we take µO to be half of the total energy of a O2 molecule, which is calculated

to be −4.92 eV (compared to −1.59 eV for an isolated O atom in a vacuum), i.e.:

µO =
1

2
EO2 = −4.92 eV

With this, we find a solution energies of 1.01 eV and 0.70 eV for for octahedral and tetrahedral

sites, respectively. While this is consistent with recent studies in W-O [1,91], it deviates from

what is found in other bcc metals, where octahedral sites are more stable for interstitial

impurities1 [77, 78]. The reasons behind this behavior appear to be related to the overlap

between the electron charge densities of O and W when the O atom is at a tetrahedral

location [1].

Next, we study the dependence of Hs with strain applied in the manner described in Sec.

3.2.1. The results are shown in Figure 3.4, clearly indicating a strong coupling to volumetric

strain but an almost negligible one to shear deformation. Assuming a linear dependence

with ε, we find:

Hs(ε) = 0.70− 57.7ε = 0.70− 57.7p

3BW

[eV ]

1Consistent with an octahedral volume of Voct = a3
0/3, versus a tetrahedral one of Vtet = a3

0/12.
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where p = 1/3Tr(σ) is the pressure, BW is the bulk modulus of pure W. For a value of

BW = 308.5 GPa calculated using the same pseudopotential, we obtain the dependence of

the heat of solution with stress:

Hs(σ) = 0.70− 9.98× 10−3p = −0.70− 3.33× 10−3(σxx + σyy + σzz) [eV ] (3.3)

with p and the components of σ expressed in MPa.

We have also calculated the formation energy of an O atom at a vacant site and have

obtained a value of −0.14 eV. This association with a vacancy results in a substitutional

O atom, which, as earlier DFT calculations have shown for other interstitial solutes [6],

effectively immobilizes it, thus changing the character of its contribution to the kinetic

evolution of the system. This case will not studied further and in the following we focus on

interstitial oxygen migration pathways.

3.3.2 Oxygen migration in bulk tungsten

The migration barrier, Em, between two neighboring tetrahedral sites was evaluated using

the NEB method (refer to Sec. 3.2). For zero strain we find a value of 0.20 eV for the

migration energy of O in W, in good agreement with the 0.17 eV obtained by Alkhamees et

al. [1] and in contrast with values over 0.3 eV for octahedral→octahedral transitions by the

same authors. This is also in concordance with both DFT and semi-empirical interatomic

potential calculations of O migration in other bcc metals that consistently yield larger values

for the octahedral→octahedral jump [38, 39, 71, 124]. Here, we expand on the calculations

by Alkhamees et al. by studying the dependence of the migration barrier on hydrostatic

and shear strain. Results for tensile and compressive strains are shown in Figure 3.5a. The

results reveal a linear dependence of the migration energy barrier on hydrostatic strain, as

shown in Fig. 3.5b, with a proportionality constant of khydro = 2.74 eV. This implies a

constant activation volume, which for this transition can be calculated as:

Ωhydro =
khydro

3BW

For the value of BW given above, Ωhydro = 0.47 Å3 = 0.022b3.
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The dependence of the migration energy on shear strain is shown in Figure 3.6a. As men-

tioned above, shortened and lengthened paths (refer to Fig. 3.1) are simply manifestations

of the sign of the applied shear strain and thus we show all the calculations on the same

plot. In the case of shear, the activation volume is defined as:

Ωshear =
kshear

µW

where, from the results in Fig. 3.6b, kshear = 3.70 eV is the proportionality constant and

µW = 160.2 GPa is the shear modulus for the current pseudopotential. With this, an

activation volume Ωshear = 3.98 Å3 = 0.19b3 is obtained.

It is worth noting that although the reaction path in Figs. 3.5a and 3.6a is shown as pro-

jected along the rectilinear path joining two first-nearest neighbor (NN) tetrahedral sites,

the actual trajectory is curved, as can be seen in Figure 3.7 for the unstrained case. The

figure also shows the positions of two octahedral sites lying on the same (001) plane as the

tetrahedral ones. It is important to point out that the while the octahedral position rep-

resents a local minimum for the O atom, the saddle point of the tetrahedral→tetrahedral

transition is still a lower energy state than the octahedral one. This strengthens our assump-

tion to discard octahedral→octahedral transitions as energetically less relevant than their

tetrahedral→tetrahedral counterparts.

3.3.3 Screw dislocation-oxygen interaction in tungsten

The calculations carried out in the previous section allow us to couple solute diffusion to the

dislocation elastic fields. However, there also exists an inelastic interaction that takes place

when the solute atom is found close to the dislocation core. There, local nonlinear effects

dominate over long-range elastic interactions and it is therefore important to quantify them.

Next we calculate the interaction energies between oxygen atoms and screw dislocation cores

in W using the geometries described in Sec. 3.2.2. The interaction energy is defined as:

Ei =
1

2

(
Edislo

W-O − Edislo
W

)
+
(
Ebulk

W − Ebulk
W-O

)
(3.4)
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where Edislo
W-O and Edislo

W are the energies of the dislocated cells with and without oxygen atoms,

respectively, while Ebulk
W-O and Ebulk

W are the energies of bulk W with and without O atoms.

The 1/2 factor is used to account for the existence of two dislocations in the simulation cell

with their corresponding oxygen atoms located at one of the six nearest tetrahedral sites

to the dislocation core, as illustrated in Figure 3.2. Upon relaxation of the dislocation-O

system in W, we find that only two stable final configurations are possible, depending on the

initial position of the O atom, as illustrated in Figure 3.8. In the figure, the initial positions

of the dislocation cores and the oxygen atoms are marked with blue crosses and blue circles,

respectively, while their final relaxed positions are shown using red crosses and filled red

dots. As for the reference configuration, differential displacement maps are used to identify

the position of dislocation cores after relaxation.

Figure 3.8a shows the final configuration for the case where the O atom was originally

introduced in the 4th NN position. One can see that upon relaxation the dislocation core

remains compact and symmetric, but its center has shifted towards the center of a neigh-

boring downward-pointing triangle. This final dislocation core configuration corresponds to

the so-called hard core configuration. Although the hard core configuration is known to be

unstable in W and in most pure bcc metals [32, 76], here we find that the presence of O

induces a reconstruction from the easy to the hard core configuration, similar to what has

been reported for W-C in refs. [76, 146]. Because of this shift after relaxation, the relative

position of the oxygen atom changes from 4th NN to 2nd NN. Indeed, this was found to be the

case for initial O atoms positions located in 1st, 2nd, 4th and 6th NN tetrahedral sites, all with

an interaction energy of −1.83 eV, which is indicative of a strong short-range interaction

between the dislocation core and the oxygen atom.

A second possible stable configuration was obtained by relaxation of the dislocation-O

system when the oxygen atom was inserted in the 5th NN tetrahedral site. In that case,

both the dislocation cores and the O atoms remain in their initial positions, as illustrated

in Figure 3.8b by the superposition of blue and red crosses and points that indicate the

initial and final dislocation and O positions. The final core configuration is a distorted easy
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core, where the core is seen to spread between its original location and that of the O atom.

A similar configuration has been reported for C interstitials in Ta [76]. Thus, the 5th NN

tetrahedral site appears to be a second stable possibility for the O atom in the vicinity of

the dislocation core, with a corresponding interaction energy of −1.20 eV. Finally, when O is

initially located in the 3rd NN tetrahedral site, one of the dislocations of the dipole shifts to

a hard core configuration with the O atom in the 2nd NN position, and the other relaxes to

the distorted easy core of the 5th NN configuration. Not surprisingly its interaction energy

is −1.52 eV, which is exactly the average of the energies of the 2nd and 5th NN cases.

