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ABSTRACT OF THE DISSERTATION

Social Responsibility in Supply Chains in the Context of Emerging Economies

by

Prashant Chintapalli

Doctor of Philosophy in Management

University of California, Los Angeles, 2018

Professor Christopher Siu Tang, Chair

In this dissertation, we focus on three different and important operational issues that arise

primarily in the context of emerging economies.

In the first chapter, we discuss three audit mechanisms that buyers can adopt to ensure supplier

compliance in a multi-buyer-single-supplier supply chain. When suppliers (i.e., contract manufac-

turers) fail to comply with health and safety regulations, buyers (retailers) are compelled to improve

supplier compliance by conducting audits and imposing penalties. We discuss three audit mecha-

nisms – independent, joint, and shared – and evaluate their performance. We show that the damage

costs of the buyers and the compliance cost of the supplier play a crucial role in the choice of the

audit mechanism that improves channel profits.

In the second chapter, we focus on a single-buyer-single-supplier supply chain, not necessarily in

the context of emerging economies, and discuss two contracts that can coordinate the supply chain

when advance-orders are cheaper to manufacture than rush orders. We show that advance-order

discount, when combined with minimum-order-quantity or with inventory-delegation, coordinates

the supply chain.

In the third chapter, we focus on the role of crop minimum support prices (MSPs) in the context

of emerging economies in which farming communities largely comprise of small farmers. We show

that MSPs, when not chosen properly, can backfire by hurting farmers’ profits.
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Chapter 1 Improving Supplier Compliance Through Joint and Shared

Audits with Collective Penalty

Abstract

When suppliers (i.e., contract manufacturers) fail to comply with health and safety regulations,

buyers (retailers) are compelled to improve supplier compliance by conducting audits and imposing

penalties. As a benchmark, we first consider the independent audit-penalty mechanism in which

the buyers conduct their respective audits and impose penalties independently. We then examine

the implications of two new audit-penalty mechanisms that entail a collective penalty. The first is

the joint mechanism under which buyers conduct audits jointly, share the total audit cost incurred,

and impose a collective penalty if the supplier fails their joint audit. The second is the shared

mechanism in which each buyer conducts audits independently, shares its audit reports with the

other buyers, and imposes a collective penalty if the supplier fails any one of the audits. Using a

simultaneous move game-theoretic model with 2 buyers and 1 supplier, our analysis reveals that

both the joint and the shared mechanisms are beneficial in several ways. First, when the wholesale

price is exogenously given, we establish the following analytical results for the joint mechanism in

comparison to the independent mechanism: (a) the supplier’s compliance level is higher; (b) the

supplier’s profit is lower while the buyers’ profits are higher; and (c) when the buyers’ damage cost

is high, the joint audit mechanism creates supply chain value so the buyers can offer an appropriate

1



transfer-payment to make the supplier better off. Second, for the shared audit mechanism we

establish similar results but under more restrictive conditions. Finally, when the wholesale price is

endogenously determined by the buyers, our numerical analysis shows that the above key results

continue to hold.

Keywords

Supply Chain Risk, Supplier Compliance, Audits, Collective Penalty, Socially Responsible Opera-

tions

1.1 Introduction

Low labor costs in the East have encouraged many firms to source their products from countries like

Bangladesh, China, Indonesia, and Vietnam. However, without strong commitment from buyers

and consistent law enforcement by governments, some suppliers (i.e., contract manufacturers) ignore

basic health and safety standards at their factories. Over the past decade, Bangladesh has been a

popular low cost country for many western companies (e.g., Walmart, H&M, Mango, and Adidas)

to source apparel products. However, the tragic collapse of the Rana Plaza building in 2013,

which occurred due to the negligence of a supplier, has raised serious concerns about worker-safety

standards in supply chains. Donaldson (2014) commented that there is a perception that 20% of the

factories in Bangladesh are unsafe in terms of building structure safety, fire safety, electrical safety,

and the like. Besides Bangladesh, developing countries such as China, Cambodia, and Vietnam are

facing similar challenges from non-compliant suppliers with unsafe factories (Fuller and Bradsher,

2013; Demick, 2013; Wong and Fung, 2015).

While the international brands are not directly and legally responsible for the safety standards

employed in their suppliers’ factories, they face a “sourcing dilemma”. If they do not source from

2



these countries, millions of poor workers will go unemployed because garment exports constitute

a substantial portion of the countries’ exports in many developing countries such as Bangladesh

(Tang, 2013). On the other hand, if they continue to source from these countries, the international

brands are under public pressure to improve worker-safety standards at their suppliers’ factories. To

address these challenges, many companies often adopt an independent audit-penalty mechanism

in which they independently conduct audits of their suppliers’ factories and impose individual

penalties when non-compliance is detected. For example, PVH Corp. (the parent company of

brands such as Calvin Klein and Tommy Hilfiger) increased its efforts in auditing its supplier

factories. Since 2012, PVH audited 84% of its tier-1 suppliers at least once per year and reported

the non-compliant health and safety issues on its website (www.pvhcsr.com). Despite its prevalence,

the independent mechanism has two drawbacks: (a) the penalty imposed by a single buyer may not

be severe enough to ensure that the supplier complies with the required safety standards, especially

when the supplier has many buyers, and (b) the audit process can be costly and time consuming.

In this paper, we consider two new audit-penalty mechanisms: joint and shared. These audit-

penalty mechanisms are based on a collective penalty and can potentially reduce the drawbacks

mentioned above using different auditing procedures. Specifically, the joint mechanism is con-

ducted by a “consortium” of buyers who share the total audit cost, and the supplier is subjected to

a collective penalty if it fails the joint audit. In contrast, the shared mechanism consists of audits

conducted independently by buyers who then share their findings among themselves. In doing so,

a supplier’s non-compliance is exposed to all the buyers when the supplier fails even one audit,

and the supplier will then be subjected to a collective penalty. The collective penalty under both

these mechanisms can be more severe than the penalty imposed by each buyer independently and

this mitigates the first drawback. Furthermore, the buyers gain savings in the joint and shared

mechanisms. In the joint mechanism they gain savings through sharing the audit cost, whereas in

3
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the shared mechanism, given the advantages of information sharing, the buyers save on auditing

by lowering their individual audit levels. This mitigates the second drawback.

We present a unified framework to analyze the independent, joint, and shared mechanisms.

Such analysis provides a better understanding of the approaches recently employed by retailers

to improve supplier compliance in their supply chain. Two well publicized approaches are the

Accord on Fire and Building Safety in Bangladesh (bangladeshaccord.org) instituted by the

European retailers and the Alliance for Bangladesh Work Safety (bangladeshworkersafety.org)

set up by the North American retailers.1 More details and discussion on the differences between

these initiatives can be found in Greenhouse and Clifford (2013), Economist (2013), and Jacobs

and Singhal (2015). From our perspective, the joint audit mechanism captures two key aspects of

these initiatives: (i) instituting common work place safety standards through a joint audit, and

(ii) imposing a collective penalty on a non-compliant supplier. Thus our framework provides a

basis to develop a better understanding of the Accord and the Alliance. Furthermore, since these

initiatives have affirmed to share information about suppliers and impose collective penalties on

non-compliant suppliers, their interactions can be analyzed by the shared mechanism.

Figure 1.1 summarizes the three audit-penalty mechanisms. As shown in the figure, while the

joint and shared mechanisms impose the same collective penalty, they differ in terms of the au-

diting process: joint versus independent audits. On the other hand, the independent and shared

mechanisms use the same audit process but they differ in terms of the penalty they impose: indi-

vidual versus collective penalty. Therefore, it is unclear which mechanism is more effective from

the buyers’ perspective. This serves as the motivation to examine the following three key questions

1The Accord is a legally binding agreement signed in May 2013 by 166 apparel corporations from 20 countries
in Europe, North America, Asia and Australia, along with numerous Bangladeshi unions and NGOs (e.g., Workers
Rights Consortium, International Labor Organization). The goal of the Accord is to improve workplace safety of over
2 million workers at 1,800 factories (Kapner and Banjo, 2013). To reduce the exposure to broad legal liability, U.S.
retailers formed the Alliance in 2013, a non-legally binding, five-year commitment to improve safety in Bangladeshi
ready-made garment factories. The Accord is committed to provide funds to improve building safety whereas the
Alliance is not committed to finance safety improvements.

4
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in this paper:

1. Which of the three mechanisms results in a higher supplier compliance?

2. Which mechanism results in a higher payoff to the supplier?

3. Which mechanism is the most effective from the buyers’ perspective?

To study these questions, we develop a simultaneous move game-theoretic model with 3 players (2

buyers and 1 supplier) to capture the essence of the independent, joint, and shared mechanisms. For

each of these mechanisms, the buyers select their audit levels and the supplier selects its compliance

level simultaneously.

Figure 1.1: The independent (I), shared (S), and joint (J) audit-penalty mechanisms.

When the wholesale price is exogenously given and remains the same across all three mecha-

nisms, our key findings are as follows. First, the joint mechanism improves supplier’s compliance.

Second, compared to the independent mechanism, the joint mechanism yields a higher profit to

the buyer but a lower profit to the supplier. Third, when the buyers’ damage cost is higher than

the supplier’s compliance cost, the supplier can always be made better off under the joint mecha-

nism through a transfer-payment by the buyers. We establish similar results (with smaller impact)

for the shared mechanism under more restrictive conditions. Therefore, when a collective penalty

is combined with joint audits, the joint mechanism (instead of shared mechanism) offers more

5



opportunities to create supply chain value.

Likewise, when the wholesale price is endogenously determined by the buyers, our numeri-

cal results show that most of the key structural results derived in the exogenous wholesale price

model continue to hold. In particular, we find that, relative to the independent mechanism, the

joint mechanism can be Pareto improving so that both the buyers and the supplier are better off.

Additionally, we find that the joint mechanism dominates the other two mechanisms in terms of

supplier’s compliance level and buyers’ profits. By combining our analytical and numerical results,

we conclude that the joint mechanism is an effective mechanism for improving supplier’s compliance

level and the buyers’ profits. This result provides a more formal justification for the value of the

Accord and the Alliance that are designed to make suppliers increase their compliance levels.

Our paper belongs to a new research stream in supply chain risk management that examines

three types of supply chain disruptions (Sodhi et al., 2012). The first type is due to disruptions

caused by natural disasters (e.g., Japan’s Tōhoku earthquake and tsunami, Thailand’s major flood,

etc.) and human induced disasters (e.g., the terrorist attacks on 9/11). Sodhi and Tang (2012)

provide a comprehensive discussion on this type of supply chain disruptions. The second type

of disruption is caused by major financial crises (e.g., Asian currency devaluations in 1997, the

sub-prime financial crisis in 2008) that can disrupt supplier’s operations (Babich et al., 2007). Our

paper deals with the third type of supply chain disruptions that are caused by an “intentional act”

committed by the supplier. Well-publicized examples include Mattel’s lead tainted toys in 2007,

melamine tainted milk in 2008, and Baxter’s adulterated Heperin in 2008. The research in this area

examines issues of product adulteration that occur when suppliers use unsafe materials to produce

products that can cause physical harm to consumers (Babich and Tang, 2012; Rui and Lai, 2015).

Such supplier non-compliance issues have forced many western firms to take action to improve

supplier compliance. In this setting, Plambeck and Taylor (2015) use a game-theoretic model with
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a single buyer and a single supplier to explore the interactions between the buyer’s audit level and

the supplier’s compliance and deception effort. By examining the equilibrium outcomes (supplier’s

compliance level, supplier’s deception effort, and buyer’s audit level) they show that when a supplier

deceives the auditors by hiding certain critical information, the buyer’s actions could motivate the

supplier to cause more harm.

In the context of environmental violations, Kim (2015) examines the interactions between a reg-

ulator’s inspection policy and a firm’s non-compliance disclosure timing decisions. By considering

the case when environmental violations are stochastic, this work shows that there are conditions

under which periodic inspections can be more effective than random inspections. Orsdemir et al.

(2015) investigate how vertical integration can be used as a strategy to ensure compliance. They

examine the scenario of two supply chains, one of which is vertically integrated, and highlight that

the presence of a supply chain partnership plays a key role in determining supplier compliance.

They argue that, in the absence of a partnership, overly tight scrutiny of violations can backfire

and degrade compliance when negative reporting externalities are high. However, tighter scrutiny

encourages compliance in the presence of partnership. Moreover, if the positive externalities are

high, the integrated and compliant firm will cease to share responsibly sourced components with

its competitors thus hurting the industry-wide compliance. More recently, Fang and Cho (2015)

consider a setting with joint and shared audits in which multiple buyers engage in a cooperative

game in the presence of externalities by which the violation of one buyer can affect the profit of

other buyers.

While our paper also deals with the issue of supplier compliance, it is fundamentally different

from the existing literature on supply chain risk management in three ways. First, the papers listed

above primarily focus on the strategic interaction between one buyer and one supplier. Instead,

we examine and compare three different mechanisms (independent, joint, and shared) by capturing
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the strategic interactions among two buyers and one potentially non-compliant supplier. Second,

we consider the issue of a non-compliant supplier and employ the notion of “collective penalty”

imposed by both buyers when such a non-compliant supplier fails the joint audit under the joint

mechanism, or one of the audits under the shared mechanism. Our contribution is to examine

the implications of a collective penalty facilitated by the joint and shared mechanisms. Third, in

comparison to Fang and Cho (2015), our paper has a different motivation. Our work is geared

towards comparing three audit-penalty mechanisms and understanding when they can increase

supplier compliance and supply chain profits in a non-cooperative setting. In particular, our model

and results emphasize the tension between buyers and the supplier, whereas Fang and Cho (2015)

mostly study the cooperation among buyers when the supplier is indifferent between auditing

schemes. Though our research is motivated by workplace safety, it also applies to other regulations

that require auditing to verify compliance.

This paper is organized as follows. In Section 3.3 we present our modeling framework and

the resulting equilibrium outcomes, and in Section 1.3 we compare the results across all the three

mechanisms. In Section 1.4, we extend our analysis to the case when the wholesale price is endoge-

nously determined by the buyers. In Section 1.5 we discuss implications for the the Alliance and

the Accord. We present our conclusions in Section 1.6. All proofs are provided in the Appendix

A.4.

1.2 The Model

Consider a supply chain comprising of two buyers (i = 1, 2) and one supplier s. For ease of

exposition, we focus our analysis on the case when the buyers are identical so that buyer i sells one

unit of its product at price p and pays the supplier a wholesale price w. We denote the supplier’s

unit cost by c. Since our focus is on the audit-penalty mechanism, we consider p, w and c to be
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exogenous so that the values of these parameters do not depend on the mechanism adopted by the

buyers. In other words, the strategic intent of different mechanisms is to encourage the supplier

to improve its compliance level, but not to increase selling prices, or reduce wholesale prices (e.g.,

Van Mieghem, 1999), or do both. This seems reasonable in the context of outsourcing agreements

between western firms and suppliers located in developing countries because reducing the wholesale

price would create public concern about the firm’s moral and ethical standards. However, in Section

1.4 we extend our analysis to the case when the wholesale price is endogenously determined by the

buyers under each mechanism.

We use a simultaneous move game to model the dynamics between the buyers and the supplier

for all the three mechanisms. Specifically, each buyer i simultaneously selects its audit level zi, i =

1, 2, and incurs an audit cost of αz2
i , where α > 0 and zi ∈ [0, 1] (in the joint mechanism the buyers

choose zi but reach a joint audit level z through a process that will be explained later). Here, zi

represents the probability that buyer i’s audit will be effective in detecting non-compliance (if it

exists). This notion of audit probability is commonly used in the literature (e.g., Babich and Tang,

2012; Orsdemir et al., 2015). While the buyers select their audit levels, the supplier simultaneously

selects its compliance level x and incurs a compliance cost γx2, where γ > 0 and x ∈ [0, 1]. Here,

x represents the probability that the supplier complies with the workplace safety regulations. In

practice, the supplier might face other decisions besides compliance. However, we focus exclusively

on the compliance decision in order to have a parsimonious model that serves our research goal.

Incorporating other decisions is left for future work.

The simultaneous move framework is justifiable when the supplier cannot observe the buyer’s

audit level. However, if this is observable, then a sequential move framework would be the more

appropriate in which the buyers will first select their audit levels simultaneously in each mechanism.

By anticipating the buyers’ audit levels, the supplier selects its compliance level. For completeness,
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we also analyzed the sequential game model and found that the key results are consistent with

those in the simultaneous game model. We refer the interested reader to Caro et al. (2015).

To facilitate analytical comparisons, we assume that the audit cost α remains the same across

all the three mechanisms, even though the same approach can be applied to examine the case when

audit cost depends on the audit mechanism chosen. We also assume a convex auditing cost αz2
i

since one would expect the buyers to prioritize the most cost-effective activities. Moreover, this

assumption is quite standard whenever each marginal increase in effort is more costly, e.g., see

Plambeck and Taylor (2015).

Regardless of the mechanism adopted by the buyers, all parties face the following risks. First,

if a non-compliant supplier is detected by buyer i, the buyer will reject the unit product without

payment, and the supplier will incur a goodwill cost g associated with the contract termination

imposed by buyer i. Second, if a non-compliant supplier is not detected by buyer i, the buyer will

accept the unit product and pays the supplier the wholesale price w. However, there is a chance

that this non-compliance will be exposed to the public. In that case, buyer i will incur an expected

“collateral damage” d due to the spillover effect of the non-compliant supplier. Throughout this

paper, we assume that the collateral damage d is severe enough so that there is an incentive for the

buyer to audit its supplier. For this reason, we make the following two assumptions that provide

motivation for the supplier to care about compliance and for the buyer to care about auditing:

Assumption 1. The supplier’s goodwill cost g associated with contract termination imposed by

buyer i, i = 1, 2, is higher than the supplier’s profit margin (i.e., g > w − c).

Assumption 2. The damage cost d of buyer i, i = 1, 2, due to a non-compliant supplier is higher

than the buyer’s profit margin (i.e., d > p− w ≡ m).

After all players have made their (audit or compliance) decisions, the sequence of events is as

follows: (i) the supplier produces the product and incurs the production cost c; (ii) the buyers
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inspect for non-compliance; (iii) trade occurs only if non-compliance is not detected by the buyers;

otherwise, g is incurred by the supplier; (iv) the public finds out about any possible non-compliance

in which case the buyers incur d and the supplier incurs a discounted penalty ηg, with 0 ≤ η ≤ 1.

For ease of exposition, we analyze the non-cooperative simultaneous game for the case when η = 0.

The analysis associated with the case when η > 0 is omitted because the results change in the

expected direction (i.e., the supplier complies more and the buyers audit less compared to when

η = 0).

1.2.1 Independent Mechanism (I)

Under the independent mechanism, buyer i selects its audit probability zi and the supplier selects

its compliance level x. Figure 1.2 depicts the extensive form of the simultaneous game under the

independent mechanism. We follow the convention that the dashed line represents information

imperfection in the game tree. We begin our analysis with the supplier’s problem. From the figure

we observe that the supplier will fail buyer i’s audit with probability zi(1− x). By considering the

wholesale price w, the goodwill cost g, and the compliance cost γx2, the supplier’s problem for any

given audit levels z1 and z2 is given by:

πs(z1, z2) = max
x∈[0,1]

2∑
i=1

[w(1− zi(1− x))− gzi(1− x)− c]− γx2

= max
x∈[0,1]

2(w − c)− (w + g)(1− x) ·
2∑
i=1

zi − γx2. (1.1)

To ensure that the supplier has incentive to fully comply, we assume that the supplier’s profit

margin is high enough so that the supplier’s expected profit is non-negative under full compliance

(i.e., when x = 1). By considering the objective function given in (1.1), this assumption can be
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Figure 1.2: Independent mechanism extensive-form game: supplier’s compliance level x and buyer’s audit level zi.

stated as:

Assumption 3. The supplier’s total profit margin is higher than its full compliance cost so that

2(w − c) > γ.

Before determining the supplier’s best-response, observe that ∂πs
∂x evaluated at (1,1) is equal to

2(w + g) − 2γx. Hence, we can interpret the term r ≡ w+g
2γ as the supplier’s “rate of return on

compliance per buyer.” By applying Assumptions 4 and 6, it is easy to check that 2g > 2(w−c) > γ

so that 2w > γ. Thus, we conclude that r > 1
2 . As we shall see later, r will be used in proving and

interpreting our results. By considering the first order condition associated with (1.1), the supplier’s

best response for any given buyers’ audit levels z1 and z2 is given by xI(z1, z2) = min{1, r(z1 +z2)}.

(Throughout this paper, we use superscripts I, J and S to denote the outcomes associated with

the independent, joint, and shared mechanisms respectively.)

Next, we determine buyer i’s best response zi(x, zj) for a given supplier compliance level x and

buyer j’s audit level zj . We assume that the general public is not aware that the buyers have a

common supplier, so the two buyers are treated independently by the public. Following Figure 1.2

and considering the profit margin m ≡ (p − w), the damage cost d, and the audit cost αz2
i , the

profit of buyer i is given by:

Πi(zi;x, zj) = m(1− zi(1− x))− d(1− zi)(1− x)− αz2
i . (1.2)

From the first order condition we obtain buyer i’s best response to be zIi (x, zj) = min{d−m2α (1−x), 1}
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for i = 1, 2. By considering the supplier’s best response xI(z1, z2) and buyer i’s best response

zIi (x, zj) simultaneously, it can be easily established that the equilibrium compliance and audit

levels are given by

xI =
r(d−m)

α+ r(d−m)
and zI =

d−m
2(α+ r(d−m))

. (1.3)

Note that xI < 1 and zI < 1 because r ≡ w+g
2γ > 1

2 so we are guaranteed to obtain an interior

solution. The characteristics of the equilibrium in Equation (1.3) are described in the following

lemma:

Lemma 1. Under the independent mechanism I, the buyer’s audit level zI and the supplier’s

compliance level xI given in (1.3) possess the following properties:

(i) The supplier’s compliance level is always higher than the buyer’s audit level (i.e., xI = 2rzI >

zI).

(ii) Both supplier’s compliance level xI and the buyer’s audit level zI are increasing in the buyer’s

damage cost d, and decreasing in the buyer’s audit cost α.

(iii) The supplier’s compliance level xI is decreasing in the supplier’s compliance cost γ. However,

the buyer’s audit level zI is increasing in γ.

(iv) The supplier’s compliance level xI is increasing in the supplier’s goodwill cost g. However,

the buyer’s audit level zI is decreasing in g.

(v) The supplier’s compliance level xI is increasing in the wholesale price w. However, the buyer’s

audit level zI is increasing in w if, and only if, w <
√

2αγ − (d− p).

Lemma 1 has the following implications. The first statement reveals that the buyer’s audit has

an “amplifying” effect as it makes the supplier to increase its compliance level by the factor of
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2r(> 1) (i.e., twice the rate of return on compliance). Consequently, the first statement implies

that the buyer can encourage the supplier to comply fully (i.e., x = 1) without conducting full

audits (i.e., zi < 1). The second statement is intuitive. A higher damage cost d will force the

buyers to increase their audit levels that, in turn, will cause the supplier to increase its compliance

level. In the same vein, the audit cost has a dampening effect. A higher audit cost will force the

buyers to reduce their audit levels that, in turn, leads to a lower compliance of the supplier. The

third statement shows the opposite effect of the supplier’s compliance cost γ. When the supplier’s

compliance cost γ increases (i.e., as r decreases), the supplier will lower its compliance level xI .

On anticipating this, the buyer will increase its audit level zI . To interpret the last statement,

it is intuitive that the supplier would increase its compliance level when the buyer offers a higher

wholesale price. However, to explain the characteristics of buyer’s audit level, we consider the case

when w is low so that the supplier’s compliance level is low. When this is the case, a buyer can

easily expose the supplier’s non-compliance without needing to exert a high audit level. However,

when w gets larger, the compliance increases and the buyer needs to exert a higher audit level to

detect the residual level of non-compliance by the supplier.

By substituting zI and xI given in (1.3) into (1.1) and (1.2), and by noting that xI = 2rzI , the

buyer’s profit ΠI(zI) and the supplier’s profit πIs(zI) at equilibrium are given by:

ΠI(zI) = m(1− zI(1− 2rzI))− d(1− zI)(1− 2rzI)− αzI2
, (1.4)

πIs(zI) = 2(w − c)− γ + γ(1− 2rzI)2 = 2(w − c)− γ + γ(1− xI)2. (1.5)

1.2.2 Joint Mechanism (J)

Next, we analyze the simultaneous game for the joint mechanism. For any given joint audit level

z selected by the consortium (i.e., both the buyers), the supplier will fail the joint audit with a
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probability of z(1 − x). Upon failing the joint audit, the supplier receives no payment and it will

be subject to the collective penalty 2g imposed by both the buyers. Hence, the supplier’s problem

can be written as:

πs(z) = max
x∈[0,1]

{[2w(1− z(1− x))− 2gz(1− x)− 2c]− γx2}. (1.6)

Using the first-order condition, the supplier’s best response xJ(z) is obtained as:

xJ(z) = min{2rz, 1}. (1.7)

Identifying the buyers’ best response requires specifying how the joint audit level is selected

and how the audit cost is shared. For that, consider buyer i’s profit when the joint audit level is z

and buyer i pays a proportion θi of the auditing cost:

Πi(θi; z, x) = m(1− z(1− x))− d(1− z)(1− x)− θiαz2. (1.8)

Suppose for a moment that buyer i is able to unilaterally select the joint audit level. Clearly, in

that case buyer i would want z to maximize the profit above. From the first order condition, buyer

i would want the joint audit level z to be:

z = zi(θi) ≡
(d−m)(1− x)

2αθi
. (1.9)

Note that if θi = 1
2 for i = 1, 2, then both buyers would want the joint audit level to be (d−m)(1−x)

α ,

and therefore they would reach consensus automatically. With that in mind, in what follows we

assume that the buyers a priori agree to evenly share the audit cost. We make this assumption for

ease of exposition. However, in the Appendix A.2 we formally show that θ1 = θ2 = 1
2 is indeed the
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outcome of a non-cooperative game between the two buyers.

Given θi = 1
2 , we can derive buyer i’s best response from (1.9), and together with the supplier’s

best response in (1.7) we can solve the simultaneous equilibrium as:

xJ =
2r(d−m)

α+ 2r(d−m)
and zJ =

d−m
α+ 2r(d−m)

. (1.10)

An interior solution is guaranteed since xJ < 1 and 2r > 1 implies that zJ < 1. Lemma 6 in

Appendix A.1 is analogous to Lemma 1 and shows that the joint mechanism equilibrium in Equation

(1.10) exhibits the same characteristics as stated in the independent mechanism equilibrium given

in Lemma 1 (i.e., Equation (1.3)).

By using (1.6), (1.7), (1.8) and (1.10) along with θ1 = θ2 = 1
2 , the equilibrium profits of the

buyers and supplier under the joint mechanism can be written as:

ΠJ(zJ) = m(1− zJ(1− 2rzJ))− d(1− zJ)(1− 2rzJ)− 1

2
α zJ

2
, (1.11)

πJs (zJ) = 2(w − c)− γ + γ(1− 2rzJ)2 = 2(w − c)− γ + γ(1− xJ)2. (1.12)

1.2.3 Shared Mechanism (S)

In this section, we analyze a simultaneous game to examine the third mechanism: the shared

mechanism. In this mechanism, each buyer conducts its own audit independently, but shares its

findings with the other buyer so that a non-compliant supplier will be exposed to both buyers if

it fails either of the buyers’ audits. Figure 1.3 provides the extensive-form game of the shared

mechanism. For any given audit levels z1 and z2, the supplier with compliance level x will fail

buyer i’s audit with probability [zi(1−x) + zj(1− zi)(1−x)] for i = 1, 2, and j 6= i. By noting that

the supplier will fail buyer i’s audit with probability zi(1 − x) under the independent mechanism
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(Figure 1.2), we can conclude that, through sharing audit reports, the shared mechanism enables

buyer i to identify a non-compliant supplier with an “additional probability” of zj(1 − zi)(1− x).

This additional probability plays an important role in analyzing the shared mechanism.

Figure 1.3: Shared mechanism extensive-form game: buyer i’s audit level zi (i = 1, 2) and supplier’s compliance level
x.

Under the shared mechanism, supplier’s profit can be written as

πs(x; z1, z2) = 2(w − c)− 2(g + w)(z1 + z2 − z1z2)(1− x)− γx2 (1.13)

and buyer i’s (i = 1, 2) profit can be written as

Πi(z1; z2, x) = m [1− (z1 + z2 − z1z2)(1− x)]− d(1− z1)(1− z2)(1− x)− αz2
i . (1.14)

The best responses of the supplier and the buyers are given by:

x(z1, z2) = 2r(z1 + z2 − z1z2) and zi(x, zj) =
(d−m)

2α
(1− zj)(1− x), (1.15)

where i = 1, 2 and i 6= j. By solving the above three equations simultaneously, we characterize the

equilibrium in Lemma 2.

Lemma 2. Under the shared mechanism S, the buyer’s audit level zS and the supplier’s compliance
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level xS can be characterized as follows:

(i) The buyer’s audit level zS is the unique root z ∈ (0, 1−
√

2r−1
2r ) of the following cubic equation:

V (z) ≡ 2rz3 − 6rz2 +

(
1 + 4r +

2α

d−m

)
z − 1 = 0. (1.16)

(ii) The supplier’s compliance level is xS = 2rzS(2− zS) and xS ∈ (0, 1) .

Lemma 7 in Appendix A.1 shows that the shared mechanism equilibrium (as implicitly defined

in Lemma 2) exhibits the same characteristics as stated in Lemma 1. Finally, the supplier and the

buyer profits under the shared mechanism are given by:

ΠS(zS) = m
[
1− (2zS − (zS)2)(1− xS)

]
− d(1− zS)2(1− xS)− αzS2

, (1.17)

πSs (zS) = 2(w − c)− γ + γ(1− xS)2, (1.18)

where zS and xS are the equilibrium audit and compliance levels as given in Lemma 2.

1.3 Comparison of Equilibrium Outcomes Across Mechanisms

To gain a deeper understanding about the results derived in the last section, we now compare the

equilibrium decisions across all three audit-penalty mechanisms. Then we compare the buyers’ and

the supplier’s profits across the mechanisms.

1.3.1 Comparison of buyers’ audit and supplier’s compliance levels

We compare the equilibrium decisions across the three mechanisms in Proposition 1.

Proposition 1. Across all three mechanisms, the buyers’ audit levels satisfy: zS < zI < zJ .

Additionally, the supplier’s compliance levels satisfy the following:
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(i) xJ > xI and xJ > xS.

(ii) xS > xI if and only if α ≥ α̃ ≡ max
{

(d−m)(r̃ − r), 0
}

, where r̃ ≡ 1√
5− 1

(≈ 0.81).

Proposition 1 has the following implications. First, relative to the independent mechanism, the

buyer can afford to audit less under the shared mechanism because all the audit findings are shared.

On the other hand, relative to the independent mechanism, the buyer can afford to increase their

joint audit level under the joint mechanism because the joint audit cost is shared by the two buyers.

This explains the first statement.

Statement (i) in the second statement indicates that because the joint audit level is higher (i.e.,

zJ > zI), the supplier must commit to a higher compliance level under the joint mechanism in

response to the increased audit level and the higher (collective) penalty for non-compliance. Hence,

xJ > xI . Next, while both the joint and shared mechanisms impose the same collective penalty,

the buyers in the consortium maintain a higher audit level under the joint mechanism. In response,

the supplier must commit to a higher compliance level under the joint mechanism. Thus, xJ > xS .

Statement (ii) is noteworthy because it shows that, relative to the independent mechanism, the

shared mechanism can make the supplier to comply more and yet the buyer to audit less. When

rate of return on compliance r is high (r ≥ r̃ ⇔ α̃ = 0 by definition), the supplier will comply more

under the shared mechanism because of the collective penalty. However, when the rate of return on

compliance is low (r < r̃ ⇔ α̃ > 0), the compliance level is driven by the audit cost α of the buyers.

