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ABSTRACT OF THE DISSERTATION

Semantic Analysis and Retrieval of User-Generated Text

by

Nhat Xuan Thong Le

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Dr. Vagelis Hristidis, Chairperson

With the ever-increasing volume of user-generated text (e.g., product reviews, doc-

tor notes, chat logs), there is a need to distill valuable semantic information from such un-

structured sources. We initially focus on product reviews, which conceptually consist of

concepts (or aspects) such as “screen brightness”, and user opinions on these concepts such

as “very positive”. First, we present a novel review summarization framework that advances

the state-of-the-art by leveraging a domain hierarchy of concepts to handle the semantic

overlap among the aspects, and by accounting for different opinion levels. Second, we argue

and empirically show that the current style of soliciting customer opinion by asking them

to write free-form text reviews is suboptimal, as few aspects receive most of the ratings.

Therefore, we propose various techniques to dynamically select which aspects to ask users

to rate given the current review history of a product.

The last body of work leverages user chat logs to continuously optimize the work-

flow of a goal-oriented chatbot, such as a pizza ordering bot. On one hand, diagram-based

chatbots are simple and interpretable but only support limited predefined conversation sce-

vii



narios. On the other hand, the state-of-the-art Reinforcement Learning (RL) models can

handle more scenarios but are not interpretable. We propose a hybrid method, which en-

forces workflow constraints in a chatbot, and uses RL to select the best chatbot response

given the specified constraints.

viii



Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Online Review Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Targeted Solicitation of Customer Reviews . . . . . . . . . . . . . . . . . . . . 3
1.3 Adaptive and Interpretable Dialog Manager for Goal-oriented Chatbot . . . . 5

2 Efficient Ontology- and Sentiment-aware Review Summarization 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Problem Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Both Problems are NP-Hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 ILP for optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Randomized rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.5 Adaptation for k-Reviews/Sentences Coverage problem . . . . . . . . . 21

2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Decrease Product Rating Uncertainty Through Focused Reviews Solicita-
tion 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Modeling a Product’s Review Profile and Aspect Selection Algorithm . . . . . 48

3.3.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



3.3.2 Bayesian Inference Model . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Aspect Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.4 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Hybrid Reviewing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Extensions for Response Probability and Aspects Correlation . . . . . . . . . 55

3.5.1 Account for Response Probability . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Account for Correlation between Aspects . . . . . . . . . . . . . . . . . 57

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.1 Active Versus Passive Solicitation . . . . . . . . . . . . . . . . . . . . . 63
3.6.2 Comparison of Various “Active” Solicitation Methods . . . . . . . . . . 65
3.6.3 Extension to Response Probability . . . . . . . . . . . . . . . . . . . . 67
3.6.4 Comparison of Hybrid Reviewing Interface to Passive Solicitation . . . 69

3.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Adaptive Goal-oriented Dialog Policy Generation using Dependency Graphs
and Reinforcement Learning 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Dependency Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Dialog Policy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 User Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 Performance in the Training Phase . . . . . . . . . . . . . . . . . . . . 94
4.5.2 Performance in the Testing Phase . . . . . . . . . . . . . . . . . . . . . 96

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusions 101

Bibliography 104

x



List of Figures

2.1 SNOMED CT’s concept hierarchy sample . . . . . . . . . . . . . . . . . . . . 11
2.2 Representation of concept-sentiment pairs on the concept hierarchy DAG of

Figure 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Reduction from Set Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 k-Medians ILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Cell phone aspect hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Evaluation of Top Pairs on doctor reviews dataset . . . . . . . . . . . . . . . 25
2.7 Evaluation of Top Sentences on doctor reviews dataset . . . . . . . . . . . . . 25
2.8 Evaluation of Top Reviews on doctor reviews dataset . . . . . . . . . . . . . . 26
2.9 Algorithms’ scalability on doctor reviews dataset . . . . . . . . . . . . . . . . 27
2.10 Cost – sentiment threshold trade-off on doctor reviews dataset. Elbow is the

blue dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11 Comparison of coverage measure with sentiment threshold 0.3 on doctor re-

views dataset (higher coverage is better) . . . . . . . . . . . . . . . . . . . . . 33
2.12 Comparison of coverage measure with sentiment threshold 0.3 on cell phone

reviews dataset (higher coverage is better) . . . . . . . . . . . . . . . . . . . . 33
2.13 Comparison of sentiment error on doctor reviews dataset (lower error is better) 36
2.14 Comparison of sentiment error on cell phone reviews dataset (lower error is

better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Ask a customer about a smartphone . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Toy example: posteriors of aspects’ rating . . . . . . . . . . . . . . . . . . . . 54
3.3 Example of a hybrid reviewing interface . . . . . . . . . . . . . . . . . . . . . 55
3.4 Comparing passive and active review solicitation (on Amazon reviews). Smaller

is better, except for High Confidence Ratio measure. . . . . . . . . . . . . . . 62
3.5 Automobile reviews. Smaller is better, except for High Confidence Ratio

measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Amazon reviews. Smaller is better, except for High Confidence Ratio measure. 66
3.7 Response with probability on Amazon review dataset. Smaller is better,

except for High Confidence Ratio measure. . . . . . . . . . . . . . . . . . . . . 69
3.8 Response with probability on automobile dataset. Smaller is better, except

for High Confidence Ratio measure. . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



3.9 Hybrid reviewing interface on Amazon review dataset. Smaller is better,
except for High Confidence Ratio measure. . . . . . . . . . . . . . . . . . . . . 71

4.1 A pizza ordering chatbot conversation. Traditional chatbots focus on slot-
filling (pizza type, size, and so on) and assume that the user continue to the
end to finish their order. However, there is possibility that the user drops out
in the middle due to various reasons. . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Example chatbot diagram: pizza ordering. Each node has a self-loop to allow
repeatedly asking the same question until a valid answer is provided; we omit
self-loops for brevity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Enhanced chatbot diagram for pizza ordering. This diagram captures the
requirements implied in the diagram in Figure 4.2, however, it is more concise
and easier to design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Dependency graph for pizza ordering. A directed edge from vj to vi means
that vj has a dependency on vi; i.e., vj should only be presented to the user
after vi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 High level overview of our dialogue policy generation framework. . . . . . . . 86
4.6 Success rate changes over the number of simulated conversations in the train-

ing phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Method’s behaviors in picking up optional slots. . . . . . . . . . . . . . . . . . 97
4.8 Success rate changes over the number of simulated conversations in the testing

phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii



List of Tables

2.1 Dataset characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Baseline summarizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 A review profile; numbers are rating counts. . . . . . . . . . . . . . . . . . . . 42
3.2 Toy example of 4 aspects with counts of 1, 2 or 3 stars respectively. . . . . . . 53
3.3 RPSS of Table 3.2, where uncert=variance. . . . . . . . . . . . . . . . . . . . 53
3.4 Counting when two aspects were rated together by an user. . . . . . . . . . . 57
3.5 Dataset statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Time overhead and uncertainty reduction of hybrid review interface compar-

ing to free-form text only interface after 300 reviews. For high confidence
ratio measure, we cut off when the first method reaches saturation ratio of 1
(after 175 reviews) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Chatbot’s important factors mapped from Web domain [16] . . . . . . . . . . 81
4.2 Dataset details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Experiment’s Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



Chapter 1

Introduction

User-generated text is any free-form text created by users such as online customer

reviews, conversational chat logs and forum posts. The volume of this content has dramati-

cally grown thanks to the booming of the Internet 2.0 era. As an example, Amazon.com has

millions of products, among which a popular product such as the Echo speaker receives thou-

sands of customer reviews and inquiries. Similarly, the digital assistant systems, for example,

Apple Siri, Amazon Alexa and Google Assistant, enable users to interact with machines in

their natural language form, thus generate massive data of user chat logs. Further, the

rapid adoption of mobile applications and Internet-of-Things devices further increases the

amount of user-generated text. There are great challenges and opportunities on organizing,

retrieving and mining these big data.

Efficient analysis and retrieval of user-generated text can facilitate many applica-

tions beneficial to both the users and the systems generating that content. For instance,

online customer reviews can be organized and summarized to provide diverse and thorough
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opinions to potential customers, as well as with valuable feedback to the manufactures. In

the context of user chat logs, the conversational system can continuously improve its per-

formance using previous user chat sessions. The key barrier to these applications is the

unstructured nature of user-generated data.

Since user-generated text is in the form of plain natural language, its analysis bears

all challenges that Natural Language Processing (NLP) techniques face including sentiment

analysis inaccuracy, various user representations of the same meaning and grammatically

improper sentences by online users, to name a few. Furthermore, organizing user-generated

data must deal with the redundancy issue, which is two-fold: too much text with overlapping,

correlated information and too many users with different personal views of the same subject.

Finally, user evaluation with ground truth is not always available. For example, there is no

golden standard summary for a product review since summaries are subjective with respect

to the individual evaluator; even the same evaluator may have different opinions at different

times.

This dissertation extracts the semantic meaning embedded in user-generated text

for efficient analysis and retrieval. A first step is to generate a more structured semantic

representation of the user-generated text. For instance, in the customer review “this phone

has a very nice screen”, the user is giving opinion about the “screen” aspect of the phone

with a very positive tone. In this dissertation, we study three main questions. We provide

short introduction for each part below.
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1.1 Online Review Summarization

In this Web 2.0 era, there is an ever increasing number of product and service

reviews, which must be summarized to help consumers effortlessly make informed decisions.

Previous work on reviews summarization has simplified the problem by assuming that as-

pects (e.g., “display”) are independent of each other and that the opinion for each aspect in

a review is Boolean: positive or negative. However, in reality aspects may be interrelated –

e.g., “display” and “display color” – and the sentiment takes values in a continuous range –

e.g., “somewhat” vs. ”very positive”.

In Chapter 2, we present a novel review summarization framework that advances

the state-of-the-art by leveraging a domain hierarchy of concepts to handle the semantic

overlap among the aspects, and by accounting for different sentiment levels. We show

that the problem is NP-hard and present bounded approximate algorithms to compute

the most representative set of sentences or reviews, based on a principled opinion coverage

framework. We experimentally evaluate the proposed algorithms on real datasets in terms of

their efficiency and effectiveness compared to the optimal algorithms. We also compare the

quality of our summarization methods to multiple baselines, using several intuitive quality

measures. The results show that our methods generate summaries of superior quality in

short execution times using various intuitive quality measures.

1.2 Targeted Solicitation of Customer Reviews

Customer reviews have become an essential resource when people search for goods

or services on the Internet. Previous works [21, 40, 37] have shown that reducing a product’s
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uncertainty is critical to its purchase decision. Thus, reviews are more effective when they

help to reduce a product’s uncertainty. Existing e-commerce platforms typically ask users

to write free-form text reviews, which are sometimes augmented by a small set of predefined

questions, e.g., “rate the product description’s accuracy from 1 to 5.” In Chapter 3, we argue

that this “passive” style of review solicitation is suboptimal in achieving low-uncertainty

“review profiles” for products. Its key drawback is that some product aspects receive a very

large number of reviews while other aspects do not have enough reviews to draw confident

conclusions. Therefore, we hypothesize that we can achieve lower-uncertainty review profiles

by carefully selecting which aspects users are asked to rate.

To test this hypothesis, we propose various techniques to dynamically select which

aspects to ask users to rate given the current review profile of a product. We use Bayesian

inference principles to define reasonable review profile uncertainty measures; specifically, via

an aspect’s rating variance. We compare our proposed aspect selection techniques to several

baselines on several review profile uncertainty measures. Experimental results on two real-

world datasets show that our methods lead to better review profile uncertainty compared to

aspect selection baselines and traditional passive review solicitations. Moreover, we present

and evaluate a hybrid solicitation method that combines the advantages of both active and

passive review solicitations.
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1.3 Adaptive and Interpretable Dialog Manager for Goal-oriented

Chatbot

In the past few years, the advances in deep learning enable high-quality information

extraction systems for human conversations. Together with the popularity of mobile devices,

this has stimulated the quick adoption of numerous goal-oriented conversational systems,

also known as chatbots, such as calendar reminder in Google Assistant, or pizza ordering

bot by Dominos. Most of these commercialized chatbots are frame-based dialog systems [9]

that model conversation by frames of semantic slots and dialog acts. For instance, a user

utterance “I would like a pepperoni pizza” is translated into the semantic level representation:

(dialog_act=inform, slot=pizza_type, value=pepperoni).

Previous works on building goal-oriented chatbot’s workflow (or dialog manager)

fall into two approaches. On one hand, diagram-based chatbots specify a hard-coded se-

quence of slots to ask users for information, and therefore are simple, interpretable but only

support limited predefined conversation scenarios. Moreover, they do not support the notion

of optional slots that may be dynamically activated based on the user characteristics. On

the other hand, the state-of-the-art Reinforcement Learning (RL) models are able to handle

more scenarios and adapt to the user but are not interpretable.

We propose a middle ground, where RL is used to select the best responses, con-

strained by a space of possible responses, which are represented using a novel data structure,

the chatbot dependency graph. The RL model learns from past user actions and optimizes

the probability of success, e.g., the probability of ordering a pizza. This work is presented in

Chapter 4, where we propose a hybrid model, which enforces flow constraints in a chatbot,

5



and uses RL to select the best chatbot response given the specified constraints.

The key idea of our model is the notion of Dependency Graph (DG), which is

created by the bot designer as a basic blueprint specifying a small set of dependencies among

slots (both mandatory and optional). Then, our proposed algorithm converts this DG into

a RL model that is trained on user chat logs to learn a concrete, personalized workflow. Our

model brings together the benefits of both traditional approaches that are interpretability,

supporting flexible scenarios and rich semantic. Our evaluation on a real dataset of movie

booking domain shows that this is a promising approach. Specifically, our model achieves

higher success rate at a faster rate than the RL based approach in the training phase (not

applicable to diagram-based chatbots), and outperforms both traditional methods in the

testing phase.

6



Chapter 2

Efficient Ontology- and

Sentiment-aware Review

Summarization

2.1 Introduction

Online users are increasingly relying on user reviews to make decisions on shop-

ping (e.g., Amazon, Newegg), finding venues (e.g., Yelp, Foursquare), seeking doctors (e.g.,

Vitals.com, zocdoc.com) and many others. However, as the number of reviews per item

grows, especially for popular products, it is infeasible for customers to read all of them, and

discern the useful information from them. Therefore, many methods have been proposed

to summarize customer opinions from the reviews [31, 22, 50, 12]. They generally either

adapt multi-document summarization techniques to choose important text segments [12],

7



or they extract product concepts (also referred as aspects or attributes in other works),

such as “display” of a phone, and customer’s opinion (positive or negative) and aggregate

them [31, 22, 50].

However, neither of these approaches takes into account the relationship among

product’s concepts. For example, assuming that we need the opinion summary of a smart-

phone, showing that the opinions for both display and display color are very positive is

redundant, especially given that we would have to hide other concepts’ opinion (e.g., “bat-

tery”), given the limited summary size. What makes the problem more challenging is that

the opinion of a user for a concept is not Boolean (positive or negative) but can take values

from a linear scale, e.g., “very positive”, “positive”, “somewhat positive”, “neutral”, and so

on. Hence, if “display” has a positive opinion, but “display color” has neutral, the one does

not subsume the other, and both should be part of the summary. Further, a more general

concept may cover a more specific but not vice versa.

Our key contribution is a novel review summarization framework that accounts for

the relationships among the concepts (product aspects), while at the same time supporting

various sentiment levels. Specifically, we model our problem as a pairs coverage problem,

where each pair consists of a concept and a sentiment value, and coverage is jointly defined

on both of them. We show that the problem of selecting the best concepts and opinions

to display is NP-hard even when the relationships among the concepts are represented by

a Directed-Acyclic-Graph (DAG). For that, we propose bounded approximation algorithms

inspired by well-studied graph coverage algorithms.

To summarize, the review summarization framework consists of the following tasks:

8



(a) Concept Extraction: we build upon existing work for extracting hierarchical concepts

(aspects) from reviews. (b) Sentiment Estimation: estimate the sentiment of each men-

tioned concept on a linear scale. (c) Select k representatives: depending on the problem

variant, a representative is a concept-sentiment pair (e.g., “display”=0.3), or a sentence from

a review (e.g., “this phone has pretty sharp display”) or a whole review. Our proposed

selection algorithms can be used to select representatives at any of these granularities.

