
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A High Performance Hybrid ToR for Data Centers

Permalink
https://escholarship.org/uc/item/6992b7hm

Author
Liu, He

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6992b7hm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A High Performance Hybrid ToR for Data Centers

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

He Liu

Committee in charge:

Professor Geoffrey M. Voelker, Chair
Professor Stefan Savage, Co-Chair
Professor George Papen
Professor George Porter
Professor Alex C. Snoeren

2015

Copyright

He Liu, 2015

All rights reserved.

The Dissertation of He Liu is approved and is acceptable in quality and

form for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2015

iii

DEDICATION

To my fiancée and my parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Hybrid Data Center Switches . 2
1.2 Hybrid Switch Scheduling . 4
1.3 Contributions . 4
1.4 Organization . 6

Chapter 2 Background and Motivation . 8
2.1 Data Center Networks Have Complex Topologies 8
2.2 Higher Link Rates Must Use Optics . 10
2.3 Using Optical Switches in Data Centers . 11
2.4 Optical Circuit Switching Saves Transceiver Costs 12
2.5 Data Center Networks Can Be Bufferless . 14
2.6 General Optical Circuit Scheduling is Hard . 16
2.7 Data Center Traffic is Skewed and Bursty . 19
2.8 Hybrid Circuit Switches for Data Centers . 21

Chapter 3 REACToR: The Controller . 23
3.1 Design . 25

3.1.1 End-host buffering . 27
3.1.2 Circuit scheduling . 29
3.1.3 End-host rate limiting . 31
3.1.4 REACToR host control protocol . 33

3.2 Implementation . 35
3.3 Evaluation . 38

3.3.1 TCP under TDMA scheduling . 39
3.3.2 Switching “under the radar” . 41

v

3.3.3 Time-varying workloads . 46
3.3.4 Large benefits from a small EPS . 47

3.4 Summary . 51

Chapter 4 Solstice: The Scheduling Algorithm . 53
4.1 Preliminaries . 53
4.2 Previous Studies . 57
4.3 Motivation . 58

4.3.1 Utilization . 59
4.3.2 Delay . 62
4.3.3 Implications . 63

4.4 The Hybrid Scheduling Problem . 63
4.4.1 Constrained switch scheduling . 64
4.4.2 Skewed demand . 64
4.4.3 Constrained switching w/skewed demand 65

4.5 Solstice . 66
4.5.1 Stuffing . 69
4.5.2 Slicing . 72
4.5.3 Example . 75

4.6 Evaluation . 76
4.6.1 Sensitivity to skew . 76
4.6.2 Sensitivity to saturation . 81
4.6.3 Serving random flows . 84
4.6.4 Time complexity . 86
4.6.5 Solstice on a hardware testbed . 86

4.7 Practicalities . 88
4.8 Summary . 89

Chapter 5 Conclusion and Future Work . 90
5.1 Future Directions . 91

5.1.1 Shorten the reaction delay . 91
5.1.2 Work with TCP harmoniously . 92
5.1.3 Validate the workload assumption . 93
5.1.4 Bound the scheduling algorithm . 93
5.1.5 Synchronize the control plane at scale . 93

Bibliography . 95

vi

LIST OF FIGURES

Figure 2.1. Rank-ordered traffic for each of the n2 elements of a demand matrix,
for which most of the traffic (e.g. 90%) is carried in a few (O(n))
flows. 20

Figure 3.1. 100-Gb/s hosts connect to REACToRs, which are in turn dual-
homed to a 10-Gb/s packet-switched network and a 100-Gb/s
circuit-switched optical network. 25

Figure 3.2. Rate limiting prevents bursts from the OCS from starving the EPS,
which would otherwise be unable to make full use of each circuit-
switch configuration interval φk. In both cases, the circuit-switched
traffic achieves 90 Gb/s during each interval. 32

Figure 3.3. The prototype REACToR network. 36

Figure 3.4. A HiTech Global HTG-V6HXT-100GIG-565 FPGA development
board used in REACToR . 37

Figure 3.5. Observed end-to-end circuit switch reconfiguration delay δ 38

Figure 3.6. Effect of pausing/unpausing data/ACK packets on TCP throughput. 40

Figure 3.7. All-to-all workload with circuit configurations changing every
scheduling period. 40

Figure 3.8. Changing the number and duration of configurations in scheduling
periods. 43

Figure 3.9. Goodput achieved for a time-varying workload of three flows to a
single end host. 45

Figure 3.10. Performance of a circuit switch ToR and REACToR in different
workload regimes. 47

Figure 3.11. Performance of a circuit switch ToR and REACToR as a function
of the number of small flows. 50

Figure 4.1. An illustration of our canonical hybrid switch architecture. 55

Figure 4.2. A comparison of the performance of various scheduling algorithms
as a function of the fraction of the reconfiguration delay, δ , over
the accumulation period, W . Note that the y-axis does not start at
zero. 60

vii

Figure 4.3. An example Solstice execution with W = 100 and δ = 1 73

Figure 4.4. The number of configurations and the fraction of demand served
when scheduling demand matrices of different skew using Solstice. 77

Figure 4.5. The number of configurations and the fraction of demand served
when scheduling demand matrices of different skew using BvN
with alignment. 78

Figure 4.6. The number of configurations and the fraction of demand served
when scheduling demand matrices of different saturation. 82

Figure 4.7. The number of configurations and the fraction of demand served
when scheduling a randomized, fair sharing workload. 85

Figure 4.8. Running Solstice in real-time on our prototype testbed. 87

viii

LIST OF TABLES

Table 2.1. Number of transceivers required per upward-facing ToR port for
different network architectures . 12

Table 4.1. The constraints of various crossbar scheduling problems and the
effectiveness of the best known algorithms to solve them 66

ix

ACKNOWLEDGEMENTS

I would like to thank my advisors, Professor Geoffrey M. Voelker and Stefan

Savage. Thank them giving this opportunity to study in graduate school and become

truly economically independent. Thank them for showing me in person that one can still

contribute to this world in positive attitudes when there are a thousand reasons to keep a

cynic view. Thank Professor Voelker for not giving me up when I was lost in the cold

mountains.

Thank all the members in the project group for making REACToR happen. Thank

Feng Lu, Rishi Kapoor, Malveeka Tewari, Alex Forenich and Sen Zhang for their

collaborative efforts, and thank Professor Alex C. Snoeren, George Papen and George

Porter for their insightful advising and being my thesis committee members.

I would also like to thank all my colleagues in UCSD and Berkeley for their

invaluable help, assistance and collaboration: Kirill Levchenko, Neha Chachra, Tristan

Halvorson, Ding Yuan, Danny Huang, David Wang, Qing Zhang, Andreas Pitsillidis,

Peng Huang, Chris Kanich, Chris Grier, Hovav Shacham, Keaton Mowery, Michael

Vrable, Tianying Xu, Jing Zheng, Jiaqi Zhang, Weiwei Xiong, Damon McCoy, Mark

Felegyhazi, Brandon Enright, Nicholas Weaver, Christian Kreibich, Vern Paxon, Kai

Wang, Ge Wang. Thank Brian Kantor, Cindy Moore, and Jennifer Folkestad for their

professional help and support.

Finally, I would like to thank my fiancée, Jing Xu, for accompanying, supporting,

and feeding me all these years. It is she and her awesome cooking that made our small

rental apartment in a foreign country always feel like a sweet home.

Chapter 1, 2 and 3, in part, is a reprint of the material as it appears in the USENIX

Symposium on Networked Systems Design and Implementation 2014. Liu, He; Lu, Feng;

Forencich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

x

Snoeren, Alex C.; Porter, George. The dissertation author was the primary investigator

and author of this paper.

Chapter 1, 2 and 4, in part, has been submitted for publication of the material

as it may appear in the the conference of the ACM Special Interest Group on Data

Communication 2015. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex;

Zhang, Sen; Savage, Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.;

Porter, George. The dissertation author was the primary investigator and author of this

material.

xi

VITA

2009 Bachelor of Science, Tsinghua University, Beijing

2009–2015 Research Assistant, University of California, San Diego

2015 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

“Circuit Switching Under the Radar with REACToR”, He Liu, Feng Lu, Alex Forencich,
Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George Papen, Alex C. Snoeren,
and George Porter. Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2014). Seattle, WA, April 2014.

“Software Abstractions for Trusted Sensors”, He Liu, Stefan Saroiu, Alec Wolman,
Himanshu Raj. Proceedings of the 10th International Conference on Mobile Systems,
Applications and Services (MobiSys 2012). Low Wood Bay, Lake District, United
Kingdom, June 2012

“Verilogo: Proactive Phishing Detection via Logo Recognition”, Ge Wang, He Liu,
Sebastian Becerra, Kay Wang, Serge Belongie, Hovav Shacham, and Stefan Savage.
UCSD Technical Report CS2011-0969, August 2011.

“Click Trajectories: End-to-End Analysis of the Spam Value Chain”, Kirill Levchenko,
Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark Felegyhazi, Chris Grier,
Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu, Damon McCoy, Nicholas
Weaver, Vern Paxson, Geoffrey M. Voelker, and Stefan Savage. Proceedings of THE
IEEE Symposium on Security and Privacy. Oakland, CA, May 2011.

“On the Effects of Registrar-level Intervention”, He Liu, Kirill Levchenko, Mark Fel-
egyhazi, Christian Kreibich, Gregor Maier, Geoffrey M. Voelker, and Stefan Savage.
Proceedings of the USENIX Workshop on Large-scale Exploits and Emergent Threats
(LEET). Boston, MA, March 2011.

“Sora: high-performance software radio using general-purpose multi-core processors”,
Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M. Voelker.
Communications of the ACM, Januaray 2011.

xii

“SAM: Enabling Practical Spatial Multiple Access in Wireless LAN”, Kun Tan, He Liu,
Ji Fang, Wei Wang, Jiansong Zhang, Mi Chene and Geoffrey M. Voelker. Proceedings
of the 15th Annual International Conference on Mobile Computing and Networking
(Mobicom). Beijing, China, September 2009.

“Sora: High Performance Software Radio Using General Purpose Multi-core Processors”,
Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yongguang Zhang,
Haitao Wu, Wei Wang, and Geoffrey M. Voelker. Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI). Boston, MA,
April 2009.

xiii

ABSTRACT OF THE DISSERTATION

A High Performance Hybrid ToR for Data Centers

by

He Liu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2015

Professor Geoffrey M. Voelker, Chair
Professor Stefan Savage, Co-Chair

The potential advantages of optics at high link speeds have led to significant

interest in deploying optical switching technology in data-center networks. Initial efforts

have focused on hybrid approaches that rely on millisecond-scale circuit switching in the

core of the network, while maintaining the flexibility of electrical packet switching at

the edge. Recent demonstrations of microsecond-scale optical circuit switches motivate

considering circuit switching for more dynamic traffic such as that generated from a

top-of-rack (ToR) switch.

Based on these technology trends, this dissertation presents a prototype hybrid

xiv

ToR design called REACToR. REACToR combines 10-Gbps packet switching and 100-

Gbps circuit switching, and appears to end-hosts as a 100-Gbps packet-switched ToR.

REACToR synchronizes end host transmissions with end-to-end circuit assignments, and

can react to rapid, bursty changes in the traffic from end hosts on a time scale of 100s of

microseconds.

To service data center traffic demands effectively, REACToR needs to schedule

the heavy bandwidth-hungry flows to the circuit switching network, and the small latency-

sensitive flows to the packet switching network. To address this problem, this dissertation

also presents a new switch scheduling algorithm called Solstice. Solstice minimizes the

frequency of circuit reconfigurations to maximize circuit utilization when reconfiguration

delay is not negligible. Evaluations also show that it can schedule data center traffic

workloads effectively with practical computational overheads.

As a result, when using a REACToR hybrid switch with the Solstice scheduling

algorithm, optical circuit switching extends to layers even closer to end hosts. Combined

with a lower-provisioned electrical packet switch, the hybrid architecture services data

center workloads with almost full bi-sectional bandwidth of high link rates like 100Gb/s.

It provides network performance comparable to a full fat-tree that consists of electrical

packet switches, but with much lower costs.

xv

Chapter 1

Introduction

Modern data centers interconnect thousands of commodity servers with com-

modity packet-based network switches. It enables search, social networks, elastic cloud

computing and many more “Big Data” applications. As these applications scale up to

more users and data, the traffic demands they generate grow rapidly, pushing data center

networks to use higher link rates.

However, designing scalable data center interconnects is already an extremely

challenging problem, and it is only getting harder as the link rates move from 10 to 40 to

100 Gb/s and beyond. Unlike previous generational upgrades, upgrading to 100-Gb/s

link rates fundamentally changes how data centers are wired. At 100 Gb/s, inexpensive

copper cabling can no longer be used at distances greater than a few meters: virtually

all cables other than those internal to an individual rack must be optical. If these cables

interconnect electronic packet switches, they further require optoelectronic transceivers

at both ends. Many popular packet-switched data-center topologies like multi-rooted

trees [45] require large numbers of connections between racks. Hence, the dominant cost

of these designs changes from those of the constituent packet switches to those of the

transceivers mandated by the optical interconnects necessary to support the increased

link speed [14]. These transceivers not only cost more to manufacture, but also consume

power and produce great amounts of heat.

1

2

In contrast, if the switches internal to the network fabric are themselves optical,

the need for transceivers can be significantly reduced. Researchers have previously

proposed hybrid architectures consisting of a combination of packet switches and optical

circuit switches managed by a common logical control plane [10, 14, 46]. Traditionally,

however, their applicability has been limited by the delay incurred when reconfiguring

the circuit switches, as traffic has to be buffered while waiting for a circuit assignment.

Architectures based upon legacy optical circuit switches designed for wide-area appli-

cations are fundamentally dependent on stable, aggregated traffic to amortize their long

reconfiguration delays. Therefore, their use has been restricted to either the core of the

network [14] or to highly constrained workloads [46].

Researchers have recently demonstrated optical circuit switch prototypes with

microsecond-scale reconfiguration delays [8, 29, 31], and showed that such a switch,

when coupled with an appropriate control plane [40], has the potential to support more

dynamic traffic patterns, extending the applicability of circuit switches to cover the entire

network fabric required to interconnect racks of servers within a data center.

In this dissertation, I argue that by using a hybrid of 100-Gb/s optical circuit

switching and lower-provisioned 10-Gb/s electrical packet switching, it is possible to

service common data center workloads with almost non-blocking bi-sectional band-

width, like full electrical packet switching fat-tree networks of 100Gb/s, but with fewer

transceivers and hence much lower costs.

1.1 Hybrid Data Center Switches

Circuit switching alone is still inadequate to meet the traffic demands within a

data center. To achieve acceptable link efficiency, a pure circuit switch needs to maintain

circuit configurations stable in time durations that are at least an order of magnitude

longer than the circuit reconfiguration delay. These long stability periods incur substantial

3

delays to achieve efficiency (e.g., 61–300 µs to deliver 65–95% of the bandwidth of a

comparable packet switch [40]), and the buffering required to tolerate such delays to

support large number of active flows at 100 Gb/s is substantial. By integrating a certain

level of packet switching, hybrid fabrics have the potential to address these shortcomings

of pure circuit switching. However, existing hybrid switches use circuits that reconfigure

in milliseconds, and are not capable of coping with the lack of traffic stability and

aggregation present at the rack level of today’s data center [3, 5, 27, 28].

This dissertation proposes a hybrid network architecture where its optical circuit

switching penetrates the data center network to the top-of-rack (ToR) switches. Using

the Mordia optical circuit switch [40] as a building block, I experimentally prototype the

first hybrid network control plane that uses rapidly reconfigurable optical circuit switches

to provide packet-switch-like performance at substantially lower cost than an entirely

packet-switched network for targeted data center workloads. My hybrid network design

consists of a 100-Gb/s optical circuit-switched network deployed alongside a pre-existing

10-Gb/s electrical packet switched network. In this model, ToR switches support 100-

Gb/s downlinks to servers, and are “dual-homed” to a legacy 10-Gb/s electrical packet

switched network (EPS) and a new 100-Gb/s optical circuit switched network (OCS).

My hybrid network design assumes that the traffic demand is highly skewed in

the serviced data center. That is, if all the flows among the end hosts are sorted by their

link bandwidths required, roughly the top 10% of flows in the data center will use more

than 90% of the total link capacity, and the remaining 90% of the flows consume no more

than 10% of the link capacity in the network. This skewness pattern is common in data

centers. For example, Microsoft shows that it is very rare that more than five big flows

coexist on a single end host in its data center [27]. With this workload assumption, my

hybrid switch will efficiently service the long-lasting big flows with the optical circuit

switches, and small flows, which consume less than 10% of the link bandwidth, with the

4

lower-provisioned electrical packet switches.

1.2 Hybrid Switch Scheduling

One key challenge that this hybrid approach faces is to effectively schedule the

bulk of the traffic with the higher-capacity—but slower to reconfigure—optical switching

technology, while ensuring that the remaining traffic does not overdrive the under-

provisioned packet network. While the potential cost savings that hybrid technologies

could realize is large, their practical utility depends on the types of workload that can

be effectively scheduled by the given switch design without incurring significant loss or

delay.

For this new hybrid scheduling problem, I develop a hybrid switch scheduler

called Solstice. It exploits the typical skewed pattern of data center traffic demand, and

creates a small number of configurations with long durations to minimize the penalty

for reconfiguration, leaving only a small amount of residual demand to be serviced by a

low-speed (and, hence, lower-cost) unconstrained packet switch. Empirically, Solstice

shows O(N log2 N) time complexity, where N is the number of hosts that have traffic to

schedule.

1.3 Contributions

In this dissertation, I present the design of a hybrid top-of-rack switch that

combines an optical circuit switch and an under-provisioned electrical packet switch,

along with a crossbar scheduling algorithm for this switch. Using this scheduling

algorithm, the switch can service common data center network demand with performance

akin to a high speed electrical packet switch but at much lower cost.

I argue that with optical circuit switches that can reconfigure in microseconds,

it is possible to push the hybrid switch design to the top-of-rack layer. This hybrid

5

design extends circuits to links closer to the end-hosts, and provides cheaper solutions

for upgrading the server links to 100 Gb/s.

I design and implement the control plane for such a hybrid top-of-rack switch that

connects an optical circuit-switching network and an under-provisioned electrical packet-

switching network. It consists of three parts that are closely integrated: a centralized

schedule controller that creates the traffic plan based on the demand, real-time flow

controllers that synchronize network traffic with the circuit configuration changes, and

end-host traffic classifiers that direct the traffic to either the circuit-switching or the

packet-switching network.

I build a simulator for my hybrid switch, and carefully calibrate the simulator

against the prototype implementation. Using this simulator, I extend the study on hybrid

switching to large scale through simulated evaluations, and show the benefits of a hybrid

switch design compared to a pure circuit design.

I define the circuit scheduling problem for hybrid switching, and distinguish the

problem from previous crossbar scheduling problems: it is relaxed, where the demand

that the optical circuit switch cannot service can be serviced by the under-provisioned

electrical packet switch; it does not benefit from speed-ups, because optical links have no

buffers for link speed transitioning; and the reconfiguration delay is non-trivial such that

the scheduler should minimize the frequency of reconfigurations.