If α < α̃, then the buyers become complacent and try to delegate the responsibility of auditing to

each other because the cost of auditing is low. The supplier takes advantage of this behavior and

complies less under the shared mechanism. However, when α ≥ α̃, each buyer, realizing that the

other buyer alone cannot audit at a greater level due to the high audit cost, seriously takes up the

responsibility to audit and this makes the supplier to comply more. Figures 1.4 and 1.5 illustrate

the results stated in Proposition 1. For all the plots in Section 1.3 we use the following parameter
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values: d = g = 1000, c = 0, p = 1800, and w = 900. (In Appendix A.3, we provide different plots

for the case when d = 2g = 2000.)

Figure 1.4: Audit levels for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

Figure 1.5: Compliance levels for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

1.3.2 Comparison of supplier’s profits

Using the equilibrium profits of the supplier as given in (1.5), (1.12), and (1.18), we establish the

following result that compares supplier’s profits across different mechanisms.

Proposition 2. The supplier’s profit possesses the following properties:

(i) πJs (zJ) 6 πIs(zI) and πJs (zJ) 6 πSs (zS).

(ii) πSs (zS) 6 πIs(zI) if and only if α ≥ α̃, where α̃ is defined as in Proposition 1.

Because the supplier’s profit is driven by the compliance level, the results as stated in Proposition

2 are congruent with Proposition 1. In particular, the supplier has the lowest profit in the joint
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mechanism due to the collective penalty and the higher compliance level (statements (i) and (ii)

in Proposition 1). Figure 1.6 illustrates the findings of Proposition 2. Here α̃ = 0 for γ = 800 and

α̃ = 17.6 for γ = 1500 so we observe πSs (zS) 6 πIs(zI) for most values of α.

Figure 1.6: Supplier’s profits (normalized) for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

1.3.3 Comparison of buyers’ profits

The following result compares the buyers’ profits across the different mechanisms.

Proposition 3. The buyers’ profits possess the following properties:

(i) ΠJ(zJ) > ΠI(zI).

(ii) ΠS(zS) > ΠI(zI) if and only if α ≥ α̃, where α̃ is defined as in Proposition 1.

Proposition 3 has the following implications. The first statement illustrates that each buyer can

obtain a higher profit under the joint mechanism than under the independent mechanism because

the buyers share the total audit cost incurred by the consortium while forcing the supplier to comply

more. Further, one would intuitively think that the buyers’ profits would improve if they can attain

higher supplier compliance through lower audit levels. This is the finding in the second statement

of the above proposition: when α is large, as shown in Proposition 1, the supplier complies more

(xS > xI) while the buyers audit less (zS < zI), and therefore they make higher profits under the

shared mechanism compared to the independent mechanism.
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Proposition 3 does not provide a comparison of the buyers’ profit between the joint and shared

mechanisms. Our numerical results indicate that ΠJ(zJ) > ΠS(zS) as it can be seen in Figure 1.7.

It seems intuitive that the buyers would be better off in the joint mechanism since they can save on

the auditing cost while inducing the highest compliance. For a few limiting cases (e.g., r → 1
2 and

α → 0) one can indeed show analytically that ΠJ(zJ) > ΠS(zS), which provides partial support

for our numerical observation.

Figure 1.7: Buyers’ profits (normalized) for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

1.3.4 Comparison of supply chain profits

From Propositions 2 and 3 we observe that buyers are better off but the supplier is worse off when

there is a collective penalty under the joint mechanism. In the context of emerging economies such

as Bangladesh, making the supplier substantially worse off could be perceived as being socially

unfair and the buyers may face adverse publicity. Therefore, we now examine if the buyers can

offer transfer-payments to the supplier so that both the buyers and the supplier are better off.

Consider for instance the joint mechanism versus the independent mechanism. When each buyer

i offers a transfer-payment T (> 0) to the supplier, all parties will be better off if ΠJ − T > ΠI for

each buyer and πJs + 2T > πIs for the supplier. That is, there exists a transfer-payment T that is

Pareto improving if, and only if, the supply chain profit is higher (i.e., 2 ΠJ +πJs > 2 ΠI +πIs). Such

Pareto-improving transfer-payment will make the joint mechanism acceptable to both the buyers
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and the supplier. By considering the buyer’s profit given in (1.4) and (1.11) and the supplier’s

profit given in (1.5) and (1.12) we obtain the following results:

Proposition 4. The total supply chain profit under the joint mechanism is higher than that under

the independent mechanism if any of the following conditions hold:

(i) The audit cost α is sufficiently low.

(ii) The damage costs of each buyer is larger than the compliance cost of the supplier (i.e., d > γ).

(iii) The total damage cost incurred by the buyers is greater than the compliance cost of the supplier

(i.e., 2d > γ) and the cost of non-compliance for each buyer is greater than the cost of non-

compliance for the supplier (i.e. d−m > g + w).

Proposition 4 provides a set of sufficient conditions ensuring the existence of a transfer-payment

T > 0 such that the joint mechanism creates supply chain value compared to the independent

mechanism. Part (i) in Proposition 4 states that, regardless of the other parameter values, if the

audit cost α is low enough, then the savings from the joint audit will outweigh the decrease in the

supplier’s profit. To see this, note that xI and xJ tend to one when the audit cost α approaches

zero. Since zI

xI
= zJ

xJ
= 1

2r , it follows that the audit level in the joint and independent mechanisms

are equal to 1
2r when α→ 0. This can be confirmed in Figures 1.4 and 1.5. Hence, when α is close

to zero, xI ≈ xJ and zI ≈ zJ , so πIs ≈ πJs , but ΠI
i < ΠJ

i because the joint mechanism has an audit

cost saving of α
2 compared to the independent mechanism. By continuity, there must exist a range

(0, α ′), with 0 < α ′ ≤ ∞, such that 2 ΠJ +πJs > 2 ΠI +πIs , which is statement (i) in Proposition 4.

Parts (ii) and (iii) in Proposition 4 are conditions to ensure that the supply chain will earn net

positive savings through compliance. In contrast, if there is a net loss through compliance, then the

joint mechanism might lead to lower supply chain profits compared to the independent mechanism.
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This can only happen when α is large so the audit cost advantage of the joint mechanism has less

impact – see the discussion of part (i) of Proposition 4 in the previous paragraph.

The shared mechanism is harder to analyze because we only have an implicit characterization

of the audit level zS as stated in Lemma 2. Our best attempt is summarized in Proposition 14

in Appendix A.1, which is similar to part (iii) of Proposition 4. Nevertheless, in our extensive

numerical study we observed that the results in Proposition 4 – in particular, parts (i) and (ii) –

also held true for the shared mechanism as shown, for instance, in Figure 1.8.

Figure 1.8: Supply chain profits (normalized) for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

The left plot in Figure 1.8 has d > γ, so 2 ΠJ + πJs > 2 ΠI + πIs for all α per part (ii) of

Proposition 4. We observe the same for the shared mechanism. The right plot in Figure 1.8 has

d < γ < 2d and (d−m) < 2(d−m) < g+w, so neither parts (ii) or (iii) of Proposition 4 apply (and

Proposition 14 for the shared mechanism does not apply either). Hence, in the right plot of Figure

1.8 only part (i) of Proposition 4 applies and the joint mechanism yields a higher supply chain

profit for lower values of α (here α ′ = 190.83), but for larger values the independent mechanism

is better from a channel perspective. The same can be said for the shared mechanism. Overall, as

consumers become more aware of compliance issues, one would expect the collateral damage d to

become high enough such that d > γ, which would ensure that the joint (or shared) mechanism

yields a higher profit for any audit cost α.
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1.3.5 Comparison of consumer surplus

The profit comparisons are crucial from the supply chain perspective. However, from the social

responsibility perspective, one needs to consider the impact of the mechanisms on consumer surplus.

Consider a typical end consumer who derives an intrinsic utility V from the product and hence,

gains a surplus of V − p when consuming one unit of the product. The expected utility of a repre-

sentative consumer is thus given by (V −p) ·Pr(Sale), where Pr(Sale) is the probability that trade

occurs in equilibrium. We assume that V > p, else the consumer would not purchase the product.

Thus, to compare the consumer surplus under different audit-penalty mechanisms, it suffices to

observe the sale probability Pr(Sale) under each of the mechanisms.2 The sale probabilities under

the independent, joint and shared mechanisms are given as: SI ≡ 1−zI(1−xI), SJ ≡ 1−zJ(1−xJ),

and SS ≡ 1− zS(2− zS)(1− xS). With these definitions we have the following result:

Lemma 3. 1. SJ > SI if and only if
√

2 r(d−m) > α.

2. There exists a threshold value αJ such that SJ > SS if and only if α < αJ .

3. There exists a value αI such that SI < SS if and only if min{αI , α̃} < α < max{αI , α̃},

where α̃ is defined as in Proposition 1.

Lemma 3 shows that the independent mechanism has a higher sale probability than the joint

mechanism when the audit cost α is large. The sale probability is better in the joint mechanism

when the compliance level is relatively high – in fact, much greater than 0.5 – but such high

compliance level can only be attained if auditing is not too costly, as shown in Figure 1.5. Hence,

consumer surplus is lower under the joint mechanism when α is large. Note however, that the

parameter d implicitly captures how much society values compliance. As d increases, it follows

2Our model assumes that p is exogenous. In practice, some consumer might be willing to pay a premium for
responsible sourcing practices.
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from Lemma 3 that there is a wider range of α for which the sale probability is higher in the

joint mechanism than in the independent case. Similar observations can be made for the shared

mechanism.

1.4 Endogenous Wholesale Price

In this section, we extend our model to the case when the wholesale price wi and the audit level zi are

endogenously determined by buyer i and when the compliance level x is endogenously determined

by the supplier. Since the game for each of the three mechanisms involves 5 different decisions,

i.e., (w1, z1;w2, z2;x), selected by 3 players (2 buyers and 1 supplier), the analysis is complex and

the analytical comparisons across all the three mechanisms are no longer tractable. Therefore,

we make these comparisons through numerical analysis. To facilitate such analysis, we solve a

two-stage game: in the first stage the buyers simultaneously choose the wholesale prices and then

the second stage corresponds to the simultaneous game analyzed in Section 1.3. Note that the

Alliance for Bangladesh does not include any provisions for the garment prices, whereas the Accord

only states that prices should ensure financial feasibility (see Table 1 in Jacobs and Singhal, 2015).

In other words, these consortiums do not address pricing and auditing simultaneously, which is

consistent with our sequential approach.

To incorporate the issue of endogenous wholesale price to be determined by each buyer, we

define two additional terms: (a) buyer i’s profit margin mi ≡ p−wi, i = 1, 2; and (b) the supplier’s

“rate of return on compliance to buyer i’s audit” ri ≡ g+wi
2γ . Notice that both terms depend on the

wholesale price wi to be determined by buyer i. In what follows, we first describe how we determine

the best-response functions (i.e., the supplier’s compliance level and the buyers’ audit level) for any

given wholesale price vector (w1, w2) under each of the three mechanisms. We then explain how

we compute the wholesale price and the corresponding profits in equilibrium.
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1.4.1 Independent Mechanism I

By using the same approach presented in Section 1.2.1, it is easy to check that, for any given

wholesale price vector (w1, w2), the supplier’s profit and the buyers’ profit can be written as

πs(x; z1, z2, w1, w2) =
2∑
i=1

[wi(1− zi(1− x))− gzi(1− x)− c]− γx2

=

2∑
i=1

(wi − c)− (wi + g)(1− x) ·
2∑
i=1

zi − γx2, (1.19)

Πi(zi, wi;x) = mi(1− zi(1− x))− αz2
i − d(1− zi)(1− x), i = 1, 2. (1.20)

On solving the simultaneous game between the supplier and the buyers for a given wholesale price

vector (w1, w2), we obtain the equilibrium audit and compliance decisions as below:

zIi (w1, w2) =
(d−mi)

2α+ r1(d−m1) + r2(d−m2)
, i = 1, 2, (1.21)

xI(w1, w2) =
r1(d−m1) + r2(d−m2)

2α+ r1(d−m1) + r2(d−m2)
. (1.22)

By substituting the above equilibrium into (1.19) and (1.20), we obtain the profits of the supplier

and the buyers, which we denote by πIs(w1, w2) and ΠI
i (w1, w2), i = 1, 2, respectively.

By using πIs(w1, w2) and ΠI
i (w1, w2) and by inducting backward we obtain the equilibrium

wholesale prices wI1 and wI2 by solving a non-cooperative game between the two buyers as follows.

First, we consider the bounds imposed on wholesale prices by Assumptions 1 and 2 (i.e., max{0, p−

d} 6 wi 6 min{p, g + c}) and by Assumption 3 (i.e., w1 + w2 − 2c > γ). We then compute the

best-response function of buyer i (i.e., w∗i (wj)) numerically by solving the following problem of
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buyer i for different values of wj :

PI : max
wi

ΠI
i (wi, wj)

subject to (1.21), (1.22),

max{0, p− d} 6 wi 6 min{p, g + c} for i = 1, 2,

w1 + w2 − 2c > γ,

ΠI
i (wi, wj) > 0, for i = 1, 2.

In this problem, the last two constraints correspond to the individually rational constraints associ-

ated with the supplier and buyers, respectively. Next, we determine the equilibrium wholesale price

wI1 and wI2 as the point of intersection of the above derived best-response functions. As the buyers

are identical, we observe that wI1 = wI2 ≡ wI∗. Finally, we retrieve the corresponding equilibrium

outcomes (zI∗, xI∗, πI∗s ,Π
I∗) through substitution.

1.4.2 Joint Mechanism J

For any given wholesale price w1 and w2, we can use the same approach as presented in Section

2.2 to determine the supplier’s profit as:

πs(z) = max
x∈[0,1]

{(w1 + w2)(1− z(1− x))− 2gz(1− x)− 2c− γx2} (1.23)

where z is the joint audit level adopted by the consortium. The best response of the supplier is

obtained as xJ(z) = min{(r1 + r2)z, 1}.

Now suppose buyer i is able to select unilaterally the joint audit level z. Then, buyer i would
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choose a joint audit level of

z = zi(θi) ≡
(d−mi)(1− x)

2αθi
(1.24)

that maximizes its profit

Πi(θi; z, x) = mi(1− z(1− x))− d(1− z)(1− x)− θiαz2. (1.25)

Thus, if θi
d−mi =

θj
d−mj then both buyers choose the same joint audit level and hence would auto-

matically reach a consensus. Using this fact, we assume that buyer i and buyer j agree a priori

to share the audit cost in the ratio θi
θj

= d−mi
d−mj . As before, we make this assumption for ease of

exposition and in Appendix A.2 we formally show that θi
d−mi =

θj
d−mj = 1

2d−m1−m2
is the outcome

of a non-cooperative game. By using these proportions θ1 and θ2, we can determine the equilibrium

audit and compliance levels as:

zJ ≡ zJ(w1, w2) =
(2d−m1 −m2)

2α+ (r1 + r2)(2d−m1 −m2)
(1.26)

xJ ≡ xJ(w1, w2) =
(r1 + r2)(2d−m1 −m2)

2α+ (r1 + r2)(2d−m1 −m2)
. (1.27)

By substituting the equilibrium above into (1.23) and (1.25), we can express the supplier’s and

buyer i’s profits as πJs (w1, w2) and ΠJ
i (w1, w2); respectively. We then induct backwards to obtain

the equilibrium wholesale prices wJ1 and wJ2 by solving a non-cooperative game between the two

buyers. We obtain the best-response function of buyer i by solving the problem PJ, which is

the same as problem PI except that the profit function ΠJ
i (wi, wj) is based on the equilibrium

expressions (1.26) and (1.27) (instead of (1.21), (1.22)). The ensuing procedure to obtain the

equilibrium outcomes (zJ∗, xJ∗, πJ∗s ,ΠJ∗) is the same as in explained in Section 4.1.
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1.4.3 Shared Mechanism S

Akin to (1.13) and (1.14), we obtain the supplier’s and the buyers’ profits as:

πs(x; z1, z2, w1, w2) =

2∑
i=1

{(wi − c)− (wi + g)(1− x) · (zi + zj + zizj)} − γx2, (1.28)

Πi(zi, wi; zj , x) = mi(1− (zi + zj + zizj)(1− x))− αz2
i − d(1− zi)(1− zj)(1− x), (1.29)

so that the best-response functions of the players for any given wholesale price vector (w1, w2) are

zSi =
(d−mi)(1− zSj )(1− xS)

2α
, i = 1, 2, i 6= j, (1.30)

xS = (r1 + r2)(zS1 + zS2 − zS1 zS2 ), (1.31)

where for notational convenience we suppress the arguments (w1, w2) of zSi and xS . As before,

we obtain the equilibrium wholesale prices by solving the best-response functions of the two buy-

ers simultaneously. The best-response function of buyer i is obtained by solving the problem

PS, which is analogous to PI and PJ. The remaining steps to obtain the equilibrium outcomes

(zS∗, xS∗, πS∗s ,ΠS∗) are the same as in the independent and joint mechanisms.

1.4.4 Numerical Analysis

In this section, we use the approach outlined in sections 1.4.1, 1.4.2 and 1.4.3 to compute the

equilibrium outcomes (i.e., wk∗, zk∗, xk∗, πk∗s ,Π
k∗) associated with mechanism k, where k = I, J, S.

Also we used the same parameter values as in Section 1.3 (except the fact that the wholesale price

wi is now computed instead of exogenously given). The following figures summarize our results.

First, since the buyers impose a collective penalty under the joint and shared mechanisms, one

would expect the buyers to offer a higher wholesale price under these mechanisms than under the
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independent mechanism to incentivize the supplier. This intuition is confirmed in Figure 1.9, but

only when the buyer’s audit cost α is sufficiently high. This is because when audit costs are low, the

buyers can afford to audit at a higher level, which in turn increases supplier’s compliance without

the need to offer higher wholesale prices.

Figure 1.9: Equilibrium wholesale price w for I, S and J mechanisms with γ = 800 (left) and γ = 1500 (right)

Second, when the wholesale price is endogenously determined by the buyers, Figures 1.10 and

1.11 indicate that the results stated in Proposition 1 continue to hold for the case when the buyer’s

audit cost α is low. More importantly, we confirm that the joint and the shared mechanisms can

make the supplier more compliant. However, contrary to the finding made in Proposition 1, when

α is high and the wholesale prices are endogenous, we notice that the buyers audit more under

the shared mechanism than what they would otherwise do under the independent mechanism.

Additionally, as depicted in Figure 1.9, when α is high, the buyers also offer a higher wholesale

price to encourage a higher supplier compliance under the shared mechanism. Thus, the buyers

use higher audit levels and higher wholesale prices as two levers to increase supplier’s compliance

under the shared mechanism when the wholesale price is endogenously determined.

Third, Figures 1.12 and 1.13 indicate that, among all three mechanisms, the buyers earn the

most and the supplier earns the least under the joint mechanism. This finding is consistent with

Propositions 2 and 3. Hence, from the buyer’s perspective, the joint mechanism still dominates

the other two mechanisms. Note from Figure 1.12 that the supplier always makes a positive profit
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Figure 1.10: Audit levels when w is endogenous with γ = 800 (left) and γ = 1500 (right)

Figure 1.11: Compliance levels when w is endogenous with γ = 800 (left) and γ = 1500 (right)

when α > 0 under all three mechanisms. In contrast, Figure 1.13 shows that the buyers’ profit

vanishes when the audit cost α is significantly high, and this happens sooner than with exogenous

w because the competitive pressure makes the buyers’ profit decrease faster.

Finally, Figure 1.14 is the counterpart of Figure 1.8 when the wholesale prices are endogenous.

We observe the same results as in Proposition 4. In particular, when the buyers’ damage costs

is higher than the supplier’s cost of compliance (d > γ), the joint and shared mechanisms create

supply chain value compared to the independent mechanism for all values of α. This allows for

a transfer-payment to compensate the supplier for its higher compliance. In general, a Pareto-

improving transfer-payment is always possible when the audit cost α is low enough, as seen in the

right plot of Figure 1.14.

Thus, as demonstrated by the numerical analysis in this section, the key analytical results that

we obtained with an exogenous wholesale price in Section 1.3 continue to hold when the wholesale
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Figure 1.12: Supplier’s profits when w is endogenous with γ = 800 (left) and γ = 1500 (right)

Figure 1.13: Buyers’ profits when w is endogenous with γ = 800 (left) and γ = 1500 (right)

price is endogenous.

Figure 1.14: Supply chain profits when w is endogenous with γ = 800 (left) and γ = 1500 (right)

1.5 Discussion

In this section we discuss some of our model implications in relation to the Alliance and the Accord.

It should be noted that our model by no means fully represents these agreements; instead, it captures

various salient features especially the audit-penalty mechanism. Nevertheless, our findings can be

relevant for the design of future consortia.
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The Alliance and the Accord are fundamentally similar in many aspects (Labowitz and Baumann-

Pauly 2014) and both advocate joint audits. However, one important difference is that the Accord

is legally binding whereas the Alliance is not (Economist 2013). Specifically, under the Accord,

factory workers can take legal action if they believe that the Accord fails to “follow through on

their commitment”.3 This can be incorporated in our model through the damage cost d. Assuming

a higher damage cost d for the Accord would be consistent with the additional legal costs faced by

the Accord when its auditing effort fails to detect non-compliance. A higher damage cost implies

higher audit and compliance levels (per Lemma 6), but it also implies lower profits for the buyers.

So this would indicate that the Accord might ensure safer factories compared to the Alliance, but

at the expense of lower profits due to a higher liability.

The Accord stipulates that a non-compliant factory that fails to eliminate safety hazards must

be terminated. This commitment is also legally binding.4 In contrast, the Alliance is not legally

bound to terminate a non-compliant factory. In other words, there is a positive chance that the

buyers might continue to do business with a factory that failed the audit. This can be incorporated

in our model through the goodwill cost g.5 Assuming a lower goodwill cost g for the Alliance would

be consistent with the fact that the supplier is less likely to be terminated when non-compliance is

detected. If g is lower, then the rate of return on compliance r is lower, and per Equation (1.10)

the audit and compliance levels will decrease.

Aside from being legally binding or not, both agreements stipulate contributions from the buyers

toward helping the supplier’s compliance. This can be incorporated into the model by assuming

that the buyers incur a certain portion δ of the compliance cost γx2. It can be shown that when

3http://www.cleanclothes.org/resources/background/comparison-safety-accord-and-the-gap-walmart-

scheme

4http://www.just-style.com/news/bangladesh-accord-cuts-ties-with-four-more-factories_id127323.

aspx

5Alternatively, one can include an expected payment from the buyer to the supplier that is proportional to z(1−x).
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δ > 0, for all three mechanisms (I, J, and S): the compliance level is higher, the audit level is lower,

and the supplier’s profit increases. In contrast, the buyers’ profit increases only when the audit

cost α is high.6 Hence, as expected, providing financial assistance benefits the supplier but might

not be in the best interest of the buyers.

Finally, we have shown that the joint mechanism effectively increases compliance, so both the

Alliance and the Accord should be able to achieve their primary goal. If these consortiums also

want to ensure that the suppliers are better off (or at least not worse off), then our results show

that some form of transfer-payment is needed.

1.6 Conclusions and Future Work

In this paper, we presented a unified framework of three different audit-penalty mechanisms (inde-

pendent, joint, and shared) for improving supplier’s compliance in supply chains. By considering

a simultaneous move game involving 2 buyers and 1 supplier, we analyzed and compared the equi-

librium outcomes (the supplier’s compliance level, the buyer’s audit level, the supplier’s profit,

the buyers’ profits and the supply chain profit) across all three mechanisms for the case when the

wholesale price is exogenously given. We also extended our analysis to the case when the wholesale

price associated with each mechanism is endogenously determined by the buyers. We show that the

joint mechanism dominates in terms of supplier compliance and the buyers’ profit. Moreover, in our

numerical analysis we observe that the key structural findings that we made for the case of exoge-

nous wholesale price continued to hold even when the wholesale price is endogenously determined

by the buyers.

Overall, we can summarize the key findings for the joint mechanism as follows:

1. The supplier’s compliance always improves, and it always results in higher buyer profit under

6The details of this analysis are skipped here for brevity and are available from the authors upon request.
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the joint mechanism.

2. The supplier, however, earns the lowest profit under the joint mechanism and earns the highest

profit under the independent mechanism.

3. The buyers have to offer a Pareto-improving transfer-payment to the supplier to make the

latter better off under the joint mechanism.

4. Such transfer-payment is possible when the audit cost is low or when the buyers’ damage cost

is higher than the supplier’s cost of compliance. When these conditions hold, the supply chain

profit under the joint mechanism is higher than the profit under the independent mechanism

and this enables the buyers to provide the Pareto-improving transfer-payment.

We find similar results for the shared mechanism, which shows that it is also a viable mechanism

to create supply chain value through collective penalty.

Overall, our results enable us to gain a better understanding about the dynamic interactions

among the buyers and the supplier under independent, joint and shared mechanisms. Since the joint

mechanism captures two salient features (collective penalty and joint audits), our results provide

additional justification for the implementation of the Accord and the Alliance in Bangladesh.

Future research could consider alternative audit-penalty mechanisms and settings where our

modeling assumptions do not apply. These include settings in which the buyers are non-identical

(different price/cost structure, different bargaining power, etc.), scenarios with incomplete informa-

tion on costs, or an extension in which the retail price p is endogenous. All of this could potentially

affect the ordering of the three mechanisms. Given the current concerns over supplier compliance,

addressing these questions could be worthwhile avenues for future research.
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Chapter 2 Coordinating Supply Chains via Advance-Order Dis-

counts, Minimum Order Quantities, and Delegations

Abstract

To avoid inventory risks, manufacturers often place rush orders with suppliers only after they receive

firm orders from their customers (retailers). Rush orders are costly to both parties because the

supplier incurs higher production costs. We consider a situation where the supplier’s production

cost is reduced if the manufacturer can place some of its order in advance. In addition to the rush

order contract with a pre-established price, we examine whether the supplier should offer advance-

order discounts to encourage the manufacturer to place a portion of its order in advance, even

though the manufacturer incurs some inventory risk. While the advance-order discount contract is

Pareto-improving, our analysis shows that the discount contract cannot coordinate the supply chain.

However, if the supplier imposes a pre-specified minimum order quantity requirement as a qualifier

for the manufacturer to receive the advance-order discount, then such a combined contract can

coordinate the supply chain. Furthermore, the combined contract enables the supplier to attain the

first-best solution. We also explore a delegation contract that either party could propose. Under this

contract, the manufacturer delegates the ordering and salvaging activities to the supplier in return

for a discounted price on all units procured. We find the delegation contract coordinates the supply

chain and is Pareto-improving. We extend our analysis to a setting where the suppliers capacity is
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limited for advance production but unlimited for rush orders. Our structural results obtained for

the one-supplier-one-manufacturer case continue to hold when we have two manufacturers.

Keywords

Advance-Order, Minimum Order Quantity, Delegation, Supply Chain Contracts

2.1 Introduction

Grocery retailers often sell private labels of holiday celebration products (eg. moon cakes, pumpkin

pies, etc.) with a single selling season. Well before the selling season starts, the grocer’s food

technology team, the supply chain department, and the marketing department work together to

develop recipes, design packaging, and select contract food manufacturers. After completing the

selection, the retailer will place a firm order to the contract food manufacturer, who will, in turn,

place a firm order to its packaging material supplier. Because the food product is perishable and

the packaging is specifically customized to the retailer, neither the manufacturer nor the supplier

will produce the corresponding items in advance. Consequently, all orders along the supply chain

are rush orders that are costly to fill.

The above business context motivates us to consider a situation when both the manufacturer

and the supplier have to deal with rush orders of highly customized products. Due to the high

production cost for rush orders, the supplier charges the manufacturer a high, pre-established con-

tract price. Though the supplier’s production costs could be substantially lowered if the orders are

placed in advance, the manufacturer refrains from doing so given its apprehension of overstocking

the customized material1. Hence, a discounted wholesale price that a supplier may offer, could

1While the retailer-specific packaging materials can be inventoried before the selling season, these materials have
only recycling value after the selling season especially when the packaging design changes every year or when the
manufacturer may not win the contract during the following year.
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encourage the manufacturer to place an advance-order2

Based on our work with a grocery retailer in the UK, we learned that food contract manufactur-

ers and packaging material suppliers are aware of the trade-off between the benefits of advance-order

discounts and the (imputed) costs of the leftover packaging materials. This trade-off motivated us

to examine the following research questions for the case when the original rush order contract price

is already established3:

1. Should the supplier offer advance-order discounts?

2. Can the advance-order discount contract coordinate a decentralized supply chain? If not,

how about a variant that combines the advance-order discount contract with other commonly

observed terms such as minimum order quantity and/or inventory management delegation?

We use a two-echelon supply chain model in a two-period setting to explore the above research

questions. We first show that a simple discount contract does not coordinate the supply chain.

Then we explore a variant of the contract that “combines” the advance-order discounts with a

pre-specified minimum advance-order quantity. The combined contract enables the supplier to

coordinate the supply chain. Under this combined contract, the supplier extracts the entire surplus

of the manufacturer, while offering the manufacturer a discounted wholesale price. This finding

provides a good rationale (in addition to the economies of batch production processes) for the

omnipresent industry practice of minimum order quantities4.

2We are also aware of a case in the commemorative medal industry. Here, the manufacturer makes medals to
celebrate special events (sporting events, royal weddings, special anniversaries etc.). The commemorative medals are
made out of high value metals (gold, silver, platinum etc.) and are sold through retailers such as Harrods, the Post
Office and the company’s own web-site. After receiving the orders from the retailers, the medals are manufactured
in a single production run. The medals are sold in presentation boxes, often hand-crafted from mahogany or walnut
by a supplier. This case also fits our modelling assumptions.

3As it turns out, our result remains the same even when the supplier can determine both the contract price and
the advance-order discount factor.

4We note that minimum order quantities are almost always imposed by packaging suppliers posted on
www.alibaba.com.

39



Besides minimum order quantities, we consider the case wherein the manufacturer (or the

supplier) proposes that the ordering decisions and the salvaging activities are delegated to the

supplier in exchange for a new discounted price for all the units procured by the manufacturer5.

Such a contract is akin to the vendor managed inventory (VMI) setup in supply chains. We

demonstrate that when price discount is coupled with delegation, this combined contract not only

coordinates the supply chain but is also Pareto-improving under mild conditions on the demand

process.

Our analysis generates the following three key insights:

1. Though advance-purchase discount contracts by themselves do not coordinate a supply chain,

they do coordinate the supply chain when coupled with either (a) a minimum-order quantity

requirement, or (b) an inventory management delegation contract.

2. Combining advance-purchase discount and minimum-order-quantity can always coordinate a

supply chain.

3. There exists a necessary and sufficient condition for the existence of an advance-purchase

discount and inventory management delegation contract that coordinates the supply chain.

To our knowledge, the existing literature does not examine the role of minimum order quanti-

ties and inventory management delegations in combination with advance-purchase discounts. The

insights we draw provide additional reasons for suppliers to offer minimum order quantity contracts

and VMI-like services in decentralized supply chains. In this paper, we first prove our results for

the case of a one-supplier-one-manufacturer supply chain. Then, we discuss how our model can be

extended to the case of two buyers.

Our paper is organized as follows. We perform a brief literature survey in Section 2. In Section

5This setting is plausible when the supplier is in a better position to salvage or recycle the leftover packaging
materials.
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3, we present our supply chain model with uncertain demand and we establish two benchmarks. In

section 4, we show that the advance-order discount contract cannot coordinate the supply chain,

and in Section 5 we show that a combination of the advance-order discount contract and a minimum

order quantity can coordinate the supply chain. In Section 6, we consider the situation when the

manufacturer delegates the responsibility of managing the inventory decisions to the supplier in

exchange for a discounted wholesale price. We extend our analysis to the case of one-supplier-

two-manufacturers supply chain in Section 7. We conclude the paper in Section 8 and provide the

proofs in the Appendix B.1.