Our contributions can be summarized as below:

• We propose a fresh perspective for the review summarization problem that exploits

available concept hierarchies and a novel opinion coverage definition. We model the

problem as a coverage optimization problem (Section 2.2) and show how to map a set

of reviews to our model (Section 2.5.1).

• We prove that the problem is NP-hard and propose several efficient approximation

algorithms with guaranteed bounds (Section 2.4).

• We carry out a thorough evaluation on the cost and time of our proposed algorithms.

We experimentally evaluate our methods on real collections of online doctor patient

reviews, using popular medical concept hierarchies [10], and corresponding concept

medical extraction tools [4, 67]. Other extraction tools can be used for other domains,

as discussed in the Related Work section (Section 2.6).

• We perform qualitative experiments on both online doctor patient reviews and on-

line cell phone buyer reviews. Using various intuitive summary quality measures, we

show that our method outperforms state-of-the-art review summarization methods

(Section 2.5.3).

9



The remainder of this chapter is organized as follows: we present the related work

in Section 2.6, and the conclusion in Section 2.7.

2.2 Problem Framework

Define an item (for example, a doctor or a camera) d as a set of reviews, where each

review is a set of concept-sentiment pairs {(c1, s1), (c2, s2), . . . , (cn, sn)}, and sj ∈ R is the

sentiment for concept cj in the review. Sometimes the concepts are explicitly rated (e.g., in

edmunds.com people assign a star rating for performance, comfort, ride comfort, rear seats

comfort, and so on), while other times the review is a text paragraph. In the latter case, we

use existing review aspect extraction techniques. For the case of doctor reviews, used in our

experiments, we use an the MetaMap concept extraction tool [4] to extract medical concepts.

In domains without special tools like Metamap, such as e-commerce, we can employ popular

unsupervised [62, 61] or supervised [33, 57] aspect extraction methods (for more details see

Section 2.6). To estimate the sentiment of each concept, again several existing works can be

leveraged. We use a method based on word-embeddings in our experiments.

The set of concepts are related based on a hierarchical ontology. Examples of such

ontologies include WordNet [53], BabelNet [58] and ConceptNet [71]. For instance, the

“part-whole” relation in those ontologies can be utilized to create the hierarchy of aspects

suitable for our framework. Alternatively, Kim et al. [39] automatically extract an aspect-

sentiment hierarchy using a Bayesian non-parametric model. In our experiments, we use the

SNOMED CT [32] ontology, which is popular in the health domain (Figure 2.1).

We define the (directed) distance d(p1, p2) between two concept-sentiment pairs
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Figure 2.1: SNOMED CT’s concept hierarchy sample

p1 = (c1, s1) and p2 = (c2, s2), based on the concepts’ relationship in the hierarchy, as

follows.

Definition 1 The distance d(p1, p2) is:

d(p1, p2) =



d(r, c2) if c1 is the root r, or

d(c1, c2) if c1 is the ancestor of c2

and |s1 − s2| ≤ ε, or

∞ otherwise

where the distance between two concepts d(c1, c2) is the shortest-path length from c1 to c2 in

the hierarchy, r is the root of the hierarchy, and ε > 0 is the sentiment threshold.

If pair p1 has finite distance to p2, we say that p1 covers p2. Pair p1 covers p2 iff p1’s concept

c1 is an ancestor of p2’s concept c2, and either c1 is the root concept or the sentiments of
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Figure 2.2: Representation of concept-sentiment pairs on the concept hierarchy DAG of
Figure 2.1.

p1 and p2 differ by at most ε. Figure 2.2 shows an example of how the concept-sentiment

pairs of an item’s reviews are mapped on the concept hierarchy, where the dashed line is

the path from the root, and concept c6 doesn’t have any pairs. For instance, pair (c1, 0.7)

represents an occurrence of concept c1 in a review with sentiment 0.7. The same pair is also

represented by the circled 0.7 value inside the c1 tree node.

Given a set P = {p1, p2, . . . , pq} of concept-sentiment pairs for the reviews of an

item, and an integer k, our goal is to compute a set F = {f1, f2, . . . , fk} ⊆ P of k pairs that

best summarize P . To measure the quality of such a summary F , we define its cost C(F, P )

as the distance from F to P , defined as follows.

Definition 2 The distance from F to a pair p is the distance of the closest pair in F
⋃
{r}

to p: d(F, p) = minf∈F
⋃
{r} d(f, p).
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The cost of F is the sum of its distances to pairs in P : C(F, P ) =
∑

p∈P d(F, p).

We introduce two summarization problems on a set of concept-sentiment pairs:

1. k-Pairs Coverage: given a set P of concept-sentiment pairs (coming from a given

set of reviews for an item) and integer k ≤ |P |, find a subset F ⊆ P with |F | = k that

summarizes P with minimum cost:

min
F⊆P,|F |=k

C(F, P )

2. k-Reviews/Sentences Coverage: given a set R of reviews (or sentences) and integer

k ≤ |R|, find a subset X ⊆ R with |X| = k that summarizes R with minimum cost:

min
X⊆R,|X|=k

C(P (X), P (R)),

where P (R) is the set of concept-sentiment pairs derived from the set R of reviews/sen-

tences, and P (X) is the set of concept-sentiment pairs derived from the subset X of

R.

Intuitively, the first problem is appropriate when the summaries consist of concise

concept-sentiment pairs, e.g. “good Heart Disease management”, extracted from the reviews,

and may be more suitable for mobile phone-sized screens. The second problem is appropriate

if the summaries consist of whole sentences of reviews, which better preserves the meaning

of the review, but may require more space to display.

The k-Pairs Coverage problem can be viewed as a special case of the k-Reviews/Sentences

Coverage problem, when each review/sentence has just one pair. For presentation simplicity,

we first present our NP-hard proof and algorithms for k-Pairs Coverage in Section 2.4, then

describe how they can be applied to the k-Reviews/Sentences Coverage in Section 2.4.5.

13



(a) Set Cover

(b) Corresponding instance of k-Pairs Coverage

Figure 2.3: Reduction from Set Cover

2.3 Both Problems are NP-Hard

This section proves both proposed problems NP-hard.

Theorem 3 The k-Pairs Coverage problem is NP-hard.

Proof.

The decision problem is, given a set P of concept-sentiment pairs, an integer k ≤

|P |, and a target t ≥ 0, to determine whether there exists a subset F ⊆ P of size k with

cost C(F, P ) at most t. We reduce Set Cover to it. Fix any Set-Cover instance (S,U, k)
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where U is the universe {u1, u2, . . . , un}, and S = {S1, S2, . . . , Sm} is a collection of subsets

of U , and k ≤ |S|. Given (S,U, k), first construct a concept-hierarchy (DAG) with root r,

concepts ci and ei for each subset Si, and a concept dj for each element uj . For each set

Si, make ci a child of r and ei a child of ci. For each element uj , make dj a child of ci for

each set Si containing uj . (See Figure 2.3.) Next, construct 2m+n concept-sentiment pairs

P = {p1, . . . , p2m+n}, one containing each node in the DAG other than the root r, and all

with the same sentiment, say 0. Take target t = 3m+n−2k. This completes the reduction.

It is clearly polynomial time. Next we verify that it is correct. For brevity, identify each

pair with its node.

Suppose S has a set cover of size k. For the summary F ⊆ P of size k, take

the k concepts in P that correspond to the sets in the cover. Then each di has distance

1 to F , contributing n to the cost. For each set in the cover, the corresponding ci and ei

have distance 0 and 1 to F , contributing k to the cost. For each set not in the cover, the

corresponding ci and ei have distance 1 and 2 to F , contributing 3(m − k) to the cost, for

a total cost of n+ 3m− 2k = t.

Conversely, suppose P has a summary of size k and cost t = n+ 3m− 2k. Among

size-k summaries of cost at most t, let F be one with a maximum number of ci nodes. We

show that the sets corresponding to the (at most k) ci nodes in F form a set cover. Assume

some ci′ is missing from F (otherwise k ≥ m so we are done). For every ei in F , its parent

ci is also in F . (Otherwise adding ci to F and removing ei would give a better summary F ′,

i.e., a size-k summary of cost at most t, but with more ci nodes than F , contradicting the

choice of F ). No ei is in F (otherwise removing ei and adding the missing node ci′ would
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give a better summary F ′). No dj is in F (otherwise, since neither ei′ nor ci′ are in F ,

removing dj from F and adding ci′ would give a better summary F ′). Since no ei or dj is

in F , only ci nodes are in F . Since the cost is at most t = n + 3m − 2k, by calculation as

in the preceding paragraph, the sets Si corresponding to the nodes ci in F must form a set

cover.

When we already have k-Pairs Coverage as a NP-hard problem, it’s natural to

prove the following theorem.

Theorem 4 The k-Reviews/Sentences Coverage problem is NP-hard.

Proof. K-Reviews/Sentences Coverage is a generalization of k-Pairs Coverage, so the the-

orem follows from the previous theorem.

2.4 Algorithms

We implement three algorithms for k-Pairs Coverage. The first, which is the only

one generates an optimal solution, solves the standard integer-linear program (ILP) for the

problem, as a special case of the well-known k-Medians problem. The second randomly

solves the linear program (LP), then randomly rounds the fractional solution achieving a

bounded approximation error. The third is a greedy bounded approximation algorithm.

The three algorithms share a common initialization phase that we describe first.

2.4.1 Initialization

The initialization phase computes the underlying edge-weighted bipartite graph

G = (U,W,E) where vertex sets U and W are the concept-sentiment pairs in the given set
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P , edge set E is {(p, p′) ∈ U × W : d(p, p′) < ∞}, and edge (p, p′) has weight equal to

the pair distance d(p, p′). The initialization phase builds G in two passes over P . The first

pass puts the pairs p = (c, s) into buckets by category c. The second pass, for each pair

p = (c, s), iterates over the ancestors of c in the DAG (using depth-first-search from c). For

each ancestor c′, it checks the pairs p′ = (c′, s′) in the bucket for c′. For those with finite

distance d(p, p′), it adds the corresponding edge to G.

For our problems, the time for the initialization phase and the size of the resulting

graph G are roughly linear in |P |, because the average number of ancestors for each node in

the DAG is small.

2.4.2 ILP for optimal solution

Given the graph G = (U,W,E), Figure 2.4 shows the standard k-Medians ILP

adapted for our non-standard cost function. Our first algorithm solves the ILP using the

Gurobi solver. Of course, no worst-case polynomial-time bounds are known for solving this

NP-hard ILP, but on our instances the algorithm finishes in reasonable time (Details are in

Section 2.5).

2.4.3 Randomized rounding

The second algorithm computes an optimal fractional solution (x, y) to the LP

relaxation of the ILP (using Gurobi, details in Section 2.5), then randomly rounds it as

shown in algorithm 1: it chooses the summary F by sampling k pairs p at random from the

distribution x/‖x‖1.
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minimize
∑

(p,q)∈E

ypq × d(p, q)

subject to xr = 1;
∑

p∈P\{r} xp = k;

∑
∀q∈W,p:(p,q)∈E ypq = 1;

(∀(p, q) ∈ E 0 ≤ ypq ≤ xp;

(∀p ∈ U) xp ∈ {0, 1}

Figure 2.4: k-Medians ILP

Algorithm 1 Randomized Rounding Algorithm
Input: fractional solution x, y

Output: summary F

1: procedure Randomized Rounding

2: Define probability distribution q on P ′ = P \ {r}

3: such that q(p) = xp/
∑

p∈P ′ xp.

4: F = ∅

5: while |F | < k do

6: Sample one pair p without replacement from q.

7: Add p to F .

8: Return F .
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No good worst-case bounds are known on the time to solve the LP, but on our

instances the solver solves it in reasonable time. The randomized-rounding phase can easily

be implemented to run in linear time, O(n) where n = |P |.

This randomized-rounding algorithm is due to [86] (see also [15]). The following

worst-case approximation guarantee holds for this algorithm, as a direct corollary of the

analysis in [15]. Let optk(P ) denote the minimum cost of any size-k summary of P .

Theorem 5 The expected cost of the size-k summary returned by the randomized-rounding

algorithm is O(optk′(P )) for some k′ = O(k/ log n).

In our experiments it gives near-optimal summary costs.

2.4.4 Greedy algorithm

The greedy algorithm is Algorithm 2. It starts with a set F = {r} containing

just the root. It then iterates k times, in each iteration adding a pair p ∈ P to F chosen

to minimize the resulting cost C(F ∪ {p}, P ). Finally, it returns summary F \ {r}. This

is essentially a standard greedy algorithm for k-medians. Since the cost is a submodular

function of P , the algorithm is a special case of Wolsey’s generalization of the greedy set-

cover algorithm [85].

After the initialization phase, which computes the graph G = (U,W,E), the algo-

rithm further initializes a max-heap for selecting p in each iteration. The max-heap stores

each pair p, keyed by δ(p, F ) = C(F ∪{p}, P )−C(F, P ). The max-heap is initialized naively,

in time O(m+n log n) (where m = |E|, n = |P |). (This could be reduced to O(m+n) with

the linear-time build-heap operation.) Each iteration deletes the pair p with maximum key
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from the heap (in O(log n) time), adds p to F , and then updates the changed keys. The

pairs q whose keys change are those that are neighbors of neighbors of p in G. The number

of these updates is typically O(d2), where d is the typical degree of a node in G. The cost of

each update is O(log n) time. After initialization, the algorithm typically takes O(kd2 log n)

time. In our experiments, our graphs are sparse (a typical node p has only hundreds of such

pairs q), and k is a small constant, so the time after initialization is dominated by the time

for initialization. The following worst-case approximation guarantee is a direct corollary of

Algorithm 2 Greedy Algorithm
Input: G = (U,W,E) from initialization, computed from P .

Output: Size-k summary F .

1: procedure Greedy

2: Define δ(p, F ) = C(F ∪ {p}, P )− C(F, P ).

3: Let F = {r}.

4: Initialize max-heap holding p ∈ U keyed by δ(p, F ).

5: while |F | < k + 1 do

6: Delete p with highest key from max-heap.

7: Add p to F .

8: for w such that (p, w) ∈ E do

9: for q such that (q, w) ∈ E do

10: Update max-heap key δ(q, F ) for q.

11: return F \ {r}

Wolsey’s analysis [85]. Let H(i) = 1+1/2+ · · ·+1/i ≈ 1+log i be the ith harmonic number.

Let ∆ be the maximum depth of the concept DAG.
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Theorem 6 The greedy algorithm produces a size-k summary of cost at most optk′(P ),

where k′ = bk/H(∆n)c.

In our experiments, the algorithm returns near-optimal size-k summaries.

2.4.5 Adaptation for k-Reviews/Sentences Coverage problem

When whole reviews or sentences (each containing a set of concept-sentiment pairs)

must be selected, the above algorithms can still be applied with only a modification of

the initialization stage . In particular, we modify the construction of bipartite graph G =

(U,W,E), so instead of having both U andW be concept-sentiment pairs in P , U represents

the set of candidate reviews or sentences R, and W represents concept-sentiment pairs as

before. Therefore the edge set E becomes {(r, p) ∈ U×W : d(r, p) <∞}, and edge (r, p) has

weight equal to the distance d(r, p) from review/sentence r to pair p. After this initialization,

the algorithms work as usual.

2.5 Experimental Evaluation

In this section we conduct both quantitative and qualitative evaluations. The quan-

titative evaluation measures the time and accuracy trade-offs of the proposed approximate

summarization algorithms compared to the optimal solution. The qualitative evaluation

evaluates the quality of the summaries generated by the proposed methods, compared to

baseline state-of-the-art summarization methods using several intuitive measures.
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2.5.1 Experiment Setup

Datasets

We utilize two real-world datasets of two different domains: health care and online

consumer reviews. Our first dataset consists of 68,686 patient reviews of the 1000 most

reviewed doctors from vitals.com, which is a popular doctor rating website. As the second

dataset, we crawled customer reviews of 60 unlocked cell phones, which are featured in the

first five pages on Amazon and have at least 100 distinct reviews each. Table 2.1 presents

basic statistics of the two datasets.

