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EPIGRAPH 

“...Let us go,” we said, “into the Sea of Cortez, realizing that we become forever a part of it; that our 

rubber boots slogging through a flat of eel-grass, that the rocks we turn over in a tide pool, make us truly and 

permanently a factor in the ecology of the region. We shall take something away from it, but we shall leave 

something too.” And if we seem a small factor in a huge pattern, nevertheless it is of relative importance. We 

take a tiny colony of soft corals from a rock in a little water world. And that isn’t terribly important to the tide 

pool. Fifty miles away the Japanese shrimp boats are dredging with overlapping scoops, bringing up tons of 

shrimps, rapidly destroying the species so that it may never come back, and with the species destroying the 

ecological balance of the whole region. That isn’t very important in the world. And thousands of miles away 

the great bombs are falling and the stars are not moved thereby. None of it is important or all of it is. 

John Steinbeck, The Log from the Sea of Cortez (1951) 
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Aerosols are solid or liquid particles suspended in the air that can have far-reaching impacts on climate 

and human health. Aerosols impact climate through their radiative properties and their ability to seed cloud 

droplets or ice crystals. They also provide surfaces at which heterogeneous multiphase reactions can occur and 

serve as sinks for atmospheric sulfur, carbon and nitrogen. From a human health perspective, the physical and 

chemical properties of aerosols including their size, shape, and composition, can impact their transfer and 

deposition into the lungs. Smaller particles in particular can contain pollutants and pathogens and are able to 

travel deeper into the bronchioles to trigger irritation and infection. This body of work applies molecular 

dynamics simulations to understand aerosol systems, investigating their morphologies, impacts on climate, and 

ultimately their role in transporting the airborne SARS-CoV-2 virus. Molecular simulation and analysis methods 

are integrated with experiment to first probe surfactant interfaces with varying levels of chemical complexity, 

then to explore whole aerosol dynamics and phase within the context of understanding impacts of sea spray 
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aerosols (SSA) on climate. This work shows that 1) surfactant charge modulates the surface activity of 

Burkholderia cepacia lipase at lipid monolayer interfaces; 2) calcium enhances polysaccharide adsorption to 

fatty acid monolayers; and 3) divalent cations induce morphological changes in LPS-containing aerosols, 

hindering the reactive uptake of atmospheric nitric acid.  This dissertation also describes methods for building 

large-scale, intact SSA models with full chemical complexity and shows how organic components distribute 

throughout the aerosol, suggesting that SSA may adopt microemulsion-like morphologies. Finally, a workflow 

is developed to build ultra-large systems for the study of airborne disease, demonstrating the successful 

construction and simulation of 1) the SARS-CoV-2 wild type envelope, and 2) a billion-atom respiratory aerosol 

containing the full breadth of chemical complexity, including the first all-atom model of the Delta SARS-CoV-

2 envelope and never-before-modeled pulmonary mucins.  The latter project presents the first atomic-level views 

of the SARS-CoV-2 virus within a respiratory aerosol and represents a novel approach to investigating the 

infection mechanisms of airborne pathogens.
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Chapter 1 
Introduction 

 

1.1  Overview 

This dissertation is organized into three parts. Part I, entitled “Building Up Chemical Complexity at The 

Air/Sea Interface,” contains material from two publications1,2 as well as ongoing work to understand interfacial 

dynamics and processes at the molecular level that impact the climate-relevant properties of marine aerosols. 

With a simple lipid monolayer as a baseline, we add new chemical components piece by piece to increase the 

interfacial complexity and then monitor the molecular conformational and dynamical response. In Part II, entitled 

“Sea Spray Aerosol Morphology and Dynamics,” we build on elements in Part I to explore the impacts of 

complexity on whole aerosol properties. Whereas Part I isolates just the interface, Part II3 expands this view to 

incorporate the intact aerosol, which includes an exploration of interfacial curvature, as well as the impacts of 

chemical complexity on physical elements such as shape, phase, viscosity, and molecular diffusion, which are 

then validated by experimental observations. Finally, Part III, entitled “Special Applications to Airborne 

Disease,” applies the lessons learned from large-scale atomic modeling to building and analyzing the SARS-

CoV-24 viral envelope in Chapter 6. Chapter 7 then describes the culmination of this body of work to model the 

SARS-CoV-2 virion in a respiratory aerosol, significantly advancing the state of the art of molecular virology.5 

To note: Chapters 6 and 7 are formatted as submissions to the ACM Gordon Bell Special Prize for COVID-19 

Research, corresponding to the 2020 and 2021 awards cycles. Chapter 6 was the winning paper for the 2020 

Gordon Bell Prize; Chapter 7 was a finalist for the Prize in 2021.  

This body of work breaks new ground on multiple fronts. First, all-atom molecular dynamics 

simulations containing multiple millions of atoms are relatively untenable without the use of leadership-class 

petascale computing facilities. The systems described in Chapters 5, 6, and 7 contain each 3 million, 300 million, 

and 1 billion atoms, respectively. Reaching scientifically relevant timescales with systems of these sizes requires 

the use of the most powerful supercomputing centers available; chiefly, UIUC Blue Waters, TACC Frontera, 
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and ORNL Summit were employed in these works through generous NSF-funded and/or director’s discretionary 

allocations. This work would simply not have been feasible via computing resources accessed through traditional 

routes, i.e., through the XSEDE6 allocation program. Further development of the code in the NAMD molecular 

dynamics engine was required to achieve optimal performance on these systems, which involved close 

collaboration with the NAMD developers.7–10 These simulations represent some of the first all-atom, explicit-

solvent simulations to run at these ultra-large scales.  

Secondly, experimental techniques and instrumentation for atmospheric environmental applications 

have advanced less rapidly compared to biological and medical applications. For example, we are not only able 

to generate and image cellular membranes, bilayers, micelles, and other such samples in solution, but we can 

also probe their properties using various methods. Conversely, effectively generating and collecting aerosol 

samples as well as imaging them at the single-particle level is still an active area of research and development. 

The modeling methods used in this dissertation can be considered a “computational microscope,”11–14 serving to 

complement, augment, and build upon the current capacity of experiments to understand and characterize 

atmospheric aerosols. All-atom molecular dynamics simulations can visualize a system and its dynamics at the 

atomic level with nanosecond to microsecond timescale resolution, giving us information that cannot be attained 

using experiments alone. Thus, computation can significantly enhance experimental investigations and inform 

upon and drive hypothesis development. This is not to say, however, that computational methods should be used 

alone. 

This work is especially forward-thinking in that it harnesses the power of interdisciplinary and 

collaborative science. Just as experiments can be enhanced by theory, so too can theory be enhanced by 

experimental observation. By weaving together experiment and computation, the work becomes more than the 

sum of its parts. An experiment can give us bulk, macroscopic properties that describe, for example, the extent 

of nitric acid reactive uptake by aerosols containing LPS-Ca2+ or LPS-Na+ mixtures. Although it is an important 

finding alone, it is much more powerful when integrating the computational observation that Ca2+ cations induce 

dramatic structural changes at the molecular level that dramatically reduce the diffusion of water throughout the 

particle.3 Not only is the complementary finding more complete in that it provides both bulk observation with 

atomic-level, theoretically rigorous calculations, but the time-to-solution is largely cut in half. By collaborating 
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across disciplines to solve a problem from all perspectives rather than publishing each story independently, we 

reduce the time that data is withheld from the community and accelerate scientific progress.  

With that said, the chapters in this dissertation represent highly collaborative studies. None of the 

chapters given here describes work completed in isolation. The dissertation author claims the computational 

components, the discussions that drive the experimental hypotheses, and the development and writing of the 

manuscript. Experimental findings are given here not only because they complete the scientific story, but also 

because they validate and support the theoretical findings. Specific author contributions are detailed in the 

Acknowledgments sections of each chapter.  

The remainder of this Introduction provides a brief overview of aerosol systems as well as the molecular 

dynamics (MD) simulation method.   

1.2  Aerosols 

Aerosols are microscopic solid, liquid, or semi-solid particles of natural or anthropogenic origin that are 

suspended in the atmosphere and, in some cases, can be picked up by wind currents and dispersed across the 

globe.15–19 Aerosols are categorized by their origins and chemical properties, but are further typed according to 

size, which is typically dependent upon their generation mechanisms. Small, submicron aerosols can have long 

atmospheric lifetimes, while larger, supermicron ones settle to the ground. Of the many aerosol types, the two 

types discussed in this dissertation are sea spray and respiratory aerosols.  

Sea spray aerosols (SSA) are generated through bubble bursting mechanisms at the ocean surface.20 

They make up the largest portion of natural atmospheric aerosols by mass and their cloud-interaction properties 

represent the greatest source of uncertainty in radiative forcing models.21–24 SSA can influence climate directly 

by interacting with incoming solar radiation, or indirectly by serving as surfaces for multiphase heterogeneous 

atmospheric chemistry.21,24–31 Submicron SSA are generally produced by the bursting of a film cap at the sea 

surface and largely contain aliphatic organic material.20,32 Numerous experimental studies have been able to 

identify the major classes of organic molecules found in SSA, which include surfactants, alkanes, protein, 

saccharides, and other biogenic macromolecules.22,29,32–36 In terms of inorganic species, it has been demonstrated 

that cations such as sodium, magnesium, and calcium, are enriched at the sea surface, which may enhance their 
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transfer into SSA.34,37–39 The work presented here will focus specifically on building up complexity of marine-

relevant systems, starting with simple fatty acid and phospholipid surfactants, then adding more complex species 

like protein and oligosaccharides. The impact of calcium on these systems is also explored in this work.  

Respiratory aerosols (RA) are particles generated in the lungs that are exhaled during breathing, 

speaking, singing, and coughing.15,16,40–42 The recent COVID-19 pandemic has brought attention to the 

production and airborne dispersion of RA as a significant mode of infection between individuals, prompting our 

interest in studying the SARS-CoV-2 virus in an RA environment.5,16,40 RA is known to contain, like SSA, a 

variety of organic material, from lung surfactants which include fatty acids, phospholipids and cholesterol, to 

proteins and glycoproteins like albumin, immunoglobulins and mucus.43,44 If an individual is infected with a 

respiratory virus, such as influenza or SARS-CoV-2, the aerosols emitted contain the virus as well.45–47 

According to recent literature, submicron aerosols, such as those emitted by breathing, are most likely to contain 

active virus.45 There is also growing evidence that increased viral affinity for pulmonary mucus may provide a 

possible explanation for the increased airborne transmissibility and lifetime of Delta SARS-CoV-2 compared to 

the wild type, and that this mechanism may similarly apply to other respiratory pathogens.48 Part III of this 

dissertation details the construction and simulation of SARS-CoV-2 in a RA environment.  

1.3  All-Atom Molecular Dynamics Simulations 

Molecular dynamics (MD) is a numerical method that solves the classical equations of motion to 

generate trajectories of atom positions, first demonstrated in the 1950’s by Alder & Wainwright.49 When 

evaluated over enough timesteps, we can effectively run in silico, statistically rigorous chemistry experiments at 

microsecond timescales without stepping foot in a wet lab.  

For a given system of N interacting particles (e.g., atoms), we calculate how those particles will move 

over a specific timestep ∆t, and then continue to perform this calculation over many timesteps. We call upon 

classical Newtonian mechanics to calculate the next position of an atom with mass m from acceleration, a: 

𝑚!𝑎! =	𝑚!
"!𝒓𝒊
"$!

= 𝑭! 					𝑖 = 1…𝑁,     (1.1) 
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where ri(t) and Fi(t) are the position and force, respectively, of atom i at time t. The force on the atom, calculated 

from all the interactions of the atom in the system, can be defined by the gradient (∇) of the potential energy 

function V, 

𝑭! = −∇𝒓#𝑉(𝒓! , … , 𝒓%),     (1.2) 

which is determined by all the initial atomic positions in the system. The negative sign in this equation indicates 

that the integration will attempt to minimize the total energy of the system. In other words, the force acting upon 

the atoms will cause them to move to new positions that are lower in energy than before, much like a ball rolling 

down a hill minimizes its potential energy.  

  The potential energy function can be evaluated for a system via the summation of all the individual 

potentials of each atom, which are in turn, summations of all the energetic contributions from each atomic 

interaction with surrounding atoms. Evaluating this function accurately for all atoms in a system can be 

extremely computationally expensive and slow, so approximations have been developed and tested that are able 

to balance the computational cost of calculation and achieve reasonable accuracy.  

 The energetic contributions to the potential are divided into bonded and non-bonded interactions. 

Bonded interactions are those that arise from atoms connected to one another through chemical bonds and are 

dictated by the bond type (approximated to a harmonic spring), angle, and rotation. Non-bonded interactions are 

those arising between pairs of unconnected atoms that are near one another in space and are defined by attractive 

and repulsive components (Lennard-Jones), as well as electrostatics (Coulombic). Table 1.1 outlines each of 

these interactions and the numerical approximation used to calculate their energies. A detailed description of 

these terms and their derivations can be found elsewhere.50 
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Table 1.1: Bonded and non-bonded energetic contributions to the potential energy function. 

Potential Term Equation Definitions Eq. 

𝑉&'("(𝑟!)) 
𝑘!)&

2 5𝑟!) − 𝑟!)*6
+ 

kijb    stiffness force constant 
rij     distance between atoms 
rij0      equilibrium bond length 

1.3 

𝑉,(-./(𝜗!)0) 
𝑘!)01

2 5𝜗!)0 − 𝜗!)0* 6+ 

𝑘!"#$   angle distortion force constant 

𝜗!"#  angle 

𝜗!"#%   equilibrium bond angle 
1.4 

𝑉"!2/"3,.(𝜙!)0.) 𝑘)0
4 [1 + cos(𝑛𝜙 − 𝜙*)] 

𝜙     dihedral angle 
𝜙%   equilibrium dihedral angle 
n      number of minima over full rotation 

1.5 

𝑉5/((,3"67'(/8(𝑟!)) 
4𝜀𝜎9+

𝑟!)9+
−
4𝜀𝜎:

𝑟!):
 𝜀      dispersion energy 

𝜎						distance	where	V=0,	~’atom	size’	
1.6 

𝑉;'<.'=&(𝑟!)) 
𝑞!𝑞)

4𝜋𝜖*𝜖>𝑟!)
 

q      particle charge 
𝜖%    permittivity of free space 
𝜖&    relative permittivity 

1.7 

 

The collection of constants associated with each bond, angle, rotation, and atom pair, and the summation 

of the parameters for a simulation, make up the force field. These values are often, preferably, derived from 

experimental observation. In many cases, however, experimental data is not available, or there are additional 

features of the system that are necessary to reproduce more precisely (as in the case of water) such that the 

approximations given by the potential terms are inadequate to describe the behavior of the whole system. Critical 

limitations like these exist and are kept in mind when carefully evaluating MD simulations. Force field 

development to address issues such as these in detail is out of the scope of this work, but the dissertation author 

includes brief discussions of force field selection in the methods of the following chapters.  

Expanding upon this, ensemble properties of a system, such as temperature and pressure, are carefully 

controlled in MD simulations such that the system proceeds in agreement with statistical mechanics. 

Temperature and pressure coupling methods are continually being tested and developed for various systems in 

order to rigorously maintain the statistical mechanical ensemble.51–53 Ultimately, these techniques allow us to 

extract many qualitative macroscale observables from our microscale simulations with reasonable accuracy. 
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Quantitative comparison to experimental observations remains a challenge, however, due to the many 

approximations made in the force field and throughout the MD integration. All comparisons to experiment made 

in this dissertation are done so considering these limitations in the discussion. 
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Chapter 2 
Surfactant Charge Modulates Structure and Stability of Lipase-

Embedded Monolayers at Marine-Relevant Surfaces 
2.1 Abstract  

Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). 

Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface active molecules such 

as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have potential to 

influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA 

interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given 

the importance of how aerosols interact with sunlight, influence cloud formation and provide surfaces for 

chemical reactions. Herein, we report an integrated experimental and molecular dynamics (MD) study of 

Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the importance and role of 

electrostatic interactions, rather than hydrophobic interactions, as a driver for monolayer stability. Specifically, 

we combine Langmuir film experiments and computational methods to examine the interactions between the 

zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the 

underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the 

monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by 

Langmuir adsorption curves and Infrared Reflectance Absorbance Spectroscopy (IRRAS). All-atom MD is then 

used to provide insights into inter- and intramolecular interactions that drive these observations, with specific 

attention to the formation of salt bridges, or ionic bonding interactions. We show that after insertion into the 

DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a 

salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low 

surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions 

with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that 

the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure, and 

that these variations have the potential to differentially modulate the properties of marine aerosols.  
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2.2 Introduction 

The lipid monolayer interface has largely been studied for its biological relevance—monolayers occur 

in the body as lung surfactants and tear films—but is also of great interest to the atmospheric chemistry 

community for its role in modulating SSA particle reactions and dynamics.1–9 Lipid monolayers are known to 

coat the ocean surface and the surface of nascent SSA and can significantly impact SSA climate-relevant 

properties.3–5,7–11 It has been shown that the lipid type and composition of SSA surfaces have all been found to 

influence hygroscopicity,3,6 cloud condensation nucleation activity,3,5,6 and ice nucleation activity of SSA.4,11 

Amphiphilic lipids can impact interfacial properties of SSA primarily because they are surface active. 

Surfactants such as phospholipids participate in photooxidation and ozonolysis,12 their anionic headgroups 

selectively bind and concentrate trace metal cations at the surface,13–15 and their carbon chain length and 

headgroup charge(s) influence the transport and reactivity of gases at the interface.7–9 While the chemical 

composition of SSA and their effects on climate are becoming more resolved, the molecular structure and 

dynamics of SSA surfaces remain difficult to probe experimentally.16–23  

Computational methods such as all-atom MD have therefore contributed largely to the existing body of 

work on the lipid monolayer interface.24–27 Since computational methods can resolve chemical systems at the 

atomic level, the integration of computation with experimental aerosol techniques is expected to significantly 

advance our ability to model the SSA interface.28 The present study thus takes an integrated computational and 

experimental approach to understand how the lipid monolayer surface of SSA is affected by the presence of 

lipase. 

Of particular importance to this work, lipases, as well as other enzymes, have been previously found in 

nascent SSA and remain active after aerosolization with consequences for aerosol reactivity.19 Lipases catalyze 

the breakdown of high order glycerides into their respective fatty acids.29–31 BCL, the lipase used in this study, 

is produced by a complex of bacterial species commonly found in marine environments.32,33 In SSA, free lipases 

can either have been secreted by marine bacteria or released as their bacterial cells lyse during aerosolization.34,35 

A recent study on BCL embedded in DPPA, palmitic acid, and palmitate bilayers shows that BCL structure is 

highly dependent on its immediate chemical environment, suggesting that subtle variations in SSA lipid 
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composition and surface pressure could have drastic effects on its activity.36–38 Although it is currently unknown 

whether lipases embedded in lipid monolayers, rather than bilayers, retain their activity, BCL in particular is 

known to be structurally and functionally robust; it is able to retain its conformation and catalytic activity in 

various aqueous environments, across a broad pH range, and in the presence of high organic solvent 

concentrations.39–41 In the context of SSA surface chemistry, the presence of an active lipase enzyme at the 

surface would mean that the surface properties of the particle are dynamic and change over time. If lipases 

process lipids at the surface of SSA, there would be a flux in surface pressure, charge distribution, and even 

overall stability and solubility of the monolayer as the particle ages. 13,25,42–45 Furthermore, bioaerosols 

containing proteinaceous material provide a host of additional reactive sites that readily participate in processes 

such as radical photochemistry, nitration by gaseous NO3, and ozonolysis.46–48 The biotransformation of SSA by 

lipase is thus of direct relevance to atmospheric chemistry.  