All the calculated energies are strongly negative, indicating a strong attraction between

O atoms and the dislocation core. This is consistent with calculated elastic distortions of

near 40% in the atoms bounding the tetrahedral site around the solute atom (analyzed

using local atomic displacements in OVITO [132]). The effect of the dislocation core is

thus to accommodate these distortions caused by the O atom into its own displacement

field, resulting in energetically very favorable configurations. For its part, it is seen that the

deformation field due to the solute decays very rapidly, such that it is almost zero at second

nearest neighbor positions from it.

3.4 Discussion

The present calculations are intended to provide quantitative support for mesoscale mod-

els of dislocation-solute coevolution, ultimately designed to explore the mechanisms be-

hind serrated flow in bcc metals. As such, two types of interactions must be character-

ized, long and short range, of elastic and inelastic nature, respectively. The former affects

tetrahedral→tetrahedral oxygen atom migration under dislocation stress fields via an Ar-

rhenius expression of the following type:

ν (T,σ(~r)) = ν0 exp

(
−∆Ha(σ(~r))

kT

)
(3.5)

where ν0 is an attempt frequency, ∆Ha is the activation enthalpy for the diffusive jump and k

and T are Boltzmann’s constant and the absolute temperature, respectively. The activation
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enthalpy has several contributions:

∆Ha = Em + ∆Hs −Wm

with:

Em = 0.20 eV

∆Hs = Hs(σ(~r2))−Hs(σ(~r1))

Wm = σ(~r1) : Ω

where Wm is the mechanical work and Ω is the activation volume tensor obtained in this

work:

Ω =
∂Em
∂~σ

=


Ωhydro Ωshear Ωshear

Ωshear Ωhydro Ωshear

Ωshear Ωshear Ωhydro

 = b3


0.022 0.190 0.190

0.190 0.022 0.190

0.190 0.190 0.022

 (3.6)

In eq. (3.5), σ represents the stress tensor defined at spatial points ~r1 and ~r2 representing the

initial and final coordinates of the O atom transition, including all contributions, e.g. applied

external stress, stresses from other dislocation segments, etc.

Our computed energies can also be put in the context of experimental measurements

of oxygen diffusion in W. There were a number of studies looking at diffusion profiles of

oxygen atoms in exposed W surfaces performed in the 1960s [54,65,106], and more recently

in oxidized W specimens [13, 125]. In general, activation energies between 1.0 and 2.0 eV

are found in these tests. Our calculations (activation energy: Hs + Em ≈ 0.9 eV) fall in

the low end of these measurements. However, it is difficult to separate the effects due to

surface roughness, impurity content, and other imponderables, from the experiments, while

our calculations of course are free from these.

For its part, the inelastic effect occurs locally at the dislocation core, where linear elastic-

ity is no longer suitable to capture the dislocation-oxygen interaction. A strong dislocation

core-O atom attraction is found, as evidenced by interaction energies of up to 1.83 eV. While

this is generally consistent with existing DFT studies of small interstitial impurities bound

to screw dislocation cores in the literature [5,73,76,77,146] it must also be kept in mind that
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the present calculations are done for dislocation segments of length 1b, and thus a contribu-

tion to Ei from periodic image O-O interactions cannot be discounted. By way of example,

the interaction energies found in cells with thicknesses of 1b and 2b were −1.83 and −1.60 eV

respectively, for the case of a 2nd NN stable O position. This suggests that a portion of the

interaction energy calculated here is attributable to the stabilization effect created by the

O-O bond. By way of example, we have calculated a relaxed bond length in the O2 molecule

of 1.23 Å, in good agreement with prior works [149, 158]. While still smaller than the cell

thickness of b = 2.75 Å, it appears to have a measurable impact on the final interaction

energies. To ascertain this in more quantitative terms, we have also calculated the energy of

a O-O pair separated by distances of 1b and 2b. The results are given in Table 3.1:

Table 3.1: Bond lengths, total and half energies of O-O complexes in the vacuum. The top row

corresponds to the stable O2 molecule.

dO-O[Å] EO-O [eV] 1/2EO-O [eV]

1.23 (O2) −9.84 −4.92

2.76 (1b) −3.74 −1.87

5.52 (2b) −3.18 −1.59

We recall that the energy of an isolated O atom is −1.59 eV (Sec. 3.3.1), which means that

at a separation of 2b an O-O pair can be regarded as a pair of isolated atoms. This implies

that computational cells with thicknesses of 2b are sufficient to eliminate any O-O bonding

from the simulations along the dislocation line. For separations of 1b, an O-O pair has a

binding energy of −0.56 eV. This is consistent with an excess energy of approximately 0.23

eV between the values of Ei for 1b and 2b just discussed. In any case, these corrections do

not affect our overall conclusions that a high attractive energy is governs solute-dislocation

core interactions, based on which it is reasonable to assume that the inelastic effect dominate

over the elastic one as it relates to long-term evolution.

Additionally, when O atoms decorate the dislocation line in the manner created by the

DFT calculations presented here, the core structure is seen to stabilize in preferentially in
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a ’hard’ core configuration. Whether this is the case for longer dislocation segments (>2b),

i.e. for smaller O-atom linear densities, is not clear at present. On this point, it is worth

noting that, although the hard core is in general a higher energy configuration for screw

dislocations in bcc metals [32,52,144,155], several studies have shown that it can be stabilized

by both substitutional [119, 145] and interstitial [77, 146] solute atoms, in agreement with

the present study.

All the above effects must be included in simulations of microstructural evolution to

study the fundamental mechanisms behind interstitial solid solution softening/hardening

or dynamic strain aging. We have some experience developing this type of models for

substitutional alloys [161], which allow us to push the length and timescale envelope to

experimentally-meaningful levels. The coupling of the energetics obtained in this work and

mesoscopic models of dislocation-solute evolution is the subject of an ongoing effort which

will be published in future studies.

3.5 Conclusions

• We have conducted electronic structure calculations of the fundamental energetics of

oxygen atoms in tungsten, including the heat of solution, migration energies, activation

volumes, and interaction energy with screw dislocation cores.

• Oxygen atoms are preferentially found in tetrahedral lattice sites, with solution energies

of 0.70 eV. The substitutional heat of solution (an O atom associated with a vacant

site) was found to be −0.14 eV.

• The migration energy for the tetrahedral→tetrahedral transition in the bulk is 0.20

eV. This energy is modified by stress according to activation volumes of 0.02b3 and

0.19b3 for volumetric and shear deformations, respectively.

• The interaction energy between a screw dislocation core and an O atom depends on the

relative position of the oxygen but it is found to be either 1.20 or 1.83 eV, depending
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on the final configuration. We find that this is due to the accommodation of the large

local distortions induced by the O atom in the lattice, which is seen to lead to a core

reconstruction from an easy core configuration to a hard core one when O atoms are

present.

• In most cases, once absorbed at a screw dislocation core, O atoms are seen to induce

a dislocation core transformation from an easy core configuration to a hard core one.

• These calculations will serve to parameterize mesoscale models of material deformation

by dislocation slip.
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θ

Figure 3.1: Illustration of the distortion of tetrahedral→tetrahedral paths under shear deforma-

tion. The undeformed path becomes stretched along two directions and compressed along the other

two. θ represents the shear angle (refer to Sec. 3.2).
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Figure 3.2: Location of the six nearest tetrahedral sites (blue points) to the geometric center of

a screw dislocation core (green cross) before the relaxation of the dislocation-O system with DFT.

The dislocation is in an easy core configuration. The arrows represent the amplitude of differential

atomic displacements along the 〈111〉 direction (normal to the image) induced by the presence of

the dislocation.
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bcc lattice sites
octahedral sites
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1 1

Figure 3.3: Elementary bcc lattice cell showing octahedral and tetrahedral interstitial sites. As

a guide to the eye, the figures show a shaded octahedron and tetrahedron with the interstitial site

highlighted in their respective centers. In principle, transitions may occur between any two nearest

neighbor interstitial sites.
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Figure 3.4: Variation of the heat of solution of tetrahedral O as a function of volumetric, ε, and

shear, γ, strain.
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Figure 3.5: (a) Tetrahedral→tetrahedral oxygen migration energy path in bulk W calculated with

DFT between two neighboring tetrahedral sites under hydrostatic strain. a′ is defined in eq. (3.1).