Table 2.1: Dataset characteristics.

Doctor Reviews Cell
Phone
Reviews

#Items (doctor/product) 1000 60
#Reviews 68686 33578
Min #reviews per item 43 102
Max #reviews per item 354 3200
Average #sentences per review 4.87 3.81

Concepts and sentences extraction

To extract medical concepts in doctor reviews dataset we use MetaMap [4], which

is an automated tool for mapping biomedical text to medical concepts from Unified Medical

Language System (UMLS) Metathesaurus [10]. UMLS contains multiple medical ontologies;

we choose SNOMED CT [32], which has more than 300,000 concepts and is suitable for our

problem given its focus on describing medical conditions. For example, for sentence “Dr

Robert did an awesome job with my tummy tuck and liposuction”, concepts “tummy tuck”
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Figure 2.5: Cell phone aspect hierarchy

(UMLS ID=C0749734) and “liposuction” (UMLS ID=C0038640) are extracted.

In cell phone reviews dataset, we employ Double Propagation method [62] to ex-

tract cell phone aspects such as screen and battery. We only focus on the 100 most popular

extracted aspects. Given that there is no available hierarchy of cell phone aspects, we

manually built a hierarchy from the extracted aspects as shown in Figure 2.5.

Sentiment Computation

To compute the sentiment around a concept, we first need to define the context,

i.e. the containing sentence. For that we use the PTBTokenizer library in Stanford POS

tagger [78], which generally splits text based on punctuation marks. Then, we compute the

sentiment of the containing sentence and assign this sentiment to the concept.

To compute the sentiment of a sentence we adopt a neural network based repre-

sentation learning approach doc2vec, which represents words, sentences, and generally text

by fixed-size vectors [44]. Then, sentence’s sentiment estimation is formulated as a standard
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regression problem using the sentence vector representation.

Configuration

We evaluate the three methods proposed in Section 2.4: Integer Linear Program-

ming - ILP, Randomized Rounding - RR, and Greedy algorithm. For ILP and RR, we use

the Gurobi optimization library version 6.0.5 [29] with Dual-Simplex as the default method.

This method is chosen because it shows the best performance in our case after experimen-

tal trials on different options available in Gurobi (primal simplex, barrier, auto-switching

between methods, concurrent). All experiments were executed on a single machine with

Intel Core i7-4790 3.60 GHz, 16 GB RAM, Windows 10 professional 64 bits. Our code was

written in Java using the official Oracle Java version 8 update 45.

2.5.2 Quantitative Evaluation

For brevity, we only present results on doctor reviews dataset, which is the larger

dataset, in this section.

Average Coverage Cost and Time of Algorithms

We compare the average coverage cost (defined in Definition 2) and time of our

three algorithms. They are evaluated on the problems of finding top pairs, sentences and

reviews, in Figures 2.6, 2.7 and 2.8 respectively. These figures show the elapsed time (in

ms) and cost of the algorithms when the threshold on sentiment coverage definition is varied

from 0.3 to 0.5.

A key observation from these experiments is that Greedy is always the fastest
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Figure 2.6: Evaluation of Top Pairs on doctor reviews dataset
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Figure 2.7: Evaluation of Top Sentences on doctor reviews dataset
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Figure 2.8: Evaluation of Top Reviews on doctor reviews dataset

algorithm while maintaining reasonable costs compared to ILP and RR algorithms. Of

course, ILP gives optimal solution and always offers the cheapest cost. The Greedy algorithm

has the worst cost but never more than 8% higher than the optimal (within 5% most of time).

In terms of time, the Greedy algorithm outperforms ILP by a factor up to 19x, 32x and 63x

in the top pairs, top sentences and top reviews problems, respectively. Similarly, Greedy

runs faster than RR, at most 14 times, and usually takes only 1–2 ms per doctor. RR

algorithm often works similarly to ILP regarding cost, specifically, the difference is about

1-2 percent. The speedup of RR over ILP is usually about 2–5x. This is because RR only

solves a Linear Program system and then randomizes the solution instead of finding an

optimal integer solution.

We also notice that with the same threshold, the cost decreases from top pairs to

top sentences, and then to top reviews problem. The reason is that a sentence or review
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Figure 2.9: Algorithms’ scalability on doctor reviews dataset

can have multiple pairs, so they typically cover more pairs than a single pair can cover.

Therefore, k sentences or reviews usually cover more pairs than k pairs can, which leads to

smaller costs. Similarly, the elapsed time of all algorithms for top sentences/reviews problem

are larger than for top pairs problem. It’s because for top sentences/reviews, there are more

connections (edges) between selecting candidates and pairs to consider.

In general, the results suggest that our problem has latent structures friendly to

Greedy algorithm. Therefore, the optimal solution from ILP algorithm seem to be close to

the one of Greedy algorithm which can be achieved much faster. Because of this reason, we

choose Greedy algorithm for the next qualitative experiments.

Algorithm’s scalability

In this experiment, we evaluate the algorithms’ scalability over various problem

sizes, that is, we vary the number of pairs plus the number of edges (n + m). When there

are multiple doctors with the same (m + n), we report the average time of these doctors.

For brevity, we only present the results for the k-pairs coverage problem, and for the case
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of k = 10, sentiment threshold ε = 0.5. It is also worth noting that for the other cases,

algorithms have similar behaviors.

In Section 2.4, we mentioned that the running time of the setup part is roughly

linear on |P | = n for our instances. This trend is observed in Figure 2.9(a) since in our

sparse graph instances the number of edges (m) is also roughly linear to the number of pairs

(n). Note that for the Greedy algorithm we also count the time of initializing max-heap into

setup time, thus it is a bit higher than the others. The main-process times are presented in

Figure 2.9(b). It’s not surprising that Greedy always outperform the others significantly and

ILP is the worst candidate. Even though we can get the worst case guarantee for ILP, LP

solvers, ILP and Randomized rounding algorithms finish in reasonable time. For the Greedy

algorithm the main process is dominated by the setup part. The results suggest that the

algorithms can be applied to the real-life situations, especially the Greedy algorithm that

not only have the poly-time upper bound in theory but also perform really well in practice.

2.5.3 Qualitative Evaluation

The goal of this section is to study the quality of the summarization achieved by

the proposed algorithms, compared to several state-of-the-art baselines. We focus on the

sentence selection problem variant, which offers a balance between conciseness and semantic

completeness.

Selecting sentiment threshold ε used by greedy algorithm:

We first show how we automatically select a sentiment threshold ε used by our

greedy algorithm. Note that this sentiment threshold is independent of the sentiment thresh-
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Figure 2.10: Cost – sentiment threshold trade-off on doctor reviews dataset. Elbow is the
blue dot.

olds used in the coverage measure during our evaluation (Figures 2.11) to ensure fairness.

Specifically, we select the threshold value ε for which the rate of covered sentences signifi-

cantly drops if we further increase ε. For that, we employ the elbow method, as shown in

Figure 2.10 for k = 10 on doctor review dataset, where we observe that there is an L-curve

between sentiment threshold and cost. Hence, we choose as sentiment threshold the elbow

point of the curve. The sentiment threshold varies with step 0.1 from 0 to 2, as 2 is the

maximum possible difference between two sentiment values in [-1, 1]. Theoretically, for this

kind of L-curve, the elbow point is where the second derivative of the curve’s function is

largest. However, since we don’t know the curve’s function, we use a common trick, where

the elbow is the point on the curve with the largest distance to the line connecting the

curve’s start and end points. In our case, most of the time the elbow is close to sentiment

threshold of 0.5. Intuitively, this sentiment threshold is also reasonable in the sense that a

very positive sentiment of value 1.0 can cover a positive sentiment of value 0.5. Therefore,

we choose sentiment threshold 0.5 for our greedy summarizer.

Baseline summarization methods: We compare our method with popular baselines
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on the problem of selecting k sentences from original set of reviews into summaries. Our

baselines come from two areas: one from opinion summarization approach, and the other

from multi-document summarization.

Specifically, the first baseline method to select top k sentences is adapted from Hu

et al. [31]. This algorithm was designed to summarize customer reviews of online shopping

products. It first extracts product aspects (attributes like “picture quality” for product

“digital camera”), then classifies review sentences that mention these aspects as positive or

negative, and finally sums up the number of positive and negative sentences for each aspect.

To have a fair comparison, we adapt their method to select top k sentences into summaries.

We first count the number of pair (concept, positive) or (concept, negative), for example:

aspect ”picture quality” with sentiment “positive” occurs in 200 sentences. Then, we select

k most popular pairs and return one containing sentence for each selected pair. Note that

the aspect extraction task is common in both the baseline and our methods. We refer to

this baseline as “most_popular” since their summarizer favors the most popular aspects.

The second baseline from the opinion summarization area is adapted from a review

summarizer of local services (such as hotels, restaurants) described by Blair-Goldensohn et

al. [8]. This method selects the (aspect, positive/negative) pairs proportionally to the pair’s

frequency instead of selecting the most popular pair as in “most_popular” method. Then,

it pick the new, most extremely polarized sentence to represent each selected pair (concept,

positive/negative). In our experiments, we name this summarizer as “proportional”.

The other set of baselines are popular extractive multi-document summarizers that

are agnostic to a concept’s sentiment orientation. Contrasting to abstractive summarizers
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Table 2.2: Baseline summarizers

Most_popular [31] pick representative sentences of popular aspect-
polarity pairs

Proportional [8] pick representative sentences with extreme sentiments
after selecting aspects proportionally

TextRank [52] no sentiment, use sentence graph with word overlap
for sentence similarity

LexRank [24] no sentiment, use sentence graph with cosine-based
sentence similarity

LSA-based [72] no sentiment, utilize SVD on term-sentence matrix

that compose summaries by creating brand-new sentences, extractive summarizers make use

of original documents’ sentences, hence it is appropriate to be compared with our method.

TextRank [52] summarizer applies PageRank algorithm on text by modelling text as graph

of sentences in which sentences’ similarity is considered as sentence-to-sentence edge weight.

LexRank [24] is another document summarizer relying on a sentence graph for detecting

the most important sentences. LexRank is normally incorporated with a reranker such

as Cross-Sentence Informational Subsumption [63] to avoid sentence redundancy in multi-

document summarization. The last baseline in this line is Latent Topic Modelling (LSA)

based summarizer [72], which utilizes the sentence’s vector representation calculated using

Singular Value Decomposition (SVD) on a term-sentence matrix. In our experiments, We

utilize Sumy [7] library for these three methods. We summarize all baselines with brief

descriptions in Table 2.2.

Summary Quality Measures and Results

Coverage measure: We first compare our method (greedy) with the baselines based on an

intuitive coverage measure that is different from the one proposed in our Problem Definition

section, to avoid giving an unfair advantage to our method. Specifically, the measure is
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defined as the percentage of concept-sentiment pairs covered by that selected k sentences

divided by the total number of pairs of a doctor. A sentence covers a pair p if the sentence

contains at least one pair that covers p. A pair is said to cover another if their sentiment

difference is less than or equal to a (sentiment) threshold and their dissimilarity is at most

a (distance) threshold. In our experiment we use the path length between concepts of pairs

in the ontology as dissimilarity measure. Note that this measure does not consider the

successor-descendant relationships between concepts.

Results: We evaluated this coverage measure for several distance and sentiment

thresholds, but only show the results for sentiment threshold of 0.3, and distance threshold

of 2, 3 and 4 due to the space limitation, in Figure 2.11 and 2.12. Consistently in all

cases, our method outperforms the best performing baselines about 10 – 30% per case. We

also notice that the coverage slightly increase from Figure 2.11(a) to Figure 2.11(b) and

Figure 2.11(c) (similarly for Figure 2.12) because when distance threshold increases from 2

to 3 and 4, there are more chances that a sentence cover pairs in original reviews. For the

same configuration, all methods achieve higher coverage on cell phone reviews dataset than

on doctor reviews dataset. This is because aspect hierarchy in cell phone reviews is much

narrower and more shallow than medical concept hierarchy, thus it is easier to cover most

of sentiment-concept pairs in cell phone review dataset.

Sentiment Error: The second measure, which we refer as “sentiment error”, is totally

different. The key idea is to look at the difference between every concept’s sentiment in the

original reviews and that concept’s sentiment (extrapolated if concept not in summary) in

the summary. That is, for each pair in the original reviews, we find the closest concept in
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Figure 2.11: Comparison of coverage measure with sentiment threshold 0.3 on doctor reviews
dataset (higher coverage is better)
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Figure 2.12: Comparison of coverage measure with sentiment threshold 0.3 on cell phone
reviews dataset (higher coverage is better)
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the summary and measure the sentiment distance between them. In contrast, in Definition

2, we measure the concept distance (in hierarchy edges) between a review concept and its

nearest covering summary concept.

Recall that we summarize a set of concept-sentiment pairs P by a subset F con-

tained in k sentences. We define the sentiment error of F with respect to P in a root-mean-

square error manner:

sentiment_error(P, F ) =

√
1

|P |
∑
p∈P

err2p,F

where p is a pair of (concept cp, sentiment sp). errp,F is the smallest difference between

sp and that concept’s sentiments in a pair in F . When concept cp does not appear in the

summary F , we use the sentiments of cp’s lowest ancestor in F if available. When neither

cp nor its ancestors appear in F , we consider a neutral sentiment of 0.

errp,F =



min
f∈F,cf=cp

|sf − sp| : cp ∈ F

min
f∈F,cf=cp’s ancestor

|sf − sp| : cp 6∈ F∧

cp’s ancestor ∈ F

|0− sp| = |sp| : otherwise

(2.1)

The intuition is that the error models the difference of every concept’s sentiment and the

closest sentiment of that concept or its ancestors in summary. The lower error value means

a higher summary quality.

Another version of this measure penalizes the case of missing concept cp and its

ancestor in summary F by considering the largest possible error of cp’s sentiment. In another

words, the third branch of Equation (2.1) becomes errp,F = max(|1− sp|, |−1− sp|). Note
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that +1 and −1 are the extreme sentiments in our model. We name this measure version

as “sentiment-error-with-penalization”.

Results: Figure 2.13 and 2.14 compare the errors of our method and the baselines.

On the first measure, “sentiment-error” (Figure 2.13(a) and 2.14(a)), we find that our method

always leads to the smallest sentiment error, i.e. highest-quality summaries. It can reduce

the error of the second best performance method (“most_popular”) on doctor reviews dataset

by 4.2% on average, and other methods by 15% on average. Similar improvement numbers

on cell phone reviews dataset are 4.1% and 14.6% on average respectively.

The multi-document summarization methods generally perform poorly since they

ignore the sentiment. Our method reduces those multi-document summarizers’ error by up

to 23.7%. The errors of all methods drop when the number of summary sentences increases,

as expected.

On the “sentiment-error-with-penalization” measure (Figure 2.13(b) and 2.14(b)),

our method beats all baselines with larger margins. Specifically, our method improves the

error of second best performance method (“most_popular”) on doctor reviews dataset by

7%, and other methods by 15.8% on average. Those numbers on cell phone reviews dataset

are 14.9% and 19.8% respectively. This result indicates that missing concepts in summary

problem is more severe in baseline methods, and our method is smarter in choosing sentences.
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Figure 2.13: Comparison of sentiment error on doctor reviews dataset (lower error is better)
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Figure 2.14: Comparison of sentiment error on cell phone reviews dataset (lower error is
better)
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2.6 Related Work

Multi-document Summarization: This problem has been studied for two decades;

the most well-known applications are summarizing online news articles [18]. Goldstein et al.

presented a typical method [27], which extend single-document summarization techniques.

A key difference is that there is more redundancy across documents of a similar topic than

within a single document. This is an observation we also adopt in our work. In short,

the proposed method [27] constantly select a passage (normally sentence) that has the high

“marginal relevance” score (combination of relevance and novelty) into the summary, and

finally re-order candidates to maintain content cohesion. The other approaches based on

cluster extraction such as MEAD summarizer [63] first extracts common topics/clusters/-

centroids using respectively linguistic features or word statistics from input documents, then

selects one sentence per cluster into summary. TexRank [52] and LexRank [24] are two pop-

ular, similar methods based on building weighted graph of document sentences, which are

rated by Pagerank algorithm to pick the important ones. Lastly, Steinberger et al. [72] pro-

posed an LSA-based summarizer that utilizes sentence’s vector representation in their latent

index space. However, none of above methods consider the sentiment in input documents.

