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ABSTRACT OF THE DISSERTATION

Unconventional Density Wave and Superfluidity in Cold Atom Systems

by

Chen-Yen Lai

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2014

Professor Shan-Wen Tsai, Chairperson

Ultra-cold atom system provides novel technology to simulate traditional solid

state physics, including boson and fermion particles. Due to the flexibility of tuning pa-

rameters, people can further understand basic physics behind strongly correlated effects,

especially mechanism of unconventional density wave and superfluidity. Using weak cou-

pling renormalization group method, we propose and study several models which can be

realized in experiments. Ranging from most well-known extended Hubbard model, to spin-

polarized Fermi Hubbard model and multi-flavor Fermi-Fermi mixture, we establish solid

theories to explain the origin of new states of matter, and the experimental techniques to

exploit them. The effects of lattice structure and particle density in fermionic system play

important roles for determining phase diagram in low energy scale. Due to the presence of

lattice, these systems have insulator phase at half-filled. The density imbalance, however,

prevents formation of conventional density wave state, and the screening interaction dra-

matically affects other species’s behavior. The interplay between screening interaction and

square lattice is key ingredient of unconventional density wave and superfluidity. Our study
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shows that the unconventional density wave and superfluidity can be realized and detected

in ultra-cold atom experiments.
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Chapter 1

Introduction

Theoretical Condensed Matter Physics (CMP) strives to understand the proper-

ties and behaviors of matter. One of most intriguing phenomena of interacting quantum

many-body systems in CMP is the emergence of new states of matter and competition be-

tween different types of order. From a methodological view, a physical system would be

very desirable for developing, understanding and verifying a theory if it can be described

with as few tunable parameters as possible. The spectacular progress of experiments has

provided a new arena for studying correlated quantum many-body phenomena, where the

microscopic Hamiltonian can be realized, and in addition, the parameters are possibly

controllable by tuning external fields [1]. Various lattice structure, including cubic, honey-

comb, and kagome, can also be realized by different sets of counter propagating lasers [2].

Comparing to conventional solid state materials, these techniques can provide a clean and

controllable environment which is closed to theoretical model. One might hope that this
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reliable technique can shed the light on discovering insightful physics of the emergence of

new states of matter.

The problem of understanding physical mechanism in strongly correlated fermionic

system, like metal-insulator transition, origins of anti-ferromagnetism and superconductiv-

ity, remains an important challenge. Despite the large effort in the literature, many issues

still remain controversial, mainly because of the absence of unbiased and reliable theoretical

methods for handling the strong correlation problem. In the weak coupling case, at least in

principle it is tractable by perturbative techniques. The main idea of renormalization group

(RG) is integrating out the high energy modes, and obtaining a low energy scale physics in

CMP. The famous review article [3] provides a basic idea and procedure on this treatment.

It is clear that further investigation is interesting and necessary for complicated solid state

materials and novel fermionic system in ultra-cold gas experiment.

In order to understand the origin of unconventional density wave and superfluid,

we propose and study several models which can be realized in ultra-cold atom experiment.

Considering the lattice structure and particle density in correlated fermions system, such as

extended Hubbard model, spin-polarized Hubbard model, and quantum degenerate Fermi-

Fermi mixture, we conclude that effective long range interaction and density imbalanced

are the key to formation of unconventional density wave and superfluid in low energy scale.

The experimental setup and detection of different phases are discussed in each cases.

The present dissertation is divided as follows: Chapter 2 reviews several important

concepts and techniques used in the thesis. Chapters 3 to 6 then present my main work.

Chapter 7 gives summary and Appendix A provides more details discussed in Chapter 2.
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More specifically, in chapter 2, we briefly summarize the procedure of RG method

on weakly interacting fermion system. By integrating out the thin energy shell systemati-

cally on one-loop RG equation for four point vertex, we arrive a series of effective Hamil-

tonians at different RG scale as we proceed this systematic process. According to the

proper symmetry of the problem and background knowledge, we can define different insta-

bility channels, for instance, density wave or superconductivity, then we can analyze these

channels and determine any instabilities of the system.

In chapter 3, we study the phase diagram of the extended Hubbard model on a two-

dimensional square lattice, including on-site (U) and nearest-neighbor (V ) interactions, at

weak couplings [4]. Despite there were several studies on Hubbard model by using functional

renormalization group (FRG) [5, 6, 7], the phase diagram of the extended Hubbard model

was still missing. Upon different filling fractions, on-site U and nearest-neighbor V inter-

actions, we found several instabilities, including the well known charge(spin)-density wave

phase at half filling, dxy-wave superconducting, and dx2−y2 pairing state under slightly dop-

ing. One of most intriguing results is triplet time-reversal breaking (px + ipy)-wave pairing

instability merges. This results suggest that zero-energy Majorana modes can be realized

on a square lattice. Considering a system of cold fermionic atoms on a two-dimensional

square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would

be required, in addition to rotation of the system to create vortices. We discussed possible

ways of experimentally engineering the required interaction terms in a cold atom system.

In chapter 4, we apply this RG idea on Hubbard model [8] with spin imbal-

anced [9]. Experiments with ultra-cold atoms have realized mixtures of two different species
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of fermionic atoms with different densities, including mixtures of cold lithium atoms (6Li)

with different populations for two different hyperfine states [10, 11]. With the presence of

square optical lattice, we can model such a system as a Hubbard model where the spin-up

and spin-down particle has different densities. Comparing to the imbalanced Fermi gas

(without lattice), the lattice effect can provide much richer physics and accessible critical

temperature. We are the first group obtain the phase diagram for this system, focusing

on the case where the majority species stays close to half-filling and the density of the

minority species is varied. We found several new phases, including a stripe-CDW phase

and triplet pairing phases for both species. The interplay between lattice effect and the

density-imbalanced provides important features for quantum correlated system. Also, the

critical temperature of each phase is experimentally accessibility and much higher than the

one without lattice.

In chapter 5, we proposed and studied a quantum degenerate Fermi-Fermi mixture

model on square lattice [12]. According to recent experiments, a system with different types

of quantum degenerate fermionic atom can be engineered, for instance, 6Li and 40K [13].

In this two-species Hubbard model, both inter-species and intra-species interactions are

taken into account at equal footing. Unlike the usual single-species (orbital) model, the

competition between inter-species and intra-species interaction provides more intriguing

strongly correlated effect. Our study shows the various dominant instabilities under differ-

ent interaction ratios and the number density imbalance between different atoms. One of

exciting result is the unconventional dxy-wave charge density wave, which lives in a very

wide parameter regime of the phase diagram and has an accessible critical temperature.
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Most importantly, our theory provides a general screening mechanism of forming this kind

of exotic phase on a square lattice. This study sheds the light on searching unconventional

density wave for a minimum on-site Hubbard model.

In chapter 6, we use FRG method to study a dipolar fermion system on a square

lattice of bilayer. The recent experiment is able to prepare electric [94] or magnetic

dipoles [93] in a magneto atomic trap. The former can also be loaded onto optical lat-

tice [117]. The intriguing long-range interaction already draw a lot of attention on theoret-

ical studies [121, 122, 123, 124, 125, 126, 127]. On a two dimensional square lattice, this

kind of system was studied before [83, 100] as well. In the two dimensional plane, the phase

diagram can be interpreted by two critical angles [83]. Also, this long-range anisotropic

interaction drives the system into some unconventional density and pairing ground states

when the dipoles are oriented in particular polar angles. Due to the anisotropic nature of

dipole-dipole long-range interaction, the presence of second layer brings up the interplay

between intra- and inter-layer interactions, which makes this system more interesting than

monolayer system. Also, the unconventional charge density wave is found in wilder range

in phase diagram than one in monolayer square lattice.

Conclusions and outlook are given in chapter 7. The back-matter contains ap-

pendix and the bibliography.
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Chapter 2

Functional Renormalization Group

for Interacting Fermion

2.1 Renormalization Group Method

The functional renormalization group approach to interacting fermions[3, 5, 6] has

been applied to the study of the stability and instabilities of Fermi liquids. Starting with

a microscopic Hamiltonian, the renormalization group method provides an effective theory

for low-energy scales by integrating out high-energy degrees of freedom, reducing the UV

cutoff Λ = Λ0e
−`. The starting point of this approach is the many-body partition function

Z =

∫ ∑
γ

DΨ̄γDΨγe
S{Ψ̄γ ,Ψγ} , (2.1)

where Ψ, Ψ̄ are Grassmann fields with auxiliary index γ, including frequency, momentum,

orbital and spin variables. These fields are divided into high (Ψ>) and low (Ψ<) energy

6



modes depending on whether their energies are higher or lower than the energy cut-off Λ,

and the action can then be written as

S{Ψ<,Ψ>} = S0{Ψ<}+ S0{Ψ>}+ SI{Ψ<,Ψ>} , (2.2)

where S0 is the non-interacting quadratic part and SI contains quartic interaction terms.

The effective low-energy action containing only low-energy modes is obtained by

tracing out high-energy modes and is given by

SΛ = ln

∫
DΨ̄>DΨ>e

S{Ψ<,Ψ>} . (2.3)

This procedure is carried out in infinitesimal successive steps, Λ → Λ′ = Λe−d`. As shown

in Fig. 2.1, the recursive steps of integrating out high energy modes result in a serious of

effective Hamiltonian at different RG scale `. Back to the formulation of partition function,

we have

Z =

∫ ∑
γ

DΨ̄γDΨγe
S0{Ψ<}eS0{Ψ>}eSI{Ψ<,Ψ>}

=

∫
DΨ̄<DΨ<e

S0{Ψ<}
∫
DΨ̄>DΨ>e

S0{Ψ>}eSI{Ψ<,Ψ>} (2.4)

=

∫
DΨ̄<DΨ<e

S′{Ψ<} . (2.5)

The effective action S′ is given by

eS
′{Ψ<} = eS0{Ψ<}

∫
DΨ̄>DΨ>e

S0{Ψ>}eSI{Ψ<,Ψ>}

= eS0{Ψ<}
∫
DΨ̄>DΨ>e

S0{Ψ>}eSI{Ψ<,Ψ>}∫
DΨ̄>DΨ>eS0{Ψ>}

∫
DΨ̄>DΨ>e

S0{Ψ>}

= eS0{Ψ<}〈eSI{Ψ<,Ψ>}〉0> (2.6)
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Γ X M Γ
k−space

4

2

0

2

4
εk

εF

H`0

H`1

H`2

Figure 2.1: The recursive steps of integrating out high energy modes push the cut-off Λ`
toward Fermi level εF . This systematic procedure results in flow of effective Hamiltonian
H`0 → H`1 → H`2

, where the constant term (Z0> =
∫

[dΨ>]eS0{Ψ>}) is drop in last line. We rewrite above

equation into

eS
′{Ψ<} = eS0{Ψ<}〈eSI{Ψ<,Ψ>}〉0> = eS0+δS′ . (2.7)

Then we expand it by means of cumulant expansion to get

δS′ = 〈δS〉+
1

2
(〈δS2〉 − 〈δS〉2) + · · · · · · (2.8)

, where the δS is linear in four-point vertex (U).

Here, we present an example with SU(2) symmetry [6, 7]. We calculate the cor-

rections to the interaction vertices to one-loop level [6]. During this RG process, we do

not assume any prior order parameters. Both particle-particle (pp) diagram in Fig. 2.2b
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(a)
k1

k2

k3

k4

(b) (c)

(d) (e) (f)

Figure 2.2: (a) A four-point vertex function U(k1,k2,k3,k4 = k1 + k2 − k3). (b)-(f) One-
loop diagrams that contribute to the renormalization of a four-point vertex.

and particle-hole (ph) diagrams in Figs. 2.2c-2.2f are included. Therefore, entire process is

unbiased to any order state. We show all one-loop Feynman diagrams in Figs. 2.2b-2.2f,

and corresponding RG equation is given by following

∂`U(`) = β`{U} = βpp{U,U}+ 2βph{U,U}

−βph{U,XU} − βph{XU,U} −Xβph{XU,XU} . (2.9)

The function β is a vertex object and a bilinear functional of four-point vertex at different

RG scale, U(`). The operator X acting on a four-point vertex object exchange its in-

dices, saying XF (1, 2, 3, 4) = F (2, 1, 3, 4). βpp is the particle-particle part of beta function,

diagrammatically shown in Fig. 2.2b, and it is given by

βpp{U,U} = Ξ{U,U}+ Ξ{XU,XU} (2.10)

2βph{U,U} is the particle-hole diagram with Fermi bubble in Fig. 2.2d, and it is worthy to

mention that −2 from Fermi bubble is included here. The particle-particle beta function is

given by

βph{U1, U2} = Π{U1, U2}+ T Π{U1, U2} (2.11)
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, with the time inversion operator T F (1, 2, 3, 4) = F (3, 4, 1, 2). Both Ξ and Π four-point

functions are the on-shell integrals of particle-particle and particle-hole diagrams. More

explicitly, it can be written in integral form with two fermion propagators (also known as

Green’s function) as following

Ξ{U,U}(K1,K2,K3,K4) =
−Λ`
(2π)2

∑
ν=±

∫
dsν
vν

Θ(|εkν−qpp | − Λ`)× (2.12)

T
∑
ωn

G`(K(ν))G`pp(−K(ν) +Qpp)× U(K1,K2,K(ν), `pp)U(K3,K4,K(ν), `pp)

Π{U1, U2}(K1,K2,K3,K4) =
−Λ`
(2π)2

∑
ν=±

∫
dsν
vν

Θ(|εkν+qph
| − Λ`)× (2.13)

T
∑
ωn

G`(K(ν))G`ph
(−K(ν) +Qph)× U1(K1,K(ν),K3, `ph)U2(K4,K(ν),K2, `ph) .