2.2 Literature Review

As one of the first articles that examine minimum order quantity contracts, Chow et al. (2012)

consider a minimum order quantity contract in a quick response context where the manufacturer

can postpone its single order decision until he obtains updated demand information6. They find that

if the supplier can postpone the specification of the minimum order quantity till some information

about demand is observed, then such an MOQ contract can coordinate the supply chain. In general,

a manufacturer may be reluctant to participate in such a contract when the supplier cannot commit

to the contractual terms (i.e., the minimum order quantity) in advance. In this paper, we show that,

by combining the advance-order discounts with minimum order quantity contract, the supplier can

commit to the contractual terms in advance and coordinate the supply chain at the same time.

Our model differs from Chow et al. (2012) in three important aspects. First, Chow et al.

(2012) consider a setting in which the manufacturer orders exactly once (one decision), while we

consider a different setting in which the manufacturer can place two orders (i.e., two decisions):

(a) an advance-order that is subject to a minimum order quantity, and (b) a top-up order after

6We thank the anonymous reviewer who brought this paper to our attention.
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the demand is realized. Second, we consider a situation when the discount factor for the advance

order is endogenously determined by the supplier, while Chow et al. (2012) assume this factor is

exogenously given. Third, our analysis is based on a general demand distribution that possesses

Increasing Generalized Failure Rate (IGFR) properties, while Chow et al. (2012) assume that the

demand is normally distributed (which is a special case of the IGFR distributions).

Our research is also related to the advance purchasing literature (eg. Xie and Shugan (2001),

Tang et al. (2004) etc.). In the field of advance-order discounts arising from supply chain manage-

ment, our base model that deals with advance order discount is closely related to Cachon (2004)

and Özer et al. (2007). Cachon (2004) shows that advance-purchase discounts can coordinate a

manufacturer-retailer supply chain when the manufacturer can set both the advance-purchase dis-

count and the regular wholesale price. Our base model contrasts with Cachon (2004) in two respects.

First, in the initial model presented in Cachon (2004), the manufacturer’s production cost is the

same for both advance and regular purchase and there is only one production opportunity. Later,

as an extension, Cachon (2004) incorporates a positive shipping cost for rush orders. The shipping

cost is incurred by the supplier and hence this cost can eventually be treated as an increase in the

supplier’s unit production cost for rush orders. Even in our setting, the supplier’s production cost is

lower for advance-orders, and higher for rush-orders. However, our setting accounts for additional

flexibility in production because we consider the supplier to have two production opportunities –

one for advance-orders and one for rush-orders – which facilitate more informed production deci-

sions. While our preliminary analysis about the Pareto improving nature of advance-order contract

concurs with the findings of Cachon (2004), our main contribution lies in modifying the traditional

advance-order discount contract to ensure supply chain coordination in a Pareto improving manner.

Second, while Cachon (2004) assumes that the manufacturer can set the purchase price for both

advance and regular orders, our base model can be viewed as a special case when the rush-order
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price has been established in advance, and the supplier can only offer an advance-order discount

on the rush-order price.

More recently, Özer et al. (2007) examine the optimal ordering policy with demand forecast

updating when the supplier can set its price before and after the manufacturer updates its demand

forecast. They determine the conditions under which the supplier should offer advance-order dis-

count. That is, when the price in the first period should be strictly less than the price in the second

period. They also show that the optimal contract is Pareto-improving. Our context is different

from that considered by Özer et al. (2007) in two ways. First, while Özer et al. (2007) consider a

generic setting in which the demand forecast is updated after one period, our base model can be

viewed as a special case of their model by assuming that the demand is realized after one period.

Second, in addition to the Pareto-improvement that was shown by Özer et al. (2007), we show in the

analysis of our base model that the advance-order discount contract cannot coordinate the decen-

tralized supply chain. More importantly, we show that, by combining advance-order discount with

minimum order quantity, or with inventory management delegation, the two combined contracts

can coordinate the supply chain in a Pareto improving way.

Thus, although our advance-order discount base model is directly related to Cachon (2004) and

Özer et al. (2007), we leverage our base model analysis to examine two new combined contracts

that occur in practice but have not been examined in the literature hitherto. In particular, while

it is known that advance-order discount contract cannot coordinate the decentralized supply chain

(Özer et al., 2007), we show that the supplier can coordinate the supply chain and achieve the first-

best solution if it combines advance-order discount with either minimum advance-order quantities

or by delegating inventory management decisions to the manufacturer.

To our knowledge, ours is the first paper to investigate the impact of (i) the combination of

advance order discounts and the minimum-order-quantity contract, and (ii) the combination of
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advance order discounts and inventory management delegation contract, on supply chain coordina-

tion.

2.3 The Model

Consider a two-level supply chain comprising of a supplier and a manufacturer. The manufacturer

sells its product to retailers at the wholesale price p. While p is set beforehand, the underlying

product demand D, from all the retailers over a single selling season is uncertain. We assume that

D follows a probability distribution F (·) with density function f(·) that satisfies the IGFR property

(i.e., the function xf(x)
1−F (x) is increasing in x)7.

To avoid obsolescence, the manufacturer places rush orders with the supplier only after receiving

firm orders from the retailers. On the other hand, without a quantity commitment from the

manufacturer, the supplier is reluctant to produce in advance, especially when the product is

specifically customized for the retailers. Hence, the supplier has to expedite its production process

in order to deliver the (rush) order on time. As a result of the expedited production process, the

supplier incurs an inflated unit production cost, which we denote by e. Let r denote the regular

contract price that the supplier quotes to the manufacturer. We assume p > r > e. Therefore,

for any exogenous regular price r established in advance, the ex-ante expected profits for the

manufacturer and the supplier for a rush order, which we denote by Πo
m and Πo

s respectively, are

given by8:

Πo
m = (p− r)E(D), and (2.1)

7As noted in Cachon (2004) and Lariviere (2006), IGFR distributions are fairly general because they include
common distributions like the Uniform, the Normal, the Exponential, the Gamma, and the Weibull distributions.
Furthermore, the IGFR distributions ensure that the supplier’s profit function (in a newsvendor setting) is unimodal.

8We use the sub/superscript o to denote the base case.
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Πo
s = (r − e)E(D). (2.2)

Also, the ex-ante expected total supply chain profit is Πo = (p− e)E(D)9.

2.3.1 The Advance-Order Discount

Consider the case when the food retailer has specified the recipe, selected the manufacturer, and

approved the packaging design in period 0. The price r remains the same for the rush-order when

the manufacturer delays its order until a firm order is received from the retailer at the beginning

of the second period. However, the supplier realizes that it can lower its unit production cost from

e to c if it can begin the production in period 1 and deliver the order in period 2. The supplier has

to decide if it has to offer a discounted price of δr (where δ is a decision variable in (0, 1)) in order

to encourage the manufacturer to place an advance-order in the first period that will eventually be

delivered at the beginning of the selling season10. That is, both the advance-order (placed at the

beginning of period 1) and the rush-order (placed at the beginning of period 2) will be delivered

before the end of the second period.

Figure 1 depicts the setting of the advance-order discount contract, which includes the rush-

order case (i.e., without discount when δ = 1) as a special case. For exposition, we shall assume

that δ ∈ ( cr , 1) so that the supplier will not offer the advance-ordering discount at a loss (i.e.,

δr > c)11.

9Clearly, if the supplier aims to maximize its profit subject to the manufacturer’s participation constraint, the
supplier’s problem in the wholesale contract can be formulated as: max

r>e
Πo
s(r), subject to Πo

m(r) > 0. (For the ease

of exposition, we scale the value of the manufacturer’s outside option to zero.) The supplier can extract the entire
surplus from the manufacturer by setting r = p under this setting. Rather than setting r = p, we assume r, the
pre-established contract price, is an exogenous variable, and focus on the issue of advance-order discount and other
such factors (i.e., minimum order quantities and delegations).

10Note that the discount is actually (1−δ), but congruent with the established literature, we shall refer to δ simply
as the discount.

11We later show that it is not optimal for the supplier to set δ 6 c
r
.
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Figure 2.1: Schematic of our advance-order setting.

Under the advance-order discount contract, the supplier offers an advance-order price of δr per

unit and the manufacturer must place an advance-order of x (> 0) in the first period before the

demand D is realized, in order to avail the discounted price. Later on, once the demand D is

realized, the manufacturer orders-up-to quantity y (> x) in the second period. Thus, the effective

order quantity in the second period (i.e., the top-up order quantity) is [y − x]+. If y > d, the

manufacturer salvages the over-stocked [y − d]+ units for a unit salvage price s. We assume that

s > 0 and that s is net of any costs involved in salvaging the overstocked units.

We model the strategic interaction between the supplier and the manufacturer as a (two-period)

Stackelberg game in which the supplier acts as the leader who sets the advance-order discount δ and

the manufacturer acts as the follower who chooses the order quantities x and y12. We use backward

induction to determine the optimal advance-order quantity x and the optimal order-up-to quantity

y for a fixed discount δ. Then, we examine the optimal discount contract under different settings.

2.3.2 First-Best Solution: The Centralized Case

Before we analyze the decentralized supply chain for the case when the supplier offers an advance-

order discount contract δ, we analyze the centralized system in which the supplier and the man-

12In many instances, packaging suppliers in the food industry are often large multi-national companies, whereas
contract food manufacturers are typically smaller national companies that often focus on specialized niche items.
Thus, it is reasonable to assume that the supplier is the Stackelberg leader in our game.
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ufacturer operate under a central planner, to establish a benchmark. Given the advance-order x

placed in period 1 and a realization d of the demand, the central planner determines its order-up-

to level y by solving the following problem at the beginning of the second period:13 Πc
2(x, d) =

max
y>x
{p·min{d, y}−e[y−x]++s[y−d]+}, where the addends in the objective function denote the sales

revenue, the production cost in period 2, and the salvage value, in that order. It is easy to see that

the optimal order-up-to level is y∗ = max{x, d}. Hence, Πc
2(x, d) can be simplified to Πc

2(x, d) =

pd−e[d−x]+ +s[x−d]+. Thus, the expected profit of the central planner in the first period can be

written as: Πc
1 = max

x>0
{−cx+E(Πc

2(x,D))} = max
x>0
{(p−c)E(D)−(e−c)E[D−x]+−(c−s)E[x−D]+}.

Observe that Πc
1 resembles the expected profit function of a newsvendor problem with (e − c) as

the unit shortage cost and (c − s) as the unit over-ordering cost. From the first-order condition,

the optimal initial order quantity x∗ is given by:

x∗c = F−1

(
e− c
e− s

)
, (2.3)

where F−1(·) is the inverse of the probability distribution of the demand D. By substituting x∗c

into Πc
1, the first-best supply chain profit can be obtained as:

Πc = (p− c)E(D)− (e− c)E[D − x∗c ]+ − (c− s)E[x∗c −D]+

= −cx∗c + pE(D)− eE[D − x∗c ]+ + sE[x∗c −D]+.

(2.4)

Observe that it is always feasible for the central planner to set x = 0 and y = d so that the

supply chain profit is equal to Πo ≡ (p− e)E(D), which is the profit in the base case. Hence, when

the central planner optimizes its profit jointly over x and y, the optimal supply chain profit is at

least as much as that in the base case, that is, Πc > Πo.

13We use the sub/superscript c to denote the centralized case.
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2.4 Optimal Advance Order Discount Contract: The Decentral-

ized Case

We now examine the advance-order discount contract in a decentralized system. Consider a decen-

tralized system in which the supplier determines the discount (δ), and the manufacturer chooses

its advance-order quantity (x) and its order-up-to quantity (y). For a given advance-order x and

a realized demand d, the manufacturer needs to determine the order-up-to quantity y during the

second period by solving the following problem:14

Πd
2(x, d) = max

y>x
{pmin{d, y} − r[y − x]+ + s[y − d]+},

where r is the regular unit procurement cost and s is the unit salvage value (refer to Figure 1). It

is easy to verify that the optimal order-up-to quantity for any given x is y∗ = max{x, d}. Hence,

Πd
2(x, d) reduces to:

Πd
2(x, d) = pd− r[d− x]+ + s[x− d]+.

Using the above optimal profit Πd
2(x, d) in the second period, the manufacturer needs to determine

its optimal first period order quantity x, ordered at the discounted unit price δr, by solving the

following problem:

Πd
1(δ) = max

x>0
{−δrx+ E

[
Πd

2(x,D)
]
}

= max
x>0
{(p− δr)E(D)− r(1− δ)E[D − x]+ − (δr − s)E[x−D]+}. (2.5)

14Here we use the sub/superscript d to denote the decentralized case.
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By using the first order condition, the optimal initial order quantity is obtained as:

x∗d = F−1

(
(1− δ)r
r − s

)
. (2.6)

On substituting x∗d into the objective function, the manufacturer’s profit associated with a given

discount δ is obtained to be:

Πd
1(δ) = (p− δr)E(D)− r(1− δ)E[D − x∗d]+ − (δr − s)E[x∗d −D]+. (2.7)

Similarly, by noting that y∗ = max{x∗d, d}, we obtain the supplier’s expected profit, for any

given δ, as:

Πd
s(δ) = (δr − c)x∗d + (r − e)E[y∗ − x∗d]+ = (δr − c)x∗d + (r − e)E[D − x∗d]+, (2.8)

where (δr − c) and (r − e) represent the supplier’s profit margins in periods 1 and 2, respectively.

Over-production by the supplier in the first period

It is plausible that, by taking advantage of the lower production cost c in the first period, the

supplier may be willing to risk over-producing in the first period (i.e., produce z units in the first

period, where z is larger than the advance-order quantity x∗d placed by the manufacturer during

the first period)15. When the supplier over-produces, the supplier’s profit given in (2.8) can be

modified as:

Πd
s(z, δ) = δrx∗d − cz + rE[y∗ − x∗d]+ − eE

[[
[D − x∗d]+ − (z − x∗d)

]+]
, (2.9)

15We thank one anonymous reviewer for suggesting us to examine whether the combination of over-production and
advance-order discount can coordinate a decentralized supply chain.

49



where the supplier makes two decisions: (a) z(> x∗d), the production quantity of the supplier during

the first period, and (b) δ, the discount offered for the advance-orders.

However, in many practical instances, such an over-production strategy is seldom employed by

a supplier for the following reason. First, suppliers have finite production and inventory holding

capacities and they transact with multiple manufacturers (in addition to the one we capture in our

model). As such, suppliers would prefer to use the capacity to produce for other manufacturers

with firm orders rather than taking the risk to over-produce. Second, besides the underlying

risk of over-production, that is, the supplier ends up with certain unwanted units with virtually

zero salvage value (due to they being customized products), the opportunity cost incurred by

the supplier who uses its capacity to over-produce (i.e., produce more than the advance-order

placed by a manufacturer) is considerably high compared to the benefits that it gains from such

an overproduction strategy. Nevertheless, for the sake of completion, we analyze the case when

the supplier over-produces during the first period in Appendix B. We show that, even with over-

production by the supplier in the first period, an advance-order discount contract cannot coordinate

the supply chain.

In the remaining portion of this paper, for the ease of exposition and for tractability we shall

focus on the scenario when the supplier produces the exact quantity ordered by the manufacturer

during the first period.
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2.4.1 Optimal Advance-Order Discount Contract

By considering the profit functions given in (2.7) and (2.8), along with the manufacturer’s partici-

pation constraint, the supplier’s problem can be formulated as:

max
δ∈[0,1]

Πd
s(δ) = max

δ∈[0,1]
(δr − c)x∗d + (r − e)E[D − x∗d]+

subject to Πd
1(δ) > Πo

m ≡ (p− r)E(D),

(2.10)

where x∗d is given in (2.6). The following proposition characterizes the supplier’s optimal discount

δ̂ that solves the supplier’s problem given in (2.10).

Proposition 5. Let δ∗ ≡ 1 −
(
r−s
r

) (
e−c
e−s

)
(note that δ∗ > c

r ). In a decentralized system, the

supplier’s optimal discount δ̂ possesses the following properties:

1. The optimal discount δ̂ ∈ (δ∗, 1).

2. The supplier’s profit function Πd
s(δ) is unimodal in δ in the interval [δ∗, 1] so that the optimal

discount δ̂ is the unique solution of the first order condition dΠds
dδ = 0. Furthermore, for the

case when D ∼ N(µ, σ2), the supplier’s optimal discount δ̂ is decreasing in σ.

3. The optimal discount contract δ̂ is Pareto-improving. That is, both the supplier and the

manufacturer can obtain a higher profit than the base case (i.e., Πd
s(δ̂) > Πo

s ≡ (r − e)E(D)

and Πd
1(δ̂) > Πo

m ≡ (p− r)E(D)).

Proposition 5 has the following implications16. The first statement shows that δ̂ < 1 so that

it is beneficial for the supplier to offer a strictly positive advance-order discount. Also, observe

that δ̂r > c, which indicates that it is not required for the supplier to offer such a deep discount

that it incurs loss in the first period. The second statement of the proposition implies that when

16The proof of Proposition 5 is given in the Appendix. Note that Proposition 5 requires access to Lemma 12, which
is also given in Appendix A.
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demand becomes more uncertain, it is optimal for the supplier to offer a larger discount. The

third statement of Proposition 5 resembles a more general result stated in Theorem 7 of Özer et al.

(2007). It illustrates that the optimal discount contract δ̂ is Pareto-improving; that is, both the

supplier and the manufacturer can obtain higher profits relative to the base case associated with

rush orders.

However, it remains to determine if the advance-order discount contract can coordinate the

supply chain. To address this issue, observe from (2.7) and (2.8) that the decentralized supply

chain profit can be written as:

Πd(δ) = Πd
s(δ) + Πd

1(δ) = −cx∗d + pE(D)− eE[D − x∗d]+ + sE[x∗d −D]+, (2.11)

where x∗d is given in (2.6). By comparing (2.11) and (2.4), and by setting x∗d = x∗c , it is easy to

check that a discount contract that has δ = δ∗ ≡ 1 −
(
r−s
r

) (
e−c
e−s

)
can coordinate a decentralized

supply chain. However, from the first statement of Proposition 5 we can conclude that the supplier

will never set δ̂ = δ∗. In the following proposition we claim that the supplier optimal discount

contract can never coordinate the supply chain.

Proposition 6. In a decentralized system, the optimal advance-order discount contract δ̂ can never

coordinate the supply chain. Specifically, the supplier’s optimal discount factor δ̂ > δ∗.

Though Proposition 6 shows that the optimal discount contract δ̂ alone can never coordinate

the supply chain, the coordination will be possible if the supplier makes a transfer payment of

S = Πd
1(δ∗) − Πo

m to the manufacturer. When such a payment is made, the manufacturer is no

worse off than the base case and the supplier achieves the highest possible profit because,

S + Πo
m + Πd

s(δ
∗) = Πd

1(δ∗) + Πd
s(δ
∗) = Πc.
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Even though the supplier can combine the optimal discount contract δ̂ with a transfer payment to

coordinate the supply chain, such mechanism requires a change to the pre-existing pricing structure.

This gives rise to the following question: Without changing the existing price structure by intro-

ducing a transfer payment as discussed above, can the supplier leverage the advance-order discount

contract to coordinate the supply chain and extract the entire surplus from the manufacturer? If

such a mechanism exists, it is the optimal contract among all possible contracts because it enables

the supplier to attain the highest possible profit in a decentralized system. We shall examine such

a contract in the next section.

2.5 Advance-Order Discount Contract with a Minimum Order

Quantity

Consider the scenario in which the supplier imposes a minimum advance-order quantity q as a qual-

ifier for the manufacturer to receive a discount δ. That is, in order to benefit from a discounted

advance-order, the manufacturer has to order at least q units in the advance-order. We shall refer to

such a contract as a combined contract because it combines an advance-order discount with a min-

imum advance-order quantity. For the combined contract (δ, q) that the supplier quotes, it is easy

to check that the manufacturer’s optimal order-up-to quantity remains the same, y∗ = max{x, d},

as described in Section 2.3.2. It also follows from (2.5), and the fact that the manufacturer will

receive the discount δ only when its advance-order quantity x is as much as q, the manufacturer’s

problem in the first period can be formulated as:17

Πq
1(δ, q) = max

x>q
{(p− δr)E(D)− r(1− δ)E[D − x]+ − (δr − s)E[x−D]+}

= max
x>q
{pE(D)− rE[D − x]+ + sE[x−D]+ − δrx}.

(2.12)

17We use the sub/superscript q to denote the advance-order discount with a minimum order quantity contract.
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By considering the first order condition along with the constraint x > q, and noting that the

objective function is strictly unimodal in x, it is easy to show that the optimal initial order quantity

is:

x∗q(δ, q) = max
{
F−1

(
(1− δ)r
r − s

)
, q
}
. (2.13)

By incorporating the manufacturer’s best response function x∗q(δ, q) in (2.8) we can write the sup-

plier’s profit function as:

Πq
s(δ, q) = (δr − c)x∗q(δ, q) + (r − e)E[D − x∗q(δ, q)]+, (2.14)

and formulate the supplier’s optimization problem as follows:

max
q>0

max
δ∈[0,1]

{(δr − c)x∗q(δ, q) + (r − e)E[D − x∗q(δ, q)]+}

subject to x∗q(δ, q) = max{F−1

(
(1− δ)r
r − s

)
, q}, and

pE(D)− rE[D − x∗q(δ, q)]+ + sE[x∗q(δ, q)−D]+ − δrx∗q(δ, q) > (p− r)E(D).

(2.15)

By analyzing the supplier’s problem (2.15) for the case when x∗q(δ, q) = F−1
(

(1−δ)r
r−s

)
and for

the case when x∗q(δ, q) = q individually, and by comparing the supplier’s optimal profit associated

with these two cases, we obtain Proposition 7.

Proposition 7. The optimal combined contract (δ̃, q̃) is given by

δ̃ =
r[E(D)− E[D − q̃]+] + sE[q̃ −D]+

rq̃
, and (2.16)

q̃ = F−1

(
e− c
e− s

)
. (2.17)

Also, the optimal combined contract (δ̃, q̃) has the following properties:
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1. Relative to the coordinated discount contract δ∗, it offers a smaller discount (i.e., 1 > δ̃ >

δ∗ > c
r ).

2. It induces the manufacturer to set its initial order quantity as in the centralized case (i.e.,

x∗q(δ, q) = q̃ = x∗c).

3. It enables the supplier to extract the entire surplus from the manufacturer (i.e., Πq
1(δ̃, q̃) =

Πo
m).

4. It coordinates the supply chain (i.e., Πq
s(δ̃, q̃) + Πq

1(δ̃, q̃) = Πc).

We draw the following insights from Proposition 7. The first two statements of the proposition

quantify the optimal combined contract (δ̃, q̃). The third and the fourth statements imply that the

optimal combined contract (δ̃, q̃) can both coordinate the supply chain and enable the supplier to

extract the entire surplus from the manufacturer. Hence, the supplier achieves its highest possible

profit under the optimal combined contract. Under the optimal contract the manufacturer is made

to order q̃ = x∗c in the advance order. Further, it enables the supplier to gain a higher profit

as (δ̃r − c) > (δ∗r − c). In summary, Proposition 7 demonstrates the superior performance of

the combined contract that involves minimum order quantities. The proposition offers a plausible

explanation to why the minimum-order-quantity contracts are widely observed in practice; the

contract enables the supplier to attain the first-best solution (i.e., the highest profit) by coordinating

the supply chain.

Proposition 7 shows that the optimal combined contract (δ̃, q̃) can coordinate the decentralized

supply chain when the demand follows a general IGFR probability distribution. To examine the

impact of demand uncertainty on the optimal combined contract (δ̃, q̃) further, we consider the case

when the demand is normally distributed, which is a member of IGFR distributions. By using the

properties of the standard normal distribution, we establish the following corollary:
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Corollary 1. When D ∼ N(µ, σ2), the optimal combined contract (δ̃, q̃) given in (2.16) and (2.17)

can be simplified to:

δ̃ = 1− (r − s)[φ(k) + kΦ(k)]σ

r(µ+ kσ)
and (2.18)

q̃ = µ+ kσ, where (2.19)

k = Φ−1

(
e− c
e− s

)
.

Both the optimal discount δ̃ and the optimal minimum order quantity q̃ are increasing in µ. Fur-

thermore,

1. If e > 2c − s (i.e., when k > 0), then the optimal minimum order quantity q̃ is linearly

increasing in σ and the optimal discount δ̃ is decreasing and convex in σ.

2. If e = 2c − s (i.e., when k = 0), then the optimal minimum order quantity q̃ is independent

of σ and the optimal discount δ̃ decreases linearly in σ.

3. If e < 2c − s (i.e., when k < 0), then the optimal minimum order quantity q̃ is linearly

decreasing in σ. Also, the optimal discount δ̃ is decreasing and concave in σ if φ(Φ−1
(
e−c
e−s

)
)+(

e−c
e−s

)
Φ−1

(
e−c
e−s

)
> 0.

Corollary 1 has the following implications. First, as the mean demand increases, it is always

beneficial for the supplier to set a higher minimum order quantity (i.e., increase q̃) and to discount

less (i.e., increase δ̃). Second, when σ increases, it is optimal to set a higher minimum order

quantity q̃ (see, (2.19)) and to discount more (i.e., to set δ̃ smaller) if the expedited production cost

is sufficiently high (i.e., e > 2c − s). We can interpret the other statements in the same manner

and so omit the details.
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2.6 Discount Contracts with Delegations

In Proposition 7 we argued that the combined contract (that combines the advance-order discount

and the minimum order quantity initiated by the supplier) can enable the supplier to achieve the

first-best solution by coordinating the supply chain. By noting that the aforementioned combined

contract is initiated by the supplier, we want to verify if there is a similar contract, that when

initiated by the manufacturer, can coordinate the supply chain. In this section of the paper, we

explore and analyze such a contract.

Consider a contract in which the manufacturer can delegate its inventory decisions (i.e., order

placement and salvage decisions) to the supplier, who can lower its unit production cost from e to

c when the production is undertaken early. We term this contract as the delegation contract. In

exchange to this delegation contract, the manufacturer requires that the supplier should satisfy the

realized demand (by using either the advance production in period 1 or the expedited production

in period 2) and offer a discounted price θr, where θ < 1, on all the units. Now, it is not clear if

the supplier should accept such a delegation contract offered by the manufacturer18.

2.6.1 Supplier’s Problem under the Delegation Contract

In the event that the supplier rejects the delegation contract offered by the manufacturer, the

manufacturer’s expected profit is Πo
m = (p − r)E(D) and the supplier’s expected profit is Πo

s =

(r − e)E(D), see (2.1) and (2.2). On the other hand, should the supplier accept the delegation

contract, then the manufacturer is passive (because the manufacturer delegates all the ordering

decisions and the salvage operations to the supplier). In such a case, the manufacturer’s expected

18Our delegation contract is akin to the vendor managed inventory (VMI) agreement under which the manufacturer
manages the replenishments on behalf the retailer (for example see, Lee et al. (1997) and Aviv and Federgruen (1998)).
To execute this delegation contract, the supplier needs to observe the realized demand as in most VMI contracts
(Çetinkaya and Lee, 2000; Disney and Towill, 2003).
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profit becomes Πg
m(θ) = (p − θr)E(D), with θr as the discounted purchase price19. Clearly, the

manufacturer is better off under the delegation contract because θ < 1. It remains to check if the

supplier is not worse off under the delegation contract so that it may participate in the contract.

Under the delegation contract, the supplier (and not the manufacturer) has to determine its

advance production quantity x in the first period, and its produce-up-to level y in the second period.

Additionally, the supplier should also account for the salvage operations after the selling season.

For a given advance-production quantity x in the first period and a realization d of the demand,

the supplier determines its produce-up-to level y by solving the following problem:

Πg
s,2(x, d; θ) = max

y>x
{θrd− e[y − x]+ + s[y − d]+},

where the addends in the right hand side denote the revenue from the manufacturer based on the

realized demand d, the expedited production cost in the second period, and the salvage income,

in that order. It is easy to see that the optimal produce-up-to quantity is y∗ = max{x, d}, and so

Πg
s,2(x, d; θ) can be simplified as:

Πg
s,2(x, d; θ) = θrd− e[d− x]+ + s[x− d]+. (2.20)

Using a dynamic program the supplier’s problem in the first period can be formulated:

Πg
s,1(θ) = max

x>0
{−cx+ E

[
Πg
s,2(x,D; θ)

]
}

= max
x>0
{(θr − c)E(D)− (e− c)E[D − x]+ − (c− s)E[x−D]+}.

(2.21)

From the first-order condition, the optimal advance production quantity x∗ that is to be produced

19We use the sub/superscript g to denote the delegation contract.
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in the first period can be shown to be:

x∗g = F−1

(
e− c
e− s

)
. (2.22)

Observe that the advance production quantity x∗g given in (2.22) is identical to the optimal

initial order quantity x∗c given in (2.3) under the centralized case. By substituting x∗g in (2.21), we

can write the supplier’s optimal profit under the delegation contract as:

Πg
s,1(θ) = (θr − c)E(D)− (e− c)E[D − x∗g]+ − (c− s)E[x∗g −D]+. (2.23)

By using the fact that Πg
m(θ) = (p−θr)E(D), we can show that the total supply chain profit under

the delegation contract is:

Πg
s,1(θ) + Πg

m(θ) = (p− c)E(D)− (e− c)E[D − x∗g]+ − (c− s)E[x∗g −D]+.

Then, because x∗g = x∗c , we have Πg
s,1(θ)+Πg

m(θ) = Πc, where Πc is the optimal centrally controlled

supply chain profit that is given in (2.4). Therefore, we conclude that the delegation contract

coordinates the supply chain.

2.6.2 Discount Factor

In this section, we examine the existence of a discount factor θ that can facilitate a discount contract

with delegation to coordinate the supply chain. The crux of the discount factor selection hinges

on the following two factors. First, observe from (2.22) that x∗g is independent of the discount

factor θ. This indicates that the supplier’s profit Πg
s,1(θ) given in (2.23) is linearly increasing in θ

and the supplier will not be worse off as long as Πg
s,1(θ) > (r − e)E(D). Second, observe that the
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manufacturer’s profit Πg
m(θ) = (p − θr)E(D) is linearly decreasing in θ. Hence, the manufacturer

will be better off if θ < 1.

The above two factors imply that the existence of such a delegation contract (in combination

with advance order discount) hinges on the existence of a nonempty region that satisfies these two

conditions: (a) θ < 1 (i.e., manufacturer’s participation constraint), and (b) θ > θ (i.e., supplier’s

participation constraint), where θ is derived from the condition Πg
s,1(θ) > (r − e)E(D) as follows:

(θr − c)E(D)− (e− c)E[D − x∗g]+ − (c− s)E[x∗g −D]+ > (r − e)E(D) (2.24)

⇒ θ >
1

rE(D)

[
(r − e+ c)E(D) + (e− c)E[D − x∗g]+ + (c− s)E[x∗g −D]+

]
≡ θ.

Hence, any delegation contract θ that has θ ∈ [θ, 1) will ensure the supplier is not worse off and

make the manufacturer strictly better off under the discount contract with delegation. Therefore,

a delegation contract that coordinates the decentralized supply chain and is Pareto-improving is

possible if, and only if, θ < 1. Proposition 8 provides the necessary and sufficient for such a

delegation contract to exist when the demand is normally distributed.

Proposition 8. Let D ∼ N(µ, σ2). Then θ < 1 if and only if σ
µ <

Φ(k)
φ(k) , where k = Φ−1

(
e−c
e−s

)
.

