
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Neural Scene Representations for View Synthesis

Permalink
https://escholarship.org/uc/item/68f698zz

Author
Mildenhall, Benjamin Joseph

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68f698zz
https://escholarship.org
http://www.cdlib.org/

Neural Scene Representations for View Synthesis

by

Benjamin Joseph Mildenhall

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Ren Ng, Chair
Professor Alexei Efros

Professor Martin Banks

Fall 2020

Neural Scene Representations for View Synthesis

Copyright 2020
by

Benjamin Joseph Mildenhall

1

Abstract

Neural Scene Representations for View Synthesis

by

Benjamin Joseph Mildenhall

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Ren Ng, Chair

View synthesis is the problem of using a given set of input images to render a scene from
new points of view. Recent approaches have combined deep learning and volume rendering
to achieve photorealistic image quality. However, these methods rely on a dense 3D grid
representation that only allows for a small amount of local camera movement and scales
poorly to higher resolutions.

In this dissertation, we present a new approach to view synthesis based on neural radiance
fields, an efficient way to represent a scene as a continuous function parameterized by the
weights of a neural network. In contrast to using a feed-forward neural network to predict
scene properties from a small number of inputs, a neural radiance field can be directly
optimized to globally reconstruct a scene from tens or hundreds of input images and thus
achieve high quality novel view synthesis over a large camera baseline.

The key to enabling high fidelity reconstruction of a low-dimensional signal using a neural
network is a high frequency mapping of the input coordinates into a higher-dimensional
space. We explain the connection between this mapping and the neural tangent kernel, and
show how manipulating the frequency spectrum of the mapping provides control over the
network’s interpolation behavior between supervision points.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 The problem of view synthesis . 1
1.2 Considerations when designing an algorithm 2
1.3 Dissertation overview . 7

2 View Synthesis as Local Interpolation: Local Light Field Fusion 9
2.1 Related Work . 11
2.2 Theoretical Plenoptic Sampling Analysis . 14
2.3 Practical View Synthesis by Blending Local Light Fields 18
2.4 Training Our View Synthesis Pipeline . 23
2.5 Experimental Evaluation . 25
2.6 Practical Usage and Scaling Properties . 28
2.7 Discussion . 33

3 An Efficient Global Representation:
Coordinate-Based Networks with Fourier Feature Mappings 34
3.1 Related Work . 36
3.2 Kernel Regression and the Spectral Bias of Deep Networks 37
3.3 Fourier Features create a Tunable Stationary Neural Tangent Kernel 38
3.4 Manipulating Network Behavior using a Fourier Feature Mapping 40
3.5 Experiments on 2D and 3D Tasks . 43
3.6 Discussion . 46

4 View Synthesis as Global Reconstruction: Neural Radiance Fields 51
4.1 Related Work . 53
4.2 Neural Radiance Field Scene Representation 55
4.3 Volume Rendering with Radiance Fields . 55

ii

4.4 Optimizing a Neural Radiance Field . 56
4.5 Results . 60
4.6 Discussion . 62

5 Conclusion 66

Bibliography 68

iii

List of Figures

1.1 Local-global spectrum of view synthesis methods 3
1.2 Surface vs. volume rendering . 5
1.3 Feed-forward prediction vs. direct optimization 6

2.1 Local light field fusion pipeline . 10
2.2 Multiplane image (MPI) scene representation 13
2.3 Fourier support for plenoptic sampling without occlusions 15
2.4 Fourier support for plenoptic sampling with occlusions 16
2.5 Weighted combination of MPI renderings . 18
2.6 Blending MPIs using accumulated alpha . 20
2.7 Approximating a non-Lambertian light field with multiple MPIs 22
2.8 View synthesis quality versus view sampling rate 24
2.9 View synthesis results on real cellphone data . 29
2.10 Time and storage rendering tradeoff . 31
2.11 Smartphone capture app . 32

3.1 Optimizing coordinate-based MLPs with and without Fourier features 35
3.2 Visualizations of the neural tangent kernel and its power spectrum 40
3.3 Fourier feature mapping for a 1D regression task 41
3.4 Sparse sampling of Fourier features from different random distributions 42
3.5 Results for the 2D image regression task . 47
3.6 Results for the 3D shape occupancy task . 48
3.7 Results for the 2D CT task. 49
3.8 Results for the 3D MRI task. 49
3.9 Fourier features from different random distributions for 2D image regression . . 50
3.10 2D image regression performance versus frequency scaling 50

4.1 Neural radiance field (NeRF) optimization procedure 52
4.2 NeRF representation and rendering procedure 54
4.3 View-dependent emitted radiance encoded by NeRF 56
4.4 Ablation of view dependence and positional encoding 57
4.5 Fully-connected network architecture . 59
4.6 Comparisons on realistic synthetic data . 64

iv

4.7 Comparisons on real world scenes . 65

v

List of Tables

2.1 Reference for symbols used in Section 2.2. 14
2.2 Network architecture for predicting multiplane images 19
2.3 View synthesis results on synthetically renderered data 26

3.1 Quantitative results of different Fourier feature mappings for various tasks . . . 44

4.1 Quantitative comparisons on synthetic and real data 60
4.2 NeRF ablation study . 62

vi

Acknowledgments

I remember meeting Ren for the first time in a cafe in Palo Alto nearly seven years ago
and being struck by his vibrant intellectual energy. I biked back to my dorm afterward and
immediately started telling one of my friends about this exciting new professor and the group
he wanted to start at Berkeley. Looking back as I complete my PhD, I am immeasurably
glad I chose to join Ren’s research group. He has taught me so much about the research
process and the value of distilling and clarifying concepts in papers and in talks.

And I could not have asked for a better group of peers than Pratul Srinivasan, Grace
Kuo, Cecilia Zhang, Matt Tancik, Utkarsh Singhal, and Vivien Nguyen for laughing at
dumb research ideas, debating real research ideas, playing with ancient VCL treasures and
the Vive, going on data collection adventures, and drinking boba way too many times—I
will always miss hanging out in the office together. I have especially enjoyed and massively
benefited from collaborating closely with Pratul and Matt over the last couple years; all
of the work presented here was done jointly with both of them. Pratul and I first began
working together in 2017, beginning a chaotic journey that started with us barely being
able to calibrate camera poses and continues to this day with a ridiculously named method
and results that exceed our wildest original expectations. I am eternally grateful to have a
collaborator with such compatible research tastes and unending good humor in the face of
setbacks and deadlines.

I am also grateful for the mentorship provided by my intern hosts at Google and Fyusion:
thanks to Rob Carroll, Jiawen Chen, Dillon Sharlet, and Andrew Adams for teaching me
how cameras work, and to Rodrigo Ortiz-Cayon and Abhishek Kar for showing me what
research at a startup is like. Long after Pratul and I finished our first internships at Google,
Jon Barron continues to be an amazing collaborator and unending source of helpful research
and life advice.

I would also like to acknowledge the Hertz Foundation for providing financial support for
the majority of my graduate studies.

Finally, I want to thank my friends and family for their support—countless delicious meals
with Grace Kuo and Regina Eckert, relaxing California winter holidays with my parents, and
through all the ups and downs, from our first coffee/tea together in Brewed Awakening til
now, endless love and support from Coline—we did it!

1

Chapter 1

Introduction

Modern computer graphics techniques can be used to render images that are virtually in-
distinguishable from reality, given a sufficiently detailed 3D scene model. People typically
imagine computer graphics and visual effects being used to conjure up dramatic explosions
or futuristic worlds, but these technologies are more often deployed to imperceptibly add or
modify objects, actors, backdrops, or even entire 3D environments in order to simplify the
process of creating films, TV shows, advertisements, and so on.

Though the rendering process mapping from a virtual scene to an output image is entirely
automated, creating these underlying 3D assets requires an immense amount of human
labor; even a highly skilled digital artist would take hundreds of hours using sophisticated
3D modeling software to design, for example, a single realistic scene of a busy city street
populated with a variety of buildings, cars, and people.

On the other hand, anyone with a camera can walk out onto a city street and capture
a detailed, photorealistic image in the blink of an eye. Thanks to the ubiquity of modern
smartphone cameras, humanity now produces an overwhelming deluge of photographs—over
45,000 per second in the year 2020 [43]. How can we exploit the ease of taking high quality 2D
images to automate the capture of realistic real-world scenes, bypassing the labor-intensive
process of designing detailed 3D models by hand?

1.1 The problem of view synthesis

In this dissertation, we address this question through the lens of view synthesis : given a set
of photographs of a scene, how can we generate new images of that scene from previously
unobserved viewpoints? This would be equivalent to recreating a digital version of the scene
and moving the camera while leaving the lighting, objects, materials, etc. unchanged. A
perfect view synthesis algorithm could transport a user wearing a virtual reality headset into
another place entirely, allowing them to move their head freely within a fixed region of space,
as well as enabling many other artistic, scientific, and commercial applications.

This problem setting is quite specific; it does not guarantee accurate recovery of 3D

CHAPTER 1. INTRODUCTION 2

geometry, disentangle material and lighting properties, or allow for moving objects. However,
we posit that view synthesis is a “least common denominator” for these broader problems in
inverse graphics: none of them can be tackled without a functioning view synthesis algorithm.

Any system for view synthesis must address the following questions:

• Representation: How will the underlying scene be represented?

• Renderer: How will new views of the scene be rendered from this representation?

• Reconstruction: How will this representation be recovered from the given input images?

Decades of computer graphics research have been spent investigating different represen-
tations and renderers for many varied use cases and computational budgets. View synthesis
adds the additional constraint that it must be possible to devise an algorithm that recovers
the underlying scene representation from images alone.

1.2 Considerations when designing an algorithm

When examining different view synthesis methods, certain design choices arise again and
again. The first tradeoff we describe concerns local interpolation between input images
versus global reconstruction of a full scene model, which is largely a matter of runtime
requirements, available computational resources, and input data quality and may potentially
never be fully resolved. The issues regarding surface versus volume rendering and feed-
forward versus optimization-based pipelines are most relevant in the context of the recent
rise of deep learning methods relying on fully differentiable rendering pipelines, which have
made great strides toward photorealistic results on complex real-world scenes over the past
five years.

1.2.1 Local interpolation vs. global reconstruction

This question represents a tension between two ideas: rendering an output view by blending
patches of pixels taken directly from nearby input images can yield highly realistic results
for a single frame, but rendering outputs using a global scene model reconstructed from
all input images produces more temporally coherent results when smoothly changing the
output viewpoint. Local interpolation relies on having a high sampling rate of input views
(tightly packed cameras), while global reconstruction may require fewer views but rely on a
representation that implies stronger priors on the scene content. Figure 1.1 illustrates where
many existing view synthesis methods fall along this continuum.

Standard light field interpolation [35, 64] is the most basic view synthesis algorithm,
making very few assumptions about the captured scene’s appearance. This method treats
the input views as discrete samples from the four-dimensional light field of all rays viewing
the scene, thus allowing for a standard signal processing approach to reconstruction. When
the input image positions lie on a regular 2D grid, it is possible to derive a Nyquist sampling

CHAPTER 1. INTRODUCTION 3

Light field interpolation [12, 35, 64], depth-aware light field
interpolation [29, 48]. Computes color for a camera ray by blending
nearby pixels from input images, sometimes aided by rough scene
depth estimates.

Local interpolation

Global reconstruction

Local reconstruction per input image [83, 95]. Generates a locally
valid representation from each input, interpolates between them to
render new views.

Global reconstruction using local image data for rendering [11, 24,
39, 91]. Reconstructs a global “proxy” for the whole scene, uses this
to gather relevant pixels from input images. These colors are
blended together using hand-designed heuristics or a deep network.

Global reconstruction using a specialized renderer [73, 82, 86, 109,
110, 128]. Reconstructs a single globally valid scene representation,
no longer requires input images to render new outputs. Typically
not compatible with standard computer graphics renderers.

Full global reconstruction of geometry, materials, and lighting to
be used in a standard renderer. Generalization of view synthesis to
full inverse rendering.

?

?

?

Figure 1.1: Spectrum of view synthesis methods from local interpolation between input
images to global reconstruction of a full scene model.

CHAPTER 1. INTRODUCTION 4

bound that guarantees perfect reconstruction when the input cameras are spaced sufficiently
close together [12]. This bound can be relaxed if additional depth information is provided or
estimated. Some recent methods use deep learning to predict a depth value for every pixel in
the rendered output and interpolate between the corresponding rays from neighboring input
views [29, 48]; other methods generate a locally-valid scene representation corresponding to
each input image that can be used to render nearby views, then interpolate between different
local reconstructions as the novel view pose changes [83, 95].

A common compromise between local and global approaches is to reconstruct an inter-
mediate global “proxy” (usually a triangle mesh) that is used to select pixels from the input
images, which are then blended to create the final rendered output. The blending step can
be performed using hand-designed heuristics for speed and simplicity [11, 24, 91] or by deep
networks for better image quality [39]. Most of these methods use a traditional structure-
from-motion and dense multivew stereo reconstruction pipeline (such as COLMAP [103]) to
generate the global proxy geometry, which can limit their usefulness in challenging scenes
with complex geometry or reflective surfaces.

On the other end of the spectrum lie methods that create a single global representation of
the scene and do not rely on the input images at all to render new views. In order to achieve
photorealism, these methods typically use a custom representation and renderer, rather than
generating a reconstruction that works directly with a typical graphics pipeline (such as a
triangle mesh with corresponding texture and material maps). One historical example is the
surface light field method, which computes a compressed representation of the viewpoint-
varying color for each vertex in a triangle mesh [128]. This global approach has become
much more popular in the era of deep learning, with scene representations designed to be
optimized via gradient descent through differentiable rendering pipelines. In this context,
deep networks may be used to help reconstruct [73] or render [109] the scene, or even directly
serve as the underlying scene representation [82, 86, 110].

1.2.2 Surface vs. volume rendering in differentiable pipelines

Within the last five years, automatic differentiation frameworks such as Tensorflow [76] and
PyTorch [94] have enabled an explosion of work on differentiable rendering systems in which
it is possible to take the gradient of the rendered output image with respect to various scene
representation parameters, such as geometry or surface colors. Differentiability is important
because it allows these rendering methods to be directly integrated into end-to-end deep
learning pipelines that are supervised via gradient descent on a rendered image loss.

In the context of differentiable rendering, we can make a distinction between surface and
volume rendering methods (Figure 1.2). A surface rendering method assumes that 3D space
is empty except for an enumerated set of opaque primitives (triangles, points, depth maps,
etc.). A ray either does or does not intersect any given primitive; the notion of “visibility”
is discrete. In order to produce a differentiable surface renderer, one must appeal to the
fact that each camera pixel actually represents an integral over a bundle of rays, weighted
by a filtering function [59], or approximate the gradients by softening the ray-primitive

CHAPTER 1. INTRODUCTION 5

(a) Surface rendering. The scene is repre-
sented by a list of opaque primitive objects
(e.g., a triangle mesh). A camera ray traced
into the scene only returns the color of the first
primitive it intersects.

(b) Volume rendering. Scene content can
exist at any point in space with some “density”
value. A camera ray accumulates color in a
continuous and differentiable way as it traverses
the scene.

Figure 1.2: Surface vs. volume rendering.

intersection term to be continuous rather than binary [18, 71]. Additionally, optimizing a
surface-based representation using gradients requires “physically” moving primitive objects
between their initial and final locations—imagine squeezing and stretching a mesh of points
connected by springs to contort it into a desired shape. It is also not possible to differentiably
modify the number or connective topology of surface primitives in the scene.

In contrast, a volume rendering method assumes that 3D space is densely occupied by a
“participating medium” which has some statistical chance of interacting with a traced ray
at any point, yielding a continuous, probabilistic notion of visibility. Volume rendering is
naturally differentiable and simple to implement in any array-based deep learning frame-
work [73, 121, 140]. Each point in space can modify its own visibility independently of
all other points—imagine smoke clouds appearing and disappearing to form object shapes.
However, encoding a scene made up of hard surfaces by using a discrete 3D voxel grid is
extremely inefficient, since most storage will be devoted to representing empty space. In
traditional computer graphics this is not an issue, since an acceleration structure such as an
octree can make storing and tracing rays through a mostly-empty volume just as efficient as
using a surface representation like a triangle mesh [20]. However, adding such an acceleration
structure on top of a 3D volume grid requires making binary decisions about which regions
are empty and thus cannot be used in the context of differentiable rendering.

1.2.3 Feed-forward prediction vs. direct optimization

Typical deep learning approaches follow a template of feed-forward prediction. For each
new problem instance, some input data is fed into a deep network, which produces an

CHAPTER 1. INTRODUCTION 6

fθ

Render

Input images
Deep network with

parameters θ
Predicted scene
representation

(a) Feed-forward prediction. A small
number of input images are fed into a deep
network that predicts a corresponding scene
representation. The network must be trained
over many example input images of different
scenes (typically supervised by a loss com-
paring a rendered output to another held-out
image of the same scene).

Render

Render

∥ − ∥2
Scene representation
with parameters θ

Backpropagate gradient to optimize scene
representation parameters

Input image

(b) Direct optimization. The scene represen-
tation parameters are directly optimized using all
input images of a single scene (again, by taking
gradient steps on a differentiable rendering loss).
No external dataset is needed; however, the opti-
mization process is likely to be much slower than
a feed-forward prediction.

Figure 1.3: Feed-forward prediction vs. direct optimization.

output prediction. Given a training dataset consisting of example pairs of input data and
corresponding labels, the network is optimized by gradient descent over a loss that encourages
its output to match these ground truth labels. In the context of view synthesis, the input data
is a set of images of a scene and their camera poses, and the label is usually another held-out
image of the same scene. The network outputs parameters for some scene representation,
which is used to render an image that is compared to the held-out ground truth by some loss
function. If the rendering process is differentiable, the chain rule can be used to propagate
gradients back through the whole pipeline, from the loss to the network’s parameters.

Feed-forward view synthesis methods derives their power from training over a large
dataset of examples, extracting priors that allow them to generalize to arbitrary new scenes.
Though the training phase may take multiple days, at inference time the network can usually
be applied in a matter of seconds or minutes. However, memory and algorithmic constraints
restrict the number of input images these networks can process (typically 2-5 input im-
ages [83, 140], or up to 12 in a carefully engineered implementation [28]). Additionally,
generating training data requires either creating and rendering images of a large library of
high quality synthetic 3D scenes or taking thousands of real-world images by hand.

Directly optimizing scene representation parameters requires no external training data
and can result in the highest quality global reconstruction when many input images are
available for each scene (tens to hundreds). In this context, we use gradient descent to op-
timize the scene representation parameters for a single scene such that it best reproduces
all provided input images according to a differentiable rendering loss. This dissertation will
present neural radiance fields, the first scene representation capable of producing photoreal-
istic results at high resolutions using direct optimization.

CHAPTER 1. INTRODUCTION 7

1.3 Dissertation overview

In this dissertation, we describe two contrasting view synthesis algorithms. The first builds
directly on prior learning-based methods, working in a local interpolation framework and
using a discrete voxel grid scene representation. The second approaches the problem in a new
way, demonstrating for the first time that it is possible to achieve photorealistic results using
a memory-efficient neural scene representation and without requiring any external training
dataset. Developing this scene representation requires a specific insight into the workings of
fully-connected neural networks, which is presented between the two view synthesis methods.

• Chapter 2 describes Local Light Field Fusion (LLFF), a prototypical feed-forward
deep learning method trained over a large dataset.1 Given a new scene at test time,
LLFF builds a locally valid reconstruction for each input image, then interpolates
between nearby reconstructions to generate views from new camera poses. We show
empirically that this method effectively lowers the required view sampling rate for light
field interpolation by a factor of 642. The local reconstructions can be generated within
minutes for each new scene, and novel views can be rendered at real-time framerates.