In addition to directly modifying the chemical composition of SSA, lipases are also likely to alter 

interfacial chemistry through intermolecular interactions with surrounding surfactants.49 The lipid population at 

SSA surfaces is not necessarily dominated by the enzyme substrate. Rather, at the surface is a complex mixture 

of fatty acids, phospholipids, triglycerides, and many other organic components, meaning that folded and 

functional lipases will not always chemically process their surroundings. 5,11,16,20,23 For example, BCL induces 

lipid curvature when embedded in DPPA bilayers, a finding which is unsurprising given that membrane-

embedded proteins are well-known to structurally modulate their surrounding chemical environment and vice 

versa.36,50–52 The lipid-lipase interactions are likely to be impacted by the lipid type and headgroup charge, as 

these influence hydrogen-bonding, Van der Waal’s forces, and salt-bridges. One of the goals of the present study 

is to characterize the dominant intermolecular interactions between lipase and both charge-balanced zwitterionic 

and negatively-charged surfactant monolayers, and to understand how these interactions might affect SSA 

surface chemistry.  

Here we integrate IRRAS combined with Langmuir trough techniques with all-atom MD simulations to 

characterize the surface properties of model lipase-embedded monolayer systems. We investigate BCL 

interactions with two atmospherically-relevant lipids, zwitterionic DPPC and anionic DPPA, both of which form 

stable monolayer films at air-aqueous interfaces. In SSA, these lipids originate in bacterial cell membranes and 
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are released when bacterial cells lyse due to cell death or through the aerosolization process.34,35 While nascent 

SSA surfaces are likely to be heterogeneous mixtures of phospholipids and fatty acids,16 homogenous 

monolayers were selected for the present study to reduce the complexity of real world systems and allow for 

careful examination of lipase-surfactant interactions. DPPA has a similar chemical structure to DPPC; both are 

glycerophospholipids containing two 16-carbon, saturated hydrocarbon chains, with the exception that DPPC 

contains a positively-charged quaternary ammonium moiety attached to the negatively-charged phosphate 

headgroup. BCL dynamics in DPPA at low surface pressure have been studied previously; DPPC was selected 

for this work because the effects of zwitterionic lipids on lipase is not well understood.36 IRRAS is used to 

extract information about surfactant organization and ordering, coupled with a film balance and a Langmuir 

trough to assess the effects of varying surface pressure on BCL-embedded monolayers. All-atom MD is then 

used to model protein-lipid interactions, lipid interactions, and protein structure and dynamics to inform the 

analysis of the experimental data. Understanding the reciprocal interactions between lipid monolayers and lipase 

can help us better understand the structural and chemical properties of nascent SSA. 

2.3 Experimental Section 

2.3.1 Materials and Sample Preparation  

Lipase from Pseudomonas cepacia (≥ 30 U/mg) was purchased from Sigma Aldrich. Lipids (DPPA and 

DPPC) (> 99%) were from Avanti Polar Lipids. Chloroform (> 99.9%) was from Fisher Scientific. The agents 

above were used without further purification. The DPPC solution was prepared in chloroform with a 

concentration of 1 mg/ml and the DPPA solution was prepared in a 4 : 1 chloroform : methanol solution with a 

concentration of 0.42 mg/ml.53,54 Milli-Q water with an electric resistance of 18.2 MΩ was used for the aqueous 

subphase. NaCl salt purchased from Fisher Scientific was purified by baking at 200°C overnight to remove 

organic contaminants and was prepared as a 0.4 M salt water solution. The concentration of NaCl solution was 

chosen to be near the sea water concentration. The lipase solution was made in 0.4 M NaCl with a concentration 

of 4.55 mg/ml. The pH of the subphase was around 5.5, which is within the range of aerosol acidity.45,54  
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2.3.2 Langmuir Surface Adsorption Curve 

A computer-controlled film balance with a Langmuir trough (KSV NIMA LB, S/N AAAA100505) was 

used for performing the surface adsorption experiments while holding surface pressure constant. A water 

circulator (Beckman Geneline Cooler) controlled the temperature of the subphase in the trough at 22 ℃. The 

lipid solution was first spread onto the 55 ml subphase in the trough using a microsyringe. The monolayer was 

then left for 20 minutes in order for the solvent to evaporate. After that, the monolayer was compressed to a 

desired surface pressure and was held at this surface pressure.  A 0.2 mL lipase solution was injected with a 

syringe coupled with Teflon tubing on the needle underneath the lipid monolayer as described previously.36 The 

final concentrations of lipase in the subphase were 250 nM, 500 nM, 1000 nM, or 1350 nM. The change in 

molecular area was monitored throughout the experiment while holding the surface pressure constant.  

We performed holding area experiments using the computer-controlled film balance with a slightly 

modified side hole petri dish, designed by Allen and co-workers.15 The lipid monolayer was first formed on the 

surface of 55 ml subphase in the petri dish. The lipase solution was then injected underneath the monolayer 

through the side hole after 30 minutes and the final concentration of lipase in the subphase was 500 nM. While 

the area was kept constant, the surface pressure was monitored with the computer-controlled film balance 

throughout the experiment. 

2.3.3 Infrared Reflection Absorption Spectroscopy (IRRAS) System 

The IRRAS set up has been described previously.12 The IR beam from an infrared spectrometer (Bruker 

Tensor 37) is directed onto the aqueous solution surface in the Langmuir trough or the side hole petri dish at a 

30° angle from the surface. At an air-water interface, the optimal angle for the incident beam is 0º to 40º when 

an unpolarized beam is used.55,56 The reflected beam is collected and sent to an MCT detector (Infrared 

Associates Inc., mid-band with ZnSe window). Each IRRAS spectrum is an average of 300 scans with a spectral 

resolution of 4 cm-1. Due to the low signal and water vapor interference in other regions, here we focus only on 

the C-H stretching region. For some of the experiments, the IRRAS spectrum was taken every 30 minutes 

throughout the experiment and some were taken once at the beginning and once at the end. The reflectance-

absorbance (RA) for the IRRAS spectra were plotted as a function of wavenumber where 



 19 

         RA = -log (R/R0)                                        (2.1) 

and R is the reflectivity of the film covered surface while R0 is the reflectivity of the aqueous subphase.  

2.3.4 Molecular Dynamics System Preparation  

All monolayer systems were set up using CHARMM-GUI in 0.4 M NaCl at 298.15 K and were 

composed of a rectangular box with periodic boundary conditions.57 Two lipid monolayer leaflets containing 

molecules of either DPPA or DPPC were placed above and below a TIP3P water slab, creating two interfaces in 

the xy-plane, with air (vacuum) on either side.  The xy dimensions of the box were 100 x 100 Å, while the total 

length of the box in the z direction was 300 Å. A diagram of the system set-up is given in Figure 3.7. TIP3P was 

selected due to its high compatibility with the CHARMM36 force field for lipids.58 Following routine protocols 

for monolayer simulations, vacuum was used at the air side of the air-aqueous interfaces to approximate the 

density of gases in the atmosphere.24–26,59 The lipase starting structure used for protein-lipid systems was based 

on the PDB entry 3LIP, with protonation states for all amino acids assigned for a pH 6  system through the 

Schrödinger Protein Preparation Wizard.60,61 For a mean molecular area (MMA) of 47 Å2/lipid, 212 DPPC or 

DPPA molecules were placed in each leaflet. For leaflets containing lipase, the lipase was placed in the center 

of the leaflet at an orientation calculated using the Orientation of Proteins in Membranes (OPM) database and 

server and surrounded by 179 lipid molecules.62 Each system built consisted of approximately 100,000-120,000 

atoms.  All systems were prepared for simulation with GROMACS and parametrized using the CHARMM36 

forcefield.58,63,64 The monolayers were energy-minimized and equilibrated in 6 equilibration steps using 

GROMACS 2018 on an NVIDIA GTX 1080Ti GPU (GeForce GTX Titan, NVIDIA, Santa Clara, CA). The 

energy minimization and equilibration steps are described in the Supporting Information.  

2.3.5 Molecular Dynamics Simulations and Data Analysis 

Production steps for each system were run for approximately 400 ns total with 3 replicates under an 

NVT ensemble, an ensemble commonly used for monolayer simulations.25,26,59 For lipase in each DPPA and 

DPPC, replicates 1, 2 and 3 were run for 100, 100 and 200 ns, respectively. The systems were assumed to be 

fully equilibrated when energy, RMSD, and solvent-accessible surface areas (SASA) converged (Figure 3.8). 

All production runs utilized the Extreme Science and Engineering Discovery Environment (XSEDE), which is 
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supported by National Science Foundation grant number ACI-1548562.65 Specifically, simulations were 

performed on the Bridges supercomputer, which is supported by NSF award number ACI-1445606 at the 

Pittsburgh Supercomputing Center (PSC).66 The production run script is given in full in Figure  3.9. 

Molecular simulation data was analyzed in the IPython Jupyter Notebook environment, and all IPython 

notebooks for this work will be made available as part of the UCSD Library Digital Collections: Center for 

Aerosol Impacts on Chemistry of the Environment (CAICE)  

(https://library.ucsd.edu/dc/collection/bb96275693).67 

2.4 Results and Discussion 

2.4.1 Lipase insertion disrupts the lipid monolayer as evidenced by experimental and computational 

methods 

A Langmuir trough coupled with IRRAS spectroscopy was used to interrogate the impact of lipase on 

the surface properties of a DPPC monolayer. The isotherm of DPPC can be seen in Figure 3.10a. This isotherm 

has been reported in the literature.14,68,69. We performed our holding surface pressure experiments at a surface 

pressure of 10, 15 and 25 mN/m. In Figure 2.1, the Langmuir curve of the DPPC monolayer at 10 mN/m after 

lipase injection shows a significant increase in area (90%) within the first 5 minutes. Figure 3.11 shows that 

when holding the DPPC monolayer at a certain area, the surface pressure increased after lipase injection. Based 

on the fact that the area relaxation and pressure relaxation experiments are done with different methods, the 

pattern of the increasing curves between these two kinds of experiments are not comparable. Before lipase 

injection, the IRRAS spectra of the C-H stretching region between 2800 cm-1 to 3000 cm-1 included three peaks: 

the methylene symmetric stretch (2850 cm-1), methylene asymmetric stretch (2920 cm-1) and methyl asymmetric 

stretch (2958 cm-1). From the IRRAS spectra before and 5 minutes after lipase injection, we observed a 

significant decrease in the peak intensity associated with the methylene stretch after lipase injection, as well as 

a broadening of the methylene stretching peaks and a shift to a higher wavenumber (Figure 2.1 insertion). The 

peak associated with the methylene asymmetric stretch shifted from 2920 cm-1 to 2924 cm-1. The methyl 

asymmetric stretch does not show a significant shift in frequency or peak broadening, but instead has a small 

decrease in intensity.  The peak at 2870 cm-1 after lipase injection could be associated with the methyl symmetric 
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stretch55 which shows a small shoulder near the methylene symmetric stretch at 2850 cm-1 before lipase injection. 

The methyl stretch only shows a small decrease in intensity while the methylene stretch shows a significant 

decrease in intensity; the peak at 2850 cm-1 before lipase injection disappears into the methyl stretch peak at 

2870 cm-1 upon lipase injection. The shift of the methylene groups to a higher wavenumber indicates a disordered 

structure of the DPPC monolayer after lipase insertion, as previous studies have found that the methylene 

stretching peaks shift to a higher wavenumber when entering a less ordered state.70 Additional evidence for 

increased disorder for DPPC structure is seen in the peak broadening.  Previous studies have found that peaks in 

the C-H stretching region in Raman spectra broaden when going from a more ordered crystalline state toward a 

more disordered state.71–73 Conformational order information can also be obtained from the peak intensity ratio 

of the methylene asymmetric and methylene symmetric peaks.71–74 This ratio changed from 1.9 to 1.5 after lipase 

injection, which indicates a more disordered system induced by lipase insertion. The intensity loss can be 

attributed to either the increase in mean molecular area of the DPPC molecules, indicating a lower density of 

DPPC molecules on the surface, or a loss of DPPC molecules through dissolution into the subphase. The IRRAS 

spectra collected at longer time (greater than 5 minutes) remained almost the same (data not shown).   

We compared the lipase-DPPC interactions at different surface pressures by injecting lipase into the 

DPPC monolayer and monitoring the change in surface area increase (Figure 2.1b).  After lipase injection, there 

was a fast increase followed by a slower increase in surface area before reaching a plateau at every surface 

pressure studied. The total area expansion decreased with an increase in surface pressure of DPPC, which 

indicates either a suppression of lipase insertion or a smaller surface area of lipase embedded in the surface at 

higher surface pressures. This is consistent with previous experimental studies showing that, when injected into 

lipid monolayers, the area increase induced by lipase is reduced at high surface pressures compared to lower 

surface pressures.75,76 The IRRAS spectra before and after lipase injection for the DPPC monolayer at 15 mN/m 

and 25 mN/m are shown in Figure 2.12a and b, respectively. These spectra indicate that lipase has a smaller 

effect on DPPC structure at a higher surface pressure of 25 mN/m in comparison to the lower surface pressures 

investigated. 
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Figure 2.1: Percent area increase of DPPC monolayers after lipase injection and associated IRRAS spectra. A) 
Increase in area of DPPC monolayer after holding at 10 mN/m induced by injection of lipase in the underlying 
subphase. Insert: IRRAS spectra before (red) and 5 mins after (green) lipase injection (final concentration of 
lipase of 500 nM). The yellow box indicates the time when the IRRAS spectra are taken.  B) Percent area increase 
of DPPC monolayers at 10, 15, and 25 mN/m induced by injection of lipase into the underlying subphase (final 
concentration of lipase of 500 nM). 

 

Molecular dynamics simulations of BCL in DPPC show that not only does lipase induce molecular 

disordering of DPPC, but it becomes embedded in the monolayer such that the surface of the enzyme is exposed 

to the atmosphere. In comparison, BCL in DPPA shows similar behavior; it fully embeds into the surfactant 

monolayer and disorders the surrounding lipids (Figure 2.2). Figure 3.2b gives plots of the total atmosphere-

exposed surface area over the final 50 ns of each production step for lipase in DPPC and in DPPA at MMA 47 

Å2—a surface pressure of approximately 25 mN/m. This suggests a molecular mechanism to explain the intensity 

decrease and peak broadening in the IRRAS spectra. Lipase expands and embeds itself into the monolayer, 

decreasing the concentration of DPPC molecules at the surface and lowering the intensity of the IRRAS signal. 

The lipase could also contribute to the broadening of the IRRAS peaks by inducing curvature of the monolayer 

film. Figure 2.2a shows the monolayer curvature around the enzyme over the final 50 ns of simulation in DPPC 

and DPPA. The lipids surrounding lipase are warped, i.e., disrupted, from their hexagonal packing structure and 

reoriented around the lipase surface. Warping the monolayer out of the interfacial plane disrupts the C-H 

stretching signal, causing a decrease in and broadening of signal intensity. 77,78 Finally, Figure 2.2c shows 
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comparisons between the nematic ordering of the lipids with and without embedded lipase. The nematic order 

parameter, a value between 0 and 1, is an indication of unidirectional packing of the lipids, with 1.0 representing 

perfect ordering. Figure3.2c shows that the nematic ordering decreases in the presence of lipase both in DPPC 

and DPPA. These findings are consistent with previous studies indicating that the surrounding interfacial 

environment is key to lipase structure, function and activity; however, these show this phenomenon occurring at 

monolayer, rather than bilayer or aqueous-organic, interfaces.36–38,51,52 

 

Figure 2.2: Data pulled from MD simulations of lipase in DPPC and comparison to DPPA at MMA 47 Å2, or 
approximately 25 mN/m in surface pressure. A) Quantification of monolayer curvature over the final 50 ns of 
each simulation replicate. Curvature was calculated using SciPy’s least squares fit; after fitting a surface to the 
points given by the phosphate headgroups, the inverse radius of each osculating circle in the xz- and yz-planes 
was extracted. The values representing the largest curvatures, in units of Å-1, are plotted. For reference, lines 
corresponding to the curvatures of a 0.1- and 1.0-micron particle are shown in black (solid and dotted lines, 
respectively). B) Total atmosphere-exposed surface area of lipase over the final 50 ns of simulation for each 
replicate. Insets: Top views of lipase (blue) in DPPC (left) and lipase (purple) in DPPA (right). DPPC and DPPA 
molecules within 5 Å of lipase are colored red and outside of 5 Å, cyan. C) Average nematic order parameters 
for lipid leaflets with and without lipase embedded. DPPA is given in purple, DPPC in green. 
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These results indicate that even though the lipase does not directly act upon on the surrounding lipids, 

it significantly alters the aerosol surface morphology with potential climate-relevant effects. For example, the 

insertion of lipase into SSA surfaces could increase particle hygroscopicity due to the disordering of the lipids 

at the interface, evidenced by the decrease in nematic order parameter and increase in monolayer curvature. 

Tight packing conformations of lipids in a monolayer film have previously been cited as a barrier to water 

uptake.3,43,79,80 Early studies on mixed lipid monolayer films show a well-characterized drop in monolayer 

resistance in the presence of low concentrations of impurities.81–83 At high surface pressures with highly-aligned 

lipid packing conformations, it can be expected that a small defect such as a disruption to the monolayer 

microstructure by lipase, will lead to a large drop in monolayer resistance and a corresponding increase in water 

permeation across the interface. Because of this, it may be reasonable to suspect that lipase-containing SSA 

could account for a portion of the cloud condensation nucleation activity of organic-enriched aerosols. 

Additionally, the exposure of lipase at the surface could have implications for atmospheric chemistry: proteins 

contain charged amino acids that easily react upon collision with atmospheric gases. For example, BCL tyrosine 

Y129 is exposed at the surface in our MD simulations. Tyrosine reacts readily with atmospheric ozone and NOx 

species, providing one mechanism by which the biotransformation of aerosols could play a role in the 

atmospheric nitrogen cycle.46 

2.4.2 A comparison of lipase interactions with anionic DPPA and zwitterionic DPPC monolayers: 

experimental data 

When lipase was injected under DPPC and DPPA monolayers at 25 mN/m, while lipase remained 

inserted in the DPPC monolayer, it crashed out of the DPPA monolayer after 85 minutes, suggesting lower lipase 

stability in DPPA monolayer than in DPPC monolayer (Figure 2.3). The isotherm for DPPA can be found in 

Figure 3.10b. In previous work, BCL was reported to be stable in the DPPA monolayer at 5 mN/m, which 

indicates that lipase can bind with DPPA, but the protein-lipid interaction is weak compared to that of lipase 

with DPPC.36 The percent area increase for DPPA before lipase crashes out is smaller than in DPPC at the same 

time, which also indicates that DPPA binds weakly with lipase in comparison to DPPC. Figure 2.3 shows a slow 

decrease in area at the end of the DPPC curve, as well as a decrease in area below the starting point in the DPPA 

curve. This decrease can be partially attributed to the spontaneous dissolution of the lipids into the monolayer as 
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previously seen for studies of long chain fatty acid monolayers at the air-water interface.12,84,85 Figure 2.12 

shows that the background area decreases when the pure lipid monolayer is held at a constant 25 mN/m surface 

pressure. However, the area loss due to the lipid background is still less than the area loss shown in Figure 2.3. 

Therefore, this area loss can be attributed to two additional mechanisms: (i) a slight loss of lipase-lipid complex, 

as simulations indicate that lipids can not only be incorporated into the lipase active site, but they also can adhere 

to its surface; and (ii) the structural realignment of the lipids towards higher nematic orders (straighter 

hydrophobic tails), which decreases their individual molecular areas. 

Figure 2.3: Percent area increase and decrease of DPPA and DPPC monolayers at 25 mN/m, induced by 
injection of lipase in the underlying subphase (final lipase concentration 500 nM). 
 

