
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Computing with Temporal Operators

Permalink
https://escholarship.org/uc/item/6b0613nh

Author
Tzimpragos, Georgios

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6b0613nh
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Computing with Temporal Operators

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Georgios Tzimpragos

Committee in charge:

Professor Timothy Sherwood, Chair
Professor Yufei Ding
Professor Yu Feng
Professor James E. Smith

September 2022

The Dissertation of Georgios Tzimpragos is approved.

Professor Yufei Ding

Professor Yu Feng

Professor James E. Smith

Professor Timothy Sherwood, Committee Chair

June 2022

Computing with Temporal Operators

Copyright © 2022

by

Georgios Tzimpragos

iii

To my family and friends, for making my days brighter.

iv

Acknowledgements

This dissertation would not have been possible without the support and contributions

of many people. First, I want to thank my advisor, Tim Sherwood, for setting up an

environment where I could be myself and feel free to explore my most wacky ideas. His

truly interdisciplinary research approach opened a new and fascinating world for me, and

I could not be more grateful for this.

Next, I want to thank all the UC Santa Barbara Computer Science Department fac-

ulty and staff members for their inspiration and help over the years. Moreover, David

Donofrio and George Michelogiannakis deserve credit for believing in my research and

supporting my first superconducting endeavors. The extended technical discussions with

Scott Holmes contributed to taking these efforts to the next level too. At this point, I

also want to acknowledge Amit Majumdar for his patience and encouragement, Dmitri

Strukov for his support and feedback, and all the members of NTUA’s µlab for introduc-

ing me to research and always being there to listen to my latest adventures.

I am also extremely thankful to my close collaborators: Jennifer Volk, Alex Wynn,

Evan Golden, and Michael Christensen. Working with them broadens my horizons and

triggers my curiosity in unexpected and fun ways. Their positive attitude and support

also significantly impact me, and I am lucky to have met them.

Last but not least, I want to acknowledge Jim Smith. Jim is not only a true inspiration

as a scientist but also a fantastic human. His determination, energy, and free spirit give

me optimism and motivate me to put my heart into whatever I do. Thank you, Jim.

v

Curriculum Vitæ
Georgios Tzimpragos

Education

2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2016 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Davis.

2012 B.S. in Electrical and Computer Engineering, National Technical
University of Athens.

Publications

G. Tzimpragos, J. Volk, A. Wynn, T. Sherwood. Pulsar: A Superconducting Delay-
Line Memory. arXiv:2205.08016. 2022.

M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, B. Hardekopf.
PyLSE: A Pulse-Transfer Language for Superconductor Electronics. ACM 43rd Confer-
ence on Programming Language Design and Implementation (PLDI). 2022.

G. Tzimpragos, J. Volk, A. Wynn, J. E. Smith, T. Sherwood. Superconducting Com-
puting with Alternating Logic Elements. ACM/IEEE 48th Annual International Sym-
posium on Computer Architecture (ISCA). 2021.

G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, T. Sherwood. In-sensor
Classification with Boosted Race Trees. Commun. ACM 64, 6. 2021.

Y. Wang, B. Feng, G. Li, G. Tzimpragos, L. Deng, Y. Xie, Y. Ding. TiAcc: Trian-
gle Inequality-Based Hardware Accelerator for K-Means on FPGAs. ACM/IEEE 21st
International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 2021.

G. Tzimpragos, J. Volk, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis, A. Madha-
van, J. Shalf, T. Sherwood. Temporal Computing With Superconductors. IEEE Micro,
vol. 41, no. 3. 2021.

A. Majumdar, G. Tzimpragos, J. Villarreal, K. Deepak, J. Rangarajan. Breakpointing
Circuitry That Evaluates Breakpoint Conditions While Running Clock to Target Circuit.
US 10,754,759 B1. 2020.

D. Dangwal, G. Tzimpragos, T. Sherwood. Agile Hardware Development and Instru-
mentation with PyRTL. IEEE Micro, vol. 40, no. 4. 2020.

G. Tzimpragos, J. Villarreal, A. Majumdar, K. Deepak, Y. Zhu. Data Unit Break-
pointing Circuits and Methods. US 10,621,067 B1. 2020.

G. Tzimpragos, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis, A. Madhavan,
J. Volk, J. Shalf, T. Sherwood. A Computational Temporal Logic for Superconducting

vi

Accelerators. ACM 25th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 2020.

W. Cui, G. Tzimpragos, Y. Tao, J. McMahan, D. Dangwal, N. Tsiskaridze, G. Michel-
ogiannakis, D. Vasudevan, T. Sherwood. Language Support for Navigating Architecture
Design in Closed Form. J. Emerg. Technol. Comput. Syst. (JETC) 16, 1, Article 9.
2020.

G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, T. Sherwood. Boosted Race
Trees for Low-Energy Classification. ACM 24th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS). 2019.

W. Cui, Y. Ding, D. Dangwal, A. Holmes, J. McMahan, A. Jabari-Abhari, G. Tzi-
mpragos, F. Chong, T. Sherwood. Charm: A Language for Closed-Form High-Level
Architecture Modeling. ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 2018.

J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, T. Sherwood. A Pythonic
Approach for Rapid Hardware Prototyping and Instrumentation. 27th International
Conference on Field Programmable Logic and Applications (FPL). 2017.

G. Tzimpragos, D. Cheng, S. Tapp, B. Jayadev, A. Majumdar. Application Debug in
FPGAs in the Presence of Multiple Asynchronous Clocks. International Conference on
Field-Programmable Technology (FPT). 2016.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, I. Tomkos. A
Survey on FEC Codes for 100G and Beyond Optical Networks. IEEE Communications
Surveys & Tutorials, vol. 18, no. 1. 2016.

R. Proietii, C. J. Nitta, Z. Cao, M. Clements, G. Tzimpragos, S. J. B. Yoo. Flexible-
Bandwidth Power-Aware Optical Interconnects with Source-Synchronous Techniques.
IEEE Optical Interconnects Conference (OI). 2015.

C. Kachris, G. Tzimpragos, D. Soudris, I. Tomkos. Reconfigurable FEC Codes for
Software-Defined Optical Transceivers. 13th International Conference on Optical Com-
munications and Networks (ICOCN). 2014.

G. Tzimpragos, C. Kachris, D. Soudris, I. Tomkos. A Low-Complexity Implementation
of QC-LDPC Encoder in Reconfigurable Logic. 23rd International Conference on Field
programmable Logic and Applications (FPL). 2013.

vii

Abstract

Computing with Temporal Operators

by

Georgios Tzimpragos

Binary codes and Boolean logic form the foundation of digital computing as we know it.

However, the ever-increasing demand for cheap computing power for emerging applica-

tions and the advent of novel devices with unique characteristics bring about questions

of potential alternatives. This dissertation challenges the status quo by reimagining the

established digital/analog boundary and demonstrating how computing with temporal

operators can be practical and remarkably efficient.

To this end, the focus is initially on conventional devices. The exploration begins

with the idea that digital temporal codes, in which a number is represented by the time

that a low to high voltage transition occurs, may, in some cases, be a happy medium

between analog and digital binary. To showcase the benefits of this approach, a temporal

accelerator for decision trees is developed. The resulting system is built solely with off-

the-shelf CMOS components, allows tight integration with sensors, and delivers multiple

orders of magnitude energy and performance gains over state-of-the-art solutions.

In the second part of the dissertation, the focus is on post-Moore technologies—

specifically, superconductor electronics. Despite their promise as candidates for inte-

grated classical-quantum computers and supercomputers, a fundamental mismatch be-

tween traditional computational abstractions and the pulse-based nature of supercondu-

ctor devices impedes their advancement. Unfortunately, transient voltage pulses do not

translate to 0s and 1s as easy as stable voltage levels. Fortunately, temporal operators

do not use binary inputs. The advantages of avoiding pulse-to-binary translations at the

viii

gate level are highlighted through a series of temporal superconductor designs. Inter-

estingly, these advantages carry over to Boolean superconductor designs by leveraging a

newfound duality between temporal and Boolean operators.

The dissertation concludes with a discussion of superconducting information storage

in the time domain and the generalization of temporal formalism in a way that allows

the specification of both hardware and its properties using the same temporal operators.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Overview 1
1.1 Dissertation Organization and Contributions 2
1.2 Permissions and Attributions . 6

2 Temporal In-Sensor Classification 8
2.1 Introduction . 8
2.2 Generalized Race Logic . 10
2.3 Race Trees . 12
2.4 End-to-End Architecture . 16
2.5 Software Infrastructure . 20
2.6 Evaluation . 22
2.7 Conclusion . 26

3 Temporal Superconductor Computing 28
3.1 Introduction . 28
3.2 Computing with Superconductors . 30
3.3 Temporal Operators in SFQ . 33
3.4 Circuit Design with Temporal SFQ Gates 36
3.5 Evaluation . 37
3.6 Conclusion . 43

4 From Temporal to Superconductor Boolean 46
4.1 Introduction . 46
4.2 Current Status . 48
4.3 xSFQ Logic Design . 51
4.4 xSFQ Implementation . 59
4.5 Phase Rebalancing . 64
4.6 Optimum Pipeline Depth . 70

x

4.7 Conclusion . 78

5 Tomorrow’s Outlook 80
5.1 Superconductor Delay-Line Memory . 81
5.2 Generalized Temporal Formalism . 92

Bibliography 96

xi

Chapter 1

Overview

Complementary metal-oxide semincoductor (CMOS) scaling has been a driving factor

for computing technology for many decades and the transistors manufactured today are

multiple orders of magnitude more efficient, compact, and less expensive than those built

30 years ago. However, as CMOS approaches its limits, keeping this trend going becomes

increasingly more difficult. This reality highlights the importance of cross-stack solutions

that better utilize the room left at the top of the computing stack to get more out of

existing devices or open up new opportunities for emerging ones.

A closer look at the top indicates the dependence on software engineering, algo-

rithms, and hardware architectures for performance and efficiency improvements in the

post-Moore era [1]. In the case of hardware architectures, a recent visionary paper [2]

goes one step further and discusses the potential of five key topics that are expected to

significantly change the computing field within the next 10 to 15 years: democratiza-

tion of hardware specialization, architectural innovations for cloud computing, deep 3D

integration, computing closer to physics, and machine learning as a key workload (see

Figure 1.1).

The focus of this dissertation is primarily on machine learning as a key workload—

1

Overview Chapter 1

Preparing for tomorrow

2030

Democratize
hardware
specialization

Cloud as architecture
innovation abstraction

Deep 3D integration

Computing closer
to physics

2020 2025

Machine learning
as key workload

Figure 1.1: A vision of computer architecture research over the next decade, as de-
scribed by Ceze, Hill, and Wenish [2]. The focus of this dissertation is outlined in red.

specifically, in-sensor classification (Chapter 2)—and computing closer to physics with

superconductor devices (Chapters 3 and 4). The overarching goal is to show the benefits

of customization at the data representation and logic levels, with temporal codes and

operators being the center of attention here.

Thesis statement: With appropriate logic extensions, algorithms, and architecture

techniques, computing with temporal operators can be practical and remarkably efficient

both in established and emerging technologies.

1.1 Dissertation Organization and Contributions

The dissertation consists of three main parts. Briefly, the first part consists of Chap-

ter 2 and focuses on temporal machine learning with CMOS devices. The second part

consists of Chapters 3 and 4 and focuses on superconductor digital computing with tem-

2

Overview Chapter 1

poral operators. The third and final part consists of Chapter 5, which looks into the

future by approaching temporal computing through the lens of storage and verification.

Consequently, Chapter 5 consists of two distinct sections. The first section presents a

delay-line memory based on passive transmission lines with high kinetic inductance and

unveils a new away of attacking the superconductor memory bottleneck. The second

section draws a connection between propositional and computational temporal logic and

shows a way to eliminate semantic gaps between hardware designs and temporal asser-

tions that are commonly used in the context of formal verification. A more detailed

summary of these contributions, organized in four thematic areas, is below.

1.1.1 Temporal In-Sensor Classification

Traditionally, engineers use time as the basis for important metrics and properties.

For example, in general-purpose computing, faster is better, and execution time is a cru-

cial performance metric [3].At the same time, in cyber-physical systems, actions must

be taken at the correct time, and finishing early is no better than finishing late [4]. In

contrast to these cases, the key idea behind my efforts is to use the passage of time

as a computational resource and encode values in relative delays. This new perspec-

tive [5, 6] creates unique ways to work with sensors, especially those that return temporal

information directly. For instance, temporal encoding subverts the costly time-to-digital

conversion that typically happens in the output of dynamic vision and time-of-flight

systems. However, temporal signals are fundamentally different than the binary inputs

that Boolean operators expect. Instead of AND, OR, and NOT, the operators that I

use to perform delay manipulations are those of First Arrival (FA), Last Arrival (LA),

Delay (D), and Inhibit (I). Regarding machine learning, decision tree ensembles map

well to these temporal operators at the algorithmic level, and the seamless cooperation

3

Overview Chapter 1

of Boolean and temporal designs, implemented with off-the-shelf CMOS components, is

demonstrated. The resulting architecture is fully programmable, has a shallow critical

path, and minimizes switching. Finally, a development flow that accommodates this

temporal logic scheme and integrates fully into the popular scikit-learn framework [7]

is provided at the user interface level. The obtained results indicate that the proposed

change is beneficial across all compute layers, from logic and circuit levels to application

and integration.

1.1.2 Superconductor Logic Design with Temporal Operators

Pulse-based superconductor electronics (SCE) exhibit zero static power dissipation,

speed-of-light energy-efficient interconnects, and clock rates in the 10s or 100s of GHz.

However, a pulse, unlike a stable voltage level, is transient. This implies that superco-

nductor cells must be stateful to perform any logical operation. But stateful cells need

a mechanism to logically evaluate and reset. The conventional approach is to use a pe-

riodic clock signal. Unfortunately, the use of clocks in such a way leads to a variety of

challenges across the entire hardware stack. I posit that temporal operators provide a

better alternative to their Boolean counterparts by removing the need for clocking at

the individual cell level [8, 9]. To validate this hypothesis, I first model First Arrival

(FA), Last Arrival (LA), Delay, and Inhibit as Mealy machines. Then, I implement these

Mealy machines in single flux quantum (SFQ) technology asynchronously and propose

a methodology to combine them into larger superconducting accelerator architectures.

Moreover, I discover a duality between Boolean and temporal operators that allows the

repurposing of FA and LA SFQ cells as Boolean OR and AND functions [10]. To guar-

antee logical completeness and deterministically reinitialize the circuit state without the

need for external signals, I use the theories of unordered codes and alternating logic. My

4

Overview Chapter 1

simulation and analytical results indicate well over 10× performance and energy gains

compared to conventional approaches for superconductors, with additional improvements

expected at larger scales. To aid such explorations, an open-source pulse-transfer level

language based on transition systems and timed automata is also developed [11].

1.1.3 Superconductor Delay-Line Memory

The logic contributions discussed above remove the clock from superconductor gate

semantics and make superconductor electronics subject to the same techniques and meth-

ods from CMOS. However, a key component that is critical to any computer system is

still missing: memory. The majority of prominent superconductor memory solutions en-

vision a grid-like memory structure, which has promoted a focus on the miniaturization

of memory cells. However, despite their promises, data densities remain unsatisfactorily

low. This dissertation takes a different direction by using time again as a resource and

presents a superconductor delay-line memory based on passive transmission lines with

high kinetic inductance [12]. The developed memory system is fully superconducting,

requires minimum control circuitry and fan-out, supports both sequential and content

addressing, and operates at speeds ranging from 20 GHz to 100 GHz with sufficiently

wide bias margins. The estimated densities surpass the state of the art by multiple orders

of magnitude.

1.1.4 Formalism for Reasoning about Temporal Designs

The interplay between computing and time is multidimensional. A perspective that

has not been discussed so far is that of formal temporal reasoning. Linear temporal

logic was introduced for the first time in the late 1970s [13] as a method to specify

and verify the properties of reactive systems. However, linear temporal logic (and its

5

Overview Chapter 1

variants) is propositional and lacks the notion of “when”, which signifies the moment

in which a specific event happens and is critical for the temporal paradigm presented

in this dissertation. To capture this missing notion, I extend the classical propositional

temporal logic to a computational temporal logic capable of formally expressing delay-

based computations [8, 9].

1.2 Permissions and Attributions

1. The text of Chapter 2 is in part a reprint of the material as it appears in the

proceedings of the 24th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS) and in the Communica-

tions of the ACM (CACM) journal, Vol. 64 No. 6. The dissertation author was the

primary researcher. All the co-authors listed in these publications [5, 6] supervised

or assisted in the research that forms the basis for Chapter 2.

2. The text of Chapter 3 is in part a reprint of the material as it appears in the

proceedings of the 25th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), in the IEEE Micro jour-

nal (vol. 41, no. 3), and in the proceedings of the 48th International Symposium

on Computer Architecture (ISCA). The dissertation author was the primary re-

searcher. All the co-authors listed in these publications [8, 9] supervised or assisted

in the research that forms the basis for Chapter 3.

3. The text of Chapter 4 is in part a reprint of the material as it appears in the pro-

ceedings of the 48th International Symposium on Computer Architecture (ISCA).

The dissertation author was the primary researcher. All the co-authors listed in

this publications [10] supervised or assisted in the research that forms the basis for

6

Overview Chapter 1

Chapter 4. The PyLSE language [11], used for Python-level simulations, was the

result of a collaboration with Michael Christensen.

4. The text of Chapter 5 is in part a reprint of the material as it appears in the

proceedings of the 25th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS) and in arXiv:2205.08016.

The dissertation author was the primary researcher. Jennifer Volk contributed

equally to the superconductor delay-line memory research [12]. All the co-authors

listed in these publications [8, 12] supervised or assisted in the research that forms

the basis for Chapter 5.

The pronoun used in the rest of the dissertation is we in recognition of my collab-

orators’ contributions.

7

Chapter 2

Temporal In-Sensor Classification

2.1 Introduction

In embedded applications, where the computation and sensing are close in both time

and space, the form of data is something that needs to be carefully considered. Typically,

a sensor gathers analog information from the physical world and converts it into a con-

ventional digital signal. For example, a camera captures incident photons and, through

the photoelectric effect, uses their energy to guide cell charging The voltage on the cell

is read out to an analog-to-digital converter (ADC) that transforms the measured volt-

age into a stream of zeros and ones. While this binary-represented integer is perfectly

efficient for storage as bits in a memory and for general-purpose computing, it is unclear

whether this is always the most energy-efficient solution. We posit that there are other

encodings that are more efficient for in-sensor processing while still able to capture the

relative values of the data to be encoded.

One such possible representation is pure analog signalling. While pure analog design

promises power and performance gains, it comes with a number of its own challenges.

First, well-understood analog design rules lag far behind digital rules in technology node.

8

Temporal In-Sensor Classification Chapter 2

High-density, high-performance, low-energy CMOS analog parts can be hard to achieve

because of this gap. Second, while analog design in these aggressive technology nodes

is certainly possible, tighter margins for process variations and noise often drive analog

designs to use larger gates than their digital counterparts. Ideally, we could keep the

good parts of analog behavior, where the computation closely matches the capabilities of

the underlying devices, while keeping the noise tolerance and layout simplicity of digital

designs.

One class of logic that attempts to strike this balance is race logic. The key idea

behind race logic is to encode values as a delay from some reference [14]. All signals,

unlike pure analog approaches, are supposed to be 0 or 1 at all times, with the time at

which 0 → 1 transition happens encoding the value. Computations are then based on the

relative propagation times of signals injected into a configurable circuit. The functions

that form the base of race logic are: First Arrival (FA), Last Arrival (LA), Delay (D),

and Inhibit (I). In prior work, First Arrival, Last Arrival, and Delay were used to build

genome sequencing accelerators [14]. The inclusion of Inhibit provided completeness and

opened the door to new computations [15]. However, the efficiency of this temporal

approach to computing on larger and more general problems remains an open question.

To exploit the interesting new capabilities that this paradigm provides, we propose

its application to a sensor-friendly and machine-learning-ready encoding. For the experi-

mental validation of this hypothesis, we complete an end-to-end evaluation that includes

estimates for energy, throughput, and area utilization in an ASIC (application-specific

integrated circuit) design, a fully functional RTL (register-transfer level) implementa-

tion working in both simulation and on FPGA (field-programmable gate array), a fully

automated toolchain linking scikit-learn [7] software structures down to device configu-

rations, and an accuracy versus energy analysis across a set of decision tree ensembles

and design parameters. Even excluding the energy savings at the interface level, the pre-

9

Temporal In-Sensor Classification Chapter 2

sented system dramatically reduces the total energy and latency required for in-sensor

classification.

2.2 Generalized Race Logic

Race logic encodes values as relative delays. Computation then may happen through

the purposeful manipulation of those delays rather than final logic levels, with LA, FA,

D, and I forming the foundation of this logic; instead of the Boolean AND, OR, and

NOT.

Digital temporal codes

time

a

b

= 2

= 5

FAab = 2

LAab = 5

a

b
LAab

a

b
FAab

0 1 2 3 4 …5

(i)

(ii)

(iii)

Figure 2.1: Panels (i) and (ii) show the implementation of Last Arrival (LA) and First
Arrival (FA) functions with AND and OR gates. Panel (iii) represents an example
waveform for a = 2 and b = 5.

As its name implies, LA outputs a high signal when all of its inputs have arrived. Its

implementation in CMOS is simply an AND gate between its input wires, as an AND

gate requires all its inputs to be high to fire an output. Similarly, all needed for a FA is

an OR gate, as an OR gate outputs a high signal as soon as the first high input arrives.

Figure 2.1 provides a waveform representation of LA’s and FA’s functionality.

Under the assumption that shorter delays encode smaller values and longer delays

encode larger values, LA and FA can be thought of as max and min functions, respectively.

