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ABSTRACT OF THE DISSERTATION

Constraints on Quantum Entanglement in Symmetric Physical Systems

by
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Professor David Meyer, Chair
Professor Daniel Arovas, Co-Chair

Quantum entanglement rapidly becomes unwieldy to calculate as the number of particles

and the dimension of the spaces associated to those particles increase. One meaningful approach

which simplifies that analysis is the restriction to subsets of states which obey some physically

relevant symmetry. In this dissertation, entanglement properties of totally permutation-symmetric,

translationally invariant, and party-site symmetric states are examined, as well as those of small

bond-dimensional matrix product states.
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Chapter 1

Introduction - Entanglement

The advent of quantum mechanics as a physical model resolved many outstanding ques-

tions in early 1900’s physics. It triumphantly provided a consistent description of the Hydrogen

atom, photoelectric effect, and black-body radiation. While quantum mechanics was celebrated

for its agreement with the experiments of the time, some theorists were concerned by new impli-

cations of such a model, in particular with the new concept of ‘Entanglement’ [1]. Entanglement,

which will be formally defined in this chapter, extends the rules of quantum mechanics to multi-

particle state descriptions and challenged the previously held classical notions of locality and

correlation. Einstein famously referred to entanglement as “spooky action at a distance”, noting

the surprising nature of the phenomenon. Since those early doubts and thought experiments,

entanglement has been replicated in numerous physical implementations, and is now a hallmark

of modern quantum research. Entanglement has enabled fruitful new fields such as quantum com-

puting and communication, while providing interesting new context to both condensed matter and

fundamental physics theories. In this chapter I will define entanglement, describe the properties

and measures of entanglement, and briefly elaborate on its applications.
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1.1 Description and Applications

This thesis will exclusively examine quantum states of particles which live in finite-

dimensional Hilbert spaces, whose dimension can be labeled as d. A pure state for such a single

particle could then be expressed, in some basis, as

|ψ〉=
d

∑
i=1

ai |i〉 , (1.1)

for ai ∈ C normalized to ∑ |ai|2 = 1. Such a state is physically motivated by a quantum particle

of spin, (d−1)/2, where a natural choice of basis associates each of the |i〉 with the eigenstates

of the z-axis spin operator, Sz, for that particle. States of multiple particles, say n particles, where

particle j has dimension d j, can then be constructed through the tensor product as

|ψ〉=
d1

∑
i1=1

. . .
dn

∑
in=1

ai1...in |i1 . . . in〉 , (1.2)

where

|i1 . . . in〉=
n⊗

j=1

∣∣i j
〉
. (1.3)

In all but Chapter 5, I will be solely examining spin 1/2 particles (d = 2), which are canonically

referred to as ‘qubits’ for their role in quantum information. In accordance with that quantum

information interpretation, the indexing for qubit basis elements is shifted to |0〉 and |1〉. This

basis will heretofore be referred to as the “computational” basis.

Consider the following particular two-qubit state,

|ψ〉= 1
2

(
|00〉+ |01〉+ |10〉+ |11〉

)
. (1.4)

For such a state, one could ask what the possible measurement outcomes are for either particle in

the computational basis. For both particles, 0 and 1 are present with equal amplitudes, so 0 and 1

are equally likely. More formally, those measurement statistics for the first particle could have
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been determined from that particle’s reduced density matrix, obtained through the partial trace,

ρ1 = Tr2 (|ψ〉〈ψ|) (1.5)

ρ1 =

 1
2

1
2

1
2

1
2

 . (1.6)

The measurement probabilities are then

Prob(0) = Tr(|0〉〈0|ρ1) =
1
2
, (1.7)

and likewise it can be found that Prob(1) = 1/2, confirming the initial intuition that both outcomes

are equally likely. The same analysis on the second particle yields the same result.

Now consider actually performing a computational basis measurement on the second

particle. With probability 1/2, the outcome of that measurement will be 0, and the overall state

will collapse to ∣∣∣ψ(0)
〉
=

1√
2

(
|00〉+ |10〉

)
, (1.8)

or, with the same probability, the outcome of 1 will collapse the overall state to∣∣∣ψ(1)
〉
=

1√
2

(
|01〉+ |11〉

)
. (1.9)

In either case, if we now ask what the measurement outcomes are for the first particle, we find

that both 0 and 1 are still equally likely. This can be seen directly from the first particle’s reduced

density matrix, which remains (1.6) for either outcome.

Now consider performing the same analysis for the following state,

|φ〉= 1√
2

(
|00〉+ |11〉

)
. (1.10)

We find that both particles initially have 0 and 1 present with the same amplitude, or more

formally, that

ρ1 = ρ2 =

 1
2 0

0 1
2

 , (1.11)

which implies that Prob(0) = Prob(1) = 1/2 for both particles. But now, performing the mea-

surement on the second particle will, with equal probability, collapse the overall state to∣∣∣φ (0)
〉
= |00〉 , (1.12)
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if the outcome is 0, or to ∣∣∣φ (1)
〉
= |11〉 , (1.13)

if the outcome is 1. In the case of an outcome of 0, if we now ask what the measurement statistics

are for the first particle, we find that only 0 is possible now. Assuming the outcome of the second

particle’s measurement is known to the first particle (more on this shortly), we can see the change

in the first particle’s measurement statistics in the change of its density matrix, which has now

become

ρ
(0)
1 =

 1 0

0 0

 . (1.14)

Likewise if the outcome had been 1, the first particle’s density matrix would have changed to

ρ
(1)
1 =

 0 0

0 1

 . (1.15)

In either case, we can see that the measurement statistics of the first particle now depend on the

outcome of the second particle’s measurement. This example gives us the first initial interpretation

of entanglement - that |φ〉 is ‘entangled’ where |ψ〉 is not because measuring either particle in |φ〉

changes the measurement statistics for the other particle, unlike for those in |ψ〉. Mathematically,

this resembles the notion of classical correlations between probability distributions, but it has

been extensively proven that the statistics for entanglement are uniquely quantum [2].

This was a surprising phenomenon for physicists of the time to encounter when exploring

the rules of quantum mechanics, particularly because we established that the basis elements for

these states are associated to spin, and thus have no dependence on location. So, in principle, this

experiment could be implemented on particles separated an arbitrary distance. This is particularly

concerning given the notion of locality in physics, as it may seem that this process could be used

to transfer information faster than the speed of light. Upon closer inspection, however, we find

that this is not the case. If the particles in |φ〉 were in separate, distant laboratories, the physicists

in the first particle’s laboratory would not know the outcome of the second particle’s measurement

4



until its physicists communicated that result classically. Until that time, all the physicists in

the first particle’s lab know of their particle is that if a measurement were made on the second

particle, the first particle would be in ρ
(0)
1 with 50 percent probability, and in ρ

(1)
1 with 50 percent

probability. But this means that the overall density matrix for that particle is then

ρ1 =
1
2

ρ
(0)
1 +

1
2

ρ
(1)
1 =

 1
2 0

0 1
2

 , (1.16)

which is the original, pre-measurement density matrix for that particle.

While entanglement does not break fundamental principles of physics, it does enable

tasks which are impossible or impractical by purely classical means. The previous example

demonstrated that information cannot be transferred along the entangled pair alone. With more

entangled particles and the aid of classical communication, however, information can be securely

transferred between distant labs with no risk of a third party intercepting that information [3]

[4]. Entanglement is also largely responsible for the speed ups provided by quantum computers

[5]. Various tasks such as search [6] and factorization [7] support algorithms which, acting on

quantum particles rather than classical bits, perform those tasks faster than the associated classical

algorithms. Beyond being a crucial resource to quantum information processing, entanglement has

also found a home in other fields of theoretical physics. In condensed matter theory, preserving

entanglement was shown to be a key feature of the density matrix renormalization group in

quantum phase transitions [8]. Entanglement has even drawn interest in string theory for its role

in anti-de Sitter/conformal field theory correspondence [9].

1.2 Pure Bipartite State Entanglement

Given the expansive research attention being shown to entanglement, knowledge of its

properties is in high demand. The most obvious question at the outset of examining entanglement

is: How do we determine whether a quantum state is entangled or not? Looking back to the
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states from the previous section, we established that |φ〉 is entangled because measuring one

particle changes the measurement statistics of the other, unlike for |ψ〉, which is not entangled.

Another way to interpret the entanglement, or lack thereof, of these states comes from the idea of

‘separability’. Namely that |ψ〉 is unentangled, or ‘separable’, because it can be expressed as the

tensor product of pure states for each particle,

|ψ〉=
(

1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1√
2
|0〉+ 1√

2
|1〉
)
, (1.17)

where |φ〉 cannot. This notion allows us to finally give a formal definition to entanglement for

bipartite quantum states.

Definition 1. A pure bipartite quantum state, |χ〉, is separable if it can be expressed as a tensor

product of pure states for either party,

|χ〉= |χ1〉⊗ |χ2〉 . (1.18)

If |χ〉 admits no such factoring, it is entangled.

Separability provides a valuable conceptual interpretation of entanglement in that we can

fully describe the individual particle states in a separable bipartite state, where we cannot for

an entangled state. This context additionally motivates the continuous nature of entanglement

because the precision with which we can describe a state is continuous, and therefore so too is

entanglement. This notion will be formalized shortly in the definition of the Entanglement of

Formation.

After recognizing that entanglement is continuous, the natural question raised then is

how do we quantify entanglement in pure quantum states? It turns out that there are multiple

methods for doing so. Each method for measuring entanglement satisfies the properties which

are described at the end of this chapter, and certain measures are more relevant than others to

different applications. In the following, I will describe a short, non-exhaustive sampling of

the entanglement measures which are most relevant to this thesis. A more extensive review of

entanglement measures can be found in [10].
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The following are measures of entanglement of an arbitrary bipartite pure quantum state,

|ψ〉=
d1

∑
i1=1

d2

∑
i2=1

ai1i2 |i1 i2〉 . (1.19)

• The Schmidt Rank: While not a continuous measure, the Schmidt Rank is a particularly sim-

ple starting point for determining entanglement. According to the Schmidt decomposition

[11], |ψ〉 can be decomposed as

|ψ〉=
r

∑
i=1

√
λi

∣∣∣ψ(1)
i

〉
⊗
∣∣∣ψ(2)

i

〉
, (1.20)

where λi are positive real numbers and
∣∣∣ψ( j)

i

〉
are orthonormal basis vectors for either parti-

cle’s Hilbert space. The Schmidt Rank, r, can then be defined as a measure of entanglement,

which ranges from r = 1 for separable states, to states of increasing entanglement from

r = 2 to r = min{d1,d2}.

The Schmidt Rank partially informs the conceptual motivation for entanglement in regard

to our ability to describe the single particle states. One can determine that the single party

reduced density matrices of |ψ〉 are

ρ j =
r

∑
i=1

λi

∣∣∣ψ( j)
i

〉〈
ψ

( j)
i

∣∣∣ . (1.21)

It is then clear that, for separable states (r = 1), the single party density matrix is pure and

therefore we have full information on the single particle state. For entangled states, on the

other hand, the single party reduced density matrices are mixed.

• The Entanglement of Formation: Formally, the amount of information contained in a mixed

quantum state, ρ , is determined through the Von Neumann entropy,

S(ρ) =−Tr(ρ logρ) . (1.22)

The Entanglement of Formation [12], EF , then formalizes the inverse relationship between

information of the single party reduced states and entanglement of the overall state as

EF (|ψ〉) = S (ρ1) . (1.23)

Note that the Schmidt decomposition of |ψ〉 implies that S (ρ1) = S (ρ2), which makes EF

symmetric in the choice of party.

7



• Negativity: A density matrix, ρ , can only be associated to a quantum state if ρ obeys the

following three properties,

Normalization : Tr(ρ) = 1, (1.24)

Hermiticity : ρ† = ρ, (1.25)

Positivity : ρ ≥ 0. (1.26)

Intuitively, if ρ is a quantum state, then so too is its transpose, ρT . Consider, then,

transposing only the elements of the first party in ρ = |ψ〉〈ψ|, known as performing the

partial transpose of ρ ,

ρ
T1 = ∑

i1,i2
∑
j1, j2

ai1,i2a∗j1, j2 | j1 i2〉〈i1 j2| . (1.27)

If follows that if |ψ〉 is separable, then ρ = ρ1⊗ρ2, so ρT1 = ρT
1 ⊗ρ2, which is still a

quantum state. If |ψ〉 is entangled, however, then ρ 6= ρ1⊗ρ2, so there is no reason to

expect that ρT1 would likewise be a quantum state because (1.26) may no longer be true.

Conceptually, the Negativity [13], N (ρ), determines entanglement by measuring the

extent to which ρT1 violates (1.26). More formally,

N (ρ) =
1
2
(∣∣∣∣ρT1

∣∣∣∣−1
)
, (1.28)

where ||A||= Tr
√

A†A.

• The Geometric Measure of Entanglement: A particularly intuitive way to determine the

entanglement of |ψ〉 is to find a separable state with maximal overlap with |ψ〉, then

let the complement of that overlap measure entanglement. The Geometric Measure of

Entanglement [14], EG, accomplishes this exactly and is defined as

EG (|ψ〉) = 1− max
|φ1〉⊗|φ2〉

∣∣∣∣(〈φ1|⊗ 〈φ2|
)
|ψ〉
∣∣∣∣2 . (1.29)

While a conceptually simple measure of entanglement, the maximization over separable

states makes EG challenging to determine in general.

The final bipartite measure of entanglement which I will define is the most relevant to the

8



work of this thesis, but is only defined for states of two qubits,

|ψ〉=
1

∑
i1=0

1

∑
i2=0

ai1i2 |i1 i2〉 . (1.30)

• The Concurrence: Consider the coefficients of |ψ〉 arranged in a 2×2 matrix as below,

ψ =

 a00 a01

a10 a11

 . (1.31)

The Schmidt decomposition implies that ψ can be diagonalized, in some basis, to

ψ =

 √λ1 0

0
√

λ2

 . (1.32)

Then, given that the Schmidt Rank measures entanglement, it is plausible that so too would

the determinant of ψ , as separable states (λ2 = 0) would measure to 0 entanglement, while

entangled states (λ2 > 0), would have non-zero entanglement. This concept is formalized

by the Concurrence [15], C , which is defined as

C (|ψ〉) = 2 |det(ψ)|= 2 |a00a11−a01a10| . (1.33)

The Concurrence is often expressed alternatively as an inner product,

C (|ψ〉) = 〈ψ|ψ̃〉 , (1.34)

where

|ψ̃〉= σy⊗σy |ψ〉∗ , (1.35)

where σy is the Pauli-y matrix.

1.3 Mixed Bipartite State Entanglement

While the analysis of pure state entanglement is of great theoretical value, the need

often arises to consider the entanglement of mixed quantum states. As will be detailed in the

next section, the reduced states of subsets of particles in an overall ensemble are potentially

mixed. And in experimental settings, interaction with the environment tends to decohere the state

of the physical system, leaving it mixed. How then do we extend the definition of pure state

9



entanglement to that of mixed states? Consider an arbitrary bipartite mixed quantum state,

ρ = ∑
i=1

pi |ψi〉〈ψi| , (1.36)

where |ψi〉 are pure bipartite states of the form (1.19). One might reasonably expect that ρ could

be defined as separable if each of the |ψi〉 are separable, and that each of the measures of pure

bipartite entanglement listed in the previous section could extend to mixed states as a convex sum,

E (ρ) = ∑
i

piE (|ψi〉) . (1.37)

The concern with this approach, however, is that the decomposition of ρ into convex sums of

pure states, (pi, |ψi〉), is not necessarily unique. The resolution to this ambiguity, known as the

‘Convex Roof Extension’ [16], is to consider the entire set of decompositions of ρ ,

{(pi, |ψi〉)}=

{
{pi} ∈ [0,1], {|ψi〉} ∈Hd1⊗Hd2

∣∣∣∣∣ ∑
i

pi |ψi〉〈ψi|= ρ

}
, (1.38)

and minimize the average pure state entanglement over that set. This informs a new definition for

mixed state entanglement.

Definition 2. A mixed bipartite quantum state, ρ , is separable if it can be decomposed into a

convex sum of separable pure states,

ρ = ∑
i

pi

(∣∣∣ψ(1)
i

〉
⊗
∣∣∣ψ(2)

i

〉)(〈
ψ

(1)
i

∣∣∣⊗〈ψ
(2)
i

∣∣∣) . (1.39)

If ρ admits no such decomposition, it is entangled.

For any pure state entanglement measure, E, the convex roof extension constructs a mixed

state measure,

E (ρ) = min
{(pi,|ψi〉)}

∑
i

pi E (|ψi〉) . (1.40)

which, as will be detailed at the end of the chapter, satisfies important properties we expect from

an entanglement measure. Unfortunately, this minimization is, in most cases, quite difficult to

perform, leaving the convex roof extension as a mostly theoretical tool. A notable exception to

this is that the minimization can be performed analytically in the case of the Concurrence.

• Mixed State Concurrence: For mixed states of two qubits, ρ , the convex roof extension of
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the Concurrence was solved in [15]. Begin by defining

ρ̃ = σy⊗σyρ
∗
σy⊗σy, (1.41)

then determine, {λi}, the square roots of the eigenvalues of ρρ̃ , labeled so that λ1 ≥ λ2 ≥

λ3 ≥ λ4. The concurrence of ρ can then be found to be

C (ρ) = max{0,λ1−λ2−λ3−λ4} . (1.42)

While most entanglement measures require the convex roof extension to measure entan-

glement in mixed states, the Negativity is a remarkable exemption. In fact, the Negativity, as

defined in (1.28), was shown to be a proper entanglement measure for mixed states as well as

pure [13]. It is still possible to apply the convex roof extension to the Negativity, yielding a new

entanglement measure altogether, known as the ‘Convex Roof Extended Negativity’ [17]. The

fact that the Negativity works seemlessly in both pure and mixed states makes it a common choice

in condensed matter theoretic research.

1.4 Multipartite Entanglement Measures

In states of more than two particles, there are multiple partitions and subsets of parties

among which entanglement could be considered. This gives rise to multiple definitions for, and

approaches to, determining multipartite entanglement.

The simplest approach to examining entanglement in multipartite states is to group the

parties of the overall state into two sets, A and B, and measure the entanglement between those

sets of parties, EA|B. The advantage to such an approach is that the spaces for the parties in either

set can be clumped into a single particle state with appropriately large dimension. For the purpose

of computing EA|B, then, the overall state is effective a pure bipartite state, enabling the use of

many of the measures described previously. This method is commonly used in condensed matter

theory in the study of spin chains and tensor networks, which will be discussed in Chapter 4.

Another simple extension of bipartite entanglement methods to multipartite states is to
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examine ‘pairwise entanglement’ within the state; the entanglement between only a pair of parties

from the overall ensemble. Consider a multipartite state, |ψ〉, of the form (1.2), with the aim of

determining the entanglement between parties k and l, labeled Ek,l . We can find the reduced state,

ρk,l , for parties k and l by tracing out the remaining n−2 parties,

ρk,l = Trk,l (|ψ〉〈ψ|) , (1.43)

and find the entanglement of this, potentially mixed, reduced state through some bipartite mixed

state measure. This method, with the Concurrence as the entanglement measure of choice, will be

the most relevant to the work of this thesis.

An alternate approach to pairwise entanglement, referred to as the ‘Entanglement of

Assistance’ [18], relies on the influence of an outside party to maximize the entanglement

between the particles of interest. If that outside party were to perform an incomplete measurement

on the remaining n−2 particles in some basis, M , particles k and l would collapse one of the

possible pure states,
∣∣∣φ (M )

i

〉
, associated to that measurement basis, with probability p(M )

i . The

entanglement of those resultant states can then be determined by the pure bipartite measure of

choice, E, and weighted by the associated probabilities,

E(M ) (|ψ〉) = ∑
i

p(M )
i E

(∣∣∣φ (M )
i

〉)
. (1.44)

The Entanglement of Assistance, labeled E]
k,l , maximizes this averaged entanglement over the

possible measurement bases, {M },

E]
k,l (|ψ〉) = max

{M }
∑

i
p(M )

i E
(∣∣∣φ (M )

i

〉)
. (1.45)

Beyond bipartite measures applied to multipartite states, there are interesting examples

of genuine multipartite entanglement. The most simple example of this arises when one studies

entanglement in three qubit states,

|ψ〉=
1

∑
i1=0

1

∑
i2=0

1

∑
i3=0

ai1i2i3 |i1 i2 i3〉 . (1.46)

• The Three-Tangle: Consider the concurrence between party 1 and the set of parties 2 and 3,

C1|2,3. One might expect the entanglement that particle 1 shares with the other particles is
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a function of the entanglement that it shares individually with those particles, expressed by

C1,2 and C1,3. Surprisingly, however, it was found in [19] that

C 2
1|2,3 ≥ C 2

1,2 +C 2
1,3, (1.47)

suggesting that there is some amount of entanglement in C1|2,3 which is unaccounted for

by entanglement simply between the pairs. This implies that there is some entanglement

unique to the parties as a trio. This led to the definition of the Three-Tangle, τ , often referred

to as the ‘Residual Entanglement’, which measures that unaccounted for entanglement,

τ = C 2
1|2,3−C 2

1,2 +C 2
1,3. (1.48)

The Three-Tangle can alternately be expressed mathematically as a determinant much like

the Concurrence could in the 2 qubit case. In three qubits we can arrange the coefficients of

|ψ〉 now in a 2×2×2 tensor and compute the hyperdeterminant of that tensor to determine

the Three-Tangle,

τ (|ψ〉) = 4 |d1−2d2 +4d3| , (1.49)

where

d1 =a2
000a2

111 +a2
001a2

110 +a2
010a2

101 +a2
011a2

100 (1.50)

d2 =a000a001a110a111 +a000a010a101a111 +a000a011a100a111 (1.51)

+a001a010a101a110 +a001a011a100a110 +a010a011a100a101

d3 =a000a110a101a011 +a100a010a001a111. (1.52)

1.5 Properties of Entanglement

Each of the entanglement measures which I have described to this point has an intuitive

interpretation and correctly identifies separable quantum states, but I have yet to formally define

what constitutes a measure of entanglement. The following properties which a function, E, must

have to be considered an entanglement measure are, in some sense, the most general properties of
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entanglement itself.

The first requirement is that E identifies separable states, be them pure or mixed, as having

zero entanglement. Formally, if ρ is separable, then

E (ρ) = 0. (1.53)

Notably this condition is not sufficient in determining separability, meaning that there may be an

entangled state, ρ , for which E (ρ) = 0. This condition also mandates that the Schmidt Rank be

subtracted by 1 to be considered a proper entanglement measure.

The next requirement on E is motivated by physical restrictions on entanglement. Entan-

glement is a fundamentally a non-local phenomenon, meaning that it cannot be created by purely

local means. The simplest exhibition of this principle is that the entanglement of a quantum state

is invariant under local unitary (LU) evolution. More precisely, for any local unitary operator,

U =
n⊗

i=1

Ui, (1.54)

where Ui ∈U (di), then

E (ρ) = E
(

UρU†
)
. (1.55)

Going beyond unitary evolution, if one expands the possible local action to ‘Stochastic Local

Operations and Classical Communication’ (SLOCC) [20], then we now enforce that entanglement

does not increase on average. More precisely, if, under the action of some SLOCC operation, ρ

evolves to ρ ′i with probability pi, then

E (ρ)≤∑
i

pi E
(
ρ
′
i
)
. (1.56)

The final formal requirement on E is convexity. Intuitively, if one has access to two quan-

tum states, ρA and ρB, then mixing the two states should not increase the average entanglement.

Formally, for pA + pB = 1, then

E (pA ρA + pB ρB)≤ pA E (ρA)+ pB E (ρB) . (1.57)

Conveniently, the convex roof extension guarantees that any pure state measure extends to mixed

states while satisfying convexity.
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Together, (1.53-1.57) formally define the set of conditions which an entanglement measure,

E, must satisfy. While not an explicit in the definition of entanglement, several interesting features

appear when comparing different measures of entanglement against each other. The first is that

they recognize very different classes of states as entangled. Consider the following pair of three

qubit states,

|W 〉 =
1√
3

(
|001〉+ |010〉+ |100〉

)
(1.58)

|GHZ〉 =
1√
2

(
|000〉+ |111〉

)
. (1.59)

Each state is considered maximally entangled in three qubits by some measure. By the work of

this thesis in conjunction with [21], it can be shown that |W 〉 maximizes the pairwise concurrence

among three qubit states for which C1,2 = C2,3 = C3,1, while |GHZ〉 has maximal three-tangle.

Interestingly, however, |W 〉 has 0 three-tangle, while |GHZ〉 has 0 pairwise concurrence. This

example clearly demonstrates the distinct forms which entanglement can take, which is particularly

relevant to protocols which rely on specific types of entanglement as a resource. This motivates

some of the prevalent questions which this thesis seeks to answer. Namely, what types of states

exhibit which types of entanglement, and which states maximize certain entanglement measures?

In Chapter 3 I examine maximal pairwise concurrence in translationally invariant rings, while

in Chapter 4 I show that even the simplest of fully symmetric matrix product states can achieve

maximal pairwise concurrence. And in Chapter 5 I examine how pairwise entanglement evolves

in highly symmetric quantum random walks.