To test the effects of lipase concentration on its insertion to DPPC and DPPA monolayers at higher 

surface pressures, we performed similar experiments at 25 mN/m with different lipase concentrations. Figure 

3.4a shows that lipase was stable in DPPC monolayers even at high lipase concentrations. The final area increase 

of the DPPC monolayer was dependent on the concentration of lipase used in our study (Figure 2.4b). In 

contrast, lipase was stable in DPPA monolayers only at low lipase concentrations (Figure 2.4c); at higher 

concentrations, it crashed out from the monolayer after a brief time. The “crashing out” phenomenon is further 

supported by IRRAS spectra provided in Figure 3.4d. At high lipase concentrations (1000 nM), the area 

increased rapidly in the first 10 minutes after lipase injection, followed by a slower increase until 110 minutes 
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lapsed. During this time, the IRRAS spectra (Figure 2.4d, left IRRAS panel) show a decrease in signal intensity 

and a broadening of the peaks in the C-H stretching region, indicating that lipase decreased the chain ordering 

of the DPPA monolayer, similar to the behavior of lipase in DPPC (Figure 2.1a). This disordering is confirmed 

by MD simulations (Figure 2.2c). However, after 110 minutes, the area gradually decreased back to its initial 

state, and the IRRAS spectra (Figure 2.4d, middle IRRAS panel) indicated an increase in signal, in which the 

peaks gradually recovered. For comparison, the IRRAS spectra before and after 240 minutes of lipase injection 

are presented in Figure 2.4d (right IRRAS panel) and they appear almost the same. These IRRAS spectra 

indicate that almost all of the lipases inserted into the DPPA monolayer were eventually squeezed out from the 

interface. This “crashing out” phenomenon has been observed previously where Meister et al. found that the 

farnesylated and hexadecylated N-Ras proteins were squeezed out from the lipid monolayer at 30 mN/m, but 

doubly hexadecylated N-Ras proteins at the same surface pressure remained embedded.76 
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Figure 2.4: Percent area increase upon lipase injection and associated spectra: comparison of DPPC to DPPA 
monolayers. A) Percent area increase of the DPPC monolayer at 25 mN/m, induced by injection of different 
concentrations of lipase to the underlying subphase. B) Percent area increase of the DPPC monolayer vs. 
concentration of lipase in the underlying subphase. C) Percent area increase of the DPPA monolayer at 25 mN/m 
induced by injection of different concentrations of lipase into the underlying subphase. D) Area increase and 
decrease of the DPPA monolayer at 25 mN/m, induced by injection of lipase into the underlying subphase (final 
concentration 1000 nM). IRRAS spectra are: (left) before and 5, 10, 30, 60, 90 and 120 minutes after lipase 
injection (dark yellow to light yellow), (middle) 120, 135, 150, 180, 210 and 240 minutes after lipase injection 
(light blue to dark blue) and (right) before lipase injection (dark yellow) and 240 minutes after lipase injection 
(dark blue). 
 

2.4.3 Molecular dynamics calculations to further probe and compare interactions between lipase 

DPPC and DPPA 

To further investigate and compare the interactions between lipase and DPPA and DPPC, molecular 

dynamics simulations run for each system at a surface pressure of 25 mN/m were analyzed for indicators of 

intermolecular electrostatic interactions. To describe electrostatic interactions between the lipase and 

surrounding charges on the lipids, we measured instances of salt bridge formation across all trajectories. Salt 

bridges, defined here as ionic interactions between a positively charged nitrogen and a negatively charged 

oxygen, are determined to have formed if the two participating atoms enter within 3.5 Å of one another. Since 
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salt bridge distances can be highly variable, we have selected 3.5 Å as an intermediate value within previously 

reported ranges (2.8-5.0 Å) as a cutoff.86–89 To understand the sensitivity of our distance cutoff selection, we 

provide error bars representing higher and lower cutoff values, 4.0 and 3.2 Å, respectively. Figure 2.5a shows, 

in color, salt bridge formation between DPPC or DPPA headgroups and lipase. We have also included in grey 

competing intramolecular salt bridges (“INT”) that form between protein residues. This figure gives a depiction 

of the likelihood that specific interactions will occur.  

The additional charge on zwitterionic DPPC as compared to anionic DPPA provides for more total 

interactions between the lipid headgroups and lipase (Figure 2.13). Both headgroups contain a negatively-

charged phosphate, which can interact with positively-charged residues such as lysine (K, green) and arginine 

(R, red). However, DPPC also contains a positively-charged ammonium that can interact with negatively-

charged surface residues such as aspartate (D, orange) and glutamate (E, purple). Figure 2.5a shows that not 

only does lipase in DPPC contain significantly more favorable electrostatic interactions than lipase in DPPA, it 

contains more interactions that are sustained for more than 40% of the simulation time. Additionally, DPPA 

coordinates strongly to sodium ions in solution (Figure 2.14). The negatively-charged DPPA surface is stabilized 

by recruiting sodium cations, a process that does not occur in the neutral DPPC monolayer; thus, the charged 

sites on BCL compete with sodium ions for coordination with DPPA. This provides some molecular evidence 

to explain why lipase is more stable in DPPC than DPPA at high lipase concentrations, and why the percent area 

increase after lipase injection in DPPA is significantly smaller than in DPPC.  

Figure 2.5b shows all intramolecular salt bridges that occur between the two lipase systems. For BCL 

in DPPA, the high prevalence of competing intramolecular salt bridges (Figure 2.5a), as well as the number and 

duration of total intramolecular salt bridges (Figure 2.5b), suggests that when BCL is surrounded by negative 

charges, it favors more intramolecular electrostatic interactions than BCL in DPPC. Compared to BCL embedded 

in DPPC, not only is there a larger percentage of available enzyme sites that have competing interactions, but 

those interactions appear to be stabilized for longer portions of the simulation time. This suggests that in anionic 

surfactants, BCL derives its structural stability from internal electrostatics, supporting experimental evidence 

that shows decreased BCL-embedded monolayer lifetimes and a decreased BCL-induced percent area increase 
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for DPPA. Conversely, BCL readily complexes with zwitterionic DPPC surfactants, which allows the DPPC 

surface to sustain the embedded lipase at high concentrations and for longer time periods.  

 

 

Figure 2.5: Lipase forms more intermolecular salt bridges with DPPC than DPPA but forms more intramolecular 
salt bridges in DPPA than in DPPC. Error bars are provided to indicate the sensitivity of the analysis to the 
distance cutoff selection. A) Bar plot of salt bridge formation between DPPC or DPPA molecules and lipase. 
Salt bridges were defined as sustained intermolecular interactions between a positively-charged nitrogen group 
and a negatively-charged oxygen group. Internal salt bridges (“INT”, gray) are competing intramolecular salt 
bridges occurring between lipase residues. B) Intramolecular salt bridges forming between lipase residues.  
 



 30 

Our results suggest that electrostatics modulate the ability of lipase to embed in a lipid monolayer. 

Previous all-atom MD studies have attributed the orientation of BCL at aqueous-organic interfaces to the degree 

of hydrophobicity of the organic phase, which functionally stabilizes the enzyme in its open conformation as 

lipids are oriented into the active site.72,73 The mechanism of BCL orientation in a lipid monolayer is similar. 

The hydrophobic lid helices (𝛼9, 4 and 5) that flank the catalytic pocket (Figure 2.15) are immersed into the 

organic layer, and the remaining hydrophilic portion of the lipase is exposed to aqueous solvent (Figures 2.6b, 

2.6d, and 2.15). However, the phospholipid monolayers used in this work are modified aqueous-organic 

interfaces; the headgroups are charged and the length of the hydrophobic tails limit the depth of the organic 

“phase.” At low surface pressures, it is possible that lipase stability at a monolayer interface is hindered by 

decreased organic phase depth and enhanced only in the presence of both positive and negative charges.  

Considering our experimental and simulation data together, we provide a hypothesis to explain the rapid 

and discontinuous loss of area from the lipase-embedded DPPA monolayer seen in Figure 2.3. Due to the low 

intermolecular interactions between BCL and DPPA, it is possible that the lipases form small islands in the 

DPPA monolayer and then desorb from the monolayer together as aggregates. At low surface pressures, the 

hydrophobic lid residues on BCL drive the lipases to the surface. Initially, the lipases are likely to be evenly 

distributed throughout the monolayer. However, the insertion of the lipases causes a disruption to the lipid 

ordering (Figures 2.1a, 2.2c and 2.4d), decreasing the Van der Waal’s interactions between the hydrophobic 

tails. Since DPPA favors higher nematic orders (Figure 2.2c), over time, the monolayer undergoes structural 

rearrangement to align the lipids back together (Figures 2.1a and 2.4d), leading to the slow decrease in area; the 

rearrangement also contributes to the clustering of the lipases into islands in order to reduce the overall free 

energy of the system. Ultimately, since BCL forms fewer salt bridges with DPPA and more internal salt bridges 

(Figure 2.5b), the lipase islands desorb from the surface in discrete groups until the monolayer returns to its 

original, lipase-free state. There is also evidence of structural realignment after lipase insertion to DPPC 

monolayers that causes the broad hump in Figure 2.3, but the salt bridges between lipase and DPPC stabilize 

BCL in the monolayer. 
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2.4.4 Differences in lipase structure and dynamics based on monolayer surface charge and reciprocal 

impacts on the lipase-embedded surface 

Molecular dynamics results show that lipase adopts substantial structural changes when introduced to 

charged surfactants to maximize favorable intermolecular interactions. Taken with the results given above, 

structural alignment techniques, clustering, and SASA analyses are used to interrogate the major structural and 

dynamic differences between lipase systems. 

Table 2.1 shows the results of surface area analyses on BCL categorized by polar and nonpolar surface 

areas as well as lipid-embedded and solvent-accessible surface areas. In DPPA, the solvent-accessible surface 

area increases from its starting structure by 19%, compared to 0% for BCL in DPPC. This can be attributed to 

partial unraveling of the lipase in response to exposure to the negatively charged interface, coordinating its 

positive charges with negatively-charged surfactants, and reducing negative-to-negative charge interactions. 

Insights into this structural change can be seen in Figure 2.6e. Compared to BCL in DPPC, BCL in DPPA 

achieves a final conformation with 11 nm2 more solvent-exposed polar residues and 6 nm2 more solvent-exposed 

nonpolar residues. While the total percentage of solvent-exposed surface area increases, the percentage of lipid-

embedded surface area stays the same, differing from the starting structure by at most 4% in the case of DPPC, 

with negligible differences in total lipid-embedded surface area between the two final lipase conformations. 

Surface areas for lipids interacting with lipase are given in Table 2.2. Figure 2.6a shows the total lipase surface 

area over the final 50 ns of each replicate.  

Gromos clustering was used to highlight the major structural and dynamic differences between the two 

lipase-embedded monolayer systems (Figure 2.6e).74 In total, BCL embedded in DPPC attained 33 clusters, 

while BCL in DPPA attained 164. The top 80% of contributing clusters are given in Table 2.3. For BCL in 

DPPC, approximately 60% of simulation time is dominated by two BCL conformations, shown in Figure 2.6e, 

with the dominant cluster contributing to 43% of frames. In contrast, in DPPA, the same percentage of simulation 

time is dominated by 11 different conformations, with the highest contributing conformation representing only 

10% of frames. For simplicity, Figure 2.6e only shows 5 of these conformations, representing 34% of total 

simulation frames. It is clear that the major contributing clusters differ significantly from each other in each 

surfactant type. Clustering results indicate that BCL is highly flexible in DPPA and rigid in DPPC, which is 
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supported by our salt-bridge analysis. Due to the high number of salt bridges formed between BCL and DPPC, 

we would expect the enzyme to be more rigid than in DPPA, forming a stable DPPC-lipase complex. Conversely, 

the lack of salt bridges formed between BCL in DPPA allows the enzyme to be more dynamic, sampling 

approximately 5-fold more conformational states than in DPPC. Clustering results, taken together with a 

thorough analysis of electrostatic interactions, provide molecular support for the destabilization of lipase at 

anionic surfaces and stabilization at zwitterionic surfaces.  

 

Table 2.1: Surface area analysis on hydrophobic and polar residues exposed to solvent (exposed) and lipid 
(embedded) for MD simulations at surface areas of 47 Å2/lipid.   

a Surface areas of initial post-equilibration structures differed from each other by < 1% 
b Difference between average and initial structure 

 

Finally, we investigated how electrostatics govern the overall structure of the protein-embedded 

monolayer (Figure 2.6, 2.14). Figure 2.6b-d shows a comparison between orientations of the lipase at the 

surface. Figure 2.6c shows the evolution of lipase tilt angle over the final 50 ns of each simulation, and Figures 

2.6b and 2.6d show MD snapshots of the lipase oriented in their respective lipids. In DPPC, BCL adopts a more 

tilted structure compared to BCL in DPPA, with the lipase tilting to a 45º angle with respect to the z-axis in 

DPPC versus only 20º in DPPA. In both cases, the hydrophobic active site helices are embedded in the lipids, 

but they achieve varying orientations in the monolayer plane. In DPPA, the loop formed by helices 4 and 5 lies 

in the plane of the headgroups, while in DPPC, the loop twists out of the plane (Figure 2.6b, d, and Figure 

Lipase Residues 
Initial 

Structurea 

 (nm2) 
DPPA (nm2) DPPC (nm2) Δ (nm2) 

 (DPPA-DPPC) 

Polar + Charged 
exposed 54 ± 2 63 ± 3 (+16%)b 52 ± 2 (-4%) + 11 ± 2 

Hydrophobic 
exposed 34 ± 2 43 ±33 (+26%) 37 ±3 (+8%) + 6 ± 2 

Total Exposed 89 ± 4 106 ± 4 (+19%) 89 ± 4 (+0%) + 17 ± 3 

Polar + Charged 
embedded 19 ± 1 19 ±32 (+0%) 21 ± 2 (+10%) - 2 ± 2 

Hydrophobic 
embedded 38 ± 1 37 ± 2 (-3%) 34 ±2 (-11%) + 3 ± 2 

Total Embedded 57 ± 1 56 ± 2 (-2%) 55 ±3 (-4%) + 1 ± 2 
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2.15). The surfactant headgroups in DPPC appear to scatter across the surface of lipase, increasing monolayer 

curvature, while the headgroups in DPPA remain more planar (Figure 3.2a).  

 

 
Figure 2.6: The structure of lipase and the lipase-monolayer complex changes based on surfactant charge, 
demonstrated by notable changes in lipase solvent-accessible surface area, angle of embedment into the 
monolayer, and structural clustering. A) Total solvent-exposed lipase surface area by surfactant; B) Orientation 
of lipase (blue) in DPPC with the phosphate headgroups represented as cyan spheres; C) The tilt angle, defined 
by the vectors associated with internal beta sheets with respect to the z-axis. D) Orientation of lipase (purple) in 
DPPA with the phosphate headgroups represented as cyan spheres; E) Results of Gromos clustering analyses: 
two lipase structures from DPPC simulations (green) representing the top 50% of contributing clusters are 
overlaid with 5 lipase structures from DPPA simulations (purple) representing the top 35% of contributing 
clusters.  
 

These results indicate that monolayer surface charges govern large conformational changes in lipase to 

maximize favorable intermolecular interactions, which in turn impacts the structure of the surface. Since the 

total embedded surface area given in Table 2.1 does not change, it is likely that while Van der Waals interactions 

may impact the partitioning of lipase to an aqueous-organic interface, they only play a small role in its overall 

stability in monolayers.72,73 As suggested previously, this is to be expected, given that the hydrocarbon chain 

length limits the organic phase depth at the phospholipid interface. The unwinding of the lipase in DPPA can be 
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attributed to significant repulsive electrostatic interactions between the negatively-charged residues on BCL and 

the negatively-charged phosphate headgroups. The few sites on BCL available for binding to DPPA—charged 

residues LYS 22, ARG297 and ARG258—coordinate with the phosphate headgroups in the monolayer plane. 

In DPPC, because there are cationic and anionic BCL residues available for binding, the lipase is stabilized in 

its open crystal structure conformation, and the phosphate headgroups disperse across the lipase surface, 

increasing local curvature and decreasing lipid packing order. Since the surfactants in real SSA surfaces are 

likely to be variable in charge as well as in lipid composition, we postulate that these results will extend to real 

SSA systems. 

We suggest here that the stability of lipase-embedded monolayer surfaces is dictated by electrostatic 

interactions, and that the interactions induce changes in the folded structure and dynamics of the enzyme, the 

packing of the lipids, and the overall structure and dynamics of the resulting protein-embedded surface. Because 

the structure of the enzyme changes with surfactant charge, it is likely that the activity of lipase also changes, 

making it possible that, depending on details of the SSA surface composition, lipase could differentially act on 

and transform its surrounding lipid environment while in aerosol form. Furthermore, the dynamics of the surface 

are likely to modulate multiphase and heterogeneous atmospheric chemistry, where rigidity may enhance the 

ability of a surface to template into ice crystals, and flexibility could enhance gas or water transport across the 

surface.75-78  

2.5 Conclusion 

The results of this study suggest that electrostatic interactions between the external, charged amino acids 

on lipase and the individual charges on the surfactants play a significant role in the stability of lipases at the 

monolayer surface, as well as in the resulting structural properties of that surface. We present MD studies of 

BCL embedded in a lipid monolayer as an aqueous-organic interface, where organic phase depth is dependent 

on the length of the lipid tail, and stability at the interface is dependent on coordinated intermolecular interactions 

between protein and surfactant. We demonstrate that, while the negative charge on DPPA is not enough to 

stabilize lipase at high concentrations or high surface pressures, the presence of a zwitterionic headgroup as in 

DPPC causes a significant increase in the monolayer-lipase lifetime. Although real SSA surfaces are unlikely to 
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be homogenous matrices of either DPPC or DPPA, they are likely to vary in surface charge distribution based 

on their lipid profiles. In the context of sea spray aerosol chemistry, where the aerosol surface modulates 

atmospheric multiphase and heterogeneous reactions, understanding the surfactant-dependent dynamics and 

fluctuation of protein to and from the surface could bring us closer to accurately depicting SSA properties in 

atmospheric chemistry and climate models.  
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coordinated with sodium ions; percent area change of pure DPPA and DPPC monolayers; lipase labeled; SASA 

analysis on total surface areas of hydrophobic and polar residues exposed to solvent and lipid; and results of 

Gromos clustering analysis.  
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2.7.1 All-Atom MD System Minimization & Equilibration Procedure 

The equilibration settings used were unchanged from the default scripts provided by CHARMM-GUI. 

The equilibration restraints were held on the hydrogen bonds and constrained using the LINCS algorithm with 

a Verlet cutoff scheme.90,91 Equilibration steps 1-2 were done under an NVT ensemble with temperature-coupling 

using the Berendsen thermostat for 25 ps each.92 In step 1, restraints on the atomic positions and dihedral angles 

were 1000 kJ mol-1; dihedral restraints were lowered to 400 kJ mol-1 for step 2. Equilibration steps 3-6 were 

under an NPT ensemble with a Berendsen barostat (subsequent simulations used the Nose Hoover thermostat 

for accuracy). Restraint forces on step 3 were reduced to 400 kJ mol-1 for position and 200 kJ mol-1 for dihedrals 

over 25 ps, then 200 and 200 kJ mol-1 for step 4 for 50 ps, 40 and 100 kJ mol-1 for step 5 for 50 ps, and finally, 

0 and 0 kJ mol-1 for step 6 for 50 ps. The system equilibrated for 225 ps total.   

2.7.2 Gromos Clustering Analysis 

Gromos clustering was implemented with the built-in Gromacs cluster function in Gromacs version 

5.0.4. The default clustering settings were used, which includes an RMSD cut-off of 0.1 nm.  The RMSD ranges 

for BCL in DPPC was 0.045 to 0.250, with an average RMSD of 0.009. The RMSD ranges for BCL in DPPA 

was 0.045 to 0.419, with an average RMSD of 0.013.  
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Figure 2.7: Simulation system set-up. The center water block contains TIP3 water molecules and 0.4 M NaCl. 
The upper leaflet contains either DPPC or DPPA, embedded with a BCL lipase (3LIP). The lower leaflet contains 
only DPPC or DPPA molecules. There is an average of 47 Å2 per lipid. The system is set up with periodic 
boundary conditions (given by the boxes on the right).  