Proposition 8 provides the necessary and sufficient condition for a Pareto-improving delegation

contract that can coordinate the supply chain to exist. This condition depends on the magnitude

of the demand uncertainty (measured in terms of the coefficient of variation, σ
µ). A delegation

contract exists only when the demand uncertainty is below a certain threshold that depends on the

underlying cost parameters e, c, and s. Thus, we demonstrate that when the demand uncertainty

is sufficiently low, the discount contract with delegation is favorable to both the supplier and the

manufacturer, who delegates the ordering and salvage decisions to the supplier and benefits from

a lower price θr.
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Proposition 8 has other implications as well. Specifically, when the stated condition holds, such

a Pareto-improving delegation contract is not unique; any delegation contract with θ ∈ [θ, 1) can

ensure the supplier is not worse off (i.e., Πg
s,1(θ) > (r− e)µ) and the manufacturer is strictly better

off. In the light of this observation and our discussion hitherto, we conclude the following. First,

if the delegation contract is proposed by the supplier, then the supplier will propose the highest

discount factor θ that is as close to 1 as possible so that the manufacturer is strictly better off

and the supplier is substantially better off (because Πg
s,1(θ) given in (2.23) is linearly increasing

in θ). Second, if the delegation contract is proposed by the manufacturer, then the manufacturer

will propose the lowest discount factor θ = θ so that the supplier is not worse off and yet the

manufacturer is considerably better off (because the manufacturer’s profit Πg
m(θ) = (p− θr)E(D)

is linearly decreasing in θ). In practice, the implementation of this form of delegation contract

involves negotiations between the supplier and the manufacturer, and the actual value of θ ∈ [θ, 1)

that is agreed upon would depend on many factors including the bargaining power of each party.

2.7 Optimal Advance-Order Discount Contract with Two Manu-

facturers

In this section we extend our model to analyze the advance-order discount contract when there is

more than one manufacturer. We consider a model with two manufacturers who simultaneously

source from a single supplier. It is well known from the past literature that manufacturers compete

for supplier’s capacity by strategically inflating their orders to game the rationing policy that the

supplier adopts when capacity is finite (see Lee et al. (1997), Cachon and Lariviere (1999), Cho and

Tang (2014), and the references therein). Even in a single-period setting, the analysis for finding

an efficient allocation rule Ai(x1, x2), i = {1, 2}, that allocates the supplier’s capacity between
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the manufacturers, for a given order quantities xi, i = {1, 2}, they place, is complicated. For the

optimal advance-order discount contract in a two-period problem, the supplier’s decisions include

the discounts δi and the capacity allocations Ati(x1, x2), for i = {1, 2} and t = {1, 2}. On the other

hand, the decisions of manufacturer i include the advance-order quantity xi and the second-period

order-up-to quantity yi, i = {1, 2}. Thus, the two-stage game with three players consists of 10

decisions (6 for supplier and 2 for each manufacturer), rendering it intractable. Moreover, because

our focus in this paper is on the advance-order discount contracts, minimum-order quantity, and

delegation, and on designing an efficient combined contract to coordinate the supply chain in a

Pareto-improving manner, we defer the inclusion of capacity constraints and the analysis of the

potential allocation rules to future research.

Though we do not analyze the generic case of the two-period game with finite supplier capacity

in each of the periods, we examine a specific setting in which the supplier has a finite capacity K

in the first period, but unlimited capacity in the second period. Also, the manufacturer pays a

discounted price for all the units that are ordered in advance. Note that we do not restrict the sum

of the advance orders from the two manufacturers to be less than K. We show that:

• The advance-order discount contract cannot coordinate the supply chain.

• When advance-order discount δi is combined with minimum order quantity q̃i for each man-

ufacturer i ∈ {1, 2}, the combined contract can coordinate the supply chain.

• The coordinating delegation contract exists if and only if the coefficients of variation of the

demands of the manufacturers are small (specifically, we require σ1+σ2
µ1+µ2

to be below a threshold,

where σi and µi are the standard deviation and mean of the demands of manufacturer i ∈

{1, 2}, respectively).

For a detailed analysis of the two-manufacturer case, we refer the reader to Chintapalli et al. (2017).
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2.8 Conclusions and Future Directions

In this paper, we have examined three supply chain contracts that are applicable in the context

when the supplier can afford to offer advance-order discounts to its manufacturer, who places its

order before the uncertain demand is realized. We showed that the optimal advance-order discount

contract is Pareto-improving, but it can never coordinate the supply chain because of some loss in

efficiency from decentralization.

This finding led us to examine whether the supplier can leverage the advance-order discount

contract to design a mechanism that can coordinate the supply chain. We found that if the supplier

offers a combined contract that is based on the advance-order discount and a minimum advance-

order quantity, then such a contract can coordinate the supply chain. More importantly, the

supplier can achieve the first-best solution by extracting the entire surplus from the manufacturer.

Finally, we considered another contract that could be proposed by the manufacturer or the

supplier where, in exchange to a discount θ on all the items procured from the supplier, the manu-

facturer delegates its ordering decisions and the salvaging activities to the supplier. We found that,

under some mild conditions on the demand distribution, the delegation contract can coordinate the

supply chain and that the total profit could be arbitrarily (within a range) apportioned between

the manufacturer and the supplier. We showed that the combined advance-order discount and

minimum order quantity contract that coordinates a supply chain always exists and we derived a

necessary and sufficient condition for a combined advance-order discount and delegation contract

to exist. We found that our results continue to hold in the case when there are two manufacturers,

and when the supplier has limited capacity K in the first period and unlimited capacity in the

second period.

The model presented in this paper has several limitations that can serve as potential directions
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of future research. First, in our model we assume that the demand is fully realized in the sec-

ond period (i.e., the manufacturer receives firm orders from its retailers). However, there may be

practical cases when the demand uncertainty is not fully resolved. Even though the same solution

procedure applies, it is of interest to extend our analysis to the case of demand updating over mul-

tiple time periods and explore the nature of contracts over the sale horizon. Second, our model did

not capture supplier’s capacity constraints in both periods. When the supplier has limited capacity

in both periods, the strategic interaction between the supplier and the manufacturer becomes quite

intricate. Specifically, it is of interest to explore the impact of supplier’s capacity on the supplier’s

decisions regarding the advance-order discount factor, the minimum order quantity, capacity ra-

tioning policy and the like. For instance, when the supplier’s capacity is limited, manufacturers

may anticipate capacity rationing and hence inflate their orders (see Cho and Tang (2014) and the

references therein) making the analysis substantially more complex. We shall defer these issues to

future research.
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Chapter 3 The Impact of Crop Minimum Support Prices on Crop

Selection and Farmer Welfare in the presence of Strate-

gic Farmers and Complementary Production Costs

Abstract

In many developing countries, governments often use Minimum support prices (MSPs) as inter-

ventions to (i) safeguard farmers’ income against crop price falls, and (ii) ensure sufficient and

balanced production of different crops. In this paper, we examine two questions: (1) What is the

impact of MSPs on the farmers’ crop selection and production decisions, future crop availabilities,

and farmers’ expected profits? (2) What is the impact of strategic farmers on crop selection and

production decisions, future crop availabilities, and farmers’ expected profits? To explore these

questions, we present a model in which the market consists of two types of farmers (with heteroge-

neous production costs): myopic farmers (who make their crop selection and production decisions

based on recent market prices) and strategic farmers (who make their decisions by taking all other

farmers’ decisions into consideration). By examining the dynamic interactions among these farmers

for the case when there are two (complementary or substitutable) crops for each farmer to select

to grow, we obtain the following results. First, we show that, regardless of the values of the MSPs

offered to the crops, the price disparity between the crops worsens as the complementarity between

the crops increases. Second, we find that MSP is not always beneficial. In fact, offering MSP for
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a crop can hurt the profit of those farmers who grow that crop especially when the proportion of

strategic farmers is sufficiently small. Third, a bad choice of MSPs can cause the expected quantity

disparity between crops to worsen. By taking these two drawbacks of MSPs into consideration, we

discuss ways to select effective MSPs that can improve farmers’ expected profit and reduce quantity

disparity between crops.

Keywords

Minimum support prices, subsidies, agricultural supply chains, government and public policy

3.1 Introduction

In many developing countries, the agricultural sector is important because: (1) it offers a source

of income to a large number of small rural households, and (2) it provides a stable food supply for

the country. As such, developing efficient and effective agro-policies to improve farmers’ earnings

and to stabilize crop availabilities and prices are critical (Thorbecke, 1982). While governments in

developing countries design and develop a wide variety of agro-policies ranging from input subsidies

(for seeds and fertilizers, power, etc.) to output subsidies (for storage and transportation), in this

paper, we shall focus on a particular type of output subsidies that is called the Minimum Support

Price (MSPs). MSPs for different crops are offered by governments in many developing countries

like Bangladesh, Brazil, China, India, Pakistan, and Thailand. For example, in 2017, the Indian

government offers MSPs for 23 crops, which comprise 7 cereals, 5 pulses (grain seeds of legumes),

7 oil seeds, and 4 commercial crops. Essentially, MSP of a crop serves as a form of “contingent

subsidy” to farmers who grow that crop: when the market price of a crop falls below its MSP,

government purchases the crop from the farmers at the pre-announced MSP of the crop by absorbing

the price shortfall (i.e., the difference between the market price and the MSP). By guaranteeing
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minimum prices for certain crops, a government intends to provide incentives for farmers to grow

a more balanced mixture of crops.

This paper examines the implications of MSPs on: (1) farmers’ earnings, and (2) quantity

disparity between two crops. Our model is based on the setting of a developing country. To

motivate our research questions involving MSPs, let us consider the role played by MSPs in the

Indian agricultural sector. MSPs have been introduced as a part of the Green Revolution in

1965 when India’s cereal imports reached an alarming stage. This event has triggered the Indian

government to establish the Commission for Agricultural Costs & Prices (CACP) with the mandate

to develop crop-price policies. As a part of these reforms, MSPs were introduced as incentives to

benefit Indian farmers and consumers by increasing food supply at affordable prices (Chand, 2003;

Malamasuri et al., 2013).1 With an efficient MSP scheme developed by CACP over the years, India

evolved from a grain “deficient” country in mid-1960’s to a grain “surplus” country by early 1980’s.

However, due to the fact that MSPs in India were geared towards rice and wheat production, there

was a severe shortage of coarse cereals and oil seeds (Chand, 2003; Parikh and Chandrashekhar,

2007) and an over-production of rice and wheat. Such an imbalance in the availability of agricultural

commodities can lead to micro-nutrient malnutrition (or hidden hunger) (Byerlee et al., 2007). This

observation suggests that the efficacy of MSPs should be measured in terms of the availability of

different crops and the farmers’ expected earnings.

In this paper we develop a parsimonious model to analyze the impact of MSPs on farmers’

1When determining MSPs, CACP takes into account six factors, namely (i) demand and supply, (ii) cost of
production, (iii) market price trends, (iv) inter-crop price parity, (v) terms of trade between agriculture and non-
agriculture, and (vi) likely implications of MSP on consumers of that product (Commission for Agricultural Costs
& Prices, 2017). In our analysis we take into account the factors (i), (ii), (iii), (iv) and (vi). We account for the
supply through considering the response of the farmers’ sowing decisions towards the MSPs announced. We account
for the demand through the inverse demand functions of the crops. By assuming that the farmers are heterogeneous
in their production costs for the two crops, we account for (ii). Based on his type – strategic or myopic – each farmer
considers the past price of the crops in a specific way. Thus, we account for (iii) through farmers’ perceptions of past
prices. We account for (iv) through farmers’ individual rationality and their choice of the crops in the light of the
past prices and the MSPs of the crops. Finally, we account for (vi) by analyzing the impact of MSP, in confluence
with the past market prices, on the future market prices. Thus, we make an attempt to develop a unified framework
using a parsimonious model with two crops to comprehensively capture the main features of an MSP scheme.
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earnings, crop availabilities, and crop prices by considering a setting in which there are two (com-

plementary or substitutable) crops from which each farmer can choose one crop to cultivate. In

addition to heterogeneous production costs for each crop, we also consider the case when the market

is comprised of myopic farmers (who make their crop selection and production decisions based on

recent market pries) and strategic farmers (who make their decisions by taking all other farmers’

decisions into consideration). By examining the dynamic interactions among myopic and strategic

farmers, our model enables us to examine two research questions:

1. What is the impact of MSPs on the farmers’ crop selection and production decisions, future

crop availabilities, and farmers’ expected revenues?

2. What is the impact of strategic farmers on crop selection and production decisions, future

crop availabilities, and farmers’ expected revenues?

Our equilibrium analysis enables us to obtain the following results. First, we find in Corollaries

2 and 7 that, regardless of the values of MSPs, the price disparity between the crops worsens as

the complementarity between the crops increases. Second, we show in Proposition 13 that MSP

is not always beneficial. In Proposition 13, specifically, we show that moderately low MSP for a

crop will degrade the expected profits of the farmers growing the crop if the number of strategic

farmers is very small. Thus, choosing an inappropriate MSP for a crop, especially when there

are very few strategic farmers, can actually defeat the intended goal of offering MSP for the crop,

which is to benefit the farmers growing the crop. Also, we show in Proposition 12 that when

the proportion of strategic farmers is small, offering moderately low MSP for a crop can actually

cause fewer strategic farmers to grow that crop. Third, in Proposition 11, we find that the total

production of a crop is increasing in the MSP offered for the crop. Therefore, a bad choice of

MSPs can cause the production quantity disparity between crops to worsen. Hence, to reduce
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quantity disparity between crops, a carefully designed MSP policy is critical. Finally, through

formulating an optimization problem for a policy-maker to choose crop MSPs in order to maximize

social welfare, we illustrate that offering MSPs to complementary (i.e., dissimilar) crops has the

potential to achieve higher social welfare at a lower expected expenditure to the policy-maker.

The paper is organized as follows. Section 2 reviews literature related to MSPs. In Section 3

we introduce the model and discuss various assumptions. To explicate our analysis about myopic

and strategic farmers’ crop selection and production decisions, we examine the case when MSPs

are not present in Section 4. Section 5 extends our analysis to the case when MSPs are present. In

Section 6 we formulate and discuss the optimization problem of the government whose objective is

to set MSPs in order to improve farmers’ welfare and crop balance. We conclude in Section 7.

3.2 Literature Review

Our research pertains to agro-policies that affect both crop selection and crop production by myopic

and strategic farmers. The literature on MSPs is vast in the agricultural economics discipline and

the reader is referred to Tripathi et al. (2013) and the references therein for a good synopsis on MSPs

in developing countries. Without accounting for the price interactions between crops with MSP

support and those crops without MSP support, Fox (1956) develops macro-economics analysis to

evaluate the impact of MSPs and finds that MSPs can mitigate the fall in GNP during a recession.

Dantwala (1967) finds that in spite of the increasing MSPs, the crop market prices continue to rise.

More recently, Subbarao et al. (2011) shows evidence that the increase in market price is caused

by the increase in MSPs. In the same vein, Chand (2003) presents qualitative assessment of the

ill-effects of the wheat- and-rice-centric MSPs on the Indian economy. Chhatre et al. (2016) point

out that many farmers in India moved to cultivating high-yield varieties of rice and wheat due to

the wheat- and-rice-centric MSPs offered by the Indian government. The authors also identify the
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various socio-economic and environmental problems associated with an improper choice of MSPs.

Besides the Indian context, Spitze (1978) analyzes the impact of federal policy (The Food and

Agriculture Act of 1977) on agriculture in the United States. The author states that continuous

improvement in gathering and analyzing information is a prerequisite for the design of effective

MSPs.

Recent papers on agricultural operations in OM literature include: (i) Tang et al. (2015); Chen

and Tang (2015); Parker et al. (2016); Liao et al. (2017) focus on the economic value of disseminating

agricultural information to the farmers, (ii) Kazaz and Webster (2011); Dawande et al. (2013); Huh

and Lall (2013) examine the issue of resource and inventory management, (iii) Huh et al. (2012);

Federgruen et al. (2015); An et al. (2015) focus on contract farming and farmer aggregation, and

(iv) Hu et al. (2016); Alizamir et al. (2015); Guda et al. (2016) examine social responsibility and

public policy issues arising from the agricultural sector.

While our paper is related to group (iv), it differs from the these papers in the following manner.

First, Hu et al. (2016) focus on the value of strategic farmers in the context of a single crop with a

deterministic demand function. They show that a tiny fraction of strategic farmers can stabilize the

steady state prices. They also extend their analysis to two crops with independent market prices.

In contrast, our goal is to evaluate the impact of MSPs on farmers’ crop selection and production

decisions, and on the market prices of two crops with dependent and yet stochastic market price.

Second, Alizamir et al. (2015) focus on the impact of federal policy on agriculture industry in

the United States. They compare two schemes (Price Loss Coverage (PLC) and the Agriculture

Risk Coverage (ARC) programs) with respect to (i) farmers’ welfare, (ii) federal expenditure, and

(iii) consumer welfare. While PLC is akin to MSP, our paper differs from Alizamir et al. (2015) in

three aspects. First, they assume there are finite number of farmers, and the production of each

farmer can affect the market price (i.e., farmers are price setters). In contrast, our context is that
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of developing countries, and we consider infinitesimally small farmers whose individual decisions

do not affect the market price (i.e., farmers are price-takers). Second, they analyze the case of only

one crop, while we consider two crops that can be substitutes or complements. Hence, by capturing

the interaction between two crops in our model, we analyze the simultaneous impact of the MSP

of each crop on the production of both the crops. Third, they do not consider the existence of

myopic and strategic farmers, while we consider a mixture of both myopic and strategic farmers

in our model. Our model fits well in the context of developing countries where a large portion

of the farming communities are smallholders who are myopic: their crop selection and production

decisions are purely based on the most recently oberved market price.

Finally, Guda et al. (2016) examine the role of MSPs in emerging economies, but there are

two fundamental differences between our paper and theirs. The first difference is that we assume

heterogeneity in farmers’ production costs, while they assume homogeneous production costs. In

general, the cost of cultivating a crop can vary across farmers depending on the local soil, the

climatic conditions, and the farming practices they employ. Second, they consider a single crop

and relegate the case of multiple crops as future research due to the inherent complexity. As such,

our paper attempts to examine the impact of the MSPs of two crops on the availabilities of one

another.

3.3 Model Preliminaries

We consider two crops (A and B) to be produced by heterogeneous farmers whose production costs

are uniformly distributed over the interval [−0.5, 0.5] as in the Hotelling’s model. These two crops

can be substitutes (e.g., rice and wheat) or complements (e.g., rice and pulses/lentils). For a farmer

located at x ∈ [−0.5, 0.5], his costs of producing crops A and B are given by cA(x) = x + 0.5 and

cB(x) = 0.5 − x, respectively. We assume that the farmers are infinitesimally small so that each
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farmer can produce 1 unit of a crop and each farmer is a price taker.

In our model, the market price of a crop depends on the available quantity of the crop. Let qkTt

denote the “total” availability of crop k ∈ {A,B} in period t and let pkt denote the market price

of crop k ∈ {A,B} in period t. For ease of exposition, we normalize the size of markets to 1 so

that qkTt 6 1 for k ∈ {A,B}. Throughout this paper, we assume that the market price ptk for crop

k ∈ {A,B} in period t satisfies:

pAt = a− ρqATt − αqBTt + εAt = E[pAt ] + εAt , and

pBt = a− αqATt − ρqBTt + εBt = E[pBt ] + εBt , (3.1)

where ρ (> 0) is the price sensitivity, and α is a measure of substitutability (if α > 0) or com-

plementarity (if α < 0) between the two crops. As commonly assumed in the literature for

substitutable/complementary products, we shall assume that α < ρ. The random variables εkt

(k ∈ {A,B}) denote the market uncertainty in period t. We assume εkt are iid (across t and k) with

mean 0, variance σ2 and with distribution and density functions F (·) and f(·), respectively.2 We

also assume that the distribution F (·) has support over a range of value so that the market price

pkt in non-negative. Let F (·) = (1−F (·)) denote the complementary cumulative distribution of εkt .

The expected profit of a farmer at location x who grows crop k ∈ {A,B} is given by:

Πk
t (x) = E[pkt ]− ck(x) = a− ρqkTt − αq

jT
t − ck(x), j 6= k. (3.2)

For ease of exposition, we define r ≡ ρ−α (> 0), so that r measures the “dissimilarity” between

the two crops, and φ ≡ a− ρ+α
2 , which corresponds to the expected market price when half of the

market grows A (grows B) (i.e., when qATt = qBTt = 0.5). Finally, wherever applicable, we denote

2To keep the notation simple, we assume that εAt and εBt follow the same distribution. However, our analysis can
be extended to the case of different distributions.
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the price vector in period t by Pt = [pAt , p
B
t ]T . To simplify our exposition and our analysis (e.g.,

by ruling out the boundary equilibrium solution), we shall make the following assumptions:

Assumption 4. In each period, each farmer will not be idle and will select exactly one crop to

grow.

First, the non-idling assumption is reasonable especially when the farmer’s production cost is

lower than the market price pkt in general. Second, due to economies of scale, small land-holders in

emerging markets cannot afford to grow multiple crops.

Next, let ∆pt be the price disparity between crops A and B in period t. By applying (3.1) and

the fact that r = ρ− α, we obtain:

∆pt = pAt − pBt = −r(qATt − qBTt ) + ξt, ∀t,

where ξt = εAt − εBt . To ensure that the price disparity ∆pt is stable over time so that we can rule

out boundary equilibrium solution, we shall make the following assumption.

Assumption 5. The dissimilarity between two crops r satisfies: 0 < r ≡ (ρ − α) < 1. Also, the

variance of the market uncertainty is sufficiently less than 1 (i.e., σ2 << 1).

Since, r measures the “dissimilarity” between two crops, we can treat the crops to be substitutes

if r is small and to be complements if r is large. Furthermore, because 0 < r < 1 , |qAt − qBt | 6 1,

and E[ξt] = 0, it is easy to check that |E[∆pt]| 6 r < 1, for all t. Furthermore, when |E[∆pt]| 6 1

and σ2 << 1, we can ascertain that |∆pt| < 1 nearly always holds so that we can effectively assume

P(|∆pt| < 1) u 1.3

3We formalize this finding in the lemma below.

Lemma 4. Let the random variable X ∼ U [−β, β] denote the type of the farmer so that the production costs of crops
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Assumption 6. There are two types of farmers in the market: myopic and strategic. Also, the

proportion of strategic farmers is θ ∈ [0, 1].

In our model, we assume that myopic farmers are those who make their crop selection and

production decisions purely based on recent market prices. However, strategic farmers are forward

looking, and they make their decisions by taking all other farmers’ decisions into consideration. For

the convenience of notation, we define z+ = max{z, 0} and let θ ≡ (1− θ) throughout this paper.

3.4 Model Analysis: In the Absence of MSPs

To explicate the analysis that involves crop selection and crop production by myopic and strategic

farmers with heterogeneous production costs, we first examine the case when MSPs are absent.

(We shall extend our analysis to the case when MSPs are present in Section 3.5.) By considering

different decision making mechanisms adopted by different types of farmers, we now determine

their crop selection and production decisions in period t for any realized market prices in period

t− 1 (i.e., pkt−1 for k ∈ {A,B}).

Myopic farmers’ crop selection and production decisions in period t

Let qkmt denote the quantity of crop k ∈ {A,B} to be produced by the myopic farmers in period

t, and let pkmt denote the price of crop k in period t as “anticipated” by the myopic farmers.

In our model, each myopic farmer anticipates that pkmt = pkt−1, k ∈ {A,B}. Hence, a myopic

farmer at x ∈ [−0.5, 0.5] will grow crop A if pAmt − cA(x) > pBmt − cB(x), and will grow crop B,

A and B for farmer who is located at X = x are given by x+ β and β − x respectively. Then,

P
(
|pAt − pBt | > 2β

)
6 P (|ξt| > 2β(1− r)) 6 σ2

2β2(1− r)2
, where ξt = εAt − εBt .

Hence, for a given r ∈ (0, 1), we have P (|∆pt| > 2β)→ 0 if β >> σ.

Without loss of generality, we scale β to 1 in our model and assume that σ is sufficiently small (i.e., σ << 1).
Hence, by virtue of Lemma 4, there will be a positive production of each crop in every period.
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otherwise. Observe that the myopic farmer located in τm is indifferent between the two crops, where

τm = {x : pAmt − cA(x) = pBmt − cB(x)}. Because pkmt = pkt−1 for k ∈ {A,B}, τm =
pAt−1−pBt−1

2 .

By applying Assumption 5, we can conclude that τm ∈ (−0.5, 0.5). Given the threshold τm,

the segment {x : −0.5 6 x < τm} of myopic farmers will grow only crop A, while the segment

{x : τm < x 6 0.5} of myopic farmers will grow only crop B.

Strategic farmers’ crop selection and production decisions in period t

Let qkst denote the quantity of crop k ∈ {A,B} to be produced by the strategic farmers in period

t, and let pkst denote the price of crop k in period t as “anticipated” by the strategic farmers.

By taking all other farmers’ decisions into consideration, we shall show that strategic farmers can

actually anticipate the expected market price in equilibrium so that pkst = E[pkt ]. Also, we shall

show later that, among the strategic farmers, the segment {x : −0.5 6 x < τ s} will grow only A

and the segment {x : τ s < x 6 0.5} will grow only B, where τ s ≡ τ s(pAst , pBst ) = {x : pAst − cA(x) =

pBst − cB(x)}. (We shall determine the threshold τ s value in Proposition 9).

Let us illustrate the decisions of different types of framers graphically. Without loss of generality,

let us consider the case when pAt−1 > pBt−1. Figure 3.1 depicts the crop selection and production

decisions of myopic and strategic farmers. Also, by noting that the market consists of θ strategic

and θ ≡ (1−θ) myopic farmers, the figure depicts the overall crop selection and production. Recall

that τ s and τm are the threshold values associated with the myopic and the strategic farmers,

respectively. Therefore, the total quantities of crop A produced by the myopic and the strategic

farmers are qAmt = θ(τm + 0.5) and qAst = θ(τ s + 0.5), respectively. Thus, the total availability

of crop A in period t is given by qATt = qAmt + qAst = θ(τ s + 0.5) + θ(τm + 0.5) = τ + 0.5, where

τ = θτ s + θτm. (Regarding the availability of crop B, it is easy to see that the fraction of myopic

farmers producing crop B is given by 0.5 − τm and that of strategic farmers producing crop B is
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Figure 3.1: Total product availability when θ ∈ [0, 1] farmers are strategic and pAt−1 > pBt−1.

0.5− τ s. Hence, the total availability of crop B is qBTt = θ(0.5− τ s) + θ(0.5− τm) = 0.5− τ .)

3.4.1 Farmers’ crop selection and production decisions in period t in equilibrium

While the threshold τm has been established earlier, the determination of the threshold τ s is more

involved because each strategic farmer takes the crop selection and production decisions of all other

farmers into consideration. We now present the following proposition that states the farmers’ crop

selection and production decisions in period t as depicted in Figure 3.1. In preparation, let us

define a term that will prove useful in our analysis. Let:

r̂ =
θr

1 + rθ
, (3.3)

where r ≡ (ρ − α) > 0 measures the “dissimilarity” between the two crops. Notice that r̂ is

increasing in r.
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Proposition 9. (Crop selection and production decisions in period t for any realized

Pt−1) For any realized prices Pt−1, the equilibrium crop selection and production decisions of the

farmers in period t can be described as follows:

1. Myopic farmers’ decisions: The amount of crop A produced by myopic farmers is given

by qAmt = θ(τm + 0.5), where τm =
pAt−1−pBt−1

2 = ∆pt−1

2 ∈ [−0.5, 0.5].

2. Strategic farmers’ decisions: The amount of crop A produced by strategic farmers is given

by qAst = θ(τ s + 0.5), where τ s = −r̂τm ∈ [−0.5, 0.5].

3. Total production: The total production of crop A is given by qATt = τ + 0.5, where τ =

θτ s + θτm =
(
r̂
r

)
τm ∈ [−0.5, 0.5].

Even though we focus on crop A in the above proposition, the quantity of crop B produced by myopic

and strategic farmers can be obtained through symmetry as qBmt = 0.5 − τm and qBst = 0.5 − τ s,

respectively. Also, the total production of crop B is qBTt = 0.5− τ .

For any given proportion of strategic farmers θ in the market, the first and the second statements

of Proposition 9 describe the equilibrium production decisions of the myopic and strategic farmers

through the threshold values τm and τ s, respectively. By combining the corresponding production

decisions of these two types of farmers, the third statement gives the total availability of each crop in

equilibrium. It is interesting to note that, when θ = 1 (i.e., all the farmers are strategic), τ = τ s = 0

so that qAst = qBst = 0.5. Hence, when the market consists of strategic farmers only, half of the

strategic farmers will grow A and the remaining half will grow B. Also, the realized market price

in period (t − 1) has no bearing on the strategic farmers’ crop selection and production decisions

in period t.

Before we proceed, let us calculate the equilibrium expected crop prices as follows. Recall that

φ = a− ρ+α
2 and ∆pt−1 = pAt−1 − pBt−1. Also, by recalling from the third statement of Proposition
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9 that qATt = τ + 0.5 and qBTt = 0.5− τ , we can apply (3.1) to show that:

E[pAt ] = φ− rτ = φ− r̂τm = φ− r̂

2

(
pAt−1 − pBt−1

)
= φ− r̂

2
∆pt−1, and

E[pBt ] = φ+ rτ = φ+ r̂τm = φ+
r̂

2

(
pAt−1 − pBt−1

)
= φ+

r̂

2
∆pt−1. (3.4)

Also, for any location x ∈ [−0.5, 0.5], let πmt (x) and πst (x) denote the equilibrium profits of a

myopic and a strategic farmers who is located at x, respectively. By using (3.2) and Proposition 9

that a farmer of type v ∈ {m, s} will grow crop A if x 6 τv, and will grow crop B, otherwise, we

can apply (3.4) and the production costs cA(x) = 0.5 + x and cB(x) = 0.5 − x to show that the

profit of a farmer of type v ∈ {m, s} located at x is given as:

πvt (x) =


ΠA
t (x) = E[pAt ]− cA(x) = φ− r̂

2∆pt−1 − (x+ 0.5) if x 6 τv,

ΠB
t (x) = E[pBt ]− cB(x) = φ+ r̂

2∆pt−1 − (0.5− x) if x > τv.

(3.5)

3.4.2 Impact of crop dissimilarity r

Now, let us use the results stated in Proposition 9 to examine the effect of dissimilarity between

the crops (i.e., r) on the crop availability disparity (i.e., ∆qt ≡ qATt − qBTt ) and crop price disparity

(i.e., ∆pt ≡ pAt − pBt ) in period t. First, from the third statement of Proposition 9, it is easy to

check that ∆qt = qATt − qBTt = 2τ , where τ =
(
r̂
r

)
τm. In this case, by considering (3.3), we can

conclude that the crop availability disparity |∆qt| is decreasing in the crop dissimilarity r when

θ > 0 and it is independent of r when θ = 0. This result implies that the presence of strategic

farmers can improve the balance of crop availability.

Next, let us examine the crop price disparity (i.e., ∆pt ≡ pAt − pBt ) in period t. From (3.4) we

obtain |E[∆pt]| = |E[pAt −pBt ]| = r̂ ·|−∆pt−1|. Because the term r̂ given in (3.3) is increasing in r, we
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can conclude that the expected crop price disparity is increasing in crop dissimilarity r. Moreover,

because r̂ < r < 1, we can conclude that the expected crop price disparity will be dampened over

time. The key results can be summarized in the following corollary:

Corollary 2 (Impact of crop dissimilarity r).

1. Crop availability disparity: The disparity between the total production quantities of the

crops decreases with r if there are strategic farmers. That is ∂|∆qt|
∂r < 0 if θ > 0, where

∆qt = qATt − qBTt . However, if θ = 0, then ∂|∆qt|
∂r = 0.

2. Crop price disparity: The expected disparity between the two crop prices increases with the

crop dissimilarity r. That is ∂|E∆pt|
∂r > 0.