(b) Migration energy barrier under uniform axial strain. The black line represents a least-squares

linear fit, from whose slope (black triangle) the activation volume can be calculated.
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Figure 3.6: (a) Tetrahedral→tetrahedral oxygen migration energy path in bulk W calculated with

DFT between two neighboring tetrahedral sites under shear strain. (b) Migration energy barrier

under shear strain. The black line represents a least-squares linear fit, from whose slope (black

triangle) the activation volume can be calculated.
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Figure 3.7: Relaxed migration path of an oxygen atom between two tetrahedral sites on a (001)

plane under zero strain showing two neighboring octahedral sites for reference. The trajectory

follows a curved path arched towards the closest octahedral site.
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(a) The initial configuration starts with the oxygen atom in a 4th NN tetrahedral

position. After relaxation, the core shifts to a hard core configuration and the oxygen

atoms shifts to a 2nd NN position. The dislocation maintains its compact core structure

after relaxation. The calculated interaction energy is −1.83 eV.

(b) The initial configuration starts with the oxygen atom in a 5th NN tetrahedral

position. After relaxation, neither the dislocation or the O atom have shifted, however,

the dislocation core becomes asymmetric. The calculated interaction energy is −1.20

eV.

Figure 3.8: Stable relaxed configurations of the dislocation core/O-atom system. All other initial

configurations (see Fig. 3.2) relax to one of these. The cross marks the location of the dislocation

core (blue: initial, red: final), while the blue and red dots mark the initial and final position of the

O atoms, respectively.
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CHAPTER 4

Portevin-Le Chatelier effect observed through direct

simulations of serrated flow in a body-centered cubic

crystal

The Portevin-Le Chatelier (PLC) effect is a well-known phenomenon in materials science by

which metallic alloys deform in an unstable manner, potentially leading to poor ductility and

premature failure [2, 3, 12, 59, 62, 72, 80, 86, 89, 90, 92, 93, 98, 103, 104, 134, 153, 157]. The PLC

effect is characterized by jerky flow and the onset of inhomogeneous deformation, typically

attributed to the dynamic interplay between dislocations and solute atoms. The macroscopic

manifestation of this process is the appearance of serrated flow in the stress-strain curve, a

necessary but not sufficient condition to indicate the existence of dynamic strain aging (DSA).

Figure 1 shows stress-strain curves of lath martensite micropillars at room temperature

and two different strain rates. The figure exemplifies how changes in strain rate (and/or

temperature) can induce drastic variations in the plastic flow of a material. While there are

other manifestations of DSA, the most important one is the inversion of the dependence of

the strength, σ, on strain rate,ε̇, resulting in a negative strain rate sensitivity (defined by an

exponent, m = ∆σ/∆ log ε̇) [99]. The PLC effect belongs to a more general class of unstable

phenomena in physics known as intermittent processes. These processes operate in a time-

discontinuous manner and are pervasive in the natural world, being found across numerous

scientific disciplines [34, 45, 97]. Modeling these processes is challenging both because their

intrinsic dynamics are controlled by discrete events (i.e. fluctuations) and because the time

and length scales governing fluctuations and the observed macroscopic response are often

separated by many orders of magnitude.
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Figure 4.1: Engineering stress-strain curves of lath martensite obtained during in-situ SEM mi-

crocompression tests at room temperature for two different strain rates, ε̇=10−2 ani ε̇ = 10−1 s−1.

Serrated flow is clearly observed during the 10−2s−1 test (red curve) (See the Methods Section for

details on these experiments)
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In body-centered cubic (bcc) materials at low-to-moderate homologous temperatures,

plastic slip is governed by the motion of screw dislocations on closed-packed planes. Gen-

erally, this motion is understood to occur over a periodic energy landscape known as the

Peierls potential U P with a periodicity h and an amplitude U 0. At low stresses, slip proceeds

via the thermally activated nucleation of steps of height h on the dislocation line, known as

kink pairs, and their subsequent sideward relaxation. The basic kink-pair geometry and the

structure of the potential energy substrate are schematically depicted in Figure 4.2. The

occurrence of these kinks makes dislocations in bcc metals behave as a many-body system,

increasing the complexity of their treatment compared to other materials. Over five decades

of research in bcc metals have conclusively revealed a direct connection between the kink

pair activation enthalpy and the temperature dependence of the flow stress in all pure bcc

metals [16]. In alloys, solutes are known to alter kink-pair nucleation and propagation rates

giving rise to several well-known phenomena in bcc plasticity. For example, some substi-

tutional bcc solid solutions are known to suffer a transition from solute softening to solute

hardening as a function of alloy concentration [43,74,101,131]. This is now known to be a di-

rect consequence of the interaction between solutes and kink pairs [17]. Also, substitutional

solutes are known to lower the so-called knee temperature, after which screw dislocation

motion becomes athermal and the mobility of screw and non-screw segments becomes com-

parable [135]. Owing to their low diffusion rates and the absence of a vacancy-generation

mechanism during plastic flow in bcc alloys, dynamic strain ageing is seldom attributed to

substitutional solutes [18,19,24,98,134], except perhaps at high temperatures and relatively

high concentrations. In the case of interstitial solid solutions, solute diffusion is effectively

athermal, in the sense that it is not the rate-limiting process and consequently kink-pair

nucleation dictates the duration of the waiting time in between plastic events. Under such

conditions, dislocation motion proceeds in a discontinuous manner, with rapid slip bursts

punctuated by localized trapping of dislocation cores by solute clouds.

Clearly, in view of the processes involved, the study of the microscopic mechanisms of

DSA requires atomic resolution. However, intrinsic bottlenecks of atomistic simulations
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Figure 4.2: (a) Schematic diagram of the basic kink-pair geometry on the Peierls energy substrate

Up(x). b and nα are the Burgers vector and the normal of the glide plane α. λα is the length of an

arbitrary straight screw dislocation segment on the same plane, and h and w are the periodicity of

the substrate potential and the stable kink-pair separation, respectively. (b) Elementary bcc lattice

cell showing lattice atoms (in gray) and tetrahedral interstitial sites (in blue), including a shaded

tetrahedron with the interstitial site highlighted in its center. (c) Differential displacement map

obtained using DFT calculations [160] showing the stable configuration for the dislocation core-O

complex (oxygen atom shown in red, core position shown in green). The resulting core structure

changes from easy (no oxygen) to hard (with oxygen).

44



preclude their use for bridging the necessary time and length scale gap. In addition, the

existence of kinks on screw dislocation segments in bcc crystals breaks the translational sym-

metry along the dislocation line, necessitating of full three-dimensional models to capture

the wavelength of kink pairs along the line. This limits the applicability of techniques such as

molecular dynamics (MD) to the mobility extremes of (i) stationary dislocations and highly

mobile solutes (macroscopically equivalent to zero stress, high temperature conditions) and

(ii) vice versa, mobile dislocations in a frozen solute field (high stress, low temperature). The

case of bcc solid solutions poses extra challenges, as both governing mechanisms, i.e. solute

diffusion and kink-pair nucleation, are considered rare events (albeit operating on different

time scales). Discrete event simulations, on the other hand, offer the possibility of handling

rare events over a broad time scale spectrum within a relatively simple framework [84,117].