 38 

 

Figure 2.8: Simulation convergence analyses, including: A) dihedral energy, B) total energy, C) solvent-exposed 
surface area of lipase, and D) RMSD 
  

a b 

c d 
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Figure 2.9: Production run script: step7_production.mdp 

integrator    = md 

dt            = 0.002 

nsteps        = 50000000 

nstlog        = 1000 

nstxout       = 5000 

nstvout       = 5000 

nstfout       = 5000 

nstcalcenergy = 100 

nstenergy     = 1000 

cutoff-scheme = Verlet 

nstlist       = 20 

rlist         = 1.2 

coulombtype   = pme 

rcoulomb      = 1.2 

vdwtype       = Cut-off 

vdw-modifier  = Force-switch 

rvdw_switch   = 1.0 

rvdw          = 1.2 

tcoupl        = Nose-Hoover 

tc_grps       = PROT   MEMB   

SOL_ION 

tau_t         = 1.0    1.0    1.0 

 

ref_t                = 298.15 298.15 298.15 

pcoupl               = no 

pcoupltype           = semiisotropic 

DispCorr             = EnerPres 

tau_p                = 5.0 

compressibility      = 4.5e-5  4.5e-5 

ref_p                = 1.0     1.0 

constraints          = h-bonds 

constraint_algorithm = LINCS 

continuation         = yes 

nstcomm              = 100 

comm_mode            = linear 

comm_grps            = PROT   MEMB   SOL_ION 

refcoord_scaling     = com 
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Figure 2.10: Isotherm for DPPC (a) and DPPA (b) on 0.4 M NaCl subphase. 

 

 

Figure 2.11: Increase of surface pressure vs. time when lipase was injected under a DPPC monolayer at a 
constant surface area with a starting surface pressure of 15 mN/m (green) and 7.5 mN/m (blue) 
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Figure 2.12: IRRAS spectrum of C-H stretching region for a DPPC monolayer while holding at 15 mN/m (a) 
and 25 mN/m (b) before (purple) and 5 minutes after (green) lipase injection (final concentration 500 nM). We 
also show the spectra at 30 minutes after lipase injection for the 20 mN/m trial (blue) as the change of spectra in 
this one is slower than the other. IRRAS spectra later than 5 minutes for (a) and later than 10 minutes for (b) 
stay almost the same (data not shown). 
 

 

Figure 2.13: Background area decreases when DPPC and DPPA monolayers are held at 25 mN/m surface 
pressure. 
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Figure 2.14: DPPA and DPPC chemical structures. 

 

 

 

Figure 2.15: Density profiles of a) DPPC and b) DPPA phosphates coordinated with sodium ions.  
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Figure 2.16: Lipase labeled. Hydrophobic lid helices and beta hairpin loop are given in orange. The catalytic 
triad residues are colored and labeled: D264 (yellow), S87 (green), and H286 (red). 
 

Table 2.2: Surface area analyses on total surface areas on the surfactants either exposed to protein 
(“Interactive”) or exposed to solvent (“Non-Interactive”).  
 

 Lipid Initial (nm2) Final (nm2) Interactivea (nm2) Non-Interactivea (nm2) 
DPPA 1000 ± 10 962 ± 9 (-4%) 51 ± 2 910 ± 10 
DPPC  1120 ± 30 1100 ± 30 (-2%) 52 ± 2 1050 ± 30 

aLipids are interactive if they are exposed to protein residues or non-interactive if not exposed. 
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Table 2.3 Results of Gromos clustering analysis. In total, BCL in DPPC produced 33 clusters, while Lipase 
in DPPA produced 167 clusters. The top 80% of cluster conformations are given.  
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Chapter 3 
Calcium Bridging Drives Polysaccharide Co-Adsorption to a 

Proxy Sea Surface Microlayer 

3.1 Abstract 

Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the 

mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into 

SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the 

air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared 

reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the 

marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent 

cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, 

evidenced by the ~30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-

adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone 

do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic 

bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to 

the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface 

coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and 

molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML. 

3.2 Introduction 

Saccharides constitute one of the most abundant classes of organic carbon in sea spray aerosol (SSA);1–

3 but the mechanisms through which these compounds are selectively transferred from bulk seawater to the ocean 

surface, known as the sea surface microlayer (SSML), and finally to SSA, are not fully understood.4 Compared 

with seawater concentrations, saccharides are enriched 1.2–12.1-fold in the SSML,5–7 38–3700-fold in super-

micron SSA,8 and 100–930,000-fold in sub-micron SSA.8,9 It is thought that soluble saccharides co-adsorb to 

insoluble organic films at the SSML and transfer into SSA via bubble bursting at the ocean surface.10–14 Chemical 
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composition is a significant driver of SSA particle radiative properties, so climate models require predictive 

representations of marine aerosol composition to accurately model climate processes in the marine boundary 

layer.10,15–18 SSA containing polysaccharides, especially polysaccharides within marine microgels, comprise a 

significant fraction of cloud condensation nuclei (CCN)19–22 and ice nucleating particles (INPs),23–30 thereby 

affecting cloud formation and albedo. Thus, characterization of polysaccharide enrichment mechanisms in SSA 

is imperative for improving aerosol representation in global climate models. 

Recent work by Hasenecz et al. has shown that the polysaccharide alginate is enriched in laboratory-

generated marine aerosol, and alginate enrichment can be enhanced upon adding protein and additional CaCl2 

salt to the model seawater solution.31 Alginate is a type of exopolymeric substance derived from marine brown 

algae and bacteria;32,33 it is composed of (1→4)-linked α-ʟ-guluronic (G) and β-ᴅ-mannuronic (M) monomers 

that form a block copolymer with random sequences of M-, G-, and MG-blocks.34–39 Alginate polymers undergo 

ionic cross-linking to form hydrophilic gels via metal ion coordination primarily to the G residue carboxylic acid 

moieties.36,39,40 The rigidity and stability of the hydrogels are largely driven by the M/G residue ratio and the 

molecular weight of the polymers,39,41,42 but the ionic cross-linker identities and concentrations also play a crucial 

role.43–48 Multivalent cations readily induce gelation, and the cation hydration free energies dictate the local 

interaction configurations with G residues.48 Of the abundant seawater cations, Ca2+ is the most efficient gelling 

agent.43,44,48 Mg2+ only induces gelation at high alginate concentrations (> 3 wt% alginate and [Mg2+] > 50 mM) 

because of its high affinity for water such that the G residue carboxylate moieties cannot readily dehydrate Mg2+ 

for coordination.45–48 Extensive experimental and computational studies49–54 have investigated polysaccharide 

aggregation into surface-active marine gels via ionic coordination, but less is known about polysaccharide 

complexation to other surface-active organic molecules derived from marine biota. Enhanced saccharide 

enrichment in laboratory-generated SSA in the presence of divalent cations and other surface-active organic 

material strongly suggests a co-adsorption mechanism mediated by divalent cationic bridging.12,31 

A divalent cation mediated co-adsorption mechanism was also postulated by Schill et al. to explain 

enrichment of the monosaccharide glucuronic acid in laboratory-generated SSA.12 Glucuronic acid likely co-

adsorbs to an insoluble palmitic acid (hexadecanoic acid, CH3(CH2)14COOH) monolayer via seawater divalent 

cationic bridging interactions. Palmitic acid is one of the most abundant lipids in the SSML55,56 and in nascent 
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SSA,55,57,58 making it a good model for insoluble organic matter in an SSML proxy film.59–62 Cooperative 

adsorption (co-adsorption) to insoluble lipid monolayers has been indirectly observed for other saccharides and 

polysaccharides as well.10,11,13,63 Electrostatic interactions between charged saccharides and either charged or 

zwitterionic lipid headgroups have been the predominant mechanism of co-adsorption proposed. For example, 

the cationic polysaccharide chitosan primarily interacts with negatively charged and zwitterionic phospholipids 

through electrostatic interactions between the chitosan ammonium and phospholipid phosphate moieties.64–69 

Chitosan co-adsorption expands the monolayer,70 and chitosan likely intercalates into the monolayer at low mean 

molecular area through dispersive interactions.68,69 Divalent cationic bridging between the anionic 

polysaccharide dextran sulfate and the zwitterionic phospholipids 1,2-dipalmitoyl-phosphatidylethanolamine 

(DPPE) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has also been measured.71–73 Ca2+ bridges 

the sulfate and phosphate moieties, whereas Na+ does not.72 Strength of dextran sulfate co-adsorption increases 

with the number of calcium bridges formed, and unlike chitosan, dextran sulfate does not intercalate into the 

monolayer; instead, the authors argued that strong bridging interactions tether the polysaccharide to the 

underside of the phosphate headgroups.73 Thus, divalent cationic bridging interactions could promote 

polysaccharide co-adsorption to the SSML and enrichment in SSA. 

In this study, we examine the cationic bridging mechanism responsible for alginate co-adsorption to a 

deprotonated palmitic acid monolayer using surface-sensitive infrared reflection-absorption spectroscopy 

(IRRAS) and molecular dynamics simulations. In this work, we directly observe polyelectrolyte adsorption to 

an insoluble monolayer of the same charge state bridged by an ion of opposite charge. Ca2+ induces the greatest 

degree of alginate co-adsorption to the monolayer, but the divalent cationic bridges break apart upon palmitic 

acid protonation. Mg2+ also promotes co-adsorption to the deprotonated monolayer, but the interaction is much 

weaker due to the strong hydration of Mg2+. Na+ alone does not facilitate alginate co-adsorption. Our detailed 

experimental and computational analyses of the alginate co-adsorption mechanism to an SSML proxy film 

suggest that the Ca2+ bridge to surface-active marine organic matter is an important driver of polysaccharide 

enrichment in the SSML, and thus, in SSA. 
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3.3 Experimental and Computational Methods 

3.3.1 Materials 

Calcium chloride dihydrate (Certified ACS, Fisher Chemical), magnesium chloride hexahydrate 

(Crystalline/Certified ACS, Fisher Chemical), d31-palmitic acid (98%, Cambridge Isotope Laboratories, Inc.), 

and d33-cetyl alcohol (d33-hexadecanol, 98%, Cambridge Isotope Laboratories, Inc.) were used as received. 

Sodium chloride (99.5%, for biochemistry, ACROS Organics™) was baked for at least 10 hours in a furnace at 

650° C to remove residual organic impurities.74 Alginic acid (sodium salt, ACROS Organics™, Lot: A0406891) 

was also used as received from the same batch to maximize homogeneity in molecular weight and composition. 

All aqueous solutions were prepared with ultrapure water (18.2 MΩ·cm, Milli-Q Advantage A10, EMD 

Millipore) in glassware cleaned in a piranha acid bath. Acidification by atmospheric CO2 causes the ultrapure 

water pH to be 5.8 ± 0.1; hence, the pH 5.8 aqueous solutions were not pH adjusted. Atmospheric CO2 acidifies 

the solutions at seawater pH too, so the solutions were initially pH adjusted with sodium hydroxide pellets (98%, 

extra pure, ACROS Organics™) to 8.6 ± 0.1 to ensure that the pH would be 8.2 ± 0.1 throughout spectral 

acquisition. Lipids were dissolved in chloroform (Reagent ACS, 99.8+%, ACROS Organics™) to prepare 

~1.25 mM solutions for spreading onto the aqueous surface. 

3.3.2 Surface Pressure-Area Isotherms 

Surface pressure – area isotherms were performed using the Wilhelmy plate method in a Teflon 

Langmuir trough with Delrin barriers (Biolin Scientific). The platinum Wilhelmy plate, trough, and barriers were 

cleaned thoroughly with ultrapure water and ethanol, and the Wilhelmy plate was fired with a Bunsen burner 

until red hot. Surface cleanliness of the aqueous solution was assessed by sweeping the barriers at maximum 

compression speed (270 mm/min/barrier) to ensure that the surface pressure did not rise above 0.20 mN/m. d31-

Palmitic acid dissolved in chloroform was spread dropwise onto the aqueous surface using a glass syringe 

(Hamilton), and the chloroform solvent was allowed to evaporate over 10 minutes. The barriers were 

symmetrically compressed at a rate of 5 mm/min/barrier, and constant surface pressure was maintained during 

spectroscopic measurements via slow barrier position fluctuations (1 mm/min/barrier). 
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3.3.3 Infrared Reflection-Absorption Spectroscopy 

Infrared-reflection absorption spectroscopy was conducted using an in-lab-built optical setup. Two 

planar gold mirrors positioned at 48° relative to surface normal were placed inside a Fourier transform infrared 

spectrometer (Spectrum 100, PerkinElmer) to direct the incident beam towards the aqueous surface and to direct 

the reflected light towards the liquid nitrogen-cooled HgCdTe (MCT) detector. Spectra were collected with 

unpolarized light as an average of 400 scans in the single-beam mode, and the spectral resolution was set to 

4 cm-1. Energy values were recorded between 450 and 4000 cm-1 in 0.5 cm-1 increments. Experiments were 

repeated in at least triplicate, and each spectrum was reported as the average of all trials. Spectral background 

subtraction and peak integration were performed using OriginPro 9.0. The OH stretching region was analyzed 

by fitting a line between endpoints 2985 and 3000 cm-1 for baseline subtraction, and the area under the curve 

was integrated between these endpoints. The IRRAS spectra and integrated peak areas were numerically 

corrected to account for differences in monolayer mean molecular area (MMA) between experiments. The 

average MMA value of the solution containing alginate was divided by the corresponding average MMA value 

of the salt water solution. This ratio was then multiplied into the reflectance-absorbance values of the spectra 

containing alginate. Similar spectral analyses were performed in the COOH stretching (1150-1850 cm-1) and 

CD2 scissoring mode (1070-1110 cm-1) regions, and descriptions of the peak fitting procedures can be found in 

Section 4.7. All spectra and data points represent averages of at least three measurements, and error bars 

represent one standard deviation from the mean. 

3.3.4 Computational Methods 

Explicit solvent all-atom molecular dynamics simulations were performed using NAMD75 at a 

temperature of 298.15 K. The initial configurations of each system were constructed using Packmol.76 To 

approximate a TC palmitic acid monolayer at pH 5.6, palmitic acid molecules were packed into two planar 25 

Å x 25 Å monolayer slabs, each containing 96 molecules. A pH of 8.2 was approximated by packing 46 

molecules each of palmitate and palmitic acid into monolayer slabs of the same dimensions. The monolayer 

slabs were then separated on one side by vacuum and the other side with a 60 Å-deep water box with 15 proxy 

alginate molecules (Figure 4.9). The initial structure for the alginate was constructed using the CHARMM-GUI 

glycan modeler77–80 and consists of 6 (1à4)-𝛽-linked M monomers. For each representative pH, the aqueous 
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phase either contained 0.47 M NaCl + 10 mM CaCl2 or 0.47 M NaCl only. For the systems containing Ca2+, all 

negative charges were balanced using random placement of calcium ions and otherwise balanced with sodium. 

Identical systems without alginate were also constructed as controls. TIP3P water81 was used in conjunction with 

the CHARMM36 forcefield.82 The system was simulated using constant number, volume and temperature (NVT) 

with temperature controlled via Langevin dynamics83 with a coupling constant of 1 ps. The equations of motion 

were integrated with a timestep of 2 fs, with long-range electrostatics calculated every other timestep using the 

Particle Mesh Ewald method with a cutoff of 12 Å.84 A correction was applied to prevent center of mass drift 

due to PME by enabling the zeroMomentum parameter. The systems were energy-minimized and equilibrated 

for 800 ps. Production simulations consisting of 200-ns trajectories each were then performed in triplicate for a 

total of 600 ns per system. The production run simulation length of 200 ns was chosen to allow for any long 

timescale diffusion and settling of ions and alginate. All simulations were performed on an AgilityValue Tower 

AMD ROME Workstation (Applied Data Systems Inc., Poway, CA) equipped with an NVIDIA GeForce RTX 

3090 Graphics Card (Santa Clara, CA).   

Analyses of the MD trajectories were performed in a Jupyter Notebook iPython environment. The 

density and radial distribution function (RDF) calculations were performed with pytraj.85,86 Lipid order 

parameters were calculated using the GROMACS gmx order tool from GROMACS version 2018.3.87 

3.4 Results and Discussion 

The mechanism of alginate co-adsorption to a d31-palmitic acid (CD3(CD2)14COOH) monolayer was 

investigated experimentally as a function of solution ionic composition, d31-palmitic acid protonation state, and 

surface pressure. We will use the terms “monolayer” to refer to the monomolecular layer of d31-palmitic acid 

alone and “film” to describe alginate complexed to the d31-palmitic acid monolayer. Deuterated palmitic acid 

was used to spectrally isolate the CD2 scissoring mode from the carboxylate stretching region. The ionic 

composition was selected to model concentrations of the most abundant cations in seawater: 0.47 M NaCl, 

10 mM CaCl2, and 53 mM MgCl2.88,89 As a direct comparison to the 10 mM CaCl2 solution, alginate co-

adsorption in 10 mM MgCl2 aqueous solution was also measured. All aqueous solutions have a background of 

0.47 M NaCl to maintain high ionic strength as in seawater. 
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The carboxylic acid protonation state was varied through the solution pH values of 8.2 and 5.8. Palmitic 

acid has a reported surface pKa between 8.34 and 8.7,60,90–92 and the pKa values of alginate G and M residues are 

3.7 and 3.4, respectively.93 Thus at pH 8.2, the pH of seawater,94 palmitic acid is partially deprotonated and 

alginate is fully deprotonated. At pH 5.8, palmitic acid is mostly protonated, and alginate carboxylate groups 

remain deprotonated. Salts can deprotonate carboxylic acids at pH values significantly below the pKa,61,95,96 

however, so a d33-cetyl alcohol (d33-hexadecanol, CH3(CH2)15OH) monolayer was used as a control to study 

alginate co-adsorption to a fully protonated monolayer. Alginic acid is insoluble in water, so a lower pH value 

was not tested instead to avoid significant changes in solubility. Alginate hydrolysis kinetics are also enhanced 

in acidic solution, thereby changing the alginate molecular weight distribution in solution over time.97,98 

Deprotonated palmitate molecules are slightly more soluble in water,60,61 so IRRAS spectra were maintained and 

collected at constant surface pressure to minimize any interpretation impacts from dissolution. The surface 

pressure values of 5 mN/m and 25 mN/m were chosen to represent the tilted condensed (TC) and untilted 

condensed (UC) two-dimensional monolayer phases, respectively.99 Both phases exhibit long-range lateral order 

in the alkyl tails, but the d31-palmitic acid molecules in the UC phase are closer together on average (more tightly 

packed) and less tilted relative to surface normal.100 

To experimentally measure co-adsorption of alginate to the d31-palmitic acid monolayer, IRRAS spectra 

were analyzed in the OH-stretching region (2985-3800 cm-1), the COOH stretching region (1150-1850 cm-1), 

and the CD2 scissoring mode region (1070-1110 cm-1). IRRAS spectra are plotted as reflectance-absorbance 

(RA) given by Eq. 3.1. Hence, the signal from the interfacial film is captured, whereas the signal from the bulk 

aqueous phase is subtracted. When the film reflectance is greater than the solution reflectance (𝑅 𝑅*⁄ > 1), the 

reflectance-absorbance values are negative. Conversely, if the reflected signal from the solution is greater than 

that of the film (𝑅 𝑅*⁄ < 1), then the reflectance-absorbance values are positive. To isolate the signal from 

alginate co-adsorption due to the presence of the d31-palmitic acid monolayer, alginate was also included in the 

aqueous solution spectrum (𝑅*). Yet, the contribution of alginate adsorbed to the air-water interface due to 

surface activity alone is small and below our spectroscopic limit of detection. 
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Figure 3.1: IRRAS spectra of the OH stretching region and the corresponding relative changes in integrated 
peak area of the film indicate that CaCl2 induces significant alginate co-adsorption to the d31-palmitic acid 
monolayer. Data points and error bars are color-coded to indicate differences in solution composition. Surface 
pressure was held constant in the (a) tilted condensed (5 mN/m) and (c) untilted condensed (25 mN/m) phases 
throughout spectral acquisition. The relative changes in integrated peak area between the solutions with and 
without alginate are quantified in the (b) tilted condensed and (d) untilted condensed phases. Positive relative 
change indicates alginate co-adsorption to the monolayer, and 0% relative change indicates no co-adsorption. 
 

