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Abstract

A Comprehensive Analysis of Tracking as a Data Association Problem

by

Eric C. Poblenz

Algorithms based on traditional notion of tracking as a state estimation prob-
lem yield just a single interpretation of the data. For some applications, the ability to
identify ambiguities and compare different interpretations using a well-defined measure
of confidence is critical. Such applications require a direct solution to the data associa-
tion problem in order to characterize the relevant uncertainty. This notion of tracking
has received relatively little attention largely due to a failure to recognize its utility
beyond maintaining the state estimation process. As a result, the options available to
the practitioner are limited and the performance of statistical data association models
is not well understood, especially in terms of the quality of the sample they produce.

This work has sought to change that by developing a new data association
model that extends the scope and flexibility of existing models. The questions of how
to specify an objective prior distribution over data association hypotheses and how
to efficiently perform inference on the high-dimensional posterior distribution are very
much open. To help provide answers, we considered numerous different priors, includ-
ing Bayesian nonparametric models and several models never before applied to tracking.
With regard to inference, we considered various implementations of Markov chain Monte
Carlo (MCMC) and population Monte Carlo (PMC) samplers. A comprehensive eval-
uation was performed in the context of a wide-area radar surveillance application.
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Introduction
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Over the years, target tracking has been the subject of a considerable amount
of research because of its importance in applications in areas such as defense, astronomy,
medical imaging, robotics, and air traffic control. The various approaches described in
the literature cover a multitude of different target types, dynamics models, sensors,
and operating environments. Many of these approaches have led to effective algorithms
that have been successfully applied to real-world problems. However, despite a wealth
of developments, there are still tracking applications that are not well-served by any
existing technique.

Beginning with the earliest attempts at using digital computers to estimate
the velocity of a target based on a series of positions from radar contacts, tracking
algorithm research has focused primarily on the notion of tracking as a kinematic state
estimation problem. The objective in this case is to follow the target, integrating the
information obtained from a sequence of noisy measurements, in order to minimize the
uncertainty in our knowledge of its state. The resulting estimate has obvious utility in
predicting the future state of the target. As the dominant paradigm, there exists a rich
set of solutions related to state estimation.

Alternatively, tracking can be viewed as a data association problem. The
objective in this case is to process the information obtained from the measurements in
order to minimize the uncertainty in our knowledge of their origin. In other words,
the objective is to determine the correct associations between the measurements and
the targets that generated them. Here, the resulting estimate is useful for making
inferences and, most importantly, quantifying the uncertainty with regard to things like
the number of targets, track identity, and target crossing patterns. This perspective on
tracking has received relatively little attention from researchers in part because data
association, despite being a well-studied concept in the field, is usually treated as a
subproblem of state estimation.

Data association and state estimation are indeed intimately related. The un-
certainty in the measurement origins must be addressed, in some respect, when generat-
ing a state estimate. Likewise, the uncertainty in each target’s state must be addressed,
in some respect, when generating an estimate of the measurement origins. However,
their respective roles differ depending on how the tracking problem is posed.

Algorithms based on the notion of tracking as a data association problem dis-
tinguish themselves from those designed to produce state estimates through a different
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treatment of the relevant uncertainties in their models. The difference can be quite
important for certain applications, such as surveillance, but is often overlooked.

The goals of this dissertation are to emphasize the distinctions between the
two notions of tracking and to provide a comprehensive analysis of the latter, which we
shall refer to as associative tracking. In the process, we will introduce a new associative
tracking model that extends the scope and flexibility of existing models. The proposed
model will be evaluated on the difficult, and increasingly important, problem of tracking
people using radar in a wide-area persistent surveillance application.

1.1 Motivation

Wide-area surveillance in order to protect vital assets such as borders, ports,
pipelines, refineries, military bases, or power plants from terrorists attacks and other
threats is rapidly becoming an important issue worldwide. There is a growing need for
the persistent monitoring of large outdoor areas in both the defense and commercial
industry.

Traditionally, the primary sensor technologies for such surveillance were electro-
optical (EO) and infra-red (IR) cameras. Although cameras can provide sufficient res-
olution for target identification, their limited field of view makes it more difficult to
rapidly scan large areas to identify small targets. In addition, adverse weather and
atmospheric conditions can significantly degrade the performance of EO/IR sensors .
More recently, radars have become the go-to sensor in many wide-area surveillance ap-
plications because of their ability to scan large areas quickly and operate in all weather
and lighting conditions. Improvements in detection capabilities for small targets, even
at long ranges, and lower costs has made them feasible for use in an increasing number
of applications.

An example of one such application comes from the Secure Border Initiative
(SBI) established by the U.S. Department of Homeland Security (DHS) back in 2006.
Through its SBInet program, the initiative sought to deploy the technology necessary
to monitor the nearly 6000 miles of northern and southern land borders of the United
States. The backbone of the system was a network of tower-mounted radars designed to
find and track human targets. Once the radar had acquired a target, higher resolution
sensors (such as EO/IR) would be cued to help identify and classify it. Although the
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program was ultimately canceled in 2011 because of concerns about cost and effective-
ness [150, 33], the need for this kind of surveillance capability remains. The experience
validated the use of stationary radar for wide-area ground surveillance, but exposed
some of the limits of conventional tracking algorithms when applied to this type of
problem.

Another example is the U.S. Army’s need for persistent surveillance around
forward operating bases in order to provide critical situational awareness. For this
purpose, they currently employ the Persistent Threat Detection System (PTDS) and
its smaller cousin the Persistent Ground Surveillance System (PGSS) [192]. These are
comprised of aerostats (i.e. unmanned unpowered balloons), tethered to ground control
stations, that carry a suite of sensors and communications equipment. Such systems are
an attractive lower cost alternative to flying unmanned aerial vehicles (UAVs) to perform
the same mission. Early generations relied primary on EO/IR sensors, or used radar
exclusively for detecting low-altitude aircraft and vehicles, but the latest incarnations
include modern radar technologies that enable the detection of “dismounted forces”.

The use of a stationary radar to continuously scan vast outdoor regions in order
to find and track human targets is indeed an important problem. On the surface this
is a classic multiple target tracking (MTT) problem with application-specific choices
of sensor, target, and environment. However, a closer examination reveals that the
underlying assumptions made in conventional approaches to MTT are not well suited
to the particular requirements of this application.

Conventional approaches frame tracking as a state estimation problem. This
leads to algorithms whose output is a set of descriptions, one for each target, of the
distributions over the possible states. When the state distributions are Gaussian, each
description consists of the sufficient statistics: mean and covariance. For general state
models that do not have an analytic form, each description consists of a set of samples
from which various properties of the distribution can be estimated.

The problem with this is that it does not characterize the uncertainty that is
most important in a surveillance application. The primary objective in this case is to
understand what is happening within the surveillance region and it is this uncertainty,
in terms of the number of targets and their trajectories, that needs to be quantified.
While the output of a conventional tracker does provide a distributional estimate of the
state of each target, it only provides a point estimate of the overall picture. It conveys
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just a single estimate of the number of targets and a single set of state distributions
which describe their respective trajectories. The state distributions themselves are de-
rived from either the best estimate of the mapping of measurements to targets or an
approximate marginalization over all possible mappings.

Despite the fact that the uncertainty in the individual trajectories themselves
is modeled and quantified, the state distributions are estimated using one interpretation
of the data. Even if that interpretation is optimal in some sense, the output only offers
one view of what is happening and does not tell us anything about the alternatives.
This poses the risk that a threat or target of interest might be missed.

Conventional tracking algorithms treat the mapping of measurements to tar-
gets as a subproblem that needs to be solved in order to estimate the distributions
over states for each target. This is appropriate when the primary objective is to obtain
state estimates and the distribution over possible mappings can be assumed to have one
dominant mode so that it need not be subject to any further analysis. In general, this is
the case for applications in which there are relatively few false alarms or there exists a
good physical model of the target dynamics. In such applications, a detection is a pretty
reliable indicator that a target is present and the question of which measurements are
associated with which targets is only of interest to ensure that the state estimation for
each target is based on coherent input.

Most existing tracking algorithms were motivated by applications involving air-
borne targets that share the aforementioned traits. For aircraft, missiles, and projectiles
we have excellent dynamics models that enable us to accurately predict the future state
of such targets given a good initial estimate. The objective of tracking here is to obtain
such estimates from the noisy measurements in order to facilitate predictions. Except
for extreme scenarios, the false alarm environment is such that the distribution over
mappings of measurements to targets is sufficiently peaked that averaging over multiple
mappings, or simply using the best guess, can be expected to yield a reasonable state
estimate.

For the present application, however, a better approach is to frame tracking
as a data association problem. From this perspective, state estimation becomes a sub-
problem that needs to be solved in order to estimate the distribution over mappings of
measurements to targets.

The mappings are the focus here because they in fact provide a picture of what
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is happening within the surveillance region. Each mapping of measurements to targets
represents a set of beliefs about the origin of each measurement. Note that the mappings
are not necessarily one-to-one as some measurements may originate from noise sources
and be regarded as false alarms, while others may cover multiple targets. Each mapping
also tells us the number of targets, where they are, and how they are moving.

Clearly, if we limit our consideration to the measured quantities referenced by
the mapping, then our knowledge of the where and how the targets are moving will
be somewhat imprecise (although sufficient in some instances) and perhaps incomplete.
Fortunately this is not necessary. Since the mapping tells us which measurements origi-
nated from a each target, we can readily derive more precise estimates for the respective
trajectories using state estimation. In other words, there is an equivalence between a
mapping of measurements to targets and a set of state distributions.

This approach leads to tracking algorithms whose output is a description of the
distribution over mappings of measurements to targets. Since this distribution has no
analytic form, the description will consist of a set of samples. These samples can then
be analyzed in order to characterize the uncertainty in different interpretations of the
data and hence different views of what is happening in the surveillance region. Thus,
the output provides a distributional estimate that is directly matched to the primary
objective.

Having such a distributional estimate enables us to visualize the uncertainty
for a human operator or quantify it for further automated analysis. The samples can
also be analyzed to find the modes of the distribution or to identify and quantify things
like ambiguities in target identity or crossing patterns.

Of course, state estimation does not cease to be important even when tracking
is framed as a data association problem. In fact, it can be regarded as the secondary
objective in this case. Although it was treated here as a subproblem in the process of
generating the output, once a particular mapping is deemed to be of interest we can
appropriately shift focus to state estimation and use the mapping to generate any or all
of the state distributions.
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1.2 Background

1.2.1 State Estimation

Whether as the primary or secondary objective – depending on how the track-
ing problem is posed – kinematic state estimation plays a vital role in all tracking
systems. The process can be described as follows.

For a given target, let its state at time n be represented by the vector xn.
The state of the target is assumed to be unobserved and evolve over time as a Markov
process. With each scan of the sensor, the corresponding latent state is assumed to emit
an observable measurement. This implies that conditional on the previous state, the
target’s state at time n is assumed to be independent of all earlier states and assumed
to probabilistically generate the measurement vector yn. These assumptions define a
generative model in which the joint distribution over states and measurements has the
form:

p (x1, . . . , xn, y1, . . . , yn) = p (y1, . . . , yn | x1, . . . , xn) p (x1, . . . , xn)

= p (y1 | x1) p (x1)
n∏
i=2

p (yi | xi) p (xi | xi−1) . (1.1)

The target dynamics are modeled by the state transition distribution, p(xi |
xi−1), and the measurement process is modeled by the emission distribution, p(yi | xi).
Note, however, that the state of a target is not limited to strictly representing its
kinematic properties such as position, velocity, or acceleration. To satisfy the Markov
property, the state need only provide a complete summary of the target’s past. This
may include any relevant time-varying parameters. Note also that the state transition
distribution and emission distribution may be time-varying.

This factorization of the joint distribution over states and measurements is
equivalent to the following graphical model:

x1

��

// x2

��

// . . . // xn−1

��

// xn

��

y1 y2 yn−1 yn

where the circles represent the latent state variables and the squares represent the
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observed measurement variables. The conditional independence structure expressed
here is that of a standard Hidden Markov Model (HMM).

The goal here is to estimate, for each target, the posterior distribution of the
state variables given the measurements: p(x1, . . . , xn | y1, . . . , yn). However, to reduce
computation and storage requirements, rather than computing the full joint posterior,
it is common to sequentially estimate the marginal posterior of the state at the current
time step. This is known as the filtering distribution which is given by:

p(xi | y1, . . . , yi) = p(yi | xi) p(xi | y1, . . . , yi−1)
p(yi | y1, . . . , yi−1) , (1.2)

where i = 1..n with:

p(xi | y1, . . . , yi−1) =
ˆ
p(xi | xi−1) p(xi−1 | y1, . . . , yi−1) dxi−1 (1.3)

and

p(yi | y1, . . . , yi−1) =
ˆ
p(yi | xi) p(xi | y1, . . . , yi−1) dxi. (1.4)

When the state and measurement variables are Gaussian, and the dynam-
ics and measurement models are both linear, the (discrete-time) Kalman filter (KF)
provides an efficient and optimal recursive solution to the problem of estimating the
marginal posterior [95, 6, 13]. The filter is optimal in the sense that, given accurate dy-
namics and measurement models, the resulting state estimate can be shown to minimize
the mean squared error. Even when the variables are not Gaussian, but we have the
first two moments, the Kalman filter can be shown to be the best linear state estimator.

Although the Kalman filter does not estimate the full joint posterior, given the
sequence of state estimates up to time n, the earlier estimates can be revised to incor-
porate information from the latter measurements using one of the so-called “Kalman
smoother” algorithms, such as the Rauch–Tung–Striebel (RTS) smoother [159]. That is,
the smoother processes the estimates xi, . . . , xn to produce an estimate of the marginal
posterior: p(xi | y1, . . . , yn), where 1 ≤ i < n.

Since its introduction, the Kalman filter has played a central role in many
tracking algorithms due to its ease of formulation, suitability for real-time applications,
and optimality properties. In practice, it often performs surprisingly well even when the
underlying assumptions are not entirely justified making it a good place to start even
for complex problems. The standard Kalman filter approach has also been adapted to
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accommodate nonlinear dynamic and measurement models. Unfortunately, these new
estimators are nonoptimal.

One such adaptation is the extended Kalman filter (EKF), which works by
linearizing a nonlinear, but differentiable, function around the current state estimate
using a multivariate Taylor series expansion. The Jacobian matrix then takes the place
of the linear transformation in the standard Kalman filter equations. Although often
used owing to its relative simplicity, the EKF is sensitive to the initial state estimate
and modeling errors. In cases where the linearized approximation is poor, the resulting
biases can cause the filter to rapidly diverge leading to unbounded estimation errors.
Unfortunately, it can be difficult to determine precisely when divergence may occur
because it depends on the nonlinear function, the current state estimate, and the mag-
nitude of the covariance. Filter consistency is also a concern as the EKF has been found
to have a tendency to underestimate the state covariance.

A more recent adaptation intended to address the limitations of the EKF is
the unscented Kalman filter (UKF) [91, 92]. It works by using the unscented transform
(UT) to propagate the mean and covariance of the current state estimate through the
nonlinear function. The basic idea is to generate a Gaussian approximation of trans-
formed state rather than attempt to approximate an arbitrary nonlinear function. The
unscented transform is a deterministic sampling technique in which a minimal set of
so-called sigma point points, carefully chosen based on the moments of the input distri-
bution, is transformed by the nonlinear function; the transformed points are then used
to recover the moments of the output distribution. For the Gaussian random variables
used in the UKF, the mean and covariance estimates are accurate to the 3rd order (of a
Taylor expansion) for any nonlinearity [193]. In addition to providing better accuracy
than the EKF with computational complexity of the same order, the UKF has the ad-
vantage of not requiring any derivatives of the nonlinear functions since they need only
be evaluated at the sigma points. Not only does this spare the cost of computing the
Jacobian for differentiable models, it allows the UKF to accommodate any dynamics or
measurement model including those that are discontinuous or inherently discrete.

For nonlinear or non-Gaussian models, there are no general analytic solutions
for optimal state estimation. In cases where the EKF and UKF are inadequate, particle
filters have become the method of choice for deriving approximate solutions [71, 47].
Particle filters are a broad class of sequential Monte Carlo (SMC) algorithms that use a
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set of randomly selected sample elements (the “particles”), and their associated weights,
to represent an arbitrary probability density. The sample elements and weights are gen-
erated using sequential importance sampling (SIS). As the number of sample elements
increases, this empirical estimate of the density becomes more exact. The moments
or even a functional estimate of the density can be obtained directly from the sample.
Particle filters can be used to sequentially approximate either the full joint state poste-
rior or the marginal state posterior, at each time step. This flexibility comes with the
cost of increased computational complexity that grows with the number of particles. In
addition, their performance depends on a having suitable importance distribution, from
which the sample elements are drawn at each time step, and this can be difficult to spec-
ify for some applications. The difficulty lies in the facts that the importance distribution
must approximate p(xn | xn−1, y1, . . . , yn), in order to minimize the variance of the
weights and hence the variance of the state estimates, and still be a distribution from
which sampling is feasible. Even with a good importance distribution, the variance of
the weights increases over time so an additional challenge is avoiding too many degener-
ate particles (i.e. those with weights close to zero). This is usually addressed using some
sort of resampling procedure in which particles with negligible weights are replaced by
new particles generated close to particles with higher weights [84]. Currently, there is
no universal approach to mitigating the impacts of particle degeneracy that works for
all applications.

One approach to modeling a richer set of target motions is to consider the dis-
tribution, p(xi | xi−1, ui−1), where ui−1 is an unknown input that must be estimated
along with the state. Another approach is to assume that the target’s motion can be
described using one of a finite number of different models. The state is then estimated
using each of the possible models and either the estimate from the best model is selected
or a new estimate is computed as a weighted combination of the possible models. Typ-
ically, the latter is preferred and the weighting is based on the posterior probability of
the respective model being correct, given the measurements up to the current time. This
approximates the state transition model using a finite mixture model. Unfortunately,
the optimal implementation is impractical since it requires summing over an exponen-
tially increasing (over time) number of model sequences so nonoptimal approximations
are required. For linear-Gaussian models, the standard multiple model approaches are
the generalized pseudo-Bayesian (GPB) and the interacting multiple model (IMM) esti-
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mator [6]. These approaches merge model sequences that differ in their older steps and
approximate the mixture distribution using its first two moments. When the number
and structure of the models varies over time, the variable structure estimators can be
used [115].

1.2.2 Data Association

When discussing state estimation, we implicitly assumed that it was known
which measurements originated from the given target and hence which should be used by
the model in (1.1). In general, this will not be the case because the presence of multiple
targets, missed detections, or false alarms all create uncertainty in our knowledge of
the measurement origins. The data association problem is to resolve this uncertainty by
determining the correct mapping of measurements to their sources. Given this mapping,
which may be represented as a probability distribution to quantify the uncertainty, state
estimation can be performed. Of course, when tracking is posed as a data association
problem, obtaining this mapping is not just a subproblem to be solved for the sake of
state estimation but the goal itself.

Let ω = {τ0, τ1, . . . , τK} denote the mapping of measurements to their sources,1

where τ0 is the set of indices to the false alarm measurements and τk is the set of indices
to the measurements originating from the k-th target, with 1 ≤ k < K. Thus, given n
measurements, ⋃Ki=0 τi = {1, . . . , n}.

To describe how data association fits into the picture, we must alter our pre-
vious notation a bit to emphasize the scan-based collection of the data. Let x(k)

si rep-
resent the state of the k-th target at scan i. The set of all state variables during the
lifetime of the target is denoted by X(k). Let the set of measurements generated dur-
ing scan i be denoted by Ysi , so that given n measurements collected after t scans,⋃t
i=1 Ysi = Y = {y1, . . . , yn}. The set of measurements that originated from the k-th

target are denoted by Yτk . Each target is assumed to generate at most one measure-
ment per scan and each measurement is assumed to originate from a single target. This
implies that |Yτk ∩Ysi | ≤ 1 for k = 1, . . . ,K and τi∩ τj = Ø for i 6= j. For a treatment
of split and merged measurements, see [120, 99, 64].

In order to significantly simplify multi-target models, individual targets are
1This form is merely a notational convenience. All of the information contained in the mapping can

readily be encoded in a random variable of fixed dimension.
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assumed to move independently and to be independent of any false alarms. Thus, the
evolution of each target’s state over time can be modeled separately. For the k-th target,
that can be written as:

p
(
X(k) | Y, ω

)
= p

(
X(k) | Yτk

)
, (1.5)

where the conditioning on ω tells us the which measurements in Y correspond to the
target and thus which will contribute to the state estimate. Given those correspon-
dences, we can then derive the model from the joint distribution, p(X(k), Y τk), which
is defined analogous to (1.1).

Note that in our earlier discussion of state estimation, the correspondence
between the state variables and measurements was tacitly assumed to be one-to-one for
the sake of simplicity, but that will not necessarily be the case. When a target is not
detected during a scan within its lifetime, there may be state variables for which there is
no corresponding measurement. In this case, the model is adapted by simply omitting
the emission distribution for these scans. There may also be state variables for times that
fall between scans when there is no possibility of having a corresponding measurement; it
depends on how the model was defined. In that case, additional transition distributions
are inserted without any corresponding emission distributions.

Of course, defining such a model for the evolution of a target’s state first
requires that the appearance of the target be identified because without this information
we cannot initiate the model. And this brings up an important point to reiterate: state
estimation itself does not identify targets; it only describes the time-varying behavior
of targets that have already been identified. It is the role of data association to identify
the targets. Depending on the algorithm, the appearance and disappearance of targets
may be inferred from a global model for the collection of tracks or determined using
some kind of explicit track management logic. The latter is more common owing to the
ease with which it can be integrated into a sequential state estimation framework. The
track management logic is typically based on likelihood ratio tests of the true target and
false alarm hypotheses that are applied to sequences of measurements. For a discussion
of likelihood ratio development and track scores, see [13].

Having established the presence of target k, a model based on (1.5) can be
used to estimate its state given a point estimate of ω. One approach to solving the
data association problem is to derive such an estimate. However, in the context of state
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estimation, the mapping of measurements to their sources need not be explicit. Instead,
ω can be treated as a latent parameter, described by its own probability distribution,
to be marginalized out by summing over all possible values. Using this approach, the
state of the k-th target can be written as:

p
(
X(k) | Y

)
=
∑
ω

p
(
X(k) | Y, ω

)
p(ω | Y) , (1.6)

which is the optimal Bayesian solution. The solution to the data association problem
in this case requires a characterization of the distribution of the mappings, given the
measurements, p(ω | Y).

Unfortunately, as the number of measurements increases, the number of possi-
ble mappings grows exponentially. Thus, there is a potential combinatorial explosion in
the complexity of optimal solutions using algorithms based on either (1.5) or (1.6). This
problem is most acute for high false alarm environments. The complexity is intrinsic to
the nonlinear assignment problem that data association attempts to solve. Nonlinear
assignment is one of the hardest combinatorial optimization problems to solve exactly
[140]. In fact, it has been shown to be NP-hard [146].

One way to reduce the necessary computation is to process the scans sequen-
tially and assume that the association of past measurements to their sources remains
fixed so that only the mapping of the measurements in the current scan needs to be
computed at each step. This is referred to as single-scan data association. However, the
reduced computation comes at the expense of poor performance in the face of missed
detections because sequential approaches make an irrevocable association decision after
each scan. This means that it is not possible to revise previous association decisions in
light of new information. The alternative to this approach is referred to as “deferred
logic” or multiple-scan data association, which uses both current and past measurements
when making data association decisions.

Single-scan data association is performed in conjunction with sequential state
estimation, which yields the marginal posterior for the state of the k-th target at each
time step. Depending on the approach, that can be written for scan i as:

p
(
x(k)
si | Ys1 , . . . , Ysi , ω

)
(1.7)

or

p
(
x(k)
si | Ys1 , . . . , Ysi

)
=
∑
ω

p
(
x(k)
si | Ys1 , . . . , Ysi , ω

)
p(ω | Ys1 , . . . , Ysi) . (1.8)
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The second form can be rewritten to reflect the fact that only the mappings that identify
the origin of the measurements in the current scan are relevant. It then becomes [135]:

p
(
x(k)
si | Ys1 , . . . , Ysi

)
=
|Ysi |∑
j=0

βjkp
(
x(k)
si | Ys1 , . . . , Ysi , ωsi(j),k

)
, (1.9)

where βjk is the probability of the association event ωsi(j),k, which describes the asso-
ciation of the j-th measurement in scan i with target k; ωsi(0),k denotes the event that
no measurement is associated with the target. The association probability is given by:

βjk =
∑

ω:(j→k)∈ω
p(ω | Ys1 , . . . , Ysi) , (1.10)

which is the sum of the probability of all mappings that associate target k with the j-th
measurement in scan i or no measurement when j = 0. Despite having been reduced to
a weighted combination of single target state estimates with a single measurement, this
approach to single-scan data association remains NP-hard because of the complexity
required to compute the exact association probability.

At the heart of the data association problem is the posterior distribution of the
mappings: p(ω | Y). The maximum a posteriori (MAP) estimate is the optimal point
estimate of ω for use with models based on (1.5) and the distribution itself is required
for models based on (1.11). To derive this distribution, we once again make use of the
joint model for the target states and measurements, but here we treat the target states
as latent parameters to be marginalized out. This can be written as:

p(ω | Y) ∝ p(Y | ω) p(ω)

=
ˆ

X(1)···X(K)
p
(
X(1), . . . , X(K), Y | ω

)
p(ω)

= p(Yτ0)
[
K∏
k=1

ˆ
X(k)

p
(
X(k), Yτk

)]
p(ω) . (1.11)

The conditioning on ω in the likelihood enables us to initiate the model because it pro-
vides the number of targets and the necessary relationships between the state variables
and the measurements. It is independence assumptions made earlier that justify the
product factorization in (1.11). Each of the joint distributions inside of the integral can
be defined analogous to (1.1). The feasibility of a closed-form solution to the integrals
over the state space depends on the form of the state transition and emission distri-
butions. For the important class of linear-Gaussian models, a closed-form solution is
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indeed possible. Note that here, no explicit track management logic is necessary because
the model is a global model that describes collections of any number of tracks.

Having outlined the probabilistic underpinnings of the data association prob-
lem, let us now review the major families of data association algorithms. As all practical
data association algorithms are necessarily nonoptimal, the different approaches reflect
different tradeoffs with regard to accuracy and computational complexity.

As alluded to earlier, data association can be viewed as a nonlinear assignment
problem with constraints defined by the feasible associations. Such problems are part
of an important class of NP-hard combinatorial optimization problems, which were
originally studied in the context of economics, so there are many techniques available for
finding solutions. Consequently, assignment-based approaches comprise a large family
of data association algorithms. Since the resulting set of assignments represents a point
estimate of ω, these algorithms are used with models based on (1.5). In the single-scan
case, all feasible measurement-to-track associations are considered and the most likely
mapping is generated. This is usually referred to as the global nearest neighbors (GNN)
[13] approach because the output reflects the minimum sum of statistical distances
from each track to its associated measurement. The optimization is typically performed
using either the Munkres (also known as Kuhn-Munkres or the Hungarian algorithm)
[128, 18] or auction [9] algorithms. In the multiple-scan case, the assignment problem
becomes multidimensional, with the number of dimensions is equal to the number of
scans being processed [146, 148]. Data association algorithms of this type have been
developed based on a variety of different techniques including: K-best assignments [129],
integer programming [127], Lagrangian relaxation [148, 147], and genetic algorithms [8].
Track management may or may not be integrated, depending on the algorithm. These
algorithms tend to break down in the face of dense measurements.

Another important family of algorithms are those based on probabilistic data
association (PDA). These algorithms generate approximate solutions to the optimal
Bayesian single-target state estimation problem stated in (1.6). The original PDA
algorithm [175] was a single-scan approach to tracking a single target in clutter. At each
time step, the state estimate is computed based on a weighted combination of estimates,
in the manner of (1.8). Since all measurements that are close enough to the predicted
track contribute to the state estimate, PDA-type algorithms are usually referred to as
all-neighbors approaches, in contrast to the aforementioned nearest-neighbor approach.
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Joint probabilistic data association (JPDA) [58] is the multi-target generalization of
the PDA algorithm. However, in its original form, even the JPDA approximation is
computationally demanding. Not surprisingly, there are numerous lower cost variants
of JPDA that differ primarily in how they compute the association probabilities and
the heuristics used to enumerate the feasible associations. These include: cheap-JPDA
[55], fast-JPDA [54], suboptimal-JPDA [166], and near-optimal-JPDA [164]. There is
even a multiple-scan extension [165]. Track coalescence for closely spaced targets can
be a problem with these algorithms and is usually addressed by intelligently pruning
the association hypotheses that lead to coalescence [17, 55]. IMMPDAF [5] and IPDA
[130] are the most common methods for track management for PDA-based algorithms.

One of the most popular families of data association algorithms are those
based on the multiple hypothesis tracker (MHT) [160]. This popularity is due to the
fact that the MHT was one of the earliest multiple-scan data association algorithms,
which enables it to achieve relatively good performance in challenging environments
such as those with closely spaced targets and frequent missed detections, and included
a complete track management solution. The algorithm works by building and then
maintaining a tree of the possible data association hypotheses. At each time step, the
hypothesis with the highest posterior probability is returned. The hypotheses represent
point estimates of ω which are then converted into state estimates using a model based
on (1.5). In its pure form, MHT uses explicit enumeration of the hypotheses to find
the best mapping. Since the number of hypotheses can grow exponentially over time,
practical implementations must employ various heuristics to control this growth, such
as the clustering of similar hypotheses and pruning those with low probability. Of
course, all this comes at the expense of optimality since there is always the risk of
eliminating the correct mapping. The major variants of the original MHT algorithm
all seek to reduce its computational complexity. One version incorporates the K-best
assignment algorithm [129] to maintain a fixed set of the K best hypotheses at each
time step [37]. The original algorithm is sometimes referred to as hypothesis-oriented
MHT. An alternative track-oriented version [109] was introduced that maintains sets
of potential tracks instead of working directly with data association hypotheses, which
is more efficient. Each subset of tracks corresponds to a different data association
hypothesis. Structured branching MHT (SB-MHT) [40] is another variant designed to
achieve computational savings in high false alarm environments. It uses a simple binary
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sequential hypothesis test to determine whether a target is present in order to avoid
generating too many unlikely hypotheses.

Algorithms based on the probabilistic multiple hypothesis tracker (PMHT)
[180, 181, 38] treat the mapping of measurements to their sources as missing data and
use the expectation-maximization (EM) algorithm [41] to a get maximum a posteriori
(MAP) estimate of the state in the current scan. The EM algorithm provides an iterative
solution to:

arg max
X(k)

∑
ω

p
(
X(k), ω | Y

)
,

which can been seen as a variant of (1.6). Although PMHT was not the first EM-
based tracking algorithm [38] it has become the most widely used, in large part due to
its computational efficiency. PMHT achieves this efficiency by making the assumption
that the measurement-to-track assignments are independent random variables. This
assumption is arguably incorrect, but it avoids the enumeration of possible associations
and the resulting complexity that is linear in the number of targets and measurements.
The original algorithm did not account for clutter, could not handle missing detections,
and assumed that the number of targets was known. Over the years, numerous variants
have emerged to address these limitations and more. PMHT has been extended to
work in cluttered environments [196]. Turbo-PMHT [168] was introduced to speed
convergence and a multiple-scan version was developed to deal with missed detections
[16]. A complete track management system has also been introduced [119].

Viterbi data association (VDA) [156, 153] is the basis of yet another family of
algorithms. The idea behind VDA is to use the Viterbi dynamic programming algorithm
[57] to estimate the most likely sequence of measurement-to-target mappings. The
process can be visualized as the search for the optimal (minimum cost) path through a
trellis in which the nodes represent the measurements and the arcs represent the feasible
associations. The original single-target VDA seeks a solution to:

arg max
ω(k)

p
(
Y, ω(k) | X(k)

)
,

where ω(k) denotes the subset of ω containing the mappings of measurements to the k-th
target. The algorithm works by recursively computing the cost of the optimal mapping
at each time step based on the results from the previous step. When the target (or
processing) is terminated, the optimal path (i.e. the estimate of ω(k)) is recovered by
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backtracking through the trellis from the final step. The underlying model is unlike
those introduced earlier as it is based on the joint likelihood of the measurements and
mappings conditional on the true target state sequence. In practice, the true target state
sequence, X(k), is unknown and must be replaced in the cost calculations by estimates
corresponding to the path under consideration. Thus, the objective function being
optimized is an approximation which can impact the performance of the algorithm.
A multi-target extension known as MT-VDA [154] has also been developed. Track
management is not incorporated into these algorithms.

Finally, there are the data association algorithms based on Monte Carlo meth-
ods. The earliest of these algorithms assumed that simple approximations to the asso-
ciation probability were sufficient and instead sought to address the problem that, in
general, the state distribution given by (1.9) is multimodal and poorly modeled using a
single Gaussian, which is the most common representation due to the fact that it leads
to efficient state estimation algorithms. They employed the Monte Carlo method of
sequential importance sampling (i.e. particle filtering) to represent the arbitrary state
distribution using a set of weighted sample elements [4, 70, 96]. This approach also
made it possible to use nonlinear state transition and non-Gaussian noise models. Sub-
sequent data association algorithms focused on the association probabilities and used
Monte Carlo methods to stochastically explore the combinatorial space of mappings,
p (ω | Y). The resulting exploration yields a sample drawn from that space which can
then be used to estimate various quantities of interest.

Markov chain Monte Carlo (MCMC) was the first such method used for this
purpose and was shown to be effective for a multiple-target multiple-sensor surveillance
problem [141]. MCMC is a general method for generating a sample from an arbitrary
probability distribution, π, by constructing a Markov chain whose stationary distribu-
tion is π. In this context, the state space of the chain is the space of possible mappings
and the sample elements are taken from the states visited. MCMC was used to esti-
mate the association probabilities within a sequential importance sampling framework
designed to propagate non-Gaussian target states [87]. It was also used as an efficient
means of approximating the association probabilities in JPDA [35]. It has been shown
that when the number of targets is fixed, MCMC data association (MCMC-DA) pro-
vides a polynomial-time approximation for JPDA [135]. These algorithms work with
models based on (1.8). MCMC-DA has also been generalized to multiple-scan processing
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using models based on (1.11). These represent a direct solution to the data association
problem and require no external track management logic. The seminal algorithm was
shown to converge to the full Bayesian solution and outperform MHT in challenging
environments such as frequent missed detections and dense clutter [135]. Data-driven
sampling can be utilized to improve the efficiency by reducing the number of samples
needed to effectively explore the space [199, 201]. How best to define the required prior
distribution of mappings, p(ω), when the number of targets is unknown is an open ques-
tion. Nonparametric Bayesian methods have been shown to be a promising approach
[60, 59].

Sequential importance sampling has also been used to draw from the posterior
distribution of mappings. Algorithms of this type are based on the marginal mapping
of each measurement [170, 171]:

p(ωi | y1, . . . , yi) ,

where ωi denotes the indicator variable that maps measurement i to its source. Al-
though they process the measurements one at a time in order to simplify the model,
they are effectively single-scan data association algorithms because older mappings can-
not be changed. A set of weighted sample elements is used to represent the distribution
and each element corresponds to a particular sequence of associations. Here, the in-
tegration over the state variables needed to get the marginal mapping was motivated
by the Rao-Blackwell theorem. The idea being that both the states and mapping are
unknown so the general tracking problem can be posed as a joint estimation problem:
p (X, ω | Y) = p (X | ω, Y) p (ω | Y). By marginalizing out the state variables, the
second term can be evaluated by Monte Carlo sampling and the first term evaluated
analytically. According to the Rao-Blackwell theorem, the result will be a lower vari-
ance estimate [27, 46]. Although the multiple-scan MCMC-DA algorithms were derived
based on different considerations, the benefits apply there as well. Recent work has
extended this approach to include the simultaneous estimation of a parameter vector
for the state transition and measurement models [104].

1.2.3 State Estimation Without Data Association

There are also approaches to state estimation in the general case that do not
require data association as described in the previous section. Such algorithms represent a

19



fundamentally different way of a addressing the problem given multiple targets, missing
detections, or false alarms. In situations where the sensor responses are the result of
overlapping signals or when the signals from individual targets are too weak to exceed
the detection threshold, these are the only approaches that can be used.

The so-called unified tracking approach generalizes the single-target filtering
distribution, equations (1.2)-(1.4), to handle an unknown number of targets [179]. This
is accomplished by defining the state space to be the product of K̄ individual target
state spaces, each of which consists of a continuous part and single discrete element, ∅,
that indicates that the target is not in the surveillance region. The value K̄ represents
a upper bound on the number of targets and can be chosen to be any suitably large
number. In this framework, the state transition distribution, p(xi | xi−1), accounts for
both the physical motion of the targets and their appearance or disappearance because
the multiple-target state encodes the information about the presence of targets. The
need to explicitly map measurements to their sources is obviated by working directly
with the multiple-target state. Updates in this space effectively integrate information
from all possible mappings of measurements to targets [179, section 5.2.1]. Although
unified tracking provides a comprehensive framework for addressing state estimation in
the general case, it is not computationally tractable for most practical applications. The
difficultly of computing the required products and integrals in high-dimensional spaces
largely limits this approach to theoretical interest as a basis for comparison with other
algorithms.

Another approach to generalizing the single-target filtering distribution is the
probability hypothesis density (PHD) filter [124]. Instead of essentially stacking indi-
vidual states into a single large vector as was done in the unified tracking approach,
a random finite set (RFS) [122, 72] is used to represent the multiple-target state as a
single meta-target. Similarly, the measurements collected by one or more sensors can
be represented using a RFS and treated as the output of single meta-sensor. Using the
differential and integral calculus of finite set statistics (FISST) [69], the multiple-target
multiple-sensor state estimation problem can be cast in the familiar single-target single-
sensor filtering framework. Unfortunately, the FISST filtering recursion requires the
evaluation of combinatorial sums of high-dimensional integrals and is generally com-
putationally intractable. In practice, the exact recursion is approximated by one that
propagates the PHD of the multiple-target state [124]. The PHD is the first-order sta-
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tistical moment of the RFS, which is equivalent to its intensity. Thus, the integral of the
PHD for the multiple-target state yields the expected number of targets in the region
of integration and the peaks in the PHD reveal the most probable values of individual
target states. However, even the propagation of the state PHD presents computational
challenges because the recursion still consists of multiple integrals that have no closed-
form solutions in general.

The first practical implementations of PHD filters were based on sequential
Monte Carlo and used a large set of weighted particles to represent the state PHD
[189, 177]. Clustering of the particles is then performed to extract the state estimates.
Later, a more efficient, but more limited, implementation was developed by modeling the
state PHD as a Gaussian mixture which admits closed-form evaluation of the filtering
recursion [188, 187]. This eliminated the problem of having to identify the peaks in
the PHD since they are given by the means of the mixture components and made
extracting state estimates more reliable. However, despite its efficiency compared to
the particle-based variant, algorithms based on the Gaussian mixture PHD also suffer
from computational problems as the number of mixture components grows rapidly and
without bound. Practical implementations must employ strategies to control this growth
through merging and pruning as is done in MHT data association. In the presence of
missed detections and high false alarm densities, PHD filters were found to produce
unstable estimates of the number of targets (i.e. the cardinality of the underlying RFS).
To address this problem the cardinalized PHD filter [121, 123] was introduced which
jointly propagates the distribution of the number of targets along with the state PHD.
A cardinalized Gaussian mixture PHD has also been developed [190].

While PHD filters offer the advantage of sidestepping the NP-hard data asso-
ciation problem by directly propagating an approximation to the multiple-target state,
this is not without a cost. Since they do not record target identities, PHD filters provide
no means of associating the individual state estimates between scans and hence cannot
produce tracks. This is not desirable for applications in which it is necessary to identify
the trajectories of individual targets. Thus, researchers have studied ways combining
PHD filtering with data association [116, 138, 32, 139]. In practice, this involves asso-
ciating the state estimates, derived from the particle clusters or the Gaussian mixture
components depending on the implementation, with target labels using methods analo-
gous to those discussed in section 1.2.2. Managing a tree of hypotheses in the manner of
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MHT is the most common approach. Compared to the actual MHT algorithm, however,
the computational demands are much lower because the set of state estimates is typi-
cally smaller than the number of measurements and no additional filtering is necessary.
Recent work has proposed a track-oriented variant of PHD that uses RFSs to represent
multiple-target trajectories rather than multiple-target states [182].

1.3 Related Work

The focus of the present research is twofold. First, we seek to further develop
the concept of tracking as a data association problem, with a particular interest in mod-
eling the relevant uncertainty. Second, we seek to address a specific, and increasingly
important, problem in wide-area persistent surveillance applications: tracking people
using radar. The related work in the literature will be considered separately for each of
these areas. However, let us first put forth some of our assumptions and discuss some of
the special challenges presented by the motivating application in order to concentrate
on the appropriate prior art.

1.3.1 Assumptions

The targets of interest are assumed to be individual human walkers moving in
an outdoor non-urban environment. Tracking people in urban environments, especially
using radar, presents unique challenges (e.g. highly constrained line of sight visibility
and multi-path reflections) that will not be considered here. While recognizing that
humans are by no means limited to walking, dynamic models for running or foot-speeds
beyond that of a typical walker will not be considered here either. Targets are assumed
to move independently; group dynamics and models of target interaction will be left for
future work.

Most approaches to people tracking assume that some appearance information
is available from which measurements can be classified or associated. However, in the
present work humans are treated as “small targets” [48] or “point targets” as they are
commonly known. Point targets are defined as those whose measurements do not include
any information about the target’s appearance, features, or attributes. That is to say,
targets for which we only have kinematic measurements, position and its derivatives,
and possibly information related to the confidence of the detection (e.g. signal strength).
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Such targets are essentially indistinguishable given a single measurement. Only by
observing specific time-varying patterns in the data that correspond to the target’s
motion, can they be recognized. Here, we further restrict our attention to point targets
for which only position measurements are available. This is due to the fact that this
research was originally inspired by a surveillance application that employed low cost non-
coherent radars, which cannot exploit the Doppler effect to provide (radial) velocity
information. However, since position is the lowest common denominator, the point
target assumption establishes a performance baseline that is applicable to any detector.
Future studies can then investigate the potential gains from additional measured values.

The surveillance region is assumed to be periodically scanned using a single
radar. Sensor scheduling and the fusion of information from multiple sensors or different
sensor modalities will not be considered here. The radar is assumed to be tower-mounted
or airborne to achieve sufficient coverage. For mobile airborne radar, the platform
motion is assumed to be relevant only to the detector. Regarding the radar itself,
details such as the type of radar, operating frequency, or antenna size and type are
assumed to have been appropriately chosen for the detector and the given environment.
The only constraint is that a single target is assumed to generate one measurement.
That is to say, there are assumed to be no split measurements. Due to the resolution of
a typical radar system, closely spaced targets are, however, expected to result in merged
measurements.

1.3.2 Challenges

Most tracking algorithms were initially developed for air targets. Tracking
ground targets, on the other hand, presents additional challenges [31], especially when
the targets of interest are people.

The first challenge is a spatially varying probability of detection (PD) that
leads to sparse measurements. In order to detect a target, its return must be separated
from the clutter returns which will vary in strength and number depending on the
background environment. Thus, the reliability of the detection process is spatially
dependent. Where the radar signal is blocked by terrain features, vegetation, or man-
made structures, detection becomes impossible. This effectively reduces the PD there to
zero for any threshold above the noise floor. Furthermore, the area of these shadowed
regions can be significant even given an optimal placement of the radar. It is also
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likely that some targets will take advantage of the visibility restrictions in an attempt
to evade detection. Unlike vehicles, people are small enough and maneuverable enough
to effectively exploit this advantage when possible. Even in the absence of any active
evasion, people are more likely to be naturally obscured by the terrain and vegetation
given their size. A consequence of this limited visibility is that the tracker may have
to endure long periods without any measurement updates when a target enters one of
these blind spots.

Unfortunately, even in areas with full sensor coverage, achieving a sufficient PD
with an acceptable probability of false alarm (PFA) can be difficult for human targets.
Compared to vehicles, people have a relatively small radar cross section (RCS) and they
effectively change shape constantly as they walk with the movement of the head, limbs,
and torso. They reflect only a small amount of energy back to the detector, primarily
from the torso, and their non-rigid body motion causes the radar echo characteristics to
change with their stride. People are also relatively slow and prone to stopping, which
makes them difficult targets to discriminate against background clutter. The standard
approach, and the basis of the Ground Moving Target Indicator (GMTI) mode, of using
the Doppler velocity to distinguish moving targets from stationary clutter becomes less
reliable as their in-range speed goes to zero [43]. With this approach, there is a trade-
off between minimizing clutter returns and the minimum detection speed of the target
[21, 162]. However, one of the ways a search radar can improve the PD (for a given
PFA) is to reduce the scan rate in order to increase the dwell time to put more energy
on the target. Here, there is a tradeoff to be made between PD and the revisit rate.
If we favor an increased probability of detection to compensate for the aforementioned
detection difficulties, the tracker must again endure sparse measurements.

The next challenge is a high false alarm rate. Unlike the sky, the ground is rich
with potential sources of unwanted radar returns. This so-called clutter complicates the
detection of ground targets and is a major source of false alarms. Wind blown foliage,
for example, can produce a Doppler spectrum much like a typical human walker.

Limited visibility not only impacts the sparsity of the measurements, but it
also exacerbates the problem of false alarms because it reduces the overall expected
probability of detecting the target in a single-scan. Thus, if we do not want to give up
too much PD in the visible regions, then we need a tracker that can handle potentially
large numbers of false alarms. The option of boosting PD using a detection threshold
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that increases the false alarm rate of the detector is only viable if the tracker can mitigate
the false alarms and avoid wasted resources.

Finally, the last challenge is maneuverability. The motion of even a nimble
fighter plane is relatively constrained by aerodynamics. By comparison, ground targets
are considered to be highly maneuverable; people even more so than vehicles. Within a
typical detection period of 30 seconds to 3 minutes (as observed in sample data), a person
can start, stop, change their speed to any fraction of their maximum or change their
heading to any direction. Said another way, the maneuver time constant is much less
than the sample period. The environment might restrict some of these possibilities, but
in general, human motion is relatively kinematically unconstrained when observed on
this time scale. Most tracking applications discussed in the literature assume frequent
measurement updates so they are able to use dynamics models based on the target
kinematics that are reasonably accurate over short intervals. A small amount of random
noise is enough in this case to account for modeling errors. Here, we do not have that
luxury.

1.3.3 Tracking as Data Association

Given the intimate relationship between state estimation and data association,
there are many tracking algorithms that might be said to focus on the data association
problem. We can broadly divide these algorithms into two categories based on the type
of output they produce. Those in the first category only produce a point estimate of
ω representing a single set of data association hypotheses that conveys no information
regarding the uncertainty. An example of this would be a correlation tracker designed to
associate detections of the same object based on their similarity in appearance. There
are numerous such algorithms in the literature with the stated objective of determining
these associations. However, the focus on data association here is essentially semantic
as the results are no different than what we would obtain if the nominal emphasis was
on state estimation. Typically, this difference in emphasis follows from the fact that
the measurements themselves describe the most important aspects of a target’s state,
such as its position, with sufficient precision. Of course, even in this case the associated
measurements are generally still subject to state estimation in order to infer unmeasured
components of the state, such as target velocity.

Algorithms in the second category produce a distributional estimate of ω based
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on a statistical model of the data association problem itself. Since this cannot be done in
closed-form, such estimates will consist of a sample from the modeled distribution from
which we can extract the desired information. These algorithms represent the essential
prior art for the current research. There are a number of precedents for performing
inference on the posterior distribution of mappings, and we will remark on where and
why the associative tracking model proposed in the next chapter deviates from them.

Pasula et al. [141] appear to have been the first to use a sample from p(ω | Y) to
solve the data association problem in a tracking application. In the context of multiple-
sensor traffic surveillance, they showed that a sample from the posterior distribution
of the mappings generated using Markov chain Monte Carlo (MCMC) can be used to
approximate the expected value of some function, f(ω) , with respect to p(ω | Y).
Their algorithm essentially addressed multiple-scan data association using a model in
the form of (1.11). Here, the latent states were introduced into the model for the express
purpose of rendering the observations from different cameras conditionally independent,
rather than being an integral part of the concept and something that we might want
to recover given a point estimate of ω, but the end result is analogous. However, they
deviated from the usual assumption that the transition distribution (including its initial
value) governing the evolution of the latent variables is known and unchanging, and re-
learn those parameters whenever a new target is observed. The parameter learning is
performed using expectation maximization (EM) [41] (in a process known as the Baum-
Welch algorithm) where the E-step employs MCMC to generate a sample from p(ω | Y)
that is then used to compute E[X | ω, Y].

All targets (i.e. vehicles) were assumed to have been detected at each oppor-
tunity and generate one and only one measurement per sensor. There were assumed to
be no false alarm measurements. Thus, determining the appearance and disappearance
of targets was not an issue in this application. Instead, the focus was entirely on the
so-called object identification problem, which is equivalent to determining the origin of
each measurement and hence equivalent to the data association problem. The MCMC
sampler was implemented using the Metropolis-Hastings algorithm (see section 2.4.1)
with a simple proposal based on swapping assignment pairs across one pair of sensors.
Experimental evaluation was performed using three sensors and approximately one hun-
dred measurements. They concluded that the sampler chain converged “very quickly”
although no convergence assessment was provided. The work of Pasula et al. was an
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important first step in validating the concept of MCMC data association (MCMC-DA)
but leaves open the critical question of how to deal with false alarms, which makes
determining the appearance and disappearance of targets non-trivial.

Oh et al. [135] provided the first comprehensive solution to MCMC-DA that
could handle missing measurements, false alarms, and track management. They pro-
posed both single-scan and multiple-scan algorithms. The single-scan algorithm, how-
ever, assumed that the number of targets was fixed and known, perhaps based on some
external track management logic. It used MCMC and the Metropolis-Hastings algo-
rithm to generate a sample from:

p(ω | Ys1 , . . . , Ysi) ∝ p
(
Ysi | Ys1 , . . . , Ysi−1 , ω

)
p
(
ω | Ys1 , . . . , Ysi−1

)
= p

(
Ysi | Ys1 , . . . , Ysi−1 , ω

)
p(ω) ,

at each scan. The likelihood term is given by:
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]
dx(k)

si , (1.12)

where x(k)
si denotes the kinematic state of the k-th target during scan i and Yτk(si)

denotes the corresponding measurement based on the mapping ω. Note that only the
mappings of the measurements in scan i change during sampling; the rest of ω remains
fixed. The prior distribution of the mappings, p(ω), was defined based on a Poisson false
alarm model and the assumption of a spatially uniform probability of detection (PD).
The proposal distribution maintained the status quo with a probability of 0.5, otherwise
a pair of measurements was selected from which an association was added, deleted, or
switched, depending on their initial mappings. The pair of measurements was selected
uniformly at random with one measurement chosen from among those recently assigned
to targets and the other chosen from among those in the current scan and validated for
the given target. Measurement validation was used to determine which measurements
could plausibly be associated with a given target in order to reduce computation. For
target k the determination was made by applying a fixed threshold to (1.12). Bounds
on the rate of convergence were proven and it was shown that the algorithm provides a
polynomial-time approximation to JPDA.
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The multiple-scan algorithm relaxed the assumptions of a fixed and known
number of targets and thus provided a complete solution to the general data association
problem. It used MCMC and the Metropolis-Hastings algorithm to generate a sample
from the posterior distribution of the mappings based on a model in the form of (1.11).
The prior distribution of the mappings, p(ω), was again defined based on a Poisson
false alarm model and the assumption of a spatially uniform PD. However, here it
included two additional terms based on a Poisson target appearance (birth) model and
the probability of a target disappearing in a given scan. The proposal distribution
consisted of a mixture of five reversible moves (or pairs of moves for those that are
not self-reversible): add/delete, split/merge, extend/reduce, update, and switch. To
improve the performance of the algorithm, the moves made use of a neighborhood
tree defined around each measurement. The neighborhood tree effectively represented
the feasible associations as determined by a distance-based gating criteria, where the
maximum distance was computed by considering the maximum speed of any target and
the number of consecutive missing measurements that would be tolerated in a track.

Having provided a complete probabilistic solution to the data association prob-
lem for multiple-target tracking, the work of Oh et al. had a significant influence on the
present research. The associative tracking model, which will be presented in the next
chapter, builds on their multiple-scan approach to address its limitations with respect
to our motivating application. There are two changes to the basic model. The first is to
accommodate a spatially varying PD and the second is to the prior distribution of the
mappings. Their prior concentrates a lot probability around the expected number of
targets, which is given by the birth rate parameter. This is poorly suited to surveillance
applications because the number of targets is unknown and one of the very things that
we wish to learn from the model. In practice, we also found it difficult to determine
an objective value for the probability of disappearance. This was complicated by the
fact that the overall performance did not always vary predictably with changes in these
values. How best to represent our ignorance regarding the possible mappings is an open
question for which we do not have a specific answer. Thus, we elected to study this
aspect of the problem in detail in chapter 3 and then evaluated a number of promising
candidates.

Beyond the changes to the model, we also sought to improve the inference
algorithm. When applied to our data, the proposal distribution used by Oh et al. of-
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ten suffered from a very low (under 5%) acceptance rate. The sampler also exhibited
significant sensitivity to the initial state, which raised concerns about about how ef-
ficiently it was exploring the space of mappings and whether our posterior estimates
would converge given a realistic sample size. They indicated that a greedy initializa-
tion scheme was used that may have started the sampler in a high probability initial
state and therefore masked this problem. The performance bottleneck was primarily
the add move, but the extend and update moves were similarly problematic because
they used the same procedure for selecting the false alarm measurements that are to
become target measurements in the proposal. At issue is the probability with which the
selection procedure results in a favorable sequence of measurements under the model.
An additional complication is that the selection procedure itself has parameters that
must be tuned. This motivated us to consider a data-driven proposal that makes use of
a generalization of the neighborhood tree that we call the feasible graph. When taken
together, the neighborhood trees for each measurement comprise a graph that encodes
the feasible associations. Oh et al. introduced the concept of using such a structure
derived from the set of measurements to improve the performance of the proposal dis-
tribution. In their case, the collection of neighborhood trees helped the sampler avoid
making proposals with negligible likelihood by requiring the presence of an edge be-
tween consecutive measurements mapped to the same target. We extend this concept
by first computing a weight for each edge that is related to the expected likelihood.
Then we exploit the directed acyclic structure of the graph to efficiently find minimum
cost paths, where the cost is an approximation of the negative posterior probability,
that are likely to correspond to tracks.

Recognizing the potential problems with using a Poisson target appearance
(birth) model when the number of targets is unknown, Fox et al. [60] proposed using a
nonparametric prior for p(ω) based on the Dirichlet process (DP) for multiple-scan data
association models. The details of this and related prior models are covered in chapter
3. For now let it suffice to say that it provides a principled probabilistic approach to
modeling ignorance, with respect to the number of targets, in a way that lets the data
drive the creation of tracks. They derived the model for p(ω | Y) by assuming that each
measurement, conditional on a parameter representing the latent state of the underlying
target, could be described by a Gaussian mixture with one component for each target.
The weight of each component is the probability that the measurement originated from
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the corresponding target. Since the number of targets, and hence the number of mixture
components is unknown, a Dirichlet process mixture (DPM) [131] was used to model a
countably infinite number of targets. A DPM places a Dirichlet process (DP) prior on
the countably infinite set of mixture weights. Those weights are then integrated out in
closed-form to get the distribution of the implied mappings of targets to measurements,
p(ω). The parameters representing the states were assumed to be Gaussian so those too
were integrated out in closed-form to get the likelihood, p(Y | ω). Inference was based
on a posterior sample generated using MCMC via the Gibbs sampling algorithm (see
section 2.4.1).

Their work established two important precedents. The first was the use of
nonparametric prior models for tracking applications in which the number of targets
is unknown. Although the idea seems obvious, the second precedent is the use of the
posterior sample for something other than generating a single collection of state esti-
mates. In other words, Fox et al. appear to have been the first to characterize the
uncertainty of some relevant aspect of the tracking problem by considering the target
crossing ambiguity. However, despite these important contributions, their algorithm
does not provide a complete solution to the general multiple-target tracking problem.
The primary deficiency is the lack of a false alarm model, which is necessary for any
practical application, and traditionally this has been something that is incorporated
into the prior distribution of the mappings. In addition, the lack of a PD model is also
problematic and traditionally this too has been incorporated into the prior as was the
case in Oh et al. Unfortunately, nonparametric priors, such as the DP, are not amenable
to such modifications. Finally, their algorithm does not address the critical issue of how
to determine a suitable value for the one and only parameter of the DP prior. The DP
has a scalar concentration parameter that controls its tendency to form new clusters.
The resulting prior probabilities are sensitive to the choice of this parameter so it must
be chosen carefully. Since the concentration parameter affects the expected number of
clusters, which of course is unknown, it should be treated as a random variable in the
model with its own hyperprior. How best to do this is an open question. Our asso-
ciative tracking model addresses each of these issues so that nonparametric priors can
be used for data association in the general case. This is accomplished by introducing
a set of false alarm indicator variables, one corresponding to each measurement, that
allow us to factor the prior over mappings into a false alarm component and a target
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cluster component. These indicators are defined so that they are consistent with the
mappings in ω and are thus redundant in terms of information; serving only to factor
the prior so that target clusters and false alarm counts can be treated separately. The
treatment of the spatially varying probability of detection is incorporated into the mea-
surement likelihood model because the PD is now dependent on the position state and
thus independent of p(ω). A principled hyperprior for concentration parameter is also
proposed.

Even if we accept the model from Fox et al. as is, there is also a matter of
practical concern, namely the efficiency of the sampler. They opted to use a Gibbs
sampler, which has a certain appeal because the definition of the proposal distribution
is well-defined and thus spares the practitioner the trouble of selecting one with the
right properties. However, this often comes at the expense of slow movement through
high-dimensional spaces especially when the sampler must pass through low probability
regions. The Gibbs sampler is a common choice for DPM models because the prior can
easily be written as the probability of one cluster assignment (i.e. mapping) conditioned
on all the other assignments. However, this does not make it the optimal choice in
practice. Fox et al. were aware of the potential for slow convergence because they
suggested the inclusion of a track switching step to speed things up, but using our data
this was not sufficient to prevent unacceptably slow convergence and extreme sensitivity
to the initial state for realistic sample sizes. Hence, our decision to work with mixture
proposals like those used by Oh et al. Such proposals enable large and meaningful moves
to quickly explore the space of mappings.

The use of data-driven proposals to improve the efficiency of sampling from
multiple-scan data association models was introduced by Yu et al. [199, 201]. However,
beyond introducing that concept, their work is not germane to the present research.
They addressed object tracking in video surveillance applications with measurements
defined as entire foreground regions extracted by a background subtraction algorithm.
Although they adopt the familiar notation for ω, which represents sets of indices map-
ping each measurement to its source, they have defined it to represent not only the
mappings but shapes (rectangles) positioned to cover the spatial extent of each target
as well. The data-driven part of their proposal distribution does not affect how the
mappings are updated. It is only used to propose changes to the covering rectangles
by exploiting local classifier models. Regarding the proposal of new mappings, they
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do employ extend/reduce moves that can operate both forward and backward in time,
which we have adopted as well.

Their results suggest that such data-driven proposals are effective and confirm
the importance of using appearance information, when available, in data association
models. Unfortunately, the quality of the resulting sample remains an open question
because they focus exclusively on the maximum a posteriori estimate. It is not clear
why a sampling algorithm is preferable to a stochastic optimization algorithm for the
purpose of obtaining such a point estimate. Lastly, their model of p(ω) is a classic
example of what we call property-based priors. Such priors are constructed by taking
the product of functions that each express a preference for some property that we wish
to see in ω, without regard for the combinatorial structure. These will be discussed in
chapter 3.

Although clearly not the authors’ intention, Yu et al. appear to have provided
an example of a discriminative model [132] for data association. In other words, they
essentially modeled p(ω | Y) directly without describing the data generating process in
terms of a properly defined likelihood and prior that together model the joint distribu-
tion of the measurements and ω. It is never made precisely clear what their definition of
ω looks like in terms of random variables, which only adds to the confusion. However,
their description of the appearance “likelihood” component is plainly discriminative in
its construction as it describes the probability of the association and coverage of the
rectangles given the data. In other words, the appearance likelihood is defined using
the probability that the covered image region is a target. They rely on the fact that,
as a function of both ω and Y, this can be normalized such that when integrated
over the measurement space it sums to one. Their inclusion of a prior term does not
change our opinion that the overall model is more appropriately termed discriminative.
This, of course, is a perfectly valid approach for applications that only require inference
with respect to p(ω | Y). And there are valid arguments as to why this may even be
preferable. The model should just be described accurately in any case. Later, when
discussing future work, we will advocate for the use of such discriminative models as
a way to incorporate target intent and high-level behaviors that would be intractable
using a generative model.

Ge and Collins [61] adopt a similar approach to that of Yu et al., which in-
cludes using what is appropriately termed a discriminative model. However, instead
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of processing the raw detections they use trajectory fragments computed over multiple
scans (e.g. 30) as the measurements. They also address the case of unknown parameters
in the prior distribution of the mappings by introducing an uninformative hyperprior
into the model. We too will employ such a hyperprior, which is a standard part of any
Bayesian hierarchical model.

Sequential Monte Carlo has also been used to recursively generate samples
from the posterior distribution of mappings. Särkkä et al. [170, 171] proposed using
particle filter to perform what is effectively single-scan data association. We qualify
that term because the measurements are actually processed sequentially in time to
estimate the marginal posterior of each mapping. Mappings assigned during a previous
scan are irrevocable and will not change in light of new information. In this sense,
the algorithm behaves like a single-scan algorithm. However, the sequential processing
limits the information that will influence a given mapping to those measurements within
the scan that were processed earlier in time. Normally, the information conveyed by all
of the measurements within the scan would be taken into account. On the other hand,
the sequential formulation does provide a significant advantage in terms of reduced
computational requirements and the efficiency of the sampler. These gains come from
the fact that it is possible in this context to generate the sample by drawing from what
is known as the optimal importance distribution, which minimizes the variance of the
resulting estimate. This does, however, require one notable simplifying assumption: the
disappearance of targets in restricted to one per time step. By drawing from the optimal
importance distribution, there is no need to search for an effective proposal distribution
as we must when using MCMC. For applications in which we are able to forego the
benefits of multiple-scan processing, their algorithm provides a compelling approach.

An important contribution of their work was to offer a justification for inte-
grating out the latent target states based on the Rao-Blackwell theorem as we noted at
the end of section 1.2.2. This provides a convenient way to think about the relationship
between state estimation and data association. They also foreshadowed the use of non-
parametric priors by suggesting a form for the conditional distribution of the current
mapping, given the previous mappings, that is equivalent to the uniform process (UP)
prior that will be discussed in chapter 3.
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1.3.4 Wide-Area Persistent Surveillance

The application motivating the present research can be broadly defined as
wide-area surveillance of moving ground targets. This is currently an area of increasingly
active research as the need for solutions grows, along with processing power and the
capabilities of sensors.

Most of the work to date has focused on using electro-optical/infrared (EO/IR)
or radar sensors to detect and track, vehicles and people (or “dismounts” in military
parlance). Although the use of acoustic and seismic sensors has also been studied,
we shall not consider these technologies here as they are generally deployed in sensor
networks with an emphasis on localization accuracy and fusing information from the
different sensors. Our primary interest, of course, lies in the particular combination
of radar sensor and people tracking because it is both relevant and in need of further
study.

Having already considered the matter of how the tracking problem itself is
posed, here we shall survey the existing research with an eye toward how related ground
target surveillance problems have been addressed. Of particular interest are graph-
based representations of the possible associations, the target dynamic models, and the
treatment of missing measurements.

1.3.4.1 EO/IR

EO/IR sensors have found widespread application in ground target surveil-
lance. They are frequently employed for both people and vehicle tracking because of
their high spatial resolution, which facilitates target classification and data association.
Often, EO/IR sensors are used in conjunction with radars to augment the radar’s rela-
tively poor spatial resolution. Typically, this involves using the radar contacts to slew
the EO/IR sensors to the targets.

In the present research, we have adopted a view of humans as point targets
(defined earlier) which puts us at odds with most of the literature on people tracking
with EO/IR sensors. Targets observed with this modality are generally detected using
background subtraction techniques or an object detector trained to recognize the target’s
appearance. Both approaches identify a region of the image that can be analyzed based
on shape, edges, texture, etc. The ability to provide this appearance information is

34



one of the primary virtues of EO/IR sensors. It is used extensively to determine which
measurements are associated with which targets, often in conjunction with motion-
based constraints. When the resolution is sufficient, appearance information is also
used to estimate target pose and other attributes along with the kinematic state. In
video surveillance applications, the trajectories of human targets are often defined as
sequences of poses that are described by dynamic models that include joint angles and
limb motion (e.g. [56, 158]). Unfortunately, none of these developments are applicable
to point target tracking.

Background subtraction is the most common detection strategy in wide-area
video surveillance applications. This is because the small size of humans makes it
difficult to construct robust object detectors and the movement of the target relative to
the background is a defining feature. But with any strategy, reliably detecting people
without generating an excessive number of false alarms is a challenging problem. People
may exhibit minimal contrast with the background and may cover just a few pixels, or
less at some ranges. Movement in the background or variations in appearance due to
lighting (or temperature) changes complicate the process. However, despite the potential
difficulties that come with dense false alarms or low probability of detection, the research
remains focused primarily on detection algorithms. The uncertainty with respect to
the origin of the detections is generally assumed to be such that a point estimate of
the associations, determined largely by the appearance information, is sufficient. A
prime example of this comes from Yu et al. [201], whose work we discussed in the
previous section. Despite treating tracking as a data association problem and using
Monte Carlo methods to draw a sample from the posterior distribution of mappings,
they sought only the maximum a posteriori estimate. Their experiments did show
that the benefits from incorporating appearance information, when possible, can be
significant. It should be noted that the use of Monte Carlo methods in this regard
is not typical. Assignment-based data association algorithms appear to be the most
common due to the ease with which appearance information can be incorporated into
the cost matrix (e.g. [86, 161, 98]).

There is existing work on tracking point targets using IR sensors, which are
sensitive enough to pick out humans at long range. Often, this requires that the raw
signal be available so that detection and tracking can be combined into a single process,
known as track-before-detect (TBD), in which the signal is integrated over time in order
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to boost the signal-to-noise ratio for weak targets. Approaches to state estimation
without data association, such as those discussed in section 1.2.3, are necessary in this
case. However, we will not concern ourselves with that here as our interest lies in how the
data association problem has been addressed given point target detections. Zaveri et al.
[204] addressed it in the context of multiple point targets in a dense clutter environment
by using a genetic algorithm to calculate the assignment weights. Given those weights,
a JPDAF-based approach was used to derive the state estimates. In a later publication
[205], those same researchers also considered a PMHT-type algorithm for the same
application. Like the PMHT, their approach uses EM to approximately integrate over
all possible associations. However, unlike PMHT, all validated measurements are used
to update the target state instead of the centroid of measurements in order to improve
the performance in a dense clutter environment. Nichtern and Rotman [133] used a
dynamic programming algorithm (DPA) to perform the data association. We did not
find any examples of existing algorithms that produced a sample-based estimate of the
measurement to target mappings.

Although not formulated as a solution to the data association problem and
designed to exploit appearance information, which we do not have, there are EO/IR
tracking algorithms that overlap to some extent with aspects of our proposed approach.

Cohen and Medioni [34] considered the problem of tracking unspecified objects
from a moving airborne platform. Their algorithm incrementally constructs a graph
representation of the detections that is equivalent to our feasible graph (see section
2.4.3.1). The edge costs were defined to be the likelihood that the connected detections
correspond to the same object. Object trajectories then correspond to paths through the
graph, for which each can be assigned a cost. They assumed that objects can generate
multiple detections and exploited the graph structure to cluster such detections in a way
that is less likely than traditional methods to merge detections of objects with distinct
trajectories. To extract the object trajectories, each graph node without a parent was
considered a potential object source from which the path with the optimal cost was
determined by traversing the graph. Zhang et al. [206] constructed a network flow graph
from the detections in a video surveillance application and then found the optimal set of
paths using a minimum cost flow algorithm. Yan et al. [197] used a graph to represent
the relationships between short trajectory segments, estimated using three consecutive
frames, in an algorithm for tracking tennis balls in video sequences. The edge weights
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were set to reflect the compatibility of the connected segments. They first solved the
all-pairs shortest path problem and then used a greedy algorithm to select the best paths
from among the set of shortest paths. These algorithms demonstrate the effectiveness
of using graph representations of the data in order to facilitate the efficient extraction
of paths that correspond to target tracks. We will employ this technique as well, but
within a Monte Carlo sampler. In our algorithm, the graph representation serves as
an approximation to the global statistical model for the distribution of associations
from which we are sampling. Its structure enables us to efficiently generate meaningful
proposals, especially those that contain new tracks, that encourage a rapid exploration
of the sample space. Those proposals are then be accepted or rejected based on their
agreement with the target distribution of the sampler.

Reilly et al. [161] considered the problem of tracking large numbers of vehicles
in dense traffic from a moving airborne platform. Although they did not define the
vehicles as point targets, they assumed that the target resolution was insufficient to
determine the associations between measurements based on appearance information
forcing them to rely on velocity models. Noting that these models were not precise
enough, especially given the target density, they employed road-based constraints. In
chapter 4, we will similarly supplement velocity models with path-based constraints for
human walkers. Although, the path-based constraint will be a soft constraint designed to
express a preference for path following while still accommodating off-path motion. They
addressed the data association problem using a single-scan assignment-based algorithm.
Since this would be intractable given the entire set of measurements, the scene was
divided into grid cells and then multiple-target tracking was performed within each cell.
The tracks were then linked across cells.

Many of these algorithms rely on what are called tracklets. Broadly speaking,
these are small fragments of a complete track, but there is no universally accepted
definition of exactly what that means. In some cases, tracklets are the result of applying
a standard tracking algorithm over a small fixed window of data (e.g. [197, 2, 86, 151]).
The term has also been used to describe the fragments of larger tracks broken up by
significant occlusions or sensor gaps (e.g. [98, 200, 142]). In at least one case, tracklets
are defined to be tracks based on a limited number of measurements from a single
sensor and whose state estimate errors are not correlated with any other data from
the same target in a multi-sensor system [49]. When we describe the feasible graph
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in the next chapter, we will introduce our own notion of a tracklet which is defined
as a pair of measurements that originated from the same source. Thus, our tracklets
are minimal track fragments. They correspond to the edges in the feasible graph and
convey local information about the possible associations that will be exploited by the
proposal distribution of the sampler.

Despite the variation in how they are defined, tracking algorithms that work
with tracklets all ultimately seek to stitch them together into complete tracks. Our
algorithm is no exception. The advantage of this approach, as noted by Kaucic et
al. [98], is that it significantly reduces the space of association hypotheses; either as a
result of replacing the original measurements with the tracklets or using the original
measurements and truncating the space by excluding associations not covered by a
tracklet. There are, of course, many different ways to proceed. Kaucic et al. and Perera
et al. [142] linked tracklets that correspond to the same target using assignment-based
data association with a cost matrix computed using kinematic and appearance models.
Huang et al. [86] used a three-level hierarchical framework to combine tracklets into
tracks. At the low level tracklets are generated based on pairwise associations. At the
middle level, those are combine using an assignment-based data association algorithm.
Finally, at the top level the probabilities of target appearances and disappearances,
and occlusions are estimated, which is used to refine the target trajectories. Singh et
al. [178] grew each tracklet using MHT data association. Our approach is similar to that
of Yan et al. [197] where the tracklets are related to a graph structure and the problem
of stitching them together becomes one of finding paths through the graph with the
desired properties.

Kaucic et al. [98] sought to address the difficulties caused by long occlusions and
sensor gaps in video surveillance applications. To aid in this purpose, their algorithm
included a scene understanding module designed to identify the areas where targets
are likely to become occluded. This information was then used to suspend occluded
tracks (i.e. tracklets) which could then be reconnected by a track matching module.
Although we will not follow such an approach ourselves, this work is relevant because
it is an example of a tracking algorithm designed to address the problem of spatially
varying probability of detection (PD) that we too will be facing. Our approach is to
use a measurement space augmented to represent the possibility of no detection (see
sections 2.2 and 2.3.1). The likelihood is then defined based on a measurement model
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and a spatially varying PD model, similar to their occlusion map, which must be learned
offline.

1.3.4.2 Radar

Currently, radar sensors are used overwhelmingly for vehicle tracking in ground
target surveillance. Tracking people with this modality has been largely limited to near-
range applications, including indoor surveillance where the ability of certain radars to
make detections through walls is exploited.

We suspect that research into wide-area people tracking using radar is rela-
tively limited at this point in time due to a lack of available data; at least in the open
research community. When observed at a distance, human targets present a challenging
detection problem that is still very much an open research topic [83]. Most existing radar
systems cannot reliably detect them at long range because of their small radar cross
section (RCS) and low speeds. The average human walking speed often falls near or
below the minimum detectable velocity of the ground moving target indicator (GMTI)
mode, which is set in order to minimize clutter returns. Depending on the capabilities
of the tracker, the minimum detectable velocity may be set rather conservatively so as
not to overwhelm the algorithm with false alarms.

However, humans are an important class of targets and a growing number of
modern radar systems are specifically designed to detect them. These systems take
advantage of improvements in electronics and, most importantly, available processing
power. Such capability has become known as the dismount moving target indicator
(DMTI) mode to avoid confusion with the traditional GMTI, which for all intents and
purposes is only reliable for vehicles. An example of one of the earliest such radars in pro-
duction is Northrop Grumman’s Vehicle and Dismount Exploitation Radar (VADER),
which was successfully demonstrated in 2010 [68]. As more DMTI-capable radars are
fielded and data sets become available to the broader research community, we expect to
see more focus on wide-area people tracking using radar.

While the details of the detection algorithm vary with the implementation, the
GMTI generally implies discrimination based on the Doppler velocity. The DMTI, on
the other hand, has come to imply discrimination based on the micro-Doppler signature
[74, 75, 183, 30, 83, 62, 42]. Micro-Doppler refers to the features in the Doppler spectrum
produced by the movement of a target other than its global translation. As humans
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move, their changing shape produces a micro-Doppler signature that is distinct from
those produced by other ground targets such as vehicles or animals. This signature can
be identified to facilitate detection, even in cases where the target is moving cross-range
and the Doppler velocity is negligible [183].

Although we adopted the view of humans as point targets based on the fact
that radars generally do not measure appearance information, it should be noted that
we expect this assumption will need to be relaxed at some point in the future. The
reason is that the micro-Doppler signatures from individual humans are distinct as well
and thus have biometric potential [10, 62, 184]. This work is still in its infancy but
would obviously be a boon to data association if such information were included in
the measurements. It remains to be seen whether it can be made to be reliable under
realistic conditions.

We could only find a few relevant examples in the literature of tracking algo-
rithms for outdoor surveillance of human targets using radar. Most of the work based
on this combination of target and sensor was instead focused on detection algorithms
and near-range indoor applications. Chang et al. [29] used an ultra-wideband (UWB)
monostatic impulse radar to detect and track an unknown number of human targets.
They employed a cluster-based variant of the multiple hypothesis tracker (MHT) to
perform the data association, where the clusters were used to model the multipath
returns that are common with type of radar. This extended the earlier work of these
same authors, plus two additional collaborators, that assumed a fixed number of targets
[28]. Here, the multipath returns were modeled as a point process and an expectation-
maximization (EM) algorithm was used to derive a single measurement vector that
could be incorporated into a Kalman filter update. Blackman et al. [12] considered
the problem of tracking human targets in a potentially dense clutter background given
feature-rich measurements. The features, based on micro-Doppler characteristics, were
used to identify measurements originating from a human targets. It was assumed that
in addition to false alarm measurements, measurements originating from animals or
vehicles might also be present. The data association was performed using the MHT,
which is the most common approach for radar ground tracking algorithms of all kinds
because of its ability to handle clutter and missed detections.

Although designed with vehicles and state estimation in mind, there are radar
ground tracking algorithms that overlap to some extent with aspects of our proposed
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approach.
In chapter 4, we take up the question of how to model the dynamics of a highly

maneuverable human target. Since vehicles present a similar challenge, it is instructive
to see what has been applied to this problem. The overwhelming consensus is to use
multiple model estimators with at least two models (e.g. [176, 103, 102, 137, 11]). The
first is a low-noise constant velocity model to describe the motion of the target when it
is not maneuvering and the second is a high-noise model, of the same form, intended to
accommodate maneuvers. The form of these models is equivalent to the Wiener process
speed model that we will consider in section 4.3.2. Most algorithms also include an
additional zero velocity model to describe the motion (or lack thereof) of a stopped
target. This is motivated in part by the need to address the move-stop-move behavior
of evasive targets [102]. Shea et al. [176] also included a model to describe “stationary
moving” targets, which are those that are rotating but not translating. Kirubarajan
et al. [103] adjusted the noise parameters of the models based on the local terrain.
Kastella and Kreucher [97] sought to incorporate terrain information directly into the
kinematics of the model. This was accomplished by using an inhomogenous integrated
Ornstein-Uhlenbeck (IIOU) process model to describe a position-dependent preferred
speed and heading. These preferences could be learned from GPS truth or “hospitality
for maneuver” (HM) data which characterizes the ease with which a vehicle can traverse
a particular area. They employed a default constant velocity constant heading model
when the preferred speed and heading is not available.

We will adopt a multiple model approach based on “stop” and “go” models
that is similar to these vehicle tracking algorithms. For stopped targets, we will use the
standard zero-velocity model. To model moving targets, we will evaluate the effective-
ness of several different types of speed model, including an Ornstein-Uhlenbeck process.
Because of our assumption that the targets are sparsely observed, we will consider a
different means of accommodating target maneuvers. Instead of including a high-noise
variant of the “go” model, we propose to use the current measurement to infer the
parameters of the model. This is based on the assumption that the maneuver time is
much less than the sample period so changes to the target’s trajectory could potentially
be quite significant. The usual assumption is that such changes occur over the span of
multiple measurements so the uncertainty in each state estimate need not be excessively
large. We can justify looking ahead to set the model based on the measurement because
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the state estimation is performed in the context of classification rather than prediction.
The movement of vehicles is constrained by roads and terrain so it makes sense

to incorporate as much of this information as possible into the motion models. Of these
two constraints, the influence of the road network is the most amenable to practical,
especially Gaussian, models. Consequently, almost all vehicle tracking algorithms apply
road-based constraints to improve their performance. This has been done by adjusting
the process noise covariance so that it is aligned with the direction of the road [103],
treating the road information as a pseudo-measurement [52], and using a road-based
coordinate system [11, 105]. Of course, vehicles do not always confine their movements
to roads (or known roads). Thus, practical systems must account for off-road movement
as well by including unconstrained motion models in the model set. However, the fact
that vehicles may travel both on-road and off-road presents us with a dilemma. If we
rely too much on the road information, then we might end up with a biased location
estimate or introduce significant errors when the target is not following the road. On
the other hand, failing to apply these constraints can also degrade the performance.
Finding the right balance can be difficult. Shea et al. [176] tried to reliably determine
when a target was moving under the influence of a road by modeling the width of
the road as a Gaussian sum of ellipses to allow for easy comparison with the position
covariance. Pannetier et al. [137] used a fuzzy detector to model the uncertainty about
the influence of the road network. Branching within the road network presents another
challenge. Pannetier et al. used a sequential probability ratio test to select the road
chosen by the target. Kirubarajan et al. [103] introduced an additional model for each
branch into a variable structure multiple model estimator.

While the movement of human targets is less constrained by roads/paths and
terrain, it still makes sense to try to incorporate this information into the motion models.
Similar to the road constraints used by existing vehicle tracking algorithms, we will
consider path-constrained dynamic models in section 4.3.6. Note that the term path is
used generically here and may refer to anything from a paved road to a narrow dirt trail.
Regarding the question of how much to rely on this information, we will regard the path
constraints as soft constraints designed to express a preference for path following while
still accommodating off-path motion. The idea is that paths represent favorable terrain
and thus targets prefer to move along those routes but are not bound by them. We also
want to accommodate behavior such as movement parallel to the path. In the manner
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of Shea et al., a radius from the path centerline (not necessarily symmetrical) defines
the influence of the path which may be set based on terrain considerations rather than
strictly representing the width of the path itself. Branching is handled by introducing
an additional model for each branch into a variable structure multiple model estimator
as was done by Kirubarajan et al.

Terrain obscuration is a well-known complication of ground target tracking. In
regions where the target cannot be seen by the sensor, the probability of detection (PD)
drops to zero. Several algorithms incorporated this information into their models and we
will do the same. Kirubarajan et al. [103] recorded the visibility of each road segment.
When a segment with no visibility was used by the motion model, the state estimate was
made without the measurement update. In later work, Kirubarajan and Bar-Shalom
[102] used an ad hoc modification of each likelihood in the multiple model estimator
to account for PD. For the moving target models, the end effect was equivalent to
using our augmented emission probability (equation (2.15)) under the assumption the
the PD is not a function of the state. For the stopped target model, they assumed
that the PD was zero because the target was below the minimum detectable velocity of
the GMTI. Although we do not specifically address the problem of missed detections of
stopped targets, our assumption that the PD is a function of the target state means that
we could implement such behavior if necessary. Kastella and Kreucher [97] considered
the problem of tracking targets using nonlinear filtering given amplitude measurements
defined over a spatial grid. They compared the performance of measurement models
based on the raw amplitudes and those based on applying detection threshold. The
first case represents a track-before-detect framework where the measurement model can
naturally account for the effects terrain obscuration since it describes the amplitude
of the received signal (see [179] for more details). In the second case, they do in fact
model a spatially dependent PD by defining the probability of the detection event but
not in a way that generalizes to other measurement models. Our approach of using a
measurement space augmented to represent the possibility of no detection (see sections
2.2 and 2.3.1) is intended to provide a means of incorporating a spatially dependent PD
into a standard measurement model.
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1.4 Outline of the Dissertation

Chapter 1 Introduces the notion that state estimation and data association are two
distinct, but related, objectives of tracking that each require a different type of
model to capture the relevant uncertainty. Wide-area surveillance is used as one
of the motivating applications for tracking as a data association problem. The
technical background and related work are discussed.

Chapter 2 Presents the associative tracking model which represents a direct and gen-
eral purpose solution to the multiple-scan data association problem. Two different
algorithms based on Monte Carlo sampling are proposed for performing inference
on the model.

Chapter 3 Takes a detailed look at possible models for the prior distribution of the
cluster labels when the number of clusters is unknown. This includes identifying
the most promising existing models and proposing several novel extensions.

Chapter 4 Considers the application of the associative tracking model to the wide-
area surveillance of human targets using radar. A study is conducted to learn
about the motion characteristics of human walkers observed at a distance and on
a coarse time-scale. The insights are then used to develop a variety of possible
dynamic models.

Chapter 5 Evaluates the dynamic models using simulated measurements generated
from real target trajectories. Using the top performing dynamic model to define
the likelihood, the sample obtained from the associative tracking model is evalu-
ated for different combinations of cluster label prior and inference algorithm. The
evaluations are performed using both simulated measurements and radar data.

Chapter 6 Discusses the results of this work and suggests areas for further research.
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Chapter 2

Associative Tracking Model
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2.1 Introduction

The purpose of the model presented here is to explicitly address the multi-
ple target tracking problem as fundamentally one of data association, or equivalently,
pattern recognition. Such an approach is necessary when the objective is to identify
and interpret those patterns in the data that indicate the presence of targets in order
to develop an understanding of what is happening in the surveillance region. A sub-
stantial body of work already exists in which tracking is treated as fundamentally a
state estimation problem. This type of approach is appropriate when the objective is
to provide the single best guess as to what is happening, in the form of more precise,
or more comprehensive, estimates of each target’s state than could be obtained directly
from the measurements.

As described in the previous chapter, the two perspectives of tracking are in-
timately related, yet require different models and inference. Due to this relationship,
some existing work is compatible with the pattern recognition view of tracking. The
associative tracking model expands on this work to provide a complete solution, includ-
ing efficient inference, for single-sensor multiple target tracking problems in which there
are maneuvering targets, sparse measurements, significant numbers of false alarms, and
a spatially varying probability of detection that may be � 1.0.

The model is designed to exploit the overlap between state estimation and data
association by internally employing a state estimation model, but then integrating over
all possible states. This enables the use of a large and familiar class of existing target
dynamic models.

2.2 Preliminaries

A single sensor is assumed to monitor the region under surveillance. The sensor
data from each scan is processed by a detector that outputs a measurement whenever
a target is deemed to be present.

Let the vector yi ∈ Rm be the i-th measurement output by the detector.
Each element corresponds to one of the measured values and is denoted by (yi)j , where
1 ≤ j ≤ m. At a minimum, the measured values are assumed to include the target’s
position.

The yi are points in the the space of “positive” measurementsM⊆ Rm. These
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are the physical measurements generated during each scan of the sensor in response to
the occurrence of a detection event (i.e. the received signal exceeds some threshold inside
of the detector so that the presence of a target is declared). The qualifier “positive” is
used to indicate that such measurements imply the occurrence of a corresponding detec-
tion event. This is in contrast to the notion of “negative” measurements, which imply
the nonoccurrence of a detection event, or equivalently, the occurrence of a no detection
event. The terminology comes from the fact that the information conveyed through
knowledge of a no detection event is commonly referred to as “negative information”.

Negative measurements are not explicitly reported by the detector, but in-
stead, are inferred from the lack of any physical measurement output by the detector
when analyzing the signal collected at a given point in space and time. Since a no de-
tection event is observable, it can be processed just like a physical measurement, given
a likelihood model that describes the probability of detection. The probability of de-
tection, PD, is the probability of the detector declaring the presence of a target when a
target is in fact present.

For some applications, PD can reasonably be assumed to be constant and equal
to 1.0. This implies that all targets present within the surveillance region are detected
in each scan and no detection events only occur in the absence of a target. Under
these circumstances, the negative information is redundant since the detection process is
essentially deterministic. Thus, the positive measurements can be used directly (without
qualification) and the negative measurements can simply be ignored. Most existing
tracking models do just that. However, for the applications motivating this research,
PD is assumed to vary spatially, even dropping to zero in some locations due to a lack
of visibility to the sensor. Under these circumstances, negative information is in fact
useful and should be incorporated into the tracking model. This can be accomplished by
defining an augmented measurement space that encompasses both positive and negative
measurements.

Let the augmented measurement space be M̃ =M∪∅, whereM is the space
of real-valued physical measurements and ∅ is a discrete element that indicates the
absence of a physical measurement. The same formulation was used by Särkkä et al.
in the context of multiple sensors [169]. Thus, the measurements ỹi ∈ M̃ are actually
mixed random variables in which the continuous part represents the outcomes from a
positive measurement and the discrete part represents the trivial (empty) outcome from
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a negative measurement. The probabilities defined over the continuous part describe
our beliefs about the joint occurrence of a detection event and the resulting value of
the physical measurement. The probability defined over the discrete part describes
our beliefs about no target being detected and hence no physical measurement. When
its value is known, we will refer to ỹi = ∅ as a negative measurement and ỹi 6= ∅
as a positive measurement. Note that any measurement output by the detector is
necessarily a positive measurement since a detection event is required to trigger the
output. Again, negative measurements must be inferred from our knowledge of other
events. For convenience, we will use yi to refer to both a physical measurement and the
continuous part of any corresponding ỹi.

Let the set of all measurements under consideration be Ỹ = {ỹi : 1 ≤ i ≤ nm},
where nm is the number of measurements output by the detector throughout a time
window of duration T ∈ R>0 seconds. These measurements are positive by definition
and together they constitute the observed data. The indices are assumed to be defined
such that the measurements are partially ordered with respect to scan. In other words,
for i < j, the measurement ỹj was generated during the same sensor scan as ỹi or during
a subsequent scan.

The subset of Ỹ containing the measurements generated during scan i is de-
noted by Ỹsi =

{
ỹsi(j) : 1 ≤ j ≤ nmsi

}
, where nmsi is the number of measurements in

the scan. The subscript si(j) should be understood as mapping the j-th measurement
in the scan i to its natural index in [1..nm]. With respect to j, the ordering of measure-
ments within a scan shall be considered arbitrary to avoid introducing any dependencies
on the way the sensor conducts a scan or the order in which the detector processes the
data. These subsets form a partition of the measurements such that Ỹ = ⋃ns

i=1 Ỹsi ,
where ns is the number of scans and Ỹsa ∩ Ỹsb = ∅ for a 6= b. Note that some Ỹsi may
be empty since detections will not necessarily occur in all scans.

Associated with each measurement, ỹi, is a scalar indicator variable, zi ∈
Z≥0, that identifies the origin of the measurement. A value of zero indicates that the
measurement is believed to have originated from a generic false alarm source. Values
greater than zero indicate that the measurement is believed to have originated from a
target. All measurements whose respective indicator variables share a common value
are deemed to have originated from the same source. Without loss of generality, the
target indicator values are assumed to be assigned consecutively so that given nk targets,
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zi ∈ [0..nk]. Let the set of all indicator variables be Z = {zi : 1 ≤ i ≤ nm}.
Note that the indicator variables are defined such that each target measurement

is assumed to have a unique origin. Consequently, so-called merged measurements,
which occur when the sensor resolution is insufficient to discriminate multiple closely
separated targets, cannot be modeled. This is a simplifying assumption that will not
always be true in practice; especially for radar sensors monitoring human targets at long
range. However, the best way to relax the assumption to support merged measurements
remains an open question. We leave the matter to future work because it would entail
the research and development of a different class of prior distributions over Z than those
that we set out to study here.

The indicator values can be interpreted as cluster labels, where each cluster
contains the measurements from a different underlying source. Thus, given Z, the
subsets of Ỹ corresponding to these clusters can be defined. Each such subset is denoted
by Ỹτk =

{
ỹτk(j) : 1 ≤ j ≤ nmτk

}
, where nmτk is the number of measurements of target

k, when k ∈ [1..nk], or the number of false alarm measurements, when k = 0. The
subscript τk(j) should be understood as mapping the j-th measurement associated with
the indicator value k to its natural index in [1..nm]. With respect to j, the measurements
are time-ordered. These subsets form a partition of the measurements such that Ỹ =⋃nk
k=0 Ỹτk and Ỹτa ∩ Ỹτb = ∅ for a 6= b. The subset of false alarm measurements, Ỹτ0 ,

may be empty. The subsets of target measurements, however, cannot be empty by
definition; they represent the tracks.

Since we know the scan in which each measurement was generated, the associ-
ations between targets and measurements conveyed by Z also tells us the scans in which
each target was detected. This is important because it implies that when conditioned
on Z, we can infer the scans in which the target was not detected, and hence infer
negative measurements. A target is assumed to persist in the surveillance region from
the time of the first scan in which it was detected to the time of the last scan in which
it was detected. Between these two scans, any missed detections imply the presence of
a negative measurement in their respective scans. Let nsτk be the number of scans in
the lifetime of target k.

It is assumed that in each scan, any given target is detected at most one
time. One implication of this assumption is that so-called split measurements, which
occur when a single target triggers multiple detections during the same scan, cannot be
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modeled. This presents a problem for certain sensor modalities, but is not expected to
be a serious limitation in practice. Another implication is that of a scan constraint on
the cluster labels. If a target can be detected at most one time during each scan, then
Ỹτk may not contain more than one measurement from each scan, k ∈ [1..nk].

Implicitly associated with each measurement, ỹi, is a non-random time vari-
able, ti ∈ R≥0, that records when the measurement was made. For negative mea-
surements, the time is taken to be the time of the last positive measurement plus the
appropriate multiple of the scan period, Ts ∈ R>0. The scan period is defined as the
amount of time between consecutive scans of any given location.

Also associated with each measurement, ỹi, is a binary indicator variable,
z0 i ∈ {0, 1}, that specifies whether or not the measurement is a false alarm. This, of
course, is redundant as z0 i is equivalent to 1(zi = 0). However, the dedicated false alarm
indicator variables are needed in order to define the false alarm model. The tracking
model itself will be defined such that the joint probability of z0 i and zi is zero whenever
their values conflict (i.e. zi > 0 when z0 i = 1, or zi = 0 when z0 i = 0). Let the set of all
false alarm indicator variables be Z0 = {z0 i : 1 ≤ i ≤ nm}.

The subset of Z0 containing the false alarm indicator variables associated with
the measurements in scan i is denoted by Z0si =

{
z0si(j) : 1 ≤ j ≤ nmsi

}
. These subsets

form a partition of the false alarm indicators such that Z0 = ⋃ns
i=1 Z0si and Z0sa∩Z0sb = ∅

for a 6= b. Note that some, or all, of the Z0si may be empty. The total number
of false alarm measurements is given by nfa = ∑nm

i=1 z0 i. The number of false alarm
measurements in scan i is given by nfasi = ∑nmsi

j=1 z0si(j).
Collectively, the indicator variables in Z and Z0 represent an interpretation

of the observed data. Equivalently, they can be viewed as representing a solution to
the data association problem. They encode all of the information relevant to our un-
derstanding of what is happening within the surveillance region. Therefore, in order to
achieve the ultimate objective, the associative tracking model must describe the prob-
ability of such an interpretation, given the observed data: p(Z, Z0 | Ỹ ).