The summation over index ν = ± is over inner shell (below Fermi level) and outer shell

(above Fermi level). We sketch it in Fig. 2.1. The integral is along a constant energy curve

ε = νΛ, and vν are on-shell velocities. The symbol Kν contains momentum (k), frequency

(ωn), and orbitals (o) etc.. The quantity inside those propagators are

Qpp = (qpp, ωn,pp, oq) = K1 +K2 (2.14)

Qph = (qph, ωn,ph, oq) = K1 −K3 . (2.15)

Next, we are going to neglect the self-energy correction since it is just a constant which

can be absorbed into chemical potential in one-loop manner [6]. Thus, we can use bare

Fermi propagator in above equations: G` → G0 ≡ (iω − εk)−1. According to Shankar’s

argument at tree level [3], marginal four-point vertex is independent of the magnitude of

momentum and frequency. Therefore, we can simplify two vertices in terms of angles,

instead of auxiliary indecies:

U(K1,K2,K3, `)→ U(θ1, θ2, θ3, `), ω1,2,3,4 = 0, and 1, 2, 3, 4 on Fermi surface. (2.16)
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Next, we assume zero temperature (T → 0), and perform Matsubara summation [6] on

Eq. 2.12. In order to solve the RG flow equations numerically, we discretize the Fermi

surfaces[6, 5] into finite number of patches and label the interaction vertices in terms of

patch-indices, instead of angles: U(θ1, θ2, θ3, `)→ U(i1, i2, i3, `).

For the multi-species system we consider in following chapters, each solid line

in these diagrams also carries a spin and a species index. If the Hamiltonian has SU(2)

symmetry for each species, it is enough to calculate only vertices in which fermions with

antiparallel spins interact, as vertices involving fermions with the same spin can be obtained

from these by imposing SU(2) symmetry[6]. Depending on the species indices, we have

intra-species interaction vertices for each species and also inter-species vertices. On the other

hand, if system Hamiltonian also has global U(1) symmetry and interactions are density-

density type, to each fermion annihilated (incoming fermion line in Fig. 2.2) corresponds a

fermion with the same spin and species indices being created (outgoing line). Momentum

conservation requires k1 +k2 = k3 +k4 in every vertex. Also, the species indices appear as

a pair with the same spin; this follows from the density-density nature of the inter-species

interaction in the Hamiltonian.

2.2 RG Flow Analysis

After carrying out the one-loop RG calculations, we obtain the flow of four-point

vertices in terms of the RG scale `, and three independent momenta, U(k1,k2,k3, `). The

momenta are discretized in the numerical implementation but we describe here the general

analysis in terms of momenta. The signature for the occurrence of an instability of the Fermi
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liquid state in the RG approach is the development of run-away flows. In order to determine

the dominant instability, we look at the quartic interaction terms in the effective action in

the form
∑

k,p V
(`)
op (k,p)Ô†kÔp, with Ôk being a term bilinear in the fermion fields and

corresponding to the order parameter (OP) of pairing (SC), charge density wave (CDW),

spin-density wave (SDW), ferromagnetism (FM) or Pomeranchuk (PI) instabilities[6, 14].

Detail definitions of order parameters are given in appendix. The choice of order parameters

depends on different symmetry property of Hamiltonian. We discuss three different types

of symmetry in the following.

2.2.1 U(1) symmetry

The straightforward case is the spinless fermion, which only has U(1) symmetry.

The order parameters we can have are spin-triplet SC, CDW and PI. The corresponding

matrices are related to U by

V(`)
SC(k,p) = U(k,−k,p,−p, `) (2.17)

V(`)
CDW (k,p) = U(k,p, k̄, p̄, `) (2.18)

V(`)
PI(k,p) = U(k,p,k,p, `) , (2.19)

where k̄ = k +Q, p̄ = p+Q, and Q is the nesting vector at particular filling, and the

momenta, k, p, lie on Fermi surface.
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2.2.2 SU(2) symmetry

If system has SU(2) symmetry, we can write most general interaction form into

spin-spin and charge-charge, or singlet-singlet and triplet-triplet interactions. The corre-

sponding matrices are related to U = Uσσ̄ by

V(`)
SCs(t0)

(k,p) =
1

2
[U(k,−k,p,−p, `)± U(−k,k,p,−p, `)] (2.20)

V(`)
SDW (k,p) = −U(p,k, k̄, p̄, `) (2.21)

V(`)
CDW (k,p) = 2U(k,p, k̄, p̄, `)− U(p,k, k̄, p̄, `) (2.22)

V(`)
FM (k,p) = −U(p,k,k,p, `) (2.23)

V(`)
PI(k,p) = 2U(k,p,k,p, `)− U(p,k,k,p, `) , (2.24)

The singlet(triplet) SC instability channel is denoted by SCs(SCt0), and corresponds to

the plus(minus) sign in the right-hand side of the first equation above. In the numerical

implementation, each Fermi surface is discretized into patches and k, p can be labeled by

a discrete patch index that goes from 1 to M(total patch number).

In multi-species system, the couplings V(`)
op (k,p) contain both intra- and inter-

species couplings, depending on whether the momenta k and p are on the same Fermi

surface or on different Fermi surfaces, and thus k and p have M values. Explicitly, each V

matrix is block diagonal for intra-species and block off-diagonal for inter-species. For each

order parameter channel, we can further diagonalize V(`)
op (k,p) into

V(`)
op (k,p) =

∑
j,oo′

∆(j)
op (`)ηof

(j)∗
op (k, o, `)ηo′f

(j)
op (p, o′, `) , (2.25)
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Figure 2.3: An example of RG flows. We only plot the leading eigenvalue in each channels.

with j being a decomposition index, and where now we explicitly indicate the species index

o and o′ for different types of species. In Fig. 2.3, we show an example of RG flow which

determines an instability. The leading instability can be determined by the most negative

eigenvalue wmin
op (largest magnitude), and the corresponding symmetry of the instability

(s-, p-, and d-wave etc.) is given by the form factor fmin
op (k). The sign structure factor

ηo = 1(−1) stands for in-phase (out-phase) between species on lattice.

2.2.3 Broken SU(2) symmetry

In order to analyze the RG flow in this non-SU(2) symmetry case, we need to derive

the instability channels from its original definition, which is shown in appendix. Also, we

need to keep spin indices all the time. On the other hand, we still keep global U(1) symmetry.
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As a consequence of SU(2) symmetry broken, the spin-spin interactions decompose into

longitudinal(SDWz) and transpose direction(SDWxy). The order parameters in density

wave channels are

V(`)
CDW (k,p) = U↑↑(k,p, k̄, p̄, `)− U↑↑(p,k, k̄, p̄, `) + U↓↓(k,p, k̄, p̄, `)−

U↓↓(p,k, k̄, p̄, `) + U↑↓(k,p, k̄, p̄, `) + U↓↑(k,p, k̄, p̄, `) (2.26)

V(`)
SDWz

(k,p) = U↑↑(k,p, k̄, p̄, `)− U↑↑(p,k, k̄, p̄, `) + U↓↓(k,p, k̄, p̄, `)−

U↓↓(p,k, k̄, p̄, `)− U↑↓(k,p, k̄, p̄, `)− U↓↑(k,p, k̄, p̄, `) (2.27)

V(`)
SDWxy

(k,p) = −U↑↓(p,k, k̄, p̄, `) = −U↓↑(p,k, k̄, p̄, `) . (2.28)

For pairing order parameters, three triplet states(t0 and t±) are no longer degenerate when

SU(2) symmetry is broken.

V(`)
SCs

(k,p) =
1

4
[U↑↓(k,−k,p,−p, `) + U↓↑(k,−k,p,−p, `)+

U↑↓(−k,k,p,−p, `) + U↓↑(−k,k,p,−p, `)] (2.29)

V(`)
SCt0

(k,p) =
1

4
[U↑↓(k,−k,p,−p, `)− U↓↑(k,−k,p,−p, `)+

U↑↓(−k,k,p,−p, `)− U↓↑(−k,k,p,−p, `)] (2.30)

V(`)
SCt+

(k,p) =
1

2
[U↑↑(k,−k,p,−p, `)− U↑↑(−k,k,p,−p, `)] (2.31)

V(`)
SCt−

(k,p) =
1

2
[U↓↓(k,−k,p,−p, `)− U↓↓(−k,k,p,−p, `)] . (2.32)

If we apply the SU(2) symmetry properties that Uσσ(k1,k2,k3,k4) = 1
2(Uσσ̄(k1,k2,k3,k4)−

Uσσ̄(k2,k1,k3,k4)), the above definitions coincide with those definitions in 2.2.2.
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Chapter 3

2D Extended Hubbard Model on

Square Lattice

3.1 Introduction

An extended Hubbard model is generally employed as a theoretical framework

of screened electronic interactions and regarded as a prototypical scenario for rich quan-

tum phases in condensed matter physics [15, 16, 17]. In a one-dimensional chain, for in-

stance, an extended Hubbard model, including an on-site and nearest-neighbor interac-

tions, presents correlated phases associated with the ratio of the two interactions [18, 19].

Recent identification of the bond-charge-density-wave instability between charge and spin

density-wave phases, at weak and strong interactions, completes the phase diagram of this

model [20, 21, 22, 23, 24, 25]. Meanwhile, in a two-leg ladder, a checkerboard charge-

ordered state has been proposed for all fillings between quarter and half, with on-site and
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nearest-neighbor repulsion [26]. Its application to the coupled quarter-filled ladders with

coupling to the lattice has recently been studied [27] to explain the spin gaps in the NaV2O5

material [28, 29].

On a two-dimensional lattice, the extended Hubbard model has been considered a

paradigmatic model to search for possible unconventional superconducting phases since the

discovery of high-temperature superconductivity in the cuprates [30]. Although a nearest-

neighbor repulsion between electrons suppresses non-s-wave pairings tendencies [31], it is

generally believed that the nesting of the Fermi surface plays a key role in driving unconven-

tional pairing under purely repulsive interactions at weak couplings [18, 32, 33, 7, 34, 35, 36].

In the proximity of density-wave order, for instance, a chiral d-wave state has been found for

an extended Hubbard model on both triangular and honeycomb lattices [37, 38, 39]. Fur-

thermore, following the recent experimental realization of a two-dimensional Kagome lattice

for ultracold atoms [40], the phase diagram of the extended Hubbard model on a Kagome

lattice has been established in the vicinity of van Hove fillings [41]. It was shown that a

possible p-wave charge and spin bond order can be triggered in the presence of a nearest-

neighbor repulsion for van Hove fillings, then giving way to a f -wave superconducting phase

when slightly doped away [39].

It has recently been proposed that under a nearest-neighbor attraction and on-site

repulsion a singlet (p + ip)-wave pairing emerges on a honeycomb lattice [42]. Along with

the result that Majorana fermions can be generated as a zero-energy mode in the excitation

spectrum of a half-quantum vortex in a (p + ip)-wave superconductor [43], this indicates

the possibility of creating Majorana fermions in graphene in the presence of a magnetic
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field. However, a functional renormalization group study has shown that for a honeycomb

structure, the f -wave pairing is preferred and is stabilized by introducing a next-nearest-

neighbor attraction [37]. Although triplet p-wave superconductivity has been proposed for

an extended Hubbard model on a square lattice for purely repulsive interactions [44, 45], the

physics of long-range interactions, with possibly terms leading to competing instabilities,

has been studied recently, leading that the existence of p-wave pairing is still an open

question [46, 34, 35].

3.2 Model and Formalism

In this chapter, we study the phase diagram of an extended Hubbard model via a

functional renormalization group (FRG) approach [3, 5, 6], including on-site U and nearest-

neighbor V interactions, on a two-dimensional square lattice. The total Hamiltonian can

be written as, H = H0 +Hint, with the non-interacting and interacting parts,

H0 = −t
∑
〈ij〉,α

(
c†iαcjα + H.c.

)
− µ

∑
i

ni, (3.1)

Hint = U
∑
i

ni↑ni↓ + V
∑
〈ij〉

ninj , (3.2)

respectively, where 〈ij〉 represents nearest-neighbor pairs of sites, ni = ni↑+ni↓ =
∑

α c
†
iαciα

and µ is the chemical potential. Without the nearest-neighbor interaction, the phase di-

agram in a FRG analysis is well developed in the limit of weak couplings [5]. For on-site

attraction, s-wave superconductivity (s-SC) dominates at all fillings except for half-filling.

The phase diagram for on-site repulsion, U = 1, versus µ is sketched in Fig. 3.1. In the

vicinity of half-filling, the spin-density wave (SDW) dominates due to the strong nesting of
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the Fermi surface. With slight doping, dx2−y2-SC emerges in a small regime of µ just away

from half-filling. When the magnitude of µ is further increased, no instability develops in

our analysis, up to the point where we stop the RG flows, at energy cutoffs lower than 10−6t.

Kohn-Luttinger (KL) instability [47] is expected to occur in this regime. Sufficiently away

from half-filling, the particle-hole channels can be treated perturbatively, and the RG flows

at low energies can be calculated including the particle-particle diagram only [6]. Previous

works have found that the dx2−y2-wave SC phase near half-filling is followed by a dxy-phase

upon doping [6, 34, 35], or by a p-wave SC phase that is then followed by a dxy-wave SC

phase [44].

3.3 Results

In presence of a nearest-neighbor interaction V , the phase diagram is much richer.

We find that dxy- and (px + ipy)-wave pairing superconducting states develop. In the

proximity of the charge-density-wave (CDW) order, dxy-wave pairing emerges from the

CDW instability with U > 0 and V > 0. When the nesting of the Fermi surface is decreased,

a time-reversal symmetry breaking (px+ ipy)-SC arises from the dx2−y2-SC with a sufficient

large nearest-neighbor attraction. When nesting is completely suppressed, (px + ipy)-SC

dominates in the whole regime of U ≥ 0 and V < 0, and the dxy-pairing is only triggered with

the help of an on-site attraction. Using a symmetry argument, we show that appearance

of (px + ipy)-SC on a square lattice for V < 0 is generic and robust due to the underlaying

lattice structure, and can be used to create a zero mode Majorana fermion in the presence

of a magnetic field.
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Figure 3.1: Fermi surfaces of a square lattice with nearest-neighbor hopping, at different
chemical potentials µ (in units of t). Below, the phase diagram versus µ for U = 1 and
V = 0. The Fermi surface patches used in this study are illustrated in the Fermi surface at
µ = 0.