3.4.3 Impact of recent market prices Pt−1

We now use the results stated in Proposition 9 to examine the impact of the realized market

prices Pt−1 in period t − 1 on the production decisions of different types of farmers in period

t. To avoid repetition, we shall focus on the case when ∆pt−1 = pAt−1 − pBt−1 > 0. (The case

when ∆pt−1 = pAt−1 − pBt−1 < 0 can be analyzed in the exact manner.) By applying the results

in Proposition 9 (i.e., qAmt = θ(τm + 0.5), qAst = θ(τ s + 0.5), and qATt = τ + 0.5), we obtain the

following results:

Corollary 3 (Impact of realized market prices Pt−1). Suppose ∆pt−1 > 0. Then:

1. Myopic farmers’ decisions: ∂τm

∂∆pt−1
= 1

2 > 0, and
∂qAmt
∂∆pt−1

= θ
2 > 0.

2. Stratetic farmers’ decisions: ∂τs

∂∆pt−1
= − r̂

2 < 0, and
∂qAst
∂∆pt−1

= − θr̂
2 6 0.

3. Total production: ∂τ
∂∆pt−1

= r̂
2r > 0, and

∂qATt
∂∆pt−1

= r̂
2r > 0.

4. Expected profit of farmer of type v ∈ {m, s}: ∂πvt (x)
∂∆pt−1

= − r̂
2 6 0 if x < τv, and

∂πvt (x)
∂∆pt−1

=

r̂
2 > 0 if x > τv.
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Because myopic farmers make their crop selection and production decisions in period t based

on the realized market prices Pt−1 observed in period t − 1, more myopic farmers will select to

grow the crop that has the higher price in the previous period. This observation explains the first

statement of Corollary 3, which stipulates that the larger the price disparity |∆pt−1| in period t−1,

the larger is the disparity in the production quantities of the myopic farmers in period t.

Next, let us consider the second statement. Because each strategic farmer knows the behavior

of the myopic farmers and anticipates the behavior of all the other strategic farmers, he anticipates

an increase in the production quantity of crop A can cause the price of the crop to go down further.

For this reason, fewer strategic farmers will choose to grow A in period t as stated in the second

statement.

While the realized market prices Pt−1 have opposite effects on the myopic and strategic farmers

as shown in the first two statements, the third statement shows that the strategic farmers can

never nullify the impact of the decisions of the myopic farmers (and hence the impact of Pt−1)

on the aggregate product availability in period t. Specifically, the product with higher price in

period t− 1 is always produced more in period t than the product with lower price in period t− 1.

Furthermore, according to the fourth statement of the corollary, a higher value of ∆pt−1 causes a

higher availability of crop A in period t and hurts the expected profits of the farmers (both myopic

and strategic) who grow crop A in equilibrium in period t due to the increased production of crop

A. Figure 3.2 pictorially illustrates these three effects that are stated in Corollary 3.

3.4.4 Impact of the proportion of strategic farmers θ

Let us examine the impact of the proportion of strategic farmers θ on the farmers’ decisions. By

considering the equilibrium outcomes as stated in Proposition 9 along with the fact that r̂ = θr
1+rθ

as given in (3.3), it is easy to show that:
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Figure 3.2: Sensitivities of τm, τs and τ in equilibrium to ∆pt−1. Note that | ∂τs

∂∆pt−1
| = | − r̂

2
| < ∂τ

∂∆pt−1
= r̂

2r
<

∂τm

∂∆pt−1
= 1

2
.

Corollary 4 (Impact of the proportion of strategic farmers θ). Suppose ∆pt−1 > 0 so that τm =

∆pt−1

2 > 0. Then,

1. Myopic farmers’ decisions: ∂τm

∂θ = 0 and
∂qAmt
∂θ = −(τm + 0.5) < 0.

2. Strategic farmers’ decisions: ∂τs

∂θ = r(1+r)
(1+rθ)2 τ

m > 0 and
∂qAst
∂θ > 0

3. Total production:
∂qATt
∂θ = ∂τ

∂θ = − (1+r)
(1+rθ)2 τ

m < 0 and
∂2qATt

∂θ∂∆pt−1
< 0.

4. Expected profit of farmer of type v ∈ {m, s}: ∂πvt (x)
∂θ > 0 and

∂2πvt (x)
∂θ∂∆pt−1

> 0 if x < τv.

Similarly,
∂πvt (x)
∂θ < 0 and

∂2πvt (x)
∂θ∂∆pt−1

< 0 if x > τv.

The first two statements show that the production quantity of crop A produced by the myopic

(strategic) farmers is decreasing (increasing) in θ. As stated in statement 3, the submodularity of

qATt (or τ) in (θ,∆pt−1) asserts that the strategic farmers “counteract” the impact of past market

prices on the total production quantity qATt in period t, and this “counteracting” effect is more

pronounced as the proportion of strategic farmers θ increases. The fourth statement shows that

the profit of a farmer (either myopic or strategic) growing crop A (B) in equilibrium is increasing

(decreasing) in θ. Moreover, the supermodularity of πvt in (θ,∆pt−1) for x < τv indicates that the

negative impact of past price difference on the farmers growing crop A is mitigated. In summary,

the destabilizing effect of past prices on the current expected equilibrium profits of the farmers is

mitigated as the proportion of strategic farmers increases.
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To summarize, we have shown that past prices will have an impact on the farmers’ crop selection

and production decisions, product availability, and crops’ market prices in the future periods. If a

large portion of the farmers are myopic (i.e., θ is small) then the crop with higher price in period

t − 1 (say, crop A) will be grown in abundance in period t. Due to the high availability of crop

A, its price in period t is very likely to be low, which hurts the earnings of the those farmers who

grow crop A. Consequently, high fluctuations in the past crop prices will destabilize farmers’ profits

in the current period. To safeguard the earnings of the farmers, many governments in developing

countries offer MSPs. However, will MSPs create economic value to farmers? We examine this

question in the next section.

3.5 Minimum Support Prices

We now extend our analysis presented in the last section to incorporate crop MSPs. To begin,

let mk
t denote the MSP associated with crop k ∈ {A,B} in period t.4 Also, let p̂kmt and p̂kst

denote the effective market prices of crop k ∈ {A,B} in period t as “anticipated” by myopic and

strategic farmers, respectively.5 Because each myopic farmer anticipates that the future selling

price is equal to the most recently observed market price pkt−1, myopic farmers will anticipate that

p̂kmt = max{pkt−1,m
k
t } for crop k. However, because each strategic farmer accounts for the actions of

all the other farmers, each strategic farmer can anticipate the effective market price in equilibrium

based on its expected value so that p̂kst = Eεkt max{pkt ,mk
t } for crop k, where pkt is the actual market

price as given in (3.1).

The decision making process employed by the farmers remains the same as explained in Section

4In general, the MSPs are announced before the crop sowing season; the farmers make their sowing decisions with
the complete knowledge of the MSPs and the price history of the crops.

5To differentiate between the base case and the case when positive MSPs are offered, we useˆover the variables of
interest in the latter case.
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3.4, except that the anticipated prices pkmt and pkst are now replaced by p̂kmt and p̂kst for k ∈

{A,B}. To ease our exposition and to identify the conditions under which offering higher MSPs is

detrimental to the farmers, we shall assume throughout this section that the difference between the

MSPs of two crops is bounded by 1 (i.e., |mA
t −mB

t | < 1). (However, except Propositions 12 and

13 that discuss possible disadvantages of MSPs, all other results described in this section can be

extended to MSPs such that |mA
t −mB

t | > 1, with additional notation.) We first characterize the

unique equilibrium in the presence of MSPs in Proposition 10, which is analogous to Proposition

9.

Proposition 10 (Equilibrium under MSPs). For any realized prices Pt−1 and for any given MSPs

(mA
t ,m

B
t ), the equilibrium crop selection and production decisions of the farmers in period t can be

described as follows:

1. Myopic farmers’ decisions: The amount of crop A produced by myopic farmers is given

by q̂Amt = θ(τ̂m + 0.5), where

τ̂m =
p̂Amt − p̂Bmt

2
∈ [−0.5, 0.5], (3.6)

p̂kmt = max{pkt−1,m
k
t }, k ∈ {A,B}.

2. Strategic farmers’ decisions: The amount of crop A produced by strategic farmers is given

by q̂Ast = θ(τ̂ s + 0.5), where

τ̂ s = −r̂τ̂m −

[
1

2(1 + rθ)

∫ mBt −φ−rτ̂

mAt −φ+rτ̂
F (ε) dε

]
∈ [−0.5, 0.5], (3.7)

r̂ = θr
1+rθ and τ̂ = θτ̂ s + θτ̂m.6

6Note that (3.7) can be alternatively written as τ̂s = −rτ̂ − 1
2

∫mB
t −φ−rτ̂

mA
t −φ+rτ̂

F (ε) dε ∈ [−0.5, 0.5]. We will use either

of these two definitions of τ̂s in our analysis, based on convenience.
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3. Total production: The total production of crop A is given by q̂ATt = τ̂ + 0.5 where τ̂ =

θτ̂ s + θτ̂m ∈ [−0.5, 0.5].

By using τ̂m from (3.6) and the fact that τ̂ = θτ̂ s+θτ̂m, we can obtain τ̂ s by solving (3.7) as an

equation that involves τ̂ s as the only variable. Once we determine τ̂ s, we can retrieve τ̂ accordingly.

Also, it can be shown that Proposition 10 reduces to Proposition 9 when mA
t = mB

t = 0.7

Next, consider a special case when all farmers are strategic so that θ = 1. In this case, statement

2 reveals that, when θ = 1, r̂ = 0, τ̂ = τ̂ s, q̂ATt = (0.5 + τ̂ s), q̂BTt = (0.5 − τ̂ s), and (3.7) can be

simplified as:

τ̂ s = − 1

2(1 + r)

∫ mBt −φ−rτ̂s

mAt −φ+rτ̂s
F (ε) dε. (3.8)

By noting that τ̂ s is independent of Pt−1, we can conclude that, when all farmers are strategic, the

production quantity of each crop k is increasing in its own MSP mk
t . Hence, a policy-maker can

always select appropriate MSPs to attain a balanced mixture of both crops when all farmers are

strategic. However, when the market consists of both myopic and strategic farmers, the selection

of proper MSPs is much more complex, and we shall discuss this in Section 6.

Finally, the results stated in Proposition 10 possess the same characteristics as the results stated

in Proposition 9. First, observe that the threshold associated with the strategic farmers given in

(3.7) involves two components: (i) the response to the actions of myopic farmers (which is the first

term in the RHS of (3.7), i.e., −r̂τ̂m, which is analogous to the expression of τ s given in the second

statement of Proposition 9), and (ii) the response to the crop MSPs announced (which is the second

7First, to ensure that the crop prices are non-negative we require, pAt = E[pAt ] + εAt = φ − rτ̂ + εAt > 0, which
implies that εAt > −φ+rτ̂ for all values of εAt . Second, by using the same arguement for crop B, we can conclude that
εBt > −φ−rτ̂ for all values of εBt . Using these two observations and the fact that εAt and εBt follow the same distribution

F (·), we can conclude that F (ε) = 0 for all values of ε 6 max{−φ + rτ̂ ,−φ − rτ̂}. Hence,
∫mB

t −φ−rτ̂
mA

t −φ+rτ̂
F (ε) dε = 0

so that τ̂s is reduced to τs when mA
t = mB

t = 0. Similarly, τ̂m is reduced to τm and τ̂ is reduced to τ when
mA
t = mB

t = 0. Hence, we can conclude that Proposition 10 reduces to Proposition 9 when mA
t = mB

t = 0.
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term in the RHS of (3.7)). Thus, MSPs influence the decisions of the strategic farmers in two ways.

First, they influence the decisions of strategic farmers via the decisions of the myopic farmers as

explained in (i), and we term this effect as the indirect effect. Second, the MSPs influence the

decisions of strategic farmers directly as explained in (ii), and we term this effect as the direct

effect. There two effects play an important role in our analysis of the impact of MSPs.

It can be shown that the threshold τ̂ s for strategic farmers is decreasing and the total product

availability threshold τ̂ is increasing in the threshold τ̂m for myopic farmers. Specifically, it is

easy to observe from Proposition 10 that ∂τ̂s

∂τ̂m < 0 and ∂τ̂
∂τ̂m > 0. The same characteristics of the

thresholds can be observed from Proposition 9 as well. Essentially, these two characteristics of τ̂ s

and τ̂ imply that strategic farmers “counteract” the actions of myopic farmers; however, strategic

farmers’ counter-actions cannot fully nullify the impact of myopic farmers even when MSPs are

offered. Also, it can be shown that the findings made in Corollary 2 regarding the impact of crop

disimilarity r continued to hold for any given MSPs of the crops (we refer the reader to Corollary

7 in Appendix C.1).

In addition to the production quantities as stated in Proposition 10, we can compute the farmers’

profits in equilibrium in the presence of MSPs (mA
t ,m

B
t ). Analogous to (3.2), we can express the

expected profit of a farmer who is located at x and growing crop k ∈ {A,B} as:

Π̂k
t (x) = Eεkt

[
max{pkt ,mk

t }
]
− ck(x)

= E[pkt ] + Eεkt
[
max{εt,mk

t − E[pkt ]}
]
− ck(x)

= E[pkt ] +
(
mk
t − E[pkt ]

)
F
(
mk
t − E[pkt ]

)
+

∫ ∞
mkt−E[pkt ]

εf(ε) dε− ck(x). (3.9)

By considering (3.9), we can use the thresholds τ̂m, τ̂ s and τ̂ stated in Proposition 10 along with the

production cost cA(x) = 0.5+x and cB(x) = 0.5−x to determine the expected profit in equilibrium
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for a farmer of type v ∈ {m, s} and who is located at x in period t as:

π̂vt (x) =


Π̂A
t (x) = E[pAt ] +

(
mA
t − E[pAt ]

)
F
(
mA
t − E[pAt ]

)
+
∫∞
mAt −E[pAt ] εf(ε) dε− (0.5 + x) if x 6 τ̂v,

Π̂B
t (x) = E[pBt ] +

(
mB
t − E[pBt ]

)
F
(
mB
t − E[pBt ]

)
+
∫∞
mBt −E[pBt ] εf(ε) dε− (0.5− x) if x > τ̂v.

(3.10)

Also, by using statement 3 of Proposition 10 stating that q̂ATt = 0.5 + τ̂ and q̂BTt = 0.5− τ̂ , we can

apply (3.1) to determine the expected market price E[pAt ] and E[pBt ] in equilibrium as a function of

τ̂ , which in turn depends on the MSPs via (3.7).

3.5.1 Impact of Pt−1 and θ

We now examine the impact of the most recently realized prices Pt−1 and the fraction of strategic

farmers θ on the equilibrium outcomes, which are as stated in Proposition 10, in the presence

of MSPs. Corollary 5, which is an analogue to Corollary 3, explains the impact of Pt−1 on the

equilibrium. For ease of exposition, we shall focus on crop A only.

Corollary 5 (Impact of the most recently realized prices Pt−1 under MSPs). For any given MSPs

(mA
t ,m

B
t ), the impact of Pt−1 can be described as follows:

1. Myopic farmers’ decisions: ∂τ̂m

∂pAt−1
> 0 and

∂q̂Amt
∂pAt−1

> 0.

2. Strategic farmers’ decisions: ∂τ̂s

∂pAt−1
6 0 and ∂q̂As

∂pAt−1
6 0.

3. Total production: ∂τ̂
∂pAt−1

> 0 and ∂q̂AT

∂pAt−1
> 0.

4. Expected profit of farmer of type v ∈ {m, s}: ∂π̂vt (x)

∂pAt−1
6 0 if x < τ̂v and

∂π̂vt (x)

∂pAt−1
> 0 if

x > τ̂v.
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It is easy to check that Corollary 4 resembles Corollary 2 (for any given pBt−1) even when MSPs

are present; hence, it can be interpreted in the same manner.

Next, we examine the impact of the proportion of strategic farmers θ on the equilibirium

outcomes. Corollary 6 is analogous to Corollary 4. However, because of the MSPs, the analysis is

more involved in the sense that the result hinges on the comparison between the threshold τ̂m, as

defined in (3.6), and the threshold τ̂ s0 , where τ̂ s0 is the value of τ̂ s (as defined in (3.7)) evaluated

at θ = 0. In other words, τ̂ s0 ≡ τ̂ s|θ=0 = −2rτ̂m −
∫mBt −φ−2rτ̂m

mAt −φ+2rτ̂m
F (ε)dε

2 . It can shown that depending

on the parameters and the distribution F (·), the difference between τ̂m and τ̂ s0 can be positive or

negative, but explicit conditions are not available.

Corollary 6 (Impact of strategic farmers under MSPs). For any given MSPs (mA
t ,m

B
t ), the impact

of θ can be described as follows:

1. Myopic farmers’ decisions: ∂τ̂m

∂θ = 0 and ∂q̂Am

∂θ = −(τ̂m + 0.5) 6 0.

2. Strategic farmers’ decisions: ∂τ̂s

∂θ > 0 if and only if τ̂m > τ̂ s0 , and
∂q̂Ast
∂θ > 0.

3. Total production: ∂τ̂
∂θ 6 0, and

∂q̂ATt
∂θ 6 0 if and only if τ̂m > τ̂ s0 .

4. Expected profit of farmer of type v ∈ {m, s}: If x 6 τ̂v, then
∂π̂vt (x)
∂θ > 0 if and only if

τ̂m > τ̂ s0 . Else, if x > τ̂v, then
∂π̂vt (x)
∂θ 6 0 if and only if τ̂m > τ̂ s0 .

When τ̂m > τ̂ s0 , the above corollary exhibits the same characteristics as Corollary 3 (for the case

when τm > τ s, which holds when the supposition pAt−1 > p
B
t−1 holds). Hence, it can be interpreted

in the same manner.

However, the above corollary exhibits opposite results when τ̂m < τ̂ s0 , where this condition

depends on the value of MSPs. This condition is not present in Corollary 4 because, in the absence

of MSPs, strategic farmers respond only to myopic farmers’ decisions that are determined by the
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realized prices Pt−1. However, in the presence of MSPs, MSPs have a direct impact (along with

Pt−1) on the decisions of myopic farmers as described in (3.6). Also, MSPs have both direct and

indirect (via the actions of myopic farmers) impacts on strategic farmers as described in (3.7), which

makes the decisions of strategic farmers more intricate. This observation calls for more attention to

the analysis of the impact of MSPs on farmers’ decisions. We explore this in the following section.

3.5.2 Impact of MSPs

We now examine the impact of MSPs on the farmer’s crop selection and production decisions (again,

we focus on crop A alone). In preparation, let us define the following two bounds on the MSP of

crop A.

mA
t ≡ mA

t (Pt−1,m
B
t ) = max{pAt−1,max{mB

t , p
B
t−1} − 1} and

mA
t ≡ mA

t (Pt−1,m
B
t ) = max{pAt−1,max{mB

t , p
B
t−1}+ 1}.

With these two bounds, MSP mA
t is considered to be low when mA

t < mA
t , moderate when mA

t 6

mA
t 6 mA

t , and high when mA
t > mA

t . The two bounds mA
t and mA

t are intended to establish the

necessary and sufficient conditions under which τ̂m, which represents myopic farmers’ crop selection

decisions and that is defined in (3.6) in Proposition 10, is independent of mA
t , the MSP of crop A.

It can be shown that τ̂m is independent of mA
t if and only if either mA

t is low (i.e., mA
t 6 mA

t )

or mA
t is high (i.e., mA

t > mA
t ). 8 By doing this, we can observe the impact of MSPs when (i)

they have only the direct effect, and (ii) they have both the direct and the indirect effects, on the

8Clearly, when mA
t > m

A
t then p̂At = max{mA

t , p
A
t−1} = mA

t > p̂
B
t + 1 so that all the myopic farmers grow crop A

and hence qAmt = θ(τ̂m + 0.5) = θ(0.5 + 0.5) = θ, which is independent of mA
t . On the other hand, if mA

t 6 m
A
t then,

we consider two cases: (i) pAt−1 > max{mB
t , p

B
t−1} − 1 and (ii) pAt−1 < max{mB

t , p
B
t−1} − 1. Under case (i), we have

mA
t 6 m

A
t = pAt−1 and |pAt−1− p̂Bmt | < 1 because mA

t −mB
t | < 1 and |pAt−1−pBt−1| < 1. Hence, τ̂m =

pAt−1−p̂
Bm
t

2
> −0.5

so that qAmt = θ (τ̂m + 0.5). Under case (ii), we have mA
t 6 mA

t = max{mB
t , p

B
t−1} − 1, hence we have τ̂m = −0.5

so that qAmt = 0. Therefore, if mA
t 6 mA

t , the total production quantity by myopic farmers can we written as

qAmt = θ

[
pAt−1−max{mB

t ,p
B
t−1}

2
+ 1

2

]+

.
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decisions of strategic farmers given by τ̂ s in (3.7). By using the two bounds mA
t and mA

t , along

with the results as stated in Proposition 10, we obtain the following results:

Proposition 11 (Impact of MSPs on Equilibrium). For any given MSP mB
t of crop B, the MSP

of crop A, mA
t , affects the production decisions of myopic and strategic farmers as follows:

1. Total production: The total availability of crop A is always increasing in the MSP of A so

that
∂q̂ATt
∂mAt

= ∂τ̂
∂mAt

> 0.

2. Low MSP: When mA
t 6 m

A
t , then: (a) q̂Amt = θ

[
pAt−1−max{mBt ,pBt−1}

2 + 1
2

]+

so that
∂q̂Amt
∂mAt

= 0,

and (b)
∂q̂Ast
∂mAt

> 0.

3. High MSP: When mA
t > m

A
t , then: (a) q̂Amt = θ so that

∂q̂Amt
∂mAt

= 0, and (b)
∂q̂Ast
∂mAt

> 0.

4. Moderate MSP: When mA
t < mA

t < mA
t , then: (a) q̂Amt ∈ (0, θ), and (b)

∂q̂Amt
∂mAt

= θ
2 > 0.

The first statement of Proposition 11 shows that the availability of a crop is always increasing

in the MSP offered for the crop. Due to this increase in the availability of the crop, its market price

drops as its MSP increases. Hence, the equilibrium expected market price of crop A is decreasing in

mA
t (and increasing in mB

t with details omitted). Therefore, to achieve a better balance of different

crops, a policy-maker has to account for the effect of MSP of one crop on the production of the

other crop. Further, it is always possible to obtain a desired production-mix of the crops using

MSPs.9

Now, when MSP mA
t is low (i.e., mA

t 6 mA
t ), the decisions of myopic farmers are independent

of mA
t (as explained in footnote 8). Hence, when MSP mA

t is low, a slight increase in the MSP

9To see why, suppose τ̂target is the targeted production of crop A (so that 1 − τ̂target is the targeted production
of crop B). Without loss of generality, assume that initially we set mA

t = mB
t = 0 so that τ̂ = τ , which is as

defined in Proposition 9. If τ̂ = τ > τ̂target then we can set mB
t sufficiently high so that τ̂ = τ̂target is attained.

This is possible because from (3.7) we see that limmB
t →∞

τ̂s = max{−∞,−0.5} = −0.5 and from (3.6) we see that

limmB
t →p

A
t−1+1 τ̂

m = −0.5 so that limmB
t →∞

τ̂ = limmB
t →∞

{θτ̂s + θτ̂m} = −0.5. Likewise, on the other hand, if

τ̂ = τ < τ̂target then we can set mA
t sufficiently high so that τ̂ = τ̂target is attained because it can be shown that

limmA
t →∞

τ̂ = 0.5.
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mA
t will not affect the sowing decisions of myopic farmers as stated in part (a) of statement 2.

Anticipating the myopic farmers’ sowing decisions, more strategic farmers will grow crop A as MSP

mA
t increases. This explains part (b) of statement 2.

Next, when MSP mA
t is high (i.e., mA

t > m
A
t ), all myopic farmers will grow crop A (as explained

in footnote 8). As such, increasing mA
t will not increase myopic farmers’ production of crop A any

further. Anticipating the myopic farmers’ sowing decisions, more strategic farmers will grow crop A

as MSP mA
t increases. This explains statement 3. Essentially, the second and the third statements

imply that, as long as myopic farmers are “unaffected” by the increase in mA
t , strategic farmers

will increase their production of crop A in order to benefit from the increase in mA
t .

Finally, let us examine the fourth statement of Proposition 11 in which the MSP mA
t is moderate

(i.e., mA
t < mA

t < mA
t ). In this case, it can be shown that the production of crop A by the myopic

farmers is strictly increasing in mA
t (and decreasing in mB

t with details omitted). As shown in the

fourth statement, when the MSP is moderate so that mA
t < mA

t < mA
t , more myopic farmers will

grow crop A as the MSP mA
t increases (i.e., τ̂m is increasing so that q̂Amt is increasing in the MSP

mA
t ). Anticipating myopic farmers’ behavior, strategic farmers make decisions in a more intricate

manner, when the MSP mA
t is moderate. However, as it turns out, the amount of crop A produced

by strategic farmers qAst (or equivalently τ̂ s) is not necessarily monotonic in the MSP mA
t : offering

a higher MSP for a crop can cause strategic farmers to produce less of the crop. We shall explore

this seemingly counter-intuitive result in more detail.

Due to the complexity of the analysis, we shall consider a special case when the market uncer-

tainty εkt ∼ U [−δ, δ], k ∈ {A,B}, instead of a general probability distribution F (·). In preparation,

we let:

m̃ = φ− δ
(

1− r
1 + r

)
< φ = a− ρ+ α

2
.
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Notice that m̃ > 0 when a is sufficiently large and δ is sufficiently small. By considering m̃, We

obtain the following result:

Proposition 12 (Impact of MSPs on strategic farmers). Suppose the given MSP mB
t of crop B is

such that mB
t > p

B
t−1. Then, for any moderately low MSP of A such that mA

t ∈
(
mA
t ,min{mB

t + 1, m̃}
)
,

there exists a threshold θ0 ≡ θ0(mA
t ,m

B
t ) > 0 such that ∂τ̂s

∂mAt
< 0 if and only if 0 6 θ < θ0.10

While Proposition 12 is based on the assumption that the market uncertainty εkt ∼ U [−δ, δ], k ∈

{A,B}, the results stated in the proposition continue to hold for general distribution. (Please see

Proposition 15 in Appendix C.1 for details.)

Figure 3.3 provides a numerical example to verify the results that are stated in Propositions

11 and 12. The parameter values used are a = 1, ρ = 0.7, α = −0.25, pAt−1 = 0.1, pBt−1 = 0.5,

mB
t = 0.55, r = 0.95, θ = 0.1, and εkt ∼ U [−0.1, 0.1] (i.e., δ = 0.1). As illustrated in the figure,

the thresholds τ̂m and τ̂ are always increasing in mA
t . This conforms with the findings as shown

in Proposition 11. The threshold τ̂ s is however not monotonic in mA
t (it is decreasing in mA

t until

mA
t ≈ 0.74), which verifies Proposition 12.

Proposition 12 shows that when mA
t , the MSP for crop A, is moderately low (i.e., mA

t <

mA
t < m̃), the proportion of strategic farmers producing crop A (i.e., τ̂ s) can be decreasing in mA

t .

Intuitively, one expects that more farmers grow crop A as the MSP of the crop increases. While

this is always true in the case of myopic farmers, as shown in Proposition 11 when the MSP is

moderately low, it is not true for strategic farmers when θ < θ0, as shown in Proposition 12.

The rationale for this counter-intuitive result as stated in Proposition 12 is as follows. Strategic

10It can be shown that for any given mB
t , there exist values of mA

t that satisfy the conditions listed in Proposition
12 when δ is sufficiently small and crop A is produced more in the previous period. To elaborate, suppose 0 < δ 6
r(1+r)

2
(qATt−1 − 1

2
) where qATt−1 is the total production of crop A in the previous period. Then δ 6 r(1+r)

2
(qATt−1 − 1

2
) ⇔

δ + δ
(

1−r
1+r

)
6 r

(
qATt−1 − 1

2

)
⇒ εAt−1 + δ

(
1−r
1+r

)
6 r

(
qATt−1 − 1

2

)
(because εAt−1 ∈ [−δ, δ]) ⇔ a − α − rqATt−1 + εt−1 <

a − ρ+α
2
− δ

(
1−r
1+r

)
⇔ pAt−1 < φ − δ

(
1−r
1+r

)
= m̃. Hence, there exists mA

t such that pAt−1 < mA
t < m̃. Next, mB

t

can be chosen sufficiently close to m̃ such that mB
t + 1 > m̃ so that mA

t < mA
t < min{mB

t + 1, m̃}. Note that this
provides only a sufficient condition, but not a necessary condition, for the conditions listed in the proposition to hold
simultaneously.
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Figure 3.3: τ̂m, τ̂s and τ̂ as a function of MSP mA
t .

farmers know that, when the MSP of crop A is moderate, more myopic farmers will grow crop

A as mA
t increases. The resulting increase in production of crop A is substantial when θ is small

because, by using statement 1 of Proposition 10 (i.e., q̂Am = θ(τ̂m + 0.5)), it is easy to see that:

∂q̂Am

∂mAt
= θ ∂τ̂

m

∂mAt
= θ

2 when mA
t > pAt−1. This substantial increase in the total production quantity

qATt causes a significant drop in the price of crop A (and causes a steep increase in the price of crop

B). By anticipating myopic farmers’ behavior, strategic farmers are better off by producing less of

crop A and more of crop B. This explains the seemingly counter-intuitive result that is stated in

Proposition 12.

To summarize, we find that, when the MSP of crop A is moderately low, increasing the MSP

mA
t can cause fewer strategic farmers to grow crop A (and more strategic farmers to grow crop

B). This seemingly counter-intuitive finding offers a hint regarding the condition(s) under which

offering MSP for a crop can hurt the earnings of farmers who grow that crop. We shall explore this

next.

3.5.3 Impact of MSPs on farmers’ profits

We now examine the impact of the MSP of crop A on the ex-ante expected profits of farmers of

each type v ∈ {m, s} as given by (3.10). By differentiating (3.10) with respect to mA
t and by using
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the fact that the expected market price E[pAt ] and E[pBt ] in equilibrium depend on the MSPs via τ̂ ,

we obtain:

∂π̂vt (x)

∂mA
t

=


F
(
mA
t − E[pAt ]

)
+ F

(
mA
t − E[pAt ]

)
· ∂E[pAt ]

∂mAt
if x 6 τ̂v

F
(
mB
t − E[pBt ]

)
· ∂E[pBt ]

∂mAt
if x > τ̂v

(3.11)

where
∂E[pAt ]

∂mAt
= −r ∂τ̂

∂mAt
6 0 and

∂E[pBt ]

∂mAt
= r ∂τ̂

∂mAt
> 0. As before, we focus on the impact of the MSP

of crop A on the expected profits of the farmers. We introduce the following lemma.

Lemma 5 (Impact of MSPs on farmers’ profits). Consider a farmer of type v ∈ {m, s} who is

located at x ∈ [−0.5, 0.5].

1. Farmers growing crop B: If x > τ̂v, then
∂π̂vt (x)

∂mAt
> 0.

2. Low or high mA
t on farmers growing crop A: If x 6 τ̂v and mA

t is either low or high

(i.e., mA
t < mA

t or mA
t > mA

t ), then
∂π̂vt (x)

∂mAt
> 0.

The lemma explains the indirect benefit that mA
t offers to the farmers growing crop B (i.e.,

farmers who are located at x > τ̂v) in equilibrium. When mA
t is increased, the total availability of

crop A (B) increases (decreases) according to statement 1 of Proposition 11. Hence, the expected

market price of crop B increases, which will increase the expected profit of those farmers who

grow crop B in equilibrium. Furthermore, the lemma proves that, as long as the decisions of the

myopic farmers are not “affected” by mA
t (i.e., mA

t is low so that mA
t 6 mA

t or mA
t is high so that

mA
t > mA

t ), an increase in mA
t will always increase the equilibrium expected profit of the farmers

who grow crop A. This indicates that, when the myopic farmers are not influenced by the changes

in mA
t , the strategic farmers will make decisions in such a way that the expected profit of all the

farmers growing crop A will increase if mA
t is increased.
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It remains to analyze the impact of MSP of crop A on the farmers’ expected profits when it is

moderate (i.e., mA
t < mA

t < mA
t ). To simplify our analysis as before, let us consider a special case

when εAt and εBt are independent random variables that follow U [−δ, δ]. Further, assume mk
t > p

k
t−1,

k ∈ {A,B}, so that both the MSPs are effective. Also, we define another threshold that will prove

useful in our analysis. Let:

m̃A(mB
t ) =

(
r

r + 2

)
mB
t +

2

r + 2

[
φ− δ

(
2− r
2 + r

)]
.