By themselves, Z and Z0 provide just a basic summary of what is happening
in the surveillance region, including the number of targets and when they were detected.
However, given a particular instance of these variables, the respective one-to-one rela-
tionships between the measurements and the two sets of indicators, Z and Z0 , mean
that a detailed account of the situation, including where and how the targets are mov-
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ing, can be readily derived. When the inherent measurement precision is insufficient to
be used directly to describe the targets’ behavior, or additional unmeasured attributes
are required, the mapping of measurements to targets conveyed by Z and Z0 enables
us to set up a series of well-posed state estimation problems from which the desired
information can be obtained.

That last point is important because it highlights the key distinction between
associative tracking and conventional tracking; it also illustrates the relationship be-
tween the two approaches. Associative tracking models the space of interpretations of
the data. This enables us to infer the most likely interpretations and evaluate different
interpretations in order to visualize them or their quantify their uncertainty. Any inter-
pretation of interest can then be converted to a set of state estimates, when necessary,
to refine our understanding of the situation.

Conventional tracking, on the other hand, models the state space of each in-
dividual target. Of course, this requires an interpretation of the observed data because
the number of targets and their lifetimes must be known in order to assign a state
model to each target. In practice, the required interpretation is built up sequentially
in conjunction with the inference of the most likely target states at each time step.
The appearance and disappearance of targets is determined using likelihood ratio tests.
Such external track management is needed to maintain the set of active target state
models. Uncertainty in the relationships between measurements and targets is dealt
with either by estimating the most likely associations or by approximately integrating
over all possible associations, both conditioned on the past and present states of the
active targets. Thus, the output reflects just a single interpretation of the observed
data. Such an approach makes sense when we can safely assume that the distribution of
interpretations has a single dominant mode. Unfortunately, it is difficult to know when
that assumption is warranted and the set of state estimates produced by the tracker
sheds no light whether that is in fact the case.
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2.3 Model Definition

Associative tracking is based on the following hierarchical model:

p
(
λ | aλ, bλ

)
∼ Γ

(
aλ, bλ

)
(2.1)

p
(
Z0 | λ

)
∼ fZ0

(
Z0 ; λ

)
(2.2)

p
(
Z | Z0 , α

)
∼ fZ

(
Z; Z0 , α

)
(2.3)

p
(
α | Z0

)
∼ Γ

(
aα(Z0 ) , bα(Z0 )

)
(2.4)

p
(
Ỹ | Z, Z0

)
∼ fỸ

(
Ỹ ; Z, Z0

)
. (2.5)

Besides the indicator variables in Z and Z0 that represent the requisite inter-
pretation of the observed data, the model contains two additional variables, λ and α,
that will also be included in the inference process.

The first variable, λ, is a hyperparameter of the prior distribution over false
alarm indicators, p(Z0 | λ). It is the false alarm rate in units of false alarms per scan.
The exact false alarm rate is assumed to be unknown so λ is modeled as a random
variable distributed according to the hyperprior p(λ | aλ, bλ), with known parameters
aλ and bλ.

The second variable, α, is a hyperparameter of the prior distribution over
cluster labels, p(Z | Z0 , α). For a certain class of priors, which we will examine in detail
in the next chapter, α is a concentration parameter which controls the formation of
new clusters. It too is assumed to be unknown and modeled as a random variable.
The concentration parameter is distributed according to the hyperprior p(α | Z0 ), with
parameters that are a function of the random false alarm indicator variables. For cluster
label priors without any hyperparameters or with known hyperparameters, (2.4) drops
out of the model and any known hyperparameters take the place of α in the conditioning
in (2.3).

This is a generative model as it describes the joint distribution of the observed
data and the unknown variables. Therefore, Baye’s rule is used to calculate the desired
conditional:

p
(
Z, Z0 , λ, α | Ỹ , aλ, bλ

)
∝

p
(
Ỹ | Z, Z0

)
p
(
Z | Z0 , α

)
p
(
α | Z0

)
p
(
Z0 | λ

)
p
(
λ | aλ, bλ

)
, (2.6)
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which is the joint posterior distribution—up to the normalizing constant—of the cluster
labels, false alarm indicators, false alarm rate, and concentration parameter (when
applicable), given the observed data and known parameters. The likelihood and each
component of the prior will be described in detail in the following subsections.

Ideally, we would like a complete characterization of the joint posterior distri-
bution. A point estimate, even if it can be assumed to correspond to the maximum a
posteriori (MAP) probability, conveys no information about its uniqueness or whether
it is representative of the majority of the distribution. This is insufficient given the ob-
jective of understanding what is happening in the surveillance region. In this context,
knowledge about alternative interpretations of the data can be critical; especially those
that are nearly as likely as the mode.

Relying on a point estimate would, in fact, undermine much of the original
motivation for associative tracking. However, even given circumstances under which
a point estimate would be sufficient, there might be some utility in using associative
tracking so that the confidence of the estimate can be quantified.

With that said, what exactly is meant by “a complete characterization”? That
will depend to a large extent on the specific application. The dimensionality of the joint
posterior grows with the number of measurements so, in general, it can be regarded
as high-dimensional. This means that there is no straightforward way of visualizing
the distribution nor are there any summary statistics that will make sense in all cases.
The requirements of the particular application will dictate what information about the
distribution is most important and what form it must take to be amenable to processing
or display.

To facilitate such application-specific inference, we need a sample of points
drawn from the joint posterior. Such a sample can then be used to compute Monte
Carlo estimates of arbitrary functions, with respect to the distribution. In other words,
for some function of the unknown variables, g(Z, Z0 , λ, α), we can compute summary
statistics of the form:

E
[
g
(
Z, Z0 , λ, α

)]
=
ˆ
g
(
Z, Z0 , λ, α

)
p
(
Z, Z0 , λ, α | Ỹ , aλ, bλ

)
dZ dZ0 dλ dα.

Since the joint posterior is not of a form which allows for direct sampling, Monte Carlo
methods can be used to generate a sample from the distribution. This requires that
p(Z, Z0 , λ, α | Ỹ , aλ, bλ) be evaluated only up to the normalizing constant so we can
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work directly with (2.6), which is a significant computational savings. The high di-
mensional parameter space renders exact computation of the normalizing constant in-
tractable and reliable approximations difficult. Although MCMC spares us this expense,
one consequence of the dimensionality that we cannot avoid is that it makes it signif-
icantly more challenging to construct a sampler that explores the space efficiently. In
the next section, we will present a sampling algorithm designed to meet this challenge.

2.3.1 Likelihood

The likelihood is given by equation (2.5) in the hierarchical model. It is the
joint distribution of the observed, hence positive, measurements given the interpretation
of the data represented by the indicator variables. The probability density function is
denoted by fỸ(Ỹ ; Z, Z0 ) to indicate that it does not match any well-known distribution.

To define the density of the likelihood, we begin with the assumption that the
measurements originating from each source (i.e. in each cluster) are independent. Thus,
the joint distribution of the measurements, given Z and Z0 , can be factored as:

p
(
Ỹ | Z, Z0

)
=

nk∏
k=0

p
(
Ỹτk | Z, Z0

)
, (2.7)

which is the product of the false alarm measurement likelihood and the nk target mea-
surement likelihoods.

This independence assumption represents a tradeoff. It makes the model is
far more tractable, but unable to describe interactions between targets. Some models
capable of dealing with target interactions have been developed (e.g. [100]), however,
it is not clear how best to apply them to associative tracking. The typical targets of
interest in associative tracking applications are goal-seeking and intent-driven. As such,
in some contexts we might expect to see evasive interactions and in others, cooperative
interactions for the purpose of achieving some objective. It is left to future work to
develop useful models of this kind of complex high-level behavior.

The false alarm measurement likelihood corresponds to the product term k = 0
in (2.7). This is the joint distribution of the false alarm measurements, given Z and
Z0 . False alarms are assumed to occur independently, so the joint distribution can be
factored as:

p
(
Ỹτ0 | Z, Z0

)
=

nmτ0∏
j=1

p
(
ỹτ0(j) | Z, Z0

)
,
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where each of these product terms describes the probability of an individual false alarm
measurement.

Typically, p(ỹτ0(j) | Z, Z0 ) is defined as a uniform distribution over the mea-
sured values. For position measurements, the support of distribution is set to match
the sensor coverage. For other other measured values, such as Doppler velocity, the
support of the distribution is set to match the range of feasible values. Note that false
alarm measurements are always positive measurements so p(ỹτ0(j) = ∅ | Z, Z0 ) = 0, for
1 ≤ j ≤ nmτ0 .

When using a radar with a fixed threshold detector, false alarms will only be
spatially uniform when detecting targets against a background of spatially uncorrelated
clutter. Most detectors, however, use an adaptive algorithm to adjust the detection
threshold so that it maintains a constant false alarm rate (CFAR). An ideal CFAR
detector will have a spatially uniform probability of false alarm and hence a spatially
uniform distribution of false alarms. This justifies starting with a uniform distribution
over the position measurements in most cases. In practice, the clutter power will not
always be perfectly modeled and some parts of the environment will trigger more false
detections than others. This situation can be identified experimentally and an appropri-
ate false alarm measurement distribution learned from the data. Fortunately, there are
no restrictions on the distributional form of p(ỹτ0(j) | Z, Z0 ); it need only be evaluated.

The target measurement likelihoods correspond to the product terms 1 ≤ k ≤
nk in (2.7). Each term is the joint distribution of the measurements of target k, given Z
and Z0 . To define that distribution, we begin by expanding the conditioning to include
any negative measurements that are implied by the knowledge of Z. As discussed in
the preliminaries, the life of a target is assumed to span the first scan in which it was
detected to last scan in which it was detected. Any missed detections of that target
in the intervening scans constitute negative measurements. Let the set of negative
measurements associated with target k be Ỹ ′τk , which may be empty in the event that
there are no missed detections of the target. Thus, the target measurement likelihood
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can be equivalently written as:

p
(
Ỹτk | Z, Z0

)
= p

(
Ỹτk | Z, Z0 , Ỹ ′τk

)
=

p
(
Ỹτk , Ỹ ′τk | Z, Z0

)
´
p
(
Ỹτk , Ỹ ′τk | Z, Z0

)
dỸτk

=
p
(
Ỹτk , Ỹ ′τk | Z, Z0

)
p
(
Ỹ ′τk | Z, Z0

) , (2.8)

where the last two lines are the result of applying Baye’s rule to rewrite the conditional
distribution of the positive measurements as the joint distribution of the positive and
negative measurements, divided by the marginal distribution of the negative measure-
ments. Since the marginal distribution of the negative measurements is derived directly
from the joint distribution of the positive and negative measurements, let us proceed
by defining the joint distribution.

For a given target, there are statistical dependencies among the measure-
ments because the target is undergoing coherent motion. To model these dependen-
cies, we introduce a set of latent variables that represent the target’s state. Let
X (k) =

{
x(k)
j : 1 ≤ j ≤ nsτk

}
be the set of state variables corresponding to target k,

where x(k)
j ∈ Rn represents the state of target in the j-th scan of its lifetime. For con-

venience, the state vectors are indexed by scan using a relative scan index for which 1
refers to the first scan in which the target was detected and nsτk refers to the last scan in
which it was detected. From each of these scans, comes one of the measurements of the
target. To make the correspondence between scans, state variables, and measurements
explicit, let the permutation of

{
Ỹτk , Ỹ ′τk

}
so that its elements are in scan order be

denoted by Ỹ (k) =
{

ỹ(k)
j : 1 ≤ j ≤ nsτk

}
. Thus, Ỹ (k) is the set all measurements, both

positive and negative, of target k and its elements correspond one-to-one to the state
variables in X (k).

The state of the target is assumed to evolve over time as a Markov pro-
cess. Note that in our notation the relative scan index is being used as a proxy for
time, which is known for each measurement. The Markovian assumption implies that
p(x(k)

j | x
(k)
j−1, x(k)

j−2, . . .) = p(x(k)
j | x

(k)
j−1). At each scan, the latent target state is as-

sumed to emit (i.e. probabilistically generate) the observed measurement. Together,
these assumptions define a generative model in which the joint distribution of target

56



states and measurements has the form:

p
(
x(k)

1 , . . . , x(k)
n , ỹ(k)

1 , . . . , ỹ(k)
n

)
= p

(
ỹ(k)

1 , . . . , ỹ(k)
n | x

(k)
1 , . . . , x(k)

n

)
p
(
x(k)

1 , . . . , x(k)
n

)
= p

(
ỹ(k)

1 | x(k)
1

)
p
(
x(k)

1

) n∏
j=2

p
(
ỹ(k)
j | x

(k)
j

)
p
(
x(k)
j | x

(k)
j−1

)
, (2.9)

where n = nsτk and the conditioning on Z and Z0 is left unstated to uncluttered the
notation. This factorization is equivalent to the following graphical model:

x(k)
1

��

// x(k)
2

��

// . . . // x(k)
n−1

��

// x(k)
n

��

ỹ(k)
1 ỹ(k)

2 ỹ(k)
n−1 ỹ(k)

n

where the circles represent the latent state variables and the squares represent the
observed measurement variables.

Using this model, we can obtain the joint distribution of the positive and
negative measurements of target k, given Z and Z0 , by integrating out the latent states.
Therefore, we have:

p
(
Ỹτk , Ỹ ′τk | Z, Z0

)
=
ˆ
p
(
Ỹ (k), X (k) | Z, Z0

)
dX (k)

=
ˆ
· · ·
ˆ
p
(
x(k)

1

)
p
(
ỹ(k)

1 | x(k)
1

)
p
(
x(k)

2 | x(k)
1

)
p
(
ỹ(k)

2 | x(k)
2

)
· · ·

p
(
x(k)
n | x

(k)
n−1

)
p
(
ỹ(k)
n | x

(k)
n−1

)
dx(k)

1 · · · dx(k)
n (2.10)

Whether or not this multiple integral can be solved analytically depends on
how we define p(x(k)

j | x
(k)
j−1) and p(ỹ(k)

j | x
(k)
j ), the state transition distribution and emis-

sion distribution, respectively. When each of these distributions is defined as a Gaussian
whose variables are linearly related, or proportional to such a distribution, the integral
can be solved exactly in linear time. More generally, a linear-time solution exists when
the distributions are part of the exponential family [126]. For arbitrary distributions,
sequential Monte Carlo methods (i.e. particle filters) can be used to approximate (2.10)
but are much more computationally expensive. The computational demands for this
calculation are a major concern because it will need to be performed, for each target,
repeatedly during the inference process. For this reason, we will define the state tran-
sition and emission distributions using linear-Gaussian models. In the next subsection,
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we will discuss how the unscented transform (UT) can be used to efficiently generate
robust Gaussian approximations to non-linear and non-Gaussian models.

The evolution of the target’s state can thus be modeled as a discrete-time
linear system driven by Gaussian noise, which is represented by the following first-order
difference equation:

x(k)
j = Fjx(k)

j−1 + uj + wj , (2.11)

where Fj ∈ Rn×n is the system matrix, uj ∈ Rn is a known control input, and wj ∈ Rn is
the Gaussian process noise. The process noise is assumed to be independent of the state
and zero mean with covariance Qj . The subscripts on system matrix, control input,
and noise covariance indicate that the system may be non-stationary. This model can
be recognized as the dynamical state model used by the Kalman filter [6, 95]. The
equivalent state transition distribution is:

p
(
x(k)
j | x

(k)
j−1

)
∼ N

(
Fjx(k)

j−1 + uj , Qj
)
. (2.12)

The time series of physical measurements generated by the states can simi-
larly be modeled as a discrete-time linear system driven by Gaussian noise, which is
represented by the following first-order difference equation:

y(k)
j = Hjx(k)

j + vj , (2.13)

where y(k)
j ∈ Rm is the physical measurement of the target generated during the j-th

scan, Hj ∈ Rm×m is the measurement matrix, and vj ∈ Rm is the Gaussian measurement
noise. The measurement noise is assumed to be independent of the state and zero
mean with covariance Rj . The subscripts on measurement matrix and noise covariance
indicate that this system too may be non-stationary. This model may also be familiar as
it corresponds to the measurement model used by the Kalman filter. Here, however, it
is just one piece of the measurement model since (2.13) only describes how the physical
measurements are generated from the target’s state. Recall that in order to make use
of the negative information conveyed by any missed detections, we are using augmented
measurements defined on a sample space that covers both the physical measurements
resulting from a detection and the failure to detect the target. The measurement model
for the augmented measurements must therefore describe both the detection process
and the generation of the physical measurements.
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Let the emission distribution for the physical measurements equivalent to
(2.13) be denoted by:

p+
(
y(k)
j | x(k)

j

)
∼ N

(
Hjx(k)

j , Rj
)
. (2.14)

Since the continuous part of ỹ(k)
j represents the joint occurrence of a detection event

and the resulting value of the physical measurement, and the discrete part represents
the occurrence of a no detection event, the emission distribution for the augmented
measurements can be defined as:

p
(
ỹ(k)
j | x

(k)
j

)
=


p+
(
y(k)
j | x(k)

j

)
PD

(
x(k)
j

)
ỹ(k)
j 6= ∅

1− PD
(
x(k)
j

)
ỹ(k)
j = ∅,

(2.15)

where PD is the probability of detecting the target, which is a function of the target’s
state. Specifically, and without loss of generality, we assume that PD is a function of the
target’s position and independent of any other measured values. Note that PD(x(k)

j )
is not a probability distribution, but rather a function whose image is the space of
probabilities. In the continuous part of p(ỹ(k)

j | x
(k)
j ), it is used to scale the probability

distribution p+(·) to reflect the conjunction of the detection and physical measurement
probabilities. In the discrete part, it is used to compute the remaining probability mass
necessary so that the probability of the entire sample space is 1.

When conditioned on the state, the continuous part of (2.15) is proportional
to a Gaussian distribution regardless of how PD(x(k)

j ) is defined. However, when the
state is unknown and represented as a Gaussian random variable (with unspecified
conditioning), the joint distribution of the state and the continuous part of ỹ(k)

j :

p
(
ỹ(k)
j , x(k)

j | ·
)

= p
(
ỹ(k)
j | x

(k)
j

)
p
(
x(k)
j | ·

)
for ỹ(k)

j 6= ∅, (2.16)

is not guaranteed to be proportional to a joint Gaussian distribution given an arbitrary
PD model. The form of this distribution is of concern because it impacts whether the
integrals in (2.10) have an analytical solution. If it is proportional to a joint Gaussian,
then the multiple integral can be solved exactly in linear-time as desired. This can be
accomplished either by restricting the form of PD(x(k)

j ) or approximating the true joint
distribution using a Gaussian function (i.e. a scaled Gaussian distribution).

One possible way to express the relationship between the probability of de-
tecting a target and its position such that (2.16) has the required form is to define
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Figure 2.1: Example of a radar PD model.

PD(x(k)
j ) using a Gaussian function of x(k)

j . This works because the product of Gaus-
sian functions remains a Gaussian function. Unfortunately, the symmetry and form
of a Gaussian function is not appropriate for modeling the kind of spatially varying
probability of detection that we expect to encounter. For example, figure 2.1 shows a
PD model for a tower mounted surveillance radar in a rugged desert environment. The
regions with near-zero probability of detection (dark blue in the figure) correspond to
areas with no line-of-sight visibility to the radar. With a nod toward Cromwell’s rule,
the only zero probability region is a small exclusion zone immediately around the radar
where, in fact, no data is recorded; the probabilities in the obscured regions are clamped
to a small positive probability to allow for the possibility that the PD is wrong. The
probability of detection in the visible regions was estimated based on clutter models.
This irregular patchy structure is typical for ground-based radar PD models.

Having ruled out a Gaussian PD model, one simple alternative remains if we
wish for p+(y(k)

j | x(k)
j )PD(x(k)

j ) to remain proportional to a Gaussian distribution so
that (2.16) is proportional to a joint Gaussian: a constant PD model. Not constant
across all targets and all scans, since that would undermine the reason why the detection
model was incorporated into the likelihood model in the first place, but with a different
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value for each combination. Let such a model be defined as:

PD
(
x(k)
j

)
= pd

(k)
j ,

where pd
(k)
j ∈ [0, 1] is the probability of detecting target k in the j-th scan in its

lifetime. For each target and scan, a suitable value for pd(k)
j can be determined during

the process of integrating out the state variables in a manner analogous to linearizing
about the current state. When processing the j-th scan in the lifetime of target k, pd(k)

j

is set to the expected probability of detection with respect to the distribution of the
target’s current state, p(x(k)

j | ·). This is the optimal value in the sense that it yields the
same cumulative probability over the continuous part of (2.15) as the true non-Gaussian
distribution. In other words:

ˆ
p
(
ỹ(k)
j

)
dỹ(k)

j =
ˆ ˆ

p
(
ỹ(k)
j , x(k)

j | ·
)
dx(k)

j dỹ(k)
j for ỹ(k)

j 6= ∅,

is the same for both constant the constant PD model and the true PD model. The phys-
ical measurement values, however, will not be distributed in the same way; we will see
an example of this discrepancy shortly. In practice, we can simplify the expected prob-
ability of detection calculation, at the expense of accuracy, by working with a smoothed
representation of PD(x(k)

j ). When minimizing the computational cost is paramount, the
PD model can be smoothed using a kernel that reflects the expected uncertainty in the
target state estimates so that computing the value of pd(k)

j is reduced to a single lookup
operation.

For an arbitrary PD model, we can ensure that (2.16) is proportional to a joint
Gaussian distribution by explicitly generating such an approximation using samples
drawn from the true joint distribution. In this case, the joint distribution of the target’s
state and the associated measurement is modeled as:

p
(
ỹ(k)
j , x(k)

j | ·
)

=


p̂
(
y(k)
j , x(k)

j

)
C

(k)
j ỹ(k)

j 6= ∅

1− C(k)
j ỹ(k)

j = ∅
, (2.17)

where:
p̂(y(k)

j , x(k)
j ) ∼ N

(
µ̂

(k)
j , Σ̂(k)

j

)
is a multivariate Gaussian distribution that describes the relationship between the state
and physical measurement, and C(k)

j ∈ [0, 1] is the constant of proportionality. As was
done for the constant PD model, the parameters are estimated, for each target and
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scan in its lifetime, during the process of integrating out the state variables. When
processing the j-th scan in the lifetime of target k, we can sample from the joint state
and measurement distribution by first drawing a set of samples from the distribution
of the target’s current state, p(x(k)

j | ·). Each state sample, x′i, is then used to generate
a measurement sample, ỹ′i , by making a draw from (2.15), conditioned on x′i. With
probability PD(x′i), the i-th sample is a positive measurement, such that ỹ′i 6= ∅. The
measurement values in this case are drawn from p+(y(k)

j | x(k)
j ), conditioned on x′i.

With probability 1-PD(x′i), the i-th sample is a negative measurement, such that ỹ′i = ∅.
The mean and covariance are computed from the positive measurement samples. The
maximum likelihood estimates of these parameters correspond to the sample mean and
sample covariance, respectively. The constant of proportionality is given by the ratio of
the number of positive to negative measurements among the samples. One minus this
ratio, yields the probability mass of the discrete part of the joint distribution.

It should be clear that the constant of proportionality is in fact an estimate
of the expected probability of detection with respect to the distribution of the target’s
current state. As the number of samples increases, C(k)

j approaches the optimal pd(k)
j

value in the constant PD model. If we replace the constant of proportionality in this
model with pd

(k)
j and then derive the implied emission distribution, it can be shown

that it has the same form as the constant PD model. Thus, (2.17) actually represents
an alternative constant PD model. This follows from the fact that the conditional
distribution of a joint Gaussian is also a Gaussian. In the resulting emission distribu-
tion, p̂(y(k)

j | x(k)
j ) describes the probability of the physical measurement values and is

analogous to p+(y(k)
j | x(k)

j ), but reflects the influence of the probability of detection.
For an example of how the two approaches compare, see figure 2.2. The upper

image shows the positional state of a target, with the 6σ extent of its covariance de-
noted by the ellipse, overlaid on the PD model (same one as shown in figure 2.1). The
most likely positions of the target all lie in a region of near-zero probability of detec-
tion, while the tails of the position distribution include regions where the probability of
detection is nearly 1. The lower image shows the continuous part of the true marginal
(position) measurement distribution computed by integrating over the state in the true
joint distribution. It is clearly non-Gaussian because of the influence of the probability
of detection. The solid ellipse denotes the extent of the Gaussian marginal measurement
distribution computed using the emission distribution for the physical measurements;
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Figure 2.2: Example of a Gaussian approximation to the measurement distribution for
an arbitrary PD model.
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without considering the PD model. The dashed ellipse denotes the extent of the ap-
proximated Gaussian marginal measurement distribution computed from samples of
the true joint distribution. We can see that the mean has shifted right, toward the
largest region with a high probability of detection in the support of p(xj | ·), and the
standard deviation in X has increased about 26%. This illustrates that even given a
highly non-uniform spatial distribution of PD, the best Gaussian approximation to the
true measurement distribution does not differ significantly from the estimate based on
(2.14). It also suggests that it is the scaling factor representing the expected probability
of detection that conveys the most important information.

Having defined the state transition distribution and emission distribution, we
now return to equation (2.10) and the matter of integrating out the latent states to
obtain the joint distribution of the measurements for target k, given Z and Z0 . Let us
begin by first considering the objective. After evaluating all the state integrals, we end
up with the desired distribution (using the uncluttered notation):

p
(
ỹ(k)

1 , ỹ(k)
2 , . . . , ỹ(k)

n

)
,

which can be factored using the general product rule for probabilities to get:

p
(
ỹ(k)
n | ỹ

(k)
n−1, . . . , ỹ(k)

1

)
p
(
ỹ(k)
n−1 | ỹ

(k)
n−2, . . . , ỹ(k)

1

)
· · · p

(
ỹ(k)

2 | ỹ(k)
1

)
p
(
ỹ(k)

1

)
.

Each of those product terms is a conditional probability that can be obtained
by evaluating a single state integral:

p
(
ỹ(k)
i | ỹ

(k)
i−1, . . . , ỹ(k)

i

)
=ˆ

p
(
ỹ(k)
i | x

(k)
i

)
p
(
x(k)
i | ỹ

(k)
i−1, . . . , ỹ(k)

1

)
dx(k)

i , (2.18)

for 1 ≤ i ≤ n. The first term in the integrand is simply the emission distribution.
The second term is the distribution of the target’s state in the i-th scan, given all the
previous measurements, and can be derived from the output of a Kalman filter.

Given a dynamic model of the form in (2.9), with linear-Gaussian state tran-
sition and emission distributions, the Kalman filter provides a recursive procedure for
estimating:

p
(
x(k)
i | ỹ

(k)
i , . . . , ỹ(k)

1

)
,

which is the distribution of the target’s state in the scan i, given all measurements up to
and including the current. This distribution is Gaussian and thus defined by its mean
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and covariance, which are output by the Kalman filter at each time step. Let m̂i|i and
P̂i|i be the outputs after processing scans 1 to i so that:

p
(
x(k)
i | ỹ

(k)
i , . . . , ỹ(k)

1

)
∼ N

(
m̂i|i, P̂i|i

)
. (2.19)

Together, m̂i|i and P̂i|i are referred to as the filtered state estimate.
Conditional on that same information, the target’s state in the next scan can be

predicted by propagating the filtered state estimate forward in time using the dynamical
state model. In terms of the relevant distributions, the prediction is given by:

p
(
x(k)
i+1 | ỹ

(k)
i , . . . , ỹ(k)

1

)
=
ˆ
p
(
x(k)
i+1 | x

(k)
i

)
p
(
x(k)
i | ỹ

(k)
i , . . . , ỹ(k)

1

)
dx(k)

i

=
ˆ
p
(
x(k)
i+1 | x

(k)
i

)
p
(
x(k)
i ; m̂i|i, P̂i|i

)
dx(k)

i , (2.20)

which is the state distribution needed to complete the definition of (2.18). This distri-
bution is also Gaussian and given by:

p
(
x(k)
i+1 | ỹ

(k)
i , . . . , ỹ(k)

1

)
∼ N

(
m̂i+1|i, P̂i+1|i

)
.

Together, m̂i+1|i and P̂i+1|i are known as the predicted state estimate, which is com-
puted in the course of the Kalman filtering process. From the properties of Gaussian
distributions, it can be shown ([6]) that the predicted state estimate for scan i + 1 is
derived from the filtered state estimate in scan i as:

m̂i+1|i = Fim̂i|i + ui

P̂i+1|i = FiP̂i|iF
T
i +Qi.

Once the measurement from scan i+1 is received, the Kalman filter is said to update the
predicted state estimate by making it conditional on that measurement. The updated
prediction is then taken to be the filtered state estimate for scan i + 1, which is given
by:

p
(
x(k)
i+1 | ỹ

(k)
i+1, . . . , ỹ(k)

1

)
=
p
(
ỹ(k)
i+1 | x

(k)
i+1

)
p
(
x(k)
i+1 | ỹ

(k)
i , . . . , ỹ(k)

1

)
p
(
ỹ(k)
i+1 | ỹ

(k)
i , . . . , ỹ(k)

1

)
=

p
(
ỹ(k)
i+1 | x

(k)
i+1

)
p
(
x(k)
i+1; m̂i+1|i, P̂i+1|i

)
´
p
(
ỹ(k)
i+1 | x

(k)
i+1

)
p
(
x(k)
i+1; m̂i+1|i, P̂i+1|i

)
dx(k)

i+1
. (2.21)

There are two things to note about these equations. First, they depend on the emission
distribution so how we solve them to get m̂i+1|i+1 and P̂i+1|i+1 will depend on how that
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is defined. The standard Kalman filter solution will not apply in all cases. Second, the
denominator can be recognized as equal to (2.18), which is precisely what is needed to
express the joint measurement distribution.

For the default definition of the emission distribution (equation (2.15)) with
the constant PD model, the standard Kalman filter solution does in fact apply. This is
because p+(·) is equivalent to the emission distribution used by the standard Kalman
filter and the terms in p(ỹ(k)

i+1 | x
(k)
i+1) related to the probability of detection cancel out

between the numerator and denominator. Thus, it can be shown that the updated
estimate is derived from the predicted state estimate as:

m̂i+1|i+1 = m̂i+1|i +Ki+1νi+1

P̂i+1|i+1 = (I −Ki+1Hi+1) P̂i+1|i,

where:

νi+1 = y(k)
i+1 −Hi+1m̂i+1|i

Si+1 = Hi+1P̂i+1|iH
T
i+1 +Ri+1

Ki+1 = P̂i+1|iH
T
i+1S

−1
i+1.

The denominator is given by:

p
(
ỹ(k)
i+1 | ỹ

(k)
i , . . . , ỹ(k)

i

)
=


py
(
y(k)
i+1

)
pd

(k)
i+1 ỹ(k)

i+1 6= ∅

1− pd(k)
i+1 ỹ(k)

i+1 = ∅
(2.22)

where:
py
(
y(k)
i+1

)
∼ N

(
Hi+1m̂i+1|i, Hi+1P̂i+1|iH

T
i+1 +Ri+1

)
.

Note that in this context, the distribution of the target’s current state is:

p(x(k)
i+1; m̂i+1|i, P̂i+1|i),

which is used to calculate the parameter pd(k)
i+1.

For the emission distribution implicitly defined by the joint Gaussian approx-
imation for an arbitrary PD model, the standard Kalman filter solution does not apply.
This is because the numerator and integrand in (2.21) are not represented by the prod-
uct of the emission and state distributions, as indicated here, but are instead replaced
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by the approximation of the joint state and measurement distribution given by (2.17).
In this case, the updated estimate is derived from the predicted state estimate as:

m̂i+1|i+1 = m̂i+1|i +Ki+1νi+1

P̂i+1|i+1 = P̂i+1|i −Ki+1Si+1K
T
i+1,

where:

νi+1 = y(k)
i+1 −

(
µ̂

(k)
i+1

)
y

Si+1 =
(
Σ̂(k)
i+1

)
yy

+Ri+1

Ki+1 =
(
Σ̂(k)
i+1

)
xy
S−1
i+1.

The notation (µ̂(k)
i+1)y is used to indicate the selection of the subvector corresponding to

the measurement mean from the joint state and measurement mean vector, µ̂(k)
i+1. The

notation (Σ̂(k)
i+1)yy is used to indicate the selection of the submatrix corresponding to

the measurement covariance from the joint covariance matrix, Σ̂(k)
i+1. Similarly, (Σ̂(k)

i+1)xy
is used to represent the state-measurement cross-covariance.

Using pd(k)
i+1 to denote the constant of proportionality, the denominator has the

same form as before, but with:

py
(
y(k)
i

)
∼ N

((
µ̂

(k)
i

)
y
,
(
Σ̂(k)
i

)
yy

)
.

Again, p(x(k)
i+1; m̂i+1|i, P̂i+1|i) is the distribution of the target’s current state, which is

used here when calculating the parameters pd(k)
i+1, µ̂

(k)
i+1, and Σ̂(k)

i+1.
Therefore, to compute joint measurement probability, we must: run the Kalman

filter; at each time step, use the predicted state estimate to define (2.22) based on the
chosen model and evaluate it at the measured value; and take the product of these
probabilities.

To complete the discussion of the target measurement likelihood, however, one
final point remains to be made. That is, how to compute the numerator in (2.8). This
is the joint distribution of the negative measurements, which can be obtained from the
joint measurement distribution by integrating out the positive measurements or from
the joint distribution of target states and measurements by integrating out both the
states and the positive measurements. It is required to scale the joint measurement
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probability in order to get the joint probability of the positive measurements, given the
negative measurements, which is the target measurement likelihood.

The easiest way to compute the joint probability of the negative measurements
is to used a version of the Kalman filter modified to skip the update steps to continue
propagating the predictions. This works because integrating out a positive measurement
is equivalent to skipping the update step in the corresponding scan during the Kalman
filter process and simply taking the predicted state estimate to be the filtered state
estimate. For negative measurements, the update does not influence the state for either
definition of the emission distribution. Thus, to compute the joint negative measurement
probability, we: run the modified Kalman filter; at each time step, we use the predicted
state to estimate the discrete part of (2.22); and take the product of those probabilities.

2.3.1.1 Multiple Models

In the previous section, we assumed that the evolution of a target’s state
could be modeled as a discrete-time linear system driven by Gaussian noise so that the
integrals in (2.10) can be solved exactly in linear time. This led to the system model
given by equation (2.11) with the system matrix, Fj , control input, uj , and process
noise, wj , which were all assumed to be known for any given time, j. However, for
highly maneuverable targets, such those that we expect to encounter, there is often
considerable uncertainty regarding those values.

One way to address this model uncertainty without abandoning the advantages
of the linear-Gaussian framework is to assume that a target’s motion can be described
by one of a finite number of models, each in the form of (2.11). Thus, the motion of a
target is assumed to be governed by the discrete mode in which it is operating and this
unobserved mode can be used to specify the appropriate linear-Gaussian model for the
state transition. The mode is assumed to be in effect throughout the sampling period.
This gives us the following mode-conditional system model for the k-th target:

x(k)
j =F [M(j)] x(k)

j−1 + u[M(j)] + w[M(j)] , (2.23)

where M(j) denotes the mode in effect during the j-th sample period. Note that the
measurement model in (2.13) can be similarly extended to handle mode-conditional
measurement matrices and noise, although we will not consider that here.

Having defined the state transitions as a function of the mode, the state of a
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target at time j now depends on the sequence of modes in effect from the initial sample
until that time. Let the l-th mode sequence through time j be denoted by M l(j). Since
the sequence is unobserved, we can model it using a Bayesian framework as a random
variable that is then integrated out. Thus, the marginal distribution of the state of the
k-th target at time i becomes:

p
(
x(k)
i | ỹ

(k)
i , . . . , ỹ(k)

1

)
=

ri∑
l=1

p
(
x(k)
i |M

l(i), ỹ(k)
i , . . . , ỹ(k)

1

)
p
(
M l(i) | ỹ(k)

i , . . . , ỹ(k)
1

)
,

(2.24)

where r is the number of modes. The probability of the mode sequence:

p(M l(i) | ỹ(k)
i , . . . , ỹ(k)

1 ),

is derived using Bayes’ rule with the mode switching modeled as a Markov process with
known transition probabilities.

The target state, given all the previous measurements, is thus modeled as a
Gaussian mixture. To approximate the mixture using a single Gaussian so that (2.19)
continues to hold, moment matching can be used. Unfortunately, the mixture con-
tains an exponentially increasing number of terms so exact evaluation is not possible in
practice. Instead, various suboptimal approximations are used to control the growth of
the mode sequences. The most common such approaches are known as the generalized
pseudo-Bayesian (GPB) and interacting multiple model (IMM) algorithms. These algo-
rithms keep the last one (or two) step of the mode sequence and merge sequences that
differ in their older steps. See [6] for a detailed discussion of these dynamic multiple
model estimation algorithms. When the set of possible modes is not fixed, variable
structure multiple model estimators can be used [115, 103].

Note that in some cases, rather than using a state estimate based on the
weighted combination of the mode-conditional models, it may be advantageous to in-
stead use the output from the model with the highest probability. This is straightfor-
ward using the GPB and IMM algorithms since they both compute the probability of
the current mode, M(i), conditional on the previous measurements, at each time step.

2.3.1.2 Nonlinear Models

For many real-world tracking applications, the assumption that the previous
and current states are linearly related, as in (2.11), is too restrictive. Such models cannot
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accurately describe target behavior such as path-constrained motion that is likely to be
important. Similarly, the assumption that the current state and the corresponding
measurement are linearly related, as in (2.13), is often too restrictive as well. An
example of this from our motivating application is the nonlinear relationship between
radar measurements, which are in polar coordinates, and the state, which is Cartesian
coordinates.

In order to utilize nonlinear state transition and measurement models without
losing the efficiency of the Gaussian representation, particularly the ability to solve the
integrals in (2.10), we must find a Gaussian approximation to the joint distribution
of the variables. One common approach is to replace the nonlinearity with a linear
approximation, in which case the joint Gaussian distribution is easy to find. The well-
known extended Kalman filter (EKF) does exactly that using an approximation based
on the Taylor series expansion around the mean. Of course, this is effective only if the
high order terms are negligible, which not usually the case in practice. It also requires
that the nonlinearity is differentiable, which precludes discontinuous systems and limits
its utility. Another approach is to directly approximate the distribution resulting from
the nonlinear function. This is what the unscented transform (UT) does [91, 92].

Given two random variables, A and B, that are related through the nonlinear
transformation B = f(A), the UT can be used to estimate the moments of their joint
distribution. In this case, our interest lies in the first two moments in order to form a
Gaussian approximation. The UT operates by deterministically selecting a fixed number
of so-called sigma points whose weighted sample moments match those of A. It is the
weights that determine which moments are matched and to what degree. The sigma
points are then propagated through the nonlinear function f(·) and the transformed
values, along with the weights, are used to estimate the moments of the joint distribu-
tion. Thus, rather than attempting to approximate an arbitrary nonlinearity, the UT
instead applies the nonlinear transformation directly and approximates the moments of
the transformed values. Compared to using an approximation of the nonlinearity based
on the Taylor expansion, the UT is easier to implement, more broadly applicable, and
has proven to be more accurate.

Let A ∼ N(µA, ΣA) be Gaussian random variable in Rn that is related to
the random variable B ∈ Rm as stated above. The UT provides an efficient means of
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generating approximations of the form: A

B

 ∼N
 µA

µB

 ,
 ΣA ΣAB

Σ>AB ΣB

 .
The conditional distribution, p(B | A), can be shown to follow a Gaussian distribution
with the mean and covariance given by:

µB|A =µB + Σ>ABΣ−1
A (A− µA)

ΣB|A =ΣB − Σ>ABΣ−1
A ΣAB.

The approximation based on the UT is generated as follows.
Let σi ∈ Rn be the i-th sigma point, where 1 ≤ i ≤ d. Associated with each

sigma point are a pair of scalar weights used to compute the unknown terms in the
joint Gaussian approximation. The first weight in each pair is given by the elements of
Wm ∈ Rd and used to compute the mean of B, which is:

µB =
d∑
i=1

(Wm)i f(σi).

The second weight in each pair is given by the elements of Wm ∈ Rd and used to
compute the covariance terms:

ΣB =
d∑
i=1

(Wc)i (f(σi)− µB) (f(σi)− µB)>

ΣAB =
d∑
i=1

(Wc)i (σi − µA) (σi − µA)> .

There is no one way to select the sigma points and the corresponding weights.
The different methods reported in the literature differ in their accuracy, particularly with
respect to the high order moments, and computational complexity. The sigma points
and weights are often parameterized to allow for problem-specific tuning. In general,
the sigma points are derived from the columns of S =

√
ΣA, where ΣA = SS> and is

computed using the Cholesky factorization. Together with the weights, they are selected
by solving for the values that yield a discrete distribution with moments that match
those of A. Note that the UT does not require that A follow a Gaussian distribution and
different assumptions will lead to different matching requirements. Existing selection
schemes include one for matching the first three moments of an arbitrary distribution
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([93]) and the first four nonzero moments of a Gaussian distribution [94]. However, for
Gaussian random variables we have found the exact monomials method from Lerner
([112]) to be the most effective. It leads to a unique specification of the sigma points
and weights, without the need to find suitable parameters, and offers a way to trade off
complexity for more accuracy through the choice of precision (3 or 5), which changes
the number of sigma points.

Unfortunately, the UT does not guarantee that the covariance matrix resulting
from the approximation is positive definite or even positive semi-definite. In practice,
we must be aware of this and modify the matrix when necessary. Simply using L2

regularization to drive the smallest eigenvalue to a small positive value is one possibility.
Lerner ([112]) describes another approach in which the “closest” positive definite matrix
is found by casting the problem as one of convex optimization.

2.3.2 Prior

The prior is composed of the product of the two distributions given by equa-
tions (2.2) and (2.3) in the hierarchical model. It is the joint distribution of the indicator
variables, Z and Z0 , that collectively represent an interpretation of the observed data.
This distribution is also conditional on two parameters whose values are assumed to be
unknown. These parameters are introduced into the model as random variables with
hyperpriors given by the remaining two equations in the hierarchical model, (2.1) and
(2.4). They will be discussed here along with the prior.

As noted in the preliminaries, the information contained in Z0 is in fact redun-
dant. Any false alarm indicator in Z0 can be readily derived from the corresponding
cluster label in Z as:

z0 i =


0 zi > 0

1 zi = 0,

for 1 ≤ i ≤ nm.
The reason for introducing these additional indicator variables is to allow us to

separate the treatment of the false alarm cluster from that of the target clusters, in the
prior. Although the false alarm cluster could be thought of as just another cluster, our
prior beliefs about it are sufficiently different from those regarding the target clusters
to a warrant such treatment in the interest of clarity. In contrast to the appearance
of targets in the surveillance region, which is generally regarded as unpredictable, we
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assume that the rate at which false alarm measurements appear in each scan can be well
modeled. This implies some relatively strong beliefs about the size of the false alarm
cluster that should be reflected in the prior. At the same time, we would like to remain
agnostic about the size of any given target cluster. Most of the types of priors used for
clustering models make it difficult, if not impossible, to describe such asymmetric prior
knowledge in a truly unified manner. This is indeed the case for all but one of the models
that we will consider in the next chapter. An important consequence of modeling the
false alarm indicators separately is that is allows us to exploit the relationship between
the number of false alarm measurements and the number of target clusters to define the
hyperprior given by (2.4).

To separately model our prior beliefs about the false alarm cluster labels and
the target cluster labels, while still enforcing the necessary dependencies between Z and
Z0 , we have factored the prior as:

p(Z, Z0 | α, λ) = p(Z | Z0 , α) p(Z0 | λ) .

The distribution p(Z0 | λ) represents the prior over the false alarm cluster labels, while
the distribution p(Z | Z0 , α) is said to represent the prior over the target cluster la-
bels; the latter requires some qualification. Conditional on Z0 , the variables in Z can
be partitioned into two independent subsets so that the first component of the prior
becomes:

p(Z | Z0 , α) = p(Zτ0 | Z0 , α) p
(
Zτ+ | Z0 , α

)
,

where Zτ0 contains those variables associated with false alarm measurements and Zτ+

contains those associated with target measurements. The joint distribution of the vari-
ables associated with false alarm measurements is defined simply as:

p(Zτ0 | Z0 , α) =


1 if zi = 0 for zi ∈ Zτ0

0 otherwise

and the joint distribution of the variables associated with target measurements is subject
to the constraint that p(Zτ+ | Z0 , α) = 0 if zi = 0 for zi ∈ Zτ+ . This ensures that the
indicator values remain consistent between Z and Z0 , and that the two components
of the prior each address the appropriate cluster type. The joint distribution of the
variables associated with target measurements is really what is meant when we refer
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to the prior distribution of the target cluster labels. However, for convenience we will
continue to call p(Z | Z0 , α) the prior distribution of the target cluster labels with the
understanding that its definition is based on the appropriate subset of Z.

2.3.2.1 Distribution of the False Alarm Cluster Labels

The probability mass function of the prior distribution over the false alarm
cluster labels is denoted by fZ0 (Z0 ; λ) to indicate that it does not match any well-
known distribution. It contains a single parameter, λ, that is the false alarm rate in
units of false alarms per scan.

To define this component of the prior, we begin by considering which of the
information encoded in Z0 will be used. The set of false alarm indicators tells us, among
other things, the number of measurements in each scan deemed to be false alarms. It
is based on these counts that the probability mass function is defined. Using λ, we can
express the probability of a given number of false alarms occurring in a single scan. As
a function of Z0 , the upper limit of the support of this distribution over the false alarm
counts must be restricted to the total number of measurements received during the scan
to ensure that it sums to 1. Therefore, the distribution over false alarm counts must
be conditioned on the number of measurements in the scan. Assuming that false alarm
measurements are independent across scans, the joint distribution of the false alarm
indicator variables, given the false alarm rate, can be written as:

p(Z0 | λ) =
ns∏
i=1

p
(
nfasi | λ, nmsi

)
,

where nfasi is the number of false alarms and nmsi is the number of measurements, in
scan i. Note that nmsi appears in the conditioning without any corresponding marginal
probability because it is deterministic knowledge.

The number of false alarms in scan i, nfasi , is a discrete random variable
assumed to follow a Poisson distribution with rate parameter λ and truncated so that
the support is [0..nmsi ]. Therefore, each product term is given by:

p
(
nfasi | λ, nmsi

)
= λnfasi exp (−λ)(

nfasi

)
!

(nmsi)!
Γ (nmsi + 1, λ)

= λnfasi(
nfasi

)
!
(∑nmsi

a=0
λa

a!

) .
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Although its exact value is assumed to be unknown, the false alarm rate is
assumed to be something that we can characterize probabilistically, either empirically
or based on theoretical models. Typically, this done empirically in order to capture the
unmodeled effects of the environment on the detector. For simplicity, we use a gamma
distribution, as indicated in (2.1), to describe the uncertainty in the false alarm rate
since this is the conjugate prior for the Poisson rate parameter. Thus, we have:

p (λ | aλ, bλ) ∼ Γ (aλ, bλ) ,

where aλ is the shape and bλ is the rate. This enables the associative tracking model to
deal with variations in the false alarm rate and the extra variance that that introduces
into the false alarm count distributions. However, when the false alarm rate is found
to vary systematically as a function of the scan (i.e. time) then modeling it as a non-
homogeneous Poisson process would probably be more effective [125], but we will not
consider that situation here.

The parameters of the gamma hyperprior are assumed to be known. Suitable
values can be obtained using the parametric empirical Bayes method [25] described
as follows. Consider the number of false alarms in a given scan as a Poisson random
variable without regard to Z0 . Its distribution is given by:

p
(
nfasi | λ

)
= λnfasi exp (−λ)(

nfasi

)
! .

The rate parameter is itself a gamma random variable, so its distribution is given by:

p(λ | a, b) = ba

Γ (a)λ
(a−1) exp (−bλ) ,

where subscripts on the parameters have been dropped to avoid confusion. All the
information about the parameters is contained in the marginal distribution of the false
alarm counts:

p
(
nfasi | a, b

)
=
ˆ
p
(
nfasi | λ

)
p(λ | a, b) dλ,

=

 nfasi + a− 1
a− 1

( b

b+ 1

)a ( 1
b+ 1

)nfasi
.

This can be recognized as a negative binomial distribution with parameters: a and
p = b

b+1 . Thus, the parameters of the gamma hyperprior can be derived by fitting a
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negative binomial distribution to empirical false alarm count data. Let r̂ and p̂ be the
estimated parameters of the negative binomial distribution. They can be computed
using any preferred method (e.g. see [172] and the references therein). Unfortunately,
there exists a closed form solution for the maximum likelihood estimate of just one of
these parameters. The parameters of the gamma hyperprior are then given by: aλ = r̂

and bλ = p̂
1−p̂ .
Here it arose as a mixture of Poisson distributions with Gamma mixing weights

in the course of a parameter estimation procedure, but the negative binomial distribution
is itself a perfectly valid model for the number of false alarms in a given scan. In fact,
it can be viewed as a generalization of the Poisson distribution. Our decision to use
a Poisson distribution to describe the false alarm counts was somewhat arbitrary, but
motivated by the fact that this is the standard approach for tracking models. We then
extended that approach by modeling the Poisson rate parameter as a random variable,
to be included in the inference process, based on the beliefs that knowing the exact rate
and the perfect constancy of the rate are unlikely to satisfied in practice. When the
assumptions underlying the Poisson distribution are not well satisfied, once consequence
is that the false alarm counts can be overdispersed with respect to that model. In other
words, the true variance is larger than what the Poisson distribution prescribes, which
is that the variance is equal to the mean. As a model for the distribution of counts, the
negative binomial has more freedom to describe such behavior. One could opt to replace
equations (2.2) and (2.3) in the hierarchical model with p(Z0 ) defined based on the
product of truncated negative binomial distributions. However, further consideration of
this alternative will be left to future work.

2.3.2.2 Distribution of the Target Cluster Labels

The probability mass function of the prior distribution over the target cluster
labels is denoted by fZ(Z; Z0 , α) to indicate that it does not necessarily match any
well-known distribution. In some cases it may indeed match a well-known distribution,
so this is really more of a place holder because we will be looking in detail at various
ways to define this distribution in the next chapter. The best way to represent our prior
beliefs about the target cluster labels is an open question in need of further study.

Defining this component of the prior is particularly challenging because we wish
to remain largely agnostic about the number of targets and the sizes of the target clus-
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ters, which are all assumed to be a priori unknown. This implies that any assumptions
along these lines that we do introduce should be as weak as possible. One promising
approach is to use data-driven nonparametric priors. We will defer to the next chapter
the definition of such priors. At present, let it suffice to say that an important class
of these nonparametric priors has a single so-called concentration parameter, α ∈ R+,
that controls the formation of new clusters. Since the number of clusters is assumed to
be unknown, it follows that α too is unknown. The remainder of this section will be
devoted to outlining how the hyperprior for α is defined.

We begin by noting that the distribution of α has been defined, in equation
(2.4), as conditional on Z0 . This is because the concentration parameter controls the
expected number of clusters for a given number of variables and Z0 tells us not only
the number of measurements deemed to be false alarms but also the number deemed to
be targets. In the context of this component of the prior, the number of measurements
deemed to be targets is the number of variables to be clustered. Let this number be
denoted by nmτ+ .

In the absence of any other constraints, the expected number of clusters ap-
proaches one as α approaches zero. As α approaches infinity, the expected number
of clusters approaches the number of variables, nmτ+ . The concentration parameter
thus acts like a control knob for the distribution of the number of clusters implied by
p(Z | Z0 , α), adjusting the distribution so that its expected value moves between those
two extremes. This general behavior is true of all the nonparametric priors that we
will consider. It is the rate at which the expected value changes and the shape of the
distribution that varies across models. Of course, the different priors will also differ sub-
stantially in ways that are not a function of α such as with respect to the distribution
over the sizes of the clusters. Our preferences regarding these characteristics influences
our choice of the prior itself, but not the hyperprior.

There is, however, an important constraint that does impact the expected
number of clusters. It follows from the earlier assumption that there are no split mea-
surements. If there are no split measurements, then each target measurement in a given
scan must have originated from a different target and hence be assigned to a different
cluster. We will refer to this requirement that the target measurements within a scan
have unique cluster labels as the scan constraint. One consequence of this constraint
is that it places a lower bound on the number of clusters because that number cannot
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be less the maximum scan depth (i.e. the maximum number of target measurements in
any scan) when the scan constraint is satisfied for all of Z. Let that lower bound be
denoted by Kmin = maxDepth, whose value can be obtained from Z0 since the set of
false alarm indicator variables effectively encodes the scan depths.

Note that in their default forms, the nonparametric priors do not reflect this
scan constraint so they will have to be modified. Here, we will assume that the prior has
been appropriately modified so that α predicts the correct distribution of the number of
clusters. The scan-constrained forms of the priors will be discussed in the next chapter.

The distribution p(α | Z0 ) should be defined so that the most density coincides
with the values of α whose implied distribution of the number of clusters is the most rea-
sonable in the sense that it conforms to our prior beliefs. Let us now contemplate what
assumptions we might be willing to make regarding the distribution of the number of
clusters, ignoring for the moment those implied by our choice of p(Z | Z0 , α). We begin
by recalling our desire to remain agnostic about the number of targets. Does this then
imply that all numbers of clusters should be regarded as equally likely? That is hardly
a reasonable presumption for a tracking application; especially not for a surveillance
application. The extreme case of nmτ+ clusters should be regarded as rather unlikely. A
more reasonable belief would be that having a small number of clusters is more probable
than a large one. This suggests a template for describing our beliefs about the number
of clusters: a distribution that decreases as a function of the number of clusters. It
does not entail any strong assumptions about specific values but instead expresses a
general preference for a relatively small number of clusters. Let the distribution of the
number of clusters that represents these beliefs be denoted by p0(K | Z0 ), where K is
the number of clusters.

To define p0(K | Z0 ) in a way that scales with the number of variables, we
introduce two new parameters. The first is minClusterSz. As the name suggests, it
describes the minimum number of variables that constitute a cluster. It is not meant
to be a hard limit but rather a means to determine a more realistic upper bound on the
number of clusters for this distribution. Let that upper bound be denoted by Kmax,
whose value is the maximum number of clusters, consistent with the scan constraint,
computed based on minClusterSz and the scan depths implied by Z0 . In practice, we
use:

Kmax = max
(
Kmin,

⌈ nmτ+

minClusterSz

⌉)
.
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The motivation for using an upper bound other than the number of variables is that
singleton clusters are not meaningful in a tracking application. One measurement does
not provide enough information to identify it as a target rather than a false alarm.
Therefore, we have minClusterSz ≥ 2. Values greater than two should be interpreted as
an expression of belief about the expected minimum cluster size. The practical effect
of increasing minClusterSz is to compress p0(·) and intensify the preference for a small
number of clusters. The second variable is η, which describes the ratio:

p0(K = Kmax | Z0 )
p0(K = Kmin | Z0 ) .

It provides a convenient means of parameterizing the decay function used to define the
distribution by relating the probabilities of the least probable number of clusters and
the most probable number. The distribution of the number of clusters that represents
our prior beliefs is then given by:

p0(K | Z0 ) = a(1− a)K
(1− a)Kmin − (1− a)1+Kmax , (2.25)

where a = 1 − η
1

Kmax−Kmin and K ∈ [Kmin..Kmax]. It is proportional to a geometric
distribution, which yields the following interpretation. We begin with Kmin clusters
and conduct a series of simple random experiments to determine how many to add.
With probability 1−a we add a new cluster and with probability a we keep the current
number of clusters. The sequence of experiments stops when we encounter the first
decision to keep the current number of clusters. The probability of stopping with K

clusters is proportional to p0(K | Z0 ). Figure 2.3 shows an example of the prior beliefs
about the number of clusters given 25 measurements, with 5 measurements made in each
scan. Although derived differently, the resulting distribution resembles the prior for the
number of clusters proposed by Casella et al. [26]. They assumed that the number
of clusters followed a truncated Poisson distribution with an unknown rate parameter,
described by the intrinsic prior, and ended up with a similar exponential-like decay
form.

We can now define p(α | Z0 ) by relating our beliefs about the number of clus-
ters, as expressed by p0(K | Z0 ), to the distribution of the number of clusters that is
implied by the prior over the target cluster labels, p(Z | Z0 , α). Let the implied distri-
bution of the number of clusters be denoted by pZ(K | Z0 , α). The two cluster count
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Figure 2.3: Example of prior beliefs about the number of clusters based on (2.25).

distributions are related using their Jensen-Shannon divergence to quantify their simi-
larity as a function of α. The Jensen-Shannon divergence (JSD) between pZ(K | Z0 , α)
and p0(K | Z0 ) is defined by:

JSD (pZ ‖ p0) = 1
2D (pZ ‖M) + 1

2D (p0 ‖M) ,

where M = 1
2 (pz + p0) and D (·) is the Kullback-Leibler (KL) divergence, which is

defined for discrete probability distributions P and Q to be:

D (P ‖ Q) =
∑
i

P (i) ln
[
P (i)
Q (i)

]
.

The JSD is computed for K ∈
[
Kmin..nmτ+

]
because the upper bound of Kmax only

applies to p0(K | Z0 ) so we use the larger of the two. To convert this into a probability
distribution, we shift and scale the negative JSD to get:

p (α | Z0 ) = −JSD (pZ ‖ p0) +D0
C

, (2.26)

where D0 is a constant needed to make the values non-zero over the support and C is
the normalizing constant. The support is defined to be the interval (0, αmax], where
αmax is the value of the concentration parameter for which the expected number of
clusters implied by p(Z | Z0 , α) isKmax. The constant D0 is given by the JSD (pZ ‖ p0)
evaluated at αmax. It turns out that this distribution can be well approximated by a
gamma distribution, hence the definition:

p (α | Z0 ) ∼ Γ (aα(Z0 ), bα(Z0 )) .
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Figure 2.4: Example of the hyperprior for the concentration parameter of a scan-
constrained Dirichlet process.

The parameters are functions of Z0 and computed by fitting a gamma distribution to
(2.26). In practice, this can be done efficiently using one of the moment and mode
matching methods described in appendix A. The moments can be estimated by evalu-
ating −JSD (pZ ‖ p0) +D0 at small number of sample points and then computing the
mean and variance using the trapezoidal rule to approximate the sample weights. If
necessary, the mode can be computed using a derivative-free optimization method such
as the Brent algorithm. Figure 2.4 shows an example of p(α | Z0 ), including both (2.26)
and its gamma-based approximation, for a scan-constrained Dirichlet process prior.

2.4 Inference

Inferences about what is happening within the surveillance region are made
using a sample drawn from the joint posterior, p(Z, Z0 , λ, α | Ỹ , aλ, bλ). From such a
sample, we can obtain Monte Carlo estimates of all posterior quantities of interest in
the form of expectations of arbitrary functions of the indicator variables, false alarm
rate, and concentration parameter (when applicable). The choice of these functions
will depend on the application and the quality of the estimates will depend on how the
sample was obtained.

2.4.1 Markov Chain Monte Carlo (MCMC)

Being unable to sample from the joint posterior directly, we can use Markov
Chain Monte Carlo (MCMC) methods to simulate draws from this distribution. MCMC
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methods are a family of algorithms for generating a sample from an arbitrary distribu-
tion on a space Ω by constructing a Markov chain with states ω ∈ Ω that has the desired
distribution as its stationary distribution, which is denoted by π(ω). The sample then
consists of the states visited by the chain after converging to its equilibrium. In order
to ensure that the chain does in fact converge and to the desired distribution, it must
satisfy certain conditions. Specifically, the chain must be: irreducible, aperiodic, and
positive recurrent. Irreducible means that there is a positive probability of the chain
reaching a given state from any other state, although not necessarily in one step. Ape-
riodic means that the chain does not return to the same state at some fixed interval (i.e.
it does not get trapped in a cycle). Finally, positive recurrent means that for any given
state, the chain will eventually return to that state with probability 1. A chain that
satisfies all of these conditions is said to be ergodic, which implies that π(ω) exists and
is unique. The ergodic theorem guarantees that given such a chain, the Monte Carlo es-
timates of the expectation of any function with respect to π(ω), computed using sample
means, will converge almost surely to their to true values despite the serial dependence
between the sample points due to the Markov property [163]. However, the fact that
the sample points are not independent does significantly complicate the calculation of
the variability of these estimates.

It is relatively easy to construct an ergodic chain with π(ω) equal to the poste-
rior distribution so that estimates of the posterior expectations are theoretically guaran-
teed to converge. However, there is no general, practical, and reliable way to determine
how long the chain must be run to produce an estimate with the desired level of accuracy.
A substantial amount of research has been dedicated to determining convergence rates
and stopping rules to ensure that the sample is large enough to adequately represent
the underlying stationary distribution [36, 19]. Unfortunatey, none of these methods
for diagnosing convergence are universally appropriate or accepted. The most rigorous
methods are not widely applicable and can be overly pessimistic. The most commonly
used methods are graphical and require a subjective assessment of their output.

In principle, the problem of deciding when to stop the chain can be avoided
by using so-called perfect sampling algorithms, such as Propp-Wilson [152, 163], which
are guaranteed to produce i.i.d. samples from the stationary distribution of the Markov
chain. In practice, however, there are a number of problems that severely limit their
usefulness. Chief among these problems is the running time. It is difficult to determine
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in advance how long it will take a perfect sampling algorithm to produce the requested
sample size. Thus, we often do not know whether a sample large enough to achieve the
desired accuracy can be obtained given a fixed time budget. Of course, the independence
of the sample points that we do obtain guarantees that we can easily compute the
Monte Carlo variance of the estimates to determine how close we are to the desired
accuracy. When knowing the variance is not critical, more accurate results can be
obtained by simply running the MCMC sampler for the same amount of time [66]. The
running time for perfect sampling algorithms depends on how fast the chain converges
to its stationary distribution, which is the same fundamental performance bottleneck
impacting traditional MCMC sampling. This means that when the chain is slow to
converge, we need either a large MCMC sample or have to wait a long time for the
perfect samples. Thus, perfect sampling is not interesting because it is efficient, it is
not, but rather because it frees us from having to monitor the output of the sampler. In
any case, perfect sampling is currently only an option for problems in which the state
space satisfies certain theoretical conditions that can be exploited to devise a practical
algorithm. Those conditions do not apply here.

The reality is that we can never be certain about how well our estimates have
converged and thus how accurate they are. This is especially true when the state space
is very high-dimensional, as is the case for the associative tracking model. Dutifully
applied MCMC convergence diagnostics can at best be a rough guide; at worst they
can be misleading. However, we should not be discouraged by the circumstances; just
careful about how we interpret the output. We can still construct a sampler that
works well enough in practice. MCMC methods have yielded useful solutions to similar
high-dimensional problems, such as image segmentation [7, 186] and target tracking
[135, 60, 201], without establishing convergence. For such problems, a qualitative as-
sessment of the output given known inputs is actually quite revealing. Although that
cannot quantify the variance in the estimates, nor can it quantify how close the sample
distribution is to the stationary distribution, it can give us confidence that the chain
has explored all the important features of the distribution such as the modes. This is
true because these particular problems are essentially labeling problems and for known
inputs, we know a lot about the structure of the output, including what the what the
MAP estimate should look like.

As Robert and Casella [163] point out, in light of the asymptotic validity of

83



MCMC, establishing convergence to the stationary distribution is not the most impor-
tant practical concern but rather maximizing the speed with which the chain explores
the support of the distribution. Accurate estimates require a sample that reflects the
features of the underlying distribution and this criteria is most likely to be met for a
given sample size when the chain explores the support of the distribution quickly. They
also cite the correlation between sample points as an issue of practical concern. But this
too is related to the speed of exploration as a highly correlated sample is symptomatic of
the chain spending too much time in some regions before moving on. However, unless the
correlation is extremely high, it will probably not significantly impact the precision of
the estimates because the correlation only indicates that sample points generated close
in time are unrepresentative and that impact will tend to be averaged out [117]. Some
degree of correlation will always be present, however, because of the Markov depen-
dence between successive sample points. As is the case for the convergence diagnostics,
analyzing the correlation does not provide any firm guidance.

How fast the chain explores the support of the stationary distribution is often
referred to as the mixing speed of the chain. The mixing time of a Markov chain is
defined as the time (i.e. number of iterations) required for the distance to its station-
ary distribution to be small in some formally defined sense, usually based on variation
distance. A chain that mixes rapidly will explore the support of the stationary distri-
bution quickly and exhibit weak dependence on the initial conditions. Estimates of the
expectations computed using a sample from such a chain will converge quickly, which
is exactly what we want. However, before we consider what design decisions can speed
up the mixing, let us first look at how to construct an ergodic chain with the desired
stationary distribution.

The most general MCMC method is the Metropolis-Hastings algorithm [82],
which works as follows. Let π(ω) be the posterior distribution that we wish to simulate
and q(ω′ | ω) be the proposal distribution, which describes the conditional probability
of moving to state ω′ from state ω. The posterior distribution need only be known up
to the normalizing constant. The proposal distribution must be something that we can
readily evaluate in its fully normalized form and sample from. The algorithm begins
with an initial state chosen at random. At the t-th iteration, a candidate state, ω̃, is
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generated from q(ω̃ | ω(t−1)). With probability:

a
(
ω̃, ω(t−1)

)
= min

1,
π
(
ω̃
)
q
(
ω(t−1) | ω̃

)
π
(
ω(t−1)) q(ω̃ | ω(t−1))

 , (2.27)

the proposal is accepted and the chain moves to the candidate state so ω(t) = ω̃; other-
wise the proposal is rejected and the chain remains in the same state so ω(t) = ω(t−1).
This process is repeated for the desired number of iterations.

The particular form of the acceptance probability ensures that the stationary
distribution of the chain exists and is equal to π(ω). Note that it requires each state
transition to be reversible. To ensure that the chain is ergodic, which guarantees the
uniqueness of the stationary distribution and the desired convergence properties, the
proposal distribution must satisfy a couple of mild conditions. Namely, q(·) must be
defined such that there is nonzero probability that the chain remains in the same state
from one iteration to the next and all states are reachable in a finite number of steps.

Green showed that the Metropolis-Hastings algorithm could be generalized in
a variety of ways [73] . The one of interest here is the state-dependent mixing of Markov
chain transition kernels. This allows us to consider a family of proposal distributions,
qi(ω′ | ω), where i ∈M, with weights ci(ω) that depend on the current state, such that
ci(ω) ≥ 0 and ∑i ci(ω) ≤ 1. In this case, at each iteration of the algorithm a random
proposal index i is chosen with probability ci(ω(t−1)) and the candidate state is then
generated from qi(ω̃ | ω(t−1)). The proposal is accepted with probability:

a
(
ω̃, ω(t−1)

)
= min

1,
π
(
ω̃
)
ci(ω̃) qi

(
ω(t−1) | ω̃

)
π
(
ω(t−1)) ci(ω(t−1)) qi(ω̃ | ω(t−1))

 . (2.28)

With the remaining probability, 1 −∑i ci(ω(t−1)), no candidate is generated and the
chain remains in the current state. The transitions of the chain are determined by the
kernel corresponding to the mixture proposal qI(ω̃ | ω(t−1))+∑i ci(ω(t−1))qi(ω̃ | ω(t−1)),
where qI is the identity proposal which always returns ω(t−1).

Given a multivariate state, ω = (ω1, ω2, . . . , ωn), and a specific choice of pro-
posal distribution at each iteration, the Metropolis-Hastings algorithm is equivalent to
another MCMC method known as the Gibbs sampler [63]. Gibbs sampling works by
repeatedly sweeping over each variable, updating the corresponding part of the state
with a new value generated from the distribution of that variable conditioned on all
other variables. Each iteration of the algorithm corresponds to a particular sweep and
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a particular variable within that sweep. At the t-th iteration, assume that variable i
is being updated. A new value for that variable, ω̃i, is generated from p(ω̃i | ω(t−1)

\i ),
where ω(t−1)

\i represents the values of all variables other than i from the previous iter-
ation. This is equivalent to the candidate state (ω̃i, ω(t−1)

\i ) drawn from the proposal
distribution q(ω̃i, ω(t−1)

\i | ω(t−1)). It can be shown that the Metropolis-Hastings ac-
ceptance probability in this case is always 1, so ω(t) = (ω̃i, ω(t−1)

\i ). The variables are
updated in some predetermined, or random, order and all variables are updated before
proceeding to the next sweep. This process is repeated for the desired number of it-
erations. Note also that the sweeps and corresponding updates can be performed over
blocks of variables as well. The proposal distribution q(ω̃ | ω(t−1)) is equal to the prod-
uct of the proposal distributions used to update each variable (or block of variables),∏n
i=1 q(ω̃i, ω

(t−1)
\i | ω(t−1)).

Gibbs sampling eliminates the often difficult task of selecting an appropriate
proposal distribution but requires instead the ability to sample from the full conditional
distribution of each variable (or block of variables). In some cases, the conditional dis-
tributions have well-known forms and can be easily sampled from. Otherwise, a hybrid
approach commonly referred to as Metropolis-within-Gibbs, but more appropriately
known as componentwise Metropolis-Hastings, can be employed. It utilizes a single it-
eration of the Metropolis-Hastings algorithm to update a variable (or block of variables)
within the Gibbs sampler paradigm. In this case, the advantage of continuing to work
within the Gibbs paradigm framework is that it simplifies complex high-dimensional
problems by breaking them down into a sequence of simple low-dimensional problems.
Of course, even when we can sample directly from the full conditionals, the Gibbs sam-
pler does not necessarily produce a chain that mixes quickly. Indeed, a well-known
limitation of Gibbs sampling is that it can be slow to mix when the state space is
high-dimensional and there are strong couplings between variables that are not sampled
together [7]. In this situation, we must reparameterize the problem so that the strongly
coupled variables are placed in the same block. However, this often leaves us with con-
ditional distribution that we cannot sample from directly and the only way forward is to
try to find an effective proposal distribution to use with a Metropolis-Hastings update.
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2.4.2 Population Monte Carlo (PMC)

Of course, MCMC is not the only approach to sampling from an arbitrary
distribution such as our joint posterior. Importance sampling is another Monte Carlo
method that can be used; one that offers certain advantages over MCMC. It is a fam-
ily of algorithms based on the idea that expectations with respect to any arbitrary
distribution, π(ω), can be represented as:

E [g(ω)] =
ˆ
g(ω) π(ω)

q(ω) q(ω) dω,

where g(ω) is some function of interest of the state and q(ω) is a proposal distribution,
known as the importance distribution, from which sampling is easy. Given a sample
of size N drawn from the importance distribution, we can then compute an unbiased
estimate of the expectation as:

E [g(ω)] ≈ 1
N

N∑
i=1

g(ωi)
π(ωi)
q(ωi)

,

where the π(ωi)
q(ωi) are known as the importance weights. The variance of the estimate

depends on the choice of importance distribution, but unlike for estimates based on
an MCMC sample, it can be readily computed because the samples are independent.
Another advantage over MCMC is that importance sampling does not require any con-
vergence diagnostics or stopping rules because it always yields a valid approximation.

There are, however, a couple of difficulties with this estimator in practice.
First, it requires π(ω) to be a properly normalized distribution, which is often not the
case. Finally, for some choices of q(ω), the ratio π(ω)

q(ω) is unbounded which will lead to
infinite variance in the estimate. In general, the conditions sufficient to avoid this fate
are difficult to guarantee [163]. Both of these issues can be circumvented by using the
self-normalized importance sampling estimator given by:

E [g(ω)] ≈
∑N
i=1 g(ωi) π(ωi)q(ωi)∑N

i=1
π(ωi)
q(ωi)

,

which normalizes the importance weights. This estimator has finite variance and is
guaranteed to converge almost surely as N → ∞. It does, however, introduce a small
bias. Despite that fact, the stability of the self-normalized estimator makes it the
preferable form in most cases.
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Importance sampling can be an attractive alternative to MCMC because it is
often a more efficient approach to simulation of the target distribution. It can also work
where MCMC algorithms have trouble converging, even when using the same proposal
distribution. As with MCMC, the performance of importance sampling strongly depends
on the choice of proposal distribution. When discussing MCMC, we considered random
walk proposals of the form q(ω′ | ω), which depend on the current state. In contrast, here
we have assumed that independent proposals of the form q(ω) are available. For high-
dimensional problems, these are considerably more difficult to construct than dependent
proposals. In this case, population Monte Carlo (PMC) [24] provides a framework
that allows us to enjoy the benefits of importance sampling while taking advantage of
dependent proposal distributions constructed for MCMC.

PMC is a form of iterated importance sampling. It works by simulating a
finite sample from π(ω) as opposed to generating a series of individual sample points
using an approximation of the target distribution, as is the case with MCMC. The
algorithm begins by producing an initial sample of size n by any convenient means.
At each iteration, every sample point is then replaced with a new one generated from
the proposal distribution, conditional on its previous value. The importance weights
are computed for each sample and then the population of sample points is corrected by
resampling them, with replacement, based on their weights. This resampling step avoids
keeping sample points with negligible weights, thus avoiding the problem of degeneracy.
It also ensures that the corrected sample will yield a convergent estimate after every
iteration.

An important feature of PMC is that the proposal distribution can also be
adapted at each iteration based on the performance of earlier proposals. Since the al-
gorithm does not depend on approximating π(ω) using an ergodic Markov chain, these
adaptations can be made with almost no constraint on the form of dependence on the
past because there is no concern about destroying the ergodicity. For a suitable adap-
tation scheme, the variance of the estimates will decrease with increased iterations,
although it cannot be driven to zero when the self-normalizing importance sampling
estimator is used. Douc et al. [44, 45] showed that given a family of fixed proposal
distributions, as in Green’s generalization of Metropolis-Hastings, the mixture proposal
can be suitably adapted at each iteration by adjusting the mixture weights. The pre-
scribed adaptation scheme continually updates the mixture weights to reflect the relative
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importance of the respective proposal distributions. It was shown to not only achieve
the desired variance reduction but also lead to an asymptotic reduction in the Kullback-
Leibler distance between the target and proposal distributions.

Their algorithm is known as Rao-Blackwellized D-kernel PMC. Given a family
of proposal distributions, qd(ω′ | ω), where d ∈ [1..D], an initial proposal distribution,
q0(ω), and an unnormalized target distribution, π(ω), it produces a sample of size N
and refines it over T iterations as follows:

1. Initialization (t = 0)

(a) Generate the initial sample,
(
ω̃i,0

)
1≤i≤N , by drawing each point from

the initial proposal distribution, q0.

(b) Compute the normalized importance weights:

wi,0 = π(ω̃i,0)
q0(ω̃i,0)

/ N∑
j=1

π(ω̃j,0)
q0(ω̃j,0) ,

for 1 ≤ i ≤ N .

(c) Resample
(
ω̃i,0

)
1≤i≤N according to the importance weights,

(
wi,0)

1≤i≤N ,
to get the corrected sample

(
ωi,0

)
1≤i≤N .

(d) Initialize the mixture weights: c0, where c0 ∈ RD and c0
d = 1/D for

1 ≤ d ≤ D.

2. For t = 1..T

(a) Select a random proposal distribution for each sample point,
(
qi,t
d̃

)
1≤i≤N

,
by drawing each d̃ from a categorical distribution with probabilities
given by the mixture weight vector, ct.

(b) Generate a new sample,
(
ω̃i,t

)
1≤i≤N , by drawing each point from its

respective proposal distribution, qi,t
d̃

(
ω̃i,t | ωi,t−1).

(c) Compute the normalized Rao-Blackwellized importance weights:

wi,t = π(ωi,t)∑D
d=1 c

t
dq
i,t
d (ω̃i,t|ωi,t−1)

/ N∑
j=1

π(ωj,t)∑D
d=1 c

t
dq
j,t
d (ω̃j,t|ωj,t−1)

,

for 1 ≤ i ≤ N .
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(d) Resample
(
ω̃i,t

)
1≤i≤N according to the importance weights,

(
wi,t

)
1≤i≤N ,

to get the corrected sample
(
ωi,t

)
1≤i≤N .

(e) Update mixture weights:

ct+1
d =

N∑
i=1

wi,tp
(
d | ω̃i,t, ωi,t−1, ct

)
,

for 1 ≤ d ≤ D, where:

p
(
d | ω̃i,t, ωi,t−1, ct

)
= ctdq

i,t
d

(
ω̃i,t | ωi,t−1

)/ D∑
l=1

ctlq
i,t
l (ω̃i,t | ωi,t−1).

Note that step 2(e) is based on the robust weight update proposed by Cappé et al.
[23]. Iacobucci et al. [88] proposed a more robust important weight calculation that
incorporates a second Rao-Blackwellizataion step to reduce the influence of the previous
sample value proposal. Using double Rao-Blackwellization, step 2(d) can be replaced
by:

(
wi,t

)
1≤i≤N

= π(ωi,t)∑N
j=1 wj,t−1∑D

d=1 c
t
dq
j,t
d (ω̃i,t|ωj,t−1)

/
N∑
k=1

π(ωk,t)∑N
j=1 wj,t−1∑D

d=1 c
t
dq
j,t
d (ω̃k,t|ωj,t−1)

.

Given its advantages, PMC is the preferred approach to generating samples in
associative tracking applications. This, above all else, is because it frees us from the
concern that our sample size will be too small to yield sufficiently accurate estimates. In
practice, we expect to be operating with a limited computational budget that restricts us
to a predetermined maximum sample size. Even with well chosen proposal distributions,
we prefer to be on firmer theoretical footing with regard to the convergence of our
estimates. PMC also offers a distinct computational benefit, namely that the proposals
for each sample at a given iteration can be drawn in parallel. However, for the purposes
of this research we will still consider MCMC samplers as their performance will reveal
a lot about our proposal distribution.

2.4.3 Proposal Distribution

For both the MCMC and PMC algorithms, the choice of the proposal distribu-
tion is a critical determinant of their effectiveness. A well-chosen proposal distribution
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will efficiently explore the space, visiting all the high probability regions without lin-
gering too long around any of its modes. When used for MCMC, such a proposal
distribution will lead to rapid mixing of the chain and fast convergence of the ergodic
averages. When used for PMC, a well-chosen proposal distribution will minimize the
variance of the resulting estimates.

Unfortunately, there is no universal prescription for how to choose a good
proposal distribution. It is a highly application-specific process and usually requires a
fair amount of trial and error, which one of the criticisms of these algorithms. With that
said, we adopt two principle strategies to assist us in constructing an effective proposal
distribution for use with either MCMC or PMC. First, we use a proposal distribution
that is capable generating large and meaningful changes in the state. Large is meant in
sense that there is the potential to change the values of a significant fraction of the state
variables. Meaningful, on the other hand, is meant in the sense that the candidate state
is derived by altering the current state in a way that respects the structure of problem.
Finally, we make the proposal distribution conditional on some function of the data in
order to steer the chain toward regions that are likely to have a high posterior probability.
This is known as a data-driven proposal. The idea was first formally introduced as a
way speed up convergence in another high dimensional problem: image segmentation
[186]. The proposal distribution q(ω′ | ω) is thus replaced by q(ω′ | ω, Ỹ ), which is
ideally defined to yield a distribution that is proportional to the posterior probability,
over the support q(ω′ | ω, Ỹ ).

Let ω = (Z, Z0 , λ, α) be the state space for the joint posterior distribution,
which consists of the indicator variables (cluster labels and false alarm indicators), the
false alarm rate, and the concentration parameter, respectively. The state space is then
partitioned into three parts and the proposal distribution q(ω̃ | ω(t−1)) is defined as the
product of the componentwise proposal distributions:

qλ
(
λ̃, Z(t−1), Z0 (t−1), α(t−1) | ω(t−1)

)
(2.29)

qα
(
α̃, Z(t−1), Z0 (t−1), λ(t−1) | ω(t−1)

)
(2.30)

qz
(
Z̃, Z̃0 , λ(t−1), α(t−1) | ω(t−1)

)
. (2.31)

Using this factorization, we have separated the relatively simple tasks of up-
dating the false alarm rate and the concentration parameter from the considerably more
difficult task of updating the indicator variables. Recall that Z and Z0are each sets con-
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taining nm variables. It is the typically large number of these indicator variables and
the fact that there are strong dependencies between them that makes efficiently simulat-
ing the posterior distribution a challenging problem. At a minimum, the dependencies
between the cluster labels and the false alarm indicators introduced in the definition
of the prior require that each zi and z0 i pair be sampled jointly in order to keep their
values in sync and avoid zero probability assignments. When operating on one variable
at a time, the sampler cannot make state transitions that pass through zero probability
regions of the space. However, rather than updating the indicator pairs one at a time,
we instead jointly sample the entire block of indicator variables and update them all
in a single step. This enables us to both ensure that the cluster labels and false alarm
indicators remain in sync, and make proposals that differ substantially from the current
state.

The Gibbs sampler paradigm suggests that (2.29)–(2.34) be defined using the
full conditional distributions:

p
(
λ̃ | Z(t−1), Z0 (t−1), α(t−1), Ỹ

)
∝ p

(
Z0 (t−1) | λ̃

)
p
(
λ̃ | aλ, bλ

)
(2.32)

p
(
α̃ | Z(t−1), Z0 (t−1), λ(t−1), Ỹ

)
∝ p

(
Z(t−1) | Z0 (t−1), α̃

)
p
(
α̃ | Z0 (t−1)

)
(2.33)

p
(
Z̃, Z̃0 | λ(t−1), α(t−1), Ỹ

)
∝ p

(
Ỹ | Z̃, Z̃0

)
p
(
Z̃ | Z̃0 , α(t−1)

)
p
(
α(t−1) | Z̃0

)
p
(
Z̃0 | λ(t−1)

)
,

(2.34)

respectively. Of course, none of these distributions have a well-known form that allows
for convenient direct sampling. However, they still provide a useful guide.

Since the false alarm rate, λ, and the concentration parameter, α, are scalar
random variables, using univariate grid approximations to sample (2.32) and (2.33)
provides one tractable approach to defining (2.29) and (2.30) based on the Gibbs sampler
paradigm. When grid approximations are not desirable, a simple alternative is to define
each of the proposal distributions as a Gaussian, left-truncated at zero, and centered
on the current value. The truncation reflects the fact that λ ≥ 0 and α > 0. Note that
the case of α̃ = 0 must handled correctly; the sample rejected or assigned a weight of
zero, depending on the sampling algorithm.

An appropriate variance for each of the Gaussian proposal distributions can be
derived from a rough gamma approximation to the full conditional whose parameters
are a function of the conditional variables (and the known hyperparameters). The
conditional probability of λ, given by (2.32), is approximately described by a gamma
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distribution with shape and rate parameters a = aλ + nfa and b = bλ + ns, respectively.
The conditional probability of α, given by (2.33), is approximately described by a gamma
distribution with shape and rate parameters a = aα+ak−1 and b = bα+bk, respectively,
where aα and bα are the parameters of the hyperprior for α, computed from Z0 (t−1), and
ak and bk are the parameters of a gamma approximation to p(Z(t−1) | Z0 (t−1), α̃). That
last approximation is based on rewriting the probability of the target cluster labels as
p(K | Z0 (t−1), α̃), which is the distribution of the number of clusters that it implies. As a
function of α, withK fixed to the number of clusters in Z(t−1), this can be approximated
as a gamma distribution whose mode is equal to the value of concentration parameter
at which the expected number of clusters is K and whose variance is equal to the
variance of the number of clusters when alpha is at the mode. The approximation can
be computed using the modified mode and variance matching described in appendix A.
Note that in practice we have found these gamma approximations to be good enough
to be used effectively as independent (i.e. not conditional on the current state) proposal
distributions. This provides yet another approach to defining (2.29) and (2.30).

To effectively sample the block of indicator variables, (Z̃, Z̃0 ), grid-based ap-
proximations would generally be intractable due to the dimensionality and approxima-
tions based on well-known distributions are not an option. It is here that we turn to the
idea of a data-driven proposal distribution. However, before getting into the data-driven
aspects, we first outline the basic form.

The proposal distribution (2.31) is itself defined as a mixture of proposal distri-
butions carefully selected to generate candidate states by moving away from the current
state in a variety of different ways so as to enable the efficient exploration of the entire
sample space. Each mixture component is defined over some subset of the sample space
that is both a function of the specific proposal and the current state. The family of
proposal distributions used in the mixture consists of eight different moves:

M = (1:Add, 2:Delete, 3:Split, 4:Merge, 5:Extend, 6:Reduce, 7:Switch, 8:Replace) .

Thus, (2.31) is written as: ∑
i

ciqi
(
ω̃ | ω(t−1), Ỹ

)
, (2.35)

where the mixture weights, ci, and the mixture proposal distributions, qi(·), are defined
over the moves inM.
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In the context of MCMC, since each move is not necessarily reversed using the
same type of move, we introduce the corresponding reverse moves:

M−1 = (1:Delete, 2:Add, 3:Merge, 4:Split, 5:Reduce, 6:Extend, 7:Switch, 8:Replace) ,

which are a permutation of M. Our earlier notation for Green’s modification to the
Metropolis-Hastings acceptance probability must then be updated to make this explicit.
The acceptance probability in this case is given by:

a
(
ω̃, ω(t−1)

)
= min

1,
π
(
ω̃
)
cσ(i)

(
ω̃
)
qσ(i)

(
ω(t−1) | ω̃, Ỹ

)
π
(
ω(t−1)

)
ci
(
ω(t−1)

)
qi
(
ω̃ | ω(t−1), Ỹ

)
 , (2.36)

where the weights are state-dependent and σ(i) is the permutation mapping the index
of the forward move to the corresponding reverse move.

In the context of PMC, the mixture proposal distributions and mixture weights
apply to the D-kernel algorithm without any qualifications.

Each of the mixture proposal distributions, qi(ω̃ | ω(t−1), Ỹ ), will be discussed
in detail below. First we must address the broader issue of what exactly it means to be
data-driven proposal. In effect, conditioning the proposal distributions on Ỹ does not
really change anything. Using the Gibbs sampler paradigm as a guide already suggests
that we use this information as we can see from (2.34). Whatever the rationale, the
conclusion is that any proposed (Z̃, Z̃0 ) should explain some subset of the data well in
addition to being consistent with the prior. Although they stated it differently, Tu and
Song-Chun Zhu [186] basically suggested that an effective way to make proposals that are
likely to explain meaningful features in the data is to use the outputs of discriminative
models to inform the proposal distribution. In their image segmentation application,
they used the output of clustering and edge detection algorithms that typically produce,
at least locally, decent segmentations to inform the proposed changes to the region
and boundary parameters. We too will employ this approach to inform the mixture
proposal distributions by approximating the likelihood term in (2.34) using the output
of a discriminative model. So, what are the analogs of edge detection and clustering in
the tracking domain? The tracklets and the feasible graph, which will be introduced
next.
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2.4.3.1 Feasible Graph

In image segmentation applications, the output of an edge detector provides
local information about the likely boundaries between objects and regions. The output
of a clustering algorithm provides local information about which pixels are likely to be
part of the same object or region. When used to inform the proposal distributions,
this information makes it possible to efficiently sample a generative model of the entire
image. In tracking applications, such local information comes from identifying the
pairwise associations between measurements that we call tracklets.

As the name suggests, a tracklet is simply a small track; consisting of just two
measurements. It is the output of a discriminative model for the probability that the
two measurements originated from the same target. In other words, the tracklet model
describes:

p(Aij | ỹi, ỹj) , (2.37)

where Aij ∈ {0, 1} is the event that the i-th and j-th measurement are associated. The
association event can also be stated as: Aij = {zi > 0 ∧ zi = zj}. Tracklets can thus
be seen as providing local information about which measurements are likely to belong
to the same track.

The model (2.37) is referred to as discriminative, as opposed to generative,
because it does not describe how the observed data is probabilistically generated from
the unobserved association but rather directly describes the dependence of the unob-
served association on the data. A generative tracklet model, on the other hand, would
be based on the joint probability, p(Aij , ỹi, ỹj), and then use Baye’s rule to calculate
p(Aij | ỹi, ỹj). This, of course, would require us to explicitly model the likelihood,
p(ỹi, ỹj | Aij), and prior, p(Aij).

When the problem does not require the ability to draw samples from the joint
distribution, then it can be preferable to use a discriminative model [132]. For our
application, the preference for a discriminative model is largely motivated by the fact
that it considerably simplifies the construction of rich tracklet models. Simple models
based solely on speed constraints can be readily formulated as generative models. But,
as we seek to build increasingly complex tracklet models, such as those that incorpo-
rate terrain constraints, it becomes costly and sometimes unintuitive to stay within the
generative framework. The bottleneck is the likelihood, which becomes highly nonlin-
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ear. Note that the tracklet model need not reflect the same constraints as the target
likelihood model. It could, for example, consider the passability of the terrain between
the measurements despite the fact that impassable barriers cannot be described using
Gaussian likelihood models. At any rate, using a generative model to compute (2.37)
presents no problem. We are, however, free to stop thinking (and modeling) in those
terms whenever we see fit to do so.

The tracklet concept was originally developed as part of an effort to mitigate
false alarms in a preprocessing stage used in conjunction with traditional tracking algo-
rithms. In high false alarm environments, measurements with no plausible associations
could be disregarded in order to avoid overloading the tracker and reduce the number
of spurious tracks. For this purpose, tracklets performed extremely well. Although, it
soon became clear that they had much more potential.

Given a set of measurements, Ỹ , the set of all tracklets computed over those
measurements with probability greater than τ can be used construct the feasible graph.
The feasible graph is a directed acyclic graph (DAG) with vertices corresponding to
the measurements and edges corresponding to the tracklets. In other words, an edge
indicates that the measurements corresponding to the source and target vertices are
likely to be part of the same track. The direction of each edge is determined by the
time order of the associated measurements. Each edge is assigned a weight equal to the
tracklet probability.

Figure 2.5 shows an example of a simple feasible graph based on 17 measure-
ments collected over 7 scans. The graph is visualized in trellis form to make the scan
constraint (discussed earlier) apparent. The weights are not shown. Feasible graphs
can also be visualized by plotting each vertex at the position of the corresponding mea-
surement. Figure 2.6 shows such an example based on a 16 minute data set containing
two walkers in a moderate false alarm environment. The edges in part (a) are rendered
without arrow heads to minimize the visual clutter.

Assuming that the tracklets have been computed correctly, each track consists
of a (directed) path in the feasible graph. From this perspective, the tracking problem
becomes one of assigning the vertices of the graph either the false alarm label or target
cluster label. Although still a difficult problem because of the size of the solution space,
it is considerably simpler than trying to search the entire space of associations. By
making (Z̃, Z̃0 ) proposals that are informed by the edges and their weights, we can
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Figure 2.5: Example of a feasible graph in trellis form.

effectively bias the sampler’s search toward regions of the state space that we expect to
have a high probability under the model. Biasing the search in this manner is standard
practice for complex stochastic search problems.

The feasible graph can thus be seen as one approach to mapping out the impor-
tant structure in the space of associations. The tracklets identify the high probability
subspaces using a tractable first-order association model and the feasible graph encodes
their relationships. By combining the weights of related edges, we can approximate the
likelihood of higher order associations.

The feasible graph can also be seen as a form of gating. Gating is a screening
mechanism used to determine which measurements are valid candidates when updating
the state of a given track. It has long been standard practice in the tracking commu-
nity to disregard measurements whose distance to their predicted values is too large in
some sense. This process is inherently generative as it requires the ability to estimate
a measurement from the unobserved target state. The basic principle of ignoring asso-
ciations deemed to be implausible based on some metric, however, remains the same.
Of course, in traditional tracking algorithms these gating decisions are made sequen-
tially with respect to the current estimated target state, which may quite possibly be
inaccurate.

The idea of applying an association criteria directly to the measurements them-
selves, as in the feasible graph, is not new. Even the idea of combining these associations
into a graph to be used by the tracking algorithm is not new either. Both of these con-
cepts appeared in one of the first comprehensive Monte Carlo multiple target tracking
algorithms from Oh et al [135]. Using their terminology, the graph is a neighborhood
tree of observations. Its edges are unweighted and identified by applying a fixed thresh-
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(a) Feasible graph in which the edges are colored based on their true cluster label.
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Figure 2.6: Example of a feasible graph in its spatial form.
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old to the Euclidean distance between pairs of measurements, without regard to their
uncertainty. The number of edges in the graph is also limited by enforcing a maximum
association distance which they compute based on the expected number of consecutive
missing observations. Their multiple scan algorithm employs an MCMC sampler that
does in fact use the neighborhood tree to inform proposals, but just those that reassign
false alarm measurements to targets (e.g. add and extend moves). This is in fact a
rudimentary example of data-driven sampling. Our proposed approach builds on these
concepts by using more sophisticated association models to identify the edges of the
graph and more aggressively exploits the information contained in the graph for the
proposal distributions.