The other notably property of entanglement is the constraining of shared entanglement in

multipartite states. This phenomenon was first observed in [19] as a consequence of (1.47). If its

left hand side is maximized, (1.47) takes the form

1≥ C 2
1,2 +C 2

1,3. (1.60)

This implies that if if parties 1 and 2 are maximally entangled (C1,2 = 1), then neither party can

share any entanglement with any other (C1,3 = C2,3 = 0). This behavior is commonly referred
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to as the ‘monogamy’ of entanglement, reflecting that the amount of entanglement that can be

shared among multiple parties is highly constrained. In three qubits, the full achievable space

of pairwise entanglements, Ci, j, was found in [22] to be the convex hull of the Roman-Steiner

surface [23]. This was later expanded in [24] to also constrain the Three-Tangle,

t2 (1− x2− y2− z2− t2)− (x2y2 + x2z2 + y2z2−2xyz
)
≥ 0, (1.61)

where (x,y,z, t) = (C1,2,C2,3,C3,1,τ). In Chapter 2 I add the final polynomial LU invariant and

find the full achievable space when restricted to permutation symmetric states. In Chapter 3

I return to the constraints on just shared pairwise concurrences, only looking at 4 and 5 qubit

translationally invariant states.
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Chapter 2

Fully Permutation Symmetric States

Quantifying entanglement and its properties, while of great value for both experimental

and theoretical applications, is a challenging task for multiple reasons. As the number of

particles grows, so too do the number of ways to define, measure, and share entanglement. The

dimension of the overall state space also grows quickly in the number of particles, as well with

the dimensions of those individual particles. Entanglement calculations become quite difficult

with so many degrees of freedom. For a single state with given numerical coefficients, calculating

entanglement is merely a question of computational power. But, when trying to determine

maximal entanglements and constraints on shared entanglement, the entire state space much be

considered, making each degree of freedom a variable in the calculations. Even for the smallest

particle dimension (d = 2), determining pairwise concurrence in states of multiple qubits amounts

to finding the eigenvalues of a 4×4 matrix, which is challenging enough for an arbitrary matrix

let alone for one whose entries are potentially complex functions of the many state coefficients.

These factors make the study of entanglement difficult in the most general cases. Even in three

qubits, our knowledge of entanglement constraints is incomplete [24].

A common approach to managing the complexity of entanglement calculations is to

consider only the most relevant portions of the overall Hilbert space. Consider, for example, the
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translationally invariant 1-D ferromagnetic Ising model [25] with no external field,

H =−J ∑
i
~σi ·~σi+1, (2.1)

where ~σ is the vector of Pauli matrices and J > 0. The energy associated to a given state in

this physical system is a function of the inner product between adjacent spins. The ground state

for this system, then, is the family of states in which each spin is pointed in the same direction.

Likewise, states of high energy are ones where many adjacent spins are pointed in opposite

directions. Such states are of less physical interest in this system, and therefore so too are their

entanglement properties. One might then restrict entanglement calculations to states where the

spins are more aligned. In four qubits in the σz basis, say, one could reasonably eliminate |0101〉

and |1010〉 from the state space, reducing the number of degrees of freedom and simplifying the

calculations, while still finding meaningful results on the remaining states.

This procedure of restricting to a subset of particularly relevant subset of states is a

commonly used approach to entanglement theoretic work and is a central theme to the work of

this thesis. Rather than individually selecting the states which are most favorable to any given

Hamiltonian, however, I will be choosing to exploit the symmetries which are common in widely

studied physical systems. The first such symmetry I will examine, and the topic of this chapter, is

total permutation invariance. A state, |ψ〉, is totally permutation symmetric if it is unchanged

when any two of its particles exchange party labels. Given that the full permutation group is

generated by such arbitrary swaps, |ψ〉 is then invariant under any permutation of the party labels.

We can formalize this concept in a definition of full permutation invariance on states of n qubits,

which will be the sole focus of this chapter.

Definition 3. An n qubit state, |ψ〉, is fully permutation symmetric if

Uπ |ψ〉= |ψ〉 ∀ π ∈ Sn, (2.2)

where Uπ is the unitary representation of π on n qubits.

Henceforth, such states will simply be referred to as ‘symmetric’ states, while states obeying
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other symmetries will be labeled by the full description of that symmetry.

Beyond shrinking the size of the state space to analyze over, the restriction to the symmet-

ric subspace also reduces the number of entanglements to determine. For instance, consider two

disjoint subsets of parties, A and B, from the overall state, as well as some bipartite measure of

entanglement on those sets, EA,B(|ψ〉). The symmetry of |ψ〉 then implies that, for any π ∈ Sn,

EA,B (|ψ〉) = EA,B (Uπ |ψ〉) = EA′,B′ (|ψ〉) , (2.3)

where A′ = π−1A and B′ = π−1B. This reduces the possible EA,B(|ψ〉) to a single Ea,b where

a = |A| and b = |B|. Since the labels of the parties themselves are irrelevant, we can see that the

entanglement now only depends on how many parties are being considered.

Symmetric states clearly offer a great simplification to the analysis of entanglement, but

importantly they do so while maintaining substantial physical relevance. Symmetric states are key

to the state preparation required to perform measurement-based quantum computing [26]. The

ground states of various translationally invariant Hamiltonians are symmetric [27], such as that

of (2.1). Symmetric states also appear in the context of quantum computing algorithms, such as

Grover’s search algorithm, the initial state for which is symmetric [28]. The analytical simplicity

and physical value of symmetric states have made them the focus for a great deal of research into

entanglement properties. A complete picture of the geometric entanglement in symmetric states

was given in [29]. The maximal pairwise concurrence for symmetric states was found in [21].

Symmetric states with maximally mixed single party reductions were found and analyzed in [30],

while their two-party reductions were studied in [31].

The attention of this chapter is paid to the entanglement properties of symmetric states in

three qubits, as well as to their representations under local unitary action. In Chapters 4 and 5 we

will return to symmetric states with additional constraints.
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2.1 Symmetric State Representations

Before examining the various entanglement properties of symmetric states, we should

first discuss their representations. Consider, for instance, a symmetric state, |ψ〉, of four qubits.

Say that, in the computational basis, the element, |0011〉, in |ψ〉 has coefficient a. Given that |ψ〉

is invariant under permutations of the party labels, we should examine the permutations of |0011〉,

which are

|0101〉 , |1001〉 , |0110〉 , |1010〉 , |1100〉 . (2.4)

To keep |ψ〉 invariant under permutations, each of the above elements in |ψ〉 should have the

same coefficient, a. Turning to the other basis elements, it is then clear that each basis element

should share the same coefficient with other elements of the same ‘Hamming Weight’, or number

of 1’s in the string associated to that element. This leads to the grouping of basis elements by

Hamming weight, i, into what is known as the Dicke basis [32],∣∣∣S(n)i

〉
=

(
n
i

)− 1
2

∑
π∈Sn

Uπ |00...0︸ ︷︷ ︸
n−i

11...1︸ ︷︷ ︸
i

〉. (2.5)

The Dicke basis elements being normalized allows the overall state to be expressed as

|ψ〉=
n

∑
i=0

ai

∣∣∣S(n)i

〉
, (2.6)

where ∑ |ai|2 = 1. In this form we can already see the simplification offered by symmetric

states in regards to the reduced degrees of freedom. The 2n complex degrees of freedom in an

unconstrained n qubit state are reduced to the n+ 1 complex coefficients, ai, in a symmetric

state. Normalization and the factoring out of a global phase from the overall state leaves only n

complex, or 2n real, degrees of freedom for a symmetric state of n qubits.

The Dicke basis is a natural starting point for the representation of symmetric multi-

qubit states. Symmetric states of higher dimensional particles admit analogous bases, where

computational basis elements are now grouped by the number of each possible entry, 1− d.

Likewise, bases for other symmetries can be constructed by adjusting the sum over π to only the

permutations associated to that symmetry. For both of these modifications, the normalization
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coefficient would need adjusting as well.

2.1.1 The Majorana Representation

Other representations for symmetric states do exist, and offer intuitive and analytical

advantages over the Dicke basis. An alternate representation was developed in [33] and is

known as the ‘Majorana Representation’. The Majorana representation offers a powerful and

intuitive geometric interpretation for symmetric states, their evolution under local unitary and

SLOCC operations, and their geometric entanglement properties [29]. It states that to any n qubit

symmetric state, |ψ〉, is associated a set of n pure, single qubit states,
{∣∣φ j

〉}
, each expressed as∣∣φ j

〉
= cos

θ j

2
|0〉+ sin

θ j

2
eiφ j |1〉 . (2.7)

The original state can remarkably be uniquely constructed by the sum over all permutations of

product states in φ j,

|ψ〉= 1√
A ∑

π∈Sn

Uπ

n⊗
j=1

∣∣φ j
〉
, (2.8)

where the normalization coefficient, A, evaluates to

A = n! ∑
π∈Sn

n

∏
j=1

〈
φ j
∣∣φπ( j)

〉
. (2.9)

At first glance, this representation is obviously symmetric and has the correct number of degrees

of freedom; the 2n real angles
{

θ j
}

and
{

φ j
}

. Note that the angles
{

θ j, φ j
}

can be associated to

points,
{

z j
}
∈ R3, on the Bloch sphere where

z j =
{

sinθ j cosφ j, sinθ j sinφ j, cosθ j
}
. (2.10)

These points are referred to as the ‘Majorana Points’ and allow for a convenient visualization of a

symmetric state by its set of n points on the Bloch sphere. Given that the Majorana representation

is unique, the full space of symmetric states can be visualized as sets of points on the Bloch

sphere.

I will now prove that any symmetric state can be uniquely described with the Majorana

representation and show how to find the set of
{∣∣φ j

〉}
from the Dicke basis coefficients, {ai}.
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Proof. Start by defining

|Γ〉= |γ〉⊗n , (2.11)

which is n copies of the same pure single qubit state, |γ〉= cos α

2 |0〉+ sin α

2 e−iβ . It will be useful

to divide each of the |γ〉 by cos α

2 to observe that

|γ〉 ∝ |0〉+ γ
∗ |1〉 , (2.12)

where γ∗ = tan α

2 e−iβ . Using this unnormalized version of |γ〉, the combined state can then be

expressed as,

|Γ〉 ∝

n

∑
i=0

√(
n
i

)
γ
∗i
∣∣∣S(n)i

〉
. (2.13)

This state allows us to pick out the {|φi〉} states that make up the Majorana representation of |ψ〉.

Consider the projection of |ψ〉 onto |Γ〉,

〈Γ|ψ〉 ∝ ∑
π∈Sn

n

∏
j=1

〈
γ
∣∣φπ( j)

〉
(2.14)

∝

n

∏
j=1

〈
γ
∣∣φ j
〉

(2.15)

This makes it clear that |ψ〉 and |Γ〉 are orthogonal if and only if |γ〉 is orthogonal to one or more

of the |φi〉. So constructing the Majorana representation becomes a matter of finding the |γ〉

which make 〈Γ|ψ〉= 0 and setting the
∣∣φ j
〉
’s to be the states orthogonal to the |γ〉’s. It is entirely

possible, however, that some of the
∣∣φ j
〉
’s will be the same, which introduces degeneracy. We can

see this by expanding the inner product,

〈Γ|ψ〉 ∝

n

∑
i=0

aiγ
i. (2.16)

The polynomial in γ on the right-hand side of the above expression is known as the ‘Majorana

Polynomial’. Its roots, {γ j}, known as the ‘Majorana Roots’, are unique according first funda-

mental theorem of algebra. The Majorana roots also identify the |Γ〉 which are orthogonal to |ψ〉,

so one can map the root γ j to
∣∣φ j
〉
= sin α j

2 |0〉− cos α j
2 e−iβ j |1〉. The degree of the root also then

specifies how many copies of that state there are in the Majorana representation. By this method

of finding the roots of the Majorana polynomial and converting them into the states,
∣∣φ j
〉
, the

state |ψ〉 can be uniquely converted from the Dicke basis to the Majorana representation.
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There is an important caveat to this procedure, however, which should be addressed. In

order for one of the
∣∣φ j
〉

to be a |0〉, the corresponding root, γ j, would have to be infinite. This

corresponds to the Majorana polynomial having degree less than n. When the degree of the

Majorana polynomial, D, is less than n, there are exactly n−D roots that approach infinity, and

therefore n−D of the
∣∣φ j
〉

are |0〉.

The Majorana representation additionally allows for convenient visualization of symmetric

LU operations on symmetric states. Consider the action of a symmetric local unitary operator,

U =U⊗n
1 , on |ψ〉,

U |ψ〉= 1√
A ∑

π∈Sn

Uπ

n⊗
j=1

U1
∣∣φ j
〉
. (2.17)

It is then clear that the Majorana representation for U |ψ〉 is constructed by the set of
{

U1
∣∣φ j
〉}

.

The new associated Majorana points are then the collective rotation of the original points by

U1 ∈ O(3). The action of symmetric SLOCC operators also admits a geometric interpretation

[34]. The conversion from γ j to z j is done in two steps; a stereographic projection of γ j onto the

Bloch sphere, followed by an inversion through the origin to find z j. An SLOCC operator acting

on |φ〉 translates the Bloch sphere through R3 before performing the stereographic projection.

One might wonder if the Majorana representation extends to symmetric states of higher

dimensional particles. This can be easily demonstrated to be impossible by counting the necessary

degrees of freedom for such a representation. For instance, a symmetric state of two qutrits

(d = 3) has 6 basis elements, and therefore has 10 real degrees of freedom after normalization

and the elimination of a global phase. This does not agree with a pair of single qutrit states, which

have 4 real degrees of freedom each, for a total of only 8.
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2.1.2 Superposition of Product States

It was shown in [35] that a symmetric state of n qubits can be represented as a superposition

of D≤ n+1 symmetric product states,

|ψ〉=
D

∑
j=1

x j
∣∣φ j
〉⊗n

, (2.18)

for some x j ∈ C and
∣∣φ j
〉

defined as in (2.7). This representation can be improved upon by an

approximation, as discussed below, and will be revisited in Chapter 4 as a means to construct a

matrix product state representation for symmetric states.

2.1.3 Canonical Forms

A powerful tool in the study of entanglement theory is the usage of canonical forms for

quantum states. Local unitary operators can be used simplify the state space and reduce the

number of degrees of freedom, all while not changing the entanglement properties of those states.

This fact has motivated the search for canonical forms which parametrize particular sets of states

after the action of local unitaries. This has been successfully done for arbitrary multi-qubit states

[36] as well as for symmetric states under the action of symmetric local unitaries to preserve the

state symmetry. What follows is a compilation of canonical forms for symmetric states, the last of

which is of my own creation. Each one eliminates 3 real degrees of freedom from the state space.

• Rotated Majorana Representation: The convenient visualization of local unitary rotations

of symmetric states in the Majorana representation makes for an equally intuitive canonical

form. The n states,
{∣∣φ j

〉}
, can be collectively rotated so that |φ ′1〉= |0〉, preceding a final

z-axis rotation to eliminate the phase of |φ2〉, leaving

U |ψ〉= 1√
A ∑

π∈Sn

Uπ |0〉
n⊗

j=2

U1
∣∣φ ′j〉 , (2.19)

where |φ ′2〉= cosθ ′2 |0〉+ sinθ ′2 |1〉. This canonical form was presented in [37] and used to

parametrize the SLOCC and LU invariants of symmetric 3 qubit states.
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• Mandilara Canonical Form: The following form was originally developed in [38]. I slightly

altered this form on three qubits in [39]. I showed and will now prove that most 3 qubit

states,

|ψ〉=
3

∑
i=0

ai

∣∣∣S(3)i

〉
, (2.20)

can be transformed by symmetric local unitaries to∣∣ψ ′〉= A
(
|000〉+ yeiφ |θ〉⊗3

)
, (2.21)

where y ∈ [0,1), θ ∈ [0,π], φ ∈ [0,2π), and |θ〉 = cos(θ/2)|0〉+ sin(θ/2)|1〉 is a single

qubit state with purely real coefficients, and A is a normalization constant.

Proof. Start by computing the Majorana polynomial, (2.16), of |ψ〉,

〈Γ|ψ〉= a0 +
√

3a1γ +
√

3a2γ
2 +a3γ

3, (2.22)

and the associated Majorana roots,
{

γ j
}

. We can then alternately express |ψ〉 as

|ψ〉= A
(
|φ1〉⊗3 + c |φ2〉⊗3

)
, (2.23)

where
∣∣φ j
〉

are defined as in (2.7), c∈C, and A is a normalization coefficient, by confirming

that this state has the same Majorana roots for some choice of c,
{

θ j
}

, and
{

φ j
}

. The

Majorana polynomial of (2.23) can be expressed as

〈Γ|ψ〉=
(

cosθ1 + γ sinθ1eiφ1
)3

+ c
(

cosθ2 + γ sinθ2eiφ2
)3

. (2.24)

Note that the normalization factor, A, has been dropped since this polynomial need only

be specified up to a scaling factor. We can further simplify by dividing by cosθ1, which

leaves,

〈Γ|ψ〉= (1+ γβ1)
3 + c′ (1+ γβ2)

3 , (2.25)

where β j = tanθ j eiφ j and c′ = c(cosθ2)/(cosθ1). Enforcing that (2.22) and (2.25) have

the same roots establishes the following constraints on
{

β j
}

and c′,

0 = (1+ γ1β1)
3 + c′ (1+ γ1β2)

3 (2.26)

0 = (1+ γ2β1)
3 + c′ (1+ γ2β2)

3 . (2.27)

Additionally, we can require that the projection of (2.23) onto |Γ〉 be the same as that of
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(2.20) when evaluated at γ = 0, which provides the third constraint,

a0 = c1 (cosθ1)
3 + c2 (cosθ2)

3 . (2.28)

Equations (2.26-2.28) provide sufficient constraints on
{

β j
}

and c′ to equate the two

representations of |ψ〉, so long as no Majorana root, γ j, is degenerate with degree 2. We

can then act on (2.23) by a local unitary, U , which rotates |φ1〉 to |0〉, resulting in

U |ψ〉= A(|000〉+ c |χ〉) , (2.29)

where |χ〉 =U |Φ1〉 =
(
cosθ/2 |0〉+ sinθ/2eiχ |1〉

)⊗3. A final local unitary can then be

applied to eliminate the relative phase in |χ〉.

This method can be generalized to symmetric states of n qubits by expressing |ψ〉 as

|ψ〉= A


|φ1〉⊗n +∑

(n+1)/2
j=2 c j

∣∣φ j
〉⊗n n odd

|φ1〉⊗n + c2
∣∣φ⊥1 〉⊗n

+∑
n/2
j=3 c j

∣∣φ j
〉⊗n n even

, (2.30)

where
〈
φ⊥1
∣∣φ1
〉
= 0, so long as |ψ〉 has no Majorana roots degenerate with degree 2≤D ≤

n−1. Local unitaries can then simplify the state to

∣∣ψ ′〉= A


|0〉⊗n + c2 |θ〉⊗n +∑

(n+1)/2
j=3 c j

∣∣∣φ ′j〉⊗n
n odd

|0〉⊗n + |c2| |1〉⊗n +∑
n/2
j=3 c j

∣∣∣φ ′j〉⊗n
n even

. (2.31)

• Rotated Dicke Basis: The previous two canonical forms offer powerful simplifications to

the state space, but are difficult to express in the computational basis, unlike the following

form which is of my own development. I will show that an n qubit symmetric state can be

rotated by symmetric local unitaries to∣∣ψ ′〉= a′0S(n)0 +a′2S(n)2 +
n

∑
i=3

a′i
∣∣∣S(n)i

〉
, (2.32)

where a′0, a′2 ∈ R and a′j ∈ C for j ≥ 3. Before doing so, however, it will be important to

examine the proof of the following Lemma, which was originally presented in [40].

Lemma 1. For any n qubit state,

|ψ〉=
1

∑
i1,...,in=0

ai1...in |i1 . . . in〉 (2.33)
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there is a choice of bases for the tensor factors, rotated to by a local unitary, U, for which

U |ψ〉=
1

∑
i1,...,in=0

a′i1...in |i1 . . . in〉 (2.34)

where ai1...in = 0 if the Hamming weight of |i1 . . . in〉 is 1.

Proof. Let |Φ〉=
⊗n

j=1
∣∣φ j
〉

be an n qubit product state which maximizes the overlap with

|ψ〉 over product states. Consider, then, acting upon |ψ〉 by the local unitary, U , for which

U |Φ〉= |0〉⊗n,

U |ψ〉=
1

∑
i1,...,in=0

a′i1...in |i1 . . . in〉 (2.35)

We can show that in this basis, a′i1...in = 0 if the Hamming weight of |i1 . . . in〉 is 1, by contra-

diction. After the action of U , the inner product, | 〈Φ|ψ〉 |2, evaluates to | 〈0|⊗nU |ψ〉 |2 =

|a′0...0|2. Consider the case where a′10...0 6= 0. One could then act on U |ψ〉 by the local

unitary,

V =
1√

|a′0...0|2 + |a′10...0|2

 a′00...0
∗ a′10...0

∗

a′10...0 −a′00...0

⊗1⊗·· ·⊗1 (2.36)

which leaves | 〈0|⊗nVU |ψ〉 |2 =
√
|a′00...0|2 + |t10...0|2. But, by assumption, |Φ〉maximized

the overlap with |ψ〉 and we therefore have a contradiction which forces a′10...0 = 0. The

same argument can simultaneously be made for the coefficients of other basis elements

with a Hamming weight of 1.

Note that this argument only applies to the Hamming weights of 1 and n−1. If we tried to

use the same idea to eliminate a′110...0, up to local unitaries we could certainly mix a′00...0

and a′110...0 in the overlap with |0〉⊗n, but not without also including a′100...0 and a′010...0,

which in general will not always increase the inner product.

I will now prove that (2.32) is a canonical form for symmetric states using the same notation

as in the proof of Lemma 1.

Proof. For a symmetric state |ψ〉, it was shown in [41] that one can always find a symmetric
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product state, |Φ〉= |φ〉⊗n, which maximizes 〈Φ|ψ〉 over product states. This implies that

the U for which U |Φ〉= |0〉⊗n is also symmetric, and therefore U |ψ〉 is likewise symmetric.

Following the arguments of the proof of Lemma 1, it follows that a′1 = 0 because
∣∣∣S(n)1

〉
is

a collection of basis elements with Hamming weights of 1. A final phasing local unitary

can then be applied to leave a′2 real.

One might wonder if such a canonical form can be applied to spaces with different symme-

tries, say for the translationally invariant states examined in the next chapter. Unfortunately,

this is not the case, as one is not guaranteed to find a symmetric product state with maximal

overlap for states with weaker symmetries [41].

2.2 Invariants of Three Qubit Symmetric States

Any multi-particle state has a set of polynomials in the coefficients of the state which are

invariant under the action of various local operators [42]. In particular, a 3 qubit state, under the

action of local unitaries, is known to have 5 algebraically independent polynomial invariants, as

well as the state norm and Z2 invariants [43]. There is some freedom in choosing 5 generators of

the algebra of invariant polynomials, as any polynomial in invariants is additionally an invariant

of the state. One set of generators which is particularly convenient for 3 qubit states under local

unitary operators is {
C1,2, C2,3, C3,1, τ, κ

}
, (2.37)

where Ci, j is the pairwise concurrence between parties i and j, τ is the three-tangle, and κ is the

Kempe invariant [44]. which is defined for a 3 qubit state, |ψ〉= ∑
1
i, j,k=0 ai jk |i jk〉, as

κ = ai1 j1k1
ai2 j2k2

ai3 j3k3
a∗i1 j2k3

a∗i2 j3k1
a∗i3 j1k2

. (2.38)

Note that in the above expression I have adopted the convention of summing over repeated indices.

This choice of invariants is particularly useful as it uses some of the most prevalent entanglement

measures in the concurrence and three-tangle.
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As mentioned in Chapter 1, the concurrence and three-tangle for 3 qubit states is con-

strained by (1.61), but no such constraints are known for all 5 invariants of arbitrary states.

For symmetric states of 3 qubits, however, I was able to determine the full achievable space of

the invariants [39]. Symmetric states offer a significant simplification to the picture of 3 qubit

invariants. Clearly, if a state is symmetric under relabeling of parties, each of the two-party

reduced density operators, ρi, j, will be identical. This then causes C1,2 = C2,3 = C3,1 = C and

effectively reduces the number of invariants to 3, which will be denoted,

{C ,τ,κ} . (2.39)

These invariants can be directly calculated from my version of the Mandilara canonical form

(2.21). In terms of the parameters y, θ , and φ , the invariants are,

τ =
2ysin3 θ

2

1+ y2 +2ycos3 θ

2 cosφ
, (2.40)

C =
ysin θ

2 sinθ

1+ y2 +2ycos3 θ

2 cosφ
, (2.41)

κ =
1

8
(
1+ y2 +2ycos3 θ

2 cosφ
)× (2.42)[(

1+ y2)(8+19y2 +8y4 +9y2 (4cosθ + cos2θ)
)

+24ycos3 θ

2
(
2+3y2 +2y4 +3y2 cosθ

)
cosφ

+48y2 (1+ y2)cos6 θ

2
cos2φ +16y3 cos9 θ

2
cos3φ

]
.

Figure 2.1 shows the invariants of 105 randomly generated symmetric 3 qubit states,

where the states were generated by sampling randomly over the allowed values of y, θ , and φ .