3.3.1 At and near half filling

Starting with the bare Hamiltonian, Eq. (3.2), we follow standard FRG procedure

integrating out high-energy modes, decreasing the energy cut-off Λ. The four-fermion terms

in the resulting effective Hamiltonian are written in the form

g(k1,k2,k3,Λ)ψ†α(k3)ψ†β(k1 + k2 − k3)ψβ(k2)ψα(k1) (3.3)

, in momentum space, with k = (kx, ky) and spin indices α, β. In previous studies, the RG

equations for models with SU(2) and U(1) symmetries have been systematically studied by

Fermi surface discrete patch-approximation [5]. In this chapter, to preserve the particle-hole

symmetry of the non-interacting Hamiltonian at half-filling, all phase diagrams are obtained

by the configuration of the Fermi surface patches illustrated in Fig. 3.1. By integrating out
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Figure 3.2: The phase diagram (a) at half-filling µ = 0, (b) at µ = −0.095, parameterized
by on-site U and nearest-neighbor interaction V . The interaction terms U and V are in
units of t throughout this chapter.

high energy degrees of freedom and neglecting self-energy corrections, the RG flows of all

couplings versus the decreasing running energy cutoff Λ are computed. Before the system

flows into the strong couplings regime, we truncate the RG process when the absolute

magnitude of one of the couplings reaches ∼ 30t.

To determine the dominant instability, we decompose specific four-fermion interac-

tion terms in the Hamiltonian as
∑

k,p Vop(k,p,Λ)Ô†kÔp, with Ôk a bi-fermion operator for

the order parameter (op) of SC, CDW, SDW or Pomeranchuk instability. Then, for a given

order parameter channel, we further decompose, Vop(k,p,Λ) =
∑

iw
i
op(Λ)f i∗op(k,Λ)f iop(p,Λ),

in normal modes, with i a symmetry decomposition index. The leading instability can be

determined by the most minimum eigenvalue wmin
op (Λ) (largest magnitude), and the corre-

sponding symmetry of the instability is given by the form factor fmin
op (k) [6, 33].
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At half-filling, the phase diagram has been studied extensively by several meth-

ods [48, 49, 50]. In our FRG analysis, we include the regime of negative interactions and

obtain the phase diagram in Fig. 3.2a, parameterized by on-site interaction U and nearest-

neighbor interaction V (in unit of t). The phase boundary between SDW and CDW is at

U ' 4V for U, V > 0, consistent with known results from previous studies. For the line of

V = 0 and U < 0, we find that CDW and s-SC are degenerate, also in agreement with re-

sults in the literature [50]. However, the degeneracy is delicate and broken by introduction

of a nearest-neighbor interaction: a slight nearest-neighbor attraction drives the system to

a s-SC instability, instead of a CDW instability.

We also find that for a sufficiently large nearest-neighbor attraction, a dx2−y2-SC

is triggered, even dominant over the s-SC in the regime of U < 0. This d-wave pairing

is linked with the nesting of the Fermi surface. In other words, if the nesting effect is

suppressed, the s-SC is the dominant instability for a generic Fermi surface in the regime of

U < 0. Furthermore, without nesting effects, a p-wave, with lower angular momenta than

d-wave, will eventually dominate in the regime of V < 0 and U > 0. However, negative V

combined with nesting, leads to dx2−y2-SC.

By slightly doping away the half-filling, the dx2−y2-SC overcomes the spin-density-

wave instability that dominates for on-site repulsion. The phase diagram parameterized by

U and V is illustrated in Fig. 3.2b. The SDW is suppressed to the small regime between

CDW and dx2−y2-SC in the phase diagram. The degenerate line, U < 0 and V = 0,

mentioned above, is dominated by s-SC instability since the Fermi surface is not perfectly

nested. However, the CDW is still dominant in the overall regime of V > 0.
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Figure 3.3: Phase diagrams for (a) µ = −0.5, (b) µ = −1 and (c) µ = −2, parameterized
by U and V . The transparent regime means no instability is found before we stop the RG
process, at which point the energy cutoff is lower than 10−6t. Form factors obtained from
decoupling of pairing channels into bi-fermions during the FRG flows are illustrated for (d)
dxy-wave (e) (px + ipy)-wave pairings.

3.3.2 Doped systems

Here, we increase doping, decreasing nesting of the until the density-wave insta-

bility no longer occurs. Then, as shown as Fig. 3.3a, the dxy-wave SC arises from the CDW

instability in the regime of V > 0 and U ≥ 0. The form factors of the dxy-SC in our

FRG analysis is plotted in Fig. 3.3d. Although the dxy-SC phase has been proposed for the

purely repulsive models [44, 46, 34, 35], the dxy-SC instability we find develops only with

an appropriate nearest-neighbor repulsion and also tied with the proximity to nesting of

the Fermi surface. It is only when nesting is barely suppressed so that CDW is no longer

dominant, but CDW fluctuations are still expected to be strong, that this dxy-SC phase

emerges.

As compared with the phase diagram at µ = −0.5 in Fig. 3.3a, the dxy-SC in-

stability moves to the region of larger positive V or negative U when doping is increased,

for µ = −1, as shown in Fig. 3.3b. By looking at the RG flows of different couplings,

we notice that the different behavior for the two fillings, µ = −0.5 and µ = −1, are
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mainly coming from the effect of the nesting vertices, that is, couplings g(k1,k2,k3,k4)

with k1 + k2 − k3 − k4 = (0, 2π) or (2π, 0) or (2π, 2π). For µ = −1, there are fewer nesting

vertices flowing into large values as compared with the µ = −0.5 case. Without the benefit

of nesting vertices, the instability of dxy- and dx2−y2-SC are suppressed and eventually do

not develop by the time we stop the RG flow. As a consequence, when the nesting is com-

pletely destroyed, in heavily doped cases, there is no instability found for purely repulsive

interactions (U > 0 and V > 0), as shown in Fig. 3.3c.

The triplet p-SC phase tells an opposite story. In the regime of V < 0, under the

influence of Fermi surface nesting, dx2−y2-SC is dominant, as shown as Fig. 3.3a. However,

decreasing nesting suppresses the d-wave pairing and the p-SC emerges for large nearest-

neighbor attraction, as shown in Fig. 3.3b. When the nesting is no longer present at all,

p-SC dominates the regime of V < 0 and U ≥ 0, as illustrated as Fig. 3.3c. The emergence of

a triplet p-SC has a clear physical picture in a square lattice. In the presence of a nearest-

neighbor attraction V < 0, electronic pairings are triggered. To lower energy, a s-wave

pairing with the lowest angular momenta would be favored. However, an on-site repulsion

suppresses the s-wave pairing so that p-wave, with the second lowest angular momenta, is

preferred.

Furthermore, the four-fold symmetry on a square lattice also indicates that the px-

and py-wave instability channels must be degenerate. The degeneracy of two p-wave super-

conducting instabilities is indeed found in our FRG results and the associated form factors

are plotted in Fig. 3.3e. Since the px- and py-wave superconducting states are degenerate,

the gap functions will be given as a linear combination of the two order parameters. By
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constructing the gap function as ∆k = ∆px(k) + v∆py(k) with the complex coefficient v

containing a possible relative phase, the condensation energy in the standard BCS equation

is obtained by the difference in energy between the superconducting and normal states, and

is given by

∆E = ESC − EN = 2
∑
|k|>kF

εk − 2ε2k + |∆k|2

2
√
ε2k + |∆k|2

 , (3.4)

where εk is the dispersion relation of the non-interacting Hamiltonian. The second term of

Eq. (3.4) is maximized when v is purely imaginary, hence the time-reversal breaking pairing

symmetry px+ ipy is the energetically favored one [38, 39, 51, 52]. One can also preform the

Ginzburg-Landau free energy analysis to verify that px + ipy is preferred in energetics [53].

Physically this is reasonable, since this choice of the phase guarantees that a gap forms

everywhere along the Fermi surface, lowering the ground-state energy.

3.4 Summary

In atomic Bose-Fermi mixtures, an effective attraction between fermions can be

mediated by fluctuations of the Bose-Einstein condensate of the bosons [54, 55, 56]. In the

presence of the mediated long-range attraction, the px + ipy wave superconducting state

has been proposed in these systems [55]. However, the mechanism discussed here puts some

constraint for the emergence of the px + ipy-SC phase: in order to develop the px + ipy-SC,

long-range attraction and on-site repulsion is needed, as well as low density of fermions to

avoid nesting of the Fermi surface, while large enough densities such that the Fermi energy

is a large scale (t > U, V ) to justify the validity of FRG results. Another possible way
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to manifest a mediated attraction is through another species of fermions in a Fermi-Fermi

atom mixture [57]. By introducing an inter-species interaction in Fermi-Fermi mixtures, an

effective interaction for one species of fermions can be obtained by tracing out the other

species. This can be justified, for example, if the one of the species has a much smaller

effective mass than the other. In this case, the mediated long-range interaction is found to

decay rather rapidly and can be approximated by an effective on-site and nearest-neighbor

interactions. By tracing out one species with low electronic density, an effective nearest-

neighbor attraction can be obtained. Together with a bare hard-core on-site repulsion, it

may provide the required conditions for the creation of the time-reversal breaking px + ipy-

wave pairing.

In conclusion, we study the phase diagram of an extended Hubbard model, includ-

ing a on-site U and nearest-neighbor V interactions, on a two-dimensional square lattice.

In the proximity of charge-density-wave order, the dxy-SC overcomes the CDW, dominating

in the regime of U > 0 and V > 0, from our FRG analysis. Accompanying the destruction

of Fermi surface nesting, a time-reversal breaking (px + ipy)-wave superconducting state

arises in the regime of V < 0. Our results indicates that, without nesting, the (px+ ipy)-SC

on a square lattice under a nearest-neighbor attraction is the generic behavior due to the

underlaying lattice structure, and can be used to create a zero mode Majorana fermion in

the presence of a magnetic field.

26



Chapter 4

Spin-Imbalanced Fermi-Fermi

Mixture

4.1 Introduction

Experiments with ultra-cold atoms have realized mixtures of two different species

of fermionic atoms with different densities, including mixtures of cold lithium atoms (6Li)

with different populations for two different hyperfine states [10, 58, 59, 11, 60, 61, 62].

Fermionic systems with imbalanced spin populations have been studied in electronic mate-

rials, such as magnetic-field-induced organic superconductors [63, 64]. Mixtures of different

species of fermions with unequal populations have also been considered in the study of

quark matter [65]. With the rapid experimental advances in the field of cold-atom physics,

these systems have the advantage of a great degree of tunability and control of inter-particle

interactions, dimensionality, confinement, as well as a number of pseudo-spin species. Im-
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balanced mixtures of cold fermionic atoms have attracted great interest due to their possible

rich phase diagram [62]. Several phases have been observed experimentally [11, 62], such as

imbalanced superfluid phase, phase separation, and normal Fermi liquid behavior. Also, the

Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state [66, 67], which involves Cooper pairs with

finite center-of-mass momentum, and breached pair [68, 69, 70, 71] state with zero center-

of-mass momentum, could be possible phases in special regions of the phase diagram [72].

In addition, there are studies of p-wave triplet pairing, caused by effective attractive intra-

species interaction, proposed for strongly imbalanced cases in two [73] and in three [74, 75]

dimensions. In addition to being cooled and trapped, fermionic atoms and mixtures can now

also be loaded onto optical lattices [76, 77] where the interaction and the hopping strengths

can be tuned, and effects of their interplay with lattice geometry and dimensionality can

be probed.

We consider a two-component mixture of fermionic atoms with imbalanced popu-

lations on a two-dimensional square lattice at weak-coupling region. It is well known that

the presence of a lattice can provide interesting strong correlation effects, such as spin den-

sity wave (SDW) and charge density wave (CDW) phases for fermions on a two-dimensional

(2D) square lattice at half-filling. Extensive studies can be found in the literature for the

case of balanced, SU(2)-symmetric fermions, such as the Hubbard model [8] in various lat-

tice geometries and fillings [3, 5, 6, 51]. Due to nesting of the Fermi surface (FS), SDW is

the dominant instability for the repulsive Hubbard model on a 2D square lattice at half-

filling, followed by dx2−y2-wave superconductivity when the system is doped away from

half-filling. [5, 6] When nesting is completely destroyed by doping, the system becomes a
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normal Fermi liquid, aside from Kohn-Luttinger instabilities [47] at extremely low temper-

atures. However, when the spin populations are unequal and SU(2) symmetry is broken,

both the SDW and the singlet pairing will eventually be precluded due to the mismatch

of the FS for the up- and down-spin fermions at strong population imbalance. As the

Fermi surfaces become increasingly mismatched, the system is expected to be dominated

by other instabilities or becomes a two species Fermi liquid. If the interspecies interaction

is initially repulsive, one expects to find SDW phase near the balanced case [78, 79, 80],

switching to other and potentially richer correlated behavior as the polarization increases.

Here, we study this behavior using a weak-coupling functional renormalization group (FRG)

method, [3, 5, 6] which is able to treat different instabilities on an equal footing. We obtain

the phase diagram for this system, focusing on the case where the majority species stays

close to half-filling and the density of the minority species is varied. The phase diagram

(Fig. 4.1) contains several new phases, including a stripe-CDW phase and triplet pairing

phases for both species. From our FRG study, we also obtain estimates for the critical

temperature for the different instabilities.