What exactly are the benefits of using more sophisticated association mod-
els? The obvious one is to get meaningful edge weights with which to approximate
the measurement likelihood of any proposal. Another benefit is to handle hard terrain
constraints in a way that does not rely on the likelihood model accurately reflecting
the constraint. This is especially important in the usual case in which we employ
linear-Gaussian likelihood models, or likelihood models based on linear-Gaussian ap-
proximations, because strictly satisfying arbitrary hard constraints is impossible using
symmetric distributions with infinite spatial support; even constructing reasonable ap-
proximations is difficult at best. For example, consider two walkers moving in close
proximity but on either side of an impassable barrier. Using a discriminative track-
let model, it is relatively easy to determine if the association of two measurements is
precluded by such intractable terrain and simply return a zero probability so that the
feasible graph will not contain the edge.

Now, in order for the feasible graph to be effective, it must contain edges
between the actual consecutive target measurements. Whether or not this is the case
depends in large part on the tracklet model. However, the difficulty in specifying a good
tracklet model is no greater than what is already required in order to specify an accurate
dynamical model for the likelihood. Both are predicated on understanding how targets
move. If we lack such an understanding or the ability to formulate it probabilistically,
then never mind the feasible graph; the whole tracking model itself is rather dubious.
At any rate, a tracklet model can always be derived from the dynamical model. Of
course, the fact that tracklets require only discriminative models affords us considerable
freedom to incorporate knowledge about a target’s behavior that would be too difficult
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to represent using a likelihood function subject to distributional constraints.
Whether the feasible graph contains the necessary edges also depends on the

tracklet probability threshold, τ , used to create it. We must always exercise caution
when applying a fixed threshold because it entails throwing away information. To
avoid rejecting any critical edges in the process, the threshold should be set as low as
possible, where the desire to retain the requisite structure is being traded off against
the computational cost of processing an extremely dense graph. Choosing a reasonable
value is an application-specific question. However, we can often use simply τ = 0.
That is because we have other ways to control the growth of the graph that are less
problematic.

The first is by enforcing a maximum association time. This defines the support
of the model with respect to time. Exactly how far apart two consecutive measurements
may be and still lie within the support of the model will depend on how constrained
a target’s motion is, which is both application-specific and possibly a function of the
measured values. Targets with limited maneuverability can be given a larger maximum
association time because there is less uncertainty regarding what they can do between
observations. When the maneuverability is due to terrain constraints, for example, this
value will depend on the measured position of the target. The second way that we can
control the size of the feasible graph, independent of the tracklet probability threshold,
is to limit the out-degree of any vertex. This can be implemented by only keeping the
n-best outgoing edges. In practice, we have found that 10 works well for the radar
tracking problems that we have studied, even when the false alarm rate is high.

For practical applications, the amount of time required to compute the track-
lets and construct the feasible graph might be a concern. We have just mentioned a few
ways to control the size of the graph, but only the maximum association time will help
speed up the construction of the graph. Although the threshold value and limits on the
out-degree will produce graphs that are smaller and hence less costly to process, the
tracklet probability must still be evaluated before any potential edges can be rejected so
we incur that cost regardless. Fortunately, when time is of the essence we can exploit the
fact that the tracklet processing lends itself to parallelism because each measurement
pair can be evaluated independently. It is also worth keeping in mind that the whole
motivation for the feasible graph was to reduce the sampling time required to achieve a
given accuracy by enabling us to maximize its efficiency through better proposals.
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2.4.3.2 Mixture Proposals

Before describing each of the distributions in (2.35), let us first consider the
broader issue of how we can use the feasible graph to inform the proposals. We begin
by recalling that we would like each proposal to be proportional to (2.34), which we
restate here for convenience:

p
(
Ỹ | Z̃, Z̃0

)
p
(
Z̃ | Z̃0 , α(t−1)

)
p
(
α(t−1) | Z̃0

)
p
(
Z̃0 | λ(t−1)

)
. (2.38)

From this we can see that there are four factors that should influence the distribution of
the proposed indicator values: the likelihood of the measurements, the prior distribution
over the target cluster labels, the concentration parameter hyperprior, and the prior
distribution over the false alarm cluster labels. It is the dependence on the measurements
in the first factor, the likelihood, that leads to the notion of being data-driven.

For each move, we would ideally like to enumerate all possible outcomes and
weight them using the product of all four factors. Although this is a realistic option
for the delete move, it would generally be intractable for the add, extend, and replace
moves because of the combinatorial explosion in the number of possible ways those moves
could be made. In the case of the remaining moves, it is conceivable that we could do
this but the cost of the additional likelihood evaluations (beyond those required by the
sampler) would likely become prohibitive. For multiple model systems and those with
complex nonlinear dynamical models, which we expect to be commonly used in practice,
computing the likelihood is a relatively expensive operation. Fortunately, the feasible
graph provides a means of addressing both of these difficulties enabling us to efficiently
generate proposals from an approximation to the desired distribution.

The contribution of the likelihood factor in (2.38) to the probability of any
proposed (Z̃, Z̃0 ) is to represent the degree of agreement between the measurements
and the associations implied by those indicators. That agreement can also be quantified
by using the edge weights in the feasible graph as a proxy for the likelihood of the mea-
surements. This is because, given accurate likelihood and tracklet models, the marginal
likelihood of two consecutive target measurements, conditional on their assignment to
the same track, is proportional to the association probability.

By treating the likelihood of each pair as independent, we can use the prod-
uct of the corresponding edge weights to approximate the likelihood for a single target.
Based on our earlier assumptions, the likelihood of each target is independent so we
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can combine these estimates via their product. The likelihood of the false alarm mea-
surements, on the other hand, can be approximated in a couple of different ways. One
approach would be to take the product of the complementary probabilities of the edges
that do not link two vertices assigned to the same target (i.e. the edges not used in
calculation of the target likelihoods). Another approach would be to use one per-vertex
cost to approximate the likelihood of each false alarm measurement, which would match
the uniform false alarm model. These lightweight likelihood approximations can be used
by any of the moves.

For the add, extend, and replace moves, we can exploit the directed acyclic
structure of the feasible graph, in conjunction with the likelihood approximation, to
estimate the weights of the proposed indicator values without enumerating all of the
possibilities. In all cases, the proposal probabilities will reflect the contribution of the
first and last terms in (2.38). Whether or not we can factor in the effect of the second
and third terms will depend on their specific forms, which we will elaborate on later.

A precise definition of all the moves will be provided below. For now, suffice
it to say that these three are the most complex because they each entail reassigning
false alarm measurements to a target label. This is equivalent to finding a path in the
subgraph of false alarm measurements, which we refer to as the feasible false alarm
graph. Since enumerating and weighting the possible paths would be intractable for
any realistic graph, we instead settle for an approximate solution based on estimating
the average weight for all possible paths of each possible length, which is tractable even
for large graphs, and a mechanism for constructing paths of a given length.

To do this, we need a way to estimate the average weight for all possible paths
of each possible length, from a given starting vertex. Of course, it must be possible to
reliably construct these paths for a given length.

We begin by constructing a cost function that reflects the four factors in (2.38)
and that can be computed incrementally over a path. This cost represents the estimated
weight of the path.

The contribution of the likelihood is computed using the lightweight approx-
imation derived from the edge weights. Its product form makes it amenable to the
incremental processing of the cost function since we can simply subtract the log cost
of the current configuration and add in the log cost of the change at each step during
processing.
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The contribution of the prior distribution over the false alarm cluster labels
can easily be included without approximation since it naturally has a product form
and requires relatively lightweight computation. We need only compute the cost of the
current number of false alarms in each scan, and the cost of each scan with one fewer
false alarm (for scan containing at least one false alarm). Thus, the computational
expense is a function of the number of scans and is not impacted by the density of the
graph. As before, we can subtract the log cost of the current configuration, for the
scan in which the measurement associated with the given vertex was made, and add in
the log cost of the configuration with one fewer false alarm. Since the feasible graph
structure reflects the scan constraint, any vertices in the feasible false alarm graph that
lie along a given path must be in different scans.

Only certain forms of the prior distribution over the target cluster labels can
be directly incorporated into a proposal cost computed incrementally over a path. For-
tunately, those make up an important class of priors: exchangeable partition priors.
Their contribution can be included without approximation as well. Such priors will be
discussed in detail in the next chapter, so for now we will state why that is the case
without further explanation. Exchangeable partition priors do not require the individual
assignments in order to be evaluated. They require only the vector of cluster sizes. This
allows us to evaluate them without knowing which vertices are in each cluster. Their
contribution to the cost is added in whenever the cost for a given length is finalized by
adding the given length to the cluster size vector. Thus, the computational expense of
this contribution is a function of the number of path lengths being considered, whose
maximum value is just the number of scans.

Other forms of the prior distribution must be examined on a case by case
basis. Depending on the prior, it may be possible to represent some of preferences that
it expresses for different associations in the form of edge or vertex weights that can be
computed incrementally over a path.

Finally, the contribution of the concentration parameter hyperprior can be
can be included without approximation when the prior distribution over the target
cluster labels is exchangeable and we compute p(α(t−1) | Z̃0 ) without regard to the scan
constraint. In the next chapter, more will be said about what exactly this means. For
suffice it to say that exchangeable priors assign nonzero probability to associations that
are invalid because they violate the scan constraint. When evaluating the prior, this
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does not pose a problem. However, it does impact the concentration parameter. We
can correct, to some extent, for the impact on α of re-normalizing the prior probability
over the valid associations but this requires some knowledge of the maximum scan
depth. Again, more will be said about this in the next chapter. In terms of these cost
calculations, we can approximate the contribution of the hyperior when scan constraint
is observed by noting that for any path, after reassigning a given set of false alarm
measurements, the maximum scan depth either remains the same or increases by one.
In parallel with our incremental cost calculations, we can keep track of the expected
maximum scan depth at each step. This contribution to the cost is also added whenever
the cost for a given length is finalized. Thus it has the same computational expense as
the prior distribution over the target cluster labels.

Using this cost function, the average cost of all possible paths starting at a
given vertex can be estimated as follows.

At the initial vertex, initialize the bookkeeping which is associated with every
vertex visited during the course of the processing. This consists of a set containing
the lengths of all possible paths to the initial vertex along with a weight and count
corresponding to each length. The weights indicate the total weight of all paths of
their respective lengths. The counts indicate the number of paths of their respective
lengths. Here, the only length in the set is zero and its count is one by definition.
The weight is initialized with the cost contribution from the prior distribution over
the false alarm cluster labels based on adding the initial vertex to the path and thus
assigning it a target cluster label. Note that there is no initial likelihood contribution.
This is because a single target vertex is assumed to make no contribution to the target
likelihood; equivalent to an implicit probability of one term in the product.

The processing proceeds by visiting all the vertices that are reachable from the
initial vertex in topological order. Note that the graph has a natural topological ordering
since the vertices correspond one-to-one with measurements that are time ordered. A
given vertex is reachable if and only if the source vertex of at least one incoming edge
has already been visited. A vertex has been visited when the set of lengths associated
with it contains at least one element.

At each vertex j, we update its bookkeeping incrementally for each incoming
edge whose source vertex, i, has already been visited. Each such edge, i→ j, connects
the current vertex to the initial vertex through at least one path. The number of paths
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is given by the sum of counts recorded at vertex i. The lengths of those path are given
by the set of lengths associated with vertex i, plus one. The lengths, weights, and counts
associated with vertex i will be used to update the corresponding values for vertex j.

For each edge, i → j, compute the incremental cost of adding j to the path
based on the contributions from the likelihood and the prior distribution over the false
alarm cluster labels. Let that incremental cost be wij . Now, iterate over the path
lengths associated with vertex i. A path of length L to vertex i corresponds to a path
of length of L+ 1 to vertex j. If this is the first time we are encountering length L+ 1,
then we add that length to the set associated with vertex j. Its weight is initialized to
corresponding weight from vertex i plus wij . Its count is initialized to the corresponding
count from from vertex i. If we have already seen length L+ 1, then we increment the
weight and count corresponding to that length in the set associated with vertex j. The
weight is incremented by the corresponding weight from vertex i plus wij . The count is
incremented by the count from from vertex i.

Once all the incoming edges have been processed and the bookkeeping at ver-
tex j is up to date, every path length in the set can be finalized. This is accomplished,
for each length, by first computing the average cost using the weight and count corre-
sponding to the given length. Then the cost contributions from the prior distribution
over the target cluster labels and concentration parameter hyperprior are added. The
final result is an estimate of the average weight of all possible paths from the initial
vertex to vertex j, for the given length. These estimates can then be aggregated over
all the reachable vertices to get an estimate of the weight for all possible paths from the
initial vertex.

The bookkeeping associated with each vertex can then be used to reconstruct
a path of the desired length, L, that begins at the initial vertex. This process starts by
identifying the vertices at which a path length of L was recorded. Using any suitable
means, one of those vertices is selected to be the final vertex in the path. The process
then continues by examining the incoming edges to find a source vertex at which a path
length of L − 1 was recorded. There may be multiple choices and one can be selected
using any suitable means. The selected vertex is added to the path. The process repeats
in this manner until the final L = 1 selection has been made.

At long last we have the two tools that are needed to efficiently generate the
proposals for each move.
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Add The add move modifies the current state by introducing a new target. It is the
first of two moves designed to increase the number of targets. The move is made by
selecting two or more vertices from among those assigned to the false alarm cluster and
then reassigning them to a new target label. The selected vertices must constitute a
path in the feasible graph.

This is the most complex because the number of possible ways to do this is
generally a very large number. The proposal distribution is thus based on an approxi-
mation which reflects, to the extent possible, the influence of all four factors in (2.38).
Here, we employ the previously described procedure for estimating the average weight
for all possible paths of each length, from a given vertex, and the procedure for con-
structing the paths. The estimation procedure, however, assumes that we have the
starting vertex for the path, which is not the case for an add move.

We could, of course, select one of the false alarm vertices to initiate the path.
This could be done uniformly at random or by using the false alarm model to favor
making the selection from a scan with more than the expected number of false alarms.
Given the starting vertex, we can choose the length of the path based on the average
weight and then follow the prescribed procedure to construct the path. Note that the
path length weight calculations and the construction procedure can performed either
forward or backward in time (by implicitly reversing the edges in the graph) so that
selections made near the end of a true path will not always result in short fragments.

Although this approach is indeed viable and relatively efficient, it tends to
produce shorter paths compared to approaches that select the starting vertex itself with
consideration for the possible paths. Since our goal is to engineer an add move that
makes large and meaningful proposals, we prefer approaches of the latter type despite
their increased computational cost. To implement such a move, there are two ways that
we can proceed.

First, we can simply run the estimation procedure repeatedly using each false
alarm vertex as the starting point. In practice, this is possible since the cost is O(n logn)
in the number of false alarm vertices. Using this approach, we aggregate the weights
and counts for each possible path length over all potential starting points. These are
then turned into averages and normalized to become the distribution over path lengths.
Once a path length is chosen, we select the starting vertex from among the vertices that
contain a path of the given length. This can be easily determined when we record the
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longest path from each initial vertex during the estimation procedure. The distribution
over the possible starting vertices is based on the average weight estimates. Next, we
select the end vertex from among those reachable from the starting vertex at the given
length. The distribution over these selections is again based on average weight estimates.
From here, we use the path construction procedure to select the remaining vertices. At
each step in this procedure, the distribution over the possible selections is based on the
average weight estimates.

The second way is to run the estimation procedure for each false alarm vertex
that has no incoming edges whose source vertices are false alarms. In other words, the
estimation procedure is run for each source vertex in the false alarm feasible graph. At
each of these potential starting points, we record the longest path. Thus, for a given
potential starting point we know the support of the possible path lengths that emanate
from it and can compute the average weight for each one. However, what we do not
have are the average weights for any intermediate path, which are legitimate candidates
for proposals as well. We can approximate those weights and counts for each possible
path length using a sliding-window type approach. The basic idea is to compute the
average weight of the paths of length L, from the given potential starting vertex, by
taking the average weight of the paths of length L + n and then subtracting off the
average weight of the paths of length n. Care must be taken to add back in the average
weight related to the vertex at length n that is lost in the subtraction but should be
part of the weight estimate. This can be handled using some additional bookkeeping
during the original estimation procedure. The resulting estimate is an average which
we then scale up to a total weight using the count corresponding to the paths of length
L+ n. These sliding-window estimates are performed for each potential starting point,
and the weights and counts for each possible path length are aggregated. These are
then turned into averages and normalized to become the distribution over path lengths.
In practice we have found that this approximation produces distributions over path
lengths with the same basic shape as the first approach but with thinner tails because
of the extra averaging. Figure 2.7 shows an example of how the distributions over path
lengths computed using the two approaches differ. The example was generated from
a feasible graph with 709 vertices and 2096 edges computed from 24 minutes of radar
data. This loss of density at the tails might be undesirable for some applications, in
which case the first approach must be used.
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Figure 2.7: Example of the distributions over path lengths for an add move using the
two different approaches to computing the weights.

Once a path length is chosen, this approach continues by selecting the starting
vertex from among the vertices that contain a path of the given length as before. The
distribution over the possible starting vertices is based on the average weight estimates,
accumulated for each one from the sliding-window estimates. Next, we select the end
vertex from among those reachable from the starting vertex at the given length. How-
ever, unlike in the previous approach, the possible candidates are all those vertices at the
given length or more because we want to include the intermediate paths. Through some
additional bookkeeping during the sliding-window estimates we can get the necessary
averages weights to use for this distribution. From here, we use the path construction
procedure to select the remaining vertices as before.
Note that when evaluating the probability of an add proposal generated using the second
approach, we must be sure to properly account for the fact that there may be multiple
start vertices that could have been used to construct the given path.

Note also that if desired, the path length can be selected without regard to the
estimated weights. For example, we might select the length with a probability that is
proportional to the length to reflect certain prior beliefs or perhaps uniformly at random
to increase the variation in the moves. The path construction process remains the same
in any event.

Delete The delete move modifies the current state by removing one of the targets. It
is the first of two moves designed to reduce the number of targets. The move is made
by selecting one of the target clusters and then reassigning its vertices to the false alarm
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cluster.
This is perhaps the least complex move because the number of possible se-

lections is equal to the number of targets. The proposal distribution is computed by
enumerating the selections, one for each target, and then computing the weights based
on all four factors in (2.38). Note that the likelihood approximation can certainly be
used here, but in this case the full target likelihoods are already available from the last
evaluation of the probability of the current state. Thus, to use the actual model for
the likelihood contribution, we need only recompute the false alarm likelihood and then
combine it with the likelihoods for the remaining targets.

A alternative formulation would be to simply select the cluster to be deleted
uniformly at random.

Split The split move modifies the current state by splitting one of the target clusters
into two. It is the second of two moves designed to increase the number of targets. In
contrast to the first, the add move, it increases the number of targets without changing
the false alarm assignments. The move is made by selecting one of the target clusters
and one of its vertices to be the split point. The vertices that follow the split point in
time are then reassigned to a new target label. Following the split, each target cluster
must consist of at least two vertices.

The proposal distribution can be computed in one of two ways, depending on
how expensive it is to evaluate the prior distribution over the target cluster labels.

The first is appropriate when an application seeks to minimize these prior eval-
uations. In this case, the cluster to be split is selected uniformly at random. The possible
split points are then enumerated and their weights computed based on the contributions
from the target likelihood, using the approximation, and the prior distribution over the
target cluster labels.

For the second approach, the proposal distribution is based on enumerating
all possible split points. The weights are computed in the same manner as the first
approach.

Merge The merge move modifies the current state by combining two existing target
clusters into a single cluster. It is the second of two moves designed to reduce the number
of targets. In contrast to the first, the delete move, it does this without changing the
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false alarm assignments. The move is made by selecting the two target clusters and
then reassigning the vertices in one to match the label used by the other.

To make such a move requires an edge in the feasible graph linking the last
vertex in one cluster to the first vertex in the other cluster. The proposal distribution
is computed by enumerating the possible merges. The weights are computed based on
the contributions from the target likelihood, using the approximation, and the prior
distribution over the target cluster labels.

This move also presents an opportunity to potentially address the problem of
a missing edge in the feasible graph. It would be possible to allow edge-free merges,
assuming that the first vertex after the merge point follows the last vertex before it
in time. Such proposed merges could potentially reduce the fragmentation of tracks
caused by missing edges. The weights for the proposal distribution could either ignore
the likelihood contribution or we could compute the association probability on the fly.

Extend The extend move modifies the current state by increasing the size of an
existing target cluster (i.e. increasing the length of the track). It is the first of four
moves designed to modify the current state in a way that does not change the number
of targets. The move is made by first selecting one of the target clusters for extension.
Then, one or more vertices are selected from among those assigned to the false alarm
cluster and reassigned to the target label from the selected cluster. The selected vertices
must constitute a path in the feasible graph that is contiguous with the path formed by
initial target vertices.

Like the add move, the number of possible ways to do this is generally very
large so we must employ the previously described procedure for estimating the average
weight for all possible paths of each length, from a given vertex, and the procedure for
constructing the paths. In this case, however, we do know the starting vertices: the
first and last vertices in each track. We include the first vertices here so that extensions
can take place forward in time as well. The estimation procedure works in reverse-time
essentially as before but with out-edges considered instead of in-edges and the reverse
topological order used to process the vertices.

A proposal is generated by running the estimation procedure using each poten-
tial starting vertex. We aggregate the weights and counts for each possible path length
over all potential starting points. These are then turned into averages and normalized
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to become the distribution over extension lengths. This is essentially how the first ap-
proach to the add proposal begins and we can just follow those steps to complete the
extension.

Reduce The reduce move modifies the current state by reducing the size of an existing
target cluster (i.e. reducing length of the track). It is the second of four moves designed
to modify the current state in a way that does not change the number of targets. The
move is made by first selecting one the target clusters for reduction. Then, one or more
vertices from either end of the track are reassigned to the false alarm cluster label.

As was the case with the split move, the proposal distribution can be computed
in one of two ways, depending on how expensive it is to evaluate the prior distribution
over the target cluster labels.

For the first approach, the cluster to be reduced is selected uniformly at ran-
dom. The possible combinations of reduction length and direction are then enumerated
and their weights computed based on all four factors in (2.38).

For the second approach, the proposal distribution is based on enumerating all
possible combinations of reduction length and direction. The weights are computed in
the same manner as the first approach.

Switch The switch move modifies the current state by reassigning the labels from
two targets so that at a certain point in each track, the first target receives the vertices
previously assigned to the second target, and the second target receives those previously
assigned to the first. It is the third of four moves designed to modify the current state in
a way that does not change the number of targets. It is the only such move guaranteed
to leave the number of false alarms unchanged.

To make such a move requires a certain local structure in the feasible graph
which we refer to as a switch point. An example of this can be seen in figure (2.5)
with vertices (measurements) 5, 6, 8, and 9. When vertices 5 and 6 are assigned to two
different targets, and vertices 8 and 9 are assigned to the same two targets, then a switch
is possible and the switch point is said to be valid. The move is made by reassigning
the labels in each target cluster that follow the switch point in time. In this example,
the reassignment would begin with the vertices 8 and 9 for their respective tracks.

The proposal distribution is computed by enumerating the possible selections,
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one for each valid switch point. These can be easily identified when we flag potential
switch points (i.e. the correct structure irrespective of the labels) during the construction
of the feasible graph. In practice, we have found the number of possible selections to
be quite modest. The weights are computed based on the contributions from the target
likelihood, using the approximation, and the prior distribution over the target cluster
labels. The other factors do not apply here since the false alarm assignments are not
altered.

Replace The replace move modifies the current state by replacing one of the target
clusters. In effect, it is like a delete move necessarily followed by an add move. It is the
fourth of four moves designed to modify the current state in a way that does not change
the number of targets. The move is made by selecting a target cluster for replacement
uniformly at random. Its vertices are reassigned to the false alarm cluster and then the
same steps for an add move are performed.

The proposal distribution for this move is not explicitly computed. In prac-
tice, both drawing and evaluating the probability of a replace move is based on the
combination of the delete, with a uniform selection probability, and add moves.

2.4.3.3 Alternative Mixture Proposals for PMC

When using population Monte Carlo (PMC), we can consider an alternative
definition of the components in (2.35) for applications in which we would be comfortable
specifying a fixed upper bound, K, on the number of targets. In this case, the mixture
would consist ofK+1 components each defined using a self-reversing k-add move, where
k ∈ [0..K].

k-Add The k-add move modifies the current state by replacing any existing target
clusters with k new targets. If k = 0, then the proposed state contains no targets. The
move is effectively a deterministic deletion step followed by k add moves.

Thus, each distribution generates proposals with a fixed number of targets.
The weight adaptation scheme in the PMC algorithm would then be responsible for
determining the correct mixture weights. Those weights will eventually come to reflect
the expected distribution of the number of targets.
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2.4.3.4 Initialization and Boundary Conditions

To draw the initial state, we start by assuming that (Z(t−1), Z0 (t−1)) indicates
that all measurements assigned are the false alarm cluster. The initial values for λ and
α can then be drawn from their respective proposal distributions, (2.29) and (2.30).
Conditional on those values, the initial values for Z and Z0 can be drawn using a slight
modification to the add move. The move is modified to consider a path length of zero
in addition to all possible nonzero path lengths. We can then repeatedly draw from
the add move proposal distribution, each time using the most recent set of indicator
variables as the current state, until a path of length zero is drawn. At that point, the
initialization is complete.

So far, we have not said anything about what happens when a proposal fails.
One way that this can happen is if the support of its proposal distribution is the empty
set. For example, suppose we try to make a proposal using the delete move when there
are no targets. This concern only applies to qz(·) because not moves can be made from
a given state. Another sort of failure mode is when a proposed value is invalid. This
can happen when qα(·) returns precisely zero. Note that qλ(·) cannot suffer either fate.

These boundary conditions need to be handled properly in the sampler. For
MCMC, any move that fails will not be reversible and it should automatically be re-
jected. For PMC, this corresponds to assigning a weight of zero. Fortunately, for the
all the moves in qz(·) described above, it is possible check their validity (i.e. there exists
at least one proposed state so they will not fail) without excessive effort before making
any draws. We can simply zero out the mixture weights for any invalid moves and
renormalize before proceeding.
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Chapter 3

Cluster Label Priors
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3.1 Introduction

In order to complete the model specification, we must define the prior distri-
bution of the target cluster labels, p(Z | Z0 , α). This distribution implicitly represents
our beliefs about the number of targets and is therefore crucial to the performance of
the model. If p(Z | Z0 , α) does not adequately capture these beliefs, then we cannot
expect the model to yield reasonable inferences. Unfortunately, this presents a major
difficulty because the number of targets is typically unknown and, in fact, one of things
that we wish to infer. In this case, the prior distribution should suitably represent our
lack of knowledge and allow us remain agnostic about the specific number of targets.

We will assume that the number of targets is indeed unknown. Therefore,
we require a prior distribution that is flexible enough to accommodate any number of
targets which may arise. One compelling approach to specifying such a prior is through
the use of Bayesian nonparametric models.

Instead of assuming that p(Z | Z0 , α) belongs to a given family of models
indexed by a fixed dimensional set of parameters, we can define it using a nonparametric
model on an infinite-dimensional parameter space. This rich class of models remains
tractable despite having an unbounded number of parameters because only a finite
subset of the available parameter dimensions are actually used to explain the data. The
complexity of the model is adapted to fit the data during the inference process. Hence,
nonparametric models constitute a data-driven approach to model selection which avoids
fitting and then comparing multiple models of varying complexity. When the parameter
space is chosen to be the set of distributions, the uncertainty about the prior distribution
is described using a random probability distribution. Such models essentially express
the prior as a stochastic process. In fact, Bayesian nonparametric prior models are
typically named for the stochastic process that they represent.

Thus, a Bayesian nonparametric prior model allows us to avoid speculating
about the number of targets and lets the data drive the decision. We will focus initially
on a particular class of such models known as species sampling models because they are
well-suited to the tracking application. Motivated by their structure, we will also con-
sider a couple of different nonparametric prior models with different properties but that
do not fully satisfy all the technical conditions necessary for a species sampling model.
Finally, we will look at some alternative approaches to defining the prior distribution
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of the target cluster labels for comparison.

3.2 Background

The question of how to handle the occurrence of novel phenomena, such as
the appearance of a target, in Bayesian inference goes back as least as far as Bayes’
theorem itself [202]. In the modern statistics literature, this question is well-studied in
the context of species sampling.

From this perspective, we view Z as being generated through the random
sampling of individuals from a population. Each element is an indicator variable, zi,
containing a label that identifies the species of the i-th sample. Targets then correspond
to species that have been observed. Which species are present in the population is
assumed to be a priori unknown.

The sequence (z1, z2, . . .) can be described by defining a prediction rule (or
rule of succession):

p (zn+1 = cj | z1, . . . , zn) ,

where cj is an arbitrary label assigned to the j-th distinct species to have been observed.
Assuming that k(n) distinct species have been encountered after sampling n individuals
from the population, j ∈ {1, . . . , k(n), k(n) + 1}. The label ck(n)+1 identifies a new
species; one that we are observing for the first time.

The first thing to note about this formulation is that the support does not cover
the set of all species. In other words, we cannot speak of the probability that sample
n + 1 is a particular species. This is a consequence of the fact that we do not know
which species are present prior to observing them. At any point during the sampling
process we might encounter an unknown and unsuspected species making it impossible
to enumerate all of the possible outcomes. Therefore, zn+1 cannot be modeled using
a distribution over species. The indicator variables must instead be defined based on
what is known at the present sample time: all the species that have been observed
in the previous samples, plus the additional possibility of seeing an unspecified new
species. The support of p(zn+1 | z1, . . . , zn) is necessarily reduced to reflect these
possible outcomes. Thus, the information conveyed by the distribution is not actually
about individual species but rather about partitions of the variables where each part
is the set {zi | zi = cj} for values of j corresponding to observed species. In other

116



words, the sequence (z1, . . . , zn) implicitly defines a random partition of the variables
by clustering observations sharing a common label. Equivalently, we could view this as
a partition of the index set {1, . . . , n} by only considering the indices. For example,
suppose that after sampling five individuals we get the sequence:

(z1 = c1, z2 = c2, z3 = c2, z4 = c3, z5 = c1) .

The partition of the index set {1, . . . , 5} generated is:

{1, 5} ∪ {2, 3} ∪ {4} .

The next thing to note is that the labels themselves are arbitrarily defined and
assigned based on the order in which new species are encountered1, which should be
regarded as unpredictable owing to the randomness of the sampling process. This implies
that their particular values do not contain any useful information and the prediction
rule should therefore be specified such that the resulting sequence is exchangeable with
respect to the labels. In other words, the joint distribution, p(Z), should be invariant
under permutations of the labels.

Finally, it follows from the randomness of the sampling process that the order
of the observations is arbitrary. This implies that the index values themselves are
uninformative. The prediction rule should therefore be specified such that the resulting
sequence is exchangeable with respect to the indices (i.e. “time”) in addition to the
aforementioned exchangeability with respect to the labels. Hence, the joint distribution
should be invariant under permutations of both the labels and indices. The assumption
of exchangeability with respect to the indices is the traditional notion of exchangeability
popularized by de Finetti’s representation theorem. It expresses our ignorance, in the
sense that we cannot distinguish one zi from another without the benefit of additional
data, through a symmetry of beliefs that assigns the same probability to any ordering
of the variables. The notion of exchangeability with respect to the labels is based on
the idea that our ignorance about the possible outcomes (i.e. the labels) should result
in a similar symmetry of beliefs. Probability functions that satisfy both notions of
exchangeability are known as partition exchangeable [202].

1Although it is possible to retrospectively associate the labels with individual species after they have
been observed, the values are in fact arbitrary since each new label must begin its existence representing
the unspecified new species.
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Consider a prediction rule of the form:

p(zn+1 = ĉ | z1, z2, . . . , zn) =
k(n)∑
j=1

pj(m(n)) δcj (ĉ) + pk(n)+1(m(n))F0(ĉ) , (3.1)

with z1 ∼ F0. This is a mixture of point-masses at the labels corresponding to observed
species and a nonatomic (diffuse) base distribution, F0, that represents the distribution
of new species labels. The weights of the mixture are given by the functions pj(m(n)),
which satisfy the conditions:

pj(m(n)) ≥ 0 and
k(n)+1∑
j=1

pj(m(n)) = 1, (3.2)

for all m(n). The argument m(n) is the cluster size (or frequency) vector given n

observations, which contains k(n) elements and is defined such that the j-th element is
the number of times the j-th observed species appears in (z1, . . . , zn); that is, mj(n) =∑n
i=1 I (zi = cj).

Note that since the labels are arbitrarily defined, it is convenient to assume
that F0 is a uniform distribution on the interval [0, 1]. Each observed species is thus
assigned a real-valued label in [0, 1] and the labels are almost surely distinct.

For j ∈ {1, . . . , k(n)}, the functions pj(m(n)) give the probability that, after
n observations with cluster sizes m(n), the next one will be the j-th observed species.
The probability that the next observation will be a new species is given by the function
pk(n)+1(m(n)). Collectively, these are known as the prediction probability functions.
Note that they depend on the data only through the cluster sizes in m(n). When the
prediction probability functions are defined such that the sequence described by (3.1)
is exchangeable (with respect to the indices), the sequence is called a species sampling
sequence [144]. In fact, an exchangeable sequence (z1, z2, . . .) is a species sampling
sequence if and only if it is subject to a prediction rule of the form (3.1).

Not all functions pj(m(n)) that satisfy the conditions in (3.2) can be used
to describe a species sampling sequence. In fact, most choices will not yield an ex-
changeable sequence. So, what can be said about the families of prediction probability
functions that will guarantee the required exchangeability of (z1, z2, . . .)? According
to Johnson’s ‘sufficientness’ postulate [203], one such family consists of functions of the
form: pj(m(n)) = f(mj(n), n). This assumes that the prevalence of one species conveys
no information about the prevalence of others. See Lee et al. [111] for more details on
the valid forms of prediction probability functions for species sampling sequences.
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Given a species sampling sequence, it can be shown that as n → ∞, the
distribution p(zn+1 = cj | z1, z2, . . . , zn) converges, in total variation norm, almost
surely to the random probability distribution [144]:

F =
∞∑
j=1

wjδcj +

1−
∞∑
j=1

wj

F0, (3.3)

where the cj are i.i.d. draws from F0 (and independent of wj), and the wj are a sequence
of weights, which satisfy the conditions:

wj ≥ 0 and
∑
j

wj ≤ 1 a.s. (3.4)

The weights are given by:
wj = lim

n→∞
mj(n)
n

a.s., (3.5)

which can be interpreted as the relative frequency of occurrence of the j-th observed
species. Thus, they are determined by the prediction probability functions.

If the weights are such that∑j wj = 1 almost surely, then the species sampling
model is said to be proper and the random probability distribution reduces to:

F =
∞∑
j=1

wjδcj , (3.6)

which is almost surely discrete. This is the case when limn→∞
k(n)
n = 0, almost surely.

F is the directing measure of the species sampling sequence and it is referred
to as the species sampling model (SSM). We can then write our prior as:

F ∼ SSM(pj , F0)

z1, . . . , zn | F
iid∼ F,

which states that conditional on F , the zi ∈
{
c1, . . . , ck(i−1), ck(i−1)+1

}
are i.i.d. draws

from the random probability distribution. Marginalizing over F gives us the joint distri-
bution, p(Z), which is the product of the conditional distributions in (3.1). In practice,
this is how we work with the SSM; without worrying about the specific form of F .

An important property of the species sampling model is the implied prior on
the sequence of random partitions. As noted earlier, the sequence (z1, . . . , zn) implic-
itly defines a partition through the clustering of observations sharing the same label.
Thus, the implied prior on the sequence of random partitions is equivalent to the joint

119



distribution of the indicator variables, p(Z). As a sample from F , the zi constitute a
species sampling sequence and as such, are exchangeable with respect to their indices.
This implies that the cluster sizes are sufficient to summarize the relevant information
in Z so the prior can be written as p(m(n)). Since the labels are generated based on the
order of appearance of new species, any rearrangement of the variables may result in a
differently ordered cluster size vector. It follows that the p(m(n)) must be a symmetric
function in order to ensure that any ordering of the cluster sizes is assigned the same
probability. Such a function is known as an exchangeable partition probability function
(EPPF) and can be defined for every species sampling sequence [143, 144]. Note that
exchangeability of the zi with respect to their labels follows from the fact that permut-
ing the labels does not change the resulting partition (since the parts are defined by
equality of the labels irrespective of their values), hence the cluster size vector m(n)
remains unchanged. This confirms our earlier conclusion that p(Z) should be partition
exchangeable.

Formally, an EPPF must satisfy the following constraints in order to maintain
consistency across samples sizes [101]:

p(m(n)) =
k(n)+1∑
j=1

p
(
m(n)j+

)
, (3.7)

for all m(n), where p (1) = 1 and m(n)j+ denotes m(n) with the jth cluster size
incremented by one. The prediction probability functions can be shown to be related
to the EPPF as:

pj(m(n)) = p
(
m(n)j+

)
p(m(n)) , (3.8)

for j ∈ {1, . . . , k(n), k(n) + 1} provided p (m(n)) > 0 [144].
At this point, it should be clear that species sampling models offer a compelling

approach to the problem of how to define the prior distribution of the target cluster
labels in the associative tracking model. For an unknown number of targets, we have
seen that the proper interpretation of the indicator variables is as implicitly defining a
partition of the observations. When viewed as a partition of the index set {1, . . . , n},
each part contains the indices of the measurements assumed to have originated from a
distinct target. Unfortunately, even knowing that p(Z) should be defined on the space
of partitions, it is by no means clear which parametric form the distribution should
assume. Species sampling models provide a principled treatment of this uncertainty
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by using a random probability distribution. Since we cannot reasonably assign prior
probabilities to the targets we observe, since we did not know about them until they
were observed, the species sampling model encodes a set of beliefs about the relative
abundance of the observed targets. The EPPF provides the specific form for the desired
prior.

3.3 Bayesian Nonparametric Priors

3.3.1 Dirichlet Process

The Dirichlet process (DP) [3, 53] is the most widely used Bayesian nonpara-
metric prior due to both its simplicity and theoretical properties. It can be shown to
be equivalent to a proper SSM with prediction probability functions given by [144]:

pj(m(n)) =


mj(n)
n+α j ∈ {1, . . . , k(n)}
α

n+α j = k(n) + 1
, (3.9)

where α ∈ R+ is a concentration parameter that controls the formation of new clusters.
As a proper SSM, it converges to a discrete random probability measure of the

form (3.6) and we can write the DP prior as:

F ∼ DP (α, F0)

z1, . . . , zn | F
iid∼ F.

The exchangeable partition probability function for the species sampling se-
quence is given by:

p(m(n)) = p(z1, . . . , zn)

= p(z1) p(z2 | z1) . . . p(zn | z1, . . . , zn−1)

=
Γ(α)αk(n)∏k(n)

j=1 Γ(mj(n))
Γ(n+ α)

k(n)∏
j=1

F0(cj) . (3.10)

When we take F0 to be a uniform distribution on the interval [0, 1], the last product
term is equal to one and can be dropped. In practice, we will simplify the model by
marginalizing over F and work directly with (3.10).
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The name of the process comes from the fact that for any finite measur-
able partition (A1, . . . , Ap) of the space on which F is defined, the random vector
(F (A1), . . . , F (Ap)) is distributed as a finite-dimensional Dirichlet distribution [185]:

(F (A1) , . . . , F (Ap)) ∼ Dir(αF0(A1) , . . . , αF0(Ap)) .

We can view the DP as sequentially constructing a partition of Z. The first
indicator variable, z1, is assigned a new label because k(n) = 0 and n = 0. At each step,
the i-th indicator variable is assigned to one of the existing labels with a probability
that is proportional to the size of the part, or assigned a new label with a probability
that is proportional to α. This implies that the DP prior exhibits a “rich-get-richer”
behavior when it comes to the cluster sizes.

The same partition structure that is implied by the DP can also be derived in
different ways. The first uses the generalized Pólya urn scheme of Blackwell and Mac-
Queen [14]. It imagines an urn containing balls of distinct colors. The balls correspond
to the indicator variables, zi, and the colors correspond to the labels, cj . When a ball is
drawn, it is placed back in the urn together with another ball of the same color. With
probability proportional to α, a new cj is drawn from F0 and a ball of a new color is
added to the urn. A second way to derive the partition structure equivalent to (3.10) is
by using the Chinese restaurant process from Dubins and Pitman [144]. It is based on
the metaphor of a Chinese restaurant with an unlimited number of tables, each capable
of seating an unlimited number of customers. Here, the customers correspond to the
indicator variables, zi, and the tables correspond to the labels, cj . As customers enter
the restaurant one at a time, they choose a table to sit down at with a probability
proportional to the number of customers already seated there. With probability pro-
portional to α, the customer sits at a new table, for which a new label cj is drawn from
F0. The DP partition structure can also be derived using the Ewens sampling formula
[51, 3] from population genetics.

It is the discrete nature of the DP that makes it well-suited for use as a prior
in clustering applications because there is a positive probability of ties among the zi.
In the context of SSMs, we assumed that we were drawing the arbitrary labels used to
identify the observed species. However, this not the only way to exploit the discrete
nature of the DP for clustering. It is perhaps even more common to see a model such
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as:

F ∼ DP (α, F0)

θ1, . . . , θn | F
iid∼ F.

yi | θi ∼ FY (θi) ,

where F0 is a distribution over parameters (rather than labels) and each measure-
ment, yi, is assumed to be probabilistically generated from the latent parameter, θi ∈{
c1, . . . , ck(i−1), ck(i−1)+1

}
, that is drawn from the DP. In this context, it is the ties

among the parameter values that implicitly represent the partition structure, hence the
clusters. Such a model is known as a DP mixture model because it is equivalent to a
mixture with a countably infinite number of components of the form:

p(yi | θi) =
∑
j≥1

πjp(yi | θi = cj) ,

where the πj are the mixture weights, which are given by the stick-breaking represen-
tation of the DP [174].

Citing various criticisms of clustering with mixture models, Casella et al. [26]
argue that a better approach is to use product partition models [80]. Product partition
models are of the form:

p(Y | Z) =
K∏
j=1

p
(
Ycj | cj

)
,

where Y = {y1, . . . , yn} is the set of measurements and Ycj denotes the subset contain-
ing those measurements assigned to the j-th (of K) part. The measurements in Ycj are
assumed to be probabilistically generated from the parameter cj . However, when the
mixture model is based on a nonparametric model such as the DP, the two approaches
are in fact related. If we marginalize over F , as is the usual case in practice, the par-
tition structure is retained and the model reduces to that the product partition model
[157]. Note that the associative tracking model is based on the product partition model.
However, we could have arrived at the same result by starting with a DP mixture model,
choosing a base distribution that is conjugate to the likelihood, and then marginalizing
over both the parameters and F . This is exactly what was done by Fox et al. [60] in
their target tracking algorithm.

There is also a two-parameter generalization of the DP known as the Pitman-
Yor process [145, 191]. It too is a proper SSM with prediction probability functions
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given by:

p(zn+1 = cj | z1, z2, . . . , zn) =


mj(n)−β
n+α j ∈ {1, . . . , k(n)}

α+k(n)β
n+α j = k(n) + 1

, (3.11)

where β is a discount parameter that reduces the probability of adding the current
observation to an existing cluster. To ensure valid probabilities, the parameters are
chosen such that 0 ≤ β < 1 and α > −β, where β = 0 reduces the model to the DP.
The corresponding exchangeable partition probability function is:

p(z1, . . . , zn) =

(∏k(n)−1
j=1 (α+ jβ)

) (∏k(n)
j=1 [1− β]mj(n)−1

)
[1 + β]n−1

k(n)∏
j=1

F0(cj) , (3.12)

where [x]m = ∏m
j=1 (x+ j − 1). When 0 < β < 1, the cluster sizes exhibit power-law

behavior which is important for certain applications. However, we will not consider the
Pitman-Yor process further here.

For a given concentration parameter, α, and number of measurements, n, the
distribution of the number of clusters produced by the DP may be written as [3]:

p(k | α, n) = S1(n, k)αk Γ (α)
Γ (α+ n) , (3.13)

where k ∈ {1, . . . , n} is the number of clusters and S1(n, k) is the unsigned Stirling
number of the first kind. These Stirling numbers count the number of permutations of
n elements with k disjoint cycles. They can be calculated using the recurrence relation:

S1(n+ 1, k) = nS1(n, k) + S1(n, k − 1) ,

with S1(0, 0) = 1 and S1(n, 0) = S1(0,n) = 0, for n > 0 and k > 0. However, evaluating
(3.13) can be difficult in practice because the values of S1(n, k) and Γ(α + n) can
quickly grow too large for most numerical representations. See appendix B for details
on numerically stable method of evaluation.

The distribution over k is used to specify the hyperprior for the concentration
parameter. Recall that in the last chapter we explained in detail how this was done by
matching p(k | α, n) to an expression of our prior beliefs about the number of clusters.

The mean and variance of k have closed-form expressions given by:

E[k | α, n] =
n∑
i=1

α

α+ i− 1

= α [ψ0(α+ n)− ψ0(α)]
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and

V ar[k | α, n] =
n∑
i=1

α (i− 1)
(α+ i− 1)2

= α [ψ0(α+ n)− ψ0(α)] + α2 [ψ1(α+ n)− ψ1(α)] ,

where ψ0(·) denotes the digamma function and ψ1(·) denotes the trigamma function.
Figure 3.1 shows how the mean and variance of k vary as a function of α (the

other nonparametric prior processes are included for comparison). We can see that
as α → 0, the expected number of clusters goes to one and the DP tends to avoid
creating any new clusters in favor of adding every measurement to the initial cluster.
As α→∞, the expected number of clusters goes to n and the DP tends toward placing
every measurement in its own cluster. Note that the E[k | α, n] plot has been truncated
to α = n

2 to focus on the more interesting behavior for small values of the concentration
parameter. The variance in the number of clusters reaches its peak just before α = n

2 so
the V ar[k | α, n] plot has been extended to α = 2n to show more of its shape. Beyond
these limits the mean approaches the asymptote at n and the variance decays to zero.

As the prediction probability functions suggest, the DP induces an unequal
distribution of cluster sizes with a few clusters receiving most of the measurements.
Figure 3.2 shows the distribution of clusters sizes for 25000 realizations of the DP with
α set to its most likely value based on the hyperprior for the given η, minClusterSz,
and n. Indeed, as the cluster size increases the number of clusters of that size decreases
exponentially. The DP produces more singleton clusters than anything else.

Despite the theoretical elegance of the DP and its ability to model our uncer-
tainty about the prior distribution of the target cluster labels using a random proba-
bility distribution, there is no free lunch. As the figure 3.2 makes clear, the DP entails
some strong assumptions about the partition structure that may not be consistent with
our prior beliefs. For example, do we really have a strong preference for the partition
m(100) = [99, 1] over m(100) = [75, 25] as the DP would suggest? It would seem
unlikely. In the next section, we will look at another stochastic process in an attempt
to retain the theoretical elegance of the SSM but with assumptions about the partition
structure that are perhaps better suited to tracking applications.

125



0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

α

E
[k

|α
,
n
]

[n=100]

 

 

DP

UP

EP

EP2

(a) Mean cluster counts.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

α

V
a
r
[k

|α
,
n
]

[n=100]

 

 

DP

UP

EP

EP2

(b) Variance of the cluster counts.

Figure 3.1: Mean and variance, as a function of α, of the number of clusters produced
by the nonparametric prior processes.
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Figure 3.2: Distribution of clusters sizes for the Dirichlet process.
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3.3.2 Uniform Process

Despite its ubiquity, the DP is not well-suited as a prior distribution for all
clustering applications because of its preference for unequal cluster sizes. Its widespread
use is due in large part to the fact that the DP prior leads to tractable inference algo-
rithms, however, it has enjoyed notable success when applied to infinite mixture models.
This should come as no surprise because, with respect to the mixture density, it is often
reasonable to have a few components dominate while most have negligible weights. On
the other hand, when our interest lies the partition structure itself, that may very well
be a problem. For tracking applications, it implies some rather unlikely beliefs such as
the prevalence of small clusters.

Since the partition structure induced by the DP is not a particularly realistic
model for target cluster sizes, as an alternative we will consider the uniform process (UP)
[155, 89]. The UP was first introduced as a prior for DNA motif clustering and has seen
surprising little interest since. It was motivated by the desire to have nonparametric
prior that induces a partition structure with a more uniform distribution of cluster
sizes. Unfortunately, abandoning the unequal clustering produced by the DP (and the
Pitman-Yor process) comes at the expense of exchangeability. Thus, the UP is not a
true SSM, but in practice it can be made to approximate one to an acceptable degree.

Its prediction probability functions are given by:

pj(m(n)) =


1

k(n)+α j ∈ {1, . . . , k(n)}
α

k(n)+α j = k(n) + 1,
(3.14)

where α ∈ R+ is a concentration parameter that controls the formation of new clusters.
From the perspective of sequentially constructing a partition of Z, we can

see that the UP aims to induce a uniform distribution of cluster sizes by assigning each
indicator variable one of the existing labels with equal probability. However, despite the
fact that these prediction probability functions are functions of the cluster sizes, m(n),
the sequence described by the prediction rule based on (3.14) is not exchangeable. This
is because each pj(m(n)) depends on the previous assignments through the number of
clusters. Consequently, any (z1, z2, . . .) generated by the UP is not a species sampling
sequence.

Wallach et al. [191] studied the UP and concluded that the lack of exchange-
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Figure 3.3: Variability of p(Z) with respect to the order of the indicator variables for
the uniform process.

ability is not a significant problem in practice and that p(Z) can be highly robust to
different orderings of the indicators. Specifically, they compared the standard deviation
of log p(Z) for different orderings of the indicators within the same configuration class to
the standard deviation of log p(Z) between configuration classes, noting that the latter
was considerably larger. A configuration class is the class of partitions with equivalent
cluster size vectors. In other words, all Z for which the corresponding m(n) have the
same distribution of sizes are in the same configuration class. Figure 3.3 illustrates this
notion of the sensitivity of p(Z) to different orderings using a small example, n = 10,
for which we can explicitly enumerate and readily visualize all the configuration classes.
The error bars indicate the standard deviation of log p(Z) for a given configuration class;
α is set to its most likely value based on the hyperprior. In this case, the average stan-
dard deviation within configuration classes is 1.03 while the standard deviation between
configuration classes is 9.9.

To study this behavior for larger and more realistic values of n, we have to
rely on simulation. This is done by simulating the UP, for a given n and α set to its
most likely value based on the hyperprior, and then keeping track of the unique (after
sorting) cluster size vectors that are produced. We take the results to be a reasonable
sample of configuration classes over which we can compute the variability of p(Z) for
random orderings. For each value of n evaluated, we compute the standard deviation
of log p(Z) both within configuration classes and between configuration classes. The
former is computed by averaging the intra-class standard deviations over the sample of
classes. The latter is computed as the standard deviation of the mean values for each

128



0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

n

lo
g
p
(Z

|α
,
n
)
S
D

UP
[η = 0.001, minClusterSz=2, 5000 c lasses, 1000 samples per c lass]

 

 

Intra−class

Inter−class

Figure 3.4: Comparison of how p(Z) varies, within configuration classes and between
configuration classes, with respect to the order of the indicator variables for the uniform
process.

class in the sample. Figure 3.4 shows how the two standard deviations compare for
10 ≤ n ≤ 500. The variability between configuration classes is seen to be considerably
larger than the variability with classes, with the gap growing approximately linearly
with n.

Although the UP is close, in some sense, to an exchangeable data generating
process, an important consequence of the fact that it is not an SSM is that we are
not guaranteed the existence of an EPPF. However, an approximated EPPF can be
derived by using a “signature” of the cluster size vector to ensure that any arrangement
of the indicator variables, hence any ordering of the cluster sizes, is assigned the same
probability. For example, Jensen and Liu [89] suggest sorting it from the largest cluster
to the smallest. Let m′(n) denote the cluster size vector sorted in descending order.
The approximated EPPF can then be written as:

p
(
m′(n)

)
≈ p(z1, . . . , zn)

≈ p(z1) p(z2 | z1) . . . p(zn | z1, . . . , zn−1)

= αk(n)−1 (α+ k(n))
k(n)∏
i=1

(α+ i)−m
′
i(n) . (3.15)

Of course, this approximated EPPF is based on processing the measurements
in a particular order. It is equivalent to sequentially constructing the partition by
adding all of the measurements assigned to the first cluster, then all of the measurements
assigned to the next cluster, and so on; with the order in which the clusters are processed
based on the signature. This is a valid approximation to an EPPF but it is not the
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only possibility, even for the same signature. Ideally, we would like to use the average
p(Z) taken over all arrangements of the indicators for a given m′(n), but to compute
this average exactly would be generally intractable. However, we can approximate it
to some extent in order to improve our EPPF. The basic idea is to combine low and
high estimates based on processing the measurements in different orders. It turns out
that (3.15) yields a high estimate of p(Z) for a given m′(n). We can compute a low
estimate by sequentially constructing the partition by first adding one measurement
to each cluster and then returning to the cluster-at-a-time approach for the remaining
measurements. This can be written as:

p
(
m′(n)

)
= αk(n)Γ(α)

Γ(α+ k(n)) (α+ k(n))
∑

i
mi(n)−k(n)

. (3.16)

By averaging (3.15) and (3.16), in log-space, we get an improved EPPF that is closer
to the ideal construction. We call this the averaged EPPF.

Since the EPPF is crucial to our model, it is important that we gauge the
accuracy of the two approximations. A practical way to do that is to look at the impact
of the EPPF on the distribution of the number of clusters. This makes particular sense
for our model because the hyperprior for α is defined such that it depends on this
distribution.

For small values of n, we can compute p(k | α, n) using the EPPF by explicitly
enumerating all possible cluster size vectors. Note that for a given cluster size vector,
we have to scale the probability by the number of unique arrangements of the indicator
variables that give rise to it in order to correctly compute p(k | α, n). Those distribu-
tions are then compared to one obtained by simulating the UP. Figure 3.5 shows such a
comparison for n = 15 and α set to its most likely value based on the hyperprior. The
averaged EPPF does indeed yield a modest improvement. In this case, the number of
measurements is small enough that we can readily visualize log p(Z), for each configu-
ration class, to compare the averaged EPPF to the ideal values obtained via simulation.
Figure 3.6 shows just how similar the resulting probabilities are. Note that here the
log p(Z) values have each been scaled by the number of arrangements of the indicators
that will yield the equivalent configuration class so that the distribution displayed is
properly normalized with respect to Z.

To see what happens for larger values of n, we can no longer compute p(k |
α, n) via explicit enumeration. Instead, we can simulate the UP for a large number of
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Figure 3.5: Comparing the accuracy of the default and averaged EPPFs by looking at
the resulting distribution over the number of clusters for the uniform process.
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Figure 3.7: EPPF accuracy for the uniform process.

realizations and keep track of the unique cluster size vectors that are produced. We take
these to be a reasonable sample from which we can estimate the expected the number of
clusters using the EPPF. This value is then compared to the expected number of clusters
obtained from the simulations. For each value of n evaluated, we set α to its most likely
value based on the hyperprior. Using this procedure to examine the errors for 10 ≤
n ≤ 500, we find that the original EPPF (equation (3.15)) increasingly overestimates
the expected number of clusters as the number of measurements grows. By comparison,
the averaged EPPF (equation (3.16)) overestimates more or less consistently by about
0.45 for all n. The results are shown in figure 3.7. This confirms the advantage of using
the averaged EPPF and gives us confidence that it is sufficiently accurate to use for our
model.

There is no closed-form expression for the distribution of the number of clus-
ters produced by the UP. However, we can approximate it reasonably well using the
moments, E[k | α, n] and V ar[k | α, n]. First, let us look at how to compute the
moments.

Using the number of observations needed until the k-th new cluster is gen-
erated, which is explained in the supplementary materials for [191], we can derive a
closed-form estimate for the mean number of clusters, which is given by:

E[k | α, n] ≈ 1
2(1− 2α+

√
1− 4α+ 8Nα+ 4α2).

Based on evaluations using UP simulations, this estimate is accurate to less than 0.2.
The variance in the number of clusters can also be estimated in closed-form, albeit with
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Figure 3.8: Accuracy of the estimated mean and variance of the number of clusters for
the uniform process.

less accuracy. That estimate is given by:

V ar[k | α, n] ≈ 1
2α
(
−2 + −4 + 8N + 8α

2
√

1− 4α+ 8Nα+ 4α2

)
.

It it overestimates the variance by about 10–15% but more importantly conforms to
correct shape as a function of α. Figure 3.8 shows an example of how these estimates
compare to the values obtained by simulation. Referring back to figure 3.1, we can see
how the mean and variance of the number of clusters produced by the UP, as a function
of α, compares to the other nonparametric processes. The limiting behavior is the same
for all processes, as we would expect. The rate of growth in E[k | α, n] for UP, however,
is faster than that of the DP and it has a lower variance for a given α.

Given estimates for the mean and variance of k, we can approximate the dis-
tribution of the number of clusters. Let e and v be the mean and variance of the number
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Figure 3.9: Example of an approximation to p(k | α, n), computed from its first two
moments, for the uniform process.

of clusters, respectively. The distribution can then be approximated using a truncated
Gaussian distribution:

p (k | α, n) ∝ exp
(
− (k − e)2

2v

)
,

where k ∈ [1..n]. Figure 3.9 shows an example of such an approximation. For small
values of α, a slightly better estimate (in terms of mean squared error compared to the
simulated distribution) can be obtained using a truncated gamma distribution:

p (k | ·) ∝ ka−1 exp (−bk) ,

where a = e2

v , b = e
v , and k ∈ [1..n]. Note that these approximations can also be used

for the DP as well.
As the prediction probability functions suggest, the UP induces an equal dis-

tribution of cluster sizes. Figure 3.10 shows the distribution of clusters sizes for 25000
realizations of the UP with α set to its most likely value based on the hyperprior for
the given η, minClusterSz, and n. The breakdown in the uniformity that begins around
a cluster size of 25 occurs because of the interplay between α and the finite number of
measurements. For the given α, the expected number of clusters is 4.13, which implies
clusters of size 24.2. Beyond this, the process produces exponentially fewer clusters.

3.3.3 Egalitarian Process

The UP provides an alternative to the “rich-get-richer” behavior of the DP
by favoring a more balanced distribution of cluster sizes. From the perspective of
sequentially constructing the partition, it gives each existing cluster an equal chance
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Figure 3.10: Distribution of clusters sizes produced by the uniform process.

to take the next measurement by ignoring their sizes and not favoring any one of them.
However, in tracking applications we often want to express a preference for large clusters
(i.e. long tracks). One way to do this would be to actually favor smaller clusters when
assigning a new measurement.

No well-known stochastic process with these properties exists, but we can
create one using on the prediction probability functions:

pj(m(n)) ∝


1

mj(n) j ∈ {1, . . . , k(n)}
1
α j = k(n) + 1

, (3.17)

where α ∈ R+ is a concentration parameter that controls the formation of new clusters.
Note that these are proportional probabilities; the pj(m(n)) for j ∈ {1, . . . , k(n)} must
all be known in order to compute the normalizing constant.

For lack of a better term, we call this the egalitarian process (EP) because
it actively strives to maintain equality of the cluster sizes by assigning each indicator
variable one of the existing labels with a probability that is inversely proportional to the
size of the cluster. Like the UP, the EP lacks exchangeability because each pj(m(n))
depends on the previous assignments; this time through the cluster sizes. Thus, it too
fails to satisfy the conditions necessary to be an SSM.

To see how robust p(Z) is to different orderings of the indicators for the EP, we
start by looking at the same small example of the variability of p(Z) for random orderings
that we considered for the UP. See figure 3.11. The variability within configuration
classes has clearly increased over what we observed in 3.3 for the UP but remains
considerably smaller than the variability between configuration classes. For larger values
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Figure 3.11: Variability of p(Z) with respect to the order of the indicator variables for
the egalitarian process.
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Figure 3.12: Comparison of how p(Z) varies, within configuration classes and between
configuration classes, with respect to the order of the indicator variables for the egali-
tarian process.

of n, figure 3.12 shows that the two standard deviations follow a similar trend to that
of the UP (figure 3.4) but with almost twice intra-class variability.

It is perhaps unsurprising that the EP is more sensitive to different orderings
of the indicators than the UP. This is presumably because each of the EP prediction
probability functions has a stronger dependence on the previous assignments. They de-
pend on the previous assignments not only through the number of clusters but through
their individual sizes as well. A obvious question then arises: can we express a sim-
ilar preference for assigning new measurements to smaller clusters but with a weaker
dependence on the past?
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Figure 3.13: Variability of p(Z) with respect to the order of the indicator variables for
the second form of the egalitarian process.

One way to do this is using the prediction probability functions:

pj(m(n)) =


n+1−mj(n)

k(n)(n+1)−n+α j ∈ {1, . . . , k(n)}
α

k(n)(n+1)−n+α j = k(n) + 1.
(3.18)

These are based on the notion that the probability of selecting one of the existing clusters
is proportional to the difference between its current size and its maximum possible size,
assuming no knowledge of the other cluster sizes. This second form the EP is denoted
by EP2.

For the small example of the variability of p(Z) for random orderings, figure
3.13 shows a marked reduction in the variability within configuration classes, compared
to the EP, with similar variability between configuration classes. In fact, the average
standard deviation within configuration classes in this case is only 0.97, which is lower
than that of the UP. For larger values of n, figure 3.14 shows that the variability between
configuration classes is again considerably larger than the variability within classes, and
with the gap growing approximately linearly with n. Comparing that to figures 3.4 and
3.12, the EP2 clearly exhibits the least sensitivity to different orderings of the indicators,
with significantly lower intra-class variability than either the UP or the EP.

Approximated EPPFs for both the EP and EP2 can be derived in the same
manner as was done for the UP, using a signature of the cluster size vector. In fact,
we use the same signature: the cluster size vector sorted in descending order. The
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Figure 3.14: Comparison of how p(Z) varies, within configuration classes and between
configuration classes, with respect to the order of the indicator variables for the second
form of the egalitarian process.

approximated EPPF for the EP can then be written as:

p
(
m′(n)

)
≈ p(z1, . . . , zn)

≈ p(z1) p(z2 | z1) . . . p(zn | z1, . . . , zn−1)

=
k(n)∏
i=1

 α∑i−1
l=1 1/m′l(n) + α

m′i(n)−1∏
j=1

(1/j)∑i−1
l=1 1/m′l(n) + (1/j) + α

 . (3.19)

This is based on processing the measurements such that each cluster is added
one after the other, with the order in which the clusters are processed determined by
the signature. As was the case for the UP, this tends to produce a high estimate of p(Z)
for a given m′(n). We can again compute a low estimate by sequentially constructing
the partition by first adding one measurement to each cluster and then returning to the
cluster-at-a-time approach for the remaining measurements. This can be written as:

p
(
m′(n)

)
= αk(n)Γ(α)

Γ(k(n) + α)

k(n)∏
i=1

m′i(n)−1∏
j=1

(1/j)∑i−1
l=1 1/m′l(n) + (k(n)− i) + (1/j) + α

 .
(3.20)

As before, we average the two in log-space to improve the approximation.
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Figure 3.15: Comparing the accuracy of the default and averaged EPPFs by looking at
the resulting distribution over the number of clusters for the egalitarian process.

The approximated EPPF for the EP2 can be written as:

p
(
m′(n)

)
≈ p(z1, . . . , zn)

≈ p(z1) p(z2 | z1) . . . p(zn | z1, . . . , zn−1)

=
k(n)∏
i=1

 α(∑i−1
l=1 m

′
l(n)

)
(i− 2) + i− 1 + α

m′i(n)∏
j=1

(∑i−1
l=1 m

′
l(n) + j

)
−m′j(n)(∑i−1

l=1 m
′
l(n) + j − 1

)
(i− 2) + i− 1 + α

 ,
which gives the high estimate of p(Z). The corresponding low estimate is given by:

p
(
m′(n)

)
= αk(n)Γ(α)

Γ(k(n) + α)

k(n)∏
i=1

m′i(n)∏
j=2

(∑i−1
l=1 m

′
l(n) + j

)
−m′j(n)(∑i−1

l=1 m
′
l(n) + j − 1

)
(k(n)− 1) + k(n) + α

 .
To gauge the accuracy of the EPPF approximations, we again look at the im-

pact of the EPPF on the distribution of the number of clusters. We begin by considering
p(k | α, n) computed using the EPPF by explicitly enumerating all possible cluster size
vectors. Figures 3.15 and 3.16 show the results for n = 15 and α set to its most likely
value based on the hyperprior. In both cases, the averaged EPPF yields a distribution
of cluster sizes that is closer to the simulated ideal.

For larger values of n, we use the same simulation-based procedure that we
employed to gauge the accuracy of the EPPF for the UP. Figures 3.17 and 3.18 show the
results for 10 ≤ n ≤ 500. The advantage of the averaged EPPF is again confirmed. For
both processes, the EPPF overestimates the expected number of clusters for all n. As
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Figure 3.16: Comparing the accuracy of the default and averaged EPPFs by looking
at the resulting distribution over the number of clusters for the second form of the
egalitarian process.
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Figure 3.17: EPPF accuracy for the egalitarian process.

the number of measurements increases, the error increases but then starts to plateau.
Repeated evaluations show some variation in how fast the error levels off, but in all
evaluations maximum error remain just above 2.0. For the EP, it is not surprising to
see that the error is larger than what we observed for the UP (figure 3.7). However,
what is unexpected is that the EP2, given its significantly lower intra-class variability
of p(Z), only performs marginally better than the EP. This is because in the case of the
EP2, despite the lower variability, the shape of the distribution of the p(Z) values for the
different orderings deviates even further from what is implied by the averaging, in log-
space, of the high and low estimates. Additional research will be needed to determine
if simple means of improving the EPPF approximation can be found.

There is no closed-form expression for the distribution of the number of clusters
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Figure 3.18: EPPF accuracy for the second form of the egalitarian process.

produced by either the EP or EP2 so it must be approximated using the moments,
E[k | α, n] and V ar[k | α, n], as was the case for the UP. However, for these processes we
lack a closed-form estimate for the moments as well. Instead, we can derive an estimate
procedurally. The basic idea is to model the process of sequentially constructing the
partition in order to estimate the probability that each indicator variable is assigned to
a new cluster. The procedure is as follows:

0. Preliminaries

(a) Let a ∈ Rn denote the “abundances” such that ai is the number of
clusters of size i, for i ∈ [1..n].

(b) Let e denote the estimate of E[k | α, n].

(c) Let v denote the estimate of V ar[k | α, n].

(d) Let p ∈ Rn+1 denote the assignment probabilities such that pi is the
probability the current measurement is assigned to a cluster of size i,
for i ∈ [1..n], or a new cluster is created for i = n+ 1.

1. Initialization (i = 1)

(a) Set the abundance vector to one cluster of size one: a = [1 0 · · · 0].

(b) Set the expected number of clusters after processing the first measure-
ment to one: e = 1.

(c) Set the variance of the number of clusters after processing the first
measurement to zero: v = 0.
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2. For i = 2..n

(a) Compute p: pj = aj
j for the EP or pj = aj (i− j) for the EP2, for

1 ≤ j ≤ n, and pn+1 = α.

(b) Normalize p.

(c) If any element in p, for j ∈ [1..n], is less than the corresponding
element in a, then rescale p as follows:

i. Clamp the offending element pj to aj and rescale p over the un-
clamped elements.

ii. Repeat until either all elements in p are sufficiently sized or all
have been clamped (and the remaining probability mass goes to
pn+1.

(d) Update a: a1 = a1 + pn+1 − p1 and aj = aj + pj−1 − pj for 2 ≤ j ≤ n.

(e) Update e: e = e+ pn+1.

(f) Update v: v = v + pn+1 (1− pn+1).

Figures 3.19 and 3.20 show examples of how these estimates compare to the values
obtained by simulation. For EP, the expected number of clusters is accurate to within
a fraction of cluster. However, the variance fails to match the correct shape although
it is broadly the correct magnitude. The mismatch in terms of standard deviation
is on average 0.4 clusters with a maximum of 0.8 clusters. This is a consequence of
the fact that the estimation procedure does not account for the covariance between
the estimates of indicators. The estimation procedure could in principle be extended
to estimate those terms. However, when we studied such extensions we found the
improvement to be rather marginal due to both problems with numerical stability and
the inherent inaccuracies in the simple estimation model. The current form represents
a more attractive trade-off between cost and accuracy. For EP2, the expected number
of clusters suffers a bit due to inaccuracies in the estimation model. Here too we looked
into more accurate alternatives to the estimation model, but found them to yield too
little gain for the increased cost. The maximum error, which occurs at α ≈ 0.05, is
approximately 0.5 clusters and decreases as α increases. The variance is reasonably
well-modeled.

142



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

α

E
[k

|α
,
n
]

EP
[n = 100, η = 0.001, minClusterSz=2]

 

 

Sim.

Approx.

(a)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

α

V
a
r
[k

|α
,
n
]

EP
[n = 100, η = 0.001, minClusterSz=2]

 

 

Sim.

Approx.

(b)

Figure 3.19: Accuracy of the estimated mean and variance of the number of clusters for
the egalitarian process.
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Figure 3.20: Accuracy of the estimated mean and variance of the number of clusters for
the second form of the egalitarian process.
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Figure 3.21: Distribution of clusters sizes produced by the egalitarian process.
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Figure 3.22: Distribution of clusters sizes produced by the second form of the egalitarian
process.

Referring back to figure 3.1, we can see how the mean and variance of the
number of clusters produced by the EP and EP2, as a function of α, compare to the
other nonparametric processes.

As the prediction probability functions suggest, the EP and EP2 induce a
distribution of clusters sizes that favors large clusters. Figures 3.21 and 3.22 show the
distribution of clusters sizes for 25000 realizations of the respective processes with α

set to its most likely value based on the hyperprior for the given η, minClusterSz, and
n. For the EP, the preference is linear until the breakdown point. For the EP2, the
preference is exponential.
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3.4 Alternative Priors

3.4.1 Hierarchical Uniform Prior

Nonparametric models are not the only principled choice for the prior distri-
bution of the target cluster labels. Casella et al. [26] developed one such alternative
known as the hierarchical uniform prior (HUP). It was motivated by the desire to have
an objective prior distribution over partitions that respects the structure of the cluster-
ing problem. That structure is described by the hierarchy: cluster class, configuration
class, and partition.

The top of the hierarchy is the cluster class, which is simply the number of
clusters. It is denoted by k. All partitions with k clusters belong to that cluster class.
The next level is the configuration class, which we defined earlier. To reiterate, it is
the class of all partitions with equivalent cluster size vectors. The configuration class is
denoted by Rk;m(n), where the subscript indicates the corresponding cluster class and
cluster sizes. Within each cluster class, k, there are one or more configuration classes,
Rk;m(n), that contain all the partitions. Each of those configuration classes has a unique
cluster size vector, m(n). Finally, there is the partition, which is given by the set of
indicator variables, Z. Thus, each partition belongs to a particular configuration class
that itself belongs to a particular cluster class.

To specify the prior, the joint distribution of the indicators is factored according
to the hierarchy of the clustering problem to get:

p(Z) = p
(
Z | Rk;m(n)

)
p
(
Rk;m(n) | k

)
p(k | n) . (3.21)

The first term is the probability of the partition given its configuration class.
Since the difference between partitions within a given configuration class, ignoring the
likelihood, is just the number of different ways to make to the assignments such that
they have the correct cluster size vector, they are each assigned an equal probability.
Thus, we have:

p
(
Z | Rk;m(n)

)
=
(

n

m1(n) · · ·mk(n)

)−1

R(m1(n), . . . , mk(n)) , (3.22)

where R(m1(n), . . . , mk(n)) = ∏n
i=1

[∑p
j=1 I(mj(n) = i)

]
!, which corrects the count for

redundant assignments when mj(n) = ml(n) for j 6= l.
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The second term is the probability of the configuration class given its cluster
class. These are assumed to be a priori equally likely. Thus, we have:

p
(
Rk;m(n) | k

)
= b(n, k)−1 , (3.23)

where b(n, k) denotes the number of partitions of n with exactly k parts. It can be
computed using the recurrence relation:

b(n, k) = b(n− 1, k − 1) + b(n− k, k) ,

where 1 ≤ k ≤ n. The base conditions are b(n, 1) = 1 and b(n, n) = 1.
Finally, the last term is the prior probability that n measurements will contain

k clusters. Casella et al. suggest a couple of different ways to specify this prior based on
the assumption that a small number of clusters is preferable. The result is the Poisson-
Jefferys and Poisson-Intrinsic priors; see [26] for details. In either case, p(k | n) is a
distribution which decays exponentially from its peak at k = 1. The rate of decay, hence
the thickness of the tails, is what differs between the two approaches. One could also
use the formulation of the prior introduced in the last chapter (equation (2.25)) that
parameterizes the decay in terms of the ratio of the most probable to the least probable.

By respecting the structure of the clustering problem, the hierarchical uniform
prior avoids the often unforeseen consequences of a uniform prior that simply assigns
the same probability to every partition. The uniform prior can lead to large differences
between the probabilities of different configuration classes within the same cluster class,
even when they differ by just a single assignment. These differences are based entirely
on the number of partitions in each configuration class, rather than on some preferences
regarding the different configurations. It turns out that a uniform probability with
respect to the partitions actually implies some rather strong beliefs about the number
of clusters. Figure 3.23 shows the distribution of the number of clusters implied by
a uniform prior over partitions for n = 20. In terms of the number of clusters, the
result is far from uniform or uninformative. Nor is it likely to represent any prior beliefs
that lead us to select a “uniform” in the first place. In addition to these problems,
the uniform prior was also found to be inconsistent with respect to model selection
and hence should be avoided. The hierarchical uniform prior, on the other hand, is
consistent on the space of models and allows us to explicitly state our prior beliefs
about the number of clusters. In addition, compared to the nonparametric priors, it
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Figure 3.23: Distribution of the number of clusters implied by placing a uniform prior
on the partitions.

has the advantage needing no hyperprior. One of the criticisms of the nonparametric
priors is their sensitivity to the value of α.

3.4.2 Property-based Priors

Outside of the statistical literature, a common choice for the prior distribution
over cluster labels is what we call a property-based prior. The term is meant to distin-
guish these priors, which are constructed based on notions of a partition’s properties,
from those that we looked at earlier. In contrast, nonparametric priors are constructed
based notions of the clustering process that generates the partition while the hierar-
chical uniform prior is constructed based on notions of the distribution over partitions.
Property-based priors are typically created by taking the product of various functions
of the indicator statistics (e.g. number of clusters, cluster sizes, etc.) each designed to
respond to some desired property of the partition. For example, the product of functions
expressing a preference for the length of each track and minimal overlap (in the case of
merged measurements) have been used [201, 99, 199]. They have also been created by
combining functions, one per scan, that respond to the properties implied by detection
and target appearance/disappearance models [135, 169]. Usually, the expected size of
the false alarm cluster is also among the properties represented. However, we will ignore
that here because our tracking model separates the prior over false alarms and the prior
over the cluster labels.

Property-based priors are appealing because of their flexibility. Although it is
not relevant to our needs, a prime example is the ability to combine specific beliefs about
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the size of the false alarm cluster with general preferences for the target clusters. Note
that existing statistical models of the data association problem that can handle false
alarm measurements have used these priors exclusively; presumably for this reason.
This flexibility comes from the fact that such priors simply ignore the combinatorial
structure of the space of cluster labels. The problem with this approach is that while
the preferences expressed by a property-based prior might achieve the desired effect
when comparing two partitions, those preferences will not necessarily be reflected in the
distribution over cluster labels. This happens when the strength of the responses used to
define the prior are not calibrated to account for number of different label configurations
that correspond to any given partition structure.

To illustrate the point, let us consider the distribution over partitions implied
by several different property-based priors each intended to express the general belief
that a smaller number of clusters is more likely than a larger number. The first prior is
based on a preference for partitions with a small number of clusters, which represents a
direct approach. It is defined using a function of k, the number of clusters, that decays
exponentially. The rate of decay is set so that the smallest number of clusters is one
million times more likely than the largest number of clusters. Figure 3.24a shows the
resulting log p(Z) values when 20 clustering measurements. Note that the configuration
classes are sorted so that the number of clusters grows along the x-axis and the tick
marks indicate where each value of k begins. Despite the fact that the prior is locally
consistent with our beliefs, the distribution over partitions clearly fails to reflect any
preference for partitions with a small number of clusters. On the contrary, the most
probable partition under this model contains 7 clusters with the likelihood generally
increasing from 1 to 7 clusters and then generally decreasing as the number of clusters
goes to 20. Instead, we might try a second prior based on a preference for partitions
with large clusters. It is defined using an exponential function of the average cluster
size. The rate of growth is set so that the largest average cluster size is one million
times more likely than the smallest. The resulting distribution is shown in figure 3.24b.
It too fails to represent our beliefs and is broadly similar to that from the first prior.
Finally, let us try a third prior based on the same preference for partitions with large
clusters. This time, however, it is defined by taking the product of an exponential
function of each cluster’s size. The rate of growth in each function is set so that the
largest cluster size is one million times more likely than the smallest. Figure 3.24c
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shows the resulting distribution and it is in fact consistent with our beliefs. However,
the reason has less to do with the sized-based preference than with the structure of the
prior itself. Since the probability of a given partition is determined by a product of
probabilities, in which the number of terms grows with the number of clusters, small
cluster sizes are implicitly preferred; at least locally. We could just as well have used a
constant value for each of the product terms, independent of the cluster size. As long as
that value is sufficiently small, the distribution over cluster labels will reflect our beliefs.
The sized-based preference only amplifies the effect.

The flexibility of property-based priors comes at the cost of sensitivity to their
parameter values. In the examples above, we could have strengthened the preference in
the first two priors to produce a distributions over cluster labels that represented our
belief that a smaller number of clusters is more likely than a larger number. The problem
is that in practice we do not know how strong those preferences need to be. And as
those first two examples clearly show, there can be more at stake than just the strength
of our beliefs. Choose the wrong values for the parameters and we may very well be
expressing beliefs quite contrary to our intention. Even seemingly reasonable parameter
values might not work as expected because their impact on the implied distribution over
cluster labels is difficult, if not impossible, to discern. As the third example illustrates,
the structure of the prior plays a critical role in this relationship. Unfortunately, even a
structure conducive to our beliefs can obscure the role of the preferences and the effect of
the parameters. In general, specifying reasonable parameter values for property-based
priors is extremely difficult and such priors should be used with caution.

One exception is when the prior is based on the properties implied by detection
and target appearance/disappearance models. In this case, the parameters have well-
defined values and it is the structure of the prior that is the critical design decision.
Here, we will consider the prior proposed by Oh et al. [135] in their seminal paper
on Markov chain Monte Carlo data association, which is perhaps the most principled
construction. Omitting the term pertaining to the false alarm rate, it is defined as:

p(Z) ∝
ns∏
i=1

p
zsi
z (1− pz)csi p

dsi
d (1− pd)gsi λ

asi
b ,

where pz is the probability of a target disappearing during a given scan, pd is the
probability of detecting a target during a given scan, and λb is the birth rate of new
targets per scan per unit volume (or area). The remaining variables are derived from
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Figure 3.24: Distribution over partitions implied by several property-based priors.
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Z where zsi denotes the number of previously detected targets that disappeared during
scan i, csi denotes the number of targets persisting from scan i−1, dsi denotes the number
of targets detected during scan i, gsi denotes the number of targets not detected during
scan i, and asi denotes the number of new targets appearing during scan i.

Notice how the terms in the product are based on cumulative statistics of Z.
Each term expresses the model-derived beliefs about the probability of the assignments
in scan i given the previous assignments. In this way, its form is similar to the pre-
diction rule that is used by the nonparametric priors to implicitly define a partition.
Consequently, the resulting p(Z) does not suffer from the same problems that we saw in
the earlier examples of property-based priors. However, unlike those other priors, this
one is not exchangeable. Despite that fact, the structure of the prior is still compelling.
Unfortunately, the parameters that make it problematic to use in practice. While they
certainly have well-defined values, those values are not all generally known. The prob-
ability of detection can reasonably be modeled, but the assumption that it is constant
throughout the surveillance region is questionable. The birth rate and disappearance
probability, on the other hand, are unknown is most applications. In fact, we began
this investigation into suitable forms for the prior distribution over cluster labels with
the goal of modeling our lack of knowledge in this regard. Contrary to that objective,
λb and pz represent very specific beliefs about both the number and lifetimes of the tar-
gets. The birth rate in this prior not only represents how many targets we expect to see
after ns scans but how we expect their appearances to be distributed across the scans.
We might consider just ignoring the matter of how the appearances are distributed and
place a hyperior on λb, along the lines of what we did with α for the nonparametric
priors. However, λb does not directly determine the expected number of targets implied
by p(Z) because that value is affected by the disappearance probability, pz. So, not
only must we explicitly state our beliefs about how long a target will persist, but those
beliefs must be balanced against out beliefs about how many targets might be present.
It is not clear how to do this in a way that adequately reflects our ignorance.

3.5 Scan Constraints

Up to this point, we have looked at various ways to define the distribution of the
target cluster labels without considering the impact of the scan constraint. Recall from
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Figure 3.25: Impact of the scan constraint on the distribution of the number of clusters
for the DP.

the previous chapter that the scan constraint dictates that no cluster can contain more
than one measurement from any given scan. This implies that the a priori probability
of any partition that violates the scan constraint is zero. Unfortunately, when the
offending partitions are assigned zero probability, it changes the properties of the prior
because it has effectively been truncated. For the nonparametric priors, this alters the
relationship between α and the distribution of the number of clusters, on which the
hyperprior depends. Although it is generally intractable to fully account for the effects
of the scan constraint on these priors, we can generate reasonable approximations to
the scan-constrained priors.

To illustrate the impact of truncating the support of p(Z) based on the scan
constraint, let us consider an example using the DP. Suppose that we collect five mea-
surements in each of ten scans for a total of 50. Ignoring the scan constraint, we set α
to its most likely value based on the hyperprior given η = 0.001 and minClusterSz = 4.
Figure 3.25 shows the distribution of the number of clusters produced by simulating
the DP both with and without the scan constraint. Ideally, the effect of the constraints
would be to effectively shift the unconstrained distribution (the dark blue bars in the
plot) to the right onto the truncated support of k, which is [5..50]. However, the con-
strained distribution (the white bars in the plot) is effectively shifted and skewed to
the right, placing most of the probability on a larger number of clusters than our prior
beliefs call for. To achieve the desired result, we need to be able to set α based how the
DP behaves subject to the scan constraint. The impact and the remedy is similar for
all the nonparametric priors that we have discussed.
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Figure 3.26: Impact of the scan constraint on the distribution of the number of clusters
for the HUP.

Now let us consider how the hierarchical uniform prior is impacted by the scan
constraint. This time we will use a smaller example because unlike the DP, which is
a stochastic process and can be simulated, here we have enumerate all the partitions.
Suppose we collect 12 measurements with the following scan depths: (3, 1, 1, 2, 2, 2, 1).
Ignoring the scan constraint, there are 4213597 partitions. However, subject to the scan
constraint only 1462981 have nonzero probability. Clearly, the hierarchical uniform prior
will be affected because the partition counts in each level of the hierarchy will no longer
be correct. Figure 3.26 shows the resulting distributions of the number of clusters. Note
that the Poisson-Poisson-Intrinsic prior was used for the prior over k in the model. As
before, we would ideally like to see the unconstrained distribution (the dark blue bars in
the plot) shifted onto the truncated support of k, which is [3..12] in this case. Although
the result is not completely unreasonable, it fails to match our stated prior beliefs. To
achieve the desired result, we need to be able to modify the first and second terms in
(3.21) to reflect the constrained partition counts.

Note that the property-based priors will not be considered in the context of
the scan constraint. In most cases, the truncated support will further complicate the
already thorny issue of how to set the parameters. The prior from Oh et al. [135], on
the other hand, was built around the concept of scan-based data collection and is thus
unaffected.
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3.5.1 Scan-constrained Nonparametric Priors

For the nonparametric priors, we focus our attention on how the scan constraint
alters the relationship between α and the distribution of the number of clusters. We
assume that for an appropriately selected α, the EPPF can be used without modification.
Thus, our objective is to estimate p(k | α, n) subject to the scan constraint.

We begin by recognizing that it is not necessary to work directly with the
distribution of the number of clusters. Instead, we can simplify things by working with
the moments: E[k | α, n] and V ar[k | α, n]. The distribution p(k | α, n) can then be
estimated from these moments using either of the approximations introduced for the
UP.

Looking first at E[k | α, n], as a function of α, the question is: how does
the scan constraint change this behavior? Without the scan constraint, as α → 0 the
expected number of clusters goes to one as the process tends to assign each indicator
variable the initial cluster label. At the other extreme, as α→∞ the expected number
of clusters goes to n as the process tends to assign each indicator variable a new label.
Subject to the scan constraint, it is no longer possible, in general, to assign each indicator
variable the initial cluster label. Thus, the lower bound on the number of clusters is
moved from one to the maximum scan depth. The upper bound remains the same.

This suggests shifting and scaling the expected number of clusters so that its
limiting behavior is correct. Thus, we can write:

E[k | α, n] = (e− 1)κ+Kmin

V ar[k | α, n] = v κ,

where e and v are the unconstrained estimates of the mean and variance, respectively.
The mean estimate is shifted by Kmin, which is equal to the maximum scan depth.
Both estimates are scaled by: κ = n−Kmin

n−1 .
Although this simple modification does not capture the full impact of the scan

constraint, it gets us close. The expected number of clusters still does not grow fast
enough for small values of α to match the behavior observed when simulating the scan-
constrained process. The estimated variance, however, provides an adequate description
of the scan-constrained behavior.

To improve the scan-constrained estimate of E[k | α, n], we can shift it by
an additional amount ê > 0. This is combined with the following blending function to
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Figure 3.27: Impact of the scan constraint on the expected number of clusters, as a
function of α, for the DP.

ensure the limiting behavior remains correct for α→ 0:( 1
1 + exp(−29α) −

1
2

)
2ê.

We accept that the limiting behavior for α → ∞ will now be biased since large values
of α are not important for our application.

Empirically, we have determined that a reasonable way to estimate the addi-
tional shift, ê, is to set it to the value of α at which E[k | α, n] = Kmin for the uncon-
strained process. Based on simulations for random scan depths with 1 ≤ Kmin ≤ 10,
this appears to be a reliable shift value.

Figure 3.27 shows impact of the scan constraint on E[k | α, n] using our
initial example with the DP. It also shows scan-constrained estimate computed using
the aforementioned procedure. The growth rate can still be seen to lag a bit behind
the simulated curve but the agreement has been greatly improved. If we now use the
scan-constrained DP to set α to its most likely value based on the hyperprior, we get
a much smaller value as expected. Figure 3.28 shows the resulting distribution of the
number of clusters. Compared to 3.25, we can see that p(k | α, n) is close to the ideal
but still overestimating by almost one cluster.

3.5.2 Scan-constrained Hierarchical Uniform Prior

As we stated earlier, the objective is to modify the first and second terms in
(3.21) to reflect the constrained partition counts.

The first term, p(Z | Rk;m(n)), is given by the product of the reciprocal of a
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Figure 3.28: Distribution of the number of clusters using the scan-constrained DP.

multinomial coefficient and a correction factor, R(·). The correction factor remains the
same when subject to the scan constraint, so we focus on the multinomial coefficient:(

n

m1(n) · · ·mk(n)

)

which gives the number of ways to put n objects into k bins, with the number of objects
in each bin given by m(n).

It is equal to the product:(
n

m1(n)

)(
n−m1(n)
m2(n)

)(
n−m1(n)−m2(n)

m3(n)

)
· · ·
(
mk(n)
mk(n)

)
, (3.24)

where the terms are binomial coefficients that respectively give the number of ways to
choose m1(n) from n, then choose m2(n) from the remaining, etc. Subject to the scan
constraint, some fraction of these ways will be invalid. Unfortunately, there does not
appear to be an efficient way to compute the correct numbers exactly. Once again, we
must rely on an approximation.

As an analog to the binomial coefficient when the choices are subject to the scan
constraint, we can use elementary symmetric polynomials. The elementary symmetric
polynomial in p variables and of degree k is defined by:

ek(X1, . . . , Xp) =
∑

1≤j1<j2<···<jk≤p
Xj1 · · ·Xjk ,

where ek(X1, . . . , Xp) = 0 if k > p. Thus, when (X1, . . . , Xp) is set to the scan depths,
with p equal to the number of scans, it gives us the number of ways to choose k objects
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subject to the scan constraint. The elementary symmetric polynomial can be computed
using the algorithm in [90].

The problem is that this cannot be used as a direct replacement for the binomial
coefficient terms in (3.24) because, although we know the number of remaining partitions
after each choice, we do not know what the scan depths look like after each choice. What
we can do instead is estimate the expected scan depths after each choice since the Xi

need not be integer values.
After each choice, we update the expected scan depths as follows. First, we

decide which depths will change. Any that are equal to number of remaining choices
are decremented by one since these will have to be selected as part of every choice. The
remaining number of selections for the given choice are spread over some subset of the
unselected depths. This subset is determined by first selecting one of each unique depth.
If there are not enough unique depths to cover the remaining selections, then we take two
of each unique depth (when possible) or three of each unique depth, etc. We stop when
there are at least as many depths selected as the number of remaining selections. Each
depth in the subset is decremented by the appropriate fraction of remaining selections.
Although clearly not exact, this procedure does a reasonable job in practice.

The second term, p(Rk;m(n) | k), is given by the reciprocal of the number
of partitions of n with exactly k parts. Subject to the scan constraint, some of these
partitions will be invalid. Thus, the scan constraint effective restricts the partitions.
The primary restriction is that no part can be larger than the number of scans.

The number of partitions of n with exactly k parts and each part ≤ m is given
by: b(n, k, m)− b(n, k − 1, m) [1]. It can be computed using the recurrence relation:

b(n, k, m) = b(n− k, k, m− 1) + b(n, k − 1, m) ,

where 1 ≤ k ≤ n and 1 ≤ m ≤ n. The base conditions are:

b(n, k, m) = 0 if n < 0 or b = 0 or kb < n

b(n, k, m) = 1 if n = 0 or kb = n.

This alone provides a very good estimate of scan-constrained number of par-
titions. However, it will overestimate the count in some cases because the maximum
part size is not the only restriction implied by the scan constraint. Unfortunately, the
only way to account for the full impact of the scan constraint would be to enumerate
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Figure 3.29: Distribution of the number of clusters using the scan-constrained hierar-
chical uniform prior.

the valid partitions. By generating them in lexical order and using various heuristics
to eliminate invalid partitions before generating them completely, this is a tractable
approach for realistic data sets but very computationally expensive. We do not believe
that the benefits outweigh the costs in this regard.

Returning to our initial example with the hierarchical uniform prior, figure
3.29 shows the scan-constrained distribution of the number of clusters computed using
the aforementioned procedure. It can be seen to overestimate the probability of k = 6
but otherwise faithfully represents our prior beliefs.
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Chapter 4

Application to Surveillance of
Dismounts
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4.1 Introduction

The current research was motivated in part by applications involving the wide-
area surveillance of human targets using radar. And this particular combination of
sensor and target presents some challenges.

First, the targets are observed simply as points in space and time. There is no
appearance information on which to rely when associating observations. Thus, targets
must be discriminated based on their dynamics. Second, the targets are observed on
a coarser time scale than typical radar tracking applications. This is due primarily to
their inherent difficulty to detect at long range using radar. Since people have relatively
small radar cross-sections, they reflect only a small amount of energy back to the sensor
making it hard to maintain an acceptable probability of detection at a manageable false
alarm rate. In addition to a weak return, their relatively low speed makes human tar-
gets especially difficult to spot against the ground clutter. To compensate, some systems
slow the scan rate in order to put more energy on the target. Others integrate infor-
mation from multiple scans before reporting a detection. Spatially varying probabilities
of detection that are less than one, including the extreme case of target occlusion, also
contribute to the sparsity of the measurements. Finally, the targets are highly maneu-
verable. Unlike aircraft, ships, or even vehicles, there are relatively few constraints on
the ability of people to change their speed or direction between observations.

Individually, radar sensors and human targets have been the subjects of a con-
siderable amount of research. However, there is currently very little that addresses these
specific requirements. Existing models for people tracking tend to rely heavily on ap-
pearance information, with the target dynamics playing a secondary role. Most of this
work has been for short range applications with frequent measurements. Until relatively
recently, radar surveillance of ground targets was largely limited to vehicles and people
tracking at long range was more or less the exclusive domain of EO/IR sensors. How-
ever, this is rapidly changing. Technological advances, especially with respect to the
processing power available to the detector, have made radars with dismount detection
capability increasing common.

Here, we will start to address some of the issues related to the wide-area
surveillance of human targets using radar. We begin by studying the dynamics of
human walkers observed at this scale. This information will then be used to guide the
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construction of dynamic models for use with the tracking algorithm. We will consider
several different approaches to specifying such models. In the next chapter, we will
characterize the performance of these models, including quantify the potential gains
from state estimation assuming no ambiguity in the data association.

4.2 Human Walkers

4.2.1 GPS Data Collection

In order to study the dynamics of the target, we used a differential global
positioning system (DGPS) to make precise measurements of the position, speed, and
heading of a person walking in representative terrain. The subject wore a backpack
containing the GPS receiver, data recorder, and a pole-mounted external antenna. Three
different terrain types were used for comparison and two independent data collections
were made for each terrain type.