3.4.1 Experimental Evidence of Cation-Specific Alginate Co-Adsorption Mechanisms 

The OH stretching region provides sensitive detection of the aqueous solution reflectance, making the 

spectra useful for quantifying changes in interfacial coverage as a function of alginate co-adsorption. As shown 

in Figures 3.1a and 3.1c, the IRRAS OH-stretching modes are positive in sign, indicating that the OH region 

reflectance decreases upon spreading d31-palmitic acid onto the aqueous solution. The magnitude of the 

reflectance-absorbance signal intensity also increases with compression of the monolayer to higher surface 

pressure. Thus, increasing organic surface coverage decreases reflectance from the underlying aqueous solution. 
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Consequently, alginate co-adsorption to d31-palmitic acid molecules increases surface coverage, and the OH 

stretching region reflectance-absorbance values increase with alginate co-adsorption to the film. If there is no 

alginate co-adsorption, then the film spectrum with alginate in the solution directly overlaps the monolayer 

spectrum without alginate.  

Figures 3.1a and 3.1c illustrate changes in the OH stretching region spectra caused by increasing 

organic surface coverage due to alginate co-adsorption. The spectrum of d31-palmitic acid spread onto an aqueous 

solution containing 50 ppm alginate, 0.47 M NaCl, and 10 mM CaCl2 is significantly enhanced relative to d31-

palmitic acid spread onto the salt water solution. IRRAS signal corresponding to the NaCl and alginate solution 

is slightly greater relative to the NaCl solution alone, but the differences are much smaller in the absence of 

CaCl2. The IRRAS film spectrum corresponding to alginate co-adsorption closely follows the shape of the 

monolayer spectrum on salt water solution, and the greatest OH stretching region signal enhancement occurs 

around ~3580 cm-1 which has been assigned to surface water molecules hydrogen bonded to a carboxylic acid 

group.90,101,102 Therefore, alginate co-adsorption enhances the signal around 3580 cm-1 due to the alginate 

carboxylate hydration. 

 To better quantify organic surface coverage as a function of alginate co-adsorption, the MMA-corrected 

OH region was integrated between 2985 and 3800 cm-1. The relative change in the integrated peak areas between 

the spectra with and without alginate was calculated using the following formula: 

 Relative	Change = 	 ?@$%&'()*+6@,-A
@,-

× 100%. Eq 3.1 

In this equation, 𝐴BCDEFGHI represents the integrated peak area of the spectrum with alginate in the solution, and 

𝐴JK represents the integrated peak area of the spectrum containing only salt water (no alginate) in the solution. 

Alginate co-adsorption corresponds to a positive relative change in surface coverage, and no adsorption results 

in a 0% relative change. While the 0.47 M NaCl solution might induce some alginate co-adsorption to the TC 

monolayer, as shown by the small but positive relative change value in Figure 4.1b, the value is not statistically 

significant given that the error (represented as one standard deviation from the mean) is larger than the average 

relative change value. Addition of 10 mM CaCl2 to the solution containing alginate induces a significant increase 

in the integrated peak area and consequently a 27% relative change in surface coverage. This increase suggests 
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an alginate co-adsorption mechanism of divalent cationic bridging between alginate and d31-palmitic acid 

carboxylate moieties. 

 The differences between the TC and UC spectra and associated relative changes in surface coverage 

provide insights into the co-adsorption mechanism. The UC film spectrum corresponding to the 50 ppm alginate 

and 0.47 M NaCl solution nearly overlaps with the UC monolayer spectrum corresponding to the 0.47 M NaCl 

solution (Figure 3.1c), suggesting little to no alginate co-adsorption. The average relative difference in 

integrated peak area of the UC monolayer and film spectra is approximately 0% (Figure 3.1d), indicating a lack 

of alginate co-adsorption. Additionally, the slightly larger relative change in the TC spectrum surface coverage 

suggests that alginate expands the monolayer. It is possible that repulsive electrostatic interactions between the 

d31-palmitic acid and alginate carboxylate moieties expand the monolayer, consequently increasing surface 

coverage in the TC phase. However, in the UC phase, increased dispersion interactions between the alkyl tails 

counteract the repulsive forces. This hypothesis is further supported by greater MMA expansion with alginate 

in the solution for the TC film relative to the UC film (see Table 3.1). Higher surface pressure increases alginate 

co-adsorption for the solution containing 10 mM CaCl2 to a 32% relative change in surface coverage, and film 

expansion in the presence of alginate is not significantly different between the TC and UC phases. Thus, alginate 

likely does not intercalate between the d31-palmitic acid molecules with CaCl2 in the solution, and the UC film 

possibly provides more ideally spaced sites for the Ca2+ bridges. 

4.4.2 Monolayer Protonation Impacts on Alginate Co-Adsorption 

Palmitic acid protonation state significantly impacts the extent of alginate co-adsorption. For the d31-

palmitic acid monolayer at pH 5.8, there is a reduced degree of alginate co-adsorption to the film in comparison 

to the chemical system at pH 8.2. The d31-palmitic acid TC and UC spectra corresponding to the solution 

containing alginate have higher reflectance-absorbance values across the entire OH stretching region (Figures 

3.2a and 3.2c), indicative of alginate co-adsorption. The relative changes in surface coverage presented in 

Figures 3.2b and 3.2d quantify this observation, in which alginate co-adsorption at pH 5.8 results in a 14% and 

9% increase in the integrated peak area for the TC and UC phase spectra, respectively. At pH 8.2, alginate co-

adsorption results in a 27% and 32% integrated peak area increase for the TC and UC phase spectra, respectively. 
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Therefore, increased d31-palmitic acid protonation decreases the extent of alginate co-adsorption. Unlike the 

interfacial film at pH 8.2, monolayer compression decreases the magnitude of alginate co-adsorption for the 

solution at pH 5.8. Alginate might be expanding the TC film similarly to the mechanism proposed for the solution 

containing only 0.47 M NaCl. 

A fully protonated d33-cetyl alcohol monolayer was examined as a control because it does not become 

partially deprotonated in the presence of salts at any of the pH values tested. Trends in the IRRAS spectra of d33-

cetyl alcohol alone are less clear (Figures 3.2a and 3.2c). In both monolayer phases, the alginate solution 

enhances IRRAS signal at ~3580 cm-1 and decreases the signal between ~3050 and 3440 cm-1 relative to the salt 

water solution. The region around 3050 cm-1 has been attributed to cyclic carboxylic acid dimers observed in 

polyacrylic acid solutions,102,103 and the region from ~3200 cm-1 to ~3400 cm-1 corresponds to a more ordered 

hydrogen bonding structure to a less-ordered water structure.101,104,105 Further analysis reveals no significant 

differences between the OH region integrated peak areas for the solutions with and without alginate in both the 

TC and UC phases, resulting in a 0% relative change in surface coverage (Figures 3.2b and 3.2d). It is likely 

that alginate perturbs the interfacial hydration structure but does not co-adsorb to the cetyl alcohol monolayer. 

Thus, a protonated monolayer blocks alginate co-adsorption, indicating the importance of electrostatic 

interactions in polysaccharide co-adsorption to an SSML proxy film. 

 



 64 

Figure 3.2: IRRAS spectra of the OH stretching region and the corresponding relative changes in integrated 
peak area of d31-palmitic acid (d31-PA) and d33-cetyl alcohol (d33-CA) monolayers show that headgroup 
protonation prevents alginate co-adsorption. Data points and error bars are color-coded to indicate differences 
in monolayer and solution composition. Surface pressure was held constant in the (a) tilted condensed (5 mN/m) 
and (c) untilted condensed (25 mN/m) phases throughout spectral acquisition. (Note that the light purple and 
dark brown data curves overlap in (c).) The relative changes in integrated peak area between the solutions with 
and without alginate are quantified in the (b) tilted condensed and (d) untilted condensed phases. Positive relative 
change indicates alginate co-adsorption to the monolayer, and 0% relative change indicates no co-adsorption.  
 

The carboxylic acid spectral region (1150-1850 cm-1) provides further insight into the d31-palmitic acid 

protonation state and the extent of alginate co-adsorption. Harmonic vibrational frequency calculations were 

performed to predict the relative frequency shifts between the d31-palmitic acid carboxylate and carboxylic acid 

modes and the alginate carboxylate modes (see Section 3.7). Additionally, peaks were fitted to Gaussian 

functions to resolve the center wavelengths and full width at half maximum (FWHM) values; the fitting 

procedure and summary of the Gaussian fits for each spectrum are summarized in Section 3.7. Spectra of a d31-
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palmitic acid TC (Figure 3.3a) and UC (Figure 3.3c) monolayer exhibit four negative peaks corresponding to 

the lipid carboxylic acid moieties and one positive band at ~1660 cm-1 corresponding to the water bending mode 

(δ H-O-H). The protonated carboxylic acid moiety is characterized by the C-OH stretching mode (ν C-OH, 

~1270 cm-1) and the C=O stretching mode (ν C=O, ~1720 cm-1). Deprotonation of the carboxylic acid leads to 

the appearance of the COO- symmetric (𝜈J COO-, ~1410 cm-1) and asymmetric (𝜈BJ COO-, ~1540 cm-1) 

stretching modes (negative bands). 

As anticipated, d31-palmitic acid spread onto a 0.47 M NaCl solution at pH 8.2 is partially deprotonated, 

demonstrated by the presence of all four carboxylic acid and carboxylate stretching modes (Figures 3.3a and 

3.3c). Addition of 10 mM CaCl2 further deprotonates the headgroups, as shown by the increase in COO- 

stretching intensities and by the disappearance of the C=O stretching mode in both TC and UC phases (Tables 

3.6 and 3.8). Decreasing the pH to 5.8 increases the extent of d31-palmitic acid protonation; the C-OH and C=O 

stretching modes are most intense at this pH (Table 3.10). However, the presence of the COO- stretching modes 

in the TC and UC phase spectra indicates that Ca2+ induces some deprotonation which has been shown 

previously.61,106–108 
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Figure 3.3: IRRAS spectra of the COOH stretching region provide direct evidence of alginate co-adsorption via 
Ca2+ bridging interactions to the d31-palmitic acid monolayer at pH 8.2. Spectral lines are color-coded to indicate 
differences in solution composition. Surface pressure was held constant in the (a), (b) tilted condensed (5 mN/m) 
and (c), (d) untilted condensed (25 mN/m) phases throughout spectral acquisition. Spectra corresponding to the 
salt water solutions are shown in (a) and (c), and spectra corresponding to the salt water solutions containing 
50 ppm alginate are shown in (b) and (d).  
 

Direct measurement of alginate co-adsorption to the d31-palmitic acid monolayer is observed in Figures 

4.3b and 4.3d. There is a large increase in the negative COO- stretching peak intensities and breadth for d31-

palmitic acid spread onto the 0.47 M NaCl, 10 mM CaCl2, and 50 ppm alginate solution at pH 8.2. The 

asymmetric and symmetric stretches appear to split into higher and lower frequency bands, so an additional 

Gaussian function was used to fit both peaks (Figure 3.13). Vibrational frequency calculations predict a 47 cm-

1 blue shift and a 20 cm-1 blue shift for the alginate asymmetric and symmetric COO- stretching modes, 

respectively, relative to the corresponding d31-palmitic acid modes (Tables 3.3 and 3.5). The theoretical 
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predictions quite closely match the experimental ~55 cm-1 blue shift for the second 𝜈BJ COO- peak and the 

~37 cm-1 blue shift for the second 𝜈J COO- peak (Table 3.9). Hence, the higher frequency COO- stretching bands 

indicate alginate co-adsorption to the largely deprotonated monolayer in the presence of CaCl2. 

The carboxylate region also provides evidence for Ca2+ ionic bridges driving alginate co-adsorption to 

the d31-palmitic acid monolayer. Alginate co-adsorption induces d31-palmitic acid deprotonation, as shown by 

increased COO- stretching intensities and decreased C-OH stretching intensity for the pH 8.2 solution containing 

10 mM CaCl2 (Figure 3.3). Similar peak broadening and intensity enhancement was observed for the phosphate 

headgroup vibrational modes of 1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) upon arginine and 

guanidinium binding.109  Palmitic acid deprotonation likely facilitates the formation of energetically favorable 

ionic complexes between alginate, Ca2+, and palmitate. Furthermore, the 𝜈BJ COO-, 𝜈J COO-, and 𝜈 C-OH 

modes blue shift upon addition of alginate to the solution (Table 3.9). The 𝜈BJ COO- mode blue shifts ~2.5 cm-

1 in the TC phase but does not shift in the UC phase, the 𝜈J COO- mode blue shifts 7 cm-1 in the TC phase and 

~6 cm-1 in the UC phase, and the 𝜈 C-OH mode blue shifts ~13 cm- in the TC phase and ~15 cm-1 in the UC 

phase. It is possible that the alginate carboxylate interacting with the Ca2+ ion complexed to the d31-palmitate 

headgroup weakens ionic interactions between the monolayer carboxylate and the Ca2+ ion alone, thereby leading 

to an increased palmitic acid COO- force constant and blue shifts in the palmitate carboxylate vibrational modes. 

However, it is more likely that the alginate carboxylate moieties further dehydrate the d31-palmitate ⋯ Ca2+ 

complex upon alginate co-adsorption. 

Spectra of d31-palmitic acid spread onto the 0.47 M NaCl solution at pH 8.2 and the 0.47 M NaCl and 

10 mM CaCl2 solution at pH 5.8 do not exhibit any higher frequency COO- stretching peaks upon alginate 

addition to the solution, suggesting minimal to no alginate co-adsorption (Figure 3.3). Secondly, the 𝜈BJ COO-

, 𝜈J COO-, and 𝜈 C-OH mode peak areas are insignificantly different between the solutions with and without 

alginate, meaning that alginate co-adsorption to the monolayer is unlikely (Tables 3.6 and 3.7; Tables 3.10 and 

3.11). Smaller blue shifts in the 𝜈BJ COO-, 𝜈J COO-, and 𝜈 C-OH modes are observed for the solutions 

containing 10 mM CaCl2 and alginate at pH 5.8 as compared to the identical solution at pH 8.2 (Table 3.11). 

While these spectral shifts are not direct evidence of alginate co-adsorption to the monolayer, it is likely that 
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alginate perturbs the d31-palmitic acid headgroup hydration structure via electrostatic interactions with the 

headgroups. The less numerous d31-palmitate headgroups may facilitate Ca2+ bridging interactions with alginate 

carboxylate moieties at various points across the monolayer, as also indicated by the small relative change in 

surface coverage (Figures 3.2b and 3.2d). However, having fewer Ca2+ bridging sites hinders concerted alginate 

co-adsorption. For the d33-cetyl alcohol monolayer (Figure 3.20), there are no detectable peaks corresponding 

to alginate carboxylate modes, further supporting the lack of alginate co-adsorption to the fully protonated 

monolayer. 

To determine if alginate co-adsorption perturbs d31-palmitic acid interfacial organization, the CD2 

scissoring mode was analyzed as a function of solution composition, pH, and surface pressure (Figure 3.4). All 

conditions yield a CD2 scissoring mode center wavelength of 1089 cm-1 (see Table 3.16), indicative of hexagonal 

lattice packing structure.110 Furthermore, the absence of perturbations in the lattice packing structure, regardless 

of alginate presence in solution, indicates that alginate does not intercalate into the film. CD2 scissoring mode 

spectra corresponding to the salt water and alginate solutions directly overlap for the 0.47 M NaCl solution at 

pH 8.2 (Figures 3.4a and 3.4d) and for the 0.47 M NaCl and 10 mM CaCl2 solution at pH 5.8 (Figures 3.4c and 

3.4f), further indicating no alginate co-adsorption. However, the CD2 scissoring mode reflectance-absorbance 

signal magnitude in the TC and UC phase is significantly enhanced for d31-palmitic acid spread onto the 0.47 M 

NaCl, 10 mM CaCl2, and 50 ppm alginate solutions at pH 8.2 (Figures 3.4b and 3.4e). Signal enhancement is 

most apparent in the high frequency regime, and a smaller extent of signal enhancement occurs in the lower 

frequency region of the spectra. From the harmonic frequency analysis results (Tables 3.3 and 3.5), the signal 

enhancement can be attributed to alginate C-OH stretching and bending and CH stretching. The CD2 shoulder 

features overlap in frequency with the CD2 scissoring modes, and particularly intense alginate vibrational 

transitions occur ~10 cm-1 lower than and ~20 cm-1 higher than the center frequency of the d31-palmitate CD2 

scissoring mode. As a result, the signal enhancement surrounding the CD2 scissoring peak can be confidently 

attributed to alginate co-adsorption to the monolayer via Ca2+ bridging interactions. 
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Figure 3.4: IRRAS spectra of the CD2 scissoring mode region demonstrate alginate co-adsorption to the d31-
palmitic acid monolayer in the presence of 10 mM CaCl2 at pH 8.2, and the spectra indicate no changes in d31-
palmitic acid lattice packing upon adsorption. Spectral lines are color-coded to indicate differences in solution 
composition. Surface pressure was held constant in the (a), (b), (c) tilted condensed (5 mN/m) and (d), (e), (f) 
untilted condensed (25 mN/m) phases throughout spectral acquisition.  
 

3.4.3 Density and Radial Distribution Profiles from MD Simulations 

Additional atomistic insights into the proposed divalent cationic bridging mechanism were obtained 

through explicit solvent all-atom molecular dynamics simulations of a TC palmitic acid monolayer at varying 

pH in the presence and absence of Ca2+ in the aqueous phase. Figure 3.5 gives the number density and radial 

distribution profiles of selected species in each of the simulation conditions containing alginate at pH 8.2. The 

relative locations of the palmitic acid headgroups in the number density profiles (Figures 3.5a and 3.5b) are in 

agreement with previous studies,60,111 where the carboxylate headgroup of the palmitate sinks lower into the 

aqueous phase relative to the carboxylic acid. The peaks associated with the Ca2+ ion trace in Figure 3.5a are 
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indicative of selective calcium binding to the charged carboxylate headgroups. Similar coordination peaks 

associated with Na+ are found in the sodium-only system shown in Figure 3.5b. 

 

Figure 3.5: Number density profiles (a, b) and radial distribution functions (c-d) of selected species from 
molecular dynamics simulations at pH 8.2 with a 0.47 M NaCl subphase either in the presence (a) or absence 
(b) of Ca2+. In the number density profiles, the oxygen atom of the palmitate headgroup carboxylate (PAL-O) is 
used to represent the location of palmitate (light tan). The OH-oxygen atom of the palmitic acid headgroup 
(PALP-O) is used to represent the location of palmitic acid (dark tan). Similarly, a carboxylate oxygen atom on 
each M monomer in alginate (Alginate-O) is used to quantify the distribution of alginate (teal). The radial 
distribution functions of Ca2+, Na+ and the alginate carboxylate with respect to the palmitate carboxylate are 
given for the systems in the presence (c) and absence (d) of Ca2+ at pH 8.2 over a 0.47 M NaCl subphase. 
 
 

To determine whether alginate molecules co-adsorb to the monolayer by a cationic bridging mechanism 

as indicated by experiments, we can evaluate the alginate carboxylate traces. At pH 8.2, the alginate trace exhibits 

a broader, flatter profile in the presence of Ca2+ and a sharper rise in alginate coordination that occurs closer to 

the palmitate headgroups. We can also investigate this behavior using the radial distribution function (RDF) in 

which the probability density of the cation (Ca2+ or Na+) or functional group (alginate COO-) as a function of 

distance (r) from the palmitate headgroup is plotted (Figures 3.5c-d). There is a sharp cation peak as expected 
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at just over 2 Å in both systems. However, the alginate COO- group exhibits distinctly different behavior between 

the two systems. The sharp peak at 3 Å in the presence of Ca2+ suggests that calcium likely serves as a bridge 

between the two COO- moieties; conversely, in the absence of Ca2+, the alginate peak occurs over much larger 

distances from the palmitate, has significantly lower probability, and is much broader. Furthermore, the RDFs 

of the water atoms (Hw and Ow) with respect to the palmitate COO- are given in Figure 3.21. The sharp Hw and 

Ow peaks at approximately 2 and 3 Å, respectively, are associated with the water hydration shell around the 

palmitate COO- headgroup.111 With Ca2+ coordination, the COO- headgroups are significantly less hydrated in 

comparison to Na+-coordinated headgroups, where the solvation shell trace is much stronger. This observation 

agrees with the d31-palmitic acid 𝜈BJ COO-, 𝜈J COO-, and 𝜈 C-OH vibrational mode blue shifts upon alginate 

co-adsorption, indicative of monolayer headgroup dehydration. Taken together, these results strongly suggest 

that Ca2+ enables the adsorption of alginate to the palmitic acid monolayer at pH 8.2 through a divalent cation 

bridge. 