However, each local reconstruction must be predicted and stored as a dense 3D voxel
grid, resulting in poor memory scaling as the number of inputs or image resolution
increases. Additionally, even a 642× reduction in sampling is not sufficient to make
very wide baseline captures tractable (e.g., a 360◦ capture of one object from all direc-
tions would still require thousands of views). These limitations motivate us to seek a
memory-efficient global scene representation that can be directly optimized via gradient
descent to reproduce many input views captured over a wide baseline.

• Chapter 3 explains how neural networks can act as this memory-efficient representa-
tion.2 We can use a fully-connected neural network as a substitute for a multidimen-
sional array by training the network to map from array coordinate inputs to array value
outputs. However, standard networks have an inherent spectral bias toward learning
low-frequency components of a signal exponentially faster than higher-frequency com-
ponents, making it infeasible for them to represent complex natural signals such as 2D
images or 3D shapes.

We find that it is possible to overcome this spectral bias passing the input coordinates
through many randomly sampled Fourier basis functions before putting them into
the network, leveraging recent theoretical work connecting neural networks and kernel
regression [45, 5] to show that certain parameters of this Fourier feature mapping allow
users to directly control the rate at which the network learns different frequency bands
of a signal. This insight transforms fully-connected networks into a highly efficient
alternative to discrete arrays for representing complicated signals in three dimensions
and above.

1Based on work originally published in SIGGRAPH 2019 [83].
2Based on work originally published in NeurIPS 2020 [119].

CHAPTER 1. INTRODUCTION 8

• Chapter 4 presents neural radiance fields (NeRF), a continuous 5D scene representa-
tion encoded in a fully-connected neural network that can be directly optimized (using
images of a single input scene) to render high-quality novel views.3 This neural scene
representation is trivially differentiable, simple to implement, and over one hundred
times more compact than an equivalent dense grid, enabling the first view synthesis
algorithm capable of using a globally reconstructed model to produce photorealistic
high resolution results over a wide camera baseline.

• Chapter 5 concludes and discusses potential avenues for future work.

3Based on work originally published in ECCV 2020 [82].

9

Chapter 2

View Synthesis as Local Interpolation:
Local Light Field Fusion

This chapter presents a view synthesis algorithm based on light field interpolation in a
plenoptic sampling framework. We use a feed-forward neural network to promote each input
image into a “local light field” representation capable of rendering nearby views (moving
up to a certain pixel disparity away from the image’s camera position). This allows us to
reduce the required input view sampling rate well below the Nyquist limit for standard light
field interpolation. This reudction is critical since Nyquist rate sampling is intractable for
scenes with content at nearby distances, as the Nyquist limit increases linearly with the
reciprocal of the closest scene depth. For example, for a scene with a subject at a depth of
0.5 meters captured by a mobile phone camera with a typical 64◦ field of view and rendered
at 1 megapixel resolution, the required sampling rate is an intractable 2.5 million images per
square meter. Hence, we must move towards view synthesis algorithms that leverage scene
priors to effectively predict the missing views.

Our view synthesis approach is grounded within a plenoptic sampling framework and
can precisely prescribe how densely a user must capture a given scene for reliable rendering
performance. Our method is conceptually simple and consists of two main stages. We first
use a deep network to promote each source view to a layered representation of the scene that
can render a limited range of views, advancing recent work on the multiplane image (MPI)
representation [140]. We then synthesize novel views by blending renderings from adjacent
layered representations.

Our theoretical analysis shows that the number of input views required by our method
decreases quadratically with the number of planes we predict for each layered scene repre-
sentation, up to limits set by the camera field of view. We empirically validate our analysis
and apply it in practice to render novel views with the same perceptual quality as Nyquist
view sampling while using up to 642 ≈ 4000× fewer images.

It is impossible to break the Nyquist limit with full generality, but we show that it
is possible to achieve Nyquist level performance with greatly reduced view sampling by
specializing to the subset of natural scenes. This capability is primarily due to our deep

CHAPTER 2. LOCAL LIGHT FIELD FUSION 10

Fast and easy handheld capture with guideline:
closest object moves at most D pixels between views

Promote sampled views to local light field
via layered scene representation

Blend neighboring local light fields
to render novel views

Figure 2.1: We present a simple and reliable method for view synthesis from a set of input
images captured by a handheld camera in an irregular grid pattern. We theoretically and
empirically demonstrate that our method enjoys a prescriptive sampling rate that requires
4000× fewer input views than Nyquist for high-fidelity view synthesis of natural scenes.
Specifically, we show that this rate can be interpreted as a requirement on the pixel-space
disparity of the closest object to the camera between captured views (Section 2.2). After
capture, we expand all sampled views into layered representations that can render high-
quality local light fields. We then blend together renderings from adjacent local light fields
to synthesize dense paths of new views (Section 2.3). Our rendering consists of simple
and fast computations (homography warping and alpha compositing) that can generate new
views in real-time.

learning pipeline, which is trained on renderings of natural scenes to estimate high quality
layered scene representations that produce locally consistent light fields.

In summary, our key contributions are:

1. An extension of plenoptic sampling theory that directly specifies how users should
sample input images for reliable high quality view synthesis with our method.

2. A practical and robust solution for capturing and rendering complex real world scenes
for virtual exploration.

3. A demonstration that carefully crafted deep learning pipelines using local layered scene
representations achieve state-of-the-art view synthesis results.

We extensively validate our derived prescriptive view sampling requirements and demon-
strate that our algorithm quantitatively outperforms traditional light field reconstruction
methods as well as state-of-the-art view interpolation algorithms across a range of sub-
Nyquist view sampling rates. We highlight the practicality of our method by developing an
augmented reality app that implements our derived sampling guidelines to help users capture
input images that produce reliably high-quality renderings with our algorithm. Additionally,
we develop mobile and desktop viewer apps that render novel views from our predicted lay-

CHAPTER 2. LOCAL LIGHT FIELD FUSION 11

ered representations in real-time. Finally, we qualitatively demonstrate that our algorithm
reliably produces state-of-the-art results across a diverse set of complex real-world scenes.

2.1 Related Work

Image-based rendering (IBR) is the fundamental computer graphics problem of rendering
novel views of objects and scenes from sampled views. We find that it is useful to categorize
IBR algorithms by the extent to which they use explicit scene geometry, as done by Shum
and Kang [107].

2.1.1 Plenoptic Sampling and Reconstruction

Light field rendering [64] eschews any geometric reasoning and simply samples images on a
regular grid so that new views can be rendered as slices of the sampled light field. Lumigraph
rendering [35] showed that using approximate scene geometry can ameliorate artifacts due
to undersampled or irregularly sampled views.

The plenoptic sampling framework [12] analyzes light field rendering using signal pro-
cessing techniques and shows that the Nyquist view sampling rate for light fields depends on
the minimum and maximum scene depths. Furthermore, they discuss how the Nyquist view
sampling rate can be lowered with more knowledge of scene geometry. Zhang and Chen [136]
extend this analysis to show how non-Lambertian and occlusion effects increase the spectral
support of a light field, and also propose more general view sampling lattice patterns.

Rendering algorithms based on plenoptic sampling enjoy the significant benefit of pre-
scriptive sampling; given a new scene, it is easy to compute the required view sampling
density to enable high-quality renderings. Many modern light field acquisition systems have
been designed based on these principles, including large-scale camera systems [127, 91] and
a mobile phone app [22].

We posit that prescriptive sampling is necessary for practical and useful IBR algorithms,
and we extend prior theory on plenoptic sampling to show that our deep-learning-based view
synthesis strategy can significantly decrease the dense sampling requirements of traditional
light field rendering. Our novel view synthesis pipeline can also be used in future light field
acquisition hardware systems to reduce the number of required cameras.

2.1.2 Geometry-Based View Synthesis

Many IBR algorithms attempt to leverage explicit scene geometry to synthesize new views
from arbitrary unstructured sets of input views. These approaches can be meaningfully
categorized as either using global or local geometry.

Techniques that use global geometry generally compute a single global mesh from a set
of unstructured input images. Simply texture mapping this global mesh can be effective for

CHAPTER 2. LOCAL LIGHT FIELD FUSION 12

constrained situations such as panoramic viewing with mostly rotational and little transla-
tional viewer movement [37, 38], but this strategy can only simulate Lambertian materials.
Surface light fields [128] are able to render convincing view-dependent effects, but they re-
quire accurate geometry from dense range scans and hundreds of captured images to sample
the outgoing radiance at points on an object’s surface.

Many free-viewpoint IBR algorithms are based upon a strategy of locally texture map-
ping a global mesh. The influential view-dependent texture mapping algorithm [23] proposed
an approach to render novel views by blending nearby captured views that have been re-
projected using a global mesh. Work on Unstructured Lumigraph Rendering [11] focused
on computing per-pixel blending weights for reprojected images and proposed a heuristic
algorithm that satisfied key properties for high-quality rendering. Unfortunately, it is very
difficult to estimate high-quality meshes whose geometric boundaries align well with edges
in images, and IBR algorithms based on global geometry typically suffer from significant
artifacts. State-of-the-art algorithms [40, 39] attempt to remedy this shortcoming with com-
plicated pipelines that involve both global mesh and local depth map estimation. However, it
is difficult to precisely define view sampling requirements for robust mesh estimation, and the
mesh estimation procedure typically takes multiple hours, making this strategy impractical
for casual content capture scenarios.

IBR algorithms that use local geometry [15, 17, 55, 79, 90] avoid difficult and expen-
sive global mesh estimation. Instead, they typically compute detailed local geometry for
each input image and render novel views by reprojecting and blending nearby input images.
This strategy has also been extended to simulate non-Lambertian reflectance by using a
second depth layer [108]. The state-of-the-art Soft3D algorithm [95] blends between repro-
jected local layered representations to render novel views, which is conceptually similar to
our strategy. However, Soft3D computes each local layered representation by aggregating
heuristic measures of depth uncertainty over a large neighborhood of views. We instead train
a deep learning pipeline end-to-end to optimize novel view quality by predicting each of our
local layered representations from a much smaller neighborhood of views. Furthermore, we
directly pose our algorithm within a plenoptic sampling framework, and our analysis directly
applies to the Soft3D algorithm as well. We demonstrate that the high quality of our deep
learning predicted local scene representations allows us to synthesize superior renderings
without requiring the aggregation of geometry estimates over large view neighborhoods, as
done in Soft3D. This is especially advantageous for rendering non-Lambertian effects be-
cause the apparent depth of specularities generally varies with the observation viewpoint,
so smoothing the estimated geometry over large viewpoint neighborhoods prevents accurate
rendering of these effects.

Other IBR algorithms [2] have attempted to be more robust to incorrect camera poses
or scene motion by interpolating views using more general 2D optical flow instead of 1D
depth. Local pixel shifts are also encoded in the phase information, and algorithms have
exploited this to extrapolate views from micro-baseline stereo pairs [26, 52, 138] without
explicit flow computation. However, these methods require extremely close input views and
are not suited for large baseline view interpolation.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 13

Promote to MPI

Input Sampled View

Figure 2.2: We promote each input view sample to an MPI scene representation [140],
consisting of D RGBα planes at regularly sampled disparities within the input view’s camera
frustum. Each MPI can render continuously-valued novel views within a local neighborhood
by alpha compositing color along rays into the novel view’s camera.

2.1.3 Deep Learning for View Synthesis

Other recent methods have trained deep learning pipelines end-to-end for view synthesis.
This includes recent angular superresolution methods [129, 134] that interpolate dense views
within a light field camera’s aperture but cannot handle sparser input view sampling since
they do not model scene geometry. The DeepStereo algorithm [29], deep learning based light
field camera view interpolation [48], and single view local light field synthesis [114] each use
a deep network to predict depth separately for every novel view. However, predicting local
geometry separately for each view results in inconsistent renderings across smoothly-varying
viewpoints.

Finally, Zhou et al. [140] introduce a deep learning pipeline to predict an MPI from
a narrow baseline stereo pair for the task of stereo magnification. As opposed to previous
deep learning strategies for view synthesis, this approach enforces consistency by using the
same predicted scene representation to render all novel views. We adopt MPIs as our lo-
cal light field representation (Figure 2.2) and introduce specific technical improvements to
enable larger-baseline view interpolation from many input views, in contrast to local view
extrapolation from a stereo pair using a single MPI. We predict multiple MPIs, one for each
input view, and train our system end-to-end through a blending procedure to optimize the
resulting MPIs to be used in concert for rendering output views. We propose a 3D convo-
lutional neural network (CNN) architecture that dynamically adjusts the number of depth
planes based on the input view sampling rate, rather than a 2D CNN with a fixed number
of output planes. Additionally, we show that state-of-the-art performance requires only an
easily-generated synthetic dataset and a small real fine-tuning dataset, rather than a large
real dataset. This allows us to generate training data captured on 2D irregular grids similar
to handheld view sampling patterns, while the YouTube dataset in Zhou et al. [140] is
restricted to 1D camera paths.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 14

Table 2.1: Reference for symbols used in Section 2.2.

Symbol Definition
D Number of depth planes
W Camera image width (pixels)
f Camera focal length (meters)

∆x Pixel size (meters)
∆u Baseline between cameras (meters)
Kx Highest spatial frequency in sampled light field
Bx Highest spatial frequency in continuous light field
zmin Closest scene depth (meters)
zmax Farthest scene depth (meters)
dmax Maximum disparity between views (pixels)

2.2 Theoretical Plenoptic Sampling Analysis

The overall strategy of our method is to use a deep learning pipeline to promote each sampled
view to a layered scene representation with D depth layers, and render novel views by
blending between renderings from neighboring scene representations. In this section, we show
that the full set of scene representations predicted by our deep network can be interpreted as
a specific form of light field sampling. We extend prior work on plenoptic sampling to show
that our strategy can theoretically reduce the number of required sampled views by a factor
of D2 compared to the number required by traditional Nyquist view sampling. Section 2.5.1
empirically shows that we are able to take advantage of this bound to reduce the number of
required views by up to 642 ≈ 4000×.

In the following analysis, we consider a “flatland” light field with a single spatial dimen-
sion x and view dimension u for notational clarity, but note that all findings apply to general
light fields with two spatial and two view dimensions.

2.2.1 Nyquist Rate View Sampling

Initial work on plenoptic sampling [12] derived that the Fourier support of a light field, ignor-
ing occlusion and non-Lambertian effects, lies within a double-wedge shape whose bounds are
set by the minimum and maximum scene depths zmin and zmax, as visualized in Figure 2.3.
Zhang and Chen [136] showed that occlusions expand the light field’s Fourier support be-
cause an occluder convolves the spectrum of the light field due to farther scene content with
a kernel that lies on the line corresponding to the occluder’s depth. The light field’s Fourier
support considering occlusions is limited by the effect of the closest occluder convolving the
line corresponding to the furthest scene content, resulting in the parallelogram shape illus-
trated in Figure 2.4a, which can only be packed half as densely as the double-wedge. The

CHAPTER 2. LOCAL LIGHT FIELD FUSION 15

(a) (b) (c)

Figure 2.3: Traditional plenoptic sampling without occlusions, as derived in [12]. (a) The
Fourier support of a light field without occlusions lies within a double-wedge, shown in blue.
Nyquist rate view sampling is set by the double-wedge width, which is determined by the
minimum and maximum scene depths [zmin, zmax] and the maximum spatial frequency Kx.
The ideal reconstruction filter is shown in orange. (b) Splitting the light field into D non-
overlapping layers with equal disparity width decreases the Nyquist rate by a factor of D.
(c) Without occlusions, the full light field spectrum is the sum of the spectra from each layer.

required maximum camera sampling interval ∆u for a light field with occlusions is:

∆u ≤
1

2Kxf (1/zmin − 1/zmax)
, (2.1)

where Kx = min
(
Bx,

1
2∆x

)
is the highest spatial frequency represented in the sampled light

field, as determined by the highest spatial frequency in the continuous light field Bx and the
camera’s spatial resolution ∆x.

2.2.2 MPI Scene Representation and Rendering

The MPI scene representation [140] consists of a set of fronto-parallel RGBα planes, evenly
sampled in disparity within a reference camera’s view frustum (see Figure 2.2). We can render
novel views from an MPI at continuously-valued camera poses within a local neighborhood
by alpha compositing the color along rays into the novel view camera using the “over”
operator [96]. This rendering procedure is equivalent to reprojecting each MPI plane onto
the sensor plane of the novel view camera and alpha compositing the MPI planes from back
to front, as observed in early work on volume rendering [58]. An MPI can be considered as
an encoding of a local light field, similar to layered light field displays [125, 126].

2.2.3 View Sampling Rate Reduction

Plenoptic sampling theory [12] additionally shows that decomposing a scene into D depth
ranges and separately sampling the light field within each range allows the camera sampling

CHAPTER 2. LOCAL LIGHT FIELD FUSION 16

(a) (b) (c)

Figure 2.4: We extend traditional plenoptic sampling to consider occlusions when recon-
structing a continuous light field from MPIs. (a) Considering occlusions expands the Fourier
support to a parallelogram (the Fourier support without occlusions is shown in blue and oc-
clusions expand the Fourier support to additionally include the purple region) and doubles
the Nyquist view sampling rate. (b) As in the no-occlusions case, separately reconstructing
the light field for D layers decreases the Nyquist rate by a factor of D. (c) With occlusions,
the full light field spectrum cannot be reconstructed by summing the individual layer spectra
because the union of their supports is smaller than the support of the full light field spectrum
(a). Instead, we compute the full light field by alpha compositing the individual light field
layers from back to front in the primal domain.

interval to be increased by a factor of D. This is because the spectrum of the light field
emitted by scene content within each depth range lies within a tighter double-wedge that
can be packed D times more tightly than the full scene’s double-wedge spectrum. Therefore,
a tighter reconstruction filter with a different shear can be used for each depth range, as
illustrated in Figure 2.3b. The reconstructed light field, ignoring occlusion effects, is simply
the sum of the reconstructions of all layers, as shown in Figure 2.3c.

However, it is not straightforward to extend this analysis to handle occlusions, because the
union of the Fourier spectra for all depth ranges has a smaller support than the original light
field with occlusions, as visualized in Figure 2.4c. Instead, we observe that reconstructing a
full scene light field from these depth range light fields while respecting occlusions would be
much easier given corresponding per-view opacities, or shield fields [60], for each layer. We
could then easily alpha composite the depth range light fields from back to front to compute
the full scene light field.

Each alpha compositing step increases the Fourier support by convolving the previously-
accumulated light field’s spectrum with the spectrum of the occluding depth layer. As is well
known in signal processing, the convolution of two spectra has a Fourier bandwidth equal to
the sum of the original spectra’s bandwidths. Figure 2.4b illustrates that the width of the
Fourier support parallelogram for each depth range light field, considering occlusions, is:

2Kxf (1/zmin − 1/zmax) /D, (2.2)

so the resulting reconstructed light field of the full scene will enjoy the full Fourier support

CHAPTER 2. LOCAL LIGHT FIELD FUSION 17

width.
We apply this analysis to our algorithm by interpreting the predicted MPI layers at each

camera sampling location as view samples of scene content within non-overlapping depth
ranges, and noting that applying the optimal reconstruction filter [12] for each depth range is
equivalent to reprojecting and then blending pre-multiplied RGBα planes from neighboring
MPIs. Our MPI layers differ from layered renderings considered in traditional plenoptic
sampling because we predict opacities in addition to color for each layer, which allows us to
correctly respect occlusions while compositing the depth layer light fields.