10

Temporal In-Sensor Classification Chapter 2

time

a = 2

D2a = 4

a

clk

D2a
FF FF

0 1 2 3 4 …5
T

(i) (ii)

Figure 2.2: Under race logic, delaying (D) a 0 → 1 transition by k units of time can
be thought of as a constant addition. Panel (i) shows how this delay can be achieved
in conventional synchronous digital logic with the use of a shift-register. Panel (ii)
shows an example waveform for a = 2 and k = 2.

This assumption also defines additions to be equivalent to delayed signal transitions.

Delaying a signal by a fixed amount of time can be performed in multiple ways, depending

on the implementation. In conventional synchronous digital logic, a sequence of flip-

flops is sufficient, as shown in Figure 2.2. Asynchronous delay elements constructed

out of current-starved inverters have also been demonstrated as a more energy-efficient

alternative [16].

time

a

b

= 2

= 5

bIa = 2

aIb = ∞

0 1 2 3 4 …5

(e)(a) (b)

s0 s1

**/0ij/o = *1/1

00/0

10/0

(d)

j

is

i

j
o

clk

(c)

rst

orst

! ≤ #
set

Q

Q

! < #

a

b

bIaI

a

b

bIa
rst

(i) (iii)

(ii)

Figure 2.3: Panel (i) introduces the symbol that from now on we will use to represent
the Inhibit (I) operator. Panel (ii) shows the implementation of Inhibit in a purely
digital context. The waveform in Panel (iii) depicts Inhibit’s functionality through
two examples: b Inhibits a and a Inhibits b.

As for the Inhibit function, inspiration was drawn from the behaviour of inhibitory

post-synaptic potentials in the neurons of the neocortex [15]. More specifically, Inhibit

works as a non-linear filter that has two inputs: an inhibiting signal and a data signal

11

Temporal In-Sensor Classification Chapter 2

(that gets inhibited). If the inhibiting signal arrives first or at the same time as the

data signal, the output is prevented from ever going high (no state transition), which is

understood as a temporal ∞. However, if the data signal arrives before the inhibiting

signal, the former is allowed to pass through the gate without any interruption. Figure 2.3

shows (i) the symbol used for b inhibiting a, (ii) its implementation with an augmented

S-R latch, and (iii) a waveform depicting its functionality through two examples. An even

more efficient implementation, consisting of a pass gate or a single PMOS pass gate, is

also possible with a little customization [5].

With this set of temporal operators and codes, new trade-off and optimization spaces

open up. Particularly, the very low number of wires and bit flips required by race logic

circuitry promise very high energy efficiency. Few wires are required because each of

them holds a multi-valued signal, the delay. Regarding switching activity, those wires

flip from 0 to 1 at most once through a logic evaluation as the signal-front washes across

the circuit. While not all computations map well to such an encoding, those that are

have the potential to operate with very little energy. An open question answered in this

chapter is if such a logic is applicable to any general learning or classification task.

2.3 Race Trees

While monolithic neural networks receive the lion’s share of attention from the archi-

tecture community, with respect to machine learning, decision trees have proven to be

incredibly useful in many contexts and a promising solution towards explainable, high-

performing AI systems. A decision tree creates a hierarchy of decisions, which consists

of a set of leaves (labels) and a set of decisions (branches). One normally starts from

the top, where the tree’s root node is found, and branches down the tree until a leaf is

reached—see Figure 2.4 (i).

12

Temporal In-Sensor Classification Chapter 2

2.3.1 Reverse Race Trees

Existing race logic implementations, such as the genome sequence accelerator [14],

perform computation by observing the relative propagation times of signals injected into

the circuit. Following this example, one approach to implement decision trees is by

virtually turning them upside down; we can think of them as reverse tree networks that

route possible packets from the leaves to the root. Initially, a unique delay-encoded

label is assigned to each leaf. These labels then race against one another and, where

two of them meet, only one is allowed to propagate further. In the end, only the label

associated with the correct leaf survives—the packet at the output of the network is

unchanged, while all others get discarded along the way.

A decision tree that we use as an example case is presented in Figure 2.4 (i). Figure

2.4 (ii) shows the flow of the four delay-coded labels in the reverse tree for x = 2 and

y = 3, with the corresponding waveform being illustrated in Figure 2.4 (iii). Its race

logic implementation is depicted in Figure 2.4 (iv). The upper two blocks, colored in

red and blue, correspond to the tree’s internal nodes, n1 and n2, and are implemented

with the use of one Inhibit and one FA operators. The bottom one, colored in yellow, is

slightly more complicated as the label coming from its False path can take more than

one values—either label C or label D.

Note that when reversing a tree, the if clauses in its nodes must be revised. For

instance, the threshold function in the n2 node, y < 2, must be rewritten as y + 1 < 3

for label D = 2. To implement y+ 1 < 3, variable y must be delayed by one clock cycle.

As discussed above, in a synchronous setting, a shift register can be used to perform

constant addition.

13

Temporal In-Sensor Classification Chapter 2

Label A Label B Label C Label D

n0

x<3

1 0

01 01

n1

x<2

n2

y<2

n0

x<3

n1

y+1<3

n2

x+3<5

A = 5 B = 4 C = 3 D = 2

decision

(i) (iii)

(ii)

x

y

= 2

= 3

0 1 2 3 4 …5

n1

n2

n0

Label B

Label B

Label D

(iv)

I

I

I

LA

FA

FA

decision
FA

2/3/4/5

2/3/∞

4/5

2/3
C = 3

D = 2

D = 2

B = 4

A = 5

2/∞

D3x

D1y

x

Figure 2.4: Panel (i) shows an example decision tree. Panel (ii) presents its “re-
verse” equivalent, as well as the flow of the four delay-coded labels for x = 2 and
y = 3. Panel (iii) displays the corresponding waveform. Panel (iv) depicts the race
logic implementation of this reverse tree. The leaf label associated with the False
branch of a node plays the role of a in the Inhibit operator of Figure 2.3, whereas
the record’s attribute (x or y in this example) serves as the inhibiting input b. Given
that subtraction and variable addition are not natively supported by race logic, the
attribute routed to an Inhibit’s controlling input should be adjusted accordingly; e.g.,
y < 2 is rewritten as y + 1 < 3.

2.3.2 Flat Race Trees

An alternative way to look at a decision tree is as a set of independent and parallel,

rather than sequential, decision rules that lead to a final prediction [17]. Each leaf now

can be represented as a logical function of the binary decisions encountered at the nodes

on its path to the root. In other words, the tree gets “flattened” and each path from

the tree root to a leaf corresponds to a unique combination of attribute test outcomes.

The big idea behind the parallel execution of all these independent if clauses is shown in

Figure 2.5 (i). For example, the leftmost leaf is reached only when both n0 and n1 return

14

Temporal In-Sensor Classification Chapter 2

True, while the output of n2 is inconsequential. The order that the outcomes of these

conditions appear to reveal does not affect the final decision. Figure 2.5 (ii) presents

the truth table describing the functionality of the decoder that associates node decisions

with one of the leaf labels.

Figure 2.5 (iii) presents the implementation of such a flat tree in race logic. In contrast

to conventional digital logic approaches, where the size of the circuit realizing the desired

threshold functions (each node is a binary decision) are directly related to the resolution

of the associated attribute and threshold values, this is not the case here. Each node is

implemented with a single Inhibit gate.

Label A Label B Label C Label D

n0

x<3

n1

x<2 y<2

(i) (iii)

(ii)

x

y

= 2

= 3

0 1 2 3 4 5

n0

n1

n2

(iv)

I
n2

3’b11x 3’b01x 3’bx01 3’bx00

max threshold sampling window

1’b0

1’b1

1’b0

Lab
el B

I

I

D
e

co
d

er

1-hot enc.

decision

x

y

n1

n0

n2

thr = 2

thr = 3

thr = 2

1 1 x A n1 & n0

0 1 x B n1 & n0

x 0 1 C n0 & n2

x 0 0 D n0 & n2

n0 n2n1 Label Decoder

Boolean processingTemporal processing

Figure 2.5: A decision tree can be viewed as a set of independent decision rules that
lead to one and only one leaf when combined accordingly. These functions can be
executed in parallel, as shown in Panel (i). Panel (ii) presents the truth table that
describes how node decisions associate with leaf labels. Panel (iii) depicts the race
logic implementation of this flattened decision tree with Inhibit gates, where thresholds
serve as controlling inputs. Panel (iv) displays the resulting waveform for x = 2 and
y = 3.

Moreover, because the decisions related to the various tree paths are mutually ex-

15

Temporal In-Sensor Classification Chapter 2

clusive and the maximum threshold value is statically known, the transition from the

temporal domain to binary happens seamlessly, without the need for any special cir-

cuitry. Figure 2.5 (iv) shows the resulting waveform for x = 2 and y = 3. In the given

example, the maximum threshold value is 3; thus, all node decisions can be safely consid-

ered final after 3 cycles. We can safely sample the outcome of n0, n1, and n2 conditions

at any time after that.

2.4 End-to-End Architecture

2.4.1 From Sensor to Delay Coded Input

Whenever a different encoding is considered, the cost of getting in and out of this new

domain has to be taken into account. In the prior section, we discussed the output part,

which includes the temporal-to-binary conversion and does not require any additional

hardware resources. Here, we focus on the input part and show that race logic is a

natural fit for in-sensor computing. Figure 2.6 presents an end-to-end architecture for

temporal processing.

Because sensory input is analog in nature, most sensors begin with a measured voltage

or current, which is then converted to a digital output with the use of ADCs. ADCs

traditionally return digital binary values, necessary for Boolean processing. However,

in race logic, processing happens in the time domain and information is encoded in

relative delays instead of True or False values. This difference simplifies the design

of sensor-processor interface components significantly. For instance, the costly time-to-

digital conversion (TDC) in the ADCs is, in this case, redundant and can be skipped [18].

Moreover, further gains are expected for sensing systems that provide directly delay-coded

outputs, such as dynamic vision sensors (DVS) [19], asynchronous time-based image

16

Temporal In-Sensor Classification Chapter 2

sensors (ATIS) [20], time-to-first-spike (TTFS) [21] and time-of-flight (ToF) [22] cameras,

and AER (address event representation) ear sound sensors [23]. On these occasions, the

time-to-distance conversion can be entirely skipped.

Thresholds Encoding

Decision Decoding

Voting

p(
c	|
v)

C p(
c	|
v)

Cp(
c	|
v)

C

Decision DecodingDecision Decoding

Predicted Class

Race Trees

voltage
domain

sensor
VTC

time
domain

voltage
domain

sensor VTC

time
domain

voltage domainsensor

VTC
time domain

Inputs Buffer

Figure 2.6: End-to-end temporal architecture for in-sensor processing.

2.4.2 Programmable Race Trees Architecture

Reverse and flat tree approaches show two ways of implementing decision trees in

race logic. The reverse tree idea is of particular interest as it is unlike any other network.

Typically, in a network, the packet contents are inert with respect to routing. For exam-

ple, in the case of sorting networks, the packet values are used for routing, but they also

have numerical content external to the network [24]. In reverse trees, the packets are

externally assigned values that are symbolic and contain no useful numerical content—in

much the same way that numbers in sudoku are used symbolically, but not numerically.

17

Temporal In-Sensor Classification Chapter 2

However, internal to the network, as part of the routing architecture, packet values do

take part in numerical operations.

delay-coded thresholds (shift register)

delay-coded inp. features (from sensor)

1’b1

m
em

 a
d

d
r.

en

n1

n0

n2

decoder

mem
(votes)

0 1 2 2
inp. resolution

x y

inp. features

3

I

I

I

Figure 2.7: Programmable race logic accelerator for a decision tree of depth 2. The
length of the shift register, used for the threshold delay encoding, is defined by the
resolution of input features. The memory block shown after the decoder is added
to support the implementation of tree ensembles, where a weighted voting scheme
follows.

The idea behind the flat tree approach is much simpler. This simplicity leads to

a more compact and efficient hardware design, with fewer shift registers (necessary to

perform constant additions) and a smaller interconnection network. Due to these reasons,

we consider flat trees as our design of choice for the rest of this chapter.

Figure 2.7 presents a programmable architecture for the design of Figure 2.5. To

ensure that it is possible to route any delay-coded threshold value and any input feature

to the desired tree node, two programmable crossbar arrays are used. The decoder

following the rank of Inhibits implements the truth table of Figure 2.5 (ii). Note that

although Inhibits conceptually operate in the temporal domain, their sampled output is

a typical binary vector. Thus, only one memory read is required per input record at the

time that the propagating wavefront reaches the end of the shift register. Prior to the

next computation, the circuit must be reset.

18

Temporal In-Sensor Classification Chapter 2

D
el

ay
-c

o
d

ed
 in

p
u

t
fe

at
u

re
s

…

gr
o

u
p

 0
gr

o
u

p
 j

predictionfind index
of max sum

…

thresholds

inp. buffer

tr
ee

 0

sum
class 1

m
em

d
ec

o
d

er

m
em

d
ec

o
d

er

…

thresholds

inp. buffer

tr
ee

 i

m
em

d
ec

o
d

er

m
em

d
ec

o
d

er

voting

tr
ee

 1
tr

ee
 n

…

sum
class k

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Figure 2.8: Programmable temporal accelerator for decision tree ensembles.

19

Temporal In-Sensor Classification Chapter 2

Figure 2.8 presents a high-level diagram of a programmable temporal accelerator for

decision tree ensembles. To keep the overhead of the clocked components low, trees are

organized into groups to minimize the number of shift registers and buffers needed for the

generation of delay-coded thresholds and safe clock domain crossing (between the sensor

and accelerator domains). Finding the optimal number of trees per group requires a

trade-off analysis between the costs of clocked components and routing networks: adding

more trees per group reduces the number of clocked components but increases the size

of the crossbar arrays. For further efficiency, crossbars may also be replaced by more

efficient configurable routing networks, without any effect in our system’s functionality.

Finally, because the votes retrieved from memory are in regular binary encoding, the

implementation of the weighted voting scheme is based on typical binary adders. Once

all prediction values of all trees have been summed, a comparison between them takes

place to find the class with the highest value and determine our system’s final “guess”.

2.5 Software Infrastructure

When designing a new system, development time and usability are major concerns.

Ideally, the proposed architecture should be modular for systematic implementation,

and an abstraction layer, hiding the hardware complexity from domain experts, should

also exist. In the case of machine learning, the vast majority of development happens

with the use of specialized software libraries. Here, we use the open-source scikit-learn

framework [7] as a starting point and develop a fully automated toolchain that support

hardware generation, verification, and analysis.

The user is expected to train an ensemble of desision trees in scikit-learn, as usual.

Once the this tasks completes, the trained model go through a preprocessing stage where

first the effects of data and vote quantization are analyzed and second the optimum

20

Temporal In-Sensor Classification Chapter 2

number of trees per group (see Figure 2.8) is found. As a next step, the trained model,

along with the generated metadata, are sent to a hardware generation engine. More

specifically, in this stage, decision trees are parsed from top to bottom and dedicated

hardware is generated for each node with the help of a library of temporal primitives. For

the generation of the glue logic between them, hardware templates are used. The resulting

description comes in Verilog and PyRTL [25] formats 1. PyRTL is a Python embedded

hardware design language that returns synthesizable hardware and it is particularly useful

here because it allows for cross-checking validation against scikit-learn’s predict function

without leaving the Python environment. To simulate temporal input stimuli, Python’s

generators are used.

Toolchain

User-defined Parameters

Machine Learning:

Hardware Specs:

• classification method
• learning rate
• # of estimators
• # max depth
• etc.

• inputs resolution
• bits per memory cell
• technology
• performance goals
• etc. Power & Area Models

• energy/area estimation
• Design Space Exploration

Trained Model

CAD

RT Compiler

• features importance
• votes quantization
• etc.

Analytics & Preprocessing:

Map to Hardware:
1. Hardwired RT Accel.

2. Configurable RT Accel.

• HW template
• RL primitives library

ML
SW

• configuration file

• hardware
• implementation results

RTL

Verify Correctness
• cross-checking

scikit

Preprocessing

• Data resolution
• Vote quantization
• Trees grouping

User-defined Parameters

Machine Learning:

Hardware Specs:

• classification method
• learning rate
• # of estimators
• # max depth
• etc.

• inputs resolution
• bits per memory cell
• technology
• performance goals
• etc. Power & Area Models

• energy/area estimation
• Design Space Exploration

Trained Model

CAD

RT Compiler

• features importance
• votes quantization
• etc.

Analytics & Preprocessing:

Map to Hardware:
1. Hardwired RT Accel.

2. Configurable RT Accel.

• HW template
• RL primitives library

ML
SW

• configuration file

• hardware
• implementation results

RTL

Verify Correctness
• cross-checking

scikit RTL generation

Temp. primitives
+

HW templates
↓

PyRTL/Verilog impl.

RTL
Validation

Cross checking
against

predict()

Bitstream

metadata

Figure 2.9: Overview of the developed software infrastructure. For the training part,
the open-source scikit-learn framework [7] is used. The tool (a) provides the user
with the options to quantize input features and votes, (b) supports the automatic
generation of model-specific race trees circuitry directly from scikit-learn structures,
and (c) assists design evaluation through cross-checking with software models.

1PyRTL does not allow the direct use of S-R latches. So, for the PyRTL implementation of Inhibit,
we use an alternative sequential design instead.

21

Temporal In-Sensor Classification Chapter 2

2.6 Evaluation

2.6.1 Methodology

To evaluate the proposed design and identify opportunities for further improvement,

analytical and empirical power and area models for the basic components of our archi-

tecture are created. Towards this end, we synthesize the RTL of each sub-component

of race trees individually, as well as the RTL of the whole design, as that generated by

the above-described software infrastructure. We rely on open-source tools [26, 27] and

a publicly available 14 nm standard cell library [28] to obtain the desired area, power,

and performance results. In the energy and throughput calculations that follow, we

use a 500MHz clock and do not scale the attained power results to compensate for the

lack of a wire load model. Under this assumption, each operation consumes twice its

nominal energy [29]. Regarding crossbars, power numbers were retrieved from existing

literature [30, 31].

2.6.2 Implementation Results

According to existing literature, MNIST is the most commonly used dataset in the

context of proof-of-concept prototypes. The following analysis is based on these data.

Note that the dataset selection primarily affects the prediction accuracy of the system,

with negligible effects on the power consumption and speed of the system (as far as the

model fits in the system configuration). In all cases, latency, in terms of clock cycles, is

calculated as follows:

latency = 2inp res + log2(#ests) + #classes (2.1)

where the first term is related to the maximum threshold value, whereas the second

22

Temporal In-Sensor Classification Chapter 2

Table 2.1: Synthesis results for hardwired race trees produced by Yosys [26] using a
publicly available 14 nm cell library [28].

Trees Depth Inp. res. Vote res. Accuracy Latency Power Area Freq.
(bits) (bits) (CCs) (mW) (mm2) (MHz)

1,000 6 8 8 97.48% 273 521 0.46 1,000
1,000 6 4 4 97.45% 33 475 0.45 1,000
200 8 4 4 96.18% 31 384 0.33 1,000
200 6 4 4 95.72% 31 125 0.13 1,000

and third terms are associated with the voting part. This means that, under the above

assumptions, race trees can classify up to 1.83M images/s when 8 bit inputs are used

and up to 16.1M images/s for 4 bit inputs.

Detailed results are provided in Table 2.1. According to these data, a classifier that

consists of 1, 000 race trees of depth 6 attains 97.45% accuracy, while still maintaining a

low energy expenditure at 31.35 nJ/pred. A more efficient approach, which utilizes only

a fifth of the number of trees, achieves a performance of 95.7% with energy numbers as

low as 7.8 nJ/pred. By increasing the depth of trees to 8, the accuracy increments by

0.5% at the expense of 16.1 nJ of additional energy per prediction. Note that for the

training of the above race trees, Gradient Boosting [32], whose derivatives have recently

gained popularity by winning various Kaggle and other data science competitions, was

used.

2.6.3 Comparison with state of the art

In recent years, an explosion of hardware accelerated machine learning activity has

resulted in a wide variety of ASIC architectures for comparison. Figure 2.10 plots a few

of these solutions on an accuracy versus energy plot. All results are scaled to 28 nm.

One approach that has tried to tame the massive neural network accelerator design

space is Minerva [35], represented by datapoint c. Minerva is an automated co-design

approach that accounts for algorithmic, architectural, and circuit level constraints in

23

Temporal In-Sensor Classification Chapter 2

b

e

f

d

ca
RT

RT

ea c

f

d

b

RT
RT

RT c e

f

b

Figure 2.10: Accuracy vs energy comparison: a [33], b [34], c [35], d [36], e [37], f [37].
All results are scaled to 28 nm. Green dots represent race trees.

an attempt to efficiently accelerate deep neural networks. More specifically, Minerva

first performs design space exploration at the algorithmic and architectural level and

then tweaks the resolution and prunes certain unnecessary energy hungry operations.

Moreover, it looks at circuit-level optimizations, such as SRAM fault mitigation, before

reporting accurate chip level performance metrics. This broad design space exploration

and multi-level optimizations allow Minerva to be highly accurate, still energy efficient,

and make it a good starting point for comparison.

Another interesting approach is the sparse event-driven neuromorphic object recogni-

tion processor represented by datapoint b [34]. The design consists of a locally competi-

tive algorithm (LCA) inference module [38], used for feature extraction, and a task-driven

classifier. Its spiking neuron architecture allows for a very low energy cost, 20.7 nJ/pred

in 65 nm. On the downside, this implementation achieves only 84% accuracy, which is

the lowest among the displayed solutions.

At the other extreme, a high-performance sparsely connected neural network running

24

Temporal In-Sensor Classification Chapter 2

b

e

f

d

ca
RT

RT

ea c

f

d

b

RT
RT

RT c e

f

b

Figure 2.11: Accuracy vs energy-delay product comparison: b [34], c [35], e [37], f
[37]. All results are scaled to 28 nm. Green dots represent race trees.

on the 28 nm IBM TrueNorth chip utilizes 64 ensembles and hits very high accuracy

numbers, 99.42%, at the the expense of 108 µJ/pred [37]. A more energy-efficient version

with a single ensemble is also reported and achieves 92.7% accuracy at 268 nJ/pred.