Specifically for this new hybrid scheduling problem, I design and implement a

new scheduling algorithm. I observe and leverage the fact that the traffic demand in data

center networks is often sparse and skewed, and hence it is possible to service in a small

number of configurations during a scheduling period. My simulation results show that

my algorithm empirically generates such schedules in O(N log2 N) time, where N is the

number of active hosts in the data center.

My results also show that, when the demand is skewed, my scheduling algorithm

6

can service 90% of the traffic demand with the circuit links, even when the switch capacity

is fully subscribed. Along with the help of the lower-provisioned packet switch, my

hybrid scheduling algorithm provides almost full bi-sectional bandwidth. The resulting

network performance of the hybrid network is hence comparable with a fully-provisioned

bi-sectional electrical packet switching network.

1.4 Organization

The remainder of this dissertation is organized in the following manner.

Chapter 2 provides a general overview of previous data center switch designs

that use optical circuit switches, and the motivation for introducing hybrid optical circuit

switches for data center workloads.

Chapter 3 discusses REACToR, my hybrid optical circuit switch and its control

plane design. Further, I evaluate the control plane performance of my design and

demonstrate that it is able to reactively service data center network workloads.

Chapter 4 discusses the hybrid scheduling problem introduced by hybrid data cen-

ter switches like REACToR. To address this problem, I present my scheduling algorithm,

Solstice, and evaluate its efficiency on serving various data center network workload

patterns.

Chapter 5 concludes the dissertation and discusses how the work in this disserta-

tion could be further extended.

This chapter, in part, is a reprint of the material as it appears in the USENIX

Symposium on Networked Systems Design and Implementation 2014. Liu, He; Lu, Feng;

Forencich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

Snoeren, Alex C.; Porter, George. The dissertation author was the primary investigator

and author of this paper.

7

This chapter, in part, has been submitted for publication of the material as it may

appear in the the conference of the ACM Special Interest Group on Data Communication

2015. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen; Savage,

Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; Porter, George. The

dissertation author was the primary investigator and author of this material.

Chapter 2

Background and Motivation

This chapter provides background information about data center networks and

motivates hybrid data center switches.

2.1 Data Center Networks Have Complex Topologies

Data centers are scalable computing infrastructures that interconnect large

amounts of servers. Initially built from commercial personal computers and commodity

Ethernet switches [11, 16], data center networks now consist of 100s of thousands or

more blade servers and can provide tremendous computational power with low costs but

high scalability. Using data centers, commercial companies gain the ability to process

petabytes of data in parallel, and to service millions of concurrent user requests from

all over the world. Moreover, these data centers use operating systems and software

development stacks that are essentially the same ones that run on personal computers

that people use on desktop workstations, further lowering the cost for developers to build

data center applications.

With such great scalability at a feasible cost, data centers have gained more

popularity and supported more applications. Hardware markets just for data center

equipment have emerged. Specially-designed servers and equipment that are more

powerful and more efficient have started to replace the traditional commodity servers in

8

9

data centers [1]. The market have evolved data center servers with more processing units,

faster storage, lower energy consumption, and higher network link rates. These server

technology trends have correspondingly applied pressure on data center networks that

connect these servers together.

Traditional data center networks use commodity Ethernet switches where each

typically has 24 or 48 Ethernet ports [2, 16]. With these switches, data center networks

ideally provide full non-blocking bi-sectional bandwidth — the best bandwidth service

that a network can provide for the end hosts where each host has a fixed link rate. If a

data center has such bandwidth, it means that as long as each end host sends and receives

data at a rate at most the link rate in total, the network should always be able to satisfy all

traffic demands from all servers without delaying any data transfer.

Mathematically, such traffic demand can be described as a matrix of demand

traffic link rates, where each row represents a sending host, each column represents a

receiving host, and each element in the matrix represents a traffic rate from the corre-

sponding sending host to the receiving host. A satisfiable bi-sectional traffic demand is a

matrix where the element sum in each row and column is no larger than the link rate at

the input and output ports. A network that has full non-blocking bi-sectional bandwidth

can service such a demand matrix without accumulating packets at the buffers of either

the end hosts or the switches, where each end host can send and receive at the exact

traffic rate equivalent to the corresponding element in the demand matrix.

Most commodity Ethernet switches only provide bi-sectional bandwidth for

several 10s of ports, typically 24 or 48. To provide full bi-sectional bandwidth for

thousands or more end hosts, the network has to cascade these switches into a topology

that has higher connectivity, like a parallel tree or a high-degree multi-dimension mesh

network.

For example, a fat-tree [2] cascades switches into a tree where the parallelism at

10

the nodes on each layer is doubled when the layers approach the root of the tree. As a

result, a k-layer fat-tree with 2n-port switches can provide full bi-sectional bandwidth for

2nk hosts , with (2k−1)nk−1 switches and 2knk cables. As a concrete example, a 3-level

fat-tree with 48-port switches can provide full bi-sectional bandwidth to 27,648 hosts

with 2,880 switches and 82,944 cables. Data center topologies hence often lead to huge

wiring complexity.

2.2 Higher Link Rates Must Use Optics

Traditional data centers started by using copper-based 100Mb/s Ethernet ca-

bles [11, 16], the same type of wires that people use on personal computers in everyday

life. When data centers higher link rates such as 10Gb/s, 40Gb/s or even 100Gb/s are

on the horizon, what should data center architects do? One option is to continue using

copper-based links. However, with link rates higher than 10Gb/s, copper links cannot

extend longer than several tens of meters, and 40Gb/s or 100Gb/s copper links are essen-

tially multiple 10Gb/s or 25Gb/s cables combined together to provide high link rates in a

parallel but costly and non-scalable fashion.

Another option is to use optical links that can support higher link rates and can

reach longer ranges. However, if used with electrical packet switches, these optical

cables have to connect to the these switches with optoelectronic transceivers at the ends

of the cables. Each of these transceivers costs about 500 dollars on the market and

consumes energy at about 240 mW [14]. When multiplying this cost by the large number

of transceivers required in the network, using optical links with electrical switches in

data centers presents a very expensive approach.

Alternatively, if the switches can also be optical themselves, the connections will

no longer need the transceivers, and the cost of these transceivers can be saved.

11

2.3 Using Optical Switches in Data Centers

Ideally, to work with optical cables in data centers, one should use optical packet

switches. However, although optical packet switches have been researched for about two

decades, their expensive setup is still impractical to use in commercial use. One of the

main technical problems is the lack of optical memories, and optical packets are hence

hard to buffer [42]. As a result, optical switches favors circuit switching that does not

require buffers, and has a feasible cost that commercial data centers can afford. Using

3D-MEMs and 2D-MEMs, these circuit switches reflect optical signals with mechanical

mirrors that can reconfigure in milliseconds or even microseconds [40]. Using these

optical circuit switches, data center researchers have proposed network architectures that

partly replace the electrical switches at the aggregation layer with optical circuit shortcuts,

like Helios [14] and c-Through [46], or even completely replace the interconnects among

the top-or-rack switches with optical circuit links, like OSA [10].

These initial optical circuit networks uses circuits that can reconfigure in mil-

liseconds, and can hence only deploy circuit links at the aggregation layer where traffic

is either highly aggregated or highly stable. When two switches are connected with a

circuit, the circuit works like a direct connected cable with no buffers. OSA [10] replaces

the entire aggregation layer with circuits, and hence the routing and forwarding table

must be setup correctly to provide full connectivity with possbily multiple hops, and the

topology does not guarantee full bi-sectional bandwidth in general.

Helios [14] and c-Through [46] use a hybrid approach, where full connectivity is

provided by an existing over-subscribed traditional aggregation layer of electrical packet

switches, and the circuit links optimize bottleneck throughputs at the hot links among the

switches. These hybrid approaches use circuits as a performance optimization for packet

networks to provide cheaper interconnecting bandwidths. Similar approaches also appear

12

Table 2.1. Number of transceivers required per upward-facing ToR port for different
network architectures. (†Presuming a 10-Gb/s packet network is already in place.)

Link rate Full fat tree Helios-like Circuit-enabled ToR
10 Gb/s 2−4 1−3 N/A

100 Gb/s 4 3 1†

as reconfigurable wireless links in data center contexts [21, 26, 49].

These circuits are limited to serve as optimizations that augment the packet

switches, or to serve only highly stable traffic, because the circuits take milliseconds

or longer to reconfigure and are hence required to keep stable for seconds to achieve

link efficiency. With this long scheduling period, a network controller has to reconfigure

its topological view of the network and change the routing table correspondingly. The

transport layer often needs to reestimate the link bandwidth due to the disruption of the

topology change.

Recent research presents Mordia [12, 40], circuit switches that can reconfigure in

10s of microseconds, three orders of magnitude faster than previous ones. With this fast

reconfiguration time, multiple transport layer flows that do not share the same destination

can share the same circuit port in a TDMA fashion without sacrificing link efficiency and

disturbing the transport layer. The switch reconfigures the circuits so fast that the circuits

may be used by the nodes on demand without the need to change any forwarding table.

This on-demand flexibility enables the switch to service traffic that is more dynamic,

such as that found inside the ToR switches among the end hosts.

2.4 Optical Circuit Switching Saves Transceiver Costs

Extending optical circuit switching to end-hosts further saves the cost of

transceivers for data center upgrades. As an estimation, consider data-center opera-

tors who want to upgrade an existing 10-Gb/s data center network—i.e., the part of the

13

network that connects the top-of-rack switches together—to 100 Gb/s. Then, they need

to upgrade the long cables into optical ones, with optical transceivers at the cable ends

to connect to electrical switches. Table 2.1 shows the number of optical transceivers

required for each upward-looking port of the ToR for three different network architectures.

The first architecture is a fully provisioned 3-level fat-tree network [2]. If all of the links

in the backbone network are optical, then this network requires four transceivers per

upward port. In a Helios-like [14] architecture, an optical circuit switch is placed at

the uppermost layer of the network, saving one transceiver per port as compared to the

number used in a fat-tree network.

At 10 Gb/s, if the links between aggregation switches are short enough to be

electrical, then transceivers may only be required between aggregation and core switches,

potentially reducing the number of transceivers by up to three per port. At 100 Gb/s,

however, while electrical interconnects may still be viable from an end host to a ToR (i.e.,

distances less than 5 meters), all connections from the ToR to the rest of the network are

likely to be optical. Hence, either architecture will require a full compliment of optical

transceivers. Moreover, to upgrade the network the operator will have to replace the

existing 10-Gb/s transceivers with new 100-Gb/s transceivers.

A circuit-enabled ToR architecture, in contrast, deploys a 100-Gb/s circuit-

switched optical network all the way down to the top-of-rack switches. As compared to

the other two architectures listed in Table 2.1, it requires only one 100-Gb/s transceiver

per upward-facing port of the ToR because optical circuit switching(OCS) does not

use transceivers. As a result, for a fully provisioned three-level fat-tree network, if the

per-port cost of the OCS used in this hybrid architecture is less than three times the cost

of a 100-Gb/s optical transceiver, then the entire hybrid network will cost less than an

equivalent 100-Gb/s packet-based network—even if the 100 Gb/s switches themselves

were free. Larger networks require even more transceivers per end host: a five-level

14

network requires eight transceivers to support each upward facing port, making the

economics of this architecture even more compelling. Over-subscribed networks will use

fewer transceivers in the core network, but the scaling trends are still applicable.

Where the example here uses 100-Gb/s circuits, the actual link rates for which

a hybrid ToR architecture will be cost competitive with a fully provisioned or over-

subscribed packet-switched network depend on market trends. Many OCS architectures

are based on MEMs devices and can easily support link rates in excess of 100 Tb/s per

port. The mirrors are typically reflective from approximately 1.3 µm to 1.6 µm, which

corresponds to a bandwidth of approximately 400 THz. For this kind of device, the cost

per optically switched bit is decreasing and is fundamentally inversely proportional to

link rate. While the costs per switched bit of optical transceivers and packet switches

are also decreasing, the rate of decrease is much slower. These trends imply the cost per

switched bit will eventually become comparable at some link rate. What is less clear is

the precise link rate when this crossover point will occur and the economic viability of a

data-center network that supported such a link rate.

2.5 Data Center Networks Can Be Bufferless

One common concern on using circuit switching in data center networks is that

circuit switches are inherently different from packet switches because they do not have

buffers. This difference simplifies the switch architecture and fundamentally enables the

switching in optics, but also enforces a network abstraction different from traditional

Ethernet packet switching.

Traditional Ethernet switches use buffers to absorb congestion, and use packet

drops to signal TCP when congestion appears so that the transport layer can converge

to transmissions at the bottleneck link rate. This mechanism is necessary for wide-area

networks, where network devices might be many hops away, connect in unknown or even

15

changing topologies, and belong to different owners who might not cooperate on network

management. With feedback from the buffer drops, TCP can converge to the bottleneck

link rate without tight synchronization among different servers in the network. In the

Internet, a common rule of thumb has been that at least a delay-bandwidth product is

necessary to support TCP effectively [24].

However, in data center networks, all the machines in the network often operate

under cooperating controllers, and tight synchronization becomes feasible. In fact, on the

contrary, using traditional congestion control mechanisms might lead to sub-optimal link

efficiency. For example, Appenzeller et al. [4] challenged the TCP buffer size assumption

for core switches, and argue that for links carrying many TCP flows, less buffering is

necessary. In the data center, Alizadeh et al. propose modifications to TCP that, along

with appropriate switch support, can reduce the amount of buffering required down to

a single packet per flow [3]. Other network technologies have also been created that

reduce in-network buffering, including Myrinet [7] and ATM [32]. Numerous proposals

for entirely bufferless “network-on-chip” (NoC) networks have been proposed [36],

including hybrid NoC networks that also leverage packet switches [25].

All these studies show that data center networks often operate better with shallow

or even zero buffers. Theoretically, if the network has a controller that can synchronize

all the transmissions on all end hosts, no buffers would be required on the switches, and

all congestion control can be enforced only by back pressure on the end hosts. Hence,

it is plausible that data center can use buffer-less circuits as its main network switching

technology, servicing most of the traffic in a TDMA fashion. In fact, work has shown that

even packet switching networks can use TDMA to provide better network performance

in data centers [39].

16

2.6 General Optical Circuit Scheduling is Hard

To tightly synchronize the traffic and deliver good network performance, circuit

switching requires a circuit scheduler. In circuit switching, each input port can connect

to only a limited number of output ports at a time. In this dissertation, I assume that the

number of output ports per input node can connect is always one. Under this limitation,

when multiple input ports want to connect to the same output port, and the circuits cannot

satisfy the demand all at the same time, the scheduler decides which port connects first.

Because the scheduler also determines the proportion of time each port is connected, a

circuit scheduler also serves the role of a congestion controller.

The problem of circuit scheduling has been studied for decades [33, 34, 35],

and circuit scheduling algorithms are even widely used inside packet switches. Many

packet switches interconnect ports with electrical crossbar chips inside them, which

are essentially equivalent to a set of circuits, but surrounded with large packet buffers

in addition. These packet switches also often use similar types of circuit scheduling

algorithms to provide non-blocking bi-sectional bandwidth at the crossbars.

A circuit scheduling problem for N end hosts can be formally described as

decomposing the traffic matrix into a linear combination of permutation matrices. A

permutation matrix is a matrix of dimension N×N where each element is either 0 or

1 and each row or column has exactly a single 1. Each permutation matrix represents

a synchronized circuit configuration where a circuit connects an input port and an

output port when the corresponding element in the matrix is 1. The coefficients in the

linear combination for each permutation represent the proportional time duration that

the configuration lasts in the schedule within a short scheduling window. The sum of

the linear combination of the matrices should be no smaller than the traffic matrix at

every element position in the matrix, which implies that the schedule can fully serve the

17

traffic demand. The sum of the coefficients represents the scheduling window. When

the scheduling window is one or more magnitudes smaller than the time granularity

that the transport layer or the application layer need to discern between normal and

error conditions, the circuit switch presents itself as a perfect crossbar that provides

non-blocking full bi-sectional bandwidth.

Scheduling a circuit switch is hence a decomposition problem that searches for a

set of permutation matrices and coefficients to cover the traffic matrix. For a switch of N

end hosts, there are N! possible permutation matrices as decomposition candidates, and

exhaustively iterating all these candidates is an inefficient approach.

Some schedulers use algorithms based on maximum weighted matching [17],

because finding a permutation matrix with the largest weight sum in a matrix is equivalent

to searching a maximum weighted matching in a bipartite graph, which has algorithms

that run in polynomial time. However, searching for the maximum weight matching does

not lead to the best schedule, because such greedy matchings tend to pick a permutation

with the maximum total weight, but the elements that this permutation covers might vary

from very big ones to very small ones, and possibly some zeros. This variation makes

assigning the coefficient—the time duration of the circuit configuration—difficult. To

pick a meaningful time duration, the coefficient must be a positive number. However,

assigning a circuit to an element that is zero in the matrix might be a waste of resources,

because it takes a precious proportion of time in the scheduling window where a circuit

could be assigned to other non-zero elements that share the same row or column with

that zero element.

To fix the drawbacks of greedy algorithms like the ones that use maximum

weighted matching, the scheduler needs to first “stuff” the traffic matrix into a doubly

stochastic matrix by increasing the elements. A doubly stochastic matrix is a matrix

which rows and columns all have the same sum. The scheduler would then use the

18

decomposition of the stuffed matrix as the resulting circuit schedule. The stuffing here

does not increase the maximum sum of each row and column, and the resulting schedule

guarantees that it will service the origin traffic matrix because the original matrix is

strictly smaller than the stuffed one, and the total time need to service the matrix remains

unchanged. Further, after stuffing the decomposing matrix into a doubly stochastic one, it

guarantees that there always exists a permutation matrix that can cover the input matrix,

where each element that the permutation covers is positive if the input matrix is non-

zero. Searching for such a permutation matrix is equivalent to finding a (non-weighted)

perfect matching in a bipartite graph, where each edge in the graph corresponds to a

non-zero element in the matrix. Existing algorithms can solve such perfect matching by

searching augmented paths iterating over the input ports one by one [22]. After picking a

permutation matrix, the scheduler will choose the minimum element among the ones that

this permutation matrix covers in the input matrix and use its value as the coefficient for

this circuit configuration. The served demand by the configuration can now be removed

from the input matrix, where the input matrix remains a doubly stochastic matrix but

with smaller sums for each row and column. This decomposition procedure repeats until

the input matrix becomes zero. For each iteration in this procedure, at least one element

in the matrix (the minimum one that the permutation covers) will fall to zero, and hence

the decomposition will complete in O(N2) iterations for certain as it will clear all the

elements. This algorithm is the standard Birkhoff-von-Neumann (BvN) decomposition

algorithm [6], which generates perfect circuit configurations in polynomial time.

When decomposing a traffic matrix for a circuit switch or a packet switch crossbar

in practice, a polynomial time algorithm often still takes too long to complete. Instead,

faster approximating algorithms like iSLIP [33] are used. As a trade-off, these approxi-

mating algorithms require the crossbar to transmit at a speed often twice as fast as the

link rate at the input and output ports to provide full bi-sectional bandwidth. In other

19

words, they require a crossbar that has at least 2× speedup.