Regarding the accuracy of the position measurements, a previous calibration of
the unit determined that the base accuracy was 0.32m. We modeled the uncertainty by
assuming that the error, when projected onto the UTM grid, is symmetric and follows
a Gaussian distribution in which 95% of the values fall within the stated accuracy. For
each measurement, the base accuracy was scaled by the horizontal dilution of precision
(HDOP) to reflect errors introduced by the geometry of the satellites. The result was
then divided by two to determine the standard deviation of the error. The accuracy of
the speed measurements was also modeled as Gaussian. The manufacturer specified that
the speed was accurate to 0.0447m/s, which was then divided by two to determine the
standard deviation. Note that this agrees almost exactly with the standard deviation
for walking speeds estimated in previous DGPS studies of human locomotion [173]. The
accuracy of both the position and speed measurements is deemed sufficient to serve as
ground-truth for this application. Heading measurements, on the other hand, will only
be used as a rough guide since no information regarding their accuracy was available.

Data was collected at three sites selected to represent flat, rolling, and moun-
tain terrain. In addition to the terrain itself, each particular site was chosen to provide
ideal conditions for the data collection: an unobstructed view of the sky and proximity
to a differential beacon. The sites and collection details are summarized below.
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Flat Terrain (T1)

This site consisted of a mix of flat paved and crushed gravel trails. There was
no appreciable elevation change. The first collection lasted approximately 45 minutes
with a mean of 6.8 visible satellites and a mean HDOP of 1.34. The second collection
lasted approximately one hour with a mean of 7.1 visible satellites and a mean HDOP
of 1.22.

Rolling Terrain (T2)

This site consisted of a mix of dirt and crushed gravel trails. Some were flat
but most wound through rolling hills. The total elevation change was on the order of
30 feet. The first collection lasted approximately one hour with a mean of 7.9 visible
satellites and a mean HDOP of 1.4. The second collection lasted approximately 90
minutes with a mean of 7.7 visible satellites and a mean HDOP of 1.07.

Mountain Terrain (T3)

This site consisted of dirt single track trails along mountain top ridges. The
total elevation change was on the order of 300 feet. The first collection lasted approx-
imately two hours with a mean of 7.8 visible satellites and a mean HDOP of 1.9. The
second collection lasted approximately 90 minutes with a mean of 7.6 visible satellites
and a mean HDOP of 1.09.

4.2.2 Analysis

Here, we analyze the GPS data to look at the statistical properties of the
speed and heading of a typical target in the given terrain. We will use the position
measurements later, when we evaluate the performance of the dynamic models.

The probability density functions were estimated using kernel density estima-
tion (KDE) with a Gaussian kernel and automated bandwidth selection. The autocorre-
lation functions (ACFs) were estimated using Welch’s method with a 5min window and
50% overlap. These calculations were all performed on measurements of steady-state
walking, which we have defined as sequences of at least two minutes where the recorded
speed is > 0.25m/. Thus, we have filtered out any stops to focus specifically on moving
targets.
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Figure 4.1 shows the distributions of target walking speeds for each of the three
terrain types. For each terrain, data from both collections was combined to estimate the
distributions. The closest, in the mean squared error sense, Gaussian approximation
is also shown for reference. As we would expect, the distributions are all unimodal
with the upper limit of their support at approximately 2m/s, a point above which it is
difficult for a person to maintain a walking gait and it becomes more efficient to run.
The average expected speed across all terrains is approximately 1.4m/s. For the flat
terrain, the mode and expected speed are the highest. The distribution is skewed to the
right so more of its mass is concentrated on the higher speeds. As the terrain becomes
more rugged, the mode and expected speed drop. The skewness declines as well, but
the variance increases. In mountain terrain, the tails of the distribution on both sides
of the mean have balanced out and the distribution is approximately normal. Figure
4.2 shows the speed distributions for each terrain together on a single axis.

In practice, the continuous state of the target is sampled at discrete times.
Figure 4.3 shows the distributions of speed changes for some typical sample periods, for
each of the three terrain types. As we would expect, the distributions are essentially
zero-mean. The magnitude of the changes are on the order of 0.25m/s with the specific
variation being a function of both the terrain and sample period. The terrain type is the
strongest determinant of the magnitude of the speed changes with the largest changes
occurring in the mountain terrain. For a given terrain, we observe a slight increase in
the magnitude of the speed changes as the sample period increases. This suggests that
the impact from autocorrelation decreases over time. If we assume that the speed is a
wide-sense stationary process, with mean and variance equal to the values reported in
figure 4.1, the speed change magnitude is consistent with its theoretical value given a
relatively small autocorrelation (< 0.5) that decreases over time.

Looking at the autocorrelation of the walking speed, figure 4.4 shows that
the shape and degree are consistent with what the speed change distributions suggested
under the assumption of wide-sense stationarity. After about 30 s the speed is effectively
uncorrelated for all terrains. The correlation time is longest in flat terrain as we would
expect. In mountain terrain, the correlation time is shortest with the speed is largely
uncorrelated after about 10 s. Consequently, we should not expect to be able to make
good linear predictions about a target’s speed in our application because of the coarse
time scales involved. With the 30 s and 60 s sample periods, even assuming that the
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Figure 4.1: Distribution of steady-state walking speeds.
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Figure 4.2: Comparison of steady-state walking speed distributions in flat (T1), rolling
(T2), and mountain terrain (T3).

probability of detection is unity, we’re already beyond the point where the current target
speed has a significant linear relationship to the previous target speed. For the shorter
sample periods, it will only take a few missed detections before the previous target speed
will tell us little about its current speed. At this point, we may be better off making our
prediction based on what know about the expected speed of a target given the terrain.

Turning now to the heading, we begin by noting that these measurements
cannot be analyzed directly as was done with the speed. Unlike the time series of speed
measurements, the heading measurements follow a clear trend that is dictated by the
route. Thus, the distribution of target headings would tell us more about the route
than the characteristics of the target. However, we can remove this trend and analyze
the residual series to get some insight into the statistical properties of the heading
independent of the route. To de-trend the series we subtract an estimate of the mean
heading computed using a center-weighted moving average with a window of 30 s. This
yields what we will call the zero-mean target headings.

Figure 4.5 shows the distributions of the zero-mean target headings for each
of the three terrain types. The amount of variation is comparable across the different
terrains with an average standard deviation of approximately 13.5°. Figure 4.6 illus-
trates this clearly by showing all three distributions together on a single axis. The most
prominent difference between the distributions is how the tails get heavier as the ter-
rain gets less flat. For the mountain terrain, the distribution is closer to a t-distribution
than to a Gaussian. This does seem reasonable in light of the fact that rugged terrain
places more restrictions on the directions that a target can move in. The single track at
the mountain test site indeed favors consistent headings. Although these tendencies do
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Figure 4.3: Distribution of speed changes for various sample periods.
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(b) Rolling terrain (T2).

Continuation of Figure 4.3: Distribution of speed changes for various sample periods.
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Continuation of Figure 4.3: Distribution of speed changes for various sample periods.
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(c) Mountain terrain (T3).

Figure 4.4: Autocorrelation of the steady-state walking.
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make sense, we do not want to over analyze them because we lack an uncertainty model
for the heading measurements and are relying on an estimate of the mean heading.

The distribution of zero-mean heading changes for some typical sample periods,
for each of the three terrain types, are shown in figure 4.7. They reveal a small negative
bias which appears to be a function route and introduced by the de-trending. The
magnitude of the changes are on the order of 14.5° with the specific variation again
a function of both the terrain and sample period. As was the case for the speed,
the terrain type is the strongest determinant of the magnitude of the heading changes
with the largest changes occurring in the mountain terrain. This result is somewhat
surprising given that the mountain terrain places more constraints on the movement of
the target. However, it is presumably an artifact of imperfect de-trending as the routes
in mountain terrain will typically contain more twists and turns. For a given terrain,
the magnitude of the changes do not follow a monotonic trend as the sample period
increases. This suggests that there is some periodicity in the autocorrelation. However,
assuming that the zero-mean heading is a wide-sense stationary process (which implies
that the headings are trend stationary), the heading change magnitude is consistent
with its theoretical value given a relatively small autocorrelation.

In figure 4.8, we can seen that the autocorrelation of the zero-mean headings
is consistent with what the heading change distributions suggested both in terms of
the degree and periodicity. The periodicity appears to be another artifact of the de-
trending process. In any event, after about 40 s the heading is effectively uncorrelated
for all terrains. As was the case for the speed, the correlation time is longest in flat
terrain and shortest in mountain terrain, as expected. In mountain terrain, the heading
is largely uncorrelated after about 15 s.

4.3 Dynamic Models

4.3.1 Preliminaries

Here, we will consider the problem of developing kinematic models for human
motion observed at relatively large time-scales (on the order of 5 seconds to several
minutes). In particular, our focus shall be restricted to human walkers, including the
possibility of stoppage.

We begin with the following assumptions:
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Figure 4.5: Distribution of zero-mean headings for steady-state walking.
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Figure 4.6: Comparison of zero-mean headings for steady-state walking in flat (T1),
rolling (T2), and mountain terrain (T3).

• Human walkers are highly maneuverable.

• Restrictions to maneuverability are primarily due to environmental factors (e.g.
terrain) or the target’s goal/intent.

• The sampling period T is much larger than the maneuver time τm.

– Between consecutive measurements, targets can start, stop, change to any
heading or hit any speed within their range.

• Target state consists of 2-D position and velocity (which may be represented in
terms of speed and heading).

The models themselves must be linear-Gaussian (or linearized-Gaussian) models so that
the state can be integrated out analytically as required for associative tracking.

Note that square brackets will be used to denote discrete-time variables to
avoid confusion.

4.3.2 Target Speed

4.3.2.1 Models

Kinematic models for target tracking are typically derived from the equations
of motion by representing a certain derivative of the position using a stochastic process.
When the state consists of position and velocity, as we have assumed, the usual approach
is to model the acceleration of the target with some type of noise process. This procedure
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(a) Flat terrain (T1).

Figure 4.7: Distribution of zero-mean heading changes for various sample periods.
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Continuation of Figure 4.7: Distribution of zero-mean heading changes for various sam-
ple periods.
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Continuation of Figure 4.7: Distribution of zero-mean heading changes for various sam-
ple periods.
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(a) Flat terrain (T1).
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(b) Rolling terrain (T2).
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(c) Mountain terrain (T3).

Figure 4.8: Autocorrelation of the zero-mean heading for steady-state walking.
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yields a second-order model of the continuous-time dynamics. Taking the integral of
the model over the sample period then gives us the necessary discrete-time dynamics.

The integral of the acceleration noise process is what defines the velocity model,
which is the primary means by which we characterize the motion of the target. Specif-
ically, our focus will be on the magnitude of the velocity and how to represent it in a
way that conforms to what was learned from the GPS study. Thus, we will refer to this
as a “speed” model with the understanding that it technically describes the target’s
velocity since the sign imparts the direction of travel. This terminology is intended to
emphasize the fact that these models are based on considerations of the magnitude of
the velocity. The important question of the direction of travel will be taken up later.

Here, we will consider three different approaches to modeling the time-varying
target speed, particularly with respect to the form of autocorrelation. Each will be
presented as a simple linear dynamical system that describes the 1-D motion of a target
using a state-space consisting of position, x, and velocity, v. The reduction to one
dimension is intended to simplify the presentation. The system can be extended in a
straightforward manner, by replicating the model for example, to describe 2-D motion.

The first system models target speed as a standard (i.e. no drift) Wiener pro-
cess. The second system models the speed using an Ornstein-Uhlenbeck (OU) process
with a known constant mean. Finally, the third system models the speed as Gaussian
white noise process with a known constant mean.

Wiener Process Speed

This model is based on the assumption that a target’s speed is constant ex-
cept for stochastic variability in the form of acceleration noise. It is the well-known
continuous white noise acceleration (CWNA) model [6], which can be regarded as the
standard approach when velocity measurements are not available. We consider it here
as a baseline due to both its simplicity and ubiquity.

The continuous-time system is given by: ẋ(t)
v̇(t)

 =

 0 1
0 0

 x(t)
v(t)

+

 0
1

w(t), (4.1)

where w(t) is a zero-mean Gaussian white noise process with variance σ2
w.
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The equivalent discrete-time system with sample period T is given by: x[t+ T ]
v[t+ T ]

 =

 1 T

0 1

 x[t]
v[t]

+ w[t], (4.2)

where w[t] ∼ N(0, Qw[t]) with

Qw[t] =

 T 3

3
T 2

2
T 2

2 T

σ2
w. (4.3)

From the continuous-time description of the system we can see that the speed
is modeled as the integral of a Gaussian white noise, or equivalently, a Wiener process.

Since the Wiener process is not stationary, even the the wide sense, the speed
time series does not have a stationary autocorrelation function.

Ornstein-Uhlenbeck Process Speed

Although the OU process first came to prominence as a model of the veloc-
ity of a Brownian particle, it is attractive as a speed model because the stationary
autocorrelation function of an OU process decays exponentially with a rate that can
be set directly using one of the parameters. Also of interest is the fact that the OU
process is mean-reverting. These two properties are related and the OU process relaxes
exponentially to its mean at the same rate as the autocorrelation decays.

We expect that in certain circumstances, the ability to explicitly model corre-
lation in the target speed, even in this one simple form, will be beneficial. Figure 4.4
suggests that this may be useful for the dismounted targets in our application, although
how useful will depend on sparsity of the measurements. For applications that include
vehicular targets, the benefit is likely to be significant.

This model is based on the assumption that a target’s speed, although stochas-
tic, tends to drift over time toward some known mean value which might be conditional
on the target’s intent or by environmental factors such as terrain. We can think of the
mean value as the target’s preferred speed.

The continuous-time system is given by: ẋ(t)
v̇(t)

 =

 0 1
0 − 1

τ

 x(t)
v(t)

 +

 1− exp
(
t
τ

)
1
τ exp

(
t
τ

)
uv(t) +

 0
1

w(t), (4.4)
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where τ is the relaxation time constant, uv(t) is a control input (assumed to be constant
throughout the sample period) that sets the mean speed value, and w(t) is a Gaussian
white noise process with variance σ2

ou. The control gain is defined so that the impact of
the constant input when integrated over [t, t+ T ] is to set the mean speed.

The equivalent discrete-time system with sample period T is given by: x[t+ T ]
v[t+ T ]

 =

 1 τ
(
1− exp

(
−T
τ

))
0 exp

(
−T
τ

)
 x[t]

v[t]

+

 T

1

uv[t] + w[t] (4.5)

where w[t] ∼ N (0, Qou[t]) with

Qou[t] =

 q11 q12
q12 q22

σ2
ou (4.6)

and

q11 = τ3

2

[
−3− exp

(
−2T

τ

)
+ 4 exp

(
−T
τ

)
+ 2T

τ

]
σ2
ou (4.7)

q12 = τ2

2

[
1 + exp

(
−2T

τ

)
− 2 exp

(
−T
τ

)]
σ2
ou (4.8)

q22 = τ

2

[
1− exp

(
−2T

τ

)]
σ2
ou. (4.9)

Stationary Gaussian White Noise Process Speed

The motivation for this model is to provide an analog to the previous model,
but without the assumption of any correlation in the speed over time.

We once again assume that a target’s speed fluctuates around some known
mean value. However, in this case the deviations are serially uncorrelated.

The system is defined directly in discrete time with sample period T as: x[t+ T ]
v[t+ T ]

 =

 1 0
0 0

 x[t]
v[t]

+

 T

1

uv[t] + w[t] (4.10)

where uv[t] is a control input that sets the mean speed value and w[t] ∼ N (0, Qsg[t])
with

Qsg[t] =

 T 0
0 1

σ2
sg. (4.11)

The speed model in this case is a Gaussian white noise process.
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From the definition of the system we can see that the model makes a rather
trivial estimate of the target’s speed— that it is always at the mean (i.e. control) value,
regardless of the current state. In this sense, it behaves like the previous system when
the sample period is much larger than the correlation time.

4.3.2.2 Parameters

Suitable parameter values for each system are defined with respect to a par-
ticular motion regime. Here we restrict our attention to motion regimes defined solely
based on a target’s speed since that is what is relevant to the systems under considera-
tion. Each such regime can be thought of as a distinct modality of a target’s speed. For
example, the motion of a human target whose position is sampled every 30 s might be
described using “stop” and “walk” regimes. In some cases, that might be extended to
include a “run” regime. Multiple “walk” regimes, each conditioned on the local terrain,
could also be introduced.

Formally, we define a motion regime as when a target moves such that its speed
can be regarded as wide-sense stationary. This implies that regimes can be characterized
by their mean speed, m, and variance, q. We assume that an estimate of the speed
distribution for the given motion regime is available or can be obtained using sufficiently
accurate measurements of target proxies.

Returning to human target example, figure 4.1 shows that the distribution of
speeds for steady-state walking. The mean and variance of the distribution are assumed
to characterize the “walk” regime. To characterize the “stop” regime, we would have
to analyze the speed measurements having filtered out the steady-state walking. This
would lead to a peaked distribution of speeds with a mode at zero.

For the first and second systems, we assume that an estimate of the stationary
autocorrelation coefficient function (ACF) is also available for each regime. In practice,
this can be computed from the same speed time series that was used to estimate the
speed distribution. Note that care must be taken to divide the complete speed time
series into sub-series corresponding to each regime. All sub-series should be at least wsz
seconds long, where the exact value is chosen experimentally to be just long enough to
contain any statistically significant correlation. The ACF can then be estimated using a
windowed approach, with window size wsz, such as Welch’s method for spectral density
estimation. In addition to noise reduction, this approach provides an elegant way to
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combine multiple disjoint sub-series corresponding to the same motion regime.
Note that in cases where there is more than one motion regime, the different

sets of parameters for a given system constitute different models and the subsequent
estimation should proceed using a multiple model framework such as the interacting
multiple model estimator (IMM) or generalized pseudo-Bayesian (GPB) estimator. Note
that some special attention is required when working with more than one motion regime,
which will be addressed later.

Let m and q be the mean and variance, respectively, of the motion regime for
which the parameters are to be estimated.

Wiener Process Speed

This system contains a single parameter, σw, that controls the magnitude of
the speed changes that a target undergoes over time.

To determine its value, we must first compute this magnitude for a target
operating in the given motion regime.

Let the speed of such a target at times t1 and t2 (with t2 ≥ t1) be defined as
S1 = speed(t1) and S2 = speed(t2), respectively. The magnitude of the speed changes
that it undergoes from time t1 to t2 is then given by the standard deviation of the
difference between those two speeds, Std[S2 − S1].

Since the target’s speed is assumed to be wide-sense stationary, we get:

Var [S2 − S1] = Var [S1] + Var [S2]− 2Cov [S1, S2]

= q + q − 2qR (t1, t2)

= 2q (1−R (T )) ,

where q is the stationary variance of the speed and R (T ) is the stationary ACF (an
estimate of which was assumed earlier to be available) for lag T = t2 − t1.

From the discrete-time process noise covariance for this system we can see that
over the sampling period T these changes are of the order

√
Tσw.

Equating these two magnitudes we get:

√
Tσw =

√
2q (1−R (T ))
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which yields the parameter value

σw =

√
2q (1−R (T ))

T
. (4.12)

When the stationary autocorrelation of a target’s speed can be regarded as
negligible, the parameter value becomes

√
2q
T . In practice, we expect this to be the case

in applications where this model is used because the OU process model is likely to be a
more suitable in the case of statistical significant autocorrelation in a target’s speed.

Ornstein-Uhlenbeck Process Speed

This system contains three parameters: τ , σou, and uv (t).
The first parameter, τ , is the relaxation time constant. It controls the rate at

which the OU process relaxes to its mean value and characterizes the stationary ACF
of the target speed, which is of the form:

R(L) = exp
(
−|L|
τ

)
,

where L is the lag. Note that the decorrelation time is approximately 3τ (i.e. R(3τ) ≈
0.05).

An appropriate value for τ can be determined by fitting the theoretical ACF
to the empirical estimate (assumed earlier to be available).

The second parameter, σou, controls the magnitude of the fluctuations in target
speed around its mean value.

There are two approaches that we might use to determine its value. Both
approaches rely on the assumption that a target’s speed in the given motion regime is
wide-sense stationary so the magnitude of these fluctuations is known to be of the order
√
q, where q is the stationary variance of the speed.

In the first approach, we equate the magnitude of the speed fluctuations to
the stationary standard deviation of the OU speed model. That is to say we set σou so
that in the long term, after any correlation has died out, the steady-state variance of
the OU speed model is q.

As t → ∞, the OU process reverts to its stationary mean with variance σ2
ou
τ
2

and standard deviation σou
√

τ
2 . This can be seen by looking at equation (4.9) and

observing the variance as T →∞.
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Equating these two magnitudes we get:

σou

√
τ

2 = √
q

which yields the parameter value

σou =
√

2q
τ
. (4.13)

In the second approach, we equate the magnitude of the speed fluctuations to the
standard deviation of the OU speed model over the given sample period T . This ensures
that the variance of the OU speed model is q regardless of how much correlation remains
after T seconds.

The standard deviation for sample period T is given by equation (4.9).
Equating the two magnitudes we get:

σou

√
τ

2

[
1− exp

(
−2T

τ

)]
= √

q

which yields the parameter value:

σou =
√

2q√
τ
[
1− exp

(
−2Tτ

)] . (4.14)

The third and final parameter, uv (t), is the control input that determines the
mean value of the OU process. Its value expresses the postulated preferred speed for
targets operating in the given motion regime. Thus, it takes the value m, the stationary
mean of the speed.

Stationary Gaussian White Noise Process Speed

This system contains two parameters: σsg and uv (t).
The first parameter, σsg, controls the magnitude of the fluctuations in target

speed around its mean value. Since we have assumed that the speed of a target operating
in the given motion regime has a stationary variance of q and the speed model for
this system is a stationary Gaussian white noise process with variance σ2

sg, we see
immediately that the parameter value is given by:

σsg = √
q. (4.15)
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The second and final parameter, uv (t), is the control input that determines the mean
value of the speed process. As in the previous system, its value expresses the postulated
preferred speed for targets operating in the given motion regime and it takes the value
m, the stationary mean of the speed.

4.3.2.3 Estimate Uncertainty

By design, the parameters have been selected such that variance in the esti-
mated speed over the sampling period T is nominally equal to q.

For the first system, this is true when the stationary correlation in the speed
is negligible; the typical case. For the second, this is true when σou is set using the first
approach and T > 3τ (i.e. the speed has decorrelated); it is always true when σou is set
using the second approach. It is always true for the third system.

To get better sense of how the systems differ, we will examine the variance in
their position estimates.

Over the sampling period T , the variance in the estimated position from the
first system is:

q
2
3T

2 (1−R (T )) . (4.16)

For the second system, the position variance when σou is set using the first approach is
given by:

qτ2
[
4 exp

(
−T
τ

)
− 3− exp

(
−2T

τ

)
+ 2T

τ

]
. (4.17)

and
qτ2

[
4 exp

(
−T
τ

)
− 3− exp

(
−2Tτ

)
+ 2Tτ

]
(
1− exp

(
−2Tτ

)) . (4.18)

when σou is set using the second approach.
Finally, for the third system, the position variance is Tq.
We see immediately that the level of uncertainty is substantially different in

all three cases.
Since the variances in the position estimates from the first and third system

are both functions only of T and q, we can compare them directly.
Using a stationary Gaussian white noise process to model the target speed

introduces the system driving noise directly into the velocity. As expected, in the third
system the position variance grows linearly with respect to time. When the system
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driving noise is introduced directly into the acceleration, as in the case with the Wiener
process speed model in the first system, the variance grows quadratically with respect
to time.

Given these differences, do we have any reason to prefer one model over the
other? Perhaps. When the empirical analysis of target speed suggests that it is well
approximated using a stationary Gaussian white noise process, then the first system
might be overstating the uncertainty in position for long sample periods. However, in
situations where the assumption of a stationary mean target speed is a poor one, the first
system will have an advantage since the Wiener process speed model is non-stationary.

Returning to the second system, let us look at what happens to the variance
in the position estimate in the limits as τ → 0, and τ →∞.

As τ → 0, the decorrelation time of the OU process gets shorter and we expect
the modeled speed to become white noise. It is tempting to think then that in this limit
the position variance should approach that of the third system.

However, we can see from equations (4.17) and (4.18) that this is not the case
for either form of σou. The limiting variance of the position estimate in both cases is
in fact zero. But, for a given sample period, as τ approaches zero we are presumably
integrating speed with less and less correlation and nonzero variance; the resulting
uncertainty in position cannot be zero. This is obviously an unphysical result.

To understand what is going on, we need to take a closer look at the properties
of the OU process.

According to the zero-tau limit theorem [67], the OU process becomes a Gaus-
sian white noise process with variance ε in the limit as τ → 0 if and only if the product
τ2σ2

ou = ε is constant with respect to τ.
This implies that if the variance of the white noise process reached in the limit

is a (constant with respect to τ), then the driving noise must be of the form a
τ2 . It

follows that the stationary variance of such a process is a
2τ . Clearly, there is no value for

a which both satisfies our design constraints and produces the desired limiting position
variance.

Our choices for σou were based on matching the variance (stationary or instan-
taneous; depending on the approach) of the OU process speed model to the empirically
derived stationary variance of target speed. Unfortunately, they both lead to driving
noise variances that are functions of τ such that as τ → 0, the OU process becomes a
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Gaussian white noise process with a variance that becomes zero in the limit.
Thus, for values of τ below some threshold the variance in the position esti-

mate with be anomalously low and system two is an unsuitable choice. Under these
circumstances system three should be preferred.

Before discussing how this threshold value is determined, let us continue the
analysis to see what happens with large values of τ .

As τ → ∞, the decorrelation time of the OU process gets longer and we
expect the modeled speed to become the integral of white noise– a Wiener process. In
this limit the position variance should approach that of the first system, assuming that
R(T ) = exp(−T

τ ), or

lim
τ→∞

q
2
3T

2
(

1− exp
(
−T
τ

))
= 0. (4.19)

In this case, arriving at zero uncertainty makes intuitive sense since, for a given
sample period, as τ approaches infinity we are integrating speed with more and more
correlation, hence speed with less and less variance.

When σou is set using the first approach, it can be shown from equation (4.17)
that the limiting variance is zero as expected. Since the limiting value in both (4.19) and
the limit of (4.17) is dominated by exp

(
−T
τ

)
, the speed model does indeed converge to

the Wiener process model.
When σou is set using the second approach, it can be shown from equation

(4.18) that the limiting variance is 1
3T

2q. This is equivalent to the position variance
from the first system assuming the magnitude of the fluctuations in target speed are
half of the desired value and R (T ) = 0.

Based on these results, the second approach to setting σou should be preferred.
Figure 4.9 illustrates the behavior, discussed above, of the position uncertainty

from system two as a function of τ for fixed (and arbitrary) values of q and T . It shows
how the uncertainty from system two collapses to zero, failing to converge to match
system three, as τ goes to zero and then converges to match the uncertainty from
system one, with the appropriate correlation, as τ goes to infinity.

Note that changing the value of q in figure 4.9 would alter the values along
the y-axis but not affect the relative relationship between the curves. However, it is
important to point out that changing T would in fact alter the relative relationship
between the curves.

For systems one and two, the value of T affects the rate of decay (it increases
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Figure 4.9: Standard deviation of the position estimate versus τ for fixed (and arbitrary)
values of q and T .

for smaller sample periods) but leaves the relative relationship between the curves intact.
For system three, the value of T affects where the curve lies along the y-axis.

Given a sufficiently small sample period, system three will produce the greatest
uncertainty and the curve will lie above the others. As the size of the sample period
increases, the curve for system three will drop below the peak uncertainty from system
two.

This dependency on the sample period T in the relationship between the posi-
tion uncertainty in systems two and three has implications for determining the minimum
τ threshold that we have deferred until now.

A conservative choice for the threshold would be τmin = Tmin
2 , where Tmin

is the shortest sample period for the application. This places the threshold at the
(approximate) location of the maximum position uncertainty from system two and would
guarantee a physically sound result.

The choice is also logical if we adopt the view that as τ increases, the uncer-
tainty over the given sample period should decrease; the same arguments used in the
analysis of the limit τ →∞ apply here.

Of course, when Tmin is large enough that the position uncertainty from system
three is less than the maximum uncertainty from system two, we might adopt a different
view.

In this view, as τ goes from τmin to infinity, the speed model is ideally changing
from the stationary white noise model of system three to the Wiener process model (with
exponential autocorrelation) of system one, and the estimate uncertainty should reflect
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this transition. The threshold value would then be determined by setting equation
(4.17) equal to Tq, with T = Tmin, and solving for τ .

4.3.2.4 Multiple Models

In situations in which we have multiple motion regimes, some special attention
is required to properly apply the different models. Specifically, care must be taken to
ensure that when switching between motion regimes, any dependence of the current
estimate on the previous speed of the target is properly accounted for. This is best
illustrated by considering the typical case in which we have models for the “stopped”
and “walk” regimes, although similar issues can arise when a target switches between
any two different motions regimes.

For example, suppose that a target’s speed was last estimated to be 1.3m/s
using a model for the “walk” regime and then during the next sample period the target
abruptly stops. If we were to simply apply one of the speed models for the “stop” regime
as stated above, then only the third system would be guaranteed to make a reasonable
estimate. Since the previous speed is ignored by the model, the estimated speed would be
near zero (taken directly from the parameters) and the estimated position approximately
constant as we would expect for a stopped target. The second system might make a
reasonable estimate depending on the sample period. A long enough sample period with
respect to the correlation time and the influence of the current speed would be negligible.
The first system would always predict a speed and position that are inconsistent with
a stopped target by assuming that the target maintains its walking speed.

The solution is to handle transitions between motion regimes differently than
consecutive estimates within a regime. When the motion regime associated with the
previous estimate is different than the one being evaluated, the appropriate control
inputs should be applied to force the estimated speed to the mean value for motion
regime. The control inputs should be such that the position state is forced to values
that are consistent with the set speed. This will ensure that when a target switches
motion regimes between samples, the initial estimate will be a reasonable value. Such
an adjustment is justified based on our assumption that the maneuver time for a target
is much less than the sample period. The adjustment is thus intended to account for
the unobserved behavior of the target.

This, of course, requires that we keep track of model used to generate the
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current estimate. Some multiple model algorithms make a discrete choice which simply
needs to be recorded. Usually, however, the current estimate is based on a mixture of
the estimates from the active models. In this case, we can assume that the most likely
model identifies the current motion regime.

Note that this idea of forcing the estimated speed to some model-determined
value could also be used to create a variant of the first system that behaves a bit more like
the third, in the sense that the speed does not drift over time. By applying control inputs
at the time of each sample to effectively reset the previous speed to the mean value for
the motion regime, the speed model of this new system becomes a stationary Gaussian
process. However, it retains the process noise structure of the first system. This is
because the new system is still based on the Wiener process speed model but simply
resets the initial state of the process for each sample. Thus, the speed and position
remain coupled through the acceleration. The resulting uncertainty in the position is
larger than that of the third system reflecting the assumption of approximately constant
speed, except for white acceleration noise, implied by the Wiener process model. This
is arguably a more realistic than the uncorrelated white noise speed model.

4.3.3 Maneuver Modeling via System Rotation

Having looked at various ways in which the speed of the target can be modeled,
we will now consider how to model the directional component of the target’s motion.

We begin by extending the state space to describe the 2-D motion of a target
in a plane tangential to the earth’s surface. This can be done by replicating the earlier
1-D definition so that the state vector consists of the 2-D Cartesian position and the
corresponding Cartesian velocity components: [ x y vx vy ]>. A representation of
the velocity using polar coordinates will be considered in a subsequent section.

Recall that under our initial assumptions, within a single sample period targets
can change to any heading. The assumptions further stipulate that this maneuverability
is limited primarily by environmental factors or target intent. For now, let us put aside
the notion of these high level constraints and look at the unconstrained case as it
provides the motivation for this class of models. We will return later to the issue of
environmental and intent-based constraints.

Without a preferred heading, we can regard as equally likely all target state
predictions that differ only in rotation about the current position. Unfortunately, it is
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impossible to accurately represent such a belief using a single linear Gaussian kinematic
model because the distribution of positions would require a ring-like shape. However,
it can be approximated—in theory—using multiple models. Given a single kinematic
base model and its prediction, we could postulate a set of models whose predictions
cover all possible rotations of the base prediction about the current target position. Of
course, this would be completely impractical due to the number of models that would
be required. Even a reasonably coarse discretization of the headings would still be
impractical.

An alternative approach that goes a long way toward achieving the desired
result is to use a single model based on an estimate of the optimal rotation. The idea
being that the optimal rotation corresponds to the model with the highest probability of
being correct. A simple and effective approximation to the optimal rotation is the one
that points the predicted velocity toward the current measurement. This rotation value
could be calculated with or without taking into account the measurement uncertainty,
depending on the computational resources that are available.

Clearly, this involves some abuse of the notion that the model should predict
the future state of the target based on its present state. We justify it as an approximation
to a proper treatment, using multiple models, of equally probable changes in direction.

Let θ be the angle between the vector [ vx[t+ T ] vy[t+ T ] ]> and a vector
representing the optimal rotation.

The desired model is then given by:
x[t+ T ]
y[t+ T ]
vx[t+ T ]
vy[t+ T ]

 = FRθ


x[t]
y[t]
vx[t]
vx[t]

+BRθu[t] + w[t],

where w[t] ∼ N (0, Qθ) with

Qθ =


q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
q14 q24 q34 q44



−1

(4.20)
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and

q11 = Q−1
1,1

q12 = Q−1
1,2

q13 = Q−1
1,3 cos (θ)−Q−1

1,4 sin (θ)

q14 = Q−1
1,4 cos (θ) +Q−1

1,3 sin (θ)

q22 = Q−1
2,2

q23 = Q−1
2,3 cos (θ)−Q−1

2,4 sin (θ)

q24 = Q−1
2,4 cos (θ) +Q−1

2,3 sin (θ)

q33 = Q−1
3,3 cos (θ)2 − 2Q−1

3,4 cos (θ) sin (θ) +Q−1
4,4 sin (θ)2

q34 = Q−1
3,4 cos (2θ) + 1

2
(
Q−1

3,3 −Q
−1
4,4

)
sin (2θ)

q44 = Q−1
4,4 cos (θ)2 + 2Q−1

3,4 cos (θ) sin (θ) +Q−1
3,3 sin (θ)2 ,

where Q is the process noise covariance matrix of the base model. Note that the rotated
process noise covariance, Qθ, is defined in terms of its inverse. The terms Q−1

m,n refer to
elements in the inverse of the base model process noise covariance. F and B specify the
system matrix and input gain matrix of the base model, respectively. Rθ is the matrix
used to rotate the system and input gain matrices, which is given by:

Rθ =


1 0 0 0
0 1 0 0
0 0 cos (θ) − sin (θ)
0 0 sin (θ) cos (θ)

 . (4.21)

When environmental or intent-based constraints dictate a preferred heading,
the optimal rotation can be defined based those without regard to the measurement.
Of course, when the sample period, T , is large, the accuracy of any prediction based on
local constraints is likely to suffer.

4.3.4 Position-Speed-Heading

Here, we look at a different approach to modeling the directional component
of the target’s 2-D motion. It is based on decomposing the velocity into a magnitude
and direction. Thus, the Cartesian velocity components used in the previous section are
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replaced with the target’s speed (i.e. absolute value of the velocity) and heading angle
to get the state vector: [ x y v h ]>.

This polar representation of the target’s velocity is convenient because it en-
ables us to think about, and model, the speed and direction of travel separately. How-
ever, it comes at a cost since the relationship of the speed and heading to the Cartesian
position is nonlinear. This means that we cannot discretize the continuous-time dynam-
ics using the the straightforward techniques from linear system theory.

The usual way forward in such cases is to first linearize the system via a
Taylor series expansion of the dynamics equations and then discretize the resulting linear
approximation. This can be referred to as the discretized linearization approach, which
is the basis for the well-known Extended Kalman Filter (EKF). However, this is not the
only possible approach. Alternatively, we can discretize the system via integration first
and then linearize the resulting discrete-time system using a Taylor series expansion.
This is the so-called linearized discretization approach.

In the context of coordinated turn tracking, Gustafsson and Isaksson [76] stud-
ied these two different approaches and concluded that the later is preferable because
the total linearization error was less. Their work also lends support to the use of po-
lar velocity as they show analytically that for coordinated turns it leads to a smaller
linearization error. For aircraft tracking, Gertz [65] reports good performance using a
filter derived by discretizing prior to linearization, although no comparison is made to
the traditional approach nor is any special justification offered.

We will consider both approaches despite the fact that, when using a Taylor
series expansion to linearize the system, the results may be identical in some cases.
One such case is the current system given Wiener process models for the speed and
heading. The reason for continuing to consider discretization first is that the Taylor
series expansion is not the only way to complete the approximation. The unscented
transform (UT) provides yet another approach to linearizing a nonlinear system [91, 92].
As noted in previous chapters, the UT has proven to be a more effective and less error-
prone alternative to a Taylor series expansion. However, it does not get us around
the problem of discretizing the nonlinear system model. What it does do is give us
another more attractive option for the linearization step in the linearized discretization
approach. It will also turn out to be useful in a novel method for estimating the discrete
process noise covariance for nonlinear systems.
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Let us assume that the target’s speed and heading are constant except for
stochastic variability in the form of Gaussian white noise in their rates of change.
Thus, the speed and heading are modeled using independent Wiener processes. The
continuous-time dynamic model is then given by:

ẋ(t) = v(t) cos (h(t))

ẏ(t) = v(t) sin (h(t))

v̇(t) = wv(t)

ḣ(t) = wh(t),

(4.22)

where wv ∼ N
(
0, σ2

v

)
and wh ∼ N

(
0, σ2

h

)
. The noise processes driving the changes in

the speed and heading are assumed here to be uncorrelated for simplicity.

4.3.4.1 Discretized Linearization

Discretized linearization is the familiar approach in which the system is first
linearized and then the linear approximation is discretized using the techniques from
linear system theory.

Let the continuous-time dynamic model be written as:

ṡ(t) = f(s(t)) + w(t),

where s(t) = [ x(t) y(t) v(t) h(t) ]> is the vector representing the instantaneous
state of the target, f(s(t)) is a vector-valued state evolution function, and w(t) is the
noise driving the system. The noise is distributed as w(t) ∼ N (0, Q(t)) with

Q(t) =


0 0 0 0
0 0 0 0
0 0 σ2

v 0
0 0 0 σ2

h

 . (4.23)

A first order vector Taylor series expansion around the current state estimate ŝ gives
us:

ṡ(t) ≈ f(ŝ) + f ′(ŝ) (s(t)− ŝ) + w(t),

where f ′ denotes the Jacobian matrix Jf(x, y, v, h).
From this we can derive the following discrete-time linear approximation:

s[t+ T ] ≈ F [t]s[t] +G[t]u[t] + w[t],
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where
F [t] = exp

(
f ′(ŝ)T

)
G[t] =

ˆ T

0
exp

(
f ′(ŝ) τ

)
dτ

u[t] = f(ŝ)− f ′(ŝ) ŝ

w[t] =
ˆ T

0
exp

(
f ′(ŝ) τ

)
w(τ)dτ.

(4.24)

The discrete-time process noise, w[t], is zero-mean Gaussian with covariance:

Q[t] =
ˆ T

0
exp

(
f ′(ŝ) τ

)
Q(t) exp

(
f ′(ŝ) τ

)>
dτ. (4.25)

Note that the last > in the integrand above indicates that the transpose of the matrix
exponential; it is not to be confused with the sample period.

For the system defined in (4.22) with current state ŝ = [ x̂ ŷ v̂ ĥ ]>, the
Jacobian matrix is:

f ′(ŝ) =


0 0 cos

(
ĥ
)
−v̂ sin

(
ĥ
)

0 0 sin
(
ĥ
)

v̂ cos
(
ĥ
)

0 0 0 0
0 0 0 0

 ,

which gives us the following discrete-time linear approximation:

F [t] =


1 0 T cos

(
ĥ
)
−T v̂ sin

(
ĥ
)

0 1 T sin
(
ĥ
)

T v̂ cos
(
ĥ
)

0 0 1 0
0 0 0 1

 , (4.26)

G[t] =


T 0 1

2T
2 cos

(
ĥ
)
−1

2T
2v̂ sin

(
ĥ
)

0 T 1
2T

2 sin
(
ĥ
)

1
2T

2v̂ cos
(
ĥ
)

0 0 T 0
0 0 0 T

 , (4.27)

and
u[t] =

[
ĥv̂ sin

(
ĥ
)
−ĥv̂ cos

(
ĥ
)

0 0
]>
. (4.28)
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The discrete-time process noise covariance is given by:

Q[t] =


Q11 Q12 Q13 Q14

Q12 Q22 Q23 Q24

Q13 Q23 Q33 0
Q14 Q24 0 Q44

 , (4.29)

where

Q11 = 1
3T

3
(
σ2
v cos

(
ĥ
)2

+ σ2
hv̂

2 sin
(
ĥ
)2
)

Q12 = 1
6T

3
(
σ2
v − σ2

hv̂
2
)

sin
(
2ĥ
)

Q13 = 1
2T

2σ2
v cos

(
ĥ
)

Q14 = −1
2T

2σ2
hv̂ sin

(
ĥ
)

Q22 = 1
3T

3
(
σ2
hv̂

2 cos
(
ĥ
)2

+ σ2
v sin

(
ĥ
)2
)

Q23 = 1
2T

2σ2
v sin

(
ĥ
)

Q24 = 1
2T

2σ2
hv̂ cos

(
ĥ
)

Q33 = Tσ2
v

Q44 = Tσ2
h.

4.3.4.2 Linearized Discretization

Linearized discretization is the alternative approach in which the system is
first discretized and then linearized.

The nonlinear state transition function, without noise, can be discretized via
integration by:

s[t+ T ] = s[t] +
ˆ t+T

t
f(s(τ)) dτ.

Once again, square brackets have been used to denote discrete-time elements to avoid
confusion. Discretization of the process noise will be addressed later.

Expanding the nonlinear state transition function, for the system defined in
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(4.22), yields the following discrete-time state update equations:

x[t+ T ] = x[t] +
ˆ t+T

t
v(τ) cos (h(τ)) dτ

y[t+ T ] = y[t] +
ˆ t+T

t
v(τ) sin (h(τ)) dτ

v[t+ T ] = v[t]

h[t+ T ] = h [t] .

Combining the individual state update equations into a vector-valued function,
the discrete-time nonlinear system, still without noise, can be written as:

s[t+ T ] = g(s[t]; T ) , (4.30)

where the dependence of the state update function on the sample period, T , has been
made explicit.

A first order vector Taylor series expansion around the current state estimate
ŝ gives us:

s[t+ T ] ≈ g(ŝ) + g′(ŝ) (s[t]− ŝ) ,

where g′ denotes the Jacobian matrix Jg (x, y, v, h).
From this we can derive the following discrete-time linear approximation:

s[t+ T ] ≈ F [t]s[t] +G[t]u[t] + w[t],

where
F [t] = g′(ŝ)

G[t] = I4

u[t] = g(ŝ)− g′(ŝ) ŝ

= g(ŝ)− F [t]ŝ.

(4.31)

The noise term has been added here for the sake of completeness; it will be discussed
below.

For the system defined in (4.22) with current state ŝ = [ x̂ ŷ v̂ ĥ ]>, the
resulting discrete-time linear approximation has the same form as the approximation
that we derived earlier using the discretized linearization approach. The system matrix,
F [t], is given by (4.26) and the control input, u[t], is given by the product of (4.27)
and (4.28). This is because the deterministic portions of the derivatives, with respect to
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time, of the speed and heading are constant. Thus, their integrals over the sample period
have a trivial form. This will not be the case when we consider a position-speed-heading
system with exponentially autocorrelated noise later.

The UT can also be used to linearize the system around the current state
estimate.

Given x ∼ N (µx, Σx) and g(·), the UT provides a Gaussian approximation for
the joint distribution of x and y of the form [81]: x

y

 ∼ N
 µx

µy

 ,
 Σx Σxy

Σ>xy Σy

 .
Letting x represent the state of the target at time t and y the state at time

t+ T , we can derive the following discrete-time linear approximation:

s[t+ T ] ≈ F [t]s[t] +G[t]u[t] + w[t],

where
F [t] = Σ>xyΣ−1

x

G[t] = I4

u[t] = µy − Σ>xyΣ−1
x µx

= µy − F [t]µx.

(4.32)

The noise term has again been added, but this time because the linear approximation
includes a contribution to the covariance. The discrete-time process noise covariance in
this case is given by:

Q[t] = Σy − Σ>xyΣ−1
x Σxy +Qnl[t]

= Σy − F [t]Σ−1
x F [t]> +Qnl[t],

(4.33)

whereQnl[t] is the process noise covariance of the nonlinear system, which we will discuss
next. Notice that the second term cancels out the contribution from the uncertain
state propagating through the linearized system which is then replaced by the UT
estimate of that covariance. Note that in practice, care must be taken to ensure that
these calculations produce a positive semi-definite covariance. Unfortunately, the UT
calculations do not guarantee that Σy is positive semi-definite. Checking the result and
applying Tikhonov regularization, if necessary, is the easiest way to ensure numerical
stability.
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Let us now consider how to discretize the process noise to complete the defi-
nitions of our discrete-time linear approximations.

Unfortunately, there are no universally accepted techniques for directly dis-
cretizing (i.e. without linearization) the noise in nonlinear systems to determine an
expression for Q[t]. Gustafsson and Isaksson [76] identify five different alternatives for
computing the discrete-time process noise covariance and consider two of them in the
context of linearized discretization. Those are:

Qa[t] = TQ(t) (4.34)

Qb[t] = TF [t]Q(t)F [t]>. (4.35)

Note that the last > in the equation for Qb[t] above indicates the transpose of the system
matrix; it is not to be confused with the sample period.

Although Gustafsson and Isaksson reported that (4.34) performed at least as
well as (4.35) in their evaluation, it is unclear exactly how they reached that conclusion.
The former is an extremely crude approximation that fails to account for the propagation
of the driving noise through the system so there will be zero uncertainty in the position
estimates. In our experience, the latter should be preferred.

The other three alternatives were considered in the context of discretized lin-
earization. The standard method for noise discretization in linear systems, based on
the continuous integration of w(t), which we used to define Q[t] in the previous section,
is included among the three.

In addition to all these possibilities, we will propose two new approaches to
computing the discrete-time noise covariance based on the integration of w(t).

The first approach is to use the discrete-time linear approximation to the
system matrix, g′(ŝ), and the standard method for linear systems to get:

Qc[t] =
ˆ T

0
F [t; τ ]Q(t)F [t; τ ]>dτ (4.36)

where F [t; τ ] indicates the system matrix for the sample period τ . Note that the last
> in the integrand indicates the transpose of the system matrix; it is not be confused
with the sample period.

For the current system, the resulting covariance is the same as what we derived
earlier using the discretized linearization approach, which is given by (4.29). However,
that will not always be the case.

199



When the matrix, F [t], derived in this section does in fact model the true
system more accurately than the one derived in the previous section using discretized
linearization, we can expect this approach to yield a more accurate representation of
Q[t]. Compared to Qb[t], the covariance Qc[t] for the current system is smaller; by a
factor of 3 for the block corresponding to the position and a factor of 2 in the cross terms
for the speed and heading. This difference is due to the fact that the terms in the system
matrix, that are functions of the sample period, are integrated rather than simply scaled.
In our evaluations comparing the estimates to the covariance computed by simulating
the continuous-time system, Qc[t] performs reasonably well, producing values within a
few percent of the simulated values, while Qb[t] overstates the covariance in the position
block as expected.

Although it is sometimes possible to derive a closed-form solution to this inte-
gral, the result can often be unwieldy. In such cases, we can use numerical methods to
approximate the integral. When performance is critical, application-specific optimiza-
tions such as precomputing polynomial approximations to the integral can be employed.

The second approach to noise discretization extends the notion of continuous
integration of w(t) directly to nonlinear systems without requiring a linearization step.
It works as follows.

First, recall that for a linear system, the discrete-time process noise can be
written as:

w[t] =
ˆ T

0
F [t; τ ]w(τ)dτ

where F [t; τ ] again indicates the system matrix for a sample period of τ . In other
words, w[t] is the integral of the continuous-time process noise propagated through the
discretized system, with a sample period given by the variable of integration. The
propagation of the noise in this case is simply a linear transformation, so the covariance
of w[t] can be written as in (4.36).

From this we can see that the covariance, Q[t], is the integral of the covariance
of the continuous-time process noise propagated through the discretized system, with a
sample period given by the variable of integration. In general, we can state the integral
as:

Q[t] =
ˆ T

0
Cov(g(w(τ); τ)) dτ

200



where g(w(τ); τ) is a vector-valued state update function, not necessarily linear, with
current state w(τ) and sample period τ .

When g(·) represents a nonlinear transformation, the resulting covariance does
not generally have a closed-form solution [110]. However, we can use the UT to efficiently
approximate the covariance in this case.

Let the mean of x be equal to the current state estimate and the covariance
be that of the continuous-time dynamic model. This gives us µx = ŝ and

Σx =


0 0 0 0
0 0 0 0
0 0 σ2

v 0
0 0 0 σ2

h

 .

Let the nonlinear transformation relating x and y be given by (4.30), the vector-valued
function representing the deterministic portion of the discrete-time system. Note that
g(·) should be thought of as a function of both the state and the sample period used to
compute it. Thus, y is also a function of the sample period.

The discrete-time process noise covariance is then given by:

Qd[t] =
ˆ T

0
Σy|τ dτ (4.37)

where Σy|τ is the covariance matrix resulting from the UT; the dependency on the
sample period, τ, is explicitly shown.

In principle, it is possible to derive a closed-form solution to this integral,
however, it is usually not worth the effort. In practice, we prefer to use numerical
methods to approximate it. We have found that using the trapezoidal rule with a coarse
grid provides sufficient accuracy for this application. The properties of the driving noise
can be exploited to make the numerical integration more efficient.

It is often the case that the dynamics of the noise that drives the system
are linear. This enables us to appeal to linear systems theory to derive discrete-time
covariance of those states. These values can then be used to verify the correspond
elements of the approximated Q[t].

For the current system, the noise properties are such that we can evaluate
(4.37) using a single invocation of the UT at τ = T . The resulting discrete-time noise
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covariance is given by:

Qd[t] =


Q11 Q12 Q13 Q14

Q12 Q22 Q23 Q24

Q13 Q23 Q33 0
Q14 Q24 0 Q44

 (4.38)

where

Q11 = 1
3T

(
Σy|τ

)
11

Q12 = 1
3T

(
Σy|τ

)
12

Q13 = 1
2T

(
Σy|τ

)
13

Q14 = 1
2T

(
Σy|τ

)
14

Q22 = 1
3T

(
Σy|τ

)
22

Q23 = 1
2T

(
Σy|τ

)
23

Q24 = 1
2T

(
Σy|τ

)
24

Q33 = T
(
Σy|τ

)
33

Q44 = T
(
Σy|τ

)
44
.

4.3.4.3 Control Inputs

In the previous section on speed models, we noted that the ability to force
the system to a specific speed, by applying a deterministic control input, is necessary
when the model is selected after having previously used another. This ensures that the
estimated speed at the end of the sample period is consistent with the assumptions used
to determine the model parameters. It might also be desirable to incorporate the notion
of the preferred target heading that was discussed earlier in the context of maneuver
modeling via system rotation. This would require the ability to force the system to a
specific heading by applying a deterministic control input.

For the system defined in (4.22), support for this functionality is defined as
follows.

Let ũv[t] be the speed control input which is applied during the sample interval
[t, t+T ]. It represents the desired speed of the target at time t+T . Similarly, let ũh[t]
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be the heading control input that represents the desired direction of travel at time time
t + T . The tilde notation is meant to signify that these are explicit control values
intended to modify the state in a prescribed manner as opposed to the implicit control
vector, G[t]u[t], that represents the bias around the linearization.

For the Taylor series expansions, the linearization point is no longer the current
state estimate at time t but rather the current position with the commanded speed and
heading values. Thus, ŝ = [ x[t] y[t] ũv[t] ũh[t] ]>. The implicit control vector,
G[t]u[t], is computed as described above. However, it must be then be offset to account
for the impact of the explicit control. The offset is given by:

−F13 (v[t]− ũv[t])− F14 (h[t]− ũh[t])
−F23 (v[t]− ũv[t])− F24 (h[t]− ũh[t])
−F33 (v[t]− ũv[t])− F34 (h[t]− ũh[t])
−F43 (v[t]− ũv[t])− F44 (h[t]− ũh[t])

 ,

where Fij denotes an element in F [t].
When the UT is used to generate the approximation, the changes to the speed

and heading values can be absorbed into g(·) by simply setting the speed and heading
states to their commanded values prior to evaluating the original function.

As mentioned earlier, in addition to producing the expected results when work-
ing with multiple models, the speed control input can be used to create a stationary
variant of the speed model that retains the original noise model. The behavior of an
exponentially correlated speed model can also be approximated by setting the control
input to some speed between the current and the desired, based on the sample period.

4.3.5 Position-Speed-Heading with Exponential Correlation

A polar representation of the velocity can also be used with exponentially
correlated models. In other words, we can replace the Wiener process speed and heading
models used in the previous section with Ornstein-Uhlenbeck process models.

However, before defining the continuous-time dynamic model we will first make
a small change to the state space in order to simplify the definition of the model.
Let the state vector be: [ x y nv nh ]>, where nv and nh are the speed noise and
heading noise, respectively. The noise variables represent the difference between the
instantaneous and desired values, which are specified as control inputs to the system.
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Let ũv and ũh denote the desired speed and heading, respectively. The tilde notation
is meant to signify that these are explicit control values intended to modify the state
in a prescribed manner as opposed to the implicit control vector that represents the
bias around the linearization. The mathematical form of the noise models, Uhlenbeck-
Ornstein processes, implies that they have bounded variance and will drift towards zero,
the equilibrium level of the process. Thus, the actual speed and heading of the target
are given by ũv + nv and ũh + nh, respectively.

The continuous-time dynamic model is given by:

ẋ(t) = (ũv(t) + nv(t)) cos (ũh(t) + nh(t))

ẏ(t) = (ũv(t) + nv(t)) sin (ũh(t) + nh(t))

ṅv(t) = −αvnv(t) + wv(t)

ṅh(t) = −αhnh(t) + wh(t)

(4.39)

where αv and αh are the reciprocals of the correlation time for the speed and heading,
respectively. The driving noise is wv ∼ N

(
0, σ2

v

)
and wh ∼ N

(
0, σ2

h

)
.

As we did in the previous section, we will consider both the discretized lin-
earization and linearized discretization approaches to generating a discrete-time linear
approximation to the model.

4.3.5.1 Discretized Linearization

Recall that discretized linearization is the familiar approach in which the sys-
tem is first linearized and then the linear approximation is discretized using the tech-
niques from linear system theory.

Let the continuous-time dynamic model be written as:

ṡ(t) = f(s(t); ũv(t), ũh(t)) + w(t),

where s(t) = [ x(t) y(t) nv(t) nh(t) ]> is the state vector, f(s(t); ũv(t), ũh(t)) is a
vector-valued state transition function, which includes the explicit control inputs, and
w(t) is the noise driving the system. The noise is distributed as w(t) ∼ N (0, Q(t)) with

Q(t) =


0 0 0 0
0 0 0 0
0 0 σ2

v 0
0 0 0 σ2

h

 . (4.40)
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As we saw in section 4.3.4.1, the discrete-time linear approximation has the
form:

s[t+ T ] ≈ F [t]s[t] +G[t]u[t] + w[t],

where w[t] ∼ N (0, Q[t]). The components of the approximation are described in (4.24)
and (4.25).

For the system defined in (4.39) with current state estimate ŝ = [ x̂ ŷ n̂v n̂h ]>

and current control inputs ûv and ûh, the Jacobian matrix is:

f ′ (ŝ) =


0 0 cos (ûh + n̂h) − (ûv + n̂v) sin (ûh + n̂h)
0 0 sin (ûh + n̂h) (ûv + n̂v) cos (ûh + n̂h)
0 0 −αv 0
0 0 0 −αh

 ,

which gives us the following discrete-time linear approximation:

F [t] =


1 0 (1−exp(−αvT )) cos(ûh+n̂h)

αv
− (1−exp(−αhT ))(ûv+n̂v) sin(ûh+n̂h)

αh

0 1 (1−exp(−αvT )) sin(ûh+n̂h)
αv

(1−exp(−αhT ))(ûv+n̂v) cos(ûh+n̂h)
αh

0 0 exp (−αvT ) 0
0 0 0 exp (−αhT )

 , (4.41)

G[t] =


T 0 G13 G14

0 T G23 G24

0 0 1−exp(−αvT )
αv

0
0 0 0 1−exp(−αhT )

αh

 , (4.42)

where

G13 = exp (−αvT ) (1 + exp (αvT ) (αvT − 1)) cos (ûh + n̂h)
α2
v

G14 = −

(
exp(−αhT )−1

αh
+ T

)
(ûv + n̂v) sin (ûh + n̂h)
αh

G23 = exp (−αvT ) (1 + exp (αvT ) (αvT − 1)) sin (ûh + n̂h)
α2
v

G24 = −

(
exp(−αhT )−1

αh
+ T

)
(ûv + n̂v) cos (ûh + n̂h)
αh
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and

u[t] =


(n̂v + ûv − v̂) cos (n̂h + ûh) + ĥ (n̂v + ûv) sin (n̂h + ûh)
(n̂v + ûv − v̂) sin (n̂h + ûh)− ĥ (n̂v + ûv) cos (n̂h + ûh)

(v̂ − n̂v)αv
(ĥ− n̂h)αh

 . (4.43)

The discrete-time process noise covariance is given by:

Q[t] =


Q11 Q12 Q13 Q14

Q12 Q22 Q23 Q24

Q13 Q23 Q33 0
Q14 Q24 0 Q44

 (4.44)

where

Q11 = −σ
2
vc cos (b)2

2α3
v

− σ2
hda

2 sin (b)2

2α3
h

Q12 = 1
2

(
−σ2

vc

α3
v

+ σ2
hda

2

α3
h

)
cos (b) sin (b)

Q13 = σ2
ve cos (b)

2α2
v

Q14 = −σ
2
hfa sin (b)

2α2
h

Q22 = −σ
2
vc sin (b)2

2α3
v

− σ2
hda

2 cos (b)2

2α3
h

Q23 = σ2
ve sin (b)

2α2
v

Q24 = σ2
hfa cos (b)

2α2
h

Q33 = −σ
2
v (exp (−2αvT )− 1)

2αv

Q44 = −σ
2
h (exp (−2αhT )− 1)

2αh
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and

a = n̂v + ûv

b = n̂h + ûh

c = 3 + exp (−2αvT )− 4 exp (−αvT )− 2αvT

d = 3 + exp (−2αhT )− 4 exp (−αhT )− 2αhT

e = exp (−2αvT ) (exp (αvT )− 1)2

f = exp (−2αhT ) (exp (αhT )− 1)2 .

4.3.5.2 Linearized Discretization

Recall that linearized discretization is the alternative approach in which the
system is first discretized and then linearized.

The nonlinear state transition function, without noise, can be discretized via
integration by:

s[t+ T ] = s[t] +
ˆ t+T

t
f(s(τ); ũv(τ), ũh(τ)) dτ. (4.45)

Expanding the nonlinear state transition function, for the system defined in
(4.39), yields the following discrete-time state update equations:

x[t+ T ] = x[t] +
ˆ t+T

t
(ũv(τ) + nv(τ))) cos (ũh(τ) + nh(τ)) dτ (4.46)

y[t+ T ] = y [t] +
ˆ t+T

t
(ũv(τ) + nv(τ)) sin (ũh(τ) + nh(τ)) dτ (4.47)

nv[t+ T ] = nv[t] +
ˆ t+T

t
−αvnv(τ)dτ (4.48)

nh[t+ T ] = nh[t] +
ˆ t+T

t
−αhnh(τ)dτ. (4.49)

However, unlike the system in section 4.3.4.2, we cannot solve the integrals in equations
(4.46)-(4.49) directly as written; they will require some manipulation.

We begin by noting that the noise dynamics are in fact linear. This means
that we can bypass the integrals in equations (4.48) and (4.49) altogether and appeal
to linear system theory to derive the update equations for nv and nh. Those update
equations are found to be:

nv[t+ T ] = exp (−αvT )nv[t]

nh[t+ T ] = exp (−αhT )nh[t].
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Using these results, we can expand the terms nv(τ) and nh(τ) in equations (4.46) and
(4.47) to reflect their dependencies on the current state estimates. We can also replace
the control input terms ũv(τ) and ũh(τ) with their current values by assuming that they
remain constant over the sampling interval. The positional state update equations then
become:

x[t+ T ] = x[t] +
ˆ T

0
(ũv[t] + exp (−αvτ)nv[t]) cos (ũh[t] + exp (−αhτ)nh[t]) dτ

y[t+ T ] = y[t] +
ˆ T

0
(ũv[t] + exp (−αvτ)nv[t]) sin (ũh[t] + exp (−αhτ)nh[t]) dτ.

Unfortunately, there is no simple closed form solution to either of these integrals because
of the exponential that appears inside of the cosine and sine functions. However, it
is possible to derive an approximation to the integrand that will yield a closed form
solution.

Without loss of generality, let us consider the x-position update equation. The
goal is to replace cos (ũh[t] + exp (−αhτ)nh[t]) with a suitable approximation.

First, we can use the angle sum identity to factor the cosine above into:

cos (ũh[t]) cos (exp (−αhτ)nh[t])− sin (ũh[t]) sin (exp (−αhτ)nh[t]) . (4.50)

The terms cos (ũh[t]) and sin (ũh[t]) are just constant factors and need no approximation.
The remaining terms are the cosine and sine of the zero-mean exponentially correlated
heading noise given by: exp (−αhβ)nh[t].

The heading noise takes its maximum value, nh[t], when τ = 0 and decays
toward zero as τ increases. With respect to the discretization integral, nh[t] is a constant,
however, in terms of the overall system the noise state is an exponentially correlated
random variable whose limiting distribution is a zero-mean Gaussian. This random
variable models the disturbances that cause the target heading vary around ũh[t]. Its
variance, and hence the largest expected angular deviation, is set by the constant model
parameters αh and σh.

For our tracking application, it is reasonable to assume that the largest possible
range nh[t] will need to cover is

[
−π

2 ,
π
2
]
radians ([−90, 90] degrees). Any greater

uncertainty is probably best addressed by considering additional models. Typically, we
will be interested in heading noise covering half that range or less.

Since possible the values of nh[t] are concentrated around zero and, with high
probability, extend over a limited range, we can approximate cos (exp (−αhτ)nh[t]) and
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sin (exp (−αhτ)nh[t]) using their series definitions. Those are given by:

cos (φ) =
∞∑
k=0

(−1)k
(2k)! φ

2k

sin (φ) =
∞∑
k=0

(−1)k
(2k + 1)!φ

2k+1.

The first four terms, k = 0, . . . , 3, provides acceptable accuracy for angles in the range[
−π

2 ,
π
2
]
radians. Adding one or two more terms will extend the approximation to cover

angles in the range [−π, π] radians.
Letting φ = exp (−αhτ)nh[t] and replacing the heading noise terms in (4.50)

with their series approximations gives us a tractable integral.
In the y-position update equation, sin (ũh[t] + exp (−αhτ)nh[t]) can be simi-

larly approximated to yield a tractable integral. The sine is factored, using the angle
sum identity, into:

sin (ũh[t]) cos (exp (−αhτ)nh[t]) + cos (ũh[t]) sin (exp (−αhτ)nh[t]) . (4.51)

The result is the following positional state update equations:

x[t+ T ] =x[t] + cos (ũh[t])
n∑
k=0

[
(−1)k
2(2k)!

2nv[t] (a− bd)
αv + 2αhk

+ ũv[t] (a− d)
αhk

]

− sin (ũh[t])
n∑
k=0

[
(−1)k

Γ(2 + 2k)
nh[t]nv[t] (a− bcd)
αh(1 + 2k) + αv

+ nh[t]ũv[t] (a− dc)
αh(1 + 2k)

]

y[t+ T ] =y[t] + sin (ũh[t])
n∑
k=0

[
(−1)k
2(2k)!

2nv[t] (a− bd)
αv + 2αhk

+ ũv[t] (a− d)
αhk

]

− cos (ũh[t])
n∑
k=0

[
(−1)k

Γ(2 + 2k)
nh[t]nv[t] (a− bcd)
αh(1 + 2k) + αv

+ nh[t]ũv[t] (a− dc)
αh(1 + 2k)

]
,

where n determines the number of terms to use in the cosine/sine approximation, and
the intermediate variables are given by:

a = nh[t]2k

b = exp (−αvT )

c = exp (−αhT )

d = ac2k.
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Combining the individual state update equations into a vector-valued function,
the discrete-time nonlinear system, still without noise, can be written as:

s[t+ T ] = g(s[t]; ũv[t], ũh[t]) .

As we saw in section 4.3.4.2, the discrete-time linear approximation has the
form:

s[t+ T ] ≈ F [t]s[t] +G[t]u[t] + w[t],

where w[t] ∼ N (0, Q[t]). The components of the approximation, without noise, are
described in (4.31).

For the system in (4.39) with current state estimate ŝ = [ x̂ ŷ n̂v n̂h ]>

and current control inputs ûv and ûh we get:

g′(ŝ) = F [t] =


1 0 F13 F14

0 1 F23 F24

0 0 exp (−αvT ) 0
0 0 0 exp (−αhT )

 , (4.52)

where

F13 = cos(ûh)A− sin(ûh)B

F14 = cos(ûh)C − sin(ûh)D

F23 = sin(ûh)A− cos(ûh)B

F24 = sin(ûh)C − cos(ûh)D

and

210



A =
n∑
k=0

[
(−1)k
(2k)!

a− bd
αv + 2αhk

]

B =
n∑
k=0

[
(−1)k

Γ(2 + 2k)
n̂h (a− bcd)

αh(1 + 2k) + αv

]

C =
n∑
k=0

[
(−1)k
(2k)!

1
n̂h

2kn̂v (a− bd)
αv + 2αhk

+ ûv (a− d)
αh

]

D =
n∑
k=0

[
(−1)k

Γ(2 + 2k)
bc− d

(
αh(1 + 2k)n̂v + b−1 (αh(1 + 2k) + αv) ûv

)
αh (αh(1 + 2k) + αv)

+ (bc)−1d (ûvα+ αh(1 + 2k) (n̂v + ûv))
)

αh (αh(1 + 2k) + αv)

]
.

When the UT is used to linearize the system around the current state estimate,
the components of the approximation are given by (4.32) and (4.33).

In either case, the discrete-time process noise covariance, Q[t], can be computed
using any of the approaches outlined in section 4.3.4.2. However, recall that the linearity
of the noise dynamics allowed us to derive those update equations using techniques from
linear systems theory. We can again appeal to linear systems theory to derive discrete-
time covariance of the speed and heading noise states which are found to be:

Cov (nv [t]) = σ2
v

2αv
(1− exp (−2αvT ))

Cov (nh [t]) = σ2
h

2αh
(1− exp (−2αhT )) .

The two noise variables are independent so their covariances, plus the zero cross terms,
give us four of the sixteen elements of Q [t]. These values can be used to verify the cor-
responding elements of the approximated covariance matrix or to replace those elements
with their exact values.

4.3.5.3 Control Inputs

When used in a multiple model setting, we need the ability to force the system
to a specific speed, by applying a deterministic control input, following a model switch.
This ensures that the estimated speed at the end of the sample period is consistent with
the assumptions used to determine the model parameters. As noted in our discussion of
the previous system, it might also be desirable to incorporate the notion of the preferred
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target heading. This would require the ability to force the system to a specific heading
by applying a deterministic control input.

For the system defined in (4.39), support for this functionality is defined as
follows.

Let ũnv [t] be the speed noise control input which is applied during the sample
interval [t, t+T ]. It represents the desired speed noise at time t+T , or in other words,
the desired difference between the estimated speed and ũv[t]. Similarly, let ũnh [t] be
the heading noise control input that represents the desired heading noise at time time
t + T , or equivalently, the desired difference between the estimated heading and ũh[t].
The tilde notation is meant to signify that these are explicit control values intended
to modify the state in a prescribed manner as opposed to the implicit control vector,
G[t]u[t], that represents the bias around the linearization.

For the Taylor series expansions, the linearization point is no longer the current
state estimate at time t but rather the current position with the commanded speed noise
and heading noise values. Thus, ŝ = [ x[t] y[t] ũnv [t] ũnh [t] ]>. The implicit control
vector, G[t]u[t], is computed as described above. However, it must be then be offset to
account for the impact of the explicit control. The offset is given by:

−F13 (nv[t]− ũnv [t])− F14 (nh[t]− ũnh [t])
−F23 (nv[t]− ũnv [t])− F24 (nh[t]− ũnh [t])
−F33 (nv[t]− ũnv [t])− F34 (nh[t]− ũnh [t])
−F43 (nv[t]− ũnv [t])− F44 (nh[t]− ũnh [t])

 ,

where Fij denotes an element in F [t].
When the UT is used to generate the approximation, the changes to the speed

and heading values can be absorbed into g(·) by simply setting the speed noise and
heading noise states to their commanded values prior to evaluating the original function.

4.3.6 Path Constraints

In the absence of any motion constraints, a target is typically assumed to hold
its current heading during the given sample period. Thus, its estimated position at time
t + T is derived using dead reckoning based on its position at time t and its assumed
speed over the sample period. The dynamic models introduced earlier in this chapter
derive their estimates in exactly this manner. Recognizing that highly maneuverable
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targets observed on a coarse time scale may indeed change course dramatically between
samples, we looked at how to alter those models to reflect the assumption that the
target changes its heading at the onset of each sample period to point toward the next
measurement. The idea being that when the estimated position at time t + T derived
from dead reckoning fails to align with the measurement, it is due to an unmodeled
change in heading that is corrected for by applying the appropriate control input. This
treats all such changes in heading as equally likely, which in essence reduces the dynamic
model to a 1-D speed model on a coordinate system, defined such that it passes through
each measurement, embedded in the 2-D measurement space.

Both of these assumptions are variations of the same theme: the target moving
along a straight-line trajectory. For short sample periods, this has proven to be reason-
able approximation to the target’s true motion in many cases. However, as the sample
period gets longer, the approximation tends to break down because it fails to account
for the influences from the terrain and the target’s intent. Although a robust treatment
of each of these effects will have to wait for future work, we can begin to model the
influence of terrain by implementing a nonlinear dynamic model with a path following
bias. This is based on the notion that a path represents a likely trajectory given the
local terrain. In some cases it may represent the only feasible trajectory through the
terrain. Note that the term “path” is used generically in the sense that it could refer to
a trail, a roadway, or anything in between.

A path following bias is a form of constraint that allows us to make meaningful
estimates of a target’s state on a coarse time scale. It enables us to concentrate the
probability of the target’s estimated position based on our beliefs, albeit crude ones,
about how the target will interact with the terrain. If we know the preferred target speed
over different path segments, we can also concentrate the probability of the target’s
estimated speed based on that information and improve our estimates of the distance
covered during the sample period.

The use of such constraints with ground targets is not new. However, ground
targets have been almost universally assumed to be vehicles since the ability to detect
dismounts at long range with radar is a recent phenomenon. When tracking vehicles,
road constraints are commonly used to improve both the accuracy of the state estimates
and data association performance [105, 31]. In some cases, these constraints are based
not just on the physical roadway but the speed limits and traffic rules, such as one-way
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streets [136]. The influence of the road network has been incorporated into the dynamic
model in a variety of ways including: aligning the process noise covariance with the road
direction [103], introducing the road constraints in the form of pseudo-measurements
[52], and using a road-based coordinate system [11, 105]. The last approach is the most
common and is the tightest constraint as it assumes that the target moves directly on
the road centerline. When off-road movement must also be accommodated, the usual
approach is to use unconstrained motion models in addition to road-constrained models.
The set of active models may be adjusted dynamically based on whether the target is
deemed to be moving on-road or off-road [176].

None of the existing approaches to road-constrained motion models are quite
satisfactory for our purposes. We require a constraint that assumes little beyond the
influence of the path on the shape of postulated trajectory. We want to avoid strong
assumptions such as the target moves along the center of the path. Ideally, we would
like to model movement of the target parallel to the path, when the target is close
enough to be regarded as under its influence, as well as movement of the target directly
along the centerline. This can be accomplished as follows.

Let the state space consist of Cartesian position, speed, and heading angle.
The path-constrained dynamic model is nonlinear and implemented using the UT. For
practical purposes, we use Wiener process models for the speed and heading. This
significantly reduces the computational burden as it allows us to estimate the discrete-
time process noise covariance using the UT and the nonlinear state update function
evaluated for a single sample period based on (4.38). With the appropriate bookkeeping,
the cost of the noise discretization can be minimized by exploiting the overlap with the
state update (i.e. prediction).

We begin by assuming that the state at time t is such that the target can be
regarded as under the influence of the path. Furthermore, we assume that the path and
direction of travel are known. In practice, none of these assumptions are self-evident
and must be established prior to invoking the model. We will address these issues after
outlining how the state update function is implemented.

Given a vector representing the state of the target at time t, g(·) predicts the
state at time t+T , without the influence of noise. In all cases, the prediction is influenced
by the path but is performed in one of two ways depending on the relationship of the
input state to the measurement at time t+T . The two different modes of prediction are
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referred to as a “long” projection and a “short” projection. The distinction is based on
whether or not the expected distance covered by the target during the sample interval is
sufficient to reach the measurement or not. When projected along the path, if distance
is greater than what is required to reach the next measurement, then it is considered a
long projection. Otherwise, it is considered a short projection. The reason for treating
these two cases differently will become clear as we explain how each one works.

Let us start by describing the long projection. Figure 4.10a shows the geometry
on which the projection is based. The variable xt denotes the position of the target at
time t and xt+T denotes its position at the end of the sample period. These positions
represent points in a 2-D space defined relative to the path. In this path-centric space,
the abscissa describes the distance along the path and the ordinate describes the cross-
path (i.e. perpendicular) distance. Imagine the space as constructed by straightening
out the path to remove all its twists and turns. When the cross-path distance is zero,
every point along the path can be mapped one-to-one to its corresponding position
in the space space. For nonzero cross-path distances, a path-centric point is mapped
to a position in the state space by first locating its position along the path and then
projecting the cross-path distance, in the appropriate direction, along the normal vector
at that location. Depending on the shape of the path, multiple path-centric coordinates
may map to the same position in the state space, which does not present a problem.

Working in this path-centric space allows us to think in terms of the familiar
straight-line trajectory and simplify the projection calculations. However, lengths are
not preserved between the two spaces. For example, consider a trajectory in the path-
centric space with a constant nonzero cross-path distance. When the path curves in the
direction of this parallel trajectory, then its length in the position state space will be
shorter. When the path curves in the other direction, then the length of the trajectory
in the position state space will be longer. Hopefully, the two effects will tend to cancel
out for actual paths. In practice, this appears to be a reasonable assumption.

To clarify what issues the path-centric space is meant to address, let us think
about how we might project a point for a given distance in a given direction along the
path. The point and projection are assumed to be in the position state space. If the
initial point lies directly on the path and we wish to project along the centerline, then the
problem is an easy one because the trajectory is well-defined and readily computable.
When the initial point lies off the path, things get more complicated. We start by
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(a) Long projection; the distance traveled is greater than what is required to reach the next measurement.
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(b) Short projection; the distance traveled is insufficient to reach the next measurement.

Figure 4.10: Geometry of the path-constrained prediction.

associating the point to be projected with some reference point on the path. Usually,
this will be the nearest point on the path. When the nearest point is not unique, then
some application-specific logic must be used to select one to serve as the reference. Now
that we can relate the point to the path, we could project it parallel to the path. In
this case, the trajectory is well-defined but problematic to compute because it requires a
representation of the parallel path which is not easy to derive. Things become even more
complicated when the projection begins at one cross-path distance and ends at another,
possibly on the other side of the path. In this case, the trajectory is no longer well
defined or easy to calculate because we do not know how fast to change the cross-path
distance with respect to its length. Using the path-centric space, all these calculations
are straightforward. The distances may not be exact when mapped back into the state
space, however, the computational advantages are substantial and distance errors have
thus far proven to be tolerable in practice.

Apart from the matter of the space in which the projection is calculated, we
still have to specify exactly how to project a given point along the path. The open
question is how to define the trajectory and the long projection approach represents
one answer. Referring back to figure 4.10a, we can see that the long projection begins
at one cross-path distance and ends at another, which may be on the other side of
the path. The initial cross-path distance, d⊥, is assumed to be known as it is the
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distance between the initial target position and the reference point on the path. The
final cross-path distance, which is denoted by dxp, is chosen so that it is consistent with
the measurement at time t+T . This is based on the notion that the measured position
has the correct cross-path distance. Being a long projection, we know that the final
point is expected to lie further along the path than the measurement. The extent of the
mismatch between the estimated and measured positions is assumed to be the result of
mismodeling the speed of the target. Figure 4.11a shows an example of what a long
projection looks like. Notice how the measurement dictates the how far off the path, in
terms of perpendicular distance, the target’s is predicted to go, while its speed dictates
how far along the path it is predict to go.

Using the UT, we can estimate the mean and covariance of the cross-path
distance from the measured position at time t+T to the path. This defines a Gaussian
distribution of dxp which is then included as an input to the state update function
in the long projection mode. Recall that the input to the state update function is
x ∼ N (µx, Σx). The variable x is defined here as:

[ x y v dxp ]>,

which is the Cartesian position, speed, and cross-path distance. The covariance matrix
is assumed to be blockwise diagonal. Notice that the heading is not part of the input.
This is because it does not affect the final state; the trajectory of the target is determined
by the path and the projection algorithm rather than by the heading at time t. The
heading may, however, be a factor in determining if the target can be regarded as under
the influence of the path. The output variable, y, is the state of the target at t+ T .

The position values produced by g(·) are based on mapping the projection
point, specified relative to the reference point by dc and dxp, to the position state space.
The cross-path distance, dxp, is received as an input but the distance along the path, dc,
must be solved for. The projection distance, d, is computed by integrating the modeled
speed over the sample period. This enables us to solve for the centerline distance as:
dc =

√
d2 − (d⊥ − dxp)2. The speed value produced by g(·) is based on the speed model.

Finally, the heading value produced by g(·) is equal to the angle of a vector tangent to
the path, where the tangent point is the point on the path nearest to the final projection
point.

Let us now describe the short projection. Figure 4.10b shows the geometry
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on which the projection is based. It is defined using the same path-centric coordinate
space that we used for the long projection. In this mode, the trajectory is defined
such that the target moves toward the measured position, yt+T . This is based on the
notion that the measured position is ultimately where the target is headed. Being a
short projection, we know that the final point is expected to lie somewhere along the
path short of the measurement. The extent of the mismatch between the estimated and
measured positions is assumed to be the result of mismodeling the speed of the target.
As was the case with long projection, the projection begins at one cross-path distance
and ends at another, which may be on the other side of the path. However, here it is
the trajectory that determines the final cross-path distance. This is in contrast to the
long projection in which the final cross-path distance was used to define the trajectory.
Figure 4.11b shows an example of what a short projection looks like. The initial and
measured positions are the same as those used in the long projection example; only the
speed has been changed. Note that if we were to use the long projection approach with
the lower speed, then the estimated position would have ended up in the lower-middle
portion of the figure. This would imply a trajectory that cuts across the path and well
below the measured position, which is not very plausible. Note also that if we were
to use the short projection approach with a much higher speed, the trajectory would
pass through the measured position and continue to diverge from the path. This would
imply that despite the path constraint, the estimated position need not lie along the
path!

The input to the state update function, x, is defined here as:

[ x y v xm ym ]>,

which is the Cartesian position, speed, and the measured position (in Cartesian coor-
dinates). The covariance matrix is assumed to be blockwise diagonal. Notice that the
heading is again excluded from the input because it does not affect the final state. The
output variable, y, is the state of the target at t+ T .

The position values produced by g(·) are based on mapping the projection
point, specified relative to the reference point by dc and dxp, to the position state space.
Both the distance along the path and the cross-path distance must be solved for. The
initial cross-path distance, d⊥, is assumed to be known as it is the distance between
the initial target position and the reference point on the path. The measured position
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(a) Long projection; the distance traveled is greater than what is required to reach the next measurement.
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(b) Short projection; the distance traveled is insufficient to reach the next measurement.

Figure 4.11: Example of the path-constrained prediction.
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input is used to derive b by computing the distance between the measurement and the
nearest point along the path, which is determined in the same manner as the reference
point. The projection distance, d, is computed by integrating the modeled speed over
the sample period. The remaining distance, d′, is derived by subtracting d from the
distance between xt and yt+T , which are both inputs. The values for dc and dxp can
then be solved for using the equations:

θ = cos−1
(
d⊥ − b
d+ d′

)
d′c =d′ sin (θ)

c =
√
d′2 − d′c2

dc =
√

(d+ d′)2 − (d⊥ − b)2 − d′c

dxp =b+ c.

At this point we have seen how the path-constrained dynamic model is imple-
mented. Now, we must address the matters of when such a model is appropriate and
how to determine the path and direction needed by the projection algorithms.

The path-constrained model is appropriate when both the estimated position
of the target and the next measured position are close enough, in some sense, to a
common path. This notion of closeness is based on the shortest distance to some point
on the path. For each path, the centerline is stored as a polygonal chain. Associated
with each segment in the chain is a width of sorts. This width does not necessarily
represent the physical width of the path, meaning the extent of the paved or packed
surface, but rather its influence. And the width need not be symmetric with respect to
the centerline. All points within some radius of the segment are deemed to be under the
influence of the path. Since the target’s estimated position and the measured position
are both Gaussian random variables, decisions about whether these positions are under
the influence of the path must take this uncertainty into account. In practice, we use
a small deterministic set of sample points, such as the sigma points, and test each one
to see if falls within the radius of influence of any path segment. If any points satisfy
this criteria, then the position could plausibly be considered under the influence of the
path.

Given a network of paths, there may very well be more than one common
path between the estimated and measured positions. In this case, the true state of the
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target is multimodal with one mode corresponding to the position projected along each
path. We have chosen to handle this situation by using a path-constrained model for
each possible path. The model selection algorithm is then responsible for generating a
Gaussian approximation for each estimate, which may be based on choosing the most
likely mode or a mixture of all modes, depending on the algorithm. Some algorithms
look ahead an additional measurement, or more, to try to improve the selection by
incorporating more information. For relatively sparse measurements and sparse path
network, this works well enough. As the density of the path network increases, the
computational requirements will increase and this approach is likely to break down.
We will assume that the complexity of the path network is manageable and leave it
to future work to develop algorithms designed to specifically address the challenges
associated with predicting the movement of targets through complex networks.

Even after we have determined that a path-constrained dynamic model is ap-
propriate and have identified the path, we still have to determine the direction of travel
in order to make the projection. Usually, this will be unambiguous and simply fall out
of the process of identifying the path. When this is not the case, it is usually because
the target has not moved very far and abandoning the path-constrained model in favor
of the stopped target model may be appropriate. We can also opt to extend the set of
motion models by including on one for each combination of path and direction.
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Chapter 5

Experimental Evaluation
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5.1 Introduction

At this point, we have introduced the associative tracking algorithm along with
several dynamic models intended for our motivating application: wide-area surveillance
of human targets using radar. Now we will evaluate the performance of the algorithm
and the dynamic models in the context of that application.

The evaluation will be conducted using a combination of simulated and real
radar data. However, we will rely on the former in order to establish a clean baseline
to which future experimental studies can be compared. By focusing on simulated mea-
surements, we can isolate our analysis of the tracking algorithm from issues related to
the performance of the detector, which is outside of the scope of this dissertation. It
also enables us to avoid problems related to not knowing for certain what is really in
the data set. This is a major concern when working with wide-area surveillance data
because cost, or practicality, often precludes us from knowing exactly what is happening
within any realistic region of interest. When the tracker identifies movement in some
area outside of the control of the experiment, we are left in the uncomfortable position
of not being able to determine if the output was erroneous or not. We can also never
be certain if any unscripted targets were missed. This means that no matter how accu-
rately we record the state of the scripted targets, our ground truth is not guaranteed to
be complete or correct. In addition, we generally will not be able to associate individual
measurements with the targets that they originated from because of the uncertainties
in the detection process.

Simulated measurements ensure that complete, accurate, and precise ground
truth is available. Of course, their realism can be called into question. And some tasks,
such as evaluating the dynamic models, require measurements of actual targets since the
models themselves cannot be used. To address these issues, we will simulate only the
sensor and not the targets themselves. High-precision target trajectories will be recorded
using a differential global positioning system (DGPS) from which measurements of the
target can be simulated. Thus, we only rely on simulation of the measurement process,
which we assume is well-understood and can be accurately modeled. The underlying
target motion is all real.

In addition to the measurement uncertainty, the sensor is also characterized by
its false alarm rate and probability of detection. These too fall within the scope of the
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simulation and are assumed to be well-understood and amenable to accurate modeling.
For the false alarm rate, it is quite reasonable to assume that we have a realistic model
even when the sensor does not actually achieve the ideal of a constant rate. This is
because the false alarm rate can be established experimentally for a given sensor and
operating environment. For the probability of detection, on the other hand, this is really
a simplifying assumption intended to give us a performance baseline because accurate
probability of detection models are difficult to obtain. In principle, the probability of
detection could also be established experimentally, but in practice this is only feasible
for a tiny fraction of the surveillance region.

5.2 Simulated Measurements

The simulator is based on a simple model of a generic radar that directly
measures the position of a target in range and azimuth, relative to the radar location.
Optionally, the simulator supports the direct measurement of the target’s radial velocity
as well, but we will not consider that further in order to match the capabilities of a low-
cost non-coherent radar. Measurement of the elevation angle is not supported as all
targets are assumed to be located on the earth’s surface. In keeping with the notion of
modeling only the most widely available capabilities, measurement of target features,
such as the radar cross section or range profile, is not included. The signal-to-noise
ratio (SNR) is likewise excluded from the model because it is often unavailable to the
tracking algorithm.

The radar model itself is composed of three parts: a false alarm model, prob-
ability of detection model, and a measurement model.

False alarms are modeled in terms of their rate of arrival and spatial distri-
bution. The rate of arrival is expressed by a discrete count distribution that describes
the number of false alarms per scan. This distribution is not restricted to any para-
metric form, but the default is a Poisson distribution. The default spatial distribution
of false alarm measurements is a uniform distribution defined over the sensor footprint,
however, this too may take any convenient form. In practice, we expect both the false
alarm count and spatial distributions to be defined based on estimates derived from
experiments conducted in the field.

Given a range and azimuth, the probability of detection model returns a scalar
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value indicating the probability of detecting a target present at the given location. It will
typically be implemented using a lookup table and interpolation. The default, however,
is simply a constant PD. How to obtain the data for a spatially varying model is beyond
the scope of this dissertation and we recognize that in many instances it will not be
available. In some ways, the general form of the probability of detection model is a
place holder for future developments in radar signal modeling. At the present time, the
tools and techniques, such as 3-D radar ray tracing simulators [77], needed to estimate
the probability of detection over the surveillance region are not widespread and still
in their infancy. However, given detailed terrain data, line of sight visibility modeling
is presently feasible, which can be used to create spatially varying binary PD models
(i.e. one value for terrain-masked regions and another for visible regions). This is a
step in the right direction. When a principled model is not available and we wish to
avoid the assumption of a constant PD, we will consider randomly generated binary PD
models.

The measurement model is parameterized by the sensor location, scan rate,
resolution, accuracy, and range limits. It is the resolution, stated in terms of beam width
and range resolution, that determines the radar’s ability to resolve closely spaced targets.
To be resolved by the radar, a target must be separated from the other targets by at least
the beam width in azimuth or the range resolution in range. Unresolved targets will
be merged by the simulator and replaced by a contact whose position is the centroid of
the merged measurements. Measurements are assumed to be corrupted by independent
zero-mean Gaussian noise in range and azimuth. Thus, the accuracy is specified by the
standard deviation for each coordinate. Their values are chosen such that they reflect
all error sources impacting the measurement including SNR, propagation conditions,
interference, or internal noise [39].

Together, the parts of the model work as follows. In each scan, the sweep of the
beam is simulated and any targets that it intersects, within the specified range limits,
are identified as contacts. Once the target contacts have been established, the number
of false alarm measurements is drawn from the count distribution. For each one, a
location is drawn from the spatial distribution to form a false alarm contact. The set of
all contacts, both target and false alarm, is then clustered and unresolved contacts are
merged. Note the implication that the measured position of a target may be affected,
independent of the noise, by either false alarms or other target measurements that
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Figure 5.1: Point target response from a surveillance radar.

appear within the same resolution cell. The probability of detection is then evaluated
at the position of each of the remaining target contacts. A random draw with that
probability of success determines whether or not the contact is reported. If the contact
is reported, then its position is corrupted by adding a sample from a truncated version of
the noise distribution. The truncation ensures that the error is appropriately bounded.
Note that false alarm contacts that remain after clustering are not affected by the
probability of detection model nor are they affected by the measurement noise.

For the simulations used in this chapter, the relevant model parameters were
chosen to be representative of some of the commercial surveillance radars that we have
worked with. Those being a beam width of 1.1° and a range resolution of 20m. The
accuracy parameters were σR = 2.5m and σA = 0.138°. Truncation was performed
at ±3σ. Figure 5.1 shows a point target response from one of the surveillance radars
that we studied. We can see that it is consistent with these parameters and a Gaussian
uncertainty model appears to be reasonable.

The accuracy of the DGPS data is discussed in section 4.2.1. The data was
recorded at 5Hz.

226



5.3 Dynamic Models

To evaluate the consistency and accuracy of the dynamic models introduced in
chapter 4, we used them within a Kalman filter framework. In particular, we analyzed
the state estimation error, which is defined as:

s̃[t] = s[t]− ŝ[t],

where s[t] is the true state and ŝ[t] is the estimated state of the target at time t.
For a linear-Gaussian dynamic system, consistency implies that a statistical

characterization of the true state estimate error agrees with the output of the filter up
to second order [6]. Thus, a consistent model will produce errors that are zero-mean
(i.e. unbiased) and have a mean squared error (MSE) that matches the filter-calculated
covariance. Consistent models will also yield a time series of innovations that are zero-
mean and white. At each time step, the innovation is the difference between the actual
measurement and its predicted value, computed using the measurement model and the
current state estimate. Evaluating consistency is important because it is equivalent to
evaluating the optimality of the models since the filter-calculated covariances affect the
evolution of the state estimates over time.

Of course, the dynamic model is not the only design decision that impacts the
consistency of the estimates. The choice of the measurement model does as well. How-
ever, it usually receives little attention because the relationship between the state and
the measurement variables is generally straightforward. We mention it here because the
relationship is nonlinear in our application, which does require some design decisions
be made in order to keep within the Kalman filter framework. Since the radar position
measurements are made in a local polar coordinate system while the position state is
defined in a Cartesian coordinate, conversion between the two is necessary. We chose
to handle the conversion implicitly using a nonlinear measurement model in conjunc-
tion with the unscented transform (UT). This provided a consistent debiased Gaussian
approximation to the Cartesian equivalent of the measurement distribution [94]. Main-
taining the consistency of the resulting statistics was a particular concern here because
Lerro [113] demonstrated that there is a risk of the transformations becoming inconsis-
tent when the standard deviation of the azimuth is less than one degree, which is the
case here.
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The accuracy of the models is characterized in terms of the average errors in the
estimated position and speed of the target. We also looked at the average divergence
between the estimated and true state distributions. Errors in the estimated heading
were not explicitly considered because we do not have precise enough ground truth for
this component of the state, even for simulated measurements. That does not present a
problem because heading errors are really only important to the extent that they impact
the estimated position. The same could also be said for errors in the speed estimates,
however, speed models form the basis of our dynamic models so we want to know
how well they work. Evaluating the accuracy is important because it establishes the
performance limits of state estimation in the absence of any data association ambiguity.

In order to compute the errors required for these evaluations, the true state of
the target needs to be known. Therefore, we used simulated measurements. For each
set of DGPS data, we generated 50 sets of simulated measurements in order to apply
statistical tests for consistency and to compute the average errors. The simulations
were based on a given sensor position and sample period. Since radars have a large
discrepancy between their in-range and cross-range uncertainties, we wanted the data
to include measurements made using a variety of orientations of the sensor with respect
to the target’s motion. This was accomplished by specifying the sensor position in terms
of a range and orientation that are defined relative to the centroid of the DGPS-recorded
positions. We then took the range to be a free parameter which is associated with a
fixed set of orientations: 0°, 45°, 90°, and 135°. Every given combination of range and
sample period thus specifies four different sensor configurations and 50 sets of simulated
measurements were generated based on each one.