These implementations are represented in Figure 2.10 by datapoints e and f, respectively.

A few other solutions with comparable accuracy and energy performance, represented by

datapoints a [33] and d [36], are displayed, too.

Our race trees are represented in green dots. As can be seen, the configuration that

consists of 1,000 trees of depth 6 and uses 8 bit data achieves comparable energy efficiency

and accuracy to datapoints a and c. If 4 bit data are used instead, the accuracy remains

almost unchanged, but the energy efficiency of race trees improves by more than 10x.

Further gains are possible with smaller race trees designs. In all cases, race trees capture

the top left corner of the graph and are Pareto optimal.

To get a more holistic view of the landscape, Figure 2.11 also provides a comparison

in terms of energy-delay product. This analysis reveals that the efficiency gap between

25

Temporal In-Sensor Classification Chapter 2

race trees and their counterparts is actually even bigger. In other words, race trees do not

only improve energy per operation but also achieve lower latency due to their increased

parallelism, short critical paths, and feedforward model of execution without hardware

time-sharing.

2.6.4 Component breakdown analysis

Our last evaluation goal is to understand where the majority of power and area goes

in race trees. Tables 2.2 and 2.3 provide estimates for each of race trees’ main blocks.

As a sanity check, we compare the sum of area and power results of all these components

for each classifier against the complete synthesized design results, shown in Table 2.1.

The differences observed are expected as all the trees are now considered fully-grown and

programmable [30, 31] to cover the most general case.

Table 2.2: Estimated power consumption for various sub-units of the race trees architecture.
Trees Depth

Inp. res.
(bits)

Vote res.
(bits)

Trees
per group

Tech node
(nm)

Thresholds
(µW)

Inp. Buffers
(µW)

Trees & Dec.
(µW)

Memory
(µW)

Voting
(µW)

Progr. Intercon.
(pW)

Total
(mW)

1,000 6 8 8 100 14 7,250 22,000 529,600 111,500 2,000 0.252 673
1,000 6 4 4 100 14 360 22,000 529,600 59,300 1,700 0.016 613
200 8 4 4 20 14 360 22,000 452,700 35,750 320 0.013 511
200 6 4 4 20 14 360 22,000 105,900 11,900 320 0.003 140

Table 2.3: Estimated area for various sub-units of the race trees architecture.
Trees Depth

Inp. res.
(bits)

Vote res.
(bits)

Trees
per group

Tech node
(nm)

Thresholds
(mm2)

Inp. Buffers
(mm2)

Trees & Dec.
(mm2)

Memory
(mm2)

Voting
(mm2)

Progr. Intercon.
(mm2)

Total
(mm2)

1,000 6 8 8 100 14 1.0e-2 3.5e-2 0.5 0.05 0.03 - 0.65
1,000 6 4 4 100 14 7.5e-4 3.5e-2 0.5 0.03 0.03 - 0.60
200 8 4 4 20 14 7.5e-4 3.5e-2 0.4 1.5e-2 6e-3 - 0.45
200 6 4 4 20 14 7.5e-4 3.5e-2 0.1 5.5e-3 6e-3 - 0.15

2.7 Conclusion

As machine learning techniques continue to find new and compelling applications

across a wide range of computing tasks, the desire to bring them into even our lowest-

power devices will only continue to grow. Applying these complex algorithms without

resorting to the use of significant amounts of energy remains a challenge.

26

Temporal In-Sensor Classification Chapter 2

In this chapter, we focused on in-sensor classification and showed the natural relation-

ship between decision tree algorithms, race logic, and the underlying sensors themselves.

Others have already studied the analog advantage of avoiding the final step of converting

input signals to a pure digital representation [39]—instead leaving them as a variable de-

lay that can be trivially converted to a “race” encoding. At the algorithm level, little is

needed in the way of changes other than reimagining the configuration of existing decision

tree models. At the architecture level, the improvements are dramatic both in hardwired

and programmable configurations. The resulting race trees design has a shallow critical

path, supports a feedforward model of execution with dedicated hardware resources, and

prompts exceedingly few bit transitions as computation propagates through the circuit.

While the resulting system already performs admirably well with regards to energy,

area, and performance, there is still room for further exploration and improvement. The

evaluation here has yet to take advantage of (a) the asymmetric nature of the logic-level

transitions, (b) the malleability afforded by machine learning algorithms, and (c) the

opportunity to implement Delay and Inhibit functions even more efficiently through cus-

tomization. Lastly, the integration of race logic accelerators with other circuits operating

purely on the time-domain [40] is another interesting path for exploration towards the

construction of more complicated systems.

27

Chapter 3

Temporal Superconductor

Computing

3.1 Introduction

Advancements in semiconductor electronics have driven improvements in computer

performance and efficiency for more than 50 years. However, as scaling becomes increas-

ingly challenging and the resultant benefits diminish, questions about ways to leverage

new devices arise. Superconductor electronics provide an appealing alternative as they

enable systems with zero static power dissipation, speed-of-light energy-efficient intercon-

nects, and clock speeds in the 10s or 100s of GHz. Even more importantly, superconductor

electronics can also serve as facilitators for integrated classical-quantum computers due

to their cryogenic nature and above characteristics.

Despite their theoretical promise, the development of meaningful superconductor

computer systems in practice has proven to be tricky. A semantic gap lays between

level-driven logic, which semiconductor designs accept as a foundation, and the pulse-

driven logic naturally supported by the most compelling superconductor technologies.

28

Temporal Superconductor Computing Chapter 3

Information encoded in transient pulses

SFQ

a

b

~1 psa

b

CMOS

Information encoded in steady voltage levels

designer defined

Figure 3.1: In CMOS, information is typically encoded in steady voltage levels, the
duration of which is a controlled variable. In single flux quantum (SFQ) technology,
latching in a similar way is not possible, and thus information is encoded in transient
pulses.

This gap creates a variety of challenges across the full hardware stack, from the circuits

up to the tools and architecture levels.

A pulse, unlike a stable voltage level, will fire through a channel for only an instant

(see Figure 3.1). Arranging the network of superconductor components so that input

pulses—driven by the transfer of magnetic flux quanta—always arrive simultaneously

to logic gates is obviously not a possibility. An approach commonly used in single flux

quantum (SFQ) logic systems is to consider the presence of a pulse during a given time

interval as a logical 1 and the lack of a pulse as a logical 0. This convention requires

two things of SFQ circuits: first, all logic gates must agree on a prescribed time interval

for evaluation; second, they must all be able to remember whether or not a pulse has

arrived during the interval. The second requirement fits nicely with the inherently stateful

nature of superconductor cells composed of superconducting quantum interference devices

(SQUIDs, or loops formed by two Josephson junctions (JJs) and one inductor), which hold

SFQ pulses. However, the first requirement is more difficult to fulfill and is traditionally

met through extremely fine-grained clocking (see Figure 3.2).

A deeper look into this fully synchronous reality unveils that maintaining the illusion

of a strictly Boolean evaluation is not only a significant engineering hurdle but also results

in unavoidable overheads. We claim that many of these issues can be resolved by leaving

29

Temporal Superconductor Computing Chapter 3

clk

a = F

b = Ta

b
ANDab

a

b
ORab

NOTa
a

clk

clk

clk

ORab

ANDab

NOTa

Figure 3.2: Boolean (clocked) SFQ cells. If a data pulse appears in a clk interval
is understood as a logical 1; otherwise, it is a logical 0. The arrival of a clk signal
releases the content of the cell and resets it.

the premises of Boolean logic and adopting a new way of looking at those pulses. More

specifically, if we instead think about pulses as the natural representation of data, the

natural language for expressing computations over that data would be one that could

efficiently describe the temporal relationships between their arrivals.

To explore this idea, we draw upon the work presented in Chapter 2, decouple race

logic from prior technology-dependent assumptions, and show how its principles can

be directly applied to problems in superconducting. This approach allows to remove

clock from superconductor gate semantics, design a library of clock-free temporal SFQ

(single flux quantum) cells, and create useful new architectures. To the best of our

knowledge, this is the first time that race/temporal logic is used to specify computations

with superconductor electronics.

3.2 Computing with Superconductors

3.2.1 Fundamental concepts

Superconductor electronics are defined by three basic features: (a) the absence of

resistance in static circuits at superconducting temperatures, (b) the Josephson effect,

30

Temporal Superconductor Computing Chapter 3

which governs the fundamental switching element in superconductor circuits, the JJ, and

(c) the propagation of single flux quanta1, instead of static voltage levels as in CMOS.

As a two-terminal device, the JJ does not switch in the same way as three-terminal

CMOS transistors. Normally, current flows through the JJ with no impediment, like a

zero-resistance wire. However, at a threshold called the critical current, the resistively-

shunted JJ blocks off the current flow for a short time as it switches, thereby creating

an SFQ pulse on the JJ output. Each pulse is a short burst of magnetic energy observed

through a change in voltage.

3.2.2 Opportunities

One of the most compelling arguments for the use of superconductor electronics is

their potential to significantly surpass end-of-roadmap CMOS circuits based on energy-

delay product, even when the overhead due to cooling is considered [41]. SFQ circuits

achieve 10 − 100 times higher clock frequencies than CMOS, and the switching energy

of an individual JJ is ∼10−19 J. Energy-efficient versions of the SFQ technology, such

as ERSFQ [42], eliminate static power dissipation without sacrificing speed or circuit-

level equivalence to the more traditional RSFQ (rapid SFQ) [43]. A recently-proposed

AC/SFQ powering scheme also reduces bias requirements by locally storing small cur-

rents from rectified AC voltage to power SFQ gates [44]. On top of that, transmission of

SFQ pulses across superconducting wires requires very little energy [45] because no RC

charge process is involved. All these facts, along with the stateful nature of supercondu-

ctor elementary cells, give designers the opportunity to explore a fundamentally different

trade-off space, reevaluate existing architectural solutions, and exploit the unique char-

acteristics of superconductor electronics for the development of innovative computing

1One magnetic flux quantum is 2.07× 10−15 Wb or 2.07mV × ps in units more familiar to computer
architects.

31

Temporal Superconductor Computing Chapter 3

machines.

Besides speeding up and reducing the power consumption of CMOS circuits for clas-

sical applications, superconductor electronics open pathways for scaling up quantum

computers. More specifically, the ability of superconductor circuits to operate at very

high speed enables the fast processing of qubit output data for error correction and qubit

control [46]. Their low power overhead and cryogenic operating temperature also allow

them to reside next to the quantum processor, thus eliminating the control cables that

leave the cryogenic environment and introduce thermal noise.

3.2.3 Challenges

Despite their advantages, superconductor electronics pose a number of challenges.

One of the most profound originates from the pulsed-based nature of computation. Pulses

cannot be sampled like voltage levels because they do not coincide with picosecond pre-

cision. Thus, methods developed for transistors and other latching circuits do not carry

over easily.

Moreover, an SFQ pulse is fundamentally discrete. Because of this quantization,

a fan-out that produces two pulses from a single pulse requires an active component

called a splitter. As a consequence, signals with significant fan-out inflate circuit size

considerably. To make matters worse, the relatively high process variability in superco-

nductor electronics [47] can skew signals significantly across large fan-out trees, leading

to synchronization problems, additional logic overheads, and reduced operating speeds.

Finally, the lack of a reliable and high-capacity memory operating at 4.2 degrees

Kelvin, the default temperature for superconductor electronics, imposes its own distinct

limitations. Recent studies indicate that cold memories built from CMOS DRAM op-

erating at 77 degrees Kelvin offer a promising solution in the near future [48], while

32

Temporal Superconductor Computing Chapter 3

advancements in fabrication processes are encouraging for competitive superconductor

memories in the longer term [49]. In both cases, the expected gap between the access

latency of memory and the high operational speed of SFQ logic circuits introduces chal-

lenging microarchitectural problems.

Because of these unique characteristics (and limitations) of superconductor electron-

ics, research on computing paradigms and architectures that depart from classic CMOS-

inspired solutions, and can potentially (a) use much fewer JJs than transistors for the

same information throughput, (b) allow for easier clocking, and (c) have lower memory

requirements, offers a promising direction for innovation [50]. We claim that temporal

computing opens up precisely this research space.

3.3 Temporal Operators in SFQ

The way in which events are encoded plays a critical role in selecting the hardware

that most efficiently implements logic operators. For example, as discussed in Chapter

2, single OR and AND gates can be used for the CMOS implementation of the FA

and LA operators. Unfortunately, this hardware mapping does not make much sense in

superconducting. More specifically, an important property of edge-based event encoding

is that it automatically keeps track of the input state at all times—a signal that has

made a transition from a low to a high state will not make a transition back to low in the

same computation. However, this feature breaks down when dealing with pulses. Pulses

naturally return back to their low state, preventing downstream nodes from implicitly

knowing the state of its predecessors.

A potential solution to this problem is to embed the state into each gate. Interestingly,

the majority of SFQ elementary cells have both logic and storage abilities [43]; thus, they

can be thought of as simple state machines. To facilitate the implementation of temporal

33

Temporal Superconductor Computing Chapter 3

b/1a/1

Init
a

arrived
b

arrived

a/0 b/0
b/0 a/0

FAab

b/0a/0

Init
a

arrived
b

arrived

a/0 b/0
b/1 a/1

LAab

Dca

b/0

Init
b

arriveda/1

b/0
a/0

bIa

a/0

Init
a

arrived

c times

c time steps
completed/1

next
time
step

a

a + 1*𝑡𝐽𝑇𝐿

a + 2*𝑡𝐽𝑇𝐿

a + 3*𝑡𝐽𝑇𝐿

bIa

b

a

a

b

a

b

FAab

LAab

JTL JTL

Inv.

a

a

b

a

b

Inv.
C-elem.

C-elem.

a

b

Figure 3.3: Block diagrams, Mealy machine representations, and SPICE-level simula-
tions of FA, LA, D, and I temporal operators implemented in SFQ.

operators to stateful SFQ elements and show that no clock signal is needed, we first draw

FA, LA, D, and I as Mealy machines. Figure 3.3 provides the corresponding illustrations.

Then, we follow these Mealy machine descriptions and build FA by using an inverted C-

element cell [43], LA using a C-element cell [43], D using a a sequence of Josephson

transmission lines (JTLs) 2 and I using an Inverter cell. Area and latency results for

each of these operators are provided in Table 3.1. The shown estimates are based on

SPICE-level simulations using the MIT Lincoln Laboratory SFQ5ee process [47].

2The length of a JTL chain depends on the interval duration that associates with each time unit. An-
other possible implementation is with destructive readout (DRO) cells; however, this approach requires
clocking.

34

Temporal Superconductor Computing Chapter 3

Table 3.1: Area and latency estimates of temporal SFQ cells implemented in the MIT
Lincoln Laboratory SFQ5ee process [47].

Element Area (#JJs) Latency (ps)
FA 6 12
LA 6 8
D 2/JTL 5/JTL
I 8 11

3.3.1 Resetting

Given the absence of an explicit clock/reset signal and the stateful nature of SFQ cells,

resetting must also be rethought. For example, an SFQ Inverter, which implements

Inhibit, will not return to its initial state until a pulse arrives to its clock port, while C-

and inverted C-elements, used as Last Arrival and First Arrival gate, will not reset until

both their inputs arrive.

Finding a universal and scalable resetting solution still remains an open challenge.

We consider three possible cases, each of them coming with its own advantages and dis-

advantages: (a) thermal/power cycling—this is slow but requires no additional hardware

resources; (b) emission of additional SFQ pulses in the existing hardware setup—this re-

quires no additional resources and seems more practical than thermal/power cycling but

applies only to LA and FA cells; (c) leaky gates [51]—this is applicable to all temporal

cells but requires several challenges to be addressed to achieve slow leak rates.

Note that, in some cases, it may also be possible to replace stateful with stateless

cells, therefore eliminating the need for resetting completely. Examples can be found in

Section 3.5.

35

Temporal Superconductor Computing Chapter 3

3.4 Circuit Design with Temporal SFQ Gates

Building from these SFQ implementations, the next step is to solidify the foundation

for the design of complex superconductor temporal circuits. As discussed, clocking and

synchronization are two of the most critical concerns and limitations in the design process

of a SFQ circuits. Thus, here, we primarily focus on those.

As mentioned above, Boolean SFQ gates are sequential rather than combinational

circuits. Hence, the designer must tightly synchronize each of them with all other gates

and the clock network. Satisfying this requirement comes at a price; e.g., inflated circuit

size (partially due to the expensive clock distribution network and the need to delay

pad uneven paths), low tolerance to jitter and skews (particularly critical in high-speed

designs implemented with processes that exhibit high variability), and increased energy

consumption (a significant number of additional SFQ pulses is needed to carry a data

signal across the circuit). Unlike Boolean circuits, this is not the case for temporal

designs, as the clock is no longer part of the gate semantics.

The use of synchronous components may sometimes be beneficial, however. For in-

stance, although a Coincidence function, which returns an output pulse if both a and

b inputs arrive within the same interval, can be built from the above-described tempo-

ral operators [15], a more efficient implementation is possible: all that us needed for

its superconducting realization is a synchronous AND gate. Even in cases where the

use of synchronous SFQ blocks may be preferred, temporal designs allow the use of a

data-driven self-timing (DDST) scheme, as shown in Figure 3.4.

In a DDST scheme, timing information is carried by data. More specifically, the

required clock signal is locally generated by a logical OR function—implemented in the

provided example with a merger SFQ cell—between the two input data lines. To extend

the evaluation window of the synchronous logic block (defined by the delay between data

36

Temporal Superconductor Computing Chapter 3

Asynchronous system

Synchronous
Logic

clk

a

b

a

b

clk
Async/Sync

Logic

Async/Sync
Logic

merge

Figure 3.4: Proposed data-driven self-timing (DDST) scheme. The clock signal is
generated from input data locally. If no input pulse arrives, it is safe to assume that
the operator is idle, and thus no clock pulse is needed.

and clock pulse arrivals), JTLs can be added after the merger cell. Note that such a

DDST scheme is not directly applicable to Boolean circuits as not all Boolean gates

(e.g., NOT) are idle for the time steps where no input pulses arrive 3.

3.5 Evaluation

For the evaluation of the proposed logic scheme and methodology, we design, simulate,

and measure the performance of various superconductor temporal accelerators. Detailed

descriptions of race trees and other proof-of-concept accelerator designs follow.

3.5.1 Experimental Setup and Design Principles

We perform circuit simulations and analysis in both the open-source WRSPICE [54]

and Cadence Spectre platforms using the MIT Lincoln Laboratory SFQ5ee process [47].

For gate isolation, path delay padding, and cell interconnection, JTLs are used. For fan-

out, we use splitter cells. Finally, we define minimum ∆t, which denotes the duration of

each unit time interval, based on the principles of wave-pipelining.

3DDST schemes have been explored for Boolean circuits, as well [52, 53]. However, the need to cover
NOT and its variants imposes the use of dual-rail codes, which, in this case, come with a significant
overhead.

37

Temporal Superconductor Computing Chapter 3

(i) (ii)
0

Label A = F
Label B = F
Label C = T

x = 4
y = 1

thr = 3
thr = 2

Label D = F

(iii)

Decoder

A

B

C

D

I

I

I

n0

n1

n2

Nn0

Nn1

Nn2

LA

LA

LA

LA

n0

𝑡𝑢𝑏= 5
n1, n2

I

I

I

Decoder

x

y

n1

n0

n2

thr = 2

thr = 3

thr = 2

LAn0n1

LAn0(Nn1)

LA(Nn0)n2

LA(Nn0)(Nn2)

A

B

C

D

I𝑡𝑢𝑏
n0

Nn0

Figure 3.5: Panel (i): block diagram of a SFQ race tree. Panel (ii): Simulation
results for x = 4 and y = 1. Panel (iii): layout diagram (unlabelled JJs are used for
interconnection, splitting, routing, and testing purposes).

3.5.2 Proof-of-Concept Designs

Race Trees

In the case of race trees (see Chapter 2), each tree node is considered an independent

temporal threshold function and realized with a single Inhibit operator. Figure 3.5 (i)

shows the block diagram of a SFQ race tree corresponding to the model illustrated in

Figure 2.4 (i).

For the construction of NOT gates, required for the implementation of the label

decoder, Inhibit cells with an upper bound reference signal tub are used. This reference

signal denotes the end of one round of computation (directly related to inputs resolution).

Thus, NOT will fire an output pulse at time t = tub if and only if it has not received any

input pulses from time reference 0 until that moment.

38

Temporal Superconductor Computing Chapter 3

Figures 3.5 (ii) and 3.5 (iii) provide simulation results and a layout diagram of this

design. In the shown example, x and y are set to 4 and 1, respectively, and tub is equal

to 5. As expected, the final outcome (1-hot encoded) is Label C. The total latency, for

∆t = 25 ps, is 150 ps, and the design consists of 164 JJs: 72 JJs for logic elements, 24

JJs for splitters, and 68 JJs for JTLs. The number of JJs in the layout is greater than

164 because of the additional cost of routing and the inclusion of testing circuitry. More

results and a comparison with CMOS are provided in Table 3.2.

Table 3.2: Estimated latency results for hardwired race trees in both CMOS (f=1
GHz) [5] and SFQ (∆t = 25 ps).

Depth Input res. CMOS SFQ Improvement
Latency Latency

6 4 bits 17 ns 0.464 ns 37×
6 8 bits 257 ns 6.464 ns 40×
8 4 bits 17 ns 0.490 ns 35×
8 8 bits 257 ns 6.490 ns 40×

Needleman-Wunsch Sequence Alignment

Needleman and Wunsch’s algorithm was one of the first applications of dynamic

programming to compare biological sequences. The algorithm assigns a score to every

possible alignment and its purpose is to find the alignments with the highest or lowest

score. To find these score, for two arbitrary strings P and Q, a 2D grid is constructed

(see Figure 3.6 (i)). Each pair of letters, one from P and one from Q, associates with one

of the following three operations: deletion, insertion, or match. Each of these operations

is represented with a directed edge and may have its own score.