In summary, we extend the layered plenoptic sampling framework to correctly handle
occlusions by taking advantage of our predicted opacities, and show that this still allows us
to increase the required camera sampling interval by a factor of D:

∆u ≤
D

2Kxf (1/zmin − 1/zmax)
. (2.3)

Our framework further differs from classic layered plenoptic sampling in that each MPI
is sampled within a reference camera view frustum with a finite field of view, instead of the
infinite field of view assumed in prior analyses [12, 136]. In order for the MPI prediction
procedure to succeed, every point within the scene’s bounding volume should fall within the
frustums of at least two neighboring sampled views. The required camera sampling interval
∆u is then additionally bounded by:

∆u ≤
W∆xzmin

2f
(2.4)

where W is the image width in pixels of each sampled view. The overall camera sampling
interval must satisfy both constraints:

∆u ≤ min

(
D

2Kxf (1/zmin − 1/zmax)
,
W∆xzmin

2f

)
. (2.5)

2.2.4 Image Space Interpretation of View Sampling

It is useful to interpret the required camera sampling rate in terms of the maximum pixel
disparity dmax of any scene point between adjacent input views. If we set zmax =∞ to allow
scenes with content up to an infinite depth and additionally set Kx = 1/2∆x to allow spatial
frequencies up to the maximum representable frequency:

∆uf

∆xzmin

= dmax ≤ min

(
D,

W

2

)
. (2.6)

Simply put, the maximum disparity of the closest scene point between adjacent views
must be less than min(D,W/2) pixels. When D = 1, this inequality reduces to the Nyquist
bound: a maximum of 1 pixel of disparity between views.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 18

Render target view from neighboring MPIs by
homography warping and alpha compositing

Blend RGBA renderings together
to render final output image

× =∑Target View

Target RGB

Target alpha Predicted MPI

Rendered
Target

Predicted MPI

Predicted MPI

Predicted MPI

Figure 2.5: We render novel views as a weighted combination of renderings from neighboring
MPIs, modulated by the corresponding accumulated alphas.

In summary, promoting each view sample to an MPI scene representation with D depth
layers allows us to decrease the required view sampling rate by a factor of D, up to the
required field of view overlap for stereo geometry estimation. Light fields for real 3D scenes
must be sampled in two viewing directions, so this benefit is compounded into a sampling re-
duction of D2. Section 2.5.1 empirically validates that our algorithm’s performance matches
this theoretical analysis. Section 2.6.1 describes how we apply the above theory along with
the empirical performance of our deep learning pipeline to prescribe practical sampling guide-
lines for users.

2.3 Practical View Synthesis by Blending Local Light

Fields

We present a practical and robust method for synthesizing new views from a set of input
images and their camera poses. Our method first uses a CNN to promote each captured
input image to an MPI, then reconstructs novel views by blending renderings from nearby
MPIs. Figures 2.1 and 2.5 visualize this pipeline. We discuss the practical image capture
process enabled by our method in Section 2.6.

2.3.1 MPI Prediction for Local Light Field Expansion

The first step in our pipeline is expanding each sampled view to a local light field using
an MPI scene representation. Our MPI prediction pipeline takes five views as input: the
reference view to be expanded and its four nearest neighbors in 3D space. Each image
is reprojected to D depth planes, sampled linearly in disparity within the reference view
frustum, to form 5 plane sweep volumes (PSVs) of size H ×W ×D × 3.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 19

Table 2.2: Our network architecture. k is the kernel size, s the stride, d the kernel dilation,
chns the number of input and output channels for each layer, in and out are the accumu-
lated stride for the input and output of each layer, input denotes the input of each layer
with + meaning concatenation, and layers starting with “nnup” perform 2× nearest neigh-
bor upsampling. All layers except the last are followed by a ReLU nonlinearity and layer
normalization [62]. The final layer outputs 5 channels. One channel is passed through a
sigmoid to generate the output MPI’s alpha channel. The other four (along with an all-zero
channel) are passed through a softmax to get five blending weights for each voxel which are
used to generate the output MPI’s color channels, as described in Section 2.3.1. Restrict-
ing one of the softmax inputs to always be zero makes the function one-to-one rather than
many-to-one.

Layer k s d chns in out input

conv1 1 3 1 1 15/8 1 1 PSVs
conv1 2 3 2 1 8/16 1 2 conv1 1
conv2 1 3 1 1 16/16 2 2 conv1 2
conv2 2 3 2 1 16/32 2 4 conv2 1
conv3 1 3 1 1 32/32 4 4 conv2 2
conv3 2 3 1 1 32/32 4 4 conv3 1
conv3 3 3 2 1 32/64 4 8 conv3 2
conv4 1 3 1 2 64/64 8 8 conv3 3
conv4 2 3 1 2 64/64 8 8 conv4 1
conv4 3 3 1 2 64/64 8 8 conv4 2

nnup5 128/128 8 4 conv4 3 + conv3 3
conv5 1 3 1 1 128/32 4 4 nnup5
conv5 2 3 1 1 32/32 4 4 conv5 1
conv5 3 3 1 1 32/32 4 4 conv5 2
nnup6 64/64 4 2 conv5 3 + conv2 2

conv6 1 3 1 1 64/16 2 2 nnup6
conv6 2 3 1 1 16/16 2 2 conv6 1
nnup7 32/32 2 1 conv6 2 + conv1 2

conv7 1 3 1 1 32/8 1 1 nnup7
conv7 2 3 1 1 8/8 1 1 conv7 1
conv7 3 3 1 1 8/6 1 1 conv7 2

Our 3D CNN takes these 5 PSVs as input, concatenated along the channel dimension.
This CNN outputs an opacity α for each MPI coordinate (x, y, d) as well as a set of 5 color
selection weights that sum to 1 at each MPI coordinate. These weights parameterize the RGB
values in the output MPI as a weighted combination of the input PSVs. Intuitively, each
predicted MPI softly “selects” its color values at each MPI coordinate from the pixel colors at
that coordinate in each of the input PSVs. We specifically use this RGB parameterization
instead of the foreground+background parameterization proposed by Zhou et al. [140]
because their method does not allow an MPI to directly incorporate content occluded from
the reference view but visible in other input views.

Furthermore, we enhance the MPI prediction CNN architecture from the original version
to use 3D convolutional layers instead of the original 2D convolutional layers so that our

CHAPTER 2. LOCAL LIGHT FIELD FUSION 20

Ct,1 αt,1/(αt,1 + αt,2) Ct,2 αt,2/(αt,1 + αt,2)

Average of Ct,i Blended with α Ground truth

Figure 2.6: An example illustrating the benefits of using accumulated alpha to blend MPI
renderings. We render two MPIs at the same new camera pose. In the top row, we display
the RGB outputs Ct,i from each MPI as well as the accumulated alphas αt,i, normalized so
that they sum to one at each pixel. In the bottom row, we see that a simple average of
the RGB images Ct,i retains the stretching artifacts from both MPI renderings, whereas the
alpha weighted blending combines only the non-occluded pixels from each input to produce
a clean output Ct.

architecture is fully convolutional along the height, width, and depth dimensions. This
enables us to predict MPIs with a variable number of planes D so that we can jointly choose
the view and disparity sampling densities to satisfy Equation 2.6. Table 2.3 validates the
benefit of being able to change the number of MPI planes to correctly match our derived
sampling requirements, enabled by our use of 3D convolutions. Our full network architecture
can be found in Table 2.2.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 21

2.3.2 Continuous View Reconstruction by Blending

As discussed in Section 2.2, we reconstruct interpolated views as a weighted combination
of renderings from multiple nearby MPIs. This effectively combines our local light field
approximations into a light field with a near plane spanning the extent of the captured input
views and a far plane determined by the field-of-view of the input views. As in standard
light field rendering, this allows for a new view path with unconstrained 3D translation and
rotation within the range of views made up of rays in the light field.

One important detail in our rendering process is that we consider the accumulated alpha
values from each MPI rendering when blending. This allows each MPI rendering to “fill in”
content that is occluded from other camera views.

Our MPI prediction network uses a set of RGB images Ck along with their camera poses
pk to produce a set of MPIs Mk (one corresponding to each input image). To render a novel
view with pose pt using the predicted MPI Mk, we homography warp each RGBα MPI plane
into the frame of reference of the target pose pt then alpha composite the warped planes
together from back to front. This produces an RGB image and an alpha image, which we
denote Ct,k and αt,k respectively (subscript t, k indicating that the output is rendered at pose
pt using the MPI at pose pk).

Since a single MPI alone will not necessarily contain all the content visible from the new
camera pose due to occlusions and field of view issues, we generate the final RGB output Ct
by blending rendered RGB images Ct,k from multiple MPIs, as depicted in Figure 2.5. We
use scalar blending weights wt,k, each modulated by the corresponding accumulated alpha
images αt,k and normalized so that the resulting rendered image is fully opaque (α = 1):

Ct =

∑
k wt,kαt,kCt,k∑
k wt,kαt,k

. (2.7)

For an example where modulating the blending weights by the accumulated alpha values
prevents artifacts in Ct, see Figure 2.6. Table 2.3 demonstrates that blending with alpha
gives quantitatively superior results over both using a single MPI and blending multiple MPI
renderings without using the accumulated alpha.

The blending weights wt,k can be any sufficiently smooth filter. In the case of data
sampled on a regular grid, we use bilinear interpolation from the four nearest MPIs rather
than the ideal sinc function interpolation for effiency and due to the limited number of
sampled views. For irregularly sampled data, we use the five nearest MPIs and take wt,k ∝
exp (−γ`(pt, pk)). Here `(pt, pk) is the L2 distance between the translation vectors of poses
pt and pk, and the constant γ is defined as f

Dzmin
given focal length f , minimum distance to

the scene zmin, and number of planes D. (Note that the quantity f`
zmin

represents ` converted
into units of pixel disparity.)

Our strategy of blending between neighboring MPIs is particularly effective for render-
ing non-Lambertian effects. For general curved surfaces, the virtual apparent depth of a
specularity changes with the viewpoint [116]. As a result, specularities appear as curves in
epipolar slices of the light field, while diffuse points appear as lines. Each of our predicted

CHAPTER 2. LOCAL LIGHT FIELD FUSION 22

Central image (ground truth)

Single MPI

Blended MPIs

Ground truth

Figure 2.7: We demonstrate that a collection of MPIs can approximate a highly non-
Lambertian light field. In this synthetic scene, the curved plate reflects the paintings on
the wall, leading to quickly-varying specularities as the camera moves horizontally. This
effect can be observed in the ground truth epipolar plot (bottom right). A single MPI (top
right) can only place a specular reflection at a single virtual depth, but blending render-
ings from multiple MPIs (middle right) provides a much better approximation to the true
light field. In this example, we blend between MPIs evenly distributed at every 32 pixels of
disparity along a horizontal path, indicated by the dashed lines in the epipolar plot.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 23

MPIs can represent a specularity for a local range of views by placing the specularity at a
single virtual depth. Figure 2.7 illustrates how our rendering procedure effectively models
a specularity’s curve in the light field by blending locally linear approximations, as opposed
to the limited extrapolation provided by a single MPI.

2.4 Training Our View Synthesis Pipeline

2.4.1 Training Dataset

We train our view synthesis pipeline using both renderings and real images of natural scenes.
Using synthetic training data crucially enables us to easily generate a large dataset with input
view and scene depth distributions similar to those we expect at test time, while using real
data helps us generalize to real-world lighting and reflectance effects as well as small errors
in pose estimation.

Our synthetic training set consists of images rendered from the SUNCG [111] and Unre-
alCV [98] datasets. SUNCG contains 45,000 simplistic house and room environments with
texture mapped surfaces and low geometric complexity. UnrealCV contains only a few large
scale environments, but they are modeled and rendered with extreme detail, providing ge-
ometric complexity, texture variety, and non-Lambertian reflectance effects. We generate
views for each synthetic training instance by first randomly sampling a target baseline for
the inputs (up to 128 pixels of disparity), then randomly perturbing the camera pose in 3D
to approximately match this baseline.

Our real training dataset consists of 24 scenes from our handheld cellphone captures,
with 20-30 images each. We use the COLMAP structure from motion [103] implementation
to compute poses for our real images.

2.4.2 Training Procedure

For each training step, we sample two sets of 5 views each to use as inputs, and a single
held-out target view for supervision. We first use the MPI prediction network to predict two
MPIs, one from each set of 5 inputs. Next, we render the target novel view from both MPIs
and blend these renderings using the accumulated alpha values, as described in Equation 2.7.

The training loss is simply the image reconstruction loss for the rendered novel view.
We follow the original work on MPI prediction [140] and use a VGG network activation
perceptual loss as implemented by Chen and Koltun [16], which has been consistently shown
to outperform standard image reconstruction losses [44, 137]. We are able to supervise only
the final blended rendering because both our fixed rendering and blending functions are
differentiable. Learning through this blending step trains our MPI prediction network to
leave alpha “holes” in uncertain regions for each MPI, in the expectation that this content
will be correctly rendered by another neighboring MPI, as illustrated by Figure 2.6.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 24

2561286432168421
Maximum disparity (pixels)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
LP

IP
S

Ours (8 planes)
Ours (16 planes)
Ours (32 planes)
Ours (64 planes)
Ours (128 planes)
LFI

Figure 2.8: We plot the performance of our method (with varying number of planes D =
8, 16, 32, 64, and 128) compared to light field interpolation for different input view sampling
rates (denoted by maximum scene disparity dmax between adjacent input views). Our method
can achieve the same perceptual quality as LFI with Nyquist rate sampling (black dotted
line) as long as the number of predicted planes matches or exceeds the undersampling rate,
up to an undersampling rate of 128. At D = 64, this means we achieve the same quality as
LFI with 642 ≈ 4000× fewer views. We use the LPIPS [137] metric (lower is better) because
we primarily value perceptual quality. The colored dots indicate the point on each line where
the number of planes equals the maximum scene disparity, where equality is achieved in our
sampling bound (Equation 2.6). The shaded region indicates ±1 standard deviation over all
8 test scenes.

In practice, training through blending is slower than training a single MPI, so we first
train the network to render a new view from only one MPI for 500k iterations, then train
the full pipeline (blending views from two different MPIs) for 100k iterations. To fine tune
the network to process real data, we train on our small real dataset for an additional 10k
iterations. We use 320 × 240 resolution and up to 128 planes for SUNCG training data,
and 640 × 480 resolution and up to 32 planes for UnrealCV training data, due to GPU
memory limitations. We implement our full pipeline in Tensorflow [76] and optimize the
MPI prediction network parameters using Adam [54] with a learning rate of 2× 10−4 and a
batch size of one. We split the training pipeline across two Nvidia RTX 2080Ti GPUs, using
one GPU to generate each MPI.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 25

2.5 Experimental Evaluation

We quantitatively and qualitatively validate our method’s prescriptive sampling benefits and
ability to render high fidelity novel views of light fields that have been undersampled by up
to 4000×, as well as demonstrate that our algorithm outperforms state-of-the-art methods
for regular view interpolation. Figure 2.9 showcases these qualitative comparisons on scenes
with complex geometry (Fern and T-Rex) and highly non-Lambertian scenes (Air Plants
and Pond) that are not handled well by most view synthesis algorithms.

For all quantitative comparisons (Table 2.3), we use a synthetic test set rendered from
an UnrealCV [98] environment that was not used to generate any training data. Our test
set contains 8 scenes, each rendered at 640× 480 resolution and at 8 different view sampling
densities such that the maximum disparity between adjacent input views ranges from 1 to
256 pixels (a maximum disparity of 1 pixel between input views corresponds to Nyquist
rate view sampling). We restrict our quantitative comparisons to rendered images because
a Nyquist rate grid-sampled light field would require at least 3842 camera views to generate
a similar test set, and no such densely-sampled real light field dataset exists to the best of
our knowledge. We report quantitative performance using the standard PSNR and SSIM
metrics, as well as the state-of-the-art LPIPS [137] perceptual metric, which is based on a
weighted combination of neural network activations tuned to match human judgements of
image similarity.

Finally, our accompanying video shows results on over 60 additional real-world scenes.
These renderings were created completely automatically by a script that takes only the set
of captured images and desired output view path as inputs, highlighting the practicality and
robustness of our method.

2.5.1 Sampling Theory Validation

Our method is able to render high-quality novel views while significantly decreasing the re-
quired input view sampling density compared to standard light field interpolation. Figure 2.8
shows that our method is able to render novel views with Nyquist level perceptual quality
with up to dmax = 64 pixels of disparity between input view samples, as long as we match
the number of planes in each MPI to the maximum pixel disparity between input views. We
postulate that our inability to match Nyquist quality from input images with a maximum
of 128 pixels of disparity is due to the effect of occlusions. It becomes increasingly likely
that any non-foreground scene point will be sampled by fewer input views as the maximum
disparity between adjacent views increases. This increases the difficulty of depth estimation
and requires the CNN to hallucinate the appearance and depth of occluded points in extreme
cases where they are sampled by none of the input views.

Figure 2.8 also shows that once our sampling bound is satisfied, adding additional planes
does not increase performance. For example, at 32 pixels of disparity, increasing from 8 to
16 to 32 planes decreases the LPIPS error, but performance stays constant from 32 to 128
planes. This verifies that for scenes up to 64 pixels of disparity, adding additional planes

CHAPTER 2. LOCAL LIGHT FIELD FUSION 26

Table 2.3: We quantitatively show that our method outperforms state-of-the-art baselines
and specific ablations of our method, across a wide range of input sampling rates (measured
by the maximum pixel disparity dmax between adjacent input views), on a synthetic test set.
We display results using the standard PSNR and SSIM metrics (higher is better) as well as
the LPIPS perceptual metric [137] (lower is better). The best measurement in each column
is bolded. See Sections 2.5.2 and 2.5.3 for details on each comparison.

Maximum disparity dmax (pixels)
16 32 64 128

Algorithm PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Baselines

LFI 26.21 0.7776 0.2541 23.35 0.6982 0.3198 20.60 0.6243 0.3971 18.32 0.5560 0.4665
ULR 28.17 0.8320 0.1510 26.43 0.7987 0.1820 24.34 0.7679 0.2311 21.24 0.7062 0.3215
Soft3D 34.48 0.9430 0.1345 32.33 0.9216 0.1795 27.97 0.8588 0.2652 23.11 0.7382 0.3979
BW Deep 34.18 0.9433 0.1074 34.00 0.9476 0.1128 31.88 0.9192 0.1573 27.59 0.8363 0.2591

Ablations
Single MPI 31.11 0.9482 0.1007 29.38 0.9424 0.1111 26.88 0.9250 0.1363 24.20 0.8734 0.1980
Avg. MPIs 32.67 0.9560 0.1140 31.34 0.9532 0.1248 29.31 0.9400 0.1423 27.02 0.8999 0.1961
Ours 34.57 0.9568 0.0942 34.48 0.9569 0.0954 33.58 0.9530 0.1012 31.96 0.9323 0.1374

past the maximum pixel disparity between input views is of limited value, in accordance
with our theoretical claim that partitioning a scene with disparity variation of D pixels into
D depth ranges is sufficient for continuous reconstruction.

2.5.2 Comparisons to Baseline Methods

We quantitatively (Table 2.3) and qualitatively (Figure 2.9) demonstrate that our algorithm
produces superior renderings, particularly for non-Lambertian effects, without the artifacts
seen in renderings from competing methods.

We compare our method to state-of-the-art view synthesis techniques as well as view-
dependent texture mapping using a global mesh as proxy geometry.

Light Field Interpolation (LFI) [12] This baseline is representative of continuous view
reconstruction based on classic signal processing. Following the method of plenoptic sam-
pling [12], we render novel views using a bilinear interpolation reconstruction filter sheared
to the mean scene disparity. Figure 2.9 demonstrates that increasing the camera spacing
beyond the Nyquist rate results in aliasing and ghosting artifacts when using this method.

Unstructured Lumigraph Rendering (ULR) [11] This baseline is representative of
view dependent texture mapping with an estimated global mesh as a geometry proxy. We
reconstruct a global mesh from all inputs using the screened Poisson surface reconstruction
algorithm [51], and use the heuristic Unstructured Lumigraph blending weights [11] to blend
input images after reprojecting them into the novel viewpoint using the global mesh. We
use a plane at the mean scene disparity as a proxy geometry to fill in holes in the mesh.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 27

It is particularly difficult to reconstruct a global mesh with geometry edges that are well-
aligned with image edges, which causes perceptually jarring artifacts. Furthermore, mesh
reconstruction often fails to fill in large portions of the scene, resulting in ghosting artifacts
similar to those seen in light field interpolation.