Each model configuration under consideration was evaluated for a given set
of DGPS data, sensor range, and sample period. This constitutes an experiment. The
DGPS data was selected to represent one of the three terrain types: flat (T1), rolling
(T2), and mountain (T3). The sensor range and sample period were selected to represent
typical values for wide-area surveillance applications. For the range, those values are:
3 km, 5 km, and 7 km. For the sample period, they are: 15 s, 30 s, and 60 s. Associated
with each experiment are 200 sets of simulated measurements; 50 corresponding to
each of the four sensor configurations. This gave us a sample of 200 independent state
estimation errors for each time step (i.e. scan).

A model configuration refers to both the specific type of dynamic model used
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to describe the motion of the target and its parameters. Since targets are expected to
move in either the “walk” or “stopped” regimes, each configuration specifies a pair of
models that are used together within the Kalman filter framework. The generalized
pseudo-Bayesian (GPB) estimator of first order was used to produce a single estimate
based on both models. It was chosen because it outperformed the interacting multiple
model (IMM) estimator in a preliminary investigation of multiple model algorithms
using our data.

Note that in the discussions to follow in the next section, when the “walk”
model uses different parameter values for each terrain, they are listed using set notation
where the elements correspond to flat, rolling, and mountain terrain, respectively.

In these experiments, the sensor position was treated as an extraneous variable.
For the accuracy evaluation, we controlled for it by simply averaging the metrics over
all sensor positions. For the consistency evaluation, we held it constant by testing
each sensor configuration independently. The reason for treating the sensor position
differently between the two evaluations will be explained when we come to the variance
test.

Let us now describe the statistical tests used to verify the conditions required
to establish consistency. For simplicity, we used classical hypothesis tests rather than
their Bayesian counterparts. All statistical tests were conducted using α = 0.05.

With respect to consistency, our primary interest lies in testing the zero-mean
and variance matching conditions. Both conditions can be verified simultaneously using
the normalized (state) estimation error squared (NEES) [6], which is defined as:

ε[t] = s̃[t]>P [t]−1s̃[t],

where P [t] is the covariance of the state estimate. When the dynamic model is consis-
tent, ε[t] follows a chi-squared distribution with ns degrees of freedom, where ns is the
dimension of the state vector. To determine whether or not this is the case, we compute
the sample mean ε̄[t]. Under the hypothesis that the model is consistent, Nε̄[t] will
follow a chi-squared distribution with Nns degrees of freedom. For the two-sided test,
the hypothesis is rejected at the significance level α if Nε̄[t] ≥ χ2

1−α/2 or Nε̄[t] ≤ χ2
α/2,

where χ2
i is the critical value at i for a chi-squared distribution with Nns degrees of

freedom.
Unfortunately, using the NEES to assess the consistency of a model turns out
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to be highly problematic in practice. We mention it here because it is quite literally the
textbook approach. However, it should be avoided. Consolidated statistics, such as the
NEES, have a tendency to obscure problems affecting the individual state variables. In
other words, the value of the statistic may support the hypotheses that the model is
consistent, while individual tests of a given condition applied to a given state variable
say otherwise. Using the well-known CWNA dynamic model, we will show an example
of this which illustrates the danger of setting the noise parameters to achieve the desired
NEES value.

In practice, we did not expect any of these models to be perfectly consistent
because we did not expect the underlying linear-Gaussian assumption to always be
satisfied. Yet, we wanted to make a principled assessment of how close they came to
that ideal. With that goal in mind, we tested the zero-mean and variance matching
conditions, individually, for each state variable. This provided us with a fine-grained
assessment. Note that the covariance between different state variables was not tested.

A one-sample t-test of the population mean, given an unknown population
variance, was used to determine if the errors are zero-mean. The test statistic, which
follows a t-distribution, is:

t = m

s/
√
N
,

wherem is the sample mean, s is an unbiased estimate of the sample standard deviation,
and N is the sample size. For the two-sided test, the hypothesis that the population
mean is equal to zero is rejected at the significance level α if |t| ≥ t1−α/2, where ti is the
critical value at i for a t-distribution with N − 1 degrees of freedom. For the one-sided
test that the population mean is less than zero, the hypothesis is rejected if t < tα.
For the one-sided test that the population mean is greater than zero, the hypothesis is
rejected if t > tα.

A chi-squared test of the population standard deviation was used to determined
if the covariance matching condition is satisfied. The test statistic, which follows a chi-
squared distribution with N − 1 degrees of freedom, is:

χ2 = (N − 1) v
v0
,

where v is an unbiased estimate of the sample variance, N is the sample size, and v0

is the nominal population variance. For the two-sided test, the hypothesis that the
population variance is equal to v0 is rejected at the significance level α if χ2 ≥ χ2

1−α/2 or
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χ2 ≤ χ2
α/2, where χ2

i is the critical value at i for a chi-squared distribution with N − 1
degrees of freedom. For the one-sided test that the population variance is less than v0,
the hypothesis is rejected at the significance level α if χ2 ≥ χ2

1−α. For the one-sided
test that the population variance is greater than v0, the hypothesis is rejected at the
significance level α if χ2 ≤ χ2

α.
An obvious question is: where did we get the nominal population variance, v0?

For a given sample, we have N errors from which to estimate v. However, we also have
N filter-calculated variances. To get a single value with which to test against we took v0

to be the average variance over the sample. This approach is reasonable only when the
sample is drawn from a single sensor position because the distribution of filter-calculated
variances in this case is unimodal with low variance. Otherwise, a single variance would
not be representative due to the influence of the sensor position. For this reason, we
evaluated the consistency for each sensor configuration independently.

Note that the aforementioned statistical tests can exhibit sensitivity to non-
Gaussian data and outliers. In order to increase our confidence that they were in
fact working as expected, we compared the results from a subset of the tests to those
obtained by using bootstrap variants of those tests [50]. The results were found to be
in agreement. Because of the high computational cost and the large number of tests to
be performed, bootstrap tests were only used for verification.

Having described the statistical tests, let us now look at how they were applied
within each experiment.

At each time step, a given hypothesis was tested independently four times, one
for each sensor configuration, using a sample size of 50 for each test. This resulted in a
total of 4ns tests for every state variable, where ns is the number of scans. Note that
for a given sensor configuration, the tests at each time step are dependent because of
the Markov dependence between the states.

Clearly, we want to combine the results from all the tests of a given hypothesis
to draw a single conclusion. Unfortunately, there is no universally accepted approach to
dealing with the problem of multiple comparisons. A natural way forward in this case
would be to use an extension to Fisher’s method for combining p-values from multiple
tests into a single statistic; the original method is not applicable because we have a
mix of independent and dependent tests. We tried Kost’s method [107] for combining
dependent p-values and a similar method from Shaoyu et al. [114]. The results were not
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satisfactory for our purposes.
The problem was that we almost always ended up rejecting the null hypothesis

and with p-values that leave no room for interpretation. For example, after 1244 tests
of the zero-mean condition for one of the state variables, just under 13% were rejected
at the chosen significance level yet the combined hypothesis was rejected with a p-
value of zero (because of the finite numerical precision). So, despite the fact that just
a small minority of the individual tests lead to rejections, the combined outcome was
indistinguishable from the most extreme deviation from the hypothesis possible. Such
a result is hardly a useful characterization of the overall performance.

As we mentioned earlier, we did not expect any of these models to be perfectly
consistent. The methods of Kost and Shaoyu et al. are too strict as they specifically
test the hypothesis that the means in all of the tests were exactly zero (or the variances
matched exactly). That sets the bar much too high. What we really wanted was to get
a sense of how close the model came to the ideal of consistency. A simple way to do
that is to look at the fraction of the individual tests that were rejected. This gave us a
sense of how each model performed with respect to the condition being tested. When
50% of the tests are rejected, we considered the evidence to be inconclusive. As the
fraction of rejections goes to zero, we considered the evidence increasingly supportive
of the notion that the tested condition was satisfied.

Another matter related to multiple comparisons that needed to be addressed
is that of false rejections. When considering a large number of statistical tests, some
p-values will be below the chosen significance level purely by chance. Thus, by looking
at the set of tests of a given hypothesis as a whole, we might be overstating the number
of rejections1. Various methods have been developed to correct for this tendency. We
used the Holm–Bonferroni method [85] since it is a standard approach and requires
no assumptions. Note that for computing the two-sided p-values for the chi-squared
distribution, we used the conditional p-value to deal with the asymmetry [108].

In addition to testing the zero-mean and variance matching conditions, the
whiteness of the innovations was also tested by comparing the autocorrelation func-
tion (ACF) to the confidence bounds for the significance level α. In every experiment,
the ACF was estimated independently for each sensor configuration. The ACF was

1This is above and beyond the inherent bias of classical hypothesis testing in favor of overstating the
evidence against the null [167].
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estimated using Welch’s method with a 2min window and 50% overlap, with the pe-
riodograms averaged over all 50 realizations. The fraction of outliers plus a visual
inspection of the ACF was used to assess the performance for a given experiment.

The results of the consistency evaluation for each experiment are summarized
in a table that contains: the state estimation errors, the standard deviation matching
errors (i.e. the difference between the square roots of the MSE and filter-calculated
variance for the given state element), the fraction of zero-mean tests that were rejected,
and the fraction of variance matching tests that were rejected. The reported errors
are averages computed using all of the available data. They are included to provide a
sense of scale for the bias and variance mismatch. Note that because of the way that
the error was defined, negative numbers indicate filter-calculated values that are larger
than the true values. The results from the whiteness tests were not included in the table
to reduce information overload and because they are of secondary importance given the
fact that we have access to the true state. Typically, the whiteness of the innovations is
afforded primary importance because that is the only consistency-related test that can
be performed directly on real data. The bias and variance matching are what really
matter and are thus our focus. We will remark on the whiteness results and include
figures to illustrate the ACF when appropriate.

The results of the accuracy evaluation for each experiment are summarized in
a table that contains: the position error, the speed error, the divergence, the percent
change in the position error, the area of the position uncertainty, and the percent change
in area. In addition to reporting the average value of each metric computed using all of
the available data, there is column that includes the standard deviation of each metric
with respect to the different sensor positions. The reported position error is the average
Euclidean distance between the estimated and true positions. The reported speed error
is the mean absolute error. The divergence is the average Jensen-Shannon divergence
of a single estimate. These three metrics quantify the accuracy of the model while
the remaining metrics are included to help understand the positional accuracy in more
detail. The percent change in the position error represents the relative change between
the measurement and estimate errors. To visualize the uncertainty in the position
estimates, the area is computed from the covariance using the ellipse at ±2σ. Finally,
the percent change in the area represents the relative change between the area covered
by the measurement uncertainty and that covered by the estimated position.
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All of the result tables are collected in appendix D.

5.3.1 CWNA

To establish a performance baseline, we evaluated the Wiener process speed
model from section 4.3.2 extended into two dimensions. It is more commonly known
as the continuous white noise acceleration (CWNA) model and serves as the dynamic
model for ground targets in the vast majority of tracking algorithms in the literature. In
addition to the CWNA model in its default form, we also evaluated the system rotation
technique proposed in section 4.3.3 to handle highly maneuverable targets. It provides
an alternative to the usual approach of inflating the process noise to accommodate
target maneuvers. Unlike the high-noise maneuver models, this approach alters the
mean of the estimate by assuming that the target travels toward the next measurement.
Finally, we evaluated a high-noise variation of the default CWNA with a process noise
selected based on the NEES statistic. Although this configuration was not meant to
represent a maneuver model, it does illustrate some of the potential problems with high-
noise models in addition to the problems associated with using consolidated consistency
statistics.

The state consists of x-position, y-position, x-velocity, and y-velocity. Since the
evaluation requires an estimate of the target’s speed, which is not directly represented
here, prior to analysis all estimates were converted into a position-speed-heading format
using a high-order (i.e. large number of sigma points for increased accuracy) unscented
transform.

The configurations evaluated were defined, with respect to the “walk” regime,
as follows:

• C1: Default model with
√
Tσw = {0.25, 0.25, 0.29} applied in both x and y.

• C2: Maneuver modeling via system rotation using the same noise parameters as
C1.

• C3: Default model with
√
Tσw = 5.0. This configuration was only evaluated for

terrain T1.

A stop model, which predicts no change in position, was used for the “stopped” regime
with

√
Tσw = 0.1. It was implemented using the CWNA/C1 model with a modified

position prediction.
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Tables C.1–C.3 contain the consistency summary statistics and tables C.4–C.6
contain the performance summary statistics.

With respect to the position estimates for targets moving in flat terrain, the
CWNA/C1 model was found to be modestly biased (approximately 0.14m, on average)
with well-matched variances. The innovations were acceptable as white with few out-
liers; none falling significantly outside of the confidence bounds. The speed estimates,
however, were clearly biased with the filter-calculated speeds exceeding the true speed
by approximately 0.16m/s, on average. The standard deviation of the speed estimate
overstated the true uncertainty by about the same amount. In rolling and mountain
terrain, the bias in the position estimates increased modestly while remaining essentially
unchanged for the speed estimates. The position variances remained well-matched and
the speed variances continued to be overstated by the model. The innovations were less
white but not significantly so. Overall, the model improved the expected position error,
compared to using the measured position directly, in all but one experiment. Depending
on the sensor configuration, the improvements ranged from approximately 1% to almost
18%, with the biggest gains associated with targets observed at near range and with a
short sample period. Interestingly, the position error did not vary significantly across
the different terrain types. The speed errors, on the other hand, increased slightly as
the terrain became more rugged.

Compared to the previous configuration, the CWNA/C2 model showed moder-
ate overall improvements in the accuracy and consistency of the position estimates. The
quality of the speed estimates, however, was essentially unchanged. Generally speaking,
it tended to produce estimates that were closer to the true state, as evidenced by the
lower divergence metric in most of the experiments. Although the expected position
error was ultimately comparable between the two models, the system rotation led to an
almost three percentage point improvement, on average, in the change in the position
error. That is to say, it yielded a greater improvement relative to the measurement
error than the default model. It also managed to improve the expected position error
in all experiments. With respect to the bias in the position estimates, the fraction of
rejections dropped from 0.31 to 0.13 on average . The variances remained well-matched
and the whiteness of the innovations improved. In the rolling and mountain terrain, the
improvement in the quality of the position estimates was a bit more pronounced. This
is presumably because a constant heading is a less accurate prediction in more rugged
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terrain.
The third and final configuration is identical to the first except for the noise

level used to define the “walk” regime model. In this case, the noise level was selected
such that most of the NEES statistics fell within the confidence bounds, which required
a four-hundred-fold increase in the variance. Figure 5.2 shows a subset of the NEES
values obtained from the two models in one of the experiments conducted in flat terrain.
Clearly, the CWNA/C3 model is superior when evaluated using this metric. It even
managed to rein in the outliers that correspond to overestimates of the speed for slow
movement that fell between the “walk” and “stopped” regimes. However, as table
C.1 indicates, the bias of the position estimates has increased ever so slightly but has
worsened considerably for the speed estimates faring no better than −1.85m/s. It
appears that the only real improvement brought on by the increased process noise was
in the variance matching in the position estimates. However, it was already excellent
with no more than 5% of the individual tests rejected. What is even more damning are
the performance statistics in table C.4. In all but two experiments, the expected position
error is now worse than if we had simply used the measurements directly! Where it did
manage to reduce the expected position error, the reduction was no more than 1.4%.
On average, the estimated target speed was off by more than the maximum speed of
the target. By rolling all aspects of consistency into a single statistic, these problems
were masked and led us to a rather poor estimator. This not only illustrates why it is
important that we always evaluate each aspect of consistency separately but also that
care must be taken when increasing the process noise variance beyond what is justified
by the target dynamics.

5.3.2 PSH

Given the focus on speed in our characterization of the target dynamics, the
model based on a polar representation of velocity described in section 4.3.4 is a natural
choice. It defines the state as x-position, y-position, speed, and heading, hence the label
“PSH”. This enables us to characterize the target’s rate and direction of travel separately,
which is consistent with our thinking about its dynamics. Within this framework, we
evaluated Wiener process models for both the speed and heading. We also evaluated
the effectiveness of applying a control input to align the predicted heading with the next
measurement which reflects the same notion of a preferred target heading that motivated
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Figure 5.2: Example of the normalized (state) estimation error squared (NEES) statis-
tics for the default system, CWNA/C1, compared to the high noise variant, CWNA/C3.

the maneuver modeling via system rotation that we considered for the CWNA model.
Finally, we evaluated the stationary Gaussian alternative to the Wiener process speed
model discussed in section 4.3.2.4. This approach uses a control input to force the
predicted speed at each time step to the mean speed for the “walk” regime.

Note that the PSH model used in these experiments was linearized using the
unscented transform (UT). The discrete-time process noise was also derived using the
UT as explained in section 4.3.4.2. We will consider the effect of a different linearization
algorithm next when look at a version of the PSH model with exponentially correlated
noise.

The configurations evaluated were defined, with respect to the “walk” regime,
as follows:

• C1: Wiener process speed and heading models with
√
Tσv = {0.25, 0.25, 0.29} and

√
Tσh = 10 (degrees). Note that all configurations shared these noise parameters.

• C2: Wiener process speed and the heading aligned with the next measurement.

• C3: Stationary speed with ũv[t] = {1.44, 1.38, 1.32} and Wiener process heading.

• C4: Stationary speed (with the same speed control input as C3) and the heading
aligned with the next measurement.

A stop model, which predicts no change in position, was used for the “stopped” regime
with

√
Tσv = 0.1 and

√
Tσh = 90 (degrees). It was implemented using the PSH/C3

model with ũv[t] = 0.
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Tables C.7–C.9 contain the consistency summary statistics and tables C.10–
C.12 contain the performance summary statistics.

We begin by comparing the first two configurations to see how the different
heading models performed in conjunction with the Wiener process speed. It turns out
that the Wiener process heading in the PSH/C1 model fared somewhat poorly. Al-
though the expected position error was only about 1m higher, on average, the model
failed to improve it relative to the measurement error in most of the experiments. The
PSH/C2 model, on the other hand, improved the position error in all of the experi-
ments. The improvements were comparable to what we saw for the CWNA/C2 model,
ranging from approximately 1% to 16%, with the biggest gains associated targets ob-
served at near range and with a short sample period. With respect to the position
estimates, the PSH/C1 model was modestly biased (approximately 0.2m, on average)
with well-matched variances. Using the preferred target heading reduced the bias to
just under 0.05m, on average, and reduced the fraction of variance matching tests that
were rejected. Neither model had innovations that could be accepted as white; only
approximately so with large numbers of slight outliers for small lags. The PSH/C1
model underestimated the target’s speed by approximately 0.17m/s, on average, with
largest errors occurring in uneven terrain. It overstated the standard deviation of those
estimates by 0.38m/s, on average. The PSH/C2 model produced more accurate and
less biased speed estimates but overstated the uncertainty by a similar amount. Over-
all, the PSH/C2 model produced estimates that were much closer to the true state as
evidenced by the significantly lower divergence metrics.

Looking at the how the different heading models performed in conjunction
with the stationary speed model, the winner is clear: align the heading with the next
measurement. For the PSH/C3 model, the expected position errors were on the order
of ten times higher than those from PSH/C4 with a bias of almost 17m, on average.
The variance of the estimates was poorly matched, understating the true error standard
deviation by almost that amount. The speed estimates were almost 0.6m/s too low,
on average. Based on these results, the PSH/C3 model should be eliminated from any
serious consideration. By comparison, the PSH/C4 model performed well. Its accuracy,
in particular, was excellent. With regards to consistency, the fraction of zero-mean
and variance matching tests that were rejected suggests that the states estimates are
somewhat biased with only moderately well-matched variances. In absolute terms, the
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bias in the position estimates was just under 0.1m, on average, and the bias in the
speed estimates was just under 0.05m/s (too low), on average. Thus, it appears that
many of the zero-mean test rejections are a consequence of the strictness of the point
null hypothesis. The standard deviation of the position estimates were understated
by 0.94m, on average, while it was overstated for the speed estimates by 0.19m/s on
average. These are arguably only moderate in their agreement as fraction of rejections
suggested. In just one-third of the experiments, the innovations could be regarded as
white. Otherwise, there were numerous minor outliers; mostly for small lags.

Comparing all four configurations, the PSH/C4 model was the most accurate.
It had the lowest expected position error and the lowest absolute speed error. In terms
of the position error, it bested the next best model, PSH/C2, by about 1m, on average.
More importantly, the PSH/C4 model yielded the biggest improvement in the position
errors relative to the measurement errors by a large margin upping the gains to between
6% to 27%. This seems to suggest that the stationary speed yields some tangible
benefits. The fact that the two best performing configurations aligned the heading with
the next measurement, provides more evidence that this practice is indeed beneficial.
Regarding the consistency of the estimates, the results were mixed. The PSH/C2 model
produced position estimates that were closer to the ideal of consistency, yet the PSH/C4
model produced more consistent speed estimates. In terms of the divergence metric,
PSH/C2 model was generally superior.

5.3.3 PSH-ExpCorr

Our analysis of the DGPS data from human walkers revealed that both the
speed and heading have a similar non-negligible autocorrelation structure. Despite the
fact that the correlation time (on the order of 30 s) is relatively short compared to
the typical sample period, it makes sense to evaluate the effectiveness of incorporating
that structure into the dynamic model. Thus, we considered the position-speed-heading
model with exponential correlation described in section 4.3.5. The speed and heading
are modeled there as Uhlenbeck-Ornstein processes which drift toward their respective
equilibrium levels. For the speed model, this is simply the expected speed in the given
motion regime. For the heading model, however, the equilibrium level is best determined
uniquely for each prediction based on the preferred target heading. Once again, we
assumed that this preferred heading was aligned with the next measurement. Since
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changing the equilibrium level for each prediction is equivalent to switching between
multiple models at each time step, control inputs were used to ensure that the predicted
heading was consistent with the assumptions as explained in section 4.3.5.3. There are
two ways that this could be done and we evaluated both of them. The first, which we
took to be the default, is to apply an input that drives the heading noise state to zero.
The second is to apply an input to adjust the heading noise state to its equivalent value
given the current equilibrium. This means that as the sample period grows, the predicted
heading goes from the current heading to the preferred value. Finally, the PSH-ExpCorr
model was used to compare the effectiveness of two different approaches to obtaining a
discrete-time linear approximation. To do this, we evaluated the default model based
on discretized linearization and then again based on linearized discretization with the
UT.

The configurations evaluated were defined, with respect to the “walk” regime,
as follows:

• C1: Inputs used to drive nh to zero. Model derived using the discretized lineariza-
tion approach.

• C2: Same as C1 but with the model derived using the linearized discretization.

• C3: Inputs used to adjust nh to its equivalent value. Model derived using linearized
discretization.

All of the above were based on the parameters:
√
Tσv = {0.25, 0.25, 0.29} ,

√
Tσh = 10

(degrees), ũv[t] = {1.44, 1.38, 1.32}, and αv = αh = 1/15.
A stop model, which predicts no change in position, was used for the “stopped”

regime with
√
Tσv = 0.1 and

√
Tσh = 90 (degrees). It was implemented using the

PSH/C3 model with ũv[t] = 0 since the exponential correlation is irrelevant for stopped
targets.

Tables C.13–C.15 contain the consistency summary statistics and tables C.16–
C.18 contain the performance summary statistics.

Looking first at the approximation schemes, we found that there were no sig-
nificant performance differences between the two approaches. Both the consistency and
accuracy were comparable across all of the experiments. However, the PSH-ExpCorr/C2
model did enjoy a very slight advantage over the PSH-ExpCorr/C1 model when it came
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to the expected errors and the divergence metric. Of course, the PSH-ExpCorr/C2
model maintains a significant advantage with respect to the ease and simplicity of the
implementation.

Applying an input to adjust the current nh to its equivalent value given the
current heading equilibrium proved to be ineffective. In terms of both consistency and
accuracy, the PSH-ExpCorr/C3 was inferior to the other configurations. The difference
in accuracy, however, was not large with the expected position error being 0.72m higher,
on average, and the expected speed error being 0.017m/s higher, on average. More
significantly, the position estimates resulted in considerably less improvement over the
measurement error. Overall, the estimates produced by the PSH-ExpCorr/C3 model
were further from the true state as evidenced by the significantly higher divergence
metrics.

Based on the fraction of zero-mean and variance matching tests that were
rejected, the PSH-ExpCorr/C1 and PSH-ExpCorr/C2 models were somewhat biased
with only moderately well-matched variances. However, as was the case for the PSH/C4
model, in absolute terms the bias was quite modest, being just under 0.1m, on average,
for the position estimates and just under 0.05m/s (too low), on average, for the speed
estimates. The standard deviation of the position estimates was understated by about
0.55m, on average, while it while it was overstated for the speed estimates by 0.078m/s,
on average. The innovations were reasonably white with mostly just minor outliers.

Compared to their uncorrelated counterpart, the PSH/C4 model, the exponen-
tially correlated models offered no compelling advantage. The PSH-ExpCorr/C1 and
PSH-ExpCorr/C2 models had better variance matching with similar bias. Although
they tended to exhibit lower divergence from the true state distributions, their accuracy
was slightly lower than that of the PSH/C4 model with an additional 0.29m position
error, on average, and an additional 0.011m/s speed error, on average.

5.3.4 PSH-Path

A path represents a likely trajectory given the local terrain. Thus, path con-
straints provide a simple means of incorporating some of the influence of terrain into
the dynamic model. This in turn should enable us to make better predictions than
equivalent unconstrained models, especially over long time intervals, because the as-
sumed target trajectory is arguably more realistic. Since the motivating application
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requires dynamic models that work well when the targets are observed on a coarse time
scale, we evaluated the path-constrained dynamic model described in section 4.3.6. As
described, the model was implemented as a nonlinear extension of the position-speed-
heading model with Wiener process speed and heading. The primary motivation for this
decision was that it simplifies the implementation of the process noise model. Since the
path constraints largely dictate the predicted state, the heading model has no influence
beyond its impact on the noise model. The choice of speed model, however, is rather
consequential as it determines how far along the path the target is assumed to have
traveled. So, in addition to the Wiener process speed model, we also evaluated the sta-
tionary Gaussian alternative discussed in section 4.3.2.4. Because the path constraints
themselves were intended for predictions over long time intervals and the correlation
time is relatively short compared to those intervals, a speed model with exponential
correlation was not considered.

For each set of DGPS data, the paths used by the target were manually digi-
tized with the aid of publicly available satellite imagery. Any ambiguity with respect to
the paths connecting the current state to the next measurement was handled by adding
a separate model for each possible route. The radius of influence was set generously
to 25m so that all estimates would make use of the path constraints. No alternative
unconstrained models were used for these experiments.

The configurations evaluated were defined, with respect to the “walk” regime,
as follows:

• C1: Wiener process speed and heading models with
√
Tσv = {0.25, 0.25, 0.29}

and
√
Tσh = 10 (degrees). Note that both configurations shared these noise

parameters.

• C2: Stationary speed with ũv[t] = {1.44, 1.38, 1.32} and Wiener process heading.

A stop model, which predicts no change in position, was used for the “stopped” regime
with

√
Tσv = 0.1 and

√
Tσh = 90 (degrees). It was implemented using the PSH-

Path/C2 model with ũv[t] = 0.
Tables C.19–C.21 contain the consistency summary statistics and tables C.22–

C.24 contain the performance summary statistics.
Using the Wiener process speed model in conjunction with path constraints

resulted in estimates that, based on the fraction of hypothesis tests rejected, were some-
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what biased with only moderately well-matched variances. However, as we have seen
before, in absolute terms the bias was quite modest, being 0.061m, on average, for the
position estimates and 0.072m/s (too low), on average, for speed estimates. The stan-
dard deviation of the position estimates was overstated by 1.35m, on average, while it
was overstated for the speed estimate by 0.28m/s, on average. The innovations were
acceptable as white with few outliers; none falling significantly outside of the confidence
bounds. Compared to its unconstrained counterpart, the PSH/C2 model, the path-
constrained model was similarly biased but overstated the variance to a larger degree.
The PSH-Path/C1 model, however, was significantly more accurate, as expected. It
improved the expected position error by 3.72m, on average, and improved the expected
speed error by almost 0.1m/s, on average. Not surprisingly, the path constraints led to
estimates that were much closer to the true state as evidenced by the lower divergence
metrics across the board.

Switching to the stationary speed model improved the accuracy but generally
worsened the consistency of the estimates. This is the same behavior that we observed
with the unconstrained models when comparing PSH/C2 to PSH/C4. In the case of
the PSH-Path/C2 model, the degradation in consistency was limited to the position
estimates. There, the bias increased to 0.31m, on average, while the impact on the
variance matching is harder to summarize. In some experiments, the average mismatch
actually dropped while in others, notably at long range and in the non-flat terrain, the
variance was substantially underestimated. Compared to its unconstrained counterpart,
the PSH/C4 model, the path-constrained model was a bit less consistent overall but
generally more accurate. With respect to the expected position error, the PSH-Path/C2
model was clearly superior. However, it actually had slightly larger expected speed
errors in most experiments. Based on the divergence metrics, the constrained model
produced estimates that were much closer to the true state. It also produced the largest
improvement over the measurement error with gains between about 15% and 54%.

5.4 Feasible Graph

As we saw in chapter 2, the feasible graph is integral to the inference pro-
cess within the associative tracking algorithm. Recall that it plays two critical roles.
First, the feasible graph determines the subset of the solution space to be searched
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by identifying the regions of non-negligible probability. When done properly, this win-
nows the enormous space of possible associations and makes inference considerably more
tractable. However, if the subset does not contain all of the true associations, then the
complete and correct tracks can never be recovered. The second role is to facilitate the
generation of proposals that enable the sampler to efficiently explore that subset of the
solution space. When the feasible graph leads to poor proposals, the given processing
budget may be insufficient for the sampler to visit all the high probability regions or
the resulting sample may not accurately characterize the uncertainty. In fact, unless
the proposals are good enough, in the sense that they facilitate efficient exploration of
the space, then no reasonable amount of processing time will be sufficient.

The feasible graph is thus a key determinant of the accuracy and efficiency of
the associative tracking algorithm as a whole. Its performance must therefore be evalu-
ated with respect to these two roles. We did this, independent of the inference process,
by analyzing a variety of feasible graphs constructed from representative data sets. Each
feasible graph was constructed using a different tracklet model so that we could find out
which models were most effective. We also looked at how the construction parameters
that apply to all tracklet models, such as thresholds, impacted the performance.

With respect to the first role, it is the structure of the feasible graph that
determines the subset of the solution space that will be searched. Specifically, it is the
edges that define the feasible associations of measurements to targets since each track
corresponds to a (directed) path in the graph. Our primary concern is that the set of
feasible associations does in fact include the true associations. In terms of the graph
structure, this means that for each target there is an edge connecting every pair of
vertices corresponding to consecutive measurements of the target. These are known as
degree-one edges, where the degree indicates the order of the difference in the sequence
of successive target detections. Edges connecting measurements that did not originate
from the same source are known as degree zero edges. Performance along this dimension
was measured by looking at what fraction of edges of each degree were present in the
feasible graph. We also looked at what fraction of the true track length is represented
by the edges in the graph. This calculation was based on the longest path consisting of
edges with degree ≥ 1 for the given target.

Assuming that our primary concern has been addressed, our next concern is
that the set of feasible associations contains most of probability mass. Said another
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way, we would like to know that the regions of the solution space that were excluded
represent just the thinnest tails in the distribution of associations. Unfortunately, this
cannot be verified in general because of the combinatorial size of solution space and we
must rely on judicious application of the techniques designed to control the density of
the graph. In practice, we have eschewed the use of thresholds applied to the tracklet
probability in favor of gating based on speed and time. We did, however, limit the
out-degree of each vertex by keeping only the n-best edges because the tractability of
inference is an overriding concern. For the applications that we envision, it is preferable
to identify the highest probability configurations and underestimate the uncertainty to
some extent by failing to thoroughly explore the tails of the distribution rather than
risk missing something important while trying to explore the full space with insufficient
computational resources.

With respect to the second role of the feasible graph, both its structure and
the weights of its edges impact the quality of the proposals and thus the efficiency of the
sampler. When thresholds are applied to the tracklet probabilities during construction
of the graph or only the n-best out-edges are kept for each vertex, the structure and edge
weights are in fact related. With the latter being the method of choice for controlling
the graph density, our evaluation focused on the edge weights. Our concern is that
the weight of each edge, which by definition is the tracklet probability, is correlated
with the joint likelihood of the corresponding measurements. Large edge weights should
indicate a high likelihood that the edge connects two measurements that are part of
the same track. When this assumption holds, the feasible graph will have a structure
that is consistent with its two roles. The graph will contain the edges corresponding to
the most probable associations and the weights can be used to inform the proposals by
serving as a proxy for the likelihood.

Evaluating the performance of a feasible graph with respect to its second role
is not so straightforward because, ultimately, success is determined by the quality of
the proposals that the graph enables. However, trying to separate out the impact of
the edge weights from all the other inference-related variables by analyzing the final
sample introduces a host of additional problems. Instead, we analyzed the weights
directly to determine how well the underlying tracklet model discriminated between
true associations and erroneous associations. In other words, we assessed whether true
associations were likely to have higher tracklet probabilities. This was done first, looking
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only at the edge weights and the true value of the corresponding association event, using
the H-measure [78] which is a technique to measure the performance of a binary classifier
such as the tracklet model. Then, we looked at how well the discrimination compared to
that of the likelihood model itself by computing the target/false alarm likelihood ratios,
for a given track length, using both the likelihood model and the tracklet approximation.

The H-measure was selected to avoid difficulties associated with using a much
more well-known summary statistic for binary classifier performance: the area under
the receiver operating characteristic (ROC) curve. The ROC curve is a method of visu-
alizing the performance of a binary classifier for different choices of the discrimination
threshold. It is created by plotting the true positive rate against the false positive rate
at various threshold settings. The ROC curve itself provides an effective means of eval-
uating the tradeoffs between recall and precision as a function of the threshold value.
A common method of summarizing the overall performance is to compute the area un-
der the curve (AUC). This represents the probability that a randomly chosen positive
instance will be assigned a higher probability by the classifier than a randomly chosen
negative instance [79], which is a very useful metric for our purposes. Unfortunately,
the AUC has been shown to be an incoherent means of comparing classifiers because
the implicit misclassification cost distribution used is dependent on the classifier [78].
The H-measure was developed to provide a coherent alternative which also returns a
scalar value in [0, 1], where unity represents perfect separation between the classes.

These evaluations, of course, require that the origin of each measurement be
known, so we once again used simulated measurements. A single set of DGPS data,
which consisted of five walkers moving in mountain terrain for one-half hour, was used
for all experiments. It was selected to represent a typical surveillance scenario. The
sensor position was set approximately 5 km south of the activity and the walkers were
sufficiently well-separated to be resolved independently. Their motion included move-
stop-move behavior and backtracking. Simulated measurements were generated using
a variety of sample periods, false alarm rates, and probability of detection models. As-
suming a constant probability of detection with PD = 0.9, nine sets of simulated mea-
surements were generated using the sample periods T = {15, 30, 60} seconds and false
alarm rates {5, 15, 30} false alarms per scan. Those false alarm rates are equivalent to
9.272× 10−7, 2.781× 10−6, and 5.563× 10−6 false alarms per m2 per scan, respectively.
A more realistic spatially non-uniform PD model was also considered. Since a principled
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Figure 5.3: Random binary PD model used for the feasible graph evaluation.

model was not available, the randomly generated binary model with PD = {0.93, 0.07}
shown in figure 5.3 was used. Note that the low probability of detection regions cover
approximately one quarter of the surveillance region. Nine sets of simulated measure-
ments were generated using this binary PD model with the same sample periods and
false alarms rates that were used for the constant PD model. This gave us a total of
eighteen data sets.

5.4.1 Tracklet Models

A tracklet model describes the conditional probability that two given measure-
ments originated from the same target. The appropriate form of this model is highly
application specific. Depending on how much data is available, a tracklet model might
be learned using a general-purpose algorithm for binary classification. It could also be
explicitly constructed using domain knowledge. We used the latter approach and con-
structed various models based on target speed and the probability of detection. These
are perhaps the simplest possible tracklet models and are intended to serve as a baseline
to which future work with more sophisticated models, learned or explicitly constructed,
can be compared.
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We considered two classes of tracklet models which, for lack better terms, are
referred to as “generative” and “discriminative”. Recall that the tracklet model was
said to be a discriminative model because it does not describe how the observed data
is probabilistically generated from the unobserved association event but rather directly
describes the dependence of the unobserved association event on the data. Of course,
this does not preclude us from modeling the data generating process and then using
Baye’s rule to derive the requisite conditional probability for the tracklet model. The
so-called generative tracklet models uses this approach. The so-called discriminative
tracklet models, on the other hand, do not model the data generating process. Instead,
they express the conditional probability of an association event using features extracted
from the data.

Generative

The generative models studied here use the likelihood components of the asso-
ciative tracking model (see section 2.3.1) to define the tracklet probability. We consid-
ered just a single formulation of the model but multiple instances; one for each dynamic
used to describe the evolution of the latent states.

The tracklet probability was defined as:

p(Aij | ỹi, ỹj) = p(ỹi, ỹj | Aij) p(Aij)
p(ỹi, ỹj | Aij) p(Aij) + p(ỹi, ỹj | ¬Aij) p(¬Aij)

, (5.1)

with

p(ỹi, ỹj | ¬Aij) = p(ỹi, ỹj | E1) + p(ỹi, ỹj | E2) + p(ỹi, ỹj | E3) + p(ỹi, ỹj | E4), (5.2)

where E1 denotes the event that the i-th and j-th measurements are both false alarms,
E2 denotes the event that the i-th measurement originated from a target and the j-th
is a false alarm, E3 is the same as E2 but with the origins reversed, and E4 denotes the
event that both measurements originated from different targets.

The target measurement likelihood was used to define p(ỹi, ỹj | Aij). For
each term in (5.2), the measurement likelihoods were assumed to be independent. The
false alarm measurement likelihoods are given by the associative tracking model. The
target measurement likelihoods for a single measurement were computed using one-point
initialization of the dynamic model [6]. In all experiments, we used p(Aij) = 0.5.

All twelve of the dynamic models that were evaluated in the previous section
were evaluated here as generative tracklet models.
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Discriminative

In order to keep the models in each class comparable for these experiments, we
considered a single discriminative model based on just two features: speed and proba-
bility of detection. This is basically the same information that informs the generative
tracklet models. The idea was to evaluate the discriminative alternative to the speed
models described in section 4.3.2. A discriminative tracklet model with path constraints
was not evaluated.

The first feature, speed(yi, yj), is the expected speed of a target assuming that
it followed a straight line trajectory between the two measured positions. Note that the
speed is a function of the physical measurements, hence the missing tildes. This is
because the probability of detection is being handled differently than the associative
tracking model. The second feature is computed independently for each measurement
to get pd(yi) and pd(yj). It is the expected probability of detection given the PD model
and the measurement uncertainty.

The tracklet probability model was defined as:

p(Aij | ỹi, ỹj) = p(Di) p(Dj) p(Sij) , (5.3)

which Di denotes the event that a target in the position given by i-th measurement was
detected, Dj denotes the event that a target in the position given by j-th measurement
was detected, and Sij denotes the event that the speed implied by the two measurements
is consistent with a target moving between them.

The probabilities p(Di) and p(Dj) are simply given by pd(yi) and pd(yj),
respectively. The probability p(Sij) is given by:

p(Sii) = p(Aij | speed(yi, yj))

= p(speed(yi, yj) | Aij) p(Aij)
p(speed(yi, yj) | Aij) p(Aij) + p(speed(yi, yj) | ¬Aij) p(¬Aij)

, (5.4)

where p(speed(yi, yj) | Aij) is the distribution of the speed given that the measurements
originated from the same target and p(speed(yi, yj) | ¬Aij) is the distribution of the
speed given that the measurements have different origins. As was the case for the
generative model, the prior for the association event was p(Aij) = 0.5 in all experiments.

Figure 5.4 shows an example of how p(Sij) was defined for human walkers
in mountain terrain observed using a scan period of 15 s and with 15 false alarms per
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Figure 5.4: Example of the probabilities used to define the Sij event in the discriminative
tracklet model.
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scan. The likelihood distributions were estimated using training data that was generated
based on DGPS data from walkers in that terrain. The DGPS used for the training was
different than that used to generate the simulated measurements for the evaluations.
In figure 5.4a, you will immediately notice that the distribution of the expected target
speed as computed by the tracklet model is not the same as what we observed in our
GPS study (see figure 4.1c). The mode is considerably higher and the distribution has a
larger variance. This is an important revelation as it will influence the speed threshold
for gating based on speed.

5.4.2 Coverage

The coverage of a feasible graph refers to the fraction of edges of each degree
that are present. Degree-one edges are the most critical as their presence is required
to ensure that the true measurement to target associations are among those that can
be expressed by the graph. Degree-two edges connect every second measurement of a
target and are important because they give us a chance to recover when a degree-one
edge is omitted. As the degree increases, it becomes increasingly less likely that such
edges will be present in the graph, although this depends on how aggressively we try
to control the density of the graph. However, even when high degree edges are present,
their weights tend to decrease as the edge degree increases because the uncertainty
in the target’s motion grows and the assumptions of the tracklet model break down.
Thus, we focused the evaluation on edges of degree one and two as they have the most
practical relevance. In order to quantify the impact of any missing edges between target
measurements, we also looked at the fraction of the total track length (in terms of the
number of measurements) expressible by the graph.

If the density of the graph were of no concern, then coverage would not be an
issue. It would be sufficient to only exclude edges that violate hard constraints such
as the scan constraint or maximum association time. Such edges represent pairwise
associations with zero prior probability. However, in practice, the density of the graph
is a major concern because it is directly related to the complexity of the inference. Thus,
we sought ways to exclude additional edges while maintaining acceptable coverage.

To this end, we considered the impact of applying a maximum speed gate and
limiting the maximum out-degree of each vertex. No minimum speed was considered
because targets may come to a stop. Hard constraints–scan and maximum association
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time–were also enforced. Note that although the latter only prevents the inclusion of
edges representing zero probability associations, it can impact the coverage. Applying a
threshold to the tracklet probability was another option available to reduce the density
of the graph. This approach, however, was dismissed because it increases the chances
of dismissing a degree-one edge. We deemed it preferable to keep even low probability
edges emanating from a given source vertex until enough higher probability alternatives
are found to displace them.

Based on the GPS study in chapter 4, 2.25m/s is a reasonable upper bound
on the walking speed of a human target. However, this turned out not to be a useful
value for the speed gate because it led to the omission of approximately 1−5% of the
degree-one edges.

The speed was computed in exactly the same manner as the speed feature
for the discriminative tracklet model described in the previous section. Despite a full
accounting of the measurement uncertainty, the distribution of these estimates does not
match the true target speed distribution as we saw already in figure 5.4a. The estimated
speed is an overestimate. One potential remedy would be to consider the variance of
the speed estimate when testing the gate condition. Another would be to simply set a
higher threshold based on the distribution of the speed estimates. This is the approach
that we took. A threshold of 4m/s was used throughout these experiments, which was
sufficient not to exclude any degree-one edges based on the speed gating.

Using a 3min maximum association time and a maximum out-degree of 10,
all eighteen data sets were evaluated using each of the tracklet models. For the data
sets based on the constant PD model, all of the feasible graphs contained 100% of the
degree-one edges regardless of the tracklet model. In each track, at least 83% of the
degree-two edges were present as well. In fact, only when T = 60 s were any degree-two
edges omitted. For the data sets based on spatially non-uniform binary PD model, all of
the degree-one edges were covered for all configurations except those for which T = 30 s
and 60 s. With the longer sample periods, at least 89% of the degree-one edges, in each
track, were present.

It turns out that these gaps in coverage were due to too many missed detections.
With a sample period of 30 s or 60 s, the detector can only miss the target in 6 or 3
consecutive scans, respectively, before the 3min maximum association time is exceeded.
In the more challenging detection environment of the non-uniform PD model, this started
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to become a problem with long sample periods as we might have expected. The fact
that this was not a problem for any of the other configurations is purely by chance.
When the probability of detection is not unity, there is always the possibility of failing
to detect the target with sufficient frequency to maintain the track. These results do
show, however, that in a realistic setting we can expect to get a feasible graph with
good coverage. The fractions of the total track lengths for the incomplete tracks were:
6/10, 12/14, and 23/26. The corresponding fractions of degree-two edges were: 38%,
75%, and 88%, respectively.

The 3min maximum association time was chosen based on the notion that
beyond this point too much uncertainty has built up with respect to the target’s mo-
tion to make a meaningful association. This value is indeed arbitrarily defined and a
reasonable threshold will be application-specific. In these experiments, increasing it to
6min would have led to all the degree-one edges being covered for all configurations.
However, whether or not we would be justified in associating two measurements of a
maneuverable target after a 6min information blackout is debatable. An example of
where we might wish to use such a generous maximum association time is for an ap-
plication in which we want to monitor movement along a known trail and are willing
to disregard off-trail motion. In this case, the path constraints reduce the uncertainty
in the allowable motion of the target and the treatment of negative information in the
associative tracking model will ensure that the likelihood reflects whether or not the
missed detections are plausible with respect to the PD model. The PD model might
also inform the choice of the maximum association time by allowing us to calculate the
size of the potential drop-outs based the average speed of the target over hypothesized
routes.

Limiting the out-degree of every vertex to 10 appears to reliably result in
complete coverage of the degree-one edges. Even in our experience outside of these
experiments, we found this to be true. In general, feasible graphs constructed using
that parameter, in conjunction with the speed gate and maximum association time, will
provide a significant reduction in the size of the solution space. However, their density
still leaves a difficult inference problem. To get a sense of scale, let us look at the number
of edges in the feasible graphs constructed from the data sets based on the non-uniform
PD model with T = 15 s. These half-hour data sets resulted in graphs with 6393, 19050,
and 36141 edges for the cases of 5, 15, and 30 false alarms per scan, respectively.
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The obvious question is, what happens to the coverage when we reduce the
maximum out-degree of each vertex? This, of course, will depend on the quality of
the edge weights, which will be examined in the next section. Ideally, the degree-one
edges will have the largest weights and be retained. Those edges that are excluded will
ideally remove associations with negligible likelihood from the solution space. We can
only verify the first of these two conditions and for all but one of the tracklet models it
does hold to a remarkable degree.

With the exception of the discriminative tracklet model, the degree-one edges
were assigned the largest weights in all but a handful of cases. Limiting the out-degree
of every vertex to 3 turned out to be sufficient maintain coverage in those experiments.
That change reduced the edge counts in our earlier example to 875, 2061, and 3807,
respectively, which is a substantial savings. In the case of discriminative tracklet model,
the degree-one edges were less likely to be assigned the largest weight. Keeping just the
top 3 resulted in a loss of approximately 5% of those edges. We would have had to keep
the top 8 to maintain full coverage in these experiments. These results highlight the
importance of knowing how well the chosen tracklet model performs before adjusting
this parameter. Even the notion that 10 is a safe default should not be taken for
granted. The results also show that given the right tracklet model, we can hope to use
the maximum out-degree to safely reduce the complexity of the inference problem in
realistic environments.

5.4.3 Edge Weights

A feasible graph was constructed for every combination of tracklet model and
data set. Every such combination constitutes an experiment. In all experiments, a 4m/s
speed threshold and a 3min maximum association time were used. The out-degree of
each vertex was limited to 10.

We began our evaluation by calculating the H-measure for each experiment.
For the purposes of the calculation, the degree-one edges were taken to be positive
instances and the degree zero edges were taken to be negative instances. The misclassi-
fication cost ratio was set to the reciprocal of relative class frequency to control for the
fact that there are significantly more negative class instances than positive. Table 5.1
shows the resulting values.

The first thing to note is the discrepancy between the performance of the two
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H-measure

5 fa/scan 15 fa/scan 30 fa/scan

T =15 s T =30 s T =60 s T =15 s T =30 s T =60 s T =15 s T =30 s T =60 s

Generative Tracklet

CWNA/C1 0.981 0.966 0.843 0.983 0.920 0.880 0.960 0.924 0.820
CWNA/C2 0.981 0.966 0.843 0.983 0.920 0.880 0.960 0.924 0.820
CWNA/C3 0.952 0.883 0.767 0.928 0.851 0.761 0.910 0.841 0.621
PSH/C1 0.961 0.955 0.892 0.955 0.921 0.873 0.932 0.913 0.818
PSH/C2 0.961 0.955 0.892 0.955 0.921 0.873 0.931 0.913 0.818
PSH/C3 0.948 0.965 0.866 0.945 0.914 0.856 0.927 0.905 0.852
PSH/C4 0.947 0.965 0.866 0.945 0.916 0.856 0.926 0.906 0.853

PSH-ExpCorr/C1 0.981 0.971 0.871 0.976 0.915 0.829 0.950 0.922 0.842
PSH-ExpCorr/C2 0.984 0.971 0.872 0.976 0.915 0.829 0.950 0.924 0.843
PSH-ExpCorr/C3 0.984 0.971 0.872 0.975 0.915 0.829 0.950 0.924 0.843
PSH-Path/C1 0.977 0.994 0.969 0.970 0.968 0.951 0.955 0.963 0.935
PSH-Path/C2 0.956 0.981 0.923 0.953 0.950 0.918 0.940 0.930 0.949

Discriminative Tracklet

Speed 0.376 0.566 0.683 0.305 0.482 0.602 0.352 0.496 0.643

(a) Constant PD = 0.9.

Table 5.1: Tracklet model performance summary statistics.
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H-measure

5 fa/scan 15 fa/scan 30 fa/scan

T =15 s T =30 s T =60 s T =15 s T =30 s T =60 s T =15 s T =30 s T =60 s

Generative Tracklet

CWNA/C1 0.940 0.893 0.820 0.929 0.874 0.751 0.911 0.852 0.693
CWNA/C2 0.940 0.893 0.820 0.929 0.874 0.751 0.911 0.852 0.693
CWNA/C3 0.902 0.817 0.724 0.877 0.759 0.666 0.843 0.777 0.596
PSH/C1 0.940 0.893 0.858 0.920 0.870 0.810 0.895 0.868 0.776
PSH/C2 0.940 0.893 0.858 0.920 0.870 0.810 0.895 0.868 0.776
PSH/C3 0.933 0.900 0.852 0.912 0.882 0.766 0.892 0.865 0.742
PSH/C4 0.933 0.900 0.854 0.912 0.882 0.766 0.892 0.864 0.742

PSH-ExpCorr/C1 0.941 0.891 0.817 0.919 0.870 0.757 0.898 0.857 0.747
PSH-ExpCorr/C2 0.941 0.891 0.818 0.922 0.871 0.758 0.899 0.860 0.749
PSH-ExpCorr/C3 0.941 0.891 0.818 0.922 0.871 0.758 0.899 0.859 0.749
PSH-Path/C1 0.977 0.955 0.961 0.962 0.941 0.889 0.938 0.917 0.887
PSH-Path/C2 0.973 0.981 0.942 0.963 0.967 0.917 0.928 0.945 0.928

Discriminative Tracklet

Speed 0.373 0.576 0.666 0.362 0.586 0.624 0.354 0.515 0.638

(b) Random non-uniform binary PD = {0.07, 0.93}.

Continuation of Table 5.1: Tracklet model performance summary statistics.
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classes of tracklet models. As was mentioned already in the previous section, the dis-
criminative tracklet model performed worse in terms of assigning a higher probabilities
to degree-one edges. The generative models had H-measures that were > 0.9 for most
experiments with worst performance being 0.596 for the notorious CWNA/C3 model at
the highest false alarm rate and longest sample period. The average performance of the
discriminative model, on the other hand, was closer to that level with the best result
being only 0.683. Interestingly, the performance of the discriminative model actually
improved as the sample period increased, approximately doubling between T = 15 s
and T = 60 s across all false alarm rates and both PD models. It is not clear why this
should be the case as the straight line trajectory assumed by the model becomes more
implausible as the sample period increases. At any rate, the results are a clear indica-
tion that when speed and probability of detection are the features, a generative model is
preferable. We expect that the real advantage of using a discriminative tracklet model
will come when incorporating high level information that would be infeasible to express
in a tractable generative model. Given their performance, a more sophisticated discrim-
inative model might wish to incorporate the output of one of these generative models
as a feature expressing the consistency of data with a low-level kinematic description of
the target.

Within the class of generative tracklet models, there were some surprises.
Notably that the H-measure was not particularly well correlated with the accuracy
of the underlying dynamic model. It is true that the least accurate dynamic model,
CWNA/C3, also produced the lowest H-measure. However, the CWNA/C1 model out-
performed the PSH/C4 model, with respect to the H-measure, in just over half of the
data sets which is at odds with both the accuracy and consistency results. Also at
odds with the accuracy and consistency results was the relative performance between
the different configurations of the PSH- and PSH-Path-based models. Based on these
results, we should use different dynamic models for the associative tracking model (fea-
sible graph and inference) and any filtering pass on the sampler output intended to
produce state estimates.

The observed discrepancies between the accuracy and the H-measure values
in fact coincide with the differences in the underlying speed or heading model. It
appears that when discrimination is the goal, the dynamic models based on the Wiener
process have a slight advantage. Since each tracklet is the result of processing just two
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measurements, the state initialization and process noise models are the primary factors
that distinguish the models in this context. Unfortunately, it is not clear which is the
dominant factor here. The position state is initialized in the same manner for all of the
dynamic models. In the case of the Wiener process velocity models, the initial velocity
state was estimated based on the second measurement using a two-point initialization
scheme. For the other velocity models, that element of the state was initialized using
the average speed for the given terrain.

Note that we do not see any differences in the results between the CWNA/C1
and CWNA/C2 models because they are in fact identical when applied to just two
measurements; the same two-point initialization is used for both. We also fail to see
any significant differences between the various PSH-ExpCorr-based models. This is
likely due to the short correlation time relative to the interval between consecutive
measurements because, when decorrelated, all three models are essentially equivalent.

For the data sets based on the non-uniform PD model, the advantage of the
Wiener process speed in the path-constrained model faded considerably. It is not clear
why that is the case. In any event, for a given type of dynamic model, any improvement
in the H-measure between the configurations with and without the Wiener process
models is small; at most a couple of percent.

For the data sets based on the constant PD model, the CWNA/C1 dynamic
model produced one of the best tracklet models for short sample periods, even outper-
forming the path-constrained models in those cases. As the sample period increased,
the advantage was lost and the path-constrained models produced the best results as
expected. The CWNA/C1 enjoyed no advantage over the path-constrained models for
the data sets based on the non-uniform PD model, which we attribute to the additional
missed detections which necessitate modeling the target’s motion over a larger time
interval much like with a long sample period.

Overall, the PSH-Path/C2 model provided the best discrimination with the
difference being most pronounced in the most challenging environments. Even with
T = 60 s, 30 false alarms per scan, and the non-uniform PD model, the H-measure was
0.928. The CWNA/C1 model, however, performed surprisingly well overall. This is
welcome news because its computational complexity is the lowest among the models
that we looked at.

To get some sense of what the different values of the H-measures mean in terms
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of the distribution of the edge weights, we estimated those distributions as well. Figure
5.5 shows a subset of those results taken from the experiments with T = 15 s, 15 false
alarms per scan, and the non-uniform PD model. The plots include the distributions
of the degree zero, degree-one, and degree-two edges. Notice how that they are not
quite what you might imagine if all you knew were the corresponding H-measure values.
Despite the differences in their summary statistics, the weight distributions for PSH/C4
and PSH-ExpCorr/C2 look quite similar to that of PSH-Path/C2. The distribution of
weights from degree-two edges for the PSH-Path/C2 model reveals another advantage
compared to the other generative models, namely that expected weight values for the
degree-one and degree-two edges are quite similar. However, the discriminative model
can be seen to enjoy even more agreement between the distribution of weights from
degree-one and degree-two edges. Of course, the plot also illustrates why the discrim-
inative model suffers. There is a mode that is coincident with the mode from the
distribution of weights from the degree-one edges.

Let us now look at how the ability of the edge weights to discriminate be-
tween true and false associations compares to the likelihoods that they are intended to
approximate.

We performed this evaluation by calculating, for a range of lengths, the likeli-
hood ratio between a true track and a sequence of invalid associations. The likelihoods
were approximated using the tracklet probabilities by simply taking their product. For
the generative tracklets, we repeated the likelihood ratio calculations using the stan-
dard likelihood model itself, with the corresponding dynamic model, in order to compare
those results to the results obtained from the tracklet-based approximation.

A true track consists of a sequence of degree-one edges. Sequences of invalid
associations were defined to be sequences of degree zero edges. Each ratio was calculated
as the expected value of a random sample of such sequences from the feasible graph.

The results from these experiments confirmed that the likelihood approxima-
tions based on the tracklet probabilities are generally comparable to the true likelihood
values in terms of discrimination. In some cases, the approximations are in fact supe-
rior. It should come as no surprise that the likelihood approximations based on the
generative tracklet probabilities are comparable given the fact that those probabilities
are computed directly from the standard likelihood model. Thus, the approximated
likelihood in this case is just the true likelihood computed under the assumption of
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Figure 5.5: Distributions of edge weights for selected tracklet models.
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Continuation of Figure 5.5: Distributions of edge weights for selected tracklet models.
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independence between measurements. The quality of such an approximation depends
on how much information is lost when the dependencies are disregarded.

Since a concise summary of all the results is not possible, we have selected
some representative examples to illustrate the important trends. We again focus on
from the experiments with T = 15 s, 15 false alarms per scan, and the non-uniform PD

model.
Within the class of generative tracklet models, any advantage of using dynamic

models based on the Wiener process was largely lost. Across the board, such models
were superior to the corresponding tracklet approximation in both absolute (i.e. the
value of the log-likelihood ratio) terms and in terms of their growth rate with respect
to the track length. However, they were generally inferior in these terms compared to
the alternative configurations of the same dynamic model. The models that were not
based on the Wiener process tended to exhibit much better agreement between the true
likelihood and the approximation in both absolute terms and in terms of the growth
rate. In some cases this represented more discriminative power than the alternative
configurations based on the Wiener process models and in other cases less. The fact
that the two were more closely matched is interesting because it may be beneficial to
the sampler.

Figure 5.6 shows a comparison of the results for tracklets based on the CWNA
model. The first configuration, which uses the Wiener process velocity model, is an
example of particularly large deviation between the performance of the standard like-
lihood model and the approximation. With the second configuration, which employs
the system rotation that effectively removes the preference for smoothness in heading,
we can see the agreement between the log-likelihood ratios of the standard model and
the tracklet-based approximation; the two curves are almost identical. It appears that
the reorientation of the prediction at each time step effectively breaks the dependencies
between the measurements in the joint likelihood. Comparing the results from the two
configurations, it is clear that first has significantly more discriminative power. This,
however, is not a typical result.

A comparison of the results for tracklets based on the PSH model is shown
in 5.7. The first configuration uses Wiener process speed and heading models, and the
performance of the standard likelihood model is again dominant here. Dropping the
Wiener process heading model in the second configuration yields excellent agreement
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Figure 5.6: Discriminative power of the likelihood approximation using tracklets based
on the CWNA dynamic model.
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as we saw above with the CWNA model. This too resulted in a loss of discriminative
power. However, the fourth configuration dominates the performance of the other con-
figurations. It is significantly better in both absolute terms and in terms of the growth
rate. The agreement between the true likelihood and the approximations is still good
here, but in this case the discrimination from the approximation is actually a bit better.
This is a satisfying result for two reasons. First, PSH/C4 was one of the best perform-
ing dynamic models in terms of accuracy and consistency. Second, its computational
complexity is relatively low which makes it a practical choice.

The results for the tracklets based on the PSH-Path model show similar trends
to what we saw with the PSH-based tracklets. See figure 5.8. Here, the second con-
figuration, which uses the stationary speed model, dominates the performance of the
Wiener process speed model used in the first configuration.

Finally, we consider the results for the tracklets based on the discriminative
speed model. Figure 5.9 shows how the approximation performed. Here, there is no
corresponding standard likelihood model with which to compare so we look instead at
how slope and intercept compare to the other graphs. We can see that the discriminative
tracklets had more discriminative power than any of the generative models that we
looked at except for the PSH/C4 model. Indeed, the discriminative tracklet model is
generally among the top performers with respect to the likelihood approximation. This
is encouraging from the perspective of what we might expect from a future discriminative
model that incorporates higher level information for which we do not have generative
counterpart.

5.5 Inference

Ultimately, it is the inferences from the joint posterior:

p(Z, Z0 , λ, α | Ỹ , aλ, bλ),

that we wish to obtain from the associative tracking algorithm. Using one of the algo-
rithms described in chapter 2, MCMC or PMC, a sample of the posterior is drawn from
which we can compute Monte Carlo estimates of the expectations of arbitrary functions
of the indicator variables. These functions are chosen, based on the requirements of the
specific application, to tell us all that we need to know about what is happening within
the surveillance region.
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Figure 5.7: Discriminative power of the likelihood approximation using tracklets based
on the PSH dynamic model.
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Figure 5.8: Discriminative power of the likelihood approximation using tracklets based
on the PSH-Path dynamic model.
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Figure 5.9: Discriminative power of the likelihood approximation using tracklets based
on the discriminative speed model.
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Whether or not a given sample will yield a suitable characterization of the
scene primarily depends on two factors: how well the sample represents the underlying
distribution and how well that distribution matches reality. The first is a function of
the sampling algorithm while the second reflects the accuracy of the associative tracking
model, which can itself be parameterized in various ways. Having already evaluated the
dynamic models and feasible graphs, we assume that those choices are given. We further
assume that the choices of false alarm model and probability of detection model are given
as well. This leaves the prior distribution of the target cluster labels that we discussed
in chapter 3 as the remaining free parameter in the associative tracking model. Thus,
we can regard the second factor as a function of p(Z | Z0 , α) and evaluate the effect of
the different prior models here.

The quality of inference was therefore assessed for a given combination of
sampling algorithm and target cluster label prior. For every such combination, the
assessment was made by evaluating the resulting sample using a variety of means.

Unfortunately, the posterior sample cannot easily be visualized because of the
large number of dimensions nor can the evaluation be distilled down to a single number.
To complicate matters further, the extent to which the sample represents the underlying
distribution cannot be measured directly. Regarding that first factor, we can only look
for clues to how efficiently the sampler is exploring the state space. These clues include
the MCMC acceptance rate, the sensitivity to initial conditions, and how the resulting
MAP probability compares to the posterior probability of the true state (when that is
in fact known). Given the enormous size of the state space and the fact that resource
constraints will severely limit the sample size in practice, our primary concerns are that
the sampler manages to find regions of high probability and does not get stuck near a
mode that is unrepresentative of the true state. The focus of our evaluation was thus
on the second factor because it is more amenable to quantification and the results shed
some light on the performance with respect to the first factor as well. To evaluate
the how well the distribution matched our knowledge of what was happening in the
surveillance region, we used a collection of summary statistics.

The first summary statistic is simply the number of clusters, K. This conveys
the most critical high-level information which is the answer to the question: how many
targets are there? When processing simulated measurements, this value will be known
exactly. Even in the case of measurements collected in the field, we should have a
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good idea what to expect. The other summary statistics require ground truth, hence
simulated measurements, because they are based on scoring the accuracy of the set of
indicator variables.

For each cluster, we scored the accuracy of the corresponding indicator vari-
ables using the F-measure (or the balanced F-score)[15]. The F-measure is an evaluation
metric that is commonly used in field of information retrieval to combine measures of
precision and recall into a single statistic which takes values in the interval [0, 1], where
indicates the best possible performance. For a given cluster label, precision is the frac-
tion of the indicator variables that correctly identify the origin of the measurement.
Recall is the fraction of the total number of measurements that originated from the
corresponding target that were successfully identified. The two are combined by taking
their harmonic mean. Despite its shortcomings for certain applications [149], we found
the F-measure to be a convenient means of quantifying the notion that a “good” cluster
should contain as many of the target measurements as possible while containing as few
incorrect associations as possible.

To derive a combined score that accounts for all clusters, we essentially used
the multiclass extension of the F-measure known as the macro-averaged F-measure
[198]. This is computed in the same manner as the single class F-measure but using
precision and recall values that are averaged across all classes. However, unlike the
typical application of this technique, we have allowed the number of classes to vary
with the input. This change was necessary to account for the fact that a given set of
indicator variables may very well contain more cluster than the true number of clusters.
We set the number of classes based on the maximum number of unique labels between
the true and estimated indicator values. In other words, if the estimated Z contained
fewer unique label values than the true number of clusters, then there was a class
corresponding to each true target plus one for the set of false alarms. If, on the other
hand, the estimated Z contained more unique label values than the true number of
clusters, then there was a class corresponding to each true target, a class corresponding
to each additional erroneous target, and one for the set of false alarms. This effectively
penalizes sampler for generating excess clusters in addition to the obvious penalties for
individual clusters that do not agree with the ground truth.

Until now, we have tacitly assumed that the correspondence between the clus-
ter label values output by the sampler and those from the ground truth is known.
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However, this is not true in general due to the exchangeability of Z with respect to the
labels. To address this problem, we used the Munkres algorithm [128, 18] to determine
the optimal mapping between the two sets of cluster labels.

While the scores convey useful information about how well a given (Z, Z0 )
describes the true association of measurements to targets, it can still be advantageous
to attempt to visualize the distribution of the indicator variables implied by the sample.
In cases where we lack ground truth, this is provides a basis for a qualitative assessment
and is our only means of getting at the big picture. We chose to visualize the distribution
of the indicator variables by using the sample to compute Monte Carlo estimates of
the pairwise association probabilities. The result is essentially a colored version of the
feasible graph where the color of each edge indicates its sample-based probability. Edges
corresponding to associations with zero probability are not shown. Such weighted-edge-
sample plots are used as appropriate to illustrate different samples.

Note that the weighted edge sample could also be scored to produce another
summary statistic. However, it is not clear what an effective metric would be. The
H-measure (and related metrics) are inadequate for this purpose as they will still yield
large values when the non-track edge weights are unacceptably large but lower than the
true-track edge weights.

For the samples generated using the PMC algorithm, the weights assigned to
each element of provide another means of assessing the quality of the sample. We will
monitor the variance of the weights, where a low variance is desired. We will also look
at the effective sample size (ESS), which is given by:

ESS = 1∑n
i=1w

2
i

,

where wi is the normalized weight of the i-th sample element and 1 ≤ i ≤ n. The
optimal value is ESS = n, although we must be aware that this can be achieved under
less than ideal circumstances.

The false alarm rate, λ, and the concentration parameter (when applicable),
α, are scalars so estimates of those variables can be reported directly. When ground
truth is available, the expected false alarm rate will be known and the estimates can
easily be verified. The concentration parameter, however, does not correspond to any
measurable value and thus there is no truth with which to compare. We can view the
estimates of α in light of its impact on the expected number of clusters to assess whether
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or not they are reasonable. We can also compare the estimates to the most probable
α according to its conditional sampling distribution (equation (2.33)) conditioned on
the true set of indicator variables and the most probable value of λ (according to its
conditional sampling distribution; equation (2.32)). That value will serve as a proxy for
the true concentration parameter.

Each combination of sampling algorithm and cluster label prior under consid-
eration was evaluated for a given data set. This constitutes an experiment. Three data
sets were selected; two based on simulated measurements in order perform the evalua-
tion with the benefit of ground truth and one consisting of actual radar measurements.
The details regarding each of the data sets will be provided in the subsequent sections.

For the experiments based on the simulated measurements, the results of the
sample evaluation are spread across two tables. The first table contains: the log pos-
terior probability (denoted by LL), the combined score, the number of clusters, the
concentration parameter, and the false alarm rate. This covers the key summary statis-
tics as well as the estimates of α and λ. For each of these quantities, we reported the
value corresponding to the sample element with the highest probability (i.e. the MAP
value) and the value corresponding to the element with the maximum combined score.
For all except the posterior probability, we reported the Monte Carlo estimate in terms
of the expected value and its standard deviation as well. In addition, the true value was
also reported for both the posterior probability and the concentration parameter. The
true posterior was computed using the true (Z, Z0 ) and the most probable values of α
and λ based on their respective conditional sampling distributions. The second table
contains the scores for the individual true targets as well as the combined score, once
again, for the sake of completeness. For each of these fields, we reported the scores cor-
responding to the MAP element, the element with the maximum combined score, and
the Monte Carlo estimates (in terms of the expected value and its standard deviation).

When ground truth was not available, a single table was used that contains:
the log posterior probability (denoted by LL), the number of clusters, the concentration
parameter, and the false alarm rate.

The tables for all experiments are collected in appendix D.
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5.5.1 Sampling Algorithms

In section 2.4, we discussed two different algorithms for generating a sample
from the posterior distribution: MCMC and PMC. Both are based on the same mixture
proposal distribution that was detailed in section 2.4.3. In addition, we suggested an
alternative mixture proposal distribution (see section 2.4.3.3), composed of a set of
k-add moves, intended for use with the PMC algorithm. All three approaches were
evaluated here.

5.5.1.1 Move Definitions

Recall that the mixture proposal distributions are based on a weighted combi-
nation of reversible moves. Each move can be defined in a number of different ways and
in chapter 2 we described our preferred approach along with some alternatives. Let us
now mention some of what was tried in preparation for these experiments and describe
the final configurations that were used.

Being the most complex and the most critical to the performance of the sam-
pler, we tested several variations of the add move. We began with the approach of se-
lecting one of the false alarm vertices to initiate the path, selecting the length, and then
constructing the path. It had the appeal of being the least computationally demanding
implementation that we considered. Unfortunately, in our preliminary investigations
it performed poorly compared to the more complex approaches in which the starting
measurement itself is selected with consideration for the possible paths. The resulting
sample tended to overestimate the expected number of targets and yield a low expected
combined score. In some runs, the acceptance rate suffered because of rejected add
proposals. However, the basic principle of first selecting the length of path, followed by
the systematic selection of vertices from among paths of the chosen length, proved to
be a very effective alternative to the traditional approach of randomly selecting each
vertex until some stopping criteria is met or, as is often the case, there are no more
feasible additions. It avoids the tendency to produce short paths that are not plausible
tracks. The more complex approaches to implementing the add move take this a step
further by selecting the length of the path prior to selecting the initial vertex. The
initial vertex is then selected based on average weight of a path of the chosen length.
These approaches tended to yield long, plausible paths and thus became our focus.
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In practice, calculating the weights by running the estimation procedure re-
peatedly for each false alarm vertex turned out to be too slow in our unoptimized
implementation. Although that method is amenable to parallel computation, we set-
tled instead on one based on running the estimation procedure for each source vertex.
The latter relies on an approximation to the ideal weight calculation that proved to be
acceptable in practice. We did consider drawing the path length uniformly at random
or with a bias toward longer paths, rather than using a probability proportional to the
aggregated weight for that length, but this led to lower MCMC acceptance rates and
paths that were more likely to consist of noise. Finally, in order to encourage more
diverse, but still promising, add proposals, we used a simple modification of the path
construction procedure for these experiments. We drew the length and selected the
first vertex using probabilities based on the aggregated weights. The remaining ver-
tices, however, were selected uniformly at random. Note that because of the way the
bookkeeping is done when the weights are calculated, there will always exist at least
one path from the chosen starting vertex of the desired length.

When the cluster to be deleted is selected with a probability that is propor-
tional to the weight of the selection, the sampler tends to favor states that compare
well with the ground truth. However, this is perhaps too much of a good thing. This
selection procedure causes the sampler to linger around certain modes of the distribu-
tion longer than we might like. The simple alternative of selecting the cluster to be
deleted uniformly at random proved to be more effective. It also brought a welcome
reduction in the computational requirements of the algorithm. When the cluster deleted
happens to be part of a configuration with significant weight, with a high probability it,
or something close to it, will be reconstituted by the next add move. Thus, the sampler
can return to such high probability states very quickly because of the type of add moves
that we employ.

A delete move, with the cluster selected uniformly at random, followed by an
add move is exactly what we defined as a replace move. The idea was to provide an
additional means of modifying the state in a way that does not alter the number of
clusters. Unlike the extend, reduce, or switch moves, the replace move has the potential
to propose a candidate state in which the replacement cluster has no vertices in common
with its predecessor. Thus, it facilitates large but meaningful transitions in a single step.
We found it to be extremely effective in practice, leading to superior mean scores and
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MAP estimates. It does, however, increase the complexity of the PMC sampler. At
issue is the (first) Rao-Blackwellization step. When the moves do not overlap, meaning
that given the current state two different moves cannot propose the same candidate
state, the normalization constant is trivial to calculate. Unfortunately, the replace move
will, with some nonzero probability, propose the same state as any given extension or
reduction. When computing the normalization constant, this should be accounted for.
However, we found little difference in practice even when the additional contribution to
the normalization constant was simply ignored.

You might have noticed at this point that we are relying on the add move
to do much of the heavy lifting. We could take that a step further and eliminate the
extend/reduce moves, relying on the replace move to achieve that effect. Motivated
in large part by the fact that it removes the aforementioned complication with the
Rao-Blackwellization step without having to forgo the benefits of the replace move,
this approach was tested. The change reduced the variance in the expected number
of clusters but also reduced the tendency of the sampler to explore clusters with lower
likelihoods. We also considered the impact of eliminating the split/merge moves; again
to rely on combinations of adds and deletions to achieve the same effect. The results
were similar to what we saw after eliminating the extend/reduce moves. However,
proposal distributions lacking either the extend/reduce or split/merge were deemed to
be too close in spirit to the k-add proposal distribution, which relies entirely on the add
move (with the necessary deletions being implicit), to warrant further study.

Regarding the extend and reduce moves, we tried one variation on the original
approach. Instead of selecting the cluster to extend, or reduce, using a probability based
on the weights, it was selected uniformly at random. This seemed to just exacerbate
the problem of target clusters that contain noise. The experiments were thus conducted
using the original weighted selection.

The split move was implemented using the approach in which the cluster to
split was selected uniformly at random. This was primarily based on computational
considerations. The more expensive approach based on enumerating all possible split
points was not implemented.

No alternatives to the original merge or switch moves were considered.
Impacting all of the moves are the contributions to the weights. Recall that

those come from the four factors in equation (2.38). Ideally, we want to include them
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all, but we first sought to confirm their effectiveness. As expected, the contributions
from the measurement likelihood, prior distribution over the target cluster labels, and
the prior distribution over the false alarm cluster labels were all critical to achiev-
ing good performance. The contribution from the concentration parameter hyperprior,
however, was not found to be effective. For cluster label priors that respect the scan
constraints, that contribution cannot be computed exactly and the approximation is
still quite expensive. Since it appears to provide no discernible benefit, at consider-
able cost in many cases, the contribution from the concentration parameter hyperprior
was not used. Regarding the measurement likelihood, we tried three different ways of
computing its contribution. The first was based on the product of the complementary
edge probabilities. In other words, edges between vertices assigned to the same target
contribute log(p) and all other edges contribute log(1−p). The second approach used a
small constant probability for all non-track edges so that the model would more closely
approximate the uniform false alarm model. Finally, the third approach was based on
a modified version of the feasible graph in which the edge weights were the joint mea-
surement likelihood of the pair. These were combined with the false alarm likelihood to
generate an approximation to the full measurement likelihood based on the assumption
of pairwise independence within each cluster. This, of course, entails the abandonment
of the notion of the discriminative tracklet probability and any of its potential benefits.
It turned out that the first approach was the clear winner with the second approach
leading to very poor results. The third caused the sampler to explore much less of the
space as evidenced by a lower MAP probability and tendency to completely miss tracks
with lower likelihoods. These experiments were thus conducted using the product of
the complementary edge probabilities to approximate the likelihood contribution.

5.5.1.2 Proposal Distribution Definition

Having described how the individual moves were implemented, something more
needs to be said about how they are combined to form the mixture proposal distribution
because here too we looked at an alternative to what was presented in chapter 2. The
following applies to the mixture proposal distribution that is shared by the MCMC and
PMC samplers.

Rather than constructing the proposal distribution as a mixture of all the
different moves as described in section 2.4.3, we considered a mixture three meta-moves.
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Each meta-move comprises the individual moves that alter the state in a similar manner.
The first contains the add and split moves, which alter the current state by increasing the
number of clusters by one. The second contains the delete and merge moves, which alter
the current state by reducing the number of clusters by one. Finally, the third contains
the switch, extend, reduce, and replace moves, which alter the current state in a way
that retains the number of clusters. Within each meta-move, the move used to actually
generate the proposal is selected uniformly at random. Now, from the perspective of
the MCMC sampler, this is equivalent to particular choice of mixture weights is not
particularly interesting. However, it offers a small practical advantage. If we wish
minimize the chance that a proposal fails because the selected move is not possible
given the current state, then we have to check the feasibility of each move and rescale
the weights if necessary. Using the meta-move mixture proposal distribution reduces the
amount of checking required for each draw. However, the savings is small and the real
motivation behind the change was the weight adaptation of the PMC algorithm. During
the course of our testing with the default mixture proposal distribution, we observed
that the weight adaptation frequently failed offer any improvement over runs using
fixed uniform weights. This was despite the fact that we used Rao-Blackwellization
to decondition the chosen kernel, which was originally introduced into the D-kernel
PMC algorithm to address the problem of the weight adaptation failing to learn from
experience. Although we do not fully understand why, the meta-move mixture proposal
distribution performs much better in this regard. Therefore, it was utilized for these
experiments. Future work will have to determine the failure mode.

Regarding the weight adaptation in the PMC algorithm, recall that the idea
behind the k-add mixture proposal was to use the adaptation scheme learn the distri-
bution of the number of targets. Here, it performed as expected using the proposal
distribution in its original form.

5.5.1.3 Status Quo

Something else that impacts all of the moves, but has remained unmentioned
until now, is whether or not they include the current state as a potential candidate state.
This is an important question whose answer significantly affects the performance of the
sampler. It was not fully appreciated when the model was originally conceived and we
have delayed the discussion in order to undertake it from the perspective of modifying
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the sampler as presented.
With the exception of the replace move, none will produce a candidate state

that is identical to the current state. Implicit in their respective definitions is that the
candidate state is selected from among the feasible moves without explicitly considering
the option of doing nothing. For example, if there is at least one target cluster and
the delete move is valid, then it will always propose to move to a state with one fewer
target cluster. Existing MCMC data association algorithms work in exactly this manner
(e.g. [135]). However, it is sometimes desirable to include the option of maintaining the
status quo. Or, in our case, provide mechanism for proposing to keep the current state
other than a replace move that happens to regenerate the original cluster.

There are two general approaches we might take. The first would be to have
each move consider the current state in addition to the other feasible candidate states.
For example, an add move would consider paths of length zero and a delete move would
consider not removing any clusters. The second approach would be to keep the moves
as defined but add a kernel to the mixture that represents a null move which has no
effect on the current state. This is something that we see in non-tracking applications
of MCMC and PMC sampling, even when the support of the individual kernels covers
the entire sample space. In our implementation, we would add the null move as a null
meta-move in the mixture proposal distribution. For the PMC algorithm, the weight
adaptation scheme would then determine how frequently to use it.

We implemented both approaches and were unable to settle the debate in our
initial investigation. The default implementation, which did not explicitly entertain
keeping the status quo, clearly explores more of the space as evidenced by the higher
variance in the expected number of clusters and the higher MAP probabilities. However,
it generally yielded lower expected scores (both per-track and combined); especially
when it comes to the score corresponding to the MAP estimate. This suggests that
there may be a practical issue of quality versus quantity in how the sampler moves
through the state space. Given the fact that most applications will be limited to a
relatively small sample size (compared to the size of the state space), it is critical that
the sampler move efficiently. Ideally we want it to visit configurations that agree with the
true state most of the time without simply getting stuck there. It appears that having
each move consider selecting the current state leads to a good tradeoff in this regard.
For that reason, all experiments (except those based the k-add mixture proposal) were
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run using both approaches to dealing with the status quo. No changes were made to
the k-add moves since they already allow for the possibility of proposing the current
state. The option of increasing the odds of such a move through the introduction of a
null move to the k-add mixture proposal was not considered.

5.5.2 Cluster Label Priors

In chapter 3, we discussed a number of different ways to define the prior dis-
tribution of the target cluster labels, p(Z | Z0 , α). In these experiments, we evaluated
them all including several variants of each of the nonparametric priors.

Recall that the nonparametric priors were the DP, UP, EP, and EP2. They
are all functions of a concentration parameter, α, whose value can be specified in var-
ious ways. We adopted the Bayesian approach of treating it as a random variable,
with its own hyperprior, to be included in the inference process. The hyperprior,
p(α | Z0 ), is defined by two parameters of its own. Those were set to η = 1× 10−5

and minClusterSz = 7. As we described in section 3.5.1, the specific form that it takes
depends on whether or not the moments, E[k | α, n] and V ar[k | α, n], are estimated
subject to the scan constraint. We included both the constrained and unconstrained
forms in our experiments. In addition, we also included variants in which the concen-
tration parameter was assumed to be known and constant. A value of α = 1× 10−6

was used to favor the smallest number of clusters possible. Note that this effectively
removed the concentration parameter hyperprior from the model.

The HUP and the scan-constrained HUP have no parameters and were imple-
mented as described.

Three different property-based priors were considered. The first simply ex-
pressed a preference for a small numbers of clusters. It will be referred to as the “K”
prior. The distribution was defined using exponential-type decay model for p0(K | Z0 )
from section 2.3.2.2 with η = 1× 10−6. As we illustrated in section 3.4.2, the strength
of this preference is not sufficient to overcome the structural deficiencies inherent in
this prior. However, since it represents a well-intentioned attempt, we let it stand to
serve as an example of a prior that does not represent the intended beliefs. The second
property-based prior expressed both a preference for long tracks and pairs of target
measurements that are close in time. This will be referred to as the “Prop.” prior. A
growth variant of the p0(K | Z0 ) model with η = 1× 10−4 was used to quantify length
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preference where the minimum length was taken to be 2 and the maximum length was
equal to the number of scans. The temporal proximity preference was quantified using
the exponential-type decay model, defined over scans, with η = 1× 10−2, to weaken the
preference in light the non-unity probability of detection. The minimum gap was one
scan and the maximum was set to the association window size of 3 minutes. The third
property-based prior was that of Oh et al., which was described in section 3.4.2. It will
be referred to as the “Oh” prior. There are three parameters that must be specified:
pd, pz, and λb. Recall that these are the probability of detecting a target during a given
scan, the probability of a target disappearing during a given scan, and the birth rate
of new targets per scan per unit volume (or area), respectively. Only pd has a known
value, which is equal to the expected probability of detection over the surveillance re-
gion. Since the other parameters require knowledge about the number and lifetimes of
the targets that we do not have, we treated them as independent random variables with
their own hyperpriors.

For the probability of disappearance, we assumed that an approximately uni-
form prior was appropriate, but with a slight preference for lower values. To represent
these beliefs, we modeled p(pz) using a beta distribution with α = 1.0 and β = 1.1.
For the birth rate, we assumed that small values are more probable than a large ones
and that an exponential-type decay was an appropriate form. The motivation was to
remain consistent with how we represented our beliefs about the number of targets in
p0(K | Z0 ). Here, we used a continuous variant of the decay model from section 3.5.1
in order to again set the rate based on a ratio of the largest to the smallest value. The
resulting distribution is given by:

p(λb | Z0 ) = −aλb log a,

where a = η
1

λbmax and λb ≤ 0. Just like the concentration parameter hyperprior, this
one is defined by the η and minClusterSz parameters. The decay rate is determined by
η, which specifies the ratio of the densities at the maximum birth rate, λbmax , and the
minimum birth rate, zero. The maximum birth rate is determined by setting an upper
bound on the number of clusters, which is given by:

Kmax =
⌈ nmτ+

minClusterSz

⌉
,

where nmτ+ denotes the number of target measurements. The maximum birth rate is
then given by: λbmax = Kmax/ns+, where ns+ denotes the number of scans that contain
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at least one target measurement. Note that both ns+ and nmτ+ are known from the
conditioning on Z0 . The η and minClusterSz parameters were set to the same values
that we used for the nonparametric priors.

5.5.3 General Remarks

All of the MCMC experiments were conducted using just 7000 samples. For
the PMC experiments, in order to maintain an equivalent allocation of resources, a
sample size of 1000 with 7 resampling iterations was used. Given the enormous size
of the space, this is clearly insufficient for a thorough exploration. However, we did
not consider using a larger sample because real tracking systems will not have that
luxury without significant increases in computing power. One of the questions that
this research sought to answer was what we can expect from a small, but hopefully
well-chosen, sample.

Given the resource constraints, the asymptotic justification of MCMC sampling
is arguably insufficient and there is no reliable method for establishing convergence. This
motivated us to consider PMC sampling which relies on importance sampling arguments
that are more convincing under these conditions. Another question that we sought to
address was how these two approaches compare when used to generate a small sample.

The initialization scheme described in section 2.4.3.4 proved to be quite effec-
tive, generally producing high scoring initial states. However, its effectiveness did vary
somewhat depending on the cluster label prior. This is because the impact of the prior
on weights used by the add move is accounted for to varying degrees. Depending on
the accuracy of the weight estimates and the strength of the prior, the initial number
of clusters can differ significantly. So, for the sake of consistency, we opted instead to
use a different approach. In the MCMC experiments, the initial state was simply set
to all false alarms. In the PMC experiments, we drew the initial state for each element
in the sample from a proposal distribution based on repeated add moves. Unlike the
initialization scheme that we decided to pass on, this distribution selects the number
of clusters uniformly at random, up to a predefined maximum value, and thus does
not rely on drawing an add move of length zero to determine the total number. The
idea was encourage a diverse sample, with elements consisting of different numbers of
clusters. A maximum of 25 clusters was used for these experiments.

To set the parameters, aλ and bλ, for the false alarm rate hyperprior, we
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adopted the convention of fitting a gamma distribution to the number of measurements
in each scan of the data to be processed. This assumes that all of the measurements are
false alarms, which may or may not be true. For the one target data set, the resulting
estimate was quite close to the true value. On the other hand, this procedure results
in an overestimate when applied to the five target data set. The idea was to use a
consistent procedure that assumed no prior knowledge of the true rate. In practice, we
expect that obtaining accurate estimates of the false alarm rate will not be a problem.
Here, we deliberately accepted a poor estimate in the case of the five target data set to
see how that affected the final outcome.

Regarding the PMC algorithm, resampling was performed using the stratified
resampling algorithm. Contrary to the results of Hol et al. [84], we did not find the
systematic resampling algorithm to be preferable. In our experience, it showed a slight
tendency to produce more samples that were dominated by a single element (i.e. particle)
than the stratified resampling algorithm. The second Rao-Blackwellization step was not
implemented due to cost concerns.

Finally, the two data sets based on simulated measurements were generated
using the same scan period and false alarm rate; T = 30 s and 15 false alarms per
scan, respectively. These values were selected as they represent the midpoint from the
feasible graph evaluation. As before, we used a randomly generated binary model with
PD = {0.93, 0.07}; the low probability of detection regions cover approximately one
quarter of the surveillance region.

5.5.4 One Target

This data set consists of a single target walking in rolling terrain approximately
5 km southwest of the sensor. For the first 17 minutes, the target has not yet appeared
in the surveillance region so the tracker must contend with a steady stream of false
alarm measurements. After the target does appear, it persists for approximately 15
minutes at which point the data set ends. There is a mix of in-range and cross-range
motion. Figure 5.10 shows the PD along with the detections and true track. Notice how
the targets passes through several small regions of low probability of detection.

The feasible graph was constructed using the PSH/C4 model with the max-
imum out-degree of each vertex limited to 5. This yielded complete coverage of the
degree-one edges. It turned out, however, that PSH/C4 model was not the optimal
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Figure 5.10: Simulated PD with the detections and tracks for the single target data set.
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choice for the dynamic model used to specify the measurement likelihood. As we saw
earlier while evaluating the edge weights of the feasible graph, dynamic models based
on the Wiener process have an advantage when it comes to discrimination because of
their implicit preference for smoothness. This advantage became quite apparent during
our study of the inference process. Using the PSH/C1 model for the measurement likeli-
hood produced substantially better results and was thus adopted for these experiments.
Compared to the PSH/C4, the resulting samples contained far fewer high probability
tracks consisting solely of false alarm measurements. The inferior state estimation of
the PSH/C1 was noticeable when logging out of range queries to the PD model, which
were mapped to a negligible probability of detection. By comparison, no such out of
range queries were encountered when using the PSH/C4 model.

Tables D.1–D.10 contain the summary statistics from the experiments.
Looking first at the performance of the MCMC sampler, we begin by noting

that the experiments using the default implementation of the proposal distribution
revealed a tendency to grossly overestimate the number of targets present. The estimates
of K also contain considerable variance which is a discouraging prospect for surveillance
applications. The estimates range from a very reasonable 1.8± 0.40 with the DP prior
using a small fixed α to the preposterous 53.9± 12.08 produced by the “K” prior. That
last result is perhaps unsurprising as the “K” prior was meant to serve as an example of
a poorly chosen prior. However, in these experiments, the EP prior performed almost
as poorly, with several others not far behind. Only those priors that expressed a strong
preference for a small number of clusters, the nonparametric priors with a small fixed
α and the “Prop.” prior, managed to keep the estimated number of targets to single
digits. The false alarm rate is underestimated to varying degrees as we would expected
given overestimates of the number of targets.

For the nonparametric priors, the high numbers of clusters correspond to high
values for the concentration parameter. Note that the truth values for α in table D.1
are all the same because 1× 10−6 was used as the lower limit of the support for the
grid approximation of equation (2.33). This should be understood to mean that the
true value is 0 < α ≤ 1× 10−6. In retrospect, our choice for minimum should probably
be reconsidered in the future. Here, we can see how the scan-constrained versions
of the nonparametric priors indeed produced lower expected α values. Although the
impact of the scan constraints is imperfectly accounted for, the compensation is clearly
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beneficial. As an example, consider the DP prior. The scan constraints incorporated
into the hyperprior reduce the MAP estimate of the concentration parameter from 14
to 6.86, which corresponds to 49 and 22 targets, respectively. Using a small fixed value,
α = 1× 10−6, drove the MAP estimate of the number of targets down to just two, with
one of the two being almost a perfect match to the ground truth. Unfortunately, it is not
clear exactly why the scan constraints did not drive the concentration parameter down
further. It might be inaccuracies in our accounting for the impact of the constraints
or the beliefs used to define the hyperprior might place too much weight on larger
numbers of clusters. With the first potential cause less amenable to improvement due
to its inherent complexity, the second is a more promising avenue for further study.
Figure 5.11 shows the weighted-edge-sample plots for each case. Although it may a bit
difficult to discern in the plots, the unconstrained prior has the most erroneous edges
occurring with probability > 0.5. The scan constraints have improved the situation in
that regard but at the cost of lower weights for the true-track edges. Lowering α to
express a strong preference for the lowest possible number of clusters produced a very
accurate picture of what was really going on. This suggests that future work should
revisit the definition of the hyperprior with an eye toward strengthening the preference
for small values of the concentration parameter.

One might wonder if we could reduce the tendency to overestimate the number
of targets by enforcing a minimum cluster size. This would effectively further2 trun-
cate the posterior distribution by placing zero prior probability on all configurations
containing clusters with insufficient size. We chose not to address this question here in
order to both limit the number of variables in the experiments and establish a perfor-
mance baseline without the constraint. However, an initial investigation suggests that
the approach is promising. Figure 5.12 shows an example of the results obtained by
setting the minimum cluster size to 8. It was implemented by modifying the moves in
the proposal distribution to enforce the constraint when computing the selection proba-
bilities. The DP prior was taken as the example so that the weighted-edge-sample plots
can be compared to those in figure 5.11. The expected number of clusters, given the
minimum cluster size, was 8.2± 1.69, 7.2± 2.09, and 1.8± 0.41, for the unconstrained,
scan-constrained, and small fixed α variants, respectively. The respective expected com-
bined scores were: 0.18± 0.089, 0.21± 0.10, and 0.71± 0.13. For the unconstrained and

2Further than the implicit truncation from the scan constraints and maximum association time.
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(b) Sample based on the unconstrained DP prior
with a mean α of 12.4.
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(c) Sample based on the constrained DP prior with
a mean α of 4.81.
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(d) Sample based on the DP with α = 1× 10−6.

Figure 5.11: Example of the effect of scan constraints applied to the DP prior. The
results were derived from an MCMC sample of the one target data set.
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scan-constrained versions of the DP prior, the estimates have clearly improved.
The posterior probabilities reveal just how critical the choice of cluster label

prior is to getting a posterior distribution that matches reality. Notice how accurate
the maximum-score point estimates are in table D.1. This is true across the board;
independent of the prior. These are exactly the kind of results that we were aiming for,
yet in most of the experiments the sampler spent relatively little time there, or near
similar configurations, because they were considered much less likely according to the
model. Thus, the generally poor results here are not caused by the sampler failing to
explore the highest probability regions of the space but are rather the result of those
regions not being what we want them to be. The gap between the posterior probability
of the true and MAP-estimated variables reveals a lot about how good the model is.
When the gap is large, the model is assigning high probabilities to configurations of
the indicator variables that are unlike the true state. At least with this data set, only
a prior distribution of cluster labels that expresses a very strong preference for the
smallest possible number of clusters will yield a suitably accurate model.