In the temporal version of the algorithm, each score corresponds a delay. Hence, the

total time required for an input pulse to propagate from the top left to the bottom right

corner of the grid reveals the obtained similarity score. The architecture of this accelera-

tor can be generally thought of as a systolic array, where each cell is implemented in SFQ,

39

Temporal Superconductor Computing Chapter 3

FA

FA

JTLs

JTL

(i) (ii) (iii)

Figure 3.6: Panel (i): 2D grid constructed following Needleman and Wunsch’s algo-
rithm. Panel (ii): schematic of a CMOS unit cell for the temporal implementation
of a genome sequencing accelerator. Panel (iii): SFQ equivalent circuit. P and Q
represent the two strings to be aligned. The penalties/delays for deletion, insertion,
and match are set to 1.

as shown in Figure 3.6 (iii). Figure 3.6 (ii) illustrates its CMOS implementation [14] as

a reference.

To completely eliminate the need for clocking in the SFQ version, no synchronous

components are used. The delay that corresponds to a score/weight of 1 comes from the

propagation delay of each unit cell. To balance the delays between the various paths

within each unit cell, we rely on Josephson transmission lines (JTLs). To control the

propagation of a pulse across the diagonal, which should only happen when a match

occurs, a JTL’s bias is either turned on or off. For example, if there is a mismatch, the

bias is low and an incoming SFQ pulse cannot cause the JJ to fire.

Figure 3.7 shows WRSPICE simulation results for a 3×3 sequence alignment problem.

In Panel (i), P = ACT and Q = ACT are compared. Considering that the two strings

perfectly match, the shortest path from the grid’s input to output cell will be across its

diagonal—consisting of four unit cells—and results in a delay of 153 ps. In Panel (ii),

where the strings P = ACT and Q = GAT are compared, the propagation delay of a

pulse across the grid is 192 ps; the shortest path now consists of five rather than four

40

Temporal Superconductor Computing Chapter 3

(i)

(ii)

Figure 3.7: Shortest path and simulation results for a 3×3 sequence alignment prob-
lem. Panel (i): P = ACT and Q = ACT. Panel (ii): P = ACT and Q = GAT.

41

Temporal Superconductor Computing Chapter 3

(i) (ii)

Figure 3.8: Simulation results for a stateless implementation of the sequencing accel-
erator depicted in Figures 3.6. Panel (i): P = ACT and Q = ACT. Panel (ii): P =
ACT and Q = GAT.

unit cells. These results match our expectations, as according to our measurements, the

propagation delay of each unit cell is ∼38 ps.

Note that it is possible to make these unit cells even faster and smaller by relaxing

the race logic constraint for at most one event per wire per computation. This relaxation

allows the implementation of a FA gate with a single merger cell. The outcome is an

accelerator with fewer JJs and a ∼14% lower latency. Simulation results for the two

examples discussed above are shown in Figure 3.8. The above relaxation is not always

safe and should be performed with caution on a case by case basis.

Arbitrary Function Table

Our last proof-of-concept design is that of an arbitrary function table [15]. Figure 3.9

(i) provides an example case. For its implementation, synchronous Coincidence gates are

used. From these Coincidence gates, we construct our temporal design’s basic building

block, which leverages the data-driven self-timing scheme proposed above and is shown

in Figure 3.9 (ii). The resulting system is illustrated in Figure 3.9 (iii). To successfully

42

Temporal Superconductor Computing Chapter 3

handle time-skewed inputs, a delay δ = 10 ps is introduced after each merger cell. A

delay element δ′ is also used to balance the delays of the two parallel paths that feed the

second Coincidence gate. Both δ and δ′ delays are implemented with JTLs.

Simulation results are provided in Figure 3.9 (iv). In the particular case, D1x is set

to 50 ps, a is equal to 0, b is equal to 1, and c is equal to 2. As expected, a pulse appears

at the output of the upper block m0, colored in red, at t = 209 ps and goes through the

succeeding 3-input FA gate without any interruption. Note that stateless merger cells

instead of stateful FAs are used again. The total delay is equal to 219 ps. If now we

subtract from this number the delay of C3 (∼70 ps), we end up with 149 ps of delay,

which corresponds to the desired value of 3. No pulses come out of the two other blocks,

colored in blue and green, which relate to two bottom entries of the function table. The

total Josephson junction count of this design is 565 JJs.

3.6 Conclusion

Continuous and extended effort has already carried the superconducting field from

the first fabricated Josephson junction in 1970 through the development of RSFQ logic

in 1985 to chips with densities on the order of several million JJs today. With the

realization of self-shunted JJs in 2017 [55], chips with 10M JJs are now in sight. The

excitement around quantum computing further drives the demand for improvement in

superconductor circuit fabrication. However, not all superconductor limitations come

from the device level. Some of the most profound result from the pulsed-based nature of

computation.

In this chapter, these challenges were approached from the angle of logic design and

computer architecture. By removing CMOS-oriented bias and focusing instead on the way

information is encoded in superconducting, we showed the benefits of replacing strictly

43

Temporal Superconductor Computing Chapter 3

C
a

b

c

s

s

m δ

C
s

s

m δ

δ'

𝑪𝟑

0 1 2 3

1 0 ꚙ 2

2 2 0 2

a b c o D3a

D2b

D1c

D1a

D2b

D2c

a

C

C

C

b

c

𝐼𝑠 o

(𝒊) (𝒊𝒊)

f

f

f

f

f

f

f

f

f

f
f

f

f

f

m

m

m

+δ

+δ

+δ

m

(i)

(iii)

2

(ii)

𝐶"

𝐶"

𝐶"

a

b

c

s

s

s

s

s

s

oFA

D3a

D2b

D1c

D2c

D1a

D2b

2

3/∞

2/∞

2/∞

(iv)
𝑚!

𝑚"

𝑚#

a=0

b=1

c=2

𝑚!

𝑚"

𝑚#

o

~50ps

~50ps

~35ps

~35ps

~120ps

I

Figure 3.9: Panel (i): specification of an example function table. Panel (ii): Block
diagram of a self-timed 3-input Coincidence gate. Panel (iii): Block diagram of the
corresponding accelerator design. Panel (iv): WRSPICE simulation results for a = 0,
b = 1, and c = 2.

44

Temporal Superconductor Computing Chapter 3

Boolean logic with temporal abstractions. To support this approach, we presented Mealy

machines that describe the functionality of temporal operators, showed how existing SFQ

elementary cells can be repurposed for the clock-free implementation of these “temporal”

Mealy machines, and developed superconductor accelerator designs that compute faster

and more efficiently than their semiconductor counterparts, while avoiding the clocks and

memories that shackle more incremental superconducting approaches.

Looking forward, we expect this approach to drive innovation and in other pulse-

based technologies and serve as a blueprint for the exploration of models of computation

that come closer to the innate properties of underlying novel devices. As for temporal

superconducting temporal logic itself, a next step includes the systematic development

of a scalable and universal resetting scheme.

45

Chapter 4

From Temporal to Superconductor

Boolean

4.1 Introduction

In conventional superconducting approaches, the clock plays two roles. First, it pro-

vides the time interval necessary for defining logic values (see Figure 3.2). Second, it

serves to reset, or “relax”, a gate’s state back to ground, so it is ready to receive new

inputs in the next cycle. In Chapter 3, we discussed how temporal computing can pro-

vide a clock-free alternative. Here, we shift our focus back to Boolean superconductor

circuits and propose a solution to the problem of constructing Boolean logic from stateful

superconductor elements communicating via impulses.

Through the careful co-design of logical value encoding, SFQ circuit elements, and

architecture, we are able to (a) maintain well understood and composable Boolean logic

abstractions, while (b) avoiding clocks at every logic gate and the insertion of delay pads.

In doing so, we (c) ensure stateful elements always return to the ground state, which (d)

allows computer architecture considerations, such as pipeline depths, to drive design deci-

46

From Temporal to Superconductor Boolean Chapter 4

sions rather than circuit-level requirements. Finally, we (e) provide physically realizable,

low-energy, and low-delay implementations that are fully compatible with existing SFQ

design processes. We demonstrate that these properties are achieved through four core

contributions.

First, we show that AND and OR gates can be envisioned as pulse-based Last Arrival

(LA) and First Arrival (FA) operations. Although LA and FA cells are asynchronous

(and hence clock-free), they remain stateful. Correct operation depends on guaranteeing

that the asynchronous cells are always returned to their initial state prior to the start of

the next round of computation. This can be achieved by dividing a logical clock cycle

into two alternating synchronous phases: excite and relax. The excite phase operates on

pulse-coded logic values, while the relax phase propagates the values needed to return

the asynchronous cell back to its ground state. This is essentially an implementation of

alternating logic [56], in which logic state machines always return to the correct initial

state at the end of each two-phase logical cycle.

Second, although LA and FA cells implement AND and OR gates, AND and OR alone

are not functionally complete. To establish functional completeness, a NOT function is

needed. Here, we build on the theory of unordered binary codes [57, 58]. In an unordered

binary code—one in which no codeword covers another—any Boolean function can be

implemented using only AND and OR gates. The classic dual-rail (DR) approach is a

special case; in contrast to existing DR-based SFQ approaches [59, 60, 52, 53], which rely

on synchronous logic gates and use complementary data signals to generate the required

clock or control signals, in xSFQ, DR codes are used only for guaranteeing functional

completeness.

Third, we revisit the superconductor implementation of LA and FA cells. The previ-

ously described SFQ implementations (Chapter 3) have imbalanced delays and hardware

redundancies, which leave room for optimization. The revised cells require 30% fewer

47

From Temporal to Superconductor Boolean Chapter 4

JJs and have a propagation delay of 9 ps.

Fourth, we present alternation-aware registers along with a new pipeline balancing

technique capable of hiding much of the performance overhead inherent in a two-phase

approach. In order to make sequential networks amenable to alternation, each logical

flip-flop in the design is implemented with a coupled pair of destructive readout (DRO)

cells. The DRO cells are then distributed along a combinational logic pathway in a

manner that is analogous to traditional circuit retiming [61].

To evaluate the functionality and performance of our logic system, dubbed xSFQ,

we construct detailed SPICE-level models of the proposed cells, perform discrete-event

simulations of more complex superconductor alternating systems, extend CMOS-oriented

analytical power-performance models to fit superconducting technology, and demonstrate

the benefits of xSFQ over conventional SFQ-based systems through an energy-delay prod-

uct (EDP) analysis. We find that for a design resembling a RISC-V RV32I core [62]

(consisting of 10,000 two-input logic gates and a critical path of 150 gates) and a 10%

pipeline hazard ratio (HR), xSFQ achieves 14× EDP reduction excluding the overhead of

interlock and flushing circuitry. These gains increase super linearly with the length of the

critical path, the number of synchronous buffers required to equalize uneven datapaths,

and the ratio of pipeline hazards. For example, for 15% and 20% HRs, 22× and 31×

EDP savings are observed, respectively, excluding the overhead of interlock logic.

4.2 Current Status

Superconductor ALU designs [63, 64] and microprocessors [65, 66, 67, 68] have been

presented in an effort to capitalize on the promise of superconductors. The majority of

these implementations are based on simplified architectures, bit-serial processing, and

shift-register-based on-chip memories. For example, the modern CORE e4 [67] is an 8

48

From Temporal to Superconductor Boolean Chapter 4

bit-serial RSFQ microprocessor that contains 4 general-purpose registers, can execute

20 different instruction types, and achieves up to 333 Million Instructions Per Second

(MIPS) while dissipating an estimated 2.03 mW of power. To the best of our knowledge,

this estimate does not include the cost of cooling, which increases power requirements by

approximately two orders of magnitude according to Carnot’s thermodynamic efficiency

theorem [69].

More recently, there has been increasing interest in the exploration of supercondu-

ctor accelerators for emerging applications. For example, Tannu et al. [70] developed a

reciprocal quantum logic (RQL)-based design for SHA-256 (cryptographic hashing) en-

gines [71]. To maximize their gains, the authors focused on the optimization of adder

circuits, which are the most critical components of the SHA engine, and proposed a fault-

tolerant architecture that allows JJ critical currents to be lowered from 38 µA to 10 µA.

The reported results indicate 46× energy efficiency gains and 20% performance gains

compared to CMOS. Ishida et al. [72] presented an ERSFQ-based neural processing unit.

Based on the reported results, the performance per Watt of the proposed design is 490×

and 1.23× higher than a tensor processing unit (TPU)-like [73] CMOS implementation,

without and with the cost of cooling accounted for, respectively.

Other interesting approaches that target accelerators rely on the exploitation of less

traditional computing paradigms that match well with the characteristics of supercondu-

ctor electronics. For example, Cai et al. [74] presented a deep learning framework based

on stochastic computing that uses adiabatic quantum-flux-parametron (AQFP) technol-

ogy. According to their simulation results, the proposed deep neural network (DNN)

design can achieve up to 6.9 × 104 times higher energy efficiency than CMOS—-to the

best of our knowledge, this again excludes the cost of cooling. Another approach that

falls under this category is the one presented in Chapter 3. We claimed that the natural

language for expressing computations in a pulse-based system is one that precisely de-

49

From Temporal to Superconductor Boolean Chapter 4

scribes the temporal relationships between these pulses. To support this argument, we

first implemented the four basic temporal operators in SFQ, then we set the foundation

for the design of more complex temporal superconductor circuits, and finally provided

a proof-of-concept decision tree accelerator design, achieving ∼ 40× lower latency com-

pared to CMOS (with more examples shown in the original papers [8, 9]).

These ideas pave a promising path forward. Nevertheless, their shortcomings and

underlying assumptions cannot be ignored. The computational limits and efficiency of

stochastic computing and temporal logic for general-purpose tasks have yet to be ex-

plored, especially for superconductor systems. The remaining accelerator architectures

support only dataflow processing without complex control flows, while the demonstrated

microprocessors (and other designs) are not scalable. For example, several existing bench-

mark SFQ circuits require a significant number of DRO cells for padding uneven dat-

apaths. According to published results for the ISCAS85 benchmark circuits [75], the

number of required DRO cells for padding exceeds the number of logic gates by more

than 2.5× on average (ranging from 1.5× to 5×) [76]. Furthermore, the only realistic

way to avoid extremely high logical cycles per instruction (LCPIs), at least in the case

of microprocessors, is to apply fine grained temporal multithreading [77] where, ideally,

the number of threads is as large as the number of gates on the critical path. Addition-

ally, the throughput commonly reported in superconducting papers refers to a theoretical

peak rate based solely on the frequency of individually clocked gates (e.g., delays due to

pipeline stalls are excluded). Every gate is essentially a pipeline stage, and extremely

deep pipelines put more pressure on the already challenging superconductor memory

system.

50

From Temporal to Superconductor Boolean Chapter 4

4.3 xSFQ Logic Design

At the physical level, conventional CMOS and superconductor technologies are rad-

ically different. Yet, it is obviously desirable if the tools, techniques, and computer

architecture concepts developed for conventional computer systems can be applied to

superconductor designs. We strive to achieve this at the logic level of abstraction. In

other words, we aim to first perform digital design using what appear to be ordinary

logic gates and then map them in a straightforward way to superconductor cells.

The differences between conventional and superconductor technologies, however, in-

troduce an entirely different design space, with a distinct set of trade-offs and constraints.

As discussed above, one of the most important of these involves cell fan-outs. Superco-

nductor cells by themselves are limited to driving one cell. Fan-outs of two or more

require splitters, which are limited to a fan-out of two. Hence, large fan-outs must be

constructed as binary trees of splitters. This means that clock, global reset, and other

high fan-out signals are relatively expensive compared to CMOS.

Regarding fan-in, although it is possible to design superconductor cells with more

than two data inputs, they are not commonly used because they are significantly more

complex and mostly developed in an ad hoc way. Hence, for our purposes, it is assumed

that superconductor cells are limited to two inputs. Of course, in the logic domain, the

designer may use multi-fan-in gates, with the awareness that these will be expanded into

expensive multi-cell superconductor circuits.

4.3.1 Clocking Discipline

In keeping with the above design philosophy, we propose and develop a clocking disci-

pline that is aligned with conventional synchronous CMOS; e.g., ranks of clocked storage

elements separated by unclocked combinational networks. This is in sharp contrast to

51

From Temporal to Superconductor Boolean Chapter 4

existing superconducting methods where, typically, every gate is clocked.

In the logic domain, these basic clocked storage elements operate as (non-latching) D

flip-flops (DFFs) that translate to destructive readout (DRO) cells in the xSFQ domain.

Figure 4.1 provides a Mealy machine-based representation of a DRO cell. Recalling that

a logical clock cycle consists of two synchronous phases, at the logic network level, a

synchronizing phase pulse causes the stored signal pulses to be released from the DRO

cells. Then, signal pulses propagate through a forward flow network of asynchronous

xSFQ cells with pulses eventually arriving at downstream DRO cell inputs. The subse-

quent phase releases them from that stage as the process continues. As with conventional

synchronous logic design, the phase period must be long enough to allow for propaga-

tion along the longest signal path through the xSFQ combinational network (and respect

setup time requirements).

a ᴧ b/1

Init
a

arrived
b

arrived

a/0

(ii) LAab

(i) FAab
a ᴧ ¬clk/0

clk/0

Init
a

arrived

clk/1
a ᴧ ¬clk/0

b/1a/1

a ᴧ b/1

Init
a

arrived
b

arrived

a/0 b/0

b/0 a/0

a ᴧ ¬b/1 b ᴧ ¬a/1

a ᴧ ¬b/0 b ᴧ ¬a/0

b/0

b/0a/0

a ᴧ b/1

Init
a

arrived
b

arrived

a/0 b/0
b/1 a/1

a ᴧ b/1

Init
a

arrived
b

arrived

a/1

a ᴧ ¬b/0 b ᴧ ¬a/0

a ᴧ ¬b/0 b ᴧ ¬a/0

b/1

a out

clk

DRO

Figure 4.1: Symbol and Mealy machine representation of a Destructive Read Out (DRO) cell.

As part of the logical signaling discipline, a given data wire transmits at most one

pulse during a given (synchronous) phase. The timing of the pulse within the phase

period does not affect its logical interpretation—only its presence or absence matters.

Hence, the designer should worry only about the timing constraints set by the lengths

of signal paths, which must fit within a clock phase, and not timing relationships across

paths.

52

From Temporal to Superconductor Boolean Chapter 4

4.3.2 First Arrival and Last Arrival Cells Specification

According to their semantics [8, 9], FA and LA cells implement asynchronous (un-

clocked) state machines that operate on pulsed inputs and produce pulsed outputs. As

its name indicates, a FA cell emits an output pulse in response to the first input pulse

that arrives at either of its inputs. Any later input pulse does not affect the FA cell

output (see Figure 4.3 (i)). A LA cell emits an output pulse only if both inputs receive

pulses. The output pulse occurs in response to the second input pulse ((see Figure 4.3

(ii)).

(i) FAab

(ii) LAab

b/1a/1

Init
a

arrived
b

arrived

a/0 b/0
b/0 a/0

b/0a/0

Init
a

arrived
b

arrived

a/0 b/0
b/1 a/1

Figure 4.2: Description of (i) FA and (ii) LA cells’ functionality with Mealy machines.

Figure 4.3 illustrates the state transitions of these cells as they occur during the time

frame of a (clock) phase (although the cells are not clocked themselves).

b arrived

b arrived

a arrived

a arrived

Init

Init

a

b
Init

Init

ORab≡FAab

ANDab≡LAab

Figure 4.3: State transition tables and output responses for FA and LA cells.

53

From Temporal to Superconductor Boolean Chapter 4

When used in this way, we observe that the FA cell implements an OR function

with respect to pulse signals and the LA cell implements an AND function. For proper

operation of both cell types, the initial state must be Init and each input line must be

restricted to one pulse per phase. The arrival of more than one pulse indicates a violation

of the signaling convention.

4.3.3 Two-phase Alternating Encoding

Based on the shown Mealy machines alone, there is no guarantee that the initial state

will be restored at the end of a phase. For example, if the FA cell observes only a single

input pulse during a given phase, it will be in either the a arrived or b arrived state at

the end of the phase. To force FA cells to transition back to the Init state, the obvious

solution is to fan out an explicit global reset signal to all FA cells. The same holds true

for LA cells. But, as in the case of fine-grained clocking, this requires a binary tree of

active splitters and will be very expensive.

a=0

b=1

excite relax

ANDab = 0

ORab=1

physical cycle

logical cycle

LAab

FAab

Figure 4.4: The value of an alternating binary variable appears during the excite
phase and is followed by its complemented value during the relax phase. Each phase
corresponds to a physical cycle (no two-phase clocking is happening). An excite-relax
pair forms an xSFQ logical cycle.

We propose a novel approach that accomplishes a state reset by using only the func-

tional input wires. There are no explicit reset wires, and thus no need for a reset distri-

bution network. This approach does so by providing all mechanisms to reset the gates

54

From Temporal to Superconductor Boolean Chapter 4

within the logic encoding itself. This is the motivation for dividing a logical cycle into

a pair of physical cycles, or synchronous phases, where an excite phase is followed by a

relax phase. In the excite phase, the pulsed inputs are given their logically equivalent

values. During the relax phase, the pulsed inputs are given their complement values (see

Figure 4.4). This guarantees that each FA and LA cell always receives exactly one pulse

at each of their input ports throughout the two-phase logical cycle and returns its initial

state. We define this as an alternating encoding.

Figure 4.5 presents all possible alternating input pulse sequences for FA and LA cells.

Both the excite and relax phases are shown for all legal input combinations. In every

case, if the initial state is Init and the input pulses alternate between the excite and relax

phases, then (a) the output during the relax phase is opposite the output for the excite

phase, and (b) the final state is always Init. We define this as the alternating signal

property.

state inputs FAab LAab state inputs FAab LAab state

a b a b

Init 0 0 0 0 Init 1 1 1 1 Init

Init 0 1 1 0 b arrived 1 0 0 1 Init

Init 1 0 1 0 a arrived 0 1 0 1 Init

Init 1 1 1 1 Init 0 0 0 0 Init

excite relax

Figure 4.5: Alternating input pulse sequences for FA and LA cells.