We incorporate some of these methods (TextRank, LexRank and LSA-based) as baselines

in our evaluations (Section 2.5).

Sentiment Analysis: The methods fall into two categories, using unsupervised or

supervised learning. The unsupervised methods [80, 74] focus on building a comprehensive

opinion word dictionary, or use linguistic rules to find opinion phrases containing adjectives

or adverbs in a document. An early supervised learning method [59] applies a Bag-Of-Word
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model to classify movie reviews as positive or negative. Recently, a common approach [44] is

to use neural network model to extract the better review’s vectors, thus get the better results

on sentiment classification task. Any of these methods can be plugged into our framework.

Aspect Extraction: Recent research focuses on online review analysis, social

media and online shopping. A common task is to extract the product aspects. Tradi-

tional methods [31, 62] use association mining to find frequent aspects, then apply pruning

rule to remove meaningless, redundant ones; later they also have a rule to discover addi-

tional infrequent aspects based on both frequent ones and opinion words. A more advanced

technique [61] estimates Point-wise Mutual Information (PMI) score between phrases using

their Web search engine hit counts to find phrases relation. For example, they extract noun

phrases in reviews, then evaluate each one by calculating their PMI score with product

relation phrases such as “of scanner”, “scanner has” and “scanner comes with” for Scanner

class. Jakob and Gurevych [33] adapted Conditional Random Field (CRF) technique to

solve this task as an information extraction problem. A semi-supervised approach based on

topic modelling extract product aspects as multi-grain topics [76, 57]. Extracting aspects is

outside the scope of this work. We use Metamap [4] in our experiments to extract medical

aspects (concepts).

Opinion Summarization: The most popular approach is based on aspect ex-

traction. Typical methods [31, 22] first extract product aspects from online customer re-

views, then classify containing sentences as positive or negative, and report the number

of positive/negative sentences for each aspect. Different ways of presenting opinion sum-

maries have been proposed; for example, showing aggregated rating along with represen-
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tative phrases [50], or sentences [8] for each aspect. Different from this kind of statistical

summaries, Tsaparas et al. [79] and later Lappas et al. [42] formulate the problem as se-

lecting k reviews that optimize the aspect coverage while rewarding high-quality reviews,

or maintaining their proportion of aspect opinions. Instead of sentences/reviews selection

approaches, Carenini et al. [12] propose to generate summaries using product aspects and a

set of templates varying on the aspect’s sentiment. These templates are prepared beforehand

with text passages not included in the original documents.

A key difference of this work from all the above works is that they do not consider

the relationships between the aspects nor a continuous sentiment scale.

2.7 Conclusions

We introduced a novel review summarization problem that considers both the on-

tological relationships between the review concepts and their sentiments. We described

methods for extracting concepts and estimating their sentiment. We proved that the sum-

marization problem is NP-hard even when the concept ontology is a DAG, and for that

we presented efficient approximation algorithms. We evaluated the proposed methods ex-

tensively with both quantitative and qualitative experiments. We found that the Greedy

algorithm can achieve quality comparable to the optimal is much shorter time, comparing

to other algorithms. Moreover, using various coverage measures and sentiment error mea-

sures, we show that the Greedy outperforms a baseline method on selecting k sentences to

summarize real reviews.
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Chapter 3

Decrease Product Rating Uncertainty

Through Focused Reviews Solicitation

3.1 Introduction

Product reviews are essential in e-commerce to alleviate the lack of direct physical

contact with the products. Specifically, online reviews have been shown to affect a product’s

uncertainty, which is crucial to e-customers’ shopping decision [21]. Kim and Krishnan [40]

noted that consumers are unlikely to buy expensive products (defined as higher than $50)

online if there is a high degree of product uncertainty, even if they have a lot of online

shopping experience. There are several approaches that e-commerce companies have utilized

to mitigate this product uncertainty issue such as providing detailed descriptions, including

multimedia and virtual reality tools. Most notably, soliciting customer reviews has become

a standard of modern online shopping.
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In this chapter, we focus on studying review solicitation strategies that maximize

the effect of reviews to the decrease in product uncertainty. Khare et al. [37] found that re-

views’ volume and the level of consensus have a fundamental impact on consumer judgment.

Hence, an effective review solicitation strategy must account for both these factors.

Existing e-commerce platforms typically ask users to write a free-text review. These

reviews can then be analyzed by feature and sentiment extraction methods (Section 3.2) to

estimate the overall opinion of reviewers for each aspect (feature) of a product. Other

websites provide a static (predefined) set of aspects for the user to rate, typically with a

score from 1 to 5. For example, “How clean was your room?” or “How would you rate the

reliability of the car?”

A key drawback of existing review solicitation methods is that some aspects receive

too many ratings, which is especially wasteful if reviewers generally agree with each other.

For example, consider a product “smartphone” with aspects “screen,” “battery,” “design”

and so on. Hundreds of reviewers may rate the “screen” as 5-stars. Conversely, a more

controversial aspect, e.g. the “speed,” may only receive a few ratings. This leads to a review

profile with high uncertainty, as users typically try to compare various products across

several aspects (features) by using past users’ reviews.

An example of a smartphone’s review profile is presented in Table 3.1, which in-

tuitively shows that screen has high rating with high confidence, battery has low rating

with high confidence, and speed has high rating with low confidence. A key question that

this chapter studies is: given the current reviews profile of a product, is it better to let

users write a free-text review (and then extract the aspects and opinion using existing meth-
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Table 3.1: A review profile; numbers are rating counts.

? ?? ? ? ? ? ? ?? ? ? ? ? ?

Screen 0 0 0 5 31
Battery 26 10 3 0 0
Speed 0 1 2 0 3

Please rate following aspects:

Battery (a2)

Speed (a3)

very bad bad neutral

s1 s2 s3sentiment level:
good

s4

great

s5

Figure 3.1: Ask a customer about a smartphone

ods [31, 62, 61, 33, 77, 57]), or to ask the user to rate a small number of carefully selected

aspects as in Figure 3.1? A second question is: how should this small set of aspects be

selected, given the current review profile?

We study these two questions in a principled manner by first considering a Bayesian

statistical model to estimate the probability distribution of each aspect’s rating and then

dynamically selecting aspects whose estimated ratings have the highest posterior variance.

Intuitively, this method solicits reviews for the aspects that have few reviews or have diverse

opinions. This means subsequent users may be asked to rate different aspects of the product.

We understand that reviews’ uncertainty may also be affected by other factors like

spam reviews [82, 34], or the helpfulness of the text of the reviews [56, 41, 6]. These are

important factors, orthogonal to our focus, and outside the scope of this work.

To design and compare various aspect selection methods, we must first come up
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with a reasonable definition for review profile uncertainty, as no such standard measure

exists in the literature. In our method, we estimate a review profile uncertainty by the

expected rating variance of each aspect, which we model based on a well-accepted Bayesian

inference model. This model is consistent with the aforementioned points that reviews’

volume and consensus are the key factors in consumer’s evaluation of a product, as a high

number of reviews or high review agreement reduce a rating’s posterior variance. To avoid

comparing various review solicitation methods based solely on the variance of the aspects,

which may favor our proposed methods, we also consider other uncertainty measures based

on the confidence interval (from a frequentist statistician’s point of view, in contrast to our

Bayesian measure), and the number of aspects whose confidence is above a threshold.

Besides a head-to-head comparison between active and passive review solicitation

methods, we propose a third approach that leverages the best of both methods. In particular,

this approach deploys a traditional free-form text reviewing interface first, then dynamically

selects a small set of unseen aspects with high rating uncertainty to ask users to rate. In this

manner, we preserve the rich context of text reviews, while exploiting the rating uncertainty

reduction capability of active solicitation method. We also show that the extra cost of asking

additional aspects is negligible compared to the pure passive solicitation’s cost in terms of

user spent time.

We next extend our methods to account for dependencies among a product’s as-

pects. For example, if “screen” and “contrast” are two correlated aspects and there are many

and in-agreement reviews for “screen,” it may be wasteful to solicit reviews for “contrast.”

For this, we consider a dependency-aware Bayesian inference model to estimate the correla-
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tion of two aspects. Then, we generalize the previous definition of expected rating variance

to infer an aspect’s variance from others if they are highly correlated.

We compare our methods on two real datasets: Amazon reviews with annotated

aspect ratings introduced by Bing Liu, et al. [31, 22] and crawled automobile reviews from

edmunds.com. We first compare our method to the passive text-based solicitation method,

which is simulated by picking top aspects based on the order in which they appear in reviews.

Users’ answers are reproduced using the actual aspects’ sentiments extracted from their free-

text reviews. In another group of experiments, we compare our method to various baselines

that also select set of aspects to solicit users. In these cases, we utilize random generators to

generate sentiments as the answers. We also experiment with the realistic situation that a

user responds to a question with a given aspect-specific probability, instead of assuming that

the user always rates an aspect. That is, sometimes the user skips the question or responds “I

don’t know.” In the last group of experiments, we compare our hybrid reviewing interface to

pure passive solicitation with consideration of user effort cost. We consider three uncertainty

measures: rating variance (as introduced in our model), rating confidence interval length,

and ratio of highly confident aspects (independent of our model). Our contributions are

summarized as follows:

• We define the problem of dynamically selecting aspects to solicit targeted reviews

to reduce uncertainty and propose a principled method for that based on canonical

Bayesian inference (Section 3.3).

• We propose a hybrid method that takes advantages of both active and passive review

solicitations (Section 3.4).
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• We extend the problem in two ways. First, we consider the practical case that users

do not always respond to a question (Section 3.5.1). Second, we propose an extension

of our aspect selection method that considers aspects’ correlation (Section 3.5.2).

• We conduct detailed experiments (Section 3.6) on two real-world datasets, which show

that our methods lead to superior review profiles compared to passive text-based solic-

itation and other aspect selection methods, with or without the consideration of user

response probability. We also show that our hybrid reviewing interface significantly

improves the reviews uncertainty compared to the passive solicitation method, with

little extra user cost (time).

• We published our code and used datasets on our supporting web page [43].

The remainder of the chapter is organized as follows: we discuss the related work

in Section 3.2, and the conclusions and future work in Section 3.7.

3.2 Related Work

Commercial Reviewing Web Sites: Most sites solicit free-text reviews, along

with an “overall rating” typically expressed with 1 to 5 stars. Other web sites have a small,

predefined set of questions that they ask reviewers; for instance, vitals.com, which is a

doctor reviewing site, asks users to assign a score to “bedside manner” and “courteous staff.”

The only web site that we found that has a dynamic set of questions is tripadvisor.com,

which asks users to rate different hotel aspects (e.g., “service,” “location” and “sleep quality”)

for different hotels. However, we have no knowledge of how these aspects are selected as

45

vitals.com
tripadvisor.com


this is a proprietary system.

Dynamic Questionnaires: USHER [14] is a system for form-based survey design that

aims to improve the quality of collected data. USHER uses a probabilistic model on the

form questions, learned from previous form submissions, to adapt the form layout (question

ordering) dynamically to emphasize the most important questions, or re-ask questions that

may have been answered incorrectly. A key difference is that in USHER the goal is to collect

information about all the questions from each user, whereas our goal is to collect enough

(and reliable) information for each product aspect. For this, we analyze our aspect ratings’

certainty, which is not the case in USHER.

Multi-armed Bandit Problem: This is one of the fundamental problems in Artificial

Intelligence [5]. In its simple form, a gambler presented with a row of slot machine must

decide her playing strategy, i.e. which machine to play next given the sequence of past plays,

to maximize her reward. The key property of this problem is that rewards of successive plays

on a machine i are independent and identically follow a distribution of an unknown expected

value Ri. In our problem, the reward is the decrease in the uncertainty of each aspect, where

these uncertainties may be dependent to each other (Section 3.5). Another difference is that

in the multi-armed Bandit problem, the gambler is guaranteed the highest reward in the

long run if she found the machine with the highest expected reward value, then played on

that machine only. In our case, there is no aspect that will forever produce highest expected

uncertainty drop when we keep getting more rating of this aspect.

Reviews Analysis: There has been much work on analyzing text reviews. These works

generally have two phases. First, they extract aspects (features) like “zoom,” and second,
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they estimate the sentiment associated with each aspect using its surrounding context. These

works are complementary to our work, as they facilitate converting text reviews to structured

review profiles, which can then be processed by our algorithm to select which aspects to elicit

in future reviews.

Aspect Extraction: The most common approaches to extract aspects from product

reviews are based on keyword statistics and syntactic rules. Existing works [31, 62] use

association rule mining to find frequent aspects, and then filter out meaningless or redundant

ones using predefined syntactic dependency-based rules. After that, these frequent aspects

and opinion words are utilized to discover more infrequent aspects using another set of rules.

Another technique [61] decides if an aspect candidate is actually an aspect by checking the

Point-wise Mutual Information (PMI) score between it and its product class using their

Web search engine hit counts. Another approach, adopted by Jakob and Gurevych [33],

models this task as an information extraction problem and applies conditional random field

techniques to extract aspects. Topic modelling has also been used for this problem, as in

Titov and McDonald [77], who discover global and local aspects; and Mukherjee and Liu

[57], who extract and categorize aspects given some seeds.

Sentiment Analysis: This problem has been investigated extensively, and has been

comprehensively surveyed by Liu and Zhang [49]. Traditional methods [74] focus on creating

a comprehensive, good dictionary of opinion words that are looked up when analyzing text re-

views. Other authors such as Turney [80] exploit syntactic patterns to detect opinion phrases

containing adjectives or adverbs. A supervised learning algorithm was first introduced to

classify movie reviews as positive or negative based on vectors of reviews using the Bag-
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of-Words model [59]. In this model, authors experimented with Naive Bayesian and SVM

classifiers that offer accurate results. Recently, the use of deep neural networks and represen-

tation learning have improved the performance of this task significantly [51, 54, 17, 20, 44].

For instance, Le, et al. [44] use an unsupervised neural network model to learn reviews’

representational vectors that are later fed to a standard supervised classifier for sentiment

analysis.

3.3 Modeling a Product’s Review Profile and Aspect Selection

Algorithm

3.3.1 Problem Definitions

An online product (or service) has a set of aspects (also referred as attributes or

features in other papers) denoted as a1, a2, . . . , am. Each aspect receives ratings from l

sentiment (star) levels s1, s2, . . . , sl.

The review profile of a product is a summary of the aspect ratings, as exemplified in

Table 3.1. To model the quality of the review profile, we define the review profile’s statistical

summary (RPSS) as a set of tuples:

< ah, r
ah , certah > with h = 1, . . . ,m (3.1)

where rah is the expected rating of ah and certah is the certainty level of rah estimation,

which are discussed in Section 3.3.2. We also call uncertah as the uncertainty level inversely

proportional to certah (i.e. uncertah = 1/certah). A particular aspect ah gets nahi votes for

sentiment si (i = 1, 2, . . . , l), and in total nah ratings (nah =
∑

i ni).
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This chapter studies the problem of selecting the top-k Uncertain Aspects (k-UA):

Given current users rating history: < ah, n
ah
i > (h = 1, . . . ,m; i = 1, . . . , l), which are the k

aspects to ask the next reviewer to rate in order to optimize the review profile? In Section 3.5

we extend this problem definition to consider aspect rating correlations, by accounting for

the co-occurrences of aspect ratings within reviews.

Note that the top-k aspects are recomputed for each new reviewer. The com-

putational cost is negligible, so even for high throughput of reviews, the algorithm can

dynamically update the top-k aspects. The product’s aspects can either be explicitly listed

at the reviewing web site, or may be extracted automatically from a text review. In the

former case, the reviewer selects a number of stars for each aspect, and in the latter case the

sentiment is estimated automatically. These methods are discussed in detail in Section 3.2.

In the following sections, we will present our Bayesian approach to model an as-

pect’s certainty level in a RPSS, and then propose our algorithm for the k-UA problem.