In comparison, we also provide the number density profiles and RDFs for the monolayer systems at pH 

5.8 in which the monolayer is fully protonated (Figures 3.6a-d). The number density plots exhibit distinctly 

different profiles from their higher pH counterparts; with Ca2+ present, rather than adsorbing to the surface, there 

is clear aggregation of the alginate in solution that is consistent with the gelation of alginate.112–115 Without Ca2+, 

the alginate shows a broader, flatter profile, indicating even distribution of alginate throughout solution and very 

little adsorption to the interface. The RDFs, in contrast with the higher pH system, show that alginates peak at 

just over 2 Å, which indicate that alginate weakly interacts with the monolayer via hydrogen bonding or 

dispersive forces between the alginate COO- and palmitic acid -OH. The small cation hump at the same radius 

can be attributed to contact-ion pairing at the double-bonded oxygen of the carboxylic acid.60 The subsequent 

increase in cation density after 4 Å may be attributed to either solvent-shared ion pairing between the cations 

and the first hydration shell of the headgroups, or, more likely, to contact-ion pairing between the cations and 

the alginate COO-. These results are consistent with the experimental findings presented above, which suggest 

that palmitic acid protonation hinders alginate co-adsorption. 
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Figure 3.6: Number density (a-b) and radial distribution functions (c-d) from molecular dynamics simulations 
at pH 5.8 in which the palmitic acid monolayer is fully protonated. 

 

3.4.4 Impacts of Alginate Adsorption on Palmitic Acid Interfacial Structure 

The number density plots also show that, for all systems, the alginate trace goes to zero as the monolayer 

headgroup densities increase. Thus, there is little to no alginate intercalation into the monolayer. Alginate 

remains largely in the subsurface region, which is in good agreement with the experimental observation that 

hexagonal packing structure of the palmitic acid chains is preserved upon alginate co-adsorption.  

To further investigate the impacts of alginate adsorption on the dynamics and organization of the 

palmitic acid monolayer, local order parameters were extracted from molecular dynamics simulations (Figure 

3.7 and 3.22). These order parameters are calculated by 

 𝑆;L =
M×〈P'8!Q〉69

+
, (3.2) 
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where 𝜃 is the angle between the vector normal to the surface and adjacent carbon atoms, Cn-1 and Cn+1. A high 

order parameter indicates high ordering among the alkyl chains with low motional anisotropy. 

Figure 3.22 gives the order parameters for the palmitic acid and palmitate chains of the monolayers 

with and without alginate in the aqueous phase. With the exception of carbons 2 and 15, which tend to have low 

order parameters due to their geometric positions at the top and bottom of the monolayer, the order parameters 

remain relatively constant at low pH, indicating similar levels of ordering across the alkyl chains and thus no 

significant perturbations due to alginate interaction. However, at high pH, the order parameters vary across the 

chain. Additionally, the presence of alginate slightly decreases the order parameters, with the largest decrease 

seen in the absence of Ca2+. Finally, compared to the low pH systems in which the order parameters steadily 

decrease from C4 to C2, the relative orders between C2 and C3 are reversed at high pH with C2 having a higher 

order parameter than C3. This reversal indicates that the headgroup carbons experience increased rotational 

rigidity at high pH. 
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Figure 3.7: Local order parameters (a-b, d-e) and vertical headgroup separation (c, f) for palmitic acid 
monolayers at pH 8.2 in the presence (a-c) and absence (d-f) of calcium. Order parameters are calculated based 
on protonation state for all systems with and without alginate. Figures b and e are specific to the C2-C4 carbon 
range in the presence and absence of calcium, respectively. 
 
 

To understand the physical basis of these structural differences, we recalculated order parameters based 

on residue protonation state (Figure 3.7). In all systems at pH 8.2, the deprotonated palmitic acid shows higher 

ordering than the protonated form, and the addition of alginate generally decreases ordering with the exception 

of C2 in both cases (Figures 3.7a and 3.7d). In the presence of Ca2+, alginate adsorption appears to increase 

ordering of the carboxylate groups but has no effect on the ordering of the protonated form (Figure 3.7b). In the 

absence of Ca2+, the addition of alginate similarly increases ordering of the palmitate carboxylate headgroups 

but decreases ordering of the acid (Figure 3.7e). 

To understand the differences in ordering based on headgroup protonation, we plotted the variations in 

headgroup position within the monolayer. Recalling that the palmitate headgroup tends to sink further into the 



 75 

aqueous phase in comparison to the palmitic acid, in Figures 3.7c and 3.7f we provide distributions of the height 

differences between carboxylate and carboxylic acid headgroups. The carboxylates are drawn into the aqueous 

phase, where they experience stabilizing ion-pairing with the cations, but the magnitude of the separation varies 

based on cation type. In the presence of Ca2+, the headgroup separation decreases by nearly 1 Å to 2.8 Å, down 

from 3.8 Å without Ca2+. The smaller difference in headgroup positions can be attributed to calcium-induced 

monolayer compression; Ca2+ binds neighboring carboxylate headgroups, thereby effectively shielding repulsive 

negative charges and bringing the headgroups closer together. Monovalent sodium does not participate in the 

ionic bridging and does less to screen the charges. Furthermore, whether alginate impacts the headgroup 

separation depends on the dominant adsorption or interaction mechanism. Because alginate adsorbs to the 

monolayer via calcium ion bridging, adsorption does not impact headgroup separation. However, without Ca2+ 

present, it is possible that the alginate COO- slightly destabilizes the palmitate headgroups through repulsive 

interactions that are less mediated by Na+, expanding the monolayer and allowing more space for the headgroups 

to align. Indeed, monolayer expansion is observed experimentally with increased MMA upon alginate adsorption 

(Table 3.1). 

The differences in headgroup position between the protonated and deprotonated forms can explain the 

trends associated with the overall increase in ordering at the C2 carbon that are not seen in low pH systems. With 

the carboxylic acid headgroup more embedded into the monolayer, the rotational motion of that headgroup is 

significantly restricted, thus increasing the order parameter. Conversely, the carboxylate headgroups exposed to 

the aqueous phase experience a wider range of motion, and their order parameter decreases. In the case of 

alginate binding in the presence of Ca2+, alginate has no impact on the carboxylic acids that are more deeply 

situated in the monolayer, but increases order associated with the carboxylates via the formation of calcium ion 

bridges that increase monolayer rigidity and decrease headgroup motion. In the case of alginate interacting with 

the monolayer without calcium bridges, we see a similar increase in order associated with the carboxylates and 

a decrease in order associated with the carboxylic acids. The mechanism for this behavior, although similar to 

that in calcium, is more likely explained by the decrease in headgroup separation associated with alginate 

interaction; the exposure of palmitic acid headgroups to the aqueous phase decreases order of the protonated 

form while at the same time increasing order of the carboxylate.  
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3.4.5 Investigation of magnesium bridging 

With complementary insights gained into the divalent cationic bridging mechanism from both theory 

and experiment, the same alginate co-adsorption experiments were performed with MgCl2, the most abundant 

divalent cation in seawater (~53 mM).88,89 Mg2+ has such a strong hydration shell that the fully hydrated Mg2+ 

only weakly interacts with the alginate and palmitic acid carboxylate moieties.45–48,101,108 Both 10 mM and 

53 mM MgCl2 solutions increase IRRAS reflectance-absorbance for the alginate-containing spectra at 

~3580 cm-1, and the magnitude of the signal increase is similar (Figures 3.8a and 3.8c). Calculation of the 

relative change reveals that the higher MgCl2 concentration causes a marginal increase in alginate co-adsorbed 

to the d31-palmitic acid monolayer (Figures 3.8b and 3.8d). With increasing MgCl2 concentration, the relative 

change in integrated peak area increases from 8% to 10% and from 3% to 9% in the TC and UC phases, 

respectively. The reduction in OH region relative change with film compression (TC to UC phase) further 

suggests weak binding. Mg2+ is not as efficient in shielding the palmitic acid carboxylate moieties from 

negatively charged alginate carboxylate moieties, yielding monolayer expansion and increased surface coverage 

in the TC phase. Film compression to the UC phase reduces the extent of available space for monolayer 

expansion, and increased dispersion forces between the lipid tails counterbalance the repulsive electrostatic 

interactions. Despite Mg2+ being ~5 times more abundant than Ca2+ in seawater, alginate co-adsorption mediated 

by Mg2+ is ~3 times weaker in comparison to Ca2+ when comparing seawater relative concentrations of 10 mM 

Ca2+ and 53 mM Mg2+. At 10 mM concentrations for both cations, Ca2+ outperforms Mg2+ by a factor of ~3 in 

the TC phase and by a factor of ~10 in the UC phase (Figures 3.1 and 3.8). 
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Figure 3.8: IRRAS spectra of the OH stretching region and the corresponding relative changes in integrated 
peak area indicate that Mg2+ induces weak alginate co-adsorption to the d31-palmitic acid monolayer. Data points 
and error bars are color-coded to indicate differences in solution composition. Surface pressure was held constant 
in the (a) tilted condensed (5 mN/m) and (c) untilted condensed (25 mN/m) phases throughout spectral 
acquisition. The relative changes in integrated peak area between the solutions with and without alginate are 
quantified in the (b) tilted condensed and (d) untilted condensed phases. Positive relative change indicates 
alginate co-adsorption to the monolayer, and 0% relative change indicates no co-adsorption.  
 

 The carboxylate region provides additional support for this weak Mg2+ bridging co-adsorption 

mechanism (Figure 3.23). For d31-palmitic acid spread onto the solution containing 10 mM MgCl2, the 𝜈J COO- 

mode is blue-shifted by 1 cm-1 in the TC phase and ~2.5 cm-1 in the UC phase, and the 𝜈BJ COO- mode is red-

shifted by 1 cm-1 in the TC phase and ~3 cm-1 in the UC phase (Tables 3.8 and 3.9). These small spectral shifts 

suggest that the d31-palmitate carboxylate headgroup becomes dehydrated with the addition of alginate to the 

solution,95 perhaps via complexation of Mg2+ to the d31-palmitate carboxylate moiety. The integrated carboxylate 
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peak areas do not change significantly between the salt water solution and alginate solution (Tables 3.12 and 

3.13), suggesting no alginate co-adsorption.  

Increasing the solution MgCl2 concentration to 53 mM leads to some features of alginate co-adsorption 

to the monolayer (Figure 3.23). The d31-palmitic acid 𝜈BJ COO-, 𝜈J COO-, and 𝜈 C-OH modes blue shift upon 

alginate addition to the solution (Tables 3.14 and 3.15), similarly to the spectra corresponding to the solutions 

containing 10 mM CaCl2. The 𝜈BJ COO- blue shifts ~0.5 cm-1 in the TC phase and ~3 cm-1 in the UC phase, the 

𝜈J COO- blue shifts ~4 cm-1 in the TC phase and ~5 cm-1 in the UC phase, and the 𝜈 C-OH blue shifts ~9 cm-1 

in the TC phase and ~12 cm-1 in the UC phase. The blue shifts are smaller than those observed with the 10 mM 

CaCl2 solution at pH 8.2, either an indication of fewer Mg2+ bridging interactions or weaker bridging 

interactions. Secondly, the 𝜈 C-OH peak area decreases while the 𝜈BJ COO- and 𝜈J COO- peak areas increase 

with alginate present in the solution, further supporting the hypothesis of alginate co-adsorption. 

The CD2 scissoring modes of d31-palmitic acid spread onto the MgCl2 solutions corroborate the findings 

from the OH stretching and COOH stretching regions. At 10 mM MgCl2, the salt water and alginate spectra 

nearly overlap (Figures 3.24a and 3.24c). There is a small increase in peak intensity of the TC spectrum 

corresponding to the alginate solution that could be attributed to alginate weakly co-adsorbed to the TC 

monolayer. Then the alginate is squeezed out upon film compression, causing the peak intensity difference to 

disappear in the UC phase. The solution containing 53 mM MgCl2 and alginate induces increased peak intensities 

in the d31-palmitic acid CD2 scissoring mode and the higher frequency regime relative to the spectra 

corresponding to the salt water solution (Figures 3.24b and 3.24d). The signal enhancement is smaller in 

comparison to the system containing 10 mM CaCl2 and alginate at pH 8.2, but the spectral trends match. Hence, 

the higher concentration of MgCl2 facilitates some alginate co-adsorption to the monolayer through Mg2+ 

bridging interactions. 

3.5 Conclusions 

 We directly observe alginate co-adsorption to an insoluble d31-palmitic acid monolayer via divalent 

cationic bridging interactions using surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) and 

molecular dynamics simulations. Ca2+ facilitates the greatest extent of alginate co-adsorption, as shown by the 
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appearance of alginate vibrational modes in the IRRAS spectra and by the ~27% and ~32% increase in surface 

coverage in the TC and UC phases, respectively. Alginate co-adsorption is dependent upon d31-palmitic acid 

protonation state, however; d31-palmitate promotes alginate co-adsorption in the presence of divalent cations, 

whereas protonation inhibits co-adsorption. Na+ cations alone are insufficient in facilitating co-adsorption. Mg2+ 

induces ~3 times weaker alginate co-adsorption at a seawater concentration of 53 mM in comparison to 10 mM 

Ca2+, and Mg2+ induces minimal co-adsorption when matching the Ca2+ seawater concentration (10 mM). The 

hydration free energy of Mg2+ is much higher than that of Ca2+, meaning that Mg2+ cannot shed its hydration 

shell as readily to facilitate bridging interactions between the d31-palmitate and alginate carboxylate moieties. 

The presence of alginate perturbs the hydration structure and dehydrates the d31-palmitic acid carboxylic acid 

headgroups, but alginate co-adsorption does not change the d31-palmitic acid lattice packing structure. Alginate 

co-adsorption is largely confined to the subsurface region of the film. Consequently, surface pressure plays a 

minimal role in the extent of alginate co-adsorption. 

 Our detailed experimental and computational characterization of the divalent cationic bridging 

interactions driving alginate co-adsorption to a sea surface microlayer (SSML) proxy film provides important 

physical and chemical insights into the potential mechanisms responsible for polysaccharide enrichment in sea 

spray aerosol (SSA). Ca2+ drives this bridging motif between the alginate and palmitic acid carboxylate moieties 

and outcompetes Mg2+ despite higher Mg2+ concentrations in seawater. Quantification of organic surface 

coverage via the OH stretching region integrated peak areas also provides a potentially useful parameter for 

aerosol representation in climate models. We demonstrate that soluble polysaccharides can interact 

electrostatically with other surface-active organic matter through seawater ionic bridging interactions, leading 

to polysaccharide surface enrichment in the SSML, and therefore, in SSA. 
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3.7 Supporting Information 

3.7.1 Molecular Dynamics System Set-Up 

 

Figure 3.9: Example of a molecular dynamics monolayer system set up to include alginate. Pictured: palmitic 
acid (brown, licorice representation), palmitate (yellow, licorice), water (cyan, lines) alginate (mauve, licorice), 
calcium (red, Van der Waals) and sodium (blue, Van der Waals). Above and below the monolayers is a vacuum 
region where no molecules were placed to approximate atmospheric air pressure.  
 

3.7.2 Mean Molecular Area Data 

Mean molecular area (MMA) data of the d31-palmitic acid and d33-cetyl alcohol monolayers measured at 

constant surface pressure are tabulated below. Alginate consistently expands the monolayer relative to the salt 
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water subphase, and the magnitude of monolayer expansion is greater at 5 mN/m than at 25 mN/m. Enhanced 

dispersion interactions between the lipid alkyl chains and increased exchange interactions likely push alginate 

out of the plane of the compressed monolayer. 

 
Table 3.1 Average mean molecular area values (Å2/molecule) and one standard deviation from the mean (σ, 
Å2/molecule) of d31-palmitic acid (d31-PA) and d33-cetyl alcohol (d33-CA) monolayers measured at constant 
surface pressures 5 mN/m and 25 mN/m. 
 

Monolayer & Subphase 
 5 mN/m 25 mN/m 

MMA σ MMA σ 
d31-PA, 0.47 M NaCl, pH 8.2 22.66 0.29 20.57 0.33 

d31-PA, 50 ppm Alginate, 0.47 M NaCl, pH 8.2 25.48 0.44 21.50 0.44 
d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 22.36 0.16 20.92 0.11 

d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 23.27 0.65 21.56 0.32 
d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 5.8 25.21 0.24 22.67 0.20 

d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 5.8 27.29 0.48 22.99 0.92 
d33-CA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 20.62 0.15 17.85 0.09 

d33-CA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 21.91 0.08 18.72 0.05 
d31-PA, 0.47 M NaCl, 10 mM MgCl2, pH 8.2 24.27 0.04 21.40 0.14 

d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM MgCl2, pH 8.2 26.51 0.13 22.08 0.17 
d31-PA, 0.47 M NaCl, 53 mM MgCl2, pH 8.2 24.17 0.10 21.80 0.09 

d31-PA, 50 ppm Alginate, 0.47 M NaCl, 53 mM MgCl2, pH 8.2 27.06 0.43 22.86 0.27 
 

Table 3.2 The ratio of d31-palmitic acid (d31-PA) and d33-cetyl alcohol (d33-CA) MMA values (Alg/SW) and 
propagated error corresponding to the 50 ppm alginate subphase MMA divided by the seawater subphase MMA. 
 

Monolayer & Subphase 
 5 mN/m 25 mN/m 

Alg/SW Error Alg/SW Error 
d31-PA, 0.47 M NaCl, pH 8.2 1.124 0.022 1.045 0.026 

d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1.041 0.029 1.030 0.016 
d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 5.8 1.083 0.020 1.014 0.041 
d33-CA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1.062 0.008 1.049 0.005 
d31-PA, 0.47 M NaCl, 10 mM MgCl2, pH 8.2 1.092 0.005 1.032 0.010 
d31-PA, 0.47 M NaCl, 53 mM MgCl2, pH 8.2 1.120 0.017 1.048 0.012 

 



 82 

3.7.3 D-Guluronate and d31-Palmitic Acid Vibrational Frequency Calculations 

To distinguish between peaks corresponding to the d31-palmitic acid monolayer or the co-adsorbed alginate, 

harmonic vibrational frequency calculations were performed using Q-Chem v. 5.3.1.116 D-guluronic acid, an 

alginate monomer primarily responsible for cation binding, was selected to model the alginate vibrational modes 

(Figure 3.10a).36,39,40 Both protonated d31-palmitic acid (Figure 3.10b) and deprotonated d31-palmitate (Figure 

3.10c) were modeled, and the atomic mass of 2.01410 was used for the deuterium atoms.117 Geometry 

optimization and harmonic frequency analysis were performed at the EDF2/6-31+G* level of theory.118 

Frequencies, intensities, and vibrational mode assignments within the frequency region of the carboxylic acid 

headgroup and the C-D bending modes (1090-1850 cm-1) are tabulated in Tables 4.3-4.5. 

 

 

Figure 3.10: Geometry optimized structures of (a) D-guluronate, (b) d31-palmitic acid, and (c) d31-palmitate. 
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Table 3.3: Harmonic vibrational frequencies, intensities, and vibrational mode assignments of D-guluronate. 
 