Akin to m̃ as defined earlier, m̃A ≡ m̃A(mB
t ) > 0 when φ is sufficiently large and δ is sufficiently

small. The following proposition shows that increasing the MSP of crop A can hurt the expected

profits of those farmers who grow crop A in equilibrium.

Proposition 13 (Impact of moderate mA
t on farmers’ profits). For any given MSP for crop B mB

t

and suppose that the MSP for crop A is moderately low so that mA
t ∈ (mA

t , m̃
A). Then there exists

a threshold θ1 ≡ θ1(mA
t ,m

B
t ) such that

∂π̂vt (x)

∂mAt
< 0 for all θ < θ1, for each farmer of type v ∈ {m, s}

located at x 6 τ̂v. Furthermore, if θ is sufficiently high, then
∂π̂vt (x)

∂mAt
> 0.

While Proposition 13 is based on the assumption that the market uncertainty εkt ∼ U [−δ, δ], k ∈

{A,B}, the results stated in the proposition continued to hold for general distribution. (Please see

Proposition 16 in Appendix C.1 for details.)

In Proposition 13, we identify a scenario in which increasing the MSP of a crop can decrease the

expected profits of the farmers who grow that crop. According to the proposition, when the MSP

of crop A is moderately low so that mA
t ∈ (mA

t , m̃
A) and when there are very few strategic farmers

(i.e., θ is sufficiently small so that θ < θ1), then increasing mA
t will hurt the expected profits of

the farmers who grow crop A (i.e., for farmers who are of type v ∈ {m, s} and located at x with

x 6 τ̂v). This is because, even with a small increase in mA
t , there is a substantial increase in the
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production of crop A by the myopic farmers (because the proportion of myopic farmers (1 − θ) is

large when θ is small). Consequently, there is a drop in the price of crop A. This drop in the market

price of crop A, coupled with the moderately low value of mA
t , will reduce the expected profits of

those farmers who grow crop A.

We can conclude that, when θ is sufficiently small, there exists a threshold, say, mA∗
t (as shown

in Figure 3.4) such that offering MSP of A in (mA
t ,m

A∗
t ) is disadvantageous to the farmers who

grow crop A. In other words, by choosing mA
t in the interval (mA

t ,m
A∗
t ), the policy-maker creates an

undesirable frenzy among the myopic farmers who switch to crop A thereby substantially increasing

the production of crop A that causes a significant drop in the price of the crop, which overrides

the benefit accrued by the increase in mA
t at moderately low values, thereby hurting the expected

profits of the farmers growing crop A in equilibrium.

Figure 3.4 provides a numerical example when the equilibrium revenue of farmers growing crop

A decreases with an increase in mA
t . The parameter values used for the example are a = 1, ρ = 0.7,

α = −0.25, pAt−1 = 0.1, pBt−1 = 0.5, mB
t = 0.55, r = 0.95, θ = 0.1, and εkt ∼ U [−0.1, 0.1]. Note that

it suffices to observe the sensitivities of expected revenues from the crops with respect to the MSP

mA
t , because the expected profits of a farmer from growing the crops are the expected revenue less

the production cost of the corresponding crop, where the latter are independent of the MSPs for

all x ∈ [−0.5, 0.5].

While the expected profit of the farmers who grow crop B is always non-decreasing in mA
t (as

shown in the first statement of Lemma 5), the profit of a farmer who grows crop A is non-monotonic

in mA
t . From Figure 3.4 we can draw the following conclusions about the value of MSPs. First,

relative to the case when MSP is absent, offering a higher MSP that has mA
t > mA∗

t can benefit

farmers who grow A as well as those who grow B. Second, relative to the case when MSP is absent,

offering a moderately low MSP for a crop, say, crop A, can make those farmers who grow A to

95



Figure 3.4: Expected revenue from crop A and crop B as a function of MSP mA
t .

become worse off and make those farmers who grow B to become better off. When this happens,

the actual impact of MSP for crop A violates the intended goal for offering MSP for crop A (which

is intended to benefit farmers who grow crop A). Therefore, selecting an appropriate level of MSP is

crucial and a policy-maker has to exercise sufficient care in choosing the right MSPs mk
t , k ∈ {A,B}

to ensure that they: (i) benefit the farmers, especially those who grow crop k, and (ii) balance the

crop availabilities for the consumer. We explore this topic further in Section 6.

3.6 Selection of efficient MSPs

Lastly, in this section, we formulate the optimization problem of a social planner (i.e., the policy-

maker or the government) whose objective is to choose crop MSPs such that the farmers and the

consumers can be benefited to the largest extent at the lowest possible total expenditure. First, we

define farmer surplus in period t as follows:

Ft(m
A
t ,m

B
t ) =θ

∫ 0.5

−0.5
πst (x) dx+ θ

∫ 0.5

−0.5
πmt (x) dx

=θ

[∫ τs

−0.5

(
E
[
max{pAt ,mA

t }
]
− (x+ 0.5)

)
dx+

∫ 0.5

τs

(
E
[
max{pBt ,mB

t }
]
− (0.5− x)

)
dx

]
+ θ

[∫ τm

−0.5

(
E
[
max{pAt ,mA

t }
]
− (x+ 0.5)

)
dx+

∫ 0.5

τm

(
E
[
max{pBt ,mB

t }
]
− (0.5− x)

)
dx

]
,
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where pAt = E[pAt ] + εAt = φ − rτ̂ + εAt , pBt = E[pBt ] + εBt = φ + rτ̂ + εBt and τ̂ = θτ̂ s + θτ̂m, as in

Proposition 10. Second, We capture the disutility of the consumers through the imbalance of crop

availability as follows:

Ct(m
A
t ,m

B
t ) =−

(
qATt − qBTt

)2
= −4τ̂2.

Third, the total expected expenditure incurred by the policy-maker by setting MSPs mA
t and mB

t is

given by:

Kt(m
A
t ,m

B
t ) =q̂ATt · E[mA

t − pAt ]+ + q̂BTt · E[mB
t − pBt ]+

=(τ̂ + 0.5)E[mA
t − φ+ rτ̂ − εAt ]+ + (0.5− τ̂)E[mB

t − φ− rτ̂ − εBt ]+,

because government has to bear an expected expenditure of E[mk
t −pkt ]+ for all the quantity of q̂kTt

of crop k ∈ {A,B} produced. The quantity q̂kTt is as given in Proposition 10.

Using Ft, Ct and Kt, we can define the social welfare (maximization) problem (SWPt) in

period t as below:

SWPt : max
mAt ,m

B
t

Wt(m
A
t ,m

B
t ) = {λFt(m

A
t ,m

B
t ) + (1− λ)Ct(m

A
t ,m

B
t )} − ηKt(m

A
t ,m

B
t )

such that 0 6 mk
t 6M,k ∈ {A,B},

Kt(m
A
t ,m

B
t ) 6 B,

where λ ∈ (0, 1) and (1 − λ) ∈ (0, 1) are the exogenous weights associated by the policy-maker

to farmers’ welfare and consumers’ welfare, respectively, η is the sensitivity of the policy-maker

(or the government) to its expenditure, M is the maximum limit of the MSP to be awarded to a

crop, and B is a bound on the expected expenditure to be incurred (we can consider the constraint

97



Kt(m
A
t ,m

B
t ) 6 B as a budget constraint).

Having analyzed the impact of MSPs chosen by a policy-maker on farmers’ crop selection and

production decisions in the earlier section, we now focus on the effect of crop dissimilarity r (i.e.,

substitutability or complementarity) on the optimal choice of crop MSPs and crop balance. Offering

crop MSPs without understanding the degree of complementarity (or substitutability) between the

crops being supported by the MSPs can destabilize the availability of those crops to the consumers.

For instance, MSPs focused on wheat and rice (which are substitutes) caused a severe shortage

of coarse cereals and oil seeds and an over-production of rice and wheat in the Indian economy

(Chand, 2003; Parikh and Chandrashekhar, 2007). Hence, we note that it is important to explore

the impact of r, which measures the “dissimilarity” between the two crops, on the choice of MSPs

and the consequent production decisions of farmers.

Given the complexity of the above problem, we solve it numerically and draw some insights.

The parameter values used in our numerical example are a = 1, ρ = 0.7, pAt−1 = 0.1, pBt−1 = 0.9,

θ = 0.1, η = 0.3, B = 0.2, M = 1 and εkt ∼ U [−0.1, 0.1]. We take the “weight” λ = 0.1, 0.5, 1,

which correspond to low, medium and high values, respectively. In our discussion we focus on the

impact of crop dissimilarity (r) on the optimal choice of MSPs. We change r by varying α while

retaining ρ constant (i.e., ρ = 0.7).

As shown in Figure 3.5, the optimal value of MSP for crop A is higher than that for crop B,

for each value of λ, because our example is based on the case when the previous period price of

crop A is lower than that of crop B (i.e., 0.1 = pAt−1 < pBt−1 = 0.9). Because of this past price

differential, more myopic farmers choose to grow crop B and so a larger MSP should be offered for

crop A in order to entice a few of these farmers to switch to growing crop A from growing crop

B. Furthermore, we notice that the optimal MSPs of the crops are increasing in r, which can be

explained as follows. When r increases (i.e., α decreases while ρ is left unchanged), the expected
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prices of the crops increase, for any given production quantities of the crops.11 Hence it is less likely

that the realized market prices are lower than the crop MSPs. As such, the government can afford

to increase the MSPs in order to benefit the farmers. Thus, for any given budget, government will

be able to offer higher MSPs for complementary crops (like rice/wheat and pulses/vegetables) than

for substitutable crops (like rice and wheat).

Furthermore, when a policy-maker gives higher importance to the welfare of the farmers (i.e.,

as λ increases), the crop MSPs also increase, because, when appropriately chosen, higher MSPs

improve farmers’ revenues. The case when λ = 1 corresponds to the extreme case when a policy-

maker is concerned only about the welfare of the farmers but not at all about the welfare of the

consumers.

(a) Crop A (b) Crop B

Figure 3.5: Optimal MSPs for crops A and B for low, medium, and high λ values.

Next, the plots in Figure 3.6 indicate that the difference between the MSPs of crops A and B is

decreasing in r, for any given value of λ. That is, as the complementarity between the crops (i.e., r)

increases the crop MSPs have to be set in such a way that the difference between them decreases,

in order to maintain a balance in crop production quantities. In other words, to maintain a balance

of complementary crops (eg., rice and vegetables), a policy-maker should offer comparable MSPs

for both the crops.

The total crop production quantities for our example are given in Figures 3.7a and 3.7b. (Note

11Note that by differentiating (3.1) with respect to α, we obtain for k ∈ {A,B} that
∂E[pkt ]

∂α
= −qjTt 6 0, j 6= k.
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(a) λ = 0.1 (b) λ = 0.5

(c) λ = 1

Figure 3.6: MSPs of crops A and B for low, medium, and high λ values.

that the production of each crop is approximately 0.5 so that the production of crops is balanced.)

Furthermore, we can observe from Figures 3.7a and 3.7b that the crop production quantity disparity

decreases as λ decreases because lower values of λ give more importance to consumer welfare, which

increases as the production quantity disparity between the crops decreases (we omit separate plots

for individual values of λ due to space constraints).

Finally, Figure 3.8 gives the plots of farmer surplus (F ), total expected expenditure incurred

by policy-maker (K ), and social welfare (W ). (We omit the consumer disutility (C ) graph due

to space constraints. The consumer disutility values can be easily obtained from Figures 3.7a and

3.7b by using the fact that C = −(qATt − qBTt )2). It is interesting to observe from Figure 3.8a

that farmer surplus is increasing in crop disparity (r). This is due to the fact that, for any given

production quantities of the crops, the expected prices of the crops increase as the complementarity
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(a) Crop A

(b) Crop B

Figure 3.7: Total production of crops A and B for low, medium, and high λ values

between the crops increases. From Figure 3.8b we observe that the total expenditure incurred by

a policy-maker in administering the MSP program is decreasing in r, when r is sufficiently high.

Because the expected market prices of the crops are high when r is high, in many instances the crop

market prices tend to be higher than the crop MSPs, which obviates the need for the policy-maker

to purchase the crop at MSP, thereby reducing the expected expenditure incurred from the MSP

program. Hence, by combining the farmer surplus (Figure 3.8a) and expected expenditure (Figure

3.8b) plots, we can infer that a policy-maker will achieve a higher farmer surplus at a lower expense

by offering MSPs to diverse crops. Finally, from Figure 3.8c, we observe that the total social surplus

increases as r increases.

3.7 Conclusions

In this paper, we analyzed the role of minimum support prices (MSPs), which is a government

intervention to safeguard farmers’ incomes against crop price falls and, at the same time, to ensure
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(a) Farmer surplus (b) Expected expenditure

(c) Social welfare

Figure 3.8: Farmer surplus, expected expenditure and social welfare for low, medium, and high λ values

sufficient and balanced production of different crops. First, by considering a mixture of myopic and

strategic farmers, we analyzed the behavior of myopic and strategic farmers, and their crop selection

and production decisions, in the absence of MSPs. Later, we extended our analysis to incorporate

MSPs and to analyze their impact, along with past prices, on farmers’ crop selection and production

decisions, future crop availabilities, and farmers’ expected profits. Second, we discussed the impact

of strategic farmers on farmers’ crop selection and production decisions, future crop availabilities,

and farmers’ expected profits. By examining the interactions among a mixed population of myopic

and strategic farmers for the case when there are two (complementary or substitutable) crops, we

made the following findings.

First, we showed that, regardless of the MSPs offered to the crops, the price disparity between

the crops always worsens as the complementarity between the crops increases. Second, we found

that MSPs may not always be beneficial to farmers. We proved that when there are very few

strategic farmers, an improper choice of MSP of a crop can negatively impact the profits of the
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farmers, both myopic and strategic, who grow that crop. This defeats the actual goal of MSP

for a crop, which is to benefit the farmers who grow that crop. Third, we showed that the total

production of a crop is increasing in the MSP offered for the crop and decreasing in the MSP

offered for the other crop. Therefore, a carefully chosen MSPs can always be used to balance crop

productions. Hence, to reduce quantity disparity between crops, a carefully designed MSP policy

is critical.

Finally, we formulated the optimization problem of a policy-maker (i.e., government) with an

objective to maximize social welfare (which is the sum of farmers’ surplus and consumers’ welfare

less the policy-maker’s expenditure) subject to a budgetary constraint on the expected expenditure

incurred by the policy-maker in administering the MSP program. Given the complexity of the

problem, we solved it numerically to draw a few practical insights, especially those pertaining to

the impact of nature of crops (i.e., crop complementarity or dissimilarity) on the optimal choice of

crop MSPs. First, we noted that, even though crop MSPs are increasing in the complementarity

(or dissimilarity) between the crops, the difference between the crop MSPs decreases. Second,

we observed that offering MSPs to dissimilar crops is efficient in achieving higher farmer surplus

and higher social welfare at a lower expected expenditure. Hence, we inferred that it is more

advantageous to offer MSPs to complementary crops like rice and pulses (or vegetables) than to

offer MSPs to crops that are close substitutes like rice and wheat.

Our paper represents an initial attempt to examine the efficacy of MSPs of two (complementary

or substitutable) crops in the presence of market price uncertainty and strategic farmers. However,

there are plenty directions for future research. A natural and a challenging extension of our model is

to incorporate multiple periods in the presence of hoarding; i.e., each farmer can sell his perishable

crop over the next few period periods). In doing so, one can explore the impact of MSPs on

the farmers crop planning and selling decisions over time. Another direction of future research is
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to examine the economic value of agricultural advisory services to farmers. Specifically, one can

analyze the impact of long-term farming assistance programs that can enable farmers to take more

strategic production decisions. Such a study will provide insights on the design and choice of such

long-term programs vis-à-vis short-term (contingent) subsidy programs such as MSPs.
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Appendix A Appendix to Improving Supplier Compliance Through

Joint and Shared Audits with Collective Penalty

A.1 Supplemental Results.

Lemma 6. Under the joint mechanism J , the buyer’s joint audit level zJ and the supplier’s com-

pliance level xJ given in (1.10) possess the following properties:

(i) The supplier’s compliance level is always higher than the buyer’s audit level (i.e., xJ = 2rzJ >

zJ).

(ii) Both the supplier’s compliance level xJ and the buyer’s audit level zJ are increasing in the

buyer’s damage cost d and are decreasing in the buyer’s audit cost α.

(iii) The supplier’s compliance level xJ is decreasing in the supplier’s compliance cost γ. However,

the buyer’s audit level zJ is increasing in γ.

(iv) The supplier’s compliance level xJ is increasing in the supplier’s goodwill cost g. However,

the buyer’s audit level zJ is decreasing in g.

(v) The supplier’s compliance level xJ is increasing in the wholesale price w. However, the buyer’s

audit level zJ is increasing in w if, and only if, w <
√
αγ − (d− p).

Lemma 7. Under the shared mechanism S, the buyer’s joint audit level zS and the supplier’s

compliance level xS given in Lemma 2 possess the following properties:
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(i) The supplier’s compliance level is higher than the buyer’s audit level (i.e., xS > zS).

(ii) Both the supplier’s compliance level xS and the buyer’s audit level zS are increasing in the

buyer’s damage cost d and are decreasing in the buyer’s audit cost α.

(iii) The supplier’s compliance level xS is decreasing in the supplier’s compliance cost γ. However,

the buyer’s audit level zS is increasing in γ.

(iv) The supplier’s compliance level xS is increasing in the supplier’s goodwill cost g. However,

the buyer’s audit level zS is decreasing in g.

(v) The supplier’s compliance level xS is increasing in the wholesale price w. The buyer’s audit

level zS is decreasing in w when w is sufficiently large.

Proposition 14. The total supply chain profit under the shared mechanism is higher than that

under the independent mechanism if the total cost of non-compliance for both buyers is larger than

the cost of non-compliance for the supplier (i.e., 2(d−m) > g +w) and α ≥ α̃, where α̃ is defined

as in Proposition 1

A.2 Proportional Sharing of Joint Audit Cost under the Joint

Mechanism.

A.2.1 Exogenous Wholesale Prices

Here we provide the details of the non-cooperative game under the joint mechanism. To ensure

that there is an implementable joint audit, we assume that the consortium will agree to adopt

the “minimum-audit-level rule” that we describe shortly. This rule embodies the notion of the

weakest link or minimum effort that underpins many coordination problems that are modeled as

non-cooperative games, see Camerer (2003). Though this is one particular rule to reach consensus,
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it should be noted that the same results shown here below can be obtained by formulating the joint

mechanism as a unanimous game, see Caro et al. (2015).

The buyers have to agree on the joint audit level and the audit cost sharing. In a non-cooperative

setting, buyer i would have to propose an audit level zi and a share θi of the audit cost. Hence, each

buyer has a two-dimensional strategy space. Analyzing such kind of game is complex. Moreover,

without additional structure the profit of buyer i might not be jointly concave in zi and θi. To

avoid these problems, recall that Equation (1.9) provides a one-to-one mapping between the share

θi and buyer i’s “ideal” joint audit level. We use this relation to reduce buyer i’s strategy space to

θi ∈ [0, 1] as shown next.

We now introduce the audit level selection process that is agreed upon by both buyers a priori.

Specifically, the buyers play a game in which they simultaneously propose the share of the auditing

cost each one of them would like to pay. In other words, buyer i proposes θi and buyer j proposes

θj .
1 The outcome of the game is determined according to the following rules:

1. If θi 6= θj , then the audit level adopted by the consortium is z = min{zi(θi), zj(θj)}, where

zi(θi) is given in Equation (1.9), and the total audit cost will be shared according to the

proportion that is proposed by the buyer whose audit level is adopted.

2. If θi = θj = θ ≥ 1
2 , then the joint audit level is z = zi(θ) = zj(θ) and each buyer pays a

proportion θ of the auditing cost.

3. If θi = θj <
1
2 , then the consortium is not formed and the independent mechanism takes

place.

Since zi(θi) < zj(θj) if and only if θi > θj , the minimum-audit-level rule reduces to verifying which

buyer is willing to pay a higher share of the auditing cost. With this audit selection process, buyer

1The supplier also participates in the game by simultaneously choosing the compliance level x.
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i’s profit can be written as:

ΠJ
i (θi; θj , x) =



m(1− zi(θi)(1− x))− d(1− zi(θi))(1− x)− θi α zi(θi)2 if θi > θj

m(1− zi(θ)(1− x))− d(1− zi(θ))(1− x)− θ α zi(θ)2 if θi = θj = θ > 1
2

m(1− zj(θj)(1− x))− d(1− zj(θj))(1− x)− (1− θj)α zj(θj)2 if θi < θj

ΠI(zI) if θi = θj <
1
2 .

(A.1)

The buyers’ simultaneous actions θi and θj are essentially a coordination game and as such there

are multiple equilibria (Fudenberg and Tirole 1991). In fact, any θ ∈ [0, 1] such that θi = θj = θ

corresponds to an equilibrium. To select one equilibrium point, we adopt the payoff dominance

refinement proposed by Harsanyi and Selten (1988). Specifically, we show that the equilibrium

θ1 = θ2 = 1
2 in which the buyers equally share the joint audit cost is payoff dominant. This is

formalized in Lemmas 8 and 9.

Lemma 8. Under the minimum-audit-level rule, each buyer will agree to share the joint audit cost

equally, i.e., θ1 = θ2 in equilibrium.

Lemma 9. The payoff dominant equilibrium of the joint mechanism game is given by θ1 = θ2 =

θ = 1
2 .

A.2.2 Endogenous Wholesale Prices

Note that since zi(θi) = (d−mi)(1−x)
2αθi

, we have zi(θi) < zj(θj) if, and only if, θi
d−mi >

θj
d−mj . Thus,

the profit of buyer i under J with unequal wholesale prices and “minimum-audit-level rule” is given
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by

ΠJ
i (θi; θj , x) =



mi(1− zi(θi)(1− x))− d(1− zi(θi))(1− x)− θiαzi(θi)2 if θi
d−mi >

θj
d−mj

mi(1− zi(θ)(1− x))− d(1− zi(θ))(1− x)− θαzi(θ)2

if θi
d−mi =

θj
d−mj = 1

2d−m1−m2

m(1− zj(θj)(1− x))− d(1− zj(θj))(1− x)− (1− θj)αzj(θj)2 if θi
d−mi <

θj
d−mj

ΠI(zI) if θi
d−mi =

θj
d−mj <

1
2d−m1−m2

(A.2)

where mi = p−wi. In the last case, when θi
d−mi =

θj
d−mj <

1
2d−m1−m2

, the consortium is not formed

and each buyer resorts to an independent audit. The following lemmas are equivalent to Lemmas

8 and 9.

Lemma 10. For a given wholesale prices w1 and w2, the buyers’ equilibrium choice of θ1 and θ2

satisfy the condition θ1
d−m1

= θ2
d−m2

. Hence, the buyers choose the same audit level in equilibrium.

Lemma 11. The equilibrium given by θi = d−mi
2d−m1−m2

, i = 1, 2, is payoff dominant.

A.3 Numerical Study with d >> g

Here we present numerical results when the collateral penalty of the buyers d is much larger than

the goodwill cost g experienced by the supplier. This scenario is arguably more realistic because

in cases of non-compliance the market tends to punish more the buyers and put less blame on

the supplier (due to the fact it is located in developing country). The following figures assume

d = 2g = 2000. All the other parameters remain the same as in Sections 1.3 and 1.4.

Figures A.2 and A.1 show that the audit and compliance levels are higher compared to the
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Figure A.1: Audit levels when d = 2g = 2000. Left plot has γ = 800 and right plot has γ = 1500.

Figure A.2: Compliance levels when d = 2g = 2000. Left plot has γ = 800 and right plot has γ = 1500.

Figure A.3: Supply chain profits (normalized) when d = 2g = 2000. Left plot has γ = 800 and right plot has
γ = 1500.

scenarios with d = g = 1000, especially for high values of the audit cost α. This follows from

Lemmas 1, 6, and 7. Figure A.3 shows the supply chain profits. Note that d > γ so from Proposition

4(ii) it follows that the joint mechanism achieves higher supply chain profits for all values of α.

We omit the figures when the wholesale price is endogenous because they look very similar to the

exogenous case. In contrast to Figure 1.9, when d = 2000 the wholesale price in equilibrium is

constant for all relevant values of α. The reason is that a high penalty d pushes the buyers to audit

more, which in turn increases the compliance level, so they do not have to use the wholesale price
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to incentivize the supplier. Consequently, the buyers lower the wholesale price as much as possible

and the constraint w1 + w2 − 2c ≥ γ becomes active.

A.4 Proofs

Proof of Lemma 1: The first statement follows immediately from the fact that 2r > 1. All

other statements can be obtained from differentiating xI and zI given in (1.3) with respect to the

corresponding parameter. However, to prove the last statement, one needs to account for the fact

that r = g+w
2γ and m = (p− w). We omit the details. �

Proof of Lemma 2: Observe from (1.15) that z1 = z2 = z by symmetry and apply (1.15) to show

that xS = 2rzS(2− zS). This proves the second statement. Next, by substituting x = 2r(2z − z2)

into (1.15) and by rearranging the terms, the buyer’s audit level z is the solution to V (z) = 0. By

showing that V (0) < 0, V (1 −
√

2r−1
2r ) > 0 and V (z) is concave over [0, 1 −

√
2r−1

2r ], we prove the

first statement and that zS ∈ (0, 1−
√

2r−1
2r ). Next, observe that xS(z) = 2rz(2− z) is increasing

in z when z ∈ (0, 1 −
√

2r−1
2r ), that xS(0) = 0 and that xS(1 −

√
2r−1

2r ) = 1, we can use the fact

that zS ∈ (0, 1−
√

2r−1
2r ) to show that xS ∈ (0, 1). �

Proof of Lemma 3: We have that SJ −SI = xI(1−xI)−xJ(1−xJ) =
αr(d−m)(2r2(d−m)2−α2)

(α+2r(d−m))2(α+r(d−m))2 .

Hence, SJ > SI if and only if
√

2 r(d−m) > α. Similarly, SS − SJ = xJ(1− xJ)− xS(1− xS) =

(xJ − xS)(1 − xJ − xS), so that SS − SJ → 0− as α → 0+. Further, we know: (i) from Lemmas

6 and 7 that
dxJ

dα
< 0 and

dxS

dα
< 0, (ii) from Equation (1.10) that limα→∞ x

J = 0, and (iii) from

Proposition 1 that 0 6 xS < xJ , which indicates that limα→∞ x
S = 0. Hence, we conclude that

there exists a threshold αJ such that SS − SJ < 0 if and only if α < αJ .

When comparing SI and SS , we have SS−SI = xI(1−xI)−xS(1−xS) = (xI−xS)(1−xI−xS).
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By noting that
dxI

dα
< 0,

dxS

dα
< 0, limα→∞ x

I = 0, and limα→∞ x
S = 0, we conclude that there

exists a threshold αI such that (1− xI − xS) < 0 if and only if α < αI . Further, by Proposition 1,

xS > xI if and only if α > α̃ = max{(d −m)(r̃ − r), 0}. Therefore, if r̃ 6 r, then xS > xI for all

α > 0, and hence SS − SI > 0 if and only if α < αI .

When r̃ > r, as α → 0+ we have (xI − xS) → 0+ and (1 − xI − xS) → −1. Thus,

SS−SI < 0 when α is sufficiently small (i.e., when α < min{αI , α̃}) and sufficiently large (i.e., when

α > max{αI , α̃}). On the other hand, when α is moderate (i.e., when min{αI , α̃} < α < max{αI , α̃}

) then SS − SI > 0. �

Proof of Lemma 6: The proof follows the same approach as the proof for Lemma 1. We omit

the details. �

Proof of Lemma 7: To prove the first statement, we use the fact that 2r > 1 and the fact that

zS ∈ (0, 1) to show that xS = 2rzS(2− zS) > zs+ zS(1− zS) > zS . To prove the second statement,

we differentiate (1.16) with respect to k ≡ 2α
d−m and apply the implicit function theorem, getting:

U(zS) · dzSdk + zS = 0, where U(z) = [6rz2 − 12rz + (1 + 4r+ k)]. By noting that U(z) is increasing

in z and that U(0) > 0 and U(1 −
√

2r−1
2r ) > 0, we can conclude that U(zS) > 0. Hence, we can

conclude that dzS

dk < 0. Also, observe that dxS

dk = 4r(1− zS) · dzSdk < 0. Combine these results with

the fact that k in increasing in α and decreasing in d, we obtain the desirable properties about zS

and xS as stated in the second statement.

To prove the third statement, differentiate (1.16) with respect to r and apply the implicit

function theorem, getting: U(zS) · dzSdr + W (zS) = 0, where U(z) is defined above and W (z) =

2z(z2 − 3z + 2). By using the fact that both U(z) > 0 and W (z) > 0 for any z ∈ (0, 1), we can

conclude that dzS

dr = −W (zS)
U(zS)

< 0. Next, observe that dxS

dr = 2zS(2 − zS) + 4r(1 − zS) · dzSdr . By
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substituting dzS

dr = −W (zS)
U(zS)

and by rearranging the terms and by using the fact that V (zS) = 0,

it can be shown that: dxS

dr = 2zS ·(4r(zS)2−4rzS+3+2k)
U(zS)

= 2zS ·(−2xS+4rzS+3+2k)
U(zS)

> 0, where the last

inequality is due to the fact that xS < 1. Finally, by combining the result that dzS

dr < 0 and dzS

dr > 0

and by using the fact that r = g+w
2γ , we obtain the third statement.

To prove the fourth statement, implicitly differentiating the equation V (zS) = 0 and the ex-

pression for xS with respect to r, we get:

∂zS

∂r
= − 2(d−m)(2− zS)(1− zS)zS

2α− 6r(d−m)(2− zS)zS + (4r + 1)(d−m)

= − 2(d−m)(2− zS)(1− zS)zS

2α+ (d−m)(1− 2rzS(2− zS)) + 4r(d−m)(1− (2− zS)zS)

= − 2(d−m)(2− zS)(1− zS)zS

2α+ (d−m)(1− xS) + 4r(d−m)(1− xS

2r )
< 0

and

∂xS

∂r
= 2(2− zS)zS + 4r(1− zS)

∂zS

∂r

= − 2(zS − 2)zS(2α+ 2r(d−m)(zS − 2)zS + d−m)

2α+ (d−m)(1− 2rzS(2− zS)) + 4r(d−m)(1− (2− zS)zS)

=
2(2− zS)zS(2α+ (d−m)(1− 2r(2− zS)zS))

2α+ (d−m)(1− xS) + 4r(d−m)(1− xS

2r )

=
2(2− zS)zS(2α+ (d−m)(1− xS))

2α+ (d−m)(1− xS) + 4r(d−m)(1− xS

2r )
> 0.