At a first glance, it is interesting to note that the three-tangle and Kempe invariants achieve their

maximum values of 1 on the symmetric subspace, but the concurrence does not due its monogamy

constraints [19]. A straightforward maximization over the state parameters reveals a maximum

concurrence of 2/3 in the symmetric subspace, which confirms the result of [21] for n = 3. The

points of Figure 2.1 appear to lie almost on a surface, but closer inspection reveals that they in fact

fill a narrow volume, the boundaries of which can be calculated. We can invert the expressions
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Figure 2.1: Scatterplot from two points of view of invariants of randomly generated symmetric
3 qubit states.

(2.40-2.42) by a Gröbner basis calculation to find,

cos
θ

2
=

C√
C 2 + τ2

, (2.43)

cosφ =
4−3τ2−9C 2−4κ

3C 3 , (2.44)

y =
6τ2 +9C 2 +4κ−4

3(τ2 +C 2)
3/2 −

√√√√(6τ2 +9C 2 +4κ−4

3(τ2 +C 2)
3/2

)2

−1. (2.45)

The constraints on the state parameters then provide constraints on these functions of the invariants.

The extrema of these constraints are the surfaces which form the boundaries of the invariant space.

The boundaries are formed when equality is achieved in the following relations,

0 ≤ 4− τ
2−9C 2−4κ +3C 3 (2.46)

0 ≥ 4− τ
2−9C 2−4κ−3C 3 (2.47)

0 ≥ 4−6τ
2−9C 2−4κ +3

(
τ

2 +C 2)3/2
. (2.48)

These three surfaces, which are shown in Figure 2.2, form boundaries for the possible

space of the invariants and serve as additional monogamy relations for symmetric 3 qubit

entanglement. Note that the state parameter constraints lead to more constraints on the invariants,

but (2.46-2.48) is the minimal set of constraints required to describe the region. Because there is
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Figure 2.2: View of a slice of the boundaries of the volume of symmetric 3 qubit invariants
superimposed over the points of Figure 2.1. The contour achieving equality in (2.46) is shown
in green (the upper-left surface), (2.47) in blue (lower-left), and (2.48) in red (upper-right).

a bijective map between the invariants and the state parameters, each invariant triple which lies

within the region satisfying (2.46-2.48) can be mapped to a 3 qubit symmetric state, and therefore

the entire region is achievable.

We should at this point address the states which do not admit the use of the Mandilara

canonical form, which are denoted as {|ψ̄〉}. Recall that a state, |ψ̄〉, has a degenerate Majorana

root with degree 2 [38]. Thankfully, we can show that the invariants of the states in {|ψ̄〉} likewise

satisfy (2.46-2.48). An arbitrary 3 qubit state with a degenerate Majorana root of degree 2 can be

expressed in the Majorana representation as

|ψ̄〉= 1
A ∑

π∈S3

π |φ1〉⊗ |φ1〉⊗ |φ2〉 , (2.49)

We can again use local unitaries to simplify states of this form to∣∣ψ̄ ′〉= 1
A ∑

π∈S3

π |0〉⊗ |0〉⊗ |θ〉 , (2.50)
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where |θ〉 is of the same form as (2.21). The invariants of (2.50) are

τ = 0, (2.51)

κ =
2+48cos2 θ

2 +141cos4 θ

2 +52cos6 θ

2

9(1+2cos2 θ

2 )
3

, (2.52)

C =
2−2cos2 θ

2

3+6cos2 θ

2

. (2.53)

It is then easy to verify that (2.51-2.53) satisfy (2.46-2.48) for θ ∈ (0,π]. This is perhaps

unsurprising given that the states with a degenerate Majorana root of degree 2 are a limiting case

of states which admit the canonical form. Now all 3 qubit symmetric states have been considered

and it can be concluded that (2.46-2.48) do indeed describe the full achievable region for 3 qubit

symmetric states.

A similar approach could be used to analyze the invariants of n qubits for the symmetric

subspace. 3 qubits, in particular, can be fully analyzed and visualized because the number of

invariants and state parameters is suitably low. Additionally, in the 3 qubit case, remarkably

there is an invertible map between the state parameters and the invariants, allowing for our

calculation of the achievable region. Turning to the n > 3 qubit case, [37] and [34] use the

Majorana representation to examine the SLOCC classes and invariants of symmetric states,

but the LU invariants remain less explored. The inner products of the vectors in the Majorana

representation are themselves a set of 2n−3 LU invariants, as used in [37]. It would be interesting

to find an alternate set of 2n−3 algebraically independent LU invariants which includes pertinent

entanglement measures. That set of invariants could potentially then be calculated in terms of the

2n−3 state parameters. The remarkable fact that this map was invertible for 3 qubits will not

necessarily be true in the n qubit case, though it is certainly worth examining.

2.3 Local Unitary Equivalence of Symmetric States

The results of the previous section well motivate the value of restricting entanglement

calculations to the symmetric subspace. Those results need not only be applied to symmetric
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states though, as the class of states which can be achieved by acting on symmetric states by

local unitaries will have identical entanglement properties to those of symmetric states. This

then begs the question: How can one identify whether or not a non-symmetric state, |ψ〉, can be

rotated by local unitaries to a symmetric state? This concept of LU equivalence is one which has

been well studied in the general case due to its implications not only to entanglement theory, but

also to quantum communication and quantum algorithms, where the initial states can be freely

transformed by local unitaries.

Necessary conditions for LU equivalence were found in [45] and admit an intuitive

interpretation. Consider an n qubit state, |ψ〉, and its single particle reduced density matrices,

{ρi}. The action of a local unitary, U =
⊗n

i=1Ui on |ψ〉 can, in part, be seen as the rotation

of ρi by Ui. This is convenient because the single party density matrices and their rotations

are easy to visualize thanks to their geometric interpretation through the ‘Bloch Ball’. Namely,

ρi =
1
212 +

1
2~ni ·~σ , where ~σ is the vector of Pauli matrices, and~ni ∈ R3 is the Bloch vector for

ρi and is constrained by |~ni| ≤ 1. It then follows that UiρiU
†
i = 1

212 +
1
2~n
′
i ·~σ , where ~n′i is the

rotation of~n by the O(3) representation of Ui and therefore |~ni|= |~n′i|. So acting on |ψ〉 by a local

unitary simply rotates each of its single party Bloch vectors in R3, which is considerably easier to

interpret than unitary transformations on
(
C2)⊗n. The obvious necessary condition for unitary

equivalence is then that |ψ〉 and |ψ ′〉, with respective single party Bloch vectors, {~ni} and {~n′i},

are equivalent to each other under local unitaries only if |~ni|= |~n′i| ∀ i.

There is a notable limitation to the condition that |~ni|= |~n′i| ∀ i, which prevents it from

alone being a sufficient for LU equivalence. The limitation is that if |~ni|= |~n′i|= 0 for at least

one party, then we lose not only the nice geometric interpretation of the action of U , but the

sufficiency of this condition for LU equivalence. Resolutions to this issue are discussed in [45],

but they leave the problem challenging analytically. Thankfully, for symmetric state of 3 qubits,

we can resolve this issue and additionally we can reinterpret the LU equivalence condition in

terms of entanglement.
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For symmetric states, the single party Bloch vectors obey~ni =~n ∀ i, and therefore so too

must any state which is LU equivalent to a symmetric state. In the case of 2 qubits, the Schmidt

decomposition implies that any state is LU equivalent to a symmetric one. Moving to the 3

qubit case, consider an arbitrary state, |ψ〉, with single party Bloch vectors {~ni}. In this setting I

will now prove that |~n1|= |~n2|= |~n3| is a necessary and sufficient condition for |ψ〉 being LU

equivalent to a symmetric state.

Proof. Start by acting on |ψ〉 by a local unitary which leaves it in the canonical form presented

in [36], ∣∣ψ ′〉= a |000〉+b1 |100〉+b2 |010〉+b3 |001〉+ ceiφ |111〉 , (2.54)

where a,b1,b2,b3,c > 0 and 0≤ φ ≤ π . The single party reduced states of this state are then

ρ1 =

 a2 +b2
1 +b2

2 ab3

ab3 b2
3 + c2

 , (2.55)

ρ2 =

 a2 +b2
1 +b2

3 ab2

ab2 b2
2 + c2

 , (2.56)

ρ3 =

 a2 +b2
2 +b2

3 ab1

ab1 b2
1 + c2

 . (2.57)

To constrain the state such that |~n1| = |~n2| = |~n3|, we can equivalently enforce that Tr(ρ2
1 ) =

Tr(ρ2
2 ) = Tr(ρ2

3 ) because

Tr
(
ρ

2
i
)
=

1
2
+

1
2
|~ni|2 . (2.58)

This then results in the following set of conditions,

(b2
i − c2)(b2

j −b2
k) = 0, (2.59)

for distinct i, j, and k. In satisfying (2.59), one may chose b1 = b2 = b3, which is obviously

already symmetric, or bi = b j = c with bk unconstrained. Without loss of generality, we can

choose b1 = b and b2 = b3 = c, leaving the state as∣∣ψ ′〉= a |000〉+b |100〉+ c |010〉+ c |001〉+ ceiφ |111〉 . (2.60)
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All that remains now is to find a local unitary which rotates this state to a symmetric one.

Consider a local unitary, U = U1⊗U2⊗U3. The symmetry between parties 2 and 3 in (2.60)

implies that the suitable local unitary will obey U2 =U3. We can then factor out U⊗3
2 from U ,

which leaves it in the form

U = (U⊗3
2 )(U†

2 U1⊗1⊗1) = (U⊗3
2 )(U ′1⊗1⊗1). (2.61)

We can then ignore the U⊗3
2 component, as it simply rotates the state within the symmetric

subspace. This leaves only the determination of U ′1, which can be parametrized as

U ′1 =

 cosθeiα sinθeiβ

−sinθe−iβ cosθe−iα

 . (2.62)

To enforce that |ψ ′′〉=U1⊗1⊗1 |ψ ′〉 is symmetric we must require that 〈001|ψ ′′〉= 〈010|ψ ′′〉=

〈100|ψ ′′〉 and 〈011|ψ ′′〉= 〈110|ψ ′′〉= 〈101|ψ ′′〉, which evaluates to two complex conditions,

cosθ(be−iα − ceiα)−asinθe−iβ = 0, (2.63)

csinθ(ei(β+φ)+ e−iβ ) = 0. (2.64)

Examining (2.64) first, we must consider each solution. If c = 0, then the state is separable, and

therefore trivially LU equivalent to a symmetric product state. If sinθ = 0, equation (2.63) would

enforce b = c, which is symmetric. This leaves β = π−φ

2 . Using this to constrain (2.63) and

solving its real and imaginary components yields the following solutions for θ and α .

tanα =
c−b
b+ c

tan
φ −π

2
, (2.65)

tanθ =
(b− c)cosα

acos φ−π

2

. (2.66)

These angles determine U ′1 and leave |ψ ′′〉 symmetric.

As an aside, starting again from (2.54), one can determine the pairwise concurrences by

using the following identity,√
α +

√
β −

√
α−

√
β =

√
2α−2

√
α2−β . (2.67)

From here, enforcing that C1,2 = C2,3 = C3,1 remarkably arrives again at (2.59). This implies that

C1,2 = C2,3 = C3,1 is likewise a necessary and sufficient condition for |ψ〉 being LU equivalent
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to a symmetric state.

Moving to states of more than three qubits, it can be shown that |~ni| =
∣∣~n j
∣∣ ∀ i, j is no

longer a sufficient condition for LU equivalence to symmetric states, nor is Ci, j =Ck,l ∀ i 6= j,k 6= l.

We can draw on a counterexample from the following theorem which was presented in [31],

Theorem 1. The k particle reduced density matrices of a pure symmetric state of n qubits cannot

be fully mixed for 2≤ k < n.

This contradicts my proposed sufficient conditions for LU equivalence to symmetric states

because we can examine the following unnormalized state,

|0L〉= |00000〉+ ∑
π∈Z5

Uπ (|11000〉− |10100〉− |01111〉) , (2.68)

whose single and two party reduced density matrices are each fully mixed [46]. This would then

satisfy both of our proposed conditions for LU equivalence to symmetric states, but cannot be LU

equivalent to a symmetric state according to Theorem 1.

While it is not the case that either |~ni| =
∣∣~n j
∣∣ ∀ i, j or Ci, j = Ck,l ∀ i 6= j,k 6= l are

sufficient conditions for LU equivalence to symmetric states, one might be able to make somewhat

different statements regarding symmetric LU equivalence. It may be the case that |~ni|=
∣∣~n j
∣∣ ∀ i, j

is a sufficient condition for LU equivalence to translationally invariant states, a distinction

which is made evident by considering the generalized Bloch vector representation detailed in

Appendix C. Likewise, it may be that a state with translationally invariant pairwise concurrences

is necessarily LU equivalent to a translationally invariant state. Alternatively it may be the case

that Ci, j = Ck,l ∀ i 6= j,k 6= l is sufficient for LU equivalence to symmetric states so long as

Ci, j > 0. Each of these are open questions of great interest to me.

This work is, in part, a reprint of material from published work done in collaboration

with David Meyer, as it appears in Physical Review A, as well as on the arXiv. Alexander

Meill and David A. Meyer, “Symmetric 3 Qubit Invariants,” Phys. Rev. A 96, 062310 (2017),

arXiv:1702.07295. The dissertation author was the primary investigator and author of this

material.
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Chapter 3

Translationally Invariant States

Among the possible symmetries to enforce on a quantum state, translational invariance

(TI) is a common and natural choice. This is due largely, in part, to their applications in physically

relevant condensed matter systems with the same symmetry [47][48], such as 1-D spin chains

with periodic boundary conditions [49]. Translationally invariant states have accordingly been a

fruitful subject for entanglement theoretic research [50] and SLOCC class descriptions [47].

Translational invariance of quantum states can be defined in much the same way that

we defined full permutation symmetry, with the only difference being that we only consider the

cyclic subgroup of the full permutation group.

Definition 4. An n qubit state, |ψ〉 is translationally invariant if

Uπ |ψ〉= |ψ〉 ∀ π ∈ Zn ⊂ Sn, (3.1)

where Uπ is the unitary representation of π on n qubits.

We can likewise define basis elements for translationally invariant states which mirror the

Dicke basis for symmetric states. Let a normalized n qubit TI basis element be denoted with an

overbrace, ︷ ︸︸ ︷
|i1 . . . in〉= |Zn |i1 . . . in〉 |−

1
2 ∑

π∈Zn

Uπ |i1 . . . in〉 , (3.2)
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where |Zn |i1 . . . in〉 | denotes the cardinality of the orbit of |i1 . . . in〉 under the action of the Zn

cyclic permutation group. As an example, consider the 4 qubit basis element︷ ︸︸ ︷
|0011〉= 1

2

[
|0011〉+ |1001〉+ |1100〉+ |0110〉

]
, (3.3)

which is notably different from the Dicke basis element
∣∣∣S(4)2

〉
, which symmetrizes

︷ ︸︸ ︷
|0011〉 and︷ ︸︸ ︷

|0101〉. In this sense we can clearly see that translational invariance is a weaker symmetry than

full permutation symmetry, and so the translationally invariant subspace is larger than the fully

symmetric one. Likewise it offers a weaker constraint on pairwise entanglement, which we will

exclusively examine via the pairwise concurrence in this chapter.

The cyclic symmetry implies that for any pairwise concurrence, Ci, j, between parties i

and j, Ci, j = Ci+k, j+k for any k ∈ Z, where the party label subscripts are to be evaluated mod n.

So each allowable pairwise concurrence in a TI state corresponds to the spacing between party

labelings. As a point of notation, define C
(n)
k to be the pairwise concurrence between parties

k-away in an n qubit TI state. Note that k runs from 1 to bn
2c, as any k > n

2 is equivalent to the

n− k spacing. The bn
2c distinct C

(n)
k is reduced from the

(n
2

)
distinct pairs in a general n qubit

state.

The entanglement picture in TI states is further simplified by the fact that many C
(n)
k share

the same properties. To see this, consider some m which is not a factor of n, and the associated

permutation, π ∈ Sn,

π : i 7→ mi mod n. (3.4)

Note that π is invertible only when m = 1 or m - n. Permuting the party labels of some TI state,

|ψ〉, according to π−1 will leave the state in some new TI state, |χ〉 = Uπ−1 |ψ〉, which obeys

Ci, j (|ψ〉) = Cπ(i),π( j) (|χ〉). This means that any properties of C
(n)
k will be shared by C

(n)
mk for

each m which is not a factor of n. It then suffices to only examine the constraints on C
(n)
k for k

which are factors of n.

These simplifications, along with the natural reduction in state parameters, makes an
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analytic description of the entanglement of TI states more approachable. In this chapter I present

a preliminary analysis of the allowed pairwise concurrences in TI states. Both maximal pairwise

entanglement as well as monogamy constraints for shared entanglement are considered. Due to

the extensive nature of the calculations, significant portions of analysis are relegated to Appendix

A.

3.1 Maximal Pairwise Concurrence

A natural question when examining a subset of quantum states is; which states maximize

entanglement within that subset, and what is that maximal entanglement? Within the transla-

tionally invariant subspace, we need only examine the maxima of C
(n)
k for 1≤ k ≤ bn

2c and k|n.

Denote a state which maximizes C
(n)
k as

∣∣∣ψ(n)
k

〉
. Finding the

∣∣∣ψ(n)
k

〉
and the associated maximal

C
(n)
k is greatly simplified by the following theorem, which was the main result of my work in

[51],

Theorem 2. For k|n, maxC
(n)
k = maxC

(n/k)
1 , and a corresponding state which maximizes C

(n)
k

can be constructed as ∣∣∣ψ(n)
k

〉
=

k−1⊗
i=0

∣∣∣ψ(n/k)
1

〉
k{n/k}+i

, (3.5)

where {n/k} represents the set of integers from 0 to n/k−1. These integers, multiplied by k then

incremented by i, indicate the party labelings in the overall state.

Proof. Consider some n qubit TI state,
∣∣∣ψ(n)

〉
= ∑i∈Zn

2
ai |i〉, and some k|n. Examine the reduced

density matrix,

ρk{n/k} = Trk{n/k}

(∣∣∣ψ(n)
〉〈

ψ
(n)
∣∣∣) (3.6)

= ∑
j∈Zn−n/k

2

∑
x,y∈Zn/k

2

aj,x |x〉〈y|a∗j,y, (3.7)

where x and y indicate basis elements in the parties in k{n/k}, while j indicates basis elements in

the remaining n−n/k parties. Notably, this reduced state obeys, by definition, C
(n/k)
1

(
ρk{n/k}

)
=
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C
(n)
k

(∣∣∣ψ(n)
〉)

.

Now label any π ∈ Zn ⊂ Sn as

π
(n)
m : i 7→ i+m mod n. (3.8)

We can then examine that for any m,

U
π
(n/k)
n/k−m

ρk{n/k} = ∑
j

∑
x,y

ψ
j,π(n/k)

m (x)
|x〉〈y|ψ∗

j,y
(3.9)

= ∑
j

∑
x,y

ψ
π
(n)
km (j,x)

|x〉〈y|ψ∗
j,y

(3.10)

= ρk{n/k}, (3.11)

where the first equality describes the action of a permutation on the parties in k{n/k}, the second

extends that permutation to the n parties and rearranges using the sum over j, and the third uses

the cyclic symmetry of
∣∣∣ψ(n)

〉
. And so for any π ∈ Zn/k,

Uπρk{n/k} = ρk{n/k}Uπ = ρk{n/k}. (3.12)

Since ρk{n/k} commutes with Uπ for π
(n/k)
1 , they can be simultaneously diagonalized into a basis{∣∣φ j

〉}
. Since Uπ for π

(n/k)
1 is unitary, its eigenvalues associated to each

∣∣φ j
〉

can be labeled as

λ j = eiφ j . We can then examine

Uπρk{n/k} = ∑
j

p jUπ

∣∣φ j
〉〈

φ j
∣∣ (3.13)

= ∑
j

p jeiφ j
∣∣φ j
〉〈

φ j
∣∣ , (3.14)

which, according to (3.12), must be equal to the original ρk{n/k}. This is only possible if eiφ j = 1

for each j, implying that
∣∣φ j
〉

are each TI states.

Lastly, order the eigenstates to be decreasing in C
(n/k)
1

(∣∣φ j
〉)

. By the convexity of the

pairwise concurrence, it then follows that

C
(n/k)
1

(
ρk{n/k}

)
= C

(n/k)
1

(
∑

j
p j
∣∣φ j
〉〈

φ j
∣∣) (3.15)

≤ ∑
j

p jC
(n/k)
1

(∣∣φ j
〉)

(3.16)

≤ C
(n/k)
1 (|φ1〉) (3.17)

≤ C
(n/k)
1

(∣∣∣ψ(n/k)
1

〉)
, (3.18)
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with the inequality being saturated by the state, (3.5).

Interestingly, convexity was the only property of the concurrence used in the proof of

Theorem 2, meaning that any convex entanglement measure would obey an analogous statement

in TI states.

Notably, (3.5) also agrees with the monogamy behavior examined in the next section, as

each of C
(n)
j 6=k

(∣∣∣ψ(n)
k

〉)
= 0. As a result of Theorem 2, all that remains is to find C

(n)
1 for each

n. For n ≤ 3, the TI subspace is equivalent to the totally symmetric one, where the maxima

have previously been determined. This leads to maxC
(2)
1 = 1 with

∣∣∣ψ(2)
1

〉
= 1√

2
(|00〉+ |11〉) and

maxC
(3)
1 = 2

3 with
∣∣∣ψ(3)

1

〉
= 1√

3
(|001〉+ |010〉+ |100〉) [21].

Turning to n ≥ 4, no precise results are known, though a lower bound on maximal

entanglement was presented in [50]. I was able to improve this bound for n = 4 and n = 5 in [51].

Consider arbitrary normalized 4 and 5 qubit TI states,∣∣∣ψ(4)
〉
=a |0000〉+b

︷ ︸︸ ︷
|0001〉+c

︷ ︸︸ ︷
|0011〉+d

︷ ︸︸ ︷
|0101〉+e

︷ ︸︸ ︷
|0111〉+ f |1111〉 , (3.19)∣∣∣ψ(5)

〉
=a |00000〉+b

︷ ︸︸ ︷
|00001〉+c

︷ ︸︸ ︷
|00011〉+d

︷ ︸︸ ︷
|00101〉 (3.20)

+ e
︷ ︸︸ ︷
|00111〉+ f

︷ ︸︸ ︷
|01011〉+g

︷ ︸︸ ︷
|01111〉+h |11111〉 .

Unfortunately, even calculating C
(4)
1 and C

(5)
1 for arbitrary states is analytically challenging, let

alone maximizing over that space. Instead, the calculation will be performed on the even-X state

subspaces for n = 4 and n = 5. Even-X states (abbreviated X states), introduced in [52], are

superpositions of only computational basis elements with even Hamming weight. Notably, the set

of states TI states examined in [50] are a subset of the TIX states. Arbitrary 4 and 5 qubit TIX

states then take the form,∣∣∣ψ(4)
X

〉
= a |0000〉+ c

︷ ︸︸ ︷
|0011〉+d

︷ ︸︸ ︷
|0101〉+ f |1111〉 , (3.21)∣∣∣ψ(5)

X

〉
= a |00000〉+ c

︷ ︸︸ ︷
|00011〉+d

︷ ︸︸ ︷
|00101〉+g

︷ ︸︸ ︷
|01111〉 . (3.22)

The X state subspace is a useful one as concurrence calculations on the space are rather simple.
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Two qubit reduced density matrices of X states were shown in [52] to be of the form

ρ =



α 0 0 ν

0 β µ 0

0 µ∗ γ 0

ν∗ 0 0 δ


. (3.23)

The square roots of the eigenvalues of ρρ̃ , as in the concurrence definition. are the following,

λi =
{√

βγ + |µ|,
√

βγ−|µ|,
√

αδ + |ν |,
√

αδ −|ν |
}
. (3.24)

Either the first or third term is the largest eigenvalue, so the X state concurrence is then

C (|ψX〉) = 2max
{

0, |ν |−
√

βγ, |µ|−
√

αδ

}
. (3.25)

Let C
(n)
k,µ and C

(n)
k,ν indicate the possible non-zero expressions for TIX concurrence involving µ

and ν respectively. Following this notation, the concurrences of arbitrary 4 and 5 qubit TIX states

can be calculated to be,

C
(4)
1,µ =

|cd∗+dc∗|√
2

−2

√(
|a|2 + |c|

2

4

)(
|c|2
4

+ | f |2
)

(3.26)

C
(4)
1,ν = |ac∗+ c f ∗|− 1

2
|c|2−|d|2 (3.27)

C
(4)
2,µ = |c|2−2

√(
|a|2 + |d|

2

2

)(
|d|2

2
+ | f |2

)
(3.28)

C
(4)
2,ν =

√
2|ad∗+d f ∗|− |c|2 (3.29)

C
(5)
1,µ =

2
5

(
|dc∗+ cd∗|+ |d|2 + |g|2−

√
(5|a|2 +2|c|2 + |d|2)(|c|2 +3|g|2)

)
(3.30)

C
(5)
1,ν =

2
5

(∣∣∣√5ac∗+2cg∗+dg∗
∣∣∣−|c|2−2|d|2−|g|2

)
(3.31)

C
(5)
2,µ =

2
5

(
|dc∗+ cd∗|+ |c|2 + |g|2−

√
(5|a|2 + |c|2 +2|d|2)(|d|2 +3|g|2)

)
(3.32)

C
(5)
2,ν =

2
5

(∣∣∣√5ad∗+2dg∗+ cg∗
∣∣∣−2|c|2−|d|2−|g|2

)
. (3.33)

In determining the maximum of C
(4)
1 and C

(5)
1 over the X state subspace, the maximization will

need to be performed over both the µ and ν terms with the overall maximum being the larger

of the two resulting maxima. These maximizations are easily performed after setting all the

coefficient phases equal to 0. This phase treatment maximizes each absolute value in (3.26)-(3.33)
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and simplifies the maximizations enough to readily calculate. The results are compiled in the

table below. The overall maximum of C
(4)
1 = 1

2 occurs when d = 0 and a = c = f = 1√
3
, while

Table 3.1: Maximum concurrences of 4 and 5 qubit CSX states. The analytic results for n = 5
are the roots of complicated polynomials, so their rounded numerical values are reported instead.