In this paper we show for the first-time dynamic simulations of dislocation-solute coevo-

lution in tungsten crystals containing a few atomic parts per million (appm) of interstitial

oxygen (W-O alloys). Here we use trace concentrations of oxygen in bcc W, specifically 0.2%

(at.), consistent with nominally pure metals contaminated through exposure to the environ-

ment [11,47]. Our simulations confirm that DSA occurs in a specific temperature-strain rate

window that equalizes the timescales of solute transport and dislocation motion, resulting in

intermittent slip and negative strain rate sensitivity. This kind of simulations has been made

possible by the recent development of a kinetic Monte Carlo (kMC) model that accounts for

thermally-activated kink-pair nucleation and solute diffusion via stress field coupling and

short-range inelastic interactions [133,162]. Our model is parameterized entirely using elec-

tronic structureatomic scale calculations, as described in previous works [160] (see Methods

below) and is significantly more efficient than direct atomistic simulations. This allows us

to study the relevant parameter space of stress, temperature, solute content, and dislocation

line length to identify the conditions under which co-evolution occurs.

In bcc W, oxygen atoms diffuse with a migration energy of 0.2 eV on a tetrahedral

sublattice (shown in Figure 4.2) [160]. This makes the W-O system peculiar among other in-

terstitial bcc solid solutions, where generally octahedral diffusion is observed [57,120]. When
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dislocations are present, oxygen diffusion suffers a drift due to the underlying stress fields.

In standard diffusion theory, this drift is characterized by an activation volume which when

coupled to the stress yields the mechanical work to subtract from the activation energy for

migration. In our case, the activation volumes of importance are approximately no larger

than of an atomic volume, implying that O migration does not perturb the neighboring W

atoms excessively. However, the trigonal distortions caused by oxygen atoms in their tetra-

hedral positions are neutralized near the screw dislocation core (see Figure 4.2), resulting in

very stable bound structures with interaction energies of 1.5 ∼ 1.8 eV [79, 160]. Since this

is on the order of the kink-pair activation enthalpy(≈ 1.6 eV), oxygen-dislocation dissoci-

ation events become the rate-limiting step when solute diffusion is sufficiently fast (and/or

dislocation motion sufficiently slow) to allow for the formation of solute clouds (akin to the

so-called Cottrell atmospheres) around dislocation segments. Depending on whether this is

or not the case, three scenarios may be considered based on the nature of dislocation-solute

interactions:

(i)A low stress and high temperature1 regime where solute diffusion is favored over dis-

location motion. One would then expect to see solute segregation at the dislocation core,

i.e. solute atoms decorating the dislocation line with little or no dislocation glide. This is a

widely studied scenario, both analytically and using atomistic methods [85,109,122,141,142],

corresponding to an adiabatic process where dislocation motion occurs over timescales much

longer than solute transport.

(ii)A high stress and low temperature regime where dislocation glide dominates over

solute motion. In this case, the alloy behaves in the manner of a substitutional solid solution,

with stationary solute atoms interacting with dislocation segments. This is expected to lead

to conventional solute hardening, which has also been studied extensively in the literature

by a number of different techniques [28,30,67,81,95,111,162].

(iii)An intermediate stress and temperature region where solutes and dislocations display

1Here, low and high, whether applied to stress or temperature, is meant relative to the shear modulus
and melting point of the material in question.
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similar mobilities and evolve on comparable timescales. It is in this region where DSA can

occur [18,19]. However, such scenario has been comparatively much less studied using simu-

lation methods (and even less so in bcc systems) owing to the intrinsic difficulties of treating

two coevolving many-body systems. This can only be studied via numerical simulation [150]

and is the primary subject of study in this work. In the following, we refer to this regime as

the co-evolution regime.

It is worth noting that –in the above scenarios– stress equates strain rate by way of the

relation σ = Cε̇m. As mentioned above, the most reliable marker for the onset of serrated

flow is in fact the observation of m < 0. The strain rate is obtained from the dislocation

velocities calculated at each stress using Orowans equation, as

ε̇(τRSS) = ρdbv(τRSS) (4.1)

where ρd is the dislocation density of the material, b is the modulus of the Burgers vector,

and v(τRSS) is the dislocation velocity, which depends on the resolved shear stress τRSS

(see the Methods Section). In this fashion, when ρd is a realistic dislocation density (e.g.

≈ 1.4 × 1014, as in ref. [131]), one can relate stress to strain rate by way of the stress

dependence of the dislocation velocity. This value of d sets the dislocation line length to a

magnitude of approximately λ = (ρd)
−1/2 = 400b, which is used throughout the simulations.

Figure 4.3 shows all the applied stress-temperature conditions tested in our simulations

as an applied stress-temperature map (τRSS–T ) for an oxygen concentration of 0.2 %at.

The different regions indicated on the map indicate the different flow behaviors observed as

a result of the applied stress-temperature conditions. The yellow region containing τRSS–T

points represented as black crosses delimits conditions where intermittent flow is observed

(scenario (iii) above). Orange dots in the brown region mark simulations characterized

by dislocations interacting with static solutes, while gray dots in the gray-shaded region

are indicative of solute segregation at dislocation cores with little to no dislocation motion

(scenarios (i) and (ii), respectively). The determination to ascribe a given τRSS–T point

to a specific region was made by examining the combined behavior of the solute and the

dislocation lines. The behavior of the solute is assessed by examining its mean square
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Figure 4.3: Stress-temperature map of all the simulation conditions considered. The yellow region

containing -T points represented as black crosses delimits where intermittent flow is observed.

Orange dots in the brown region mark simulations characterized by dislocations interacting with

static solutes, while gray dots in the gray-shaded region are indicative of the formation of Cottrell

atmospheres around dislocation cores with little to no dislocation motion.
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displacement,
〈
δr2
〉

as a function of time, while that of the dislocation is evaluated by

tracking the evolution of the kink-pair nucleation rate, rkp, with time. Figure4.4: shows

results for three characteristic stress-temperature points from Fig. 4, at 70, 250, and 600 K,

all at 1.5 GPa of applied shear stress. The figure includes the expected kink-pair nucleation

rate in a pure W crystal, represented for each τRSS–T point as a background shaded band

in each graph. Spikes in rkp are manifestations of local compositional and/or configurational

variabilities along the dislocation line in time.

At a stress of 1.5 GPa and a temperature of 600 K (Fig. 4a), the dislocation at and

the solute appear to move in an uncorrelated fashion, with the dislocation experiencing

kink-pair nucleation rates similar to the reference pure state and the solute following a non-

linear mean square displacement. At 1.5 GPa and 250 K (Fig. 4b), the solute is seen to

undergo discontinuous motion, as revealed by a step-like mean square displacement, with

the dislocation moving at a lower rate than in the homogeneous case and more kink-pair

nucleation activity during stationary solute periods. At 1.5 GPa and 70 K (Fig. 4c), the

solute becomes immobile and the dislocation moves through a static solid solution, with the

kink-pair nucleation activity essentially following the homogeneous value with local spikes

arising from dislocation-solute interactions.

While at 70 and 600 K, the average kink-pair nucleation rate rkp agrees well with the

background pure W value, at 250 K rkp displays periods during which it is consistently lower

than this background value. As well, the frequency of the local spikes is decreased with

respect to the other two temperature cases. Correspondingly, the solute is seen to undergo an

intermittent migration pattern, with periods of time where it is mostly stationary, and others

characterized by rapid motion. Stress-temperature points displaying this general behavior

are represented as black crosses in Fig. 3. We interpret this behavior as the precursor of

dynamic strain ageing, where periods of reduced kink-pair nucleation activity are followed

by stages of enhanced nucleation, leading to intermittent flow (whose macroscopic analog is

serrated flow as in Fig. 1).