It remains to prove the last statement. By noting that r = g+w
2γ and m = (p−w), we differentiate
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(1.16) with respect to w and apply the implicit function theorem to get:

dzS

dw
=

zS
(
2γα− (2− zS)(1− zS)(d− p+ w)2

)
(d− p+ w) [2γα+ (d− p+ w)(γ + 2(g + w)− 3(g + w)(2− zS)zS)]

⇒ dzS

dw
> 0⇔ 2γα− (2− zS)(1− zS)(d− p+ w)2 > 0

because, by using the fact that xS = 2rzS(2−zS) 6 1 it can be easily verified that the denominator

of the above expression is positive. Now,

2γα− (2− zS)(1− zS)(d− p+ w)2 > 0⇔ (2− zS)(1− zS) 6
2γα

(d− p+ w)2

⇔ 2rzS(2− zS)(1− zS) 6
4rγαzS

(d− p+ w)2
=

2αzS(g + w)

(d− p+ w)2

⇔ 2rzS
3 − 6rzS

2
+ 4rzS + zS

[
1 +

2α

d− p+ w

]
6

2αzS(g + w)

(d− p+ w)2
+ zS

[
1 +

2α

d− p+ w

]
⇔ 1 6 zS

[
1 +

2α

d− p+ w
+

2α(g + w)

(d− p+ w)2

]
by using (1.16)

zS >

[
1 +

2α

d− p+ w
+

2α(g + w)

(d− p+ w)2

]−1

= [f(w)]−1 (say)

By noting that α > 0, f ′(w) < 0, limw→∞ f(w) = 1, and limw→∞ z
S = 0 (from (1.16)) we infer

that there exists a threshold value of w above which zS < f(w)−1, that is, dzS

dw < 0.

Next, by noting that xS = 2rzS(2− zS) and by using the expression for dzS

dw , we get:

dxS

dw
=

2(g + w)(1− zS)
(
dzS

dw

)
+ (2− zS)zS

γ
,

=
zS

γ

{
(2− zS) +

2(g + w)(1− zS)
[
2αγ − (2− zS)(1− zS)(d− p+ w)2

]
(d− p+ w) [2αγ + (d− p+ w) (γ − 3(g + w)(2− zS)zS + 2(g + w))]

}

It follows from Assumptions 2 and the fact that r = g+w
2γ > 1

2 and (d − m) = (d − p + w) > 0,

the denominator of the second term is also positive. Hence, the sign of the above term depends on

the sign of the numerator alone. By expanding and rearranging the terms, the numerator can be
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simplified as: γ
(
2α
[
(d−m)(2− zS) + 4rγ(1− zS)

]
+ (d−m)2(2− zS)(1− xS)

)
> 0, where the

last inequality is due to the fact that both xS and zS are bounded above by 1. This completes our

proof. �

Proof of Lemma 8: For a given θ2 of buyer 2, we show by contradiction that buyer 1’s best

response must satisfy θ1 6 θ2. Suppose buyer 1’s best response has θ1 > θ2. Then for every fixed

compliance level x,

ΠJ
1 (θ1; θ2, x) = m(1− z1(θ1)(1− x))− d(1− z1(θ1))(1− x)− θ1 α z1(θ1)2

⇒ ∂ΠJ
1 (θ1; θ2, x)

∂θ1
= −α z1(θ1)2 < 0.

Hence, buyer 1 sets θ1 such that θ1 6 θ2. Similarly, buyer 2 sets θ2 such that θ2 6 θ1. Hence,

θ1 = θ2 in equilibrium. �

Proof of Lemma 9: Given the symmetry of the buyers, we drop the indexes in this proof. By

Lemma 8 it is true that the equilibrium under J comprises of symmetric cost sharing. Let ΠJ(θ; θ, x)

be the profit under J when θi = θj = θ as obtained from from (A.1) and let xJ be the equilibrium

compliance level when θ = 1
2 . We prove that θ = 1

2 is the payoff dominant equilibrium.

Suppose θ < 1
2 , then by (A.1) the profit of each buyer under J is given by (1.4). Let zI and

xI = 2rzI be the equilibrium audit and compliance levels in the independent mechanism. Then,

ΠI(zI) < ΠI(zI) +
1

2
αzI

2
= ΠJ(θ =

1

2
; θ =

1

2
, xI) 6 ΠJ(θ =

1

2
; θ =

1

2
, xJ)

where xJ is the equilibrium compliance level in the joint mechanism with θ = 1
2 , and the last

inequality follows by noting that ∂ΠJ

∂x = mz+ d(1− z) > 0 (obtained from using Envelope theorem
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on (1.8)) and xJ > xI . Hence, the equilibrium with θ < 1
2 is dominated by θ = 1

2 .

Now, suppose θ > 1
2 . Let zJ(θ) and xJ(θ) = 2rzJ(θ) be the equilibrium audit and compliance

levels. Then,

zJ(θ) =
(d−m)

2αθ + 2r(d−m)
⇒ dzJ(θ)

dθ
< 0 and

ΠJ(θ; θ, x) = m(1− z(θ)(1− x))− d(1− z(θ))(1− x)− θαz(θ)2

⇒ dΠJ(θ; θ, xJ(θ))

dθ
= −αzJ(θ)2 +

∂ΠJ

∂x
· 2rdz

J(θ)

dθ
< 0 since

∂ΠJ

∂x
> 0 and

dzJ(θ)

dθ
< 0.

Hence, the equilibrium with θ > 1
2 is dominated by θ = 1

2 . �

Proof of Lemma 10: For a given θ2 of buyer 2, we show by contradiction that buyer 1’s best

response must satisfy θ1 6 θ2

(
d−m1
d−m2

)
. Suppose buyer 1’s best response has θ1 > θ2

(
d−m1
d−m2

)
. Then,

ΠJ
1 (θ1; θ2, x) = m1(1− z1(θ1)(1− x))− d(1− z1(θ1))(1− x)− θ1αz1(θ1)2

⇒ ∂ΠJ
1 (θ1; θ2, x)

∂θ1
= −αz1(θ1)2 < 0.

Hence, buyer 1 sets θ1 such that θ1 6 θ2

(
d−m1
d−m2

)
. Similarly, buyer 2 sets θ2 such that θ2 6

θ1

(
d−m2
d−m1

)
. Hence, θ1

d−m1
= θ2

d−m2
in equilibrium.

Clearly, for every given compliance level x of the supplier,

θ1

d−m1
=

θ2

d−m2
⇒ z1(θ1) =

(d−m1)(1− x)

2αθ1
=

(d−m2)(1− x)

2αθ2
= z2(θ2). �

Proof of Lemma 11: For ease of notation, let θ̂i = d−mi
2d−m1−m2

. By Lemma 10 that in equilibrium

θ1
d−m1

= θ2
d−m2

. Let ΠJ
i (θi; θj , x) be the profit of buyer i and xJ be the compliance level when θi = θ̂i

and θj = θ̂j . We prove that θi = θ̂i, i = 1, 2 is the payoff dominant equilibrium. We argue for
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buyer i and the argument for buyer j is similar.

Suppose θ1
d−m1

= θ2
d−m2

< 1
2d−m1−m2

, then by (A.2) the profit of buyer i under J is given by

ΠI
i (z

I
i ; zIj , x

I) = mi(1− zIi (1− 2rzIi ))− d(1− zIi )(1− 2rzIi )− αzIi
2
. (A.3)

Let zIi and xI = r1z
I
1 + r2z

I
2 be the equilibrium audit and compliance levels under independent

audits. Then for buyer i we have

ΠJ
i (zJ) =mi(1− zJ(1− xJ))− d(1− zJ)(1− xJ)− θ̂iαzJ

2

>mi(1− zIi (1− xJ))− d(1− zIi )(1− xJ)− θ̂iαzIi
2

since zJ maximizes (1.25) for every

fixed value of x

>mi(1− zIi (1− xI))− d(1− zIi )(1− xI)− θ̂iαzIi
2

because xI < xJ and

∂ΠJ
i

∂x
= mz + d(1− z) > 0

>mi(1− zIi (1− xI))− d(1− zIi )(1− xI)− αzIi
2

because θ̂i ∈ [0, 1]

=ΠI
i (z

I
i ),

and xJ > xI because

θi = θ̂i ⇒ xJ =
(r1 + r2)(2d−m1 −m2)

2α+ (r1 + r2)(2d−m1 −m2)

⇒ xJ − xI =
(r1 + r2)(2d−m1 −m2)

2α+ (r1 + r2)(2d−m1 −m2)
− r1(d−m1) + r2(d−m2)

2α+ r1(d−m1) + r2(d−m2)

=
2α((d−m1)r2 + (d−m2)r1)

(2α+ (r1 + r2)(2d−m1 −m2))(2α+ r1(d−m1) + r2(d−m2))
> 0.

Hence, the equilibrium with θi < θ̂i(⇔ θj < θ̂j) is dominated by θi = θ̂i(⇔ θj = θ̂j). Now, suppose
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θi > θ̂i(⇔ θj > θ̂j). Then

zJ(θi) =
(d−mi)

2αθi + (d−mi)(r1 + r2)
⇒ dzJ(θi)

dθi
< 0 and

ΠJ
i (θi; θj , x) = mi(1− zi(θi)(1− x))− d(1− zi(θi))(1− x)− θiαzi(θi)2

⇒ dΠJ
i (θi; θj , x

J(θi))

dθi
= −αzJ(θi)

2 +
∂ΠJ

i

∂x
· (r1 + r2)

dzJ(θi)

dθi
< 0 since

∂ΠJ
i

∂x
> 0 and

dzJ(θi)

dθi
< 0.

Hence, the equilibrium with θi > θ̂i is dominated by θi = θ̂i. �

Proof of Proposition 1: Observe from (1.3) and (1.10) that zI = d−m
2(α+r(d−m)) <

d−m
α+2r(d−m) = zJ .

Next, by sustituting zI = d−m
2(α+r(d−m)) into (1.16) and by rearranging the terms, one can show that

V (zI) = 2(2r + 1)α2 + 2r(d −m)(4r − 1)α + r(1 − 2r)2(d −m)2 > 0 = V (zS). By using the fact

that V (z) is increasing in z, we can conclude that zI > zS . Therefore, we prove the first statement:

zS < zI < zJ .

Noting that xJ = 2rzJ and xI = 2rzI , it follows that xJ > xI .

Before we proceed further, we define the function L(z) = z(2−z), which is an inverted parabola

with roots 0 and 2, and mode at 1, for better exposition and shorthand notation.

In the region [0, 1], we note that L(z) > zJ ⇔ z > z where z is the solution of L(z) = zJ . The

solution is given by z = 1 −
√
α+ (2r − 1)(d−m)√
α+ 2r(d−m)

and, hence
(d−m)V (z)

α
= 2 − 2

√
1− zJ −

zJ
√

1− zJ = 2− (2− zJ)
√

1− zJ > 0. Thus, z > zS ⇔ zJ = L(z) > L(zS)⇔ xJ > xS .

Similarly, to compare xI and xS , we need to compare zI and zS(2 − zS). To compare zI and

zS we consider the solution of the equation L(z) = zI in the region [0, 1]. On solving, we get

z = 1 −

√
2α+ (2r − 1)(d−m)

2(α+ r(d−m))
. Now, in order to compare z and zS , we consider V (z). On
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substituting the value of z in V (z) we get
(d−m)V (z)

α
= 1− (1 + zI)

√
1− zI . Hence,

V (z) > 0⇔ zI >

√
5− 1

2
⇔ (d−m)

[
1− r(

√
5− 1)

]
> (
√

5− 1)α.

When r > 1√
5−1

, then V (z) < 0 ⇔ z < zS ⇔ zI = L(z) < L(zS) = zS(2 − zS) ⇔ xI < xS . On

the other hand, if r is small (i.e., r < 1√
5−1

) and when α is sufficiently small then V (z) > 0⇔ z >

zS ⇔ zI = L(z) > L(zS) = zS(2− zS)⇔ xI > xS . And, when r is small but α is sufficiently large,

then V (z) < 0⇔ z < zS ⇔ zI = L(z) < L(zS) = zS(2− zS)⇔ xI < xS . This concludes the proof.

�

Proof of Proposition 2: First, it follows from (1.5) and (1.12) that πIs(zI) − πJs (zJ) =

γ[(1− 2r · zI) + (1− 2r · zJ)] · [2r(zJ − zI)]. By applying the first statement of Proposition 1 (i.e.,

zJ > zI), we prove the first statement. By using the same approach, we obtain the second state-

ment. Finally, observe from (1.5) and (1.12) that πIs(zI)−πSs (zS) = γ[(1−xI)+(1−xS)] ·(xS−xI).

We prove the third statement by applying (2) and (3) of Proposition 1 (i.e., xS > xI when α is

sufficiently large). This completes our proof. �

Proof of Proposition 3: First, we note that from (1.2), we note that for every fixed audit level

zi of buyer i, the buyer’s profit is increasing in the supplier’s compliance level x. That is:

∂Πi(zi; zj , x)

∂x
= mzi + d(1− zi) > 0. (A.4)

120



Now, the joint mechanism profits at the payoff-maximizing equilibrium θ1 = θ2 = 1
2 is

ΠJ
i (zJ) = m(1− zJ(1− xJ))− d(1− zJ)(1− xJ)− 1

2
α zJ

2

> m(1− zI(1− xJ))− d(1− zI)(1− xJ)− 1

2
α zI

2

since zJ maximizes ΠJ
i (z;xJ)

> m(1− zI(1− xI))− d(1− zI)(1− xI)− 1

2
α zI

2
using (A.4) and xJ ≥ xI

= ΠI
i (z

I) +−1

2
α zI

2
> ΠI

i (z
I)

Next, it follows from (1.4) and (1.17), we get: ΠI(zI) − ΠS(zS) = α
(
zS

2 − zI2
)

+(
zI − (2− zS)zS

)
TI(z

S), where TI(z
S) = 2r(d−m)(zS)2−4r(d−m)zS+(d−m)(1−2rzI)+2dr > 0.

By noting that the term TI(z
S) > 0 for zS ∈ (0, 1), we can prove our second statement by applying

Proposition 1 to show that the terms
(
(zS)2 − (zI)2

)
and

(
zI − (2− zS)zS

)
are both negative.

This proves second statement. �

Proof of Proposition 4:

[2 ΠJ + πJs ]− [2 ΠI + πIs ] =
α(d−m)

2(α+ 2r(d−m))2(α+ r(d−m))2
f(α)

where f(α) = (d−m+ 4r(d− γ))α2 + 6r2(2d − γ)(d − m)α + 2r2(d − m)2 (4dr − (d−m)) ,

which is a quadratic in α. Note that f(0) > 0 always and f(α) is continuous in α.

It follows that f(α) > 0 for α sufficiently low. This proves the first statement. For

the second statement: when d > γ, we have f(α) > 0. Finally, for the third state-

ment: if 2d > γ, then f ′(0) > 0. Further, if 2d > γ and d − m > g + w, then we get

f ′′(α) = 2 [d−m+ 4r(d− γ)] > 2 [d−m− 2rγ] = 2 [(d−m)− (g + w)] > 0, which indicates that
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f is convex. Thus, f > 0 for all positive values of α. This completes the proof. �

Proof of Proposition 14:

[2 ΠS + πSs ]− [2 ΠI + πIs ] =

(
d−m
r
− γ
)

(xS − xI)(2− xI − xS) + 2

(
d− d−m

2r

)
(xS − xI)

+ 2α(zI − zS)(zI + zS)

From Proposition 1, the last term in the above expression is positive. If d−mr > γ (⇔ d−m > g+w
2 )

then the first term in brackets is always positive. Hence, if the compliance of supplier under S is

higher than that under I, then 2 ΠS + πSs > 2 ΠI + πIs . From Proposition 1, xS > xI if and only if

α ≥ α̃. This concludes the proof. �
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Appendix B Coordinating Supply Chains via Advance-Order Dis-

counts, Minimum Order Quantities, and Delegations

B.1 Proofs

Lemma 12. The manufacturer’s profit Πd
1(δ) given in (2.7) is decreasing in δ. Also, the supplier’s

profit Πd
s(δ) given in (2.8) is decreasing in δ when δ approaches 1 from the right and increasing in

δ when δ approaches δ∗ from the left.

Proof of Proposition 5: By applying Lemma 12 (that the manufacturer’s profit Πd
1(δ) is de-

creasing in δ) we conclude the manufacturer will always participate in the discount contract for

any δ ∈ (0, 1). Next, we see from (2.8) that

dΠd
s

dδ
= rx∗d + [(δr − c)− (r − e) (1− F (x∗d))]

dx∗d
dδ

= rx∗d + [(δr − c)− (r − e) (1− F (x∗d))]

(
−r

(r − s)f(x∗d)

)
= rx∗d +

[
(δr − c)− (r − e)

(
δr − s
r − s

)](
−r

(r − s)f(x∗d)

)
. (B.1)

By using the fact that dΠds
dδ |δ=1 < 0 and dΠds

dδ |δ=δ∗ > 0, and that the supplier’s profit function Πd
s(δ)

is unimodal because the probability distribution of D satisfies the IGFR properties (c.f., Lariviere

(2006)), we can conclude that (a) δ̂ ∈ (δ∗, 1); and (b) δ̂ satisfies the first order condition so that

dΠds
dδ = 0. This proves the first statement.
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To prove the second statement, let us first show the uniqueness of the solution of dΠds
dδ = 0 for an

IGFR demand distribution. Let g(·) denote the generalized failure rate of the demand distribution,

where g(x) = xf(x)
1−F (x) . We rewrite (B.1) as follows:

dΠd
s

dδ
= rx∗d + [(δr − c)− (r − e) (1− F (x∗d))]

(
−r

(r − s)f(x∗d)

)
=
r(1− F (x∗d))

f(x∗d)

[
x∗df(x∗d)

(1− F (x∗d))
− δr − c

(r − s)(1− F (x∗d))
+
r − e
r − s

]
=
r(1− F (x∗d))

f(x∗d)
[U(δ)− V (δ)]

where U(δ) = g(x∗d) + r−e
r−s and V (δ) = δr−c

δr−s . Hence, dΠds
dδ = 0 if, and only if, U(δ) = V (δ).

By differentiating U and V with respect to δ, by noting that g(x) is increasing in x, and x∗d is

decreasing in δ, we can conclude that dU
dδ = g′(x∗d)

dx∗d
dδ < 0 and dV

dδ = r(c−s)
(δr−s)2 > 0. Combining this

with knowledge that dΠds
dδ

∣∣
δ=δ∗

= U(δ∗) − V (δ∗) > 0 and dΠds
dδ

∣∣
δ=1

= U(1) − V (1) < 0, we conclude

that there exists a unique δ̂ such that dΠds
dδ

∣∣
δ=δ̂

= U(δ̂)− V (δ̂) = 0.

Before we prove the remainder of the second statement for the case when D is N(µ, σs), let

us prepare some prerequisites. First, because F (·) follows the normal distribution with mean µ

and standard deviation σ, the manufacturer’s initial order quantity x∗d(δ) given in (2.6) can be

simplified as x∗d(δ) = µ+ kσ, where k = Φ−1
(

(1−δ)r
r−s

)
. For notational convenience, we suppress the

argument that k is a function of δ. Second, we use the fact that
∫∞
k zφ(z)dz = φ(k) to simplify the

supplier’s profit function Πd
s(δ) given in (2.10) as:

Πd
s(δ) = (δr − c)(µ+ kσ) + σ(r − e)[φ(k)− k(1− Φ(k))]. (B.2)

Third, by using the result established in Lemma 1 of Brown and Tang (2006) that dφ(z)
dz = −zφ(z)

and dΦ−1(z)
dz = 1

φ(Φ−1(z))
and by considering (B.2), it can be shown that the optimal discount δ̂
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satisfies the first order condition dΠds(δ)
dδ = 0, which can be expressed as:

r(µ+ kσ) + (δr − c)σk′ − (r − e)σ(1− Φ(k))k′ = 0, (B.3)

where k′ = dk
dδ . By letting k

′′
= d2k

dδ2 , we can use the fact that Πd
s(δ) is concave in δ and d2Πds(δ)

dδ2 ≤ 0

to show that:

2rσk′ + (δr − c)σk′′ − (r − e)σ(1− Φ(k))k
′′

+ (r − e)σφ(k)[k′]2 ≤ 0. (B.4)

We now establish our proof. Because δ̂ satisfies (B.3), we can apply the implicit function theorem

to differentiate (B.3) with respect to σ, getting (after some algebra):

(
rk + (δr − c)k′ − (r − e)(1− Φ(k))k′

)
+
(

2rσk′ + (δr − c)σk′′ − (r − e)σ(1− Φ(k))k
′′

+ (r − e)σφ(k)[k′]2
)
· dδ̂
dσ

= 0.

(B.5)

By applying (B.3), it can be easily checked that the first term is negative. Also, by applying (B.4),

the second term is also negative. Consequently, after re-arranging terms, we can conclude that

dδ̂
dσ < 0. This completes our proof for the second statement.

It remains to prove the third statement by showing that the optimal discount contract δ̂ is

Pareto-improving. First, consider the case when δ = 1. In this case, x∗d = F−1
(

(1−δ)r
r−s

)
= 0 because,

without discount, the manufacturer has no incentive to place the early order. Consequently, when

δ = 1, the supplier’s problem reduces to the base case so that the manufacturer’s profit Πd
1(1) = Πo

m

and the supplier’s profit Πd
s(1) = Πo

s. Second, by noting that δ̂ < 1 and that the manufacturer’s

profit Πd
1(δ) is decreasing in δ, we can conclude that Πd

1(δ̂) > Πd
1(1) = Πo

m. Hence, the manufacturer

is better off under the supplier optimal discount contract. Finally, by noting that both δ = δ̂ and

δ = 1 are feasible solutions to the supplier’s problem given in (2.10) and that δ = δ̂ is the optimal
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solution, we can conclude that the supplier is also better off under the optimal discount contract

δ̂. �

Proof of Proposition 6: Recall from Lemma 12 and Proposition 5 that dΠds
dδ is positive when

δ = δ∗, negative when δ = 1, and zero when δ = δ̂. Hence, we conclude that δ̂ > δ∗. �

Proof of Proposition 7: We first solve the supplier problem to determine the optimal discount δ

for any given q. Let us consider the supplier’s problem (2.15) for the case when x∗q(δ, q) = q (which

will occur if q > x∗d(δ) = F−1
(

(1−δ)r
r−s

)
). For any given q, it is easy to check the supplier’s profit

function is increasing in δ. Also, the manufacturer’s profit function, pE(D)− rE[D− q]+ + sE[q−

D]+ − δrq, is decreasing in δ. These two observations imply that the manufacturer’s participation

constraint, Πq
1 ≥ Πo

m, is binding for any optimal δ̃ so that:

δ̃ =
r[E(D)− E[D − q]+] + sE[q −D]+

rq
.

By using r > c > s, it is easy to check that δ̃ ∈ ( cr , 1).

By substituting δ̃ = r[E(D)−E[D−q]+]+sE[q−D]+

rq into the supplier’s profit function, we obtain:

Πq
s(δ̃, q) = q(e− c) + (r − e)E(D) + (s− e)E[q −D]+. (B.6)

By considering the first order condition with respect to q, we can show that the optimal q̃

satisfies (2.17). Through direct substitution, we can show that the optimal δ̃ is as given in (2.16).

Using (D−x)+ [x−D]+ = [D−x]+, the supply chain profit under the combined contract (δ̃, q̃)
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can be simplified as:

Π(δ̃, q̃) = Π1(δ̃, q̃) + Πs(δ̃, q̃)

= [pE(D)− rE[D − q̃]+ + sE[q̃ −D]+ − δ̃rq̃]

+ q̃(δ̃r − c) + (r − e)(E(D)− q̃ + E[q̃ −D]+)

= −cq̃ + pE(D)− eE[D − q̃]+ + sE[q̃ −D]+ = Πc.

(B.7)

The last equality is due to the fact that the optimal q̃ given in (2.17) is equal to the initial

order quantity in the centralized system x∗c as given in (2.3). This implies that, if q̃ > x∗d(δ̃) =

F−1
(

(1−δ̃)r
r−s

)
then a minimum-order quantity of q̃ is imposed by the supplier on the manufacturer.

We may then conclude that the combined contract (δ̃, q̃) is an optimal coordinating contract for

two reasons: (a) it coordinates the supply chain so that Π(δ̃, q̃) = Πc and (b) it enables the supplier

to extract the entire surplus from the manufacturer so that Πd
1(δ̃, q̃) = Πo

m. Also, because the

combined contract (δ̃, q̃) enables the supplier to achieve the highest possible profit, we do not need

to consider the case when x∗q(δ, q) = F−1
(

(1−δ)r
r−s

)
> q.

We now complete our proof by showing that q̃ > x∗d(δ̃) = F−1
(

(1−δ̃)r
r−s

)
. By considering the fact

that q̃ = x∗c ≡ F−1
(
e−c
e−s

)
and from (2.13) that x∗q(δ̃, q̃) = max{F−1

(
(1−δ̃)r
r−s

)
, q̃}, we aim to show

that δ̃ > δ∗ ≡ 1 − r−s
r

(
e−c
e−s

)
, where δ∗ corresponds to the supplier optimal discount contract as

examined in Section 2.4.1. We show this by contradiction. Suppose not so that δ̃ < δ∗. Hence, by

using the fact that the manufacturer’s profit pE(D)−rE[D−q]+ +sE[q−D]+−δrq is decreasing in

δ for any q, δ̃ < δ∗ and the fact that q̃ = x∗c imply that pE(D)−rE[D−x∗c ]+ +sE[x∗c−D]+− δ̃rx∗c >

pE(D) − rE[D − x∗c ]+ + sE[x∗c − D]+ − δ∗rx∗c > Πo
m, where the last weak inequality comes from

the fact that x∗d = x∗c when δ = δ∗ and x = 0 is a feasible point in problem (2.5). This contradicts

the fact that the manufacturer’s participation constraint is binding under the optimal combined

contract (δ̃, q̃). �
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Proof of Corollary 1: When D ∼ N(µ, σ2), it is easy to check from (2.17) that the minimum order

quantity q̃ = µ + kσ, where k = Φ−1
(
e−c
e−s

)
. By substituting q̃ = µ + kσ into (2.16) and by using∫ k

−∞ zφ(z)dz = −φ(k) and
∫∞
k zφ(z)dz = φ(k), it can be shown that δ̃ = 1 − (r−s)(φ(k)+kΦ(k))σ

r(µ+kσ)

after some algebra. All other results can be obtained immediately by differentiating δ̃ with respect

to µ and σ. We omit the details. �

Proof of Proposition 8: Before we prove our result, when D ∼ N(µ, σ2), x∗ given in (2.22) can

be simplified as x∗ = µ + kσ, where k = Φ−1
(
e−c
e−s

)
. Also, by transforming D into a standard

normal random variable and by using
∫ k
−∞ zφ(z)dz = −φ(k) and

∫∞
k zφ(z)dz = φ(k) it can be

shown that the supplier’s profit given in (2.23) can be simplified to

Πg
s,1(θ) = (θr − c)µ− σ(e− s)φ(k). (B.8)

To ensure the existence of a delegation contract θ < 1 that can ensure Πg
s,1(θ) > (r − e)E(D), we

can use (B.8) to show that such a delegation contract exists if, and only if:

(θr − c)µ− (e− s)σφ(k) > (r − e)µ, and θ < 1. (B.9)

By rearranging the terms, the above conditions can be simplified as:

θ > 1− e− c
r

+
σ

µ
· e− s

r
· φ(k), and θ < 1.

Hence, we can conclude that a delegation contract with θ < 1 can exist if, and only if,

1 > 1− e− c
r

+
σ

µ
· e− s

r
· φ(k).

By rearranging the terms and by using the fact that e−c
e−s = Φ(k), we obtain the desired result. �
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Proof of Lemma 12: Observe from (2.6) that
dx∗d
dδ = − r

(r−s)f(x∗d) so that x∗d is decreasing in δ.

By using the chain rule, we can differentiate the manufacturer’s profit under the discount contract

(Πd
1(δ), given in (2.7)) with respect to δ,

dΠd
1

dδ
=
dx∗d
dδ
· (r(1− δ)(1− F (x∗d))

− (δr − s)F (x∗d))− r
(
E(D)− E[D − x∗d]+ + E[x∗d −D]+

)
.

By using the fact that F (x∗d) = (1−δ)r
r−s , it is easy to check that the first term equals zero. Then by

noting that E(D− [D−x∗d]+ +[x∗d−D]+) > 0 for any realized value of D, we can conclude that the

manufacturer’s profit Πd
1 under the discount contract is strictly decreasing in δ as

dΠd1
dδ < 0. This

proves the first statement.

To prove the second statement, we only need to show dΠds(δ)
dδ < 0 when δ < 1 and dΠds(δ)

dδ > 0

when δ = δ∗. From the supplier’s profit function, we obtain

dΠd
s

dδ
= rx∗d + ((δr − c)− (r − e)(1− F (x∗d)))

dx∗

dδ

= rx∗d + ((δr − c)− (r − e)(1− F (x∗d)))

(
r

(s− r)f(x∗d)

)

Further, limδ→1 F (x∗d) = 0, which implies that x∗d → 0 as δ → 1. This is intuitive because if there

is zero discount offered for the advance order then the manufacturer prefers to place the order with

the supplier after its demand is realized. Therefore,

lim
δ→1

dΠs

dδ
= r · lim

δ→1
{x∗d −

((δr − c)− (r − e)(1− F (x∗d)))

(r − s)f(x∗d)
} =

r(e− c)
(s− r)f(0)

< 0.

On the other hand, the supplier’s profit when δ = δ∗+ ε, for some ε that is positive but sufficiently
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close to 0, we have

dΠs

dδ
= rx∗d + (ε− (r − e) (1− F (x∗d)))

dx∗d
dδ

= rx∗d +

(
ε− (r − e)

(
1− r − c+ ε

r − s

))
dx∗d
dδ

= rx∗c > 0

(B.10)

as ε→ 0. The last equality is obtained by using the fact that limδ→δ∗ x
∗
d(δ) = x∗c . �

Appendix B: Supplier’s Over-production Strategy During the First-

Period

In this section, we analyze the case when the supplier can produce, during the first period, more

than the quantity x∗d that the manufacturer orders. The supplier’s profit is given by (2.9) and the

supplier’s optimization problem is to maximize its profit with respect to its decision variables: the

first-period production quantity (z), and the advance-order wholesale price discount (δ). By noting

that z > x∗d, (2.9) can be written as

Πd
s(z, δ) =


δrx∗d − cz + rE[D − x∗d]+ if D 6 x∗d

δrx∗d − cz + rE[D − x∗d]+ − eE[D − z]+ if D > x∗d

=δrx∗d − cz + rE[D − x∗d]+ − eE[D − z]+. (B.11)

Hence, for a given discount δ, the optimal production quantity is obtained as z =

max{x∗d, F−1
(
e−c
e

)
}. With algebraic manipulation it can be shown that the supplier produces the

exact order-quantity x∗d if, and only if, δ 6 1− (r−s)(e−c)
re . For ease of notation, let δ0 = 1− (r−s)(e−c)

re .

It is easy to check that δ∗ < δ0 < 1. Though the objective function lacks a nice structure, in the
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following lemma we show that the optimal discount contract will not coordinate the supply chain

even when the supplier overproduces during the first period.

Lemma 13. The optimal discount contract does not coordinate the supply chain even when the

supplier produces more than the advance-order quantity x∗d during the first period.

Proof of Lemma 13: We optimize (B.11) over δ by considering the following two cases:

Case 1 ( cr < δ 6 δ0): By using Proposition 5 we argue that the optimal discount in the

region ( cr , 1−
(r−s)(e−c)

re ] is given by δ1 = min{δ̂, δ0} where δ̂ is the solution to the first-order

condition stated in the second statement of Proposition 5. Since, δ̂ > δ∗ and δ0 > δ∗, we have

δ1 > δ∗.

Case 2 (δ0 6 δ 6 1): Let δ2 be the optimizer in the region [δ0, 1]. Hence, δ2 > δ0 > δ∗.

Since, the global optimizer δ is either δ1 or δ2, we have δ > δ∗ and hence δ cannot coordinate the

supply chain. �.