Scheduling for optical circuit switches is different from traditional circuit schedul-

ing for electrical packet switches in two aspects. First, optical signals are hard to buffer

and also hard to run with speed-ups on the circuits. This restriction means that approxi-

mating algorithms are not suitable. Second, an optical circuit takes a non-trivial amount

of time to reconfigure from one port mapping to another. Although the reconfiguration

time is short enough to TDMA several transport-layer flows, frequent circuit reconfigura-

tion can still lead to serious inefficiency on link utilization. This limitation means that the

decomposition coefficient for each permutation matrix needs to be as large as possible, or

in other words, the reconfigurations in a particular scheduling window should be as few

as possible. This additional optimization goal further complicates the algorithm design

where traditional BvN no longer generates the best solution. In fact, with O(N2) config-

urations, the link efficiency that the schedule provides is often unacceptable because a

scheduling window is often not long enough even for merely reconfiguring the circuits

for O(N2) times.

For optical circuit switches, the scheduling problem is hard in general, yet optical

circuit switching cannot provide an efficient network without a good circuit schedule.

Fortunately, in data centers, many traffic demands have common properties that favor

circuit switching, and hence make it possible to schedule such traffic demands with

circuits efficiently.

2.7 Data Center Traffic is Skewed and Bursty

Date center traffic often has characteristics that favor optical circuit switching.

Studies of data-center traffic show that the traffic demand inside a data center is frequently

concentrated, with a large fraction of the traffic at each switch port of a top-of-rack switch

destined to a small number of output ports [27]. Such locality is not surprising, as

20

Rank-Ordered Connection Number
n21 n

Circuit
tra�c

Tr
a�

c
pe

r C
on

ne
ct

io
n

Packet
tra�c

90%

10%

Figure 2.1. Rank-ordered traffic for each of the n2 elements of a demand matrix, for
which most of the traffic (e.g. 90%) is carried in a few (O(n)) flows.

application programmers and workload managers frequently use knowledge about the

location of end hosts to coordinate workloads and minimize inter-rack traffic. Based

on these empirical observations, researchers proposed hybrid architectures that classify

the traffic into big flows that are long-lived and bandwidth-hungry, and small flows that

are short-lived and often latency-sensitive. This observation can be expressed in terms

of the n2 rank-ordered elements of the demand matrix for a network that connects n

nodes. Figure 2.1 shows an example where 90% of the inter-ToR traffic is carried by

only O(n) flows. In such settings, the demand matrix is frequently both sparse and

stable [13, 21, 26], and this kind of traffic demand is generally suitable for a large

port-count optical circuit switch.

While rack-level coordination can lead to bursty traffic at the upward looking

ports of a top-of-rack switches, this dissertation carries this assumption one step further.

Where previous network designs that use circuit switching focus on the core of the

21

network, the design in this dissertation critically depends upon individual hosts being

able to fill circuits assigned to them with data, which in turn depends on hosts transmitting

groups of packets to the same destination ToR at fine time scales.

Previous work by Rishi Kapoor, et al. [28] verified this assumption. It measured

individual flows, at microsecond granularity, emanating from a single host under a variety

of workloads. It showed that host mechanisms, such as TCP segmentation offloading in

the NIC and generalized segmentation offloading in the operating system, cause traffic to

frequently leave the NIC in bursts of 10s to 100s of microseconds. In Section 3.3.1, I

expand upon this analysis to show that circuit switching these flows can further enhance

this behavior while not disturbing the transport protocol. For regimes in which circuit

switching does not affect the transport performance of an end host, I say that its flows are

“flying under the radar”.

Because data center traffic is bursty and skewed at the ToR level, each row or

column in the demand traffic would only has O(1) number of big elements. If the circuit

switch only service these large elements, the circuit scheduling problem is significantly

simplified, can be solved in much shorter time.

Where the circuits cannot efficiently service rest of the elements in the traffic

matrix that are small, these small elements fit well into a lower-provisioned packet switch

which already exists in many data centers. And this service division of serving the traffic

matrix leads to the hybrid network design that this dissertation proposes.

2.8 Hybrid Circuit Switches for Data Centers

In summary, data center networks benefit from using optical circuit switches

from cost savings on the transceivers. Using circuit switching also matches the shallow

buffer requirement in data centers networks. Observing that much data center traffic

is skewed and bursty, I propose a hybrid switching architecture in this dissertation. It

22

aims to service all the elements in the traffic matrix, providing almost non-blocking full

bi-sectional bandwidth. It schedules the big elements with the circuit switch. Because

in data center scenarios, these elements often form a sparse traffic matrix, the circuit

matrix now can be scheduled and serviced by the circuit switch efficiently with high link

utilization. The remained traffic can be serviced by the lower-provisioned packet switch

with low latencies. By serving the big flows on the circuit links and the small flows on

the packet switches, the overall hybrid architecture presents itself as a high-speed packet

switching network for data centers, with performance comparable to a full bi-sectional

bandwidth electrical packet switching network, but with much lower costs.

This chapter, in part, is a reprint of the material as it appears in the USENIX

Symposium on Networked Systems Design and Implementation 2014. Liu, He; Lu, Feng;

Forencich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

Snoeren, Alex C.; Porter, George. The dissertation author was the primary investigator

and author of this paper.

This chapter, in part, has been submitted for publication of the material as it may

appear in the the conference of the ACM Special Interest Group on Data Communication

2015. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen; Savage,

Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; Porter, George. The

dissertation author was the primary investigator and author of this material.

Chapter 3

REACToR: The Controller

This chapter presents a hybrid network architecture, REACToR. Its design con-

sists of a 100-Gb/s optical circuit switch (OCS) network deployed alongsied a pre-

existing lower-provisioned 10-Gb/s electrical packet switch (EPS) network, and provides

100-Gb/s packet-switch-like performance at substantially lower cost than an entirely

packet-switched network.

REACToR’s design is based on two key insights. The first is that it is impractical

to buffer incoming traffic bursts from each end host within the ToR’s switch memory. For

a traditional in-switch time-division, multiple-access (TMDA) queueing discipline, this

architecture would require a dedicated input buffer for each potential circuit destination.

Given the unpredictable nature of the end-host network stack [28], these buffers would

likely need to be quite large.

Instead, REACToR buffers bursts of packets in low-cost end-host DRAM memory

until a circuit is provisioned, at which point the control plane explicitly requests the

appropriate burst from each end host using a synchronous signaling protocol that ensures

that the instantaneous offered load matches the current switch configuration. Because

each REACToR is dual-homed to an EPS, the control plane can simultaneously schedule

the latency-sensitive traffic over the packet switch. The packet switch can also service

unexpected demand due to errors in demand estimation or circuit scheduling.

23

24

The second insight is that if circuit switching is sufficiently fast, then delays due

using flow-level circuit-switched TDMA at the end-host network stack will not degrade

the performance of higher-level packet-based protocols; in a sense the circuit switch will

“fly under the radar” of these end-host transport protocols. As technology trends enable

faster OCS reconfiguration times, this hybrid architecture blurs the distinction between

packets and circuits. By combining the strengths of each switching technology, a hybrid

network can deliver higher performance at lower cost than either technology alone, even

at the level of a ToR switch.

We evaluate our design for a 100/10-Gb/s OCS/EPS hybrid network using a

scaled-down 10/1-Gb/s hardware prototype that supports eight end hosts. The prototype

consists of two FPGA-based REACToRs with four downward-facing 10-Gb/s ports

each. Both REACToRs connect to the Mordia [40] microsecond OCS and a commodity

electrical packet switch. The circuit switch supports a line rate of 10 Gb/s while the

packet switch is rate limited to 1 Gb/s to enforce a 10:1 speed ratio. End hosts connect to

our prototype using commodity Intel 10-Gb/s Ethernet NICs that we synchronize using

standard 802.1Qbb PFC signaling.

Our experiments show that our REACToR prototype can provide packet-switch-

like performance by delivering efficient link utilization while reacting to changes in

traffic demand, and that its control plane is sufficiently fast that changes in circuit

assignment and schedule can be made without disrupting higher-level transport protocols

like TCP. Using simulation of more hosts, we also illustrate the large benefits that a small

underprovisioned packet switch provides to a hybrid ToR relative to a pure circuit ToR.

We conclude that REACToR can service published data-center demands with available

technology, and can easily scale up to make effective use of next-generation optical

switches and 100-Gb/s hosts by reusing an existing 10-Gb/s electrical packet-switched

network fabric.

25

10#Gb/s#
Packet.switched#
Network#(EPS)#

100#Gb/s#
Circuit.switched#
Network#(OCS)#

RE
AC

To
R#

up ≤ n uc ≤ n !!!!!op$cal!
transceivers!
uc

qP! q0! q1! qN41!...!
TDMA!link!arbiter!

IP!Tables!

qP! q0! q1! qN41!...!
TDMA!link!arbiter!

IP!Tables!

...!

C!C! C! C!

100!Gb/s! 100!Gb/s!

Figure 3.1. 100-Gb/s hosts connect to REACToRs, which are in turn dual-homed to a
10-Gb/s packet-switched network and a 100-Gb/s circuit-switched optical network.

3.1 Design

A REACToR-enabled data center consists of N servers grouped into R racks, each

consisting of n nodes. We assume that a preexisting 10-Gb/s packet-switched network

is already deployed within the data center. Overlaid on top of this packet-switched

network is an additional 100-Gb/s circuit-switched network. At each rack is a hybrid

ToR called a REACToR, which is connected to the packet-switched network with up ≤ n

uplinks and is connected to the circuit-switched network with a separate set of uc ≤ n

uplinks. The packet-switched network supports R×up ports, and the circuit-switched

26

network supports R×uc ports. Each REACToR has n downward-facing 100-Gb/s ports

to its n local servers. In this dissertation, we consider the fully provisioned case where

up = uc = n; however, additional cost savings are possible when either or both of up and

uc are less than n. Our architecture is agnostic to the particular technology used to build

the circuit-switched fabric, but, given technology trends, we presume it is optical.

Referring to Figure 3.1, an (n,up,uc)-port REACToR consists of n downward-

facing ports connected to servers at 100 Gb/s, up = n uplinks connected to the packet-

switched network at 10 Gb/s, and uc = n uplinks connected to the 100-Gb/s circuit-

switched network. At each of the n server-facing input ports, there is a classifier (labeled

‘C’ in the figure) which directs incoming packets to one of three destinations: to packet

uplinks, to circuit uplinks, or through an interconnect fabric to downward-facing ports to

which the other rack-local servers are attached. There is no buffering on the path to the

packet uplinks, as buffering is provided within the packet switches themselves. There

is also no buffering on the path to the circuit uplinks; instead, packets are buffered in

the end-host where they originate. When a circuit is established from the REACToR

to a given destination, the REACToR explicitly pulls the appropriate packets from the

attached end-host and forwards them to the destination.

REACToR relies upon a control protocol to interact with each of its n local

end-hosts to: (1) direct the end host to start or stop draining traffic from its output queues

(which we refer to as unpausing or pausing the queue, respectfully), (2) set per-queue rate

limits, (3) provide circuit schedules to the end-host, and (4) retrieve demand estimates for

use in computing future circuit schedules. We first motivate the need for this functionality

by describing the various other aspects of REACToR’s design before detailing the host

control protocol in Section 3.1.4.

27

3.1.1 End-host buffering

Each end-host buffers packets destined to the REACToR in its local memory,

which is organized into traffic classes, one per destination ToR, with an additional class

for packets specifically destined for the EPS (e.g., latency-sensitive requests). Each

traffic class has its own dedicated output queue (i.e., {Q0, Q1, ..., QN−1}), with an

additional queue for the EPS class, QP, as shown in Figure 3.1. At any moment in

time, the REACToR can ask an end host to send packets from at most two classes: one

forwarded at line rate to an OCS uplink (or local downlink port), and another forwarded

to an EPS uplink. This latter class of traffic must be rate limited at the source NIC to

conform to the link speed of the EPS to prevent overdriving the EPS. In the reverse

direction, the EPS may emit packets into the REACToR at its full rate to a particular

downward-facing port. Because that downward-facing port could potentially be shared by

incoming line-rate circuit traffic heading to the same destination, REACToR must further

ensure that the circuit traffic is sufficiently rate-limited so that there is enough excess

capacity to multiplex both flows at the destination. Hence, end hosts will be directed by

REACToR to similarly rate-limit traffic classes destined to the OCS at the source NIC,

but at much higher rates. Further details on rate limiting are provided in Section 3.1.3.

Today, end-host NICs support modest amounts of buffering, on the order of a few

megabytes. However, it is not organized in a way that can be directly used to support

circuits. NICs partition their buffers into a small set of 8 to 64 transmit queues, which the

OS uses to batch and store packets waiting to be sent. The scheduling policy for these

queues is typically built into the NIC (e.g., round robin), so the actual transmit time of

individual packets is outside the control of the OS.

To achieve high circuit utilization in REACToR, the NIC needs the ability to

send data for a particular circuit destination to the ToR as soon as a circuit becomes

28

established, and to fill that circuit continuously until it is torn down. At any one time,

each circuit uplink within a REACToR is exclusive to a particular source port (attached

end host), so efficiency degrades any time that source has no data to send. Thus, packets

headed to the same circuit destination (i.e., remote host) should be grouped together

within a host’s memory, so that when a circuit to that destination becomes available, that

group of packets can be sent from the NIC to the REACToR at line rate.

Within each host, we define a traffic class per destination host, and task the OS

with classifying outgoing packets into the appropriate class based on, e.g., the destination

IP address. REACToR then uses the host control protocol to pause and unpause end-host

queues. In this model, the role of the OS and of the NIC changes somewhat: rather than

the OS “pushing” packets to the NIC buffers based on queuing policies in the host, the

NIC is responsible for “pulling” packets from the host memory into the NIC buffers

according to the circuit schedule just in time to transmit them to the connected circuit.

(We note that the NIC design advocated by Radhakrishnan et al. [41] would be especially

well suited for this model.)

Demand estimation. Over a short time scale (i.e., 100s of µs, depending on the

size of the NIC buffers), the occupancy of these traffic classes defines the imminent

end-host demand because the packets in these queues have already been committed to the

network by the OS. It is possible to query the OS, the application, or even a cluster-wide

job scheduler to form longer-term demand estimates. For example, Wang et al. [46]

use TCP send buffer sizes as estimates of future demand. Our prototype uses a demand

oracle. In any case, the circuit scheduler uses these demand estimates to determine a set

of future OCS circuit configurations.

29

3.1.2 Circuit scheduling

To make effective use of the capacity of the circuit switch, REACToR must

determine an appropriate schedule of circuit switch configurations to service the estimated

demand over an accumulation period W . This task is the responsibility of a logically

centralized, but potentially physically distributed, circuit scheduling service, which

implements a hybrid circuit scheduling algorithm. This service collects estimates of

network-wide demand, in the form of an N ×N matrix D. The service computes a

schedule, Pk, of m circuit switch configurations, which are permutation matrices and their

corresponding duratinos φk. A permutation matrix is a matrix of 0s and 1s in which each

row and column has and only has a single 1.

The number m of configurations that comprise the schedule is constrained because

each circuit configuration requires a finite reconfiguration time δ , during which time no

data can be forwarded over the circuit switch. When δ is large with respect to W , it is

more efficient to use fewer configurations. When δ is small with respect to W , more

configurations can be used. Including this reconfiguration delay, the duration of the

schedule is constrained by the length of the accumulation period so that ∑
m
k=1 φk +δm≤

W . The goal of the scheduling algorithm is to maximize min(D,∑m
k=1 Pkφk) subject to

these constraints.

Obviously, if the switch introduces a reconfiguration delay, then it is impossible

to service fully saturated demand at line rate. Existing research in constrained scheduling

has focused on switches that run faster than the link rate, with the ratio of the switch

rate to the link rate called the speedup factor. These algorithms [15, 30, 48] produce a

variable-length schedule which is dependent on the actual reconfiguration delay.

Hybrid networks in general, and REACToR in particular, do not use a speedup

factor. Instead, REACToR uses the lower-speed packet switch as a way to make up

30

for the reconfiguration delay and any scheduling inefficiency. This “back channel” is a

key distinction between REACToR and traditional blocking circuit scheduling because

REACToR continues to service a subset of flows over the EPS when circuits are not

available, thereby increasing support for latency sensitive workloads.

We will further discuss the selection and evaluation of an circuit switch algorithm

in Chapter 4; in this chapter we compute the schedule offline using a variant of existing

constrained switching algorithms based on a predetermined demand matrix D. Any

schedule computed for use in REACToR, however, is subject to a number of constraints.

Class constraints. To ensure the offered load can be effectively serviced by

the ToR, REACToR imposes a number of constraints on the set of queues that can be

unpaused at any particular time.

First, the dedicated EPS queue (QP) is always unpaused but rate-limited to at

most 10 Gb/s, providing the host with the ability to send latency-sensitive traffic directly

to the EPS at any point in time.

Second, at most one additional queue can be unpaused at any one time for

transmission at (near) link rate (i.e., 100 Gb/s). When such circuit-bound (or rack-local)

traffic arrives at an input classifier in the REACToR, it is directly forwarded to the

appropriate circuit uplink (or downward-facing port) without any intermediate buffering.

The third constraint is that, if a queue is unpaused for link-rate transmission in

the current scheduling period, then it should never be unpaused for transmission to the

EPS. This constraint serves two purposes: it prevents the EPS from being burdened with

high-bandwidth traffic better served by circuits, and it gives that traffic class additional

time to accumulate demand so that the circuits are highly utilized.

Fourth, any traffic class which is not assigned to a circuit (or downward port)

during a scheduling period is instead remapped to the EPS, meaning that any packets in

that class’s queue are routed to the EPS uplink. Finally, all of the queues corresponding to

31

EPS-bound traffic (i.e., both the dedicated EPS queue and and any classes not scheduled

for a circuit in this period) must be rate limited such that the sum of their limits is less

than or equal to the EPS link rate (e.g., 10 Gb/s).

3.1.3 End-host rate limiting

At any given time, each of the REACToR’s downward-facing server ports can

transmit data from two sources: a circuit from a single source established through the

OCS (or rack-local connection) fabric, and traffic from any number of sources forwarded

through the EPS. At each downward-facing port there is a multiplexer which performs

this mixing. When the sum of bandwidth from the EPS (BEPS) and OCS (BOCS) exceeds

the rate of the REACToR port (BToR), then without intervention, (BEPS +BOCS)−BToR

traffic would be dropped. To prevent such drops, and to ensure high overall utilization,

we rely on end-host rate limiting.

The first way that we use end-host rate limiting is to ensure that in steady state,

BEPS +BOCS ≤ BTOR. Since the OCS is bufferless, the multiplexer gives priority to packets

arriving from the OCS because otherwise they would have to be dropped. Assuming

a REACToR with a 100-Gb/s OCS and 10-Gb/s EPS as an example, each end host

would rate limit its circuit-bound traffic in the range of 90–100% of the link capacity to

leave sufficient head room for the EPS traffic, based on the estimate of EPS demand in

the current schedule. Each time that a set of configurations for a scheduling period is

computed, a rate limit is also computed per configuration, reflecting the estimated load

from the EPS. Note that this estimate need not be perfect, and in fact we expect the EPS

to absorb inaccuracies in scheduling, demand estimation, and rate limiting. For each

scheduling interval, the associated rate limits are computed and sent to each end-host via

the host control protocol.