Figure 4.5 shows high-resolution images of the dislocation-solute system, showing only
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Figure 4.4: Evolution of the solute mean square displacement and kink-pair nucleation rates

with time. The shaded band represents the equivalent kink-pair nucleation rate in pure W at each

τRSS–T condition. (a) At a stress of 1.5 GPa and a temperature of 600 K. (b) At 1.5 GPa and 250

K. (c)At 1.5 GPa and 70 K.

50



dislocation segments and oxygen atoms. The images correspond to the three scenarios cap-

tured in Figs. 4a, 4b, and 4c. Kink-pairs can be appreciated along the dislocation line in all

three cases. In the co-evolution regime (regime (iii)), the dislocation alternates episodes of

solute pinning (as shown in Fig. 5b) with solute de-pinning, resulting in strain bursts marked

by the formation of solute clouds around the dislocation core. Several kink-pairs in Fig. 5c

coexist on two different glide planes due to the interaction between dislocation segments

and static solutes, giving rise to the sporadic formation of cross-kinks [82]. A quantitative

analysis of the solute density around the dislocation core for each of the three scenarios just

described is also provided in the Supplementary Information 4.1.

It is common in the literature to express the flow behavior of dilute solid solutions display-

ing several deformation regimes as a strain rate-inverse temperature diagram highlighting the

different regime transition boundaries. Figure 6a shows the ε̇−(kT )−1 chart with the three

different regimes just described as predicted by our simulations. The figure shows the DSA

region colored in red, delimited by two dashed lines that bound the limits within which dis-

continuous slip takes place. The slope of these lines defines two activation energies 2, marked

in the figure as 0.21 and 0.28 eV, that characterhaoize the operating mechanisms on each side

of the DSA region. Given that the two principal processes governing the dislocation-solute

system considered here are solute diffusion (with migration energies ranging between 0.15

and 0.20 eV) and kink-pair nucleation energies (ranging from 0 to 1.65 eV, see the Methods

Section), the values shown in the graph can give an indication of the relative weight of each

one on the overall dynamics. On the left side of the discontinuous flow region, the temper-

atures are sufficiently high to favor solute diffusion as the governing mechanism, with the

value of 0.21 eV being consistent with this interpretation. On the right side, a higher energy

of 0.28 eV suggests a more complex interplay between both processes, perhaps dominated

by kink-pair nucleation next to oxygen atoms and more limited solute diffusivity.

Finally, as pointed out earlier, a principal signature of serrated flow is the existence of a

negative strain rate sensitivity exponent (defining the correlation between the critical stress

2From the expression ε̇ (T ) = ε̇0exp
(
−∆E

kT

)
.
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Figure 4.5: Simulation snapshots corresponding to the three scenarios shown in Fig. 4. Images

(a), (b), and (c) match subfigures 4a, 4b, and 4c. (a) Solute diffusion occurs over time scales much

shorter than kink-pair nucleation, making both processes effectively decoupled. (b) The oxygen

atoms segregate at the dislocation core, temporarily trapping it before the dislocation can release

itself and produce a strain burst. (c) No solute motion is observed, and the dislocation moves in a

static interstitial solid solution, developing more kink-pairs and cross kinks.
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and the strain rate). Our simulations are not performed under constant strain rate and thus

m cannot be directly extracted from them. Instead, we fix the applied stress and measure

the corresponding dislocation velocity. In this context, a negative m is equivalent to a stress-

independent (or inversely proportional) dislocation velocity. Figure 4.6 shows stress-velocity

curves for two temperatures that traverse the discontinuous flow regions shown in Fig. 3,

100 and 150 K. Even though the velocity axis is represented in logarithmic scale for ease of

visualization, stress regions where the velocity is clearly independent or weakly dependent

on stress can be appreciated. These stress intervals, which are marked with double arrows

in the figure, are consistent with the DSA regions highlighted in Fig. 3. This is yet another

piece of evidence strengthening the link between our simulation results and serrated plastic

flow.

Given their focused scope, our simulations are not intended for representing bulk material

behavior which is the context in which DSA is strictly defined, but they capture for the first

time the interplay between mutually co-evolving dislocations and solute atoms in a way that

allow us to explain observed macroscopic behavior. As such, they offer a unique window into

the governing mechanisms behind serrated flow and the PLC effect. It must also be kept in

mind that bcc metals display a set of particularities that call for the development of very

specific approaches. One of these traits is the reduction of single crystal plasticity to the

behavior of a single screw dislocation, as it has been amply demonstrated in a multitude of

studies [16–19]. There are important implications of such result, as for example the observed

equivalence between the DBTT activation energy and the kink-pair nucleation enthalpy in

many bcc materials, which directly relates fracture behavior to screw dislocation properties

[40, 41]. Thus, one can think of our model as descriptive of the characteristic behavior of

dislocation sources in crystal grains of bcc materials, such that the total strain at the bulk

level can be additively calculated from the different contributions of sources operating in

the manner described here. This belongs to the of realm of (poly)crystal plasticity [70,115],

which is built as a crystal-level homogenization of fundamental physical mechanisms such as

those revealed in this work. This serves to reinforce the notion that by understanding the
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Figure 4.6: Color map of the strain rate-inverse temperature diagram obtained from our simu-

lations.Each pixel in the figure is colored according to the propensity for jerky flow as defined in

Fig. 4, with red and cyan indicating high and low propensities, respectively. The dashed lines

correspond to two different fits of the general equations ε̇ (T ) = ε̇0exp
(
−∆E

kT

)
, with the values of

∆E given next to them.
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physical mechanisms of screw dislocation-solute interactions, one can explain the observed

macroscopic behavior.

In conclusion, we have shown using discrete stochastic models of dislocation-solute co-

evolution that jerky flow in dilute bcc interstitial solid solutions is a natural consequence

of the dynamic interplay between the motion of solutes and dislocations. To capture such

coevolution, the computational model must be capable of operating on diffusive time scales,

i.e. above the characteristic atomic vibration period, on which thermally-activated processes

take place. Our model is able for the first time to explore such regimes, exposing stress-

temperature (or strain rate-inverse temperature) maps that define the dynamic behavior of

the alloy. While these simulations pertain to one dislocation only, we are confident elevating

the results reported here to the level of the microstructure, representing, e.g., the typical

behavior of a source in bcc metals that issues dislocations with screw character one at a

time. It is at that level then that dynamic strain ageing is defined, and where discontinuous

flow can lead to localization and embrittlement.

4.1 Supplementary Information

This document contains additional analysis in support of our conclusions in the main manuscript

Portevin-Le Chatelier effect observed through direct simulations of serrated flow in a body-

centered cubic crystal. Here we provide a quantitative study the solute-dislocation behavior

behind the three animation files supplied as supplementary information as well.

First, we track the solute density ρ(r, t) as a function of distance to the dislocation core.

To eliminate the time dependence and obtain a static picture of the solute distribution for

ease of analysis, we discretize the space around the core into a series of concentric cylindrical

volumes increasing in thickness by an amount b. This is schematically depicted in Figure

S1. We then time average the solute concentration within each cylindrical slice as:

c (r) =
1

t′

∫ t
′

0

ρ(r, t)dt

So that c (r) is a ’still’ picture of the solute radial distribution around the dislocation
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core averaged over a sufficiently long-time t’. It must be noted, however, that the position

of the dislocation itself changes with time, and so r is referred to a local frame of reference

with origin at the dislocation center of mass COM(t ):

r = r
′ − COM(t)

where r
′
is the location of a solute atoms referred to a global coordinate system, and bold

script indicates vectorial quantities in three dimensions. Note that the function(s) COM(t

) are a direct output of the kinetic Monte Carlo simulations. The above two equations are

linked by r = ‖r‖ . This analysis is done in a highly dynamic environment, with solute atoms

moving in and out of each cylindrical slice either by direct diffusion or as the dislocation

moves in space and r changes. Then, we count how many solute atoms occupy each slice at

each time and then divide by the slice volume to obtain the solute density:

ρ (r, t) =
n(r, t)

V (r)

However, for the discretization mentioned above, this density can be simplified as:

ρ (m, t) =
n(m, t)