Concurrence Maximum

C
(4)
1,µ

1
4

C
(4)
1,ν

1
2

C
(5)
1,µ ≈ 0.468

C
(5)
1,ν ≈ 0.366

the C
(5)
1 ≈ 0.468 maximum occurs at a = g = 0 and c≈ 0.298 d ≈ 0.955. These maxima, while

calculated only over the TIX subspace, agree with the apparent maxima in numerical results for

general TI states, as shown in Figure 3.3 in the next section. This C
(5)
1 maximum is also a notable

improvement over the lower bound established in [50].

For n > 5, the TIX state concurrences can be calculated, but the spaces prove too large

and complicated to maximize over analytically. A possible future direction for this work is to

bound the maximal C
(n)
1 in the large n limit.

3.2 Constraints on Shared Pairwise Concurrence

We know that the space of allowable pairwise concurrences, {Ci, j}, in arbitrary n qubit

states is constrained by monogamy relations. Within the translationally invariant subspace we

would analogously expect monogamy relations for the set of {C (n)
k }. I examined such monogamy

relations for 4 and 5 qubit TI states in [51]. Shown in Figure 3.1 are the k = 1 and k = 2

concurrences for 105 randomly generated 4 and 5 qubit TI states.

43



Figure 3.1: Pairwise concurrences of 105 randomly generated 4 and 5 qubit TI states.

This first numerical examination demonstrates the peculiar monogamous relationship

between pairwise concurrences in TI states. It appears that for both n = 4 and n = 5, above some

threshold concurrence the other concurrence must be equal to 0. This is differs from typical

monogamy relations [19][53], which also suggest that the maximally entangled states minimize

entanglement with other parties, but allow for states with slightly less entanglement than the

maximum to share other entanglements.

The following theorem provides some analytical context to the TI state monogamy.

Theorem 3. The neighborhood of states around any
∣∣∣ψ(4)

2

〉
have C

(4)
1 = 0.

Proof. Consider the state, ∣∣∣ψ(4)
2

〉
=
∣∣∣ψ(2)

1

〉
1,3
⊗
∣∣∣ψ(2)

1

〉
2,4

, (3.34)

The pure 2 qubit states with concurrence equal to 1 are equivalent to each other under local

unitaries, so the set of
∣∣∣ψ(4)

2

〉
are likewise equivalent. This implies that the entanglement

properties of any
∣∣∣ψ(4)

2

〉
can be determined by examining those of (3.34). Now consider altering

(3.34) by some infinitesimal perturbation of the form of (3.19),∣∣ψ ′〉= ∣∣∣ψ(4)
2

〉
+ ε

∣∣∣ψ(4)
〉
, (3.35)
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where ε � 1. To show C
(4)
1 = 0 for the above state regardless of the perturbation, we first

calculate the reduced density matrix between adjacent parties,

ρr =
1
4
+

ε

2
ℜ





2a b b c

b
√

2d c e

b c
√

2d e

c e e 2 f




+O(ε2). (3.36)

It is clear that only the real part of the perturbation will affect the concurrence, so continue

assuming the coefficients of the perturbation are real. For simplicity, absorb ε into the perturbation

coefficients. Continuing in the concurrence calculation,

ρrρ̃r =
1
16

+
1
8



2a+2 f b− e b− e 2c

b− e 2
√

2d 2c e−b

b− e 2c 2
√

2d e−b

2c e−b e−b 2a+2 f


+O(ε2). (3.37)

The square roots of the eigenvalues of this matrix are all λi =
1
4

√
1+O(ε)+O(ε2). therefore,

the sum λ1−λ2−λ3−λ4 will certainly be negative, so the concurrence is 0.

The monogamy of TI states is more clearly observed by examining the subconcurrence,

defined as

sC = λ1−λ2−λ3−λ4, (3.38)

where λi are the square roots of the eigenvalues of ρρ̃ in descending magnitude, as in the concur-

rence definition. More simply, the subconcurrence has the same definition as the concurrence,

except it doesn’t map negative sums of λi to 0. The subconcurrences of randomly generated 4

and 5 qubit TI states are displayed in Figure 3.2.

Figure 3.2 clearly demonstrates the apparent thresholds in 4 and 5 qubits. For both

n = 4 and n = 5, it appears that above some k = 2 subconcurrence, the k = 1 subconcurrence

must be negative. Due to the symmetry discussed at the beginning of the previous section, in

5-qubits, states with k = 1 subconcurrences above the same threshold will have negative k = 2
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Figure 3.2: Pairwise subconcurrences of 105 randomly generated 4 and 5 qubit TI states.

subconcurrence. For n = 4, however, the totally symmetric state, |W 〉 =
︷ ︸︸ ︷
|0001〉 has the same

sC (4)
1 as (3.34) while also having sC (4)

2 = 1
2 .

The analytic description of these monogamy thresholds will again be performed on

the X state subspace, where the calculations are much simpler. Shown in Figure 3.3 are the

subconcurrences of randomly generated TIX states overlaid on general TI state subconcurrences.

Based on these numerical results, it appears that TIX states share the same monogamy thresholds

and maximum concurrences as TI states, making them a relevant subset for analysis.

Looking only at TIX states, we found the achievable concurrence boundaries in both 4

and 5 qubits. The full analysis is presented in Appendix A, but the boundaries allow for a quick

determination of the concurrence thresholds in the X state subspace. The thresholds are compiled

in Table 3.2 on the next page. Note that the sC (4)
1 threshold only fully holds for TIX states. Also

recall that the concurrence symmetry in 5 qubits implies that sC (5)
1 and sC (5)

2 have the same

threshold.

This work is, in part, a reprint of material from published work done in collaboration

with David Meyer, as it appears on the arXiv. Alexander Meill and David A. Meyer, “Pairwise

Concurrence in Cyclically Symmetric Quantum States,” arXiv:1802.06877. The dissertation
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Figure 3.3: Pairwise subconcurrences of 105 randomly generated 4 and 5 qubit TI and TIX
(darker blue) states.

Table 3.2: Threshold concurrences of 4 and 5 qubit TIX states. The analytic result for n = 5 are
the roots of complicated polynomials, so the rounded numerical value is reported instead.

Concurrence Threshold

sC (4)
1

2
√

2−1
4

sC (4)
2

4
5

sC (5)
k ≈ 0.418

author was the primary investigator and author of this material.
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Chapter 4

Symmetric Matrix Product States

The results of the previous chapter are somewhat surprising when put into context.

Theorem 2 implies that maximal entanglement in translationally invariant states increases with

the spacing between the party labels. This, at a first glance, is in stark contradiction with the

classical intuition - that classical correlations decay with spacing in translationally invariant

systems [54] [55]. This contradiction is resolved by the fact that label spacing, in states which are

only constrained by translational invariance, has no immediate physical meaning. As discussed in

the previous chapter, permuting the parties of a TI state equates pairwise correlations along any

spacing to that of a factor of the number of parties, n. The most apparent example of this is prime

n, which leads to each spacing being essentially equivalent. So this then begs the question: If

translational invariance alone is not enough, what further symmetry or state structure is required

to convey physical separation in translationally invariant systems?

One potential approach is the ‘Matrix Product State’ (MPS) structure, which is ubiquitous

in the study of condensed matter spin systems [56] [57] [58] as well as in high energy theory, as

it pertains to the holographic principle in the study of anti-de Sitter space/conformal field theory

[59] [60]. A matrix product state is constructed by assigning a set of matrices,
{

A[ j]
i

}
∈MD j×D j+1 ,

to each particle, where j is the party label and i = 1, . . . ,d j. The trace of the product of these
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matrices determine the computational basis coefficients of the overall state,

|ψ〉=
d1

∑
i1=1

...
dn

∑
in=1

Tr
(

A[1]
i1 ...A

[n]
in

)
|i1...in〉 . (4.1)

One interpretation of matrix product states, which in part led to their initial conception in the

AKLT model [58], begins by assigning to party j a pair of virtual spins of dimension D j and D j+1.

The virtual spins of neighboring parties, j and j+1, are taken to be in a maximally entangled

bond, which, upon being measured in a basis corresponding to the matrices A[ j]
i , leave the physical

spins in the actual state, |ψ〉. In this sense, the entangling of neighboring spins adds a notion

of locality to the state. The dimension of the virtual spins, D j, are referred to as the “Bond

Dimension”, and convey some notion of interaction scale for the state. Physically this notion is

formalized by the fact that one can always construct a parent Hamiltonian which acts non-trivially

on L∼ 2logD/ logd neighboring parties, for which that MPS is a ground state [56]. If the bond

dimensions are sufficiently large, any state may be represented as an MPS [61]. To make use of

the interaction length interpretation, however, we generally seek the smallest bond dimension

which admits a MPS representation of the state. MPS representations of a given bond dimension

then form a non-trivial subset of the overall Hilbert space with physically relevant properties.

This restriction to matrix product states allows us to further constrain the translationally

invariant space of states in such a manner that enforces a physical length scale. A translationally

invariant MPS is one which assigns the same set of matrices, {Ai} ∈MD×D, to each party. This

alone is enough to yield translational invariance because cycling the parties merely cycles the A

matrices, which, due to the cyclic invariance of the trace, leaves the state unchanged. Returning to

the problem of growing pairwise entanglement with party spacing in TI states, one would expect

that the entanglement grows at the cost of bond dimension, D. While there is yet no formal proof

of such a statement, it is nonetheless interesting to ask what kind of entanglement can be achieved

when D is fixed, and preferably, small. In this chapter I answer this question for fully symmetric

matrix product states and develop an LU canonical form for TI matrix product states as a tool for

future entanglement analysis.
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4.1 Translationally Invariant MPS LU Canonical Form

As discussed in Chapter 2, LU canonical forms are a powerful tool in entanglement analy-

sis because they simplify the state space while leaving the entanglement properties unchanged.

MPS’s are particularly difficult to expand into the computational basis, so any reduction in the

parameter space is valuable in that pursuit. Other work has examined reducing the degrees of

freedom in exact representation of MPS’s [35] [62], but none have yet exploited the action of

local unitaries to further simplify the state. I was able to develop an LU canonical form for

translationally invariant matrix product states of n qubits with D = 2, which leaves the state with

only 1 real and 2 complex degrees of freedom, with probable room for additional reduction. What

follows is a derivation of that LU canonical form.

Begin by considering an n qubit TI MPS,

|ψ〉=
1

∑
i1=0

. . .
1

∑
in=0

Tr(Ai1 . . .Ain) |i1 . . . in〉 . (4.2)

A standard canonical form for such states was introduced in [62] which involves merely changing

the structure of the Ai matrices, while maintaining the exact original state. They identified the key

property that, without changing the bond dimension, D, one can achieve the original state with a

set of matrices Ai which obey
1

∑
i=0

AiA
†
i = 1D. (4.3)

This form is referred to as ‘left normalized’, while the same constraint for A†
i Ai is referred to

as the ‘right normalized’ canonical form. For D > 2, the canonical form can be additionally

constrained with a block structure, but we will restrict to D = 2 where (4.3) is sufficient.

In the search for an LU canonical form on TI MPS’s it will be important to observe that

a state which obeys (4.3) will continue to do so under LU evolution. To see this, consider a

symmetric local unitary operator, U =U⊗n
1 acting on |ψ〉, resulting in a new set of matrices,

A′i =
1

∑
j=0
{U1}i, j A j. (4.4)
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We can then show that these new matrices are still in the left normalized canonical form,
1

∑
i=0

A′iA
′
i
†

=
1

∑
i, j,k=0

{U1}∗i,k {U1}i, j A jA
†
k (4.5)

=
1

∑
i, j,k=0

{
U†

1

}
k,i

{
U1

}
i, j

A jA
†
k (4.6)

=
1

∑
j,k=0

{
U†

1 U1

}
k, j

A jA
†
k (4.7)

=
1

∑
j,k=0

δk, jA jA
†
k (4.8)

=
1

∑
i=0

AiA
†
i (4.9)

= 1D. (4.10)

This fact allows us to freely apply LU operators while continuing to enforce (4.3). Consider, then,

parametrizing

U1 =

 cosθeiµ −sinθeiν

sinθe−iν cosθe−iµ

 , (4.11)

and examine {
A′0
}

0,1 = cosθeiµ {A0}0,1− sinθeiν {A1}0,1 . (4.12)

We can choose U1 so that
{

A′0
}

0,1 = 0 by setting

tanθei(ν−µ) =
{A0}0,1

{A1}0,1
. (4.13)

At this point we can express A′0 as,

A′0 =

 α 0

γ β

 , (4.14)

where α ∈ R and β ,γ ∈ C.

We can now enforce (4.3) to constrain A′1,

A′1A′†1 = 1−A′0A′†0 =

 1−α2 αγ∗

αγ 1−|γ|2−|β |2

 . (4.15)

In examining the parametrization of A′1, the following Lemma will be useful.

Lemma 2. If A,B ∈M(D) satisfy AA† = BB†, then A = BV for some V ∈U(D).
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Proof. Let UAΣAV †
A = A and UBΣBV †

B = B be the singular value decompositions of A, and B. Note

that AA† = BB† implies UA =UB =U and ΣA = ΣB = Σ. Then if V =VBV †
A ,

BV =UΣV †
BVBV †

A =UΣV †
A = A. (4.16)

Lemma 2, in conjunction with the Cholesky decomposition of (4.15), gives the following

parametrization of A′1,

A′1 =

 √1−α2 0

αγ√
1−α2

√
1−|β |2−|γ|2− α2|γ|2

1−α2

V, (4.17)

where V is an arbitrary unitary matrix. These two matrices, A′0 and A′1, form an LU canonical

form for any TI MPS with D = 2.

This canonical form is potentially useful in parametrizing states of D = 2, but the process

could potentially extend to D > 2. One would simply eliminate the desired entries in A0 through

LU evolution, then parametrize A1 with (4.3) and the Cholesky decomposition. There are some

notable choices made in the derivation of my canonical form, which could be altered to suit the

needs of any particular application. One could eliminate a different entry in A0, and one could

choose an expansion of A1A†
1 other than the Cholesky decomposition. Additionally, numerical

evidence suggests that β can likely be constrained to be real by further manipulation.

4.2 Fully Symmetric Representations and Entanglement

While the primary application of the MPS structure has been to TI systems, fully permuta-

tion symmetric states have also been examined in the MPS context [35] [63]. When expressing a

symmetric state as an MPS, one could opt for a non-symmetric matrix structure. The W -state,

|W 〉 =
︷ ︸︸ ︷
|0 . . .01〉, for instance, can be achieved with only D = 2 by the almost symmetric set

of matrices,
(

A[ j]
0 , A[ j]

1

)
= (|0〉〈1| , 1) for j < n and

(
A[n]

0 , A[n]
1

)
= (|0〉〈1|σx, σx) [62]. If one

wanted a more symmetric choice of matrices, the obvious choice is to enforce that Ai are diagonal
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and independent of party. Much like party independence of Ai being sufficient for translational

invariance due to the cyclic invariance of the trace, having Ai be diagonal allows for arbitrary

shuffling of the (now commuting) matrices leaving the state unchanged. With this matrix structure,

the W -state requires a minimal bond dimension of D = n, and is given by the matrices,

A0 ∝ diag
{

0,1,eiα ,e2iα , . . . ,e(n−2)iα
}

(4.18)

A1 ∝ diag
{
(1−n)

1
n ,1,e(n−1)iβ ,e(n−2)iβ , . . . ,e2iβ

}
, (4.19)

where α = 2π/n(n− 1) and β = 2π/n [35]. While the W -state has a provably minimal bond

dimension of D = n, I was able to show that the MPS, |Wε〉, described by the matrices,

A0 =

 1 0

0 e
iπ
n

 (4.20)

A1 = ε

 0 0

0 e−
i(n−1)π

n

 , (4.21)

obeys 〈W |Wε〉= 1−O(ε). This example is notable from an entanglement perspective, for the

W -state maximizes pairwise concurrence in symmetric states of n qubits [21]. This implies

that for a bond dimension of only D = 2, one can get arbitrary close to a maximally entangled

symmetric state, which is quite valuable as an information resource.

The previous example of approximating the W -state with a low bond dimension state

generalizes to the entire symmetric subspace. It was shown in [35] that an arbitrary symmetric

state of n qubits can be exactly described by a diagonal MPS of bond dimension D≤ n+1. The

state is constructed by first observing, as was introduced in Chapter 2, that a symmetric state can

be expressed as a superposition of symmetric product states,

|ψ〉=
D

∑
j=1

x j
∣∣φ j
〉⊗n

. (4.22)

This state then admits a diagonal MPS representation with the matrices,

Ai =
D

∑
j=1

x1/n
j
〈
i
∣∣φ j
〉
| j〉〈 j| . (4.23)
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This map from symmetric state to diagonal MPS is also invertible. Given the matrices,

Ai =
D

∑
j=1

r(i)j | j〉〈 j| , (4.24)

we can expand this state into the form of (4.22) with

x j =

√√√√ 1

∑
i=0

∣∣∣r(i)j

∣∣∣2 (4.25)

〈
i
∣∣χ j
〉
=

r(i)j

x j
. (4.26)

It seems as if we can do much better than D ≤ n+ 1, however, given our knowledge of the

Mandilara canonical form, which states that almost every symmetric state can be expressed as a

superposition of D≤ dn
2e symmetric product states. The exceptions, which do not admit such an

expansion, are states with at least one Majorana root degenerate to degree 2≤D ≤ n−1. The

W -state is a prime example of such an exception, having one non-degenerate root and one root

degenerate to degree D = n−1. The obvious question then is; if we perturb the degenerate roots

to infinitesimally break that degeneracy, do we maintain near unit overlap with the original state?

If the answer to this question is yes, then we would be able to approximate any symmetric state

with a diagonal MPS with bond dimension D≤ dn
2e with infinitesimal error. I confirmed that this

is indeed possible, as described by the following theorem.

Theorem 4. Given a symmetric state of n qubits in the Majorana representation,

|ψ〉= 1√
A ∑

π∈Sn

Uπ

n⊗
j=1

∣∣φ j
〉
, (4.27)

and the perturbed state ∣∣ψ ′〉= 1√
A ∑

π∈Sn

Uπ

∣∣φ ′1〉 n⊗
j=2

∣∣φ j
〉
, (4.28)

which obeys |〈φ1|φ ′1〉|= cosε ≈ 1− 1
2ε2, then the overlap between these two states is bounded

from below by 〈ψ|ψ ′〉 ≥ 1−2(n!)ε .

The proof of this theorem can be found in Appendix B. Note that the overlap, |〈φ1|φ ′1〉|= cosε ,

was chosen to represent a perturbation of the according Majorana star by an angle of 2ε .

The above theorem and its implications are exciting, particularly in the context of entangle-
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ment. We now know that we can get arbitrarily close to highly entangled symmetric states while

keeping the bond dimension low. We should confirm, though, that those approximate states have

approximately the same pairwise concurrence. Say |ψ ′〉 = |ψ〉+ ε
∣∣ψ⊥〉, where

〈
ψ
∣∣ψ⊥〉 = 0.

We want to show that ∣∣∣∣C (∣∣ψ ′〉)−C (|ψ〉)
∣∣∣∣≤ O (ε) .

To do so, we will find the square roots of eigenvalues of the usual ρ ′ρ̃ ′, or, equivalently, the fourth

roots of ρ ′ρ̃ ′ρ̃ ′ρ ′. To first order in ε we have

ρ
′
ρ̃
′
ρ̃
′
ρ
′ = ρρ̃ρ̃ρ + εG,

where

G = Hρ̃ ρ̃ρ +ρH̃ρ̃ρ +ρρ̃H̃ρ +ρρ̃ρ̃H,

where

H =
∣∣∣ψ〉〈ψ

⊥
∣∣∣+ ∣∣∣ψ⊥〉〈ψ

∣∣∣ .
Importantly, ρρ̃ρ̃ρ and G are Hermitian, so in finding the eigenvalues of the Hermitian ρ ′ρ̃ ′ρ̃ ′ρ ′

we can use the usual quantum error propagation. Namely, to first order in ε ,

λ
′
i = λi + ε 〈λi|G |λi〉 ,

unless some of the λ ′i s are degenerate. In that case, the corrections to λ ′i are the eigenvalues of

ε
〈
λ j
∣∣G |λk〉. Since

〈
λ j
∣∣G |λk〉 are finite, so too is the O (ε) correction to λ ′i . And so, finally, the

perturbed concurrence is

C
(∣∣ψ ′〉)= max

{
0,(λ1)

1
4 − (λ2)

1
4 − (λ3)

1
4 − (λ4)

1
4

}
= C (|ψ〉)+O (ε) .

To give some final context to these results, I will find the full space of D = 2 matrix

product states and show how the W -state lies infinitely close to that space. Start by exploiting the

inverse map from a D = 2 diagonal MPS to a superposition of 2 symmetric product states,

|ψ〉= x1 |φ1〉⊗n + x2 |φ2〉⊗n . (4.29)

I will describe the achievable subspace of symmetric states using the Majorana representation,

and to do so we will find the Majorana roots of this state, then see what is achievable. Note that
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the action of LU operators is easily visualized in the Majorana representation as rotations of

the Bloch-sphere. This will be helpful, as I will use LU operators to simplify the state as much

as possible before calculating the Majorana roots, and it will then be understood that the set of

achievable Majorana representations includes all rotations of the ones found.

Now, to simplify the state and find its Majorana representation, start by using local

unitaries to leave the state as

|ψ〉′ = x1 |0〉⊗n + x2 (r0 |0〉+ r1 |1〉)⊗n , (4.30)

where ri ∈ R. Now let x =−(x2r1/x1)
n and y =−r0/r1 and express the (now unnormalized) state

as

|ψ〉′ ∝ |0〉⊗n− x−n (−y |0〉+ |1〉)⊗n . (4.31)

Note that in computing the Majorana roots, the normalization of the state does not matter,

so the roots will entirely depend on the unbounded x∈C and y∈R. Moving forward in calculating

the Majorana roots, we define the unnormalized state

|α〉= (|0〉+α
∗ |1〉)⊗n , (4.32)

where α is an unbounded complex number. The Majorana roots are then the solutions in α to

〈α|ψ〉′ = 0, which can be expressed as,

1− x−n (α− y)n = 0 (4.33)

α− y = xe2πim/n (4.34)

α = y+ xe2πim/n. (4.35)

where m ∈ Z. To finish the computation of the Majorana representation we would perform a

stereographic projection of these n roots to the Bloch-sphere, then use points directly opposite

these projections as the points of the Majorana representation. So, to summarize this result, the

roots in the complex plane lie in a circle of radius |x| centered at y, and are evenly spaced around

this circle with starting angle, arg(x). The W -state, in particular, is approached by taking the

limits, |x| → ∞ and y→ ∞. This places a single star at the origin, with the remaining n−1 points

56



out approaching infinity. This projects to one point at the |1〉 pole, with the remaining points

project infinitely close to the |0〉 pole.
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Chapter 5

Party-Site Symmetric States

The final symmetry examined in this thesis is motivated by the dynamics of identical

particles whose motion is constrained to the discrete sites of a complete graph. Consider n

particles evolving on a complete graph of d sites. To describe the state of such a system, we can

index the site position of particle j by i j, and therefore the overall state can be described by n

qudits, or, a vector in C⊗n
d ,

|ψ〉=
d

∑
i1=1

. . .
d

∑
in=1

ai1...in |i1 . . . in〉 . (5.1)

To this state we would then want to enforce constraints which reflect the symmetries of both:

• Party: Because the particles in question are identical, we want to enforce that any permuta-

tion of their labels leaves the state unchanged.

• Site: Because the particles are walking on a complete graph, the sites themselves of that

graph are identical, and any permutation of their labels would leave the graph, and therefore

the state, unchanged.