The circuit rate limit also serves a second purpose, which is providing statistical

32

(a)

EPSEPS EPS$

Burst$
toA

Burst$
toC

Burst$
toB

100G$

10G$
W
as
te
$

W
as
te
$

W
as
te
$

φ{k−1} φk φ{k+1}

(b)

EPS$

BursttoA$
(90%$Rate)$

BursttoC$
(90%$Rate)$

BursttoB$
(90%$Rate)$

100G$

90G$

φ{k−1} φk φ{k+1}

Figure 3.2. Rate limiting prevents bursts from the OCS from starving the EPS, which
would otherwise be unable to make full use of each circuit-switch configuration interval
φk. In both cases, the circuit-switched traffic achieves 90 Gb/s during each interval.

(a) When a circuit-switch configuration interval φk begins, queued traffic forms bursts
which saturate the link during the first part of the configuration, leaving capacity for
EPS traffic at the end of φk; since the EPS runs at a fraction of the line rate, it cannot
efficiently use the remaining time. (b) By rate limiting circuit traffic, the EPS can spread
its traffic out over the entire configuration interval.

33

multiplexing at the downward-facing REACToR port. Underpinning the design of

REACToR is the assumption that on short time scales, traffic emanating to a single

destination is bursty. Each burst by definition consists of a number of packets sent

back-to-back. From the point of view of the REACToR port multiplexer, this means

that, absent other controls, during the first portion of a given circuit-switch configuration

interval φk, the entire port’s bandwidth would be dedicated to servicing a single burst

of traffic from the OCS. Thus, any packets originating from the EPS would be delayed

until the end of φk. Figure 3.2 (a) shows a pictorial representation of this behavior. The

challenge that arises is that the line rate of the EPS is presumed to be lower than the

REACToR port speed and the OCS. Hence, the open region at the end of φk can only be

filled with packets at the rate of the EPS (e.g., 10 Gb/s) instead of the OCS (100 Gb/s).

Thus, for this example, the region at the end of φk only gets 10% utilized since the EPS

can only drive 10% of the outgoing port bandwidth.

Instead, REACToR seeks to ensure that the circuit traffic is spread out across φk by

limiting it to less than full line rate (e.g., 90 Gb/s of a 100-Gb/s link). Rate limiting over

time allows the EPS-serviced traffic to be multiplexed on REACToR’s downward-facing

ports at a uniform rate across all configuration intervals φk, enabling the entire interval to

be utilized by both circuit traffic and packet traffic. By setting circuit rate limits in the

end host, as described above, the traffic headed to the circuit is paced to the appropriate

rate. Figure 3.2 (b) shows the resulting treatment of circuit and packet data within that

same configuration interval φk.

3.1.4 REACToR host control protocol

An instance of the REACToR host control protocol runs between each end-host

and its REACToR switch. REACToR uses the protocol to retrieve demand estimates

collected by end-hosts, to set per-queue rate limits, as described above, and to convey

34

impending schedules to the end host from the circuit scheduler. These functions are

relatively straight forward. In this section, we examine the fourth use of the host control

protocol: managing end-host traffic classes and buffering. The key to achieving efficient

use of the hybrid network is being able to drain the appropriate classes with fine-grained

precision at the right times. We now describe the host control protocol that achieves this

precision.

Overview: To ensure reliable transmission, we cannot reconfigure the OCS until

all incoming circuit traffic has ceased, since the OCS is unable to carry traffic during the

time δ when it is being reconfigured. While classifiers on each REACToR input port can

shunt all traffic to the EPS nearly instantaneously, in general we would like to ensure that

almost all circuit-bound traffic has been paused before reconfiguring the OCS. Otherwise,

a massive queue would build up at the EPS at the end of each schedule. To avoid this

buildup, we leverage the 802.1Qbb Priority Flow Control (PFC) protocol to pause traffic

at the end host. Each traffic class in the end host corresponds to a PFC class.1 At the

end of each schedule, for each attached host, the REACToR first sends a PFC frame to

pause the traffic class destined for the current schedule’s circuit (if any). Note that PFC

frames are selective, so traffic destined to the EPS will continue to flow while the OCS is

being reconfigured. Once inbound circuit traffic has ceased, the OCS can be reconfigured.

After reconfiguration, the traffic class corresponding to the next schedule’s circuit can be

enabled by a PFC unpause frame.

Performance: The overall speed of the control plane is bounded by the speed at

which REACToR can pause and unpause traffic classes buffered at the end hosts. Because

the PFC frame must be both received and processed at the NIC before traffic stops, there

will be some delay between when the controller wants to pause traffic and when the traffic

1Although the current PFC specification is limited to eight frame priority levels, it is possible to reuse
classes across schedule periods by recoloring.

35

finally stops arriving at the incoming ports at the REACToR. To quantify this delay, we

extended the classifiers on our prototype to timestamp all incoming packets and mirror

these timestamped packets to a collection host. We then measured the time from when

the classifier sends a PFC frame to a host until it stops receiving packets from that host.

We measured the minimum (maximum) delay on an Intel 82599-based 10 Gb/s

NIC as 1,014 (2,188) ns, with the actual delay varying as a function of PFC offset, mean-

ing that if the PFC frame arrives more than 185.6 ns after the start of the current frame,

the NIC will generate an additional frame before pausing, likely due to pipelining within

the NIC implementation. Once the OCS has established a circuit and is ready to receive

traffic, the REACToR needs to restart traffic for the newly connected destination by

sending another PFC frame. The measured ‘on’ delay (i.e., from when the configuration

is started by the transmission of a PFC frame unpausing the traffic) ranges between

1.2 µs and 1.3 µs. From the ‘off’ delay measurement, it is clear that we can hide the first

microsecond of delay by sending the PFC frame before we actually want the traffic to

stop, but it may take an additional 1.3 µs for all ports to cease sending. There is one

additional source of delay: a port may be busy sending an outgoing packet at the moment

the classifier wishes to send the PFC frame. This delay is bounded by the 1500-byte

MTU in our prototype, leading to a worst-case combined delay of approximately 2.5 µs,

which is the lower bound of the speed of the control plane achievable in REACToR with

10-Gb/s end hosts, a 1500-byte MTU size, and the 802.1Qbb implementation on our

NIC.

3.2 Implementation

To evaluate our design, we have implemented two prototype 4-port 10-Gb/s RE-

ACToRs (shown in Figure 3.3) using two FGPAs, a Fulcrum Monaco 10-Gb/s electrical

packet switch, and the Mordia microsecond OCS [40]. Mordia is 24-port reconfigurable

36

H

REACToR
Virtex 6 FPGA

REACToR
Virtex 6 FPGA

Circuit Switch
Mordia OCS [SIGCOMM'13]

EPS
Fulcrum Monaco 10G Switch

Control
Computer

Demand
Information

Schedule

Circuit
Control

Schedule

Control Path

10G Data Path

1G Data Path

H H H H H H H

H End Host

Transceiver

Figure 3.3. The prototype REACToR network.

OCS built from six 4-port “binary MEMs” wavelength-selective switches, with an av-

erage reconfiguration delay of δ = 12µs, which includes the physical switching time of

the MEMs devices and the time to reinitialize the attached 10-Gb/s transceivers. Thus,

our REACToR prototype supports the same 10:1 bandwidth ratio described earlier, but at

10 Gb/s (OCS) and 1 Gb/s (EPS) rather than 100/10 Gb/s.

Each REACToR is implemented with a HiTech Global HTG-V6HXT-100GIG-

565 FPGA development board as shown in Figure 3.4. Each FPGA board supports

24 ports of 10-Gb/s I/O. The circuit scheduling service runs as a user-level process

on a dedicated Linux-based control server, and transmits schedules to the FPGA via a

dedicated 10-Gb/s Ethernet connection. In our implementation, the end hosts are servers

equipped with Intel 82599-based NICs. The end hosts classify traffic according to the

destination using the Linux tc facility. The classifier on the FPGA selectively enables

or disables packets to a given destination using the IEEE 802.1Qbb priority-based flow

control standard, which supports eight flow classes. We use seven of these classes to

37

Figure 3.4. A HiTech Global HTG-V6HXT-100GIG-565 FPGA development board
used in REACToR

correspond to the n circuit destinations reachable from a REACToR, and the eighth is

reserved for the EPS-dedicated class.

At each switch reconfiguration, the controller on the FPGA updates the OCS

and enables the corresponding end-host traffic classes using 802.1Qbb PFC frames. The

controller also configures the classifiers so that they forward the appropriate line-rate

flow to the circuit uplink, and forward the remaining traffic to the EPS.

Circuit switch characterization: The average reconfiguration delay for the

Mordia switch is approximately 12 µs, with a maximum observed delay of 14.84 µs (as

shown in Figure 3.5). The transceivers we use vary in their “lock” time, necessitating

setting a more conservative reconfiguration delay. This variance is an engineering artifact

of our hardware and is not fundamental; the IEEE 802.3av (10G-EPON) specification,

for instance, calls for a 400-ns lock time. Except as noted, in the experiments that follow,

we configure REACToR to assume a 30-µs reconfiguration time which, contained within

38

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

End−to−End Flow Switch Time (microsecond)

C
D

F
 o

f L
at

en
cy

 D
is

tr
ib

ut
io

n

●

14.84us

Figure 3.5. Observed end-to-end circuit switch reconfiguration delay δ .

at least a 160-µs configuration period, delivers at least 81% link efficiency.

REACToR host control protocol: To tightly time synchronize the attached

hosts, REACToR sends the schedule to each attached host using two UDP packets. The

first packet contains the impending schedule for the upcoming 3-ms period, whereas the

second packet indicates the start of the 3-ms time period, serving as a precise periodic

heartbeat. End hosts receive these packets in a kernel module via the netpoll kernel

APIs, which reduces the delay in acting on them to less than 15 µs.

3.3 Evaluation

In this section, we evaluate the performance of our REACToR prototype imple-

mentation. We first show that, with buffering and scheduling packets at end-host NICs,

circuit-switching does not negatively impact TCP throughput. Second, we show that

the REACToR can dynamically update and switch schedules of many flows without

impacting throughput. Third, we show that REACToR can serve a time-varying workload

39

that consists of multiple high- and low-bandwidth flows, promoting flows as appropriate

from the packet-switched fabric to the circuit-switched fabric. Finally, we use simulation

to illustrate the large benefits that a small underprovisioned packet switch provides to a

hybrid ToR.

To generate arbitrary traffic patterns, we implemented a Linux kernel module

based on pktget [37] that can send MTU-sized UDP packets at arbitrary rates up to

line rate. When the module is sending, it runs on a dedicated core and each packet it

sends has a sequence number. At the same time, the module also serves as a traffic sink

that receives UDP traffic via the netpoll kernel interface, and records the sequence

number and source address of packets. For packet timing measurements, we configured

the FPGA to generate a record for each packet that captures the source, destination, and

a timestamp with 6.4-ns precision. The prototype sends these records out-of-band to

a collection host using one of the 10 Gb/s ports of the FPGA, which we then process

offline.

3.3.1 TCP under TDMA scheduling

In Section 2.7, we described how application flows exhibit intrinsic short-term

correlated bursts as a consequence of the NIC trying to efficiently use the link. We

therefore consider how flows behave in a hybrid fabric where a circuit scheduler pauses

flows at the host while they wait for an assigned circuit and unpauses them when the

circuit is established. While its flow is paused, an application may generate additional

packets, increasing the size of its burst when its flow is eventually unpaused and thereby

more efficiently use its circuit. However, the increased latency and latency variation

induced by pausing and unpausing flows may detrimentally impact the transport protocol

(e.g., TCP) or the application itself.

To study the impact of circuit scheduling on TCP throughput, we generate stride

40

0 500 1000 1500 2000 2500 3000
Reconfiguration Delay (us)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t

Pause Data & ACKs
Pause-Data
Pause-ACKs (Small Flow)
Pause-ACKs (Large Flow)

Figure 3.6. Effect of pausing/unpausing data/ACK packets on TCP throughput.

Time (us)

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Data

Data

Data

Data

Data

Data

Data

Host 6 → 7

Host 5 → 7

Host 4 → 7

Host 3 → 7

Host 2 → 7

Host 1 → 7

Host 0 → 7

Apply Apply Apply

0 1500 3000

Reconfig Reconfig Reconfig

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

Time (s)

T
hr

ou
gh

pu
t (

G
bp

s) Host 0 → 7
Host 1 → 7
Host 2 → 7
Host 3 → 7
Host 4 → 7
Host 5 → 7
Host 6 → 7

Figure 3.7. All-to-all workload with circuit configurations changing every scheduling
period.

41

workloads where a single host sends to another host, and at the same time sinks a

TCP flow from a third host. First we consider the case where we pause and unpause

a bi-directional circuit, i.e., pause both data and TCP ACKs at the same time. Next

we consider the case where we pause the data in the flow, but allow ACKs to return

unimpeded (e.g., via the EPS). Finally, we consider the case where we pause the ACKs,

but enable data packets to transmit unimpeded.

Figure 3.6 shows the resulting normalized throughput when varying the reconfig-

uration delay δ for a stride workload with eight hosts. In the first case, the normalized

throughput of uni-directional and bi-directional circuits is close to ideal, showing that

pausing data packets on the end hosts does not affect throughput for pause lengths

considered by REACToR. When pausing only the ACKs, we find that there are two

regimes to consider. During slow start (‘Small Flow’), pausing ACKs decreases the

overall throughput of the flow—up to 30% for 3-ms delays. For shorter delays (e.g.,

≤1 ms) there is no detectable effect for pausing ACKs. Once the flow leaves slow start

(‘Large Flow’), there is no effect on throughput regardless of the reconfiguration delay.

These experiments consider the effect of circuit scheduling on TCP traffic in the

absence of packet loss. In practice, packets may be lost for a variety of reasons. We

repeated the experiments above where each end host drops packets uniformly at random

with a configurable drop probability. While TCP throughput suffers as expected with

increasing drop rates, the difference in performance with and without circuit scheduling

(e.g., with and without issuing PFC pause frames) is insignificant for steady state loss

rates up to 1%.

3.3.2 Switching “under the radar”

Next we evaluate the speed and flexibility with which REACToR can be recon-

figured. We first run an all-to-all workload on eight hosts, where every host streams

42

a TCP flow to each of the other seven hosts using all available bandwidth. To serve

this workload, we load REACToR with a schedule of seven TDMA periods that fairly

shares the links among all the flows. Each schedule period is 1.5 ms, within which each

host sends and receives from each other host for 214.3 µs (including a 30-µs circuit

reconfiguration delay) in each circuit configuration. We schedule all data packets via the

circuit switch, and all TCP ACKs via the packet switch. We could use the same schedule

for every period, but to further exercise our prototype we change the schedule so that

hosts receive circuits in different permutations in each period.

Figure 3.7 shows three seconds of an all-to-all workload where flows start at the

same time on the hosts. The bottom part shows the achieved throughput as reported by

one of the hosts: the flows from the other seven hosts evenly split the available bandwidth.

Total TCP goodput received is 8.1 Gb/s, the maximum given the 86% duty cycle resulting

from the 30-µs reconfiguration delay in a 214.3-µs circuit.

At the application level, the achieved TCP goodput maximizes network capacity

and is stable over time. However, if we zoom in and look at the packet traces, as shown

in the top part of the figure, we can see the fine-grained behavior of scheduling the flows

on circuits. A control packet triggers a new schedule each period, which the controller

sends to the REACToR during the previous period (at the time marked ‘Reconfig’) and

the switch loads just before the new period starts (‘Apply’). The schedule partitions each

period into seven circuit configurations, one for each of the seven hosts sending to the

host we are observing.

At time offset zero, for instance, host 0 has the first configuration in the schedule.

Its data packets arrive over the circuit it receives, and no other host can send data packets

through the circuit switch to host 7. The second configuration schedules host 3, and so on.

ACKs received at host 7 use the packet switch, and hence can overlap circuits scheduled

for other hosts. (The flow assignments are asymmetric; when host 0 is sending to host 7

43

Time (us)

Host 6

Host 5

Host 4

Host 3

Host 2

Host 1

Rx from Host 0

PFC

Reconfig

Host 6

0 1500 3000

Figure 3.8. Changing the number and duration of configurations in scheduling periods.

at time zero, host 7 is sending to host 6 and receiving ACKs from it.)

This all-to-all workload does not vary demand over time. Given the frequency

with which we can reconfigure the circuit switch, we can also serve time-varying work-

loads by serving different workload demands under different scheduling times with

different numbers of configurations and circuit assignments.

We use another experiment to demonstrate this flexibility. We divide the eight

hosts into two groups: GA consists of hosts 0–3, and GB hosts 4–7. We then generate

traffic among the hosts using two workloads. The first is a group-internal all-to-all, where

each host streams UDP packets to the other three hosts in its group at the maximum

possible rate. To serve this workload, REACToR uses a schedule that has three configu-

rations in a scheduling period. The period lasts 1,500 µs, and each configuration lasts

500 µs (including a 30-µs reconfiguration delay). The second is a cross-talking all-to-all

workload where each host in GA streams to all the other four hosts in GB, and vice versa.

For this workload, REACToR uses schedules with four configurations. These scheduling

44

periods also last 1,500 µs, but each configuration lasts 375 µs (again including a 30-µs

reconfiguration delay).

In the experiment, we change from the group-internal to the cross-talk workloads

midway through, loading the REACToR with correspondingly different schedules. Fig-

ure 3.8 shows the incoming packets to host 7 around the workload transition time. We

controlled the experiment so that the workload changes at an inconvenient, but more

realistic, time for REACToR: during a scheduling period, at time 750 µs on the graph.

REACToR’s schedules commit the switch based on predicted demand, and workloads

are apt to change their demand independent of when REACToR can conveniently accom-

modate them. At this workload transition, REACToR is halfway through its scheduling

period and packets already queued at the first three hosts continue to arrive via circuits.

Overlapping these flows, the other four hosts start sending packets to host 7. These hosts

do not have circuits, so the packets arrive via the EPS at a much lower rate.

At the end of its committed scheduling period (time 1,500 µs), REACToR can

then react to the workload transition and schedule circuit configurations that match the

workload. At this time, host 7 changes from receiving packets in 500-µs configurations,

scheduled round-robin from hosts 4–6, to receiving packets in 375-µs configurations

from hosts 0–3.

In summary, these experiments demonstrate the speed and flexibility with which

REACToR can reconfigure its circuit schedules given a known demand. Applications

achieve their expected goodput at a high level, while individual flows are paused and

released at fine time scales when their circuits are scheduled. Further, REACToR can

adjust the circuit schedule to adapt to changes in application behavior and demand.

45

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 0
t1 t2 t3 t4 t5 t6

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 1
t1 t2 t3 t4 t5 t6

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 2

0
2

4
6

8
Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)
0 10 20 30 40

Flow 3

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 4

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 5

0
2

4
6

8

Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

0 10 20 30 40

Flow 6

Figure 3.9. Goodput achieved for a time-varying workload of three flows to a single end
host.

46

3.3.3 Time-varying workloads

Next we show that REACToR can dynamically serve rapidly changing traffic

demands and efficiently move flows from the EPS to the OCS.