Importantly, the alternating signal property holds not only for individual cells, as just

shown exhaustively, but also for any network composed of these cells.

Theorem 1 Any feed-forward network composed of FA and LA cells will have the alter-

nating signal property.

Proof sketch. An individual FA or LA cell is alternating, and is a network of depth 1.

55

From Temporal to Superconductor Boolean Chapter 4

If two networks having the alternating signal property connect to the inputs of an FA or

LA cell, then that FA or LA cell must observe alternating inputs, so its output satisfies

the alternating signal property with respect to the network inputs. By induction, the

overall network is therefore alternating 1.

Hence, by using alternating signal inputs (which consume two synchronous phases),

a state reset is achieved without an explicit reset signal. Clearly the two phase clocking

system requires additional time compared to a single phase system, but an explicit reset

signal would also consume additional time, perhaps as much as a full clock phase. Ad-

ditionally, the total number of pulses over an excite-relax pair is always constant, which

may be useful for the detection of erroneous operation [56].

4.3.4 Unordered Codes and Functional Completeness

As just described, an FA cell implements a logical OR gate that operates on pulses,

and an LA cell implements a logical AND gate. Nevertheless, a NOT gate is missing.

Implementing a NOT gate is typically problematic with pulse signaling because it implies

knowledge that a pulse will not occur during the leading excite phase, but a circuit cannot

wait until this phase is over to make this determination, and it cannot look into the future.

However, if input and output signals are constrained to be members of an unordered code,

then functional completeness is achievable with AND and OR gates alone.

Definition 4.3.1 A vector X = x1x2...xn is said to cover another vector Y = y1y2, ...yn

(denoted X ≥ Y) if for all i ∈ n, yi = 1 implies xi = 1. Vectors X and Y are unordered

if X ≱ Y and Y ≱ X.

For example, if X1 = [0011] and Y1 = [0111], Y1 covers X1. On the other hand, the

vectors X2 = [1001] and Y2 = [1010] are unordered.

1Splitters are used for fan-out, and thus are not considered logic elements.

56

From Temporal to Superconductor Boolean Chapter 4

Definition 4.3.2 A binary code is unordered if no two members of the code are ordered.

Well-known examples of unordered codes include one-hot codes, dual-rail (DR) codes,

Berger codes [78], bi-quinary codes—for example, the IBM 650 was a bi-quinary coded

decimal computer [79])—and various ad hoc codes [57, 58].

Theorem 2 Any Boolean function whose domain consists of an unordered code can be

implemented using only AND and OR gates.

Proof sketch. By construction—the complement of any bit can be formed as an

AND/OR function of the other bits. This is done by first selecting all codewords for

which the subject bit is a 0, and then forming a set of minterms corresponding to the

1 bits in the selected codewords. Summing the minterms yields the complement of the

subject bit.

Example: Consider the 2-out-of-4 code (each tuple consists of 4 bits and has exactly

2 logical 1s), [x1x2x3x4] = {[1100], [1010], [1001], [0110], [0101], [0011]}. The value of x1 =

x2x3 + x2x4 + x3x4.

In practice, arbitrary unordered codes are difficult to work with. Although the

complement of any bit can be formed via an AND/OR function of the other bits, the

AND/OR network can become quite large. Even for the relatively small 2-out-of-4 code

presented above, the complement of any bit requires 3 AND gates and 2 OR gates, all of

which have a fan-in of 2.

Generally speaking, the more efficient the code, the more difficult it is to form comple-

ments. If efficiency is defined as the total number of information bits per number of code

bits, the most efficient unordered code is k-out-of-2k. For larger values of k, k-out-of-2k

codes are cumbersome for implementing arbitrary functions. However, the special case

k=1 yields the DR code. Although the DR code is relatively inefficient, it is particularly

57

From Temporal to Superconductor Boolean Chapter 4

a
b

a
b

a
b

a
b

a

a

a

a

ab

ab

a+b

a+b

ORDR DR DRAND NOT

FALA

LAFA

Figure 4.6: Dual-rail (DR) implementation of AND, OR, NOT functions. Each AND
and OR gate consists of one FA-LA pair, just with different wiring. The NOT gate
has no overhead.

simple and easy to work with. Figure 4.6 illustrates a straightforward mapping from an

arbitrary logic network consisting of AND, OR, and NOT gates to a DR implementation

using only ANDs and ORs. The complement of any bit is immediately available at zero

circuit cost.

Corollary 2.1 Any Boolean function having DR inputs can be implemented using only

AND and OR gates.

DR logic forms the backbone of the presented design methodology, with other un-

ordered codes being used in cases where they lead to fewer gates or are otherwise advan-

tageous. For example, 1-out-of-n codes are natural for holding decoded values. So, one

might simply maintain some values in decoded form. Translating between a DR code

and a 1-out-of-n code can be done using n gates (AND gates for DR to 1-out-of-n; OR

gates for 1-out-of-n to DR).

Note that the rote mapping between AND/OR/NOT Boolean functions and DR

equivalents shown in Figure 4.6 is not required. In some cases, a cheaper DR design may

be achieved by other means.

Example: If one begins with the “standard” full adder composed of 9 NAND gates,

the straightforward DR translation consumes 18 FA/LA cells. However, a 14 cell imple-

mentation is possible [80] if freed from using only AND and OR DR pairs (see Figure 4.7).

58

From Temporal to Superconductor Boolean Chapter 4

FA

LA

LA

LA

LA

FA
LA

LA

LA

LA

FA

FA

FA

FA

a

a

b

b

cin

cin

cout

cout

s

s

1
1

1

0

0
0

0

0
1

0

0

1
1

0

0

0

1

1

0

0

a
b

LAab ≡ ANDab
FAab ≡ ORab

t

a=1
b=0

LAab=∞ANDab ≡
FAab≠∞ORab ≡

a=1
b=1

LAab≠∞
FAab≠∞

a=0
b=0

LAab=∞
FAab=∞

Figure 4.7: Dual-rail full adder composed of 14 FA/LA cells [80]. Example where
a = 1, b = 1, and cin = 0 is shown.

We note that inputs and outputs are still in DR format and that each logical AND and

OR gate shown can be implemented with LA and FA cells, as already discussed.

4.4 xSFQ Implementation

Experimental setup. For the development and evaluation of our analog models, we

use Cadence’s Spectre simulator and superconductor device model files for the SFQ5ee

process [47].

4.4.1 First Arrival and Last Arrival Cell Implementations

Our goal is to design circuits that satisfy functional correctness and: (a) evaluate

without the need for a clock signal, (b) return to the ground state at the end of a logical

cycle without the need for explicit wired reset signals, (c) provide a practical way to

reinitialize in case an error occurs due to faulty hardware (or for any other reason), (d)

achieve relatively similar propagation delays on datapaths that are at least as short as

their SFQ AND/OR counterparts, and (e) minimize the JJ count, which affects area and

59

From Temporal to Superconductor Boolean Chapter 4

defines the power dissipation of the circuit.

For the design of the LA circuit, shown in Figure 4.8 (i), we use as a reference

the clockless dynamic SFQ AND gate originally developed by Rylov [51]. As already

discussed, superconducting cell states arise from the storage of flux within SQUIDs (loops

formed by two JJs, one on each side of a quantizing inductor). Here, such loops are formed

around the input inductors L0 and L1, the output JJs from the prior stage, and J4. The

output JJs from the prior stage are not shown, but are built into every gate with an

output wire. In the top loop, L0 holds input a until input b arrives; likewise, in the

bottom loop, L1 holds b until a arrives. Both inputs must arrive for the circuit to emit

an output pulse and properly reset. In xSFQ, one pulse will arrive at each input port

during a two-phase logical cycle, and thus the LA cell will transition from the Init state

to either the a arrived or b arrived state and back to Init in one full cycle. If, for some

reason, the second input does not arrive before the end of the logical cycle, the stored

flux is removed by the J0-J2-R0 or J1-J3-R1 loop using a technique referred to here as

bleed-out because it drains the flux quantum over time. The bleed-out rate of the cell

depends to some extent on the amount of serial resistance. In the provided example, the

bleed-out window is set to 29 ps, for which we used an R0 value of 0.67 Ω. However,

when R0 is set to 0.70 Ω, the bleed-out window increases to 42 ps. Note that in all shown

cases but the last, a and b input pulses arrive within a 29 ps offset (which is the cell’s

bleed-out window); thus, there is an output pulse. In the last case, the offset is 58 ps

and no output pulse appears.

Figure 4.8 (ii) shows the schematic of the FA cell. It is implemented with a modifica-

tion of an inverted C-element, originally presented by SUNY researchers [43]. Each input

has a SQUID that stores the opposite input’s flux until both signals have arrived—that

is, when input b (a) arrives, it is both propagated to J4, generating an output pulse,

and to SQUID J0-L0-L1-J1 (J2-L2-L3-J1), which stores the flux until a (b) arrives and

60

From Temporal to Superconductor Boolean Chapter 4

(i)

(ii)

a

b
LAab

FAab

a

b FAab

a

b

LAab

a

b

top SQUID

bottom SQUID

l0

j0
j1

j4

j3

j2

r0

r1

l1

l0 l1

l3 l4

r1

r0

r2

l2

l5 l6

j0

j2
j1

29 ps

Figure 4.8: Panel (i): LA cell schematic and waveform. The simulations cover both
cases where input pulses arrive within and outside the bleed-out window boundaries.
The results shown provide evidence that the cell satisfies the alternating logic require-
ments (used for normal operation) and supports “bleed-out” (used to recover from
a faulty operation). For this example, the bleed-out rate, which is how quickly the
SQUIDs can drain their respective fluxes, is 29 ps. Panel (ii): FA cell schematic and
waveform. In the first and third cases, both input pulses arrive. The cell fires upon
the arrival of the first input pulse, transitions to the a arrived or b arrived state, and
waits for the second input to return to the Init state. In the second case, only one of
the input pulses arrives (faulty operation). The bleed-out feature allows the gate to
return back to the Init state.

cancels it out. Similar to the LA cell that bleeds out the flux, this cell also bleeds out

through small serial resistors R0 and R1. We add a current source to the central node

to mitigate bias current redistribution, and remove several redundant JJs on the input

and output wires to reduce propagation delay.

Note that even in the rare case where two input pulses arrive simultaneously, both LA

and FA cells behave as expected (there are no race conditions). Also, because clocking is

not part of their semantics, the cells are delay-insensitive. Additionally, their bleed-out

feature is used for resetting only in the case of faulty operation. Thus, when designing an

xSFQ system, the bleed-out window of LA/FA cells should be configured to the length

61

From Temporal to Superconductor Boolean Chapter 4

of a logical cycle (two synchronous phases).

Implementation results are summarized in Table 4.1. To estimate the energy con-

sumption of the designs, we assume that all JJs switch over a logical cycle. The switch-

ing energy of a single JJ is 2 × 10−19J. Compared to prior LA and FA implementations

(Chapter 3), the presented FA and LA cells support bleed-out, have more balanced prop-

agation times, and require fewer JJs. The bias margins for both elements, according to

our experiments, are -30% to +30%.

Table 4.1: Area, latency, and energy estimates of LA and FA cells implemented in the
SFQ5ee process.

Element Area (#JJs) Latency (ps) Energy (aJ)
LA 5 8 1.0
FA 3 9 0.6

In comparison to more traditional SFQ implementations of Boolean AND and OR

gates (Table 4.2), the xSFQ-based implementations require at least 30% fewer JJs and

55% less energy than their counterparts, even when LA and FA cells are used in pairs.

Regarding latency, although 50% longer delays may be observed in single 2-input gates

due to the two-phase nature of the proposed DR alternating logic scheme, for composite

functions, xSFQ designs still deliver performance gains. These gains are expected to grow

with the size of the design, as the timing overhead incurred by fine-grained clocking is

no longer a consideration.

Table 4.2: Area, latency, and energy estimates of synchronous SFQ AND and OR
circuits implemented in the SFQ5ee process.

Element Area (#JJs) Latency (ps) Energy (aJ)
sync. AND 11 9 2.2
sync. OR 12 8 2.4

To provide further evidence of xSFQ circuit efficiency, we use an 8-bit ALU as a

reference example. An SFQ implementation [81] consists of 9 pipeline stages (fixed and

62

From Temporal to Superconductor Boolean Chapter 4

equal to the number of gates on the critical path), requires 4,908 JJs, and achieves

120 TOPS/W in low-voltage RSFQ (1.4 POPS/W if only the switching power is consid-

ered, ∼ 22 µW). In xSFQ, pipeline depth is configurable. For a purely combinational

design, our estimates are: 2,800 JJs, 1.7 µW switching power, and 1.8 POPS/W. Note

that in the above analysis, we assume that all pipeline stages in SFQ will always be busy.

4.4.2 Storage Elements

The above-described FA and LA cells, along with the alternating DR encoding intro-

duced by xSFQ, are sufficient for the implementation of any combinational logic block.

However, for the realization of real-world computing systems, xSFQ-amenable storage

elements are still needed. As already discussed, in xSFQ, each logical cycle consists of

a pair of physical cycles (excite-relax phases). Thus, an xSFQ storage element must be

able to generate the time-offset complement with respect to the primary excite phase.

DRO DRO

DRO DRO
a

a

q

q

clk

logical DFF

s

DRO DRO

DRO DRO
a

a

q

q

clk

logical DR DFF

s

s

DRO DRO

DRO DRO
a

a

q

q

clk

logical DR DFF

Figure 4.9: xSFQ DR latch built from DROs. To fan-out the clock signal, we use
three splitters, which are signified by black dots.

A simple method of implementing an xSFQ latch is to use a pair of synchronous DRO

cells. Figure 4.9 illustrates such a component for the case of DR codes. In particular,

the shown circuit latches the a or a when it arrives on the excite phase and releases it

at the start of the next excite phase. Likewise, the data latched in the relax phase are

written out on the next relax phase. Implementation results for DRO and splitter cells

63

From Temporal to Superconductor Boolean Chapter 4

are in Table 4.3.

Table 4.3: Area, latency, and energy estimates of DRO and splitter circuits imple-
mented in the SFQ5ee process [47]

Element Area (#JJs) Latency (ps) Energy (aJ)
DRO 6 5.1 1.2

Splitter 3 4.3 0.6

Note that although xSFQ requires data in a DR alternating format, traditional binary

storage is still possible with the use of binary-to-alternating-DR (BAC) and alternating-

DR-to-binary (ABC) converters. Example BAC and ABC designs are shown in Fig-

ure 4.10.

4.5 Phase Rebalancing

With asynchronous combinational logic elements and synchronous storage elements

available, one can perform digital design in xSFQ just as in CMOS without being con-

strained by pipelining with gate-level granularity. Figure 4.11 (i) illustrates a pipelined

xSFQ circuit, where a block of combinational logic is surrounded by synchronous register

blocks.

Each logical DFF is implemented in xSFQ as a “double-pumped” latch (Figure 4.9)

and the combinational logic consists of interconnected LA and FA cells. Although this

structure is fully functional, if we strip each logical DFF down to the very basic digital

design equivalents, the resulting system is unsatisfying from an architectural standpoint:

it is a completely unbalanced pipeline, because no computation is done between two

successive clock-synchronous DRO cells.

Observe that even though each pair of DRO cells is part of the same logical DFF,

the DRO cells can be split and redistributed in a balanced way through retiming [61].

Figure 4.11 (ii) depicts a rebalanced version of the circuit shown in Figure 4.11 (i). As

64

From Temporal to Superconductor Boolean Chapter 4

S

R

clk

a

a
a

DR

DR

DRO

a

clk

a
DR

a
DR

(i)
q
q

clk
e

a m

m
a

a

DR

DR

clk
o

clk
e

clk
o

a

a
DR

a
DR

DRO

DRO

DROC

On-chip
storage

binary

BAC ABC

alternating DR

processing

odd-even
separator

clk clke

clko

(ii)

(iii)

Figure 4.10: Panel (i): Binary-to-alternating-DR converter (BAC) block diagram and
waveform. Panel (ii): Alternating-DR-to-binary converter (ABC) block diagram and
waveform. Panel (iii): System-level view.

the DRO cells are pushed through the fabric of combinational logic, the excite and relax

phases become balanced. In the ideal case, where the DRO cell propagation delay is

zero and the combinational logic is perfectly balanced, retiming can completely hide the

overhead associated with the relax phase (see Figure 4.11 (iii)).

Functional evaluation. In the above sections, we presented SPICE-level models and

simulation results for all xSFQ logic elements. For the evaluation of more complex

systems, we develop and open source2 PyLSE [11], a discrete-event simulation framework

for pulse-based systems. To effectively express the behavior of the primary elements, we

2https://github.com/UCSBarchlab/PyLSE

65

https://github.com/UCSBarchlab/PyLSE

From Temporal to Superconductor Boolean Chapter 4

DRO DRO
logical DFF #1

co
m

bi
na

tio
na

l
lo

gi
c

DRO DRO

clk clk

clk clk

……

(i)

(ii)
DRO DRO

co
m

bi
na

tio
na

l
lo

gi
c

DRO DRO

clk clk

clk clk

co
m

bi
na

tio
na

l
lo

gi
c

DRO DRO
logical DFF #0

DRO DRO

clk clk

clk clk

……

…

DRO DRO

DRO DRO

clk clk

clk clk

…

co
m

bi
na

tio
na

l
lo

gi
c

L0 ’ L1 ’ L2 ’

L0

(iii)

L0

L0 ’
L1 ’
L2 ’

t

e r e r e r
e r e r e r

e r e r e r
e r e r e r

Figure 4.11: Panel (i): Unbalanced xSFQ pipeline. Panel (ii): Distributing DRO cells
in a balanced way through combinational logic blocks via retiming; L0≡ L0’+L1’+L2’.
Panel (iii): Under the assumptions of zero DRO propagation delay and perfectly
balanced retiming, 100% of the delay overhead introduced by alternating encoding
can be hidden. We use letter e to represent excite phases and letter r for the relax
phases. An excite-relax pair forms one logical cycle.

66

From Temporal to Superconductor Boolean Chapter 4

opt for a lightweight, object-oriented state machine-based implementation. The state

machine corresponding to each cell contains all legal state transitions and allows for the

easy diagnosis of fan-out violations or logical faults (e.g., fewer or more than the number

of expected pulses appearing on a line). Moreover, each element object can store the

number of JJs required for its physical implementation and its propagation delay, which

facilitates area estimation, timing analysis, and a more realistic simulation. Events are

discrete variables, not continuous ones, and simulation is based on the event-oriented

paradigm, in which all pending events are first stored as a set and then inspected based

on their scheduled event times.

To provide evidence for the functional correctness of the proposed retiming method-

ology, we apply it to the full adder design shown in Figure 4.7. Figure 4.12 provides

simulation results for an unbalanced circuit—a DR full adder implemented as a combi-

national circuit and followed by a rank of logical DFFs. To make the design even more

realistic, we assume that the inputs and outputs of each cell are buffered by Joseph-

son Transmission Lines (JTLs), which are not computationally necessary but commonly

used to improve flux transmission between SFQ logic cells. According to our SPICE

simulations, the propagation delay of a JTL is 5.7 ps. The DRO cell setup time require-

ment, 2.3 ps, is also taken into account. Under these assumptions, the longest estimated

propagation delay, and thus the shortest duration of a physical cycle (phase), is 72 ps.

The rebalanced full adder design is in Figure 4.13. In this case, the critical path

consists of 2 xSFQ cells instead of 4. The longest propagation delay is 44.4 ps (the

duration T of a physical cycle/phase is set to 45 ps in our simulation) and the number

of logical cycles required to complete computation remains the same.

67

From Temporal to Superconductor Boolean Chapter 4

Time (ps)

clk
a
a

b
b

s
s

c
c

c
cout

out

in
in

0 30 60 90 120 150

T=45ps

a = 1

b = 1

c = 0in

c = 1out

s = 0

ready to accept new inputs
(pipelined operation)

Figure 4.12: Simulation of the DR full adder design shown in Figure 4.7. Vertical
red lines (in the simulation graph) represent pulses. The minimum duration (T) of a
physical cycle (phase) is defined by the delay of the longest signal path through the
xSFQ combinational network (colored blue). For easier reading, we also illustrate the
logical values of the circuit’s input and output variables.

68

From Temporal to Superconductor Boolean Chapter 4

Time (ps)

clk
a
a

b
b

s
s

c
c

c
cout

out

in
in

0 30 60 90 120 150

T=45ps

a = 1

b = 1

c = 0in

c = 1out

s = 0

ready to accept new inputs
(pipelined operation)

Figure 4.13: Rebalanced DR full adder design and simulation. Vertical red lines
in the simulation graph represent pulses. The minimum duration (T) of a physical
cycle (phase) is defined by the delay of the longest signal path through the xSFQ
combinational network—colored blue in this simulation. For easier reading, we also
illustrate the logical values of the circuit’s input and output variables.

69

From Temporal to Superconductor Boolean Chapter 4

4.6 Optimum Pipeline Depth

Finding the optimal pipeline depth for a microprocessor is probably one of the most

well-studied problems in computer microarchitecture [82, 83, 84, 85, 86]. To the first

order, pipelining can offer a speed up of N when N pipeline stages are used. However,

this improvement comes at the expense of dynamic power. Thus, performance and power

act in opposition.

Unlike in CMOS design, architects have minimal control of the pipeline structure in

prior conventional SFQ-based superconductor microprocessors [67, 77]. As already dis-

cussed, conventional superconducting Boolean gates are synchronous and act as indepen-

dent pipeline stages—with the attendant benefits and problems. Considering individually

clocked gates in conventional SFQ and the complexity of modern microarchitectures, we

expect the number of pipeline stages in a prior conventional superconductor micropro-

cessor to be in the order of hundreds. For example, our synthesis results of a single-cycle

RV32I [62] indicate that the number of two-input gates on its critical path is approx-

imately 150. Another noteworthy problem with the conventional approach is that the

number of stages is not known until the synthesis process completes.