Soft3D [95] Soft3D is a state-of-the-art view synthesis algorithm that is similar to our ap-
proach in that it also computes a local layered scene representation for each input view and
projects and blends these volumes to render each novel view. However, it uses a hand-crafted
pipeline based on classic local stereo and guided filtering to compute each layered represen-
tation. Furthermore, since classic stereo methods are unreliable for smooth or repetitive
image textures and non-Lambertian materials, Soft3D relies on smoothing their geometry
estimation across many (up to 25) input views.

Table 2.3 quantitatively demonstrates that our approach outperforms Soft3D overall. In
particular, Soft3D’s performance degrades much more rapidly as the input view sampling
rate decreases since their aggregation is less effective when fewer input images view the
same scene content. Our method is able to predict high-quality geometry in scenarios where
Soft3D suffers from noisy and erroneous results of local stereo because we leverage deep
learning to learn implicit priors on natural scene geometry. This is in line with recent work
that has shown the benefits of deep learning over traditional stereo for depth estimation [53,
44].

Figure 2.9 qualitatively demonstrates that Soft3D generally contains blurred geometry ar-
tifacts due to errors in local depth estimation, and that Soft3D’s approach fails for rendering
non-Lambertian effects because their aggregation procedure blurs the specularity geometry,
which changes with the input image viewpoint.

Backwards warping deep network (BW Deep) This baseline subsumes recent deep
learning view synthesis techniques [48, 29], which use a CNN to estimate geometry for each
novel view and then backwards warp and blend nearby input images to render the target
view. We train a network that uses the same 3D CNN architecture as our MPI prediction
network but instead outputs a single depth map at the pose of the new target view. We
then backwards warp the five input images into the new view using this depth map and use
a second 2D CNN to composite these warped input images into a single rendered output
view. As shown in Table 2.3, performance for this method degrades quickly as the maximum
disparity increases. Although this approach produces comparable images to our method for
scenes with small disparities (dmax = 16, 32), the renderings suffer from extreme inconsistency
when rendering video sequences.

BW Deep methods use a CNN to estimate depth separately for each output viewpoint,
so artifacts appear and disappear over only a few frames, resulting in rapid flickers and pops
in the rendered camera path. This inconsistency is visible as corruption in the epipolar
plots in Figure 2.9 and can be clearly seen in rendered output sequences with a moving
camera. Furthermore, backwards warping incentivizes incorrect depth predictions to fill in

CHAPTER 2. LOCAL LIGHT FIELD FUSION 28

disocclusions, so BW Deep methods also produce errors around thin structures and occlusion
edges.

2.5.3 Ablation Studies

We validate our overall strategy of blending between multiple MPIs as well as our specific
blending procedure using accumulated alphas with the following ablation studies:

Single MPI The fifth row of Table 2.3 shows that using only one MPI to produce new views
results in significantly decreased performance due to the limited field of view represented in a
single MPI as well as depth discretization artifacts as the target view moves far from the MPI
reference viewpoint. Additionally, Figure 2.7 shows an example of complex non-Lambertian
reflectance that cannot be represented by a single MPI. This ablation can be considered an
upper bound on the performance of Zhou et al. [140], since we use one MPI generated by
a higher capacity 3D CNN.

Average MPIs The sixth row of Table 2.3 shows that blending multiple MPI outputs for
each novel view without using the accumulated alpha channels results in decreased perfor-
mance. Figure 2.6 visualizes that this simple blending leads to ghosting in regions that are
occluded from the poses of any of the MPIs used for rendering, because they will contain
incorrect content in disoccluded regions.

2.6 Practical Usage and Scaling Properties

We present guidelines to assist users in sampling views that enable high-quality view interpo-
lation with our algorithm, and showcase our method’s practicality with a smartphone camera
app that guides users to easily capture such input images. Furthermore, we implement a
mobile viewer that renders novel views from our predicted MPIs in real-time. Figure 2.9
showcases examples of rendered results from handheld smartphone captures.

2.6.1 Prescriptive Scene Sampling Guidelines

In a typical capture scenario, a user will have a camera with a field of view θ and a world
space plane with side length S that bounds the viewpoints they wish to render. Based on
this, we prescribe the design space of image resolution W and number of images to sample N
that users can select from to reliably render novel views at Nyquist-level perceptual quality.

Section 2.5.1 shows that the empirical limit on the maximum disparity dmax between
adjacent input views for our deep learning pipeline is 64 pixels. Substituting Equation 2.6:

∆uf

∆xzmin

≤ 64. (2.8)

CHAPTER 2. LOCAL LIGHT FIELD FUSION 29

Whole scene (Air Plants)

x

y

x

z

New view path LFI ULR Soft3D BW Deep LLFF (ours)

Whole scene (Pond)

x

y

x

z

New view path LFI ULR Soft3D BW Deep LLFF (ours)

Whole scene (Fern)

x

y

x

z

New view path LFI ULR Soft3D BW Deep LLFF (ours)

Figure 2.9: Results on real cellphone datasets. We render a sequence of new views and show
both a crop from a single rendered output and an epipolar slice of the sequence. We show
2D projections of the input camera poses (blue dots) and new view path (red line) along the
z and y axes of the new view camera in the lower left of each row. LFI fails to represent
objects at different depths because it only uses a single depth plane for reprojection, leading
to ghosting (leaves in Fern, lily pads in Pond) and depth inconsistency visible in all epipolar
images. Mesh reconstruction failures cause artifacts visible in both the crops and epipolar
images for ULR. Soft3D’s depth uncertainty leads to blur, and geometry aggregation across
large view neighborhoods results in incorrect specularity geometry (reflections in Pond).
BW Deep’s use of a CNN to render every novel view causes depth inconsistency, visible as
choppiness across the rows of the epipolar images in all examples.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 30

We translate this into user-friendly quantities by noting that ∆u = S/
√
N and that the

ratio of sensor width to focal length W∆x/f = 2 tan θ/2:

W√
N
≤ 128zmin tan(θ/2)

S
. (2.9)

Using a smartphone camera with a 64◦ field of view, this is simply:

W√
N
≤ 80zmin

S
. (2.10)

Intuitively, once a user has determined the extent of viewpoints they wish to render and
the depth of the closest scene point, they can choose any target rendering resolution W and
number of images to capture N such that the ratio W/

√
N satisfies the above expression.

2.6.2 Asymptotic Rendering Time and Space Complexity

Within the possible choices of rendering resolution W and number of sampled views N
that satisfy the above guideline, different users may value capture time, rendering time, and
storage costs differently. We derive the asymptotic complexities of these quantities to further
assist users in choosing correct parameters for their application.

First, the capture time is simply O(N). The render time of each MPI generated is
proportional to the number of planes times the pixels per plane:

W 2D =
W 3S

2
√
Nzmin tan(θ/2)

= O(W 3N−1/2). (2.11)

Note that the rendering time for each MPI decreases as the number of sampled images N
increases, because this allows us to use fewer planes per MPI. The total MPI storage cost is
proportional to:

W 2D ·N =
W 3S

√
N

2zmin tan(θ/2)
= O(W 3N1/2). (2.12)

Practically, this means that users should determine their specific rendering time and
storage constraints, and then maximize the image resolution and number of sampled views
that satisfy their constraints as well as the guideline in Equation 2.9. Figure 2.10 visualizes
these constraints for an example user.

2.6.3 Smartphone Capture App

We develop an app for iOS smartphones, based on the ARKit framework, that guides users
to capture input views for our view synthesis algorithm. The user first taps the screen to
mark the closest object, and the app uses the corresponding scene depth computed by ARKit
as zmin. Next, the user selects the size of the view plane S within which our algorithm will

CHAPTER 2. LOCAL LIGHT FIELD FUSION 31

T
im

e to render
from

 one M
PI (m

s)
Storage space

for all M
PIs (G

B
)

Figure 2.10: Time and storage cost tradeoff within the space of rendering resolution and
number of sampled views that result in Nyquist level perceptual quality (space above the
thick blue curve signifying D = dmax ≤ 64, as in Equation 2.10). We plot isocontours of
rendering time and storage space for an example scene with close depth zmin = 1.0m and
target view plane with side length 0.5m, captured with a camera with a 64◦ field of view. We
use the average rendering speed from our desktop viewer and the storage requirement from
uncompressed 8-bit MPIs. Users can select the point where their desired rendering speed
and storage space isocontours intersect to determine the minimum required number of views
and maximum affordable rendering resolution.

render novel views. We fix the rendering resolution for the smartphone app toW = 500 which
therefore fixes the prescribed number and spacing of required images based on Equation 2.10
and the definition ∆u = S/

√
N . Our app then guides the user to capture these views using

the intuitive augmented reality overlay shown in Figure 2.11. When the phone detects that
the camera has been moved to a new sample location, it automatically records an image and
highlights the next sampling point.

2.6.4 Preprocessing

After capturing the required input images, the only preprocessing required before being able
to render novel views is estimating the input camera poses and using our trained network to
predict an MPI for each input view. Unfortunately, camera poses from ARKit are currently
not accurate enough for acceptable results, so we use the open source COLMAP software
package [103], which takes about 2-6 minutes for sets of 20-30 input images.

We use the deep learning pipeline described in Section 2.3.1 to predict an MPI for each
input sampled view. On an Nvidia GTX 1080Ti GPU, This takes approximately 0.5 seconds

CHAPTER 2. LOCAL LIGHT FIELD FUSION 32

(b) Image automatically captured when
phone aligns with guide

(a) Grid of guides shows user
where to move phone

Equation 8 prescribes

Figure 2.11: Equation 2.6 prescribes a simple sampling bound related only to the maximum
scene disparity. We take advantage of the augmented reality toolkits available in modern
smartphones to create an app that helps the user sample a real scene for rendering with our
method. (a) We use built-in software to track the phone’s position and orientation, providing
sampling guides that allow the user to space photos evenly at the target disparity. (b) Once
the user has centered the phone so that the RGB axes align with one of the guides, the app
automatically captures a photo.

for a small MPI (500× 350× 32 ≈ 6 megavoxels) or 12 seconds for a larger MPI that must
be output in overlapping patches (1000× 700× 64 ≈ 45 megavoxels). In total, our method
only requires about 10 minutes of preprocessing to estimate poses and predict MPIs before
being able to render novel views at a 1 megapixel image resolution.

With the increasing investment in smartphone AR and on-device deep learning accelera-
tors, we expect that smartphone pose estimation will soon be accurate enough and on-device
network inference will be powerful enough for users to go from capturing images to rendering
novel views within a few seconds.

2.6.5 Real-Time Viewers

We implement novel view rendering from a single MPI by rasterizing each plane from back
to front using texture mapped rectangles in 3D space, invoking a standard shader API to
correctly handle the alpha compositing, perspective projection, and texture resampling. For
each new view, we determine the MPIs to be blended, as discussed in Section 2.3.2, and
render them into separate framebuffers. We then use a simple fragment shader to perform
the alpha-weighted blending described in Section 2.3.2. We implement this rendering pipeline
as desktop viewer using OpenGL which renders views with 1000×700 resolution at 60 frames
per second, as well as an iOS mobile viewer using the Metal API which renders views with
500× 350 resolution at 30 frames per second.

CHAPTER 2. LOCAL LIGHT FIELD FUSION 33

2.7 Discussion

This chapter presents a simple and practical method for view synthesis that works reliably
for complex real-world scenes, including objects with non-Lambertian materials. This algo-
rithm uses a feed-forward neural network to generate a local light field representation from
each input image, then renders novel views in real time by interpolating between outputs
computed from nearby representations. We provide an empirically determined plenoptic
sampling guideline for the maximum allowable pixel disparity between input views.

A main limitation is that the MPI network sometimes assigns high opacity to incorrect
layers in regions of ambiguous or repetitive texture and regions where scene content moves
between input images. This can cause floating or blurred patches in the rendered output
sequence, which is a common failure mode in methods that rely on texture matching cues
to infer depth. In addition, these ambiguity errors may result in different geometry in MPIs
corresponding to different input images, leading to temporal inconsistency as a rendered
camera path moves from one input’s neighborhood to another. It is difficult to completely
avoid these ambiguity and inconsistency errors when using a feed-forward method, since the
number of views that can be processed by the network is limited.

Another issue is the difficulty of scaling to higher image resolutions. As evident in
Equations 2.11 and 2.12, discrete 3D grid-based approaches such as our method are limited
by complexities that scale cubically with the image width or height in pixels. Furthermore,
increasing the image resolution requires a convolutional network with a larger receptive field.

These problems motivate our search for a global scene representation that we can directly
optimize to reproduce all input images of a scene, rather than only five nearby inputs at
a time. A discrete 3D voxel grid is too memory-inefficient to serve as such a global scene
representation that can be rendered from any viewpoint, since this would require isotropic
sampling in space (as opposed to the MPI’s heavily warped sampling pattern), leading to
intractable scaling properties. In Chapter 3, we explore how neural networks can serve as
a highly efficient representation for low-dimensional signals, and in Chapter 4, we present a
view synthesis algorithm based on this concept that requires hundreds to thousands of times
less storage, generates more temporally stable renderings, and can be directly optimized over
all input images, in contrast to LLFF.

34

Chapter 3

An Efficient Global Representation:
Coordinate-Based Networks with
Fourier Feature Mappings

The previous chapter describes a view synthesis method based on generating many locally-
valid scene representations, each stored as a large discretized 3D array. Dense voxel grids
are frequently used to represent scenes in other view synthesis works [28, 73, 140] and
for 3D shape reconstruction tasks [49, 121], largely because most deep learning research
(across all areas of computer vision) has focused on solving problems using convolutional
neural networks, which must be applied to data on a regularly-sampled grid. However, in
three dimensions and higher, these dense arrays become highly impractical due to their
O(Nd) scaling in dimension d and linear resolution N . Typical 3D objects and scenes are
particularly ill-suited for this representation, given that their surfaces only occupy a roughly
two-dimensional subset of space, with the rest consisting of free space or object interiors.
Given a known 3D shape, acceleration structures such as octrees [20] can be used to create an
efficient sparse grid representation. However, this strategy does not work when our problem
is to recover the underlying 3D shape from a set of 2D images or other inputs. When using
machine learning methods to solve such an inverse problem, we need a signal representation
that is memory-efficient but still fully differentiable.

A recent line of research in computer vision and graphics proposes replacing traditional
discrete representations of objects and scenes using continuous functions parameterized by
deep fully-connected networks (also called multilayer perceptrons or MLPs). These MLPs,
which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R3) and are trained to output a representation of shape, density, and/or
color at each input location (see Figure 3.1). This strategy is compelling since coordinate-
based MLPs are amenable to gradient-based optimization and machine learning, and can
be orders of magnitude more compact than grid-sampled representations. Coordinate-based
MLPs have been used to represent images [84, 115] (referred to as “compositional pattern
producing networks”), occupancy [80], and signed distance [92], and have achieved state-

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 35

y

 (v)

v

B

x y

GR

(a) Coordinate-based MLP

N
o
F
o
u
ri
er

fe
a
tu
re
s

γ
(v

)
=

v

W
it
h
F
o
u
ri
er

fe
a
tu
re
s

γ
(v

)
=

F
F

(v
)

(b) Image regression (c) 3D shape regression (d) MRI reconstruction

(x,y)→ RGB (x,y,z)→ occupancy (x,y,z)→ density

Figure 3.1: Fourier features improve the results of coordinate-based MLPs for a variety of
high-frequency low-dimensional regression tasks, both with direct (b, c) and indirect (d)
supervision. We visualize an example MLP (a) for an image regression task (b), where the
input to the network is a pixel coordinate and the output is that pixel’s color. Passing
coordinates directly into the network (top) produces blurry images, whereas preprocessing
the input with a Fourier feature mapping (bottom) enables the MLP to represent higher
frequency details.

of-the-art results across a variety of tasks such as shape representation [19, 25, 32, 34, 46,
81, 92], texture synthesis [41, 89], shape inference from images [70, 72], and novel view
synthesis [86, 102, 110].

Recent progress in modeling the behavior of deep networks using kernel regression with a
neural tangent kernel (NTK) [45] can be leveraged to theoretically and experimentally show
that standard MLPs are poorly suited for these low-dimensional coordinate-based vision
and graphics tasks. In particular, MLPs have difficulty learning high frequency functions,
a phenomenon referred to in the literature as “spectral bias” [4, 99]. NTK theory suggests
that this is because standard coordinate-based MLPs correspond to kernels with a rapid
frequency falloff, which effectively prevents them from being able to represent the high-
frequency content present in natural images and scenes.

In this chapter, we demonstrate how a Fourier feature mapping [100] can fix this problem,
making coordinate-based networks a tractable alternative to discrete grids for representing
high-frequency natural signals. A Fourier feature mapping lifts input coordinates v into a
higher-dimensional space before passing them into the MLP:

γ(v) =
[
a1 cos(2πbT

1 v), a1 sin(2πbT
1 v), . . . , am cos(2πbT

mv), am sin(2πbT
mv)

]T
(3.1)

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 36

We show that this mapping transforms the NTK into a stationary (shift-invariant) kernel
and enables tuning the NTK’s spectrum by modifying the frequency vectors bj, thereby con-
trolling the range of frequencies that can be learned by the corresponding MLP (Sections 3.3,
3.4). We show that the simple strategy of setting aj = 1 and randomly sampling bj from an
isotropic distribution achieves good performance, and that the scale (standard deviation) of
this distribution matters much more than its specific shape (Figure 3.4). Figure 3.1 high-
lights how this mapping dramatically improves the performance of coordinate-based MLPs
across a range of tasks relevant to the computer vision and graphics communities.

3.1 Related Work

Our work is motivated by the widespread use of coordinate-based MLPs to represent a
variety of visual signals, including images [115] and 3D scenes [80, 92]. In particular, our
analysis explains experimental results demonstrating that an input mapping of coordinates
(often referred to as a “positional encoding”) using sinusoids with logarithmically-spaced
axis-aligned frequencies improves the performance of coordinate-based MLPs [139]. We
show that positional encoding is a special case of a Fourier feature mapping, which modifies
the MLP’s NTK to allow it to learn higher frequency functions more quickly.

Prior works in natural language processing and time series analysis [50, 122, 131] have
used a similar positional encoding to represent time or 1D position. In particular, Xu et
al. [131] use random Fourier features (RFF) [100] to approximate stationary kernels with
a sinusoidal input mapping and propose techniques to tune the mapping parameters. Our
work extends this by directly explaining such mappings as a modification of the resulting
network’s NTK. Additionally, we address the embedding of multidimensional coordinates,
which is necessary for vision and graphics tasks.

To analyze the effects of applying a Fourier feature mapping to input coordinates before
passing them through an MLP, we rely on recent theoretical work that models neural net-
works in the limits of infinite width and infinitesimal learning rate as kernel regression using
the NTK [3, 7, 27, 45, 61]. In particular, we use the analyses from Lee et al. [61] and Arora et
al. [3], which show that the outputs of a network throughout gradient descent remain close
to those of a linear dynamical system whose convergence rate is governed by the eigenvalues
of the NTK matrix [3, 4, 7, 61, 132]. Analysis of the NTK’s eigendecomposition shows that
its eigenvalue spectrum decays rapidly as a function of frequency, which explains the widely-
observed “spectral bias” of deep networks towards learning low-frequency functions [4, 5,
99].

We leverage this analysis to consider the implications of adding a Fourier feature mapping
before the network, and we show that this mapping has a significant effect on the NTK’s
eigenvalue spectrum and on the corresponding network’s convergence properties in practice.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 37

3.2 Kernel Regression and the Spectral Bias of Deep

Networks

To lay the foundation for our theoretical analysis, we first review classic kernel regression
and its connection to recent results that analyze the training dynamics and generalization
behavior of deep fully-connected networks. In later sections, we use these tools to analyze
the effects of training coordinate-based MLPs with Fourier feature mappings.