In this experiment, we vary the number of high bandwidth and low bandwidth

flows among hosts at small timescales. The workload pattern is again all-to-all among

eight hosts, which we observe from the perspective of one of the hosts and its seven

incoming flows. Initially one of the flows is a high-bandwidth flow sending at full demand

and served on the circuit switch, and the other flows are lower bandwidth flows (each

paced at 96 Mb/s) served on the packet switch. At time t1, one of the low bandwidth flows

changes to a second high bandwidth flow — representing a dynamic shift in application

behavior — and needs to be served on the circuit switch. At each subsequent time step,

another lower bandwidth flow becomes high bandwidth and transitions from the EPS to

the OCS.

Figure 3.9 shows the throughput achieved by each of the flows. Initially, the high

bandwidth flow has exclusive use of the circuit switch. At each time step ti, another flow

transitions from low to high bandwidth and REACToR promotes it from the EPS to the

OCS. Each time, all high bandwidth flows then adjust to fairly share the link bandwidth

to the receiving host. In each case, REACToR seamlessly handles the shift in traffic

demands.

Note that a flow might send at a lower rate during the first 1.5 ms scheduling

period. This happens when the schedule changes and a flow is served earlier in this

period than the previous one. As a result, the queue buffer does not yet have enough

enqueued packets to fully utilize the link. The queue buffer will be built up starting from

the second scheduling period, and the flow will fully utilize the link again.

47

10 20 30 40 50 60 70 80 90 100
Large-flow demand (percent of link b/w)

70

75

80

85

90

95

100

Go
od

pu
t (

pe
rc

en
t o

f l
in

k
b/

w
)

Circuit
Hybrid with 10 Gbps EPS
Hybrid with 20 Gbps EPS

Figure 3.10. Performance of a circuit switch ToR and REACToR in different workload
regimes.

3.3.4 Large benefits from a small EPS

As a final step, we illustrate how an underprovisioned packet switch in REACToR

substantially relaxes the constraints of a pure circuit switch. In particular, we show how

the ability to offload small flows to the packet switch enables REACToR (1) to maintain

high circuit utilization and high workload goodput under our workload assumptions, and

(2) to support full simultaneous endpoint connectivity for small flows.

We use simulation for these experiments to evaluate behavior beyond the con-

straints of our testbed. The simulator models a single REACToR switch, including the

behavior of end hosts with NIC buffers, a circuit switch with switching overhead, a

packet switch with buffers, and the circuit scheduler from Section 3.1.2. We validated

the simulator output using our prototype: for workloads involving eight or fewer hosts,

flow goodput calculated by the simulator always had errors less than 1% of flow goodput

measured on the prototype implementation.

Maximizing circuit utilization. Using the simulator, we explore the perfor-

48

mance regimes of a single hybrid ToR-like REACToR at rack scale. For comparison, we

simulate 64 end hosts connected first to a pure circuit switch and then to a REACToR

switch via 100-Gb/s links. We compare with a circuit switch, not because we expect it to

perform ideally well, but because it helps illustrate how a REACToR switch performs.

In this experiment, each host j sends traffic to its neighboring twenty-one hosts j+ 1

through j+21, one flow per host. The total offered demand across all twenty-one flows

is 100 Gb/s. The flow from j to j+ 1 is a “large” flow whose demand D we vary up

to the full 100 Gb/s. The other twenty “small” flows have equal demands dividing the

remaining (100−D)-Gb/s bandwidth equally. For scheduling circuits, each configuration

has a duration of at least 40 µs (including reconfiguration delay), the scheduling period is

3000 µs (at most 75 configurations), and the reconfiguration delay is 20 µs (hence each

configuration has at least 50% utilization). For REACToR, we simulate a 100-Gb/s circuit

switch and a packet switch internally, where the packet switch is 10 Gb/s or 20 Gb/s.

Figure 3.10 shows the results for this experiment. The x-axis shows the demand

of the large flow from each host as a percentage of link rate (100 Gb/s), and the y-axis

shows the goodput of the ToR given the offered workload. We show three curves, one

for a pure circuit switch and two for REACToR, with the curves overlapping at points.

We note, of course, that a fully-provisioned packet switch as the ToR could switch this

workload at full rate.

The lowest curve shows the results of using a pure circuit switch for the ToR,

with the right-most point of the curve as the ideal case for a circuit switch. Hosts send all

of their traffic in the large flow at 100 Gb/s (small flows have zero demand). In this case

all of the flows can take full advantage of a circuit when the switch schedules one for

them: each flow has data to transmit during their entire allocation in the circuit schedule.

Once the small flows start to have a non-zero demand, though, there is a cliff in circuit

switch performance. The demands to the other hosts, although small, are all non-zero;

49

as a result, the switch schedules each small flow a circuit to carry its traffic. But the

small flows do not have the traffic demand to fully utilize their circuit allocations, leaving

them under-utilized. As the larger flow decreases in demand moving to the left, and the

smaller flows correspondingly increase, the circuit switch performance improves as the

small flows are able to utilize their allocations better. Once the small flows are able to

fully use their circuits (when the large flow demand is at 87%), the pure circuit switch

performance levels off. At this point, the lower goodput of the circuit switch is entirely

due to reconfiguration delay overhead.

In comparison, the middle curve shows the performance of a hybrid ToR-like

REACToR with a 100:10 capacity ratio. Between 90–100 Gb/s for the large flow

(< 10 Gb/s combined for the small flows), REACToR performs just like a packet switch

because the combined demands of the small flows go through REACToR’s packet switch

while the large flows go through REACToR’s circuit switch. This regime represents

REACToR’s ability to efficiently switch traffic that does not have good burst behavior.

As long as the combination of those flows fits within the EPS “budget”, REACToR has

the performance of a 100-Gb/s packet switch using a combination of a 100-Gb/s circuit

switch and a 10-Gb/s packet switch.

Below 90 Gb/s, REACToR performance gradually and gracefully degrades as the

combined demands of the small flows exceed the 10-Gb/s per-host rate of REACToR’s

packet switch; notably, it avoids any discontinuities in performance. REACToR then

needs to schedule an increasingly larger portion of small flow demand on the circuit

switch. REACToR goodput will decrease as a combination of imperfect utilization of

circuits when assigned to small-flow demand, and additional reconfiguration delays for

those circuit assignments.

Note that for this curve the circuit and packet switches had a 100:10 capacity ratio.

There is nothing fundamental about this choice. A network using REACToR switches

50

0 10 20 30 40 50 60 70
#Small flows

20

30

40

50

60

70

80

90

100

Go
od

pu
t (

pe
rc

en
t o

f l
in

k
b/

w
)

Hybrid
Circuit

Figure 3.11. Performance of a circuit switch ToR and REACToR as a function of the
number of small flows.

could tailor this ratio to balance cost and workloads: networks with more shorter-burst

flows can deploy more EPS resources at higher cost, or vice versa. In terms of Figure 3.10,

more EPS resources shift the point of 100% goodput for REACToR to the left, as shown

by the top-most curve corresponding to an internal 20-Gb/s packet switch in REACToR.

Endpoint connectivity. In addition to maintaining high circuit utilization, the

underprivisioned packet switch also enables REACToR to support many simultaneous

flows between endpoints in the tail of the workload distribution. To illustrate this point,

we perform one last experiment focusing on the number of simultaneous small flows

between distinct endpoints in the network. In a network of 64 hosts, we represent the

aspect of the workload well matched to circuits using one single large flow consuming

90% of the capacity: an ideal case for a pure circuit switched network. We then evenly

split the remaining 10% among n small flows, where n varies between 1 and 64.

Figure 3.11 shows the goodput of the ToR (percentage of offered demand serviced

by the ToR) as a function of the number of small flows for this experiment. At n = 1,

both the hybrid and pure circuit ToRs perform the same on the trivial single large flow.

51

The bottom curve shows the pure circuit ToR goodput in the presence of small flows.

Goodput steadily decreases because the circuit switch has to assign circuits to every

flow. As the number of small flows increases, the demand in each flow decreases; circuit

durations decrease, but the rate of reconfigurations correspondingly increases. Hence the

pure circuit ToR becomes increasingly less efficient.

The top curve shows the hybrid ToR performance. By construction, its internal

packet switch can satisfy the bandwidth demands of the small flows and therefore

efficiently handle the full endpoint connectivity of the workload. If the total demand

of the small flows comprising the tail of the workload exceeds the capacity of the

underprovisioned packet switch, then the performance of the hybrid ToR will trend

towards the left-hand regime in Figure 3.10 (e.g., where the large flow demand drops

below 90% with a 10G EPS).

3.4 Summary

Hybrid ToRs, such as REACToR, have the potential to enable scalable, high-

speed networks by pairing the numerous advantages of optical circuit switching with

comparatively underprovisioned packet switching. The key insight driving our work is

that by moving the vast majority—but not all—of the buffering out of the switch and into

end hosts, more scalable interconnect fabrics can be supported.

Practically speaking, this only works if 1) end hosts emit bursts of traffic to a

given destination that are both predictable and of sufficient duration to fill OCS circuits,

and 2) the hybrid scheduler operates at timescales that are invisible to the transport and

applications running on the end hosts. In the first case, in-NIC buffering that historically

has been used to drive line rate transmissions can be repurposed to stage impending

data bursts, therefore fully using OCS circuits. In the second case, for a two-REACToR

prototype, we have shown that we can schedule end hosts to make use of an OCS without

52

negatively impacting TCP performance. A design challenge posed by interconnecting

a large number of REACToRs is co-scheduling and synchronizing directly connected

REACToRs to avoid the need for buffering on uplink ports. We will discuss the scheduling

problem in the next chapter.

This chapter, in part, is a reprint of the material as it appears in the USENIX

Symposium on Networked Systems Design and Implementation 2014. Liu, He; Lu, Feng;

Forencich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

Snoeren, Alex C.; Porter, George. The dissertation author was the primary investigator

and author of this paper.

Chapter 4

Solstice: The Scheduling Algorithm

This chapter presents our hybrid switch scheduler, Solstice. Solstice exploits the

skewed nature of data center traffic patterns, and creates a small number of configurations

with long durations that minimize the penalty for reconfiguration and leaves only a small

amount of residual demand to be serviced by the low-speed (and, hence, lower-cost)

unconstrained packet switch.

Our simulation results demonstrate that Solstice is highly effective at scheduling

skewed demands like those found in data centers. In particular, we find that by servicing

a larger fraction of the demand over the circuit switch, Solstice dramatically decreases the

latency experienced by traffic served by the packet switch—reducing the 99th percentile

by over two orders of magnitude when compared to existing approaches. Moreover,

we show empirically that Solstice’s running time is consistently O(N log2 N) for these

workloads, making it practical to implement in both existing and recently proposed

hybrid switches.

4.1 Preliminaries

Before we begin, we precisely define the setting and notation that we will use in

the remainder of this chapter. We model a single node in a hybrid network fabric, i.e., an

abstraction of a single input-queued switch with N ports. This abstraction consists of two

53

54

crossbar switches and the associated queues that are serviced by these two switches.

In REACToR and other recently proposed hybrid architectures [46], the first

crossbar switch resides entirely within a standard packet switch, and forwards packets

from that packet switch’s input buffers to its output buffer (in the case of an input/output

buffered design). As a packet switch, this first crossbar is effectively unconstrained—in

other words, it has negligible reconfiguration time—and delivers a data rate of Rp per

port. This switch services its internal queues based on an existing scheduling algorithm

that we do not consider here. The second crossbar switch typically uses an alternate

technology (e.g., optics or RF wireless). As compared to the electrical crossbar switch,

this second crossbar has a significantly larger data rate Rc� Rp, but is presumed to be

constrained, i.e., have a non-trivial reconfiguration penalty. Hence, a connection at this

slower time scale can be viewed as a circuit, and we will refer to this crossbar as the

circuit switch in the remainder of this chapter.

One important difference between our model and traditional switch designs is that

we explicitly do not expect there to be any (significant) queueing at the outgoing ports.1

This forecloses any crossbar that relies on a speedup factor to send traffic faster than the

port link rate. However, it dramatically simplifies the implementation of a hybrid switch

by enabling a bufferless, all-optical path through the circuit switch. In recently proposed

hybrid architectures, the input queues are actually maintained at the end hosts. This detail

does not impact our model. However, we require that the input queues support virtual

output queueing (VOQ), so that traffic queued for each output port can be explicitly

addressed at each input port.

Figure 4.1 illustrates our canonical model. We assume that incoming traffic is

allowed to accumulate at input queues for some period of time, W , and is serviced during

1There are a variety of ways to multiplex the traffic from the circuit and packet switches onto the
outgoing port, some of which require minimal queuing while others do not (see Section 4.7).

55

Circuit Switch Backplane

Packet Switch

N Input Ports

Virtual
Output
Queues

Virtual
Output
Queues

N Output Ports

Receiver

Receiver

Figure 4.1. An illustration of our canonical hybrid switch architecture.

56

a later period. This time quanta serves as the basic unit of allocation; hence, we will

variously refer to it as the accumulation period and schedule length. The demand at the

end of any accumulation period can be expressed as a non-negative matrix, D, of size

N×N, where the rows are sources, the columns are destinations, and the elements are the

corresponding demand from a source to a destination. In the general case, each port is

simultaneously connected to both the packet switch and the circuit switch. At any point

in time, some VOQs at each port may be drained by the packet switch, at most one queue

may be serviced by the circuit switch, and others may be stalled. The circuit switch can

connect any input queue to any output port, but no port may have multiple inputs or

outputs (aside from their connection to the packet switch) in a single configuration.

The circuit configuration can be changed at the cost of a delay δ , during which

time no data can be forwarded by the circuit switch. The packet switch, on the other

hand, can service traffic at all times. To ensure high overall circuit utilization, each circuit

configuration must be maintained for a relatively long period with respect to δ . For

example, to service 90% of the link capacity over the circuit switch, the average duration

of a configuration needs to be at least 9δ to amortize the reconfiguration delay.

The goal of a hybrid scheduling algorithm is, given a demand matrix D, to

compute a schedule of m circuit switch configurations—permutation matrices—Pk, and

corresponding durations, φk, so that the schedule is no longer than the accumulation

period, i.e. ∑
m
k=1 φk +δm≤W . (A permutation matrix is a matrix of 0s and 1s in which

each row and column has and only has a single 1.) When the circuit switch implements

the schedule, it services S = min(D,∑m
k=1 φkPk) of the offered load, with the remainder

directed to the packet switch. Clearly, the larger S can be, the lower the required capacity

of the packet switch, Rp. In our model, the circuit switch forwards packets at the same

rate as the input port line rate, Rc, while the packet switch forwards at a (much) lower

speed (e.g., 1/10th that rate).

57

When δ is large, each uplink or downlink can only be shared among a limited

number of flows with high efficiency. For example, if δ = 20 µs, the average configuration

duration needs to be 180‘µs to maintain 90% efficiency, and a schedule of e.g., W = 3 ms

can have at most 15 such configurations. With 15 circuit switch configurations, each

source can only send data over the circuit switch to at most 15 destinations, and likewise

each destination can receive data from at most 15 sources during each schedule. Intuitively

this long reconfiguration delay, restricts the use of hybrid network architectures to settings

where demand is highly nonuniform. We will quantify this restriction in a later section.

4.2 Previous Studies

The crossbar switch scheduling problem has been studied for decades. In general,

time is considered to be slotted (i.e., demand is quantized), and the basic approach—often

referred to as time slot assignment (TSA)—decomposes an accumulated demand matrix

into a set of weighted permutation matrices. Classical results [6] and early work on

scheduling satellite-switched time-division multiple access (SS/TDMA) systems [23]

show how to compute a perfect schedule, but the resulting schedules consist of O(N2)

distinct configurations. While optimal for an unconstrained switch, the game changes

once one begins to consider reconfiguration time.

When the switch introduces a reconfiguration delay, it is impossible to service

fully saturated demand at link rate. Moreover, if the computed schedule is not perfect (i.e.,

some configurations are not fully utilized), additional inefficiency is introduced. Hence,

researchers generally allow the crossbar to transmit packets faster than the incoming

and outgoing ports can accommodate through the use of both input and output buffering.

Much of the exiting work focuses on minimizing this so-called speedup factor (i.e., the

ratio of the internal transfer rate to the port link rate).

The body of previous work tries to provide what is known as performance

58

guaranteed switching [48], meaning they compute schedules that are stable [17] (i.e.,

they service 100% of the offered demand) and are bounded in length (so they introduce

at most a fixed delay). Computing the optimal schedule in this regime is known to be

NP-complete [19, 30], but there exist algorithms [19, 44, 47] that use the least possible

number of configurations (N), which makes sense when the reconfiguration time is

effectively infinite. When the reconfiguration time is non-negligible, but not extremely

large, there is a need to balance the efficiency of each schedule with the total number

of reconfigurations. DOUBLE [44] computes a schedule that always requires twice the

minimum number of configurations. Further improved algorithms [15, 30, 48] take the

actual reconfiguration delay into account, producing a variable-length schedule depending

on the actual reconfiguration delay.

Unfortunately, practical limitations in implementing high-speed routers with large

port counts restrict the complexity of the scheduling algorithms that can be employed—

even for the unconstrained case. Hence, a variety of practical scheduling algorithms have

been proposed that tradeoff throughput and delay for implementation complexity; among

them, a well known one is iSLIP [33] which requires a 2× speedup to maintain stability.

Many of these algorithms perform poorly (i.e., introduce large delays) when the traffic

demand is nonuniform, leading others to suggest using randomization to address the

issue [17].

4.3 Motivation

In contrast to traditional constrained switches, hybrid architectures eschew

speedup, instead preferring to use a lower-speed packet switch as a way to make up for

the reconfiguration delay and any scheduling inefficiency. Because existing scheduling

algorithms focus on reducing the overall reconfiguration penalty—which can be avoided

entirely on the packet switch—they produce sub-optimal schedules in this setting. Here,

59

we motivate our work by considering the performance of existing algorithms in the

absence of speedup—in other words, the crossbar can only forward traffic at the link

rate of the input ports. To be fair, however, we ensure that the offered load can, in fact,

be served without speedup; i.e., the demand matrix is not fully saturated. Yet, existing

algorithms whose design is predicated on a speedup factor still service only a fraction of

the demand.

For purposes of illustration, we consider a demand that consists of N× k flows,

where each port has exactly k incoming and outgoing flows. Among the k flows on each

port, 20% of them consume approximately 70% of the link rate, while the other flows

equally share less than 30% of the link rate. In total, 98% of the link is requested, which

means at most 2% of the time can be spent on reconfiguring the switch (when no speedup

is allowed and the demand has to be satisfied). If each reconfiguration takes δ (expressed

as a function of the scheduling interval), then k can be at most δ/0.02, since each new

destination requires a reconfiguration—i.e., a schedule that satisfies the demand can

require at most k different configurations. We can easily generate such a demand by

stacking k random perfect matching of flows together.

Figure 4.2(a) plots the number of admissible flows, k, in this construction as a

function of δ . For the purposes of this example, we limit k to at most N = 64, which

clips the left-hand portion of the curve. To make the problem more realistic, we randomly

perturb each of the computed flow sizes by ±0.3% of the link speed while respecting

capacity limitations; the resulting random demand matrix is therefore still satisfiable, but

not as straightforward to decompose.