In contrast, the proposed xSFQ does not impose such constraints. In this section,

we first revisit the CMOS performance models presented by Hartstein and Puzak [86],

modify them where needed, describe the area and energy consumption of xSFQ and

conventional SFQ designs as functions of the pipeline depth, and, finally conduct an

energy-delay product comparison. To the best of our knowledge, this is the first study

on optimal pipeline depth for a superconductor microprocessor.

70

From Temporal to Superconductor Boolean Chapter 4

4.6.1 Performance Model

Following Hartstein and Puzak [86], the basic performance metric is time per instruc-

tion (TPI), which is the inverse of the (million) instructions per second metric. TPI can

be thought of as the sum of the time that a microprocessor is busy doing useful work

(TBZ) and the time that it is stalled because of pipeline hazards (TNBZ) divided by the

total number of program instructions (NI). To calculate the number of logical cycles per

instruction (LCPI) 3, which is another useful performance metric, we divide the sum of

TBZ and TNBZ by TBZ . Expressions for TBZ , TNBZ , TPI, and LCPI (for a scalar machine)

are in Table 4.4.

We follow the original Hartstein and Puzak notation where possible. In particular,

variable tp represents the total logic delay of the microprocessor, ts the physical cycle

time, p the number of architectural pipeline stages, to the latch delay overhead, γ the

weighted average of the fraction of the pipeline stalled by hazards (γ ∈ [0, 1]), and NH

the number of pipeline hazards.

In the case of xSFQ, p can take values ranging from 1 to Nlg cp/2, where Nlg cp is

the number of gates on the critical path. Exceeding this upper bound is not useful,

as rebalancing no longer applies. In the ts, TBZ , and TNBZ expressions, we divide or

multiply by a factor of 2 to account for the effects of rebalancing. In conventional SFQ,

ts is equal to the longest propagation delay among the available synchronous SFQ gates,

given that p is not a free variable. Note that the given equations do not capture timing

skews or the propagation delay of interconnect lines.

3We use LCPI instead of cycles per instruction (CPI) because each xSFQ logical cycle consists of two
physical cycles.

71

From Temporal to Superconductor Boolean Chapter 4

4.6.2 Area Model

Regarding area, we assume that the majority of hardware resources is associated with

logic gates (LA, FA, and conventional SFQ Boolean cells), latches (DRO cells), and split-

ters. We categorize these cells as follows: LA and FA cells are considered asynchronous,

and conventional SFQ Boolean cells and DRO cells are considered synchronous. As for

splitters, we count only those that are part of the clock distribution network, which dom-

inates the total splitter count. Table 4.4 provides a description of our analytical area

models (in terms of gate count).

As previously discussed, in conventional SFQ, DRO cells are needed for padding

unequal datapaths. We assume that their number Ndro increases linearly with the number

of logic gates (Nlg); odp is the growth rate associated with the padding overhead. The

number of logic cells (Nlc) is equal to the number of logic gates (in SFQ), and the

number of splitters on the clock line (Nsplt) matches the total number of synchronous

cells; Ndro +Nlg in this case.

To estimate Ndro in an xSFQ design, the methodology introduced by Srinivasan et

al. [85] is followed. NL is the number of logical latches for a single-stage pipeline, η is

the latch growth exponent, and a factor of 2 is compensation for the additional cost

of the xSFQ double-pumped architectural latches. Variable odr denotes the overhead

introduced by DR codes. More specifically, if LA and FA cells are used in pairs, odr = 2;

otherwise, odr = 1. This overhead is accounted for in the logic cells estimation, as well

(Nlc = Nlgodr). Moreover, in xSFQ, the only synchronous components are DRO cells,

and thus Nsplt = Ndro.

72

From Temporal to Superconductor Boolean Chapter 4

Table 4.4: Performance, area, and energy models for xSFQ and conventional SFQ.

xSFQ conv. SFQ

p ∈ [1, Nlg cp/2] [Nlg cp]

δ ∈ [1] [0, 1]

Performance

ts = to + tp/(2p) to

TBZ = 2tsNI tsNI

TNBZ = γNH(to(2p) + tp) γNHtop

TPI = (TBZ + TNBZ)/NI (TBZ + TNBZ)/NI

LCPI = 1 + TNBZ/TBZ 1 + TNBZ/TBZ

Area

Ndro = 2NLp
ηodr Nlgodp

Nlc = Nlgodr Nlg

Nsplt = Ndro Ndro +Nlg

Energy

Eac = (Nlcelcδ)LCPI 0

Esc = (Ndroedroδ)LCPI (Ndroedroδ +Nlcelcδ)LCPI

Eclk = (2Nspltesplt)LCPI (Nspltesplt)LCPI

EPI = Eac + Esc + Eclk Eac + Esc + Eclk

73

From Temporal to Superconductor Boolean Chapter 4

4.6.3 Energy Model

The energy metric used is energy per instruction (EPI), which is the sum of dynamic

energy consumed by asynchronous cells (Eac), synchronous cells (Esc), and the clocking

distribution network (Eclk) for the execution of a single instruction 4. Expressions for

Eac, Esc, and Eclk are in Table 4.4, and are functions of the following parameters: LCPI,

Nlc, Ndro, elc (average energy dissipation of a logic cell), edro (energy dissipation of a

DRO cell), esplt (energy dissipation of a splitter), and δ (switching activity factor).

In conventional SFQ, no LA and FA cells are used, so Eac = 0. However, the cost

of logic gates is accounted for, along with the cost of DRO cells, in the Esc expression.

In xSFQ, the energy consumed by LA and FA cells is part of Eac. The factor of 2 that

appears in the Eclk expression compensates for the additional delay caused by the relax

phase.

4.6.4 Energy-Delay Product Comparison

To quantify the gains of xSFQ over conventional SFQ technologies, we perform various

simulations with NH/NI , γ, Nlg cp, and odp as free variables. The assumptions are: (a)

all gate inputs and outputs are buffered by JTLs, (b) the clock distribution network has

zero skew and can be wave-pipelined (common practice in conventional SFQ designs), (c)

xSFQ FA and LA cells are always used in pairs (the most conservative case), (d) excite

and relax phases are balanced, and (e) η = 1.3, similar to Hartstein and Puzak [86]. We

note that our models do not include the circuitry overhead required for pipeline interlock

and flushing. Moreover, Nlg = 10, 000, Nlg cp = 150 (based on synthesis results of a

RISC-V RV32I core), and γ = 0.8, if not stated differently. The 2.8 ps and 2.3 ps setup

time requirements of conventional SFQ Boolean and DRO cells are also considered.

4As already discussed, recent energy-efficient SFQ logics have zero static power dissipation and do
not sacrifice speed or compatibility with existing fabrication processes.

74

From Temporal to Superconductor Boolean Chapter 4

conventional SFQxSFQ

20%
15%
10%
5%
0%

𝑵𝑯/𝑵𝑰

x

Figure 4.14: EDP versus pipeline depth comparison. NH/NI ∈ [0, 0.2], γ = 0.8,
odp = 2.5, Nlg = 10, 000, Nlg cp = 150, η = 1.3. The y-axis is on a logarithmic scale.

An EDP versus pipeline depth comparison between xSFQ and conventional SFQ for

various pipeline hazard rates is in Figure 4.14. In the case where NH = 0, conventional

SFQ achieves better results than xSFQ. This is expected, as this scenario favors very deep

pipelines. LCPI is 1, each xSFQ logical cycle consumes two physical cycles, the minimum

physical cycle time (ts) is shorter for SFQ than xSFQ, and a gate-level pipelined xSFQ

design requires more synchronous cells than its SFQ equivalent. However, as the number

of hazards increases to more realistic values [87] and LCPI becomes greater than 1, xSFQ

gains surpass conventional SFQ. Table 4.5 provides more detailed results.

In all three cases—γ = 0.8, γ = 0.9, γ = 1.0—xSFQ performs better than conventional

SFQ in terms of EDP and EDDP (energy-delay2 product) for non-zero pipeline hazard

rates. More specifically, the gains increase super linearly with NH/NI , while the optimal

75

From Temporal to Superconductor Boolean Chapter 4

Table 4.5: EDP, EDDP, and EPI gains achieved by xSFQover conventional SFQ.
γ = 0.8

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 4.3x (p=8) 1.6x (p=13) 27x
10% 10.2x (p=5) 4.5x (p= 9) 48x
15% 16.8x (p=4) 8.1x (p=7) 67.6x
20% 23.7x (p=4) 12.2x (p=6) 86x

γ = 0.9

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 5x (p=7) 1.9x (p=13) 29.6x
10% 11.8x (p=5) 5.3x (p=9) 53x
15% 19.4x (p=4) 9.6x (p=7) 74.6x
20% 27.1x (p=3) 14.3x (p=6) 94.5x

γ = 1.0

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 5.7x (p=7) 2.2x (p=12) 32.2x
10% 13.5x (p=5) 6.2x (p=8) 58x
15% 22x (p=4) 11.1x (p=6) 81.4x
20% 30.8x (p=3) 16.5x (p=5) 103x

design point shifts to shorter pipelines. For example, for γ = 0.8 and NH/NI = 5%, the

optimum number of pipeline stages p is 8 if optimized for EDP, and 13 if optimized for

EDDP. For NH/NI = 10% and NH/NI = 20%, p becomes 5 and 4 for maximum EDP

gains, and 9 and 6 for maximum EDDP gains. In a similar vein, increases in γ lead to

higher EDP and EDDP gains and shorter pipelines. Moreover, xSFQ achieves 4× lower

EPI than conventional SFQ even in the case of hazard-free execution. An increase of

one order of magnitude is observed for NH/NI = 5% and two orders of magnitude for

NH/NI = 20%.

An EPI breakdown of EDP-optimized xSFQ and conventional SFQ designs is pro-

vided in Table 4.6 (γ = 0.8). As pipeline hazards ratio increases, shorter pipelines are

preferable, which leads to lower energy consumption in the synchronous elements and

76

From Temporal to Superconductor Boolean Chapter 4

Table 4.6: EPI breakdown of EDP-optimized xSFQ and conventional SFQ designs.

NH/NI
Eac (fJ) Esc (fJ) Eclk (fJ)

xSFQ SFQ xSFQ SFQ xSFQ SFQ
0% 24 0 15 50 27 49
5% 32 0 7 352 11 343
10% 34 0 4 653 7 637
15% 36 0 3 954 5 931
20% 39 0 3 1,256 6 1,225

the clock distribution network (in the case of xSFQ), despite the increase in LCPI. In

conventional SFQ, where pipeline depth is not configurable, the energy consumed by

these components increases significantly.

1

1.25
1.25
1.25
2.50
2.50
2.50
5.00
5.00
5.00

𝒐𝒅𝒑𝑵𝒍𝒈_𝒄𝒑

100
150
200
100
150
200
100
150
200

EDP conv. SFQ = EDP xSFQ

𝑁)/𝑁* (%)

ED
P

 c
on

v.
SF

Q
 /

ED
P

xS
FQ

Figure 4.15: EDP conventional SFQ/xSFQ comparison for NH/NI ranging from 0%
to 10%, Nlg cp from 100 to 200, and odp from 1.25 to 5.0.

Finally, Figure 4.15 plots EDP graphs for various Nlg cp and odp values (γ = 0.8).

The crossover points at which xSFQ begins to demonstrate EDP improvements over

77

From Temporal to Superconductor Boolean Chapter 4

conventional SFQ is below a 2% hazard rate for all cases and shifts to the left as Nlg cp

and odp increase. More specifically, EDP is more sensitive to the number of gates on

the critical path than the overhead for the padding of uneven paths. For example, the

crossover point for Nlg cp = 100 and odp = 2.5 is at NH/NI = 2%, for Nlg cp = 200 and

odp = 2.5 at NH/NI = 1%, and for Nlg cp = 100 and odp = 5.0 at NH/NI = 1.5%. For

a 10% hazard rate, the EDP gains achieved by xSFQ over conventional SFQ for these

three cases are 6.1×, 14.6×, and 8.5×, respectively, excluding the cost of interlock logic.

4.7 Conclusion

In contrast to conventional superconducting approaches that rely on a clock being

delivered to each and every gate in the system, xSFQ leverages an alternating, unordered

encoding for the design of completely clock-free combinational logic elements. Clocking

is then used only for the synchronization of storage elements (e.g., latches), similar to

CMOS, and sequential network designs have a conventional look-and-feel. To verify

our hypothesis, we designed analog circuit models for all proposed logic elements and

validated their operation in a superconducting-aware version of SPICE. We also built

a discrete-event simulation framework [11] that aids in the evaluation of more complex

systems and used it to demonstrate the effectiveness of the presented optimizations, as

well as the versatility of xSFQ.

Like any new logic family, there are relative advantages and disadvantages compared

to prior approaches. However, we find through a detailed analysis of energy-delay product

for pipelined designs that xSFQ is superior to conventional SFQ in nearly all use-cases.

Exceptions in which this is not the case are jitter-free designs with almost perfectly-

balanced delay paths and hundreds of pipeline stages that have 99% stall-free operation.

If even a few levels of logic are desirable between (architectural) pipeline stages, xSFQ

78

From Temporal to Superconductor Boolean Chapter 4

is superior in terms of EDP, EDDP, and EPI. For example, for a design resembling a

RISC-V RV32I core and a 20% pipeline hazards, xSFQ achieves 31× EDP, 17× EDDP,

and 103× EPI gains compared to conventional SFQ. We expect these gains to be even

more significant if the overhead of interlock logic is accounted for.

The provision of xSFQ’s dual-rail construction, along with its alternating periods of

excitation and relaxation, introduces new opportunities for phase rebalancing optimiza-

tions. Circuit- and gate-level enhancements that further exploit this logical framework

are likely possible. Moreover, the freedom from excessively deep pipelines unlocks new

architectural opportunities and makes the design process more familiar to those com-

ing from more traditional digital design backgrounds. Finally, the presented analytical

power-performance models allow for exploring the impact of pipeline depth on the effi-

ciency of superconductor microprocessors and other non-streaming applications, as well

as opening pathways for identifying the technology’s key architectural challenges.

79

Chapter 5

Tomorrow’s Outlook

A bird’s eye view of the contributions discussed so far, along with the author’s vision,

are shown in Figure 5.1.

Applications

Microarchitecture

Intermediate Level

Operators

Cells

Devices

Levels of transformation

…

Register Transfer Pulse Transfer

Von-Neumann,
dataflow, etc.

Von-Neumann,
dataflow, etc.

Dataflow Dataflow

General purpose,
accelerators, etc.

General purpose,
accelerators, etc.

In-sensor
processing

Temporal
accelerators

AND, OR, NOT

AND, OR, NOT, etc.

FA, LA, D, I AND, OR, NOTFA, LA, D, I

FA, LA, D, I

Latching
(e.g., CMOS)

≠

Non-latching
(e.g., SFQ)

…

Figure 5.1: Overview of this dissertation’s contributions and vision (outlined in red).

By making a clear distinction between hardware cells and logical operators, it is pos-

sible to repurpose Boolean cells in level-based or latching technologies for the efficient

80

Tomorrow’s Outlook Chapter 5

implementation of temporal functions and to establish a temporal foundation for prac-

tical pulse-based or non-latching computing without imposing any logic restrictions. To

support these arguments, we (a) demonstrated the applicability of race logic at scale and

showed its promise for in-sensor AI; (b) built temporal SFQ accelerators that do not in-

herit the shortcomings of fully-synchronous superconductor systems; and (c) transformed

the common understanding of how general-purpose computing can be implemented in su-

perconducting logic through a new fluxon-clearing style of logic and architecture.

Looking forward, we foresee a plethora of new research opportunities at the inter-

section of these advancements and new classes of application—e.g., neuromorphic or

quantum—and technologies—e.g., optics. However, for the rest of this chapter, our focus

is on two ideas that go beyond pure information processing, are critical for the success

of future endeavors, and lend a new perspective to the design of superconductor memory

systems and formally verifiable hardware.

5.1 Superconductor Delay-Line Memory

Despite advances in fabrication [55], tools [88, 11], and logic levels [8, 9, 10], the lack

of a reliable high-speed and high-density superconductor memory in many cases impedes

the long-term development of practical superconductor systems [89]. Unfortunately, di-

rect application of SFQ principles to memory leads to designs with low access latency

but insufficient density [90]. Recently-proposed arrays of vortex transition (VT) cells

open a path forward and promise up to 1 Mbit of data per square centimeter [49]–as

extrapolated by the measured area, each cell takes 99 µm2. However, surpassing this

point becomes extremely challenging as the dimensions of a VT cell are defined by the

length of flux transformers, which do not scale favorably. Hybrid architectures that

combine SFQ and CMOS technologies provide better scalability [91, 92, 93]. Neverthe-

81

Tomorrow’s Outlook Chapter 5

less, CMOS units are slow, usually reside outside of the 4.2 Kelvin cryocooler in which

superconductor electronics are placed, and consume a significant amount of power, espe-

cially due to their resistive interconnects. A great deal of effort has also been invested

in memory cells employing special magnetic materials [94, 95, 96, 97, 98]. While en-

couraging in many aspects, these approaches suffer from complex device structures, and

thus do not scale as desired. Finally, nanowire-based memories provide an interesting

alternative [99, 100, 101]. In contrast to the attempts discussed above, nanowire-based

memories rely on kinetic, rather than geometric, inductance; therefore, they do not have

the same miniaturization challenges. Moreover, the use of thermally-coupled cryotrons

and row-select heaters eliminates the need for external addressing circuitry in nanowire

memories [101]. But the thermal variation introduced by the heaters may also cause

unwanted side effects, with fluctuation in the kinetic inductance of the hTron-channels

being a prime example.

Here, we take an approach that departs from grid-like memory structures, and present

a superconductor delay-line memory based on passive transmission lines (PTLs). PTLs

are lengths of superconducting wire that convey single flux quanta without resistive

attenuation and are traditionally used for energy-efficient routing in large-scale SFQ

designs [102]. We claim that they can also be thought of as memory devices if used to

form loops. Figure 5.2 illustrates one such loop, where SFQ pulses are introduced at one

end of the line, travel along it for a given time, are picked up at the output end, and

again transmitted to the input to repeat the cycle.

Reading from and writing to a delay-line memory is accomplished by interrogating

locations (addresses) in a time-serial way. This serialization allows the time sharing of

control circuitry and forgoes data splitting and merging, which leads to minimal hardware

overhead for addressing. Therefore, the density of a delay-line memory is primarily

defined by the operating speed of the interface circuitry (f), the pulse travel speed in the

82

Tomorrow’s Outlook Chapter 5

lo
o

p
_d

ata_in

lo
o

p
_d

at
a_

o
u

t

(i)

Passive Transmission Line

Figure 5.2: Incoming SFQ pulses (loop data in) are introduced at one end of the PTL,
travel along it at a controlled speed for a given time, are picked up at the output end
of the line (loop data out), and again transmitted to the input for repetition of the
cycle.

delay line (v), the delay line pitch (w), and the number of vertical layers (N).

Density =
f

v × w
×N (5.1)

Our results indicate that the SFQ travel speed in PTLs can be as low as 0.007× the

speed of light, which may lead to densities in the 10s to the 100s of Mbit/cm2. More

aggressive approaches, based on vertically stacked high kinetic inductors, promise another

order of magnitude improvements and invite a more in-depth level of investigation.

5.1.1 Memory Controller Microarchitecture

The configuration of the proposed passive superconducting memory system is illus-

trated in Figure 5.3 (i). The design consists of a superconducting delay line and a control

logic block. The delay line serves as the circulating loop storage and delays any data

that arrives at its input (loop data in). The delay introduced by the loop depends on

the line’s length and the pulse travel speed in the line. At the end of each round trip,

the delayed data at the output of the line (loop data out) feeds into the controller, which

serves as a memory interface. The controller is responsible for deciding whether signals

from the feedback path (loop data out) or the input (write data) will be forwarded to the

delay line (loop data in) for another round, or copied and forwarded to the readout port

83

Tomorrow’s Outlook Chapter 5

(read data).

Control
Logic read_data

write_data
write_address
write_address
read_address
read_address

lo
o

p
_d

ata_in

lo
o

p
_d

at
a_

o
u

t
(i) (ii)

1

DRO2RD

Q0

Q1

m

read_data

loop_data_in

1

DRO2RD

Q1

Q0

DRO
D Qwrite_data

read_address

read_address

write_address

write_address

loop_data_out

PTL
~

~

~

~

Figure 5.3: Panel (i): Overview of the proposed PTL-based superconductor delay-line
memory system. Panel (ii): Block diagram of a control logic block enabling sequen-
tial-access addressing. A destructive readout (DRO) cell stores a write data signal
until write address arrives. A DRO cell with two read-out ports (DRO2R) is used to
retime and respace the data pulse coming out of the delay line when write address
is low (its complement, ∽write address, will be high and serve as a synchronizing
pulse) or filter it out otherwise. For reading, another DRO2R cell is used. In this
case, a high read address loads this DRO2R cell and a subsequent loop data in or
∽read address pulse triggers it. If loop data in arrives first, the stored SFQ is for-
warded to the read data line; otherwise, it is sent to the ground. A merger cell,
denoted by m, is used to wire two lines together: the first from the output of the
DRO for a write operation, and the second from the DRO2R that continues rotating
any SFQ that already exist in the loop. A splitter cell, represented by a black circle,
is used for a fan-out of two.