For a microscopic interaction which is on-site, there is no bare intra-species in-

teraction due to Pauli exclusion principle, but an effective long-range interaction can be

induced via scattering between species. Previous studies [73, 74, 75] have considered such

mediated interactions for mixtures of fermion gases (no lattice) with imbalanced popu-

lations, finding an attractive effective intra-species pairing interaction, leading to p-wave

pairing of the majority species. In this study, we consider the effects of the interplay of

interaction, population imbalance, and lattice effects. We show that lattice effects in par-
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ticular, not only lead to a much richer phase diagram than that of an imbalanced mixture

of fermionic gases, but also with a much higher transition temperature, even at weak in-

teraction couplings, therefore more easily accessible to experimental observation. Unlike

Bose-Fermi mixtures [54, 55, 81, 82], where different pairing and density wave states for

the fermions originate from attractive interactions mediated by quantum fluctuations of

the boson condensate, in the fermion mixture considered here, both species have screening

effects from each other, and the low energy physics depends on the interplay between initial

interspecies interaction, induced intra-species interaction, the FS geometry of each species,

and their mismatch due to imbalance.

4.2 Model and Formalism

We consider a one-band Hubbard model for each species (σ =↑, ↓) of fermion (with

creation operator c†kσ) on a 2D square lattice, with on-site interspecies interaction U0. The

Hamiltonian can be written as:

H =
∑
σk

ξσkc
†
kσckσ +

U0

V

∑
kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑ (4.1)

, where ξσk = −2tσ(cos kx + cos ky) + µσ and V is the volume of the system (hereafter set

to be equal to 1). The different chemical potentials µσ determine the densities and the

hopping amplitude tσ can be tuned by the optical lattices. In this work, we only consider

the case t↑ = t↓ = t, and weak repulsive interspecies interaction (U0 > 0).
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4.3 Results

4.3.1 Nearly balanced

In order to maximize lattice effects, we focus on the case where the majority species

is at or close to half-filling, µ↑ ∼ 0, and we vary µ↓. Phase diagrams are shown in Fig. 4.1.

When the system is balanced (µ↑ = µ↓ = 0), SDW is the dominant instability (RG flows

shown in Fig. 4.2(a)). With increasing µ↓, the SDWz order persists for the nearly balanced

region (Fig. 4.1), but the critical temperature Tc decreases. This result agrees with previous

studies [78] showing that antiferromagnetic order is suppressed by increasing imbalance (i.e.

∆µ).

4.3.2 Weak imbalance

As the minority density is further decreased away from half-filling, some inter-

species vertices involving nesting vectors, such as Umklapp processes, are no longer near

the FS and are thus suppressed.

However, there are still some non-perfect nesting particle-hole processes with net

momentum equal to a reciprocal lattice vector, (2π, 0) or (0, 2π), which are allowed even

under imbalance. An example of such a process, depicted in Fig. 4.2(b), is for a minority

fermion to scatter from q → q + Q2 − δ across two opposite sides of its FS (say along the

45◦ direction), while a majority fermion scatters from k→ k+ Q1 + δ across the other two

opposite sides of its FS (say along the 135◦ direction). With Q1 = (π, π), Q2 = (−π, π),

and δ = (δ, δ) accounting for the FS mismatch, the net momentum for this process is

(0, 2π) and therefore of Umklapp-type and allowed by momentum conservation in spite of
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the imbalance. These vertices can still renormalize significantly under RG flow, and more

importantly, they mediate intra-species nesting processes for the majority fermions, which

do have a perfectly nested FS, so these mediated processes have the strongest flow. On

the other hand, the induced intra-species long-range attraction is maximum at diagonal

directions. Due to the partial nesting and intra-species long-range attraction, this leads to

a crossover in the RG flows from the SDWz to a stripe-CDW phase. From a real-space

picture, with increasing imbalance, both species also have more empty sites to move around

to minimize free energy. Figure 4.2(a) shows the RG flow close to this crossover, where

SDWz and CDW channels are almost degenerate. The CDW channel of both species is

doubly degenerate. The order parameters for ↑ and ↓ are non-zero on two-opposite sides

of the FS (second and fourth quadrants), and zero on the other sides (first and third

quadrants), with the situation reversed for the other degenerate channel [Fig. 4.2(c) shows

one of the cases[ These correspond to stripe charge order in the diagonal direction [83]).

This stripe-CDW phase originates from weaker spin fluctuations caused by imbalance in

addition to screened intra-species long-range attraction. Since it involves both spin and

charge fluctuations, the size of this region and its critical energy scale in phase diagram

depend on the filling fraction of both species, shown in Fig. 4.1.

4.3.3 Strong imbalance

As the imbalance becomes stronger, the FS mismatch precludes all nesting pro-

cesses as well as zero-momentum singlet pairing. Since the induced intra-species interactions

are always attractive, the dominant RG flows present another crossover, from CDW stripe
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phase to triplet p-wave BCS pairing. The triplet pairing is for a single fermion species but

it is generated by the initial bare repulsive interspecies interaction, the lattice (FS shape),

and the imbalance (FS mismatch). Whether the dominant pairing is for the majority or

for the minority species depends on the interplay of these factors. Figure 4.3(a) shows RG

flows for three different minority chemical potentials. As µ↓ increases, the minority pairing

channel is dominant at first. This is because the nearly half-filled majority FS provides a

large phase space in RG process to mediate and renormalize the minority intra-species BCS

vertex. The bubble diagram in Fig. 2.2(d), which contains an internal fermion loop, gives

a first nonzero correction to the intra-species vertex from two interspecies vertices, of the

form,

∂`U
(`)
σσ′(k1,k2,k3) =

[
1− 1

2
(1 +X)δσσ′

]
βph{U1, U2}, (4.2)

where X denotes the operation XF (1, 2, 3, 4) = F (2, 1, 3, 4) and βph{U1, U2} = Π{U1, U2}+

T Π{U1, U2}, with T F (1, 2, 3, 4) = F (3, 4, 1, 2) the time-reversal operator and

Π{U1, U2} =
∑
q,α

Bph(k1,k3, q)Uσα(k1, q,k3)Uσ′α(k4, q,k2) (4.3)

where Bph is an integral over an angular sector. [6] From Eq. (4.3), the induced intra-

species BCS vertex comes from integrating out two interspecies interactions. For example,

in Fig. 4.3(b), integrating pairs of solid and dashed lines, which represent two interspecies

vertices, results in an intra-species BCS vertex, U↓↓(k,−k,k′,−k′). Because the FS of

the majority species is flat, there will be more renormalization corrections to intra-species

interaction between minority species at first. As shown in Fig. 4.3(c), the momentum q

at fixed magnitude can be translated anywhere along that branch of the FS. Figure 4.1

shows that the critical temperature(a.u.) for minority pairing decreases monotonically with

33



increasing polarization, because the phase space of induced minority intra-species pairing

becomes smaller. The same effect is observed for the majority p-wave pairing channel, which

is the sub-leading channel. However, the induced BCS vertex of majority species couples

to its own nesting channel [k and k′, for example, are connected by a nesting vector in Fig.

4.3(b)]. Although the initial mediated majority intra-species pairing interaction is smaller

than that for minority species, as discussed above, eventually the strong RG flow through a

nesting channel leads to a majority pairing instability. We note that this majority superfluid

is not the same as proposed in previous studies of fermion gases [73, 74, 75], but is instead

a lattice effect and has a much larger energy scale and critical temperature. As the density

of minority species is further decreased, it starts to behave like a fermion gas, with a small,

almost circular FS, as shown for example in Fig. 4.3(c). When the density of minority

species becomes less than quarter filling, the induced majority BCS vertices are no longer

coupled to its own nesting vertices, which causes a sudden drop of the critical temperature

for the majority pairing channel. Since the majority species is still perfectly nested, there

is more phase space for the minority pairing interactions to be mediated and renormalized.

This crossover of RG flows is shown in Fig. 4.3(a). The majority pairing instability only

exists in a small region of the phase diagram for each different majority filling, as shown in

Fig. 4.1. For large minority chemical potentials, the critical temperature is much smaller,

and eventually reaches our numerical limit (Λ` ∼ 10−5t). Before this limit is reached, the

flow of minority pairing is stronger than majority pairing and other channels.
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4.4 Summary

We have performed a weak-coupling FRG study of a population imbalanced fermion

system on a square optical lattice in two dimensions. At the weak imbalance region, the

competition between spin fluctuations and intra-species attractions leads to a stripe den-

sity wave phase, rather than the usual uniform SDW phase. As the imbalance is further

increased, p-wave superfluid phases become dominant due to the mismatch of the FS. Al-

though the p-wave pairing superfluid may be expected in dilute density limit, the com-

petition between majority and minority pairing is determined by their FS topology and

the mediated intra-species pairing interaction which is renormalized from the initial bare

interspecies on-site repulsive interaction. Both the stripe density wave phase and triplet

superfluid phases are enhanced by nesting of the majority FS, leading to much higher crit-

ical temperatures than that found for the imbalanced Fermi gas without lattice [73, 74]

at weak coupling limit. According to our calculation, the critical temperature for stripe

density wave is roughly ΛCDWc (µ↑ = 0, µ↓ = 0.01t) ≈ 0.18t and that for p-wave superfluid

is Λ
BCS↓
c (µ↑ = 0.0003t, µ↓ = 0.03t) ≈ 0.016t, where the hopping amplitude t can be con-

trolled experimentally. In a recent experiment [61], it is reported that temperatures around

6% of the Fermi temperature of a noninteracting trapped gas have been achieved. The

symmetry of the order parameter of each instability can be probed by momentum-resolved

spectroscopy [84, 85]. These techniques provide analogies of angle-resolved photoemission

spectroscopy (ARPES) used in condensed matter systems, and can probe anisotropic sys-

tems, such as the stripe CDW and the p-wave pairing that we predict here.
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Figure 4.1: Phase diagram of spin-imbalanced fermion mixture with majority species exactly
at half filling µ↑ = 0 (upper panel) and slightly away from half-filling µ↑ = 0.0003t (lower
panel). The system goes from SDW (black) at near balance to a stripe-CDW (red) as the
imbalance increases. The insert shows the strong imbalance region, where single species
p-wave majority (magenta) or minority (blue) pairing is the dominant instability.
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Figure 4.2: (a) RG flow of SDWz (black) and CDW (red) channels at different minority
fillings, where µ↓ = 0 (solid line), µ↓ = 0.001t (dashed line), and µ↓ = 0.1t (dotted line)
with majority species half-filled (µ↑ = 0). (b) One example of non-perfect nesting particle-
hole process with net momentum (2π, 0). (c) The symmetry of the order parameter of
majority CDW (yellow circle) and minority CDW (cyan square) for the stripe-CDW phase
(µ = 0.01t). A conventional s-wave form factor (black triangular line) is also shown. Both
species behave like stripe density wave along the diagonal direction. The circles on the FS
are FRG patches.

37



− π 0 π−π

0

π

(b)
−π 0 π−π

0

π

(c)

8 9 10 11 120

2

4

6

8

10
(a)

Figure 4.3: (a) RG flow of majority (magenta) and minority (blue) p-wave BCS channels
at three different minority fillings, where µ↓ = 0.5t (solid line), µ↓ = 0.8t (dashed line), and
µ↓ = 1.5t (dotted line) with majority species half-filled (µ↑ = 0). In (b), µ↓ = 0.8t (blue),
the renormalized majority pairing channel U↑↑(k,−k,−k′,k′) couples to its own nesting
channel U↑↑(k,−k,−k + Q,k + Q). In (c), µ↓ = 1.5t, the half-filled majority species can
provide more phase space to renormalize minority pairing channel (i.e, q can be anywhere
on that FS branch).
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Chapter 5

Quantum Degenerate Fermi-Fermi

Mixture

5.1 Introduction

Experimental realization of quantum degenerate Fermi-Fermi mixtures have opened

new arena for the study of quantum many-body phenomena in cold atom systems [62,

86, 87, 13, 88]. In these multi-component systems, many different types of fermionic su-

perfluids have been proposed and studied [89, 90]. For imbalanced-population mixtures,

a number of exotic unconventional pairing states, some of which do not occur in nor-

mal condensed-matter systems, have been investigated theoretically, such as Fulde-Ferrell-

Larkin-Ovchinnikov [67, 66] superfluidity in the vicinity of phase separation [72], interior

gap superfluidity [69], and p-wave pairing [74, 9, 73]. However, once strong Fermi surface

(FS) nesting is present, instead of superconducting pairing, density wave instabilities domi-
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nate [9, 57] and may exhibit higher angular momentum order. Unconventional density waves

(density waves with non-zero angular momentum) [15, 91, 92] have recently been proposed

theoretically for fermionic ultracold atoms. By loading fermionic dipolar atoms [93] and

molecules [94, 95, 96] onto optical lattices, unconventional density-wave instabilities may

arise from the long-range and anisotropic dipole-dipole [97, 98, 99, 83, 100] or quadrupo-

lar [101] interactions. By creating a Kagome optical lattice [40], a bond order wave can be

stabilized, resulting from sublattice interference effects [102], in the presence of a sufficiently

large nearest-neighbor repulsive term [41, 103].

In this chapter, we study density wave instabilities of a doubly-degenerate fermion

mixture, such as 6Li and 40K [13, 104], on a square lattice employing a functional renormalization-

group (FRG) method [3, 5, 6, 51] that takes into account inter- and intra-species interactions

on an equal footing. For large intra-species repulsion, the behavior is reminiscent of a single

SU(2) species. When both species fermions are at half-filling, and in the presence of an

inter-species repulsion sufficiently larger than the intra-species repulsion, the ground state

consists of two conventional s-wave number density waves, here denoted as charge-density-

wave (CDW) in analogy with number density waves in electron systems. As one species is

moved away from half-filling, a dxy-wave CDW instability becomes dominant. To further

elucidate the physics behind the dxy-CDW formation, we develop a simple four-patch model

with intra- and inter-species Umklapp couplings that provides an analytical understanding

of the competition between s- and dxy-CDWs. A density imbalance between the two species

of fermions in the vicinity of half-filling leads to different phase spaces for the different inter-

species Umklapp couplings. Using reasoning similar to Shankar’s phase space argument for
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determining one-loop RG flow equations [3], we explain how the phase-space discrepancy

for the inter-species Umklapp couplings leads to opposite RG flows for the different intra-

species Umklapp couplings, triggering the dxy-CDW instability. By varying the densities of

the two species around half-filling, we also study the range of fillings for which this regime

of unconventional dxy-CDW can be realized.