It was somewhat surprising to see that the DP prior performed best despite
its tendency to favor uneven distributions of cluster sizes. We had expected this prefer-
ence to undermine its performance by placing too much weight on configurations with
numerous short tracks consisting entirely of noise. This led us to propose the EP and
EP2 in addition to considering the more neutral UP. However, in practice, the “rich-
get-richer” behavior of the DP offered a distinct advantage: it resisted the breakup of
large clusters into more or less equally sized pieces. Figure 5.13 shows a comparison of
the MAP estimates of Z from the nonparametric priors with a small fixed α. Notice
how each one represents the kind of configuration that we might expect knowing the
properties of the underlying stochastic process. The estimate corresponding to the DP
contains two clusters of unequal size. The UP estimate contains a relatively uniform
distribution of cluster sizes. Finally, the EP and EP2 estimates contain clusters that
are all nearly the same size. Unfortunately, for the EP and EP2 priors this came at the
expense breaking up the one true track.

The advantage of the DP prior in these experiments can also be seen in the
distribution of cluster counts implied by the sample. In figure 5.14, we can see the
distributions of the number of clusters resulting from the different scan-constrained
nonparametric priors. Only the scan-constrained DP prior has a significant mode at the
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(a) Unconstrained DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6

Figure 5.12: Example, using the DP prior, of the effect of setting the minimum cluster
size set to 8. The results were derived from an MCMC sample of the one target data
set.
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(d) EP2 prior with α = 1× 10−6.

Figure 5.13: Comparison of the MAP estimates of Z from the nonparametric priors.
The results were derived from an MCMC sample of the one target data set.
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true value, K = 1.
See figure 5.15 for the weighted-edge-sample plots from the scan-constrained

nonparametric priors that we have not already looked at; the plot from the scan-
constrained DP is in 5.11c.

Among the alternative priors, the “Prop.” prior was the top performer. Its
overall performance was only bested by the small fixed α variant of the DP prior. This is
because the prior actually expresses a strong preference for a small number of clusters.
Unfortunately, there is no principled way to calibrate the strength of this preference
since we cannot link the parameters of the prior to the expected number of clusters.
None of the alternative priors produced a MAP estimate of Z that preserved the true
track nor did any have a significant mode near K = 1 in the resulting distribution of
the number of clusters. Even the MAP estimate from “Prop.” prior split the true track
into two overlapping fragments. However, the “Prop.” prior still managed to convey a
decent picture of the situation through its weighted-edge-sample plot. The plots from
all five of the alternative priors can be seen in figure 5.16.

We turn now to the question of whether or not each move should consider
preserving the status quo. Table D.3 reveals that modifying the proposal distribution,
so that each move includes the current state among the feasible candidate states, can
universally be regarded here as beneficial in terms of the scores (both individual and
combined) and the accuracy of the estimates, which have improved considerably in most
cases. Using this configuration of the sampler, all of the nonparametric priors with a
small fixed α produced estimates that were nearly perfect in their accuracy. For com-
parison with the results from the default implementation of the proposal distribution,
see figures 5.17 and 5.18 for the weighted-edge-sample plots from the scan-constrained
nonparametric priors and the alternative priors, respectively.

Regarding the results from this alternative implementation of the proposal
distribution, the only thing that gives us pause is that for every experiment the MAP
probabilities are lower than what was obtained using the default implementation. Thus,
the sampler is clearly failing to explore some regions of high probability and the conver-
gence of the Monte Carlo estimates (i.e. the ergodic averages) is doubtful. However, the
chain has spent its allotted time exploring meaningful parts of the space and produced
results that agree well with ground truth. Did we just get lucky or have we managed
to bias the search in a productive manner through our choice of proposal distribution?
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(b) Scan-constrained UP prior.
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(c) Scan-constrained EP prior.
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(d) Scan-constrained EP2 prior.

Figure 5.14: Cluster count distributions from the scan-constrained nonparametric priors.
The results were derived from an MCMC sample of the one target data set.
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(a) Scan-constrained UP prior.
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(b) Scan-constrained EP prior.
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(c) Scan-constrained EP2 prior.

Figure 5.15: Output from the scan-constrained nonparametric priors not previously
shown. The results were derived from an MCMC sample of the one target data set.
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(a) HUP prior.
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(b) Scan-constrained HUP prior.
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(c) “K” prior.
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(d) “Prop.” prior.

Figure 5.16: Output from the alternative priors. The results were derived from an
MCMC sample of the one target data set.
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(e) “Oh” prior.

Continuation of Figure 5.16: Output from the alternative priors. The results were
derived from an MCMC sample of the one target data set.

One concern was that the sampler became trapped around a local optimum.
However, the usual diagnostics did not reveal any significant differences between the two
proposal distributions. Trace plots showed relatively decent movement in the statistics,
similar to what we observed with the default proposal distribution. The acceptance
rate appeared to be reasonable as well. Using the default proposal distribution, the
average acceptance rate was 0.30, with some minor variation across experiments. The
alternative implementation of the proposal distribution led to a modest drop; down
to 0.26, on average. Unfortunately, the optimal rate for this type of problem is not
known and we are not aware of any published results for similar problems. In terms
of the autocorrelation within the sample, there was no significant change between the
two proposal distributions. In both cases, it was poor compared to the ideal, decaying
in a roughly linear fashion with decorrelation around 800. We also tried increasing the
number of sampling iterations to 25,000 in order to see if the sampler might manage
explore more of the space given additional time, but the results remained comparable.
The lack of convergence will likely have the most impact on our variance estimates and
the quality of the very uncertainty that we were motivated to quantify in the first place.
Of course, the precision of these estimates was never expected to be high because of
the inherent complexity of the problem and the resource constraints. Our goal from the
outset was to do the best we could under the circumstances and offer at least a rough
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(a) Scan-constrained DP prior.
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(b) Scan-constrained UP prior.
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(c) Scan-constrained EP prior.
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(d) Scan-constrained EP2 prior.

Figure 5.17: Output from the scan-constrained nonparametric priors when the individ-
ual moves in the proposal distribution were allowed to propose remaining in the current
state. The results were derived from an MCMC sample of the one target data set.
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(a) HUP prior.
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(b) Scan-constrained HUP prior.
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(c) “K” prior.
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(d) “Prop.” prior.

Figure 5.18: Output from the alternative priors when the individual moves in the pro-
posal distribution were allowed to propose remaining in the current state. The results
were derived from an MCMC sample of the one target data set.
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(e) “Prop.” prior.

Continuation of Figure 5.18: Output from the alternative priors when the individual
moves in the proposal distirbution were allowed to propose remaining in the current
state. The results were derived from an MCMC sample of the one target data set.

estimate to fill the present void. It is left to future work to improve those estimates.
Because of our concerns about the convergence of the estimates computed from

the MCMC sample, we investigated PMC sampling as a potential remedy. Using the
default proposal distribution, we can see from table D.5 that the scores and estimates
are generally better than their MCMC-derived counterparts while the relative ranking
of the priors remained largely unchanged. However, one glaring exception to this trend
toward the better are the maximum-score estimates, which are no longer exemplary.
This is because, as we noted earlier, the highest scoring configurations are not among
the most likely according to the model. Thus, the PMC sample does not include elements
representing those configurations. As a result, the respective maximum-score and MAP
estimates are much closer. To visualize the spectrum of results from the PMC samples
using the default proposal distribution, figure 5.19 shows the weighted-edge-sample plots
from a selection of priors. The selection includes the DP prior with a small fixed α,
which had the highest expected combined score, the EP prior with a small fixed α,
which represents a middling combined score, and the “K” prior, which had the lowest
expected combined score. Note that despite the fact that the second panel in the figure
looks like an accurate picture of what was going on, the individual track score reveals
that the target is being split into two adjacent tracks.
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(a) DP prior with α = 1× 10−6.
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(b) EP prior with α = 1× 10−6.
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(c) “K” prior.

Figure 5.19: Example of the output from the highest (first panel), middling (second
panel), and lowest scoring (last panel) PMC samples of the one target data set.
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The other glaring exception to the improvement trend are the variance esti-
mates. While the number of targets estimated from the PMC sample was more accurate
in almost all of the experiments, the variance estimates have all gone to zero, which is
entirely unconvincing. Note that the approximate 99% confidence intervals for the cor-
responding mean estimates were all confirmed to be reasonably small. Such estimates
convey no uncertainty and thus are poorly suited to surveillance applications. A typical
result obtained from the PMC sampler can be characterized as offering a good depiction
of the true target plus erroneous targets, all with equal probability. These results are
symptomatic of weight collapse (i.e. degeneracy), which is when one element comes to
dominate the sample. This indeed turned out to be a major problem. Table 5.2 shows
the average weight variances and effective sample sizes (ESS) for all of the PMC exper-
iments. The ESS was computed for the sample at each iteration and the values in the
table are the averages over all iterations. Clearly, those are not the kind of numbers
that we had hoped to see. Although they did tend to decrease slightly with each PMC
iteration, the variances remained just below the maximum value of 1× 10−3 (i.e. one
sample element has all of the weight). All of the ESS values were disappointingly small.
Despite our hope that using an initial proposal distribution capable of generating widely
varying cluster assignments would encourage a diverse sample, there was very little di-
versity within the final sample. Note that the problem does not appear to be overly
sensitive to the initial proposal distribution because our experiments with the original
implementation discussed in section 2.4.3.4 led to similar results. There is a moderate
positive correlation (r = 0.63) between the expected score, which we can regard as a
proxy for the accuracy of the estimates, and the average ESS. Since the accuracy is
highly dependent on the choice of prior, this appears to affirm the importance of that
decision.

When using the alternative implementation of the proposal distribution with
the PMC sampler, we again saw improvements in the scores (both individual and com-
bined) and the accuracy of the estimates. Compared to the results of the MCMC
experiments, the improvement over the default proposal distribution was modest here
as we might expect given the better baseline performance of the PMC sampler. Just
as we saw with the MCMC sampler, switching to the alternative implementation of the
proposal distribution led to all of the nonparametric priors with a small fixed α produc-
ing estimates that were nearly perfect in their accuracy. This agreement is encouraging
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Prior Avg. Variance Avg. ESS

Default Status Quo K-add Default Status Quo K-add

DP 6.21e-04 3.89e-04 7.16e-04 2.4 3.9 1.8
DP (constr.) 5.96e-04 5.24e-04 8.06e-04 2.2 5.6 1.3
DP (fixed α) 6.32e-04 3.19e-06 8.95e-05 16.4 637.3 370.8
UP 7.18e-04 8.04e-04 7.32e-04 1.5 1.4 1.6
UP (constr.) 6.43e-04 6.27e-04 9.06e-04 2.0 3.5 1.1
UP (fixed α) 2.81e-04 6.23e-05 6.67e-04 7.3 224.5 2.2
EP 8.26e-04 5.60e-04 6.66e-04 1.2 2.2 1.8
EP (constr.) 8.67e-04 6.76e-04 7.07e-04 1.2 3.6 1.7
EP (fixed α) 3.24e-04 1.33e-04 9.08e-06 44.8 426.1 487.4
EP2 4.92e-04 4.79e-04 9.87e-04 2.6 4.5 1.0
EP2 (constr.) 5.46e-04 3.32e-04 8.81e-04 2.5 9.4 1.3
EP2 (fixed α) 4.85e-04 1.33e-04 1.06e-05 5.5 336.8 544.8
HUP 6.58e-04 7.83e-04 9.61e-04 3.6 6.4 1.0
HUP (constr.) 6.16e-04 1.45e-04 5.04e-06 7.2 282.8 626.7
K 8.56e-04 4.09e-04 7.96e-04 1.2 3.2 1.5
Prop. 6.98e-04 5.78e-04 3.31e-05 3.4 14.2 613.3
Oh 5.93e-04 4.26e-04 1.50e-05 2.0 3.0 607.9

Table 5.2: Average effective sample sizes for the results from the PMC sampler on the
one target data set.

since it suggests that, despite our concerns about the mixing of the chain, the MCMC
estimates based on the alternative proposal distribution are not entirely unreasonable.

Referring again to table 5.2, we can see that the problem of weight degener-
acy, while still with us, was a bit less severe in all but one experiment when using the
alternative implementation of the proposal distribution with the PMC sampler. The
effective sample sizes for the nonparametric priors with a small fixed α and the scan-
constrained HUP prior have improved considerably, although all but one are still less
than half of the actual sample size. Nonetheless, these results do suggest that modifying
the proposal distribution is a promising way forward. One could argue that the alterna-
tive implementation of the proposal distribution generally performed better because it
is closer to the posterior distribution that it is trying to represent. However, we are at
a loss to explain the stark contrast between the performance given different choices for
the prior over cluster labels since the influence of the exchangeable (and approximately
exchangeable) priors on the proposal is computed in the same manner, independent of
the prior. Note that only the scan-constrained HUP and “Oh” priors do not inform the
proposal distribution.

Finally, let us look at the performance of the PMC sampler using the k-add
mixture proposal distribution. This implementation of the proposal distribution was
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intended to test the concept of completely relying on the add and delete moves, and the
results were decidedly mixed. Tables D.9 and D.10 show that the scores (again; both
individual and combined) and estimates are by and large better than anything else that
we evaluated. The tendency to overestimate the number of targets was reduced con-
siderably using this configuration, with the expected number being one or two in more
than half of the experiments and only exceeding three in three experiments. This led
to generally higher expected combined scores than the other configurations. Looking
at the individual scores, we can see that the target itself was almost completely iden-
tified in every experiment, where the combined scores reflect the number of spurious
associations. Despite the improved scores, the problem of weight collapse remained and
varied even more with the choice of prior. To our surprise, both the “Prop.” and “Oh”
priors led to decent ESS’s and estimates that were nearly perfect in their accuracy. It
is not clear why the change in the proposal distribution effected these two priors so
dramatically.

The k-add mixture proposal distribution also served as an example of an in-
dependence sampler because each move was made independently of the current state.
Because of the way that we defined the moves, the k-add mixture was the only proposal
distribution, among the three evaluated here, capable of transitioning from any number
of clusters to any other number of clusters (subject to a fixed maximum value). This
freedom of movement was intended to prevent the sampler from getting trapped by
failing to move through low probability regions. Therefore, the results obtained using
the k-add mixture proposal can serve as a check against the others. They do not in fact
reveal any high probability regions that were missed by the other configurations. On
the contrary, despite the extra freedom of movement, the MAP probabilities from these
samples were generally lower than what we saw from the other proposal distributions,
but close (0.6%, on average) to what we saw when using the PMC sampler with the al-
ternative implementation of the proposal distribution. This does, however, give us some
confidence that those PMC experiments were not merely the outcome of a fortuitous
run.

5.5.5 Five target

This data set consists of five targets walking in mountain terrain approximately
5 km north of the sensor. It was the same one used earlier for the feasible graph evalu-
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Figure 5.20: Simulated PD with the detections and tracks for the five target data set.

ation with T = 30 s and the randomly generated binary PD model. Figure 5.20 shows
the PD along with the detections and true tracks. Notice how the two targets on the
right-hand side of the figure are moving in regions of high PD. The other three targets
pass through numerous regions of low PD.

To remain consistent with previous experiments, the feasible graph was con-
structed using the PSH/C4 model with the maximum out-degree of each vertex limited
to 5. This yielded complete coverage of the degree-one edges. For the three targets
on the left-hand side of the figure, that coverage was achieved despite many missed
detections. This sparseness, however, led to lower weights for the degree-one edges and
poor coverage for the edges of higher degree which makes the tracker’s job more diffi-
cult. Indeed, as we will see, the results are not as good for track 5, which ends near
(−214, −4744) and consists of just nine measurements, and track 3, which ends near
(−882, −4646).

Tables D.11–D.20 contain the summary statistics from the experiments.
Looking first at the performance of the MCMC sampler, we can once again

see that when using the default implementation of the proposal distribution, there was
a tendency to grossly overestimate the number of targets present. As we would expect
given the fivefold increase in the number of true targets, the estimates of K are larger
than what we saw using the one target data set and contain more variance. The DP prior
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using a small fixed α again produced the most reasonable estimate, 5.2± 0.75, with the
“K” prior way off the mark at 102.2±28.49. The tendency to overestimate the number of
targets primarily reflects the accuracy of the model, which in turn is largely determined
by the choice of the prior distribution over the cluster labels. As evidenced by the large
gap between the MAP estimate and true value of K, most choices of the prior resulted
in inaccurate posterior models. The estimates based on the nonparametric priors with a
small fixed α were, however, generally reasonable and confirm the notion that a strong
preference for the lowest possible number of clusters is desirable for this application. Of
course, when the likelihood component of the model is dominant then an uninformative
prior such as the scan-constrained HUP can also be effective. That appears to have
been the case here as it too produced a reasonable estimate of 6.1± 1.86, although we
must bear in mind that this could be an artifact of the approximations employed by
the scan-constrained HUP prior; additional experiments would need to confirm this.
The weighted-edge-sample plot for the weakly informative UP prior with a small fixed
α does paint a pretty good picture of what was happening in the surveillance region
which can be seen, along with the results from the other nonparametric priors, in figure
5.21. This lends some support to the dominance of the likelihood component here. The
results from the alternative priors can be seen in figure 5.22.

Just as we saw using the one target data set, introducing the scan constraints
into the concentration parameter hyperprior produced lower expected α values yet the
estimates remained well above their ideal values. This supports our earlier conclusion
that the definition of the hyperprior should be revisited with an eye toward strengthening
the preference for small values. More will be said about how that could be done when we
discuss future work. The false alarm rate was again underestimated to varying degrees
as we would expected given the overestimates of the number of targets. The MAP
estimates of λ, however, were generally better than those obtained from the previous
experiments. This is likely due to the method used to set the hyperparameters, which
resulted here in a hyperprior for the false alarm rate that favored larger values than the
actual rate.

Using the alternative implementation of the proposal distribution, which al-
lowed each move to consider preserving the status quo, was again largely beneficial in
terms of both the scores and estimates. However, here it was the combined scores that
generally improved while the individual scores dropped slightly in most cases. We can
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(a) DP prior with α = 1× 10−6.
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(b) UP prior with α = 1× 10−6.
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(c) EP prior with α = 1× 10−6.
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(d) EP2 prior with α = 1× 10−6.

Figure 5.21: Output from the nonparametric priors. The results were derived from an
MCMC sample of the five target data set.
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(a) HUP prior.
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(b) Scan-constrained HUP prior.
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(c) “K” prior.
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(d) “Prop.” prior.
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(e) “Oh” prior.

Figure 5.22: Output from the alternative priors. The results were derived from an
MCMC sample of the five target data set.

303



X

Y

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Scan-constrained DP prior.
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(b) Scan-constrained UP prior.
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(c) Scan-constrained EP prior.

X

Y

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Scan-constrained EP2 prior.

Figure 5.23: Output from the scan-constrained nonparametric priors when the individ-
ual moves in the proposal distribution were allowed to propose remaining in the current
state. The results were derived from an MCMC sample of the five target data set.

attribute the improvement in the combined scores to the fact that by and large the num-
ber of targets was no longer overestimated. As table D.13 indicates, there was actually
a tendency to slightly underestimate K. Only the three property-based priors led to
overestimates, while in the majority of the experiments the actual number of targets was
underestimated by just one. In table D.14, we can see that this is because the weakly
resolved target 5 was frequently missed; sometimes completely. The estimates of α and
λ improved considerably. Compared to default implementation of the proposal distri-
bution, the acceptance rate dropped slightly from 0.30 to 0.28. To visualize the results
from these experiments, see figures 5.23 and 5.24 for the weighted-edge-sample plots
from the scan-constrained nonparametric priors and the alternative priors, respectively.

Despite the trend of improved summary statistics, we remained concerned that
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(a) HUP prior.
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(b) Scan-constrained HUP prior.
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(c) “K” prior.
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(d) “Prop.” prior.
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(e) “Oh” prior.

Figure 5.24: Output from the alternative priors when the individual moves in the pro-
posal distribution were allowed to propose remaining in the current state. The results
were derived from an MCMC sample of the five target data set.
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the alternative implementation of the proposal distribution was causing the sampler to
linger around a local optimum. In particular, we suspected that by setting the initial
state to all false alarms we were forcing the sampler to approach, in terms of the number
of targets, any modes from below where it would run the risk of getting trapped around
the dominant mode with the lowest number of targets. To test this theory, we re-ran
the three experiments corresponding to the DP prior (unconstrained, scan-constrained,
and with a small fixed α) with the initial state set to 10 targets instead of zero. The
initialization was implemented using ten consecutive add moves that did not consider
keeping the status quo.

The results from these new experiments were mixed. Only the DP prior with
a small fixed α produced an estimate that was close to the new initial value, while
the others produced estimates near those obtained using the original zero target ini-
tialization. The expected number of targets for the unconstrained, scan-constrained,
and small fixed α DP priors were 4.41± 1.27, 5.05± 1.22, and 9.00± 0.06, respectively.
Although the first two exhibited some desirable insensitivity to the initial conditions,
they still failed to reach the higher probability configurations that were visited when
using the default proposal distribution. The results suggest that there is a local mode
near the true configuration. Unfortunately, the results also suggest that there is indeed
some attraction to local modes due to the probability of remaining in the current state
dominating the choices in the add move. In the third case, the strong prior beliefs ap-
pear to have exacerbated the problem, causing the sampler to get stuck near the initial
configuration. To see if this problem is related to the particular preferences expressed
by the DP, we repeated the ten target initialization experiments for the UP and EP2
priors, both with a small fixed α. We also evaluated the scan-constrained HUP prior us-
ing the ten target initialization for comparison. The expected K values were 8.00±0.13,
7.01± 0.18, and 5.6± 0.87, respectively. These results suggest that strong prior beliefs
of any kind can increase the likelihood that the sampler gets stuck when each move
considers the current state among the candidates. The uninformative scan-constrained
HUP prior led to similar results for both proposal distributions and both initialization
methods. Figure 5.25 shows the MAP estimates of Z from the ten target initialization
experiments for comparison.

Together with the chosen initialization scheme, the alternative implementation
of the proposal distribution has effectively biased the search in favor of configurations
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(f) Scan-constrained HUP prior.

Figure 5.25: MAP estimates of Z from the experiments using a ten target initialization
when the individual moves in the proposal distribution were allowed to propose remain-
ing in the current state. The results were derived from an MCMC sample of the five
target data set.
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with fewer targets. Although problematic in terms of its implications for how efficiently
the sampler is exploring the space, this bias was not particularly harmful here, or in the
experiments using the one target data set, because we actually have an a priori prefer-
ence for such configurations. In this case, it actually masked some of the deficiencies with
our choice of cluster label prior, hence our model, and provided a measure of fail-safe
behavior. However, we should not count on always having such good fortune. Instead of
preventing a gross overestimate, getting trapped near the first dominant mode may very
well lead to a gross underestimate. These results suggest that in addition to ensuring
that the proposal distribution can move the sampler away from the current state with
sufficient probability, care should be taken to validate the model independently of the
sampler. One approach would be to use stochastic optimization techniques to derive a
MAP estimate that can be compared to the output of the sampler or ground truth, if
available.

By allowing the current state to compete with the other feasible states when
generating each move, the alternative implementation has also effectively reduced the
“scale” of the proposal distribution by taking away probability mass from those options
that lead to deviations from the status quo. In theory, including the current state
among the candidates for each move does not present a problem since it lies within the
support of optimal proposal distribution. However, in practice we can only approximate
the optimal proposal distribution and there is a risk that the direct estimate of the
probability of the current state will be too large compared to averaged estimates for
the other states used by many of the moves. The scale of the proposal distribution is
critical to the mixing speed of the chain. When the scale is too small, the chain will
move too slowly; too large and most of the proposals will be rejected.

Since the indicator variables in (Z, Z0 ) are discrete-valued and have well-
defined structure, the scale of our proposal distribution is not determined by a scalar
standard deviation parameter, which is the typical situation, but rather through the
choice and implementation of the moves in the mixture. Our motivation was to create
a set of moves that could make large and meaningful changes to the state in order to
get reasonable estimates with a limited sample size. The results from these experiments
suggest that we have only been partially successful in that endeavor. Future work should
explore ways to increase the scale, by modifying the moves to propose larger changes to
the current state, while maintaining a reasonable acceptance rate. With that said, we
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(a) Weighted edge samples.
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(b) MAP estimate of Z.

Figure 5.26: Output from the scan-constrained DP prior when all moves in the proposal
distribution were allowed to propose remaining in the current state and the probability
of each selection was computed using an estimate of the posterior. The results were
derived from an MCMC sample of the five target data set.

would like to get a sense of what happens when we minimize the scale of the currently
defined proposal distribution as a baseline. To do this, we not only allowed each move
to propose the current state but forced it to make all selections based on the posterior
approximation. In other words, we undid the modifications to the original add and
delete move definitions that were proposed earlier. Figure 5.26 shows the output from
the scan-constrained DP prior, which we have taken to be the canonical example. The
results are reasonable albeit incomplete. The weakly resolved target 5 is missing but
the MAP estimate of Z is otherwise a good one; with a combined score of 0.80 and
individual target scores of: 1.0, 0.99, 0.92, 0.87, and 0.0, respectively. Because of the
small number of measurements and the relatively low likelihood for target 5, potential
candidate states containing that track had a small probability of being selected; too
small for the given sample size. However, this is primarily a reflection of the model
rather than a deficiency with the posterior approximation used to weight the selections
in each move since the posterior probability of the true state is actually much lower
than the MAP estimate. It does appear that we can claim some measure of success in
facilitating meaningful moves.

Turning now to the experiments based on the PMC sampler, we can see from
table D.15 that the scores and estimates were generally better than their MCMC-derived
counterparts, as was the case for the one target data set. However, the there were also
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some notable exceptions to this trend. The performance of the DP, EP, and EP2 non-
parametric priors using a small fixed α, which was previously very good, worsened with
PMC sampling. The performance of the previously successful scan-constrained HUP
prior also worsened, although this could be a consequence of the approximation scheme
used to implement it. As we saw in the one target experiments, switching the sampling
algorithm caused the maximum-score estimates to drop toward the MAP values. How-
ever, this time the decline was less severe, with almost all the scores remaining above
0.50. Surprisingly, the “K” prior was among those with a MAP score of more than 0.50.
The variance notwithstanding, it even managed to produce a reasonable estimate of the
number of clusters: 7.0 ± 0.0. The “Prop.” and “Oh” priors, which performed very
poorly with the MCMC sampler, also fell into this category, with the “Oh” prior being
one of just three configurations to produce the correct estimate of the number of clusters.
To visualize the spectrum of results from the PMC samples using the default proposal
distribution, figure 5.27 shows the weighted-edge-sample plots from the UP and HUP
priors, which were tied for the highest expected combined score, the DP prior with a
small fixed α, which represents a middling combined score, and the scan-constrained DP
prior, which had the lowest expected combined score. Notice that the challenging target
5 was partially identified in both the high and lowing scoring configurations, but not
the middling. The lowest scoring configuration actually did a reasonable job identifying
each of the targets; it just contained the most spurious associations.

Unfortunately, the variance estimates were still anomalously small and the
problem of weight collapse remained acute. Table 5.3 shows the average weight variances
and effective sample sizes (ESS) for all of the PMC experiments, computed as described
in the previous section. Regarding the weight variances, we can see that they were less
than the maximum value of 1× 10−3, but not by much. However, they were marginally
better overall than what we saw for the one target data set. An examination of the
variance trend for each experiment confirmed that the variance of the weights tended
to decrease modestly over the PMC iterations. Regarding the ESS’s, almost all were
unacceptably small. Only the “K” prior managed to produce a reasonable sample
according to this metric, however, it is misleading. What we are really seeing is an
example of how the ESS is an imperfect diagnostic tool. In this case, the sample
elements became essentially equally weighted, which led to a perfect ESS of 1000 and a
high average over all iterations, yet the sample is not representative of the distribution.
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(a) Unconstrained UP prior.
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(b) HUP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained DP prior.

Figure 5.27: Example of the output from the highest (first two panels), middling (third
panel), and lowest scoring (last panel) PMC samples of the five target data set.
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Prior Avg. Variance Avg. ESS

Default Status Quo K-add Default Status Quo K-add

DP 5.75e-04 8.26e-04 8.97e-04 2.8 1.4 1.2
DP (constr.) 4.90e-04 1.55e-04 9.16e-04 2.6 87.6 1.2
DP (fixed α) 3.68e-04 1.43e-04 9.13e-04 7.4 686.9 1.1
UP 5.98e-04 1.41e-04 9.78e-04 2.6 280.9 1.0
UP (constr.) 4.45e-04 3.73e-04 6.94e-04 6.6 88.6 1.7
UP (fixed α) 3.71e-04 7.43e-04 9.86e-04 7.6 3.9 1.0
EP 1.77e-04 2.83e-04 8.99e-04 21.5 19.1 1.2
EP (constr.) 1.44e-04 6.31e-04 9.65e-04 345.6 3.0 1.0
EP (fixed α) 4.63e-04 1.43e-04 9.29e-04 3.6 685.3 1.1
EP2 8.46e-04 1.83e-04 9.87e-04 1.3 18.2 1.0
EP2 (constr.) 5.51e-04 6.59e-04 9.69e-04 2.4 1.9 1.0
EP2 (fixed α) 6.25e-04 6.29e-04 9.27e-04 3.2 1.7 1.1
HUP 7.55e-04 5.02e-04 9.59e-04 1.5 3.8 1.1
HUP (constr.) 7.23e-04 2.64e-04 8.49e-04 5.9 312.9 1.2
K 1.43e-04 1.48e-04 9.99e-04 857.3 208.2 1.0
Prop. 5.58e-04 5.43e-04 7.89e-04 7.3 4.0 1.4
Oh 1.44e-04 7.65e-04 8.80e-04 319.3 4.4 1.2

Table 5.3: Average weight variances and effective sample sizes for the results from the
PMC sampler on the five target data set.

By comparing the MAP probability to its MCMC-derived counterpart, it is apparent
that the sample lies in a low probability region. Thus, the ESS failed to diagnose the
mismatch between proposal and target distribution. In contrast to what we saw using
the one target data set, there is a weak negative correlation (r = −0.089) between the
expected score and the average ESS in these experiments.

Since the quality of the samples produced by the PMC algorithm was not sat-
isfactory, we also looked at whether a different allocation of resources would improve
them. First, we considered a sample size of 7000 computed using a single PMC iter-
ation. This effectively evaluated the effectiveness of the initialization scheme itself as
the proposal distribution and took the iterative updates out of the equation. Looking
at our canonical example, the scan-constrained DP prior, the resulting estimate of K
was 6.00 ± 0.01 with an estimated combined score of 0.71 ± 0.00, which represents a
substantial improvement. The variance of the weights, however, took the maximum
value and the ESS was just 1.0, which indicates total degeneracy. Next, we considered a
smaller sample size with the remaining resources allocated to the iterations. A sample
size of 100 with 70 iterations was used. Continuing with our example, K was 72± 0.00
with an estimated combined score of just 0.065±0.00. As our preliminary investigations
indicated, small samples appear to be detrimental to the performance. Finally, we con-
sidered keeping the original sample size of 1000 but increasing the number of iterations
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to 70. The resulting estimate of K was 7.00± 0.00 with an estimated combined score of
0.61±0.00. The ESS in this case was 3.5. This lends support to the notion in the PMC
literature that often a relatively small number of iterations is sufficient and suggests
that any additional resources should also go to support an increase in the sample size.
It also showed that an increase in the number of PMC iterations is insufficient to stave
off weight collapse.

Switching to the alternative implementation of the proposal distribution again
tended to improve the combined scores and estimates compared to the default. How-
ever, the weakly resolved target 5 was missed somewhat more frequently. Compared to
their MCMC-derived counterparts, the combined scores from the PMC sampler using
the alternative implementation of the proposal distribution were actually slightly lower
in just over half of the experiments. With respect to the cluster size estimates, the per-
formance of the DP, EP, and EP2 nonparametric priors using a small fixed α and the
scan-constrained HUP prior returned to parity with their MCMC-derived counterparts.
Here too there was a tendency to slightly underestimate K. Rather unexpectedly, the
“K” prior, which arguably expresses some questionable beliefs about the distribution
over cluster labels, was among the configurations to produce the correct estimate of
the number of clusters. Although the variance estimates for the number of clusters
remained near zero in all but two of the experiments, the ESS’s generally improved.
They remained, however, unacceptably small. The effective sample sizes for the DP
and EP priors with a small fixed α, and the scan-constrained HUP prior have improved
considerably, as was the case in the experiments using the one target data set. Note that
despite having the fifth highest ESS, the sample produced using the “K” prior again lay
in a low probability region as it did when using the default proposal distribution. Since
the trend toward higher ESS values after switching to the alternative implementation
of the proposal distribution was also observed in the experiments using the one target
data set, this suggests that modifying the proposal distribution is indeed a potential
remedy.

Finally, let us look at the performance of the PMC sampler using the k-add
mixture proposal distribution. Table D.19 shows that the expected combined scores
only improved in four of the experiments. Overall, there was a tendency to slightly
underestimate the number of targets, similar to what we saw when using the alternative
implementation of the proposal distribution, but here it was true for all of the cluster
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label priors except for the “K” prior. Even that one only overestimated the number of
clusters by just one. This insensitivity to the choice of prior fits with our earlier notion
of a strong likelihood component of the model. The results here also suggest that those
obtained when using the alternative implementation of the proposal distribution are
not entirely unreasonable because even with the extra freedom of movement afforded by
k-add mixture proposal distribution, the sampler avoided configurations with excessive
numbers of targets. Unfortunately, as we can see from table 5.3 , the problem of weight
collapse was severe, with almost total degeneracy in all of the experiments. However,
the results from the one target data set suggest that the problem is not endemic to the
k-add mixture proposal distribution. For the critical metric of the number of targets,
all variance estimates were negligible. Thus, further development is needed before this
proposal distribution would be suitable for surveillance applications.

5.5.6 Field Test

The models and samplers were also evaluated using data collected from a field
test of a commercial surveillance radar. In this case, we do not have ground truth
and thus can only make a qualitative assessment of the results. Known targets were
carrying handheld GPS receivers which recorded their tracks with moderate precision.
This gives us a good idea of what to expect, at least in the vicinity of the targets,
but it is impossible to reliably determine the origin of each measurement based on this
information. Despite these limitations, the value of such experiments is to see what
happens when the algorithms are exposed to the realistic complications of non-uniform
false alarms, unknown spatially varying PD, and imperfect measurement models.

In this data set, three walkers are moving along a trail in rolling terrain at a
range of approximately 3.5 km. They are traveling together, as a group, which introduces
an additional complication. The resolution of radar is insufficient to resolve the targets
individually, so the best we can expect from the tracker is that it identifies a single
target corresponding to the group. There may well be occasional instances where more
than one of the targets is detected in a given scan, but that is unlikely. What is more
likely is that the presence of multiple targets within a resolution cell will effectively
be a source of additional measurement error. The data set consists of approximately
30 minutes worth of measurements collected at 20 RPM (T = 3 s). The area of the
surveillance region is 2.3 km2.
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Figure 5.28: Probability of false alarm for the field test data.

With an average of just 2.33 detections per scan, the false alarm rate is sig-
nificantly lower than what we have considered in the previous experiments. This is
because a low false alarm rate is expected for a surveillance radar as traditional trackers
tend to break down in the presence of high number of false alarms. Of course, this
usually comes at the cost of many missed detections. Recall that one of the objectives
of this research was to develop a tracker that can effectively tolerate more false alarms
in order to maximize the probability of detection. Figure 5.28 shows the estimated of
probability of false alarms over the surveillance region, which is clearly non-uniform. It
appears that something in the environment, perhaps wind-blown foliage, is confusing
the detector’s threshold selection logic which leads to these “hot spots”. Such behavior
is not uncommon yet we have made no attempt to mitigate the nonuniformity by pre-
processing the detections, preferring instead to work with the raw data. The associative
tracking model was still configured based on the assumption of uniformly distributed
false alarms in order to deliberately maintain the mismatch between the false alarm
model and the data.

A PD model estimated based on the line of sight visibility, given the terrain
and the signal propagation, was also used. It is not known how accurate the model is
because it has not been validated empirically. Figure 5.29 shows a portion of the model
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Figure 5.29: Estimated PD plus the detections and GPS track for a subset of the field
test data.

for the region containing the walkers. The GPS track and detections are also included for
reference. Note how the targets skirt the edge of the (presumably) detectable regions in
several places and then pass through a large region of negligible probability of detection.
The large gap represents a dropout of just under three minutes. Since we do not
expect the probability of detection to be unity anywhere and because some of regions
of negligible probability of detection may in fact be mischaracterized, the model used
by the tracker was rescaled so that PD ∈ [0.07, 0.93].

To handle the sparse detections, a path constrained dynamic model with
Wiener process speed (PSH-Path/C1) was used to construct the feasible graph. The
maximum out-degree of each vertex was again limited to 5. Lacking ground truth, we
made a qualitative assessment of the coverage and deemed it to be sufficient.

Tables D.21–D.25 contain the summary statistics from the experiments. Note
that they do not include the scores or score-based metrics that were so critical in our
earlier evaluations because we no longer have the necessary information to compute
them. Thus, here we have relied primarily on qualitative assessments of the weighted-
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edge-sample plots and MAP estimates of Z in their absence.
Just as we saw in the previous experiments based on the simulated measure-

ments, the MCMC sampler using the default implementation of the proposal distribution
had a tendency to grossly overestimate the number of targets. The false alarm rate was
consistently underestimated as we would expect under the circumstances. Despite far
fewer total measurements than were in the one target data set, the expected number
of targets was larger in all but one of these experiments. Although the DP prior using
a small fixed α once again produced the best estimates, the proposition that there are
5.8 ± 0.74 targets is not very reasonable. Figure 5.30 shows the results from a selec-
tion of priors that consists of the DP-based, scan-constrained HUP, and “Oh” priors.
The corresponding MAP estimates of Z are shown in figure 5.31. We can see that the
weighted-edge-sample plots paint a somewhat confusing picture of what is happening
in the surveillance region. However, in these examples the tracker appears to have reli-
ably identified the target measurements in the regions of high PD. The MAP estimates
of Z reveal that the DP-based priors produced a track that matches up well with the
GPS track, unfortunately it is buried among numerous tracks consisting of noise. The
the scan-constrained HUP and “Oh” priors, on the other hand, failed to contain a good
match for the true track in the MAP estimate of Z. They both produced assignments in
which the track was broken into fragments. Despite failing to keep the track intact, the
“Oh” prior did a remarkable job of suppressing spurious associations elsewhere in the
region. Even the activity to the right of the target, which most likely consists entirely
of noise, produced only low-probability associations unlike what we saw with the other
priors. In the experiments not pictured, the nonparametric priors needed the small
fixed α before their preferences were strong enough to keep the track intact; otherwise
it was broken into fragments. The modest reduction in α achieved by introducing the
scan constraints to the nonparametric priors led to very little improvement. Of the
remaining priors, only the HUP and “Prop.” maintained the track, but buried under
substantial noise.

Using the alternative implementation of the proposal distribution with the
MCMC sampler improved the output considerably. As we can see from table D.22, in
almost half of the experiments the expected number of targets is, for lack of a better
word, what we expected: 1.0. Only the scan-constrained HUP, “K”, and “Prop.” priors
yielded significant overestimates with numerous high-probability erroneous associations.
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(a) DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.30: Output from selected priors. The results were derived from an MCMC
sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.30: Output from selected priors. The results were derived
from an MCMC sample of the field test data set.

The variance estimates appear to be understated in all experiments. Compared to the
default proposal distribution, the switch to the alternative implementation entailed a
5-10% drop in the acceptance rate to an average of approximately 0.26. Figures 5.32
and 5.33 show the weighted-edge-sample plots and the MAP estimates of Z, respec-
tively, for the same selection of priors that we looked at earlier. A visual inspection of
the weighted-edge-sample plots confirms that the high probability edges indeed agree
with the GPS data and the results are encouraging. Of all the priors, only the scan-
constrained HUP and “K” failed to keep the track intact. Once again, the MCMC
sampler using the alternative implementation of the proposal distribution failed to ex-
plore any of the higher probability configurations that were reached using the default
proposal distribution. As was the case for the earlier experiments based on the simulated
measurements, this was to our advantage but still a cause for concern.

When the samples were generated using the PMC algorithm, we can see from
tables D.23 and D.24 that the results followed the same basic pattern that was observed
in the other data sets. That is: generally lower expected target counts compared to
the corresponding MCMC experiments for the default proposal distribution, a further
reduction toward the (nominally) true number of targets when each move considered
maintaining the status quo, a further reduction of the expected number of targets when
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(d) Scan-constrained HUP prior.

Figure 5.31: MAP estimates of Z from selected priors. The results were derived from
an MCMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.31: MAP estimates of Z from selected priors. The results were
derived from an MCMC sample of the field test data set.

the k-add mixture proposal distribution was used, and the collapse of the variance
estimates in all three cases. Note that a few experiments did produce non-negligible
estimates of the variance in the number of targets, although none were plausible.

Table 5.4 shows the average weight variances and average effective sample sizes
(ESS) for all of the PMC experiments. For the default implementation of the proposal
distribution, the results were generally poor and similar to what we saw using the
one target data set consisting of simulated measurements. The HUP and “K” priors
stand out as exceptions in that regard, but their relatively high ESS’s appear to be
misleading in the same sense that we discussed in the previous section. Switching to the
alternative implementation of the proposal distribution did not lead to the same kind
of improvements that we have seen before. Only one prior, the EP with a small fixed α,
improved considerably. However, the ESS values grew in just over half of experiments
so in this sense there is still a weak trend toward improvement of the samples. For the
k-add mixture proposal distribution, three priors managed to achieve more than 20%
of the optimal ESS, but all remained unacceptably small with most indicating almost
total degeneracy.
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(a) DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.32: Output from selected priors when the individual moves in the proposal
distribution were allowed to propose remaining in the current state. The results were
derived from an MCMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.32: Output from selected priors when the individual moves in
the proposal distirbution were allowed to propose remaining in the current state. The
results were derived from an MCMC sample of the field test data set.

Prior Avg. Variance Avg. ESS

Default Status Quo K-add Default Status Quo K-add

DP 2.87e-04 5.65e-04 9.70e-04 6.9 2.7 1.0
DP (constr.) 4.31e-04 3.76e-04 6.18e-04 5.9 3.9 2.0
DP (fixed α) 4.05e-04 1.97e-04 1.38e-05 4.0 7.0 258.5
UP 5.24e-04 5.91e-04 8.83e-04 3.1 18.6 1.2
UP (constr.) 6.48e-04 5.34e-04 9.20e-04 4.1 4.9 1.1
UP (fixed α) 7.04e-04 6.62e-04 4.53e-04 2.7 1.8 2.9
EP 7.41e-04 6.81e-04 1.73e-04 1.8 2.8 23.7
EP (constr.) 6.01e-04 7.48e-04 6.03e-05 12.8 1.7 20.5
EP (fixed α) 4.40e-04 1.68e-05 5.73e-05 3.1 349.6 245.7
EP2 5.35e-04 5.25e-04 8.93e-04 2.8 2.3 1.1
EP2 (constr.) 5.87e-04 5.14e-04 3.89e-04 2.0 2.7 46.7
EP2 (fixed α) 5.92e-04 5.95e-04 3.31e-05 2.4 29.9 221.9
HUP 1.43e-04 6.43e-04 5.38e-04 857.3 2.3 2.8
HUP (constr.) 4.55e-04 5.03e-04 8.27e-04 3.1 10.6 1.4
K 1.07e-04 4.20e-04 8.89e-04 818.9 5.2 1.2
Prop. 4.56e-04 5.34e-04 9.40e-04 4.5 2.2 1.1
Oh 1.51e-04 1.76e-04 4.54e-05 45.2 71.4 80.0

Table 5.4: Average weight variances and effective sample sizes for the results from the
PMC sampler on the field test data set.
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(d) Scan-constrained HUP prior.

Figure 5.33: MAP estimates of Z from selected priors when the individual moves in
the proposal distribution were allowed to propose remaining in the current state. The
results were derived from an MCMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.33: MAP estimates of Z from selected priors when the individ-
ual moves in the proposal distirbution were allowed to propose remaining in the current
state. The results were derived from an MCMC sample of the field test data set.
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For comparison with the earlier results from the field test data set, figures 5.34
and 5.35 show the weighted-edge-sample plots and the MAP estimates of Z, respectively,
for the selected priors when the default proposal distribution was used; figures 5.36 and
5.37 contain the corresponding plots for the case of the alternative implementation of
the proposal distribution. For the sake of completeness, figures 5.38 and 5.39 contain
the corresponding plots for the case of the k-add mixture proposal distribution.

Note how compared to figure 5.30, the weighted-edge-sample plots in figure
5.34 show supreme confidence in many of the erroneous associations, which presents a
very misleading picture of what is happening within the surveillance region. In almost
all of the PMC experiments, the MAP estimates of Z managed to contain a good match
with the GPS track along with varying numbers of erroneous tracks. The “Oh” prior
produced MAP estimates that fragmented the track when using the default and alter-
native implementations of the proposal distribution. The EP prior, both unconstrained
and using a small fixed α, also failed to keep the track intact when using the alternative
implementation of the proposal distribution. Only the DP prior using a small fixed α
produced reasonable results when using either the default or alternative implementa-
tion of the proposal distribution. Overall, the estimates and posterior probabilities were
quite similar across all experiments using those two proposal distributions. With the
k-add mixture proposal distribution, the estimates improved and the posterior proba-
bilities dropped moderately. All MAP estimates of Z contained a good match with the
GPS track in this case with only the HUP and scan-constrained HUP priors producing
significant numbers of spurious tracks. Seven of the experiments yielded results that
appeared to be perfect, while five others identified the true track plus a well-separated
(presumably) erroneous track. Despite these encouraging results, we should not forget
that the uncertainty was very poorly characterized. Figure 5.38d shows a rather extreme
example of the consequences with all associations regarded as equally likely.
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(a) DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.34: Output from selected priors. The results were derived from an PMC sample
of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.34: Output from selected priors. The results were derived
from an PMC sample of the field test data set.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.35: MAP estimates of Z from selected priors. The results were derived from
an PMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.35: MAP estimates from selected priors. The results were
derived from an PMC sample of the field test data set.
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(a) DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.36: Output from selected priors when the individual moves in the proposal
distribution were allowed to propose remaining in the current state. The results were
derived from an PMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.36: Output from selected priors when the individual moves in
the proposal distirbution were allowed to propose remaining in the current state. The
results were derived from an PMC sample of the field test data set.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.37: MAP estimates of Z from selected priors when the individual moves in
the proposal distribution were allowed to propose remaining in the current state. The
results were derived from an PMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.37: MAP estimates of Z from selected priors when the in-
dividual moves in the proposal distirbution were allowed to propose remaining in the
current state. The results were derived from an PMC sample of the field test data set.
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(a) DP prior.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.38: Output from selected priors using the k-add mixture proposal distribution.
The results were derived from an PMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.38: Output from selected priors using the k-add mixture pro-
posal distribution. The results were derived from an PMC sample of the field test data
set.
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(b) Scan-constrained DP prior.
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(c) DP prior with α = 1× 10−6.
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(d) Scan-constrained HUP prior.

Figure 5.39: MAP estimates of Z from selected priors using the k-add mixture proposal
distribution. The results were derived from an PMC sample of the field test data set.
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(e) “Oh” prior.

Continuation of Figure 5.39: MAP estimates of Z from selected priors using the k-add
mixture proposal distribution. The results were derived from an PMC sample of the
field test data set.
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Chapter 6

Discussion and Recommendations
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6.1 Discussion

We began with the proposition that state estimation and data association are
two distinct, but related, objectives of tracking that each require a different type of
model in order to capture the relevant uncertainty. Too often this has been overlooked
to the detriment of the application. It is important to be clear about what we hope
to accomplish by tracking and what kind of uncertainty we care about in order to
choose an approach suited to those needs. In the first chapter, we sought to clarify the
relationship between the objective of tracking and the appropriate type of model, but
it bears repeating here.

The first objective corresponds to tracking in the sense of following something.
Tracking to reduce positional uncertainty is the canonical example. Given a sequence of
noisy measurements of a target’s position, the tracking algorithm integrates that infor-
mation using models that describe the measurement process and the motion of the target
to produce estimates of its positional state with (hopefully) less uncertainty than the
raw measurements. Of course, when there are multiple targets or there is the possibility
of receiving non-target measurements, it is no longer clear which measurements to use.
In this case, data association is needed to determine the origin of each measurement so
that the state estimates are not corrupted by information from the wrong source. The
role of data association here is to maintain the state estimation process, which includes
starting and stopping it as new targets appear and existing targets disappear. The
tracking algorithm may seek the single best solution to the data association problem
or it may use a probabilistically weighted average of multiple association hypotheses.
Either way, any uncertainty with respect to the mapping of measurements to targets
is effectively squeezed out to produce a collection of state estimates that represent just
one interpretation of the data. This is true regardless of how principled the approach
to dealing with the uncertainty is. For applications in which this uncertainty is either
insignificant or deemed to be unimportant, such an approach is appropriate and one
can draw on the numerous algorithms of this type in the literature.

There are, however, applications such as surveillance in which the uncertainty
with respect to the mapping of measurements to targets is important and should be
quantified for analysis or visualization. These applications require the ability to identify
ambiguities in the interpretation of the data and compare different interpretations using
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a well-defined measure of confidence. This is possible when the output of the tracker
represents not target state distributions but rather the distribution of data association
hypotheses. Such a tracker satisfies the second objective, which corresponds to tracking
in the sense of finding something. Tracking to “connect the dots” in order to determine
if any targets have been observed is the canonical example. While the detector ideally
responds only to the presence of actual targets, in practice there will be false alarms.
And even if the detector never produces a false alarm, we are still left with the association
problem. To address these issues, the tracking algorithm processes a set of measurements
and identifies the sequences that appear to have originated from the same target. This
is equivalent to recognizing the time-varying patterns of the underlying target motion.
The resulting mapping of measurements to targets tells us what has been observed and
measurements not associated with any target can be rejected as false alarms. Of course,
these decisions are usually informed by target state estimates made internally by the
algorithm. Those estimates are not reflected in the output, however, recovering them
for any target in the mapping is itself a well-defined state estimation problem since we
know which measurements to process. Now, unlike the target state, whose uncertainty
can usually be represented by known a probability distribution, the uncertainty of the
mapping does not admit a closed-form representation. Thus, the output of the tracker
consists of a sample drawn from the distribution of data association hypotheses from
which application-specific quantities of interest can be estimated and the uncertainty of
those estimates quantified.

Fox et al. [60] appear to be the only ones to have pointed out that having such
a sample enables us to do more than just produce a single collection of state estimates
that approximates the Bayes’ optimal solution (i.e. minimizes the mean squared error)
or is based on the maximum a posteriori (MAP) mapping. They demonstrated the
benefit of having a representation of the distribution of data association hypotheses by
identifying ambiguities in the target crossing patterns. They also noted the importance
of considering multiple hypotheses in the face of such ambiguities. One of the contribu-
tions of our work is to make it clear that when the primary objective of tracking is to
understand what has been observed, the ability to characterize this kind of uncertainty
is critical. Of course, after analyzing the distribution of data association hypotheses,
we may very well be interested in using some particular mappings, or even subsets of
those mappings, to generate state estimates. Obtaining these estimates is then just a
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series of well-defined state estimation problems.
While the literature does contain tracking algorithms that solve the data asso-

ciation problem directly, they are relatively rare compared to those that treat tracking
as a state estimation problem. Only the Monte Carlo-based data association algorithms
discussed in section 1.2.2 produce output suitable for the second objective. This is due
in large part to the fact that the tracking field was born out of a need to meet the first
objective. Consequently, the view of data association as a subproblem of state estima-
tion is well entrenched and most of the research on data association has focused on the
problem from this perspective. This matters for two reasons. First, despite their theo-
retical advantages, distributional models of the data association problem have received
little attention because they are not required for state estimation; a point estimate of
the mapping is sufficient and usually easier to compute. This is exacerbated by the
nature of the problem itself. Data association is too difficult to solve optimally in the
general case so we are forced to rely on approximations, which are often tailored to the
role of maintaining the state estimation process. Second, even the existing algorithms
that produce a sample drawn from the distribution of data association hypotheses are
not widely recognized as providing a unique and independently useful information. As
a result of all this, the options available to the practitioner are limited and the even
those have not been well-studied, especially with respect to the quality of the sample
they produce. Our work sought to change that by developing a new data association
model that extends the scope and flexibility of existing models. In addition, we proposed
two inference algorithms, based on different theoretical foundations and with different
potentials for effective implementation. A thorough evaluation was then conducted for
different configurations of the model and inference algorithms in the context of wide-
area surveillance of human targets using radar. The model configurations consisted of
numerous prior distributions over cluster labels and a variety of target motion models.
The configurations for each inference algorithm consisted of various sampler proposal
distributions.

In chapter 2, we presented the associative tracking model designed to sat-
isfy the data association objective. It is based on a generative model of the posterior
distribution over data association hypotheses, which is of the form:

p(ω | Y) ∝ p(Y | ω) p(ω) .
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The model shares the same basic form as those used in existing multiple-scan Monte
Carlo data association algorithms. This includes defining the target likelihood based
on the joint measurement and state distribution with the state then marginalized out.
However, our model differs from the existing work in three important ways.

First, we augmented the space of measurements to include a discrete element
that indicates the absence of a detection. This enabled us to incorporate a state-
dependent probability of detection (PD) into the target likelihood model. Such support
has traditionally been limited to algorithms that process the raw sensor data rather
than discrete detections. The “negative” measurements (i.e. those corresponding to
no detection where one was expected) are inferred from gaps in a sequence of target
measurements, which are known from the conditional mapping. Exploiting the so-
called “negative information” conveyed by these missed detections has been shown to
improve performance in tracking applications. In traditional algorithms, this usually
takes the form of reasoning about occlusions that is incorporated into track scores
or assignment cost matrices. For distributional data association models that process
detections, taking advantage of negative information is more difficult. Previous work
[170, 171, 135] has recognized that in most applications PD is not equal to one and thus
should be incorporated into the model. The solution there was to assume a constant PD,
the effect of which was captured by the prior, p(ω). Unfortunately, this assumption of a
uniform detection process does not allow one to model the effects of terrain obscuration
or sensor gaps, which are often a problem in ground target tracking. Even in situations
where the detection process cannot be modeled precisely and PD can reasonably be
regarded as constant in regions with sensor coverage, an effective compromise is to use
a binary PD model so that regions where no measurements are possible can be assigned
a near-zero probability of detection.

Our approach provides the framework necessary to incorporate either precisely
defined PD models or simple occlusion-based PD models into the target likelihood.
However, this flexibility comes with a caveat. The form of the model, PD(x), will affect
the form of the measurement model which will in turn affect whether the integration
over the states in the target likelihood can be computed in closed-form. For performance
reasons, we generally want to retain this property, but the only forms that will preserve
it are a Gaussian function or a constant. Since neither of these are compelling, we can
instead use a Gaussian approximation to the joint measurement and state distribution,
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based on an arbitrary PD model. We can also generate local constant PD approximations
on the fly during the integration process. These are computed at each time step in the
lifetime of every target based on the expected probability of detection given the current
state estimate.

The second way that our model differs from the existing work is in how the
mapping of measurements to targets is defined. Typically, ω is defined using a set of
indicator variables that identify the origin of each measurement. The values of these
indicators can be thought of as cluster labels, where one cluster represents the false
alarms and each of the other clusters represents a target. We have introduced a second
set of indicator variables that identify whether the corresponding measurement is a false
alarm. Together, these two sets of indicator variables, denoted by Z and Z0 , comprise
ω in our model. Although seemingly redundant, this notational change enabled us to
factor the prior into separate models for the false alarm and target clusters. This is
important because, despite the fact that conceptually each cluster in Z just represents
a different measurement origin, the false alarm cluster is distinct from the others. While
the size of any given target cluster is a priori unknown, we actually have strong beliefs
about the size of the false alarm cluster. We even have a good idea of how the number
of false alarm measurements is expected to be distributed across scans. Thus, it makes
sense to represent these beliefs separately from those regarding the target clusters, which
can be described using the same model. Not only does this improve the clarity of the
data association model, it makes it possible to work directly with broader class of cluster
label priors.

Finally, our model treats the false alarm rate as a random variable with its own
hyperprior distribution. We assumed that the occurrence of false alarm measurements
in any application could be modeled and that that information should be reflected in
the prior, p(ω). However, we did not expect that the usual model based on a Poisson
distribution with a known constant rate parameter would always be adequate. So, we
extended the model by placing a gamma hyperprior on the rate parameter to charac-
terize its uncertainty. This gives us a more flexible model for the distribution of false
alarm counts, one where the variance need not be equal to the mean, and allows us to
infer the arrival rate along with ω.

To sample from the associative tracking model, we proposed two algorithms
based on different Monte Carlo methods, each with a different theoretical basis for its
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validity. In addition, for each algorithm we considered multiple implementations of the
proposal distribution. The reason is that efficient sampling from a high-dimensional
distribution, such as p(ω | Y) , is still very much an open problem and we have sought
to determine what might be effective in this case. Unfortunately, none of the techniques
commonly used to improve the sampling performance in high-dimensional models are
useful for associative tracking. Since ω is discrete, Hamiltonian (or hybrid) Monte
Carlo is not directly applicable and it is not clear how dimensionality reduction could
be applied to the space of false alarm and target cluster indicator variables without
losing any critical information. In previous work on multiple-scan distributional data
association models, two types of sampling algorithm were proposed but neither of them
proved to be effective on our data. The Gibbs sampler used by Fox et al. [60] was
appealing because it implies a specific choice for the proposal distribution. However,
even with the recommended switch step to improve the performance, we found it mixed
very slowly. The Markov chain Monte Carlo (MCMC) samplers used by Oh et al. [135]
and Yu et al. [199, 201] performed somewhat better because of their ability to modify
multiple indicator variables in unison, but still mixed slowly and suffered from low
acceptance rates, with the add moves being frequently rejected. This left us to consider
different Monte Carlo algorithms and various proposal distributions.

The first algorithm was based on MCMC with a proposal distribution consist-
ing of a mixture of reversible moves that modify the cluster assignments in various ways,
similar to what has been done before. Where we deviated from those approaches is in
how the moves themselves were implemented. Our goal was to address deficiencies with
the add, extend, and update moves, which were not selecting favorable sequences of false
alarm measurements to become target measurements with high enough probability. Oh
et al. dealt with the issue by preprocessing the measurements to construct a neighbor-
hood tree in which the edges indicate that the connected measurements can be plausibly
associated based on a simple distance criterion. When reassigning false alarm measure-
ments, the selections were then constrained to follow the edges in the tree in order to
avoid making proposals with negligible likelihood. Yu et al. suggested using data-driven
proposals to increase their likelihood but only applied them to appearance-related pa-
rameters and not to the cluster assignments. Our work extends the neighborhood tree
concept into what we can the feasible graph and then uses it to make data-driven pro-
posals for ω. In the feasible graph, each edge represents a plausible association of the
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corresponding measurements based on an arbitrary model for a track consisting of just
two measurements, which we call a tracklet. The tracklet model can take any form
deemed to be appropriate, including that of a discriminative model. It need only return
the likelihood of the association which is taken to be the weight of the corresponding
edge. The graph was then used to approximate the joint likelihood, p(Y | ω), when eval-
uating the probability of proposal candidates. For the add, extend, and update moves,
we exploited the directed acyclic structure of the graph to efficiently find minimum cost
paths, where the cost is an approximation of the negative posterior probability, that are
likely to correspond to tracks.

Two different proposal distributions were considered for the MCMC sampler;
both based on the same kernel mixture structure. We have termed them the default
and alternative. The only difference between the two was that the alternative allowed
individual moves to propose remaining in the present state. In the default, a dummy
move was added to the mixture proposal provide an explicit means of keeping the
status quo. The argument for the alternative is to reduce the tendency of the sampler
to make transitions that will promptly need to be reversed when the wrong type of
move is selected (e.g. an add move when the current state contains the correct number
of clusters). As it turned out, the performance differed substantially depending on the
approach, but the question of which was superior could not be resolved during our
preliminary investigation. So, we added the handling self-transitions in the proposal
distribution to the set variables to be studied in this work. The literature offers no
guidance on this issue because there is no example of the current state being explicitly
considered among the proposal candidates nor is there any discussion of why this should
be the case. However, it should be noted that Oh et al. did provide an explicit option
to keep the status quo fifty percent of the time in their single-scan algorithm.

MCMC is a widely used method of sampling from complex, high-dimensional
probability distributions. Its primary appeal lies in the fact that it is relatively easy to
construct a chain with the required invariant distribution. Unfortunately, the only thing
that this guarantees is that in the limit of infinite sample size, the empirical averages
used to estimate the expectations of functions with respect to this distribution will
converge. In practice, the sample size is not only finite but often severely limited by
the available time and computing power. How accurate these estimates will be for a
given sample size is impossible to determine in general. However, the rate at which the
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empirical averages converge is related to the mixing speed of the chain which in turn
relates to how quickly the sampler explores the support of the distribution. Thus, we
know in principle how to maximize the chances of generating a sample that represents
the important features of the distribution after a fixed number of iterations. Accordingly,
we have put considerable effort into the design of the proposal distribution in order to
encourage rapid mixing. With the add move in particular, great pains were taken to
ensure that large clusters could be created in a single step. Yet, despite all of this,
questions about the convergence and quality of the estimates remain. This motivated
us to consider a second sampling algorithm: population Monte Carlo (PMC). Our work
is the first to apply this algorithm to the data association problem.

PMC is an iterated importance sampling scheme designed to generate a fixed-
size sample from an arbitrary probability distribution. Unlike MCMC, which iteratively
generates an approximate sample, PMC repeatedly simulates the entire sample. Its
appeal is twofold. First, the approximation to the target distribution is valid at every
iteration and thus does not require convergence time. Second, PMC is amenable to
adapting the proposal distribution since ergodicity is not an issue. In fact, it is possible
to use different sample-dependent proposal distributions at every iteration and for every
element (i.e. particle). Estimates of expectations based on the sample remain unbiased
(or approximately unbiased when the target distribution is unscaled) even when the
proposals depend on past performance. A practical benefit is that PMC is also amenable
to parallel computation.

Three different proposal distributions were considered for the PMC sampler;
all three based on a mixture of reversible moves. Adaptation of the proposals was
performed using the Rao-Blackwellized D-kernel PMC algorithm, which adjusts the
mixture weights after each iteration based on the sample. The first two proposal distri-
butions were the same ones that we used with the MCMC sampler in order to provide a
means of comparing the two sampling algorithms under similar assumptions. The third
proposal distribution was based on a mixture of k-add moves, where each one modifies
ω such that the number of clusters is equal to the zero-based index of the move within
the mixture. It represents an attempt to encourage a diverse sample by allowing each
proposed set of indicators to have any number of clusters, up to some maximum value
determined by the number of mixture components, regardless of the initial state. Since
the expected number of clusters is assumed to be unknown, we rely on the adaptation
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to learn the appropriate mixture weights.
In chapter 3, we took up the question of how to define the prior distribution of

target cluster labels, p(Z | ·). This decision is critical to the performance of the model
because the likelihood component by itself will tend to favor mappings of measurements
to targets in which the true tracks are split into fragments that each fare well under
the motion model. Thus, a prior is needed that will encourage the continuity of those
tracks and discourage short spurious tracks. Given the fact that we generally know
nothing about the correct number of clusters or their sizes, it is far from clear what
the best choice would be. The priors used by existing distributional data association
models reflect two basic philosophies. The first assumes that we actually have relatively
specific beliefs about the number and sizes of the clusters. These beliefs are represented
by models of the appearance and disappearance of targets. The second assumes that
we have no such knowledge and instead expresses a general belief that larger clusters
are more plausible. Our view is that vague assertions, such as the one embodied by the
second philosophy, are preferable for associative tracking since the premise is that we
do not know what has been observed.

Despite the fact that objective cluster label priors have been proposed before,
their performance in tracking applications remains poorly understood. In addition,
none of the existing approaches have addressed the matter of how to set the parameters
so that the distribution actually reflects our beliefs. Therefore, we decided to treat the
prior distribution of target cluster labels as another variable to be studied and presented
the candidates in their own chapter. This included those that have been used before,
two cluster label priors that had not previously been applied to tracking, and two new
nonparametric priors.

One of the cluster label priors from the literature is a property-based prior
designed to express a preference for large clusters. We showed that by ignoring the
combinatorial structure of the space of cluster labels, such priors obscure the relationship
between their parameters and the statistics of the distribution, which makes it extremely
difficult to determine suitable values for the parameters. A more principled approach
with a similar preference, also in the tracking literature, is to use a nonparametric
prior based on the Dirichlet process (DP). However, this was demonstrated without any
explanation for how its critical tuning parameter, the concentration parameter, was set.
Such priors have been ruled out by some researchers in other fields due to the sensitivity
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of the results to the concentration parameter, so the matter cannot simply be ignored.
We resolved this problem by placing a hyperprior on the concentration parameter that is
defined based on the general belief that a small numbers of clusters are more plausible.
This is possible because the relationship between the concentration parameter and the
implied distribution of cluster counts is known.

Although the DP prior does reflect the kind of vague beliefs that we think
are appropriate, it also implies a distribution of cluster sizes that heavily favors small
clusters, which may not be desirable for tracking applications. Thus, we also considered
a uniform process (UP) prior, which produces a flat distribution (ignoring the effects of
the finite sample size) of cluster sizes. The UP prior was developed as an alternative to
the DP prior for DNA motif clustering applications and our work is the first to apply it
to target tracking. Unlike the DP, the UP does not induce an exchangeable distribution
over the cluster labels and thus does not enjoy some of the theoretical properties that
make the DP attractive. However, the UP prior has been shown to be approximately
exchangeable and we showed how the calculation of p(Z | ·) could be improved. The
performance of the UP prior is also highly dependent on a concentration parameter
that must be set appropriately. We handled this using a hyperprior defined analogous
to the one used for the DP prior. The required relationship between the concentration
parameter and the implied distribution of cluster counts was not known, so we derived
a satisfactory approximation.

Based on the notion that it may be desirable for the distribution of cluster sizes
to favor large clusters, we also introduced two forms of what we called the “egalitarian
process” (EP). The term reflects the fact that the clustering process was defined so that
at each step, the next assignment was most likely to be to small cluster. The idea was
to express a preference for large clusters by encouraging each to be as large as possible.
The two forms of the EP differ in the strength of the preference. Like the UP, these
procedures fail to induce an exchangeable distribution over the cluster labels but are
approximately exchangeable. We proposed a way to calculate p(Z | ·) and derived an
approximation to the distribution of cluster counts, as a function of the concentration
parameter, needed to define the hyperprior.

The hierarchical uniform prior (HUP) was introduced in the statistics literature
as an objective distribution of measurement partitions for clustering applications. It was
developed as an alternative to both the DP and UP priors. The HUP is defined as the
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product of a uniform distribution over partitions with a given the number of clusters and
a distribution over the number of clusters that expresses a preference for a relatively
small number of clusters. In other words, it treats all mappings of measurements to
targets with the same number of clusters as equally likely. The UP prior does this
as well, approximately, but the implied distribution of cluster counts is very different.
For the HUP, that distribution can be specified directly. The original implementation
suggested using either the Poisson-Jeffery’s or Poisson-intrinsic prior, but we opted for
a similarly shaped distribution with exponential-like decay with the rate specified by
the likelihood ratio of the smallest and largest numbers of clusters. Our work is the first
to apply the HUP to tracking problems.

Since the measurements are collected in scans and we assumed that each target
will yield at most one measurement in a given scan (i.e. no split measurements), there
are configurations of Z that should be assigned zero probability by the prior. Thus,
the scan constraint effectively truncates p(Z | ·), which has implications for how we
determine the parameters in the property-based and nonparametric priors. Unfortu-
nately, it is generally intractable to account for impact of the scan constraints exactly
because the number of possible configurations is too large. For the nonparametric pri-
ors, we prosed a simple scheme for modifying the implied distribution of cluster counts
to reflect constraints. While not exact, the approximation does improve the hyperprior
considerably. In the case of the HUP, the truncation renders the distribution over par-
titions with a given the number of clusters non-uniform. To correct for this, we need a
way to compute the scan-constrained number of configuration classes and the number
of partitions in each configuration class. We proposed methods of approximating both
of these values. The effect of the scan constraint on the property-based priors was not
considered because the relationship of the parameters to p(Z | ·) is generally unknown
even without the constraint.

In chapter 4, we looked at how to tailor the associative tracking model to the
motivating application: wide-area surveillance of human targets using radar. Specif-
ically, we considered various means of specifying the dynamic model used to define
the target likelihood. This particular combination of sensor and target has not been
well-studied because the ability to reliably detect people at long range using radar is
a relatively recent phenomenon. Tracking humans typically relies on appearance infor-
mation to aid the data association process. However, we assumed, based on the current
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state of technology and for the purpose of establishing a performance baseline, that no
such information is available. Thus, we are relying on the dynamics for discriminating
targets from spurious detections. This is complicated by the facts that humans are
highly maneuverable and we are observing them on a coarse time-scale due to inherent
difficulties in detecting such targets.

We began by studying the dynamics of human walkers from the perspective
of the surveillance radar. This meant sampling the kinematic state with periods from
7.5 s to 60 s. The state was measured precisely using a differential global positioning
system (DGPS) receiver worn by a test subject moving in three different types of terrain.
The data collected was used to guide the model selection process and to calibrate the
noise parameters. It was used for the performance evaluation conducted in the next
chapter. These studies established two important facts. First, that the target speed is
well-modeled in the discrete-time domain as a Gaussian. Second, that the target speed
and heading are effectively uncorrelated after 30 s and 40 s, respectively. Consequently,
we are justified in using efficient Gaussian models for the state transition distribution.
We must also expect that models of correlated speed and heading are unlikely to provide
significant benefit in practice.

The state of the target was defined to be its position and velocity. In all cases,
the position was represented using 2-D Cartesian coordinates. Of the four basic dynamic
models that we considered, one used a Cartesian representation of the velocity while
the others used a polar representation. The polar representation was deemed preferable
because of the convenience of modeling the speed and heading separately. Previous work
on people tracking has used Cartesian velocity models exclusively, so we considered one
as well. It was based on the standard assumption of a Wiener process model for each ve-
locity component; the well-known continuous white noise acceleration (CWNA) model.
However, we extended the model to optionally make predictions along a preferred head-
ing. The preferred heading can be set to point to the current measurement when one
wishes to model unconstrained maneuvers or it can be set based on local terrain or
intent constraints. The motivation for this was the assumption that the maneuver time
constant is much less than the sample period. This implies that between samples, a
target can make significant changes in heading. Under these circumstances, the usual
approach of increasing the process noise covariance to accommodate the maneuver is
undesirable because it would require such a large increase that the measurements would

351



largely determine the filtered state estimate. By aligning the prediction with the pre-
ferred heading, the target speed model will have the desired influence on the estimated
state.

All of the remaining dynamic models that we considered are based on nonlin-
ear continuous-time models that relate the time derivatives of the target’s speed and
heading to the time derivatives of its Cartesian position. In order to ensure that the
integrals in the likelihood calculations can be computed in closed-form, these models
must be both linearized and discretized to put them into the required discrete-time
linear-Gaussian form. The usual approach is to first linearize and then discretize the
linear approximation. However, previous research has suggested that discretizing the
system first and then generating a linear approximation can reduce the errors introduced
by the linearization. For the sake of completeness, we derived the discrete-time linear
models using both approaches although the latter is not entirely well-defined. At issue
is how to compute the discrete-time process noise covariance for a nonlinear system.
There is no accepted method for doing this and only crude approximations have been
proposed. As an alternative, we introduced a novel approach based on the unscented
transform (UT).

The first of the polar velocity dynamic models used independent Wiener pro-
cesses to model the speed and heading. We also discussed a variant in which control
inputs were used to reset the initial speed or heading state for each sample. The idea
was to modify the speed or heading model to behave like a stationary Gaussian pro-
cess centered on some preferred value given by the input. The second polar velocity
dynamic model used independent Ornstein-Uhlenbeck (OU) processes to model expo-
nentially correlated speed and heading. This required a small change to how the speed
and heading states were represented. The speed and heading states were replaced in this
model with the speed noise and heading noise states, which give the difference between
the state and the steady-state value of the process. The steady-state value speed and
heading are set using control inputs and can be interpreted as the target’s preferred
values. Such models are often used for vehicle and ship dynamics, but we appear to
have been the first to apply them to human motion in a tracking application. Finally,
the third polar velocity dynamic model combines the first with path-constrained state
predictions. For this purpose, we introduced a novel implementation of a soft constraint
designed to express a preference for path following, but without assuming that target
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moves along the centerline or strictly parallel to the path. The idea was for the path to
be a proxy for a trajectory through favorable terrain.

In chapter 5, we evaluated the performance of both the associative tracking
model and the target dynamic models in the context of the motivating application. We
began by testing the consistency and accuracy of the state estimates computed using
the proposed dynamic models. The goal was to determine viability of each model and
to select the best one. We also sought to quantify the reduction in positional uncer-
tainty that state estimation can provide in realistic surveillance scenarios. It turned out
that the basic CWNA model worked reasonably well, yielding position estimates that
were slightly biased (approximately 0.14m, on average) but with well-matched vari-
ances. The speed estimates, however, were strongly biased (approximately 0.16m/s,
on average) with overstated variances. Making the predictions along a preferred head-
ing aligned with the current measurement improved the accuracy and consistency of
the position estimates, but left the quality of the speed estimates largely unchanged.
These position estimates tended to be closer to the true state as evidenced by the lower
divergence metrics. Using the CWNA model, we also demonstrated the danger of us-
ing the normalized (state) estimation error squared (NEES) statistic to set the process
noise as is often advised in the literature. In our example, this led to increased bias
but improved variance matching. However, the resulting estimators actually led to an
increase in the expected position error relative to the measurement error. When using
the second configuration, the CWNA model reduced the expected position error by just
under 9%, on average.

For the uncorrelated position–speed–heading (PSH) model, we considered var-
ious approaches to modeling the speed and heading. Using independent Wiener process
models turned out to be problematic. While the consistency of the position estimates
was similar to those from the CWNA model, they failed to improve the expected posi-
tion error in almost all experiments. By applying control input to center the heading
process on a preferred heading aligned with the current measurement fixed this prob-
lem. The innovations, however, were only approximately white with large numbers of
slight outliers for small lags. Applying control input to center the speed process on a
preferred value equal to the average target speed over the terrain had mixed results.
When paired with a Wiener process heading model, the estimates diverged; the only
example of divergence among all of our experiments. With the preferred heading model,
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the estimates were reasonably consistent and with excellent accuracy. Using this con-
figuration, the PSH model reduced the expected position error by just over 21%, on
average.

For the exponentially correlated PSH model, we compared the different ap-
proaches to generating a discrete-time linear approximation of the system and found
no significant performance differences. The linearized discretization approach did enjoy
a slight advantage with respect to consistency and divergence from the true state, but
the benefits were smaller than expected. It turned out that using the control inputs to
configure the heading model such that the initial value aligned with the current state
and the steady-state value aligned with the current measurement led to inferior results.
This was surprising as it is arguably the most realistic heading model that we studied.
Overall, using correlated speed and heading models offered no compelling advantage
over their uncorrelated counterparts and yet required significantly more computation.
The variance matching did improve, but the bias and accuracy was comparable. The
best performing configuration of the exponentially correlated PSH model reduced the
expected position error by approximately 19%, on average.

As expected, introducing the path constraints into the PSH model yielded the
most accurate position estimates. In the mountain terrain, the expected position error
was between 7m and 12m, depending the range of the target. Even in flat terrain
at near range, the lowest error was still 5.3m. These values represent about a 2–3m
improvement over the unconstrained models. The accuracy of the speed estimates,
on the other hand, was actually slightly lower given the path constraints. Applying
control input to center the speed process on a preferred value equal to the average
target speed over the terrain improved the accuracy of all estimates compared to using
a Wiener process speed model. However, this slightly worsened the already moderate
consistency of the estimates by overstating the variance to a larger degree. Using this
configuration, the path-constrained PSH model reduced the expected position error
by approximately 34%, on average. This gain is based on the assumptions that data
association is performed correctly, there are no missed detections, and that we have an
accurate model of the target’s trajectory. Thus, it represents the upper limit of what
we can expect from state estimation for the given combination of target and sensor.

Next, we looked specifically at the feasible graph, which plays a vital role in
the inference process by enabling the data-driven proposals and truncating the support
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over which the space of associations is searched to eliminate regions of negligible prob-
ability. We proposed the following means of managing the density of the graph during
its construction: applying a conservative maximum speed gate, enforcing a maximum
association time, and limiting the out-degree of every vertex to the n-best associations
based on the tracklet probability. Our experiments confirmed that under realistic con-
ditions, the resulting graph can reasonably be expected to retain almost all of the edges
between vertices corresponding to consecutive measurements of the target. We have
termed these degree-one edges, where the degree indicates the order of the difference in
the sequence of successive target detections. Even in the challenging case of T = 60 s
with a non-uniform binary PD model, at least 89% of the degree-one edges were present
in the graph. The primary reason for the loss of these edges was too many missed
detections. This can be mitigated, at the expense of a denser graph, by increasing the
maximum association time. However, any acceptable association time should be jus-
tified by the model. In the event that degree-one edges are missed because of model
mismatch, the high-degree edges provide some redundancy that can enable us to still
retain a significant fraction of a given track. Of course, as the degree increases, the
percentage of those edges present in the graph will tend to decrease sharply. In prac-
tice, keeping the ten best edges worked well. Whether the maximum out-degree can
be reduced further without severely impacting the inference depends on the tracklet
model. In these experiments, except for the discriminative tracklet model, degree-one
edges were assigned the largest weights in all but a handful of cases so we could reduce
the graph density further without huge losses.

Two types of tracklet model were studied to gauge their effectiveness. The first
was a generative model that used the likelihood components of the associative track-
ing model itself to define the tracklet probability. Thus, we had an instance of this
tracklet model for each underlying dynamic model. The second was a discriminative
model defined based on the implied speed of a straight-line trajectory between the two
measurements. We assessed the quality of each tracklet model by using it to construct
a feasible graph and then analyzing the edge weights to determine how well it discrim-
inated between true associations and erroneous associations. The discriminative power
was quantified using the H-measure, which describes whether a randomly chosen true
associations in the graph is likely to have higher tracklet probability than an erroneous
association. This has implications for both the construction of the feasible graph and
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the quality of the data-driven proposal distributions.
With respect to the model type, generative was the clear winner. It turned

out that the discriminative tracklet model performed relatively poorly because, while
it tended to assign high probabilities to the true associations, many erroneous associa-
tions were also assigned high probabilities. However, unlike the generative models, the
discriminative model actually performed better as the sample period increased, which
might be beneficial for some applications. At any rate, we believe that the true advan-
tage of using a discriminative tracklet model will come when incorporating high-level
information that would be infeasible to express in a tractable generative model. Until
then, it appears that the best strategy is to use generative formulations when possi-
ble. In the future, we might consider a discriminative model constructed by taking
the conjunction of a generative likelihood model to effectively score the local kinematic
smoothness of the track and a global track score to indicate how likely it is that the
track exhibits the desired high-level behavior such as goal-seeking. Note that the prior
term could still be included as a regularization term.

Regarding the performance of the different generative models, the results were
not quite what we had expected. The experiments revealed that the discriminative
power, as expressed by the H-measure, is not particularly well correlated with the accu-
racy of the underlying dynamic model. For example, the basic CWNA model actually
outperformed a more accurate and more consistent PSH model, based on the preferred
speed and heading, in the majority of the experiments. Despite being one of the weakest
dynamic models in terms of its accuracy and consistency, the basic CWNAmodel tended
to exhibit the most discriminative power among all models for short sample periods. For
long sample periods, however, the path-constrained models dominated as expected. It
seems that the implicit preference for smoothness induced by the Wiener process mod-
els was beneficial in terms of discrimination. The results of these experiments suggest
that the optimal dynamic model for the associative tracking model (i.e. tracklets and
likelihood) will not necessarily be the same as the optimal model for a filtering pass on
the sampler output intended to produce accurate state estimates.

We also examined at the discriminative power of the tracklet models by com-
paring, for a range of lengths, the likelihood ratio between a true track and a sequence
of invalid associations. The likelihoods were approximated using the tracklet proba-
bilities by simply taking their product. For the generative tracklet models, we could

356



then compare these results to a baseline obtained using the true likelihood model. For
all the models evaluated, the ratios grew with respect to the track length as expected.
Among the generative tracklets, the agreement with the baseline values varied with the
underlying dynamic model. Those based on Wiener process models tended to show less
gain compared to the baseline. Tracklets based on dynamic models that utilized the
preferred speed and heading tended to agree well with the baseline values, presumably
because the dependencies between the measurements in the joint likelihood were weaker.
For the discriminative tracklet model, there is no baseline but in absolute terms (i.e. the
value of the likelihood ratio) and in terms of the growth rate the model showed good
discrimination; better in fact than many of the generative models.

Finally, we looked at the quality of the posterior inferences obtained from the
associative tracking model using two sets of simulated measurements and one set of
field test data. For each data set, we evaluated the sample as a function of the sampler
implementation and the cluster label prior used to complete the model specification.
The sampler implementations that we considered consisted of the MCMC algorithm
using the default and alternative proposal distributions, and the PMC algorithm using
the default, alternative, and k-add mixture proposals. The prior models that we con-
sidered consisted of all those discussed in chapter 3. For the nonparametric priors, each
was included in its unconstrained and scan-constrained form, as well as with a small
fixed value for the concentration parameter. Three different property-based priors were
considered including that from the seminal work of Oh et al. [135]. Since the “Oh”
prior assumes knowledge of the target birth rate and disappearance probability, which
we do not generally have, we introduced a hyperprior to model the uncertainty in these
parameters. To make our assessments, we relied primarily on the simulated measure-
ments because they naturally come with complete ground truth. For evaluating data
association performance in wide-area surveillance applications, having complete ground
truth is critical because it is not possible to reliably determine the origin of each real
measurement and we can rarely be certain if any unscripted targets were missed in a
large region. However, unlike traditional approaches to tracking simulators, we used
precisely recorded true-target trajectories and limited the simulation to the just the
measurement process and the false alarms; both of which should be well-characterized
in any tracking application.

Regarding the choice of the prior, there was no clear winner as none proved to
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be dominant. However, given an appropriate value of the concentration parameter, the
DP prior was the most consistently strong performer. Our concern that the unequal
distribution of cluster sizes favored by the DP would lead to an increased number of short
spurious tracks turned out to be unfounded. For all of the nonparametric priors, the key
determinant of the number of spurious tracks was not the properties of the clustering
process but rather the value of the concentration parameter. When that value was too
large, the number of spurious tracks was high for all of the priors, but their sizes were
indeed distributed as the properties of underlying process would suggest. The strong
preference for large clusters implied by the “rich-get-richer” behavior of the DP actually
resisted the fragmentation of tracks. Despite the lure of its objectivity, the performance
of models based on the UP prior tended to be weaker than the other nonparametric
priors because it could not always keep the tracks intact. The EP and EP2 priors were
also somewhat more susceptible to fragmented tracks. Note that between the two forms
of the “egalitarian process”, the EP2 enjoyed a slight advantage in terms of its expected
scores and the quality of the resulting estimates. Although the preference for larger
clusters expressed by the EP2 prior were better suited to the tracking problem than
those expressed by the UP prior, compared to the DP prior there was no advantage.

For the nonparametric priors, the experiments confirmed the sensitivity of the
results to the value of the concentration parameter, α. They also demonstrated that
using the properties of the unconstrained process to determine this value is not effective.
As we argued in chapter 3, the scan constraints effectively push the optimal value toward
zero. Unfortunately, our attempt to account for the impact of the constraints in the
hyperprior by approximating the relationship to the expected distribution over cluster
counts was only partially successful. While it did lead to a lower expected α and
improved results, the performance was inferior to that of a small fixed value, which
indicates that the hyperprior is not dense enough for small values and that a different
formulation is needed. In the next section, we will outline what that might look like.

Since the HUP prior no longer expressed the intended beliefs due to impact of
the scan constraints, its performance was inconsistent at best. In some cases, it fared
better than expected under the circumstances but generally lead to gross overestimates
of the number of targets and poor expected scores. The scan-constrained version per-
formed much better in comparison and actually performed well with data for which the
likelihood component of the model was dominant. This suggests that the approxima-

358



tions to the configuration class counts and partition counts used in the implementation
are reasonable in practice. However, we must bear in mind that there is no guarantee
that the prior is expressing the intended beliefs. Models based on the scan-constrained
HUP prior were prone to fragmenting the tracks and the prior did a relatively poor
job of suppressing spurious tracks. These results suggest that objectivity is less desir-
able in the prior distribution over cluster labels than a well-calibrated preference for
large clusters. Recall that the scan-constrained HUP prior already expresses a strong
preference for small numbers of cluster but, for any given number of clusters, regards
each configuration of the cluster labels as equally likely. Based on our experiments, the
nonparametric priors are to be preferred. Note that the idea of explicitly considering
the structure of the clustering problem may prove to be a useful means constructing
new non-uniform priors in the future.

For the property-based priors, the “K” prior that naively expressed a preference
for small numbers of targets performed poorly as expected and simply illustrated the
potential cost of poor choice. The “Prop.” prior expressed a similar preference based on
the same parameterization, only stronger owing to the construction of the prior, plus
a preference for associations between measurements close in time. However, despite its
design, the “Prop.” prior tended to perform poorly as well. Adjusting its parameters to
strengthen the preference for small cluster counts might have helped, but without any
sense of how those parameters relate to the properties of the implied distribution over
cluster counts, it is not clear how to select a reasonable value or even how to model the
uncertainty.

The performance of the “Oh” prior was inconsistent at best. Although the out-
put was satisfactory in some experiments, models based on the “Oh” prior significantly
overestimated the number of targets in general and were prone to producing fragmented
tracks. Unfortunately, there is no easy remedy in terms of altering the parameters by
improving the hyperprior. Unlike the nonparametric priors, which have a single param-
eter that controls the intensity of their preferences, there are two different parameters
here whose interaction implicitly defines the preferences for the number of clusters and
the distribution over cluster sizes. We have already tried to model the uncertainty in a
way that favors a low target birth rate and remains largely agnostic with respect to the
target disappearance probability. For the nonparametric priors, it is clear that we need
encourage smaller α values; the critical question is how much. In the case of the “Oh”
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prior, it is not clear that driving down the birth rate will help.
Regarding the implementation of the sampling algorithm, the results were

mixed. Ignoring for a moment the choice of proposal distribution, the MCMC algorithm
tended to generate samples from which plausible variance estimates could be made. For
example, after processing a noisy data set that contained five targets, the number of
targets in one experiment was estimated to be 5.2 with a standard deviation of 0.75.
This is the kind of uncertainty in the distribution over data association hypotheses that
we set out to model. Given the high false alarm rate, it makes a lot of sense that there
would be some ambiguity about whether there are four, five, or six targets in the region.
For that same experiment, however, the PMC algorithm generated a sample from which
the number of targets was estimated to be 3.0 with a negligible standard deviation. Not
only is this a poor estimate, but it indicates total certainty! In this example, the
estimate derived from the PMC sample was less accurate, but in most experiments that
was not the case. Overall, the estimates derived from the PMC sample tended to be
more accurate than their MCMC-derived counterparts but with implausible certainty;
almost all of variance estimates were negligible. The problem was the degeneracy of the
sample weights, which occurred for all of the proposal distributions that we considered.
However, given the quality of the estimates (uncertainty aside) and the flexibility to
adapt the proposal distribution that the PMC algorithm provides, we still believe it is
worth trying again in the future.

When using the default proposal distribution, which did not allow any move to
include the current state among the proposal candidates, the resulting samples tended
to overstate the number of targets. With the MCMC-generated samples, the number
of targets was often significantly overestimated, although this was highly dependent
on the prior, with some leading to reasonably accurate estimates. With the PMC-
generated samples, we saw the same trend but the degree to which the number of
targets was overestimated was generally much smaller. For both algorithms, switching
to the alternative proposal distribution reduced the tendency to overstate the number of
targets and improved the quality of the samples as measured by the expected combined
score, which indicates how well Z matches the truth. Looking again at the number
of targets, this brought excessively high estimates closer to the truth but also led to
slight underestimates in many cases. The underestimates were caused by the failure to
identify weakly resolved targets that were partially resolved in the previous samples.
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In terms of the expected combined score, the samples based on the alterna-
tive proposal distribution were almost universally better, regardless of the algorithm.
However, there is a caveat. The samples based on the alternative proposal distribution
almost universally contained lower MAP probabilities. This indicates that with this
proposal distribution the sampler is not exploring as much of the space, yet it seems
to be to our benefit. It appears that while the sampler does not move as freely, the
proposal distribution is good enough that those regions it does explore are relevant and
lead to reasonable estimates. However, a consequence of the sampler exploring less of
the space is that variance estimates shrink as a result of the truncation. Thus, the
default proposal distribution is preferable in that regard. There is a case to be made for
using either of these distributions. On one hand, the default proposal combined with
the MCMC algorithm yields good variance estimates, but it is highly sensitive to the
choice of prior. When the prior does not express sufficiently strong preferences, the risk
of getting a sample that contains lots of spurious tracks is high. On the other hand,
the alternative proposal seems to limit the potential impact of a mismatched prior at
the expense of some sensitivity. When combined with the MCMC algorithm, an addi-
tional expense of this fail-safe behavior is less information about the uncertainty of the
estimate.

Now, a bit more needs to be said about what “highly sensitive to the choice
of prior” really means in practice because it reveals what is perhaps the most profound
result from these experiments. That is, the realization that the MAP estimates were
rarely the best ones. There were only two conditions under which they were the best,
or close to the best. First, when the prior was well-matched to the problem in the sense
that it expresses an appropriate preference and expresses it strongly enough. Second,
when the sampler failed to thoroughly explore the space. To clarify those points, we
can take the DP prior as an example. For the unconstrained DP prior and a given
data set, the experiments with the MCMC sampler using the default proposal distribu-
tion yielded the highest MAP probabilities that were found among all of the sampler
implementations. Those high probability configurations also happened to contain ex-
cessively large numbers of clusters. When using the alternative proposal distribution,
the MCMC sampler failed to reach those high probability configurations and instead
produced a sample whose MAP configuration contained a smaller number of clusters
and was closer to the truth, but had a lower posterior probability. For the DP prior with
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a small fixed α and that same data set, the MCMC sampler using the default proposal
distribution yielded a MAP configuration that was very close to the truth. If we assume
that the sampler continued to effectively explore the space in this case, then we can
conclude that the prior with the strong preference for the smallest possible number of
clusters led to a posterior model that is well-matched to the truth. Clearly, the first
condition is the one that we ideally want to satisfy, but the alternative proposal distri-
bution appears increase the chances that the second will be satisfied when the prior is
not well-matched.

The k-add mixture proposal was meant to test the impact of being able to
make extremely large changes to Z in a single move, regardless of the initial state.
Since each move in the mixture generates proposals with a different number of clusters,
it relied on the weight adaptation of the PMC algorithm to learn the correct distribution
over cluster counts. In this regard, the proposal distribution performed well. Overall,
the resulting samples had relatively high expected combined scores and tended not
to overstate the number of targets. However, despite the potential for creating highly
diverse samples, its samples suffered from weight degeneracy to a similar extent as those
using the default and alternative proposal distributions.

Finally, let us comment on the performance of the field test data in particu-
lar. The results provided a clear example of how the alternative proposal distribution
can be effective. Using the default proposal distribution, the number of targets was
grossly overestimated in all experiments and the resulting samples contained numerous
spurious tracks. Switching to the alternative proposal distribution led to significant
improvements; so much so that almost half of the experiments in this case produced
essentially perfect estimates. The results also showed that the demonstrably false as-
sumption of spatially uniform false alarms was an adequate approximation. In addition,
the results demonstrated that the proposed associative tracking algorithm is robust in
to imperfect false alarm, measurement, and probability of detection models.

6.2 Concluding Remarks

This dissertation has presented a thorough analysis of the target tracking prob-
lem from the perspective of data association. It showed how tracking as a means of
determining what has been observed is properly performed using what we termed an
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associative tracking algorithm. Such algorithms produce as their output a sample from
the distribution over data association hypotheses. The space of data association hy-
potheses is enormous and efficiently exploring it to generate a useful fixed-size sample
presents a significant challenge. Of course, even if we can reliably obtain a good sample,
the associative tracking model must still be a sufficiently accurate description of reality
in order for the inferences to be meaningful.

Since the existing algorithms were not entirely suitable for our motivating ap-
plication, wide-area surveillance of human walkers, we proposed a new associative track-
ing model and new methods of inference. The critical questions of the prior distribution
over target indicator variables and the sampling algorithm were specifically addressed in
our experimental evaluation using several challenging data sets. The application-specific
question of how to model the target’s state was also addressed. Ultimately, we sought
to find an adequate model and an effective sampling algorithm. With respect to those
goals, we can only claim to have been partially successful.