3.3.2 Bayesian Inference Model

Our model focuses on measuring aspect ah’s uncertainty level uncertah of its ex-

pected rating rah . In this section, to simplify the notation we ignore the superscript ah in

rah , uncertah and nahi . Let p = (p1, p2, . . . , pl) be a random vector representing the proba-

bilities (degree of belief) that users rate the aspect with s1, s2, . . . , sl stars, respectively. We

follow a typical Bayesian inference for categorical data [1] to account for this probability

vector. In particular, each sentiment level si is a category that users’ ratings fall in.

Suppose that the prior distribution of p = (p1, p2, . . . , pl) is a Dirichlet distribution

of order l ≥ 2 with parameters α = (α1, α2, . . . , αl), αi > 0,∀i: g(p) = 1
B(α)

∏l
i=1 p

αi−1
i ,
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where B(α) is the Beta function. It is common to consider the uniform case as the prior:

αi = 1 (∀i) since the likelihood will dominate the prior over time.

Also assume that the likelihood f(n|p) of observed data n = (n1, . . . , nl) (sentiment

counts) is a multinomial distribution: f(n|p) = N !
n1!...nl!

∏l
i=1 p

ni
i , where N =

∑l
i=1 ni is the

total number of sentiment counts. Hence we have the posterior:

h(p|n) ∝ f(n|p)g(p) =
N !

n1! . . . nl!
× 1

B(α)
×

l∏
i=1

pni+αi−1
i .

Let βi = ni + αi, β0 =
∑

i βi = N +
∑

i αi. Then the posterior h(p|n) is also a Dirichlet

distribution with parameter (n1 + α1, . . . , nl + αl), or (β1, . . . , βl) with mean, variance, and

covariance, respectively:

E[pi|n] =
ni + αi

Σl
i=1(ni + αi)

=
βi
β0

V ar[pi|n] =
βi(β0 − βi)
β20(β0 + 1)

(3.2)

Cov[pi, pj |n] =
−βiβj

β20(β0 + 1)
for i 6= j (3.3)

The aspect’s expected rating is r =
∑

i sipi, and hence

E[r|n] = E[
∑
i

sipi|n] =
∑
i

siE[pi|n] =
∑
i

si
βi
β0

V ar[r|n] = V ar[
∑
i

sipi|n]

=
∑
i

s2iV ar(pi|n) +
∑
i 6=j

sisjCov(pi, pj |n)

=
1

β20(β0 + 1)
[
∑
i

s2iβiβ0 −
∑
i

∑
j

sisjβiβj ] (3.4)
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Since V ar[r|n] reflects the fluctuation of an aspect’s rating around its expected

value, V ar[r|n] can be interpreted as the uncertainty measurement of our estimation of the

aspect’s rating, i.e. uncert = V ar[r|n]. Variance V ar[r|n] also has an intuitive property

that it is roughly inversely proportional to the number of votes N (via β0 in the denominator

of Equation (3.4)). If an aspect has a very high uncertainty value, i.e. V ar[r|n], it means

that we are not ready to make a conclusive estimation of its rating. Also note that, asking

a controversial aspect still alleviates its variance slowly even if its new ratings are truly

polarized. In the common practice, a uniform prior is used in this Bayesian inference, thus

αi = 1. As a result, βi = ni + 1 and β0 = N + l. Note that in our experiments we also

consider alternative measures of uncertainty when comparing the proposed algorithms.

3.3.3 Aspect Selection Algorithm

We present our solution to the k-UA problem in Algorithm 3. In particular, Lines

2-3 set up common uniform prior parameters, while lines 5-7 compute posterior parameters

for every aspect. We finally calculate rating variance of all aspects in line 8, then output

the top k aspects with highest variances (i.e., degree of uncertainty).

Note that V ar[r|n] can be computed faster using vectorized version of Equation

(3.4). Specifically, V ar[r|n] is the variance of a linear combination of column vector s and

random vector p, so V ar[r|n] = sTΣs, where Σ is the covariance matrix built up using

Equations (3.2) and (3.3) that can be vectorized as well.
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Algorithm 3 Highest variance pick
Input: previous vote counts n1, . . . , nl of aspects, number k

Output: k aspects

1: procedure pick_highest_variance

2: for all i in 1 . . . l do

3: αi = 1 . uniform prior for every aspect

4: for all aspect a do

5: for all i in 1 . . . l do

6: βai = nai + αi . posterior parameters

7: βa0 =
∑l

i=1 β
a
i

8: Calculate V ar[ra|na] using Equation (3.4)
return top k aspects with highest V ar[ra|na]

3.3.4 Toy Example

To explain the intuition of our model, consider a toy example where we are looking

at a smartphone with four aspects: weight, cost, battery and design. Each aspect can be

rated with 1, 2 or 3 stars (i.e., bad, neutral or good). The previous ratings of these aspects

are presented in Table 3.2. The question is which aspects we should ask users about to

improve this smartphone’s RPSS? Following the previous model, we can model aspects’

expected rating as Dirichlet posteriors that are demonstrated in Figure 3.2 and the RPSS

in Table 3.3. We then use Algorithm 3 to calculate each aspect’s rating variance and order

them to select the k most uncertain aspects. In this case, the algorithm will pick aspect

“Design” first, then “Battery,” “Cost” and finally “Weight.” Design is a clear choice since it

has far fewer ratings to estimate its rating with high confidence. The other three aspects
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Table 3.2: Toy example of 4 aspects with counts of 1, 2 or 3 stars respectively.

Weight Cost Battery Design
Star count 0, 5, 28 4, 9, 20 11, 11, 11 1, 3, 7

Table 3.3: RPSS of Table 3.2, where uncert=variance.

Weight Cost Battery Design
Expected Rating 2.78 2.44 2 2.43

Variance 0.006 0.014 0.018 0.035

have the same number of ratings but Battery has more diverse opinions, so it is selected next.

Weight is picked last because of its high rating count and very skewed rating distribution.

3.4 Hybrid Reviewing Interface

In this section, we propose an intuitive way to combine both the active solicitation

method (i.e. aspect selection algorithm in Section 3.3.3), and the passive (free-form text)

review solicitation into a hybrid reviewing interface. Specifically, users (reviewers) start

with a traditional text form for writing review. Right after they finish their text review, the

system applies a revised version of Algorithm 3 to select a few un-reviewed aspects to ask

users to rate.

Figure 3.3 depicts this process, where a mobile user first writes his/her review

on a screen (on the left), then continues to another screen (on the right) with the specific

aspect rating questions after hitting the “next” button. We formalize the modified aspect

selection algorithm in Algorithm 4. Note that this algorithm only selects aspects which

are not mentioned in the current user’s text review. Since users are asked for additional
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Figure 3.2: Toy example: posteriors of aspects’ rating
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Text review

I bought this phone about a month 
ago. It has a good display and 
decent performance.

Rate aspects

display brightness

battery life

Bad Neural Great

NEXT DONE

Figure 3.3: Example of a hybrid reviewing interface

questions after finishing their text reviews, there is extra burden on the user side. We rely

on previous work on typing speed and questionnaire response time to estimate this extra

user time spent.

3.5 Extensions for Response Probability and Aspects Corre-

lation

3.5.1 Account for Response Probability

So far, we assumed that the user always rates an aspect when asked. In reality,

this is not true due to numerous reasons. Sometimes, users may be lazy to answer, or

may not be confident, or have enough information about the requested aspects such as the

phone’s durability, car’s safety features. This suggests that the likelihood of user response

is aspect-specific. We refer to this as user response probability.
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Algorithm 4 Unseen, highest variance pick
Input: previous vote counts n1, . . . , nl of aspects, number k, current text review R

Output: k aspects

1: procedure pick_highest_variance_unseen

2: UnSeen = ∅

3: for all i in 1 . . . l do

4: αi = 1 . uniform prior for every aspect

5: if aspect ai /∈ R then

6: UnSeen.add(ai)

7: for all aspect a do

8: for all i in 1 . . . l do

9: βai = nai + αi . posterior parameters

10: βa0 =
∑l

i=1 β
a
i

11: Calculate V ar[ra|na] using Equation (3.4)
return top k aspects in UnSeen with highest V ar[ra|na]
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Table 3.4: Counting when two aspects were rated together by an user.

Design–1 Design–2 Design–3
Cost–1 3 (n11, p11) 2 (n12, p12) 0 (n13, p13) 5 (nc1)
Cost–2 1 (n21, p21) 5 (n22, p22) 2 (n23, p23) 8 (nc2)
Cost–3 1 (n31, p31) 4 (n32, p32) 7 (n33, p33) 12 (nc3)

5 (nd1) 11 (nd2) 9 (nd3)

In our experiments, we estimate it using the following forumla:

response_probaspect a =
number_of_reviews(a)

total_number_of_reviews
(3.5)

That is, we normalize the number of reviews containing an aspect by the total number of

reviews in the entire dataset. Even though this equation does not reflect all factors regarding

to an aspect response probability, it is reasonable enough for our dataset.

3.5.2 Account for Correlation between Aspects

Section 3.3 provides a framework to model the uncertainty level of aspect ratings,

where aspect ratings are assumed to be independent of each other. However, in practice

aspects are often correlated. For example, screen and brightness, or design and easy-to-use

are similar to each other, and often receive similar rating. Intuitively, if one of two highly

correlated aspects (e.g., “screen”) has high rating certainty, then it is less important to solicit

more ratings for the other aspect (e.g., “brightness”). Next, we first show how to estimate

the correlation between the ratings of two aspects, and then show how this can be used to

define a correlation-aware version of the uncertainty score of each aspect (recall that the

aspect selection algorithm selects the k aspects with the highest uncertainty).

To estimate the correlation of two aspects, we propose to look at their ratings at

the same time. In particular, we count the number of times that two aspects were rated

57



together in the same review. For instance, in Table 3.4 we consider two aspects (cost and

design) in a three-star system. Using similar notation as before, nij and pij are, respectively,

the number of reviews and the probability users rate aspect “cost” i stars and “design” j

stars at the same time. Also, nci =
∑

j nij and n
d
i =

∑
j nji (cost and design are shortened

as “c” and “d” in this clear context). We focus our interest on these two aspects’ rating

correlation Cor(rc, rd|n) before generalizing to any aspect pairs. First note

pci =
∑
j

pij , pst =
∑
q

pqt (3.6)

There are l sentiment levels s1, . . . , sl, so

rc =
∑
j

sip
c
i =

∑
i

∑
j

sipij =
∑
i

∑
j

sipij (3.7)

rd =
∑
t

stp
d
t =

∑
t

∑
q

stpqt =
∑
t

∑
q

stpqt (3.8)

Following our Bayesian approach as in Section 3.3, we model probabilities p11, . . . , pll

by a Dirichlet posterior of parameters (n11 +α11, . . . , nll+αll). Denote γij = nij +αij(i, j =

1, . . . , l) and γ0 =
∑

i,j γij . We get variance V ar[pij ] and co-variance Cov(pij , pqt) in similar

forms as Equation (3.2), (3.3).

V ar[pij |n] =
γij(γ0 − γij)
γ20(γ0 + 1)

(3.9)

Cov[pij , pqt|n] =
−γijγqt
γ20(γ0 + 1)

(ij 6= qt) (3.10)
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These are the building blocks to model Cor(rc, rd|n).

V ar(pci |n) = V ar(
∑
j

pij |n)

=
∑
j

V ar(pij) +
∑
j 6=t

Cov(pij , pit)

V ar(pdt |n) =
∑
q

V ar(pqt) + 2
∑
j 6=q

Cov(pjt, pqt)

Cov(pci , p
c
q|n) = Cov(

∑
j

pij ,
∑
t

pqt|n) =
∑
j,t

Cov(pij , pqt)

Cov(pdj , p
d
t |n) = Cov(

∑
i

pij ,
∑
q

pqt|n) =
∑
i,q

Cov(pij , pqt)

Cov(pci , p
d
t |n) = Cov(

∑
j

pij ,
∑
q

pqt|n) =
∑
j,q

Cov(pij , pqt)

Now we compute

V ar(rc|n) = V ar(
∑
i

sip
c
i |n)

=
∑
i

s2iV ar(p
c
i ) +

∑
i 6=j

sisjCov(pci , p
c
j)

V ar(rd|n) =
∑
t

s2tV ar(p
d
t ) +

∑
q 6=t

sqstCov(pdq , p
d
t )

Cov(rc, rd|n) = Cov(
∑
j

sip
c
i ,
∑
t

stp
d
t |n)

=
∑
i,t

sistCov(pci , p
d
t |n) =

∑
i,t

∑
j,t

sistCov(pcij , p
d
tk)

Finally, Cor(rc, rd|n) can be estimated by Pearson correlation

Cor(pc, pd|n) =
Cov(rc, rd|n)√

V ar(rc|n)× V ar(rd|n)
(3.11)

This formula provides the correlation of any two aspects. We can then generalize an aspect’s
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uncertainty level provided in Equation (3.4) as

uncertai = min
j=1,...,m

V ar(raj |n)

|Cor(rai , raj |n)|
(3.12)

where ai is an aspect. Note that, on the right hand side of above equation (3.12), when

j = i, we have Cor(rai , raj |n) = 1. Hence, we get V ar(rai |n) as a factor constituting

uncertai . The intuition behind Equation (3.12) is that we can take advantage of one aspect’s

rating to infer about the other’s rating. Specifically, when two aspects are highly correlated,

|Cor(rai , raj |n)| is close to 1, thus the two aspects share the variance of the one with smaller

variance.

We do not present the experimental results of this extended model as it does not

show substantial improvement on key measurements so far. We doubt that it is due to the

lack of a large dataset, though the model is in need of further study.

3.6 Experimental Evaluation

Our experiments were carried out on two real-world datasets: Amazon reviews

provided by Bing Liu, et al. [31, 22], and Edmunds’ car reviews that we crawled. We

published our code, additional experiments and all used datasets on our supporting web page

[43], for reproducibility purposes. The datasets were used to generate realistic sequences of

reviews as described below.

The Amazon review dataset has been widely studied in the sentiment analysis

community since it provides the ground-truth aspects and sentiments annotated manually

by the authors. Moreover, different product types have different numbers of aspect. We omit

products that have less than 4 aspects with at least 10 ratings, so we have enough aspects
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Table 3.5: Dataset statistics.

Amazon reviews [31, 22] Car reviews
#Products 8 501
#Sentiments (l) 6 5
#Reviews/product 51 106.67
#Aspects/product 4–21 7
#Ratings avg/aspect 27.31 77.76

for the algorithms to pick from and enough data to build a realistic rating distribution.

We crawled the second dataset using Edmunds’ free open API on two car makes

(Toyota and Honda) from 1990 to 2017, which resulted in 501 vehicles with 53,440 reviews

in total. Our experiments were conducted on products that have at least 100 reviews (149

products). Furthermore, all vehicles share a fixed set of seven aspects: comfort, reliabil-

ity, technology, value, performance, interior and safety. The datasets’ characteristics are

presented in Table 3.5.

In our evaluation, we start each experiment with no previous ratings information,

and for each new simulated reviewer, we ask them to rate k aspects of a product. We

conducted experiments with various k but only present the case of k = 3 due to space

limitation; the results for other values of k followed similar trends.

Measures: Throughout all experiments, our first two measures are based on indi-

vidual aspect rating’s uncertainty level uncertaj . The first measure utilize the uncertainty

value V ar[raj |n] in Equation (3.4), which we explained why it is a reasonable measure in

Section 3.3.2. To avoid biasing the results towards our selection algorithm that uses the as-

pects’ variance, we introduced a second measure, which is the length of Confidence Interval

(CI) of an aspect’s ratings. The idea is that a smaller CI length means a higher degree of
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Figure 3.4: Comparing passive and active review solicitation (on Amazon reviews). Smaller
is better, except for High Confidence Ratio measure.

confidence we know about an aspect’s rating. In our experiment the CI is X ± t(S/
√
N),

where X and S are the sample mean and variance of an aspect’s ratings, respectively, N is

the total number of ratings, t is the critical value specified by Student’s t-distribution with

N − 1 degrees of freedom and confidence level 1−α. We choose confidence level 95% for all

experiments.

Based on above measures, the key overall uncertainty measure we consider for a

product is the maximum uncertainty among its aspects. Maximum is more appropriate than

average, given our problem’s motivation where we want to make sure that no aspect is left

behind, that is, no aspect has too uncertain rating. Specifically, a product has multiple

aspects a1, . . . , am, with uncertainty values uncerta1 , . . . , uncertam , will have uncertainty

level maxmj=1 uncert
aj .