5.2 Model and Formalism

We start with a simple Hamiltonian describing a fermion-fermion mixture on a

square lattice, H = Hc
t +Hf

t +Hint, where

Ha
t = −t

∑
〈ij〉,α

(
a†iαajα + H.c.

)
− µa

∑
i

nai, (5.1)

Hint =
∑
i

Uccnci↑nci↓ + Uffnfi↑nfi↓ + Ucfncinfi, (5.2)

where a = c/f stands for the c/f -fermions, α is the spin index, 〈ij〉 represents nearest-

neighbor pairs of sites, nai = nai↑ + nai↓ =
∑

α a
†
iαaiα and µa is the chemical potential of

the a-fermions. For simplicity, we set nearest neighbor tunneling tc = tf = t. We consider

the limit of weak repulsive interactions and employ a standard FRG method [3, 5, 6, 51] to

obtain the low-energy behavior for this system, expressing the quartic terms in the resulting

effective Hamiltonian in momentum space in the form

gabab(k1,k2,k3, `)ψ
†
aα(k3)ψ†bβ(k1 + k2 − k3)ψbβ(k2)ψaα(k1) , (5.3)

, where ψ†aα is the creation operator of a-fermions in momentum space, k = (kx, ky), spin

indices α, β =↑, ↓, species indices a, b = c, f and ` = ln(8t/Λ), with Λ the UV energy cut-off

and 8t the full energy bandwidth.
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5.3 Results

With fixed parameters (in units of t), µf = 0 (half-filling) and Uff = Ucc > 0,

the phase diagram parameterized by µc and the dimensionless ratio of intra- and inter-

species interaction Ucf/Uff is illustrated in Fig. 5.1. For small inter-species interactions, the

species at half-filling (f -fermions) has an SDW instability. With increasing Ucf/Uff , if both

species are at half-filling, an s-wave CDW emerges, where the order parameters for the

two species have a π-phase difference, referred as s±-CDW here. This is analogous to the

s±-wave pairing in iron-pnictide superconductors [33, 14], but in the particle-hole channel.

By relabeling the square lattice as a bipartite lattice with A,B sub-lattices, the real-space

picture of the s±-CDW phase is that f(c)-fermions only occupy A(B) sub-lattice sites to

avoid the strong inter-species repulsion.

Keeping the f -fermions at half-filling, we find phase transitions from s±-CDW

to dxy-CDW by increasing |µc|, and from SDW to dxy-CDW by enhancing Ucf/Uff . In

Fig. 5.2(left), we show the FS of the two species for µf = 0 and µc = −0.1 and indicate the

FS patches used in our numerical RG implementation. We also show, in the same figure, the

corresponding form factors of dxy-CDW for Ucf/Uff = 2.5, obtained from decomposing the

CDW coupling into eigenfunctions and plotting the dominant one close to the instability.

The larger magnitude of the form factor for f -fermions indicates that the dxy-instability is

mainly driven by the species at half-filling, with ordering of the c-fermions resulting from

a proximity effect. As we increase the density imbalance, the dxy-CDW phase requires

larger Ucf/Uff to dominate over SDW. The real-space picture of dxy-CDW is sketched in
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Figure 5.1: The phase diagram is parameterized by the chemical potential of c-fermions,
µc, and the ratio of inter- and intra-species interactions, Ucf/Uff .

Fig. 5.2(right), where the crosses indicate higher densities along next-nearest-neighbor bonds

of alternating plaquettes, OdCDW(r) = eiQ·r
∑

α;i,j=±1 a
†
α(x, y)aα(x+ i, y + j) [92].

5.3.1 4-patch toy model

To understand the physics leading to the development of the dxy-CDW, we first ex-

plore the competition between the s-CDW and the dxy-CDW of a single species (f -fermions)

at half-filling. By decoupling the quartic interaction terms in the form
∑

k,p V
(`)
CDW(k,p)Ô†kÔp,

with Ôk being a term bilinear in the fermion fields and corresponding to the order parameter

of CDW, VCDW(k,p) ' gffff(k,p,p+Q,k +Q) exhibits a negative eigenvalue when CDW

dominates over the SDW [33, 14]. In this case, for simplicity, we can divide the FS into four

patches around kF = (π/2, π/2), (−π/2, π/2) (−π/2,−π/2) and (π/2,−π/2) and consider
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Figure 5.2: (Left) dxy order parameter for f - and c-fermions. (Right) Real-space particle
density of the dxy-CDW state for one species of fermions.

only the scatterings occurring on these pieces of the FS (Fig. 5.3a). Under the dihedral sym-

metry of a square lattice, three independent Umklapp couplings associated with momentum

transfer k4 − k1 = Q = (π, π) can be defined: g1 = gffff(3, 3, 1, 1), g2 = gffff(1, 4, 2, 3) and

g3 = gffff(1, 3, 3, 1). The matrix of VCDW becomes

VCDW '



g1 g2 g3 g2

g2 g1 g2 g3

g3 g2 g1 g2

g2 g3 g2 g1


, (5.4)

with eigenvectors Φs = (1, 1, 1, 1), Φd = (1,−1, 1,−1), Φp1 = (1, 0,−1, 0) and Φp2 =

(0, 1, 0,−1), and corresponding eigenvalues Es = g1 + 2g2 + g3, Ed = g1 − 2g2 + g3 and

Ep1/2
= g1 − g3. Thus, once the CDW instability is triggered, the competition between d-

and s-wave channels is clear: dxy-CDW (s-CDW) has the most negative eigenvalue and is

therefore dominant when g2 > 0 (g2 < 0).

We now introduce the second species of fermions (c-fermions), with filling slightly

less than half and with the FS also divided into four patches (Fig. 5.3). By introducing
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Figure 5.3: The sketches of two inter-species couplings, gcf
1 = gcfcf(3, 3, 1, 1) (left) and

gcf
2 = gcfcf(4, 1, 2, 3) (right), for two different fillings of c-fermions. In (b), the deviation

of the FS for µc = −0.1 from the one at half-filling is intentionally enlarged for better
visualization.

an inter-species interaction and defining the Umklapp couplings gcf
1 = gcfcf(3, 3, 1, 1), gcf

2 =

gcfcf(4, 1, 2, 3) and gcf
3 = gcfcf(1, 3, 3, 1), the one-loop RG equations for g1 and g2 are given

by

dg1

d`
= A1jkgjgk +

3∑
n=1

B1nn

(
gcf
n

)2
+ B122

(
gcf

2

)2
, (5.5)

dg2

d`
= A2jkgjgk + 2B212g

cf
1 g

cf
2 + 2B223g

cf
2 g

cf
3 , (5.6)
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where Aijk and Bijk are the kernels of the RG equations for intra- and inter-species cou-

plings, respectively, and i, j, k represent coupling indices. Aijk contains contributions from

all one-loop diagrams (Figs. 2.2b to 2.2f). Bijk corresponds to a fermionic bubble (Fig. 2.2d)

for the c-fermions, obtained when two inter-species couplings are contracted to generate a

correction to the intra-species f -fermion coupling. The Bijk’s are therefore always negative

and correspond to an effective attractive interaction for the f -fermions, mediated by the

c-fermions. Note that when the bare inter-species interaction is weak, Ucf/Uff � 1, and the

Bijkgcf
j g

cf
k terms can be neglected. In this case, the Aijkgjgk intra-species terms eventually

drive g1 and g2 to large positive values, leading to an SDW instability.

When both species are at half-filling, the two FS overlap and the three inter-

species Umklapp couplings (gcf
1 , gcf

2 , gcf
3 ) exhibit equivalent phase space; the same applies

to the intra-species Umklapp couplings. In this circumstance, increasing the bare value of

the inter-species interaction in Eq. (5.5) and (5.6) eventually leads both g1 and g2 to flow

to negative values and gives rise the s-CDW instability. When one species is away from

half-filling, the four patches on its rounded-square FS are slightly shifted from the ones

at half-filling. In Fig. 5.3b, we illustrate the two FS and corresponding momentum shifts

between the patches. As shown in the left panel of Fig. 5.3b, for fermions on the FS, the

net momentum transfer in the inter-species process gcf
1 is no longer equal to a reciprocal

lattice vector but has a small shortage corresponding to the shift in the position of the

Fermi patches for the c-fermions. This is also true for the gcf
3 processes. As high-energy

modes are eliminated during the RG transformation, these two couplings will have a reduced

phase-space in which they can occur and are not allowed when only fermions on the FS
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remain. However, the shortage in the momentum transfer for scattering c-fermions across

two parallel patches (momentum transfer Q− δ) can be compensated in gcf
2 by having the

f -fermions scatter by Q+δ. As sketched in Fig. 5.3b (right panel), this scattering is allowed

by momentum and energy conservation due to the nesting of the FS (flat parallel patches

in our simple model). Thus, after moving one species away from half-filling, following

Shankar’s phase-space argument [3], particle-hole diagrams involving gcf
2 have an extended

phase space in which they are non-zero, while ones involving gcf
1 and gcf

3 can be ignored

to leading order in dΛ. As a consequence, the RG equations, Eq. (5.5) and (5.6), can be

rewritten as dg1/d` = A1jkgjgk + 2B122

(
gcf

2

)2
and dg2/d` = A2jkgjgk, and g2 receives no

contribution from inter-species terms. The inter-species interaction term drives g1 to a

negative value (effective mediated attraction), but g2, which is renormalized only by intra-

species repulsion, still flows to positive values. The flow to negative values leads to CDW

instability, and the asymmetry in the Umklapp components means that the CDW instability

has dxy-wave order parameter (g1 < 0 and g2 > 0).

5.3.2 Grand FRG flow

Going back to the full FRG calculation with 2×36 patches, we confirm the simple

mechanism demonstrated with the four-patch model by identifying, among the RG flows

for all the couplings, the ones that are most divergent and looking at their behavior. In

Fig. 5.4, the RG flows of the most dominant intra-species couplings, Uffff , are plotted for two

different cases: c-fermions at half-filling (µc = 0) and away from half-filling (µc = −0.1).

When both species are at half-filling, the two couplings are equal to each other and flow
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Figure 5.4: The flows of dominant nesting couplings in the RG procedure, gffff , are illustrated
for µc = 0 (dashed lines) – note that these two lines are on top of each other indicating that
the two couplings have the same magnitude in this case; and µc = −0.1 (solid lines). The
three couplings are illustrated in the insets, and their flows with matched color.

to large negative values (dashed and solid blue lines), leading to the s-CDW instability.

However, as expected from the four-patch analysis, once the c-fermions are away from half-

filling (µc = −0.1), the two couplings are renormalized in opposite ways (dashed and solid

orange lines), resulting in dxy-CDW. The population imbalance between the two fermion

species in the vicinity of FS nesting provides the two FS with displaced parallel portions,

which is the key ingredient for the mechanism we propose for creating a dxy-CDW with

purely repulsive interactions.

In our numerical calculation we obtain the RG flows of all interaction vertices

with momenta lying on the Fermi surfaces. Although we can explain the dxy-CDW phase

using a simple four-patch model and analytical arguments involving RG flows of just a few
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Figure 5.5: Snapshots of interaction vertices during RG flow for f -fermions at half-filling
(µf = 0). (a) gcfcf(i1 = 1, i2, i3) and (b)-(d) gffff(i1 = 1, i2, i3). Other parameters are set
to µc = 0, Ucf/Uff = 2.0 for (a) and (b), where the s±-CDW instability occurs. In (c),
µc = 0.1t and Ucf/Uff = 2.0, this is in the regime where unconventional dxy-wave CDW
dominates. (d) µc = 0.1t, Ucf/Uff = 0.5, the SDW will be the instability if inter-species
interaction is weak. Intra-species interactions are set to Ucc = Uff = 1.0t in all cases shown
here.

Umklapp couplings, it is instructive to see how some of the vertex functions renormalize.

In Fig. 5.5, we show a snapshot at a given “RG-time” ` of a few coupling functions. Since

each vertex gabab(i1, i2, i3, `) is a function of three free patch-indices, we fix one of them,

i2 = 1, where the positions of each patch on the two Fermi surfaces are illustrated in Fig.1b

of the main text. For f -fermions at half-filling (µf = 0) and fixing Ucc = Uff = t, we

show couplings for different µc and Ucf/Uff corresponding to the s±-CDW, dxy-CDW, and

SDW phases. Fig. 5.5a and Fig. 5.5b show inter-species coupling gcfcf(i1 = 1, i2, i3, `) and

f -fermions intra-species coupling gffff(i1 =1, i2, i3, `), respectively, for µc = 0 and Ucf/Uff =

2.0, corresponding to a point in the phase diagram where s±-CDW occurs (see Fig. 1a

in the main text). Moving the c-fermions away from half-filling leads to a region of dxy-

CDW. Fig. 5.5c shows the intra-species coupling gffff(i1 =1, i2, i3, `) for this case (µc = 0.1t,

Ucf/Uff = 2.0). Decreasing the inter-species coupling from this point so that Uff > Ucf leads
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to the SDW phase. Intra-species coupling gffff(i1, i2, i3, `) for this case is shown in Fig. 5.5d

(µc = 0.1t, Ucf/Uff = 0.5).

It is easy to see from the panels in Fig. 5.5 that flows to strong coupling under

RG are related to Fermi surface nesting due to commensurate filling. There are two types

of such couplings. The first type contains couplings of the form gffff(1, i2, i2 + Q), which

correspond to the four pieces of diagonal lines (dark red) in Fig. 5.5d. These couplings

account for the nesting between k1 and k3, and represent the SDW channel in Eq. (2.21).

The second type contains gffff(1, i2, 27) couplings, which make up the vertical straight line

at i3 = 27 in all four panels of Fig. 5.5 (blue line in Fig. 5.5b, in particular), and are

responsible for the CDW channel. One can also see some sub-dominant vertices in these

figures. The pairing vertex, gffff(i1, i2 = −i1, i3) corresponds to the horizontal line at i1 =19.