Kernel regression. Kernel regression is a classic nonlinear regression algorithm [124].
Given a training dataset (X,y) = {(xi, yi)}ni=1, where xi are input points and yi = f(xi)
are the corresponding scalar output labels, kernel regression constructs an estimate f̂ of the
underlying function at any point x as:

f̂(x) =
n∑
i=1

(
K−1y

)
i
k(xi,x) , (3.2)

where K is an n×n kernel (Gram) matrix with entries Kij = k(xi,xj) and k is a symmetric
positive semidefinite (PSD) kernel function which represents the “similarity” between two
input vectors. Intuitively, the kernel regression estimate at any point x can be thought of as
a weighted sum of training labels yi using the similarity between the corresponding xi and
x.

Approximating deep networks with kernel regression. Let f be a fully-connected
deep network with weights θ initialized from a Gaussian distribution N . Theory proposed by
Jacot et al. [45] and extended by others [3, 4, 61] shows that when the width of the layers in
f tends to infinity and the learning rate for SGD tends to zero, the function f(x; θ) converges
over the course of training to the kernel regression solution using the neural tangent kernel
(NTK), defined as:

kNTK(xi,xj) = Eθ∼N
〈
∂f(xi; θ)

∂θ
,
∂f(xj; θ)

∂θ

〉
. (3.3)

When the inputs are restricted to a hypersphere, the NTK for an MLP can be written as a
dot product kernel (a kernel in the form hNTK(xT

i xj) for a scalar function hNTK : R→ R).
Prior work [3, 4, 45, 61] shows that an NTK linear system model can be used to approx-

imate the dynamics of a deep network during training. We consider a network trained with
an L2 loss and a learning rate η, where the network’s weights are initialized such that the
output of the network at initialization is close to zero. Under asymptotic conditions stated
in Lee et al. [61], the network’s output for any data Xtest after t training iterations can be
approximated as:

ŷ(t) ≈ KtestK
−1
(
I− e−ηKt

)
y , (3.4)

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 38

where ŷ(t) = f(Xtest; θ) are the network’s predictions on input points Xtest at training
iteration t, K is the NTK matrix between all pairs of training points in X, and Ktest is the
NTK matrix between all points in Xtest and all points in the training dataset X.

Spectral bias when training neural networks. Let us consider the training error
ŷ

(t)
train − y, where ŷ

(t)
train are the network’s predictions on the training dataset at iteration

t. Since the NTK matrix K must be PSD, we can take its eigendecomposition K = QΛQT,
where Q is orthogonal and Λ is a diagonal matrix whose entries are the eigenvalues λi ≥ 0
of K. Then, since e−ηKt = Qe−ηΛtQT:

QT(ŷ
(t)
train − y) ≈ QT

((
I− e−ηKt

)
y − y

)
= −e−ηΛtQTy . (3.5)

This means that if we consider training convergence in the eigenbasis of the NTK, the ith

component of the absolute error |QT(ŷ
(t)
train − y)|i will decay approximately exponentially at

the rate ηλi. In other words, components of the target function that correspond to kernel
eigenvectors with larger eigenvalues will be learned faster. For a conventional MLP, the
eigenvalues of the NTK decay rapidly [5, 7, 36]. This results in extremely slow convergence
to the high frequency components of the target function, to the point where standard MLPs
are effectively unable to learn these components, as visualized in Figure 3.1. Next, we
describe a technique to address this slow convergence by using a Fourier feature mapping of
input coordinates before passing them to the MLP.

3.3 Fourier Features create a Tunable Stationary

Neural Tangent Kernel

Machine learning analysis typically addresses the case in which inputs are high dimensional
points (e.g. the pixels of an image reshaped into a vector) and training examples are sparsely
distributed. In contrast, in this work we consider low-dimensional regression tasks, wherein
inputs are assumed to be dense coordinates in a subset of Rd for small values of d (e.g. pixel
coordinates). This setting has two significant implications when viewing deep networks
through the lens of kernel regression:

1. We would like the composed NTK to be shift-invariant over the input domain, since
the training points are distributed with uniform density. In problems where the inputs
are normalized to the surface of a hypersphere (common in machine learning), a dot
product kernel (such as the regular NTK) corresponds to spherical convolution. How-
ever, inputs in our setting are dense in Euclidean space. A Fourier feature mapping
of input coordinates makes the composed NTK stationary (shift-invariant), acting as
a convolution kernel over the input domain.

2. We would like to control the bandwidth of the NTK to improve training speed and
generalization. As we see from Eqn. 3.5, a “wider” kernel with a slower spectral falloff

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 39

achieves faster training convergence for high frequency components. However, we know
from signal processing that reconstructing a signal using a kernel whose spectrum
is too wide causes high frequency aliasing artifacts. We show in Section 3.4 that a
Fourier feature input mapping can be tuned to lie between these “underfitting’ and
“overfitting” extremes, enabling both fast convergence and low test error.

Fourier features and the composed neural tangent kernel. Fourier feature mappings
have been used in many applications since their introduction in the seminal work of Rahimi
and Recht [100], which used random Fourier features to approximate an arbitrary stationary
kernel function by applying Bochner’s theorem. Extending this technique, we use a Fourier
feature mapping γ to featurize input coordinates before passing them through a coordinate-
based MLP, and investigate the theoretical and practical effect this has on convergence speed
and generalization. The function γ maps input points v ∈ [0, 1)d to the surface of a higher
dimensional hypersphere with a set of sinusoids:

γ(v) =
[
a1 cos(2πbT

1 v), a1 sin(2πbT
1 v), . . . , am cos(2πbT

mv), am sin(2πbT
mv)

]T
. (3.6)

Because cos(α − β) = cosα cos β + sinα sin β, the kernel function induced by this mapping
is:

kγ(v1,v2) = γ(v1)Tγ(v2) =
m∑
j=1

a2
j cos

(
2πbT

j (v1 − v2)
)

= hγ(v1 − v2) , (3.7)

where hγ(v∆) ,
m∑
j=1

a2
j cos(2πbT

j v∆) . (3.8)

Note that this kernel is stationary (a function of only the difference between points). We
can think of the mapping as a Fourier approximation of a kernel function: bj are the Fourier
basis frequencies used to approximate the kernel, and a2

j are the corresponding Fourier series
coefficients.

After computing the Fourier features for our input points, we pass them through an
MLP to get f(γ(v); θ). As discussed previously, the result of training a network can be
approximated by kernel regression using the kernel hNTK(xT

i xj). In our case, xi = γ(vi) so
the composed kernel becomes:

hNTK(xT
i xj) = hNTK

(
γ (vi)

T γ (vj)
)

= hNTK (hγ (vi − vj)) . (3.9)

Thus, training a network on these embedded input points corresponds to kernel regression
with the stationary composed NTK function hNTK ◦ hγ . The MLP function approximates a
convolution of the composed NTK with a weighted Dirac delta at each input training point
vi:

f̂ = (hNTK ◦ hγ) ∗
n∑
i=1

wiδvi
(3.10)

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 40

−0.5 0.5
−0.5

0.5

(a) No mapping NTK

−0.5 0.5
−0.5

0.5

(b) Basic mapping NTK

−0.5 −0.25 0 0.25 0.5

5

10

(c) NTK spatial

−π −π/2 0 π/2 π

100

101

102

(d) NTK Fourier spectrum

p= 0

p= 0.5

p= 1

p= 1.5

p= 2

p=∞

Figure 3.2: Adding a Fourier feature mapping can improve the poor conditioning of a
coordinate-based MLP’s neural tangent kernel (NTK). (a) We visualize the NTK function
kNTK(xi, xj) (Eqn. 3.3) for a 4-layer ReLU MLP with one scalar input. This kernel is not
shift-invariant and does not have a strong diagonal, making it poorly suited for kernel re-
gression in low-dimensional problems. (b) A basic input mapping γ(v) = [cos 2πv, sin 2πv]T

makes the composed NTK kNTK(γ(vi), γ(vj)) shift-invariant (stationary). (c) A Fourier fea-
ture input mapping (Eqn. 3.6) can be used to tune the composed kernel’s width, where we
set aj = 1/jp and bj = j for j = 1, . . . , n/2. (d) Higher frequency mappings (lower p) result
in composed kernels with wider spectra, which enables faster convergence for high-frequency
components (see Figure 3.3).

where w = K−1y (from Eqn. 3.2). This allows us to draw analogies to signal processing,
where the composed NTK acts similarly to a reconstruction filter. In the next section,
we show that the frequency decay of the composed NTK determines the behavior of the
reconstructed signal.

3.4 Manipulating Network Behavior using a Fourier

Feature Mapping

Preprocessing the inputs to a coordinate-based MLP with a Fourier feature mapping creates
a composed NTK that is not only stationary but also tunable. By manipulating the settings
of the aj and bj parameters in Eqn. 3.6, it is possible to dramatically change both the rate
of convergence and the generalization behavior of the resulting network. In this section, we
investigate the effects of the Fourier feature mapping in the setting of 1D function regression.

We train MLPs to learn signals f defined on the interval [0, 1). We sample cn linearly
spaced points on the interval, using every cth point as the training set and the remaining
points as the test set. Since our composed kernel function is stationary, evaluating it at
linearly spaced points on a periodic domain makes the resulting kernel matrix circulant:
it represents a convolution and is diagonalizable by the Fourier transform. Thus, we can
compute the eigenvalues of the composed NTK matrix by simply taking the Fourier transform
of a single row. All experiments are implemented in JAX [9] and the NTK functions are
calculated automatically using the Neural Tangents library [88].

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 41

x

y

(a) Final learned functions

p= 0

p= 1

p=∞

No mapping

Target signal

Training points

0 50000Iteration

10-5

10-4

10-3

10-2

10-1

M
ea

n
 s

q
u
ar

ed
 e

rr
or

(d) Train loss

Theory

Observed

0 50000Iteration

10-2

10-1

M
ea

n
 s

q
u
ar

ed
 e

rr
or

(b) Test loss

0 50000Iteration

10-2

10-1

100

A
b
so

lu
te

 E
rr

or

Low

0 50000Iteration

10-1

100 Mid

(c) Train loss frequency components
0 50000Iteration

10-1

100

High

Figure 3.3: Combining a network with a Fourier feature mapping has dramatic effects on
convergence and generalization. Here we train a network on 32 sampled points from a 1D
function (a) using mappings shown in Fig. 3.2. A mapping with a smaller p value yields a
composed NTK with more power in higher frequencies, enabling the corresponding network
to learn a higher frequency function. The theoretical and experimental training loss improves
monotonically with higher frequency kernels (d), but the test-set loss is lowest at p = 1 and
falls as the network starts to overfit (b). As predicted by Eqn. 3.5, we see roughly log-linear
convergence of the training loss frequency components (c). Higher frequency kernels result
in faster convergence for high frequency loss components, thereby overcoming the “spectral
bias” observed when training networks with no input mapping.

Visualizing the composed NTK. We first visualize how modifying the Fourier feature
mapping changes the composed NTK. We set bj = j (full Fourier basis in 1D) and aj = 1/jp

for j = 1, . . . , n/2. We use p = ∞ to denote the mapping γ(v) = [cos 2πv, sin 2πv]T that
simply wraps [0, 1) around the unit circle (this is referred to as the “basic” mapping in
later experiments). Figure 3.2 demonstrates the effect of varying p on the composed NTK.
By construction, lower p values result in a slower falloff in the frequency domain and a
correspondingly narrower kernel in the spatial domain.

Effects of Fourier features on network convergence. We generate ground truth 1D
functions by sampling cn values from a family with parameter α as follows: we sample a
standard i.i.d. Gaussian vector of length cn, scale its ith entry by 1/iα, then return the real
component of its inverse Fourier transform. We will refer to this as a “1/fα noise” signal.

In Figure 3.3, we train MLPs (4 layers, 1024 channels, ReLU activations) to fit a ban-
dlimited 1/f 1 noise signal (c = 8, n = 32) using Fourier feature mappings with different p

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 42

21 24 27 210

Standard deviation of sampled bi

10-2

M
ea

n
 s

q
u
a
re

d
 e

rr
or

Underfitting Overfitting

(a) Data sampled from 1/f 0.5

21 24 27 210

Standard deviation of sampled bi

10-4

10-3

10-2

Underfitting Overfitting

(b) Data sampled from 1/f 1.0

21 24 27 210

Standard deviation of sampled bi

10-6

10-5

10-4

10-3

10-2

Underfitting Overfitting

(c) Data sampled from 1/f 1.5

Gaussian

Uniform

Uniform log

Laplacian

Dense

Figure 3.4: We find that a sparse random sampling of Fourier features can perform as
well as a dense set of features and that the width of the distribution matters more than
the shape. Here, we generate random 1D signals from 1/fα noise and report the test-
set accuracy of different trained models that use a sparse set (16 out of 1024) of random
Fourier features sampled from different distributions. Each subplot represents a different
family of 1D signals. Each dot represents a trained network, where the color indicates
which Fourier feature sampling distribution is used. We plot the test error of each model
versus the empirical standard deviation of its sampled frequencies. The best models using
sparsely sampled features are able to match the performance of a model trained with dense
Fourier features (dashed lines with error bars). All sampling distributions trace out the same
curve, exhibiting underfitting (slow convergence) when the standard deviation of sampled
frequencies is too low and overfitting when it is too high. This implies that the precise
shape of the distribution used to sample frequencies does not have a significant impact on
performance.

values. Figures 3.3b and 3.3d show that the NTK linear dynamics model accurately predict
the effects of modifying the Fourier feature mapping parameters. Separating different fre-
quency components of the training error in Figure 3.3c reveals that networks with narrower
NTK spectra converge faster for low frequency components but essentially never converge
for high frequency components, whereas networks with wider NTK spectra successfully con-
verge across all components. The Fourier feature mapping p = 1 has adequate power across
frequencies present in the target signal (so the network converges rapidly during training)
but limited power in higher frequencies (preventing overfitting or aliasing).

Tuning Fourier features in practice. Eqn. 3.4 allows us to estimate a trained network’s
theoretical loss on a validation set using the composed kernel. For small 1D problems, we can
minimize this loss with gradient-based optimization to choose mapping parameters aj (given
a dense sampling of bj). In this carefully controlled setting (1D signals, small training dataset,
gradient descent with small learning rate, very wide networks), we find that this optimized
mapping does achieve the best performance when training networks. However, in real-world
problems, especially in multiple dimensions, it is not feasible to use a feature mapping that

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 43

densely samples Fourier basis functions; the number of Fourier basis functions scales with
the number of training data points, which grows exponentially with dimension. Instead, we
sample a set of random Fourier features [100] from a parametric distribution. We find that
the exact sampling distribution family is much less important than the distribution’s scale
(standard deviation).

Figure 3.4 demonstrates this point using hyperparameter sweeps for a variety of sampling
distributions. In each subfigure, we draw 1D target signals (c = 2, n = 1024) from a fixed
1/fα distribution and train networks to learn them. We use random Fourier feature map-
pings (of length 16) sampled from different distribution families (Gaussian, uniform, uniform
in log space, and Laplacian) and sweep over each distribution’s scale. Perhaps surprisingly,
the standard deviation of the sampled frequencies alone is enough to predict test set per-
formance, regardless of the underlying distribution’s shape. We show that this holds for
higher-dimensional tasks in Section 3.5.3. We also observe that passing this sparse sampling
of Fourier features through an MLP matches the performance of using a dense set of Fourier
features with the same MLP, suggesting a strategy for scaling to higher dimensions. We
proceed with a Gaussian distribution for our higher-dimensional experiments in Section 3.5
and treat the scale as a hyperparameter to tune on a validation dataset.

3.5 Experiments on 2D and 3D Tasks

We validate the benefits of using Fourier feature mappings for coordinate-based MLPs with
experiments on a variety of regression tasks relevant to the computer vision and graphics
communities.

3.5.1 Compared mappings

In Table 3.1, we compare the performance of coordinate-based MLPs with no input mapping
and with the following Fourier feature mappings (cos, sin are applied elementwise):

Basic: γ(v) = [cos(2πvv), sin(2πv)]T. Simply wraps input coordinates around the circle.

Positional encoding: γ(v) =
[
. . . , cos(2πσj/mv), sin(2πσj/mv), . . .

]T
for j = 0, . . . ,m−1.

Uses log-linear spaced frequencies for each dimension, where the scale σ is chosen for each
task and dataset by a hyperparameter sweep. This is a generalization of the “positional
encoding” used by prior work [122, 139]. Note that this mapping is deterministic and only
contains on-axis frequencies, making it naturally biased towards data that has more frequency
content along the axes.

Gaussian: γ(v) = [cos(2πBv), sin(2πBv)]T, where each entry in B ∈ Rm×d is sampled
from N (0, σ2), and σ is chosen for each task and dataset with a hyperparameter sweep. In

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 44

Direct supervision Indirect supervision
2D image 3D shape [80] 2D CT 3D MRI

Natural Text Shepp ATLAS ATLAS
No mapping 19.32 18.40 0.864 16.75 15.44 26.14
Basic 21.71 20.48 0.892 23.31 16.95 28.58
Positional enc. 24.95 27.57 0.960 26.89 19.55 32.23
Gaussian 25.57 30.47 0.973 28.33 19.88 34.51

Table 3.1: We compare four different input mappings on a variety of low-dimensional re-
gression tasks. All results are reported in PSNR except 3D shape, which uses IoU (higher is
better for all). No mapping represents using a standard MLP with no feature mapping. Ba-
sic, Positional encoding, and Gaussian are different variants of Fourier feature maps. For the
Direct supervision tasks, the network is supervised using ground truth labels for each input
coordinate. For the Indirect supervision tasks, the network outputs are passed through a for-
ward model before the loss is applied (integral projection for CT and the Fourier transform
for MRI). Fourier feature mappings improve results across all tasks, with random Gaussian
features performing best.

the absence of any strong prior on the frequency spectrum of the signal, we use an isotropic
Gaussian distribution.

Our experiments show that all of the Fourier feature mappings improve the performance
of coordinate-based MLPs over using no mapping and that the Gaussian RFF mapping
performs best.

3.5.2 Tasks

We conduct experiments with direct regression, where supervision labels are in the same
space as the network outputs, as well as indirect regression, where the network outputs are
passed through a forward model to produce observations in the same space as the supervision
labels. For each task and dataset, we tune Fourier feature scales on a held-out set of signals.
For each target signal, we train an MLP on a training subset of the signal and compute error
over the remaining test subset. All tasks (except 3D shape regression) use L2 loss and a
ReLU MLP with 4 layers and 256 channels. The 3D shape regression task uses cross-entropy
loss and a ReLU MLP with 8 layers and 256 channels. We apply a sigmoid activation to the
output for each task (except the view synthesis density prediction). We use 256 frequencies
for the feature mapping in all experiments.

2D image regression. In this task, we train an MLP to regress from a 2D input pixel
coordinate to the corresponding RGB value of an image. For each test image, we train
an MLP on a regularly-spaced grid containing 1/4 of the pixels and report test error on the

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 45

remaining pixels. We compare input mappings over a dataset of natural images and a dataset
of text images (Figure 3.5).

3D shape regression. Occupancy Networks [80] implicitly represent a 3D shape as the
“decision boundary” of an MLP, which is trained to output 0 for points outside the shape
and 1 for points inside the shape. Each batch of training data is generated by sampling
points uniformly at random from the bounding box of the shape and calculating their labels
using the ground truth mesh. Test error is calculated using intersection-over-union versus
ground truth on a set of points randomly sampled near the mesh surface to better highlight
the different mappings’ abilities to resolve fine details. Figure 3.6 shows comparisons for four
complex shapes.

2D computed tomography (CT). In CT, we observe integral projections of a density
field instead of direct measurements. In our 2D CT experiments, we train an MLP that
takes in a 2D pixel coordinate and predicts the corresponding volume density at that loca-
tion. The network is indirectly supervised by the loss between a sparse set of ground-truth
integral projections and integral projections computed from the network’s output. We con-
duct experiments using two datasets: procedurally-generated Shepp-Logan phantoms [106]
and 2D brain images from the ATLAS dataset [67] (Figure 3.7).