As a third measure, we report the ratio of the number of aspects that we are

confident about its rating statistics, thus we name this measure “High Confidence Ratio”.

The idea is that when the confidence interval length of an aspect’s ratings is smaller than
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our desired threshold δ, then we can be confident about the aspect rating. We choose

confidence level 95% and CI length threshold δ = 1 for all experiments. High confidence

ratio of 1 means that we are certain about all aspects’ average rating. This measure reflects

the degree of rating certainty instead of uncertainty as in the first two measures.

Since a dataset has multiple products, we report in the plots the uncertainty

amount calculated by averaging uncertainty values over all products. In summary, we have

three measures: “max variance”, “max confidence interval length” and “high confidence ratio”.

Baseline Aspect Selection Methods: Besides our proposed algorithm from

Section 3.3.3, we consider two intuitive baseline methods used to pick k aspects to consult

a new user: “pick random,” which picks k random aspects from the set of an interested

product’s aspects, and “pick least count,” which selects the k aspects with the least number

of ratings so far. Given our toy example in Section 3.3.4, Table 3.2, pick random randomly

selects four aspects with equal probability, whereas pick least count chooses aspect “design”

first, then gives the three remaining aspects equal chances (because they have the same

number of ratings: 33).

3.6.1 Active Versus Passive Solicitation

In the first experiment, we compare two approaches: letting the reviewer pick

aspects to rate (passive, as in most existing Web sites) and actively asking them to rate

specific aspects. In our datasets, the reviews of each product are fed to the various algorithm

ordered by their generation timestamp. The result is presented in Figure 3.4, where a method

asks a simulated user to rate k aspects. We refer to the user behavior in the traditional,

passive solicitation as “pick by user ” in the graphs. This method picks the first k aspects that
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appear in the review under consideration. If a review has less than k aspects, we decrease

the same number of solicited aspects for this position in all active methods for fairness.

We use the real reviews to realistically simulate the answers of the simulated user

to the k selected aspects, as follows: we look up the sentiment of the asked aspect in the

review currently under consideration if available. If the aspect is missing in the review, a

simulated sentiment is computed from the rating distribution (which considers all reviews,

not only the ones processed so far) of this aspect of this product. We refer to this rating

scheme as “answer almost real ” since it utilizes real user reviews in most cases.

We ran this experiment 200 times on all products independently, then take the

average over all products. In each run, we solicit 300 reviews, up to k = 3 questions per

review. If a product has less than 300 real reviews, we re-use its all available reviews to

simulate answers. Since this experiment requires free-text review that is unavailable on our

automobile dataset, we conducted it on Amazon review dataset only.

For all measures, we notice substantial improvements of the active methods over

the passive solicitation method (“pick by user ”). Illustrated by Figures 3.4(a), 3.4(b), and

3.4(c) respectively, the improvement is up to 52.6% for the “max variance”, 34.7% for “max

confidence interval length” and 14.4% for “high confidence ratio” measure with our “pick

highest variance” method in the end of experiment. It is also worth noting that our method

reaches the desired confidence on all aspects after about 270 reviews (when “high confidence

ratio” is 1), while the passive method does not even reach this level by the end of the

experiment (300 reviews).

The poor performance of “pick by user ” is expected because users are normally
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Figure 3.5: Automobile reviews. Smaller is better, except for High Confidence Ratio mea-
sure.

biased toward common aspects with many ratings, while some aspects never get enough rat-

ings to gain a reliable rating estimation. For example, for product “Nokia 6610,” aspect “size”

has around 210 ratings whereas “battery life” has only about 50 ratings, even though they

have similar rating distribution shapes. Other methods distribute questions over aspects in

a more balanced manner, thus get better performance. This result confirms our hypothesis

that carefully selecting which aspects to ask users to rate can lead to higher review profile

quality.

3.6.2 Comparison of Various “Active” Solicitation Methods

In this section, we compare our method “pick highest variance” to the two baselines,

“pick random” and “pick least count,” on both datasets. To scale to larger number of reviews

and avoid the problem of the limited number of ratings for some aspects (e.g., “technology”

and “safety” in the Edmunds dataset usually have less than 10 ratings per car), we consider

a different answer generation scheme, where instead of using the real reviews one by one,
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Figure 3.6: Amazon reviews. Smaller is better, except for High Confidence Ratio measure.

we compute a ratings distribution for each aspect, and sample answers (ratings) from these

distributions for each review. The experimental results are presented in Figure 3.5 and 3.6.

In both experiments, we solicit 300 reviews per product, 3 questions per review.

We perform this simulation 200 times, then take the average for stable results. Our proposed

method outperforms the two baselines consistently on both datasets and all measures. All

methods start at the same point, then gradually diverge until the end of the experiments. By

the end of the automobile reviews experiment, our method yields an uncertainty value that is

36.6% and 35.6% smaller than the value of “pick random” and “pick least count” accordingly

in “max variance” measure (Figure 3.5(a) and 3.6(a)). The corresponding improvements in

“max confidence interval length” measure are 21.5% and 20.9% (Figure 3.5(b) and 3.6(b)).

In terms of confidence ratio, when our method reaches the full “high confidence ratio” (1)

after about 60 reviews, the two baselines have the confidence ratio of 0.82 roughly and only

reach full ratio after 90 reviews (Figure 3.5(c) and 3.6(c)).

The corresponding results in Amazon reviews present similar trends. Comparing to
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the automobile review dataset under high confidence ratio measure, Amazon review dataset

only has two differences. First, all methods reach the full ratio more slowly since Amazon

products have larger aspect set, thus require more reviews. Second, our method’s curve is

smoother because Amazon products have a varying number of aspects instead of a fixed

size (7 for Automobile products). Specifically, different number of product aspects result in

different curves that are averaged to yield a pretty smooth curve as we observe.

It is worth mentioning that the two baseline methods behave slightly differently

when the number of reviews performed is small; however, in the long run the number of

times that aspects get selected evens out for both methods.

This is also a key difference between our method and baselines. Our method does

not just ask about aspects equally as the baselines do. Instead, our method distributes more

questions to aspects with contrasting ratings because these aspects need more information

to solidify our belief of its rating. For instance, in toy example 3.2, the two baselines treat

“weight,” “cost” and “battery” equally (same rating counts), while our method “pick highest

variance” would ask about “battery” first due to its polarized ratings.

3.6.3 Extension to Response Probability

All previous experiments assume that users always provide their ratings. This

assumption may not hold true in practice since users may not know about the solicited

aspects, or just do not have time to respond to all. To reflect this fact, we present another

set of experiments considering the probability that a user respond to the asked aspects.

We estimate this response probability by counting all occurring reviews of an aspect, then

normalized by the total number of all reviews in the dataset (Equation 3.5). Whenever an
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aspect is selected to solicit users in our experiment, a simulated rating is returned only with

above calculated response probability specific to that aspect.

We present comparisons of various active solicitation methods, similarly to Sec-

tion 3.6.2, but with this new response condition. Moreover, we solicit 1500 reviews per

product to guarantee that all methods produce rating with high confidences on all aspects,

i.e. “high confidence ratio” measure saturates at 1. Figure 3.7 shows the results for the

Amazon review dataset. In the end of the simulation, our method “pick highest variance”

achieves the lowest maximum variance, which is lower by 42.3% and 21.5% than “pick least

count” and “pick random,” respectively (Figure 3.7(a)). Moreover, “pick highest variance”

reaches the maximal value for high confidence ratio measure after about 1420 reviews, while

other methods can not achieve this even in the end of the simulation, or 1500 reviews (Fig-

ure 3.7(b)). It is also worth noting that after the same number of reviews, the uncertainty

level in this experiment is much higher than the amount in previous experiment results in

Figure 3.6. For example, after 300 reviews, the maximum variance of our method in this

experiment is 0.074, while the similar value in Figure 3.6 experiment is about 0.025. The

reason is that we only receive a user response with a probability in this experiment, thus a

higher number of reviews is required to reach the same low uncertainty level as previously.

We present similar results on the automobile dataset in Figure 3.8. As usual, our

“pick highest variance” beats the “pick random” baseline. It is interesting to notice that

“pick least count” achieves similar performance comparing to our methods. This is because

in this dataset there are two aspects “safety” and “technology, ” which are rated only in 8% of

all reviews, which is significantly lower than other aspects. Hence, both methods frequently
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Figure 3.7: Response with probability on Amazon review dataset. Smaller is better, except
for High Confidence Ratio measure.

0 200 400 600 800 1000 1200 1400

Number of reviews

0.05

0.10

0.15

m
ax

va
ri

a
n

ce

pick random

pick least count

pick highest variance

(a) Max Variance

0 200 400 600 800 1000 1200 1400

Number of reviews

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ax

co
n

fi
d

en
ce

in
te

rv
a
l

le
n

pick random

pick least count

pick highest variance

(b) Max Confidence Interval

Length

0 200 400 600 800 1000 1200 1400

Number of reviews

0.0

0.2

0.4

0.6

0.8

1.0

h
ig

h
co

n
fi

d
en

ce
ra

ti
o

pick random

pick least count

pick highest variance

(c) High Confidence Ratio (higher

is better).

Figure 3.8: Response with probability on automobile dataset. Smaller is better, except for
High Confidence Ratio measure.

pick these aspects, as these two aspects have both the smallest number of ratings and the

highest uncertainties.

3.6.4 Comparison of Hybrid Reviewing Interface to Passive Solicitation

In this experiment, we compare our proposed hybrid reviewing interface (Sec-

tion 3.4) to the traditional passive solicitation method which employs free-form text re-
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viewing only. Since this simulation requires text reviews which are not available in the

automobile dataset, we only present results on the Amazon review dataset in Figure 3.9. In

the plots, the passive solicitation is named “pick free text only” as it selects all aspects rated

in the text review currently in consideration. We consider two variants of our hybrid review-

ing interface: ask for one or three aspects (denote as “pick highest variance 1/3 aspect”).

Similarly to Section 3.6.3, we also examine the case that users respond with a probability,

which is denoted by suffix “response prob” in Figure 3.9. Note that this response probability

is considered for additional aspect questions only. There is no need for generating rating for

aspects mentioned in the current text review.

According to all measures, the hybrid reviewing interface significantly outperforms

the passive solicitation method. The best performer is the hybrid interface with three

additional aspects (pick highest variance 3 aspect), which has uncertainty level 70.9% and

47.7% lower than the baseline in max variance and max confidence interval length measures

respectively. It also reaches the saturated high confidence ratio of 1 at an early stage (after

102 reviews), while the baseline needs more than 300 reviews. Unsurprisingly, the hybrid

interface, when the response probability is 100%, outperforms the one when probability less

than 100%. However, even in the presence of response probability, the hybrid interface with

three additional aspects (pick highest variance 3 aspect response prob) achieves uncertainty

that is 32.2% and 19.1% smaller than the baseline in max variance and max confidence

interval length measures successively by the end of the experiment. The corresponding

improvements of the hybrid interface with a single additional aspect are 25.1% and 14.7%.

Since the hybrid reviewing interface requires extra effort from users, we estimate
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Figure 3.9: Hybrid reviewing interface on Amazon review dataset. Smaller is better, except
for High Confidence Ratio measure.
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that extra cost compared to the pure passive solicitation method. According to Furnham

et. al. [25], in a study of 4943 participants, two online questionnaires including 206 and 154

items were completed on average in 1020.42 seconds and 915.69 seconds respectively, i.e. 4.95

seconds, 5.95 seconds per item respectively. Hence, we consider that users need on average

5.45 seconds to response per aspect. The typing speed was studied extensively in various

settings. For example, in a survey by Arif and Stuerzlinger [3], Qwerty keyboard has an

average 64.8 words per minutes (WPM). Kim et al. [38] reported a similar average number

of 63 WPM for notebook and desktop keyboard setting. Recently, Ruan et al. [66] noted

the typing speed of 53.46 WPM for mobile phone. We utilize the highest reported average

speed (64.8 WPM) to continue our cost estimation. In the Amazon review dataset, there are

403.5 words per review on average, which require 6.2 minutes (or 372 seconds) on average

per review. Note that, we only count sentences that mention at least one product aspect.

Based on these numbers, we detail the time overhead against improvement of the hybrid

reviewing interface comparing to passive solicitation in Table 3.6. We found that even with

a single additional aspect question and considering response probability, the hybrid interface

is able to decrease the max variance and max confidence interval length measure by 25.1%

and 14.7% respectively with an extra cost (user time spent) of only 1.47%. For that reason,

we argue that the hybrid reviewing interface is an efficient way to augment free-form text

only interface to reduce rating uncertainty with little overhead.
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Hybrid interface Time
overhead

Max
variance

Max confidence
interval len

High confidence
ratio

1 additional aspect 1.47% 56.4% 36.1% 25.2%
3 additional aspects 4.41% 70.9% 47.7% 25.3%
1 additional aspect
(w response prob)

1.47% 25.1% 14.7% 3.3%

3 additional aspects
(w response prob)

4.41% 32.2% 19.1% 8.8%

Table 3.6: Time overhead and uncertainty reduction of hybrid review interface comparing
to free-form text only interface after 300 reviews. For high confidence ratio measure, we cut
off when the first method reaches saturation ratio of 1 (after 175 reviews)

3.7 Conclusions and Future Work

We have studied the problem of targeted review solicitation, which aims to achieve

high-quality product review profiles, by actively soliciting aspects to rate. We adopted

Bayesian inference statistics to model a review profile’s key factors: product aspect rating

estimation and its (un)certainty degree. We then introduced our algorithm to select k as-

pects to ask a new reviewer to optimize the review profile certainty. Using three different

review profile quality measures, (variance, confidence interval length and high confidence

ratio), we showed that our proposed active solicitation style clearly outperforms traditional

passive solicitation methods on two real-world datasets. In another set of experiments our

method beats two active solicitation baselines under all measures. Moreover, we propose a

hybrid reviewing interface that incorporates active solicitation into passive approach with

little extra user cost, while significantly reducing uncertainty. We further strengthen our

experimental results with consideration of user response probability. To assist others repro-

ducing our results, all our code and datasets are available online [43]. We also extended our

model to account for correlated aspects.
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In our future work, we plan to further estimate the user response probability using

additional signals such as aspect correlation, user history and context. Another direction is

to focus on rating uncertainty of discriminating aspects that best facilitating the comparison

of competing products.
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Chapter 4

Adaptive Goal-oriented Dialog Policy

Generation using Dependency Graphs

and Reinforcement Learning

4.1 Introduction

Dialog systems (a.k.a. chatbots) offer an intuitive and natural way for humans to

interact with machines. Building intelligent dialog systems has been one the main goals of

AI research since the inception of the field [35]. Early works on dialog systems use rule-based

systems, while recent works are data-driven and use variants of deep learning models. Dialog

systems can be categorized into two main categories: chit-chat and goal-oriented chatbots.

Chit-chat bots are designed to engage in open-ended dialog with the goal of maintaining

long and interesting conversations to the user, which has entertainment values. Example of
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such a chit-chat bot is Microsoft’s XiaoIce [88]. Goal-oriented chatbots, which are the focus

of this work, facilitate achieving specific tasks, such as booking a flight ticket or ordering a

pizza.

Despite the impressive advances in deep learning, commercial goal-oriented chat-

bots are mainly diagram-based, where the dialog between the chatbot and the user is mod-

eled as a simple finite state machine. The key reason for the disconnect between the recent

advances in deep learning based dialog systems such as seq2seq [73] inspired ones, and state-

of-the-art commercial chatbot platforms like Google’s DialogFlow [28] and Amazon Lex [2]

is that seq2seq is suitable for chit-chat-style bots and may not be straightforwardly adapted

to goal-oriented bots. State-of-the-art research goal-oriented chatbots use reinforcement

learning (RL) to build their dialog policies [26], which may be flexible; however, they may

violate the intended business logic, and they require large amounts of high quality training

data to capture the business logic. While a chatbot diagrams is easy to design and execute,

it only captures one possible conversation flow; there can be other valid conversation flows

that are more suitable given a user behavior and a conversation context. To mitigate the

rigidity of traditional chatbot diagrams, we propose dependency graphs, which are directed

graphs that encapsulate all possible conversation flows. Our framework dynamically chooses

the best valid conversation flow using reinforcement learning.