The major diagonal line at 45◦, going from the lower left to the upper right corners of the

panels, corresponds to the backward scattering, gffff(i1, i2, i3 = i2). The forward scattering,

gffff(i1, i2, i3 = i1), is the vertical straight line located at i3 = 1. Finally, there are four

small squares, which are enhanced due to scattering of a particle from one patch to another

belonging to the same flat side of the nested Fermi surface.

Starting from the s±-CDW phase (Fig. 5.5a and 5.5b), the leading divergent cou-

plings are of the second kind, gffff(1, i2, 27), and flow to negative values (vertical line along

i3 = 27 in Fig. 5.5b) as we mention in the main text. The points along this vertical straight

line of most divergent couplings have the same magnitude for all values of i2, indicating an

isotropic s-wave symmetry. Furthermore, the inter-species interaction, gcfcf(1, i2, 27), flows

to strong positive values (5.5a), again with the same value for all i1 patch indices. This sign
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difference between gffff and gcfcf indicates that the s-wave order parameter has a π-phase

between the f - and c-fermions, and thus this corresponds to an s±-CDW instability.

In Fig. 5.5d, intra-species couplings are almost unaffected by weak inter-species

couplings, and the strongest flow is in the SDW channel, which is represented by the four

separate pieces of diagonal red lines. Finally, in Fig. 5.5c, the couplings show that the

nesting process, gffff(1, i2, 27), has alternating signs (red and blue in the vertical straight

line at i3 = 27). The sign alternation in the CDW form factor with four nodes, at (±π, 0)

and (0,±π), corresponds to dxy-wave symmetry, instead of the more usual isotropic s-wave

symmetry seen in Fig. 5.5b. The physics behind the emergence of this sign change and

dxy-symmetry is explained in main text.

5.3.3 Critical Temperature

During the FRG calculation, the UV cutoff Λl = Λ0e
−l is reduced as the RG scale

l increases. The scale l = lc at which an instability occurs (divergent flow) provides an

estimate for the critical energy (and temperature) scale for the transition[3]. We first use

a small initial bare coupling, Ucc = Uff = 0.2t, and estimate the critical temperature. The

phase diagram for this case is shown in Fig. 1b of the main text. In Fig. 5.6a, we show

the critical temperature from our FRG calculation as a function of the ratio Ucf/Uff , for

Ucc = Uff = 0.2t, for a fixed value of µc = 0.2t. This corresponds to a vertical cut of

the phase diagram shown in Fig. 1b of the main text. There are two competing orders,

SDW and dxy-CDW, and their corresponding Tc in units of the Fermi temperature TF.

The critical temperatures found for this case are small, less than 10−2TF. However the
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Figure 5.6: Critical temperatures in units of the Fermi temperature TF for the dominant
instabilities SDW and dxy-CDW as a function of the interaction ratio Ucf/Uff , with µf = 0
and µc = 0.2t.

critical temperature is significantly larger for larger bare interaction strengths, as shown

in Fig. 5.6b for Ucc = Uff = t, where Tc of the dxy-CDW is more than 10% of TF. Both

figures (Fig. 5.6a and b) show that the Tc of SDW decreases as the ratio of initial bare

interactions Ucf/Uff increases because it is stabilized by the on-site repulsion for the species

at half-filling (f -fermions) and larger on-site inter-species repulsion Ucf acts against it.

As the other competing order dxy-CDW starts to dominate, its Tc increases as the ratio

increases. Larger initial on-site inter-species repulsion Ucf favors the dxy-CDW instability.

While the FRG approach only applies to weak-couplings, that is, bare coupling strengths

small compared to the full energy bandwidth of the problem (of order 8t), the ratio of

Ucf/Uff can be tuned to be very large, enhancing the value of Tc for dxy-CDW. In a cold

atom experiment, the f -fermions could be taken to be 6Li or 40K, for example, and the

52



intra-species interaction Uff can be tuned to close to zero via a Feshbach resonance with Ucf

remaining positive and smaller than 8t.

5.3.4 Robustness of the dxy-CDW phase

As the calculation of Tc indicates, a sufficiently large inter-species interaction (Ucf)

compared to the intra-species repulsion of the species at half-filling (Uff) is needed to create

the dxy-CDW phase with a realistic value for Tc. However, it is not necessary to have the

two intra-species interactions, Uff and Ucc, to be equal. If they are different, the phase

diagram as a function of the ratio Ucf/Uff remains qualitatively unchanged, with no strong

dependence on the value of Ucc. We show the phase diagram for Ucc = 0 in Fig. 5.7(a).

Comparing with Fig. 1b in the main text, we see that it is qualitatively the same, with

the phase boundaries only slightly shifted, and therefore the exotic dxy-CDW phase is not

sensitive to the c-fermion intra-species interaction.

Experimental candidates for realizing this mixture, such as 6Li-40K mixture, have

components with different values for their physical mass. The qualitative features of the

phase diagram indeed do not require tf = tc. If the c-fermion, which is the species not at

half-filling, is lighter than the f -fermion, the screening effect from c-fermions becomes even

more effective than in the equal mass case, and the dxy-CDW phase is further enhanced.

If the c-fermions are heavier, the screening effect becomes less effective and, for c-fermions

much heavier than f -fermions, the dxy-CDW will eventually be completely suppressed.

Therefore, for a 6Li-40K mixture, having the 40K atoms be the f -fermions (half-filled) is
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more favorable for the emergence of dxy-CDW order. These features provide more flexibility

for the experimental realization of the dxy-CDW phase we predict.

The effective attractive interaction between f -fermions, mediated by the c-fermions,

can also drive a BCS pairing instability if the nesting of the f -fermions FS is destroyed.

To study the competition between pairing (SC) and density-wave instabilities, we explored

the phase diagram parameterized by the chemical potentials of the two species, shown in

Fig. 5.7(b) for Ucc = Uff = Ucf/2.5. The dxy-CDW occurs as an intermediate phase between

two limiting behaviors: s±-CDW, when both species are at half-filling, and SDW, when

one species is at half-filling and the other is far away from half-filling. Importantly, the dxy

phase persists in a reasonably wide range of fillings of the minority species.

The scale `c at which the divergence of the couplings occurs provides an estimate

for the critical energy (and temperature) scale for the transition. For the dxy-CDW tran-

sition we find that for Uff = 0.2t, the optimal Tc is about 0.01 TF . For Uff = t, Tc is

considerably higher, ranging from 0.1-0.4 TF for different values of the Ucf/Uff ratio. Ex-

periments with 6Li-40K mixtures [104] have achieved TLi = 0.34TF and TK = 0.40TF . The

values we find for Tc using FRG are only rough estimates, but they are of the same order

of magnitude as these experimental values.

5.4 Summary

We point out that a sufficiently large inter-species interaction Ucf compared to the

intra-species repulsion of the species at half-filling Uff is needed to create the dxy-CDW we

propose here. However, it is not necessary to have Uff = Ucc. If they are different, the phase
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Figure 5.7: (a) The phase diagram for non-interacting c-fermions (Ucc = 0), parameterized
by the chemical potential µc, and the ratio of inter- and intra-species interactions, Ucf/Uff .
(b) The phase diagram parameterized by µc and µf . Note the large difference in scales
between µc and µf .

diagram as a function of the ratio Ucf/Uff remains qualitatively unchanged, with no strong

dependence on the value of Ucc. The qualitative features of the phase diagram also do

not require tf = tc. Our predicted phase diagram should be experimentally realizable with

recently achieved quantum degenerate Li-Yb [88] or Li-K mixtures [13] on a square optical

lattice. Taking the 6Li-40K mixture, for example, with 40K as the f -fermions at half-filling,

one can tune Uff with a magnetic Feshbach resonance (Uff ' 0 at around 210 Gauss). At

magnetic fields in this range, the 6Li - 6Li interaction Ucc is small and repulsive, as well

as the interspecies interaction Ucf . One can therefore use the 40K Feshbach resonance to

tune the Ucf/Uff ratio to large values, as required for our predicted d-CDW phase to occur.

One may also combine magnetic field with confinement-induced resonance [105, 106, 107].

In order to avoid breaking SU(2) symmetry, optical Feshbach resonances [108, 109] may

also be explored. The all optical resonance has been used in fermionic systems [110, 111],

including the 6Li-40K mixture [13].

55



Identification of order parameters with nonzero angular-momentum dependence re-

quires measurement of the relative phase between different portions of the FS. Several meth-

ods have been proposed to perform such phase-sensitive measurements [112, 84, 113, 114],

including a pump-probe scheme [115] and through noise correlations[114]. The dxy-CDW

order parameter symmetry may also be detected via momentum-resolved spectroscopy [84,

85].
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Chapter 6

Dipolar Fermions on Square

Lattice of Bilayer System

6.1 Introduction

The rapid progress in trapping and cooling of ultracold magnetic atoms [93] or

polar diatomic molecules [94] provides a new avenue for studying strongly correlated effects

and many-body physics [116]. The magnetic dipole atoms, dysprosium, has been cooled to

low temperature and reach quantum degeneracy [93]. The potassium-rubidium molecules

have been achieved [94, 95], and importantly confined to 2D layers using optical lattice [117].

The advantage of loading molecules onto optical lattice is that makes system more stable

from quantum chemical reaction loss due to attractive interaction [118, 117]. On the theory

side, the anisotropic and long-range nature of dipole-dipole force might leads to more exotic

phases or collective modes in multilayer stack at low temperature [119, 120] , including stripe
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density wave [121, 122], bound dimer state [123], inter-layer superfluidity [124, 125, 126],

and maximally entangle state [127].

Recently, unconventional density wave has attracted great attention, especially

bond-order wave [15, 102, 83]. These density waves usually are found only in a nar-

row parameter regime, where the frustration occurs for usual s-wave charge density wave.

For example, the bond-order p-wave only exists in a small regime between charge density

wave(CDW) and spin density wave in one-dimensional extended Hubbard model [24] due

to strong competition between on-site and nearest neighbor repulsive interactions. Despite

their ubiquity and potential importance, their physical origins and behaviors are still under

debate. Several mechanism have been proposed and studied to discover unconventional

density wave. Both charge- and spin bond-order-wave are found in a quantum-degenerate

Fermions on kagome lattice [102, 103, 41], where the sub-lattice interference effect takes

place. The other proposal is using density imbalanced Fermi-Fermi mixture [9], in which

phase space discrepancy leads to dxy-wave charge density wave on square lattice. Finally,

fermions with dipole [83, 100] or quadruple [101, 128] nature on a 2D square optical lat-

tice, the unconventional density wave is found for both single- and two-component system,

where the long-range anisotropic nature of dipole-dipole interactions is the key ingredient.

For example, half-filled single component dipole fermions on a 2D square lattice form a

bond-order solid when the polar angle is tilted between two critical values [83].

In this letter, we use functional renormalization group (FRG) to study single-

component dipolar fermions of bilayer with presence of square lattice. This method has been

wildly used to study strongly correlated election system, such as Hubbard model [8, 6, 4],
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and cold atoms system under various optical lattice geometry [103, 129] and different types of

interactions [83, 100, 101]. For weak couplings, density wave state relies on commensurate

filling, which provides the most important feature - nested Fermi surface(FS) - to form

modulations of particle wave function in real space. For dipole fermions in two dimensional

bilayer geometry, the tilting angle can be controlled by applying uniform electric or magnetic

fields. Also, the layer separation can be tuned by using two counter propagating lasers [116].

Under different tilting angle and layer separation, the anisotropic and long-range nature

of dipole-dipole interaction within the layer and between the layers play a key role in

determining quantum phases in low temperature. Interestingly, the interplay between intra-

and inter-layer interactions give the exotic unconventional density wave phases. We discover

the exotic bond order wave, which is out-of-phase between layers. Also, this unconventional

charge density wave lives in wilder range in phase diagram than one in monolayer square

lattice.

6.2 Model and Formalism

We model this single-species dipolar Fermions, with creation operator c†, on a

quasi-two-dimensional bilayer square lattice with lattice constant aL and layer separation

lz, saying

H = − t
∑
〈ij〉α

(c†iαcjα + h.c.)− tz
∑
i

(c†i1ci2 + h.c.)

− µ
∑
iα

niα +
1

2

∑
ijαβ

Vαβ(~rij)niαnjβ, (6.1)
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where 〈ij〉 representing nearest neighbor sites, layer-index is α, β=1, 2, and density operator

is defined as niα = c†iαciα. We assume all dipoles are aligned in the same direction ~d =

d(sin θD cosφD, sin θD sinφD, cos θD) by applying uniform electric or magnetic field. Under

this assumption, the dipole-dipole interaction Vαβ(~rij) can be determined by the two-particle

Wannier basis, and resulted in anisotropic form

V11(~rij) = V22(~rij) = Vd
1− 3(r̂ij · d̂)2

r3
ij

(6.2)

V12(21) = Vd
1− 3[(~rij ± lz ẑ) · d̂]2/(r2

ij + l2z)

(r2
ij + l2z)

3/2
(6.3)

for intra- and inter-layer, where ~rij =~ri−~rj is a direction on 2D plane between two dipoles.
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0 ◦ 45 ◦ 90 ◦
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V11(aL x̂+aL ŷ)
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V12(aL x̂)
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Figure 6.1: The solid (dashed) lines are magnitudes, in terms of Vd, of intra-layer V11

(inter-layer V12) dipole-dipole interaction under different polar angle θD. The azimuthal
angle of dipoles is set to φD = 0◦ in (a), and φD = 45◦ in (b), where layer separation
is lz = aL. V11(aLx̂) (red), V11(aLŷ) (yellow), and V12(0) (green) are nearest neighbors.
V11(aLx̂+aLŷ) (blue), V12(aLx̂) (magenta), and V12(aLŷ) (cyan) are next-nearest neighbors.
The two critical angles (black dotted lines) are θc1≈35◦ and θc2≈55◦.
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In monolayer system, the low-temperature phase is mainly driven by anisotropic

intra-layer interaction. From Fig. 6.1(a), we can easily see that leading intra-layer interac-

tions (three solid lines) are all repulsive when θD<θc1, which results a usual checkerboard

CDW. On the other end, both V11(aLx̂) (solid red) and V11(aLx̂ + aLŷ) (solid blue) be-

come attractive when θD>θc2, so the dominated low-temperature phase is triplet px-wave

pairing. The regime between two angles is most intriguing in monolayer system, where

the dominated phase is bond order solid [83]. In a bilayer system, however, the inter-layer

interactions (dashed lines in Fig. 6.1) provide complicated anisotropic, even in the regime

θD <θc1 and θD >θc2. As we show in the Fig. 6.1, the inter-layer interaction is attractive

against the repulsive intra-layer ones, and it brings up a competition between the inter-layer

pairing and in-plane conventional CDW. Similar story happens on the other end, θD>θc2,

and question rises how inter-layer repulsion affect the intra-layer attractive interaction. Un-

der this circumstances, the phase boundary can no long be roughly determined by just two

critical angles [122].