4.3.1 Utilization

Figure 4.2(b) shows the fraction of demand serviced by several published schedul-

ing algorithms along with the algorithm described in this chapter, Solstice, as a function

60

● ● ●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

20
30

40
50

60

δ / W

N
um

be
r

of
 fl

ow
s

pe
r

po
rt

0% 0.2% 0.4% 0.6% 0.8% 1%

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

δ / W

S
er

ve
d

fr
ac

tio
n

of
 th

e
de

m
an

d

0% 0.2% 0.4% 0.6% 0.8% 1%

●

●

●

● ●
● ●

●

●
●

●

●
● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Solstice
Aligning
BvN
iSLIP−4
iSLIP

δ / W

C
om

pu
ta

tio
n

tim
e

(m
s)

0% 0.2% 0.4% 0.6% 0.8% 1%

0
10

20
30

40
50

60

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ●

● BvN
iSLIP−4
iSLIP
Solstice
Aligning
iSLIP−4−Parallel
iSLIP−Parallel

(a)

● ● ●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

20
30

40
50

60

δ / W

N
um

be
r

of
 fl

ow
s

pe
r

po
rt

0% 0.2% 0.4% 0.6% 0.8% 1%

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

δ / W

S
er

ve
d

fr
ac

tio
n

of
 th

e
de

m
an

d

0% 0.2% 0.4% 0.6% 0.8% 1%

●

●

●

● ●
● ●

●

●
●

●

●
● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Solstice
Aligning
BvN
iSLIP−4
iSLIP

δ / W

C
om

pu
ta

tio
n

tim
e

(m
s)

0% 0.2% 0.4% 0.6% 0.8% 1%

0
10

20
30

40
50

60
●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ●

● BvN
iSLIP−4
iSLIP
Solstice
Aligning
iSLIP−4−Parallel
iSLIP−Parallel

(b)

Figure 4.2. A comparison of the performance of various scheduling algorithms as a
function of the fraction of the reconfiguration delay, δ , over the accumulation period, W .
Note that the y-axis does not start at zero.

61

of the reconfiguration time, expressed as a fraction of the accumulation time. In the

figure, each mark is the mean link utilization of the algorithm serving 100 randomly

generated demand matrices.

To begin, we plot the performance of perfect decomposition (known as Birkhoff

von Neumann or BvN) and iSLIP. We consider two different versions of iSLIP, one that

iterates only once, and another iterates four times for each slot. Because neither algorithm

considers the reconfiguration penalty when computing the schedule, it is not surprising

that they perform poorly. The figure shows that, for this particular demand and set of

parameters, they each service less than 80% of the demand.

It is instructive to consider why the algorithms under-perform. The perfect

matching approach searches among all non-zero elements of the demand matrix; the

duration of each configuration is defined by the demand of the smallest element in the

matching. When the elements of the demand matrix are of equal (or relatively quantized)

size, the configuration durations are likely to be long. When the difference between

demand elements is small, however, there is no bound on the minimum configuration

duration: it may even output configuration times that are shorter than the reconfiguration

penalty—resulting in less than 50% efficiency. iSLIP, on the other hand, computes a

schedule with fixed configuration durations. In order to guarantee a minimum level

of efficiency, iSLIP must use a configuration duration that is a reasonable multiple of

the reconfiguration delay. In our examples, we set the configuration duration to be 9δ ,

resulting in a maximum utilization of 90%.

To deliver higher efficiency in the face of reconfiguration delay, existing

schemes [30, 44, 47, 48] first “align” the demand matrix to a fixed quantum, thereby

factoring the demand into a coarse matrix, Dc, and a fine matrix, Dr, where Dc is the

portion that can be expressed in terms of the chosen demand quantum, and Dr contains

the remainder. The appropriate demand quantum depends on how many configurations

62

the algorithm seeks to use in the resulting scheduling. For example, the DOUBLE

algorithm [44] always outputs a schedule of 2N configurations, using N configurations to

serve Dc and another N to cover Dr.

More sophisticated algorithms [30, 48] take the reconfiguration delay into account

when determining how many configurations to use in the schedule. Here, we approximate

this class of algorithms by selecting the time quanta to be the smallest integer divisor of

the scheduling period that is larger than 9δ , resulting in a duty cycle of at least 89.9%

when serving the coarse demand matrix Dc. For now, we simply discard the residue, Dr,

which is at most 10.1% of the demand. However, some fraction of Dr may be serviced

by the schedule computed for Dc. Recall that in this particular experiment, the demand

is concentrated in a small number of flows, so it is unlikely a schedule will completely

starve some elements of the demand matrix: the demand is constructed so that each

element is on the order of the computed time quanta. In order to exploit this opportunity

we linearly scale up the durations of the configurations that serve the coarse matrix so

that the total schedule duration is W .

4.3.2 Delay

If one attempts to service the non-scheduled demand Dr with a packet switch,

it must be appropriately provisioned to avoid drops or excessive delay. In a typical

REACToR setting, the packet switch is an order of magnitude slower than the circuit

switch; i.e., it can handle at most 10% of the demand. In the scenario considered in

Figure 4.2(b), only Solstice keeps the residual below 10%. Of course, even when the

residual demand is satisfiable, any non-uniformity may lead to queuing within the packet

switch.

As a concrete example, we compare Aligning and Solstice on a simulated testbed

of 8 hosts. We consider a simple, uniform demand consisting at each node of one big

63

flow that takes 85% of the link bandwidth and three small flows that, together, consume

10% of the link bandwidth. On top of that, we introduce a few small (less than 1% of

the link bandwidth) latency-sensitive control packet streams to yield a total demand of

98.16% of optical switch capacity.

The Aligning scheduler services 87.5% of the demand on the optical switch, while

Solstice handles 90.9%. This seemingly minor (< 4%) improvement has a dramatic

impact on the delay experienced by the latency sensitive flows that are part of the residual

demand handled by the packet switch. In particular, under Aligning, the latency is 2.1

ms at the 90th percentile, 4.0 ms at the 99th percentile, with a maximum of 5.0 ms. In

contrast, Solstice delivers a latency of 5 µs at the 90th percentile, 33 µs at the 99th, and at

most 52 µs—a more than two-orders-of-magnitude reduction at the tail.

4.3.3 Implications

When the reconfiguration time is non-trivial, an aligning-based approach seems

promising. Existing algorithms, however, make no assumptions regarding the demand

matrix—in particular, they do not benefit from sparse demand matrices. They assume that

it requires O(N) configurations to cover the demand matrix. Our observation is that when

reconfiguration times are significant, the demand matrix has to be sparse to be efficiently

serviceable, and when the demand matrix is sparse, it does not need O(N) configurations

to cover the demand matrix; rather, it needs O(1). Moreover, effectively scheduling the

residue in general is a hard problem, requiring a similar number of configurations; it is

likely far more efficient to simply pass it on to the packet switch.

4.4 The Hybrid Scheduling Problem

In this section, we formally describe the hybrid scheduling problem we seek to

solve. We start by explaining the traditional constrained switch scheduling problem, and

64

then enhance it to consider a hybrid switch.

4.4.1 Constrained switch scheduling

Traditionally, researchers have focused on scheduling a single switch crossbar

with a fixed reconfiguration delay, δ . They start with a demand matrix D that represents

the traffic that is queued during an accumulation period W . In order for D to be admissible,

the diameter (i.e., the maximum of the row and column sums), φ(D)≤W . In this chapter,

we will assume that D is always admissible.

Problem: Constrained. Given a matrix D, find a set of m permutation

matrices {Pk}1≤k≤m, and a sequence of positive numbers {φk}1≤k≤m that maximize

S = min(∑k φkPk, D), where:
m

∑
k=1

φk +δm≤W.

In this model, no traffic can be serviced during the reconfiguration delay, δ . Hence,

without speedup, for any desired level of efficiency x the resulting schedule can consist of

at most m≤ (1−x)W/δ configurations with an average duration φk≥ δ/(1−x). Existing

algorithms typically assume some degree of speedup, s, and guarantee sS≥D [19, 44, 47].

4.4.2 Skewed demand

Our proposed hybrid architectures do not admit a speedup factor. Instead, we

presume a certain degree of sparsity in the input demand. In particular, for a fixed N,

when considering a single source port or destination port, the number of flows of non-

trivial size that arrive during W is bounded by a constant, C; e.g., a study of a Microsoft

data center [27] suggests that C ≈ 5. Datacenters today might have larger C numbers, but

C is likely to scale much slower than N. We capture this notion through what we call

skew degree:

65

Definition: Skew Degree. Given a matrix D, define ψ(D) to be the maximum

number of non-zero elements in each row and column of D. Before considering the

hybrid case, we first observe that skewed demand matrices are fundamentally easier to

schedule.

Problem: Skewed (unconstrained). Given a non-negative matrix D with

ψ(D)≤C, find m permutation matrices {Pk}1≤k≤m, and a sequence of positive numbers

{φk}1≤k≤m, where

∑
k

φkPk ≥ D and ∑
k

φk ≤W.

To fully serve demand D, a schedule needs to have at most min(φ(D),N2−2N +

2) configurations [44] and at least ψ(D) configurations. Algorithms for the constrained

scheduling problem attempt to minimize the number of configurations, but do not make

any assumption regarding the skew degree ψ(D) of the input demand, so they produce

schedules with on the order of φ(D) configurations, where φ(D) can be as large as N in

general.

4.4.3 Constrained switching w/skewed demand

We now combine the assumptions on input demand with the scheduling con-

straints to arrive at the hybrid scheduling problem. Because it may be impossible to

schedule all of the demand on the circuit crossbar, we relax the problem to that of

maximizing the fraction of demand served. For this initial framing, we do not concern

ourselves with the packet switch scheduling algorithm; we presume it is capable of

servicing any admissible demand (given its reduced forwarding rate) without additional

delay.

Problem: Hybrid scheduling (skewed & constrained). Given a matrix D,

66

Table 4.1. The constraints of various crossbar scheduling problems and the effectiveness
of the best known algorithms to solve them. There are a variety of approximation
algorithms for the constrained switching problem all based on the aligning approach we
describe. Each algorithm delivers varying schedule efficiency depending on a number
of parameters including the reconfiguration delay. Similarly, different algorithms have
different running times.

Problems Constrained Skewed Hybrid scheduling
Best Effort

√
×

√

Reconfiguration Penalty
√

×
√

Skewed Demand ×
√ √

Suitable Algorithms Aligning BvN + RegMatch Solstice
Schedule Efficiency ≈ 50–80% 100% ≈ 85%
Time Complexity varies O(φ(D)N) O(N log2 N)

where ψ(D) ≤C, find m permutation matrices {Pk}1≤k≤m, and a sequence of positive

numbers {φk}1≤k≤m that maximize S = min(∑k φkPk, D), where:

∑
k

φk +δm≤W.

Because skewed demand matrices can be serviced with fewer configurations, the

resulting schedules incur smaller reconfiguration penalties. Hence, the speedup required

by existing algorithms for the constrained scheduling problem is also reduced.

We summarized these problems in Table 4.1, and will describe our algorithm,

Solstice, for addressing this hybrid scheduling problem in the next section.

4.5 Solstice

Like previous work, we focus on decomposing the demand matrix D into two

parts, a coarse matrix Dc and a fine matrix Dr [44]. However, unlike traditional con-

strained switch scheduling algorithms, which compute schedules for each matrix, we

compute a schedule only for Dc and assume that Dr can be serviced by the packet switch.

67

This assumption allows us to ignore the number of schedules that might be required to

service Dr on the circuit crossbar, and instead maximize the efficiency of the schedule

for Dc—i.e., service the maximum demand on the circuit crossbar.

Solstice starts with a candidate factorization, D = D̂c + D̂r, by placing all ex-

tremely small demand elements, i.e., those less than some threshold (we use 2δ), into

D̂r. The intuition is that elements with demand that is on the order of the reconfiguration

penalty δ can never be scheduled efficiently on the circuit switch. It then attempts to

construct an efficient schedule for D̂c in a greedy fashion by considering circuit configu-

rations of exponentially spaced durations. Once Solstice has considered configurations of

all durations down to a minimum efficiency threshold, it sweeps any remaining unserved

demand from D̂c into D̂r.

Finally, because the duration of the schedule Ŝ computed to service D̂c is unlikely

to be exactly W , we uniformly scale the duration of each configuration in Ŝ to obtain a

schedule that is precisely W in length. If we need to scale down, however, it is possible

the resulting schedule contains configurations below our efficiency floor. In that case, we

discard the configuration with the shortest duration (which obviously moves some demand

from D̂c back into D̂r) in the schedule and try to rescale the remainder. This process

repeats until we arrive at a final schedule S that consists only of configurations whose

durations are greater than the threshold and services Dc ≥ D̂c because the stretching

process could result in configurations with longer durations than initially scheduled that

may additionally accommodate some of the demand that was swept into D̂r previously.

Algorithm 1 lists the pseudocode for Solstice. It proceeds by considering config-

uration durations of exponentially decreasing duration, starting with the first power of

two greater than W/2 but less than or equal to W . One technically challenging aspect

of Solstice is selecting the best permutation matrices for each configuration duration.

Because it is an NP-complete problem, some previous algorithms compute approximate

68

input :The demand: D, desired schedule length W ,
reconfiguration delay: δ

output :m configurations and durations: {Pk}, {φk}
D′← TrimBelow(D, 2δ)
D′← QuickStuff(D′)
T ← 2δ

while T <W/2 do
T ← 2T

end
k← 1
while T ≥ 2δ do

D†← TrimBelow(D′, T)
while D† > 0 do

Pk← RandSlice(D†)
if Pk is not null then

φk←min{D†[i, j] | Pk[i, j] = 1}
D′← D′−φkPk
D†← D†−φkPk
D†← TrimBelow(D†, T)
k← k+1

else
break the inner while loop

end
end
T ← T/2

end
m← k
while ∑φk 6=W −mδ do

if ∑φk <W −mδ then
Linearly scale up all {φk} so that ∑φk +mδ =W

else
Linearly scale down {φk} so that ∑φk +mδ =W

end
j = argmink φk
if φ j < δ then

Remove Pj from the schedule
m← m−1

end
end

Algorithm 1: Solstice Algorithm

69

TrimBelow()
input :D, T
output :D′

D′← D
for each D′[i, j] in D′ do

if D′[i, j]< T then
D′[i, j]← 0

end
end
Return D′.

Algorithm 2: Trim below

results based on maximum matchings. However, we observe that maximum matching

often leads to poor efficiency—especially when the demand is skewed and sparse, be-

cause a significantly larger element can easily mislead the matching to a sub-optimal

configuration. Hence instead, we use perfect matching whose results are often more

efficient. However, to produce these efficient configurations, we first need to transform

the demand matrix through a process we call stuffing.

4.5.1 Stuffing

Stuffing is a heuristic that increases the weight of the matchings that can be

obtained. Intuitively, an optimal configuration may under-utilize one or more of the

port pairs, because the inefficiency in doing so is dominated by the benefits of serving

the remaining port pairs in the configuration for a longer duration. Ideally, one would

like to identify generalized permutation matrices, i.e., the optimal matchings over all

possible configuration matrices of D (i.e., sub-matrices of permutation matrices that

have M ≤ N ones). If the optimal configuration matrix has less than N ones, then the

remaining dimensions can be “backfilled” by connecting linearly independent port pairs

to make some use of the “left over” crossbar capacity. Unfortunately, identifying such

optical configuration matrices is an open problem that has been considered in several

70

QuickStuff()
input :D
output :D′

Calculate the sums of each row {Ri}
Calculate the sums of each column {Ci}
φ ←max({Ri},{Ci}).
D′← D
for each D[i, j]> 0 in D do

g← φ −max(Ri,C j)
D′[i, j]← D′[i, j]+g
Ri← Ri +g
C j←C j +g

end
i← 1
j← 1
for i≤ N and j ≤ N do

while Ri = φ do
i← i+1
if i≥ N then

break the outer for loop;
end

end
while C j = φ do

j← j+1
end
g← φ −max(Ri,C j)
D′[i, j]← D′[i, j]+g
Ri← Ri +g
C j←C j +g

end
Return D′.

Algorithm 3: Quick Stuffing

71

other contexts [20, 38, 43]. Solstice’s stuffing heuristic in some sense “pre-fills” these

elements which would be good candidate elements to add to an optimal matching of

smaller dimension, but would otherwise not be included in a matching of dimension N.

Stuffing increases the elements of the demand matrix D until every row and

column sum is the same as the diameter φ(D). Formally speaking, it takes a scaled

doubly sub-stochastic matrix and turns it into a scaled doubly stochastic matrix. It

is a necessary step for using perfect matching to find efficient optimal configurations,

because, intuitively, when all the rows and columns have the same sum, any greedy

perfect matching of non-zero weight will keep this invariant and always make optimal

progress [9]. The methods for stuffing are many, but as long as it stuffs into a doubly

stochastic matrix, perfect matching would always generate an optimal set of configura-

tions when the configuration delay δ is zero. Previous work typically prefers stuffing the

matrix uniformly to minimize the variance of the elements [9].

However, in hybrid scheduling the configuration delay δ is non-zero, and hence

each configuration needs to pay a time penalty of δ out of the scheduling period W .

Therefore, ideally, one would like to minimize the total number of configurations by

identifying perfect matchings of larger weights. This optimization goal means that the

stuffing heuristics should attempt to maintain a low skew degree ψ(D) by preferring

stuffing elements that are already non-zero or large, rather than uniformly. To find such

stuffing, one could iterate over all the possible ways to stuff, but that would be compu-

tationally expensive. Instead, Solstice’s stuffing algorithm, which we call QuickStuff

(Algorithm 3), simply selects each of the non-zero elements of D in arbitrary order and

maximizes them. Afterwards, if any rows or columns are not yet maximized, it picks the

first zero element in each such row or column and places the remainder there.

QuickStuff runs in O(CN) time where C = ψ(D) is the maximum number of

non-zero elements in each row (skew degree). Unfortunately, QuickStuff could output a

72

matrix where ψ(D′)>C, and in the general case, the skew degree of D′ may approach

N. For input matrices of low skew degree, however, our experience shows that the skew

degree of D′ is rarely substantially larger.

4.5.2 Slicing

RandSlice()
input :D′

output :P
B← BinaryMatrixOf(D′)
Build the bipartite graph based on B.
Set all rows and columns as unmatched.
for each column j do

for each row i where B[i, j] = 1 do
if row i is unmatched then

Match row i with column j break inner for loop
end

end
end
for each unmatched column j do

Perform a depth-first-search over the augmented graph, starting from column
node j.
During the search, when visiting the sub-nodes of a node, visit the sub-nodes in
random order.
if cannot find a path to an unmatched row then

Return nil.
else

Flip the augmented path, so that column j is matched.
end

end
Return the matched nodes in the form of a permutation matrix P.

Algorithm 4: Random Slicing

Once the demand matrix has been stuffed, it remains to select a perfect matching

(configuration) and a duration. We call the process of identifying a perfect matching

to add to the schedule slicing, because it slices off demand a configuration at a time.

Existing algorithms [9, 23] compute a prefect decomposition without concern to the

number of configurations generated. Here, we are interested in finding a tradeoff between

73

Demand Input: D =


. 13 10 70 4
1 . 14 12 69

65 . . 12 14
15 33 2 . 11
12 7 3 1 .