3D magnetic resonance imaging (MRI). In MRI, we observe Fourier transform coeffi-
cients of atomic response to radio waves under a magnetic field. In our 3D MRI experiments,
we train an MLP that takes in a 3D voxel coordinate and predicts the corresponding response
at that location. The network is indirectly supervised by the loss between a sparse set of
ground-truth Fourier transform coefficients and Fourier transform coefficients computed from
discretely querying the MLP on a voxel grid. We conduct experiments using the ATLAS
dataset [67] (Figure 3.8).

3.5.3 Visualizing underfitting and overfitting in 2D

Figure 3.4 shows (in a 1D setting) that as the scale of the Fourier feature sampling distribu-
tion increases, the trained network’s error traces out a curve that starts in an underfitting
regime (only low frequencies are learned) and ends in an overfitting regime (the learned
function includes high-frequency detail not present in the training data). In Figure 3.9, we
show analogous behavior for 2D image regression, demonstrating that the same phenomenon
holds in a multidimensional problem. In Figure 3.10, we show how changing the scale for
Gaussian Fourier features qualitatively affects the final result in the 2D image regression
task.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 46

3.6 Discussion

We leverage NTK theory to show that a Fourier feature mapping can make coordinate-based
MLPs better suited for modeling functions in low dimensions, thereby overcoming their
inherent spectral bias. We experimentally show that tuning the Fourier feature parameters
offers control over the frequency falloff of the combined NTK and significantly improves
performance across a range of graphics and imaging tasks. These findings shed light on the
burgeoning technique of using coordinate-based MLPs to represent 3D shapes in computer
vision and graphics pipelines and provide a simple strategy for practitioners to improve
results in these domains. In the next chapter, we will demonstrate how these coordinate-
based networks can be used to develop a view synthesis algorithm that is able to render
high-resolution outputs over a wide camera baseline.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 47

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.5: Results for the 2D image regression task, for three images from our Natu-
ral dataset (top) and two images from our Text dataset (bottom). Standard ReLU MLP
networks (b) learn low-frequency components of the image exponentially faster than high-
frequency details. Even a basic mapping (c) of each input pixel coordinate onto the 2D unit
circle dramatically improves the network’s representational power. A higher-dimensional
Fourier feature mapping (d, e) essentially allows the network to perfectly fit the training
points (every other pixel) while retaining reasonable interpolation behavior.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 48

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.6: Results for the 3D shape occupancy task [80]. A standard network (b) can
represent the rough outline of the shape, but a high-frequency Fourier feature mapping (d,
e) is required to reproduce fine surface details.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 49

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.7: Results for the 2D CT task.

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.8: Results for the 3D MRI task.

CHAPTER 3. COORDINATE-BASED NETWORKS WITH FOURIER FEATURES 50

21 23 25 27

Standard deviation of sampled bi

14

16

18

20

22

24

P
S
N

R

Gaussian

Uniform

Uniform log

Laplacian

(a) Test error for 2D image task

21 23 25 27

Standard deviation of sampled bi

20

30

40

P
S
N

R

Gaussian

Uniform

Uniform log

Laplacian

Test

Train

(b) Train and test error for 2D image task

Figure 3.9: An alternate version of Figure 3.4 from the main text where the underlying signal
is a 2D image (see 2D image task details in Section 3.5.2) instead of 1D signal. This multi-
dimensional case exhibits the same behavior as was seen in the 1D case: we see the same
underfitting/overfitting pattern for four different isotropic Fourier feature distributions, and
the distribution shape matters less than the scale of sampled bi values.

σ = 1 σ = 2 σ = 10 σ = 32 σ = 64

Figure 3.10: A visualization of the 2D image regression task with different Gaussian scales
(corresponding to points along the curve shown in Figure 3.9). Low values of σ underfit,
resulting in oversmoothed interpolation, and large values of σ overfit, resulting in noisy
interpolation. We find that σ = 10 performs best for our Natural image dataset.

51

Chapter 4

View Synthesis as Global
Reconstruction: Neural Radiance
Fields

In this chapter, we address the problem of view synthesis in a new way, using the coordinate-
based network representation explored in the previous chapter to reconstruct a scene as a
neural radiance field in a direct optimization framework. In contrast to the local interpolation
method presented in Chapter 2, this approach does not require an external training dataset
beyond images of the scene to be reconstructed, and its neural representation is over one
hundred times more compact than a densely sampled array with equivalent resolution.

We represent a scene as a continuous 5D function that outputs the radiance emitted in
each direction (θ, φ) at each point (x, y, z) in space, and a density at each point which acts
like a differential opacity controlling how much radiance is accumulated by a ray passing
through (x, y, z). Our method optimizes a coordinate-based neural network to represent this
function by regressing from a single 5D coordinate (x, y, z, θ, φ) to a single volume density
and view-dependent RGB color.

To render this neural radiance field (NeRF) from a particular viewpoint we: 1) march
camera rays through the scene to generate a sampled set of 3D points, 2) use those points
and their corresponding 2D viewing directions as input to the neural network to produce
an output set of colors and densities, and 3) use classical volume rendering techniques to
accumulate those colors and densities into a 2D image. Because this process is naturally
differentiable, we can use gradient descent to directly optimize this model to represent a
complex scene by minimizing the error between each observed image and the corresponding
views rendered from our representation. Minimizing this error across multiple views encour-
ages the network to predict a coherent model of the scene by assigning high volume densities
and accurate colors to the locations that contain the true underlying scene content. Fig-
ure 4.2 visualizes this overall pipeline. We find that the basic implementation of optimizing
a neural radiance field representation for a complex scene does not converge to a sufficiently
high-resolution representation and is inefficient in the required number of samples per cam-

CHAPTER 4. NEURAL RADIANCE FIELDS 52

Input Images Optimize NeRF Render new views

Figure 4.1: We present a method that optimizes a continuous 5D neural radiance field
representation (volume density and view-dependent color at any continuous location) of a
scene from a set of input images. We use techniques from volume rendering to accumulate
samples of this scene representation along rays to render the scene from any viewpoint. Here,
we visualize the set of 100 input views of the synthetic Drums scene randomly captured on
a surrounding hemisphere, and we show two novel views rendered from our optimized NeRF
representation.

era ray. We address these issues by transforming input 5D coordinates with a positional
encoding that enables the MLP to represent higher frequency functions (as described in the
previous chapter), and we propose a hierarchical sampling procedure to reduce the number
of queries required to adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: it can represent complex
real-world geometry and appearance and is well suited for gradient-based optimization using
projected images. Crucially, our method is designed to overcome the prohibitive storage
costs of discretized voxel grids when modeling complex scenes at high-resolutions.

In summary, our key technical contributions are:
– An approach for representing continuous scenes with complex geometry and materials as

5D neural radiance fields, parameterized as basic MLP networks.
– A differentiable rendering procedure based on classical volume rendering techniques, which

we use to optimize these representations from standard RGB images. This includes a
hierarchical sampling strategy to allocate the MLP’s capacity towards space with visible
scene content.

– A positional encoding to map each input 5D coordinate into a higher dimensional space,
which enables us to successfully optimize neural radiance fields to represent high-frequency
scene content.

We demonstrate that our resulting neural radiance field method quantitatively and qualita-
tively outperforms state-of-the-art view synthesis methods, including works that fit neural
3D representations to scenes as well as works that train deep convolutional networks to pre-
dict sampled volumetric representations. As far as we know, NeRF is the first continuous
neural scene representation that is able to render high-resolution photorealistic novel views
of real objects and scenes from RGB images captured in natural settings.

CHAPTER 4. NEURAL RADIANCE FIELDS 53

4.1 Related Work

A promising recent direction in computer vision is encoding objects and scenes in the weights
of an MLP that directly maps from a 3D spatial location to an implicit representation of
the shape, such as the signed distance [21] at that location. However, these methods have so
far been unable to reproduce realistic scenes with complex geometry with the same fidelity
as techniques that represent scenes using discrete representations such as triangle meshes
or voxel grids. In this section, we review these two lines of work and contrast them with
our approach, which enhances the capabilities of neural scene representations to produce
state-of-the-art results for rendering complex realistic scenes.

Neural 3D shape representations Recent work has investigated the implicit represen-
tation of continuous 3D shapes as level sets by optimizing deep networks that map xyz
coordinates to a signed distance function [92] or to an occupancy field [80]. However, these
models are limited by their requirement of access to ground truth 3D geometry, typically
obtained from synthetic 3D shape datasets such as ShapeNet [14]. Subsequent work has
relaxed this requirement of ground truth 3D shapes by formulating differentiable rendering
functions that allow neural implicit shape representations to be optimized using only 2D
images. Niemeyer et al. [86] represent surfaces as 3D occupancy fields and use a numerical
method to find the surface intersection for each ray, then calculate an exact derivative using
implicit differentiation. Each ray intersection location is then provided as the input to a
neural 3D texture field that predicts a diffuse color for that point. Sitzmann et al. [110] use
a less direct neural 3D representation that simply outputs a feature vector and RGB color
at each continuous 3D coordinate, and propose a differentiable rendering function consist-
ing of a recurrent neural network that marches along each ray to decide where the surface
is located. Though these techniques can potentially represent arbitrarily complicated and
high-resolution scene geometries, they have so far been limited to simple shapes with low
geometric complexity resulting and produce oversmoothed rendered views. We show that
an alternate strategy of optimizing networks to encode 5D radiance fields (3D volumes with
2D view-dependent appearance) can represent higher-resolution geometry and appearance
to render photorealistic novel views of complex scenes.

View synthesis and image-based rendering The computer graphics community has
made significant progress in photorealistic novel view synthesis by predicting traditional
geometry and appearance representations from observed images. One popular class of
approaches uses mesh-based representations of scenes with either diffuse [123] or view-
dependent [11, 23, 128] appearance. Differentiable rasterizers [18, 33, 71, 74] or pathtrac-
ers [65, 87] can directly optimize mesh representations to reproduce a set of input images
using gradient descent. However, gradient-based mesh optimization based on image reprojec-
tion is often difficult, likely because of local minima or poor conditioning of the loss landscape.
Furthermore, this strategy requires a template mesh with fixed topology to be provided as

CHAPTER 4. NEURAL RADIANCE FIELDS 54

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

Figure 4.2: An overview of our neural radiance field scene representation and differentiable
rendering procedure. We synthesize images by sampling 5D coordinates (location and view-
ing direction) along camera rays (a), feeding those locations into an MLP to produce a color
and volume density (b), and using volume rendering techniques to composite these values
into an image (c). This rendering function is differentiable, so we can optimize our scene
representation by minimizing the residual between synthesized and ground truth observed
images (d).

an initialization before optimization [65], which is typically unavailable for unconstrained
real-world scenes.

Another class of methods use volumetric representations to specifically address the task
of high-quality photorealistic view synthesis from a set of input RGB images. Volumetric
approaches are able to realistically represent complex shapes and materials, are well-suited
for gradient-based optimization, and tend to produce less visually distracting artifacts than
mesh-based methods. Early volumetric approaches used observed images to directly color
voxel grids [57, 105, 117]. More recently, several methods [28, 83, 95, 113, 140] have used
large datasets of multiple scenes to train deep networks that predict a sampled volumetric
representation from a set of input images, and then use alpha-compositing [96] along rays
to render novel views at test time. Other works have optimized a combination of convolu-
tional networks (CNNs) and sampled voxel grids for each specific scene, such that the CNN
can compensate for discretization artifacts from low resolution voxel grids [109] or allow the
predicted voxel grids to vary based on input time or animation controls [73]. While these
volumetric techniques have achieved impressive results for novel view synthesis, their ability
to scale to higher resolution imagery is fundamentally limited by poor time and space com-
plexity due to their discrete sampling — rendering higher resolution images requires a finer
sampling of 3D space. We circumvent this problem by instead encoding a continuous volume
within the parameters of a deep fully-connected neural network, which not only produces
significantly higher quality renderings than prior volumetric approaches, but also requires
just a fraction of the storage cost of those sampled volumetric representations.

CHAPTER 4. NEURAL RADIANCE FIELDS 55

4.2 Neural Radiance Field Scene Representation

We represent a continuous scene as a 5D vector-valued function whose input is a 3D location
x = (x, y, z) and 2D viewing direction (θ, φ), and whose output is an emitted color c =
(r, g, b) and volume density σ. In practice, we express direction as a 3D Cartesian unit
vector d. We approximate this continuous 5D scene representation with an MLP network
FΘ : (x,d) → (c, σ) and optimize its weights Θ to map each input 5D coordinate to its
corresponding volume density and directional emitted color.

We encourage the representation to be multiview consistent by restricting the network
to predict the volume density σ as a function of only the location x, while allowing the RGB
color c to be predicted as a function of both location and viewing direction. To accomplish
this, the MLP FΘ first processes the input 3D coordinate x with 8 fully-connected layers
(using ReLU activations and 256 channels per layer), and outputs σ and a 256-dimensional
feature vector. This feature vector is then concatenated with the camera ray’s viewing
direction and passed to 4 additional fully-connected layers (using ReLU activations and 128
channels per layer) that output the view-dependent RGB color.

See Fig. 4.3 for an example of how our method uses the input viewing direction to
represent non-Lambertian effects. As shown in Fig. 4.4, a model trained without view
dependence (only x as input) has difficulty representing specularities.

4.3 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and directional emitted
radiance at any point in space. We render the color of any ray passing through the scene using
principles from classical volume rendering [47]. The volume density σ(x) can be interpreted
as the differential probability of a ray terminating at an infinitesimal particle at location x.
The expected color C(r) of camera ray r(t) = o + td with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt , where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (4.1)

The function T (t) denotes the accumulated transmittance along the ray from tn to t, i.e., the
probability that the ray travels from tn to t without hitting any other particle. Rendering
a view from our continuous neural radiance field requires estimating this integral C(r) for a
camera ray traced through each pixel of the desired virtual camera.

We numerically estimate this continuous integral using quadrature. Deterministic quadra-
ture, which is typically used for rendering discretized voxel grids, would effectively limit our
representation’s resolution because the MLP would only be queried at a fixed discrete set of
locations. Instead, we use a stratified sampling approach where we partition [tn, tf] into N
evenly-spaced bins and then draw one sample uniformly at random from within each bin:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (4.2)

CHAPTER 4. NEURAL RADIANCE FIELDS 56

(a) View 1 (b) View 2 (c) Radiance Distributions

Figure 4.3: A visualization of view-dependent emitted radiance. Our neural radiance field
representation outputs RGB color as a 5D function of both spatial position x and viewing di-
rection d. Here, we visualize example directional color distributions for two spatial locations
in our neural representation of the Ship scene. In (a) and (b), we show the appearance of
two fixed 3D points from two different camera positions: one on the side of the ship (orange
insets) and one on the surface of the water (blue insets). Our method predicts the changing
specular appearance of these two 3D points, and in (c) we show how this behavior generalizes
continuously across the whole hemisphere of viewing directions.

Although we use a discrete set of samples to estimate the integral, stratified sampling en-
ables us to represent a continuous scene representation because it results in the MLP being
evaluated at continuous positions over the course of optimization. We use these samples to
estimate C(r) with the quadrature rule discussed in the volume rendering review by Max [78]:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci , where Ti = exp

(
−

i−1∑
j=1

σjδj

)
, (4.3)

where δi = ti+1 − ti is the distance between adjacent samples. This function for calculating
Ĉ(r) from the set of (ci, σi) values is trivially differentiable and reduces to traditional alpha
compositing with alpha values αi = 1− exp(−σiδi).

4.4 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for modeling a
scene as a neural radiance field and rendering novel views from this representation. However,
we observe that these components are not sufficient for achieving state-of-the-art quality, as
demonstrated in Section 4.5.3). We introduce two improvements to enable representing high-
resolution complex scenes. The first is a positional encoding of the input coordinates that
assists the MLP in representing high-frequency functions, and the second is a hierarchical
sampling procedure that allows us to efficiently sample this high-frequency representation.

CHAPTER 4. NEURAL RADIANCE FIELDS 57

Ground Truth Complete Model No View Dependence No Positional Encoding

Figure 4.4: Here we visualize how our full model benefits from representing view-dependent
emitted radiance and from passing our input coordinates through a high-frequency positional
encoding. Removing view dependence prevents the model from recreating the specular re-
flection on the bulldozer tread. Removing the positional encoding drastically decreases
the model’s ability to represent high frequency geometry and texture, resulting in an over-
smoothed appearance.

4.4.1 Positional encoding

Despite the fact that neural networks are universal function approximators [42], having the
network FΘ directly operate on xyzθφ input coordinates results in renderings that perform
poorly at representing high-frequency variation in color and geometry, as described in the
previous chapter.

We reformulate FΘ as a composition of two functions FΘ = F ′Θ ◦ γ, a standard MLP
and a Fourier feature mapping, in order to significantly improve performance (see Fig. 4.4
and Table 4.2). Here γ is specifically the “positional encoding” variant of Fourier feature
mapping, lifting the input component-wise from R into a higher dimensional space R2L.
Formally, the encoding function we use is:

γ(p) =
(

sin(20πp), cos(20πp), · · · , sin
(
2L−1πp

)
, cos

(
2L−1πp

))
. (4.4)

This function γ(·) is applied separately to each of the three coordinate values in x (which are
normalized to lie in [−1, 1]) and to the three components of the Cartesian viewing direction
unit vector d (which by construction lie in [−1, 1]). In our experiments, we set L = 10 for
γ(x) and L = 4 for γ(d).

4.4.2 Hierarchical volume sampling

Our rendering strategy of densely evaluating the neural radiance field network at N query
points along each camera ray is inefficient: free space and occluded regions that do not
contribute to the rendered image are still sampled repeatedly. We draw inspiration from
early work in volume rendering [63] and propose a hierarchical representation that increases
rendering efficiency by allocating samples proportionally to their expected effect on the final
rendering.

CHAPTER 4. NEURAL RADIANCE FIELDS 58

Instead of just using a single network to represent the scene, we simultaneously optimize
two networks: one “coarse” and one “fine”. We first sample a set of Nc locations using
stratified sampling, and evaluate the “coarse” network at these locations as described in
Eqns. 4.2 and 4.3. Given the output of this “coarse” network, we then produce a more
informed sampling of points along each ray where samples are biased towards the relevant
parts of the volume. To do this, we first rewrite the alpha composited color from the coarse
network Ĉc(r) in Eqn. 4.3 as a weighted sum of all sampled colors ci along the ray:

Ĉc(r) =
Nc∑
i=1

wici , wi = Ti(1− exp(−σiδi)) . (4.5)

Normalizing these weights as ŵi = wi/
∑Nc

j=1 wj produces a piecewise-constant PDF along the
ray. We sample a second set of Nf locations from this distribution using inverse transform
sampling, evaluate our “fine” network at the union of the first and second set of samples,
and compute the final rendered color of the ray Ĉf (r) using Eqn. 4.3 but using all Nc +Nf

samples. This procedure allocates more samples to regions we expect to contain visible
content. This addresses a similar goal as importance sampling, but we use the sampled
values as a nonuniform discretization of the whole integration domain rather than treating
each sample as an independent probabilistic estimate of the entire integral.

4.4.3 Implementation details

We optimize a separate neural continuous volume representation network for each scene (see
Figure 4.5 for architecture details). This requires only a dataset of captured RGB images
of the scene, the corresponding camera poses and intrinsic parameters, and scene bounds
(we use ground truth camera poses, intrinsics, and bounds for synthetic data, and use the
COLMAP structure-from-motion package [103] to estimate these parameters for real data).
At each optimization iteration, we randomly sample a batch of camera rays from the set of
all pixels in the dataset, and then follow the hierarchical sampling described in Sec. 4.4.2 to
query Nc samples from the coarse network and Nc +Nf samples from the fine network. We
then use the volume rendering procedure described in Sec. 4.3 to render the color of each ray
from both sets of samples. Our loss is simply the total squared error between the rendered
and true pixel colors for both the coarse and fine renderings:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C(r)
∥∥∥2

2
+
∥∥∥Ĉf (r)− C(r)

∥∥∥2

2

]
(4.6)

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) are the ground truth,
coarse volume predicted, and fine volume predicted RGB colors for ray r respectively. Note
that even though the final rendering comes from Ĉf (r), we also minimize the loss of Ĉc(r)
so that the weight distribution from the coarse network can be used to allocate samples in
the fine network.