Regarding the model, our research showed that there are various ways to de-
scribe the time-varying kinematic state of a sparsely observed human walker with rea-
sonable accuracy. It also showed that even with path-based constraints on the target’s
trajectory, the gain in localization accuracy that state estimation provides is relatively
modest. The prior distribution over target indicator variables (i.e. cluster labels) proved
to be absolutely critical to the accuracy of the model in terms of its agreement with
the truth. Unfortunately, none of the priors that we considered led to a model that
produced acceptable results in all of the experiments. While the nonparametric priors
came close to achieving this goal, especially the Dirichlet process (DP) prior, it was
only when an arbitrary small value of the all-important concentration parameter was
used. The use of a small fixed concentration parameter value was intended solely as a
reference, but the results clearly indicate the type of changes that are necessary for a
suitable hyperprior.

Regarding the sampling algorithm, the MCMC sampler with our default im-
plementation of the proposal distribution proved to be effective given an appropriate
model. Moreover, the estimates tended to stabilize after the sample size reached 5000,
which suggests that the sampler was exploring the space relatively efficiently. The ex-
periments showed that the alternative implementation of the proposal distribution, in
which each move included the current state among the proposal candidates, caused the
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sampler to explore less of the space given the same number of iterations. However,
it managed to visit regions of relatively high probability and produced samples from
which reasonably accurate estimates could be derived. Given an appropriate model,
this reduced somewhat the accuracy of the estimates from the resulting sample. How-
ever, when the model was mismatched, it actually improved the quality of the sample,
often substantially. With all three of the proposal distributions that we considered, the
PMC sampler suffered from weight degeneracy and produced samples that could best
be described as providing reasonable point estimates since they failed to convey any ap-
preciable uncertainty. Additional research is needed before this approach can be made
viable. Despite the success of the MCMC sampler, a viable PMC sampler remains an
attractive goal because it eliminates concerns about convergence of the estimates and
would lend itself to efficient parallel implementation. Given the flexibility to adapt the
proposal distribution that PMC affords, there is reason to be optimistic that it can be
made to work.

6.3 Future Work

Although we have learned a lot about tracking as a data association prob-
lem, more work is necessary before these algorithms are suitable for use in practical
applications. Here, we will outline some of the promising directions for future research.

6.3.1 Cluster Label Priors

Even a perfect sampler is of limited value if the model provides a poor de-
scription of reality and, as our results demonstrated, the prior distribution over cluster
labels is critical in this regard. Thus, improvements in this area are important.

6.3.1.1 Concentration Parameter Hyperprior

The nonparametric priors, especially the Dirichlet process (DP) prior, proved
to be effective only in the case of an appropriately chosen concentration parameter, α.
This, rather than the preferences with respect to cluster sizes, was the primary factor
in suppressing spurious tracks and producing the desired results.

Our attempt to model the uncertainty in α based on the agreement between
our prior beliefs about the number of clusters and the distribution of cluster counts
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produced by the process did not prove to be sufficient because the resulting α values
tended to be too high. The hyperprior clearly did not contain enough probability density
near zero. This is likely due to inaccuracies in the estimates of the mean and variance
of the cluster counts given the scan constraints. And the prospects for improving those
in a principled manner do not appear to be good.

We propose to consider a simpler approximation with a bias toward small
values of α. A gamma distribution with the shape parameter set to 1.0 is one such
approach. In this case, the rate parameter could be set in part by considering an upper
bound on the value of α. To estimate the upper bound, we could take the value of
α at which the expected number of clusters produced by the unconstrained process is
equal to the maximum number of clusters based on our prior beliefs. This calculation
of E[k | α, n] would be performed with n equal to the number of scans implied by Z0 .

6.3.1.2 Scan-Constrained Hierarchical Uniform Prior

While not among the best performing priors due to its susceptibility to frag-
mented tracks, the concept of using the configuration class and partition counts in the
model may have some utility in constructing new types of prior distributions. We can
envision using this technique to construct non-uniform priors with specific properties
that properly account for the combinatorial structure of the clustering problem. How-
ever, since these counts must be approximated in the case of the scan constraints, and
we have no bounds for the accuracy of our approximations, it would be interesting to
see if there are ways to compute these counts exactly. Generating functions seem like a
good place to start.

6.3.1.3 Beta Process Priors

We made the assumption that there were no merged measurements, which
meant that each measurement could be assigned to at most one cluster. This implied
that Z described a partition of the measurements, for which nonparametric models
such as the Dirichlet process were appropriate. However, for radar applications, the
assumption of no merged measurements is a simplification that does not match reality
and one that we would like to relax.

Since the nonparametric models performed well, it would be desirable to use
similar models in the case of merged measurements. One way to do this would be to
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use a beta process model to induce a nonparametric prior over infinite binary matrices
that encode the assignment of measurements to tracks. The resulting distribution over
infinite binary matrices can also be described by the Indian buffet process (IBP).

6.3.2 Modeling High-Level Target Behavior

To improve the model, additional constraints on the motion of the target be-
yond the simple kinematic constraints already studied are desirable. For intent-driven
targets, such as people, those constraints could be derived from goal-seeking or other
high-level behaviors. These constraints would be impossible to represent using Gaussian
likelihood models. Even if we were to consider non-Gaussian likelihood models, it would
still be unclear how the high-level behavior effects the data generating process. Thus,
we should consider switching to a discriminative model of p(Z, Z0 , λ, α | Ỹ , aλ, bλ),
which would still allow us to work with the same inference algorithms. As a starting
point for the discriminative modeling, we might consider simply adding a term to the
current generative model that computes a global track score based on some high-level
information. Ultimately, we believe that the most useful practical tracking algorithms
will be those that can be tuned to watch for very specific types of behavior. In chal-
lenging environments, it may not be feasible to track all people and then attempt to
classify the tracks based on their high-level behavior. That capability will likely have
to be built into the tracking model itself.

6.3.3 Terrain Influence

In the current work, we used path constraints to approximate the influence
of the terrain on a target’s motion and this proved to be highly beneficial. The path
represented favorable terrain and the target’s trajectory was assumed to be influenced by
it. Unfortunately, this approach is inherently limited to relatively sparse path networks.
It will break down if we attempt to create paths for too many terrain contours. Thus,
a different approach is necessary to make more robust use of terrain information. In
particular, what is needed, is a way to infer plausible trajectories, between the target’s
current state and the next measurement, given the terrain. One way that this could
be done is by representing the terrain as an artificial potential field [106, 134]. This
approach might also lend itself to the incorporation of high-level target behavior because
we could include the attractive force of goal regions in the potential field or even the
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repulsive force of something that a target wishes to avoid. Realistic movement through
terrain could also be modeled by applying the properties of a fluid simulation (gas
diffusion) [20, 118].

6.3.4 Online Processing

The fact that the associative tracking algorithm performs batch processing
of the measurements limits its practical use. Existing multiple-scan statistical data
association models also share this limitation. Currently, the accepted solution is to use
a sliding window with the sampler initialized based on the output of the previous run.
Unfortunately, this is not entirely satisfactory because it fails to address the critical
question of how to summarize the distant past. While the sampler might benefit from
a good initial state, there is no influence from the time up the start of the current
processing window. When the model incorporates a nonparametric prior, the sizes of
any existing clusters might very well be relevant.

There are two approaches that we might consider for summarizing what was
learned from past measurements.

First, let us imagine the feasible graph in trellis form. The distant past could
be represented using a special set of nodes in a hypothetical scan that precedes the
first scan in the processing window. Those special nodes would correspond not just to
measurements, but would represent the entire history of sequences in the distant past
that terminate at their respective measurements. Associated with each one would be
a state estimate and expected length of the paths leading to it. Whenever the feasible
graph is constructed, these special nodes would also be linked to nodes in the current
window using the tracklet model, which would make use of the current state. The
likelihood calculation of any path including a special node would use the initial state
and the cluster label prior would make use of the expected length, if necessary. The
nodes would then be updated each time the processing window advances. Any nodes
whose last association was too far in time from the first scan in the window would then
be removed.

A second approach would be to use a particle set to summarize the past tra-
jectories in the manner of Särkkä et al. [171]. In fact, the idea would be to extend their
approach to multiple scans. This too would require the use of a sliding window, but in a
somewhat different manner. For a given window position, we would generate a sample
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from the multiple-scan posterior, once for each particle. To properly account for the
past trajectories represented by each particle when generating the sample, each trajec-
tory would be summarized by its length and final state. Those summaries would then
be utilized by the sampler using the hypothetical scan technique to modify the feasible
graph as outlined in the previous approach. The summaries, of course, would not need
to be re-computed from scratch each time with the proper bookkeeping. Now, when the
particle set is updated, each trajectory would only be extended based on the sampled
associations with measurements in the first scan of the window. In this way, both the
past and the full window of scans would inform the update. The details of exactly
how the particle set is updated given all of these samples would need to be worked out
because there are different ways it could be done. Using such an approach, the window
size would only need to be set to the maximum association time, which would be much
easier to sample from. Because of the overlap due to the sliding window, we would have
very good initial states for each sample. The collection of samples generated for each
particle would also be available for applications to visualize the uncertainty over the
horizon of the processing window.

6.3.5 Inference

6.3.5.1 Improved Population Monte Carlo

Despite the problem of severe weight degeneracy observed in these experiments,
we strongly believe that population Monte Carlo (PMC) sampling is worth a second
attempt. Its flexibility with respect to adapting the proposal distribution based on
past samples give us reason to be optimistic and the potential for efficient parallel
implementations remains compelling.

In addition, we should also look at the mixture weight adaptation. The original
motivation behind the D-kernel PMC algorithm was kernel bandwidth selection and it
is not clear if the same ideas are applicable to the types of kernels that we considered.
For example, add moves are only advantageous when the current state contains too few
clusters. Increasing the weight of these moves based of survival will only be helpful up
to a point. It is quite possible that there is a better way to adjust the weights when
using these dimension-jumping-type moves.

We might also be able to take advantage of the fact that proposals in the PMC
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algorithm need not be reversible.

6.3.5.2 Alternatives

Sampling from the posterior is asymptotically exact but very hard to do ef-
ficiently. Could we use variational inference to sample from a suitable approximation
of the posterior instead? At the time of writing, no amenable approximation scheme
was found. However, variational Bayesian methods are an active area of research and
it would be worth trying again in the future.
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Appendix A

Gamma Approximation Using
Moment and Mode Matching
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Moment matching is an efficient method of approximating an unknown proba-
bility distribution using a distribution with a well-known form. Given certain statistics
of the unknown distribution, the parameters of the well-known distribution are chosen
such that these statistics are matched to the extent possible.

Here, we apply the method to derive the parameters of a gamma distribution
given various combinations of the desired mean, variance, and mode.

Let x ∼ Γ (a, b), where a > 0 is the shape parameter and b > 0 is the rate
parameter. The probability density function is:

f (x; a, b) = ba

Γ (a)x
a−1 exp (−bx)

and the statistics of interest are:

E [x] = a

b

Var [x] = a

b2

Mode [x] =


a−1
b 1 < a

0 0 < a ≤ 1.

Matching the Mean and Variance

Given the mean, e, and variance, v, we seek the parameters of a gamma dis-
tribution such that:

E [x] = a

b
= e

Var [x] = a

b2 = v.

For e > 0 and v > 0, the mean and variance can be matched exactly using:

a = e2

v

b = e

v
.
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Matching the Mode and Variance

Given the mode, m, and variance, v, we seek the parameters of a gamma
distribution such that:

Mode [x] = a− 1
b

= m

Var [x] = a

b2 = v.

For m ≥ 0 and v > 0, the mode and variance can be matched exactly using:

a = 1 +m

(
m+

√
m2 + 4v
2v

)

b = m+
√
m2 + 4v
2v .

Certain applications, such as proposal distributions for Monte Carlo sampling,
can benefit from a gamma approximation with a slightly larger variance. We can derive
such an approximation in a somewhat principled manner by determining the shape and
rate to match the given mode and a modified expression of the variance based on the
mean of the squared deviations from the mode. These are given by:

a = 1 +m

(
m+

√
m2 + 8v
2v

)

b = m+
√
m2 + 8v
2v .

Matching the Mean and the Mode

Given the mean, e, and the mode, m, we seek the parameters of a gamma
distribution such that:

E [x] = a

b
= e

Mode [x] = a− 1
b

= m.

For m ≥ 0 and e > m, the mean and the mode can be matched exactly using:

a = e

e−m

b = 1
e−m

.
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Matching the Mean, Variance, and Mode

Given the mean, e, variance, v, and mode, m, we seek the parameters of a
gamma distribution such that:

E [x] = a

b
= e

Var [x] = a

b2 = v.

Mode [x] = a− 1
b

= m.

In general, it is not possible to match all three statistics exactly, so instead we
solve for the parameters that minimize the error objective function:

J (a, b) = we

(
e− a

b

)2
+ wv

(
v − a

b2

)2
+ wm

(
m− a− 1

b

)2
,

where we, wv, and wm are non-negative weights applied the squared error in the mean,
variance, and moment matching, respectively.

For m ≥ 0, e ≥ m, and v > 0, the best match can be found as follows.
Let

w1 = w2
ewm

w2 = wew
2
m

w3 = w2
ewv

w4 = wew
2
v

w5 = wmw
2
v

w6 = w2
mwv

w7 = wewmwv

w8 = w2
mw

2
v

w9 = w3
mwv

w10 = w3
ewm

w11 = w2
ew

2
v
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and

C0 = −e (w1 + w2 + v (w3 + w7)) +m (w1 + w2 − v (w6 + w7))

C1 = w1 + w2 + e2w3 +m2w6 + 2emw7 − v (v (w4 + w5) + 2 (w6 + w7))

C2 = e (vw4 + w7) +m (vw5 + 3w6 + 2w7)

C3 = 2 (w6 + w7)

C4 = mw5

C5 = w5.

Let r be a root of the quintic polynomial:

C0 + C1x+ C2x
2 + C3x

3 + C4x
4 + C5x

5,

such that r ∈ < and r > 0.
The shape and rate parameters are then given by:

a =
[
r4 (mw8 + ew4wm) +

r3
((
m2 + v

)
w8 + w9 + (em+ v)w4wm + w2wv

)
+

r2 (m (v (w4wm + w8) + 2w9) + (ew1 + (e+ 2m)w2)wv) +

r
(
−e2 (w10 − vw11)− v2w11 +

(
m2 − v

)
(vw8 + w9) +

(em− v) (2vw4wm − w1wv) + (em− 2v)w2wv) +(
e3w10 +m

(
m2 + v

)
w9 +mw2

ew
2
m + 2mwew3

m+ /

+mw2
m +

(
3e2 + v

)
mw1wv + (3em+ 2v)mw2wv

)]
/

r
(
(we + wm)

(
w2 + e2w3 + v2 (w4 + w5) +

(
m2 + 2v

)
w6 + 2 (em+ v)w7 + w3

m

))
+ 1

and
b = 1

r
,

such that a > 0. In the event that there is more than one positive real root which
yields a positive shape parameter, the error objective should be used to select the best
parameterization.

Note that although the desired mean and mode may be equal, when both are
zero the matching may not yield valid parameters. Depending on the variance and
weights, there may no positive real roots.

Note also that by placing zero weight on the appropriate error term, exact (to
within numerical precision) matches for the cases above can be obtained.
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Appendix B

Numerically Stable Evaluation of
p(k | α, n) for the Dirichlet Process
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On occasion, we may wish to evaluate the distribution over the number of
clusters induced by the Dirichlet process. A prime example is when eliciting a prior for
the concentration parameter, α, which controls the number of clusters.

From Antoniak [3], we find the distribution to be:

p(k | α, n) = S1(n, k)αk Γ(α)
Γ(α+ n) , (B.1)

for k = 1, . . . , n and where k is the cluster size, n is the number of samples, S1(n, k) is
the unsigned Stirling number of the first kind and Γ(·) is the Gamma function.

Unfortunately, numerical issues can arise when evaluating this distribution.
The problem is that for even modest values of α and n, each term in (B.1) can grow to
exceed to range of 64-bit floating point numbers. For example, S1(500, 75) = 1.639 ×
101069 and Γ(500 + 25) = 1.313× 101199!

Here we describe a numerically stable approach to evaluating p(k | α, n).

Stirling Numbers of the First Kind

Unsigned Stirling numbers of the first kind, S1 (n, k), arise as coefficients of
the rising factorial [195]:

x (x+ 1) · · · (x+ n− 1) =
n∑
k=0

S1(n, k)xk.

They count the number of permutations of n elements which contain k permutation
cycles.

Signed Stirling numbers of the first kind, s(n, k), arise as coefficients of the
falling factorial:

x (x− 1) · · · (x− n+ 1) =
n∑
k=0

s(n, k)xk.

The signed and unsigned numbers are related as:

S1(n, k) = |s(n, k)| = (−1)n−k s(n, k) .

Unsigned Stirling numbers of the first kind can be calculated using the following recur-
rence relation:

s(n, k) = s(n− 1, k − 1)− (n− 1) · s(n− 1, k) ,
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for 1 ≤ k ≤ n and where:

s(n, k) = 0 for k > n

s(n, 0) = 0 for n > 0

s(0, k) = 0 for k > 0

s(n, n) = 1.

Signed Stirling numbers of the first kind can be calculated using the following recurrence
relation:

S1(n, k) = (n− 1) · S1(n− 1, k) + S1(n− 1, k − 1) ,

for 1 ≤ k ≤ n and where:

S1(n, k) = 0 for k > n

S1(n, 0) = 0 for 0 > n

S1(0, k) = 0 for 0 > k

S1(n, n) = 1.

There is also an explicit formula [194]:

s(n, k) = (2n− k)!
(k − 1)!

n−k∑
i=0

1
(n+ i) (n− k − i)! (n− k + i)!

i∑
j=0

(−1)j jn−k+i

j! (i− j)! .

Numerically Stable Evaluation

To avoid arithmetic overflow, we would like to be able to calculate (B.1) as:

p(k | α, n) = exp {logS1(n, k) + k log (α) + log Γ(α)− log Γ(α+ n)} .

This requires the ability to compute the natural logarithms logS1(n, k) and log Γ(x),
without having to explicitly represent S1(n, k) and Γ(x).

The natural logarithm of the Gamma function is readily available in tools such
as MATLAB and libraries such as the GNU Scientific Library. However, the natural
logarithm of a Stirling number of the first kind does not appear to have a well-known
solution.

Here we introduce a novel approach to computing logS1(n, k) that uses ratios
of Stirling numbers of the first kind.
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First, let us define the ratio of signed Stirling numbers of the first kind as:

r(n, k) = s(n+ 1, k)
s(n, k) .

From Cacoullos and Papageorgiou [22]1, we see that the ratio can be calculated using
the following recurrence relation:

r(n, k) = [r(n− 1, k) + n− 1] r(n− 1, k − 1)
r(n− 1, k) − n,

for 1 ≤ k ≤ n and where:

r(n, 1) = −n

r(n, n) = −n (n+ 1)
2 .

We can also see from Cacoullos and Papageorgiou that:

s(n, k − 1)
s(n, k) = r(n, k) + n.

Next, we refactor the recurrence for unsigned Stirling numbers of the first kind to get:

S1(n, k) = (n− 1) · S1(n− 1, k)
(

1 + 1
(n− 1)

S1(n− 1, k − 1)
S1(n− 1, k)

)
.

The logarithm can then be calculated using the following recurrence:

logS1(n, k) =

log (n− 1) + logS1(n− 1, k) + log
[
1 + 1

(n− 1) |r(n− 1, k) + n− 1|
]
, (B.2)

for 1 ≤ k ≤ n and where:
logS1(n, n) = 0.

An alternative approach to calculating (B.1) without the natural logarithm of
Gamma function exploits the fact that:

p(k | α, n) = S1(n, k)αk Γ(α)
Γ(α+ n)

= S1(n, k)αk
α (α+ 1) · · · (α+ n− 1)

= S1(n, k)αk
S1(n, 1)α+ S1(n, 2)α2 + · · ·S1(n, n)αn

= 1∑n
i=1

S1(n, i)
S1(n, k)α

i−k
.

1Note that m and n, as used in [22], are equivalent to our k and n, respectively.
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The recurrence given by (B.2) can be used to calculate S1(n, k) for k = 1, . . . , n and
then each term in the summation above can be found using:

exp {logS1(n, i)− logS1(n, k) + (i− k) log (α)} .
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Appendix C

State Estimation Performance
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

CWNA/C1
3k

m

T =15 s 0.05 -0.27 -0.10 -0.65 -0.64 -0.15 0.24 0.27 0.84 0.02 0.03 0.92
T =30 s 0.03 -0.31 -0.01 -0.66 -0.64 -0.13 0.29 0.26 0.37 0.03 0.02 0.95
T =60 s 0.07 -0.08 -0.04 -0.64 -0.66 -0.35 0.21 0.17 0.96 0.01 0.02 0.99

5k
m

T =15 s 0.13 -0.44 -0.18 -1.06 -0.99 -0.18 0.26 0.29 0.93 0.02 0.02 0.97
T =30 s 0.04 -0.43 -0.06 -1.05 -1.01 -0.21 0.23 0.24 0.82 0.02 0.02 0.97
T =60 s 0.31 -0.10 -0.14 -1.00 -0.97 -0.50 0.10 0.13 0.94 0.01 0.01 0.99

7k
m

T =15 s 0.07 -0.60 -0.23 -1.47 -1.43 -0.24 0.29 0.29 0.94 0.03 0.03 1.00
T =30 s 0.09 -0.52 -0.13 -1.43 -1.43 -0.30 0.25 0.23 0.87 0.01 0.01 0.99
T =60 s 0.28 -0.22 -0.33 -1.27 -1.34 -0.65 0.08 0.08 1.00 0.02 0.02 1.00

CWNA/C2

3k
m

T =15 s 0.02 -0.03 -0.15 0.03 -0.08 -0.14 0.04 0.06 0.98 0.01 0.01 0.85
T =30 s 0.03 -0.06 -0.02 -0.25 -0.32 -0.12 0.04 0.03 0.42 0.02 0.01 0.95
T =60 s 0.03 0.02 -0.04 -0.54 -0.58 -0.33 0.04 0.04 0.96 0.01 0.02 0.99

5k
m

T =15 s 0.10 0.02 -0.29 0.43 0.29 -0.14 0.27 0.33 1.00 0.02 0.02 0.47
T =30 s 0.09 -0.06 -0.09 -0.13 -0.24 -0.17 0.03 0.05 0.88 0.01 0.01 0.95
T =60 s 0.19 0.03 -0.14 -0.81 -0.79 -0.47 0.01 0.00 0.94 0.01 0.00 0.99

7k
m

T =15 s 0.08 -0.07 -0.40 0.84 0.74 -0.17 0.41 0.61 0.99 0.05 0.05 0.37
T =30 s 0.08 -0.12 -0.18 0.10 -0.04 -0.22 0.15 0.18 0.95 0.01 0.01 0.97
T =60 s 0.16 -0.07 -0.31 -0.99 -1.05 -0.61 0.01 0.00 1.00 0.01 0.01 1.00

CWNA/C3

3k
m

T =15 s 0.06 -0.02 -2.38 -0.47 -0.44 -1.87 0.17 0.18 1.00 0.01 0.01 1.00
T =30 s 0.06 -0.01 -2.10 -0.50 -0.53 -1.91 0.05 0.05 1.00 0.01 0.01 0.99
T =60 s 0.03 0.05 -3.79 -0.61 -0.63 -3.54 0.01 0.03 1.00 0.01 0.02 0.99

5k
m

T =15 s 0.16 -0.02 -2.64 -0.90 -0.86 -1.88 0.20 0.30 1.00 0.00 0.00 1.00
T =30 s 0.09 -0.06 -2.23 -0.75 -0.70 -1.87 0.12 0.17 1.00 0.01 0.01 0.99
T =60 s 0.26 0.01 -3.86 -0.87 -0.82 -3.54 0.03 0.04 0.99 0.01 0.00 0.99

7k
m

T =15 s 0.11 -0.11 -2.87 -1.38 -1.30 -1.92 0.20 0.29 1.00 0.00 0.01 1.00
T =30 s 0.12 -0.09 -2.36 -1.13 -1.12 -1.85 0.14 0.24 1.00 0.01 0.00 1.00
T =60 s 0.28 -0.10 -4.02 -1.07 -1.01 -3.61 0.04 0.08 1.00 0.02 0.02 1.00

Table C.1: Consistency summary statistics for the CWNA model applied to targets
moving in flat terrain (T1).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

CWNA/C1
3k

m

T =15 s -0.13 -0.06 -0.12 -0.65 -0.65 -0.17 0.51 0.42 0.85 0.01 0.02 0.91
T =30 s -0.20 -0.15 -0.01 -0.66 -0.63 -0.14 0.58 0.44 0.56 0.01 0.02 0.92
T =60 s -0.02 -0.04 0.00 -0.67 -0.65 -0.37 0.24 0.21 0.91 0.01 0.01 1.00

5k
m

T =15 s -0.24 -0.15 -0.16 -1.04 -1.01 -0.19 0.55 0.47 0.87 0.01 0.02 0.94
T =30 s -0.26 -0.22 -0.05 -1.07 -1.04 -0.22 0.48 0.39 0.69 0.01 0.01 0.98
T =60 s -0.02 -0.04 -0.14 -1.01 -0.98 -0.51 0.15 0.17 0.94 0.02 0.00 1.00

7k
m

T =15 s -0.30 -0.10 -0.19 -1.41 -1.42 -0.23 0.55 0.46 0.86 0.01 0.02 0.97
T =30 s -0.40 -0.17 -0.11 -1.52 -1.46 -0.30 0.46 0.38 0.84 0.01 0.01 0.98
T =60 s -0.08 -0.13 -0.34 -1.37 -1.28 -0.64 0.13 0.14 0.99 0.01 0.01 1.00

CWNA/C2

3k
m

T =15 s 0.00 -0.01 -0.19 -0.07 -0.12 -0.17 0.04 0.09 0.96 0.01 0.00 0.89
T =30 s 0.01 -0.02 -0.03 -0.28 -0.32 -0.13 0.07 0.07 0.53 0.01 0.01 0.92
T =60 s 0.02 0.00 0.02 -0.58 -0.57 -0.34 0.06 0.03 0.84 0.01 0.01 1.00

5k
m

T =15 s 0.04 -0.09 -0.31 0.28 0.22 -0.18 0.25 0.37 0.99 0.02 0.02 0.62
T =30 s 0.06 -0.07 -0.10 -0.20 -0.25 -0.18 0.05 0.11 0.80 0.01 0.01 0.96
T =60 s 0.08 0.01 -0.12 -0.84 -0.82 -0.47 0.03 0.02 0.98 0.01 0.00 1.00

7k
m

T =15 s 0.04 -0.03 -0.40 0.70 0.59 -0.19 0.46 0.60 1.00 0.04 0.03 0.46
T =30 s -0.00 -0.03 -0.17 0.05 0.00 -0.22 0.12 0.21 0.91 0.01 0.01 0.96
T =60 s 0.07 -0.10 -0.30 -1.08 -1.04 -0.58 0.01 0.02 0.99 0.01 0.01 1.00

Table C.2: Consistency summary statistics for the CWNA model applied to targets
moving in rolling terrain (T2).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

CWNA/C1
3k

m

T =15 s 0.02 -0.04 -0.18 -0.68 -0.71 -0.20 0.38 0.45 0.91 0.02 0.01 0.93
T =30 s -0.00 -0.03 -0.09 -0.69 -0.68 -0.16 0.39 0.49 0.55 0.02 0.02 0.93
T =60 s -0.01 -0.03 -0.14 -0.64 -0.68 -0.41 0.19 0.22 0.92 0.02 0.02 0.99

5k
m

T =15 s 0.08 -0.04 -0.23 -1.09 -1.11 -0.22 0.43 0.53 0.88 0.02 0.02 0.94
T =30 s -0.00 0.01 -0.13 -1.11 -1.11 -0.24 0.36 0.48 0.79 0.02 0.02 0.98
T =60 s 0.04 -0.09 -0.29 -0.96 -1.02 -0.54 0.13 0.18 0.96 0.01 0.02 1.00

7k
m

T =15 s 0.08 -0.07 -0.26 -1.49 -1.50 -0.25 0.46 0.55 0.89 0.02 0.02 0.97
T =30 s 0.07 -0.09 -0.19 -1.58 -1.61 -0.32 0.36 0.46 0.86 0.03 0.03 0.99
T =60 s -0.03 -0.12 -0.50 -1.30 -1.34 -0.67 0.08 0.14 0.99 0.02 0.02 1.00

CWNA/C2

3k
m

T =15 s -0.02 -0.01 -0.25 -0.24 -0.21 -0.21 0.07 0.06 0.97 0.01 0.01 0.96
T =30 s -0.04 -0.01 -0.10 -0.45 -0.40 -0.17 0.06 0.06 0.55 0.01 0.01 0.98
T =60 s -0.04 0.02 -0.11 -0.59 -0.61 -0.38 0.04 0.04 0.89 0.02 0.02 0.99

5k
m

T =15 s 0.01 -0.02 -0.37 -0.02 0.03 -0.23 0.29 0.23 0.99 0.01 0.01 0.81
T =30 s -0.06 0.03 -0.17 -0.42 -0.39 -0.22 0.09 0.06 0.87 0.01 0.02 0.98
T =60 s -0.02 -0.03 -0.25 -0.83 -0.86 -0.50 0.04 0.02 0.95 0.01 0.03 1.00

7k
m

T =15 s -0.03 -0.04 -0.46 0.26 0.31 -0.24 0.55 0.37 0.99 0.02 0.02 0.62
T =30 s -0.01 -0.08 -0.24 -0.33 -0.31 -0.26 0.20 0.13 0.90 0.02 0.02 0.98
T =60 s -0.09 -0.08 -0.44 -1.08 -1.09 -0.61 0.02 0.01 0.98 0.01 0.02 1.00

Table C.3: Consistency summary statistics for the CWNA model applied to targets
moving in mountain terrain (T3).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

CWNA/C1

3k
m

T =15 s 7.66 0.24 0.176 0.024 5.30 0.30 -9.27 3.39 168.38 2.00 -25.93 1.21
T =30 s 8.20 0.17 0.127 0.010 2.55 0.16 -3.38 3.15 191.68 1.20 -15.99 0.39
T =60 s 8.46 0.04 0.107 0.004 1.28 0.02 -1.48 0.39 217.98 0.74 -4.46 0.14

5k
m

T =15 s 11.19 0.64 0.249 0.078 5.78 0.61 -13.51 5.35 259.18 3.02 -31.34 0.97
T =30 s 12.34 0.41 0.159 0.023 2.67 0.11 -6.22 3.53 316.15 3.22 -16.36 0.99
T =60 s 13.08 0.09 0.180 0.010 1.39 0.01 -2.40 0.38 360.06 1.14 -4.84 0.16

7k
m

T =15 s 14.41 0.81 0.300 0.106 5.83 0.48 -17.99 4.79 353.01 2.14 -33.18 0.47
T =30 s 16.39 0.58 0.213 0.045 2.80 0.11 -8.57 3.64 438.68 5.20 -17.00 1.06
T =60 s 17.88 0.14 0.347 0.028 1.46 0.01 -2.41 0.73 504.33 1.93 -4.63 0.37

CWNA/C2

3k
m

T =15 s 7.67 0.10 0.194 0.015 5.10 0.05 -11.30 1.23 168.50 2.48 -25.83 1.56
T =30 s 7.94 0.06 0.120 0.005 2.41 0.02 -8.23 0.20 190.02 0.51 -16.67 0.19
T =60 s 8.41 0.06 0.103 0.004 1.27 0.02 -2.53 0.16 216.95 0.92 -4.88 0.05

5k
m

T =15 s 11.37 0.11 0.322 0.064 5.90 0.08 -14.85 1.24 254.11 6.05 -32.58 1.86
T =30 s 12.22 0.12 0.172 0.010 2.65 0.01 -9.23 0.95 309.18 4.89 -18.13 1.54
T =60 s 13.06 0.05 0.173 0.006 1.38 0.00 -3.08 0.28 358.32 1.30 -5.27 0.24

7k
m

T =15 s 14.96 0.35 0.430 0.095 6.51 0.08 -17.44 1.99 327.64 10.72 -37.86 2.23
T =30 s 16.51 0.16 0.252 0.034 2.85 0.03 -9.97 1.20 420.39 8.93 -20.39 1.85
T =60 s 17.93 0.20 0.328 0.026 1.46 0.01 -2.62 0.88 501.85 2.61 -5.08 0.54

CWNA/C3

3k
m

T =15 s 9.01 0.23 2.380 0.061 6.58 0.12 5.10 3.47 225.17 2.91 -1.29 1.45
T =30 s 8.85 0.08 2.103 0.010 3.15 0.01 2.08 0.98 227.19 1.21 -0.43 0.58
T =60 s 8.59 0.04 3.794 0.003 1.67 0.02 -0.43 0.13 224.50 1.06 -1.61 0.09

5k
m

T =15 s 13.53 0.36 2.642 0.118 6.93 0.15 1.93 3.59 359.91 12.47 -4.91 3.59
T =30 s 14.05 0.51 2.234 0.056 3.36 0.06 4.98 4.61 372.74 2.45 -1.40 0.70
T =60 s 13.62 0.14 3.858 0.009 1.74 0.01 1.09 0.98 374.56 0.92 -1.03 0.12

7k
m

T =15 s 17.86 0.37 2.869 0.155 7.14 0.17 -1.41 2.70 490.29 22.92 -7.34 4.61
T =30 s 18.91 0.61 2.358 0.083 3.48 0.09 3.57 4.23 511.99 3.20 -3.18 0.58
T =60 s 19.04 0.51 4.023 0.173 1.80 0.02 3.81 3.29 526.44 3.83 -0.45 0.80

Table C.4: State estimation performance summary statistics for the CWNA model
applied to targets moving in flat terrain (T1).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

CWNA/C1

3k
m

T =15 s 8.01 0.13 0.217 0.016 5.57 0.10 -4.49 1.35 172.85 1.88 -23.87 0.95
T =30 s 8.56 0.06 0.176 0.003 2.76 0.02 1.17 0.64 194.80 0.72 -14.32 0.42
T =60 s 8.47 0.04 0.138 0.004 1.35 0.02 -1.19 0.17 217.71 0.29 -4.19 0.05

5k
m

T =15 s 11.70 0.20 0.264 0.030 5.98 0.10 -9.26 1.40 264.13 2.89 -30.01 0.82
T =30 s 12.65 0.15 0.203 0.010 2.78 0.03 -3.16 0.99 317.84 1.39 -15.83 0.42
T =60 s 13.13 0.12 0.213 0.008 1.39 0.00 -1.73 0.69 360.83 0.70 -4.43 0.23

7k
m

T =15 s 14.89 0.20 0.293 0.038 6.01 0.09 -14.90 1.23 354.03 2.52 -32.97 0.50
T =30 s 16.55 0.28 0.232 0.018 2.84 0.03 -7.01 1.46 437.33 2.23 -17.20 0.44
T =60 s 17.93 0.20 0.384 0.011 1.47 0.01 -1.79 1.20 504.14 1.58 -4.54 0.34

CWNA/C2

3k
m

T =15 s 7.73 0.05 0.239 0.015 5.27 0.06 -10.03 0.78 173.99 1.61 -23.35 0.83
T =30 s 8.03 0.04 0.157 0.002 2.58 0.01 -6.81 0.33 192.61 0.18 -15.25 0.18
T =60 s 8.42 0.03 0.136 0.003 1.35 0.02 -2.22 0.12 217.28 0.45 -4.38 0.05

5k
m

T =15 s 11.43 0.12 0.343 0.023 5.94 0.06 -14.30 0.92 261.27 3.60 -30.73 1.02
T =30 s 12.19 0.07 0.201 0.008 2.71 0.01 -9.02 0.54 309.13 2.51 -18.11 0.72
T =60 s 13.09 0.09 0.196 0.005 1.39 0.00 -2.57 0.56 359.19 0.35 -4.86 0.15

7k
m

T =15 s 14.97 0.24 0.430 0.030 6.45 0.05 -17.27 1.63 335.09 6.56 -36.51 1.29
T =30 s 16.36 0.17 0.256 0.014 2.87 0.02 -10.46 1.01 416.36 4.12 -21.13 0.82
T =60 s 17.93 0.13 0.343 0.009 1.46 0.00 -2.38 0.79 501.13 1.26 -5.10 0.29

Table C.5: State estimation performance summary statistics for the CWNA model
applied to targets moving in rolling terrain (T2).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

CWNA/C1

3k
m

T =15 s 7.86 0.15 0.262 0.029 5.52 0.11 -6.72 1.20 173.48 4.01 -23.71 0.98
T =30 s 8.32 0.08 0.233 0.006 2.80 0.04 -1.79 1.07 191.42 2.69 -15.87 0.48
T =60 s 8.36 0.08 0.237 0.006 1.33 0.01 -2.82 0.60 214.61 1.86 -5.88 0.25

5k
m

T =15 s 11.45 0.22 0.314 0.059 5.95 0.20 -11.39 1.68 264.25 3.80 -29.97 0.72
T =30 s 12.39 0.22 0.258 0.009 2.84 0.02 -5.12 1.65 310.69 4.45 -17.73 0.87
T =60 s 12.92 0.09 0.331 0.011 1.41 0.01 -3.42 0.29 353.38 1.51 -6.47 0.20

7k
m

T =15 s 14.67 0.25 0.342 0.071 6.09 0.19 -16.22 1.60 349.35 3.50 -33.84 0.50
T =30 s 16.24 0.30 0.293 0.025 2.90 0.04 -8.54 1.67 426.08 4.49 -19.32 0.69
T =60 s 17.66 0.27 0.515 0.012 1.50 0.01 -3.27 1.31 492.94 2.99 -6.69 0.47

CWNA/C2

3k
m

T =15 s 7.70 0.13 0.287 0.021 5.27 0.08 -10.66 0.94 176.42 4.46 -22.44 1.14
T =30 s 7.94 0.02 0.208 0.001 2.58 0.01 -7.94 0.36 193.78 2.02 -14.93 0.19
T =60 s 8.33 0.07 0.224 0.003 1.33 0.01 -3.56 0.45 214.35 1.84 -6.01 0.28

5k
m

T =15 s 11.27 0.22 0.398 0.039 5.86 0.12 -15.40 1.62 263.56 6.94 -30.14 1.55
T =30 s 12.07 0.10 0.252 0.010 2.73 0.01 -9.83 0.70 309.03 4.29 -18.18 0.85
T =60 s 12.92 0.07 0.299 0.006 1.41 0.01 -3.91 0.19 352.76 1.18 -6.65 0.11

7k
m

T =15 s 14.58 0.43 0.485 0.043 6.28 0.12 -19.32 2.48 335.67 11.56 -36.40 2.05
T =30 s 16.05 0.23 0.314 0.022 2.88 0.03 -11.87 1.29 413.16 5.38 -21.77 0.87
T =60 s 17.69 0.19 0.454 0.007 1.48 0.01 -3.65 0.86 491.86 2.63 -6.90 0.38

Table C.6: State estimation performance summary statistics for the CWNA model
applied to targets moving in mountain terrain (T3).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C1
3k

m

T =15 s 0.02 -0.19 0.11 -0.52 -0.51 -0.06 0.41 0.39 0.53 0.02 0.02 0.55
T =30 s 0.05 -0.30 0.09 -0.42 -0.36 -0.14 0.29 0.32 0.45 0.05 0.03 0.80
T =60 s 0.40 -0.06 -0.16 -0.14 -0.11 -1.17 0.10 0.17 0.92 0.03 0.04 0.92

5k
m

T =15 s 0.11 -0.31 0.16 -0.91 -0.87 -0.08 0.54 0.70 0.92 0.02 0.02 0.57
T =30 s -0.02 -0.34 0.07 -0.65 -0.55 -0.20 0.34 0.34 0.60 0.03 0.04 0.72
T =60 s 0.66 -0.17 -0.17 -0.50 -0.34 -1.17 0.09 0.10 0.89 0.03 0.03 0.97

7k
m

T =15 s 0.11 -0.56 0.17 -1.21 -1.07 -0.11 0.54 0.71 0.92 0.02 0.02 0.56
T =30 s 0.12 -0.46 0.06 -0.95 -0.86 -0.27 0.38 0.47 0.60 0.03 0.03 0.72
T =60 s 0.50 -0.25 -0.17 -0.78 -0.57 -1.15 0.12 0.19 0.92 0.03 0.02 0.98

PSH/C2

3k
m

T =15 s 0.04 -0.04 -0.01 -0.12 -0.23 -0.05 0.31 0.30 0.18 0.00 0.01 0.44
T =30 s 0.04 -0.06 -0.02 -0.35 -0.42 -0.15 0.04 0.02 0.74 0.01 0.01 0.90
T =60 s 0.03 0.03 -0.30 -0.57 -0.60 -0.98 0.03 0.01 0.99 0.01 0.01 0.99

5k
m

T =15 s 0.11 0.01 0.02 -0.19 -0.32 -0.05 0.49 0.67 0.12 0.00 0.00 0.35
T =30 s 0.11 -0.08 -0.07 -0.47 -0.53 -0.20 0.12 0.15 0.70 0.01 0.01 0.79
T =60 s 0.20 0.02 -0.31 -0.88 -0.85 -0.98 0.01 0.01 0.97 0.01 0.00 0.98

7k
m

T =15 s 0.09 -0.08 0.01 -0.25 -0.38 -0.08 0.49 0.68 0.09 0.01 0.01 0.43
T =30 s 0.13 -0.13 -0.11 -0.67 -0.75 -0.26 0.31 0.43 0.68 0.00 0.00 0.79
T =60 s 0.14 -0.07 -0.32 -1.14 -1.18 -0.99 0.00 0.01 0.97 0.02 0.01 0.99

PSH/C3

3k
m

T =15 s 14.47 -19.39 0.93 13.74 12.00 0.10 0.83 0.96 0.98 0.97 0.98 0.72
T =30 s 14.67 -18.81 0.68 4.16 4.20 0.10 0.93 0.78 0.99 0.69 0.67 0.70
T =60 s 8.70 -18.32 0.30 1.14 0.87 -0.06 0.88 0.69 0.99 0.19 0.22 0.38

5k
m

T =15 s 21.45 -23.39 0.93 23.74 25.07 0.11 0.81 0.96 1.00 0.96 0.97 0.69
T =30 s 20.61 -28.18 0.69 13.76 9.43 0.10 0.83 0.90 0.97 0.84 0.82 0.64
T =60 s 16.18 -32.32 0.39 4.23 2.75 -0.08 0.85 0.73 0.99 0.39 0.37 0.41

7k
m

T =15 s 20.47 -17.95 0.96 35.87 38.54 0.12 0.80 0.93 1.00 0.97 0.96 0.66
T =30 s 23.32 -35.35 0.70 24.86 20.72 0.13 0.85 0.90 0.98 0.90 0.91 0.69
T =60 s 17.63 -44.06 0.40 8.80 5.72 -0.10 0.85 0.73 0.97 0.61 0.52 0.45

Table C.7: Consistency summary statistics for the PSH model applied to targets moving
in flat terrain (T1).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C4
3k

m

T =15 s 0.06 -0.02 0.04 0.75 0.49 -0.14 0.40 0.60 0.74 0.31 0.23 0.64
T =30 s 0.09 0.05 0.01 0.37 0.19 -0.21 0.18 0.18 0.93 0.13 0.14 0.52
T =60 s 0.01 0.11 -0.01 -0.15 -0.26 -0.24 0.21 0.17 1.00 0.03 0.04 0.13

5k
m

T =15 s 0.14 0.01 0.08 1.27 1.00 -0.09 0.54 0.70 0.84 0.39 0.28 0.66
T =30 s 0.19 0.02 0.03 1.22 0.90 -0.17 0.28 0.48 0.82 0.30 0.24 0.45
T =60 s 0.14 0.16 -0.01 0.30 0.17 -0.24 0.22 0.19 0.97 0.10 0.11 0.24

7k
m

T =15 s 0.09 -0.07 0.10 1.67 1.34 -0.07 0.58 0.72 0.89 0.45 0.35 0.72
T =30 s 0.16 -0.13 0.05 2.05 1.74 -0.12 0.42 0.63 0.74 0.39 0.33 0.47
T =60 s 0.14 0.04 -0.00 1.10 0.75 -0.24 0.14 0.22 0.92 0.20 0.21 0.22

Continuation of Table C.7: Consistency summary statistics for the PSH model applied
to targets moving in flat terrain (T1).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C1
3k

m

T =15 s -0.12 -0.02 0.18 -0.29 -0.31 -0.04 0.61 0.61 0.68 0.02 0.03 0.39
T =30 s -0.01 -0.27 0.22 0.17 0.26 -0.09 0.61 0.58 0.73 0.09 0.09 0.55
T =60 s -0.19 0.18 0.13 0.20 0.31 -0.82 0.24 0.34 0.94 0.06 0.07 0.97

5k
m

T =15 s -0.07 0.08 0.22 -0.56 -0.58 -0.06 0.70 0.76 0.86 0.02 0.03 0.38
T =30 s -0.06 0.05 0.22 0.00 0.19 -0.15 0.54 0.64 0.73 0.06 0.07 0.55
T =60 s -0.18 0.30 0.09 -0.05 0.12 -0.86 0.25 0.39 0.93 0.05 0.05 0.97

7k
m

T =15 s -0.08 0.18 0.22 -0.79 -0.78 -0.09 0.73 0.82 0.87 0.04 0.03 0.37
T =30 s -0.20 0.21 0.20 -0.21 0.10 -0.20 0.53 0.67 0.76 0.05 0.05 0.56
T =60 s -0.17 0.24 0.09 -0.18 -0.02 -0.87 0.25 0.48 0.89 0.04 0.04 0.99

PSH/C2

3k
m

T =15 s 0.00 0.01 0.01 -0.23 -0.29 -0.05 0.28 0.45 0.20 0.00 0.00 0.40
T =30 s -0.01 -0.03 0.02 -0.34 -0.39 -0.15 0.09 0.10 0.58 0.00 0.01 0.82
T =60 s 0.00 -0.02 -0.22 -0.60 -0.58 -0.90 0.03 0.03 0.99 0.01 0.01 0.99

5k
m

T =15 s 0.04 -0.06 0.02 -0.37 -0.46 -0.06 0.60 0.72 0.17 0.00 0.01 0.35
T =30 s 0.02 -0.09 -0.03 -0.48 -0.54 -0.18 0.10 0.21 0.52 0.00 0.01 0.74
T =60 s 0.05 -0.01 -0.24 -0.89 -0.85 -0.91 0.02 0.02 0.98 0.02 0.00 0.99

7k
m

T =15 s 0.05 0.01 0.01 -0.50 -0.62 -0.09 0.65 0.81 0.16 0.00 0.01 0.39
T =30 s -0.00 -0.06 -0.07 -0.67 -0.71 -0.23 0.27 0.42 0.54 0.01 0.00 0.74
T =60 s 0.03 -0.09 -0.24 -1.19 -1.13 -0.91 0.04 0.06 0.98 0.00 0.01 0.98

PSH/C3

3k
m

T =15 s -14.35 -1.94 0.86 15.17 18.19 0.17 0.80 0.95 1.00 0.94 0.99 0.77
T =30 s -17.61 -10.15 0.61 6.57 8.79 0.09 0.75 0.95 0.99 0.74 0.87 0.63
T =60 s -16.46 -5.97 0.27 1.14 2.36 -0.10 0.76 0.93 0.89 0.26 0.44 0.46

5k
m

T =15 s -15.54 -4.43 0.84 29.78 27.69 0.16 0.78 0.94 0.99 0.95 0.99 0.73
T =30 s -12.91 -11.52 0.66 20.23 17.66 0.12 0.74 0.94 0.99 0.88 0.96 0.67
T =60 s -25.62 -9.14 0.38 6.87 8.74 -0.08 0.75 0.95 0.90 0.62 0.70 0.44

7k
m

T =15 s -10.47 -10.01 0.82 41.81 37.15 0.16 0.81 0.91 0.99 0.95 0.99 0.70
T =30 s -32.74 -12.93 0.64 24.91 25.20 0.10 0.77 0.90 0.98 0.90 0.96 0.67
T =60 s -33.34 -10.04 0.42 14.92 16.41 -0.09 0.80 0.92 0.96 0.80 0.83 0.52

Table C.8: Consistency summary statistics for the PSH model applied to targets moving
in rolling terrain (T2).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C4
3k

m

T =15 s -0.03 0.06 0.05 0.74 0.54 -0.13 0.46 0.54 0.72 0.30 0.21 0.55
T =30 s -0.04 0.00 0.03 0.53 0.36 -0.21 0.25 0.22 0.94 0.19 0.14 0.60
T =60 s -0.20 0.33 0.00 0.09 -0.03 -0.26 0.21 0.30 0.98 0.05 0.05 0.30

5k
m

T =15 s 0.01 -0.02 0.09 1.26 1.01 -0.09 0.67 0.78 0.81 0.36 0.28 0.61
T =30 s -0.06 -0.03 0.05 1.44 1.23 -0.16 0.30 0.39 0.76 0.34 0.27 0.52
T =60 s -0.25 0.36 0.01 0.80 0.65 -0.25 0.17 0.18 0.95 0.19 0.14 0.35

7k
m

T =15 s 0.02 0.05 0.11 1.62 1.32 -0.08 0.72 0.87 0.85 0.39 0.31 0.63
T =30 s -0.09 -0.01 0.07 2.31 2.09 -0.12 0.50 0.65 0.70 0.47 0.39 0.57
T =60 s -0.23 0.31 0.02 1.74 1.55 -0.24 0.15 0.06 0.90 0.31 0.26 0.32

Continuation of Table C.8: Consistency summary statistics for the PSH model applied
to targets moving in rolling terrain (T2).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C1
3k

m

T =15 s 0.03 -0.03 0.17 -0.37 -0.40 -0.07 0.65 0.60 0.73 0.03 0.03 0.32
T =30 s 0.24 -0.38 0.22 0.36 0.26 -0.10 0.50 0.56 0.70 0.13 0.12 0.46
T =60 s 0.20 -0.12 0.22 0.67 0.54 -0.59 0.39 0.35 0.87 0.11 0.10 0.94

5k
m

T =15 s 0.11 -0.01 0.20 -0.59 -0.72 -0.09 0.76 0.68 0.91 0.02 0.02 0.34
T =30 s 0.17 -0.29 0.21 0.44 0.18 -0.14 0.61 0.55 0.71 0.11 0.10 0.45
T =60 s 0.19 -0.29 0.17 0.47 0.28 -0.64 0.35 0.39 0.85 0.09 0.08 0.93

7k
m

T =15 s 0.11 0.01 0.21 -0.72 -0.96 -0.11 0.80 0.67 0.91 0.03 0.03 0.37
T =30 s 0.31 -0.41 0.20 0.35 -0.13 -0.19 0.69 0.57 0.67 0.10 0.09 0.51
T =60 s 0.26 -0.50 0.14 0.17 -0.08 -0.68 0.40 0.34 0.81 0.05 0.07 0.93

PSH/C2

3k
m

T =15 s -0.01 -0.03 -0.02 -0.33 -0.31 -0.07 0.39 0.29 0.21 0.00 0.00 0.32
T =30 s -0.04 -0.01 0.00 -0.45 -0.41 -0.16 0.06 0.06 0.47 0.01 0.01 0.75
T =60 s -0.02 0.01 -0.21 -0.59 -0.62 -0.85 0.03 0.03 0.98 0.02 0.01 0.98

5k
m

T =15 s 0.02 -0.04 -0.01 -0.52 -0.46 -0.08 0.66 0.52 0.21 0.01 0.01 0.26
T =30 s -0.06 0.04 -0.03 -0.59 -0.58 -0.18 0.17 0.12 0.48 0.01 0.02 0.67
T =60 s 0.00 -0.05 -0.22 -0.86 -0.90 -0.84 0.04 0.03 0.97 0.01 0.02 0.96

7k
m

T =15 s -0.02 -0.06 -0.02 -0.69 -0.62 -0.11 0.72 0.58 0.21 0.01 0.01 0.34
T =30 s -0.03 -0.06 -0.07 -0.84 -0.82 -0.22 0.40 0.28 0.53 0.01 0.01 0.67
T =60 s -0.09 -0.09 -0.22 -1.15 -1.19 -0.83 0.03 0.02 0.93 0.01 0.02 0.96

PSH/C3

3k
m

T =15 s 23.57 6.23 0.77 6.59 6.38 0.05 0.92 0.96 0.99 0.78 0.89 0.65
T =30 s 18.10 -2.74 0.49 2.46 2.96 -0.03 0.75 0.93 0.95 0.50 0.65 0.65
T =60 s 9.84 -8.20 0.24 0.12 -0.19 -0.20 0.86 0.91 0.96 0.12 0.09 0.46

5k
m

T =15 s 25.85 6.20 0.75 20.38 17.01 0.04 0.92 0.94 0.98 0.90 0.97 0.65
T =30 s 25.06 -3.61 0.53 10.66 9.47 -0.02 0.79 0.93 0.96 0.74 0.83 0.67
T =60 s 18.87 -15.51 0.30 1.69 1.02 -0.21 0.86 0.87 0.97 0.29 0.27 0.49

7k
m

T =15 s 25.61 5.64 0.74 33.62 29.10 0.05 0.91 0.93 0.98 0.93 0.98 0.59
T =30 s 24.52 -2.56 0.54 22.50 17.58 -0.02 0.85 0.91 0.94 0.81 0.91 0.65
T =60 s 24.22 -21.05 0.31 5.98 4.72 -0.21 0.80 0.85 0.97 0.37 0.37 0.48

Table C.9: Consistency summary statistics for the PSH model applied to targets moving
in mountain terrain (T3).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH/C4
3k

m

T =15 s -0.07 -0.01 0.05 0.40 0.57 -0.18 0.55 0.39 0.79 0.16 0.24 0.55
T =30 s -0.08 -0.00 0.04 0.19 0.37 -0.25 0.19 0.12 0.88 0.11 0.12 0.60
T =60 s -0.14 0.09 0.03 -0.07 -0.00 -0.30 0.23 0.18 0.99 0.05 0.04 0.36

5k
m

T =15 s -0.04 -0.03 0.08 0.79 0.99 -0.14 0.73 0.59 0.86 0.23 0.32 0.55
T =30 s -0.10 0.04 0.06 1.00 1.22 -0.20 0.44 0.27 0.78 0.25 0.29 0.54
T =60 s -0.13 0.02 0.03 0.48 0.62 -0.29 0.14 0.12 0.92 0.11 0.15 0.34

7k
m

T =15 s -0.07 -0.04 0.10 1.06 1.29 -0.14 0.75 0.63 0.90 0.25 0.32 0.58
T =30 s -0.07 -0.11 0.08 1.69 1.91 -0.17 0.63 0.48 0.80 0.31 0.37 0.56
T =60 s -0.17 -0.05 0.04 1.29 1.54 -0.27 0.13 0.07 0.81 0.22 0.27 0.31

Continuation of Table C.9: Consistency summary statistics for the PSH model applied
to targets moving in mountain terrain (T3).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C1

3k
m

T =15 s 7.82 0.20 0.217 0.027 6.11 0.31 -7.04 2.98 173.15 3.92 -23.77 2.25
T =30 s 8.58 0.13 0.185 0.009 3.02 0.04 0.66 1.45 196.34 0.65 -13.91 0.34
T =60 s 9.08 0.19 0.404 0.007 1.59 0.06 5.81 2.19 220.13 0.43 -3.50 0.28

5k
m

T =15 s 11.86 0.77 0.281 0.067 6.66 0.70 -7.55 6.97 268.57 2.37 -28.84 0.82
T =30 s 13.09 0.33 0.234 0.032 3.13 0.14 -0.50 2.77 323.57 4.37 -14.35 1.32
T =60 s 13.87 0.23 0.400 0.018 1.57 0.03 3.83 1.92 361.79 1.10 -4.36 0.33

7k
m

T =15 s 16.01 1.63 0.325 0.087 7.05 1.17 -7.87 10.38 357.58 4.52 -32.32 0.89
T =30 s 17.40 0.53 0.287 0.044 3.21 0.16 -2.54 3.45 443.40 5.75 -16.09 1.13
T =60 s 18.57 0.38 0.405 0.020 1.59 0.05 1.83 2.06 501.41 2.03 -5.18 0.46

PSH/C2

3k
m

T =15 s 7.79 0.15 0.203 0.022 5.47 0.21 -9.30 2.32 174.56 4.44 -23.14 2.50
T =30 s 8.08 0.06 0.129 0.006 2.47 0.02 -6.60 0.27 198.86 0.69 -12.86 0.18
T =60 s 8.52 0.05 0.325 0.003 1.39 0.02 -1.28 0.08 221.54 1.07 -2.85 0.08

5k
m

T =15 s 11.78 0.46 0.288 0.051 6.11 0.33 -10.21 4.59 266.37 5.04 -29.38 1.53
T =30 s 12.60 0.22 0.213 0.022 2.77 0.06 -6.14 1.88 329.34 5.51 -12.83 1.65
T =60 s 13.19 0.05 0.340 0.005 1.46 0.00 -2.04 0.28 364.12 1.47 -3.72 0.22

7k
m

T =15 s 15.71 0.89 0.344 0.070 6.46 0.40 -11.41 5.99 344.18 4.55 -34.80 0.91
T =30 s 16.94 0.33 0.300 0.038 2.96 0.09 -7.01 2.39 449.64 7.14 -14.90 1.41
T =60 s 17.93 0.13 0.363 0.005 1.50 0.01 -2.51 0.59 504.79 1.66 -4.52 0.29

PSH/C3

3k
m

T =15 s 83.49 9.06 0.945 0.036 1218.18 219.00 919.72 98.10 66.08 3.61 -70.87 1.97
T =30 s 62.64 11.30 0.696 0.056 166.42 57.69 658.81 110.29 114.21 5.25 -49.70 2.00
T =60 s 42.00 7.16 0.333 0.094 19.88 6.07 412.03 68.46 170.00 5.22 -25.19 1.76

5k
m

T =15 s 124.08 16.34 0.943 0.105 1509.44 410.89 892.94 134.64 90.08 4.93 -76.16 1.50
T =30 s 102.39 16.32 0.712 0.037 244.18 76.62 712.82 122.36 155.35 6.77 -58.89 1.87
T =60 s 81.63 9.29 0.426 0.140 38.64 13.04 549.02 65.49 233.75 9.42 -38.16 2.31

7k
m

T =15 s 161.81 16.10 0.975 0.156 1674.88 370.06 853.04 98.40 106.34 6.90 -79.89 1.33
T =30 s 134.83 19.86 0.726 0.091 272.17 90.53 689.22 115.54 191.35 10.44 -63.81 2.00
T =60 s 114.38 12.17 0.442 0.145 46.62 15.46 570.65 67.59 287.93 12.91 -45.57 2.36

Table C.10: State estimation performance summary statistics for the PSH model applied
to targets moving in flat terrain (T1).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C4

3k
m

T =15 s 6.33 0.08 0.093 0.009 6.26 0.18 -27.23 1.23 93.46 3.16 -58.76 1.76
T =30 s 6.92 0.13 0.075 0.002 2.71 0.04 -20.24 0.91 132.23 0.51 -41.80 0.25
T =60 s 7.66 0.13 0.071 0.002 1.25 0.02 -10.81 0.74 173.42 0.59 -23.62 0.29

5k
m

T =15 s 9.79 0.46 0.133 0.036 8.33 0.92 -26.35 4.28 135.61 9.71 -63.98 2.88
T =30 s 9.97 0.13 0.092 0.009 3.23 0.10 -26.57 0.75 187.28 5.32 -50.35 1.62
T =60 s 10.90 0.16 0.074 0.003 1.34 0.00 -18.92 1.27 250.32 1.24 -33.70 0.38

7k
m

T =15 s 13.44 0.96 0.158 0.054 9.32 1.13 -24.89 6.03 172.16 15.44 -67.32 3.15
T =30 s 13.44 0.47 0.120 0.026 3.77 0.31 -27.13 2.90 234.20 10.27 -55.62 2.11
T =60 s 13.94 0.36 0.081 0.004 1.42 0.01 -24.51 1.40 314.82 1.83 -40.41 0.39

Continuation of Table C.10: State estimation performance summary statistics for the
PSH model applied to targets moving in flat terrain (T1).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C1

3k
m

T =15 s 8.50 0.14 0.297 0.018 7.13 0.14 1.86 1.57 174.34 2.99 -23.20 1.45
T =30 s 9.75 0.16 0.296 0.013 4.09 0.15 16.04 1.76 192.76 1.16 -15.15 0.62
T =60 s 9.42 0.15 0.437 0.006 1.74 0.01 10.29 1.34 217.31 1.06 -4.29 0.28

5k
m

T =15 s 12.60 0.38 0.342 0.031 7.47 0.19 -1.68 3.05 266.44 2.86 -29.38 0.81
T =30 s 14.42 0.39 0.326 0.027 3.85 0.16 11.26 3.11 310.92 1.56 -17.61 0.45
T =60 s 14.28 0.23 0.439 0.014 1.65 0.01 7.81 1.94 356.19 1.50 -5.60 0.32

7k
m

T =15 s 16.45 0.66 0.368 0.037 7.57 0.34 -5.22 4.14 349.27 2.12 -33.84 0.38
T =30 s 18.73 0.79 0.349 0.037 3.71 0.20 6.57 4.68 422.16 1.88 -20.03 0.31
T =60 s 19.17 0.31 0.446 0.014 1.65 0.02 6.44 1.73 489.77 1.90 -7.22 0.32

PSH/C2

3k
m

T =15 s 7.85 0.12 0.234 0.017 5.63 0.17 -8.12 1.70 179.01 3.11 -21.16 1.50
T =30 s 8.12 0.02 0.162 0.004 2.72 0.03 -5.76 0.33 198.57 0.98 -12.65 0.53
T =60 s 8.52 0.02 0.327 0.004 1.50 0.02 -1.09 0.28 220.85 0.84 -2.80 0.21

5k
m

T =15 s 11.65 0.26 0.299 0.021 6.10 0.15 -11.30 2.43 271.07 3.88 -28.16 1.09
T =30 s 12.45 0.15 0.226 0.015 2.85 0.05 -6.81 1.19 324.80 3.17 -13.97 0.90
T =60 s 13.21 0.08 0.345 0.003 1.49 0.01 -1.63 0.46 363.58 0.76 -3.69 0.12

7k
m

T =15 s 15.22 0.48 0.338 0.022 6.33 0.19 -14.25 3.30 347.96 3.55 -34.09 0.70
T =30 s 16.63 0.24 0.290 0.016 2.97 0.04 -8.47 1.54 440.60 2.22 -16.56 0.46
T =60 s 17.89 0.11 0.368 0.006 1.52 0.01 -2.49 0.68 502.05 1.07 -4.92 0.17

PSH/C3

3k
m

T =15 s 68.93 9.08 0.880 0.069 793.04 262.04 750.34 113.63 66.41 6.93 -70.60 2.90
T =30 s 51.69 7.34 0.653 0.130 104.71 33.33 536.68 89.58 113.95 7.76 -49.58 3.16
T =60 s 37.09 3.26 0.361 0.081 14.95 3.08 355.56 38.86 169.07 4.98 -25.38 1.95

5k
m

T =15 s 99.98 9.36 0.860 0.081 887.20 271.52 699.81 77.71 89.56 10.39 -76.22 2.71
T =30 s 83.13 12.29 0.693 0.121 153.10 61.38 566.10 98.59 150.06 10.93 -60.18 2.87
T =60 s 68.26 7.32 0.462 0.141 24.56 8.19 448.12 59.46 232.06 15.02 -38.47 3.95

7k
m

T =15 s 123.36 8.95 0.843 0.080 875.95 256.00 627.59 56.40 110.35 10.25 -79.08 1.93
T =30 s 107.54 12.76 0.682 0.141 164.28 69.61 533.63 74.81 184.76 17.33 -64.99 3.27
T =60 s 94.91 9.40 0.496 0.156 30.08 10.86 461.29 54.95 282.18 23.19 -46.55 4.40

Table C.11: State estimation performance summary statistics for the PSH model applied
to targets moving in rolling terrain (T2).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C4

3k
m

T =15 s 6.53 0.09 0.138 0.008 6.79 0.17 -24.41 1.30 96.71 2.88 -57.40 1.33
T =30 s 7.08 0.06 0.126 0.003 3.29 0.06 -18.08 0.66 131.13 1.38 -42.21 0.66
T =60 s 7.99 0.13 0.141 0.006 1.73 0.07 -6.80 1.30 172.40 1.28 -23.94 0.68

5k
m

T =15 s 9.91 0.33 0.173 0.017 8.46 0.38 -25.48 2.89 140.80 6.04 -62.69 1.63
T =30 s 10.23 0.07 0.144 0.005 3.79 0.10 -24.45 0.67 186.06 4.53 -50.71 1.21
T =60 s 11.46 0.23 0.141 0.003 1.66 0.05 -14.74 1.61 250.30 4.26 -33.65 1.12

7k
m

T =15 s 13.28 0.68 0.195 0.023 9.32 0.39 -25.92 4.47 179.20 8.97 -66.07 1.71
T =30 s 13.65 0.40 0.168 0.014 4.24 0.16 -25.90 2.57 232.77 8.28 -55.93 1.58
T =60 s 14.62 0.23 0.146 0.003 1.68 0.03 -21.02 1.31 312.74 6.43 -40.76 1.23

Continuation of Table C.11: State estimation performance summary statistics for the
PSH model applied to targets moving in rolling terrain (T2).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C1

3k
m

T =15 s 8.28 0.23 0.301 0.031 6.85 0.19 -1.28 2.31 170.30 6.32 -25.13 2.03
T =30 s 9.77 0.26 0.311 0.022 4.15 0.18 16.64 2.53 187.11 3.44 -17.79 0.66
T =60 s 9.57 0.21 0.411 0.011 1.69 0.02 12.74 1.91 210.40 1.87 -7.67 0.21

5k
m

T =15 s 12.30 0.63 0.347 0.056 7.31 0.44 -4.10 5.33 257.93 5.08 -31.66 1.13
T =30 s 14.36 0.57 0.336 0.042 3.85 0.20 11.18 4.43 300.46 4.06 -20.41 0.79
T =60 s 14.49 0.60 0.404 0.024 1.63 0.08 9.86 4.46 343.38 0.76 -9.07 0.27

7k
m

T =15 s 16.16 1.13 0.372 0.069 7.50 0.63 -6.91 7.15 336.22 1.93 -36.31 0.44
T =30 s 18.75 1.06 0.358 0.054 3.75 0.27 7.14 6.52 405.35 1.60 -23.21 0.43
T =60 s 19.25 0.95 0.405 0.039 1.64 0.07 7.24 5.48 472.65 0.66 -10.49 0.28

PSH/C2

3k
m

T =15 s 7.80 0.21 0.247 0.026 5.51 0.20 -9.10 2.22 178.30 7.04 -21.72 2.39
T =30 s 7.97 0.05 0.161 0.007 2.56 0.03 -7.69 0.27 194.56 2.97 -14.64 0.69
T =60 s 8.37 0.08 0.276 0.002 1.37 0.01 -3.07 0.44 215.67 1.68 -5.39 0.24

5k
m

T =15 s 11.47 0.42 0.312 0.031 5.98 0.24 -12.82 3.68 268.52 8.24 -28.89 1.92
T =30 s 12.25 0.18 0.228 0.021 2.78 0.05 -8.26 1.40 317.14 4.74 -16.06 1.04
T =60 s 12.99 0.08 0.301 0.005 1.43 0.01 -3.36 0.14 354.49 1.52 -6.17 0.30

7k
m

T =15 s 14.87 0.71 0.349 0.031 6.21 0.23 -16.39 4.68 343.41 8.21 -34.96 1.41
T =30 s 16.29 0.30 0.286 0.023 2.92 0.07 -10.04 1.88 428.09 2.90 -18.96 0.45
T =60 s 17.62 0.19 0.330 0.005 1.48 0.01 -3.99 0.87 490.12 2.41 -7.22 0.40

PSH/C3

3k
m

T =15 s 60.97 16.89 0.780 0.096 509.89 302.55 648.62 206.61 68.32 8.54 -69.71 3.90
T =30 s 38.08 7.37 0.518 0.085 57.33 17.50 363.82 90.35 115.71 6.70 -48.66 2.26
T =60 s 24.43 2.55 0.289 0.023 8.16 0.81 195.34 31.63 165.95 9.87 -26.69 3.37

5k
m

T =15 s 93.88 28.95 0.769 0.104 700.98 484.51 649.40 232.43 88.94 10.40 -76.36 2.78
T =30 s 64.76 18.40 0.559 0.111 88.60 42.66 415.34 148.20 153.50 9.64 -59.15 2.39
T =60 s 44.88 9.10 0.348 0.061 12.52 2.99 255.00 72.42 232.36 17.81 -38.28 4.36

7k
m

T =15 s 117.28 33.95 0.757 0.091 730.57 482.74 590.24 200.86 109.16 12.47 -79.28 2.31
T =30 s 91.16 28.76 0.566 0.119 111.86 64.60 435.08 170.05 185.47 12.71 -64.76 2.36
T =60 s 64.26 16.12 0.361 0.082 14.32 4.85 275.51 94.22 286.30 27.56 -45.67 5.08

Table C.12: State estimation performance summary statistics for the PSH model applied
to targets moving in mountain terrain (T3).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH/C4

3k
m

T =15 s 6.59 0.14 0.143 0.010 6.22 0.15 -23.97 1.48 102.90 3.92 -54.81 1.31
T =30 s 6.95 0.04 0.110 0.002 2.88 0.04 -19.58 0.58 132.88 2.87 -41.38 0.69
T =60 s 7.78 0.15 0.117 0.005 1.57 0.08 -9.61 1.43 172.26 3.90 -24.07 0.72

5k
m

T =15 s 9.88 0.57 0.180 0.025 7.58 0.52 -25.72 4.98 149.83 8.11 -60.39 2.07
T =30 s 10.20 0.11 0.135 0.008 3.45 0.11 -24.56 1.11 191.38 6.18 -49.26 1.47
T =60 s 11.25 0.16 0.121 0.008 1.57 0.08 -16.53 1.09 251.51 5.81 -33.28 1.20

7k
m

T =15 s 13.09 1.12 0.203 0.035 8.32 0.62 -27.01 7.13 189.62 12.57 -64.15 2.38
T =30 s 13.52 0.50 0.159 0.017 3.87 0.21 -26.29 3.37 238.97 8.67 -54.73 1.56
T =60 s 14.58 0.25 0.131 0.010 1.61 0.06 -21.40 1.10 318.33 8.70 -39.68 1.53

Continuation of Table C.12: State estimation performance summary statistics for the
PSH model applied to targets moving in mountain terrain (T3).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-ExpCorr/C1
3k

m

T =15 s 0.04 -0.03 0.04 0.29 0.12 -0.03 0.39 0.59 0.52 0.05 0.03 0.63
T =30 s 0.09 0.03 0.02 0.10 -0.04 -0.09 0.14 0.16 0.76 0.05 0.05 0.92
T =60 s -0.01 0.09 0.01 -0.20 -0.30 -0.13 0.23 0.26 0.95 0.03 0.05 0.96

5k
m

T =15 s 0.12 -0.01 0.07 0.54 0.35 0.00 0.52 0.69 0.79 0.09 0.07 0.70
T =30 s 0.17 -0.01 0.03 0.68 0.45 -0.05 0.28 0.46 0.62 0.12 0.11 0.81
T =60 s 0.11 0.14 0.01 0.18 0.06 -0.14 0.24 0.22 0.89 0.09 0.10 0.93

7k
m

T =15 s 0.06 -0.09 0.09 0.75 0.49 -0.00 0.55 0.71 0.90 0.12 0.10 0.69
T =30 s 0.10 -0.15 0.05 1.25 0.98 -0.03 0.40 0.61 0.68 0.16 0.13 0.81
T =60 s 0.14 0.02 0.02 0.82 0.54 -0.14 0.19 0.27 0.81 0.12 0.15 0.92

PSH-ExpCorr/C2

3k
m

T =15 s 0.04 -0.02 0.03 0.27 0.10 -0.03 0.41 0.60 0.51 0.04 0.03 0.63
T =30 s 0.10 0.02 0.02 0.08 -0.06 -0.09 0.15 0.17 0.77 0.05 0.05 0.92
T =60 s 0.01 0.11 0.01 -0.20 -0.30 -0.13 0.22 0.24 0.94 0.03 0.05 0.96

5k
m

T =15 s 0.13 -0.00 0.06 0.52 0.34 0.00 0.53 0.70 0.77 0.09 0.06 0.69
T =30 s 0.18 -0.01 0.03 0.64 0.41 -0.05 0.29 0.48 0.61 0.11 0.10 0.81
T =60 s 0.14 0.16 0.01 0.17 0.06 -0.14 0.23 0.25 0.89 0.09 0.10 0.93

7k
m

T =15 s 0.08 -0.08 0.08 0.73 0.48 -0.01 0.56 0.72 0.89 0.12 0.10 0.67
T =30 s 0.13 -0.15 0.05 1.20 0.95 -0.03 0.40 0.62 0.65 0.15 0.12 0.81
T =60 s 0.16 0.04 0.01 0.79 0.51 -0.14 0.19 0.29 0.82 0.13 0.14 0.92

PSH-ExpCorr/C3

3k
m

T =15 s 1.17 0.04 0.07 0.40 0.12 0.00 0.49 0.65 0.79 0.14 0.11 0.64
T =30 s 0.41 -0.08 0.03 -0.09 -0.11 -0.10 0.31 0.36 0.84 0.03 0.08 0.95
T =60 s -0.03 -0.29 0.02 -0.36 -0.40 -0.17 0.27 0.29 0.94 0.02 0.05 0.98

5k
m

T =15 s 1.50 0.04 0.11 0.56 0.34 0.02 0.58 0.72 0.93 0.12 0.12 0.61
T =30 s 0.58 -0.15 0.04 0.26 0.19 -0.08 0.38 0.56 0.83 0.05 0.10 0.82
T =60 s 0.21 -0.30 0.02 -0.12 -0.22 -0.17 0.30 0.39 0.87 0.05 0.05 0.94

7k
m

T =15 s 1.62 -0.05 0.14 0.73 0.43 0.03 0.59 0.71 0.97 0.13 0.13 0.59
T =30 s 0.70 -0.25 0.06 0.67 0.52 -0.07 0.49 0.65 0.76 0.08 0.10 0.79
T =60 s 0.19 -0.47 0.02 0.48 0.10 -0.18 0.24 0.45 0.83 0.07 0.11 0.93

Table C.13: Consistency summary statistics for the PSH-ExpCorr model applied to
targets moving in flat terrain (T1).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-ExpCorr/C1
3k

m

T =15 s -0.02 0.04 0.05 0.26 0.13 -0.01 0.46 0.54 0.62 0.05 0.04 0.59
T =30 s -0.03 0.01 0.05 0.22 0.09 -0.08 0.23 0.19 0.79 0.07 0.06 0.86
T =60 s -0.23 0.34 0.07 0.07 0.01 -0.13 0.31 0.37 0.96 0.07 0.07 0.94

5k
m

T =15 s 0.02 -0.01 0.08 0.53 0.35 0.01 0.64 0.75 0.77 0.10 0.06 0.66
T =30 s -0.05 -0.02 0.06 0.85 0.69 -0.03 0.27 0.40 0.65 0.14 0.12 0.75
T =60 s -0.30 0.37 0.07 0.74 0.65 -0.12 0.23 0.28 0.93 0.16 0.12 0.89

7k
m

T =15 s 0.02 0.07 0.10 0.71 0.47 0.01 0.71 0.86 0.85 0.13 0.09 0.66
T =30 s -0.12 0.03 0.08 1.42 1.24 -0.01 0.48 0.65 0.62 0.20 0.16 0.80
T =60 s -0.26 0.34 0.07 1.53 1.45 -0.12 0.22 0.14 0.82 0.25 0.23 0.84

PSH-ExpCorr/C2

3k
m

T =15 s -0.01 0.05 0.04 0.25 0.11 -0.01 0.47 0.57 0.59 0.05 0.04 0.59
T =30 s -0.03 0.00 0.04 0.20 0.08 -0.08 0.23 0.20 0.79 0.07 0.05 0.87
T =60 s -0.22 0.35 0.06 0.06 0.00 -0.13 0.29 0.37 0.95 0.07 0.07 0.94

5k
m

T =15 s 0.02 -0.02 0.07 0.51 0.33 0.01 0.66 0.77 0.75 0.09 0.06 0.65
T =30 s -0.05 -0.03 0.06 0.81 0.66 -0.03 0.30 0.41 0.63 0.14 0.12 0.76
T =60 s -0.29 0.39 0.07 0.73 0.63 -0.12 0.23 0.29 0.94 0.16 0.12 0.89

7k
m

T =15 s 0.03 0.07 0.09 0.68 0.45 0.00 0.72 0.87 0.86 0.12 0.08 0.65
T =30 s -0.10 0.02 0.07 1.37 1.20 -0.02 0.50 0.66 0.59 0.20 0.15 0.79
T =60 s -0.26 0.36 0.07 1.51 1.43 -0.12 0.23 0.14 0.83 0.23 0.22 0.84

PSH-ExpCorr/C3

3k
m

T =15 s 0.67 -0.07 0.10 0.19 0.01 -0.00 0.67 0.60 0.75 0.09 0.06 0.60
T =30 s 0.07 -0.09 0.06 -0.04 -0.05 -0.10 0.63 0.56 0.87 0.03 0.04 0.87
T =60 s -0.48 0.40 0.08 -0.12 -0.19 -0.15 0.67 0.58 0.95 0.04 0.05 0.94

5k
m

T =15 s 1.05 -0.09 0.13 0.38 0.26 0.02 0.78 0.75 0.87 0.10 0.08 0.60
T =30 s 0.09 -0.16 0.08 0.41 0.35 -0.07 0.58 0.52 0.73 0.06 0.07 0.78
T =60 s -0.68 0.38 0.08 0.41 0.30 -0.15 0.57 0.58 0.94 0.08 0.07 0.90

7k
m

T =15 s 1.26 -0.04 0.16 0.56 0.41 0.03 0.78 0.80 0.90 0.10 0.09 0.59
T =30 s 0.12 -0.09 0.09 0.83 0.78 -0.07 0.65 0.67 0.75 0.09 0.10 0.77
T =60 s -0.80 0.29 0.08 1.00 0.91 -0.15 0.56 0.53 0.89 0.14 0.13 0.88

Table C.14: Consistency summary statistics for the PSH-ExpCorr model applied to
targets moving in rolling terrain (T2).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-ExpCorr/C1
3k

m

T =15 s -0.04 -0.02 0.05 0.05 0.14 -0.03 0.55 0.39 0.71 0.03 0.03 0.55
T =30 s -0.06 -0.01 0.06 -0.03 0.09 -0.11 0.17 0.13 0.75 0.05 0.04 0.78
T =60 s -0.18 0.11 0.09 -0.08 -0.04 -0.16 0.27 0.23 0.95 0.05 0.04 0.94

5k
m

T =15 s -0.00 -0.03 0.07 0.21 0.35 -0.01 0.72 0.58 0.86 0.05 0.07 0.55
T =30 s -0.09 0.03 0.07 0.46 0.61 -0.06 0.44 0.28 0.70 0.08 0.10 0.69
T =60 s -0.19 0.03 0.09 0.40 0.52 -0.15 0.22 0.17 0.89 0.10 0.11 0.89

7k
m

T =15 s -0.04 -0.06 0.08 0.31 0.48 -0.02 0.74 0.61 0.93 0.07 0.09 0.52
T =30 s -0.07 -0.09 0.08 0.82 0.99 -0.04 0.62 0.47 0.74 0.12 0.14 0.71
T =60 s -0.23 -0.03 0.09 1.05 1.30 -0.14 0.18 0.10 0.83 0.17 0.20 0.78

PSH-ExpCorr/C2

3k
m

T =15 s -0.04 -0.02 0.03 0.04 0.14 -0.03 0.57 0.40 0.69 0.02 0.03 0.55
T =30 s -0.06 -0.01 0.05 -0.05 0.08 -0.10 0.17 0.13 0.74 0.04 0.03 0.77
T =60 s -0.15 0.11 0.08 -0.08 -0.05 -0.16 0.27 0.22 0.93 0.05 0.04 0.94

5k
m

T =15 s -0.00 -0.03 0.06 0.21 0.35 -0.02 0.73 0.60 0.84 0.05 0.07 0.54
T =30 s -0.08 0.03 0.06 0.44 0.59 -0.06 0.45 0.29 0.69 0.07 0.10 0.69
T =60 s -0.17 0.03 0.08 0.37 0.49 -0.15 0.22 0.15 0.87 0.10 0.10 0.88

7k
m

T =15 s -0.03 -0.05 0.07 0.31 0.48 -0.03 0.75 0.63 0.91 0.07 0.09 0.51
T =30 s -0.06 -0.09 0.08 0.80 0.96 -0.04 0.64 0.49 0.75 0.12 0.13 0.71
T =60 s -0.21 -0.03 0.09 1.01 1.25 -0.14 0.18 0.10 0.82 0.16 0.19 0.78

PSH-ExpCorr/C3

3k
m

T =15 s 1.23 -0.02 0.10 0.20 0.08 -0.02 0.75 0.57 0.83 0.13 0.08 0.51
T =30 s 0.28 0.03 0.07 -0.25 -0.08 -0.12 0.55 0.52 0.83 0.03 0.05 0.79
T =60 s -0.11 0.05 0.10 -0.19 -0.17 -0.20 0.59 0.51 0.95 0.05 0.04 0.94

5k
m

T =15 s 1.62 -0.00 0.13 0.32 0.31 0.00 0.81 0.62 0.93 0.13 0.10 0.49
T =30 s 0.38 0.04 0.08 0.02 0.24 -0.10 0.65 0.57 0.78 0.03 0.06 0.72
T =60 s -0.10 -0.03 0.10 0.14 0.18 -0.19 0.52 0.44 0.90 0.08 0.07 0.87

7k
m

T =15 s 1.84 -0.05 0.15 0.40 0.50 0.00 0.82 0.64 0.96 0.13 0.12 0.47
T =30 s 0.54 -0.09 0.09 0.29 0.57 -0.09 0.72 0.58 0.80 0.05 0.08 0.67
T =60 s -0.14 -0.03 0.10 0.56 0.74 -0.19 0.49 0.44 0.85 0.10 0.11 0.82

Table C.15: Consistency summary statistics for the PSH-ExpCorr model applied to
targets moving in mountain terrain (T3).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-ExpCorr/C1

3k
m

T =15 s 6.74 0.09 0.106 0.011 5.72 0.21 -21.83 1.27 122.88 2.94 -45.82 1.69
T =30 s 7.07 0.14 0.075 0.002 2.57 0.04 -18.08 1.01 146.27 1.14 -35.69 0.16
T =60 s 7.66 0.17 0.061 0.003 1.21 0.02 -10.33 1.13 170.07 1.86 -25.15 0.32

5k
m

T =15 s 10.24 0.47 0.154 0.036 7.10 0.69 -22.26 4.52 179.18 8.90 -52.43 2.66
T =30 s 10.25 0.16 0.099 0.008 2.97 0.05 -23.95 0.82 213.26 5.52 -43.49 1.66
T =60 s 10.85 0.22 0.068 0.005 1.31 0.01 -18.77 1.77 247.31 3.05 -34.54 0.61

7k
m

T =15 s 13.96 1.06 0.187 0.057 7.67 0.83 -21.36 6.82 225.47 13.66 -57.23 2.80
T =30 s 13.70 0.42 0.132 0.021 3.33 0.20 -25.12 2.54 273.90 12.56 -48.11 2.56
T =60 s 13.85 0.41 0.080 0.007 1.39 0.02 -24.44 1.81 315.56 3.12 -40.31 0.50

PSH-ExpCorr/C2

3k
m

T =15 s 6.74 0.09 0.104 0.011 5.65 0.20 -21.81 1.34 122.97 2.86 -45.78 1.65
T =30 s 7.07 0.14 0.075 0.002 2.55 0.03 -18.18 1.01 146.72 1.16 -35.50 0.18
T =60 s 7.66 0.16 0.060 0.003 1.21 0.02 -10.37 1.14 170.18 1.80 -25.11 0.30

5k
m

T =15 s 10.30 0.51 0.150 0.035 7.02 0.64 -21.70 4.88 178.75 8.77 -52.54 2.62
T =30 s 10.24 0.15 0.098 0.007 2.94 0.05 -24.02 0.78 213.78 5.21 -43.36 1.57
T =60 s 10.84 0.22 0.067 0.005 1.31 0.01 -18.86 1.74 247.48 2.98 -34.50 0.60

7k
m

T =15 s 14.13 1.16 0.183 0.055 7.62 0.80 -20.28 7.45 224.32 13.19 -57.45 2.71
T =30 s 13.73 0.41 0.130 0.020 3.31 0.19 -24.93 2.51 274.62 12.21 -47.98 2.49
T =60 s 13.83 0.39 0.079 0.007 1.38 0.02 -24.53 1.69 315.80 3.02 -40.27 0.48

PSH-ExpCorr/C3

3k
m

T =15 s 7.46 0.19 0.136 0.007 8.54 1.02 -10.94 2.66 123.95 2.86 -45.38 1.64
T =30 s 7.32 0.15 0.080 0.004 2.73 0.13 -13.74 1.41 147.07 1.56 -35.35 0.46
T =60 s 7.98 0.10 0.064 0.002 1.28 0.04 -5.64 1.26 170.46 1.73 -24.91 0.29

5k
m

T =15 s 11.13 0.39 0.179 0.029 9.40 0.69 -12.80 3.70 181.16 7.68 -51.92 2.31
T =30 s 10.52 0.17 0.100 0.006 3.03 0.08 -19.74 1.27 216.36 4.86 -42.71 1.41
T =60 s 11.21 0.15 0.070 0.002 1.37 0.04 -14.69 0.81 248.47 3.41 -34.21 0.73

7k
m

T =15 s 15.04 0.99 0.214 0.048 9.80 0.86 -12.73 6.28 228.40 11.02 -56.68 2.28
T =30 s 13.82 0.36 0.128 0.017 3.27 0.11 -22.15 2.19 278.55 12.74 -47.24 2.59
T =60 s 14.20 0.39 0.080 0.004 1.42 0.02 -21.16 1.44 318.39 3.84 -39.77 0.64

Table C.16: State estimation performance summary statistics for the PSH-ExpCorr
model applied to targets moving in flat terrain (T1).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-ExpCorr/C1

3k
m

T =15 s 6.88 0.09 0.145 0.010 6.10 0.19 -19.73 1.31 126.33 2.81 -44.34 1.32
T =30 s 7.23 0.05 0.120 0.003 3.16 0.06 -15.99 0.50 146.79 0.95 -35.34 0.53
T =60 s 8.16 0.16 0.131 0.004 1.82 0.04 -4.41 1.60 170.80 1.33 -24.73 0.69

5k
m

T =15 s 10.29 0.31 0.188 0.018 7.32 0.32 -21.97 2.80 183.72 5.68 -51.30 1.55
T =30 s 10.50 0.08 0.146 0.006 3.43 0.09 -21.88 0.73 215.22 4.37 -42.99 1.20
T =60 s 11.62 0.22 0.139 0.008 1.70 0.04 -12.98 1.54 250.93 3.12 -33.51 0.84

7k
m

T =15 s 13.71 0.67 0.215 0.024 7.77 0.33 -23.05 4.48 231.67 8.43 -56.13 1.62
T =30 s 13.93 0.36 0.174 0.013 3.66 0.10 -23.74 2.32 276.60 8.08 -47.64 1.56
T =60 s 14.73 0.21 0.150 0.007 1.69 0.03 -19.72 1.28 317.79 4.18 -39.82 0.82

PSH-ExpCorr/C2

3k
m

T =15 s 6.89 0.09 0.142 0.010 6.01 0.18 -19.57 1.37 126.61 2.77 -44.21 1.30
T =30 s 7.24 0.06 0.119 0.003 3.12 0.06 -15.91 0.55 147.70 0.84 -34.94 0.48
T =60 s 8.15 0.16 0.130 0.004 1.81 0.04 -4.53 1.67 170.97 1.43 -24.65 0.73

5k
m

T =15 s 10.36 0.33 0.184 0.017 7.24 0.31 -21.35 2.98 183.45 5.53 -51.38 1.51
T =30 s 10.51 0.07 0.144 0.006 3.38 0.09 -21.73 0.69 216.42 4.05 -42.68 1.11
T =60 s 11.60 0.23 0.138 0.008 1.69 0.04 -13.12 1.58 251.29 3.29 -33.41 0.89

7k
m

T =15 s 13.86 0.73 0.210 0.023 7.72 0.32 -22.08 4.85 230.56 8.03 -56.34 1.55
T =30 s 13.98 0.37 0.171 0.013 3.62 0.10 -23.41 2.35 277.82 7.82 -47.41 1.51
T =60 s 14.72 0.21 0.149 0.007 1.68 0.03 -19.81 1.26 318.31 4.42 -39.72 0.86

PSH-ExpCorr/C3

3k
m

T =15 s 7.66 0.18 0.173 0.014 8.57 0.88 -7.85 2.06 127.85 2.23 -43.67 1.05
T =30 s 8.02 0.04 0.135 0.007 3.68 0.15 -4.91 0.48 148.68 1.49 -34.53 0.78
T =60 s 8.69 0.08 0.146 0.002 1.92 0.08 3.20 1.32 170.11 1.87 -25.01 0.92

5k
m

T =15 s 11.38 0.41 0.215 0.022 9.82 1.17 -10.82 3.12 185.72 4.88 -50.79 1.34
T =30 s 11.45 0.21 0.157 0.010 3.87 0.23 -11.83 1.56 219.55 5.20 -41.86 1.39
T =60 s 12.39 0.16 0.150 0.006 1.79 0.09 -5.38 1.22 252.34 2.74 -33.13 0.75

7k
m

T =15 s 15.03 0.81 0.246 0.028 10.23 1.25 -12.85 4.98 234.29 6.52 -55.64 1.26
T =30 s 14.84 0.50 0.178 0.016 3.89 0.20 -15.79 2.89 282.44 8.29 -46.54 1.60
T =60 s 15.60 0.34 0.159 0.009 1.77 0.11 -12.80 2.13 322.59 5.26 -38.92 1.01

Table C.17: State estimation performance summary statistics for the PSH-ExpCorr
model applied to targets moving in rolling terrain (T2).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-ExpCorr/C1

3k
m

T =15 s 6.97 0.14 0.153 0.016 5.79 0.21 -19.08 1.49 131.05 4.37 -42.45 1.40
T =30 s 7.12 0.04 0.111 0.002 2.80 0.03 -17.36 0.79 147.25 2.05 -35.11 0.56
T =60 s 7.87 0.14 0.128 0.005 1.67 0.07 -8.32 1.57 171.40 2.99 -24.46 0.36

5k
m

T =15 s 10.35 0.54 0.202 0.032 6.83 0.48 -21.60 4.76 190.35 8.47 -49.64 2.11
T =30 s 10.58 0.10 0.147 0.011 3.21 0.10 -21.22 0.91 221.65 5.33 -41.33 1.25
T =60 s 11.34 0.19 0.136 0.005 1.60 0.06 -15.34 1.24 252.88 3.64 -32.92 0.63

7k
m

T =15 s 13.64 1.10 0.233 0.042 7.29 0.52 -23.50 7.04 238.66 12.54 -54.86 2.34
T =30 s 14.02 0.43 0.178 0.020 3.45 0.17 -23.05 2.94 286.41 8.64 -45.83 1.59
T =60 s 14.72 0.27 0.150 0.008 1.62 0.04 -20.02 1.10 325.45 6.30 -38.34 1.09

PSH-ExpCorr/C2

3k
m

T =15 s 6.99 0.15 0.157 0.015 5.82 0.21 -18.80 1.61 131.72 4.39 -42.17 1.39
T =30 s 7.14 0.05 0.112 0.003 2.78 0.03 -17.21 0.84 148.76 1.95 -34.50 0.56
T =60 s 7.83 0.14 0.127 0.005 1.66 0.07 -8.74 1.51 171.61 2.87 -24.37 0.31

5k
m

T =15 s 10.39 0.58 0.203 0.030 6.82 0.46 -21.18 5.06 189.80 8.41 -49.78 2.09
T =30 s 10.60 0.10 0.147 0.010 3.20 0.09 -21.11 0.94 222.82 5.19 -41.03 1.22
T =60 s 11.28 0.19 0.135 0.005 1.59 0.06 -15.78 1.26 253.25 3.63 -32.84 0.63

7k
m

T =15 s 13.75 1.18 0.232 0.040 7.30 0.52 -22.77 7.52 236.96 12.11 -55.17 2.25
T =30 s 14.04 0.45 0.178 0.019 3.43 0.16 -22.90 3.07 286.94 8.64 -45.73 1.59
T =60 s 14.67 0.27 0.148 0.008 1.61 0.04 -20.35 1.11 325.91 6.12 -38.26 1.06

PSH-ExpCorr/C3

3k
m

T =15 s 7.97 0.12 0.196 0.012 8.96 0.64 -4.29 1.46 129.84 4.56 -42.92 1.40
T =30 s 7.85 0.09 0.135 0.011 3.31 0.21 -6.76 1.22 150.07 2.35 -33.98 0.30
T =60 s 8.22 0.17 0.143 0.005 1.73 0.06 -3.07 2.16 171.54 2.71 -24.43 0.28