After first trimming: D′ =


. 13 10 70 4
. . 14 12 69

65 . . 12 14
15 33 2 . 11
12 7 3 . .

 After stuffing: D′ =


. 14 10 70 4
. . 17 12 69

71 . . 13 14
15 70 2 . 11
12 14 69 3 .



Slicing,T = 32 : D† =


. . . 70 .
. . . . 69

71
. 70 . . .
. . 69 . .

≈


. . . 69 .

. . . . 69
69
. 69 . . .
. . 69 . .



Residue: D′ =


. 14 10 1 4
. . 17 12 .
2 . . 13 14

15 1 2 . 11
12 14 . 3 .



Slicing,T = 8 : D† =


. 14 10 . .
. . 17 12 .
. . . 13 14

15 . . . 11
12 14 . . .

≈


. 11 . . .

. . 11 . .

. . . 11 .

. . . . 11
11

+


. . 10 . .
. . . 10 .
. . . . 10

10
. 10 . . .



Residue: D′ =


. 3 . 1 4
. . 6 2 .
2 . . 2 4
5 1 2 . .
1 4 . 3 .



Slicing,T = 2 : D† =


. 3 . . 4
. . 6 2 .
2 . . 2 4
5 . 2 . .
. 4 . 3 .

≈

. . . . 2
. . 2 . .
. . . 2 .
2
. 2 . . .

+


. 3 . . .
. . 3 . .
. . . . 3
3
. . . 3 .

+


. . . . 2
. . . 2 .
2
. . 2 . .
. 2 . . .



Discarded: D′ =


. . . 1 .
. . 1 . .
. . . . 1
. 1 . . .
1


Figure 4.3. An example Solstice execution with W = 100 and δ = 1. Solstice initially
computes a schedule with 6 configurations with a total duration of 69+11+10+2+3+
2 = 97 >W −6δ , so it must be linearly scaled down. In this example, durations must be
integer, so the resulting schedule is the same, except the first configuration has a duration
of 66.

74

an efficient decomposition (i.e., serving as much of the demand as possible) and limiting

the number of reconfigurations required.

We select configurations in a greedy fashion, searching for configurations that

can be fully utilized the longest so as to best amortize the reconfiguration penalty.

(While an optimal schedule may in fact contain configurations that are not fully utilized,

Solstice attempts to address this issue through stuffing, so at this stage we only schedule

configurations for as long as they can be saturated by the stuffed demand.) This problem is

known as the Max-Min Weighted Matching (MMWM) problem—which is distinct from

the more common Maximum Weighted Matching (MWM) problem. MWM searches for

the permutation matrix where the sum of all the included elements is maximized; some

elements may be less than others, leading to inefficiency in the schedule. MMWM, on

the other hand, searches for the permutation matrix where the minimum of all the picked

elements is the maximum possible among all permutations.

In each iteration, Solstice looks for perfect matchings only among those demand

matrix elements that are larger than a given threshold (see Algorithm 2), so the selected

configuration can be scheduled for a duration larger than that threshold. An optimal

MMWM algorithm would consider all O(N2) different thresholds; Solstice considers an

exponentially spaced set of them.

Goel et al. show how to find a perfect matching in a regular matrix in O(N logN)

time [18]. D is not necessarily regular, but we follow the same general methods to design

an algorithm that takes O(N log2 N) in common cases. For a given threshold, Solstice’s

slicing algorithm, which we call Random Slicing (Algorithm 4), selects a random perfect

matching. If it cannot obtain a perfect matching, it returns failure.

75

4.5.3 Example

We now describe how Solstice operates on the example demand matrix shown

in Figure 4.3. First, the input demand matrix D is trimmed by removing all elements

strictly less than 2δ = 2. Because the resulting matrix, D′, has maximum row sum 98,

the matrix is then stuffed to obtain a matrix where each row and column sum is 98. This

is the matrix D′ that Solstice tries to schedule. In the first iteration, Solstice considers

a minimum duration of 32 by extracting D†, the subset of elements of at least that size.

In this example, D† admits only one perfect matching with a minimum-sized element

of 69, so the duration of the first configuration is determined to be 69. It substracts the

demand from the stuffed matrix, D′, and the algorithm continues to consider thresholds

of exponentially decreasing size.

It is only when the threshold is reduced to 8 that D′ admits another prefect

matching. This time, there are two: the first perfect matching RandomSlice identifies has

a minimum element of size 11, while the second matching it identifies has elements of size

at least 10. After accounting for the demand serviced by both of these configurations, the

residual demand matrix D′ does not admit another perfect matching until the threshold is

reduced to 2. At that point, Solstice is able to identify three more perfect matchings with

durations 2, 3, and 2. The final residual is too small to be serviced by any configurations

with duration of length at least 2δ = 2, so it is discarded.

Unfortunately, once the reconfiguration delays for all six configurations are

accounted for, Solstice discovers that the computed schedule exceeds W . Hence, the

schedule needs to be linearly scaled down. If we restrict durations to be of integer length,

and round non-integer durations to the nearest integer, the resulting schedule simply

shortens the duration of the first configuration.

76

4.6 Evaluation

In this section we evaluate the performance of Solstice under various workloads:

where there is skew in demand between large and small flows (exploring the skew assump-

tion), where the demand matrix becomes increasingly saturated with flows (exploring

the sparsity assumption), and where source-destination pairs are more random and the

flows compete for a fair share of the link bandwidth (exploring greater realism). We also

include a validating experiment of running an implementation of Solstice on a hardware

testbed, and a preliminary discussion of the time complexity of Solstice.

In each case we simulate a testbed of 64 nodes interconnected by a switch with

an accumulation period W of 3 ms and a reconfiguration delay δ of 20 µs.2 These values

are easily supported by our prototype REACToR switch in Chapter 3 that employs the

Mordia circuit switch [40]. We further consider two kinds of switches, a pure circuit

switch and a hybrid switch; the hybrid switch also has a small packet switch with capacity

10% of the circuit switch. The schedules Solstice creates given an input demand matrix

are the same for both kinds of switches, but the hybrid switch can use its packet switch

to service residual demand.

4.6.1 Sensitivity to skew

Solstice is designed to take advantage of skew in demand across flows, tailoring

its heuristics to schedule workloads consisting of a small number of flows with (relatively)

large demands among a background of many more flows with small demands. We start by

exploring the behavior of Solstice under such workloads, varying the degree of demand

skew among a fixed number of flows.

We generate workloads that have a fixed number of flows per node: 2 are large and

10 are small. The large flows have equal demands that, when combined, are 96(1− x)%
2Referring back to Figure 4.2, these values correspond to a δ/W of 0.020/3 = 0.67% on those graphs.

77

Bandwidth requested by small flows (%)

N
um

be
r

of
 c

on
fig

ur
at

io
ns

0 10 20 30 40 50 60

0
10

20
30

40
50

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
ci

rc
ui

t (
%

)

0 10 20 30 40 50 60

75
80

85
90

95
10

0

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
hy

br
id

 (
%

)

0 10 20 30 40 50 60

75
80

85
90

95
10

0

Figure 4.4. The number of configurations and the fraction of demand served when
scheduling demand matrices of different skew using Solstice.

78

Bandwidth requested by small flows (%)

N
um

be
r

of
 c

on
fig

ur
at

io
ns

0 10 20 30 40 50 60

0
10

20
30

40
50

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
ci

rc
ui

t (
%

)

0 10 20 30 40 50 60

75
80

85
90

95
10

0

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
hy

br
id

 (
%

)

0 10 20 30 40 50 60

75
80

85
90

95
10

0

Figure 4.5. The number of configurations and the fraction of demand served when
scheduling demand matrices of different skew using BvN with alignment.

79

of the link bandwidth, and the small flows have equal demands totaling 96x% of the

link bandwidth, where x ranges from 0 (all demand is in the large flows) to 0.5 (half of

the demand is in the small flows). To introduce noise, we perturb demands by adding

±0.3% of the link bandwidth to flows to avoid unrealistically easy decompositions of the

demand matrix. Thus, for every value of x the expected link bandwidth required is 96%

and the maximum is 99.6%; no link is oversubscribed. We vary x in 0.05 increments and

simulate 100 random workloads at each increment.

For context, the workloads we evaluate have skew and sparsity characteristics

commensurate with published data center workloads, yet have significantly higher traffic

demands that stress the scheduler. Two one-hour traces from the University of Wiscon-

sin [5] record traffic among 500–1000 servers. Binning this traffic into 3-ms windows

and calculating traffic matrices, the maximum number of non-zero elements in a matrix

are just 36 and 85 in the two traces, respectively. The links are mostly idle and, for any

single host, the number of other hosts it contacts contacts with large flows in any 3-ms

window is at most five.

Similarly, we also constructed a workload model based on the flow behavior and

size distributions described by Alizadeh et al. [3] to represent a workload that combines

query traffic that sends packets from one host to all other hosts, while at the same time

containing background flows for other applications. Even scaling the workload to be

five-times more dense, we observe just a maximum of seven concurrent large background

flows per host in a 3-ms window (the paper shows at most four concurrent large flows

per host in a 50-ms window). In total the query traffic consumes about 10% of the total

link capacity of the switch, where the background flows use about 30%—far less than

the workloads we consider here.

Figure 4.4 shows the results of these simulations using three graphs: (a) the

number of configurations Solstice outputs in its schedule, and the fraction of requested

80

demand that the schedule serves on (b) a pure circuit switch, and (c) a hybrid switch

where a low-bandwidth packet switch can help with residue. Each value of k shows a

candle graph denoting the 25th, median, and 75th percentile values across 100 runs as a

box, and the minimum and maximum values at the extremes.

The results show three performance regions according to how Solstice treats the

large flows compared to the small flows. The first region is ideal for Solstice: the large

flows dominate the demand and Solstice creates schedules tailored to them. The small

flows in this region are too small to schedule on the switch; they fall below the threshold

τ and Solstice discards them from the demand matrix. The linear decrease in served

demand with the pure circuit switch in Figure 4.4(b) reflects the increasing fraction of

demand in the small flows that is ignored by Solstice. With the hybrid in Figure 4.4(c),

served demand remains at 100% because small flow residue goes to the packet switch.

(Since τ = 2δ = 0.04 ms, this scheduling behavior persists when demand across small

flows is below x = 0.04/3 = 13% of total bandwidth.)

The second region, where the number of configurations remains flat, also repre-

sents a situation for which Solstice was designed. Here, the small flows rise above the

trimming threshold τ and Solstice now also schedules them on the circuit switch. Recall,

though, that Solstice partitions demands into exponentially decreasing durations. Hence,

Solstice first generates schedules with long durations tailored to the large flows; once it

schedules the large flows, it then turns to generating schedules for the small flows, which

have correspondingly shorter durations. The serviced demand on the pure circuit switch

remains high, with medians at 90% and the worst cases above 80%. A hybrid switch

handles nearly all of the residue demands, with median serviced demands just below

100% and worst cases above 90%.

Finally, once the small flows together request x=40% of the link bandwidth,

the small flows start to have demands that place them in the same demand partition

81

as the large flows. As a result, Solstice schedules them in conjunction with the large

flows. As x continues to increase, eventually all of the small flows are scheduled in

the same iteration as the large flows. The number of configurations in the schedules

correspondingly increase, and serviced demand decreases such that, even with the hybrid

switch, not all demand can be serviced by Solstice’s schedules.

To illustrate how a traditional algorithm might interact with the same workload,

we simulated the same experiment using BvN with alignment (which factors the demand

matrix into coarse and residue matrices) to schedule the demand. We use 100 µs for the

alignment quanta so that each configuration results in at least an 80% duty cycle.

Figure 4.5 shows the results. The number of configurations is bounded by the

number of alignments in the accumulation period W , which is 30 in this case (a 3-ms

period divided by 100-µs alignments). Since BvN with alignment is not designed to min-

imize the number of configurations, it often generates the maximum of 30 configurations

(whereas Solstice uses substantially fewer). Also, the served demand has two valleys

when the small flows consist of roughly 25% and 41.5% of total bandwidth. These low

utilization areas occur when the total demands of the small flows are in the middle of the

alignment (25% is 1.5× the alignment, and 41.5% is 2.5×). Served demand would drop

even lower if there were more small flows.

4.6.2 Sensitivity to saturation

A workload with many flows of roughly equal demand represents a non-ideal case

for Solstice because it cannot conveniently divide and conquer the workload according to

demand. We evaluate this kind of workload next, in which flows are of nearly equal size

and we add flows to increasingly “saturate” the demand matrix with demand elements.

To construct a demand that has k flows per source and destination pair, we ran-

domly generate k perfect matchings. For each source-destination pair in the matching, we

82

Number of flows per host

N
um

be
r

of
 c

on
fig

ur
at

io
ns

1 10 20 30 40 50

0
10

20
30

40
50

Number of flows per host

D
em

an
d

se
rv

ed
 o

n
ci

rc
ui

t (
%

)

1 10 20 30 40 50

75
80

85
90

95
10

0

Hybrid Oracle
Circuit Oracle

Number of flows per host

D
em

an
d

se
rv

ed
 o

n
hy

br
id

 (
%

)

1 10 20 30 40 50

75
80

85
90

95
10

0

Hybrid Oracle
Circuit Oracle

Figure 4.6. The number of configurations and the fraction of demand served when
scheduling demand matrices of different saturation.

83

add a flow into the matrix that requests 90/k% of the link bandwidth on the corresponding

uplink and downlink; to introduce noise, we again perturb the demands by±0.3%. Hence

the expected bandwidth required across all flows on a link is 90%, and the maximum is

99%; no link is oversubscribed.

We vary k from 1 to 60 flows to increasingly saturate the demand matrix with

flows of roughly uniform size. With a reconfiguration delay δ of 20 µs, these values

result in a potential link utilization of 95% when the demand is perfectly uniform and

k = 60. For each value of k, we generate 100 random demand matrices.

Figure 4.6 shows the results of these simulations using similar graphs as in

Figure 4.4. In addition, for reference we also show curves (dashed lines) that represent

one form of optimal scheduling. Under the constraint that the switch will schedule every

flow, causing the maximum number of reconfigurations, these lines show the performance

of an optimal scheduler. Since in practice there are situations where it is better to not

schedule a flow to reduce the number of reconfigurations, Solstice and other schedulers

can do better. These reference lines show the regime of a good scheduler.

The results again show three performance regions as above, although for different

reasons. The first region matches Solstice’s assumptions, in which the number of flows is

small and the demand matrix is relatively sparse (i.e., the matrix is sparsely composed of

just “large” flows). In this region, Solstice serves the demand with the same number of

configurations as the number of flows. Unlike in the skew experiment, there are no small

flows and hence no residuals. Consequently, Solstice serves 100% of demand on both

pure and hybrid circuit switches.

After 15 flows, the workload reaches an inflection point where Solstice starts

allocating additional configurations for each flow. In this region, the combined effects of

the noise added to the flows across a row or column makes it more difficult for Solstice

to find an optimal schedule. Although the mean value of the noise is still 0, the standard

84

deviation of the sums of the elements in a row or a column increases with the number

of flows. In stuffing the demand matrix to be doubly stochastic, Solstice increases the

elements in the rows and columns which together have the lowest combined demand. In

an attempt to add skew to the demand matrix, Solstice increases only a small number

of these elements, but with large increments. As a result, the stuffed demand creates

sufficient skew that Solstice splits and schedules the larger elements across more than

one configuration. Doing so diverges the schedule from the best plan, lowering demand

served by a few percent for the pure circuit switch; demand served remains high with the

hybrid switch, though, since the packet switch absorbs the residue.

Beyond 30 flows, the combined effects of the demand variance across the flows

in a row or column continue to grow and Solstice fails to discover ideal schedules. In

these cases, Solstice gives up scheduling all the flows, leaving 1–4 flows unserved per

host. For a pure circuit switch, this behavior results in substantial unserved demand (20%

in the worst cases). A hybrid switch does better in absorbing residual demand, but still

10% of demand remains unserved.

4.6.3 Serving random flows

Previous experiments construct demand matrices that are largely stacks of per-

mutations matrices, which are highly coordinated as a result. This construction enables

more precise control of the experiment, but is less realistic. To evaluate how Solstice

performs with less coordinated demand, we construct a workload with demand skew

similar to Section 4.6.1, but instead (a) the source-destination pairs are chosen randomly

and (b) the large and small flows sharing a link compete for a fair share of the bandwidth

in the spirit of TCP.

Figure 4.7 shows the results of Solstice with this randomized workload. Results

are similar to those in Figure 4.4, where the workload was constructed from matrices

85

Bandwidth requested by small flows (%)

N
um

be
r

of
 c

on
fig

ur
at

io
ns

0 10 20 30 40 50

0
10

20
30

40
50

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
ci

rc
ui

t (
%

)

0 10 20 30 40 50

75
80

85
90

95
10

0

Bandwidth requested by small flows (%)

D
em

an
d

se
rv

ed
 o

n
hy

br
id

 (
%

)

0 10 20 30 40 50

75
80

85
90

95
10

0

Figure 4.7. The number of configurations and the fraction of demand served when
scheduling a randomized, fair sharing workload.

86

derived from perfect matchings. This similarity is reassuring in that adding more ran-

domness and fair link sharing to the workload does not fundamentally change Solstice’s

performance.

4.6.4 Time complexity

Finally, we present an initial discussion of the time complexity of Solstice. It

is straightforward to prove that the time complexity of the stuffing step is O(N logN)

since it is dominated by the sorting step. The number of configurations in W is bounded

by the minimum configuration duration for decomposing, which is a constant. The

time complexity of the algorithm hence depends on the time complexity of the perfect

matching algorithm.

The perfect matching algorithm has two parts. The first part randomly matches

a subset of the nodes to bootstrap the matching, which always takes O(N) time. The

second part performs a random order depth-first-search over the augmented tree formed

by existing matchings to match an unmatched node, and computation time is linear to the

number of edges the search visits in total.

To estimate the time complexity of the perfect matching algorithm in practice,

we experimented with large numbers of random permutation matrices and counted the

total number of edges the DFS searches. These edge counts were bounded between

O(N logN) and O(N log2 N), which is encouraging. However, a formal analysis of

Solstice conditioned on its assumptions remains future work.

4.6.5 Solstice on a hardware testbed

While we have explored the behavior of Solstice via simulation, we end by

showing that an implementation of Solstice can schedule flows on a small hardware

testbed. In Chapter 3, when we evaluated REACToR, we lacked a scheduler and so

87

Time (us)

Host 6

Host 5

Host 4

Host 3

Host 2

Host 1

Rx from Host 0

PFC

Reconfig

Host 6

0 1500 3000 4500 6000

Figure 4.8. Running Solstice in real-time on our prototype testbed.

we precomputed schedules for all of the workloads running on the hardware prototype.

Now we repeat one of the experiments from Section 3.3.2 (Figure 3.8) but, instead of

precomputing circuit schedules, we use an implementation of Solstice to compute circuit

schedules in real-time.

Figure 4.8 shows the incoming packets to host 7 at the workload transition time.

We controlled the experiment so that the workload changes during a scheduling period.