The block diagram of the controller is provided in Figure 5.3 (ii). Temporal signals,

generated by comparing the value of an address counter with a target address, are used

for addressing. The Merger cell, denoted with the letter m, stitches together and for-

wards all signals that appear on its two input lines to its single output line. Thus, when

the write addr signal is low and no pulse appears on the corresponding line in the des-

ignated interval, its complementary signal, ∽write addr, is high and the loop data out

signal flows from the DRO2R (DRO with two outputs) on the left into the delay line

input (loop data in) uninterrupted. Otherwise, when the write addr signal is high, the

84

Tomorrow’s Outlook Chapter 5

loop data out signal is ignored, the content of the DRO2R is cleared, and write data is

forwarded to the delay line input and readout circuitry. The use of differential signalling

for the write address enables the correction of data timing distortions in both the con-

trol circuitry and memory loop. The readout circuitry on the right also consists of a

DRO2R cell, which in this case is loaded by the read address signal. As with the first

DRO2R, there are two cases: in the first, the arrival of a pulse on loop data in pushes

the stored value to the Q0 output port (read data); in the second, the complementary

∽read address signal clears the cell, flushing the stored value.

Simulation results for a superconducting memory system built with this controller

and a passive delay line are provided in Figure 5.4. In the shown examples, three mem-

ory addresses are supported, and the memory controller operates at 100 GHz. A high

write data signal is provided before interval 0 of the first rotation, or trip 0, and both

the write address and read address lines are asserted in interval 1. Upon the arrival of

the write address signal, a pulse appears on the loop data in line, which demonstrates a

successful memory write operation. The appearance of a read data pulse after the arrival

of the read address signal also indicates that write operations have higher priority than

read. To illustrate the non-destructive nature of readout, in the second round trip of

Figure 5.4 (i), read address is set to 1 again but no write address is provided this time.

A pulse appears on the read data line, satisfying the specification. In a similar fash-

ion, to demonstrate a successful overwrite, in the second round trip of Figure 5.4 (ii),

write address is set to 1 but no write data pulse is given (denoting a logical False). As

anticipated, no pulse appears on the loop data in line after this operation.

Note that the presented memory system allows one to search and operate on all of the

memory contents while waiting for the entire circulation time to pass, thereby eliminating

the need to broadcast to or continuously poll individual cells. The design’s rotating nature

not only circumvents classic fan-in and fan-out limitations of superconductor electronics,

85

Tomorrow’s Outlook Chapter 5

(i)

write_data

write_address

write_address

loop_data _out

loop_data_in

read_address

read_address

read_data

0 1 2 h 0 1 2 h 0 1 2 h

trip 0 trip 1 trip 2

non-destructive readout

write priority over read

0 1 2 h 0 1 2 h 0 1 2 h

trip 0 trip 1 trip 2

overwrite

write priority over read

(ii)

h

h

~

~

write_data

write_address

write_address

loop_data _out

loop_data_in

read_address

read_address

read_data

~

~

Figure 5.4: WRSPICE [54] simulation results of a passive superconducting memory
system using MIT Lincoln Laboratory’s SFQ5ee process parameters and operating at
100 GHz. For simplicity, the number of addresses is set to three. A write data pulse
must always appear before the desired write address, so each round trip across the
recirculating loop storage consists of four cycles, with h denoting a header interval.
In both shown cases, the loop starts empty and a high write data signal is provided
at the beginning of trip 0. Moreover, in trip 0, both write address and read address
are set to 1. The appearance of pulses on the loop data in and read data lines verifies
that write has priority over read. In trips 1 and 2 of Panel (i), read address is set
to 1 and no write address is provided. The appearance of pulses on the loop data in
and read data lines indicates the non-destructive nature of readout. In trips 1 and 2
of Panel (ii), write address is set to 1, but this time no write data pulse is given. No
pulses appear on the loop data in line, demonstrating a successful overwrite.

86

Tomorrow’s Outlook Chapter 5

but also supports the addition of multiple write and read ports and the inexpensive

implementation of content-addressable memories [103].

Circuit Implementation and Analysis

To evaluate the performance and feasibility of the proposed architecture, we first

provide schematics and simulation results for the memory controller’s main components;

next, we analyze their latency; lastly, we perform a voltage bias margin analysis for the

entire system, including all loading effects due to the control logic, PTL, and accompa-

nying driver and receiver circuitry. The controller, shown in Figure 5.3 (ii), consists of a

destructive readout (DRO) cell, two DRO cells with two output ports each (DRO2R), and

a merger cell. The schematics and corresponding simulations for each cell are provided

in Figure 5.5.

The electrical and timing properties of these cells affect both the performance and

functionality of the proposed memory (or any other) system. In particular, electrical

issues typically brought on by parametric variation can result in under- or over-biased

Josephson junctions, which in turn can lead to their dysfunction, or delayed or early

switching times. To avoid erroneous behavior and ensure correct system timing, the

effects of under- and over-biasing are first examined at the cell level. Performing this

bias analysis for cells in isolation, however, is not sufficient because it excludes the loading

effects that are present in a system setting.

To account for loading, we iteratively measure and tune components to reach the

desired timing through an in-situ approach—that is, while each cell is fully loaded by

the remaining components in the memory controller. The results of this process are

shown in Figure 5.6. Nominal delays are indicated in red. DRO and DRO2R delays are

measured as the clock-to-Q delay, while merger delay is measured as the propagation

delay from either input to the output. Delays in each cell increase as bias decreases, and

87

Tomorrow’s Outlook Chapter 5

(i)

(iii)

DRO
D Qdata_in data_out

clock

L0 B0

I0

clock

L1 B1

B2 B3

L2 L3
data_in data_out

data_in

clock0

clock1

B2

I0
B1

I1
I2

B0

B3

B4 B5

B6B7 B8 B9

I3

L0 L1 L2 L3

L4 L5

L6 L7 L8 L9 L10

data_out0

data_out1

L0 L1

L2 L3 L4

L5 L6

I0
B1

B0

B4

B3
B2data_in1

data_in0

data_out

data_in

(ii)

1
DRO2RD

Q0

Q1

clock0

clock1

data_out0

data_out1

m data_out
data_in0
data_in1

data_in1

data_in0

data_out

data_in

data_out

clock

data_in

data_out0

clock0

clock1

data_out1

Figure 5.5: Panel (i): symbol, schematic, and simulation results of a destructive
readout (DRO) cell. An incoming data in SFQ pulse is stored in the superconducting
quantum interference device (SQUID) formed by B2-L2-B3 until a clock pulse arrives.
The arrival of a clock pulse switches B3 and releases a data out SFQ pulse. Panel
(ii): symbol, schematic, and simulation results of a DRO cell with two readout ports
(DRO2R). The DRO2R cell performs largely the same operation as the DRO—but in
this case, the storage element is shared between two parallel loops: B4-L5-B2-L2-B3
and B4-L5-B5-L8-B8. A pulse appearing on either clock input will clear the stored
SFQ and push it to the respective output line. Panel (iii): symbol, schematic, and
simulation results of a merger cell. This design passes incoming SFQ pulses on either
of its two input ports to its output. To prevent an input SFQ from the opposite line
propagating backwards to the input, two blocking Josephson junctions, B0 and B3,
are used.

88

Tomorrow’s Outlook Chapter 5

(i) (ii) (iii)

4 8 10

Propagation delay (ps)
4 875

Propagation delay (ps)

N
o

rm
al

iz
ed

 b
ia

s

1.0
1.1
1.2
1.3

0.9
0.8
0.7

6 875

Propagation delay (ps)

5.8 5.9

Figure 5.6: Bias versus propagation delay for DRO, DRO2R, and merger cells. Red
markings indicate nominal values. To make bias margins symmetric, we center the
nominal delay of each cell between its upper and lower time bounds.

decrease as bias increases. To make bias margins symmetric, we center the nominal delay

of each cell between its upper and lower time bounds.

Using interval analysis and the above delays, we estimate the controller’s maximum

operating frequency, and repeat cell tuning and bias margin measurements. In this case,

though, bias margins are measured for the overall system and not each cell. Figure 5.7

illustrates our results for frequencies ranging from 20 GHz to 100 GHz. We notice that

electrical issues drive limitations in bias margin width at lower frequencies, while timing

issues are the limiter at higher frequencies. This happens because timing constraints and

tolerances get tighter as the address timing interval is reduced. For example, at 100 GHz,

the address timing interval is just 10 ps, which leaves little room for the same variations

in propagation delay that we observed in Figure 5.6. Our SPICE simulations show bias

margins ranging from ±24% (at 20 GHz) to ±13% (at 100 GHz), which are well above

the widely accepted ±10% threshold [104].

Data Density Estimation

The physical storage density—that is, bits per area—of a delay-line memory depends

on 1) the linewidth and line spacing, set by the the fabrication process; 2) the travel

speed, set by the material of choice and the line topology; 3) the relative timing between

89

Tomorrow’s Outlook Chapter 5

Operating frequency (GHz)

20 50 75 100

N
o

rm
al

iz
ed

 b
ia

s

1.00

1.05

1.10

1.15

1.20

1.25

0.75
0.80
0.85
0.90
0.95

Figure 5.7: Bias margins of the proposed memory system for a variety of operating
frequencies.

two adjacent bits, set by the controller’s operating frequency; and 4) the number of PTL

memory routing layers. We estimate the density of the proposed PTL-based supercon-

ducting delay line memory by choosing various settings for each of these free variables

and summarize our results in Table 5.1.

A typical Nb stripline of 250 nm linewidth has a minimum spacing of 250 nm [55]

and propagates SFQ pulses at a speed of 0.3c. This leads to data densities of up to

0.9 Mbit/cm2 at 100 GHz, if all four metal routing layers are used, and matches the state

of the art [49]. Reducing the Nb stripline linewidth and minimum spacing from 250 nm

to 120 nm is a possible but more aggressive design choice [105] and results in densities

of up to 1.9 Mbit/cm2, exceeding the state of the art by almost 2×.

By switching device material and topology to a MoN kinetic inductor microstrip

with the same dimensions, available on just one layer within MIT Lincoln Laboratory’s

SFQ5ee [47] or SC2 [105] processes, the travel speed of pulses in the line falls by about

6×. This slowdown yields densities of up to 1.4 and 4.0 Mbit/cm2 for 250 nm and 120 nm

linewidths, respectively, at 100 GHz. Furthermore, scaling the number of layers on which

the MoN kinetic inductor is available from one to four—the line topology, in this case,

90

Tomorrow’s Outlook Chapter 5

Device
Linewidth

(nm)
Spacing
(nm)

Fabrication
Process

Memory
Layers

Process
Maturity

Capacitance
(fF/µm)

Inductance
(pH/µm)

Travel
Speed (×c)

Frequency
(GHz)

Density
(Mbit/cm2)

Nb
Stripline

250 250 SFQ5ee 4 Mature 0.25 0.50 0.298

20 0.2
50 0.4
75 0.7
100 0.9

120 120 SC2 4 Aggressive 0.19 0.65 0.296

20 0.4
50 0.9
75 1.4
100 1.9

MoN
Kinetic
Inductor
Microstrip

250 250 SFQ5ee 1 Mature 0.16 32 0.047

20 0.3
50 0.7
75 1.1
100 1.4

120 120 SC2 1 Aggressive 0.14 66.70 0.034

20 0.8
50 2.0
75 3.0
100 4.0

MoN
Kinetic
Inductor
Stripline

120 120 SC2 4 Aggressive 0.19 66.70 0.029

20 3.2
50 8.1
75 12.1
100 19.0

NbTiN
Kinetic
Inductor
Stripline

100 120
Not
Established

4 Academic 0.17 490.5 0.011

20 10.7
50 26.6
75 40.0
100 53.3

NbN
Kinetic
Inductor
Nanowire

40 120
Not
Established

4 Academic 0.04 2,050 0.011

20 15.1
50 37.7
75 56.6
100 75.4

15 120
Not
Established

4 Academic 0.04 5,467 0.007

20 28.1
50 70.1
75 105.2
100 140.3

15 120
Not
Established

100 Academic 0.04 5,467 0.007

20 701.4
50 1,753
75 2,630
100 3,507

Table 5.1: Memory density estimates for a variety of mature, aggressive, and aca-
demic configurations. A mature process is considered one that is well-documented
and available as a fabrication option. For example, the MIT Lincoln Laboratory
SFQ5ee process has served as the de-facto standard for fabrication since its introduc-
tion in 2016 [47]. In a similar fashion, a process is aggressive if it has been evaluated
experimentally in real circuits, like the MIT Lincoln Laboratory SC2 [105], but is
outside common design rules. The term “academic” is used to indicate that the de-
vice has been only theoretically evaluated or experimentally evaluated but not scaled.
Capacitance and inductance are also provided because they contribute directly to the
SFQ travel speed.

91

Tomorrow’s Outlook Chapter 5

transforms into that of a stripline—increases the data density to 3.2 Mbit/cm2 at 20 GHz

and 19 Mbit/cm2 at 100 GHz for 120 nm linewidth and 120 nm spacing.

At this point, it is evident that the use of materials with increasingly high kinetic

inductance is conducive to higher densities. To this end, we explore the potential of

NbTiN striplines that exhibit roughly an order of magnitude higher inductance than

their MoN counterparts and propagate SFQ pulses at a speed of 0.011c [106]. Our

results indicate that for a NbTiN stripline with 100 nm width, 120 nm spacing, four

metal routing layers, and controller frequencies between 20 and 100 GHz, the estimated

data densities range from 10.7 to 53.3 Mbit/cm2.

A more forward-looking approach comes from the use of NbN kinetic inductor nanowires.

In the case of an experimentally-tested NbN nanowire with 40 nm linewidth, the induc-

tance scales to 2,050 pH/µm [107]. A roughly proportional drop in capacitance keeps the

pulse travel speed the same, 0.011c, but the reduced linewidth pushes the maximum data

density to 75.4 Mbit/cm2 at 100 GHz. A further simulated linewidth reduction to 15 nm

causes the inductance to skyrocket to 5,467 pH/µm [107], which drops the travel speed

to 0.007c and increases data density to 140.3 Mbit/cm2 at 100 GHz. This is equivalent

to a pulse spacing of 210 µm along a NbN nanowire, about 60× shorter than that in

the YBCO line [108]. Moreover, if CMOS scaling techniques like very large stack-ups—

such as the 100-layer stacks used in 3-D NANDs [109]—were to be adopted in the future

by superconducting technology, this NbN nanowire technology could provide a memory

density of 3,507 Mbit/cm2 at 100 GHz operating speed.

5.2 Generalized Temporal Formalism

Given the long history of temporal logic for verification purposes, a question that

comes up is whether a mapping between the discussed FA, LA, D, and I operators and

92

Tomorrow’s Outlook Chapter 5

those of linear temporal logic (LTL) is possible. This quest is partially driven by the

impact of prior temporal logic and language abstractions, which allowed both systems and

their properties to be represented by formulas in the same logic, in the reactive/concurrent

computing field [110]. Our overarching goal here is to establish the foundation that allows

the reasoning about temporal hardware, ideally through a series of logical implications.

5.2.1 LTL and Past LTL Semantics

The basic LTL operators are: ♢ some time in the future, always in the future,

hnext time (tomorrow), and U until. Past LTL (PLTL) extends LTL with past-time

operators, which are the temporal duals of LTL’s future-time operators, and allows one to

concisely express statements on the past time instances, such as: ♦ some time in the past,

■ always in the past (historically), xprevious time (yesterday), and S since [111, 112].

A definition of the semantics of PLTL is provided in Table 5.2. The notation ⟨S, t⟩ is

used to signify a system S at time step t. We say that an event ϕ occurs at time step t

in the system S, if ϕ holds at time step t in S, denoted by ⟨S, t⟩ |= ϕ.

Table 5.2: Semantics of PLTL.
⟨S, t⟩ |= ♦ϕ iff ∃k: k ∈ [0, t]. ⟨S, k⟩ |= ϕ
⟨S, t⟩ |= ■ϕ iff ∀k: k ∈ [0, t]. ⟨S, k⟩ |= ϕ
⟨S, t⟩ |= xϕ iff t > 0 and ⟨S, t− 1⟩ |= ϕ
⟨S, t⟩ |= ϕSψ iff ∃k: k ∈ [0, t]. (⟨S, k⟩ |= ψ and ∀j: j ∈ (k, t]. ⟨S, j⟩ |= ϕ)

These operators allow for the efficient representation and reasoning of propositions

qualified in terms of time; e.g., an event in a system S has happened some time in

the past. However, to the best of our knowledge, they have not been used to specify

computation directly. Moreover, due to their propositional nature, they are incapable

of encapsulating when a formula holds, which is essential for race logic. To address

93

Tomorrow’s Outlook Chapter 5

these issues, we first propose a mapping between PLTL and race logic operators and

then introduce the earliest-occurrence function E⟨S,t⟩() that returns the first time step in

which a PLTL formula gets satisfied.

5.2.2 Race Logic Semantics

The semantics of FA, LA, D, and I operations can be formally defined using existing

PLTL operators, as shown in Table 5.3— xc denotes the application of x operator c

times.

Table 5.3: PLTL-based semantics of race logic operations.
⟨S, t⟩ |= FAϕψ iff ⟨S, t⟩ |= ♦ϕ ∨ ♦ψ
⟨S, t⟩ |= LAϕψ iff ⟨S, t⟩ |= ♦ϕ ∧ ♦ψ
⟨S, t⟩ |= Dcϕ iff ⟨S, t⟩ |= xc♦ϕ
⟨S, t⟩ |= ψIϕ iff ⟨S, t⟩ |= ♦(ϕ ∧■¬ψ)

To extract the step at which these formulas evaluate to True for the first time, E⟨S,t⟩()

can be used. The definition of E⟨S,t⟩() for a formula ϕ is given in Equation 5.2.

E⟨S,t⟩ (ϕ) =

tmin ∃ tmin: tmin ∈ [[ϕ]]⟨S,t⟩. ⟨S, tmin⟩ |= ϕ

and ∀j: j ∈ [0, tmin). ⟨S, j⟩ ̸|= ϕ

∞ otherwise

(5.2)

This earliest-occurrence function returns the earliest time step tmin ∈ [[ϕ]]⟨S,t⟩, where

[[ϕ]]⟨S,t⟩ is the scope of ϕ at time step t in the system S, such that ⟨S, tmin⟩ |= ϕ. If ϕ

does not hold at any time step within [[ϕ]]⟨S,t⟩, the earliest-occurrence function returns

∞, which represents an unreachable time step.

Figure 5.8 illustrates the application of this generalized temporal formalism through

our example race tree and shows how race logic designs can be fully described with PLTL

94

operators. We believe that this description opens new questions about the verifiability

advantage of temporal hardware and invites further investigation.

Label A Label B Label C Label D

n0

a0<t0

1 0

01 01

n1

a1<t1

n2

a2<t2

Label A = ◆(a0 ∧ ¬t0) ∧ ◆(a1 ∧ ¬t1)

Label B = ◆(a0 ∧ ¬t0) ∧ ◆(t1 ∧ ¬a1)

Label C = ◆(t0 ∧ ¬a0) ∧ ◆(a2 ∧ ¬t2)

Label D = ◆(t0 ∧ ¬a0) ∧ ◆(t2 ∧ ¬a2)

Figure 5.8: PLTL-based description of an example race tree design.

95

Bibliography

[1] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,
D. Sanchez, and T. B. Schardl, There’s plenty of room at the top: What will drive
computer performance after moore’s law?, Science 368 (2020), no. 6495 eaam9744.

[2] L. Ceze, M. D. Hill, and T. F. Wenisch, Arch2030: A vision of computer
architecture research over the next 15 years, 2016.

[3] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[4] E. A. Lee, Computing needs time, Commun. ACM 52 (may, 2009) 70–79.

[5] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and T. Sherwood,
Boosted race trees for low energy classification, in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, (New York, NY,
USA), p. 215–228, Association for Computing Machinery, 2019.

[6] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and T. Sherwood,
In-sensor classification with boosted race trees, Commun. ACM 64 (may, 2021)
99–105.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.

[8] G. Tzimpragos, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis,
A. Madhavan, J. Volk, J. Shalf, and T. Sherwood, A computational temporal logic
for superconducting accelerators, in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, (New York, NY, USA), p. 435–448, Association for
Computing Machinery, 2020.

96

[9] G. Tzimpragos, J. E. Volk, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis,
A. Madhavan, J. Shalf, and T. Sherwood, Temporal computing with
superconductors, IEEE Micro (2021) 1–1.

[10] G. Tzimpragos, J. Volk, A. Wynn, J. E. Smith, and T. Sherwood, Superconducting
computing with alternating logic elements, in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pp. 651–664, 2021.

[11] M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and
B. Hardekopf, PyLSE: A pulse-transfer level language for superconductor
electronics, in Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2022, (New York,
NY, USA), Association for Computing Machinery, 2022.

[12] G. Tzimpragos, J. Volk, A. Wynn, E. Golden, and T. Sherwood, Pulsar: A
superconducting delay-line memory, 2022.

[13] A. Pnueli, The temporal logic of programs, in 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pp. 46–57, ieee, 1977.

[14] A. Madhavan, T. Sherwood, and D. Strukov, Race logic: A hardware acceleration
for dynamic programming algorithms, ACM SIGARCH Computer Architecture
News 42 (2014), no. 3 517–528.

[15] J. E. Smith, Space-time algebra: A model for neocortical computation, in
Proceedings of the International Symposium of Computer Architecture, ISCA ’18,
2018.

[16] A. Madhavan, T. Sherwood, and D. Strukov, Energy efficient computation with
asynchronous races, in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[17] A. Bermak and D. Martinez, A compact 3d vlsi classifier using bagging threshold
network ensembles, IEEE Transactions on Neural Networks 14 (Sept, 2003)
1097–1109.

[18] X. Guo, X. Qi, and J. G. Harris, A time-to-first-spike cmos image sensor, IEEE
Sensors Journal 7 (2007), no. 8 1165–1175.

[19] P. Lichtsteiner, C. Posch, and T. Delbruck, A 128×128 120db 15µs latency
asynchronous temporal contrast vision sensor, IEEE journal of solid-state circuits
43 (2008), no. 2 566–576.