CHAPTER 4. NEURAL RADIANCE FIELDS 59

RGB
�(x)

<latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="Wrp6sfGRkT1YIiwCAWhsM6HtC1M=">AAAB+nicbVA9T8MwFHzhs5SvUEaWiAqpLFXKAmwVLIxFIrRSE1WO67RWbSeyHdQqyl9hYQDEyi9h49/gtBmg5SRLp7v39M4XJowq7brf1tr6xubWdmWnuru3f3BoH9UeVZxKTDwcs1j2QqQIo4J4mmpGeokkiIeMdMPJbeF3n4hUNBYPepaQgKORoBHFSBtpYNf8EeIcNXyO9DiMsml+PrDrbtOdw1klrZLUoURnYH/5wxinnAiNGVKq33ITHWRIaooZyat+qkiC8ASNSN9QgThRQTbPnjtnRhk6USzNE9qZq783MsSVmvHQTBYR1bJXiP95/VRHV0FGRZJqIvDiUJQyR8dOUYQzpJJgzWaGICypyergMZIIa1NX1ZTQWv7yKvEumtdN996tt2/KNipwAqfQgBZcQhvuoAMeYJjCM7zCm5VbL9a79bEYXbPKnWP4A+vzBz63lBw=</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit>

�(x)
<latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="Wrp6sfGRkT1YIiwCAWhsM6HtC1M=">AAAB+nicbVA9T8MwFHzhs5SvUEaWiAqpLFXKAmwVLIxFIrRSE1WO67RWbSeyHdQqyl9hYQDEyi9h49/gtBmg5SRLp7v39M4XJowq7brf1tr6xubWdmWnuru3f3BoH9UeVZxKTDwcs1j2QqQIo4J4mmpGeokkiIeMdMPJbeF3n4hUNBYPepaQgKORoBHFSBtpYNf8EeIcNXyO9DiMsml+PrDrbtOdw1klrZLUoURnYH/5wxinnAiNGVKq33ITHWRIaooZyat+qkiC8ASNSN9QgThRQTbPnjtnRhk6USzNE9qZq783MsSVmvHQTBYR1bJXiP95/VRHV0FGRZJqIvDiUJQyR8dOUYQzpJJgzWaGICypyergMZIIa1NX1ZTQWv7yKvEumtdN996tt2/KNipwAqfQgBZcQhvuoAMeYJjCM7zCm5VbL9a79bEYXbPKnWP4A+vzBz63lBw=</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit>

�(d)
<latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit><latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit><latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit>

�
<latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit><latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit><latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit>+

+

60
256 256 256 256 256 256 256 256

60

24

256 128

Figure 4.5: A visualization of our fully-connected network architecture. Input vectors are
shown in green, intermediate hidden layers are shown in blue, output vectors are shown in red,
and the number inside each block signifies the vector’s dimension. All layers are standard
fully-connected layers, black arrows indicate ReLU activation, orange arrows indicate no
activation, dashed black arrows indicate sigmoid activation, and “+” denotes concatenation.
The positional encoding of the input location (γ(x)) is passed through 8 fully-connected
ReLU layers, each with 256 channels. We follow the DeepSDF [92] architecture and include
a skip connection that concatenates this input to the fifth layer’s activation. The penultimate
layer outputs the volume density σ (passed through a ReLU to ensure it is nonnegative) and
a 256-dimensional feature vector. This feature vector is concatenated with the positional
encoding of the input viewing direction (γ(d)), which is processed by a final layer with 128
channels. A sigmoid activation produces the emitted RGB radiance at position x, as viewed
by a ray with direction d.

In our experiments, we use a batch size of 4096 rays, each sampled at Nc = 64 coordinates
in the coarse volume and Nf = 128 additional coordinates in the fine volume. We use the
Adam optimizer [54] with a learning rate that begins at 5× 10−4 and decays exponentially
to 5× 10−5 over the course of optimization (other Adam hyperparameters are left at default
values of β1 = 0.9, β2 = 0.999, and ε = 10−7). The optimization for a single scene typically
take around 100–300k iterations to converge on a single NVIDIA V100 GPU (about 1–2
days).

To render new views at test time, we sample 64 points per ray through the coarse network
and 64+128 = 192 points per ray through the fine network, for a total of 256 network queries
per ray. Our realistic synthetic dataset requires 640k rays per image, and our real scenes
require 762k rays per image, resulting in between 150 and 200 million network queries per
rendered image. On an NVIDIA V100, this takes approximately 30 seconds per frame.

CHAPTER 4. NEURAL RADIANCE FIELDS 60

Diffuse Synthetic 360◦ [109] Realistic Synthetic 360◦ Real Forward-Facing [83]
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SRN [110] 33.20 0.963 0.073 22.26 0.846 0.170 22.84 0.668 0.378
NV [73] 29.62 0.929 0.099 26.05 0.893 0.160 - - -
LLFF [83] 34.38 0.985 0.048 24.88 0.911 0.114 24.13 0.798 0.212
Ours 40.15 0.991 0.023 31.01 0.947 0.081 26.50 0.811 0.250

Table 4.1: Our method quantitatively outperforms prior work on datasets of both synthetic
and real images. We report PSNR/SSIM (higher is better) and LPIPS [137] (lower is better).
The DeepVoxels [109] dataset consists of 4 diffuse objects with simple geometry. Our realistic
synthetic dataset consists of pathtraced renderings of 8 geometrically complex objects with
complex non-Lambertian materials. The real dataset consists of handheld forward-facing
captures of 8 real-world scenes (NV cannot be evaluated on this data because it only recon-
structs objects inside a bounded volume). Though LLFF achieves slightly better LPIPS, we
urge readers to view our supplementary video where our method achieves better multiview
consistency and produces fewer artifacts than all baselines.

4.5 Results

We quantitatively (Table 4.1) and qualitatively (Figs. 4.6 and 4.7) show that our method
outperforms prior work, and provide extensive ablation studies to validate our design choices
(Table 4.2). Our video results more clearly demonstrate our method’s significant improve-
ment over baseline methods when rendering smooth paths of novel views.

4.5.1 Datasets

Synthetic renderings of objects We first show experimental results on two datasets of
synthetic renderings of objects (Table 4.1, “Diffuse Synthetic 360◦” and “Realistic Synthetic
360◦”). The DeepVoxels [109] dataset contains four Lambertian objects with relatively simple
geometry. Each object is rendered at 512 × 512 pixels from viewpoints sampled on the
upper hemisphere (479 as input and 1000 for testing). We additionally generate our own
dataset containing pathtraced images of eight objects that exhibit complicated geometry and
realistic non-Lambertian materials. Six are rendered from viewpoints sampled on the upper
hemisphere, and two are rendered from viewpoints sampled on a full sphere. We render 100
views of each scene as input and 200 for testing, all at 800× 800 pixels.

Real images of complex scenes We show results on complex real-world scenes captured
with roughly forward-facing images (Table 4.1, “Real Forward-Facing”). This dataset con-
sists of 8 scenes captured with a handheld cellphone (5 taken from the LLFF paper and 3
that we capture), captured with 20 to 62 images, and hold out 1/8 of these for the test set.
All images are 1008× 756 pixels.

CHAPTER 4. NEURAL RADIANCE FIELDS 61

4.5.2 Comparisons

To evaluate our model we compare against current top-performing techniques for view syn-
thesis, detailed below. All methods use the same set of input views to train a separate
network for each scene except Local Light Field Fusion [83], which trains a single 3D con-
volutional network on a large dataset, then uses the same trained network to process input
images of new scenes at test time.

Neural Volumes (NV) [73] synthesizes novel views of objects that lie entirely within
a bounded volume in front of a distinct background (which must be separately captured
without the object of interest). It optimizes a deep 3D convolutional network to predict a
discretized RGBα voxel grid with 1283 samples as well as a 3D warp grid with 323 samples.
The algorithm renders novel views by marching camera rays through the warped voxel grid.

Scene Representation Networks (SRN) [110] represent a continuous scene as an
opaque surface, implicitly defined by a MLP that maps each (x, y, z) coordinate to a feature
vector. They train a recurrent neural network to march along a ray through the scene
representation by using the feature vector at any 3D coordinate to predict the next step size
along the ray. The feature vector from the final step is decoded into a single color for that
point on the surface. Note that SRN is a better-performing followup to DeepVoxels [109] by
the same authors, which is why we do not include comparisons to DeepVoxels.

Local Light Field Fusion (LLFF) [83] LLFF (described in Chapter 2) is designed
for producing photorealistic novel views for well-sampled forward facing scenes. It uses a
trained 3D convolutional network to directly predict a discretized frustum-sampled RGBα
grid (multiplane image or MPI [140]) for each input view, then renders novel views by alpha
compositing and blending nearby MPIs into the novel viewpoint.

4.5.3 Ablation studies

We validate our algorithm’s design choices and parameters with an extensive ablation study
in Table 4.2. We present results on one of our synthetic scenes with complex geometry
and non-Lambertian materials (Lego). Row 9 shows our complete model as a point of
reference. Row 1 shows a minimalist version of our model without positional encoding
(PE), view-dependence (VD), or hierarchical sampling (H). In rows 2–4 we remove these
three components one at a time from the full model, observing that positional encoding
provides the largest quantitative benefit of these three contributions (row 2), followed by
view-dependence (row 3), and then hierarchical sampling (row 4). Rows 5–6 show how our
performance decreases as the number of input images is reduced. Note that our method’s
performance using only 25 input images still exceeds NV, SRN, and LLFF across all metrics
when they are provided with 100 images. In rows 7–8 we validate our choice of the maximum
frequency L used in our positional encoding for x (the maximum frequency used for d is

CHAPTER 4. NEURAL RADIANCE FIELDS 62

Input #Im. L (Nc , Nf) PSNR↑ SSIM↑ LPIPS↓
1) No PE, VD, H xyz 100 - (256, -) 26.67 0.906 0.136
2) No Pos. Encoding xyzθφ 100 - (64, 128) 28.77 0.924 0.108
3) No View Dependence xyz 100 10 (64, 128) 27.66 0.925 0.117
4) No Hierarchical xyzθφ 100 10 (256, -) 30.06 0.938 0.109
5) Far Fewer Images xyzθφ 25 10 (64, 128) 27.78 0.925 0.107
6) Fewer Images xyzθφ 50 10 (64, 128) 29.79 0.940 0.096
7) Fewer Frequencies xyzθφ 100 5 (64, 128) 30.59 0.944 0.088
8) More Frequencies xyzθφ 100 15 (64, 128) 30.81 0.946 0.096
9) Complete Model xyzθφ 100 10 (64, 128) 31.01 0.947 0.081

Table 4.2: An ablation study of our model. Metrics are averaged over the 8 scenes from our
realistic synthetic dataset. See Sec. 4.5.3 for detailed descriptions.

scaled proportionally). Only using 5 frequencies reduces performance, but increasing the
number of frequencies from 10 to 15 does not improve performance. We believe the benefit
of increasing L is limited once 2L exceeds the maximum frequency present in the sampled
input images (roughly 1024 in our data).

4.6 Discussion

NeRF outperforms both compared methods that use direct optimization to also train one
network per scene (NV [73] and SRN [110]). It also produces superior renderings to the feed-
forward prediction method LLFF (Chapter 2 and [83]) without requiring a large external
training dataset.

The SRN method also represents each scene using an MLP but can only generate blurry,
low-frequency reconstructions, likely due to the fact that it does not use a Fourier feature
mapping to encode the input coordinates. Its representational power for view synthesis is
also limited by its surface rendering model that only calculates color at a single point on
each camera ray. The NV baseline is able to capture reasonably detailed volumetric geom-
etry and appearance, but its use of an underlying discrete 1283 voxel grid prevents it from
scaling to represent fine details at high resolutions. LLFF specifically provides a “sampling
guideline” to not exceed 64 pixels of disparity between input views (see Section 2.5.1), so it
frequently fails to estimate correct geometry in the synthetic datasets, which contain up to
400-500 pixels of disparity between views. Additionally, LLFF interpolates between different
local scene representations for rendering different views, resulting in perceptually distracting
inconsistency when rendering smooth camera paths.

The biggest practical tradeoffs between these methods are time versus space. All com-
pared direct optimization methods that optimize a global representation per-scene take at
least 12 hours to train. In contrast, as a feed-forward method, LLFF can process a small

CHAPTER 4. NEURAL RADIANCE FIELDS 63

input dataset in under 10 minutes. However, the large 3D voxel grid generated for every
input image by LLFF result in enormous storage requirements (over 15GB for one “Realistic
Synthetic” scene). NeRF requires only 5 MB for the network weights (a relative compression
of 3000× compared to LLFF), which is even less memory than the input images alone for a
single scene from any of our datasets.

In summary, NeRF directly addresses deficiencies of prior work that uses MLPs as a global
representation for objects and scenes as continuous functions by incorporating a Fourier
feature mapping and adopting a volume rendering forward model. We demonstrate that
representing scenes as 5D neural radiance fields (an MLP that outputs volume density and
view-dependent emitted radiance as a function of 3D location and 2D viewing direction)
produces better renderings than the previously-dominant approach of training deep convo-
lutional networks to output discretized voxel representations.

CHAPTER 4. NEURAL RADIANCE FIELDS 64

Ship

Lego

Microphone

Materials

Ground Truth NeRF (ours) LLFF [83] SRN [110] NV [73]

Figure 4.6: Comparisons on test-set views for scenes from our new synthetic dataset gen-
erated with a physically-based renderer. Our method is able to recover fine details in both
geometry and appearance, such as Ship’s rigging, Lego’s gear and treads, Microphone’s shiny
stand and mesh grille, and Material ’s non-Lambertian reflectance. LLFF exhibits banding
artifacts on the Microphone stand and Material ’s object edges and ghosting artifacts in
Ship’s mast and inside the Lego object. SRN produces blurry and distorted renderings in
every case. Neural Volumes cannot capture the details on the Microphone’s grille or Lego’s
gears, and it completely fails to recover the geometry of Ship’s rigging.

CHAPTER 4. NEURAL RADIANCE FIELDS 65

Fern

T-Rex

Orchid

Ground Truth NeRF (ours) LLFF [83] SRN [110]

Figure 4.7: Comparisons on test-set views of real world scenes. LLFF is specifically designed
for this use case (forward-facing captures of real scenes). Our method is able to represent
fine geometry more consistently across rendered views than LLFF, as shown in Fern’s leaves
and the skeleton ribs and railing in T-rex. Our method also correctly reconstructs partially
occluded regions that LLFF struggles to render cleanly, such as the yellow shelves behind
the leaves in the bottom Fern crop and green leaves in the background of the bottom Orchid
crop. Blending between multiples renderings can also cause repeated edges in LLFF, as seen
in the top Orchid crop. SRN captures the low-frequency geometry and color variation in
each scene but is unable to reproduce any fine detail.

66

Chapter 5

Conclusion

Even in the short time since the work in this dissertation was originally published, various
groups have made large strides toward productionizing practical and robust view synthesis
systems based on feed-forward machine learning. Broxton et al. [10] at Google have de-
veloped a system (building on their earlier work in Overbeck et al. [91] and Flynn et al.
[28]) that can capture, reconstruct, compress, and render high quality light field video using
input data captured by a spherical array of 46 cameras, releasing reconstructed scenes that
can be viewed in a virtual reality headset or even directly in a web browser. Kopf et al.
[56] recently incorporated a “3D photography” feature directly into the Facebook app that
is optimized to run in a few seconds on a mobile device, using monocular depth estimation
to add a 3D viewing effect to any user-uploaded photo.

The simple global scene representation, volumetric rendering method, and optimization
algorithm described in NeRF have served as a basis for a number of followup papers that
improve and build upon the original in various ways, such as

• Extending the representation to include material properties, allowing the recovered
scene to be rendered under new lighting conditions [6, 8, 112],

• Speeding up the rendering process via spatial decomposition [69, 101] or directly learn-
ing volume rendering integrals [68],

• Allowing recovery and rendering of deformable [93, 97] or dynamic [30, 66, 130] scenes,

• Recovering a radiance field from one or few images by training over many example
scenes [31, 118, 120, 135],

• Creating purely generative models for 3D shapes from a particular class (such as human
faces, chairs, or cars) [13, 85, 104],

• Generalizing to scenes where the input images are taken under many different lighting
and appearance conditions [77, 118].

CHAPTER 5. CONCLUSION 67

Seeing such rapid progress less than a year after NeRF’s release has been incredibly excit-
ing, and I am certain that the future has many more developments in store. One of the
most intriguing directions is investigating the inner workings of these coordinate-based neu-
ral representations. As a community, we have largely borrowed the same conventions used
when training large feed-forward convolutional neural networks despite applying them to a
radically different use case. I am optimistic that further work will uncover different optimiz-
ers, architectures, and training schemes that can further improve the performance of these
networks, making them even more appealing as differentiable compressed representation to
use in-the-loop for inverse rendering tasks and other applications.

The questions raised in the introduction are far from settled. Local interpolation meth-
ods based on warping and blending pixels from the input images can achieve convincing
results in many scenarios and will likely continue to be used where a limited compute budget
makes generating a global reconstruction infeasible. Volume rendering is straightforward to
implement in array-based deep learning frameworks, but recent work on using implicit differ-
entiation to calculate gradients for surface-based neural representations has shown promising
results on recovering 3D shape from images [86], particularly when combined with positional
encoding [133]. Even in cases where volume rendering is used during optimization, convert-
ing the reconstructed scene into a surface-based representation would likely make rendering
new views much more efficient. Permutation-invariant [1] and attention-based network lay-
ers [122] may provide a solution to the problem of passing arbitrary numbers of input views
through a feed-forward network, allowing them to feasibly be used for global reconstruction
and thus sidestepping the time-consuming process of directly optimizing a new network for
every scene; this idea has already begun to be explored by followup work to NeRF [120,
135]. Hybrid approaches may combine the best of both worlds, such as passing gradient
information into a feed-forward network to allow it to refine its output iteratively [28], or
fine-tuning a feed-forward network’s initial output using direct optimization on a specific
scene to achieve higher quality [75]. As the purview of deep learning continues to expand
into a more general realm of differentiable computing, I expect to see many further innova-
tions in how we represent, render, and reconstruct scenes for view synthesis.

The most important takeaway from NeRF is that a simple approach works : given enough
input images, directly optimizing a sufficiently expressive scene representation to reproduce
those inputs using basic gradient descent produces a high-quality reconstruction. By no
means is NeRF the end of the line for view synthesis—rather, its simplicity makes it an
optimal starting point for a wide variety of exciting extensions and new applications (as we
have already seen!). I eagerly anticipate further progress that continues to make it easier
for anyone to generate, modify, and share 3D content freely, and I believe that making 3D
data as ubiquitous as 2D imagery is today will spur people to develop creative tools and
applications that greatly exceed the current limits of our imagination.

68

Bibliography

[1] Miika Aittala and Fredo Durand. “Burst Image Deblurring Using Permutation In-
variant Convolutional Neural Networks”. In: ECCV. 2018.

[2] Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,
Carlos Hernández, Sameer Agarwal, and Steven M Seitz. “Jump: Virtual Reality
Video”. In: SIGGRAPH Asia. 2016.

[3] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. “Fine-Grained
Analysis of Optimization and Generalization for Overparameterized Two-Layer Neu-
ral Networks”. In: ICML (2019).

[4] Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira
Kritchman. “Frequency Bias in Neural Networks for Input of Non-Uniform Density”.
In: arXiv preprint arXiv:2003.04560 (2020).