Since we also consider the interlayer tunneling (tz) in our model, the resulting

Hamiltonian in momentum space is described by bonding and anti-bonding basis. Also,

intra- and inter-band interaction will be dressed by both intra- and inter-layer interaction.

For further simplicity, we mainly focus on one dipole per lattice site, saying µ= 0. Thus

there is (π, π) nesting between bonding and anti-bonding bands due to commensurate filling

on square lattice.
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Figure 6.2: Phase diagram in terms of the dipole orientation (θD, φD) for half-filled single
species dipolar fermions on a square lattice bilayer with layer separation (a) lz = 1.3aL,
(b) lz = aL, (c) lz = 0.7aL, and the interlayer tunneling tz = 0.1t. Sketched real space
configuration for (d) CDWp and (e) CDW± with a π-phase resonance, where the dashed
red lines indicate the links between upper layer and lower layer. (f)-(k) The corresponding
gap symmetry forms of each instability are shown with matching color and used data points
in (b) lz=aL. The magnitude (not to scale) is given by shared color bar.

6.3 Result

6.3.1 Different Inter-layer separation

We show our main result in Fig. (6.2), which contains phase diagrams obtained

by FRG using M = 36 patches on each band. We also check the results from M = 44

patches, which qualitatively agree with each other. We first set layer separation lz=1.3aL.

The phase diagram is shown in Fig.6.2(a), and it is similar to the results of monolayer

system [83] and phases are still separated by two critical angle roughly. For small θD, both

layers form a conventional s-wave CDW (red circle) without sign change in gap symmetry

form, which shown in fCDWs in Fig. 6.2(g). Then, the py-wave CDW in Fig. 6.2(f) is

presence between two critical angles (pink circle in Fig. 6.2(a)). When φD is closed to

45◦ at the same polar angle, the conventional CDW has a mixed d-wave component, the
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fCDWs+d
shown at Fig. 6.2(h). As expected, the p-wave triplet pairing (Fig. 6.2(j)) is

dominated when polar angle is larger (θD > θc2) and azimuthal angle is not closed to 45◦

(green triangle in Fig. 6.2(a)). Comparing to the case in monolayer, the major difference is

that we found a new phase near the regime (θD>θc2, φD≈45◦), where it was dominated by

p-wave triplet pairing. Instead, system develops a CDW±, black circle in Fig. 6.2(a), due to

the inter-layer repulsion, which is green dashed line in Fig. 6.1(b). It is worthy to mention

that the triplet pairing in monolayer system is coming from the strongest attraction along

diagonal direction, which is solid blue line Fig. 6.1(b). With the presences of the second

layer, however, the interlayer repulsion drives the system to conventional charge density

wave, where the diagonal attraction is favor this state as well. At this point, we can see

that the gap symmetry form, fCDW± in Fig. 6.2(k), carries a π-phase resonance between

two bands. That indicates two conventional CDWs in each layer, furthermore CDW at A

sub-lattice of one layer and CDW at B sub-lattice of the other layer, and the real space

configuration is sketched in Fig. 6.2(e).

Next, we discuss the smaller layer separation, lz = aL, and the phase diagram is

shown in Fig. 6.2(b). It is easy to understand that smaller layer separation means inter-layer

interaction plays a more important role, since the dipole-dipole interaction decays roughly

∼ 1/r3. Under this set-up, the parameter regime which was dominated by conventional

CDW on the phase diagram shrinks. Instead, the dipoles which aligned perpendicular to the

plane form a pairing state (magenta triangle), and it is in-phase between bands because the

origin of the inter-layer attraction. Also, most part of the regime is now dominated by the

unconventional py-wave CDW (also known as bond order solid in Ref. [83]). Interestingly,
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the gap symmetry form in this CDWp instability, which is shown in Fig. 6.2(f) as fCDWp ,

has py-wave form in each band and out-of-phase (π-phase resonance) between bands linked

by nesting vector (π, π). In real space, we have the density modulation on alternating bonds

along y-direction, which can be written as [92]

OCDWp(r) = eiQ·r
∑

α;i,j=±1

(−1)αc†α(x, y)cα(x, y + j) (6.4)

In Fig. 6.2(d), we show the real space configuration for this out-of-phase CDWp instability.

The sing structure between bands indicates, analogy to CDW±, the particle wave-function

distributes on A-B bond along y-direction on one layer, and B-A bond on the other. Here,

the physical origin that particles avoid staying on site to form a conventional s-wave CDW

is frustration from other long-range interactions, since on-site density modulation is not able

to minimize free energy. The reason that this exotic density wave has a larger parameter

range in phase diagram is due to the bilayer effect with interlayer tunneling and long-range

nature of dipole-dipole interaction. In Fig. 6.1(a), we can see the tilting polar angle changes

the interaction strength. Although nearest intra-layer repulsion V11(aLx̂) and inter-layer

attraction V12(0) become smaller as polar angle tilts down, it favors the inter-layer next-

nearest neighbor attraction V12(aLx̂). By comparing the Figs. 6.2(a) and (b) at θD >θc2,

we also discover that in-plane p-wave pairing is not stable against inter-layer repulsion,

so CDW± dominate larger parameter regime in phase diagram than the previous case,

lz=1.3aL.

Finally, we take two layers further closed to each other to lz = 0.7aL, and show

the phase diagram in Fig. 6.2(c). At this case, entire phase diagram is mostly dominated

by inter-layer interaction, where small polar angle, θD < θc1, results in pairing due to the
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strong inter-layer attraction and CDW± at large polar angle, θD>θc2. Between two critical

angles, however, both CDWp and in-plane p-wave pairing still survives. This is because

this parameter regime is less affected by the inter-layer interaction , and the physics still

determined by the intra-layer interaction mostly.

6.3.2 Away from Half Filling

We also study the case when dipole fermions are away from half-filling. Since

there is no nesting between two FSs, which is the most important feature for density wave

to develop, we can no long find any exotic density wave states. Beside that, due to the

anisotropic nature of dipole-dipole interaction, attractive interaction is always presences,

which would drive the system into pairing instability. If the polar angle of dipoles is smaller

than critical angle θc2, the inter-layer attraction would play a key ingredient to form a

p-wave pairing. On the other hand, the intra-layer would be negative if the polar angle

is larger than θc2. Because the different driving process in this two triplet pairing, the

resulting gap symmetry forms are different as well. In Fig. 6.2(d), we can see the deference

between fBCS∗p and fBCSp . The former one is in-phase under flipping orbital index, but the

later one is out-phase. The inter-layer attraction trigger the p-wave pairing with symmetry

form fBCS∗p , so the orientation of this p-wave pairing doesn’t depend on the azimuthal angle

φD of dipoles. The later intra-layer attraction, however, is in-plane, so the resulting pairing

symmetry form will depend on the orientation of azimuthal angle φD of dipoles.
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6.4 Summary

We perform the FRG calculation on single species dipolar fermions on square

lattice bilayer with non-zero inter-layer tunneling. Under different tilting angles of dipoles,

we discover different phases, which are related to the nature of long-range and anisotropic

dipole-dipole interactions. For larger layer separation, the phase diagram is similar to the

one in monolayer system, and roughly described by two critical angles. When two layers

are closed to each other, the inter-layer interaction plays a important role. Due to the

strong inter-layer attraction at small polar angle, the system form a paring order instead

of conventional CDW. The correlated CDW± dominated when polar angle is large, because

of the strong inter-layer repulsion. When the layer separation is closed to optimal regime,

we discover the exotic bond order wave has a larger parameter range on phase diagram.

Also this quantum state carries a π-resonance between layers. Our result shows the dipolar

fermions on square lattice bilayer can realize exotic charge density wave, and observe the

correlation between layers. The estimated critical temperature of these phases is around

Tc=0.06TF , which is still lower than recently experimental achievement in dysprosium [93],

T ≈0.2TF . We expect those exotic quantum phases can be observed in near future.

Probing order parameters with high angular-momentum order is always a challenge

topic in condensed matter experiments. In ultracold atoms, there are several proposed

methods to perform such measurements [112, 84, 113, 115, 114]. For example, a pump-

probe scheme provides a phase sensitive probe of the symmetry of order parameter, which

shows different pattern of the density-density correlation [115]. Moreover, analyzing two-
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particle interference of atom-atom density correlations, people found the related phase of

different components in FS is revealed in the atomic noise correlations[114].
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Chapter 7

Conclusion

In this chapter, we summarize the primary conclusions of the work we have done

in the entire dissertation.

The first work in chapter 3, the phase diagram of an extended Hubbard model

on a two-dimensional square lattice is shown, and low energy ground state depends on-site

U , nearest-neighbor V interactions, and the filling fraction µ. From our FRG calculation,

the dxy-SC emerges in the regime of U > 0 and V > 0, which is in the proximity of

charge-density-wave order. Upon the destruction of Fermi surface nesting, a time-reversal

breaking (px + ipy)-wave superconducting state arises when nearest-neighbor interaction is

attractive V < 0. We show that the (px + ipy)-SC on a square lattice under a nearest-

neighbor attraction is the generic behavior when filling fraction is low which results in no

Fermi surface nesting. This (px + ipy)-SC state can be used to engineer a Majorana zero

mode in the presence of a magnetic field.
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The second work in chapter 4, we study the phase diagram of a spin-polarized

system under different polarization (imbalance). When system is near balanced regime, the

ground state remains SDW feature. As the density imbalance increases between spin-up

and spin-down particles, the half-filled majority species forms a stripe density wave due

to the long-range screening attractive interaction, instead of the usual SDW instability.

At the strong coupling regime, the unconventional p-SC dominates over the density wave

instability due to the screening long range intra-species attraction. We observed that the

competition between majority and minority p-SC depends on the polarization and nesting

of their Fermi surface. Also, the critical temperature of the p-SC is higher than previous

studies when the imbalanced Fermi gas without presence of lattice, which believed to be

Kohn-Luttinger instability.

The third work in chapter 5, we discover the unconventional dxy-CDW in a quan-

tum degenerate Fermi-Fermi mixture. When one species is half-filled and the other is

slightly away, the dxy-CDW dominates over conventional SDW. We proposed a four patch

toy model and use phase space argument to explain the physical mechanism of formation

of dxy-CDW. The FRG calculation also verifies the prediction of four patch toy model and

gives entire phase diagram on different interaction ratio and filling fraction of both species.

We conclude that the density imbalanced between species mediates a long range attraction,

which favors the half-filled species to form dxy-CDW. Furthermore, we discuss the setup

for this Fermi-Fermi mixture, the way to engineer large enough interaction ratio to achieve

this ground state, and the potential detection can be probed if the critical temperature is

reached.
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The last work in chapter 6, we show phase diagrams of dipolar fermions on square

lattice bilayer under different layer separations. Our results show the dipolar fermions on

square lattice bilayer can realize exotic charge density wave, and observe the correlation

between layers. Apparently, the inter-layer interaction changes the low energy ground state

properties. We observe the competition between inter-layer pairing and charge density wave

within layers when the dipoles are aligned along z-direction. When the dipoles are lying

parallel to the layers, we discover the s±-CDW overcome the p-wave paring due to the inter-

layer repulsive interaction. Although the estimated critical temperature of these phases is

still lower than recently experimental achievement in dysprosium [93]. We expect those

exotic quantum phases can be observed in near future.

Finally, we establish theories that explain physical mechanism of formation of

unconventional density waves and superfluities. The presence of square lattice and the

density imbalanced are essential keys to these states. From several proposed models, we

have show that the long range attraction in the system can favor p-SC and other higher

order superfluity. This long range attraction can also affect the nearly half-filled species

to form a high order charge density wave. The density imbalanced has a screening effect

to other species can be the origin of the long range attraction. Despite the difficulty of

engineering the long range interaction, our theory provides experiments other way to achieve

the unconventional density wave and superfluity.
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Appendix A

Interaction and its symmetries

A.1 Spin-Rotation-Invariant Interaction

The most general spin-rotation-invariant interaction can be described by means

of equal spin (σ = σ′) quantum numbers term and another with opposite spin (σ = −σ′)

quantum number, saying U‖(k1,k2,k3) and U⊥(k1,k2,k3).

∑
σ

∑
k1k2k3

U‖(k1,k2,k3)Ψ̄σk3Ψ̄σk4Ψσk2Ψσk1

+ U⊥(k1,k2,k3)Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1 . (A.1)

There are other ways to write down these interaction by different quantum numbers, for

example, charge-charge and spin-spin interactions,

∑
k1k2k3

Uc(k1,k2,k3)C̄(k2,k4)C(k3,k1) + Us(k1,k2,k3)S̄(k2,k4) · S(k3,k1) (A.2)

77



, where basis C and component Si are given

C(k3,k1) =
∑
σ

Ψ̄σk3Ψσk1 ,

Si(k3,k1) =
∑
σσ′

Ψ̄σk3σ
i
σσ′Ψσ′k1

with Pauli matrixes σi.