πb2L(2m+ 1)

Where L is the total dislocation length (equal to 400b in this work) and m is the slice

index of thickness b(m =1,. . . 6, see Fig. 4.7). We then apply this analysis in a series of

simulations at the same temperature of 150 K varying the stress to encompass the three

regions of dynamic behavior depicted in Figure 4.3 of the main manuscript.
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Figure 4.7: Schematic diagram showing the discretization of volume around the dislocation line

into cylindrical slices to track the dynamic evolution of solute. The dislocation line length is L, and

a kink-pair is shown for descriptive purposes.
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Figure 4.8: Solute concentration histogram showing the average distribution of oxygen atoms

around the dislocation core expressed relative to the alloy composition of 0.2% at. The data corre-

spond to three different simulations at 1300, 1450, and 1650 MPa, all at 150 K. These distributions

are time-averaged over several ns of simulation. As such, the data represent spatially and time

integrated results.
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CHAPTER 5

Implementation Details of Kinetic Monte Carlo

Simulations

5.1 Elastic energy of a piecewise kinked dislocation

5.1.1 Self-energy of a straight dislocation segment

The non-singular expression for the self-energy of a straight dislocation segment m defined

by endpoints x1 and x2, and Burgers vector b is:

Wself (m) =
µ

4π(1− ν)

{
(b2 − ν(b · t)2)Lln

[
La + L

a

]
− 3− ν

2
(b · t)2(La − a)

}
(5.1)

where

L = ‖x2 − x2‖

t =
x2 − x2

L

and

La =
√
L2 + a2

and a is the so-called corewidth over which the Burgers vector spreads.

Sometimes, whenL is of the order of a, as for kink segments, the self-energy is better

computed via atomistic methods.
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5.1.2 Interaction energy between two dislocation segments

The general expression for the interaction energy of two segment m and n with, respectively,

endpointsx1 and x2, and x3 and x4 is:

Wint(m,n) = W ∗(x4 − x2) +W ∗(x3 − x1)−W ∗(x4 − x1)−W ∗(x3 − x2) (5.2)

where the functional W ∗ takes different forms depending on the nature of the interaction.

In the following, expressions for parallel and non-parallel segments are provided. In both

cases, the common Burgers vector to both segments is b.

5.1.3 Non-parallel segments

This is relevant for the interaction between kink segments and screw segments. The energy

functional W ∗ ≡ Wnp(x) is defined as:

Wnp(x) =
µ

4π(1− µ)(u · u)
(x · ln

[
Ra + x · t′

]
((A1 −A

′

2)v
′
+ A

′

3u)+

x · ln [Ra + x · t] ((A1 −A2)v + A3u) + A4Ra+

(A1 − A5)(2(x · u)2 + (u · u)a2)√
(x · u)2 + (u · u)a2

arctan(
(1 + t · t′)Ra + x(t + t

′
)√

(x · u)2 + (u · u)a2
))

(5.3)

where t = (x2 − x1)/Lm and t
′

= (x4 − x3)/Ln are the respective line tangents(Lm =
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‖x2 − x1‖andLn = ‖x4 − x3‖), u = t× t′ ,v
′
= t

′ × u, and:

Ra =
√

x · x + a2

A1 = (1 + ν)(b · t)(b
′ · t′)

A2 = (b2 + (b · t)2)(t · t′)

A
′

2 = (b2 + (b · t′)2)(t · t′)

A3 = 2(b · u)(b · v)
t · t′

u · u
A
′

3 = 2(b · u)(b · v′) t · t′

u · u
A4 = ((b · t)(b · v) + (b · t′)(b · v′))(t · t′)

A5 = 2(b× u)2 t · t′

u · u
(5.4)

where b = ‖b‖. These expressions simplify significantly for perpendicular segments.

5.1.4 Interaction energy between two parallel segments

This interaction includes the interaction of segments of pure screw character with one another

and the interaction of kink segments of the same kind with one another. As above, the

Burgers vector is assumed to be the same for all segments. The interaction energy functional

has the formW ∗(x) ≡ W‖(x):

W (x) =
µ

4π(1− ν))
((2b(b · x)− b2(t · x)(3− µ))ln(Ra + t · x) +Rab

2(2− ν)−

Ra

2

(b · x− bt · x)2 − a2b2(ν − 1)

R2
a − (t · x)2

)

(5.5)

where /bf t is the common line tangent to both segments. From Sections 1.1 and 1.2, the

total elastic energy for a dislocation discretized into N segments is then:

E =
N∑
i

(W i
self +

N∑
j>i

W ij
int) (5.6)

The problem of computing the total elastic energy is then O(N
2

2
). Later, it will be discussed

how to reduce it to O(N). When using periodic boundary conditions,eq. 5.6 must include
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periodic image contributions. This will also be dealt with later.

5.2 Stress tensor from a dislocation segment

In the non-singular elastic formulation, the stress tensor at a point x from a straight dislo-

cation segment defined by endpoints x1 and x2 and Burgers vector b is:

σd(x) = T(x− x1)−T(x− x2) (5.7)

where the function T is defined as:

T(x) =
µ

4π(1− ν)
(((x× b) · t)(A1(x⊗ x + x⊗ t) + A3(t⊗ t) + A4I)+

A5((x× b)⊗ t + t⊗ (x× b)) + A6((t× b)⊗ x + x⊗ (t× b))

+ A7(t× b)⊗ t + t⊗ (t× b))

(5.8)

where

t =
x2 − x1

‖x2 − x1‖

A1 = −x · t(3R2
a − (x · t)2)

(R2
a − (x · t)2)2R3

a

A2 = R−3
a − (x · t)A1

A6 = − (x · t)A1

Ra(R2
a − ((x · t)A1)2)

A3 = −R−3
a x · t + A6 + (x · t)2A1

A4 = A6 + a2A1

A5 = (ν − 1)(A6 +
a2

2
A1)A7 =

ν

Ra

− (x · t)A6 −
a2(1− ν)

2
A2

and I is the identity tensor.

As for the energies,the total stress tensor at a point x from a dislocation discretized into

N segments is then:

σ(x) =
N∑
i

σi(x) (5.9)
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Computing the total self stress along the dislocation is then O(N
2

2
) as well. Computing it

at a specific location(solute atom, one dislocation segment) is O(N). When using periodic

boundary conditions, this equation must also include periodic image contributions, as for

the energy.

5.3 Free energy of a double kink

The nucleation rate of a kink pair can be defined as:

jkp = ν0 exp(−∆Fkp
2kT

) (5.10)

where ν0 is an attempt frequency, and ∆Fkp is the (Gibbs) free energy difference resulting

from the nucleation of an embryonic kink pair, i.e. one with the minimum lattice separation.

The 1
2

factor arises from the fact that it is only necessary to take the dislocation to the

activated state (saddle point) to achieve a transition. As we shall see, this is only appropriate

for cases where the free energy landscape is symmetric about the midpoint of the reaction

coordinate. In the more general case, this landscape is not symmetric and the energies must

be computed up to the relevant limits. In this section we calculate all the contributions to

δFkp without assuming symmetric free energy landscapes. The free energy can be defined

as:

∆Fkp = ∆H−T∆S =
∑
i

∆Ei−∆Wm −T∆S (5.11)

where ∆H is the enthalpy,∆Ei are the different contributions to the internal energy differ-

ence, Wm is the work done by the applied stress, T the temperature and ∆S the entropy.

Let us address each of these one by one in the following sections.