[5] Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. “The Convergence
Rate of Neural Networks for Learned Functions of Different Frequencies”. In: NeurIPS
(2019).

[6] Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milos
Hasan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. “Neural
Reflectance Fields for Appearance Acquisition”. In: arXiv (2020).

[7] Alberto Bietti and Julien Mairal. “On the Inductive Bias of Neural Tangent Kernels”.
In: NeurIPS (2019).

[8] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik
P.A. Lensch. “NeRD: Neural Reflectance Decomposition from Image Collections”. In:
arXiv (2020).

[9] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs. Version 0.1.68. http://github.com/google/jax. 2018.

[10] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew
DuVall, Jason Dourgarian, Jay Busch, Matt Whalen, et al. “Immersive Light Field
Video with a Layered Mesh Representation”. In: ACM Transactions on Graphics
(Proc. SIGGRAPH). 2020.

BIBLIOGRAPHY 69

[11] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
“Unstructured Lumigraph Rendering”. In: SIGGRAPH. 2001.

[12] Jin-Xiang Chai, Xin Tong, Sing-Chow Chan, and Heung-Yeung Shum. “Plenoptic
Sampling”. In: SIGGRAPH. 2000.

[13] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
“pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image
Synthesis”. In: arXiv. 2020.

[14] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, et al. “Shapenet: An information-
rich 3d model repository”. In: arXiv:1512.03012 (2015).

[15] Gaurav Chaurasia, Sylvain Duchêne, Olga Sorkine-Hornung, and George Drettakis.
“Depth Synthesis and Local Warps for Plausible Image-based Navigation”. In: SIG-
GRAPH. 2013.

[16] Qifeng Chen and Vladlen Koltun. “Photographic Image Synthesis With Cascaded
Refinement Networks”. In: ICCV. 2017.

[17] Shenchang Eric Chen and Lance Williams. “View Interpolation for Image Synthesis”.
In: SIGGRAPH. 1993.

[18] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith, Jaakko Lehtinen, Alec Jacob-
son, and Sanja Fidler. “Learning to Predict 3D Objects with an Interpolation-based
Differentiable Renderer”. In: NeurIPS. 2019.

[19] Zhiqin Chen and Hao Zhang. “Learning Implicit Fields for Generative Shape Model-
ing”. In: CVPR (2019).

[20] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering”. In: Proceedings of
the 2009 symposium on Interactive 3D graphics and games. 2009.

[21] Brian Curless and Marc Levoy. “A volumetric method for building complex models
from range images”. In: SIGGRAPH. 1996.

[22] Abe Davis, Marc Levoy, and Fredo Durand. “Unstructured Light Fields”. In: Euro-
graphics. 2012.

[23] Paul Debevec, Camillo J. Taylor, and Jitendra Malik. “Modeling and Rendering Ar-
chitecture from Photographs: A Hybrid Geometry-and Image-Based Approach”. In:
SIGGRAPH. 1996.

[24] Paul Debevec, Yizhou Yu, and George Borshukov. “Efficient view-dependent image-
based rendering with projective texture-mapping”. In: Eurographics Workshop on
Rendering Techniques. 1998.

[25] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey Hinton,
Mohammad Norouzi, and Andrea Tagliasacchi. “Neural Articulated Shape Approxi-
mation”. In: arXiv preprint arXiv:1912.03207 (2019).

BIBLIOGRAPHY 70

[26] Piotr Didyk, Pitchaya Sitthi-Amorn, William T. Freeman, Fredo Durand, and Wo-
jciech Matusik. “3DTV at Home: Eulerian-Lagrangian Stereo-to-Multiview Conver-
sion”. In: SIGGRAPH Asia. 2013.

[27] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. “Gradient Descent Prov-
ably Optimizes Over-parameterized Neural Networks”. In: ICLR (2019).

[28] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. “DeepView: view synthesis with learned
gradient descent”. In: CVPR. 2019.

[29] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. “DeepStereo: Learn-
ing to Predict New Views From the World’s Imagery”. In: CVPR. 2016.

[30] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias Nießner. “Dynamic Neural
Radiance Fields for Monocular 4D Facial Avatar Reconstruction”. In: arXiv (2020).

[31] Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang, and Jia-Bin Huang. “Por-
trait Neural Radiance Fields from a Single Image”. In: arXiv preprint arXiv:2012.05903
(2020).

[32] Kyle Genova, Forrester Cole, Aaron Sarna Daniel Vlasic, William T. Freeman, and
Thomas Funkhouser. “Learning Shape Templates with Structured Implicit Func-
tions”. In: ICCV (2019).

[33] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and
William T Freeman. “Unsupervised training for 3d morphable model regression”. In:
CVPR. 2018.

[34] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser.
“Local Deep Implicit Functions for 3D Shape”. In: CVPR. 2020.

[35] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. “The
Lumigraph”. In: SIGGRAPH. 1996.

[36] Reinhard Heckel and Mahdi Soltanolkotabi. “Compressive sensing with un-trained
neural networks: Gradient descent finds the smoothest approximation”. In: arXiv
preprint arXiv:2005.03991 (2020).

[37] Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. “Casual 3D Pho-
tography”. In: SIGGRAPH Asia. 2017.

[38] Peter Hedman and Johannes Kopf. “Instant 3D Photography”. In: SIGGRAPH. 2018.

[39] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. “Deep Blending for Free-Viewpoint Image-Based Rendering”. In:
SIGGRAPH Asia. 2018.

[40] Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. “Scalable
Inside-Out Image-Based Rendering”. In: SIGGRAPH Asia. 2016.

BIBLIOGRAPHY 71

[41] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. “Learning a Neural 3D Texture
Space from 2D Exemplars”. In: CVPR. 2020.

[42] K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feedforward Networks Are
Universal Approximators”. In: Neural Networks (1989).

[43] How many photos will be taken in 2020? https://focus.mylio.com/tech-today/

how-many-photos-will-be-taken-in-2020. Accessed: 2020-12-07.

[44] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang.
“DeepMVS: Learning Multi-View Stereopsis”. In: CVPR. 2018.

[45] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Con-
vergence and generalization in neural networks”. In: NeurIPS (2018).

[46] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and
Thomas Funkhouser. “Local Implicit Grid Representations for 3D Scenes”. In: CVPR.
2020.

[47] James T. Kajiya and Brian P. Von Herzen. “Ray Tracing Volume Densities”. In:
Computer Graphics (SIGGRAPH) (1984).

[48] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. “Learning-
Based View Synthesis for Light Field Cameras”. In: SIGGRAPH Asia. 2016.

[49] Abhishek Kar, Christian Häne, and Jitendra Malik. “Learning a Multi-View Stereo
Machine”. In: NeurIPS. 2017.

[50] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, et al. “Time2Vec:
Learning a Vector Representation of Time”. In: arXiv preprint arXiv:1907.05321
(2019).

[51] Michael Kazhdan and Hugues Hoppe. “Screened Poisson Surface Reconstruction”. In:
SIGGRAPH. 2013.

[52] Petr Kellnhofer, Piotr Didyk, Szu-Po Wang, Pitchaya Sitthi-Amorn, William Free-
man, Fredo Durand, and Wojciech Matusik. “3DTV at Home: Eulerian-Lagrangian
Stereo-to-Multiview Conversion”. In: SIGGRAPH. 2017.

[53] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. “End-to-End Learning of Geometry and Context
for Deep Stereo Regression”. In: ICCV. 2017.

[54] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: ICLR. 2015.

[55] Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele. “Image-Based Rendering in the Gradient Domain”. In: SIGGRAPH Asia.
2013.

BIBLIOGRAPHY 72

[56] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley, Francis Ge, Yangming
Chong, Josh Patterson, Jan-Michael Frahm, Shu Wu, et al. “One Shot 3D Photogra-
phy”. In: Transactions on Graphics (Proceedings of SIGGRAPH). 2020.

[57] Kiriakos N. Kutulakos and Steven M. Seitz. “A theory of shape by space carving”.
In: International Journal of Computer Vision (2000).

[58] Philippe Lacroute and Marc Levoy. “Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation”. In: SIGGRAPH. 1994.

[59] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. “Modular Primitives for High-Performance Differentiable Rendering”. In: ACM
Transactions on Graphics 39.6 (2020).

[60] Douglas Lanman, Ramesh Raskar, Amit Agrawal, and Gabriel Taubin. “Shield Fields:
Modeling and Capturing 3D Occluders”. In: SIGGRAPH Asia. 2008.

[61] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. “Wide neural networks of any depth evolve
as linear models under gradient descent”. In: NeurIPS (2019).

[62] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”.
In: arXiv:1607.06450. 2016.

[63] Marc Levoy. “Efficient Ray Tracing of Volume Data”. In: ACM Transactions on
Graphics (1990).

[64] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: SIGGRAPH. 1996.

[65] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. “Differentiable
Monte Carlo Ray Tracing through Edge Sampling”. In: ACM Transactions on Graph-
ics (SIGGRAPH Asia) (2018).

[66] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. “Neural Scene Flow
Fields for Space-Time View Synthesis of Dynamic Scenes”. In: arXiv (2020).

[67] Sook-Lei Liew, Julia M. Anglin, Nick W. Banks, Matt Sondag, Kaori L. Ito, Kim,
et al. “A large, open source dataset of stroke anatomical brain images and manual
lesion segmentations”. In: Scientific Data (2018).

[68] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein. “AutoInt: Automatic
Integration for Fast Neural Volume Rendering”. In: arXiv (2020).

[69] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
“Neural Sparse Voxel Fields”. In: NeurIPS (2020).

[70] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng
Cui. “DIST: Rendering Deep Implicit Signed Distance Function with Differentiable
Sphere Tracing”. In: CVPR. 2019.

[71] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. “Soft Rasterizer: A Differentiable
Renderer for Image-based 3D Reasoning”. In: ICCV. 2019.

BIBLIOGRAPHY 73

[72] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. “Learning to Infer Implicit
Surfaces without 3D Supervision”. In: NeurIPS. 2019.

[73] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. “Neural volumes: Learning dynamic renderable volumes from im-
ages”. In: ACM Transactions on Graphics (SIGGRAPH) (2019).

[74] Matthew M. Loper and Michael J. Black. “OpenDR: An Approximate Differentiable
Renderer”. In: ECCV. 2014.

[75] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. “Con-
sistent Video Depth Estimation”. In: 39.4 (2020).

[76] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. 2015. url: https://www.tensorflow.
org/.

[77] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron,
Alexey Dosovitskiy, and Daniel Duckworth. “NeRF in the Wild: Neural Radiance
Fields for Unconstrained Photo Collections”. In: arXiv. 2020.

[78] Nelson Max. “Optical models for direct volume rendering”. In: IEEE Transactions
on Visualization and Computer Graphics (1995).

[79] Leonard McMillan and Gary Bishop. “Plenoptic Modeling: An Image-Based Render-
ing System”. In: SIGGRAPH. 1995.

[80] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. “Occupancy Networks: Learning 3D Reconstruction in Function Space”. In:
CVPR. 2019.

[81] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and
Anders Eriksson. “Implicit surface representations as layers in neural networks”. In:
ICCV. 2019.

[82] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis”. In: arXiv preprint arXiv:2003.08934 (2020).

[83] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima K. Kalantari, Ravi
Ramamoorthi, Ren Ng, and Abhishek Kar. “Local Light Field Fusion: Practical View
Synthesis with Prescriptive Sampling Guidelines”. In: ACM Transactions on Graphics
(SIGGRAPH) (2019).

[84] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images”. In: CVPR (2015).

[85] Michael Niemeyer and Andreas Geiger. “GIRAFFE: Representing Scenes as Compo-
sitional Generative Neural Feature Fields”. In: arXiv (2020).

BIBLIOGRAPHY 74

[86] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. “Differ-
entiable Volumetric Rendering: Learning Implicit 3D Representations without 3D
Supervision”. In: CVPR. 2019.

[87] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. “Mitsuba 2:
A Retargetable Forward and Inverse Renderer”. In: ACM Transactions on Graphics
(SIGGRAPH Asia) (2019).

[88] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha
Sohl-Dickstein, and Samuel S. Schoenholz. “Neural Tangents: Fast and Easy Infinite
Neural Networks in Python”. In: ICLR (2020).

[89] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas
Geiger. “Texture fields: Learning texture representations in function space”. In: ICCV.
2019.

[90] Rodrigo Ortiz-Cayon, Abdelaziz Djelouah, and George Drettakis. “A Bayesian Ap-
proach for Selective Image-Based Rendering using Superpixels”. In: International
Conference on 3D Vision (3DV). 2015.

[91] Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul De-
bevec. “A System for Acquiring, Processing, and Rendering Panoramic Light Field
Stills for Virtual Reality”. In: SIGGRAPH Asia. 2018.

[92] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. “DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation”. In: CVPR. 2019.

[93] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M. Seitz, and Ricardo Martin-Brualla. “Deformable Neural Radiance
Fields”. In: (2020).

[94] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, et al. “PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library”. In: NeurIPS. 2019.

[95] Eric Penner and Li Zhang. “Soft 3D Reconstruction for View Synthesis”. In: SIG-
GRAPH Asia. 2017.

[96] Thomas Porter and Tom Duff. “Compositing Digital Images”. In: SIGGRAPH. 1984.

[97] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. “D-
NeRF: Neural Radiance Fields for Dynamic Scenes”. In: arXiv preprint arXiv:2011.13961
(2020).

[98] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim,
Yizhou Wang, and Alan Yuille. “UnrealCV: Virtual Worlds for Computer Vision”.
In: ACM Multimedia Open Source Software Competition. 2017.

BIBLIOGRAPHY 75

[99] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Dräxler, Min Lin, Fred A.
Hamprecht, Yoshua Bengio, and Aaron C. Courville. “On the Spectral Bias of Neural
Networks”. In: ICML. 2018.

[100] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”.
In: NeurIPS (2007).

[101] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea
Tagliasacchi. “DeRF: Decomposed Radiance Fields”. In: arXiv preprint arXiv:2011.12490
(2020).

[102] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa,
and Hao Li. “PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Hu-
man Digitization”. In: ICCV. 2019.

[103] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revis-
ited”. In: CVPR. 2016.

[104] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. “GRAF: Genera-
tive Radiance Fields for 3D-Aware Image Synthesis”. In: NeurIPS. 2020.

[105] Steven M. Seitz and Charles R. Dyer. “Photorealistic scene reconstruction by voxel
coloring”. In: International Journal of Computer Vision (1999).

[106] Lawrence A. Shepp and Benjamin F. Logan. “The Fourier reconstruction of a head
section”. In: IEEE Transactions on nuclear science (1974).

[107] Heung-Yeung Shum and Sing Bing Kang. “A Review of Image-Based Rendering Tech-
niques”. In: Proceedings of Visual Communications and Image Processing. 2000.

[108] Sudipta Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard
Szeliski. “Image-Based Rendering for Scenes with Reflections”. In: SIGGRAPH. 2012.

[109] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein,
and Michael Zollhöfer. “DeepVoxels: Learning Persistent 3D Feature Embeddings”.
In: CVPR. 2019.

[110] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. “Scene Representa-
tion Networks: Continuous 3D-Structure-Aware Neural Scene Representations”. In:
NeurIPS. 2019.

[111] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. “Semantic Scene Completion from a Single Depth Image”. In: CVPR.
2017.

[112] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Milden-
hall, and Jonathan T. Barron. “NeRV: Neural Reflectance and Visibility Fields for
Relighting and View Synthesis”. In: arXiv (2020).

[113] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren
Ng, and Noah Snavely. “Pushing the Boundaries of View Extrapolation with Multi-
plane Images”. In: CVPR. 2019.

BIBLIOGRAPHY 76

[114] Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren
Ng. “Learning to Synthesize a 4D RGBD Light Field from a Single Image”. In: ICCV.
2017.

[115] Kenneth O Stanley. “Compositional pattern producing networks: A novel abstraction
of development”. In: Genetic programming and evolvable machines (2007).

[116] Rahul Swaminathan, Sing Bing Kang, Richard Szeliski, Antonio Criminisi, and Shree
K. Nayar. “On the Motion and Appearance of Specularities in Image Sequences”. In:
ECCV. 2002.

[117] Richard Szeliski and Polina Golland. “Stereo matching with transparency and mat-
ting”. In: ICCV. 1998.

[118] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan,
Jonathan T. Barron, and Ren Ng. “Learned Initializations for Optimizing Coordinate-
Based Neural Representations”. In: arXiv (2020).

[119] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
“Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional
Domains”. In: NeurIPS. 2020.

[120] Alex Trevithick and Bo Yang. “GRF: Learning a General Radiance Field for 3D Scene
Representation and Rendering”. In: arXiv preprint arXiv:2010.04595 (2020).

[121] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. “Multi-view
Supervision for Single-view Reconstruction via Differentiable Ray Consistency”. In:
CVPR. 2017.

[122] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: NeurIPS.
2017.

[123] Michael Waechter, Nils Moehrle, and Michael Goesele. “Let There Be Color! Large-
Scale Texturing of 3D Reconstructions”. In: ECCV. 2014.

[124] Martin J. Wainwright. “Reproducing Kernel Hilbert Spaces”. In: High-Dimensional
Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, 2019, pp. 383–415. doi: 10.1017/
9781108627771.012.

[125] Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar. “Lay-
ered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High
Dynamic Range Displays”. In: SIGGRAPH. 2011.

[126] Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and Ramesh Raskar. “Tensor
Displays: Compressive Light Field Synthesis using Multilayer Displays with Direc-
tional Backlighting”. In: SIGGRAPH. 2012.

BIBLIOGRAPHY 77

[127] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez,
Adam Barth, Andrew Adams, Marc Levoy, and Mark Horowitz. “High Performance
Imaging Using Large Camera Arrays”. In: SIGGRAPH. 2005.

[128] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp,
David H. Salesin, and Werner Stuetzle. “Surface Light Fields for 3D Photography”.
In: SIGGRAPH. 2000.

[129] Gaochang Wu, Mandan Zhao, Liangyong Wang, Qionghai Dai, Tianyou Chai, and
Yebin Liu. “Light Field Reconstruction Using Deep Convolutional Network on EPI”.
In: CVPR. 2017.

[130] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. “Space-time Neural
Irradiance Fields for Free-Viewpoint Video”. In: arXiv preprint arXiv:2011.12950
(2020).

[131] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
“Self-attention with Functional Time Representation Learning”. In: NeurIPS (2019).

[132] Greg Yang and Hadi Salman. “A fine-grained spectral perspective on neural net-
works”. In: arXiv preprint arXiv:1907.10599 (2019).

[133] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen,
and Yaron Lipman. “Multiview Neural Surface Reconstruction by Disentangling Ge-
ometry and Appearance”. In: NeurIPS (2020).

[134] Henry Wing Fung Yeung, Junhui Hou, Jie Chen, Yuk Ying Chung, and Xiaom-
ing Chen. “Fast Light Field Reconstruction with Deep Coarse-to-Fine Modeling of
Spatial-Angular Clues”. In: ECCV. 2018.

[135] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. “pixelNeRF: Neural
Radiance Fields from One or Few Images”. In: (2020).

[136] Cha Zhang and Tsuhan Chen. “Spectral Analysis for Sampling Image-Based Ren-
dering Data”. In: IEEE Transactions on Circuits and Systems for Video Technology.
2003.

[137] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. “The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric”. In: CVPR.
2018.

[138] Zhoutong Zhang, Yebin Liu, and Qionghai Dai. “Light Field from Micro-Baseline
Image Pair”. In: CVPR. 2015.

[139] Ellen D. Zhong, Tristan Bepler, Joseph H. Davis, and Bonnie Berger. “Reconstructing
continuous distributions of 3D protein structure from cryo-EM images”. In: ICLR.
2020.

[140] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. “Stereo
Magnification: Learning View Synthesis using Multiplane Images”. In: SIGGRAPH.
2018.