We have encountered party symmetry before, as it is the familiar full permutation symmetry

which was the focus of Chapter 2, but site symmetry is a new consideration. We can formalize

these combined symmetries in the following definition,
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Definition 5. A state,

|ψ〉=
d

∑
i1=1

. . .
d

∑
in=1

ai1...in |i1 . . . in〉 , (5.2)

is party-site symmetric (PSS) if

Uµ |ψ〉 = |ψ〉 ∀ µ ∈ Sn (5.3)

V⊗n
ν |ψ〉 = |ψ〉 ∀ ν ∈ Sd, (5.4)

where Uµ is the unitary representation of µ , which permutes the party labels,

Uµ |i1 . . . iN〉= |µ (i1 . . . iN)〉 , (5.5)

while Vν is the unitary representation of ν , which permutes the basis (site) labels,

Vν |i〉= |ν(i)〉 . (5.6)

The individual symmetries associated to party (5.3) and site (5.4) will be referred to as U

and V symmetries respectively. For PSS states we expect that many of the coefficients, ai1...in ,

are constrained to be equal by the U and V symmetries, leaving some much smaller basis for

the subspace. The U symmetry implies that the ordering of i1-in does not matter, so we can

equate groups of the ai1...in under common labels, where each of the i1-in are arranged so that like

indices are adjacent. For example, a1,2,2,3,4,2,3 would be equal to and can be labeled as a1,2,2,2,3,3,4.

Furthermore, the indices can be arranged in decreasing number of like indices. This would equate

and relabel a1,2,2,2,3,3,4 to a2,2,2,3,3,1,4. The V symmetry then implies that the collective index

values themselves can be freely permuted, so a2,2,2,3,3,1,4 could be labeled as any ai1,i1,i1,i2,i2,i3,i4 ,

so long as i1-i4 are distinct. Given that freedom, the only actually distinguishing feature of

ai1,i1,i1,i2,i2,i3,i4 , and the elements it is grouped with, is the partitioning of shared indices, meaning

we can label the grouped elements by a3,2,1,1, where now the subscripts denote the number of

elements who share a given index. One can recognize that such a grouping and labeling can be

expressed in a young diagram,

=

{
µ

(
ν(1),ν(2),ν(2),ν(3),ν(4),ν(2),ν(3)

) ∣∣∣∣ µ ∈ Sn, ν ∈ Sd

}
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In general, the number of rows in a Young diagram indicates that each of the elements in the set

has that many distinct indices. The number of blocks in a row indicates how many parties share

that index. Naturally, the total number of blocks is n, and there can be at most d rows in a Young

diagram. With the interpretation of Young diagrams established, we then find that they serve as

an orthonormal basis for pure PSS states,

|ψ〉= ∑
y∈Y (n,d)

ay |y〉 , (5.7)

where Y (n,d) is the set of Young diagrams with n blocks and at most d rows, and |y〉 is a

normalized equal superposition of computational basis elements belonging to the set described by

the Young diagram, y.

The symmetries of PSS states clearly offer a significant reduction to the state space, but

they do so while maintaining notable physical relevance. PSS states are a natural starting point for

the description of quantum random walks of identical particles on the complete graph. Such walks

have been shown to be a candidate model for quantum search algorithms which achieve the same

O(
√

N) speedup as Grover’s algorithm [64]. While the marking of a site (or sites) to search for

does break the site symmetry slightly, the fully symmetric case offers a baseline for describing the

entanglement properties of the more general walks [65]. In particular, we would like to examine

whether or not the PSS symmetry alone is enough to validate a mean field approximation,

ρ2 ≈ ρ1⊗ρ1, (5.8)

where ρ1 and ρ2 are the one- and two-party reduced density matrices respectively, which, thanks to

the U symmetry, are independent of party labels. The purpose for examining such an assumption,

as detailed in the next section, is that it is a key step in potentially approximating the dynamics of

quantum random walks with non-linear equations of motion which result in conditional O(N1/4)

speedup of quantum search [66].

At first glance, the mean field approximation seems like a reasonable one for the PSS

setting. It is certainly not true for an entangled state, so presumably the more entangled the

state, the bigger the violation. But, as we have seen previously, the symmetry of the state forces
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any entanglement to be shared among each party, and therefore should decrease with n due to

monogamy. In this chapter I will further motivate the relevance of the mean field approximation

for PSS states, then examine its validity more precisely.

5.1 The Gross-Pitaevskii Equation

To appreciate the need for the mean field approximation we have to make a slight diversion

into continuous space equations of motion. In particular, we will examine the derivation of

the Gross-Pitaevskii Equation [67], which is a widely use tool in the study of Bose-Einstein

condensates [68]. The derivation begins with the exact equations of motion, which are described

by the multi-particle Schrödinger Equation,

ih̄∂tψ (t,x1, . . . ,xn) =

[
n

∑
j=1

∣∣p j
∣∣2

2m
+

1
n ∑

1≤ j<k≤n
V
(
x j− xk

)]
ψ (t,x1, . . . ,xn) , (5.9)

where the particle interactions are merely pairwise and described by the potential, V
(
x j− xk

)
,

which is independent of party labels. If one were to trace over each party but the first to find the

equations of motion for reduced state of the first particle, ρ1, one would arrive at the BBGKY

Hierarchy,

−ih̄∂tρ1
(
t,x1;x′1

)
=

(
|p1|2

2m
−
|p′1|

2

2m

)
ρ1
(
t,x1;x′1

)
(5.10)

+
1
n

n

∑
j=2

∫ [
V
(
x1− x j

)
−V

(
x′1− x j

)]
ρ1, j

(
t,x1,x j;x′1,x j

)
dx j.

The main obstacle in the use of the BBGKY Hierarchy is the fact that the dynamics of ρ1 are

coupled to the dynamics of each of the two party reduced states, ρ1, j, which, in turn, are coupled

to the dynamics of the three party reduced states, and so on, forming a hierarchy of coupled

differential equations. To break the hierarchy and decouple the equations of motion we must

make a set of assumptions. First, we assume party symmetry, an assumption natural given that

the intent is to describe the motion of identical bosons. Party symmetry allows the sum to be

61



evaluated, leaving,

−ih̄∂tρ1
(
t,x1;x′1

)
=

(
|p1|2

2m
−
|p′1|

2

2m

)
ρ1
(
t,x1;x′1

)
(5.11)

+
n−1

n

∫ [
V (x1− x2)−V

(
x′1− x2

)]
ρ2
(
t,x1,x2;x′1,x2

)
dx2,

where now ρ1 and ρ2 label the reduced states of any single particle or pair of particles respectively.

Next we assume many particles, 1� n, and suitably short range interactions such that V (x)≈

λδ (x). These make the integration easy to perform and leaves us with the Gross-Pitaevskii

Hierarchy,

−ih̄∂tρ1
(
t,x1;x′1

)
=

(
|p1|2

2m
−
|p′1|

2

2m

)
ρ1
(
t,x1;x′1

)
+λ

[
ρ2
(
t,x1,x1;x′1,x1

)
−ρ2

(
t,x1,x′1;x′1,x

′
1
)]
.

(5.12)

To this point, the assumptions have been minor and natural. The assumption which breaks

the hierarchy, though, is somewhat unique to the Bose-Einstein condensate setting. In the large n

limit, the state of any two particles in a Bose-Einstein condensate decouples and can be described

by the tensor product of the individual state [68],

ρ2
(
t,x1,x2;x′1x2

)
≈ ρ1

(
t,x1;x′1

)
⊗ρ1

(
t,x2;x′2

)
, (5.13)

which is exactly the continuous space version of the mean field approximation, (5.8). This

approximation breaks the hierarchy and arrives at Non-Linear Schrödinger Equation,

−ih̄∂tρ1
(
t,x1;x′1

)
=

(
|p1|2

2m
−
|p′1|

2

2m
+λ

[
ρ1 (t,x1;x1)−ρ1

(
t,x′1;x′1

)])
ρ1
(
t,x1;x′1

)
. (5.14)

The final necessary assumption, which is also appropriate in the Bose-Einstein condensate setting,

is that ρ1(t,x1;x′1) = ψ(t,x1)ψ
∗(t,x′1) is pure. This alters the equations of motion from describing

the dynamics of a density matrix, ρ1 to a pure wavefunction, ψ , and is the final form of the

Gross-Pitaevskii Equation,

−ih̄∂tψ (t,x) =

(
|p|2

2m
+λ |ψ (t,x)|2

)
ψ (t,x) . (5.15)

The Gross-Pitaevskii equation is notably non-linear, but results in decoupled equations of motion.
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It is that non-linearity which, in the complete graph quantum search setting,

−ih̄∂t |ψ(t)〉=

[
H0 +g∑

j
|〈 j|ψ(t)〉|2 | j〉〈 j|

]
|ψ(t)〉 , (5.16)

enables the conditional speedup over Grover’s algorithm, which is provably optimal in the

linear setting [69]. Clearly, though, in order to use (5.16), we need to show that the mean field

approximation, (5.8), is a reasonable one. Examining that assertion in the fully symmetric PSS

setting is the clear first step.

5.2 Measuring Mean Field Approximation Validity

There are two main challenges in measuring the validity of mean field approximation,

(5.8), for a general PSS state, (5.1). The first is performing the partial trace to find ρ1 and ρ2,

and the second is evaluating how similar ρ2 and ρ1⊗ρ1 are by some metric. There are many

options for measuring the distance between two matrices. Two methods which make use of the

generalized Bloch vector representation of the state are described in Appendix C, but the primary

metric of choice for this thesis is the matrix Fidelity [70],

F(A,B) =
[

Tr
√√

AB
√

A
]2

. (5.17)

The fidelity is a common choice in quantum information theory [71] as a generalization of the

pure state inner product to mixed states. As applied to the task at hand, let us label, for a PSS

state, |ψ〉,

F(|ψ〉) =
[

Tr
√√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1

]2

. (5.18)

Before determining F(|ψ〉) for a selection of PSS states, it will be useful to examine some

properties of PSS states, their reductions, and the fidelity measure applied to those reductions.

First, let us examine the reduced state, ρk, of any k < n parties from the overall PSS state, and

find how the U and V symmetries translate to the symmetries of that reduced state. Begin by
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tracing out the last n− k parties to find

ρk = Trk̄ (|ψ〉〈ψ|) (5.19)

= ∑
lk+1...lN

∑
i1...ik

∑
j1... jk

ai1...iklk+1...lN |i1 . . . ik〉〈 j1 . . . jk|a∗j1... jklk+1...lN . (5.20)

Now consider Vν−1 for some ν ∈ Sd , acting on ρk,

Vν−1ρkV
†
ν−1 = ∑

i, j,l
aν(i1)...ν(ik)lk+1...lN |i1 . . . ik〉〈 j1 . . . jk|a∗ν( j1)...ν( jk)lk+1...lN

(5.21)

= ∑
i, j,l

aν(i1)...ν(ik)ν(lk+1)...ν(lN) |i1 . . . ik〉〈 j1 . . . jk|a∗ν( j1)...ν( jk)ν(lk+1)...ν(lN)
(5.22)

= ∑
i, j,l

ai1...iklk+1...lN |i1 . . . ik〉〈 j1 . . . jk|a∗j1... jklk+1...lN (5.23)

= ρk. (5.24)

Likewise consider Uµ−1 for µ ∈ Sk. We can also extend µ⊗1n−k ∈ Sn as the permutation which

acts on the first k parties by µ and leaves the traced over parties fixed. Now examine

Uµ−1ρkU
†
µ−1 = ∑

i, j,l
aµ(i1...ik)lk+1...lN |i1 . . . ik〉〈 j1 . . . jk|a∗µ( j1... jk)lk+1...lN

(5.25)

= ∑
i, j,l

aµ⊗1N−k(i1...iklk+1...lN) |i1 . . . ik〉〈 j1 . . . jk|a∗µ⊗1Nk ( j1... jklk+1...lN)
(5.26)

= ∑
i, j,l

ai1...iklk+1...lN |i1 . . . ik〉〈 j1 . . . jk|a∗j1... jklk+1...lN (5.27)

= ρk. (5.28)

Even more interesting is that acting on only one side by U would likewise leave ρk invariant

because µ can be freely extended to µ⊗1N−k for either the bra or the ket individually. This is

not true for the V symmetry, where absorbing ν into the sum in l has to affect both the bra and

the ket simultaneously. Altogether then we have

Uρk = ρkU = ρk (5.29)

V ρkV † = ρk. (5.30)

These symmetries allow us to greatly constrain the elements of ρ1 and ρ2, leaving us

with a fairly simple parametrization of the two matrices. Starting with ρ1, the V symmetry

implies that {ρ1}i, j = {ρ1}ν(i),ν( j) for any ν ∈ Sd . This then equates all the diagonal elements

as {ρ1}i,i =
1
d and the off diagonal elements as {ρ1}i, j = A for all i 6= j. Since the V symmetry
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equates {ρ1}i, j = {ρ1} j,i, the hermiticity of ρ1 then implies that A ∈ R. The same application of

the U and V symmetries along with hermiticity constrain the following elements of ρ2, in which

it is implied that i, j, k, and l are distinct,

{ρ2}i j,kl = B1 (5.31)

{ρ2}ii,kl = B2 (5.32)

{ρ2}i j,il = {ρ2}i j,li = {ρ2} ji,il = {ρ2} ji,li = B3 (5.33)

{ρ2}ii,kk = B4 (5.34)

{ρ2}ii,il = {ρ2}ii,li = B5 (5.35)

{ρ2}i j,i j = {ρ2}i j, ji =
1
d2 +C (5.36)

{ρ2}ii,ii =
1
d2 − (d−1)C, (5.37)

where B1, B3, B4, and C are real, while B2 and B5 are complex. Notably, we can relate A to the

parameters of ρ2 by

A = {ρ1}i, j (5.38)

= {Tr2 (ρ2)}i, j (5.39)

=
d

∑
k=1
{ρ2}ik, jk (5.40)

= (d−2)B3 +B5 +B∗5 (5.41)

= (d−2)B3 +2ℜ(B5) . (5.42)

The symmetries of ρ1 and ρ2 aid in the determination of M :=
√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1 and

its square root for the purpose of calculating F(|ψ〉). First, we can confirm that
√

ρ1 =
(d−1)

√
1−Ad +

√
1+Ad(d−1)

d
3
2

1d

+

√
1+Ad(d−1)−

√
1−Ad

d
3
2

∑
i 6= j
|i〉〈 j| ,

(5.43)
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by recognizing that{√
ρ1

2
}

i,i
=

(
(d−1)

√
1−Ad +

√
1+Ad(d−1)

d
3
2

)2

+(d−1)

(√
1+Ad(d−1)−

√
1−Ad

d
3
2

)2

=
1
d
,

(5.44)

and {√
ρ1

2
}

i, j
=2

(
(d−1)

√
1−Ad +

√
1+Ad(d−1)

d
3
2

)(√
1+Ad(d−1)−

√
1−Ad

d
3
2

)

+(d−2)

(√
1+Ad(d−1)−

√
1−Ad

d
3
2

)2

= A,

(5.45)

for i 6= j. From this we can see that
√

ρ1 has the same symmetries as ρ1. We can extend this

notion and show that M, as well as its square root, have all the same symmetries as ρ2. To see

this, begin by noting that {√
ρ1⊗ρ1

}
i j,kl = {

√
ρ1}i,k {

√
ρ1} j,l . (5.46)

This allows us to confirm that
√

ρ1⊗ρ1 has V symmetry,{
V
√

ρ1⊗ρ1V †
}

i j,kl
= {√ρ1}V (i),V (k) {

√
ρ1}V ( j),V (l) (5.47)

= {√ρ1}i,k {
√

ρ1} j,l (5.48)

=
{√

ρ1⊗ρ1
}

i j,kl . (5.49)

The same is not true for the full U symmetry, however, which we can see if we consider U as the

swap operator and the following family of entries,{
U
√

ρ1⊗ρ1
}

i j,il = {√ρ1} j,i {
√

ρ1}i,l (5.50)

6= {√ρ1}i,i {
√

ρ1} j,l . (5.51)

It is true, however, that {
U
√

ρ1⊗ρ1U†
}

i j,kl
= {√ρ1} j,l {

√
ρ1}i,k (5.52)

=
{√

ρ1⊗ρ1
}

i j,kl . (5.53)
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This finally allows us to show that

V
√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1V † = V
√

ρ1⊗ρ1V †V ρ2V †V
√

ρ1⊗ρ1V † (5.54)

=
√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1, (5.55)

and

U
√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1 = U
√

ρ1⊗ρ1U†Uρ2
√

ρ1⊗ρ1 (5.56)

=
√

ρ1⊗ρ1ρ2
√

ρ1⊗ρ1, (5.57)

with of course the same being true for a right application of U . The same symmetries then apply

to
√

M, a fact which is easily shown through the singular value decomposition.

The fact that
√

M has the same symmetries as ρ2 means that we can associate a set of

B1-B5 to its off-diagonal elements. We can then let
√

M
2
= M provide a set of constraints of

those B1-B5, which, in the large d limit evaluate to

{M}ii,ii =
{√

M
}2

ii,ii
+d2B2

2 +dB2
4 +2d |B5|2 (5.58)

{M}i j,i j =2
{√

M
}2

i j,i j
+d2B2

1 +d |B2|2 +4dB2
3 + |B5|2 (5.59)

{M}ii, j j =2
{√

M
}

ii,ii
B4 +d2 |B2|2 +2dB2B∗5 +2dB∗2B5 +2 |B5|2 +dB2

4 (5.60)

{M}ii,i j =
{√

M
}

ii,ii
B5 +B4B5 +2

{√
M
}

i j,i j
B5 +dB3B5 (5.61)

+dB3B∗5 +dB2B3 +dB∗2B3 +d2B2B1 +dB2B4

{M}ii, jk =
{√

M
}

ii,ii
B2 +B4B5 +B4B∗5 +2B3B5 +2B3B∗5 +dB2B42 (5.62)

+
{√

M
}

i j,i j
B2 +dB1B5 +B1B∗5 +2dB2B3 +2B∗2B3 +d2B1B2

{M}i j,ik =4
{√

M
}

i j,i j
B3 +B∗2B5 +B2B∗5 +d |B2|2 + |B5|2 +2dB2

3 +4dB1B3 +d2B2
1 (5.63)

{M}i j,kl =4
{√

M
}

i j,i j
B1 +2B∗2B5 +2B2B∗5 +8B2

3 +d |B2|2 +8dB1B3 +d2B2
1. (5.64)

With these symmetries, properties, and constraints in tow, we can turn to finding F(|ψ〉) for PSS

states.
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5.2.1 Exact Fidelity Analysis

For the most general PSS state,

|ψ〉= ∑
y∈Y (n,d)

ay |y〉 , (5.65)

the resulting matrix, M, is analytically challenging to diagonalize or find the square root of for

the purpose of finding the fidelity. In some simple cases, however, the fidelity can be determined

exactly. Consider the following set of PSS states described by single, rectangular Young diagram

basis elements,

y(k) =

. . .

...
...

. . .

.

n
k

k

Expressed as a state in the computational basis,

|y(k)〉= A
− 1

2
k ∑

µ∈Sn

∑
i1<...<ik

Uµ

k⊗
j=1

∣∣i j
〉⊗ n

k , (5.66)

where Ak is a normalization constant equal to the number of computational basis elements present

in |y(k)〉. It evaluates to

Ak =

(
d
k

)
n![(n
k

)
!
]k =

(
k!(d− k)!

[(n
k

)
!
]k

d!n!

)−1

. (5.67)

The first step in calculating F(|y(k)〉) is the determination of the components of ρ2 and ρ1.

Consider first

ρ1 = A −1
k ∑

i,k2...kn∈y
∑

j,k2...kn∈y
|i〉〈 j| (5.68)

= A −1
k ∑

i, j
N

(y)
i, j |i〉〈 j| , (5.69)

where N
(y)

i, j is the number of strings, (k2 . . .kn), for which both (i k2 . . .kn) and ( j k2 . . .kn) are

contained in the set associated to y. We can analogously define N
(y)

i j,kl such that

ρ2 = A −1
k ∑

i, j,k,l
N

(y)
i j,kl |i j〉〈kl| . (5.70)

68



Determining each of the N for the family of y(k) is a simple counting/combinatorics exercise.

The results are the following, where it is assumed that i, j, k, and l are distinct,

N
(y(k))

i, j = δ (k−n)
(d−2)!

(d−n−1)!
(5.71)

N
(y(k))

ii,ii =


0 k = n(d−1

k−1

) (n−2)!

( n
k−2)![( n

k )!]
k−1 k 6= n

(5.72)

N
(y(k))

i j,i j =

(
d−2
k−2

)
(n−2)![(n

k −1
)
!
]2 [(n

k

)
!
]k−2 (5.73)

N
(y(k))

ii, j j = δ

(
k− n

2

)(d−2
n
2 −1

)
(n−2)!

2
n
2−1 (5.74)

N
(y(k))

i j,ik = δ (k−n)
(d−3)!

(d−n−1)!
(5.75)

N
(y(k))

i j,kl = δ (k−n)
(d−4)!

(d−n−2)!
, (5.76)

while N
(y(k))

ii,i j = N
(y(k))

ii, jk = 0. Dividing by Ak then finally gives the components of each reduced

density matrix,

A = δ (k−n)
d−n

d(d−1)
(5.77)

{ρ2}ii,ii =
n− k

d k(n−1)
(5.78)

{ρ2}i j,i j =
n(k−1)

d(d−1)k(n−1)
(5.79)

B4 = δ

(
k− n

2

) d− n
2

d(d−1)(n−1)
(5.80)

B3 = δ (k−n)
d−n

d(d−1)(d−2)
(5.81)

B1 = δ (k−n)
(d−n)(d−n−1)

d(d−1)(d−2)(d−3)
(5.82)

B2 = B5 = 0 (5.83)

From here there are three major cases to consider: k < n/2, k = n/2, and k = n. Starting with the
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k < n/2 case we have

ρ1 =
1
d

1d (5.84)√
ρ1⊗ρ1 =

1
d

1d2 (5.85)

ρ2 =
1

d k(n−1)

[
(n− k)∑

i
|ii〉〈ii|+ n(k−1)

d−1 ∑
i 6= j
|i j〉〈i j|+ |i j〉〈 ji|

]
(5.86)

M =
1

d3k(n−1)

[
(n− k)∑

i
|ii〉〈ii|+ n(k−1)

d−1 ∑
i 6= j
|i j〉〈i j|+ |i j〉〈 ji|

]
. (5.87)

Given that we will be tracing this matrix after finding its square root, we can jointly reorder the

rows and columns together. Doing so yields the convenient representation,

M =
n(k−1)

d4k(n−1)


 1 1

1 1


⊕d(d−1)/2

⊕ d(n− k)
n(k−1)

1d

 , (5.88)

which we be easily diagonalized,

M =
n(k−1)

d4k(n−1)


 2 0

0 0


⊕d(d−1)/2

⊕ d(n− k)
n(k−1)

1d

 , (5.89)

and then we can take the square root,

√
M =

√
n(k−1)

d4k(n−1)


 √2 0

0 0


⊕d(d−1)/2

⊕

√
d(n− k)
n(k−1)

1d

 . (5.90)

And finally we can find F(|y(k < n/2)〉),

F(|y(k < n/2)〉) =
(

Tr
√

M
)2

(5.91)

=

(√
n(k−1)

d4k(n−1)

(
d(d−1)√

2
+

√
d3(n− k)
n(k−1)

))2

(5.92)

=

(
(d−1)

√
n(k−1)+

√
2d(n− k)

)2

2d2k(n−1)
. (5.93)

This is a nice exact result, but F() as d→ ∞ simplifies to

F(|y(k < n/2)〉) = n(k−1)
2k(n−1)

. (5.94)
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Moving to the k = n/2 case, the same analysis arrives at

M =
1

d2(n−1)

 2(n−2)
d(d−1)

 1 0

0 0


⊕d(d−1)/2

⊕

(
1
d

1d +
d− n

2
d(d−1) ∑

i 6= j
|i〉〈 j|

) . (5.95)

In computing
√

M, we can recognize that the final block component of M is of the same form of

ρ1, which we have computed the square root of in (5.43). This allows us to find

√
M =

√
1

d2(n−1)

[√
2(n−2)
d(d−1)

 1 0

0 0


⊕d(d−1)/2

⊕

√2+2d−n+
√

(d−1)(n−2)√
2d3

1d +

√
2+2d−n−

√
n−1
d−1√

2d3 ∑
i6= j
|i〉〈 j|

].
(5.96)

And now we can find

F(|y(k = n/2)〉) =

(√
2+2d−n+(d +1)

√
(d−1)(n−2)

)2

2d3(n−1)
, (5.97)

which, as d→ ∞, evaluates to

F(|y(k = n/2)〉) = n−2
2(n−1)

. (5.98)

Lastly we have the k = n case, in which only three cases lead to simple analysis: n = d,

n = d−1, and n� d. For n = d we find that

M =
2

d3(d−1)

 1 0

0 0


⊕d(d−1)/2

. (5.99)

This makes determining the fidelity rather straightforward,

F(|y(k = n = d)〉) = d−1
2d

, (5.100)

which is equal to 1/2 in the large d limit. Now for the n = d−1 case, we start with

ρ1 =
1
d

1d +
1
d2 ∑

i 6= j
|i〉〈 j| (5.101)

ρ2 =
1
d2 ∑

i6= j
|i j〉〈i j|+ |i j〉〈 ji| (5.102)

+
1
d3 ∑

distinct i, j,k
|i j〉〈ik|+ |i j〉〈ki|+ | ji〉〈ik|+ | ji〉〈ki| .
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From here we can find M, whose symmetric entries in the large d limit are

{M}ii,ii =
24−16

√
2

d5 (5.103)

{M}i j,i j =
1
d4 (5.104)

B1 =
14−4

√
2

d6 (5.105)

B2 =B4
16
√

2−18
d6 (5.106)

B3 =
3
d5 (5.107)

B5 =
8−4

√
2

d5 . (5.108)

These allow for us to solve (5.58)-(5.64) to find the components of
√

M, a calculation which is

not at daunting as it seems thanks to the large d limit. The result is that{√
M
}

i j,i j
=O

(
d−

5
2

)
(5.109){√

M
}

i j,i j
=

1√
2d2

+O
(

d−
5
2

)
, (5.110)

and therefore F(|y(k = n = d−1)〉) = 1
2 in the large d limit. Lastly, moving to the n� d case,

we actually have that in the large d limit,

ρ1 ≈
1
d ∑

i, j
|i〉〈 j| , (5.111)

which is pure, and therefore ρ2 = ρ1⊗ρ1 and F(|y(k = n� d)〉) = 1.