5.3.1 Contributions to the internal energy

Here we consider only two contributions to the internal energy, namely, the elastic energy and

the substrate energy. There is a third contribution -the core energy-that is not symmetric

with respect to the kink sense, but we ignore this contribution here. The elastic energy of a
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double kink as the energy difference between the dislocation in the state prior to a kink pair

being nucleatedE(i), and that containing the new kink pair E(j):

∆Eel = E(j)− E(i) (5.12)

where E(i)and E(j) are computed using eq.5.6. For its part, the substrate energy reflects the

lattice resistance to the nucleation of akink pair in the form of a periodic energy landscape

Vp(x) (for simplicity, in his section we assume thatx and y are the coordinates perpendicular

and parallel to the screw direction on the plane n of the kink pair). The dislocation must

overcome this landscape in order to get over to the next periodic energy minimum. The

substrate energy is defined as:

∆Es =

∫ j

i

Vp(x)dl (5.13)

where dl is the differential line element that runs from state i to state j. This integral can

be broken into two kink segements and one staight segment separating them. If we define

Vp(x) as a sinusoidal function

Vp(x) = Epsin
πx

h
(5.14)

where Ep is the amplitude, also known as Peierls energy, and h is the kink height, then one

can write ∆Es as:

∆Es = Epω + 2

∫ h

0

Epsin
πx

h
dl = Ep(ω +

∫ h

0

sin
πx

h
dl) (5.15)

where ω is the kink pair separation(ω ≡ d, the lattice distance distance along the screw

direction, for embryonic kinks),h is the so-called kink height, and dl =
√
dx2 + dy2. The

factor of 2 reflects the fact that there are two kinks in a kink pair. To solve this integral, one

need specify the line equation for a kink segment and use it to eliminate one of the variables

x or y. Alternatively, one can compute this energy using atomistic methods. For example,

the energy for a kink pair separated an infinite distance has been calculated to be 1.70

eV(including elastic interactions that should be accounted for) for the MEAM potential for

W. When Vp is also a function of stress, a simple sinusoidal function may not be sufficient to

describe it. In such cases, the value of Ep is the maximum amplitude of the Vp(x, σ)function
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over the entire integration range(reaction coordinate), which needs to be obtained by way

of atomistic methods. For subsequent sections, the point at whichVp(x, σ) function over the

entire integration range(reaction coordinate), which needs to be obtained by way of atomistic

methods. For subsequent sections, the point at which Vp(x, σ) is maximum, let us call it

E
′
p, will be denoted by xp. Then, more generally, under a situation of applied stress:

∆Es = E
′

pd+ 2

∫ xp

0

Vp(x,σ)dl (5.16)

where it is noted that the integration limit has changed to the point of activation. This effect

has been calculated directly by atomistic calculations for W-MEAM and has been found to

be quite small.

Perhaps a more efficient way to take care of the entire ∆H term is to use the following

expression:

∆H = ∆H0(1− signof(σRSS)

√
|σRSS|
τp

)1.25 (5.17)

where:

∆H0 = 1.70eV

τp = 3.2GPa (5.18)

and σRSS will be defined in next section. Equation 10 is from a model that captures the

correct asymptotic behavior asσRSS → 0 and σRSS → τP . One can use atomistic calculations

in the intermediate stress regime to adjust eq. 5.17 to include all energy contributions while

respecting the correct asymptotics.

5.3.2 Mechanical work

The mechanical work ∆ Wm is obtained by calculating the work done by the Peach-Kohler

force, fPK , in taking the dislocation from state i to j:

∆Wm(i→ j) = fPK∆A(i→ j)
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The force per unit length can be calculated by contracting the stress and Schmid tensors:

fPK = σ : S

where

S =
(b⊗ n) + (n⊗ b)

2

The area ∆A(i → j) is simply the extra area created by taking the embryonic kink to the

activated state, i.e. ∆A = xpd. Alternatuvely, this force can be obtained by calculating the

resolved shear stress(RSS) on the slip system defined by slip direction t and normal n. In

this case, both t and n are unit vectors(the slip direction is simply t = b/b, where b = ‖b‖):

σRSS = t · σ · n (5.19)

And then:

fPK = bσRSS

The stress tensor σ at a given point x is defined as:

σ = σapp(x) + σd(x) (5.20)

i.e. it contains contributions from the applied stress, typically assumed to be uniform(not

dependent on x), and the dislocation stress.

5.3.3 Entropy

The entropy is unknown but sometimes taken as ∆S = 3k, where k is Boltzmann’s constant.

5.4 Sustainable kink pair nucleation of width n

This section explains how to obtain nucleation rates of kink pairs of prescribed separation.

For an existing kink pair of width ω, the change in energy associated with going from state

ω to state(ω + 1)(i.e. to widen by one lattice spacing)is ∆Fkp = Fkp(ω + 1)− Fkp(ω). Then,
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the rate for kink pair to increase its separation by one lattice spacing, i.e. changing state

ω → ω + 1 is:

r+(ω) = ν0exp(−
(Fkp(ω + 1)− Fkp(ω))/2 + Um

kT
)(1 +H(ω)) (5.21)

whereUm is the energy barrier for kink migration, which is typically quite low. Identically,

the rate for a kink pair to reduce its separation by one lattice spacing or ω → ω − 1 is:

r+(ω) = ν0exp(−
(Fkp(ω − 1)− Fkp(ω))/2 + Um

kT
)(1 +H(ω − 1)) (5.22)

H(ω) is a step function: 
0 ω ≤ 0

1 1 ≤ ω

that accounts for the fact that when the kink pair is separated by a distance larger than

1, both kinks can contribute to growth or shrinkage, and, also, than when the kink pair is

embryonic, only one of the kinks can move to shrink it. The total rate to escape state ω is

r0(ω) = r+(ω) + r+(ω)

while the probability to undergo theω → ω + 1 transition is:

F (ω) =
r+(ω)

r0(ω)

The rate to nucleate embryonic kinks is then the rate to go from state 0→ 1,i.e

J(1) ≡ r+(0) = ν0exp(−
Fkp(1)

2kT
)

where the full calculation of Fkp is given in Section 5.3. The 1
2

factor again assumes that the

energy landscape is a symmetric function. A more realistic description, which will be used

here, is given in Section 5.3.

Working with embryonic kinks only is very inefficient, because when they are so close

together most of them just annihilate again and the system is unchanged. The idea here is

to compute the rate J(n) at which double kinks of separation n¿1 are nucleated so that the

time that is takes for a kink pair of size ω = 1 to expand to a size of ω = n is already factored
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into the nucleation rate and CPU time does not have to be wasted sampling self-annihilation

events.

J(n) can be written as the rate at which embryonic kinks survive to expand to width

n,i.e.:

J(n) = J(1)ps(1→ n)

where ps(i → j) is the probability for a kink pair with ω to expand toω = j before annihi-

lating. In this context, i ≥ 1. ps can be written as the product of the probability to go from

state ω = 1 to state ω = 2, times the probability to go from stateω = 2 to state ω = 3, and

so on, times the probability to go from state ω = n− 1 to state ω = n, i.e.:

ps(1→ n) =
n∏
k=1

ps(k → k + 1) (5.23)

To go from k to k + 1, two things can happen:either a kink goes from k to k + 1 directly

with probability F (k), or the kink pair first shrinks to k−1 with probability 1−F (k). From

k-1 the kink again can either go to k and start from there, or further shrink to k-2 with

probability 1-F(k-1) and start from there, and son and so forth. This recursive process can

be written as:

ps(k → k + 1) = F (k)+

((1− F (k))ps(k − 1→ k)ps(k → k + 1)+

(1− F (k − 1))ps(k − 2→ k − 1)ps(k − 1→ k)ps(k → k + 1)+

. . . )

= F (k) + ps(k → k + 1)(
k∑
i=1

(1− F (i))
k−1∏
j=i−1

ps(j → j + 1))

(5.24)

Therefore:

ps(k → k + 1) =
f(k)

1− (
∑k

i=1((1− F (i))
∏k−1

j=i−1 ps(j → j + 1))
(5.25)

If one discards second-order jumps,i.e. those that take the kink back beyond statek − 1, we

arrive at the more compact expression:

ps(k → k + 1) =
F (k)

1− (1− F (k))ps(k − 1→ k)
(5.26)
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Using the initial condition ps(0 → 1) = 0 all the surviving probabilities can be computed

recursively using eqs.5.25 or 5.26, and plugged into eq.5.23 to obtain J(n).