Wavenumber 
(cm-1) 

Intensity 
(km/mol) 

Mode Assignments 

1094.24 111.741 C-O-H Bending, C-O-C Stretching 
1100.50 145.998 C-OH Stretching 
1116.31 80.623 C-O-C Stretching, C-O-H Bending 
1148.48 211.874 C-O-H Stretching, C-H Wagging 
1154.90 2.637 C-O-H Stretching and Bending 
1206.32 34.863 C-O-H Bending, C-H Wagging 
1242.62 32.793 C-H Wagging, C-O-H Bending 
1264.93 32.675 C-H Wagging, C-O-H Bending 
1297.55 18.810 C-H Wagging, C-O-H Bending 
1317.06 32.035 C-H Wagging, C-O-H Bending 
1325.07 15.798 C-H Wagging, C-O-H Bending 
1340.30 18.708 C-H Wagging, C-O-H Bending 
1352.16 121.662 C-H Wagging, C-O-H Bending, COO- Symmetric Stretching 
1356.34 27.790 C-H Wagging, C-O-H Bending, COO- Symmetric Stretching 
1391.73 127.213 COO- Symmetric Stretching, C-H Wagging 
1400.35 16.914 C-H Wagging, C-O-H Bending 
1411.78 25.561 C-O-H Bending, C-H Wagging 
1439.87 44.051 C-O-H Bending, C-H Wagging 
1474.40 2.861 C-O-H Bending, C-H Wagging 
1547.29 384.253 C-O-H Bending, COO- Asymmetric Stretching 
1725.18 423.674 COO- Asymmetric Stretching, C-O-H Bending 
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Table 3.4: Harmonic vibrational frequencies, intensities, and vibrational mode assignments of d31-palmitic acid. 
 

Wavenumber 
(cm-1) 

Intensity 
(km/mol) Mode Assignments 

1092.09 0.403 CD3 Bending, CD2 Bending & Wagging 
1093.01 4.856 CD3 Bending 
1093.67 7.022 CD2 Bending 
1108.35 13.932 CD2 Bending & Wagging, CD3 Bending 
1116.04 2.674 CD2 Bending & Wagging 
1117.22 0.663 CD2 Bending & Wagging 
1119.12 0.914 CD2 Bending & Wagging 
1121.34 0.634 CD2 Bending 
1123.82 1.570 CD2 Bending 
1125.90 0.640 CD2 Bending 
1127.50 11.375 CD2 Bending 
1128.73 8.575 CD2 Bending, CD3 Bending 
1132.35 1.303 CD2 Bending & Wagging, CD3 Bending 
1141.51 14.964 CD2 Bending, C-O-H Bending & Stretching 
1150.56 15.657 CD2 Bending & Wagging, C-O-H Bending & Stretching 
1159.16 46.521 C-O-H Bending & Stretching, CD2 Bending & Wagging 
1167.89 4.210 CD2 Bending & Wagging, C-O-H Bending & Stretching 
1177.22 4.233 CD2 Bending, C-O-H Bending & Stretching 
1189.07 65.964 C-O-H Bending & Stretching, CD2 Wagging 
1216.54 59.856 C-O-H Bending & Stretching, CD2 Wagging 
1241.05 15.368 CD2 Wagging, C-O-H Bending 
1260.91 6.855 CD2 Wagging, C-O-H Bending 
1274.81 0.569 CD2 Wagging, C-O-H Bending 
1282.93 0.528 CD2 Wagging, C-O-H Bending 
1286.54 0.032 CD2 Wagging, C-O-H Bending 
1288.46 0.160 CD2 Wagging, C-O-H Bending 
1369.64 120.711 C-O-H Bending & Stretching 
1827.90 299.335 C=O Stretching, C-O-H Bending 
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Table 3.5: Harmonic vibrational frequencies, intensities, and vibrational mode assignments of d31-palmitate. 
 

Wavenumber 
(cm-1) 

Intensity 
(km/mol) Mode Assignments 

1091.89 7.209 CD3 Bending, CD2 Bending & Wagging 
1092.92 4.719 CD3 Bending 
1093.94 5.964 CD2 Bending & Wagging, CD3 Bending 
1108.52 0.333 CD2 Bending & Wagging, CD3 Bending 
1114.79 0.338 CD2 Bending & Wagging 
1116.53 0.014 CD2 Bending & Wagging 
1118.41 0.561 CD2 Bending & Wagging, CD3 Bending 
1120.73 0.006 CD2 Bending & Wagging, CD3 Bending 
1123.15 1.640 CD2 Bending, CD3 Bending 
1125.37 0.002 CD2 Bending, CD3 Bending 
1127.13 10.458 CD2 Bending 
1127.55 0.296 CD2 Bending, CD3 Bending 
1131.37 0.628 CD2 Bending & Wagging, CD3 Bending 
1140.96 0.701 CD2 Bending & Wagging, CD3 Bending 
1149.66 0.109 CD2 Bending & Wagging 
1162.08 2.876 CD2 Bending & Wagging, CD3 Bending 
1167.45 0.477 CD2 Bending & Wagging, CD3 Bending 
1177.28 0.702 CD2 Bending, CD3 Bending 
1198.48 0.953 CD2 Bending & Wagging, CD3 Bending 
1228.77 0.582 CD2 Bending & Wagging, CD3 Bending 
1250.96 1.753 CD2 Wagging, CD3 Bending 
1265.36 0.348 CD2 Wagging, CD3 Bending 
1275.19 0.701 CD2 Wagging, CD3 Bending 
1281.76 0.054 CD2 Wagging 
1285.41 0.085 CD2 Wagging 
1371.58 328.038 COO- Symmetric Stretching 
1678.00 637.505 COO- Asymmetric Stretching 

 

3.7.4 Carboxylate Region Spectral Fitting 

Peaks within the COOH stretching region (1150-1850 cm-1) were fitted to Gaussian functions using 

OriginPro 9.0. The software uses the Levenberg-Marquardt algorithm to perform the nonlinear curve fitting 

routine. Eight points were placed along the baseline, and a 4th-order polynomial function was fitted to those 

points and used to define the spectral baseline. Peak fitting parameters were not fixed. 
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Figure 3.11: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl at pH 8.2. 
 
 
Table 3.6: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl at 
pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1263.5 -5.02E-04 0.0501 93.7 1256.7 -6.31E-04 0.06895 102.7 
𝜈J COO- 1406.3 -1.10E-04 0.00399 34.0 1429.7 -7.92E-05 0.00509 60.4 
𝜈BJ COO- 1541.6 -4.49E-04 0.0261 54.5 1545.6 -4.23E-04 0.0263 58.4 
𝛿 H-O-H 1661.5 0.00137 0.0975 66.9 1662.0 0.00156 0.109 66.0 
𝜈 C=O 1719.6 -2.40E-04 0.00942 36.8 1725.1 -1.96E-04 0.00586 28.1 
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Figure 3.12: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl and 50 ppm alginate at pH 8.2. 
 

Table 3.7: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl and 
50 ppm alginate at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1264.7 -6.42E-04 0.0643 94.1 1260.5 -7.46E-04 0.0789 99.3 
𝜈J COO- 1402.6 -1.50E-04 0.00458 28.7 1402.9 -1.53E-04 0.00461 28.3 
𝜈BJ COO- 1537.8 -5.07E-04 0.0253 46.9 1537.3 -5.16E-04 0.0260 47.3 
𝛿 H-O-H 1658.9 0.00137 0.111 76.2 1659.6 0.00147 0.114 72.6 
𝜈 C=O 1715.4 -3.88E-04 0.0149 35.9 1718.3 -3.62E-04 0.0139 36.0 
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Figure 3.13: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl and 10 mM CaCl2 at pH 8.2. 
 
Table 3.8: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl and 
10 mM CaCl2 at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1272.6 -4.42E-04 0.0401 85.0 1268.2 -4.81E-04 0.0497 97.1 
𝜈J COO- 1410.8 -2.03E-04 0.00908 41.9 1411.5 -2.12E-04 0.00933 41.3 
𝜈BJ COO- 1540.6 -8.35E-04 0.0439 49.4 1539.9 -9.57E-04 0.0515 50.6 
𝛿 H-O-H 1658.0 0.00133 0.0946 67.0 1659.5 0.00145 0.0994 64.4 
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Figure 3.14: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl, 10 mM CaCl2, and 50 ppm alginate at pH 
8.2. 
 

Table 3.9: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl, 10 
mM CaCl2, and 50 ppm alginate at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1285.7 -3.58E-04 0.0291 76.3 1283.5 -3.77E-04 0.0318 79.2 
𝜈J COO- 

(d31-Palmitate) 
1417.8 -7.45E-04 0.0293 36.9 1417.8 -8.07E-04 0.0314 36.5 

𝜈J COO- 
(Alginate) 

1454.3 -2.16E-4 0.00415 18.0 1454.7 -2.54E-4 0.00558 20.7 

𝜈BJ COO- 
(d31-Palmitate) 

1543.0 9.58E-04 0.0432 42.3 1539.8 -8.34E-04 0.0336 37.9 

𝜈BJ COO- 
(Alginate) 

1595.4 0.00135 0.0768 53.6 1597.9 -0.00160 0.118 69.0 

𝛿 H-O-H 1671.3 0.00174 0.124 66.6 1667.3 0.00195 0.164 79.0 
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Figure 3.15: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl and 10 mM CaCl2 at pH 5.8. 
 

Table 3.10: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl and 
10 mM CaCl2 at pH 5.8. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1274.0 -4.67E-04 0.0377 75.8 1269.6 -5.11E-04 0.0448 82.4 
𝜈J COO- 1408.2 -1.27E-04 0.00570 42.0 1407.9 -1.36E-04 0.00563 38.9 
𝜈BJ COO- 1536.9 -4.40E-04 0.0225 48.0 1538.0 -5.36E-04 0.0281 49.2 
𝛿 H-O-H 1661.6 0.00128 0.102 74.9 1664.1 0.00151 0.107 66.8 
𝜈 C=O 1715.2 -4.91E-04 0.0239 45.8 1719.7 -4.36E-04 0.0209 45.0 
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Figure 3.16: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl, 10 mM CaCl2, and 50 ppm alginate at pH 
5.8. 
 

Table 3.11: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl, 10 
mM CaCl2, and 50 ppm alginate at pH 5.8. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1278.6 -4.18E-04 0.0264 59.2 1273.6 -4.86E-04 0.0363 70.1 
𝜈J COO- 1414.3 -1.67E-04 0.00834 46.8 1412.1 -1.65E-04 0.00689 39.2 
𝜈BJ COO- 1536.8 -4.42E-04 0.0314 66.8 1540.6 -4.29E-04 0.0280 61.3 
𝛿 H-O-H 1654.9 0.00121 0.0829 64.6 1659.8 0.00142 0.0969 64.0 
𝜈 C=O 1722.6 -4.12E-04 0.0162 37.0 1724.1 -4.00E-04 0.0142 33.4 
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Figure 3.17: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl and 10 mM MgCl2 at pH 8.2. 
 

Table 3.12: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl and 
10 mM MgCl2 at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1270.3 -4.53E-04 0.0398 82.6 1265.3 -5.08E-04 0.0484 89.4 
𝜈J COO- 1403.0 -2.15E-04 0.00888 38.8 1403.3 -2.36E-04 0.00911 36.3 
𝜈BJ COO- 1538.4 -6.46E-04 0.0347 50.5 1538.2 -7.39E-04 0.0393 49.9 
𝛿 H-O-H 1662.6 0.00126 0.102 75.9 1668.1 0.00151 0.130 80.9 
𝜈 C=O 1712.6 -3.79E-04 0.0159 39.5 1710.1 -6.41E-04 0.0388 56.8 
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Figure 3.18: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl, 10 mM MgCl2, and 50 ppm alginate at pH 
8.2. 
 

Table 3.13: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl, 10 
mM MgCl2, and 50 ppm alginate at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1272.1 -4.99E-04 0.0455 85.5 1271.4 -4.78E-04 0.0439 86.2 
𝜈J COO- 1404.0 -2.19E-04 0.00840 36.1 1405.7 -2.40E-04 0.0101 39.6 
𝜈BJ COO- 1537.3 -8.85E-04 0.0512 54.4 1534.9 -8.45E-04 0.0478 53.2 
𝛿 H-O-H 1657.2 0.00123 0.126 96.2 1649.7 0.00129 0.0944 68.7 
𝜈 C=O 1707.7 -6.31E-04 0.0405 60.3 1726.2 -3.58E-04 0.0200 52.4 
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Figure 3.19: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl and 53 mM MgCl2 at pH 8.2. 
 

Table 3.14: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl and 
53 mM MgCl2 at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1268.6 -4.69E-04 0.0447 89.6 1264.1 -5.37E-04 0.0543 95.1 
𝜈J COO- 1406.0 -1.89E-04 0.00768 38.1 1406.8 -2.05E-04 0.00834 38.3 
𝜈BJ COO- 1539.3 -7.13E-04 0.0381 50.1 1540.6 -8.13E-04 0.0445 51.4 
𝛿 H-O-H 1659.5 0.00125 0.100 75.6 1661.1 0.00133 0.107 75.4 
𝜈 C=O 1711.0 -2.77E-04 0.0119 40.4 1711.1 -3.01E-04 0.0154 48.2 
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Figure 3.20: IRRAS spectra and corresponding peak fits of a d31-palmitic acid monolayer at 5 mN/m (left) and 
25 mN/m (right) spread onto an aqueous subphase of 0.47 M NaCl, 53 mM MgCl2, and 50 ppm alginate at pH 
8.2. 
 

Table 3.15: Center wavelengths (λ, cm-1), reflectance-absorbance intensities (RA Int.), peak areas, and full width 
at half maximum (FWHM, cm-1) values of Gaussian fits to IRRAS spectra in the COOH vibrational mode region 
of a d31-palmitic acid monolayer (5 mN/m and 25 mN/m) spread onto an aqueous subphase of 0.47 M NaCl, 53 
mM MgCl2, and 50 ppm alginate at pH 8.2. 
 

Vibrational 
Mode 

5 mN/m 25 mN/m 
Center 𝝀 RA Int. Area FWHM Center 𝝀 RA Int. Area FWHM 

𝜈 C-OH 1277.5 -4.05E-04 0.0322 74.7 1276.1 -3.97E-04 0.0308 72.9 
𝜈J COO- 1410.3 -3.18E-04 0.0126 37.1 1412.1 -3.80E-04 0.0150 37.2 
𝜈BJ COO- 1539.9 -7.59E-04 0.0453 56.0 1543.5 -7.94E-04 0.0540 63.8 
𝛿 H-O-H 1657.6 0.00132 0.0910 64.9 1657.4 0.00141 0.0916 60.9 
𝜈 C=O 1717.7 -1.35E-04 0.00451 31.3 1732.6 1.60E-04 7.92E-07 0.00464 

 

3.7.5 d33-Cetyl Alcohol IRRAS Spectral Analysis 

The carboxylic acid stretching region (1150-1850 cm-1) was analyzed for the d33-cetyl alcohol spectra 

to further examine the extent of alginate co-adsorption to the monolayer (Figure 3.20). Cetyl alcohol only 

exhibits the C-OH stretching mode, so any carboxylic acid peaks can be attributed to alginate co-adsorption. 

Neither the 𝜈J COO-, 𝜈BJ COO-, nor the 𝜈 C=O stretches appear at either surface pressure, indicating no alginate 

co-adsorption. The 𝛿 H-O-H mode red shifts in response to alginate within the aqueous subphase, possibly 

caused by alginate solvation within the probing region of IRRAS. 
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Figure 3.21: IRRAS spectra of d33-cetyl alcohol collected and analyzed within the COOH stretching region at 
constant surface pressures of 5 mN/m (top) and 25 mN/m (bottom). The light purple curves correspond to the 
monolayer spread onto a 0.47 M NaCl and 10 mM CaCl2 subphase at pH 8.2. The dark purple curves correspond 
to the monolayer spread onto a 0.47 M NaCl, 10 mM CaCl2, and 50 ppm alginate subphase. All spectra represent 
averages of at least triplicate measurements. 
 

3.7.6 CD2 Scissoring Mode Analysis 

The CD2 scissoring mode region (1070-1110 cm-1) was analyzed using OriginPro 9.0. A baseline was fitted 

to a line between the two endpoints of the region, and then the baseline was subtracted from the spectrum. 

Following baseline subtraction, the center frequency of the CD2 scissoring mode was determined with the Peak 

Analyzer tool in Origin. 
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Table 3.16: Center wavelengths (λ, cm-1) of the IRRAS CD2 scissoring mode of d31-palmitic acid (d31-PA) and 
d33-cetyl alcohol (d33-CA) monolayers measured at constant surface pressures 5 mN/m and 25 mN/m. 
 

Monolayer & Subphase 
 CD2 Scissoring Mode λ  
5 mN/m 25 mN/m 

d31-PA, 0.47 M NaCl, pH 8.2 1089.5 1089.0 
d31-PA, 50 ppm Alginate, 0.47 M NaCl, pH 8.2 1089.5 1089.0 

d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1089.4 1089.4 
d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1089.4 1089.5 

d31-PA, 0.47 M NaCl, 10 mM CaCl2, pH 5.8 1089.5 1089.5 
d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 5.8 1089.5 1089.5 

d33-CA, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1089.0 1089.0 
d33-CA, 50 ppm Alginate, 0.47 M NaCl, 10 mM CaCl2, pH 8.2 1089.0 1089.0 

d31-PA, 0.47 M NaCl, 10 mM MgCl2, pH 8.2 1089.5 1089.0 
d31-PA, 50 ppm Alginate, 0.47 M NaCl, 10 mM MgCl2, pH 8.2 1089.5 1089.0 

d31-PA, 0.47 M NaCl, 53 mM MgCl2, pH 8.2 1089.5 1089.0 
d31-PA, 50 ppm Alginate, 0.47 M NaCl, 53 mM MgCl2, pH 8.2 1089.5 1089.5 

 

3.7.7 Radial Distribution and Number Density Profiles 

 

Figure 3.22: RDF of water Ow and Hw with respect to palmitate headgroup -OH oxygen in the presence (a) and 
absence (b) of calcium. Both systems contain alginate in the aqueous phase. 
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3.7.8 Local Order Parameters 

 

 
Figure 3.23: Local order parameters for all systems, not separated based on protonation state, with close-ups of 
the carbon C2-C4 regions.  
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3.7.9 IRRAS Spectra of Alginate Co-Adsorption via Magnesium Bridging 

 

 

Figure 3.24: IRRAS spectra of the COOH stretching region indicate weak alginate co-adsorption to the d31-
palmitic acid monolayer via Mg2+ bridging interactions. Spectral lines are color-coded to indicate differences in 
solution composition. Surface pressure was held constant in the (a), (b) tilted condensed (5 mN/m) and (c), (d) 
untilted condensed (25 mN/m) phases throughout spectral acquisition. Spectra corresponding to the salt water 
solutions are shown in (a) and (c), and spectra corresponding to the salt water solutions containing 50 ppm 
alginate are shown in (b) and (d). 
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Figure 3.25: IRRAS spectra of the CD2 scissoring mode region demonstrate weak alginate co-adsorption to the 
d31-palmitic acid monolayer in the presence of 53 mM MgCl2 at pH 8.2, and the spectra indicate no changes in 
the d31-palmitic acid lattice packing upon adsorption. Spectral lines are color-coded to indicate differences in 
solution composition. Surface pressure was held constant in the (a), (b) tilted condensed (5 mN/m) and (c), (d) 
untilted condensed (25 mN/m) phases throughout spectral acquisition.  
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Chapter 4 
Cation-Driven Lipopolysaccharide Morphological Changes 

Impact Heterogeneous Reactions of Nitric Acid with Sea Spray 
Aerosol Particles 

4.1 Abstract 

Lipopolysaccharides (LPS) in sea spray aerosol (SSA) particles have recently been shown to undergo 

heterogeneous reactions with HNO3 in the atmosphere. Here, we integrate theory and experiment to further 

investigate how the most abundant sea salt cations, Na+, Mg2+, and Ca2+, impact HNO3 reactions with LPS-

containing SSA particles. Aerosol reaction flow tube studies show that heterogeneous reactions of SSA particles 

with divalent cation (Mg2+ and Ca2+) and LPS signatures were less reactive with HNO3 than those dominated by 

monovalent cations (Na+). All-atom molecular dynamics simulations of model LPS aggregates suggest that 

divalent cations cross-link the oligosaccharide chains to increase molecular aggregation and rigidity, which 

changes the particle phase and morphology, decreases water diffusion, and consequently decreases the reactive 

uptake of HNO3. This study provides new insight into how complex chemical interactions between ocean-

derived salts and biogenic organic species can impact the heterogeneous reactivity of SSA particles. 