The results of these calculations are somewhat surprising given our intuitions regarding

monogamy constraints on the symmetric sharing of entanglement. We had expected a heuristic

connection between entanglement in the state and violation of the mean field approximation. This

notion was only partially correct though, as the mean field approximation is a stronger assumption

than the separability of ρ2. Recall that a mixed state is separable if

ρ =
r

∑
i

piρ
(1)
i ⊗ρ

(2)
i , (5.112)

for some decomposition, in which r is unbounded. The mean field approximation, however,

demands r = 1, which is therefore only true for a subset of separable states. So it is then

unsurprising that we were able to find PSS states for which F(|ψ〉) was not close to 1, as the

72



entanglement decaying with n due to the symmetry implies that the state merely approaches a

separable one, not one for which the mean field approximation is a necessarily good one.

The example of rectangular Young diagrams raises an important intuition regarding the

validity of the mean field approximation. The results of this section can be summarized as larger

k leading to better agreement with the mean field approximation. Physically, small k corresponds

to more compact grouping of the particles. Therefore we are led to believe that the more spread

out the particles are, the better the mean field approximation gets. This notion is given further

context in the next section, where we conclude that the only way to get good agreement with the

mean field approximation is to have isolated particles. This intuition does give hope to the use

of the Gross-Pitaevskii Equation in quantum search. The initial state for that algorithm is the

uniform superposition,

|ψ0〉=

(
d

∑
i=1
|i〉
)⊗n

, (5.113)

which we know is approximately the |y(k = n)〉 state in the n� d limit, and approaches perfect

agreement with the mean field approximation. Left to evolve, we would expect that the particles

would stay mostly spread because that is both entropically and energetically favored. This

intuition would need to be examined in the case of PSS states with marked sites, however.

5.2.2 Bounded Fidelity Analysis

The previous section introduced the intuition that isolated particles make for better

agreement with the mean field approximation. In this section I will confirm that notion by

proving that good fidelity is impossible without isolated particles. The following theorem will be

instrumental in that endeavor,

Theorem 5. As d→ ∞, if a PSS state, |ψ〉, has A≤ O(d−2), then F(|ψ〉)≤ 1/2.

Proof. Begin by noting that the normalization of ρ2 implies that {ρ2}ii,ii≤O(d−1) and {ρ2}i j,i j≤

O(d−2) for i 6= j. This then constrains each of |B1|-|B5| by the positivity of ρ2. The simplest
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constraint comes from enforcing that the minors with a single Bi and its associated diagonal

elements is positive. This gives

|B1| ≤ O
(
d−2) (5.114)

|B3| ≤ O
(
d−2) (5.115)

|B2| ≤ O
(

d−
3
2

)
(5.116)

|B5| ≤ O
(

d−
3
2

)
(5.117)

|B4| ≤ O
(
d−1) . (5.118)

We know that, as d → ∞, A = dB3 + 2ℜ(B5). This tightens the constraint on B3 to |B3| ≤

O(d−5/2). The final required constraint is a tighter bound on B1, which will be achieved by

considering the larger minor of ρ2 defined by,

ρ = ∑
i6= j

∑
k 6=l
{ρ2}i j,kl |i j〉〈kl| . (5.119)

I will now show that the following are eigenvectors of ρ ,

|λ1〉=∑
i6= j
|i j〉 (5.120)

|λ2〉= |12〉+ |21〉+ d−4
d−2 ∑

i>2
|2i〉+ |i2〉− 2

d−2 ∑
i6= j>2

|i j〉 . (5.121)

Starting with |λ1〉 we have,

ρ |λ1〉= ∑
i 6= j

∑
k 6=l

{
ρ

}
i j,kl
|i j〉 . (5.122)

And therefore

〈i j|ρ |λ1〉 = ∑
k 6=l

{
ρ

}
i j,kl

(5.123)

= 2{ρ2}i j,i j +4(d−2)B3 +(d−2)(d−3)B1. (5.124)

This implies that the associated eigenvalue is

λ1 = 2{ρ2}i j,i j +4(d−2)B3 +(d−2)(d−3)B1. (5.125)

Moving to |λ2〉 we have,

ρ |λ2〉= ∑
i 6= j

(
2
{

ρ

}
i j,12

+2
d−4
d−2 ∑

k>2

{
ρ

}
i j,k2
− 2

d−2 ∑
k 6=l>2

{
ρ

}
i j,kl

)
|i j〉 . (5.126)
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Element by element we can confirm that

〈12|ρ |λ2〉 = 2{ρ2}i j,i j +2(d−4)B3−2(d−3)B1 (5.127)

= 〈21|ρ |λ2〉 , (5.128)

and for i > 2,

〈i2|ρ |λ2〉=2B3 +2
d−4
d−2

(
{ρ2}i j,i j +(d−3)B3

)
(5.129)

− 2
d−2

(2(d−3)B3 +(d−3)(d−4)B1)

=
d−4
d−2

(
2{ρ2}i j,i j +2(d−4)B3−2(d−3)B1

)
(5.130)

=〈2i|ρ |λ2〉 (5.131)

〈i1|ρ |λ2〉=2B3 +2
d−4
d−2

(B3 +(d−3)B1) (5.132)

− 2
d−2

(2(d−3)B3 +(d−3)(d−4)B1)

=0 (5.133)

=〈2i|ρ |λ2〉 , (5.134)

and for i 6= j > 2,

〈i j|ρ |λ2〉=2B1 +2
d−4
d−2

(2B3 +(d−4)B1) (5.135)

− 2
d−2

(
2{ρ2}i j,i j +4(d−4)B3 +(d−4)(d−5)B1

)
=− 2

d−2

(
2{ρ2}i j,i j +2(d−4)B3−2(d−3)B1

)
, (5.136)

which implies that the associated eigenvalue is

λ2 = 2{ρ2}i j,i j +2(d−4)B3−2(d−3)B1. (5.137)

To enforce that ρ ≥ 0, we must have that λ1 ≥ 0 and λ2 ≥ 0. In the large d limit this evaluates to

the following constraints on B1,

B3 ≥ 0 → −
2{ρ2}i j,i j

d2 − 4B3

d
≤B1 ≤

{ρ2}i j,i j

d
+B3 (5.138)

B3 ≤ 0 → −
{ρ2}i j,i j

d2 ≤B1 ≤
{ρ2}i j,i j

d
(5.139)

which can be combined to |B1| ≤ max
{
O(d−3),O(B3)

}
, which in this case gives |B1| ≤

O(d−5/2).
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With the magnitudes of the off-diagonal elements of ρ2 so constrained, the matrix multi-

plication to find M reveals that

{M}ii,ii =
{ρ2}ii,ii

d2 +O
(

d−
7
2

)
(5.140)

{M}i j,i j =
{ρ2}i j,i j

d2 +O
(

d−
9
2

)
. (5.141)

We can then turn (5.58) and (5.59) into the following inequalities,{√
M
}

ii,ii
≤

√
{ρ2}ii,ii

d
(5.142)

{√
M
}

i j,i j
≤

√
{ρ2}i j,i j
√

2d
. (5.143)

If we parametrize the diagonal elements of ρ2 with d→ ∞ as {ρ2}ii,ii = cos2 θ/d and {ρ2}i j,i j =

sin2
θ/d2 for i 6= j, we can finally evaluate

F(|ψ〉) =
(

d
{√

M
}

ii,ii
+d2

{√
M
}

i j,i j

)2

(5.144)

≤
(

cosθ√
d

+
sinθ

2

)2

(5.145)

≤ 1
2
. (5.146)

Theorem 5 allows us to identify any PSS state with A ≤ O(d−2) as one for which the

mean field approximation is not valid. In finding sets of PSS states with such A, it will be

important to establish notation which allows us to describe an arbitrary Young diagram, y, and

its corresponding state vector, |y〉. First, as before, label the number of rows as k(y), but now

denote the number of distinct row lengths as p(y). Denote the length of the qth distinct row

from the bottom as M(y)
q . Denote the number of rows of length M(y)

q as l(y)q . These labels are

constrained by p(y) < k(y) < d and ∑
p(y)
q=1 l(y)q M(y)

q = n. Finally, this notation allows us to determine

the normalization coefficient, Ay, for a single Young diagram basis element,

Ay =
d!n!

(d− k(y))!Πy
, (5.147)
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where

Πy =
p(y)

∏
q=1

lq!
[
M(y)

q !
]l(y)q

. (5.148)

To confirm the intuition of the previous section, that isolated particles are required for

good fidelity, let us start by considering the fidelity for single basis element states. In particular,

let us examine Young diagrams which contain no isolated particles, and denote the set of such

Young diagrams as Y>,

Y> =
{

y ∈ Y (n,d)
∣∣∣M(y)

1 ≥ 2
}
, (5.149)

for example,

y ∈ Y> =

. . . . . .

...
... . .

.

. . .

.

≥ 2

We can then confirm that A for any |y〉 such that y ∈Y> obeys A≤O(d−2), and therefore,

by Theorem 5, F(|y〉)≤ 1/2. To see this, start by performing the partial trace on |y〉 to find ρ1

and ρ2, which amounts to finding the set of N (y). The thought process for finding a particular

N (y) is relatively consistent, so take N
(y)

i, j as an example. Obviously, if M(y)
1 = 1, there will be a

contribution to N
(y)

i, j which is proportional to l(y)1 . But for M(y)
1 ≥ 2, the only way to contribute to

Ni, j(y) is if i and j are in row blocks q and q+1, and M(y)
q +1 = M(y)

q+1. To add some intuition

to that statement, we can only add to N
(y)

i, j if, after removing a single block from y, there are at

least two places (one for i and one for j) to put that block back to return to y. All that remains is

to sum over the possible arrangements and selections of the remaining indices which construct an

element in y,

N
(y)

i, j =
(d−2)!(n−1)!
(d− k(y))!Πy

δ (M(y)
1 −1)l(y)1 (d− k(y))+2

p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q

 , (5.150)

where ∆(y)(q,r) = δ

(
M(y)

q −M(y)
q−1− r

)
. The same intuition applies to the remaining N (y), and
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we can fully specify them all as

N
(y)

ii,ii =
(d−1)!(n−2)!
(d− k(y))!Πy

p(y)

∑
q=1

l(y)q M(y)
q (M(y)

q −1) (5.151)

N
(y)

i j,i j =
(d−2)!(n−2)!
(d− k(y))!Πy

∑
q6=m

l(y)q l(y)m M(y)
q M(y)

m +
p(y)

∑
q=1

l(y)q (l(y)q −1)
(

M(y)
q

)2

 (5.152)

N
(y)

ii, j j =2
(d−2)!(n−2)!
(d− k(y))!Πy

(d− k(y))
2

∑
q=1

δ (M(y)
q −2)l(y)q +

p(y)

∑
q=2

∆
(y)(q,2)l(y)q l(y)q−1M(y)

q (M(y)
q −1)


(5.153)

N
(y)

i j,ik =
(d−3)!(n−2)!
(d− k(y))!Πy

(
δ (M(y)

1 −1)l(y)1 (l(y)1 −1)(d− k(y)) (5.154)

+2 ∑
q6={m−1,m}

∆
(y)(m,1)l(y)q l(y)m l(y)m−1M(y)

q M(y)
m

+2
p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q

(
(l(y)q −1)M(y)

q +(l(y)q−1−1)M(y)
q−1

))
N

(y)
i j,kl =

(d−4)!(n−2)!
(d− k(y))!Πy

(
δ (M(y)

1 −1)l(y)1 (l(y)1 −1)(d− k(y))(d− k(y)−1) (5.155)

+8 ∑
q6={m−1,m,m+1}

∆
(y)(q,1)∆(y)(m,1)l(y)q l(y)q−1l(y)m l(y)m−1M(y)

q M(y)
m

+8
p(y)−1

∑
q=3

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q

[
∆
(y)(q+1,1)l(y)q+1(l

(y)
q −1)M(y)

q+1

+(l(y)q −1)(l(y)q−1−1)M(y)
q +∆

(y)(q−1,1)(l(y)q−1−1)l(y)q−2M(y)
q−1

])
N

(y)
ii,i j =N

(y)
ii, jk = 0. (5.156)

From here we can use N
(y)

i, j for M(y)
1 ≥ 2 to determine A, and find the following bounds,

A =
2

d2n

p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q (5.157)

≤ 2
d2n

p(y)

∑
q=2

l(y)q l(y)q−1M(y)
q (5.158)

<
2k(y)

d2n

p(y)

∑
q=2

l(y)q M(y)
q (5.159)

<
2k(y)

d2 . (5.160)
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So indeed, A≤O(d−2) so long as k(y) = O(1), and therefore F(|y〉)≤ 1/2 for y ∈ Y>.

Now let us consider the bigger picture by returning to an arbitrary PSS state,

|ψ〉= ∑
y∈Y (n,d)

ay |y〉 , (5.161)

with ∑y
∣∣ay
∣∣2 = 1. From this state, we would like to trace down to ρ1 and examine A, for the

potential use of Theorem 5. So let us perform that partial trace, which I have broken up into three

components,

A = ∑
y

[
A(y)
> +A(y)

1

]
+ ∑

y6=z
A(y,z)
× , (5.162)

where, before defining them formally, the components can be described as A(y)
> and A(y)

1 being

the contributions from the M(y)
1 > 1 and M(y)

1 = 1 components respectively for each y, and A(y,z)
×

being the cross terms from different Young diagram basis elements. Now, in more detail, we can

start with the familiar terms,

A(y)
> = 2

∣∣ay
∣∣2

Ay

(d−2)!
(d− k(y))!

(n−1)!
Πy

p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q (5.163)

=
2
∣∣ay
∣∣2

d(d−1)n

p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q (5.164)

A(y)
1 = δ (M(y)

1 −1)

∣∣ay
∣∣2

Ay

(d−2)!(
d− k(y)−1

)
!
(n−1)!

Πy
l(y)1 (5.165)

= δ (M(y)
1 −1)

∣∣ay
∣∣2(d− k(y)

)
l(y)1

d(d−1)n
. (5.166)

The new term in the calculation is the cross term, A(y,z)
× , arising from the fact that |ψ〉 is now a

superposition of Young diagram basis elements. But not all cross terms are going to appear in the

partial trace. Two Young diagrams, y and z, will only contribute to A(y,z)
× if |ik2 . . .kn〉 is in |y〉 and

| jk2 . . .kn〉 is in |z〉 or vice versa. This then implies that Young diagrams, y and z, differ by only

one block placement. Possibly a clearer way to describe this is that removing a single block from

y and from z will arrive at the same Young diagram, or, more precisely, they are connected to a

common vertex with n−1 blocks in Young’s lattice. This leads us to define the ‘compatibility

function’, G(y,z), which evaluates to 1 if y and z are connected to a common vertex with n−1
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blocks in Young’s lattice, and evaluates to 0 otherwise. The size of A(y,z)
× will then depend on the

number permutations of the remaining k2 . . .kn which are consistent with y and z. To quantify

this, let m(y)
1 indicate the row cluster from which the block is taken in y and moved to the row

cluster m(y)
2 in y to create z. We can analogously define m(z)

1 and m(z)
2 . We could then choose

which diagram, y or z, to index the sum over the k2 . . .kn. Rather than committing to one, we will

do both simultaneously, relying on the following identity for compatible y and z,

l(y)m1 l(y)m2 M(y)
m1

Πy
=

l(z)m1 l(z)m2 M(z)
m1

Πz
=

√
l(y)m1 l(y)m2 M(y)

m1

Πy

l(z)m1 l(z)m2 M(z)
m1

Πz
. (5.167)

From here we can finally determine

A(y,z)
× =

aya∗z√
AyAz

G(y,z)
(d−2)(

d− k(y,z)
)
!
(n−1)!

√
l(y)m1 l(y)m2 M(y)

m1

Πy

l(z)m1 l(z)m2 M(z)
m1

Πz
(5.168)

=
aya∗z

d(d−1)n
G(y,z)

√
(d− k(y))!(d− k(z))!(

d− k(y,z)
)
!

√
l(y)m1 l(y)m2 M(y)

m1 l(z)m1 l(z)m2 M(z)
m1 , (5.169)

where k(y,z) = max
{

k(y),k(z)
}

. The k(y,z) distinction is required if only one of M(y)
m1 = 1 or

M(z)
m1 = 1, which causes k(y) and k(z) to differ by 1. If this is the case, we arrive at an overall factor

of
√

d− k(y,z) in A(y,z)
× , if not, that whole first fraction cancels.

Now consider a PSS state which is an arbitrary superposition of only Young diagram basis

states in Y>,

|ψ>〉= ∑
y∈Y>

ay |y〉 . (5.170)

For such a state, the A(y)
1 term disappears, and the A(y,z)

× term needs no k(y,z) distinction, as none of

the y ∈ Y> have isolated blocks. We can then bound the sums over the remaining terms, starting
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with that over A(y)
>

∑
y

A(y)
> =

2
d(d−1)n ∑

y

∣∣ay
∣∣2 p(y)

∑
q=2

∆
(y)(q,1)l(y)q l(y)q−1M(y)

q (5.171)

<
2

d(d−1)∑
y

∣∣ay
∣∣2 p(y)

∑
q=1

l(y)q (5.172)

≤ n
d(d−1)∑

y

∣∣ay
∣∣2 (5.173)

=
n

d(d−1)
, (5.174)

which is clearly still ≤O(d−2) so long as n� d. We can then turn our attention to bounding the

sum over A(y,z)
× ,

∑
y6=z

A(y,z)
× =

1
d(d−1)n ∑

y6=z
aya∗z G(y,z)

√
l(y)m1 l(y)m2 M(y)

m1 l(z)m1 l(z)m2 M(z)
m1 (5.175)

<
n

2d(d−1) ∑
y6=z

aya∗z G(y,z) (5.176)

=
n

4d(d−1) ∑
y6=z

(
aya∗z +aza

∗
y
)

G(y,z) (5.177)

≤ n
2d(d−1) ∑

y6=z

∣∣ay
∣∣ |az|G(y,z) (5.178)

≤ n
d(d−1)∑

y

∣∣ay
∣∣∑

z≤y
|az|G(y,z), (5.179)

where z≤ y if |az| ≤
∣∣ay
∣∣. Continuing on,

∑
y6=z

A(y,z)
× ≤ n

d(d−1)∑
y

∣∣ay
∣∣2 ∑

z≤y
G(y,z) (5.180)

<
n

d(d−1)

√
n
2 ∑

y

∣∣ay
∣∣2 (5.181)

=
n

d(d−1)

√
n
2
, (5.182)

which is likewise ≤ O(d−2) so long as n
√

n� d. These two together imply that A≤ O(d−2),

and therefore, by Theorem 5, F (|ψ>〉)≤ 1/2.

The cumulative work of this chapter is limited to concluding that isolated particles are

required for good agreement with the mean field approximation in PSS states. I have not yet

been able to say more that this, however. In particular, if A > O(d−2), then the resulting M
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matrix, while easy enough to calculate, proves to be too difficult to analyze further in a fidelity

calculation. For single basis elements, |y〉, I would ideally be able to bound F(|y〉) as a function

of the ratio of isolated particles to non-isolated. Those bounds could then be extended to arbitrary

superpositions. Then, of course, the entire analysis would need to be repeated with marked sites.
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Chapter 6

Conclusion and Future Directions

The whole of this thesis can be summed up by the general approach of making difficult

calculations in the fields of quantum entanglement and state representations more tractable by

restricting to symmetric subsets of the overall Hilbert space. In Chapter 2 I did just this for

the totally symmetric subspace of multi-qubit states. Comparing and constraining different

entanglement measures is generally difficult and, even in the three qubit case, cannot be done

fully. But restricting to symmetric states allowed the full invariant space to be analyzed exactly.

Likewise, the question of LU equivalence, while only partially understood in general, was shown

to be fully understood in the symmetric subspace in three qubits. The result that equal pairwise

concurrence in three qubits guaranteed LU equivalence to a symmetric state is a powerful result,

and I would like to find its analogue in more qubits.

In Chapter 3 I shifted both to more qubits and translational invariance - a weaker symmetry.

Rather than attempt to constrain all entanglement in this larger setting, however, I narrowed the

entanglement picture to just pairwise entanglement as measured by the pairwise concurrence. I

showed that pairwise entanglement in translationally invariant systems is entirely described by

spacing of particles, but that spacing does not have the same physical interpretation one would

expect in a translationally invariant system. Two parties being ‘adjacent’ does not reflect some
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physical interaction length, but rather establishes some periodicity in the ring of parties, periodicity

which changes when the spacing between parties is a factor of the number of parties. This allowed

for the search for maximal pairwise concurrence to be restricted to maximal entanglement between

adjacent parties in those smaller periodic cycles. Performing that maximization, as well as finding

constraints on simultaneous entanglement of different spacings, could not be done in general

and required restricting to the X state subspace in 4 and 5 qubits. The most notable unanswered

question at this point is how the maximal adjacent entanglement decays with n in translationally

invariant systems. Even if an exact answer remains out of reach, I would at least like to bound the

scaling with n in the large n limit.

In Chapter 4 I addressed the matrix product state structure and how it adds the physical

interpretation of spacing and interaction length in physical systems. Unfortunately, I was unable

to do any entanglement calculations in the translationally invariant space, but I was able to

come up with a novel canonical form for those states. In the fully symmetric space, however,

I connected the Mandilara canonical form to the matrix product state space as a low bond

dimensional approximation and demonstrated how maximal pairwise concurrence is achievable

with only D = 2. Moving forward, I would like to find how the pairwise concurrence for D = 2

translationally invariant matrix product states decays with spacing, potentially in the large n limit.

Finally, in Chapter 5, I examined the assumptions required for non-linear dynamics in

party-site symmetric systems and found that the mean field approximation is a poor one if the

particles are not isolated. It remains to be shown, though, to what degree isolated particles

give good agreement with the mean field approximation. The main hurdle to overcome in that

analysis is the evaluation of the matrix fidelity for matrices with arbitrary dimension. If possible,

that analysis would then need to be extended to the case where the complete graph is not fully

symmetric, but has a subset of marked sites, partitioning the sites into marked and unmarked,

while remaining symmetric in those sets. This would mean the basis elements are now pairs of

Young diagrams, for marked and unmarked sites. An interesting tangential idea worth exploring
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is what kinds of dynamics can be derived if separability, rather than the stronger mean field

approximation, is assumed. We expect separability to be a more reasonable assumption in the

PSS setting, so it would be safe to use the resultant equations of motion and to see what can be

accomplished with the quantum random walk search in that setting.

The theory of entanglement has proven to be a fruitful medium to apply concepts of

symmetry. Tools such as Young diagrams and the Majorana representation were invaluable in

understanding state representations in the symmetric subspace, and the symmetrized matrices

made otherwise impossible analysis doable. These benefits need not be limited to entanglement

theory, though. Both in quantum mechanics and abroad, my study of symmetry will hopefully

allow for future problems to find partial solutions in the symmetric subspace.
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Appendix A

TIX State Achievable Pairwise

Subconcurrence Boundaries

To find the boundary for TIX state subconcurrences, the boundaries of each of the

pairs
(

sC (n)
1,µ(ν),sC

(n)
2,µ(ν)

)
need be found, with the overall boundary being a combination of the

outermost boundaries from each pairing. To simplify the search for the boundaries, note that for

any 4 or 5 qubit TIX state, the subconcurrence terms (3.26)-(3.33) are strictly increased by setting

the coefficient phases to 0. This implies that the boundaries can be searched for among 4 and 5

qubit TIX states with purely real coefficients.

A.1 4 Qubits

Consider an arbitrary 4 qubit TIX state, (3.21), with real coefficients. The corresponding

normalized state

|ψ̄〉= 1√
a2 + c2 + f 2

(
a |0000〉+ c

︷ ︸︸ ︷
|1100〉+ f |1111〉 ,

)
(A.1)

86



has both larger or equal sC (4)
1,ν and larger or equal sC (4)

2,µ . To show this, consider either subconcur-

rence, C , for which it is then true that

C (|ψ̄〉)≥ C (|ψ̄〉)
∣∣∣∣
d=0

= C (|ψ〉)
∣∣∣∣
d=0
≥ C (|ψ〉) . (A.2)

All of which implies that the boundary of the
(

sC (4)
1,ν ,sC

(4)
2,µ

)
pairs can be looked for among states

with d = 0. Likewise the state

|ψ̄〉=
√

a2 + f 2

2
(|0000〉+ |1111〉)+ c

︷ ︸︸ ︷
|1100〉+d

︷ ︸︸ ︷
|1010〉, (A.3)

has larger or equal sC (4)
1,µ , sC (4)

1,ν , and sC (4)
2,ν , meaning the boundaries of the

(
sC (4)

1,µ ,sC
(4)
2,ν

)
and(

sC (4)
1,ν ,sC

(4)
2,ν

)
pairs can be found among states where a = f . And lastly the state

|ψ̄〉= 1√
c2−d2

(
c
︷ ︸︸ ︷
|1100〉+d

︷ ︸︸ ︷
|1010〉

)
, (A.4)

has larger or equal sC (4)
1,µ and sC (4)

2,µ , so the boundary of the
(

sC (4)
1,µ ,sC

(4)
2,µ

)
pairs can be found

among states where a = f = 0.