There can be, however, many other valid conversation flows A diagram encapsulates

only one possible conversation flow While chatbots diagrams are easy to design and execute

by a chatbot engine, they are rigid and they do not allow an execution engine to adapt to

user characteristics.
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Recent work on goal-oriented chatbots use reinforcement learning (RL), where the

chatbot is modeled as an RL agent, and the user is modeled as the environment [26]. The

actions of the RL model are the possible dialog acts the chatbot can make (e.g., greeting,

inform, or request a slot value ), and the states are the possible slot values collected from

from the user in addition to the last dialog act generated. RL based chatbots are typically

trained by bootstrapping using a limited number of conversations, and later improved by

interacting with a user simulator. Existing RL based chatbots need to explore a large space

of possible states before their dialog policy becomes mature.

However, asking the user to fill the right slots is not the only factors that deter-

mines the success of a chatbot. For example, the way that a question is asked or the answer

is presented may affect the success of a chatbot, as discussed in https://designguidelines.

withgoogle.com/conversation/conversation-design/learn-about-conversation.html.

We define success as walking users to commit their initial intents such as placing an order,

booking a hotel room.

We illustrate the difference of our success notion compared to traditional approach

in an example in Figure 4.1. In the traditional chatbot, the focus is on filling accurately

all slots such as pizza’s type and size. Moreover, the implicit assumption is that the user

will continue to the end to complete their order as long as the bot gets every slot correctly.

However, there are many reasons that the user may drop out in the middle, even though

their request is understood perfectly. For example, a promotion lover would like to enter or

find out about coupon option and is disappointed about the lack of this option. Similarly, a

conservative user would love to read some reviews, or see more pictures of the pizza before
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optional.
only suitable for

some users

Hello, what kind of pizza do you
want to order?ð

I would like a pepperoni pizza of
medium size. g

Sure, a medium pepperoni. Please
choose the crust type?ð

A thin crust please. g

A thin crust, with any toppings?ð

Hmm, mushroom and extra cheese g

Gotcha, what’s your phone num-
ber?ð

123 456 7890 g

And your address to deliver
please?ð

900 University Ave. g

Great! Do you have coupon?ð

No g

Please confirm your order of a
medium, thin crust pepperoni with
mushroom and extra cheese top-
pings?

ð

Yep g

Thank for your order! Your pizza
will be delivered within 30 min-
utes.

ð

a conservative
user may drop
out due to pri-
vacy concern

an impatient
user may just
quit

Figure 4.1: A pizza ordering chatbot conversation. Traditional chatbots focus on slot-filling
(pizza type, size, and so on) and assume that the user continue to the end to finish their
order. However, there is possibility that the user drops out in the middle due to various
reasons.

placing the order. Of course, adding these features is nice but may backfire on other users

due to the increase in conversation length, which is already 13. Moreover, a privacy-sensitive

user may just drop out at utterance 9 since he/she is not willing to share phone number.

In these cases, even when the bot get the user’s order accurately, the user may be

still drop out instead of his/her initial buying intent. Therefore, to optimize for success rate,
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the chatbot should also consider other affecting factors possibly specific to the user rather

than merely slot-filling. As an analogy, our chatbot works like a sale man, helping customers

successfully place pizza orders instead of just retrieving the customer’s pizza specification.

In this chapter, we study the problem of goal-oriented chatbot optimization re-

garding to the aforementioned success definition. We borrow the well-studied factors of

e-commerce web experience design [16] by mapping them into relevant optimization factors

of a chatbot system (Table 4.1). For instance, uncertainty reducing elements in e-commerce

website can be realized by showing reviews, information about product in the chatbot’s di-

alogues. Further, the best way to conduct a dialog is user-specific. For example, providing

additional information on the reviews of a pizza may be desirable for a user but not for an-

other. Hence, we present a framework to define the high-level logic of chatbots and methods

to automatically optimize its execution for each user or a group of similar users.

We first describe a goal-oriented chatbot system in an enriched model of the tra-

ditional slot-filing chatbot. Recall that, these traditional slot-filing models are guided by a

diagram of nodes (slots), which specify the general order of slots to be solicited. Our en-

riched model groups semantically related nodes into a supernode, which should be solicited

together. The model adds optional nodes targeting non-slot-filling factors such as a node

providing reviews. Moreover, some nodes and supernodes may be constrained by the order

of which nodes must go first. For example, the confirmation node must go last. This model

of nodes and supernodes constrained by a dependency graph is the input for the chatbot

optimizer. Similar to previous work, we consider this model as Markov Decision Process

(MDP) [46] problem, or more advanced Partially Obserable MDP (POMDP) [65, 84] prob-
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lem. To solve this, we employ reinforcement learning to find the optimal policy, i.e. find the

best node to show the user given the current dialog history.

Our work differentiates from traditional approaches on three main points:

• We consider the possibility that a user drops out in the middle of conversation.

• We consider optional nodes regarding to specific users.

• We go beyond the limited setting of user profile in confirmation strategy selection by

incorporating it into the chatbot’s general policy optimization problem.

4.2 Dependency Graphs

Traditional Diagrams. Traditional goal-oriented chatbots attempt to acquire slot values

from a user with the help of a diagram. The diagram guides a conversation by specifying

what slots need to be filled and in what order; the diagram specifies the next slot to be filled

based on the user’s response when needed. Consider the example pizza ordering chatbot

diagram in Figure 4.2. In this example, the diagram instructs the chatbot to ask for the slot

values required to confirm a pizza order: pizza kind, size, crust type, and toppings. Also,

the diagram specifies that the bot has to offer reviews to the user only if he responds with

yes to the question: “Do you want to read reviews?”

Enriched Diagrams. We introduce optional nodes to enable selectively providing and

soliciting information (slot values) that are not essential to the success of a conversation,

but rather supplementary. Consider, for example, an impatient user trying to order a pizza.
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Table 4.1: Chatbot’s important factors mapped from Web domain [16]

Category Web Site Factor Chatbot Dependency Graph
Node

Other Chatbot Functionality

Functionality
factors -
Usability

Convenience need to login/register?
Site navigation Can go back, see progress
Information architecture
Ordering/payment pro-
cess

need to leave chatbot (go to web
page)?

Search facilities and pro-
cess

NLU (e.g. big pizza = large
pizza); confirmation policy
(explicit, implicit)

Site speed response time
Findability/accessibility is Messenger, SMS, Whatsapp?

Functionality
factors -
Interactivity

Customer service/after
sales

follow-up after sale to check for prob-
lems

Interaction with com-
pany personnel

agent can takeover chatbot

Customization
Network effects customer chat groups where they ask

questions about product

Psychological
factors -
Trust

Transaction security sentence explaining security show encryption icon
Customer data misuse sentence explaining privacy

policy
Customer data safety sentence explaining privacy

policy
Uncertainty reducing el-
ements

show reviews/information
about product

Guarantees/return poli-
cies

show refund policy; price
match guarantee

Content
factors -
Aesthetics

Design if using existing medium, can play
with multimedia (images/video) or
medium-provided features like cards
in Messenger; if Web-bot or mobile
app, then also control the design of
the chat window, e.g., show picture
of agent who may assist or use nice
colors

Presentation quality
Design elements
Style/atmosphere

Content
factors -
Marketing
mix

Communication show images of product
Product
Fulfillment
Price say how much it is including

tax and shipping (arrow to
slots filling frame)

Promotion show coupon info
Characteristics

Offering such a user the chance to enter a coupon code might throw her off. In such a case,

the chatbot engine should avoid asking the user about coupons and introducing optional

nodes enables this functionality. We also introduce supernodes to group semantically related
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What kind of pizza do you want?

What size?

Please choose crust type?

Any toppings (can be multiple)?

Do you want to read reviews? Here’re 5 top reviews

Do you have coupon? Please enter coupon?

Please confirm your order of “. . .”

Thank for your order! Goodbye!

E.g., Cheese & Pepperoni/Chef’s Chicken Choice

Small/Medium/Large

E.g., wheat thin crust/Italian crust

E.g., onion, mushroom

No

Yes

No

Yes

NEWYEAR19

Yes No

Figure 4.2: Example chatbot diagram: pizza ordering. Each node has a self-loop to allow
repeatedly asking the same question until a valid answer is provided; we omit self-loops for
brevity.

slots, similarly to frames in the frame-based paradigm [9]. Supernodes instruct a chatbot

engine to solicit a group of slots either with one utterance or with a sequence of consecutive

utterances. This is expected to result in a more natural dialogue. A supernode may impose

restrictions on the order of filling its slots by means of a simple traditional diagram (within

the supernode). A supernode can be optional, in which case it may contain information

blocks. An information block can be a text message or an image and is used to facilitate
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providing the user with extra information, if necessary, such as product reviews. Finally, we

propose coupling supernodes with confirmation functionality. Confirmation is necessary to

make sure the chatbot has captured the user’s requirements appropriately. Confirmation in

a supernode can be explicit or implicit. Figure 4.3 shows an enhanced diagram comprised

of four supernodes, each with a group of related slots and a confirmation question.

Dependency Graphs. A specific diagram (or enriched diagram) is an instance of a con-

versation flow specification; there can be many equivalent diagrams. Consider the enhanced

diagram in Figure 4.3: swapping supernodes v2 and v3 (i.e., asking the user if she has a

coupon before asking if she wants to read reviews) conforms to the same specifications of

the original enhanced diagram. However, the ordering of the nodes, thus the ordering of

presenting questions/information to the user, is likely to affect user engagement. Designing

engaging orderings without taking into account user characteristics and past experiences

of the chatbot engine is challenging for the diagram designer. We propose replacing chat-

bot diagrams with dependency graphs, which are directed graphs that capture dependencies

among supernodes rather than strict orderings. We show in Figure 4.4 an example de-

pendency graph. This dependency graph does not impose restrictions on the order among

supernodes v1 . . . v3, but rather imposes the restriction that the final confirmation (v4) has to

be presented only after the necessary information is collected. Dependency graphs offer two

advantages over chatbot diagrams: They are easier to design, and they enable the chatbot

engine the flexibility of choosing more engaging node orderings based on the user behavior.
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v1: What pizza do you want?

type size crust toppings

v2: Do you want to read reviews?

read-review information
yes

v3: Do you have coupon?

have-coupon coupon
yes

v4: Please confirm your order of “. . .”

place-order Thank!

Goodbye!

yes

no

Figure 4.3: Enhanced chatbot diagram for pizza ordering. This diagram captures the re-
quirements implied in the diagram in Figure 4.2, however, it is more concise and easier to
design.

v1: What pizza do you want?

type size crust toppings

v2: Do you want to read reviews?

read-review information
yes

v3: Do you have coupon?

have-coupon coupon
yes

v4 Please confirm your order of “. . .”

place-order Thank!

Goodbye!

yes

no

Figure 4.4: Dependency graph for pizza ordering. A directed edge from vj to vi means that
vj has a dependency on vi; i.e., vj should only be presented to the user after vi.

4.3 Dialog Policy Generation

Figure 4.5 shows a high level overview of our policy generation framework. First, a

domain expert (bot designer) creates a dependency graph that incorporates the application

requirements and the intended dialog restrictions. Then, we will convert the dependency

graph into an RL model, i.e., state space, action space, and reward function. Finally, we will
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generate the dialog policy by incrementally training the RL model as follows. We bootstrap

the model using a limited number of real chat logs (training data), which gives the RL agent

a basic dialog policy. Then, we will use a simulator to generate a larger number of chat

sessions, for various user personalities and contexts as described below. These sessions will

continue training the RL model until a satisfactory dialog policy is generated.

In the state space, a state is a vector capturing the conversation history and

any auxiliary information useful for the bot such as the number of matching items in the

database. A typical state contains at least the following information: (a) the current value

for each slot, e.g., pickuplocation=“900 University Ave”; (b) a boolean variable for each slot

specifying if it was filled by, or shown to the user; (c) three boolean variable for each su-

pernode specifying if it is optional, activated or finished yet; (d) the user state and context,

e.g., context=“driving”; (e) the number of matching items in the database given the current

slot constraints.

The action space consists of all available actions that the bot will select one per

conversation turn to communicate with users. A basic action consists of a dialog act and

a slot. The set of dialog acts include: request, inform, show, place-order, and possibly

others if the task requires. Combining with the slots, here are a list of possible actions: (a)

request user to fill a slot, e.g., “What insurance do you have?”; (b) inform user about a slot

value, e.g., “there are three sizes of pizza: small, medium and large; (c) show an information

block, e.g., “Your personal information is protected”. Algorithm 5 shows how to convert a

dependency graph into the state and action space.

The reward function assigns a score of 1 to the conversation success state, for
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example, when the user completes making an appointment, and 0 otherwise. We will employ

existing state-of-the-art RL policy generation algorithms [55] using this problem modeling.

dependency graph

BP

Expert

conversion

algorithm
states

actions
environment

p(si+1|a, si)

training

algorithm

ð

policy:

si → a

�

user logs

Figure 4.5: High level overview of our dialogue policy generation framework.

The dependency graph helps to reduce the action space by forbidding some actions

at a specific state. First, slots in the same supernode have actions invoked together. In the

other words, the bot cannot mix in the actions of slots of different supernodes. For example,

when the bot is at the state s: (fill_type = True, fill_size = True, fill_crust = False,

fill_toppings = False, fill_read-review = False, . . .) (in supernode v1 in Figure 4.4),

the action request_read-review (supernode v2) is illegal. Second, the dependencies also

inhibit a set of actions. For instance, when the bot is again at the state s above, the bot

has not finished supernode v1, thus is not allowed to take action request_place-order, or

show_goodbye of supernode v4. Finally, inside each supernode, the action of a slot is only

legal if the slot’s dependencies have been satisfied. As an illustration, when the bot is in a

state that has fill_have-coupon = False, the bot cannot take action request_coupon. We

present our logic to check these dependency violation in Algorithm 6.
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Algorithm 5 Convert dependency graph into state, action space.
Input: dependency graph G(V,E)

Output: states, actions

1: procedure map_state_space(V)
2: s = [] . state vector
3: for v in V do
4: for l in v.slots() do
5: s.insert(fill_l, value_l)

6: for b in v.infoblks() do
7: s.insert(show_b)

8: s.insert(is_optional_v,is_started_v, is_done_v)

9: for i in user_contexts do
10: s.insert(user_cont_i)

11: Return s
12: procedure map_action_space(V)
13: A = ∅ . action space
14: for v in V do
15: for s in v.slots() do
16: A.insert(request_l, inform_l)

17: for b in v.infoblks() do
18: s.insert(show_b)

87



Algorithm 6 Check forbidden actions
Input: G(V,E); state s, action a
Output: True or False

1: procedure violate_dep_graph(G(V, E), s, a)
2: Return fail_slot_dependency(s, a) or
3: fail_supernode_dependency(s, a) or
4: cause_concurent_supernode(s, a)

1: procedure fail_slot_dependency(s, a)
2: l← a.slot()

3: for (prior_slot, val) in dependency(l) do . dependency(l) is a function returning
slots and values that slot l depends on.

4: if s.fill_prior_slot = False or s.value_prior_slot 6= val then
5: Return True
6: Return False

1: procedure fail_supernode_dependency(s, a)
2: sn ← supernode_of(a)

3: for prior_sn in sn_dependency(sn) do . dependency(sn) is a function returning
supernodes that supernode sn depends on.

4: if s.is_optional_prior_sn then
5: if s.is_started_prior_sn & !s.is_done_prior_sn then
6: Return True
7: else if !s.is_done_prior_sn then
8: Return True
9: Return False

1: procedure cause_concurrent_supernode(V, s, a)
2: sn ← supernode_of(a)

3: for other_sn in V do
4: if s.is_started_prior_sn & !s.is_done_prior_sn then
5: Return True
6: Return False
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4.4 User Simulation

Ideally, an RL agent learns from real-world feedback. In the context of goal-

oriented chatbots, this means that the RL agent would have to do a possibly large number

of conversations with real users before its dialogue policy becomes mature enough. Although

crowd-sourcing services, such as Amazon MTurk, seemingly offer the possibility of training

a chatbot by talking to MTurk workers, the time and financial cost of such a scheme can be

prohibitive. Consequently, we rely on user simulation for training our RL agent, similarly

to state-of-the-art research RL chatbot engines [69, 47, 48].