Also, we can use symmetry (|~σ+ ~σ′| = 0) and anti-symmetry (|~σ+ ~σ′| =
√

2) wave

functions,

∑
k1k2k3

s̄(k4,k3)US(k1,k2,k3)s(k2,k1) +
∑

ν=0,±1

t̄ν(k4,k3)UA(K1,k2,k3)tν(k2,k1) (A.3)

, where these states are

s(k2,k1) =
1√
2

∑
σ

σΨσk2Ψ−σk1 ,

t0(k2,k1) =
1√
2

∑
σ

Ψσk2Ψ−σk1 ,

t±1(k2,k1) = Ψ↑,↓k2Ψ↑,↓k1 .

Before we start to figure out their relations, we discuss the symmetry properties of inter-

actions first. For these coupling function we just mentioned, we can define two exchange

operators as

XF(k1,k2,k3,k4) = F(k2,k1,k3,k4) (A.4)

and

X̄F(k1,k2,k3,k4) = F(k1,k2,k4,k3) (A.5)

, and time-inversion operator

T F(k1,k2,k3,k4) = F(k3,k4,k1,k2) . (A.6)
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We can check the symmetry from Eq.(A.1). First, we check it on time-reversal

T
∑
σσ′

∑
k1,k2,k3

U(k1σ,k2σ
′,k3σ)Ψ̄σk3Ψ̄σ′k4Ψσ′k2Ψσk1 =

T
∑
σ

∑
k1k2k3

[U‖(k1,k2,k3)Ψ̄σk3Ψ̄σk4Ψσk2Ψσk1 + U⊥(k1,k2,k3)Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1 ] .

Then, it is easily to verify

L.H.S. =
∑
σσ′

∑
k3,k4,k1

U(k3σ,k4σ
′,k1σ)Ψ̄σk1Ψ̄σ′k2Ψσ′k4Ψσk3 =

∑
σ

∑
k3k4k1

[U‖(k3,k4,k1)Ψ̄σk1Ψ̄σk2Ψσk4Ψσk3 + U⊥(k3,k4,k1)Ψ̄σk1Ψ̄−σk2Ψ−σk4Ψσk3 ]

= R.H.S.

Also, these coupling functions satisfy two symmetries, saying

T F = F time-inversion (A.7)

XX̄F = F exchange symmetry (A.8)

also X̄F = XF if T F = F . (A.9)

A.1.1 Parallel and antiparallel spin

In this spin-rotation-invariant interaction, we write down their basis term by term

to figure out their relations. Let’s start from charge and spin quantum numbers represen-

tation first. It is defined as usual for charge quantum number,

C̄(k2,k4)C(k3,k1) =
∑
σσ′

Ψ̄σ′k4Ψσ′k2Ψ̄σk3Ψσk1 (A.10)

=
∑
σσ′

Ψ̄σk3Ψ̄σ′k4Ψσ′k2Ψσk1 (A.11)
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, and for spin quantum number,

S̄(k2,k4) · S(k3,k1) =
∑
i

∑
σσ′

Ψ̄σk4σ
i
σσ′Ψσ′k2

∑
σ′′σ′′′

Ψ̄σ′′k3σ
i
σ′′σ′′′Ψσ′′′k1 (A.12)

=
∑
i

∑
σσ′σ′′σ′′′

σiσσ′σ
i
σ′′σ′′′Ψ̄σ′′k3Ψ̄σk4Ψσ′k2Ψσ′′′k1 . (A.13)

Then, we can follow above calculation by Fierz identity,

3∑
i=1

(σiσσ′)(σ
i
σ′′σ′′′) = 2δσ′σ′′δσσ′′′ − δσσ′δσ′′σ′′′ (A.14)

, and arrive

S̄(k2,k4) · S(k3,k1) =
∑
σσ′

(2Ψ̄σ′k3Ψ̄σk4Ψσ′k2Ψσk1 − Ψ̄σk3Ψ̄σ′k4Ψσ′k2Ψσk1) . (A.15)

Bring this two into Eq.(A.2), we get

∑
k1,k2,k3

∑
σ

(Uc(k1,k2,k3) + Us(k1,k2,k3)Ψ̄σk3Ψ̄σk4Ψσk2Ψσk1

+
∑

k1,k2,k3

∑
σ

(Uc(k1,k2,k3)− Us(k1,k2,k3)Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1

− 2
∑

k1,k2,k3

∑
σ

Us(k1,k2,k3)Ψ̄σk3Ψ̄−σk4Ψ−σk1Ψσk2) . (A.16)

The last term can be written down as

∑
k1,k2,k3

∑
σ

Us(k2,k1,k3)Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1 (A.17)

, so conclusion can be made by comparing Eq.(A.1) and Eq.(A.16)

U‖ = Uc + Us (A.18)

U⊥ = Uc − Us − 2XUs . (A.19)

We can solve this by setting

Us = −X
4
U⊥ (A.20)
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, then we will find

Uc =
1

4
(2−X)U⊥ . (A.21)

Next, we take this back to Eq.(A.18), and find

U‖ =
1

2
(1−X)U⊥ . (A.22)

A.1.2 Singlet-Singlet and Triplet-Triplet

Second, if we use the singlet and triplet representation. From the symmetry state,

which has |σ + σ′| = 0

s̄(k4,k3)US(k1,k2,k3)s(k2,k1) =
1

2

∑
σσ′

US(k1,k2,k3)Ψ̄−σk3Ψ̄σk4σσ
′Ψσ′k2Ψ−σ′k1

=
1

2

∑
σ

US(k1,k2,k3)
(
Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1 − Ψ̄σk3Ψ̄−σk4Ψσk2Ψ−σk1

)
and the anti-symmetry

∑
ν

t̄ν(k4,k3)UA(k1,k2,k3)tν(k2,k1) =

UA(k1,k2,k3) [t̄0(k4,k3)t0(k2,k1) + t̄+1(k4,k3)t+1(k2,k1) + t̄−1(k4,k3)t−1(k2,k1)]

= UA(k1,k2,k3)

[
1

2

∑
σσ′

Ψ̄−σk3Ψ̄σk4Ψσ′k2Ψ−σ′k1 +
∑
σ

Ψ̄σk3Ψ̄σk4Ψσk2Ψσk1

]
(A.23)

Bring them back to Eq.(A.3), we apply the relation on Us term

X
∑

k1k2k3

s̄(k4,k3)US(k1,k2,k3)s(k2,k1) =
∑

k1k2k3

s̄(k4,k3)US(k1,k2,k3)s(k2,k1) (A.24)

as well as on UA term, and we arrive

∑
k1k2k3

[∑
σ

(US + UA)Ψ̄σk3Ψ̄−σk4Ψ−σk2Ψσk1 + UA
∑
σ

Ψ̄σk3Ψ̄σk4Ψσk2Ψσk1

]
.
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This gives us the relation

U⊥ = US + UA

U‖ = UA (A.25)

, also the symmetry and anti-symmetry argument apply

US =
1

2
(1 +X)U⊥

UA =
1

2
(1−X)U⊥ . (A.26)

A.2 Broken SU(2) Symmetry Interaction

In order to analyze the RG flow in this non-SU(2) symmetry case, we need to go

back to their original basis, saying

C(k3,k1) =
∑
σ

Ψ̄σk3Ψσk1 , (A.27)

Si(k3,k1) =
∑
σσ′

Ψ̄σk3σ
i
σσ′Ψσ′k1 (A.28)

for charge and spin, and

s(k2,k1) =
1√
2

∑
σ

σΨσk2Ψ−σk1 , (A.29)

t0(k2,k1) =
1√
2

∑
σ

Ψσk2Ψ−σk1 , (A.30)

t±1(k2,k1) = Ψ↑,↓k2Ψ↑,↓k1 . (A.31)

for singlet and triplet channel.
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A.2.1 Rewrite General Interaction

The four-leg vertices can be rewritten as following,

V =
∑
1234

∑
σσ′

Uσσ′(1234)ψ̄σ′(3)ψ̄σ(4)ψσ(2)ψσ′(1)

=
∑
1234

1

2

∑
σσ′

[
Uσσ′(1234)ψ̄σ′(3)ψ̄σ(4)ψσ(2)ψσ′(1)

+Uσσ′(2134)ψ̄σ′(3)ψ̄σ(4)ψσ(1)ψσ′(2)
]
. (A.32)

Let us define

Uσσ′(1234) = Uσσ′

Uσσ′(2134) = XUσσ′

, and spell all terms out explicitly

V =
∑
1234

1

2
(U↑↑ −XU↑↑)ψ̄↑(3)ψ̄↑(4)ψ↑(2)ψ↑(1) +

1

2
(U↓↓ −XU↓↓)ψ̄↓(3)ψ̄↓(4)ψ↓(2)ψ↓(1)

+
1

2
U↓↑ψ̄↑(3)ψ̄↓(4)ψ↓(2)ψ↑(1) +

1

2
U↑↓ψ̄↓(3)ψ̄↑(4)ψ↑(2)ψ↓(1)

− 1

2
XU↓↑ψ̄↑(3)ψ̄↓(4)ψ↑(2)ψ↓(1)− 1

2
XU↑↓ψ̄↓(3)ψ̄↑(4)ψ↓(2)ψ↑(1) . (A.33)

In order to use charge-charge and spin-spin separation, we re-write it into the following

form

V =
∑
1234

1

2
(U↑↑ −XU↑↑)ψ̄↑(3)ψ↑(1)ψ̄↑(4)ψ↑(2) +

1

2
(U↓↓ −XU↓↓)ψ̄↓(3)ψ↓(1)ψ̄↓(4)ψ↓(2)

+
1

2
U↓↑ψ̄↑(3)ψ↑(1)ψ̄↓(4)ψ↓(2) +

1

2
U↑↓ψ̄↓(3)ψ↓(1)ψ̄↑(4)ψ↑(2)

− 1

2
XU↓↑ψ̄↑(3)ψ↓(1)ψ̄↓(4)ψ↑(2)− 1

2
XU↑↓ψ̄↓(3)ψ↑(1)ψ̄↑(4)ψ↓(2) . (A.34)

83



A.2.2 Charge-Charge and Spin-Spin

By using the definition in the beginning, we can express these fields in terms of

C(k3,k1) = C(3, 1) and Si(k3,k1) = Si(3, 1), saying

ψ̄↑(3)ψ↑(1) =
1√
2

(C(3, 1) + Sz(3, 1)) (A.35)

ψ̄↓(3)ψ↓(1) =
1√
2

(C(3, 1)− Sz(3, 1)) (A.36)

ψ̄↑(3)ψ↓(1) =
1√
2
S+(3, 1) (A.37)

ψ̄↓(3)ψ↑(1) =
1√
2
S−(3, 1) . (A.38)

Bring these into Eq.(A.34), we have

V =
∑
1234

1

4
(U↑↑ −XU↑↑ + U↓↓ −XU↓↓ + U↑↓ + U↓↑)C(2, 4)C(3, 1)

+
1

4
(U↑↑ −XU↑↑ + U↓↓ −XU↓↓ − U↑↓ − U↓↑)Sz(2, 4)Sz(3, 1)

− 1

4
XU↑↓S+(2, 4)S−(3, 1)− 1

4
XU↓↑S−(2, 4)S+(3, 1)

+
1

4
(U↑↑ −XU↑↑ − U↓↓ +XU↓↓ + U↑↓ − U↓↑)Sz(2, 4)C(3, 1)

+
1

4
(U↑↑ −XU↑↑ − U↓↓ +XU↓↓ − U↑↓ + U↓↑)C(2, 4)Sz(3, 1) (A.39)

, then we can conclude that

Vc =
1

4
(U↑↑ −XU↑↑ + U↓↓ −XU↓↓ + U↑↓ + U↓↑) (A.40)

Vσz =
1

4
(U↑↑ −XU↑↑ + U↓↓ −XU↓↓ − U↑↓ − U↓↑) (A.41)

Vσ+ = −1

4
XU↑↓ (A.42)

Vσ− = −1

4
XU↓↑. (A.43)
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A.2.3 Singlet-Singlet and Triplet-Triplet

Once again, we are going to use the definition in beginning of this chapter and use

them to represent these fields, saying

s(2, 1) =
1√
2

[ψ↑(2)ψ↓(1)− ψ↓(2)ψ↑(1)]

t0(2, 1) =
1√
2

[ψ↑(2)ψ↓(1) + ψ↓(2)ψ↑(1)]

t+(2, 1) = ψ↑(2)ψ↑(1)

t−(2, 1) = ψ↓(2)ψ↓(1) (A.44)

and

s(4, 3) =
1√
2

[
ψ̄↑(3)ψ̄↓(4)− ψ̄↓(3)ψ̄↑(4)

]
t0(4, 3) =

1√
2

[
ψ̄↑(3)ψ̄↓(4) + ψ̄↓(3)ψ̄↑(4)

]
t+(4, 3) = ψ̄↑(3)ψ̄↑(4)

t−(4, 3) = ψ̄↓(3)ψ̄↓(4) . (A.45)

Therefore, the interaction will be expressed as

V =
∑
1234

1

2
(U↑↑ −XU↑↑)t+(4, 3)t+(2, 1) +

1

2
(U↓↓ −XU↓↓)t−(4, 3)t−(2, 1)

1

4
(U↑↓ + U↓↑ +XU↑↓ +XU↓↑)s(4, 3)s(2, 1)

1

4
(U↑↓ − U↓↑ +XU↑↓ −XU↓↑)t0(4, 3)t0(2, 1)

1

4
(U↑↓ − U↓↑ +XU↑↓ −XU↓↑)t0(4, 3)s(2, 1)

1

4
(U↑↓ − U↓↑ −XU↑↓ +XU↓↑)s(4, 3)t0(2, 1) . (A.46)
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Following by these, we can define that

V s
BCS =

1

4
(U↑↓ + U↓↑ +XU↑↓ +XU↓↑) (A.47)

V t0
BCS =

1

4
(U↑↓ − U↓↑ +XU↑↓ −XU↓↑) (A.48)

V t+
BCS =

1

2
(U↑↑ −XU↑↑) (A.49)

V t−
BCS =

1

2
(U↓↓ −XU↓↓) . (A.50)
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