This section gives closed-form expressions to calculate the nucleation rate of kink pairs

separated by a distance nd. Because the survival probabilities can be quite low,J(n) will

be significantly smaller than J(1),but the efficiency of the simulations will increase notably.

From what I have seen, the simulations do not show a strong dependence on the choice of

n, although it should not be overly large compared to the total dislocation length.

5.5 Efficient elastic energy updates

There are two situations where the elastic energy of the dislocation must be computed. The

first instance is when the nucleation rates of embryonic kinks on every available segment

need to be calculated. The second one is when an event (either kink pair nucleation or

kink propagation) is executed and the elastic energy of the resulting dislocation needs to be

updated. We treat those two separately below.

5.5.1 Efficient calculation of nuleation rates

As shown above, the cost to compute the elastic energy of a given state of teh dislocation

line scales as O(N2). Computing the nucleation rate for each segment along the line during

each Monte Carlo step requires that energy of N different states be calculated, which results

in an O(N3) processN states times the cost of calculating the energy of each state, which

is N2). This obviously is prohibitive computationally. However, it turns out that, from a

given reference state whose elastic energy is known, the changes in elastic energy due to an

embryonic kink pair nucleated on a given segment is simply equal to the interaction energy

of that unit loop with all the other N segments in the line. The interaction energy of the

loop consists of calculating the interaction energies of each of the four loop sides with each

of the N segments of the dislocation line. This corresponds to NO(1) processes. Because

this has to be done for each available nucleation site, of which there are N , the total cost of
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this calculation is O(N2). This reduces the order of magnitude of the computational cost by

one.

5.5.2 Elastic energy updates of the reference state

Once an event is selected and executed, updating the total elastic energy of the dislocation

is simply a matter of summing the self-energy of the corresponding embryonic loop plus the

work required to insert that loop in the stress field of the parent dislocation:

∆Eel = Eself
loop +W σ

loop (5.27)

The calculation of Eself
loop is a O(1) process because the self-energy of the loop involves the

calculation of four segment self-energies plus six interaction energies(cf.Section 1). For this

calculation, the line sense of the loop must coincide with that of the orginal dislocation.

For its part,the mechanical work to insert the loop can be calculated assuming a cartesian

reference system with z along the screw direction, y parallel to the glide plane normal, and x

parallel to the reaction direction. For an infinite straight screw dislocation along the z axis

with b ≡ (0, 0, b) the non-singular solution for the stress field is:

σxz = −µb
2π

y

R2
a

(1− a2

R2
a

) (5.28)

and

σyz = −µb
2π

x

R2
a

(1− a2

R2
a

) (5.29)

where Ra =
√
x2 + y2 + a2 and a is the core width. The work done to create a loop in the

stress field of its parent screw dislocation can be calculated from the following integral:

W σ
loop = b

∫
σs(x, y)dA (5.30)

where dA is the surface area differential on the glide plane for a kink pair of separation

nd,i.e.:

dA = (nd)dx
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and the integral can be reduced to the stress component with a x dependence only:

W σ
loop = bd

∫
σyzdx = −µb

2nd

2π

∫
x

R2
a

(1− a2

R2
a

)dx (5.31)

whose analytical solution is:

W σ
loop = −µb

2nd

4π
(

a2

a2 + x2
+ ln(a2 + x2)) (5.32)

Integrated over the (0, h) interval, this results in:

W σ
loop =

µb2nd

4π
(

a2

a2 + h2
− ln(1 +

h2

a2
)) (5.33)

which reduces to W σ
loop ≈ µb2nd

4π
(1

2
+ ln2) = 1.19µb

2nd
4π

when h ≈ a.

Computing the nucleation rate in one of the N dislocation segments from the last dis-

location state reduces to calculating the last executed event. Again, this is anO(1) process

repeated N times so that the entire calculation of the nucleation rates becomes O(N).

5.6 Using periodic boundary conditions

The use of periodic boundary conditions(PBC) affects only the calculation of the elastic

energies. In principle, one must compute the interaction energy of any guven segment with

all the segments of the infinite array of periodic images that result from the use of PBC.

The range of dislocation-dislocation interactions varies as r−1 and therefore no possibil-

ity of truncation exists, which makes the infinite sums divergent. In that case, because

the range of loop interactions decays as r−3, it is shown that it is sufficient to adopt the

minimumimageconvention(MIC) to have convergent sums. The MIC allows us to have

each segment interact only once with the segments of the adjacent images:

d
′

ij = |x′j − xi|

where the ’ refers to an image segment and x
′
j is either equal to xj ± L. The MIC states

that: if d
′
ij >

L
2
, then d

′
ij = L

2
− d′ij
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In other words, segment i of the physical dislocation line interacts only once with segment

j of the image dislocation lines, that which is closest to it. Assuming we compute this extra

image elastic energy for each segment i then eq.5.6 becomes:

E =
N∑
i

(W i
self +

N∑
j>i

(W ij
int +W ij

′

int)) (5.34)

where ij
′

refers to the pair formed by segment i and image segmentj.

5.7 Treatment of solute interactions

5.7.1 short range interaction

When the solute is within the reaction distance of a dislocation segment, then we cannot

use the elastic(or ’long’ distance) treatment used in the above subsections. Instead, we must

assume that core effects are dominant and treat the dislocation and the solute as bound

with a binding energy Eb(which, again, may be negative). This energy simply adds to ∆Fkp

in eq.5.10,i.e. an extra energy Eb is required for the dislocation to overcome the solute

atom. In the case when a kink encounters the solute atom, the kink motion must now be

treated as diffusive. That means that Eb must be added to Um in eq.5.21 if kink motion

was already being considered diffusive, or the ballistic motion of a kink must be arrested

whenever it encounters a solute in its path, and treated diffusively at that point. Once the

kink is released from the solute, it can be treated ballistically agian. The binding energy Eb

must again be computed using electronic structure calculations for the solutes of interest.

5.7.2 Solute diffusion

The consideration of solute atoms must include their diffusion. Solutes can jump to any one

of its eight nearest sites with jump rate:

js = zν0exp(−
Fv
kT

)exp(−∆Fm
kT

) (5.35)
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where Fv and ∆Fm are the vacancy formation and solute migration free energies,z = 1/8,

and ν0 is the jump frequency. The exponential in eq.5.35 represents the local vacancy con-

centration, which only depends on the pressure. Since a screw dislocation has no volumetric

stress field, we can assume that Fv is independent with stress. The second exponential in

the equation represents the vacancy-solute exchange.

∆Fm is defined as: ∆Fm = ∆Em −∆W s
m − T∆Sm

Neglecting, as above, the entropic contribution, the mechanical work in this case is:

∆W s
m = σs : V ∗,where σs is the stress tensor at the solute, which contains contributions

form the applied stress and the stress field from the dislocation. The latter can be obtained

as in eqs.5.28 and 5.29, summing the contrbutions of each segment and using Ra = ‖r‖.
Alternatively, we can assume an effective straight dislocation, where Ra in that case is equal

to the distance between the solute and the effective straight line. For its part, V ∗ is the

activation volume tensor whose components are:V ∗ij = ∂Em

∂σij
.

Ideally, Em and all the V ∗ij can be computed using electronic structure calculations. A

cheap alternative is to assume that the stress field of a screw dislocation has no volumetric

components and therefore has a weak interaction with point sources of dilatation. In this

fashion, the effect of the dislocation stress field on the solute migration energy is neglected.

Once eq.5.35 is fully characterized, defect diffusion is carried out on equal footing with

any of the other thermally activated processes we already have.
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