5k
m

T =15 s 11.68 0.40 0.239 0.024 9.97 0.81 -8.30 3.10 187.56 8.28 -50.34 2.02
T =30 s 11.32 0.09 0.161 0.015 3.65 0.18 -12.76 1.03 223.81 5.69 -40.79 1.32
T =60 s 11.80 0.21 0.150 0.006 1.68 0.08 -10.30 1.54 255.46 4.05 -32.27 0.76

7k
m

T =15 s 15.28 0.88 0.269 0.033 10.29 0.95 -11.40 5.28 234.90 11.67 -55.54 2.15
T =30 s 14.72 0.42 0.184 0.022 3.69 0.17 -16.24 2.61 288.40 10.68 -45.45 1.97
T =60 s 15.35 0.21 0.160 0.007 1.68 0.05 -14.61 0.98 332.56 8.45 -37.03 1.53

Table C.18: State estimation performance summary statistics for the PSH-ExpCorr
model applied to targets moving in mountain terrain (T3).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-Road/C1
3k

m

T =15 s 0.00 -0.01 0.06 -1.00 -0.97 -0.18 0.13 0.15 0.29 0.26 0.21 0.66
T =30 s 0.02 -0.01 0.03 -1.02 -1.01 -0.24 0.05 0.08 0.26 0.31 0.24 0.97
T =60 s 0.05 -0.01 0.03 -0.99 -0.97 -0.37 0.19 0.24 0.37 0.27 0.26 1.00

5k
m

T =15 s 0.05 0.01 0.11 -1.66 -1.58 -0.19 0.41 0.57 0.87 0.48 0.38 0.66
T =30 s 0.04 -0.02 0.04 -1.70 -1.61 -0.23 0.12 0.19 0.32 0.53 0.41 0.85
T =60 s 0.18 -0.05 0.03 -1.68 -1.58 -0.40 0.30 0.27 0.28 0.47 0.39 1.00

7k
m

T =15 s 0.01 -0.07 0.14 -2.17 -2.06 -0.20 0.53 0.72 0.96 0.57 0.49 0.64
T =30 s 0.01 -0.01 0.06 -2.19 -2.11 -0.23 0.20 0.31 0.47 0.58 0.53 0.83
T =60 s 0.17 -0.13 0.03 -2.19 -2.17 -0.42 0.32 0.37 0.27 0.54 0.54 0.93

PSH-Road/C2

3k
m

T =15 s 0.09 -0.01 0.04 -0.96 -0.97 -0.22 0.30 0.47 0.49 0.32 0.32 0.72
T =30 s 0.18 0.22 0.03 -0.93 -0.97 -0.23 0.31 0.35 0.40 0.44 0.41 0.94
T =60 s -0.07 0.29 0.05 -1.10 -1.05 -0.25 0.26 0.35 0.56 0.47 0.39 0.99

5k
m

T =15 s 0.14 0.00 0.08 -1.50 -1.47 -0.21 0.45 0.63 0.85 0.52 0.48 0.66
T =30 s 0.33 0.10 0.03 -0.79 -1.16 -0.24 0.28 0.39 0.45 0.54 0.54 0.85
T =60 s -0.01 0.35 0.04 -1.68 -1.58 -0.27 0.37 0.47 0.54 0.67 0.64 0.98

7k
m

T =15 s 0.14 -0.04 0.10 -1.69 -1.68 -0.21 0.54 0.70 0.92 0.58 0.59 0.62
T =30 s 0.17 0.21 0.04 -1.42 -1.81 -0.23 0.30 0.49 0.62 0.57 0.55 0.81
T =60 s -0.04 0.45 0.04 -1.91 -1.91 -0.28 0.40 0.47 0.68 0.64 0.64 0.95

Table C.19: Consistency summary statistics for the PSH-Road model applied to targets
moving in flat terrain (T1).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-Road/C1
3k

m

T =15 s 0.01 0.02 0.09 -0.86 -0.84 -0.17 0.22 0.29 0.42 0.16 0.12 0.54
T =30 s 0.06 -0.02 0.06 -0.88 -0.86 -0.24 0.17 0.21 0.35 0.19 0.14 0.82
T =60 s -0.02 -0.01 0.06 -0.92 -0.82 -0.41 0.30 0.15 0.48 0.18 0.12 0.95

5k
m

T =15 s 0.00 -0.00 0.13 -1.27 -1.21 -0.18 0.52 0.66 0.74 0.33 0.24 0.52
T =30 s 0.04 -0.12 0.07 -1.37 -1.29 -0.23 0.25 0.28 0.39 0.39 0.28 0.76
T =60 s 0.10 -0.08 0.06 -1.43 -1.15 -0.42 0.43 0.28 0.44 0.35 0.25 0.84

7k
m

T =15 s -0.09 -0.02 0.15 -1.27 -1.16 -0.18 0.67 0.79 0.87 0.39 0.31 0.50
T =30 s 0.01 -0.19 0.09 -1.45 -1.37 -0.24 0.36 0.41 0.47 0.43 0.35 0.71
T =60 s 0.05 -0.22 0.08 -1.81 -1.40 -0.42 0.47 0.31 0.44 0.43 0.35 0.86

PSH-Road/C2

3k
m

T =15 s 0.10 0.57 0.07 -0.37 -0.16 -0.19 0.44 0.50 0.57 0.27 0.23 0.62
T =30 s 0.01 0.19 0.06 -0.50 -0.20 -0.22 0.48 0.57 0.60 0.39 0.33 0.86
T =60 s -0.11 0.47 0.13 -0.74 -0.46 -0.23 0.46 0.51 0.75 0.38 0.38 0.91

5k
m

T =15 s 0.11 1.08 0.11 -0.07 0.50 -0.17 0.58 0.67 0.80 0.40 0.37 0.56
T =30 s 0.05 0.39 0.07 -0.18 0.43 -0.21 0.43 0.50 0.55 0.49 0.46 0.75
T =60 s 0.03 0.97 0.11 -0.26 0.57 -0.23 0.51 0.56 0.77 0.56 0.54 0.86

7k
m

T =15 s 0.20 1.84 0.14 2.27 2.52 -0.15 0.59 0.71 0.85 0.48 0.43 0.52
T =30 s -0.06 0.98 0.08 1.36 2.08 -0.19 0.41 0.52 0.60 0.54 0.49 0.67
T =60 s 0.43 1.33 0.11 1.85 2.26 -0.24 0.44 0.51 0.72 0.56 0.56 0.79

Table C.20: Consistency summary statistics for the PSH-Road model applied to targets
moving in rolling terrain (T2).
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errµx errµy errµs errσx errσy errσs rejµx rejµy rejµs rejσx rejσy rejσs

(m) (m) (m/s) (m) (m) (m/s) (%) (%) (%) (%) (%) (%)

PSH-Road/C1
3k

m

T =15 s 0.03 -0.09 0.07 -0.85 -0.95 -0.21 0.23 0.31 0.39 0.11 0.16 0.54
T =30 s 0.01 -0.00 0.05 -0.89 -0.96 -0.27 0.11 0.23 0.34 0.14 0.17 0.83
T =60 s -0.01 -0.00 0.05 -0.78 -0.84 -0.40 0.22 0.30 0.52 0.08 0.15 0.87

5k
m

T =15 s 0.08 -0.15 0.10 -1.30 -1.47 -0.22 0.61 0.60 0.79 0.27 0.33 0.55
T =30 s 0.02 -0.00 0.06 -1.31 -1.45 -0.26 0.26 0.35 0.38 0.31 0.37 0.72
T =60 s 0.09 -0.07 0.06 -1.31 -1.43 -0.41 0.29 0.44 0.50 0.23 0.32 0.85

7k
m

T =15 s 0.18 -0.19 0.12 -1.23 -1.60 -0.22 0.75 0.69 0.88 0.34 0.39 0.55
T =30 s 0.15 -0.11 0.07 -1.28 -1.70 -0.26 0.37 0.47 0.45 0.33 0.40 0.70
T =60 s 0.12 -0.09 0.06 -1.64 -1.83 -0.43 0.28 0.53 0.52 0.30 0.37 0.84

PSH-Road/C2

3k
m

T =15 s -0.03 0.08 0.05 -0.84 -0.87 -0.25 0.52 0.45 0.52 0.20 0.23 0.62
T =30 s 0.03 0.12 0.05 -0.85 -0.92 -0.25 0.51 0.42 0.53 0.30 0.30 0.87
T =60 s -0.08 0.16 0.07 -0.83 -0.93 -0.23 0.40 0.35 0.84 0.27 0.32 0.95

5k
m

T =15 s -0.36 0.17 0.08 0.80 -0.30 -0.23 0.55 0.63 0.85 0.34 0.39 0.54
T =30 s 0.05 0.12 0.05 -0.39 -0.78 -0.25 0.43 0.40 0.46 0.38 0.43 0.73
T =60 s 0.04 0.18 0.07 -0.28 -0.67 -0.25 0.49 0.38 0.71 0.47 0.54 0.89

7k
m

T =15 s -1.37 -0.60 0.12 8.83 4.44 -0.19 0.69 0.47 0.93 0.49 0.56 0.45
T =30 s -0.53 -0.55 0.06 5.85 1.78 -0.23 0.34 0.35 0.48 0.41 0.48 0.58
T =60 s 0.45 -0.13 0.06 0.06 -0.17 -0.26 0.51 0.35 0.64 0.57 0.57 0.82

Table C.21: Consistency summary statistics for the PSH-Road model applied to targets
moving in mountain terrain (T3).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-Road/C1

3k
m

T =15 s 6.31 0.24 0.189 0.025 4.92 0.14 -24.78 3.29 154.84 4.38 -31.41 2.41
T =30 s 6.39 0.22 0.116 0.006 2.32 0.03 -24.27 2.66 161.54 4.13 -28.55 2.13
T =60 s 6.74 0.21 0.092 0.007 1.21 0.02 -20.04 2.60 171.81 4.61 -24.08 2.32

5k
m

T =15 s 7.98 0.73 0.227 0.053 5.13 0.24 -37.53 6.24 207.30 10.21 -44.75 2.97
T =30 s 8.13 0.63 0.141 0.022 2.43 0.06 -37.26 4.97 222.35 13.26 -40.74 3.90
T =60 s 8.76 0.64 0.107 0.015 1.26 0.02 -32.63 4.78 240.58 13.09 -35.96 3.88

7k
m

T =15 s 9.25 1.33 0.249 0.070 5.25 0.32 -46.37 8.19 241.13 15.80 -54.11 3.20
T =30 s 9.44 1.16 0.165 0.038 2.50 0.10 -46.20 6.72 264.58 23.86 -49.63 4.87
T =60 s 10.29 1.08 0.123 0.019 1.28 0.03 -41.64 6.17 291.81 24.99 -44.50 5.13

PSH-Road/C2

3k
m

T =15 s 5.33 0.21 0.109 0.010 5.00 0.09 -36.20 2.69 112.79 6.11 -50.06 3.26
T =30 s 5.62 0.10 0.112 0.003 2.58 0.01 -32.50 0.85 122.44 1.62 -45.93 0.57
T =60 s 6.11 0.15 0.136 0.002 1.26 0.05 -26.33 2.23 142.62 1.20 -36.82 1.04

5k
m

T =15 s 6.82 0.82 0.137 0.037 5.19 0.28 -46.30 6.94 155.01 16.81 -58.64 4.94
T =30 s 6.99 0.13 0.109 0.009 2.77 0.18 -45.41 0.83 164.30 7.68 -56.30 2.28
T =60 s 7.36 0.24 0.122 0.004 1.29 0.03 -42.28 1.84 183.03 4.59 -51.28 1.50

7k
m

T =15 s 8.08 1.46 0.158 0.054 5.45 0.41 -52.81 8.87 181.87 24.04 -65.35 4.90
T =30 s 7.98 0.73 0.118 0.019 2.68 0.11 -54.17 4.13 197.66 20.37 -62.38 4.18
T =60 s 8.20 0.30 0.119 0.006 1.29 0.03 -52.65 1.97 210.44 9.15 -60.00 1.97

Table C.22: State estimation performance summary statistics for the PSH-Road model
applied to targets moving in flat terrain (T1).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-Road/C1

3k
m

T =15 s 6.60 0.20 0.228 0.018 5.21 0.08 -21.39 2.30 158.26 3.23 -30.11 1.52
T =30 s 6.69 0.17 0.158 0.005 2.54 0.01 -20.80 1.82 165.53 3.75 -26.95 1.71
T =60 s 7.14 0.23 0.134 0.010 1.30 0.06 -15.87 2.36 181.11 4.37 -20.19 1.95

5k
m

T =15 s 8.53 0.49 0.265 0.026 5.53 0.09 -33.66 3.74 212.68 7.91 -43.54 2.16
T =30 s 8.70 0.48 0.184 0.014 2.61 0.03 -33.02 3.38 229.32 11.35 -39.16 3.06
T =60 s 9.69 0.69 0.163 0.012 1.39 0.10 -25.82 4.98 259.65 12.06 -31.19 3.21

7k
m

T =15 s 10.34 0.70 0.285 0.030 5.92 0.09 -40.46 4.03 249.26 11.86 -52.74 2.28
T =30 s 10.45 0.77 0.207 0.021 2.77 0.04 -40.48 4.20 274.13 18.92 -48.04 3.63
T =60 s 11.89 1.22 0.182 0.020 1.41 0.08 -32.58 6.57 319.78 20.56 -39.46 3.90

PSH-Road/C2

3k
m

T =15 s 6.48 0.46 0.162 0.014 9.50 2.99 -22.06 5.66 120.10 4.10 -47.00 1.87
T =30 s 6.45 0.29 0.163 0.003 3.78 0.29 -22.51 3.37 127.50 1.72 -43.72 0.82
T =60 s 7.07 0.39 0.232 0.004 1.68 0.12 -15.26 4.47 148.14 1.72 -34.57 0.86

5k
m

T =15 s 8.88 1.02 0.190 0.025 12.09 3.35 -30.15 8.06 161.52 8.11 -57.12 2.20
T =30 s 8.40 0.57 0.162 0.003 4.37 0.62 -34.40 4.35 169.47 7.57 -55.03 2.03
T =60 s 9.45 0.98 0.213 0.008 1.99 0.28 -25.85 7.65 191.44 5.69 -49.17 1.54

7k
m

T =15 s 12.10 1.46 0.218 0.027 18.23 5.84 -29.70 8.20 186.90 11.45 -64.55 2.21
T =30 s 10.69 1.20 0.174 0.005 5.65 0.94 -38.24 6.97 199.82 14.56 -62.11 2.80
T =60 s 11.88 1.29 0.206 0.008 2.41 0.35 -31.35 7.17 219.70 9.20 -58.33 1.77

Table C.23: State estimation performance summary statistics for the PSH-Road model
applied to targets moving in rolling terrain (T2).
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errorxy errors divergence 4errorxy area 4area
(m) (m/s) (%) (m2) (%)

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PSH-Road/C1

3k
m

T =15 s 6.57 0.36 0.232 0.030 5.09 0.14 -22.00 3.52 156.28 7.39 -30.96 2.36
T =30 s 6.62 0.32 0.155 0.012 2.44 0.03 -21.70 2.91 162.65 7.46 -28.15 2.38
T =60 s 7.17 0.32 0.145 0.022 1.26 0.02 -15.55 2.86 179.28 7.66 -20.99 2.49

5k
m

T =15 s 8.49 0.86 0.266 0.046 5.38 0.25 -34.14 6.49 210.84 15.23 -44.03 3.80
T =30 s 8.74 0.87 0.186 0.025 2.58 0.09 -32.68 6.34 227.74 18.32 -39.56 4.67
T =60 s 9.70 0.87 0.161 0.022 1.31 0.03 -25.80 5.99 258.60 20.12 -31.42 5.12

7k
m

T =15 s 10.25 1.48 0.285 0.056 5.73 0.38 -41.06 8.50 246.73 23.20 -53.24 4.33
T =30 s 10.54 1.40 0.210 0.034 2.73 0.12 -39.90 7.76 273.09 29.75 -48.25 5.62
T =60 s 11.83 1.46 0.184 0.033 1.35 0.05 -33.25 7.80 321.32 34.49 -39.14 6.52

PSH-Road/C2

3k
m

T =15 s 5.88 0.19 0.154 0.007 5.70 0.21 -29.69 1.69 121.63 6.10 -46.32 2.14
T =30 s 5.87 0.13 0.158 0.007 2.68 0.06 -29.48 0.98 129.14 2.45 -42.78 0.37
T =60 s 6.45 0.23 0.187 0.003 1.39 0.03 -22.91 2.03 148.97 5.39 -34.08 1.41

5k
m

T =15 s 8.32 1.24 0.186 0.026 11.40 6.06 -34.81 9.67 162.99 13.55 -56.75 3.46
T =30 s 7.72 0.29 0.156 0.007 3.07 0.12 -39.85 2.21 174.65 8.32 -53.60 2.05
T =60 s 8.41 0.96 0.176 0.004 1.55 0.19 -34.27 7.13 194.73 11.57 -48.22 2.76

7k
m

T =15 s 14.20 4.35 0.220 0.042 30.34 19.66 -17.39 25.85 186.46 19.58 -64.67 3.69
T =30 s 11.62 2.49 0.172 0.011 6.05 3.15 -32.73 14.90 206.38 16.30 -60.88 3.08
T =60 s 10.07 1.55 0.174 0.009 1.69 0.20 -42.10 8.72 227.06 19.29 -56.92 3.57

Table C.24: State estimation performance summary statistics for the PSH-Road model
applied to targets moving in mountain terrain (T3).
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -5233.8 -5409.5 -5406.9 0.02 0.99 0.09±0.20 49.0 1.0 36.1±13.50 14 0.0025 1e-06 12.4±8.57 8.1 15.9 9.7±2.09
DP (constr.) -5293.9 -5409.5 -5406.9 0.06 0.99 0.14±0.26 22.0 1.0 25.4±11.32 6.86 0.0025 1e-06 4.81±3.87 11.3 15.9 11.0±1.83
DP (fixed α) -5400.8 -5408.5 -5406.1 0.65 0.99 0.71±0.13 2.0 1.0 1.8±0.40 1e-06 1e-06 1e-06 1e-06±0.00 14.5 14.2 14.6±0.78
UP -5219.0 -5408.8 -5406.0 0.03 0.99 0.04±0.09 48.0 1.0 41.2±11.89 5.64 0.0014 1e-06 5.76±3.62 7.2 15.9 8.5±1.90
UP (constr.) -5227.6 -5408.9 -5406.1 0.03 0.99 0.06±0.09 39.0 1.0 29.8±8.16 3.87 0.00128 1e-06 1.93±1.33 9.5 15.9 10.1±1.49
UP (fixed α) -5387.9 -5408.5 -5406.1 0.26 0.99 0.33±0.17 6.0 1.0 5.4±1.72 1e-06 1e-06 1e-06 1e-06±0.00 13.2 14.2 13.6±0.93
EP -5202.6 -5409.2 -5406.0 0.02 0.99 0.04±0.10 58.0 1.0 53.1±15.38 2.55 0.00152 1e-06 2.53±1.85 6.1 15.9 7.0±2.34
EP (constr.) -5229.0 -5409.2 -5406.0 0.02 0.99 0.03±0.09 51.0 1.0 50.1±12.10 2.94 0.00152 1e-06 1.11±0.79 7.3 15.9 7.4±1.95
EP (fixed α) -5389.1 -5408.5 -5406.1 0.26 0.99 0.30±0.22 5.0 1.0 5.7±1.99 1e-06 1e-06 1e-06 1e-06±0.00 13.7 14.2 13.6±0.95
EP2 -5226.9 -5410.5 -5407.6 0.03 0.99 0.06±0.11 38.0 1.0 31.2±8.71 171 0.00457 1e-06 114±42.25 8.7 15.9 9.8±1.57
EP2 (constr.) -5274.0 -5410.5 -5407.6 0.04 0.99 0.11±0.10 29.0 1.0 18.2±7.91 35.7 0.00457 1e-06 4.71±8.57 10.8 15.9 12.0±1.35
EP2 (fixed α) -5403.7 -5408.5 -5406.1 0.32 0.99 0.32±0.21 4.0 1.0 5.1±1.66 1e-06 1e-06 1e-06 1e-06±0.00 13.9 14.2 13.7±0.92
HUP -5150.1 -5409.5 -5407.1 0.02 0.99 0.07±0.13 49.0 1.0 38.1±15.44 N/A N/A N/A N/A 7.5 14.2 9.1±2.51
HUP (constr.) -5346.5 -5410.8 -5408.4 0.07 0.99 0.16±0.10 20.0 1.0 11.0±4.70 N/A N/A N/A N/A 10.7 14.2 12.4±1.09
K -4498.1 -5411.3 -5408.4 0.01 0.96 0.02±0.04 62.0 1.0 53.9±12.08 N/A N/A N/A N/A 3.5 14.9 4.9±2.29
Prop. -5429.8 -5441.1 -5438.7 0.34 0.99 0.36±0.04 4.0 1.0 3.8±0.44 N/A N/A N/A N/A 14.6 14.2 14.6±0.78
Oh -5220.1 -5436.1 -5420.2 0.05 0.99 0.10±0.08 24.0 1.0 16.8±5.03 N/A N/A N/A N/A 10.5 15.1 12.1±1.15

Table D.1: Summary of results from the MCMC sampler on the one target data set.
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Prior Target Score

τ1 Combined

MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.38 0.98 0.43±0.18 0.02 0.99 0.09±0.20
DP (constr.) 0.44 0.98 0.53±0.21 0.06 0.99 0.14±0.26
DP (fixed α) 0.98 0.98 0.96±0.03 0.65 0.99 0.71±0.13
UP 0.65 0.98 0.51±0.11 0.03 0.99 0.04±0.09
UP (constr.) 0.44 0.98 0.55±0.11 0.03 0.99 0.06±0.09
UP (fixed α) 0.88 0.98 0.89±0.05 0.26 0.99 0.33±0.17
EP 0.32 0.98 0.37±0.08 0.02 0.99 0.04±0.10
EP (constr.) 0.32 0.98 0.36±0.09 0.02 0.99 0.03±0.09
EP (fixed α) 0.61 0.98 0.65±0.10 0.26 0.99 0.30±0.22
EP2 0.44 0.98 0.46±0.08 0.03 0.99 0.06±0.11
EP2 (constr.) 0.38 0.98 0.60±0.13 0.04 0.99 0.11±0.10
EP2 (fixed α) 0.62 0.98 0.66±0.09 0.32 0.99 0.32±0.21
HUP 0.32 0.98 0.52±0.10 0.02 0.99 0.07±0.13
HUP (constr.) 0.53 0.98 0.63±0.08 0.07 0.99 0.16±0.10
K 0.32 0.93 0.50±0.10 0.01 0.96 0.02±0.04
Prop. 0.69 0.98 0.69±0.03 0.34 0.99 0.36±0.04
Oh 0.38 0.98 0.45±0.09 0.05 0.99 0.10±0.08

Table D.2: Target scores for the results from the MCMC sampler on the one target data
set.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -5354.4 -5408.7 -5406.9 0.16 0.99 0.29±0.21 11.0 1.0 7.3±2.86 3.01 0.0244 1e-06 2.77±2.49 12.9 15.1 13.4±0.94
DP (constr.) -5343.7 -5408.7 -5406.9 0.21 0.99 0.56±0.31 8.0 1.0 3.9±2.72 1.97 0.0244 1e-06 0.394±0.72 13.4 15.1 14.2±0.94
DP (fixed α) -5408.1 -5408.2 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 15.2 14.9±0.77
UP -5314.7 -5408.5 -5406.0 0.13 0.99 0.21±0.18 10.0 1.0 8.2±2.69 0.501 0.0244 1e-06 0.914±0.80 12.6 15.1 13.2±0.92
UP (constr.) -5374.9 -5408.5 -5406.1 0.32 0.99 0.45±0.12 5.0 1.0 3.5±0.82 0.139 0.0244 1e-06 0.0207±0.09 13.3 15.1 13.9±0.82
UP (fixed α) -5400.5 -5408.2 -5406.1 0.65 0.99 0.73±0.14 2.0 1.0 1.7±0.43 1e-06 1e-06 1e-06 1e-06±0.00 14.4 15.2 14.6±0.79
EP -5261.6 -5412.9 -5406.0 0.07 0.99 0.13±0.16 20.0 1.0 14.1±4.50 0.826 0.0244 1e-06 0.783±0.66 12.4 15.1 13.0±0.91
EP (constr.) -5276.9 -5412.9 -5406.0 0.08 0.99 0.28±0.22 17.0 1.0 8.3±5.52 0.994 0.0244 1e-06 0.296±0.46 12.9 15.1 13.7±0.93
EP (fixed α) -5408.1 -5408.2 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 15.2 14.9±0.77
EP2 -5265.3 -5410.1 -5407.6 0.07 0.99 0.17±0.17 19.0 1.0 11.6±5.75 47.6 0.0244 1e-06 31.1±24.55 12.1 15.1 12.9±0.99
EP2 (constr.) -5371.1 -5410.1 -5407.6 0.39 0.99 0.40±0.10 4.0 1.0 3.9±0.55 0.0289 0.0244 1e-06 0.0183±0.01 14.9 15.1 13.7±0.77
EP2 (fixed α) -5408.1 -5408.2 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 15.2 14.9±0.77
HUP -5332.5 -5409.2 -5407.1 0.15 0.99 0.37±0.22 11.0 1.0 5.8±3.37 N/A N/A N/A N/A 13.0 15.2 13.8±0.95
HUP (constr.) -5371.7 -5410.5 -5408.4 0.28 0.99 0.36±0.17 5.0 1.0 4.2±1.01 N/A N/A N/A N/A 13.3 15.2 13.7±0.86
K -4557.0 -5411.4 -5408.4 0.01 0.96 0.02±0.03 55.0 1.0 46.5±9.02 N/A N/A N/A N/A 4.1 15.1 5.4±1.70
Prop. -5440.1 -5440.8 -5438.7 0.65 0.99 0.52±0.17 2.0 1.0 3.5±2.25 N/A N/A N/A N/A 14.5 15.2 14.1±1.03
Oh -5284.2 -5436.1 -5420.2 0.06 0.99 0.13±0.12 22.0 1.0 13.4±5.21 N/A N/A N/A N/A 11.6 15.1 11.9±1.27

Table D.3: Summary of results from the MCMC sampler on the one target data set. The individual moves were allowed to
propose remaining in the current state.
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Prior Target Score

τ1 Combined

MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.98 0.98 0.96±0.02 0.16 0.99 0.29±0.21
DP (constr.) 0.98 0.98 0.96±0.02 0.21 0.99 0.56±0.31
DP (fixed α) 0.98 0.98 0.96±0.02 0.99 0.99 0.98±0.01
UP 0.54 0.98 0.61±0.14 0.13 0.99 0.21±0.18
UP (constr.) 0.98 0.98 0.96±0.02 0.32 0.99 0.45±0.12
UP (fixed α) 0.98 0.98 0.96±0.02 0.65 0.99 0.73±0.14
EP 0.44 0.98 0.45±0.14 0.07 0.99 0.13±0.16
EP (constr.) 0.44 0.98 0.58±0.18 0.08 0.99 0.28±0.22
EP (fixed α) 0.98 0.98 0.96±0.02 0.99 0.99 0.98±0.01
EP2 0.32 0.98 0.48±0.16 0.07 0.99 0.17±0.17
EP2 (constr.) 0.98 0.98 0.96±0.02 0.39 0.99 0.40±0.10
EP2 (fixed α) 0.98 0.98 0.96±0.02 0.99 0.99 0.98±0.01
HUP 0.93 0.98 0.96±0.02 0.15 0.99 0.37±0.22
HUP (constr.) 0.73 0.98 0.76±0.08 0.28 0.99 0.36±0.17
K 0.38 0.93 0.40±0.03 0.01 0.96 0.02±0.03
Prop. 0.98 0.98 0.95±0.03 0.65 0.99 0.52±0.17
Oh 0.37 0.98 0.48±0.13 0.06 0.99 0.13±0.12

Table D.4: Target scores for the results from the MCMC sampler on the one target data
set. The individual moves were allowed to propose remaining in the current state.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -5352.8 -5356.1 -5406.2 0.24 0.24 0.24±0.00 7.0 7.0 7.0±0.00 1.01 1.34 1e-06 1.78±0.64 12.9 14.5 13.0±0.38
DP (constr.) -5352.1 -5355.8 -5406.2 0.24 0.24 0.24±0.00 7.0 7.0 7.0±0.00 0.653 0.696 1e-06 0.711±0.16 13.0 12.4 13.2±0.39
DP (fixed α) -5395.8 -5395.8 -5406.1 0.64 0.64 0.64±0.00 2.0 2.0 2.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.2 14.2 14.2±0.00
UP -5334.8 -5338.9 -5406.0 0.20 0.20 0.20±0.00 7.0 7.0 7.0±0.00 0.246 0.422 1e-06 0.919±0.38 13.0 13.5 13.1±0.30
UP (constr.) -5325.7 -5328.4 -5406.1 0.21 0.21 0.21±0.00 7.0 7.0 7.0±0.00 0.275 0.23 1e-06 0.292±0.04 14.5 13.0 13.0±0.20
UP (fixed α) -5389.1 -5392.6 -5406.1 0.52 0.54 0.53±0.01 2.0 2.0 2.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.5 13.4 13.9±0.65
EP -5344.8 -5345.0 -5406.1 0.19 0.19 0.19±0.00 8.0 8.0 8.0±0.00 0.149 0.134 1e-06 0.0811±0.04 13.4 13.2 13.2±0.24
EP (constr.) -5344.9 -5348.4 -5406.1 0.16 0.16 0.16±0.00 8.0 8.0 8.0±0.00 0.0486 0.0731 1e-06 0.073±0.00 13.0 11.4 11.4±0.02
EP (fixed α) -5394.4 -5396.3 -5406.1 0.53 0.54 0.53±0.01 2.0 2.0 2.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 13.9 13.5 14.0±0.45
EP2 -5348.2 -5352.2 -5406.1 0.18 0.18 0.18±0.00 8.0 8.0 8.0±0.00 4.5 10.9 1e-06 3.91±1.81 12.5 12.4 12.5±0.47
EP2 (constr.) -5337.2 -5339.5 -5406.1 0.18 0.18 0.18±0.00 8.0 8.0 8.0±0.00 0.129 0.199 1e-06 0.129±0.00 13.2 12.7 13.2±0.06
EP2 (fixed α) -5391.9 -5398.1 -5406.1 0.54 0.54 0.54±0.00 2.0 2.0 2.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.5 13.3 14.3±0.31
HUP -5337.5 -5341.0 -5407.1 0.19 0.19 0.19±0.00 8.0 8.0 8.0±0.00 N/A N/A N/A N/A 13.0 13.6 12.8±0.68
HUP (constr.) -5306.6 -5306.6 -5406.1 0.18 0.18 0.18±0.00 8.0 8.0 8.0±0.00 N/A N/A N/A N/A 13.8 13.8 13.8±0.00
K -5148.8 -5148.8 -5406.1 0.12 0.12 0.12±0.00 14.0 14.0 14.0±0.00 N/A N/A N/A N/A 10.1 10.1 10.1±0.00
Prop. -5412.4 -5416.8 -5438.7 0.18 0.18 0.18±0.00 8.0 8.0 8.0±0.00 N/A N/A N/A N/A 12.1 13.9 12.1±0.07
Oh -5334.0 -5336.1 -5420.2 0.19 0.19 0.19±0.00 8.0 8.0 8.0±0.00 N/A N/A N/A N/A 13.3 12.8 13.5±0.30

Table D.5: Summary of results from the PMC sampler on the one target data set.
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Prior Target Score

τ1 Combined

MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.98 0.98 0.98±0.01 0.24 0.24 0.24±0.00
DP (constr.) 0.98 0.98 0.98±0.00 0.24 0.24 0.24±0.00
DP (fixed α) 0.93 0.93 0.93±0.00 0.64 0.64 0.64±0.00
UP 0.62 0.62 0.63±0.00 0.20 0.20 0.20±0.00
UP (constr.) 0.73 0.73 0.73±0.00 0.21 0.21 0.21±0.00
UP (fixed α) 0.58 0.61 0.59±0.01 0.52 0.54 0.53±0.01
EP 0.73 0.73 0.73±0.00 0.19 0.19 0.19±0.00
EP (constr.) 0.50 0.50 0.50±0.00 0.16 0.16 0.16±0.00
EP (fixed α) 0.59 0.61 0.60±0.01 0.53 0.54 0.53±0.01
EP2 0.67 0.67 0.67±0.00 0.18 0.18 0.18±0.00
EP2 (constr.) 0.67 0.67 0.67±0.00 0.18 0.18 0.18±0.00
EP2 (fixed α) 0.63 0.63 0.63±0.01 0.54 0.54 0.54±0.00
HUP 0.69 0.69 0.69±0.00 0.19 0.19 0.19±0.00
HUP (constr.) 0.67 0.67 0.67±0.00 0.18 0.18 0.18±0.00
K 0.93 0.93 0.93±0.00 0.12 0.12 0.12±0.00
Prop. 0.69 0.69 0.69±0.00 0.18 0.18 0.18±0.00
Oh 0.73 0.73 0.73±0.00 0.19 0.19 0.19±0.00

Table D.6: Target scores for the results from the PMC sampler on the one target data
set.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -5405.0 -5411.3 -5406.2 0.65 0.99 0.64±0.01 2.0 1.0 2.0±0.02 0.206 0.527 1e-06 0.625±0.22 14.4 15.9 14.7±0.53
DP (constr.) -5388.7 -5393.5 -5406.2 0.32 0.32 0.32±0.00 5.0 5.0 5.0±0.00 0.741 0.285 1e-06 0.716±0.10 13.6 14.6 13.6±0.23
DP (fixed α) -5408.1 -5409.7 -5406.1 0.99 0.99 0.99±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 13.5 15.0±0.77
UP -5350.2 -5350.2 -5406.0 0.24 0.24 0.21±0.00 7.0 7.0 8.0±0.00 0.168 0.168 1e-06 0.127±0.05 13.9 13.9 12.2±0.19
UP (constr.) -5373.8 -5376.2 -5406.1 0.27 0.27 0.24±0.00 6.0 6.0 7.0±0.02 0.246 0.533 1e-06 0.168±0.00 13.4 12.4 12.7±0.02
UP (fixed α) -5408.1 -5408.9 -5406.1 0.99 0.99 0.97±0.07 1.0 1.0 1.0±0.20 1e-06 1e-06 1e-06 1e-06±0.00 14.9 15.9 14.9±0.80
EP -5365.0 -5377.7 -5406.1 0.28 0.29 0.29±0.00 5.0 5.0 5.0±0.00 0.0901 0.0398 1e-06 0.135±0.03 13.7 14.5 14.6±0.51
EP (constr.) -5346.3 -5353.3 -5406.1 0.18 0.20 0.18±0.00 8.0 7.0 8.0±0.00 0.236 0.214 1e-06 0.473±0.07 13.1 13.9 15.1±0.45
EP (fixed α) -5408.1 -5408.1 -5406.1 0.99 0.99 0.99±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.8 14.9±0.74
EP2 -5355.0 -5365.0 -5406.1 0.20 0.20 0.20±0.00 7.0 7.0 7.0±0.00 5.95 14.3 1e-06 6±1.49 13.5 13.7 13.5±0.11
EP2 (constr.) -5393.6 -5397.6 -5406.1 0.58 0.58 0.58±0.00 2.0 2.0 2.0±0.00 0.0187 0.0187 1e-06 0.0155±0.00 14.6 15.4 14.1±0.40
EP2 (fixed α) -5408.1 -5408.1 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.8 14.8±0.73
HUP -5352.8 -5352.8 -5407.1 0.23 0.23 0.23±0.00 7.0 7.0 7.0±0.00 N/A N/A N/A N/A 14.1 14.1 14.0±0.34
HUP (constr.) -5393.2 -5393.8 -5406.1 0.38 0.38 0.38±0.00 4.0 4.0 4.0±0.00 N/A N/A N/A N/A 13.4 12.7 13.5±0.75
K -5180.7 -5188.1 -5406.1 0.10 0.12 0.10±0.00 14.0 14.0 14.0±0.00 N/A N/A N/A N/A 10.2 10.4 9.8±0.38
Prop. -5417.1 -5417.3 -5438.7 0.32 0.39 0.27±0.01 5.0 4.0 6.0±0.12 N/A N/A N/A N/A 13.2 14.0 13.6±0.31
Oh -5339.7 -5341.3 -5420.2 0.18 0.18 0.18±0.00 8.0 8.0 8.0±0.00 N/A N/A N/A N/A 12.6 12.7 13.0±0.40

Table D.7: Summary of results from the PMC sampler on the one target data set. The individual moves were allowed to propose
remaining in the current state.
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Prior Target Score

τ1 Combined

MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.98 0.98 0.94±0.02 0.65 0.99 0.64±0.01
DP (constr.) 0.98 0.98 0.98±0.00 0.32 0.32 0.32±0.00
DP (fixed α) 0.98 0.98 0.97±0.01 0.99 0.99 0.99±0.01
UP 0.98 0.98 0.98±0.00 0.24 0.24 0.21±0.00
UP (constr.) 0.98 0.98 0.98±0.00 0.27 0.27 0.24±0.00
UP (fixed α) 0.98 0.98 0.97±0.01 0.99 0.99 0.97±0.07
EP 0.73 0.73 0.73±0.00 0.28 0.29 0.29±0.00
EP (constr.) 0.65 0.65 0.65±0.00 0.18 0.20 0.18±0.00
EP (fixed α) 0.98 0.98 0.97±0.01 0.99 0.99 0.99±0.01
EP2 0.65 0.65 0.65±0.00 0.20 0.20 0.20±0.00
EP2 (constr.) 0.74 0.76 0.74±0.00 0.58 0.58 0.58±0.00
EP2 (fixed α) 0.98 0.98 0.97±0.01 0.99 0.99 0.98±0.01
HUP 0.93 0.93 0.93±0.00 0.23 0.23 0.23±0.00
HUP (constr.) 0.93 0.93 0.93±0.00 0.38 0.38 0.38±0.00
K 0.65 0.93 0.65±0.01 0.10 0.12 0.10±0.00
Prop. 0.98 0.98 0.98±0.00 0.27 0.32 0.24±0.01
Oh 0.69 0.69 0.69±0.00 0.18 0.18 0.18±0.00

Table D.8: Target scores for the results from the PMC sampler on the one target data
set. The individual moves were allowed to propose remaining in the current state.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -5399.1 -5401.9 -5406.2 0.64 0.66 0.64±0.00 2.0 2.0 2.0±0.00 1.26 0.305 1e-06 0.936±0.18 14.3 14.9 15.3±0.40
DP (constr.) -5409.4 -5410.4 -5406.2 0.65 0.96 0.65±0.00 2.0 1.0 2.0±0.00 0.0092 0.0062 1e-06 0.011±0.00 14.5 13.6 14.2±0.06
DP (fixed α) -5408.1 -5408.2 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 15.1 14.9±0.78
UP -5407.5 -5407.5 -5406.0 0.39 0.39 0.38±0.00 4.0 4.0 4.0±0.00 0.0994 0.0994 1e-06 0.869±0.03 13.9 13.9 15.2±0.05
UP (constr.) -5397.3 -5397.3 -5406.1 0.65 0.65 0.65±0.00 2.0 2.0 2.0±0.00 0.004 0.004 1e-06 0.004±0.00 14.9 14.9 14.9±0.00
UP (fixed α) -5408.1 -5408.9 -5406.1 0.99 0.99 0.66±0.06 1.0 1.0 2.0±0.17 1e-06 1e-06 1e-06 1e-06±0.00 14.8 15.9 14.3±0.36
EP -5408.2 -5408.2 -5406.1 0.99 0.99 0.78±0.16 1.0 1.0 1.6±0.49 0.000188 0.000629 1e-06 0.0113±0.01 15.2 14.8 14.7±0.68
EP (constr.) -5405.2 -5405.2 -5406.1 0.65 0.65 0.64±0.02 2.0 2.0 2.0±0.09 0.00205 0.00205 1e-06 0.0108±0.00 14.1 14.1 14.0±0.07
EP (fixed α) -5408.1 -5408.1 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.7 14.9±0.79
EP2 -5398.7 -5398.7 -5406.1 0.39 0.39 0.39±0.00 4.0 4.0 4.0±0.00 2.49 2.49 1e-06 2.49±0.00 13.9 13.9 13.9±0.00
EP2 (constr.) -5406.5 -5410.0 -5406.1 0.64 0.99 0.64±0.01 2.0 1.0 2.0±0.02 0.0181 0.0141 1e-06 0.018±0.00 14.2 13.9 14.2±0.13
EP2 (fixed α) -5408.1 -5409.6 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 16.2 15.0±0.82
HUP -5409.6 -5415.4 -5407.1 0.49 0.49 0.49±0.00 3.0 3.0 3.0±0.00 N/A N/A N/A N/A 14.8 14.7 14.7±0.36
HUP (constr.) -5408.1 -5408.2 -5406.1 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 N/A N/A N/A N/A 14.9 14.7 14.9±0.80
K -5306.9 -5306.9 -5406.1 0.26 0.26 0.26±0.00 6.0 6.0 6.0±0.00 N/A N/A N/A N/A 13.2 13.2 13.2±0.00
Prop. -5440.7 -5441.2 -5438.7 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 N/A N/A N/A N/A 14.9 14.1 14.9±0.77
Oh -5419.2 -5420.6 -5420.2 0.99 0.99 0.98±0.01 1.0 1.0 1.0±0.00 N/A N/A N/A N/A 15.1 14.4 15.0±0.79

Table D.9: Summary of results from the PMC sampler, using the k-add mixture proposal, on the one target data set.
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Prior Target Score

τ1 Combined

MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.93 0.98 0.93±0.01 0.64 0.66 0.64±0.00
DP (constr.) 0.98 0.93 0.97±0.01 0.65 0.96 0.65±0.00
DP (fixed α) 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01
UP 0.98 0.98 0.93±0.00 0.39 0.39 0.38±0.00
UP (constr.) 0.98 0.98 0.98±0.00 0.65 0.65 0.65±0.00
UP (fixed α) 0.98 0.98 0.97±0.01 0.99 0.99 0.66±0.06
EP 0.98 0.98 0.97±0.02 0.99 0.99 0.78±0.16
EP (constr.) 0.98 0.98 0.94±0.02 0.65 0.65 0.64±0.02
EP (fixed α) 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01
EP2 0.98 0.98 0.98±0.00 0.39 0.39 0.39±0.00
EP2 (constr.) 0.93 0.98 0.93±0.01 0.64 0.99 0.64±0.01
EP2 (fixed α) 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01
HUP 0.98 0.98 0.97±0.01 0.49 0.49 0.49±0.00
HUP (constr.) 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01
K 0.93 0.93 0.93±0.00 0.26 0.26 0.26±0.00
Prop. 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01
Oh 0.98 0.98 0.97±0.02 0.99 0.99 0.98±0.01

Table D.10: Target scores for the results from the PMC sampler, using the k-add mixture
proposal, on the one target data set.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -15265.1 -15331.3 -15341.3 0.08 0.82 0.10±0.10 57.0 5.0 55.1±18.02 15 1.05 0.599 20.9±15.43 11.5 14.9 11.7±1.17
DP (constr.) -15240.3 -15340.6 -15345.8 0.10 0.82 0.11±0.11 44.0 5.0 54.9±16.47 14.9 0.0279 0.0959 16±12.19 12.0 14.9 11.7±1.09
DP (fixed α) -15366.1 -15366.2 -15389.2 0.87 0.87 0.77±0.08 5.0 5.0 5.2±0.75 1e-06 1e-06 1e-06 1e-06±0.00 14.4 14.2 14.5±0.49
UP -15104.8 -15355.5 -15304.0 0.03 0.83 0.09±0.12 107.0 5.0 76.2±31.81 14.6 1.45 0.0773 11.1±8.18 9.3 15.0 10.9±1.61
UP (constr.) -15163.0 -15392.8 -15306.3 0.04 0.77 0.10±0.12 92.0 5.0 65.9±29.70 8.9 0.00847 0.0195 6.5±5.33 10.0 14.4 11.3±1.56
UP (fixed α) -15324.7 -15377.3 -15344.1 0.48 0.76 0.46±0.08 9.0 5.0 9.5±1.82 1e-06 1e-06 1e-06 1e-06±0.00 13.9 13.8 13.9±0.52
EP -15200.9 -15416.2 -15389.2 0.04 0.80 0.07±0.13 80.0 4.0 96.5±34.24 3.36 0.00349 0.0154 4.68±3.78 11.1 13.9 10.0±1.94
EP (constr.) -15271.5 -15466.9 -15388.7 0.05 0.85 0.13±0.21 64.0 5.0 76.8±39.58 2.31 0.164 0.014 2.35±2.17 12.3 15.0 11.0±2.22
EP (fixed α) -15409.7 -15429.5 -15419.7 0.63 0.76 0.63±0.06 6.0 6.0 6.0±0.66 1e-06 1e-06 1e-06 1e-06±0.00 14.4 14.8 14.4±0.51
EP2 -15178.8 -15389.5 -15347.0 0.03 0.80 0.09±0.14 93.0 5.0 73.4±28.18 391 5.16 1.9 304±120.83 9.9 14.4 11.0±1.57
EP2 (constr.) -15207.6 -15393.0 -15340.7 0.03 0.82 0.12±0.19 102.0 5.0 73.9±35.27 436 0.322 0.197 259±148.49 9.7 14.6 10.8±1.85
EP2 (fixed α) -15353.6 -15384.4 -15382.1 0.74 0.79 0.74±0.03 6.0 6.0 5.9±0.54 1e-06 1e-06 1e-06 1e-06±0.00 14.2 14.0 14.3±0.50
HUP -14930.5 -15379.3 -15337.1 0.03 0.80 0.06±0.09 110.0 5.0 94.5±26.89 N/A N/A N/A N/A 8.7 14.5 9.6±1.64
HUP (constr.) -15155.3 -15349.6 -15357.9 0.65 0.78 0.59±0.07 4.0 5.0 6.1±1.86 N/A N/A N/A N/A 15.8 14.4 14.3±0.50
K -13518.8 -15320.1 -15157.2 0.03 0.62 0.05±0.07 127.0 4.0 102.2±28.49 N/A N/A N/A N/A 5.3 15.3 6.9±2.15
Prop. -15236.2 -15499.3 -15388.7 0.09 0.69 0.12±0.07 53.0 5.0 44.1±12.61 N/A N/A N/A N/A 11.6 15.4 12.1±0.96
Oh -15216.6 -15420.3 -15418.1 0.13 0.57 0.16±0.06 25.0 3.0 21.6±4.14 N/A N/A N/A N/A 14.5 15.1 14.5±0.50

Table D.11: Summary of results from the MCMC sampler on the five target data set.
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Prior Target Score

τ1 τ2 τ3 τ4 τ5 Combined

MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.65 0.65 0.66±0.06 0.97 0.99 0.94±0.11 0.26 0.53 0.32±0.10 0.92 0.95 0.79±0.18 0.46 0.62 0.55±0.13 0.08 0.82 0.10±0.10
DP (constr.) 0.65 0.65 0.66±0.08 1.00 0.99 0.98±0.03 0.39 0.53 0.37±0.11 0.95 0.95 0.78±0.18 0.62 0.62 0.58±0.20 0.10 0.82 0.11±0.11
DP (fixed α) 0.72 0.72 0.66±0.07 0.99 0.99 0.98±0.02 0.86 0.86 0.67±0.15 0.92 0.92 0.92±0.04 0.74 0.74 0.60±0.28 0.87 0.87 0.77±0.08
UP 0.50 0.71 0.61±0.16 0.31 0.99 0.59±0.27 0.41 0.81 0.42±0.17 0.36 0.77 0.54±0.20 0.62 0.67 0.61±0.10 0.03 0.83 0.09±0.12
UP (constr.) 0.36 0.64 0.60±0.17 0.63 0.99 0.70±0.25 0.41 0.45 0.41±0.13 0.76 0.78 0.69±0.16 0.67 0.71 0.62±0.14 0.04 0.77 0.10±0.12
UP (fixed α) 0.64 0.53 0.61±0.06 0.99 0.99 0.99±0.02 0.49 0.48 0.48±0.04 0.89 0.92 0.90±0.04 0.76 0.57 0.69±0.15 0.48 0.76 0.46±0.08
EP 0.43 0.97 0.46±0.14 0.28 1.00 0.29±0.14 0.36 0.90 0.36±0.10 0.50 0.95 0.51±0.14 0.67 0.00 0.56±0.14 0.04 0.80 0.07±0.13
EP (constr.) 0.43 0.94 0.57±0.16 0.25 0.97 0.36±0.22 0.36 0.53 0.37±0.13 0.43 0.97 0.55±0.16 0.67 0.67 0.58±0.18 0.05 0.85 0.13±0.21
EP (fixed α) 1.00 1.00 0.99±0.06 0.78 0.99 0.82±0.08 0.48 0.57 0.51±0.06 0.92 0.92 0.87±0.06 0.22 0.78 0.17±0.16 0.63 0.76 0.63±0.06
EP2 0.50 0.65 0.68±0.16 0.28 1.00 0.41±0.19 0.31 0.43 0.31±0.07 0.43 0.89 0.55±0.13 0.62 0.78 0.60±0.14 0.03 0.80 0.09±0.14
EP2 (constr.) 0.56 0.64 0.62±0.12 0.25 0.99 0.44±0.24 0.26 0.50 0.36±0.14 0.36 0.90 0.60±0.20 0.57 0.72 0.47±0.15 0.03 0.82 0.12±0.19
EP2 (fixed α) 1.00 0.97 0.98±0.08 0.99 0.99 0.99±0.02 0.52 0.82 0.52±0.07 0.83 0.92 0.89±0.06 0.86 0.86 0.75±0.28 0.74 0.79 0.74±0.03
HUP 0.50 0.65 0.53±0.09 0.99 0.99 0.99±0.02 0.41 0.48 0.41±0.14 0.40 0.92 0.57±0.13 0.57 0.67 0.57±0.05 0.03 0.80 0.06±0.09
HUP (constr.) 0.64 0.64 0.61±0.07 1.00 0.99 0.99±0.02 0.48 0.49 0.48±0.04 0.75 0.73 0.79±0.05 0.00 0.76 0.44±0.41 0.65 0.78 0.59±0.07
K 0.84 0.68 0.63±0.07 0.49 0.99 0.50±0.12 0.31 0.18 0.31±0.02 0.59 0.73 0.61±0.12 0.71 0.00 0.70±0.10 0.03 0.62 0.05±0.07
Prop. 0.85 0.74 0.85±0.04 0.88 0.87 0.86±0.03 0.50 0.26 0.42±0.04 0.79 0.92 0.92±0.06 0.62 0.00 0.62±0.05 0.09 0.69 0.12±0.07
Oh 0.43 0.64 0.51±0.13 0.33 0.97 0.37±0.11 0.31 0.00 0.36±0.05 0.40 0.78 0.44±0.08 0.71 0.00 0.55±0.30 0.13 0.57 0.16±0.06

Table D.12: Target scores for the results from the MCMC sampler on the five target data set.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -15325.3 -15347.0 -15341.3 0.69 0.71 0.68±0.02 4.0 4.0 4.0±0.19 0.581 1.78 0.599 2.83±3.66 14.4 15.7 14.6±0.50
DP (constr.) -15321.5 -15359.5 -15345.8 0.68 0.70 0.68±0.01 4.0 4.0 4.0±0.14 0.0685 0.0481 0.0959 0.0361±0.10 14.7 15.5 14.6±0.49
DP (fixed α) -15379.9 -15389.5 -15389.2 0.58 0.60 0.58±0.01 3.0 3.0 3.0±0.08 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.2 14.9±0.49
UP -15301.2 -15367.6 -15304.0 0.66 0.90 0.70±0.06 4.0 5.0 3.9±0.31 0.0684 1.2 0.0773 0.496±0.84 14.6 15.6 14.6±0.50
UP (constr.) -15295.6 -15316.3 -15306.3 0.68 0.69 0.66±0.02 4.0 4.0 4.0±0.18 0.0264 0.0267 0.0195 0.0141±0.02 14.7 14.4 14.6±0.49
UP (fixed α) -15297.5 -15328.4 -15344.1 0.64 0.69 0.65±0.02 4.0 4.0 4.0±0.14 1e-06 1e-06 1e-06 1e-06±0.00 14.4 13.9 14.4±0.49
EP -15389.8 -15424.8 -15389.2 0.70 0.80 0.63±0.09 4.0 4.0 4.1±0.87 0.0174 0.018 0.0154 0.284±0.42 14.9 15.2 14.9±0.53
EP (constr.) -15369.6 -15438.2 -15388.7 0.66 0.76 0.68±0.05 4.0 4.0 3.9±0.35 0.00409 0.00978 0.014 0.017±0.09 14.3 14.6 14.6±0.51
EP (fixed α) -15412.3 -15414.6 -15419.7 0.60 0.60 0.58±0.02 3.0 3.0 3.0±0.08 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.3 14.9±0.49
EP2 -15320.5 -15471.4 -15347.0 0.66 0.81 0.64±0.04 4.0 5.0 3.9±0.50 0.303 44 1.9 8.24±14.10 15.1 13.7 14.6±0.52
EP2 (constr.) -15308.9 -15361.5 -15340.7 0.67 0.68 0.67±0.01 4.0 4.0 4.0±0.11 0.303 0.417 0.197 0.209±0.12 14.2 14.3 14.5±0.49
EP2 (fixed α) -15331.8 -15357.2 -15382.1 0.67 0.69 0.67±0.02 4.0 4.0 4.0±0.14 1e-06 1e-06 1e-06 1e-06±0.00 14.5 13.9 14.5±0.48
HUP -15314.4 -15320.8 -15337.1 0.69 0.69 0.69±0.02 4.0 4.0 4.0±0.12 N/A N/A N/A N/A 14.6 14.6 14.6±0.48
HUP (constr.) -15087.9 -15374.6 -15357.9 0.64 0.78 0.65±0.04 4.0 5.0 4.0±0.28 N/A N/A N/A N/A 14.4 14.0 14.4±0.50
K -13462.9 -15302.1 -15157.2 0.03 0.55 0.05±0.05 122.0 6.0 99.1±27.33 N/A N/A N/A N/A 6.4 15.2 7.5±1.82
Prop. -15297.8 -15416.3 -15388.7 0.10 0.71 0.13±0.06 45.0 6.0 39.5±9.76 N/A N/A N/A N/A 11.8 15.1 12.2±0.80
Oh -15218.1 -15376.3 -15418.1 0.14 0.67 0.24±0.09 25.0 5.0 17.4±4.40 N/A N/A N/A N/A 14.3 14.4 14.3±0.50

Table D.13: Summary of results from the MCMC sampler on the five target data set. The individual moves were allowed to
propose remaining in the current state.
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Prior Target Score

τ1 τ2 τ3 τ4 τ5 Combined

MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.67 0.69 0.66±0.04 0.99 1.00 0.99±0.01 0.53 0.53 0.50±0.06 0.92 0.97 0.86±0.09 0.00 0.00 0.00±0.00 0.69 0.71 0.68±0.02
DP (constr.) 0.65 0.65 0.65±0.01 0.99 1.00 0.99±0.01 0.52 0.53 0.51±0.06 0.87 0.95 0.91±0.05 0.00 0.00 0.00±0.00 0.68 0.70 0.68±0.01
DP (fixed α) 0.64 0.64 0.64±0.03 0.99 0.99 0.99±0.01 0.00 0.00 0.00±0.00 0.83 0.92 0.84±0.05 0.00 0.00 0.00±0.00 0.58 0.60 0.58±0.01
UP 0.64 1.00 0.65±0.13 0.97 0.97 0.98±0.01 0.51 0.93 0.65±0.27 0.82 0.77 0.86±0.10 0.00 0.74 0.01±0.09 0.66 0.90 0.70±0.06
UP (constr.) 0.68 0.68 0.67±0.02 0.99 0.99 0.98±0.01 0.46 0.47 0.45±0.08 0.89 0.97 0.84±0.09 0.00 0.00 0.00±0.00 0.68 0.69 0.66±0.02
UP (fixed α) 0.64 0.65 0.64±0.04 0.99 0.99 0.99±0.00 0.49 0.49 0.49±0.04 0.70 0.95 0.77±0.11 0.00 0.00 0.00±0.00 0.64 0.69 0.65±0.02
EP 0.68 1.00 0.71±0.25 1.00 0.97 0.74±0.17 0.55 0.85 0.47±0.28 0.92 0.97 0.77±0.21 0.00 0.00 0.00±0.00 0.70 0.80 0.63±0.09
EP (constr.) 0.67 0.79 0.68±0.07 0.99 1.00 0.99±0.01 0.47 0.85 0.53±0.26 0.77 0.92 0.84±0.09 0.00 0.00 0.00±0.00 0.66 0.76 0.68±0.05
EP (fixed α) 0.64 0.65 0.65±0.03 0.99 0.99 0.99±0.01 0.00 0.00 0.00±0.00 0.92 0.92 0.79±0.08 0.00 0.00 0.00±0.00 0.60 0.60 0.58±0.02
EP2 0.68 0.65 0.63±0.07 0.98 1.00 0.96±0.08 0.50 0.51 0.37±0.20 0.74 0.77 0.85±0.12 0.00 0.84 0.01±0.09 0.66 0.81 0.64±0.04
EP2 (constr.) 0.64 0.64 0.65±0.02 0.99 0.99 0.99±0.00 0.49 0.52 0.51±0.05 0.83 0.90 0.82±0.03 0.00 0.00 0.00±0.00 0.67 0.68 0.67±0.01
EP2 (fixed α) 0.64 0.65 0.65±0.03 0.99 0.99 0.99±0.01 0.49 0.49 0.48±0.04 0.83 0.95 0.87±0.06 0.00 0.00 0.00±0.00 0.67 0.69 0.67±0.02
HUP 0.68 0.69 0.67±0.03 0.99 0.99 0.99±0.01 0.51 0.51 0.51±0.02 0.92 0.92 0.92±0.04 0.00 0.00 0.00±0.00 0.69 0.69 0.69±0.02
HUP (constr.) 0.64 0.64 0.64±0.03 0.99 0.99 0.99±0.00 0.48 0.49 0.48±0.04 0.68 0.77 0.70±0.05 0.00 0.72 0.04±0.17 0.64 0.78 0.65±0.04
K 0.56 0.79 0.56±0.04 0.43 0.58 0.44±0.06 0.41 0.57 0.42±0.05 0.48 0.69 0.55±0.11 0.67 0.00 0.70±0.06 0.03 0.55 0.05±0.05
Prop. 0.67 0.68 0.67±0.03 0.73 0.99 0.87±0.13 0.50 0.50 0.50±0.03 0.92 0.95 0.92±0.04 0.62 0.71 0.65±0.06 0.10 0.71 0.13±0.06
Oh 0.43 0.64 0.66±0.16 0.31 0.96 0.63±0.17 0.31 0.56 0.40±0.07 0.62 0.77 0.75±0.14 0.71 0.00 0.55±0.22 0.14 0.67 0.24±0.09

Table D.14: Target scores for the results from the MCMC sampler on the five target data set. The individual moves were allowed
to propose remaining in the current state.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -15319.1 -15329.5 -15340.8 0.67 0.68 0.67±0.00 4.0 4.0 4.0±0.00 0.578 3.13 0.634 0.906±0.40 14.3 14.8 14.6±0.38
DP (constr.) -15337.1 -15345.6 -15344.4 0.35 0.35 0.35±0.00 13.0 13.0 13.0±0.00 2.34 1.82 0.122 2.54±0.75 13.4 13.9 13.6±0.40
DP (fixed α) -15380.0 -15386.6 -15389.2 0.57 0.59 0.57±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.8 14.5 14.8±0.51
UP -15261.0 -15266.7 -15303.3 0.81 0.83 0.81±0.00 5.0 5.0 5.0±0.00 0.0547 0.194 0.0733 0.095±0.04 13.9 14.5 14.9±0.70
UP (constr.) -15435.0 -15442.8 -15307.2 0.44 0.44 0.44±0.00 2.0 2.0 2.0±0.00 0.00724 0.000259 0.0118 0.00692±0.00 15.3 15.3 15.4±0.36
UP (fixed α) -15338.3 -15351.2 -15344.1 0.48 0.48 0.48±0.00 9.0 9.0 9.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.5 13.0 14.1±0.54
EP -15426.3 -15431.3 -15388.8 0.57 0.57 0.57±0.00 3.0 3.0 3.0±0.00 0.00314 0.0118 0.014 0.00218±0.00 14.7 14.5 14.8±0.60
EP (constr.) -15443.0 -15443.9 -15389.1 0.58 0.58 0.58±0.00 3.0 3.0 3.0±0.00 0.00217 0.00396 0.0151 0.00346±0.00 14.9 15.3 14.8±0.49
EP (fixed α) -15431.9 -15432.8 -15419.7 0.55 0.55 0.51±0.01 8.0 8.0 8.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 13.9 14.6 14.7±0.34
EP2 -15357.5 -15369.0 -15346.5 0.57 0.57 0.57±0.00 3.0 3.0 3.0±0.00 0.115 1.43 1.9 0.0621±0.06 14.7 14.5 14.6±0.15
EP2 (constr.) -15327.7 -15338.1 -15340.5 0.51 0.51 0.51±0.01 9.0 9.0 9.0±0.00 0.41 0.187 0.119 0.978±1.61 13.8 14.2 14.0±0.27
EP2 (fixed α) -15368.1 -15374.5 -15382.1 0.57 0.57 0.57±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.7 15.6 15.0±0.54
HUP -15305.4 -15307.2 -15337.1 0.81 0.82 0.81±0.00 5.0 5.0 5.0±0.00 N/A N/A N/A N/A 14.2 14.0 14.2±0.09
HUP (constr.) -15401.1 -15407.9 -15357.9 0.43 0.44 0.43±0.00 10.0 10.0 10.0±0.00 N/A N/A N/A N/A 13.9 13.0 13.9±0.48
K -15236.4 -15237.2 -15157.1 0.57 0.57 0.57±0.00 7.0 7.0 7.0±0.00 N/A N/A N/A N/A 13.5 12.9 13.6±0.46
Prop. -15359.2 -15366.1 -15388.7 0.62 0.63 0.61±0.00 7.0 7.0 7.0±0.00 N/A N/A N/A N/A 14.3 14.0 14.2±0.17
Oh -15377.8 -15378.0 -15418.1 0.74 0.74 0.74±0.00 5.0 5.0 5.0±0.00 N/A N/A N/A N/A 14.1 13.9 14.1±0.49

Table D.15: Summary of results from the PMC sampler on the five target data set.
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Prior Target Score

τ1 τ2 τ3 τ4 τ5 Combined

MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.64 0.64 0.64±0.00 0.97 0.99 0.97±0.00 0.50 0.53 0.50±0.01 0.87 0.87 0.87±0.00 0.00 0.00 0.00±0.00 0.67 0.68 0.67±0.00
DP (constr.) 0.60 0.60 0.60±0.00 0.98 0.98 0.98±0.00 0.60 0.60 0.60±0.00 0.92 0.92 0.92±0.00 0.67 0.67 0.67±0.00 0.35 0.35 0.35±0.00
DP (fixed α) 0.64 0.64 0.64±0.00 0.97 0.97 0.96±0.00 0.00 0.00 0.00±0.00 0.79 0.87 0.79±0.02 0.00 0.00 0.00±0.00 0.57 0.59 0.57±0.00
UP 0.64 0.64 0.64±0.00 0.97 0.99 0.97±0.00 0.51 0.54 0.51±0.01 0.92 0.92 0.90±0.03 0.75 0.80 0.77±0.02 0.81 0.83 0.81±0.00
UP (constr.) 0.64 0.65 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.00 0.00 0.00±0.00 0.00 0.00 0.00±0.00 0.44 0.44 0.44±0.00
UP (fixed α) 0.43 0.43 0.43±0.00 0.98 0.98 0.98±0.00 0.50 0.50 0.50±0.00 0.95 0.95 0.95±0.00 0.80 0.80 0.80±0.00 0.48 0.48 0.48±0.00
EP 0.65 0.65 0.65±0.00 0.96 0.96 0.96±0.00 0.00 0.00 0.00±0.00 0.77 0.77 0.77±0.00 0.00 0.00 0.00±0.00 0.57 0.57 0.57±0.00
EP (constr.) 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.00 0.00 0.00±0.00 0.80 0.80 0.80±0.00 0.00 0.00 0.00±0.00 0.58 0.58 0.58±0.00
EP (fixed α) 0.89 0.89 0.66±0.05 0.68 0.68 0.68±0.00 0.59 0.59 0.47±0.03 0.81 0.81 0.81±0.00 0.78 0.78 0.78±0.00 0.55 0.55 0.51±0.01
EP2 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.72 0.77 0.75±0.00 0.00 0.00 0.00±0.00 0.57 0.57 0.57±0.00
EP2 (constr.) 0.88 0.88 0.88±0.00 0.98 0.98 0.95±0.08 0.60 0.60 0.60±0.00 0.86 0.86 0.86±0.00 0.80 0.80 0.80±0.00 0.51 0.51 0.51±0.01
EP2 (fixed α) 0.64 0.64 0.64±0.00 0.99 1.00 0.99±0.01 0.00 0.00 0.00±0.00 0.72 0.72 0.72±0.00 0.00 0.00 0.00±0.00 0.57 0.57 0.57±0.00
HUP 0.64 0.64 0.64±0.00 0.97 0.97 0.97±0.00 0.51 0.48 0.51±0.00 0.89 0.89 0.89±0.00 0.78 0.90 0.78±0.02 0.81 0.82 0.81±0.00
HUP (constr.) 0.64 0.64 0.64±0.00 0.96 0.96 0.96±0.00 0.48 0.48 0.48±0.00 0.80 0.94 0.80±0.01 0.75 0.75 0.75±0.00 0.43 0.44 0.43±0.00
K 0.64 0.64 0.64±0.00 0.96 0.96 0.96±0.00 0.44 0.44 0.44±0.00 0.75 0.75 0.75±0.00 0.69 0.69 0.69±0.00 0.57 0.57 0.57±0.00
Prop. 0.68 0.68 0.68±0.00 0.99 0.99 0.99±0.00 0.48 0.50 0.47±0.01 0.95 0.95 0.90±0.01 0.84 0.84 0.84±0.00 0.62 0.63 0.61±0.00
Oh 0.64 0.64 0.64±0.00 0.96 0.96 0.96±0.00 0.49 0.49 0.49±0.00 0.75 0.75 0.75±0.00 0.54 0.54 0.54±0.00 0.74 0.74 0.74±0.00

Table D.16: Target scores for the results from the PMC sampler on the five target data set.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -15305.7 -15305.7 -15340.8 0.68 0.68 0.68±0.00 6.0 6.0 6.0±0.00 3.63 3.63 0.634 3.63±0.00 14.2 14.2 14.2±0.00
DP (constr.) -15397.1 -15397.6 -15344.4 0.68 0.68 0.66±0.03 6.0 6.0 6.2±0.43 1.03 1.06 0.122 1.33±0.55 14.3 13.9 14.3±0.49
DP (fixed α) -15416.1 -15416.5 -15389.2 0.60 0.60 0.60±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.5 14.9±0.48
UP -15388.4 -15389.1 -15303.3 0.67 0.67 0.67±0.00 4.0 4.0 4.0±0.00 0.052 0.0245 0.0733 0.0712±0.03 14.5 14.3 14.5±0.47
UP (constr.) -15387.8 -15390.4 -15307.2 0.77 0.77 0.77±0.00 5.0 5.0 5.0±0.00 0.0718 0.142 0.0118 0.0915±0.04 14.3 13.5 14.3±0.49
UP (fixed α) -15350.4 -15353.2 -15344.1 0.57 0.58 0.57±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 15.3 14.8 15.3±0.05
EP -15398.9 -15401.5 -15388.8 0.65 0.65 0.65±0.00 4.0 4.0 4.0±0.00 0.00317 0.00838 0.014 0.00321±0.00 14.4 13.7 14.5±0.37
EP (constr.) -15379.1 -15384.4 -15389.1 0.58 0.58 0.58±0.00 3.0 3.0 3.0±0.00 0.00225 0.00419 0.0151 0.00331±0.00 14.9 15.3 14.8±0.41
EP (fixed α) -15443.3 -15443.7 -15419.7 0.59 0.59 0.59±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.5 14.9±0.49
EP2 -15428.9 -15430.7 -15346.5 0.57 0.57 0.57±0.00 3.0 3.0 3.0±0.00 0.103 0.233 1.9 0.106±0.07 14.8 14.1 15.1±0.46
EP2 (constr.) -15295.8 -15304.4 -15340.5 0.65 0.65 0.65±0.00 4.0 4.0 4.0±0.00 0.155 0.247 0.119 0.18±0.04 14.1 14.2 14.4±0.61
EP2 (fixed α) -15328.1 -15333.0 -15382.1 0.67 0.67 0.66±0.01 4.0 4.0 4.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.7 14.4 14.4±0.20
HUP -15357.2 -15360.5 -15337.1 0.59 0.60 0.59±0.00 3.0 3.0 3.0±0.00 N/A N/A N/A N/A 14.5 15.6 14.5±0.15
HUP (constr.) -15408.9 -15409.6 -15357.9 0.65 0.79 0.75±0.06 4.0 5.0 4.7±0.49 N/A N/A N/A N/A 14.4 14.2 14.2±0.48
K -15169.0 -15170.2 -15157.1 0.74 0.74 0.74±0.00 5.0 5.0 5.0±0.00 N/A N/A N/A N/A 14.1 13.3 14.1±0.48
Prop. -15378.1 -15380.4 -15388.7 0.39 0.39 0.39±0.00 11.0 11.0 11.0±0.00 N/A N/A N/A N/A 13.9 13.9 13.7±0.52
Oh -15294.6 -15296.1 -15418.1 0.77 0.78 0.77±0.00 5.0 5.0 5.0±0.00 N/A N/A N/A N/A 14.0 13.8 13.8±0.56

Table D.17: Summary of results from the PMC sampler on the five target data set. The individual moves were allowed to propose
remaining in the current state.
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Prior Target Score

τ1 τ2 τ3 τ4 τ5 Combined

MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.68 0.68 0.68±0.00 0.99 0.99 0.99±0.00 0.49 0.49 0.49±0.00 0.92 0.92 0.92±0.00 0.67 0.67 0.67±0.00 0.68 0.68 0.68±0.00
DP (constr.) 0.60 0.60 0.60±0.00 0.98 0.98 0.98±0.00 0.52 0.52 0.52±0.00 0.92 0.92 0.92±0.00 0.67 0.67 0.68±0.02 0.68 0.68 0.66±0.03
DP (fixed α) 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.00 0.00 0.00±0.00 0.92 0.92 0.92±0.00 0.00 0.00 0.00±0.00 0.60 0.60 0.60±0.00
UP 0.65 0.65 0.65±0.00 0.98 0.98 0.98±0.00 0.45 0.45 0.45±0.00 0.92 0.92 0.92±0.00 0.00 0.00 0.00±0.00 0.67 0.67 0.67±0.00
UP (constr.) 0.65 0.65 0.65±0.00 0.98 0.98 0.98±0.00 0.45 0.45 0.45±0.00 0.92 0.92 0.92±0.00 0.60 0.60 0.60±0.00 0.77 0.77 0.77±0.00
UP (fixed α) 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.74 0.80 0.74±0.01 0.00 0.00 0.00±0.00 0.57 0.58 0.57±0.00
EP 0.65 0.65 0.65±0.00 0.96 0.96 0.96±0.00 0.46 0.46 0.46±0.00 0.77 0.77 0.77±0.00 0.00 0.00 0.00±0.00 0.65 0.65 0.65±0.00
EP (constr.) 0.68 0.68 0.68±0.00 0.99 1.00 0.99±0.00 0.00 0.00 0.00±0.00 0.76 0.76 0.75±0.01 0.00 0.00 0.00±0.00 0.58 0.58 0.58±0.00
EP (fixed α) 0.64 0.64 0.64±0.00 0.97 0.97 0.97±0.00 0.00 0.00 0.00±0.00 0.92 0.92 0.92±0.00 0.00 0.00 0.00±0.00 0.59 0.59 0.59±0.00
EP2 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.00 0.00 0.00±0.00 0.75 0.75 0.75±0.00 0.00 0.00 0.00±0.00 0.57 0.57 0.57±0.00
EP2 (constr.) 0.64 0.65 0.65±0.01 0.99 1.00 0.99±0.00 0.48 0.48 0.48±0.00 0.72 0.72 0.72±0.00 0.00 0.00 0.00±0.00 0.65 0.65 0.65±0.00
EP2 (fixed α) 0.64 0.64 0.64±0.00 0.99 1.00 0.99±0.00 0.49 0.49 0.49±0.00 0.83 0.83 0.76±0.04 0.00 0.00 0.00±0.00 0.67 0.67 0.66±0.01
HUP 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.87 0.92 0.87±0.01 0.00 0.00 0.00±0.00 0.59 0.60 0.59±0.00
HUP (constr.) 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.50 0.50 0.50±0.00 0.75 0.75 0.75±0.00 0.00 0.78 0.56±0.35 0.65 0.79 0.75±0.06
K 0.64 0.64 0.64±0.00 0.97 0.97 0.97±0.00 0.48 0.48 0.48±0.00 0.73 0.73 0.73±0.00 0.56 0.56 0.56±0.00 0.74 0.74 0.74±0.00
Prop. 0.56 0.56 0.56±0.00 0.99 0.99 0.99±0.00 0.51 0.51 0.51±0.00 0.95 0.95 0.95±0.00 0.62 0.62 0.63±0.00 0.39 0.39 0.39±0.00
Oh 0.64 0.64 0.66±0.01 0.99 0.99 0.99±0.00 0.49 0.49 0.48±0.00 0.72 0.74 0.73±0.01 0.72 0.72 0.72±0.00 0.77 0.78 0.77±0.00

Table D.18: Target scores for the results from the PMC sampler on the five target data set. The individual moves were allowed
to propose remaining in the current state.
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Prior LL Score K α λ

MAP Max
Score Truth MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Truth Avg. MAP Max
Score Avg.

DP -15369.4 -15369.4 -15340.8 0.67 0.67 0.67±0.00 4.0 4.0 4.0±0.00 3.36 3.36 0.634 3.36±0.00 13.8 13.8 13.8±0.00
DP (constr.) -15365.8 -15365.8 -15344.4 0.58 0.58 0.58±0.00 3.0 3.0 3.0±0.00 0.0345 0.0345 0.122 0.0345±0.00 15.5 15.5 15.5±0.00
DP (fixed α) -15405.6 -15405.6 -15389.2 0.60 0.60 0.60±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 15.2 15.2 15.2±0.25
UP -15333.8 -15333.8 -15303.3 0.65 0.65 0.65±0.00 4.0 4.0 4.0±0.00 0.133 0.133 0.0733 0.133±0.00 13.7 13.7 13.7±0.00
UP (constr.) -15349.0 -15349.0 -15307.2 0.66 0.66 0.66±0.00 4.0 4.0 4.0±0.00 0.00928 0.00928 0.0118 0.00931±0.00 15.1 15.1 15.1±0.01
UP (fixed α) -15345.6 -15345.6 -15344.1 0.66 0.66 0.66±0.00 4.0 4.0 4.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 13.7 13.7 13.7±0.00
EP -15449.2 -15449.2 -15388.8 0.60 0.60 0.57±0.01 3.0 3.0 3.0±0.00 0.0285 0.0285 0.014 0.00324±0.01 14.6 14.6 15.8±0.39
EP (constr.) -15431.4 -15431.4 -15389.1 0.58 0.58 0.58±0.00 3.0 3.0 3.0±0.00 0.0104 0.0104 0.0151 0.0104±0.00 14.8 14.8 14.8±0.00
EP (fixed α) -15444.8 -15444.8 -15419.7 0.59 0.59 0.59±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 14.9 14.9 14.9±0.00
EP2 -15365.5 -15365.5 -15346.5 0.65 0.65 0.65±0.00 4.0 4.0 4.0±0.00 1.32 1.32 1.9 1.32±0.00 15.0 15.0 15.0±0.00
EP2 (constr.) -15386.2 -15390.9 -15340.5 0.55 0.57 0.56±0.00 3.0 3.0 3.0±0.00 0.11 0.163 0.119 0.112±0.01 14.2 15.1 14.2±0.19
EP2 (fixed α) -15407.2 -15407.2 -15382.1 0.56 0.56 0.56±0.00 3.0 3.0 3.0±0.00 1e-06 1e-06 1e-06 1e-06±0.00 15.4 15.4 15.4±0.00
HUP -15371.9 -15371.9 -15337.1 0.68 0.68 0.68±0.00 4.0 4.0 4.0±0.00 N/A N/A N/A N/A 14.3 14.3 14.3±0.00
HUP (constr.) -15401.7 -15401.7 -15357.9 0.57 0.57 0.57±0.00 3.0 3.0 3.0±0.00 N/A N/A N/A N/A 14.6 14.6 14.6±0.00
K -15232.2 -15232.2 -15157.1 0.63 0.63 0.63±0.00 6.0 6.0 6.0±0.00 N/A N/A N/A N/A 13.9 13.9 13.9±0.00
Prop. -15416.2 -15416.2 -15388.7 0.70 0.70 0.70±0.00 4.0 4.0 4.0±0.00 N/A N/A N/A N/A 15.2 15.2 15.2±0.21
Oh -15410.2 -15413.7 -15418.1 0.56 0.57 0.56±0.00 3.0 3.0 3.0±0.00 N/A N/A N/A N/A 14.8 14.4 14.8±0.02

Table D.19: Summary of results from the PMC sampler, using the k-add mixture proposal, on the five target data set.
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Prior Target Score

τ1 τ2 τ3 τ4 τ5 Combined

MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg. MAP Max
Score Avg. MAP Max

Score Avg.

DP 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.46 0.46 0.46±0.00 0.92 0.92 0.92±0.00 0.00 0.00 0.00±0.00 0.67 0.67 0.67±0.00
DP (constr.) 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.83 0.83 0.83±0.00 0.00 0.00 0.00±0.00 0.58 0.58 0.58±0.00
DP (fixed α) 0.65 0.65 0.65±0.00 0.99 0.99 0.99±0.01 0.00 0.00 0.00±0.00 0.95 0.95 0.95±0.00 0.00 0.00 0.00±0.00 0.60 0.60 0.60±0.00
UP 0.53 0.53 0.53±0.00 0.97 0.97 0.97±0.00 0.48 0.48 0.48±0.00 0.88 0.88 0.88±0.00 0.00 0.00 0.00±0.00 0.65 0.65 0.65±0.00
UP (constr.) 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.51 0.51 0.51±0.00 0.81 0.81 0.81±0.00 0.00 0.00 0.00±0.00 0.66 0.66 0.66±0.00
UP (fixed α) 0.64 0.64 0.64±0.00 0.96 0.96 0.96±0.00 0.48 0.48 0.48±0.00 0.82 0.82 0.82±0.00 0.00 0.00 0.00±0.00 0.66 0.66 0.66±0.00
EP 0.63 0.63 0.65±0.02 0.98 0.98 0.96±0.01 0.00 0.00 0.00±0.00 0.95 0.95 0.78±0.05 0.00 0.00 0.00±0.00 0.60 0.60 0.57±0.01
EP (constr.) 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.78 0.78 0.78±0.00 0.00 0.00 0.00±0.00 0.58 0.58 0.58±0.00
EP (fixed α) 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.89 0.89 0.89±0.00 0.00 0.00 0.00±0.00 0.59 0.59 0.59±0.00
EP2 0.65 0.65 0.65±0.00 0.97 0.97 0.97±0.00 0.48 0.48 0.48±0.00 0.79 0.79 0.79±0.00 0.00 0.00 0.00±0.00 0.65 0.65 0.65±0.00
EP2 (constr.) 0.64 0.65 0.64±0.00 0.96 1.00 0.96±0.01 0.00 0.00 0.00±0.00 0.70 0.72 0.70±0.01 0.00 0.00 0.00±0.00 0.55 0.57 0.56±0.00
EP2 (fixed α) 0.65 0.65 0.65±0.00 0.97 0.97 0.97±0.00 0.00 0.00 0.00±0.00 0.70 0.70 0.70±0.00 0.00 0.00 0.00±0.00 0.56 0.56 0.56±0.00
HUP 0.64 0.64 0.64±0.00 0.96 0.96 0.96±0.00 0.49 0.49 0.49±0.00 0.92 0.92 0.92±0.00 0.00 0.00 0.00±0.00 0.68 0.68 0.68±0.00
HUP (constr.) 0.64 0.64 0.64±0.00 0.99 0.99 0.99±0.00 0.00 0.00 0.00±0.00 0.77 0.77 0.77±0.00 0.00 0.00 0.00±0.00 0.57 0.57 0.57±0.00
K 0.64 0.64 0.64±0.00 0.98 0.98 0.98±0.00 0.48 0.48 0.48±0.00 0.73 0.73 0.73±0.00 0.52 0.52 0.52±0.00 0.63 0.63 0.63±0.00
Prop. 0.67 0.67 0.67±0.00 1.00 1.00 1.00±0.00 0.50 0.50 0.50±0.00 0.97 0.97 0.97±0.01 0.00 0.00 0.00±0.00 0.70 0.70 0.70±0.00
Oh 0.64 0.64 0.64±0.00 0.98 0.96 0.98±0.00 0.00 0.00 0.00±0.00 0.72 0.77 0.72±0.00 0.00 0.00 0.00±0.00 0.56 0.57 0.56±0.00

Table D.20: Target scores for the results from the PMC sampler, using the k-add mixture proposal, on the five target data set.
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Prior LL K α λ

MAP Avg. MAP Avg. MAP Avg. MAP Avg.

DP -4607.7 -4654.2 50.0 44.8±7.69 15.4 17.3±11.99 0.6 0.8±0.27
DP (constr.) -4605.7 -4653.9 47.0 46.4±9.80 19.1 15.2±10.99 0.9 0.8±0.33
DP (fixed α) -4802.5 -4810.0 5.0 5.8±0.74 1e-06 1e-06±0.00 1.9 1.9±0.14
UP -4603.7 -4656.5 60.0 49.7±14.71 5.53 7.2±4.96 0.6 0.8±0.34
UP (constr.) -4597.7 -4664.0 56.0 49.4±10.76 3.83 5.45±3.70 0.5 0.7±0.27
UP (fixed α) -4743.0 -4763.8 7.0 9.2±1.26 1e-06 1e-06±0.00 1.7 1.6±0.15
EP -4596.3 -4671.0 63.0 58.8±12.12 3.56 2.9±2.10 0.7 0.7±0.29
EP (constr.) -4576.1 -4668.4 66.0 58.6±12.24 3.2 2.12±1.55 0.5 0.7±0.30
EP (fixed α) -4813.7 -4824.4 7.0 7.0±0.68 1e-06 1e-06±0.00 1.6 1.6±0.14
EP2 -4612.9 -4671.5 52.0 49.2±10.43 255 208±53.16 0.7 0.8±0.23
EP2 (constr.) -4641.4 -4697.1 56.0 48.2±11.47 254 182±63.77 0.7 0.8±0.28
EP2 (fixed α) -4788.7 -4798.0 7.0 6.8±0.70 1e-06 1e-06±0.00 1.6 1.7±0.14
HUP -4492.9 -4543.5 56.0 49.3±8.29 N/A N/A 0.5 0.7±0.28
HUP (constr.) -4716.3 -4752.6 41.0 33.7±6.99 N/A N/A 0.9 1.0±0.18
K -3873.4 -3966.9 54.0 51.9±6.95 N/A N/A 0.4 0.5±0.18
Prop. -4856.2 -4875.3 19.0 23.6±3.69 N/A N/A 1.3 1.2±0.23
Oh -4947.8 -4957.2 6.0 6.3±1.83 N/A N/A 2.4 2.4±0.14

Table D.21: Summary of results from the MCMC sampler on the field test data set.

Prior LL K α λ

MAP Avg. MAP Avg. MAP Avg. MAP Avg.

DP -4767.8 -4797.5 3.0 2.7±0.77 0.413 1.74±2.39 2.2 2.2±0.15
DP (constr.) -4790.6 -4795.5 2.0 2.0±0.15 0.0432 0.0271±0.15 2.3 2.3±0.14
DP (fixed α) -4834.4 -4835.5 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
UP -4747.4 -4796.2 4.0 3.2±0.58 0.0659 0.409±0.66 1.9 2.1±0.15
UP (constr.) -4741.7 -4764.7 3.0 2.6±0.50 0.0199 0.015±0.08 2.1 2.2±0.16
UP (fixed α) -4787.0 -4791.1 2.0 2.0±0.10 1e-06 1e-06±0.00 2.2 2.3±0.14
EP -4834.4 -4848.6 1.0 1.0±0.00 1.78e-05 0.0101±0.04 2.4 2.4±0.14
EP (constr.) -4834.4 -4848.6 1.0 1.0±0.00 1.78e-05 0.0101±0.04 2.4 2.4±0.14
EP (fixed α) -4834.4 -4835.5 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
EP2 -4837.8 -4842.9 1.0 1.0±0.00 0.000884 0.0694±0.07 2.4 2.4±0.14
EP2 (constr.) -4837.8 -4842.9 1.0 1.0±0.00 0.000884 0.0694±0.07 2.4 2.4±0.14
EP2 (fixed α) -4834.4 -4835.5 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
HUP -4787.5 -4792.3 2.0 2.0±0.15 N/A N/A 2.2 2.3±0.14
HUP (constr.) -4704.5 -4726.4 31.0 24.1±5.38 N/A N/A 1.0 1.0±0.16
K -3768.9 -3870.9 52.0 48.7±7.65 N/A N/A 0.4 0.6±0.20
Prop. -4844.1 -4869.3 21.0 24.6±3.56 N/A N/A 1.4 1.3±0.20
Oh -4920.6 -4930.8 6.0 6.9±1.39 N/A N/A 2.3 2.4±0.14

Table D.22: Summary of results from the MCMC sampler on the field test data set.
The individual moves were allowed to propose remaining in the current state.
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Prior LL K α λ

MAP Avg. MAP Avg. MAP Avg. MAP Avg.

DP -4711.6 -4713.5 18.0 18.0±0.00 4.9 4.57±1.11 1.5 1.4±0.11
DP (constr.) -4714.9 -4717.5 18.0 18.0±0.00 3.94 5.04±1.08 1.4 1.4±0.12
DP (fixed α) -4797.1 -4798.5 2.0 2.0±0.00 1e-06 1e-06±0.00 2.2 2.1±0.10
UP -4654.3 -4657.1 8.0 8.0±0.00 0.198 0.195±0.11 1.7 1.6±0.09
UP (constr.) -4671.9 -4672.0 6.0 6.0±0.00 0.138 0.137±0.01 1.7 1.7±0.02
UP (fixed α) -4731.9 -4731.9 4.0 4.0±0.00 1e-06 1e-06±0.00 1.9 1.9±0.00
EP -4764.2 -4765.8 9.0 9.0±0.00 0.0385 0.0374±0.01 1.6 1.7±0.06
EP (constr.) -4797.5 -4799.8 3.0 3.0±0.00 0.00259 0.00497±0.00 2.1 2.1±0.13
EP (fixed α) -4814.4 -4816.4 8.0 8.0±0.00 1e-06 1e-06±0.00 1.7 1.6±0.07
EP2 -4768.5 -4768.7 7.0 7.0±0.00 0.642 0.684±0.14 1.6 1.6±0.04
EP2 (constr.) -4707.2 -4707.6 8.0 8.0±0.00 1.97 1.89±0.21 1.6 1.6±0.02
EP2 (fixed α) -4755.0 -4758.7 6.0 6.0±0.00 1e-06 1e-06±0.00 1.7 1.6±0.08
HUP -4745.0 -4745.6 8.0 8.0±0.00 N/A N/A 1.8 1.8±0.13
HUP (constr.) -4750.4 -4752.3 9.0 9.0±0.00 N/A N/A 1.6 1.5±0.06
K -4164.2 -4164.7 19.0 19.0±0.00 N/A N/A 0.7 0.8±0.08
Prop. -4891.7 -4894.9 9.0 9.0±0.00 N/A N/A 1.8 1.9±0.10
Oh -4926.9 -4930.1 4.0 4.9±0.76 N/A N/A 2.4 2.4±0.15

Table D.23: Summary of results from the PMC sampler on the field test data set.

Prior LL K α λ

MAP Avg. MAP Avg. MAP Avg. MAP Avg.

DP -4714.0 -4717.8 11.0 11.0±0.00 3.53 3.08±1.17 1.8 1.8±0.07
DP (constr.) -4715.3 -4719.0 10.0 10.0±0.00 1.9 2.23±0.77 1.8 1.7±0.14
DP (fixed α) -4798.2 -4801.5 2.0 2.0±0.00 1e-06 1e-06±0.00 2.3 2.3±0.11
UP -4674.9 -4681.4 6.0 6.0±0.00 0.103 0.131±0.03 1.8 1.6±0.06
UP (constr.) -4674.3 -4676.2 6.0 6.0±0.00 0.0901 0.113±0.05 1.7 1.7±0.11
UP (fixed α) -4757.8 -4770.2 3.0 3.0±0.00 1e-06 1e-06±0.00 2.1 2.1±0.05
EP -4822.3 -4822.3 3.0 3.0±0.00 0.00455 0.00455±0.00 2.2 2.2±0.00
EP (constr.) -4802.0 -4813.0 3.0 3.0±0.00 0.00506 0.00273±0.00 2.0 2.2±0.02
EP (fixed α) -4834.4 -4835.1 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
EP2 -4732.3 -4733.8 5.0 5.0±0.00 1.02 1.05±0.19 1.9 1.7±0.09
EP2 (constr.) -4710.4 -4717.6 8.0 8.0±0.00 0.764 0.924±0.57 1.5 1.6±0.08
EP2 (fixed α) -4755.2 -4756.0 6.0 6.0±0.00 1e-06 1e-06±0.00 1.8 1.8±0.08
HUP -4703.5 -4703.5 8.0 8.0±0.00 N/A N/A 1.8 1.8±0.00
HUP (constr.) -4741.4 -4743.8 8.0 8.0±0.02 N/A N/A 1.6 1.6±0.13
K -4051.7 -4052.3 25.0 25.0±0.00 N/A N/A 0.7 0.6±0.05
Prop. -4885.9 -4887.5 8.0 8.0±0.00 N/A N/A 2.1 2.1±0.13
Oh -4926.8 -4929.2 4.0 4.4±0.55 N/A N/A 2.4 2.4±0.14

Table D.24: Summary of results from the PMC sampler on the field test data set. The
individual moves were allowed to propose remaining in the current state.
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Prior LL K α λ

MAP Avg. MAP Avg. MAP Avg. MAP Avg.

DP -4796.8 -4806.4 2.0 3.0±0.00 0.393 3±0.01 1.9 2.1±0.00
DP (constr.) -4794.8 -4795.3 2.0 2.0±0.00 0.0255 0.0254±0.00 2.0 2.0±0.08
DP (fixed α) -4834.4 -4835.2 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.15
UP -4769.6 -4772.0 3.0 3.2±0.39 0.202 0.103±0.18 2.0 2.1±0.03
UP (constr.) -4761.8 -4761.8 3.0 3.0±0.00 0.0353 0.0354±0.00 1.9 1.9±0.01
UP (fixed α) -4785.9 -4786.5 2.0 2.0±0.00 1e-06 1e-06±0.00 2.3 2.3±0.05
EP -4834.6 -4836.3 1.0 1.0±0.00 3.75e-05 0.000594±0.00 2.5 2.4±0.15
EP (constr.) -4834.7 -4836.7 1.0 1.0±0.00 0.000157 0.000523±0.00 2.4 2.5±0.21
EP (fixed α) -4834.4 -4835.1 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
EP2 -4796.3 -4796.3 3.0 3.0±0.00 1.81 1.81±0.00 2.1 2.1±0.00
EP2 (constr.) -4837.0 -4839.8 1.0 1.0±0.00 0.00151 0.0378±0.03 2.4 2.4±0.15
EP2 (fixed α) -4834.4 -4835.2 1.0 1.0±0.00 1e-06 1e-06±0.00 2.4 2.4±0.14
HUP -4788.4 -4793.1 2.0 2.0±0.00 N/A N/A 2.1 2.2±0.11
HUP (constr.) -4821.9 -4821.9 10.0 10.0±0.00 N/A N/A 1.4 1.4±0.00
K -4240.3 -4242.9 14.0 14.2±0.40 N/A N/A 1.0 1.0±0.00
Prop. -4925.7 -4925.8 15.0 15.0±0.00 N/A N/A 1.9 1.9±0.00
Oh -4943.2 -4945.9 1.0 1.0±0.00 N/A N/A 2.4 2.4±0.16

Table D.25: Smmary of results from the PMC sampler, using the k-add mixture pro-
posal, on the field test data set.
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