Using these simplified states, the remaining coefficients can be expressed using the

following spherical parametrizations,

{a,c, f} → {sinθ cosφ ,cosθ ,sinθ sinφ} (A.5)

{a,c,d} → {cosα,sinα cosβ ,sinα sinβ} (A.6)

{c,d} → {cosζ ,sinζ} , (A.7)

associated with the
(

sC (4)
1,ν ,sC

(4)
2,µ

)
,
(

sC (4)
1,µ(ν),sC

(4)
2,ν

)
, and

(
sC (4)

1,µ ,sC
(4)
2,µ

)
pairs respectively,

where {θ ,φ ,α,β ,ζ} ∈ [0,π/2]. In these parametrizations, we can define the maps,

Cν ,µ : {θ ,φ}→
{

sC (4)
1,ν ,sC

(4)
2,µ

}
(A.8)

Cµ(ν),ν : {α,β}→
{

sC (4)
1,µ(ν),sC

(4)
2,ν

}
(A.9)

Cµ,µ : ζ →
{

sC (4)
1,µ ,sC

(4)
2,µ

}
, (A.10)

according to the expressions (3.26)-(3.29). The boundaries of the images of these maps correspond

to the boundaries of the domains, as well as the zeroes of the determinant of the Jacobians for

each map. The result of all these boundary determinations leave the following two outermost
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boundaries,

sC (4)
2,X ≤


2
5

(
8

√
1−2sC (4)

1,X −4
(

sC (4)
1,X

)2
− sC (4)

1,X +1

)
, −1

2 ≤ sC (4)
1,X ≤

63
226

1
9

(
8

√
1− sC (4)

1,X −2
(

sC (4)
1,X

)2
−4sC (4)

1,X −1

)
, 63

226 ≤ sC (4)
1,X ≤

1
2

, (A.11)

which came from the
(

sC (4)
1,ν ,sC

(4)
2,µ

)
pairs. These boundaries are displayed in the Figure A.1.

63

226

-0.4 -0.2 0.2 0.4
s1

(4)

-0.2

0.2

0.4

0.6

0.8

1.0
s2

(4)

Figure A.1: The 4 qubit TIX state subconcurrence boundaries.

A.2 5 Qubits

Following the methods from the previous section, start by considering an arbitrary 5 qubit

TIX state, (3.22), with real coefficients. The corresponding normalized state,

|ψ̄〉= 1√
c2 +d2 +g2

(
c
︷ ︸︸ ︷
|00011〉+d

︷ ︸︸ ︷
|00101〉+g

︷ ︸︸ ︷
|01111〉

)
, (A.12)

has larger or equal sC (5)
1,µ , and sC (5)

2,µ , so therefore the boundary of the
(

sC (5)
1,µ ,sC

(5)
2,µ

)
pairs can be

searched for among states with a = 0. For the other pairs, we will bound their subconcurrences

by a sequence of lines which lie within the
(

sC (5)
1,µ ,sC

(5)
2,µ

)
boundary.

We can now parametrize the remaining coefficients of (A.12) as

{c,d,g}→ {sinθ cosφ ,sinθ sinφ ,cosθ} , (A.13)
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and define the map

Cµ,µ : {θ ,φ}→
{

sC (5)
1,µ ,sC

(5)
2,µ

}
, (A.14)

according to (3.30) and (3.32). By analyzing the boundaries of the domain and the zeroes of

the determinant of the Jacobian of this map, three boundaries make up a maximal set, and are

plotted in Figure A.2. These three boundaries are parametrized by θ = π

2 , φ = 0, and φ = π

2 . The

exact polynomials in sC (5)
1,X and sC (5)

2,X which describe these boundaries are easily determined by a

Gröbner basis calculation, but the results are quite lengthy.

-0.6 -0.4 -0.2 0.2 0.4
s1

(5)

-0.6

-0.4

-0.2

0.2

0.4

s2
(5)

Figure A.2: The 5 qubit TIX state subconcurrence boundaries.

Turning now to the remaining subconcurrence pairings. It was shown in Table 3.1 that

C
(5)
1(2),ν ≤ 0.366. Another simple maximization shows that sC (5)

1,ν + sC (5)
2,ν ≤

2
5 . These three

conditions bound the
(

sC (5)
1,ν ,sC

(5)
2,ν

)
pairs to a region well within the previous boundary, as

shown in Figure A.3.

Lastly, the remaining two pairs,
(

sC (5)
1,µ(ν),sC

(5)
2,ν(µ)

)
can be handled together due to the

symmetry in 5 qubits. Similar to the previous pair boundary, we will find a set of lines which
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-0.6 -0.4 -0.2 0.2 0.4
s1

(5)

-0.6
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Figure A.3: The bounding conditions on the
(

sC (5)
1,ν ,sC

(5)
2,ν

)
pairs (darker blue) with the overall

boundary.

bound the
(

sC (5)
1,µ ,sC

(5)
2,ν

)
pairs. We can again take advantage of sC (5)

2,ν ≤ 0.366, as well as the

following two new maximizations,

sC (5)
2,ν + sC (5)

1,µ ≤ 47
100

(A.15)

sC (5)
2,ν +2sC (5)

1,µ ≤ 4
5

(A.16)

These three conditions bound the
(

sC (5)
1,µ ,sC

(5)
2,ν

)
pairs within the original boundary for 0≤ sC (5)

1,µ

and 0≤ sC (5)
2,ν , as shown in Figure A.4. Note that these conditions on the

(
sC (5)

1,µ ,sC
(5)
2,ν

)
do not

actually fall within the original boundary for regions in 0.4 ≤ sC (5)
1,µ and sC (5)

2,ν ≤ 0. But given

that sC (5)
2,ν ≤ 0 for that region, the actual concurrences would be mapped to C

(5)
2 = 0, where the

boundaries would then agree.
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Figure A.4: The bounding conditions on the
(

sC (5)
1,µ ,sC

(5)
2,ν

)
pairs (darker blue) with the overall

boundary.
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Appendix B

Proof of Theorem 4

Proof. To show this analytically, start by considering an arbitrary n qubit symmetric state in the

Majorana representation,

|ψ〉= 1√
A ∑

π∈Sn

Uπ

n⊗
j=1

∣∣φ j
〉
, (B.1)

where again we have,

A = n! ∑
π∈Sn

n

∏
j=1

〈
φ j
∣∣φπ( j)

〉
. (B.2)

Consider perturbing one of the single qubit states, |φ1〉, to |φ ′1〉 by rotating its Majorana star away

by an angle 2ε such that 〈φ1|φ ′1〉= cosε ≈ 1− 1
2ε2. The new overall state, |ψ ′〉, would have a

new normalization coefficient, A′. Let us start by putting bounds on A′ in ε .

For any j > 2, let 2θ j be the relative angle between Majorana stars 1 and j, so that∣∣〈φ1
∣∣φ j
〉∣∣= cosθ j. The new relative angles, 2θ ′j, are bounded by∣∣2θ j−2θ

′
j
∣∣≤ 2ε.

Likewise the inner products,
〈
φ j
∣∣φ ′1〉, are then bounded by∣∣∣∣〈φ j

∣∣φ1
〉
−
〈
φ j
∣∣φ ′1〉∣∣∣∣≤ ε.

Notably, this does imply that the inner product could be negative if
〈
φ j
∣∣φ1
〉
= 0 for some j.
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Now consider the upper bound on A′ in ε . Start by labeling

A′π =
n

∏
j=1

〈
φ
′
j

∣∣∣φ ′π( j)

〉
, (B.3)

where
∣∣∣φ ′j〉=

∣∣φ j
〉

for j 6= 1. Now A′ = n!∑π∈Sn A′π . We can then bound,

∣∣A′π ∣∣ ≤
∣∣∣∣∣∣
(〈

φ1
∣∣φπ(1)

〉
+ ε

)(〈
φπ−1(1)

∣∣∣φ1

〉
+ ε

)
∏

j 6={1,π−1(1)}

〈
φ j
∣∣φπ( j)

〉∣∣∣∣∣∣ (B.4)

≤ |Aπ |+ ε

∣∣∣〈φ1
∣∣φπ(1)

〉
+
〈

φπ−1(1)

∣∣∣φ1

〉∣∣∣
∣∣∣∣∣∣ ∏

j 6={1,π−1(1)}

〈
φ j
∣∣φπ( j)

〉∣∣∣∣∣∣+O(ε2) (B.5)

≤ |Aπ |+2ε +O(ε2). (B.6)

Notably, for the set of π for which π(1) = 1, A′π = Aπ and the above condition is still true, though

possibly unnecessary. We then have, to first order in ε ,

A′ = n! ∑
π∈Sn

A′π ≤ n!

[
∑

π∈Sn

(Aπ +2ε)

]
= A+2(n!)2

ε. (B.7)

Now turn to finding a lower bound for A′ in ε . Consider, first, an Aπ which is not equal to

0. We could repeat the analysis above to find that∣∣A′π ∣∣≥ |Aπ |−2ε +O(ε2). (B.8)

Then, for Aπ = 0, the magnitude of Aπ could only increase, so the above expression still holds.

This then allows us to compute the full bounds on A′,

A−2(n!)2
ε ≤ A′ ≤ A+2(n!)2

ε. (B.9)

We can now turn our attention to bounding |〈ψ ′|ψ〉|. Start by examining∣∣〈ψ∣∣ψ ′〉∣∣ =
n!√
A′A

∣∣∣∣∣ ∑
π∈Sn

n

∏
j=1

〈
φ
′
j
∣∣φπ( j)

〉∣∣∣∣∣
=

n!√
A′A

∣∣∣∣∣ ∑
π∈Sn

Bπ

∣∣∣∣∣ ,
where

Bπ =
n

∏
j=1

〈
φ
′
j
∣∣φπ( j)

〉
. (B.10)
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We can extremize,

|Bπ | ≥

∣∣∣∣∣
(〈

φ1
∣∣φπ(1)

〉
− ε

) n

∏
j=2

〈
φ j
∣∣φπ( j)

〉∣∣∣∣∣
≥ |Aπ |− ε.

So then ∣∣〈ψ∣∣ψ ′〉∣∣ ≥ n!√
A′A

[
A
n!
− (n!)ε

]
=

√
A
A!
− (n!)2 ε√

A′A
.

To give the most extreme lower bound, we would want to minimize the first term and maximize

the second. Examining the first term,√
A
A!
≥

√
A

A+2(n!)2
ε

≈ 1− (n!)2

A
ε +O

(
ε

2) .
And the second term,

ε√
A′A

≤ ε√
A2−2A(n!)2

ε

≈ ε

A
+O

(
ε

2) .
Combined we have ∣∣〈ψ∣∣ψ ′〉∣∣≥ 1−2

(n!)2

A
ε. (B.11)

All that remains is to examine the minimum possible value of A, which we can show to be

bounded from below by A≥ 1. I will prove this by induction, starting with the n = 1 case, as well

as the n = 2 to be thorough. If n = 1,

A = 〈φ1|φ1〉= 1. (B.12)

For n = 2,

A = 2
(
〈φ1|φ1〉〈φ2|φ2〉+ 〈φ1|φ2〉〈φ2|φ1〉

)
(B.13)

= 2
(

1+ |〈φ1|φ2〉|2
)

(B.14)

≥ 1. (B.15)
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We must now prove the induction condition, or that

∑
π∈Sn−1

n−1

∏
j=1

〈
φ j
∣∣φπ( j)

〉
≥ 1 =⇒ ∑

π∈Sn

n

∏
j=1

〈
φ j
∣∣φπ( j)

〉
≥ 1. (B.16)

To show this, start by partitioning Sn into two disjoint subsets,

X = {π ∈ Sn|π : 1 7→ 1} (B.17)

Y = Sn−X . (B.18)

So X are the permutations which fix party 1, and Y are the remaining permutations in Sn.

Using these partitions, split the sum in A into

A = ∑
α∈X

n

∏
j=1

〈
φ j
∣∣φα( j)

〉
+ ∑

β∈Y

n

∏
j=1

〈
φ j
∣∣φβ ( j)

〉
. (B.19)

All the permutations in the first sum fix party 1, but freely permute the remaining n−1 parties.

∑
α∈X

n

∏
j=1

〈
φ j
∣∣φα( j)

〉
= 〈φ1|φ1〉 ∑

π∈Sn−1

n

∏
j=2

〈
φ j
∣∣φπ( j)

〉
(B.20)

≥ 〈φ1|φ1〉 (B.21)

= 1, (B.22)

where the first inequality is true by the induction condition.

Now examine the second sum. Consider a permutation, π ∈ Y , which sends party 1 to

party, p 6= 1, and sends some q 6= p to 1. The product of inner products, Aπ , for such a permutation

would look like 〈
φ1
∣∣φp
〉〈

φp
∣∣φl
〉
. . .
〈
φm
∣∣φq
〉〈

φq
∣∣φ1
〉
. (B.23)

Also in Y would be permutation which has all the same mappings for parties except 1, p, and

q, but now acts as a swap on parties 1 and p, and sends q to l. This corresponding Aπ for this

permutation would look like 〈
φ1
∣∣φp
〉〈

φq
∣∣φl
〉
. . .
〈
φm
∣∣φq
〉〈

φp
∣∣φ1
〉
. (B.24)

And also in Y would be the two permutations which merely exchange the roles of p and q in the
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previous two permutations. If we sum the Aπ of these four permutations we get〈
φ1
∣∣φp
〉〈

φp
∣∣φl
〉
. . .
〈
φm
∣∣φq
〉〈

φq
∣∣φ1
〉

+
〈
φ1
∣∣φp
〉〈

φq
∣∣φl
〉
. . .
〈
φm
∣∣φq
〉〈

φp
∣∣φ1
〉

+
〈
φ1
∣∣φq
〉〈

φq
∣∣φl
〉
. . .
〈
φm
∣∣φp
〉〈

φp
∣∣φ1
〉

+
〈
φ1
∣∣φq
〉〈

φp
∣∣φl
〉
. . .
〈
φm
∣∣φp
〉〈

φq
∣∣φ1
〉
.

(B.25)

Now define γp =
〈
φ1
∣∣φp
〉

and
∣∣χp,q

〉
= γq

∣∣φp
〉
+ γp

∣∣φq
〉
. Using these definitions, the previous

sum becomes, 〈
χp,q

∣∣φl
〉
. . .
〈
φm
∣∣χp,q

〉
. (B.26)

Note that this new single effective permutation on n− 2 qubits makes no constraint on the

permutation on parties other than 1, p, and q. This means that, in summing over all permutations

in Y , the set of permutations of the form in (B.25) will include all effective permutations in Sn−2.

Altogether, this means that we can reduce the second sum in A to

∑
β∈Y

n

∏
j=1

〈
φ j
∣∣φβ ( j)

〉
=

n

∑
p>q>1

∑
π∈Sn−2

〈χp,q
∣∣ n⊗

j 6=1,p,q

〈
φ j
∣∣Uπ

∣∣χp,q
〉 n⊗

j 6=1,p,q

〈
φ j
∣∣

≥
n

∑
p>q>1

∣∣〈χp,q
∣∣χp,q

〉∣∣2
≥ 0.

Together this finally implies that A≥ 1.

We then finally have that ∣∣〈ψ∣∣ψ ′〉∣∣≥ 1−2(n!)ε. (B.27)

Obviously, this bound could likely be tightened, but it is sufficient for my purposes.
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Appendix C

Matrix Norms on PSS Bloch Vectors

While the Fidelity is the matrix norm of choice in quantum information theory, other norms

do exist and are less challenging analytically to evaluate due to not needing to find the eigenvalues

of large matrices. The two norms discussed in this Appendix, the Hilbert-Schmidt distance [72]

and the Super-Fidelity [73], are relatively simple analytically and also make convenient use of the

generalized Bloch vector representation [74] of PSS states.

C.1 Bloch Vectors of PSS Reductions

A two qubit pure state,

|ψ〉= cos
(

θ

2

)
|0〉+ sin

(
θ

2

)
eiφ |1〉 , (C.1)

can be mapped to unit length vector in R3 by the Bloch vector representation [75],

|ψ〉〈ψ|= 1
2

1+
1
2
~n ·~σ , (C.2)

where ~σ is a vector of the Pauli matrices and

~n = (sinθ cosφ , sinθ sinφ , cosθ) , (C.3)

97



is the unit length Bloch vector of the state, |ψ〉. This representation likewise extends to mixed

two qubit states,

ρ =
1
2

1+
1
2
~r ·~σ , (C.4)

where now |~r| ≤ 1. The Bloch vector,~r, lends to the ‘Bloch Ball’ illustration of 2 qubit quantum

states - that any 2 qubit state can be represented as a point within the unit ball in R3, with pure

states lying at the surface and mixed states in the interior. Beyond being a useful visualization

of the state, the Bloch vector representation also forms an orthonormal basis for 2 qubit density

matrices. To see this, begin by expressing ρ as

ρ =
3

∑
i=0

ci σi, (C.5)

where σ0 = 12, σ1 = σx, σ2 = σy, and σ3 = σz. This representation relies on the orthonormality

of σi, namely that

Tr
(
σiσ j

)
= 2δi, j, (C.6)

to find that

ci =
1
2

Tr(ρ σi) . (C.7)

The normalization of ρ then implies that c0 = 1
2 , while the hermiticity of ρ implies that the

remaining ci ∈ R, which agrees with the idea that~r ∈ R3. These properties will be critical as the

Bloch vector representation is extended to multi-qubit states.

The multi-qubit extension of the Bloch vector representation has been shown to be a

powerful tool in the analysis of symmetries and quantum marginals [31]. A multi-qubit state,

pure or mixed, can be expressed as

ρ = ∑
i1...in

ci1...inσi1...in, (C.8)

where

σi1...in =
n⊗

j=1

σi j . (C.9)

The properties of σi again allow us to determine

ci1...in =
1
2n Tr(ρ σi1...in) . (C.10)
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The normalization of ρ then implies that c0...0 = 2−n, while the hermiticity of ρ again implies

that each of ci1...in are real. The positivity of ρ enforces an additional constraint on the vector

components, but the constraint has no convenient form. If the state is pure, however, we can find

an additional constraint by enforcing Trρ2 = Trρ , which, after performing the trace, gives the

following
1−2−N

2N = ∑
i1...iN∈Ẑ

c2
i1...iN . (C.11)

The multi-qubit Bloch vector representation greatly simplifies the determination of re-

duced density matrices of an overall state. Consider tracing over the last n− k parties of ρ ,

ρk = Trik+1...in

(
∑

i1...in

ci1...inσi1...in

)
(C.12)

= ∑
i1...in

ci1...inσi1...ikTr
(
σik+1...in

)
. (C.13)

But of the σik+1...in , the identity, σ0...0, is the only element with a non-zero trace, leaving

ρk = ∑
i1...ik

ci1...ik0...0σi1...ikTr(σ0...0) (C.14)

= 2n−k
∑

i1...ik

ci1...ik0...0σi1...ik . (C.15)

For short hand, we will denote the Bloch vector components of the reduced state, ρk, as ci1...ik

where the other indices are implied to be 0.

In order to apply this representation to PSS states, we need to extend σi to higher dimen-

sional particles. That would require a set of d2 Hermitian matrices which are again orthonormal

under the trace inner product. The generalized Gell-Mann matrices are exactly such a set and can

be denoted, for α = 1, . . . ,d−1 and β > α , as

σ
x
α,β = |α〉〈β |+ |β 〉〈α| (C.16)

σ
y
α,β = −i

(
|α〉〈β |− |β 〉〈α|

)
(C.17)

σ
z
α =

√
2

α(α +1)

(
−α |α +1〉〈α +1|+

α

∑
γ=1
|γ〉〈γ|

)
(C.18)

σ
z
0 = 1d. (C.19)

With the generalized Gell-Mann matrices as a basis, a single d-dimensional mixed state can be
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expressed as

ρ = ∑
i

ci σi, (C.20)

where i is implied to run over each element in (C.16)-(C.19), and we will let Greek indices run

over all except the identity. The Gell-Mann matrices are likewise orthogonal, following

Tr
(
σ

2
0
)
= d (C.21)

Tr(σ0σααα) = 0 (C.22)

Tr
(
σααα σβββ

)
= 2δααα,βββ . (C.23)

We can likewise build an n party state in this generalized Bloch form as

ρ = ∑
i1...iN

ci1...iN σi1...iN . (C.24)

where c0...0 = d−n. The same partial trace analysis allows us to find

ρ1 = ∑
i

ci σi (C.25)

ρ2 = ∑
i,j

ci j σi j, (C.26)

where I am again using the shorthand, ci = d1−nci0...0 and ci j = d2−nci j0...0.

Up to this point, this has been a general review of the Bloch vector representation and

its extension to higher dimensional particles. Let us now consider finding the Bloch vector

representations of ρ1 and ρ2 for PSS states. This is a useful piece of analysis on its own, but it

will also make determining the Hilbert-Schmidt sistance and Super-Fidelity rather trivial. The

goal then is to find ci and ci j as functions of A, B1-B5, and C. Starting with ρ1, it is fairly simple

to recognize that

ρ1 =
1
d

1d +A ∑
i6= j
|i〉〈 j| (C.27)

=
1
d

1d +A ∑
α<β

σ
x
α β

, (C.28)

meaning that c0 = d−1, cx
α β

= A, and the remaining cz
α = cy

α β
= 0.

The picture for ρ2 is considerably more complex, and will be broken down into compo-
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nents in the following sub-sections. The components are,

ρ2 =

The Diagonal︷ ︸︸ ︷
∑
i, j

czz
i j σ

z
i ⊗σ

z
j +

The Semi-Off-Diagonal (Real and Imaginary)︷ ︸︸ ︷
∑

i
∑

α<β

∑
p∈{x,y}

cz p
iα,β

(
σ

z
i ⊗σ

p
α,β +σ

p
α,β ⊗σ

z
i

)
+ ∑

α<β

∑
γ<δ

∑
p,q∈{x,y}

cp q
α,β γ,δ σ

p
α,β ⊗σ

q
γ,δ︸ ︷︷ ︸

The Fully-Off-Diagonal (Real and Imaginary)

.
(C.29)

Throughout these calculations, the following identity will be often used,
j

∑
α=i

1
α(α +1)

=
j

j+1
− i−1

i
. (C.30)

The Diagonal - The σ z-σ z Pairings

After subtracting off by d−2σ00, the diagonal of ρ2 is now of the form,

C

[
d

∑
i6= j=1

|i j〉〈i j|− (d−1)
d

∑
i=1
|ii〉〈ii|

]
. (C.31)

I will now show that this can be represented in the Bloch form purely by using czz
α β

=−Cd
2 δα,β .

Proof.
d

∑
i 6= j=1

|i j〉〈i j|− (d−1)
d

∑
i=1
|ii〉〈ii|=−d

2

d−1

∑
α=1

σ
z
α ⊗σ

z
α (C.32)

=−d
[ d−1

∑
α=1

1
α(α +1)

(
α

2 |α +1 α +1〉〈α +1 α +1|

+
α

∑
i, j=1
|i j〉〈i j|−α |i α +1〉〈i α +1|−α |α +1 j〉〈α +1 j|

)]
.

(C.33)

Now consider only the terms on either side with matching indices for both parties,

−(d−1)
d

∑
i=1
|ii〉〈ii| =

d−1

∑
α=1

−d
α(α +1)

(
α

2 |α +1 α +1〉〈α +1 α +1|+
α

∑
i=1
|ii〉〈ii|

)
(C.34)

= −d
d

∑
i=1

(
i−1

i
+

d−1

∑
α=i

1
α(α +1)

)
|ii〉〈ii| (C.35)

= −d
d

∑
i=1

(
i−1

i
+

d−1
d
− i−1

i

)
|ii〉〈ii| (C.36)

= −(d−1)
d

∑
i=1
|ii〉〈ii| . (C.37)
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And now the non-matching indices for either party, starting with i < j,

∑
i< j
|i j〉〈i j| =

d−1

∑
α=1

−d
α(α +1) ∑

i< j<α+2
(|i j〉〈i j|−α |i α +1〉〈i α +1|) (C.38)

= −d ∑
i< j

(
−1

j
+

d−1

∑
α= j

1
α(α +1)

)
|i j〉〈i j| (C.39)

= −d ∑
i< j

(
−1

j
+

d−1
d
− j−1

j

)
|i j〉〈i j| (C.40)

= ∑
i< j
|i j〉〈i j| . (C.41)

And likewise for i > j, which completes the proof.