[20] C. Posch, D. Matolin, R. Wohlgenannt, M. Hofstätter, P. Schön, M. Litzenberger,
D. Bauer, and H. Garn, Biomimetic frame-free hdr camera with event-driven pwm
image/video sensor and full-custom address-event processor, in Biomedical

97

Circuits and Systems Conference (BioCAS), 2010 IEEE, pp. 254–257, IEEE,
2010.

[21] X. Qi, X. Guo, and J. G. Harris, A time-to-first spike cmos imager, in Circuits
and Systems, 2004. ISCAS’04. Proceedings of the 2004 International Symposium
on, vol. 4, pp. IV–824, IEEE, 2004.

[22] C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, A 100-m range
10-frame/s 340×96-pixel time-of-flight depth sensor in 0.18-µm cmos, IEEE
Journal of Solid-State Circuits 48 (2013), no. 2 559–572.

[23] V. Chan, S.-C. Liu, and A. van Schaik, Aer ear: A matched silicon cochlea pair
with address event representation interface, IEEE Transactions on Circuits and
Systems I: Regular Papers 54 (2007), no. 1 48–59.

[24] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, Power and area efficient
sorting networks using unary processing, in 2017 IEEE International Conference
on Computer Design (ICCD), pp. 125–128, Nov, 2017.

[25] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood, A
pythonic approach for rapid hardware prototyping and instrumentation, in 2017
27th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–7, Sept, 2017.

[26] C. Wolf and J. Glaser, Yosys–a free verilog synthesis suite, in Submitted to:
Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip),
Linz, Austria, vol. 10, 2013.

[27] D. Vasudevan, A. Butko, G. Michelogiannakis, D. Donofrio, and J. Shalf, Towards
an integrated strategy to preserve digital computing performance scaling using
emerging technologies, in High Performance Computing (J. M. Kunkel, R. Yokota,
M. Taufer, and J. Shalf, eds.), (Cham), pp. 115–123, Springer International
Publishing, 2017.

[28] S. Chen, Y. Wang, X. Lin, Q. Xie, and M. Pedram, Performance prediction for
multiple-threshold 7nm-finfet-based circuits operating in multiple voltage regimes
using a cross-layer simulation framework, in 2014 SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), pp. 1–2, Oct, 2014.

[29] J. Shalf, S. Dosanjh, and J. Morrison, Exascale computing technology challenges,
in High Performance Computing for Computational Science – VECPAR 2010
(J. M. L. M. Palma, M. Daydé, O. Marques, and J. C. Lopes, eds.), (Berlin,
Heidelberg), pp. 1–25, Springer Berlin Heidelberg, 2011.

98

[30] S. Satpathy, K. Sewell, T. Manville, Y.-P. Chen, R. Dreslinski, D. Sylvester,
T. Mudge, and D. Blaauw, A 4.5tb/s 3.4tb/s/w 64×64 switch fabric with
self-updating least-recently-granted priority and quality-of-service arbitration in
45nm cmos, in 2012 IEEE International Solid-State Circuits Conference,
pp. 478–480, 2012.

[31] S. Borkar, Future of interconnect fabric: A contrarian view, in Proceedings of the
12th ACM/IEEE International Workshop on System Level Interconnect
Prediction, SLIP ’10, (New York, NY, USA), pp. 1–2, ACM, 2010.

[32] J. H. Friedman, Greedy function approximation: A gradient boosting machine,
Annals of Statistics 29 (2000) 1189–1232.

[33] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-Y. Wei, A
28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-neural-network engine
with ¿ 0.1 timing error rate tolerance for IoT applications, in Solid-State Circuits
Conference (ISSCC), 2017 IEEE International, pp. 242–243, IEEE, 2017.

[34] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, A 640m pixel/s 3.65 mw sparse
event-driven neuromorphic object recognition processor with on-chip learning, in
VLSI Circuits (VLSI Circuits), 2015 Symposium on, pp. C50–C51, IEEE, 2015.

[35] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, Minerva: Enabling low-power,
highly-accurate deep neural network accelerators, in Proceedings of the 43rd
International Symposium on Computer Architecture, pp. 267–278, IEEE Press,
2016.

[36] J. Kung, D. Kim, and S. Mukhopadhyay, A power-aware digital feedforward
neural network platform with backpropagation driven approximate synapses, in
Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM International
Symposium on, pp. 85–90, IEEE, 2015.

[37] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
Backpropagation for energy-efficient neuromorphic computing, in Advances in
Neural Information Processing Systems, pp. 1117–1125, 2015.

[38] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen, Sparse coding
via thresholding and local competition in neural circuits, Neural Computation 20
(Oct, 2008) 2526–2563.

[39] S. Naraghi, Time-based analog to digital converters. PhD thesis, University of
Michigan, 2009.

99

[40] M. Bavandpour, M. R. Mahmoodi, and D. B. Strukov, Energy-efficient
time-domain vector-by-matrix multiplier for neurocomputing and beyond, IEEE
Transactions on Circuits and Systems II: Express Briefs (2019) 1–1.

[41] D. S. Holmes, A. M. Kadin, and M. W. Johnson, Superconducting computing in
large-scale hybrid systems, Computer 48 (Dec, 2015) 34–42.

[42] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, Zero static power dissipation
biasing of rsfq circuits, IEEE Transactions on Applied Superconductivity 21
(2011), no. 3 776–779.

[43] K. K. Likharev and V. K. Semenov, Rsfq logic/memory family: a new
josephson-junction technology for sub-terahertz-clock-frequency digital systems,
IEEE Transactions on Applied Superconductivity 1 (March, 1991) 3–28.

[44] V. Semenov, E. Golden, and S. K. Tolpygo, Sfq bias for sfq digital circuits, IEEE
Transactions on Applied Superconductivity (2021) 1–1.

[45] I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Y. Kupriyanov, A. L. Gudkov,
and A. S. Sidorenko, Beyond moore’s technologies: operation principles of a
superconductor alternative, Beilstein Journal of Nanotechnology 8 (Dec, 2017)
2689–2710.

[46] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong,
Nisq+: Boosting quantum computing power by approximating quantum error
correction, in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 556–569, 2020.

[47] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M. Johnson,
and M. A. Gouker, Advanced fabrication processes for superconducting very
large-scale integrated circuits, IEEE Transactions on Applied Superconductivity 26
(2016), no. 3 1–10.

[48] F. Ware, L. Gopalakrishnan, E. Linstadt, S. A. McKee, T. Vogelsang, K. L.
Wright, C. Hampel, and G. Bronner, Do superconducting processors really need
cryogenic memories? the case for cold dram, in Proceedings of the International
Symposium on Memory Systems, MEMSYS ’17, (New York, NY, USA),
p. 183–188, Association for Computing Machinery, 2017.

[49] V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, Very large scale integration of
josephson-junction-based superconductor random access memories, IEEE
Transactions on Applied Superconductivity 29 (2019), no. 5 1–9.

[50] S. K. Tolpygo, Superconductor digital electronics: Scalability and energy efficiency
issues, Low Temperature Physics 42 (2016), no. 5 361–379.

100

[51] S. V. Rylov, Clockless dynamic sfq and gate with high input skew tolerance, IEEE
Transactions on Applied Superconductivity 29 (2019), no. 5 1–5.

[52] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer, Self-timing and
vector processing in rsfq digital circuit technology, IEEE Transactions on Applied
Superconductivity 9 (1999), no. 1 7–17.

[53] H. R. Gerber, C. J. Fourie, and W. J. Perold, Rsfq-asynchronous timing (rsfq-at):
a new design methodology for implementation in cad automation, IEEE
Transactions on Applied Superconductivity 15 (2005), no. 2 272–275.

[54] W. R. Incorporated, WRspice reference manual, tech. rep., June, 2019.

[55] S. K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A. L. Day, T. J. Weir,
A. Wynn, and L. M. Johnson, Developments toward a 250-nm, fully planarized
fabrication process with ten superconducting layers and self-shunted josephson
junctions, 2017 16th International Superconductive Electronics Conference (ISEC)
(Jun, 2017).

[56] D. A. Reynolds and G. Metze, Fault detection capabilities of alternating logic,
IEEE Transactions on Computers (1978), no. 12 1093–1098.

[57] B. Bose, On unordered codes, IEEE Transactions on Computers (1991), no. 2
125–131.

[58] J. E. Smith, On separable unordered codes, IEEE transactions on computers 100
(1984), no. 8 741–743.

[59] I. Kurosawa, H. Nakagawa, M. Aoyagi, M. Maezawa, Y. Kameda, and T. Nanya,
A basic circuit for asynchronous superconductive logic using rsfq gates,
Superconductor Science and Technology 9 (1996).

[60] M. Maezawa, I. Kurosawa, M. Aoyagi, H. Nakagawa, Y. Kameda, and T. Nanya,
Rapid single-flux-quantum dual-rail logic for asynchronous circuits, IEEE
Transactions on Applied Superconductivity 7 (1997), no. 2 2705–2708.

[61] C. E. Leiserson and J. B. Saxe, Retiming synchronous circuitry, Algorithmica 6
(June, 1991) 5–35.

[62] K. Asanović and D. A. Patterson, Instruction sets should be free: The case for
risc-v, EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146 (2014).

[63] G. Tang, K. Takata, M. Tanaka, A. Fujimaki, K. Takagi, and N. Takagi, 4-bit
bit-slice arithmetic logic unit for 32-bit rsfq microprocessors, IEEE Transactions
on Applied Superconductivity 26 (Jan, 2016) 1–6.

101

[64] G. Tang, P. Qu, X. Ye, and D. Fan, Logic design of a 16-bit bit-slice arithmetic
logic unit for 32-/64-bit rsfq microprocessors, IEEE Transactions on Applied
Superconductivity 28 (June, 2018) 1–5.

[65] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie,
N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, Design and
implementation of a pipelined bit-serial sfq microprocessor, core1β, IEEE
Transactions on Applied Superconductivity 17 (June, 2007) 474–477.

[66] M. Dorojevets, P. Bunyk, and D. Zinoviev, Flux chip: design of a 20-ghz 16-bit
ultrapipelined rsfq processor prototype based on 1.75-/spl mu/m lts technology,
IEEE Transactions on Applied Superconductivity 11 (March, 2001) 326–332.

[67] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki, Design and
demonstration of an 8-bit bit-serial rsfq microprocessor: Core e4, IEEE
Transactions on Applied Superconductivity 26 (Aug, 2016) 1–5.

[68] C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and N. Yoshikawa,
Mana: A monolithic adiabatic integration architecture microprocessor using
1.4-zj/op unshunted superconductor josephson junction devices, IEEE Journal of
Solid-State Circuits 56 (2021), no. 4 1152–1165.

[69] M. A. Green, the cost of coolers for cooling superconducting devices at
temperatures at 4.2 k, 20 k, 40 k and 77 k, .

[70] S. S. Tannu, P. Das, M. L. Lewis, R. Krick, D. M. Carmean, and M. K. Qureshi,
A case for superconducting accelerators, in Proceedings of the 16th ACM
International Conference on Computing Frontiers, CF ’19, (New York, NY,
USA), p. 67–75, Association for Computing Machinery, 2019.

[71] G. M. Lilly, Device for and method of one-way cryptographic hashing, Dec. 7,
2004. US Patent 6,829,355.

[72] K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami,
T. Tanimoto, T. Ono, J. Kim, and K. Inoue, Supernpu: An extremely fast neural
processing unit using superconducting logic devices, in Proceedings. 53th Annual
IEEE/ACM International Symposium on Microarchitecture, 2020. MICRO-53.,
2020.

[73] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,

102

K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and
D. H. Yoon, In-datacenter performance analysis of a tensor processing unit, in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, (New York, NY, USA), p. 1–12, Association for
Computing Machinery, 2017.

[74] R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han, W. Luo,
N. Yoshikawa, and Y. Wang, A stochastic-computing based deep learning
framework using adiabatic quantum-flux-parametron superconducting technology,
in Proceedings of the 46th International Symposium on Computer Architecture,
ISCA ’19, (New York, NY, USA), p. 567–578, Association for Computing
Machinery, 2019.

[75] M. C. Hansen, H. Yalcin, and J. P. Hayes, Unveiling the iscas-85 benchmarks: a
case study in reverse engineering, IEEE Design Test of Computers 16 (1999),
no. 3 72–80.

[76] G. Pasandi, A. Shafaei, and M. Pedram, Sfqmap: A technology mapping tool for
single flux quantum logic circuits, in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2018.

[77] K. Ishida, M. Tanaka, I. Nagaoka, T. Ono, S. Kawakami, T. Tanimoto,
A. Fujimaki, and K. Inoue, 32 ghz 6.5 mw gate-level-pipelined 4-bit processor
using superconductor single-flux-quantum logic, in 2020 IEEE Symposium on
VLSI Circuits, pp. 1–2, 2020.

[78] J. M. Berger, A note on error detection codes for asymmetric channels,
Information and control 4 (1961), no. 1 68–73.

[79] G. R. Trimble, The ibm 650 magnetic drum calculator, IEEE Annals of the
History of Computing 8 (jan, 1986) 20–29.

[80] D. S.-M. Ho, The study of a totally self-checking adder., tech. rep., ILLINOIS
UNIV URBANA COORDINATED SCIENCE LAB, 1972.

[81] I. Nagaoka, M. Tanaka, K. Sano, T. Yamashita, A. Fujimaki, and K. Inoue,
Demonstration of an energy-efficient, gate-level-pipelined 100 tops/w arithmetic
logic unit based on low-voltage rapid single-flux-quantum logic, in 2019 IEEE
International Superconductive Electronics Conference (ISEC), pp. 1–3, 2019.

[82] S. R. Kunkel and J. E. Smith, Optimal pipelining in supercomputers, ACM
SIGARCH Computer Architecture News 14 (1986), no. 2 404–411.

103

[83] P. K. Dubey and M. J. Flynn, Optimal pipelining, Journal of Parallel and
Distributed Computing 8 (1990), no. 1 10–19.

[84] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and
P. Shivakumar, The optimal logic depth per pipeline stage is 6 to 8 fo4 inverter
delays, in Proceedings 29th Annual International Symposium on Computer
Architecture, pp. 14–24, 2002.

[85] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and
P. G. Emma, Optimizing pipelines for power and performance, in 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35).
Proceedings., pp. 333–344, 2002.

[86] A. Hartstein and T. R. Puzak, Optimum power/performance pipeline depth, in
Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., pp. 117–125, IEEE, 2003.

[87] A. Limaye and T. Adegbija, A workload characterization of the spec cpu2017
benchmark suite, in 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 149–158, 2018.

[88] C. J. Fourie, K. Jackman, M. M. Botha, S. Razmkhah, P. Febvre, C. L. Ayala,
Q. Xu, N. Yoshikawa, E. Patrick, M. Law, Y. Wang, M. Annavaram, P. Beerel,
S. Gupta, S. Nazarian, and M. Pedram, ColdFlux superconducting EDA and
TCAD tools project: Overview and progress, IEEE Transactions on Applied
Superconductivity 29 (2019), no. 5 1–7.

[89] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, Energy-efficient
superconducting computing—power budgets and requirements, IEEE Transactions
on Applied Superconductivity 23 (2013), no. 3 1701610–1701610.

[90] S. Nagasawa, H. Numata, Y. Hashimoto, and S. Tahara, High-frequency clock
operation of Josephson 256-word/spl times/16-bit RAMs, IEEE Transactions on
Applied Superconductivity 9 (1999), no. 2 3708–3713.

[91] N. Yoshikawa, T. Tomida, M. Tokuda, Q. Liu, X. Meng, S. Whiteley, and
T. Van Duzer, Characterization of 4 k cmos devices and circuits for hybrid
josephson-cmos systems, IEEE Transactions on Applied Superconductivity 15
(2005), no. 2 267–271.

[92] K. Fujiwara, Q. Liu, T. Van Duzer, X. Meng, and N. Yoshikawa, New delay-time
measurements on a 64-kb josephson–cmos hybrid memory with a 600-ps access
time, IEEE Transactions on Applied Superconductivity 20 (2010), no. 1 14–20.

104

[93] T. Van Duzer, L. Zheng, S. R. Whiteley, H. Kim, J. Kim, X. Meng, and
T. Ortlepp, 64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time
and 12 mw read power, IEEE Transactions on Applied Superconductivity 23
(2013), no. 3 1700504–1700504.

[94] A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld, S. Poletto, V. V.
Ryazanov, A. N. Rossolenko, M. Khabipov, D. Balashov, A. B. Zorin, and et al.,
Implementation of superconductor/ferromagnet/ superconductor π-shifters in
superconducting digital and quantum circuits, Nature Physics 6 (Jun, 2010)
593–597.

[95] I. V. Vernik, V. V. Bol’ginov, S. V. Bakurskiy, A. A. Golubov, M. Y. Kupriyanov,
V. V. Ryazanov, and O. A. Mukhanov, Magnetic Josephson junctions with
superconducting interlayer for cryogenic memory, IEEE Transactions on Applied
Superconductivity 23 (2013), no. 3 1701208–1701208.

[96] B. Baek, W. H. Rippard, S. P. Benz, S. E. Russek, and P. D. Dresselhaus, Hybrid
superconducting-magnetic memory device using competing order parameters,
Nature Communications 5 (May, 2014).

[97] E. C. Gingrich, B. M. Niedzielski, J. A. Glick, Y. Wang, D. L. Miller, R. Loloee,
W. P. Pratt Jr, and N. O. Birge, Controllable 0–π Josephson junctions containing
a ferromagnetic spin valve, Nature Physics 12 (Mar, 2016) 564–567.

[98] M.-H. Nguyen, G. J. Ribeill, M. V. Gustafsson, S. Shi, S. V. Aradhya, A. P.
Wagner, L. M. Ranzani, L. Zhu, R. Baghdadi, B. Butters, E. Toomey,
M. Colangelo, P. A. Truitt, A. Jafari-Salim, D. McAllister, D. Yohannes, S. R.
Cheng, R. Lazarus, O. Mukhanov, K. K. Berggren, R. A. Buhrman, G. E.
Rowlands, and T. A. Ohki, Cryogenic memory architecture integrating spin hall
effect based magnetic memory and superconductive cryotron devices, Scientific
Reports 10 no. 1.

[99] A. Murphy, D. V. Averin, and A. Bezryadin, Nanoscale superconducting memory
based on the kinetic inductance of asymmetric nanowire loops, New Journal of
Physics 19 (jun, 2017) 063015.

[100] Q.-Y. Zhao, E. A. Toomey, B. A. Butters, A. N. McCaughan, A. E. Dane, S.-W.
Nam, and K. K. Berggren, A compact superconducting nanowire memory element
operated by nanowire cryotrons, Superconductor Science and Technology 31 (feb,
2018) 035009.

[101] B. A. Butters, R. Baghdadi, M. Onen, E. A. Toomey, O. Medeiros, and K. K.
Berggren, A scalable superconducting nanowire memory cell and preliminary
array test, Superconductor Science and Technology 34 (jan, 2021) 035003.

105

[102] Y. Kameda, S. Yorozu, and Y. Hashimoto, A new design methodology for
single-flux-quantum (SFQ) logic circuits using passive-transmission-line (PTL)
wiring, IEEE Transactions on Applied Superconductivity 17 (2007), no. 2 508–511.

[103] P. Rux, A glass delay line content-addressed memory system, IEEE Transactions
on Computers C-18 (1969), no. 6 512–520.

[104] Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, and N. Yoshikawa,
Design and investigation of gate-to-gate passive interconnections for SFQ logic
circuits, IEEE Transactions on Applied Superconductivity 15 (2005), no. 3
3814–3820.

[105] S. K. Tolpygo, E. B. Golden, T. J. Weir, and V. Bolkhovsky, Inductance of
superconductor integrated circuit features with sizes down to 120 nm,
Superconductor Science and Technology 34 (jun, 2021) 085005.

[106] T. M. Hazard, A. Gyenis, A. Di Paolo, A. T. Asfaw, S. A. Lyon, A. Blais, and
A. A. Houck, Nanowire superinductance fluxonium qubit, Phys. Rev. Lett. 122
(Jan, 2019) 010504.

[107] D. Niepce, J. Burnett, and J. Bylander, High kinetic inductance NbN nanowire
superinductors, Phys. Rev. Applied 11 (Apr, 2019) 044014.

[108] W. Hattori, T. Yoshitake, and S. Tahara, A reentrant delay-line memory using a
YBa2Cu3O7−δ coplanar delay-line, IEEE Transactions on Applied
Superconductivity 9 (1999), no. 2 3829–3832.

[109] A. Goda, 3-d nand technology achievements and future scaling perspectives, IEEE
Transactions on Electron Devices 67 (2020), no. 4 1373–1381.

[110] L. Lamport, The temporal logic of actions, ACM Transactions on Programming
Languages and Systems (TOPLAS) 16 (1994), no. 3 872–923.

[111] M. Benedetti and A. Cimatti, Bounded model checking for past ltl, in Tools and
Algorithms for the Construction and Analysis of Systems (H. Garavel and
J. Hatcliff, eds.), (Berlin, Heidelberg), pp. 18–33, Springer Berlin Heidelberg,
2003.

[112] F. Laroussinie, N. Markey, and P. Schnoebelen, Temporal logic with forgettable
past, in Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 383–392, 2002.

106

	Curriculum Vitae
	Abstract
	Overview
	Dissertation Organization and Contributions
	Permissions and Attributions

	Temporal In-Sensor Classification
	Introduction
	Generalized Race Logic
	Race Trees
	End-to-End Architecture
	Software Infrastructure
	Evaluation
	Conclusion

	Temporal Superconductor Computing
	Introduction
	Computing with Superconductors
	Temporal Operators in SFQ
	Circuit Design with Temporal SFQ Gates
	Evaluation
	Conclusion

	From Temporal to Superconductor Boolean
	Introduction
	Current Status
	xSFQ Logic Design
	xSFQ Implementation
	Phase Rebalancing
	Optimum Pipeline Depth
	Conclusion

	Tomorrow's Outlook
	Superconductor Delay-Line Memory
	Generalized Temporal Formalism

	Bibliography