At the transition, REACToR is halfway through its scheduling period and packets already

queued at the first three hosts continue to arrive via circuits. At the end of its committed

scheduling period, REACToR receives the updated schedule that Solstice generates for

the upcoming scheduling period, and schedules the new circuit configurations to react to

the workload transition. In sum, the results when using Solstice to compute the schedules

in real-time match the results when we had precomputed the schedules offline, showing

that Solstice behaves as expected in practice.

88

4.7 Practicalities

While our simulations indicate that Solstice is effective at scheduling skewed

demand over the model of a hybrid switch that we consider here, our experience imple-

menting Solstice on a real prototype switch identified a number of practical constraints

that, if formally addressed, would lead to an even more effective algorithm.

Port count/delay tradeoff. In our simple hybrid model, we assume that both the

circuit and packet switches have the same number of ports. However, the technologies

available today often present a tradeoff between port count and reconfiguration penalty.

Optical circuit switches rely on two families of underlying technology to implement

crossbar functionality, binary MEMs and planar wave guides, which currently scale

to a modest number of ports. Similarly, hybrid networks using RF-based wireless

circuits [21, 26, 49], when coupled with electronically steerable phased-array antennas,

have limited separable degree angles.

Hence, when designing a scheduling algorithm it may be fruitful to consider

hybrid switches where the circuit switch has fewer than N ports. Such a design can be

thought of containing either an M < N port non-blocking circuit crossbar, or an N-port

blocking crossbar. In that case, the scheduling problem relaxes from trying to find

permutation matrices of dimension N for each configuration to finding perfect matchings

of sub-matrices of D of size M.

Circuit/packet crossbar co-scheduling. As currently formulated, Solstice

leaves a residual for the packet switch to “take care of.” Instead, another opportu-

nity is to compute a deliberate schedule for the packet switch as well. Doing so could

lead to not only cheaper hybrid implementations (by dispensing with the cost, heat, and

power of the buffer memory) but potentially higher performance if one could jointly

optimize the schedules of the two crossbars. Alternatively, a simplified version might

89

still ignore the details of the packet switch, and instead focus on the properties of the

residual demand it must (try to) service. An alternative algorithm might constrain the

residual so that it is more easily (or predictably) handled by the packet switch. Another

consideration is the order in which demand is presented to the packet switch. A more

sophisticated alternative could reorder the schedule to control when the packet switch

might service different queues to, e.g., minimize the overall waiting time.

4.8 Summary

The ever-increasing demand for low-cost, high-performance network fabrics in

data center environments has generated tremendous interest in alternative switching

architectures. We presented REACToR in Chapter 3, and in this chapter we develop a

switching scheduler for it. We provide a general model of the problem, differentiate

it from the classical constrained switching problems, and propose an initial algorithm,

Solstice, that performs well for a class of demands that attempts to model traffic observed

in a real data center. We also implement Solstice in our REACToR prototype hybrid

switch that schedules traffic demand in real-time and we look forward to evaluating its

performance with more realistic data center applications.

This chapter, in part, has been submitted for publication of the material as it may

appear in the the conference of the ACM Special Interest Group on Data Communication

2015. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen; Savage,

Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; Porter, George. The

dissertation author was the primary investigator and author of this material.

Chapter 5

Conclusion and Future Work

Parallel topologies like a fat-tree works well for current data centers, but it is

expensive to directly upgrade these electrical packet switching networks into 100 Gb/s. A

dominant part of the upgrade cost is the optical transceivers that connect the optical links

and the electrical packet switches. Using optical circuit switches provides a lower-cost

solution by using fewer transceivers, and recent optical switching technology that can

reconfigure in microseconds enables these circuit switches to service more dynamic

traffic demands like the ones that occur at data center top-of-rack switches.

Leveraging this technology trend, this dissertation presented REACToR, a new

hybrid circuit switch design that combines an optical circuit switching network and a

lower-provisioned electrical packet switching network that can service data center traffic

with performance akin to a fully provisioned electrical packet switching network, but

with much lower costs. It services multiple long-lasting flows using the optical circuit

network in a TDMA fashion without disruptions on the transport layer, and services the

small flows with the lower-provisioned electrical packet network, while presenting to end

hosts as a fully-provisioned electrical packet network.

To efficiently utilize the optical circuits to service the long-lasting flows in

the REACToR network for data centers, this dissertation also presented Solstice, a

scheduling algorithm that minimizes reconfiguration frequency and hence maximizes

90

91

circuit utilization and switching efficiency. Using Solstice, REACToR is able to reactively

schedule the heavy, bandwidth-hungry flows to the optical circuit switching network, and

the small, latency-sensitive flows to the electrical packet switching network.

REACToR extends optical circuit switching to a layer closer to the data center

end hosts, and reduces the usage of expensive optoelectronic transceivers. Leveraging

the skewness patterns in data center traffic demands, Solstice efficiently schedules the

available link capacities that REACToR provides, and delivers bandwidth that is close to

fully bi-sectional. With REACToR and Solstice I present a new approach that is cheaper

than conventional ones when upgrading data center networks from 10 Gb/s to 40 Gb/s

and to 100 Gb/s, but with comparable network performance.

5.1 Future Directions

I end this dissertation by discussing issues of the current design of REACToR

and Solstice, and how these issues could be addressed in the future.

5.1.1 Shorten the reaction delay

Although REACToR is fast enough to “fly under the rader” on servicing long-

lasting TCP flows, it currently still incurs several hundreds of microseconds to react to

a traffic pattern change with a proper circuit. While this reaction latency is negligible

to flows that last for seconds, it is non-trivial for a flow that only last for several 10s of

microseconds or even shorter. As link rates upgrade to 40 and 100 Gb/s, flows of the

same size will also take shorter time to transfer, and hence make the schedule reaction

delay issue a more significant latency bottleneck.

The current mechanism calculates the schedule every scheduling period, where

each period is about one millisecond long. This scheduling mechanism works well

because it delivers the best possible link throughput. However, since data center network

92

traffic is often bursty, it is likely that the number of active big flows will only be one or

two at any time, especially when the link rates are high. As a result, if the scheduler can

output schedules as a stream of reconfigurations in a just-in-time fashion rather than in a

windowed fashion, it might shorten the service delays on reacting to demand changes.

Unfortunately, this mechanism change requires logic changes over the entire control

plane. The scheduler needs to take an input stream of demand update notifications (rather

than a demand matrix), and continuously deploy a stream of circuit configurations to the

circuit switch and the end-hosts within a much tighter real-time constraint. This change

from windowed to streaming mechanism introduces challenges on both designing the

algorithm and implementing the control-loop mechanism.

5.1.2 Work with TCP harmoniously

Working with upper-level transport protocols like TCP might also be a challenging

open problem. REACToR essentially has two paths from each source host to each

destination host, and each path has different available bandwidths. Because traditional

TCP keeps track of the link state essentially as a single link, it works well when the link

state is stable, but works sub-optimally when the link state is changing. As a result, when

the scheduler migrates a flow from the circuit link to the packet link or vise-versa, the

transport layer might not be able to respond to the sharp changing of the link state and

cannot react quickly enough to fully utilize the available link capacity.

There are several possible ways to address the issue above. The end hosts could

use multiple TCP flows to track the link state of both the circuit and the packet switching

path, so that the states are distinguished. Or, the scheduler could smoothly increase or

reduce the bandwidth allocation of a flow, and hence remove the sharp change on link

state. Alternatively, the controller can send TCP the change in real-time by sending

additional control packets or modifying TCP packet headers.

93

5.1.3 Validate the workload assumption

It is unclear what specific data center applications require from the network in

terms of quality of service. REACToR’s model might not fit the needs of all applications,

especially when they scale up to higher link rates. For example, when the link rate

increases by 10×, it is unclear if the applications tend to connect more hosts at the same

time, or tend to communicate with the same number of hosts but with longer flows. A

study about the scaling property of data center workloads would be informative, because

it directly affects the efficiency of using circuit switching in higher link rate scenarios.

5.1.4 Bound the scheduling algorithm

The scheduling problem, though formally described, still lacks an upper-bound

on the best possible link efficiency of scheduling a demand matrix in general. The lack

of theoretic bounds makes it hard to evaluate if an algorithm is good enough.

The Solstice scheduling algorithm empirically shows a O(N log2 N) time com-

plexity for normal cases where N is the number of hosts, but it still lacks a formal proof

about its worst-case time complexity. Also, in its current shape, when scaling it up

to a more realistic data center scale with thousands or even hundreds of thousands of

end hosts, even O(N) time complexity will not be acceptable. The algorithm must be

parallelized to be practical.

5.1.5 Synchronize the control plane at scale

Setting up buffer-less optical circuits requires tight time synchronization with the

sending hosts. This real-time setup is a challenging task for a data center of thousands

of machines spread over hundreds of square meters. Even synchronizing with signals

traveling at the speed of light, it takes about 0.3 µs to send a signal from a control host

to a machine that is about 100m away. This delay is equivalent to transmitting 2 MTU

94

size Ethernet packets on 100 Gb/s links. It also means that when technology can push

the reconfiguration delay of the circuits to nanoseconds, this synchronization signal

propagation delay will be the dominant part of the system reconfiguration delay, which

limits the type of traffic demand the circuit switching network can service.

To reduce this delay, the controller that sends these synchronization signals must

also take the propagation delay into consideration as well, and it is likely that this propa-

gation delay will be different for machines at different locations. Therefore, to configure

the switches and the end hosts correctly, the propagation delay must be measured first.

Ideally, the control plane system should measure these delays automatically, rather than

let the administrator configure them manually. If the circuit switch is not a big monolithic

switch, but consists of multiple smaller circuit switches, this issue also applies to the

synchronization among these distributed switches.

Bibliography

[1] Open Compute Project. http://www.opencompute.org.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-
modity, Data Center Network Architecture. In Proc. ACM SIGCOMM, August
2008.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP
(DCTCP). In Proc. ACM SIGCOMM, August 2010.

[4] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router Buffers. In
Proc. ACM SIGCOMM, October 2004.

[5] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Character-
istics of Data Centers in the Wild. In Proc. ACM Internet Measurement Conference,
November 2010.

[6] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán
Rev. Ser. A, 5:147–151, 1946.

[7] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local
Area Network. IEEE Micro, 15(1):29–36, February 1995.

[8] Nicola Calabretta, Roger Rueyo Centelles, Stefano Di Lucente, and Harmen J.S.
Dorren. On the Performance of a Large-Scale Optical Packet Switch Under Realistic
Data Center Traffic. Journal of Optical Communications and Networking, 5(6):565–
573, June 2013.

[9] Cheng-Shang Chang, Wen-Jyh Chen, and Hsiang-Yi Huang. Birkhoff-von Neumann
Input Buffered Crossbar Switches. In Proc. IEEE INFOCOM, March 2000.

[10] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping

95

http://www.opencompute.org

96

Zhang, Xitao Wen, and Yan Chen. OSA: An Optical Switching Architecture for
Data Center Networks and Unprecedented Flexibility. In Proc. of 9th USENIX
NSDI, April 2012.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th ACM/USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San Francisco, CA, December 2004.

[12] Nathan Farrington, Alex Forencich, George Porter, P.-C. Sun, Joseph E. Ford,
Yeshaiahu Fainman, George C. Papen, and Amin Vahdat. A Multiport Microsecond
Optical Circuit Switch for Data Center Networking. IEEE Photonics Technology
Letters, 25(16):1589–1592, June 2013.

[13] Nathan Farrington, George Porter, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Hunting Mice with Microsecond Circuit Switches. In Proc. ACM HotNets,
October 2012.

[14] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios:
A Hybrid Electrical/Optical Switch Architecture for Modular Data Centers. In Proc.
ACM SIGCOMM, August 2010.

[15] Shu Fu, Bin Wu, Xiaohong Jiang, Achille Pattavina, Lei Zhang, and Shizhong
Xu. Cost and Delay Tradeoff in Three-Stage Switch Architecture for Data Center
Networks. In Proc. of 14th IEEE High Performance Switching and Routing, July
2013.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP), Bolton Landing, NY, October 2003.

[17] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah. Randomized Scheduling
Algorithms for High-Aggregate Bandwidth Switches. IEEE Journal on Selected
Areas in Communications, 21(4), May 2003.

[18] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect Matchings in
O(n logn) Time in Regular Bipartite Graphs. In ACM STOC, 2010.

[19] Inder S. Gopal and C. K. Wong. Minimizing the Number of Switchings in a
SS/TDMA System. IEEE Trans. Communications, 33(6), June 1985.

[20] J. Haglund and J.B. Remmel. Rook Theory for Perfect Matchings. Advances in

97

Applied Mathematics, 27:438–481, 2001.

[21] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David
Wetherall. Augmenting Data Center Networks with Multi-gigabit Wireless Links.
In Proc. ACM SIGCOMM, August 2011.

[22] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs. In SIAM Journal on Computing, July 1973.

[23] Thomas Inukai. An Efficient SS/TDMA Time Slot Assignment Algorithm. IEEE
Trans. Communications, 27(10), October 1979.

[24] V. Jacobson and R. Braden. TCP Extensions for Long-Delay Paths. RFC 1072
(Informational), October 1988.

[25] Natalie Enright Jerger, Mikko Lipasti, and Li-Shiuan Peh. Circuit-Switched Coher-
ence. Computer Architecture Letters, 6(1):5–8, July 2007.

[26] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl. Flyways To De-Congest
Data Center Networks. In Proc. ACM HotNets, October 2009.

[27] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. The Nature of Data Center Traffic: Measurements & Analysis. In Proc.
ACM IMC, November 2009.

[28] Rishi Kapoor, Alex C. Snoeren, Geoffrey M. Voelker, and George Porter. Bullet
Trains: A Study of NIC Burst Behavior at Microsecond Timescales. In Proc. ACM
CoNEXT, December 2013.

[29] Benjamin G. Lee, Alexandar V. Rylyakov, William M. J. Green, Solomon Assefa,
Christian W. Baks, Renato Rimolo-Donadio, Daniel M. Kuchta, Marwan H. Khater,
Tymon Barwicz, Carol Reinholm, Edward Kiewra, Steven M. Shank, Clint L.
Schow, and Yurii A. Vlasov. Four- and Eight-Port Photonic Switches Monolithically
Integrated with Digital CMOS Logic and Driver Circuits. In Proc. OFC/NFOEC,
March 2013.

[30] Xin Li and Mounir Hamdi. On Scheduling Optical Packet Switches with Reconfigu-
ration Delay. IEEE Journal on Selected Areas in Communications, 21(7), September
2003.

[31] Dan M. Marom. Switching Capacity of MEMS Tilting Micromirrors. In Proc.
IEEE Optical MEMS and Nanophotonics, August 2012.

98

[32] James Martin, Katheleen Kavanagh Chapman, and Joe Leben. Asynchronous
Transfer Mode: ATM Architecture and Implementation. Prentice-Hall, Inc., 1997.

[33] Nick McKeown. The iSLIP Scheduling Algorithm for Input-Queued Switches.
IEEE/ACM Transactions on Networking, 7(2), April 1999.

[34] Nick McKeown, Venkat Anantharam, and Jean Walrand. Achieving 100% Through-
put in an Input-Queued Switch. In Proceedings of IEEE Infocom Conference, March
1996.

[35] Adisak Mekkittikul and Nick McKeown. A Practical Scheduling Algorithm to
Achieve 100% Throughput in Input-Queued Switches. In Proceedings of IEEE
Infocom Conference, March 1998.

[36] Thomas Moscibroda and Onur Mutlu. A Case for Bufferless Routing in On-Chip
Networks. In Proc. ISCA, June 2009.

[37] Robert Olsson. pktgen the linux packet generator. Proc. Linux Symposium, July
2005.

[38] Quan-Ke Pan and R. Ruiz. A comprehensive review and evaluation of permutation
flowshop heuristics to minimize flowtime. Computers & Operations Research,
40:117–28, January 2013.

[39] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. Fastpass: A Centralized “Zero-Queue” Datacenter Network. In Proc. ACM
SIGCOMM, August 2014.

[40] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang-Chen Sun,
Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating
Microsecond Circuit Switching into the Data Center. In Proc. ACM SIGCOMM,
August 2013.

[41] Sivasankar Radhakrishnan, Yilong Geng, Vimalkuma Jeyakumar, Abdul Kabbani,
George Porter, and Amin Vahdat. SENIC: Scalable NIC for End-Host Rate Limiting.
In Proc. of 11th USENIX NSDI, April 2014.

[42] Ireneusz Szcześniak. Overview of optical packet switching. In Theoretical and
Applied Informatics, October 2009.

[43] M. Tandon, P.T. Cummings, and M.D. LeVan. Flowshop sequencing with non-
permutation schedules. Comp. & Chem. Eng., 15(8), 1991.

99

[44] Brian Towles and William J. Dally. Guaranteed Scheduling for Switches with
Configuration Overhead. IEEE Trans. Networking, 11(5), October 2003.

[45] Amin Vahdat, Mohammad Al-Fares, Nathan Farrington, Radhika Niranjan Mysore,
George Porter, and Sivasankar Radhakrishnan. Scale-Out Networking in the Data
Center. IEEE Micro, 30(4):29–41, August 2010.

[46] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,
T. S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-Through: Part-time Optics
in Data Centers. In Proc. ACM SIGCOMM, August 2010.

[47] Bin Wu and Kwan L. Yeung. Minimum Delay Scheduling in Scalable Hybrid
Electronic/Optical Packet Switches. In Proc. IEEE GLOBECOM, 2006.

[48] Bin Wu, Kwan L. Yeung, and Xin Wang. Improving Scheduling Efficiency for
High-Speed Routers with Optical Switch Fabrics. In Proc. IEEE GLOBECOM,
December 2006.

[49] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao, and Haitao Zheng. Mirror Mirror on the Ceiling: Flexible Wireless
Links for Data Centers. In Proc. ACM SIGCOMM, August 2012.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Hybrid Data Center Switches
	Hybrid Switch Scheduling
	Contributions
	Organization

	Background and Motivation
	Data Center Networks Have Complex Topologies
	Higher Link Rates Must Use Optics
	Using Optical Switches in Data Centers
	Optical Circuit Switching Saves Transceiver Costs
	Data Center Networks Can Be Bufferless
	General Optical Circuit Scheduling is Hard
	Data Center Traffic is Skewed and Bursty
	Hybrid Circuit Switches for Data Centers

	REACToR: The Controller
	Design
	End-host buffering
	Circuit scheduling
	End-host rate limiting
	REACToR host control protocol

	Implementation
	Evaluation
	TCP under TDMA scheduling
	Switching ``under the radar''
	Time-varying workloads
	Large benefits from a small EPS

	Summary

	Solstice: The Scheduling Algorithm
	Preliminaries
	Previous Studies
	Motivation
	Utilization
	Delay
	Implications

	The Hybrid Scheduling Problem
	Constrained switch scheduling
	Skewed demand
	Constrained switching w/skewed demand

	Solstice
	Stuffing
	Slicing
	Example

	Evaluation
	Sensitivity to skew
	Sensitivity to saturation
	Serving random flows
	Time complexity
	Solstice on a hardware testbed

	Practicalities
	Summary

	Conclusion and Future Work
	Future Directions
	Shorten the reaction delay
	Work with TCP harmoniously
	Validate the workload assumption
	Bound the scheduling algorithm
	Synchronize the control plane at scale

	Bibliography