A user simulator should resemble real user behaviour: Users may get irritated

by the chatbot utterances and choose to drop out, i.e., leave the conversation; they may

provide irrelevant or uninterpretable utterances; or, ideally, users may provide the needed

information, e.g., slot values. The probability of a certain user responding according to

the mentioned scenarios is a function of her characteristics; estimating these probabilities

is nontrivial due to their reliance on user characteristics. We denote the probability of user

drop out, providing uninterpretable utterances, and providing relevant utterances by pd, pe,

and ps, respectively.

Our simulator determines the probability of each user response using a user profile,

which is a set of parameters that describe a user. Inspired by research in online customer

behavior [16] and the work in [69], we choose the following parameters to define a user

profile: security, privacy, uncertainty, guarantee, price, and promotion. Each of these

parameters is a numeric value between 0 and 1. Security and privacy quantify the level to

which a user is concerned with her transaction security and data privacy, respectively. For
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users with high values, the chance of dropping out if the chatbot does not explicitly provide

security and privacy guarantees is high. Uncertainty quantifies a user’s need for additional

information, such as customer reviews, to clear his/her confusion. Guarantee, price, and

promotion quantify a user’s interest in product guarantees, price, and promotional coupons,

respectively. More information about these aspects engages those users with high parameter

values, but may cause others to get overwhelmed and drop out. A user uj is described with

a vector of her parameter values:

uj =



security(uj)

privacy(uj)

uncertainty(uj)

guarantee(uj)

price(uj)

promotion(uj)


.

We explain next the process of computing pd, pe, and ps. These probabilities are

functions of the interaction between a supernode in a dependency graph (which results in a

chatbot utterance or a group of utterances) and a specific user profile. The user uj is first

initiated with a global user dropout rate: p0d(uj) = global_dropout. Then, the user dropout

rate is adjusted based on her user profile as following.

p0d(uj) = p0d(uj)−
1

2
×
∑

uj

The subtraction penalizes the case that the bot fails to address user concern specified by
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the user profile. Let

li =



security(li)

privacy(li)

uncertainty(li)

guarantee(li)

price(li)

promotion(li)


be a vector of relevance parameters associated with a slot li. Each of these parameters is

a numeric value between -1 and 1 that indicates the relevance of utterances generated by

node li to a certain user parameter; negative values indicate an adversary effect, and positive

values indicate an engaging effect. For example, if a user is highly security conscious (has

a security parameter value of 1), and a supernode has a security relevance parameter of -1,

the user is likely to drop out if the chatbot chooses to present her with utterances generated

by this supernode. Let the effect of slot li to user uj be the inner product of li and uj :

effect(li, uj) = lᵀi · uj

The user dropout rate after having received k chatbot utterances is updated to reflect the

slot li’s effect as below

pkd(uj) = max(0,min(1, pk−1d (uj)− δ × effect(li, uj))) (4.1)

where δ is a constant factor specifying the maximum dropout change per conversation turn.

We further penalize the conversation logic violations that confuse users by a fix amount β:

pkd(uj) = max(0,min(1, pk−1d (uj) + β)) (4.2)

An example of this violation is when the bot request users to place the order while have

not collected all the pizza information. Note that, in above Equations, the value of pkd(uj)

is always bounded between 0 and 1.
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For simplicity, we assume that the probability of a user generating an uninter-

pretable utterance pe is a constant ε bounded by the complement of the drop out probability:

pe = min(ε, 1− pd)

Finally, the probability of a user generating a valid utterance is: ps = 1− pd − pe.

4.5 Evaluation

Datasets: We evaluate our goal-oriented chatbot model using two tasks. The first

task aims to help users booking movie tickets. For this, we utilize a real dataset collected

via Amazon Mechanical Turk by Li et al. [47]. This dataset was created from 280 dialogues

and has a database of 991 movies, out of which 133 user goals were randomly sampled for

user simulation. The second task focuses on a pizza ordering system that we exemplified

throughout the chapter. For this task, we build a database of pizzas by collecting pizza

specifications from Dominos; for example, a “small” pizza has two crust options: “hand

tossed” and “gluten free crust”. We sample 10,000 user goals from this pizza database. Users

can inform a slot’s value to the bot or request the bot for available options of a slot. Table 4.2

reports more details of these two datasets.

Methods: We design our method’s dependency graphs very similar to the one

in Figure 4.3. Besides having more complex pizza supernode (v1) and only two optional

supernodes on review reading, coupon, we have other optional supernodes addressing user

concerns on privacy, security, guarantee and final price details. After converting into an RL

model, we employ Deep Q-Network [55] to train the agent using user simulated conversations.
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Movie ticket booking Pizza ordering

Slot moviename, theater, starttime, date,
genre, state, city, zip, critic-rating, mpaa-
rating, distanceconstraints, video-format,
theater-chain, price, actor, description,
other, numberofkids, numberofpeople

size, crust, cheese,
sauce, sauce level,
toppings

Number of items 991 16,560
Number of user
goals

133 10,000

Table 4.2: Dataset details.

While we are using DQN as the base, any RL algorithms can be utilized.

We compare our method, named RL with DepGraph, with several baselines. The

first baseline, RL with DepGraph, is a straight-forward RL model. Since this model is not

imposed by a dependency graph, it only learns the dependency violations via user negative

reaction, which is an increase of user dropout rate in our user simulation. Another set of

baselines is based on hand-crafted rules by the bot designers, also known as diagram-based

models. In particular, there are four variants listed below depending on the way of choosing

the next slot to request users and whether to include optional slots.

• Sequence Rule: select the next slot in a predefined sequence, include all optional slots.

• Random Rule: randomly select the next slot from the un-filled ones and include all

optional slots.

• Sequence/Random Rule - No Optional: same as the Sequence, Random Rule respec-

tively but do not include optional slots.

These rule-based methods also support user requests by simply informing available values

of the requested slots.
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Measures: Similar to Li et al. [47, 48], we consider conversation’s success rate

as the single most important measure. As we explained in the Introduction, this measure

reflects our chatbot’s design goal of adaptively and precisely walking users to reach their

initial intents, i.e. booking the movie ticket or ordering pizza. Note that violating the

slots dependency, such as showing the placing-order confirmation before finishing all pizza

information, is considered as a failure case since it confuses the users. Our experiment is

separated into the training phase, which applies to only RL based methods, and the testing

phase that applies for all methods. For the training phase, we report the success rate

changes over the number of simulated conversations. For the testing phase, we show the

performances of all methods after 2500 simulated conversations.

Experiment’s Parameters: We carry out our experiments on a set of different

user profiles, which is explained in Section 4.4. Specifically, there are six user factors, each

is set to 0 or 1, therefore there are 26 = 64 different user profiles in total. We run our

experiments on all user profiles and report the average results. Since we have a fix number

of user goals to initiate simulated users, we randomly partition these goals into train/test

set of ratio 9/1. In this manner, we make sure that we do not have simulated users in both

training and testing phase with the same user goal. We list other experiment details in

Table 4.3.

4.5.1 Performance in the Training Phase

We train our method model and the RL baseline using 15,000 simulated conver-

sations. Note that the other rule-based methods do not require any training, thus are not
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Parameter Value Description

Global initial
dropout

3% the base dropout rate, 3% means that only 1 − 0.9720 ≈
0.456, or 45.6% chance that a user has not dropped out
after 20 turns.

Dropout delta (δ) 1% the dropout multiplier in user change in response to the
effect of the presented slots (Equation 4.1).

Dropout increase
due to violation (β)

3% user’s dropout is increase as she is confused by the bot due
to dependency violation (Equation 4.2).

Slot error rate (pe) 5% Artificial error rate introduced to mimic the user misun-
derstanding and NLU’s mistakes [47, 48].

Table 4.3: Experiment’s Parameters.

presented in this section. We present our results for both datasets in Figure 4.6. The average

success rates are shown in the solid line, while their variations are the shaded regions. For

both datasets, our method achieves a higher success rate and saturates much faster than

the RL baseline. In particular, our method outperforms the RL baseline by 20.5% and 6.7%

on average on movie and pizza dataset respectively. The improvement in the movie dataset

is more substantial than that of the pizza dataset since the movie ticket booking task is

more complex, i.e. longer conversations and bigger set of slots, thus has more rooms for

improvement. For the same reason, the success rate in the movie dataset is higher than in

the pizza dataset.

We further examine how two methods select available optional slots to understand

their performances. Due to the space limitation, We only show statistics for the movie

dataset in Figure 4.7. A method is well adaptive to a user when it can pick up appropriate

optional slots to address the user concern. For instance, if a user is interested in promotion,

then showing the user coupon options would motivate the user so that reducing her dropout
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(b) Pizza dataset

Figure 4.6: Success rate changes over the number of simulated conversations in the training
phase.

rate. In Figure 4.7(a), we show that our method learns to select useful slots earlier in the

conversations than the RL method. This is helpful to benefit from a lower user dropout rate

as soon as possible. In Figure 4.7(b) and 4.7(c), we report the average number of useful

slots per conversation, and the average ratio of conversations that the bot successfully pick

at least a useful slot. For both statistics, the higher is better since it means that the user

is presented with appropriate slots. Our method has higher numbers in both cases, thus

achieves a higher success rate as being shown in Figure 4.6.

4.5.2 Performance in the Testing Phase

In the testing phase, we test all methods using 2,000 conversations simulated from

the testing set of user goals. We present the success rates for both datasets in Figure 4.8. In

both cases, our method outperforms all methods, especially the rule-based ones. Comparing

to the RL agent, our method’s success rate is 12.7% and 6.2% higher on average on movie
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Figure 4.7: Method’s behaviors in picking up optional slots.

and pizza dataset respectively. All rule-based methods’ performances are quite similar and

lower than both our and the RL method. In particular, our method achieves an improvement

of about 70% and 11% on average over the best rule-based method on the movie and pizza

dataset subsequently. Since the pizza ordering task is shorter and simpler than the movie

booking one, all methods perform reasonably. The results also indicate that our method can

scale to more complicated conversation scenarios such as the movie ticket booking one.

4.6 Related Work

Differ from social conversational dialog system, users in goal-oriented chatbot have

a specific goal to complete. While goal-oriented chatbot has been studied for decades, the

recent advances in Deep Learning, Natural Language Processing have brought new tools,

increased interests.

Chatbot Policy Management: Traditional goal-oriented dialogue systems rely
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Figure 4.8: Success rate changes over the number of simulated conversations in the testing
phase.

on slot filling and dialog act to model conversations. Bobrow et al. [9] proposed an influential

model that organizes related slots into frames. The classical models control the conversation

flow by a diagram or set of hand-crafted rules carefully designed by a domain expert. An-

other main approach models [46, 70] the goal-oriented chatbot as a Markov Decision Process

(MDP) and utilize Reinforcement Learning model to learn a conversation policy. Following

these early systems, more recent efforts [64, 84, 87, 75] utilize more complicated Partially Ob-

served MDP (POMDP) model. More advanced RL algorithms customized for conversational

are also proposed [13]. In overall, all above systems share a common modular framework that

has four modules: Natural Language Understanding (NLU), Dialog State Tracker (DST),

Dialog Policy (DP) and Natural Language Generation (NLG). Closely related to the DP,

DST is a challenging NLP topic attracts a lot of community attention [30, 83].

Different from this modular framework, recently proposed end-to-end chatbots [81,

11, 19] take a user utterance as input and output a bot response. The challenge of these
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systems is to model the database and knowledge graph that are normally parts of goal-

oriented dialogue systems. While this is a promising approach, there is still a lack of complete

comparison between it and the traditional approach.

User Simulation: There are several popular approaches simulating user behaviors to train

the chatbot policy. Eckert et al. [23] propose a simple N-gram simulation that basically

sample a user action based on previous N-1 actions of the bot and user. Agenda-based user

simulation [68, 36] relies on user goal to keep consistent context, and an agenda which is a

stack of user actions to realize. A recent approach [60] model user actions based on Bayesian

network.

Dialog System Platform Amazon Lex [2], Google Dialogflow [28] are popular industrial

chatbot frameworks using advanced neural based NLU, NLG modules, and classical rule-

based dialog managers. In acamedia, TC-Bot [47, 48] is the first open source end-to-end

implementation that supports reusable NLU, NLG and dialog management modules. Con-

vLab [45] can be considered as a TC-Bot’s successor supporting multi-domain environments.

Our implementation is based a simplified version of TC-Bot focusing on dialog policy gen-

eration only1.

4.7 Conclusions

In this chapter, we proposed a novel, hybrid dialog manager for goal-oriented con-

versational agents that is is interpretable to the bot designer, supporting rich semantics and

flexible dialogue scenarios. Our key idea is the dependency graph, by which a bot designer
1https://github.com/maxbren/GO-Bot-DRL
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can capture the conversation constraints intuitively. Our algorithm transforms this depen-

dency graph into an RL model that is trained on user chat logs to materialize an adaptive

dialog policy. We evaluated the proposed method with the standard Agenda-based user sim-

ulation augmented with the notion of user profiles and user dropout for more realistic user

modeling. Our method’s results on the movie ticket booking and pizza ordering datasets

showed are promising. In the training phase, our method saturated faster and achieved

higher success rate that the RL based method. In the testing phase, our method outper-

forms all baseline methods based on diagram and RL. We showed that our model adapts to

users, thus chooses appropriate slots to walk users to complete their goals.
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Chapter 5

Conclusions

In this dissertation, we have exploited the semantics embedded in user-generated

text to enable efficient analysis and retrieval. Relying on advances in sentiment analysis

and information extraction to extract semantics, we showed how to take advantage of this

information to better organize, retrieve user-generated data, and utilize it to incrementally

improve the systems. In this context, this dissertation’s contributions are three-fold.

First, we presented a fresh review summarization framework that advances the

state-of-the-art by proposing a coverage definition that encapsulates both concept mean-

ing and sentiment. In particular, our coverage leverages a domain hierarchy of concepts to

handle the semantic overlap among the aspects and further constrains aspects of similar sen-

timent levels. We proved that the problem is NP-hard and presented bounded approximate

algorithms to compute the most representative set of sentences or reviews. In our quantita-

tive evaluation, we showed that the Greedy algorithm achieves review coverage comparable

to the optimal algorithm but in a much shorter time. We further made use of various in-
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tuitive summary quality measures and demonstrated that the Greedy outperforms several

popular baselines on selecting k sentences to summarize real reviews.

Second, we studied the problem of dynamically selecting a focused set of aspects to

obtain users’ annotations for high-quality product review profiles. We presented a principled

approach to account for the profile’s factors of rating estimation and uncertainty based on

Bayesian statistics. Using this framework, we proposed an algorithm to choose k aspects

to ask a reviewer given the current product rating history. We showed that this method

outperforms both the traditional passive solicitation style and other active solicitation base-

lines under various review profile quality measures on two real-world datasets. Furthermore,

we extended our selection algorithm to work under different settings and to consider the

probabilistic factor in user response. Particularly, we proposed a hybrid reviewing interface

that augments the traditional approach with active solicitation at little extra user cost and

at the same time, with significantly lower rating uncertainty.

Finally, we studied how to utilize conversational chat logs to learn adaptive work-

flows of goal-oriented chatbots. We proposed a hybrid dialog manager model that bridges

two traditional approaches (frame-based and Reinforcement Learning based) to take ad-

vantages of their interpretability, rich semantic support and flexible conversation scenarios.

Our chatbot framework’s only input, the Dependency Graph, is easy to design and intu-

itive to validate. From there, our algorithm can learn personalized chatbot workflows to

maximize their success rate. We based our evaluation on a real dataset of a movie ticket

booking system using the popular Agenda-based user simulation. In the training phase, we

found that our method achieves a higher success rate at a faster speed than the baseline RL
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based method. In the testing phase, we also noted clear improvements of our model over all

baseline methods.

In summary, we have shown that leveraging the embedded semantic is a powerful

tool for mining user-generated text. With the advancement of NLP techniques to extract

high-quality text semantics, there are great opportunities for higher-level studies and appli-

cations exploiting this information.
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