131



Appendix C The Impact of Crop Minimum Support Prices on

Crop Selection and Farmer Welfare in the presence

of Strategic Farmers and Complementary Production

Costs

C.1 Supplementary and Additional Results

Corollary 7 (Impact of crop dissimilarity). For a given pair of MSPs (mA
t ,m

B
t ) the following

statements hold:

1. Crop availability disparity: The disparity between the total production quantities of the

crops decreases with r if there are strategic farmers. That is ∂|∆qt|
∂r < 0 if θ > 0 where

∆qt = qATt − qBTt . If θ = 0, then ∂|∆qt|
∂r = 0.

2. Crop price disparity: However, the expected disparity between the two crop prices increases

with the crop dissimilarity r. That is ∂|E∆pt|
∂r > 0.

Proposition 15 (Some strategic farmers may forgo low MSPs). Let ˜̃m be the unique value of

mA
t satisfying the equation F

(
mA
t − φ+ rτ̂m

)
= r

2+r . Then for each mA
t such that mA

t < mA
t <

min
{
mA
t , ˜̃m}1, there exists a θ0 such that ∂τ̂s

∂mAt
6 0 for all θ < θ0. Further, if θ is sufficiently high

then ∂τ̂s

∂mAt
> 0 always (i.e., limθ→1

∂τ̂s

∂mAt
> 0 always).

1Note that if ˜̃m < mA
t then the range of interest is empty. Hence, this condition is likely to be encountered when

pAt−1 is sufficiently low.
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Proposition 16 (Effect of moderate MSPs). Let ˜̃m be the unique value of mA
t satisfying the

equation F
(
mA
t − φ+ rτ̂m

)
= r

2+r . Then for each mA
t such that mA

t < mA
t < min

{
mA
t , ˜̃m}2, there

exists a threshold θ1 such that
∂π̂vt (x)

∂mAt
6 0 for all θ < θ1, for each farmer of type v ∈ {m, s} located

at x 6 τ̂v. Further, if θ is sufficiently high then
∂π̂vt (x)

∂mAt
> 0 always (i.e., limθ→1

∂π̂At
∂mAt

> 0 always).

C.2 Proofs

Proof of Lemma 4: First, we note that

|ξt| 6 2β(1− r)⇒ −2β(1− r) 6 ξt 6 2β(1− r)⇒ {−2β 6 ξt − 2rβ} ∧ {ξt + 2rβ 6 2β}

⇒ −2β 6 −2rβ + ξt 6 p
A
t − pBt 6 2rβ + ξt 6 2β ⇒ |pAt − pBt | 6 2β.

Hence,

|pAt − pBt | > 2β ⇒ |ξt| > 2β(1− r)

⇔ P
(
|pAt − pBt | > 2β

)
6 P (|ξt| > 2β(1− r)) 6

(
σ√

2β(1− r)

)2

,

where the last inequality is obtained by using Chebyshev’s inequality. �

Proof of Lemma 5: The first statement is proved by using (3.11) and the fact that
∂E[pBt ]

∂mAt
=

r ∂τ̂
∂mAt

> 0.

For the second statement, by substituting (C.13) in (3.11) and simplifying, we obtain that for

2Note that if ˜̃m < mA
t then the range of interest is empty. Hence, this condition is likely to be encountered when

pAt−1 is sufficiently low.

133



every x 6 τ̂v, v ∈ {m, s},

∂π̂vt (x)

∂mA
t

=
2F
(
mA
t − φ+ rτ̂

)
+ rθF

(
mA
t − φ+ rτ̂

)
F
(
mB
t − φ− rτ̂

)
− 2rθ F

(
mA
t − φ+ rτ̂

)
∂τ̂m

∂mAt

2 + rθ
(
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

))
(C.1)

which is non-negative if ∂τ̂m

∂mAt
= 0. Hence, by using Proposition 11 we obtain the desired result. �

Proof of Proposition 9:

1. The myopic farmers anticipate the price in period t to be the same as the price in period

t− 1. A farmer produces crop A as long as the anticipated benefit from crop A is more than

that from crop B, otherwise the farmer produces crop B (by Assumption 4). Therefore, the

fraction of myopic farmers growing crop A is then given by:

P
(
pAmt−1 − cA(x) > pBmt−1 − cB(x)

)
= P

(
pAmt−1 −

(
x+

1

2

)
> pBmt−1 −

(
1

2
− x
))

= P

(
x 6

pAmt−1 − pBmt−1

2

)
=

(
pAmt−1 − pBmt−1

2

)
+ 0.5 (C.2)

since
pAmt−1−pBmt−1

2 ∈ [−0.5, 0.5] (by Assumption 5). Thus, we obtain the threshold value as

τm =
pAmt−1−pBmt−1

2 .

2. The strategic farmers on the other hand are forward-looking and hence anticipate the market

price in period t by taking into account the total availability of the crops, which takes into

account the behaviors of the myopic farmers and the other strategic farmers. Hence, by using

the principle of rational expectations, the fraction of the strategic farmers growing crop A is

given by:

P
(
E[pAt ]− cA(x) > E[pBt ]− cB(x)

)
= P

(
x 6

E[pAt ]− E[pBt ]

2

)
. (C.3)
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From (3.1), and the fact that qBTt = 1− qATt we obtain

E[pAt ] = a− α− rqATt and E[pBt ] = a− ρ+ rqATt ⇒ E[pAt ]− E[pBt ]

= r(1− 2qATt ) ∈ (−r, r) ⊂ (−1, 1),

where qATt ∈ [0, 1] is the total production quantity of crop A. Therefore, from (C.3) we obtain

the threshold τ s as:

τ s =
E[pAt ]− E[pBt ]

2
=
r(1− 2qATt )

2
. (C.4)

and the total production quantity of crop A by strategic farmers is qAst = θ(τ s+0.5). Further,

using the fact that qATt = qAst + qAmt = θτ s+θτm+0.5 and substituting it in (C.4) we obtain:

τ s =

(
−rθ

1 + rθ

)
τm = −r̂τm.

Note that |τ s| = |r̂||τm| < |τm| ⇒ τ s ∈ [−0.5, 0.5] since r < 1 by Assumption 5.

3. The total availability of crop A is given by

qATt = qAst + qAmt = θτ s + θτm + 0.5 = τ + 0.5, (C.5)

and by using (C.4), we obtain τ = θτm

1+rθ . Note that |τ | = | r̂r ||τ
m| < |τm| ⇒ τ ∈ [−0.5, 0.5]

since r̂ < r.

Proof of Proposition 10:
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1. The fraction of myopic farmers sowing crop A is given by:

P
(
p̂Amt − cA(x) > p̂Bmt − cB(x)

)
= P

(
x 6

p̂Amt − p̂Bmt
2

)
.

Since |pAt − pBt | < 1 and |mA
t −mB

t | < 1 by assumptions, we obtain |p̂Amt − p̂Bmt | < 1 so that

the threshold value τ̂m is given by τ̂m =
p̂Amt −p̂Bmt

2 ∈ [−0.5, 0.5]. The total quantity of crop A

produced by myopic farmers is given by q̂Amt = θ(τ̂m + 0.5).

2. On the other hand, the price anticipated by the strategic farmers for crop k ∈ {A,B} is given

by p̂kst = Eεt max{pkt ,mk
t } where pkt = E[pkt ] + εt. Hence, the fraction of strategic farmers

growing crop A is given by:

P
(
p̂Ast − cA(x) > p̂Bst − cB(x)

)
= P

(
x 6

p̂Ast − p̂Bst
2

)
. (C.6)

Using the fact that p̂kst = E[pkt ] + Eεt max{εt,mk
t − E[pkt ]}, we can write

p̂Ast − p̂Bst = E[pAt ]− E[pBt ]−
∫ ∞
mAt −E[pAt ]

F (ε) dε+

∫ ∞
mBt −E[pBt ]

F (ε) dε

= E[pAt ]− E[pBt ]−
∫ mBt −E[pBt ]

mAt −E[pAt ]
F (ε) dε. (C.7)

We know that E[pAt ] − E[pBt ] = r(1 − 2q̂ATt ) ∈ (−1, 1), where q̂ATt is the total availability of

crop A. Hence, (C.7) can we written as:

p̂Ast − p̂Bst = E[pAt ]− E[pBt ]−
∫ mBt −E[pBt ]

mAt −E[pAt ]
F (ε) dε. (C.8)

For any given set of MSPs (mA
t ,m

B
t ), we have exactly one of these three cases to hold: (i)

E[pAt ]−E[pBt ] > mA
t −mB

t , or (ii) E[pAt ]−E[pBt ] < mA
t −mB

t , or (iii) E[pAt ]−E[pBt ] = mA
t −mB

t .
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When (iii)holds, then trivially p̂Ast − p̂Bst = E[pAt ] − E[pBt ] ∈ (−1, 1). Hence, it remains to

check if p̂Ast − p̂Bst ∈ (−1, 1) for cases (i) and (ii).

In case (i), we note that

p̂Ast − p̂Bst = E[pAt ]− E[pBt ]−
∫ mBt −E[pBt ]

mAt −E[pAt ]
F (ε) dε 6 E[pAt ]− E[pBt ] < 1, and

p̂Ast − p̂Bst = E[pAt ]− E[pBt ]−
∫ mBt −E[pBt ]

mAt −E[pAt ]
F (ε) dε > E[pAt ]− E[pBt ]

− {mB
t − E[pBt ]− (mA

t − E[pBt ] + 2rτ̂)}

= mA
t −mB

t > −1.

In case (ii), we get

p̂Ast − p̂Bst = E[pAt ]− E[pBt ] +

∫ mAt −E[pAt ]

mBt −E[pBt ]
F (ε) dε > E[pAt ]− E[pBt ] > −1, and

p̂Ast − p̂Bst = E[pAt ]− E[pBt ] +

∫ mAt −E[pAt ]

mBt −E[pBt ]
F (ε) dε

6 −2rτ̂ + {mA
t − E[pBt ] + 2rτ̂ − (mB

t − E[pBt ])}

= mA
t −mB

t < 1.

Hence, if |mA
t −mB

t | < 1 then p̂Ast − p̂Bst ∈ (−1, 1) always and so we obtain the threshold τ s

as

τ̂ s =
p̂Ast − p̂Bst

2
=

E[pAt ]− E[pBt ]

2
− 1

2

∫ mBt −E[pBt ]

mAt −E[pAt ]
F (ε) dε ∈ (−0.5, 0.5) (C.9)

and the total production quantity of crop A by strategic farmers as q̂Ast = θ(τ̂ s+0.5) ∈ (0, 1).

The total production of crops A and B are then given by q̂ATt = q̂Amt + q̂Ast = τ̂ + 0.5 and
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q̂BTt = 0.5− τ̂ . Hence, we obtain E[pAt ] = a−α− rq̂ATt = φ− rτ̂ and E[pBt ] = a− ρ+ rq̂ATt =

φ+ rτ̂ . Substituting these values in (C.9), we obtain

τ̂ s = −rτ̂ − 1

2

∫ mBt −φ−rτ̂

mAt −φ+rτ̂
F (ε) dε ∈ [−0.5, 0.5]. (C.10)

By substituting τ̂ = θτ̂ s + θτ̂m in (C.10) we obtain (3.7). Note that the above equation is an

implicit definition of τ̂ s so that τ̂m, τ̂ s and τ̂ are all functions of of pAt−1, pBt−1, mA
t and mB

t .

Hence, it is important to check the existence of equilibrium and, if possible, show that (3.7)

is satisfied by a unique value of τ̂ in order to prove uniqueness of the equilibrium.

Proof of Uniqueness of τ̂ s: Let RHS(C.10) and LHS(C.10) denote the right-hand side and the

left-hand side of (C.10), respectively. We note that
∂LHS(C.10)

∂τ̂s = 1, LHS(C.10)|τ̂s=−0.5 =

−0.5 and LHS(C.10)|τ̂s=0.5 = 0.5. Next, we proved that RHS(C.10) ∈ [−0.5, 0.5]. Hence,

RHS(C.10)|τ̂s=−0.5 > −0.5 and RHS(C.10)|τ̂s=0.5 6 0.5. Further,

∂RHS(C.10)

∂τ̂ s
= −rθ − 1

2

[
−rθF

(
mB
t − φ− rτ̂

)
− rθF

(
mA
t − φ+ rτ̂

)]
= −rθ

2

[
F
(
mB
t − φ− rτ̂

)
+ F

(
mA
t − φ+ rτ̂

)]
< 0

Hence, by intermediate value theorem, there exists a unique solution to (C.10).

3. By definition, qAst = θ(τ̂ s + 0.5), qAmt = θ(τ̂m + 0.5) and qATt = qAmt + qAst = τ̂ + 0.5. �

Proof of Proposition 11:

1. First, we note that ∂τm

∂mAt
> 0 and ∂τm

∂mBt
6 0 by its definition given in (3.6). Next, after

differentiating (3.7) implicitly with respect to mA
t and simplifying by using r̂ = rθ

1+rθ , we
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obtain

2(1 + rθ)
∂τ̂ s

∂mA
t

= −2rθ
∂τ̂m

∂mA
t

+ F
(
mA
t − φ+ rτ̂

)
(C.11)

+ r
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] ∂τ̂

∂mA
t

. (C.12)

However, by definition of τ̂ , we obtain ∂τ̂s

∂mAt
= 1

θ

[
∂τ̂
∂mAt

− θ ∂τ̂m
∂mAt

]
. Hence, we obtain:

∂τ̂

∂mA
t

=
θF
(
mA
t − φ+ rτ̂

)
+ 2θ ∂τ̂

m

∂mAt

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] > 0. (C.13)

Similarly, we obtain

∂τ̂

∂mB
t

= −
θF
(
mB
t − φ− rτ̂

)
− 2θ ∂τ̂

m

∂mBt

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] 6 0. (C.14)

This proves the first statement. Further, by using the equation (C.11) for ∂τ̂s

∂mAt
, we obtain

∂τ̂ s

∂mA
t

=
F
(
mA
t − φ+ rτ̂

)
− rθ

[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]
∂τ̂m

∂mAt

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] . (C.15)

Similarly, we obtain

∂τ̂ s

∂mB
t

= −
F
(
mB
t − φ− rτ̂

)
+ rθ

[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]
∂τ̂m

∂mBt

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] . (C.16)

Note that the signs of ∂τ̂s

∂mAt
and ∂τ̂s

∂mBt
cannot be ascertained easily.

2. By the definition of mA
t , there are two values of mA

t that are possible: (i) mA
t = pAt−1 >

(max{mB
t , p

B
t−1} − 1) and (ii) mA

t = (max{mB
t , p

B
t−1} − 1) > pAt−1. In case (i) we have

mA
t 6 mA

t = pAt−1 then τ̂m =
pAt−1−max{mBt ,pBt−1}

2 because |mA
t − mB

t | < 1. In case (ii)
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we have mA
t < (max{mB

t , p
B
t−1} − 1) which implies that τ̂m = −0.5. Hence, qAmt =[

pAt−1−max{mBt ,pBt−1}
2 + 0.5

]+

, which is independent of mA
t . Hence,

∂qAmt
mAt

= 0 = ∂τ̂m

mAt
. Us-

ing qAst = θ(τ̂ s + 0.5) we obtain
∂qAst
∂mAt

= θ ∂τ̂s

∂mAt
> 0 by noting from (C.15) that ∂τ̂s

∂mAt
> 0 if

∂τ̂m

mAt
= 0.

3. The fact that τ̂m = +1
2 when mA

t > mA
t follows directly from the fact that all the farmers

produce crop A when mA
t > m

A
t . The proof of the remaining results follows as in part 2.

4. If mA
t < mA

t < mA
t , then τ̂m =

mAt −max{pBt−1,m
B
t }

2 ∈ (−0.5, 0.5) ⇒ qAmt ∈

(0, θ). Hence, ∂τ̂m

∂mAt
= 1

2 ⇒
∂qAmt
∂mAt

= θ
2 . Further, from (C.15) we obtain, ∂τ̂s

∂mAt
=

F(mAt −φ+rτ̂)− rθ2 [F(mAt −φ+rτ̂)+F(mBt −φ−rτ̂)]
2+rθ[F(mAt −φ+rτ̂)+F(mBt −φ−rτ̂)]

, whose sign cannot be ascertained. �

Proof of Proposition 12: From (3.7), we have

2τ̂ s = −2rτ̂ −
∫ mBt −φ−rτ̂

mAt −φ+rτ̂
F (ε) dε = −2rτ̂ −

∫ mBt −φ−rτ̂

mAt −φ+rτ̂

ε+ δ

2δ
dε.

By substituting τ̂ = θτ̂ s + θτ̂m and τ̂m ≡ τ̂m(mA
t ,m

B
t ) =

mAt −mBt
2 , we obtain

τ̂ s(mA
t ,m

B
t ) =

(
mA
t −mB

t

2

)[
2δ − 2φ+mA

t +mB
t − rθ

(
2δ + 2φ−mA

t −mB
t

)
4δ + rθ

(
2δ + 2φ−mA

t −mB
t

) ]
(C.17)

⇒ ∂τ̂ s

∂mA
t

=
1

2
+

2δ(1 + r)(mA
t −mB

t )(
4δ + rθ(2δ + 2φ−mA

t −mB
t )
)2 − (1 + r)(2δ + 2φ−mA

t −mB
t )

2
(
4δ + rθ(2δ + 2φ−mA

t −mB
t )
)

=
V (θ)

2
(
4δ + rθ(2δ + 2φ−mA

t −mB
t )
)2 (C.18)
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where

V (θ) =r2(2δ + 2φ−mA
t −mB

t )2θ2

+ r(2δ + 2φ−mA
t −mB

t )
(
8δ − (1 + r)(2δ + 2φ−mA

t −mB
t )
)
θ

− 8δ
(
(1 + r)(φ−mA

t )− (1− r)δ
)
,

which is a convex quadratic in θ and V (0) < 0 if mA
t < mA

t 6 φ− δ
(

1−r
1+r

)
(< φ), that is if the MSP

of A is moderately small. Hence, there exists a θ0 > 0 such that V (θ) < 0 if and only if θ < θ0,

that is ∂τ̂s

∂mAt
< 0 if and only if θ < θ0. �

Proof of Proposition 13: First, we obtain τ̂ s(mA
t ,m

B
t ) as given in (C.17). Second, since |mA

t −

mB
t | < 1, we have τ̂m(mA

t ,m
B
t ) =

mAt −mBt
2 . Using these values of τ̂ s(mA

t ,m
B
t ) and τ̂m(mA

t ,m
B
t ), we

obtain

τ̂(mA
t ,m

B
t ) = θτ̂ s(mA

t ,m
B
t ) + θτ̂m(mA

t ,m
B
t ) =

(
mA
t −mB

t

2

)[
4δ − θ

(
2δ + 2φ−mA

t −mB
t

)
4δ + rθ

(
2δ + 2φ−mA

t −mB
t

)] .
On substituting the value of τ̂(mA

t ,m
B
t ) in (3.11) we obtain

lim
θ→0

∂π̂vt (x)

∂mA
t

=
(2 + r)2

8δ

[
mA
t − m̃A

]
< 0

for v ∈ {m, s} and x 6 τ̂v. Hence the result.

Further, from (C.13), we have limθ→1
∂τ̂
∂mAt

=
F(mAt −φ+rτ̂s)

2+r[F(mAt −φ+rτ̂s)+F(mBt −φ−rτ̂s)]
so that, from

(3.11), we obtain

lim
θ→1

∂π̂vt (x)

∂mA
t

= F
(
mA
t − φ+ rτ̂ s

)
− r

F
(
mA
t − φ+ rτ̂ s

)
2 + r

[
F
(
mA
t − φ+ rτ̂ s

)
+ F

(
mB
t − φ− rτ̂ s

)]
=

2F
(
mA
t − φ+ rτ̂ s

)
+ rF

(
mA
t − φ+ rτ̂ s

)
F
(
mB
t − φ− rτ̂ s

)
2 + r

[
F
(
mA
t − φ+ rτ̂ s

)
+ F

(
mB
t − φ− rτ̂ s

)] > 0 ∀x 6 τ̂v, v ∈ {A,B}.
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∂π̂vt (x)

∂mAt
> 0 for all x > τ v by Lemma 5. Hence, limθ→1

∂π̂vt (x)

∂mAt
> 0 for all x ∈ (−0.5, 0.5) because of

continuity of π̂vt (x) at x = τ̂v, for v ∈ {A,B}. �

Proof of Proposition 15: If mA
t < mA

t < mA
t , then from Proposition 11, we have ∂τ̂m

∂mAt
= 1

2 .

Hence, from (C.15) we find that if

F
(
mA
t − φ+ rτ̂

)
<

rθ

2 + rθ

[
1 + F

(
mB
t − φ− rτ̂

)]
(C.19)

then ∂τ̂s

∂mAt
6 0. Note that mA

t − φ + rτ̂m is increasing in mA
t and hence the equation

F
(
mA
t − φ+ rτ̂m

)
= r

2+r has a unique solution (which we denote by ˜̃m). Hence, for mA
t such

that mA
t < mA

t < min
{
mA
t , ˜̃m} we have

lim
θ→0

F
(
mA
t − φ+ rτ̂

)
= F

(
mA
t − φ+ rτ̂m

)
<

r

2 + r
= lim

θ→0

rθ

2 + rθ

< lim
θ→0

rθ

2 + rθ

[
1 + F

(
mB
t − φ− rτ̂

)]

Hence, there exists θ0 (sufficiently close to 0) such that F
(
mA
t − φ+ rτ̂

)
<

rθ
2+rθ

[
1 + F

(
mB
t − φ− rτ̂

)]
for all θ ∈ [0, θ0). The proof is completed by using (C.19).

�

Proof of Proposition 16: If mA
t < mA

t < mA
t , then from Proposition 11, we have ∂τ̂m

∂mAt
= 1

2 .

Hence, from (C.1), we observe that if

F
(
mA
t − φ+ rτ̂

)
6

rθ

2 + rθ + rθF
(
mB
t − φ− rτ̂

) (C.20)

then
∂π̂At
∂mAt

6 0. Hence, we have

lim
θ→0

F
(
mA
t − φ+ rτ̂

)
= F

(
mA
t − φ+ rτ̂m

)
<

r

2 + r
= lim

θ→0

{
rθ

2 + rθ + rθF
(
mB
t − φ− rτ̂

)}
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Hence, there exists θ1 (sufficiently close to 0) such that F
(
mA
t − φ+ rτ̂

)
< rθ

2+rθ+rθF(mBt −φ−rτ̂)
for

all θ ∈ [0, θ1). The proof is completed by using (C.20). Further, limθ→1
∂π̂vt (x)

∂mAt
> 0 is shown the

same way as in Proposition 13. �

Proof of Corollary 2:

1. |∆qt| = |qATt − qBTt | = 2|τ | = 2θ
1+rθ |τ

m| ⇒ ∂|∆qt|
∂r < 0 if θ > 0. Clearly, if θ = 0 then |∆qt| is

independent of r.

2. |E∆pt| = |∆pt−1|r̂ ⇒ ∂|E∆pt|
∂r = |∆pt−1|∂r̂∂r > 0. �

Proof of Corollary 3: The proof follows directly from the expressions derived in Proposition 9

and (3.5). �

Proof of Corollary 4:

1. The proof follows from the definition of τm and qAmt given in the first statement of Proposition

9.

2. From the second statement of Proposition 9 we obtain:

τ s = −r̂τm ⇒ ∂τ s

∂θ
= −τm ∂r̂

∂θ
=

r(1 + r)

(1 + rθ)2
τm and (C.21)

qAst = θ(τ s +
1

2
)⇒ ∂qAst

∂θ
= τ s +

1

2
+ θ

∂τ s

∂θ
= −r̂τm +

1

2
+ θ

r(1 + r)

(1 + rθ)2
τm, (C.22)

which gives the desired result on simplification.

3. The expression for ∂τ
∂θ (or equivalently

∂qATt
∂θ ) is obtained by differentiating the expression for

τ (or equivalently qATt ) given in the third statement of Proposition 9. Next, from the third

statement of Corollary 3 we obtain ∂2τ
∂θ∂∆pt−1

=
∂2qATt

∂θ∂∆pt−1
= − r+1

2(1+rθ)2 < 0.

4. The result is obtained by successively differentiating (3.5) with respect to θ followed by ∆pt−1.

�
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Proof of Corollary 5:

1. By differentiating (3.6) with respect to pAt−1, pBt−1 and ∆pt−1, we get

∂τ̂m

∂pAt−1

=
1

2
· I{mAt <pAt−1}

> 0, and
∂τ̂m

∂pBt−1

= −1

2
· I{mBt <pBt−1}

6 0,

where p̂km = max{mk
t , p

k
t−1}, k ∈ {A,B}. The expressions for

∂qAmt
∂pkt−1

can be obtained by using

qAmt = θ(τm + 0.5).

2. By differentiating (3.7) with respect to pAt−1, we get

∂τ̂ s

∂pAt−1

= −r
2
·
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)] ∂τ̂

∂pAt−1

⇒ ∂τ̂ s

∂pAt−1

= −

[
θr
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]
2 + θr

[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]] ∂τ̂m

∂pAt−1

6 0

where the second equation is obtained by using τ̂ = θτ̂ s + θτ̂m. Similarly, we obtain

∂τ̂ s

∂pBt−1

= −

[
θr
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]
2 + θr

[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]] ∂τ̂m

∂pBt−1

> 0.

The expressions for
∂qAst
∂pkt−1

can be obtained by using qAst = θ(τ s + 0.5).

3. By using the fact that τ̂ = θτ̂ s + θτ̂m and qATt = τ + 0.5, we obtain

∂τ̂

∂pAt−1

=
∂qATt
∂pAt−1

=

[
2θ

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]] ∂τ̂m

∂pAt−1

> 0

∂τ̂

∂pBt−1

=
∂qATt
∂pBt−1

=

[
2θ

2 + rθ
[
F
(
mA
t − φ+ rτ̂

)
+ F

(
mB
t − φ− rτ̂

)]] ∂τ̂m

∂pBt−1

6 0.
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4. If x 6 τ̂v, v ∈ {m, s}, then the farmer at x produces crop A. Hence, from (3.10) we obtain

∂π̂vt (x)

pAt−1

=
∂Π̂A

t (x)

pAt−1

= −rF
(
mA
t − φ+ rτ̂

) ∂τ̂

∂pAt−1

6 0 and

∂π̂vt (x)

pBt−1

=
∂Π̂A

t (x)

pBt−1

= −rF
(
mA
t − φ+ rτ̂

) ∂τ̂

∂pBt−1

> 0.

Similarly, when x > τ̂v, v ∈ {m, s}, then the farmer at x produces crop B. Hence, from (3.10)

we obtain

∂π̂vt (x)

pAt−1

=
∂Π̂B

t (x)

pAt−1

= rF
(
mB
t − φ− rτ̂

) ∂τ̂

∂pAt−1

> 0 and

∂π̂vt (x)

pBt−1

=
∂Π̂A

t (x)

pBt−1

= rF
(
mB
t − φ− rτ̂

) ∂τ̂

∂pBt−1

6 0. �

Proof of Corollary 6 : For exposition, we define the sign function as: sgn[x] = −1 if x < 0,

sgn[x] = +1 if x > 0 and sgn[0] = 0.

1. From (3.6) we obtain ∂τ̂m

∂θ = 0. Since q̂Amt = θ(τ̂m + 0.5), we obtain ∂q̂Am

∂θ = −(τ̂m + 0.5) 6 0.

2. From (3.7) we obtain

∂τ̂ s

∂θ
= −2r

∂τ̂

∂θ
+ r

∂τ̂

∂θ

(
F (mA

t − φ− rτ̂) + F (mB
t − φ+ rτ̂)

)
= −r

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) ∂τ̂
∂θ
,

and τ̂ = θτ̂ s + θτ̂m ⇒ ∂τ̂

∂θ
= τ̂ s + θ

∂τ̂ s

∂θ
− τ̂m so that

∂τ̂ s

∂θ
=

r
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
1 + rθ

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) · (τ̂m − τ̂ s)⇒ sgn

[
∂τ̂ s

∂θ

]
= sgn [τ̂m − τ̂ s] > 0⇔ τ̂m > τ̂ s0 .
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Since qAst = θ(τ̂ s + 0.5) we obtain

∂qAst
∂θ

= τ̂ s + 0.5 + θ
∂τ̂ s

∂θ

=
(τ̂ s + 0.5) + rθ

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
(τ̂m + 0.5)

1 + rθ
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) > 0

because τ̂m, τ̂ s ∈ [−0.5, 0.5].

3. As shown in part 2, ∂τ̂
∂θ = τ̂ s + θ ∂τ̂

s

∂θ − τ̂
m. Hence,

∂τ̂

∂θ
=

(τ̂ s − τ̂m)

1 + rθ
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
⇒sgn

[
∂τ̂

∂θ

]
= sgn[τ̂ s − τ̂m] 6 0⇔ τ̂m > τ̂ s0 .

4. The result is obtained by differentiating (3.10) with respect to θ. �

Proof of Corollary 7: By differentiating (3.7) implicitly by r we obtain

∂τ̂ s

∂r
= −2τ̂ − 2r

∂τ̂

∂r
+
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) ∂
∂r

(rτ̂)

= −
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)(
τ̂ + r

∂τ̂

∂r

)
.

Further, by definition of τ̂ we obtain ∂τ̂
∂r = θ ∂τ̂

s

∂r . Hence, we obtain

1

θ

∂τ̂

∂r
= −

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)(
τ̂ + r

∂τ̂

∂r

)
⇒ ∂τ̂

∂r
= −

θ
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
τ̂

1 + rθ
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) .
Therefore, we have the following:
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1.

∆qt = qATt − qBTt = 2qATt − 1 = 2τ̂ ⇒ ∂∆qt
∂r

= 2
∂τ̂

∂r

= −
2θτ̂

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
1 + rθ

(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

) .
Now, consider the value of τ̂ at r = 0. We consider two cases: (i) τ̂ |r=0 > 0 and (ii) τ̂ |r=0 < 0.

It is easy to see that when τ̂ |r=0 = 0 then ∂∆qt
∂r = 0. When (i) τ̂ |r=0 > 0, then crop A is

produced more than crop B at r = 0 (i.e.,∆qt|r=0 > 0) and hence, since strategic farmers are

present (i.e., θ > 0), ∂∆qt
∂r < 0. That is the disparity between the quantities of crops A and B

decreases because of the strategic farmers. When (ii) τ̂ |r=0 < 0, then crop A is produced less

than crop B at r = 0 (i.e.,∆qt|r=0 < 0) and hence, since strategic farmers are present (i.e.,

θ > 0), ∂∆qt
∂r > 0. That is the disparity between the quantities of crops A and B decreases

because of the strategic farmers. Hence,

2.

E[∆pt] = E[pAt − pBt ] = E[pAt ]− E[pBt ] = −2rτ̂ ⇒ ∂E[∆pt]

∂r
= −2

(
τ̂ + r

∂τ̂

∂r

)
⇒ ∂E[∆pt]

∂r
= −2

(
τ̂ + r

∂τ̂

∂r

)
=

−2τ̂

1 + rθ
(
F (mA

t − φ+ rτ̂) + F (mB
t − φ− rτ̂)

)
Now, consider the value of τ̂ at r = 0. We consider two cases: (i) τ̂ |r=0 > 0 and (ii) τ̂ |r=0 < 0.

It is easy to see that when τ̂ |r=0 = 0 then ∂E∆pt
∂r = 0. When (i) τ̂ |r=0 > 0, then crop A is

produced more than crop B at r = 0 and hence E[∆pt]|r=0 < 0. Hence, ∂E∆pt
∂r < 0 (i.e., as r

increases the price of crop A goes further down while that of crop B goes up, thus widening

the gap between the two prices). When (ii) τ̂ |r=0 < 0, then crop A is produced less than crop

B at r = 0 and hence E[∆pt]|r=0 > 0. Hence, ∂E∆pt
∂r > 0 (i.e., as r increases the price of crop
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A goes further up while that of crop B goes down, thus widening the gap between the two

prices). Hence, ∂|E∆pt|
∂r > 0. �
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