The Real Semi-Off-Diagonal - The σ z⊗σ x Pairings

In the computational basis, the Real Semi-Off-Diagonal is of the form,

B3 ∑
i 6= j,k

∑
j 6=k

(|i j〉〈ik|+ | ji〉〈ki|)

+ℜ(B5) ∑
j 6=k

(| j j〉〈 jk|+ | j j〉〈k j|+ | jk〉〈 j j|+ |k j〉〈 j j|) ,
(C.42)

which we will now show can be represented in the Bloch form with the following coefficients,

czx
0α,β =

d−2
d

B3 +
2
d

ℜ(B5), (C.43)

and

czx
γ α,β =

√
1

2γ(γ +1)
(B3−ℜ(B5))



−2 β < γ +1

γ−1 β = γ +1

−1 α < γ +1 < β

γ α = γ +1

0 α > γ +1

. (C.44)
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For a fixed γ , we can visualize czx
γ α,β in an array indexed by α and β ,

czx
γ α,β =

√
1

2γ(γ +1)
(B3−ℜ(B5))



−2 · · · −2 γ−1 −1 · · · · · · −1
. . .

...
...

...
. . .

...

−2
...

...
. . .

...

γ−1 −1 · · · · · · −1

γ · · · · · · γ

0 · · · 0
. . .

...

0



, (C.45)

where the α = γ +1 and β = γ +1 entries have been highlighted in red and blue respectively.

What follows is a proof that these representations are equivalent.

Proof. Start by expanding the matrices of the Bloch representation and considering only the

entries for which j < k, because the converse will follow from symmetry of σ x
j,k. Likewise, we

will only consider the σ z
γ ⊗σ x

α,β components, as the exchanged elements will follow from the U

symmetry. In the computational basis, this leaves,

B3 ∑
i 6= j,k

∑
j<k
|i j〉〈ik|+ℜ(B5) ∑

j<k
(| j j〉〈 jk|+ |k j〉〈kk|) , (C.46)
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while in the Bloch representation we are left with,

2(B3−ℜ(B5))
d−1

∑
γ=1

1
γ(γ +1)

[
− ∑

j<k<γ+1

(
−γ |γ +1 j〉〈γ +1 k|+

γ

∑
i=1
|i j〉〈ik|

)

+
γ−1

2

γ

∑
j=1

(
−γ |γ +1 i〉〈γ +1 γ +1|+

γ

∑
i=1
|i j〉〈i γ +1|

)

− 1
2 ∑

j<γ+1<k

(
−γ |γ +1 j〉〈γ +1 k|+

γ

∑
i=1
|i j〉〈ik|

)

+
γ

2

d

∑
k=γ+2

(
−γ |γ +1 γ +1〉〈γ +1 k|+

γ

∑
i=1
|i γ +1〉〈ik|

)]
+

(
d−2

d
B3 +

2
d

ℜ(B5)

) d

∑
i=1

∑
j<k
|i j〉〈ik| .

(C.47)

Consider first the elements of the form, | j j〉〈 jk|, which leaves, in the computational basis, only

ℜ(B5) ∑
j<k
| j j〉〈 jk| , (C.48)

while, in the Bloch representation, we have,

2(B3−ℜ(B5))
d−1

∑
γ=1

1
γ(γ +1)

[
− ∑

j<k<γ+1
| j j〉〈 jk|+ γ−1

2

γ

∑
j=1
| j j〉〈 j γ +1|

− 1
2 ∑

j<γ+1<k
| j j〉〈 jk|− γ2

2

d

∑
k=γ+2

|γ +1 γ +1〉〈γ +1 k|
]

+

(
d−2

d
B3 +

2
d

ℜ(B5)

)
∑
j<k
| j j〉〈 jk| ,

(C.49)

which can be evaluated further to,

∑
j<k
| j j〉〈 jk|

{
d−2

d
B3 +

2
d

ℜ(B5)

+(B3−ℜ(B5))

[
−2

d−1

∑
γ=k

1
γ(γ +1)

+
k−2

k(k−1)
−

k−2

∑
γ= j

1
γ(γ +1)

− j−1
j

]}
.

(C.50)

We can now evaluate the sums over γ in the Bloch representation using (C.30), leaving,

∑
j<k
| j j〉〈 jk|

{
d−2

d
B3 +

2
d

ℜ(B5)

+(B3−ℜ(B5))

[
−2

d−1
d

+2
k−1

k
+

k−2
k(k−1)

− k−2
k−1

+
j−1

j
− j−1

j

]}
,

(C.51)

which indeed evaluates to (C.46). Now consider elements of the form, |k j〉〈kk| for j 6= k, which,

104



in the computational basis, leaves,

ℜ(B5) ∑
j<k
|k j〉〈kk| , (C.52)

and in the Bloch representation we have,

2(B3−ℜ(B5))
d−1

∑
γ=1

1
γ(γ +1)

[
− ∑

j<k<γ+1
|k j〉〈kk|

− γ(γ−1)
2

γ

∑
j=1
|γ +1 j〉〈γ +1 γ +1|

]
+

(
d−2

d
B3 +

2
d

ℜ(B5)

)
∑
j<k
|k j〉〈kk| ,

(C.53)

which can be expressed as

∑
j<k
|k j〉〈kk|

{
d−2

d
B3 +

2
d

ℜ(B5)− (B3−ℜ(B5))

[
2

d−1

∑
γ=k

1
γ(γ +1)

+
k−2

k

]}
(C.54)

= ∑
j<k
|k j〉〈kk|

{
d−2

d
B3 +

2
d

ℜ(B5)− (B3−ℜ(B5))

[
2

d−1
d
−2

k−1
k

+
k−2

k

]}
, (C.55)

which evaluates to (C.52). This leaves only needing to consider terms of the form, |i j〉〈ik|, for

distinct i, j, and k, which, in the computational basis, leaves

B3 ∑
i6= j,k

∑
j<k
|i j〉〈ik| . (C.56)

Turning to the Bloch representation, naively we can simplify equation (C.47) by eliminating the

first terms in the second and fourth lines, then changing the sums over i to skip over j and k. To

evaluate further, however, we need to address how each remaining term behaves as the value of i

ranges from i < j, to j < i < k, and finally to i > k. Starting with i < j, all that survives is

∑
i 6= j,k

∑
j<k
|i j〉〈ik|

{
d−2

d
B3 +

2
d

ℜ(B5)

+(B3−ℜ(B5))

[
−2

d−1

∑
γ=k

1
γ(γ +1)

+
k−2

k(k−1)
−

k−2

∑
γ= j

1
γ(γ +1)

+
1
j

]}
.

(C.57)

For j < i < k, the surviving terms are

∑
i6= j,k

∑
j<k
|i j〉〈ik|

{
d−2

d
B3 +

2
d

ℜ(B5)

+(B3−ℜ(B5))

[
−2

d−1

∑
γ=k

1
γ(γ +1)

+
k−2

k(k−1)
−

k−2

∑
γ=i

1
γ(γ +1)

+
1
i

]}
,

(C.58)

while for i > k, the surviving terms are

∑
i 6= j,k

∑
j<k
|i j〉〈ik|

{
d−2

d
B3 +

2
d

ℜ(B5)+(B3−ℜ(B5))

[
−2

d−1

∑
γ=i

1
γ(γ +1)

+
2
i

]}
. (C.59)

Each of these indeed evaluate to (C.56).
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Interestingly, we also know that the 1d⊗σ x and σ x⊗1d correspond to the single-party

marginal, meaning that c x
0,α,β = cx

α,β ,0 = A, which confirms that A = (d−2)B3 +2ℜ(B5).

The Imaginary Semi-Off-Diagonal - The σ z⊗σ y Pairings

In the computational basis, the Imaginary Semi-Off-Diagonal is

iℑ(B5) ∑
j 6=k

(| j j〉〈 jk|+ | j j〉〈k j|− | jk〉〈 j j|− |k j〉〈 j j|) , (C.60)

which we shall now show can be represented in the Bloch representation with coefficients,

c y
0α,β = 0. (C.61)

and,

czy
γ α,β =−ℑ(B5)

√
1

2γ(γ +1)



0 β < γ +1

γ +1 β = γ +1

1 α < γ +1 < β

−γ α = γ +1

0 α > γ +1

. (C.62)

The same array visualization of czy
γ α,β is,

czy
γ α,β =−ℑ(B5)

√
1

2γ(γ +1)



0 · · · 0 γ +1 1 · · · · · · 1
. . .

...
...

...
. . .

...

0
...

...
. . .

...

γ +1 1 · · · · · · 1

−γ · · · · · · −γ

0 · · · 0
. . .

...

0



. (C.63)

What follows is a proof that these representations are equivalent.
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Proof. We can again begin by exploiting the symmetries of σ
y
α,β to only examine the following

computational basis elements,

∑
j<k

(| j j〉〈 jk|− |k j〉〈kk|) , (C.64)

where we have also divided out by iℑ(B5). The same treatment of the Bloch representation leaves,
d−1

∑
γ=1

[
1
γ

γ

∑
j=1

(
−γ |γ +1 j〉〈γ +1 γ +1|+

γ

∑
i=1
|i j〉〈iγ +1|

)

+
1

γ(γ +1) ∑
j<γ+1<k

(
−γ |γ +1 j〉〈γ +1 k|+

γ

∑
i=1
|i j〉〈ik|

)

+
1

γ +1

d

∑
k=γ+2

(
−γ |γ +1 γ +1〉〈γ +1 k|+

γ

∑
i=1
|i γ +1〉〈ik|

)]
.

(C.65)

Start again with the terms of the form | j j〉〈 jk|, for j 6= k, in the Bloch representation,
d−1

∑
γ=1

[
1
γ

γ

∑
j=1
| j j〉〈 j γ +1|+ 1

γ(γ +1) ∑
j<γ+1<k

| j j〉〈 jk|

+
γ

γ +1

d

∑
k=γ+2

|γ +1 γ +1〉〈γ +1 k|
]
,

(C.66)

which simplifies to

∑
j<k
| j j〉〈 jk|

[
1

k−1
+

k−2

∑
γ= j

1
γ(γ +1)

+
j−1

j

]
(C.67)

= ∑
j<k
| j j〉〈 jk| , (C.68)

which agrees with (C.64). The same treatment of the |k j〉〈kk| terms for j 6= k in the Bloch

representation gives,
d−1

∑
γ=1

[
−

γ

∑
j=1
|γ +1 j〉〈γ +1 γ +1|

]
(C.69)

= −∑
j<k
|k j〉〈kk| , (C.70)

which again agrees with (C.64). Lastly we need to show that terms where i 6= j,k vanish. Begin

with i < j, the surviving terms evaluate to

∑
i6= j,k

∑
j<k
|i j〉〈ik|

[
1

k−1
+

k−2

∑
γ= j

1
γ(γ +1)

− 1
j

]
= 0. (C.71)

Terms where j < i < k likewise evaluate to

∑
i6= j,k

∑
j<k
|i j〉〈ik|

[
1

k−1
+

k−2

∑
γ=i

1
γ(γ +1)

− 1
i

]
= 0. (C.72)
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And finally there are no terms in the sum for i > k.

The Real Full-Off-Diagonal - The σ x⊗σ x and σ y⊗σ y Pairings

In the computational basis, the Real Full-Off-Diagonal components are

∑
i 6= j

{
B4 |ii〉〈 j j|+

(
1
d2 +C

)
|i j〉〈 ji|

+ ∑
k 6=i, j

[
ℜ(B2)(|ii〉〈 jk|+ | jk〉〈ii|)+B3 (|i j〉〈ki|+ | ji〉〈ik|)+ ∑

l 6=i, j,k
B1 |i j〉〈kl|

]}
,

(C.73)

which are represented by Bloch vector components given by

cx x
α,β α,β =

1
2

(
1
d2 +C+B4

)
(C.74)

cx x
α,β β ,γ = cx x

α,β γ,α = cx x
α,β α,γ = cx x

α,β γ,β =
1
2
(B3 +ℜ(B2)) (C.75)

cx x
α,β γ,δ = B1 (C.76)

cy y
α,β α,β =

1
2

(
1
d2 +C−B4

)
(C.77)

cy y
α,β β ,γ = cy y

α,β γ,α = cy y
α,β α,γ = cy y

α,β γ,β =
1
2
(B3−ℜ(B2)) (C.78)

cy y
α,β γ,δ = 0, (C.79)

for distinct α , β , γ , and δ . For fixed α and β , we can visualize cx x
α,β γ,δ and cy y

α,β γ,δ in the

following arrays indexed by γ and δ ,
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cx x
α,β γ,δ =



X · · · · · · X Y+ X · · · · · · · · · X Y+ X · · · · · · · · · X

. . .
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

X
...

...
. . .

...
...

...
. . .

...

Y+ X · · · · · · · · · X Y+ X · · · · · · · · · X

Y+ · · · · · · · · · Y+ Z+ Y+ · · · · · · · · · Y+

X · · · · · · X Y+ X · · · · · · · · · X

. . .
...

...
...

. . .
...

. . .
...

...
...

. . .
...

X
...

...
. . .

...

Y+ X · · · · · · · · · X

Y+ · · · · · · · · · Y+

X · · · · · · X

. . .
...

. . .
...

X



,

(C.80)
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and

cy y
α,β γ,δ =



0 · · · · · · 0 Y− 0 · · · · · · · · · 0 Y− 0 · · · · · · · · · 0
. . .

...
...

...
. . .

...
...

...
. . .

...

. . .
...

...
...

. . .
...

...
...

. . .
...

0
...

...
. . .

...
...

...
. . .

...

Y− 0 · · · · · · · · · 0 Y− 0 · · · · · · · · · 0

Y− · · · · · · · · · Y− Z− Y− · · · · · · · · · Y−

0 · · · · · · 0 Y− 0 · · · · · · · · · 0
. . .

...
...

...
. . .

...

. . .
...

...
...

. . .
...

0
...

...
. . .

...

Y− 0 · · · · · · · · · 0

Y− · · · · · · · · · Y−

0 · · · · · · 0
. . .

...

. . .
...

0



,

(C.81)

where X = B1, Y± = 1
2 (B3±ℜ(B2)) and Z± = 1

2

(
d−2 +C±B4

)
. Elements where only one

of the conditions, γ = α , or δ = α , or γ = β , or δ = β are met are colored in blue, while the

element in red indicates when γ = α and δ = β .
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The Imaginary Full-Off-Diagonal - The σ x⊗σ y Pairings

Lastly, the Imaginary Full-Off-Diagonal can be represented in the Bloch representation as

iℑ(B2)∑
i< j

∑
i<k 6= j

|ii〉〈 jk|− | jk〉〈ii|=ℑ(B2)

2 ∑
i> j

∑
i>k 6= j

σ
x
j,i⊗σ

y
k,i +σ

y
k,i⊗σ

x
j,i

− ℑ(B2)

2 ∑
i< j

∑
i<k 6= j

σ
x
i, j⊗σ

y
i,k +σ

y
i,k⊗σ

x
i, j,

(C.82)

meaning that the only non-zero individual components are

cx y
β ,α γ,α = cy x

γ,α β ,α =−cx y
α,β α,γ =−cy x

α,γ α,β =
ℑ(B2)

2
, (C.83)

allowing us to visualize cx y
α,β γ,δ as

cx y
α,β γ,δ =

ℑ(B2)

2



0 · · · · · · · · · · · · · · · 0 1 0 · · · 0
. . .

...
...

...
. . .

...

0 · · · · · · · · · 0 1 0 · · · 0

−1 · · · · · · −1 0 −1 · · · −1

0 · · · 0 1 0 · · · 0
. . .

...
...

...
...

0
...

...
...

1
...

...

0
...

. . .
...

0



, (C.84)

where the blue elements indicate when α = γ , while red indicate β = δ .

This completes the conversion of PSS one- and two-party reductions to the generalized

Bloch vector representation. We can now turn to evaluating the alternate matrix norms for the

purpose of measuring the validity of the mean field approximation.
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C.2 Hilbert-Schmidt Distance

As defined in [72], the Hilbert Schmidt distance between matrices, A and B, is

D(A,B) =

√
1
2

Tr
[
(A−B)2

]
. (C.85)

By the orthonormality of the Bloch vector components, this conveniently reduces to

D(A,B) =

√
∑
ααα

(
c(A)ααα − c(B)ααα

)2
, (C.86)

assuming, of course, that Tr(A) = Tr(B), which is the case for density matrices. Given the results

of the previous section, where the Bloch vectors of ρ1 and ρ2 were determined in terms of the

computational basis matrix elements, we can fully express D = D(ρ1⊗ρ1,ρ2) in terms of B1-B5

and C. Splitting the sum into the different types of Bloch vector components, we are left with

D =
[
Sz,z +Sz,x +Sz,y +S(1)y,y +S(2)y,y +Sx,y +S(1)x−x +S(2)x−x +S(3)x−x

] 1
2
, (C.87)
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where

Sz,z =
d−1

∑
α=1

(cz z
α α)

2 (C.88)

Sz,x =2
d−1

∑
γ=1

∑
α<β

(
cz x

γ α,β

)2
(C.89)

Sz,y =2
d−1

∑
γ=1

∑
α<β

(
cz y

γ α,β

)2
(C.90)

S(1)y,y = ∑
α<β

(
cy y

α,β α,β

)2
(C.91)

S(2)y,y = ∑
α<β<γ

(
cy y

α,β β ,γ

)2
+ ∑

γ<α<β

(
cy y

α,β γ,α

)2
+ ∑

α<{β 6=γ}

(
cy y

α,β α,γ

)2
+ ∑
{α 6=γ}<β

(
cy y

α,β γ,β

)2

(C.92)

Sx,y =2

[
∑

α<β<γ

(
cx y

α,β β ,γ

)2
+ ∑

γ<α<β

(
cx y

α,β γ,α

)2
+ ∑

α<{β 6=γ}

(
cx y

α,β α,γ

)2
+ ∑
{α 6=γ}<β

(
cx y

α,β γ,β

)2
]

(C.93)

S(1)x−x = ∑
α<β

(
cx x

α,β α,β −
(

cx
α,β

)2
)2

(C.94)

S(2)x−x = ∑
α<β<γ

(
cx x

α,β β ,γ −
(

cx
α,β

)2
)2

+ ∑
γ<α<β

(
cx x

α,β γ,α −
(

cx
α,β

)2
)2

(C.95)

+ ∑
α<{β 6=γ}

(
cx x

α,β α,γ −
(

cx
α,β

)2
)2

+ ∑
{α 6=γ}<β

(
cx x

α,β γ,β −
(

cx
α,β

)2
)2

S(3)x−x = ∑
α<β

∑
γ<δ︸ ︷︷ ︸

distinct α,β ,γ,δ

(
cx x

α,β γ,δ −
(

cx
α,β

)2
)2

. (C.96)

It is now just a matter of counting and summing for each of the S terms. First is Sz,z, which is

straightforward as each of the cz z
α α are the same,

Sz,z = (d−1)
d2C2

4
. (C.97)

Next is Sz,x, which requires a more involved sum over γ ,

Sz,x = (B3−ℜ(B5))
2

∑
α<β

[
α−1

α
+

β−2

∑
γ=α

1
γ(γ +1)

+
(β −2)2

β (β −1)
+4

d−1

∑
γ=β

1
γ(γ +1)

]
= (d−1)(d−2)(B3−ℜ(B5))

2 .
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Likewise Sz,y requires a similar sum,

Sz,y = ℑ(B5)
2

∑
α<β

[
α−1

α
+

β−2

∑
γ=α

1
γ(γ +1)

+
β

β −1

]
(C.98)

= d(d−1)ℑ(B5)
2. (C.99)

We then have S(1)y,y , which is straightforward, as each of the cy y
α,β α,β are the same.

S(1)y,y =
d(d−1)

8

(
1
d2 +C−B4

)2

. (C.100)

Moving to S(2)y,y , the only challenge is in the counting of terms,

S(2)y,y =
1
4
(B3−ℜ(B2))

2

[
∑

α<β<γ

+ ∑
γ<α<β

+ ∑
α<{β 6=γ}

+ ∑
{α 6=γ}<β

]
(C.101)

=
1
4
(B3−ℜ(B2))

2 d(d−1)(d−2)
[

1
6
+

1
6
+

1
3
+

1
3

]
(C.102)

=
1
4
(B3−ℜ(B2))

2 d(d−1)(d−2). (C.103)

The same counting of terms can be applied to determine Sx,y,

Sx,y =
1
2

d(d−1)(d−2)ℑ(B2)
2 . (C.104)

Then S(1)x−x is straightforward,

S(1)x−x =
1
2

d(d−1)
(

1
2d2 +

C
2
+

B4

2
− ((d−2)B3 +2ℜ(B5))

2
)2

. (C.105)

The same counting of terms used in S(2)y,y can be applied to S(2)x−x,

S(2)x−x = d(d−1)(d−2)
(

B3

2
+

ℜ(B2)

2
− ((d−2)B3 +2ℜ(B5))

2
)2

. (C.106)

Lastly S(3)x−x is just a new counting of terms,

S(3)x−x =
1
4

d(d−1)(d−2)(d−3)
(

B1− ((d−2)B3 +2ℜ(B5))
2
)2

. (C.107)

C.3 Super-Fidelity

The Super-Fidelity was originally presented in [73] as a means for bounding the Fidelity.

It is defined as

G(A,B) = Tr(AB)+
√

(1−Tr(A2))(1−Tr(B2)), (C.108)
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which conveniently can be expressed in terms of the Bloch vectors for A and B as

G(A,B) =
1
d2 +2~cA · ~cB +

√(
1− 1

d2 −2~cA · ~cA

)(
1− 1

d2 −2~cB · ~cB

)
. (C.109)

Applied to G :=G(ρ1⊗ρ1,ρ2), we can again expand the sums by type of Bloch vector component,

G =
1
d2 +2

(
S0,x +S(1)x∗x +S(2)x∗x +S(3)x∗x

)
+

[(
1− 1

d2 −2
(

S0,x +S(1)x +S(2)x +S(3)x

))
×
(

1− 1
d2 −2

(
S0,x +Sz,z +Sz,x +Sz,y +S(1)y,y +S(2)y,y +Sx,y +S(1)x,x +S(2)x,x +S(3)x,x

))] 1
2

,

(C.110)

115



where the new terms are

S0,x =2 ∑
α<β

(
cz x

0 α,β

)2
(C.111)

S(1)x∗x = ∑
α<β

(
cx

α,β

)2
cx x

α,β α,β (C.112)

S(2)x∗x = ∑
α<β<γ

(
cx

α,β

)2
cx x

α,β β ,γ + ∑
γ<α<β

(
cx

α,β

)2
cx x

α,β γ,α (C.113)

+ ∑
α<{β 6=γ}

(
cx

α,β

)2
cx x

α,β α,γ + ∑
{α 6=γ}<β

(
cx

α,β

)2
cx x

α,β γ,β

S(3)x∗x = ∑
α<β

∑
γ<δ︸ ︷︷ ︸

distinct α,β ,γ,δ

(
cx

α,β

)2
cx x

α,β γ,δ (C.114)

S(1)x = ∑
α<β

(
cx

α,β

)4
(C.115)

S(2)x = ∑
α<β<γ

(
cx

α,β

)4
+ ∑

γ<α<β

(
cx

α,β

)4
+ ∑

α<{β 6=γ}

(
cx

α,β

)4
+ ∑
{α 6=γ}<β

(
cx

α,β

)4

(C.116)

S(3)x = ∑
α<β

∑
γ<δ︸ ︷︷ ︸

distinct α,β ,γ,δ

(
cx

α,β

)4
(C.117)

S(1)x,x = ∑
α<β

(
cx x

α,β α,β

)2
(C.118)

S(2)x,x = ∑
α<β<γ

(
cx x

α,β β ,γ

)2
+ ∑

γ<α<β

(
cx x

α,β γ,α

)2
+ ∑

α<{β 6=γ}

(
cx x

α,β α,γ

)2
+ ∑
{α 6=γ}<β

(
cx x

α,β γ,β

)2

(C.119)

S(3)x,x = ∑
α<β

∑
γ<δ︸ ︷︷ ︸

distinct α,β ,γ,δ

(
cx x

α,β γ,δ

)2
. (C.120)
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These calculations largely repeat of those of the previous section, so their final results are compiled

below,

S0,x = d(d−1)
(

d−2
d

B3 +
2
d

ℜ(B5)

)2

(C.121)

S(1)x∗x =
1
4

d(d−1)((d−2)B3 +2ℜ(B5))
2
(

1
d2 +C+B4

)
(C.122)

S(2)x∗x =
1
2

d(d−1)(d−2)((d−2)B3 +2ℜ(B5))
2 (B3 +ℜ(B2)) (C.123)

S(3)x∗x =
1
4
(d(d−1)(d−2)(d−3)((d−2)B3 +2ℜ(B5))

2 B1 (C.124)

S(1)x =
1
2

d(d−1)((d−2)B3 +2ℜ(B5))
4 (C.125)

S(2)x = d(d−1)(d−2)((d−2)B3 +2ℜ(B5))
4 (C.126)

S(3)x =
1
4

d(d−1)(d−2)(d−3)((d−2)B3 +2ℜ(B5))
4 (C.127)

S(1)x,x =
1
8

d(d−1)
(

1
d2 +C+B4

)2

(C.128)

S(2)x,x =
1
4

d(d−1)(d−2)(B3 +ℜ(B2))
2 (C.129)

S(3)x,x =
1
4

d(d−1)(d−2)(d−3)B2
1. (C.130)
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