4.2 Introduction 

Sea spray aerosol (SSA) particles are one of the most abundant naturally-produced aerosols in our 

atmosphere. Yet their heterogeneous reactivity in the atmosphere is not well-understood as chemically simple 

systems have only been investigated.1–4 Understanding the heterogeneous reactivity of SSA particles is important 

for water uptake and cloud formation which is key to controlling our climate and reducing one of the greatest 

uncertainties in current climate models.5 SSA particles are composed of a wide array of inorganic and organic 

components, ranging from simple mixtures of sea salt to entire microbial cells.6–8 The composition of each SSA 

particle impacts its climate-relevant properties, including the interaction with gas phase species like HNO3 that 

are important for regulating nitrogen levels in the global nitrogen cycle.9 Up to 63.9% of SSA particles with 

aerodynamic sizes greater than 1 µm (supermicron SSA) contain polysaccharide signatures, including 



 113 

lipopolysaccharides (LPS), as determined from Raman microspectroscopy.8 Recently, LPS species have been 

shown to undergo acid-base reactions with HNO3 in SSA particles, changing the paradigm of heterogeneous 

reaction between SSA and HNO3 involving only inorganic species.3,10 

LPS is a major component of outer-cell membranes of gram-negative bacteria, known constituents of 

microbial life within the sea surface microlayer, and a source of SSA components. The chemical structure of 

LPS, which primarily protects microbial cells, is expected to also impact SSA reaction pathways. Each LPS 

molecule is composed of three parts: (1) lipid A, (2) inner and outer core oligosaccharides, and (3) repeating O-

antigens, a repetitive glycan polymer (Scheme 4.1).11,12 Upon reaction with HNO3, LPS can undergo acid-base 

chemistry by becoming protonated at the carboxylate and phosphate groups located within the inner and outer 

core oligosaccharides. This reaction process displaces coordinating cations (i.e., sodium, calcium, magnesium). 

The significance of this heterogeneous reaction pathway in nascent SSA particles was recently established 

through single particle studies by Raman microspectroscopy and aerosol time-of-flight mass spectrometry 

(ATOFMS).10  
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Scheme 4.1: LPS molecular structure and components. (A) Glycan symbol representation of model LPS used in 
this study. (B) Hard-sphere atomic model of LPS corresponding to the diagram in (A); white = hydrogen; teal = 
carbon; red = oxygen; blue = nitrogen; and tan = phosphorous. Detailed chemical structure can be found in 
Trueblood et al.6  

 

Different cations are known to elicit unique morphological properties in LPS monolayers and 

bilayers.13–16 Coughlin et al. reported that purified sodium LPS salt forms tube-like aggregates, while the 

presence of divalent cations calcium or magnesium induces the formation of LPS bilayer aggregates.14,15 Many 

studies have also noted that the high activity of divalent cations leads to the displacement of monovalent cations 

weakly-bound to the saccharide headgroups, with calcium binding more tightly relative to magnesium.13,15–18 

The striking sensitivity of LPS aggregate morphology to cation type, and the high preference for calcium binding, 

has also been associated with the resistance of bacteria to commercial sanitizers; calcium is suggested to cross-

link the saccharide chains together, preventing membrane penetration by the weaker cationic surfactants used in 

sanitizers.13 A similar mechanism may play a role in the reactive uptake of trace atmospheric gases by marine 

aerosols, but the specific impacts of cation type on LPS-transformed SSA particle morphology and reactivity 

remain unclear.  
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Here, we sought to understand the specific impact of monovalent and divalent cations on heterogeneous 

reactions between LPS-transformed SSA particles and HNO3. Both simplified salt-LPS model aerosols as well 

as nascent aerosols generated from a laboratory induced phytoplankton bloom were investigated. ATOFMS was 

used to reveal how cation valency drives LPS physicochemical changes in the aerosol phase, which in turn 

impacts the aerosol heterogeneous reactivity toward HNO3.19 Furthermore, explicit solvent all-atom molecular 

dynamics simulations of LPS bilayers under different cation conditions were performed to provide a molecular-

level explanation of the reactivity behavior.4 Taken together, these findings can provide substantial insight into 

the molecular mechanisms behind cation-driven LPS morphology, phase, and correlated reactivity.20,21   

4.3 Results and Discussion 

Chemical changes in LPS-containing SSA particles were investigated during the Investigation into 

Marine Particle Chemistry and Transfer Science (IMPACTS) campaign, where a phytoplankton bloom was 

induced using natural Pacific Ocean seawater.7,8 The induced bloom in the ocean-atmosphere interaction facility 

(OAIF) produced SSA particles that are representative of those produced over the ocean at varying biological 

activities.7,22 While two phytoplankton blooms were induced from the same seawater during the IMPACTS 

campaign (Figure 4.1A, green trace),7 we focus on the second phytoplankton bloom in the study due to the 

concurrent bloom of heterotrophic bacteria (Figure 4.1A, orange marker) in the seawater as well as high 

enrichment of polysaccharides in the supermicron SSA population (Figure 4.1A, blue marker) as identified 

using Raman spectroscopic analysis by Cochran et al.8 As each day contains data from tens to hundreds of 

thousands of particles, we further zoom into a single day during the 2nd bloom (Figure 4.1A, red box) where 

63.9% of the Raman-active supermicron SSA particles contain polysaccharides.  
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Figure 4.1: IMPACTS campaign data, including phytoplankton bloom time series and ATOFMS data 
corresponding to LPS-containing particles. (A) Seawater chlorophyll-a (green) and heterotrophic bacteria 
concentrations (orange) with the percentage of SSA containing polysaccharides, including LPS6 (blue), over the 
course of the phytoplankton blooms from the IMPACTS campaign. Period of supermicron SSA polysaccharide-
enrichment for further ATOFMS data analysis is noted by red box. (B) ATOFMS size histogram of Na-LPS 
(solid fill) and Mg/Ca-LPS SSA (dashed fill) from the IMPACTS campaign. (C) Percentage of reacted Na-LPS 
(solid fill) and Mg/Ca-LPS SSA (dashed fill) detected by ATOFMS with HNO3 reaction flow tube from the 
IMPACTS 2014 campaign. Error bars in (C) represent 2σ for 95% confidence limit. 
 

 Using known LPS ion markers from reference ATOFMS mass spectra of LPS (Figure 4.5), we isolated 

5,011 LPS-containing SSA particles out of a total of 52,918 particles (10.6 ± 0.3%) for one day of the study. 

Two types of particles were observed: 1) LPS-containing SSA with a dominant sodium signal (herein referred 

as Na-LPS SSA), and 2) LPS-containing SSA with dominant Mg and Ca signals (> 10% Rel. Area Intensity of 
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24Mg+ or 40Ca+, herein referred as Mg/Ca-LPS SSA) where these particles made up of 98.0 ± 0.4% and 42.0 ± 

2.2% of the total LPS-containing SSA particles, respectively. In these SSA particles, Mg/Ca-LPS SSA particles 

exhibited a more pronounced second peak in the larger aerodynamic sizes at 1.9 µm Dva (vacuum aerodynamic 

diameter, herein referred to as aerodynamic diameter) compared to Na-LPS SSA particles (Figure 4.1B). This 

can be attributed to either increase in particle size or change in shape as ATOFMS measures the particles’ 

aerodynamic diameter and a change in shape leads to an apparent change in aerodynamic diameter.23 Ultimately, 

when these particles were reacted with 350 ppb HNO3 at 60 ± 2% relative humidity (RH), a lower percentage of 

Mg/Ca-LPS SSA particles reacted (63.6 ± 8.1%) than Na-LPS SSA particles (91.7 ± 0.8%) (Figure 4.1C). Given 

the level of chemical complexity of nascent SSA particles, we hypothesize that this shift in size and the associated 

differences in heterogeneous reactivity are due to aggregation of the LPS molecules with divalent cations that 

are enriched at the air-water interface of SSML and ejected as SSA particles.24–27 We sought to investigate the 

role of cation valency using a more controlled model system consisting of specific salts and LPS using a 

synergistic experimental and computational approach.  

Model systems of salt-LPS particles were produced by atomizing LPS solutions containing different 

counter cations: Na+, Mg2+, and Ca2+. The ATOFMS, which provides size-resolved, dual polarity mass spectra 

of single particles,19 can detect single soluble and insoluble particles, as well as agglomerates of different 

particles across a wide size range (Figure 4.6).28 As done in the analysis of the IMPACTS campaign, select ion 

markers of LPS, obtained from a reference mass spectrum (Figure 4.5), were used to isolate particles containing 

LPS from the total population of atomized LPS particles. In the model systems, the generated aerosols are called 

“LPS particles” to easily distinguish this system with the complex system of the IMPACTS campaign.  

In this study, we determined that morphology and particle size of LPS particles depends upon the 

counter cation present. Results from ATOFMS on these model LPS particles revealed a more pronounced shift 

from predominantly submicron to supermicron sizes depending upon the counter cation present (Figure 4.2). 

This is consistent with observations made during IMPACTS. Na-LPS particles were predominantly in the 

submicron size range, whereas Mg- and Ca-LPS particles were in the supermicron range. In order the visualize 

the physical changes, we took transmission electron microscopy (TEM, FEI Tecnai Spirit) images of the 

negative-stained29,30 atomized LPS particles and revealed that Na-LPS particle exhibited long tubular structures 
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of single-layered structure, whereas Mg- and Ca-LPS particles exhibited bilayer sheets as previously observed 

in a study that characterized the LPS salts in bulk solution using TEM.14  

It is unclear how this change in the morphology impacts the heterogeneous reactivity of SSA particles 

in the atmosphere. To investigate this, we reacted these model LPS particles in an aerosol flow tube using 10 

ppb HNO3 at 50 ± 2 % RH, a lower and more atmospherically relevant condition.31 These simple model LPS 

particles showed very similar behavior to the complex SSA in Figure 4.1C. Na-LPS particles were more ~8 

times more reactive with HNO3 (24.1 ± 1.3%) compared to Mg- (2.5 ± 0.8%) or Ca-LPS (3.7 ± 1.2%) particles. 

These results all converge to support our original hypothesis that changes in LPS-cation structures formed with 

different counter cations present can change the atmospheric reactivity of SSA particles.   

LPS molecules tend to form bilayer aggregates in the presence of different divalent counter cations as 

observed here and in previous studies (Figure 4.2).14,32 To understand how these higher order LPS structures 

could alter heterogeneous pathways at the atomic level, we performed three all-atom explicit solvent molecular 

dynamics simulations of an E. Coli O111 LPS bilayer, the same LPS structure used in these model experiments. 

CHARMM-GUI was used to construct the model systems with coordinating cations.33–35 Each LPS molecule 

contained eight O-antigen repeating units, an R1 core, and Lipid A, and was conjugated to Mg2+, Ca2+ or Na+ 

counter cations to balance the charges.  
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Figure 4.2: (LEFT) Transmission Electron Microscope images of negative-stained atomized particles, and 
(RIGHT) normalized size distribution of LPS particles detected by ATOFMS for (A) LPS spiked with 0.010 M 
NaCl, (B) LPS spiked with 0.010 M MgCl2, (C) LPS spiked with 0.010 M CaCl2. Scale bar on the image denotes 
100 nm and the ATOFMS total LPS particles are shown in gray, whereas the reacted LPS particles are overlaid 
in red.  

 

  To elucidate the impact of the counter cation on LPS bilayer structure, we compared the equilibrium 

area per molecule and LPS chain length and orientations. The simulations show that, under constant pressure, 

the LPS bilayer in Ca2+ and Mg2+ matrices expanded laterally in area from their initial post-equilibration 

structures, while LPS in Na+ matrix contracted laterally. Figure 4.3A shows how this expansion is reflected in 
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the area per molecule of the LPS bilayers over the duration of each molecular dynamics trajectory. On average, 

the final area per molecule of Na-LPS molecules (1.91 ± 0.01 nm2) was markedly lower than both Ca- and Mg-

LPS (1.98 ± 0.02 and 2.01 ± 0.02 nm2, respectively). Additionally, in both divalent cation matrices, the LPS 

chains underwent vertical compression compared to their Na-complexed LPS counterparts. In direct 

comparisons between monosaccharide units in Ca- or Mg-LPS chains with Na-LPS chains, both calcium and 

magnesium cations induced “crunching” in the oligosaccharides resulting in chain lengths consistently shorter 

than those of Na-LPS (Figure 4.3B). This observation is in line with previous work, which has documented the 

calcium-induced “collapse” of monolayers containing LPS isolated from Pseudomona aeruginosa.36 
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Figure 4.3: Characterization of morphology and dynamics from MD simulations. (A) Area per molecule (APM) 
measurements in nm2 LPS-molecule-1 over each 200-ns trajectory. Replicates are indicated by average area per 
molecule over time with standard deviation shaded above and below, with Ca-LPS in orange, Na-LPS in green, 
and Mg-LPS in blue. (B) LPS chain length fractions of Mg-LPS (top) and Ca-LPS (bottom) as fractions of Na-
LPS chain length. Error propagation bars are given by hatches. Dotted lines indicate unity. (C)  Atomic-level 
root mean square fluctuations (RMSF) were calculated over the final 50 ns of simulation for replicates of Na-
LPS (left), Mg-LPS (center), and Ca-LPS (right) bilayers. Atoms are colored by RMSF value, with red indicating 
more fluctuations and blue indicating less fluctuations. Note that red atoms located at the edges of the simulation 
box may be due to artifacts of molecules moving across periodic boundaries and not corrected by the gmx rmsf 
module.  

 

To understand the impacts of cation valency on the LPS aggregate dynamics, we compared the atomic-

level root mean square fluctuations (RMSF). RMSF calculations indicate that the O-antigen chains on Na-LPS 

exhibited a much higher degree of flexibility than those complexed with magnesium or calcium, which adopted 

a more rigid structure (Figure 4.3C). These calculations are in line with experimentally-measured 
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compressibilities for salt-LPS monolayers, where Na-LPS monolayers demonstrate high compressibility 

compared to Ca-LPS.37 However, the impacts of cation type on the core region flexibility of the LPS molecules 

is much less pronounced, indicating that specific cation interactions within the saccharide chains are more 

impactful to the overall dynamics of LPS bilayers than interactions with the R1 core or Lipid A.  

To understand how the morphological changes in the LPS bilayer impact the reactivity of the LPS 

aggregate, we calculated water diffusion coefficients and water density for each system. The diffusivity of water 

throughout the LPS when complexed to sodium was significantly higher than when complexed to magnesium 

or calcium (Figure 4.4A). Additionally, measurements of water density throughout the bilayers indicate that 

water molecules in the Na LPS bilayers were able to occupy space between the O-antigen regions of the LPS 

molecules. Conversely, the water in Ca/Mg LPS bilayers is mainly concentrated in the core region of the LPS 

(Figure 4.4B). The dehydration of the saccharide regions as indicated by low water occupation and diffusion 

constants in Ca/Mg LPS bilayers likely accounts for the reduced HNO3 reactivity of these LPS particle types, as 

the morphology of these Ca/Mg LPS particles prevents diffusion of dissolved HNO3 into the LPS core where it 

can undergo protonation reactions at the phosphate and carboxylate sites.  
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Figure 4.4: Water diffusion and density calculations from MD simulations. (A) Water diffusion coefficients of 
LPS bilayers complexed to either sodium (green), magnesium (blue) or calcium (orange). (B) Water density 
measurements for replicate 1 of each counter-cation averaged over the entire 200-ns trajectory. Water is 
visualized by color, where Na-LPS is given by green, Mg-LPS is given by blue, and Ca-LPS is given by orange 
volume maps, overlaid by corresponding LPS molecules. (C) Schematic representing how water diffusion 
impacts HNO3 reactivity based on structural changes in the LPS molecules.  

 

 One possible explanation for the cation-dependent differences in morphology and reactivity of LPS 

bilayers is that divalent cations, by chelating two singly-charged reactive sites each, deform the structures of the 

oligosaccharides while positioning them into ideal cross-linking conformations, which simultaneously 

dehydrates the O-antigen regions and blocks the movement of water.13,15,16,36,37 Monovalent sodium cations do 

not appear to significantly disrupt the alignment of the LPS molecules; however, divalent cations induce 
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structural deformation away from the bilayer normal in the oligosaccharide chains, which increases the 

molecular footprint of each LPS molecule and causes the bilayer to expand. Notably, the increase in area per 

molecule does not correspond to an increase in water diffusion throughout aggregate; rather, the LPS 

conformations hinder water diffusion by forming a relatively dehydrated and intertwined network of saccharide 

chains, also known as microgels, which have been observed in marine environments.38 Although the Na-LPS 

bilayer adopts a lower area per molecule, the lower specificity of the saccharide chains to sodium and the 

alignment of the molecules allows for greater molecular flexibility. This more flexible structure promotes the 

diffusion of water and small molecules such as nitric acid, which increases the overall heterogeneous reactivity 

of Na-LPS aggregates compared to the divalent analogs.  

4.4 Conclusion 

SSA particles have been shown to exhibit a wide range of heterogeneous reactivities at the single particle 

level.1,39 Results from this study provide a detailed atomic-level examination of the factors that helps explain the 

observed variation in reactivity in LPS-containing SSA particles. Specifically, cation type elicits differences in 

physicochemical properties of LPS-containing marine aerosols, highlighting the role that counter cations play 

on aerosol structure and atmospheric reactivity. This discovery not only has important implications for other 

atmospheric heterogeneous reactions including oxidation reactions, but also in key surface processes such as 

water uptake, cloud droplet and ice nucleation.40–44 This study demonstrates how the addition of biogenically-

derived LPS molecules can impact SSA physicochemical properties and reactivity, warranting further 

investigations into how these morphological changes impact relevant properties including cloud and ice forming 

abilities. 
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4.6 Supporting Information 

Further information on the experiment methods and setup, size distribution of atomized LPS particles, 

and ATOFMS data showing the averaged mass spectra of LPS particles and molecular dynamics simulations are 

given in the Supporting Information. This material is available free of charge via the Internet at 

http://pubs.acs.org. All data and IPython notebooks for this work is available as part of the UCSD Library Digital 

Collections (https://doi.org/10.6075/J0862F04 & https://library.ucsd.edu/dc/collection/bb96275693). 

4.6.1 Lipopolysaccharide (LPS) Aggregation and Data Analysis 

 Lipopolysaccharide (LPS) powder (Sigma-Aldrich, L4130, lot #: 064M4125V, 085M4107V), NaCl(s) 

(Acros Organics, 42429-5000, lot #: B014114413), MgCl2·6H2O (Sigma Aldrich, M33-500), and CaCl2·2H2O 

(Alfa Aesar, 33296, lot #: U13B016), were purchased and used without further purification. Method of LPS 

aggregation was adapted from previous studies.45–48 0.1 g of LPS was dissolved in 200 mL of ultrapure water 

(Millipore) to be analyzed as a reference standard. Three additional solutions of same LPS concentration were 

prepared with NaCl added to the 1st solution (0.1169g), MgCl2·6H2O added to the 2nd solution (0.4066g), and 

CaCl2·2H2O added to the 3rd solution (0.2904 g), all ending with salt concentration of 0.01 M. All solutions with 

LPS were sonicated for minimum of 30 min to ensure complete dissolution of reagents. Aliquots (100 mL) were 

taken out of each solution immediately after preparation to be atomized for initial analysis. Rest of the solutions 

were incubated for 72 hours at room temperature (24 ± 1 oC), constantly stirred using an orbital shaker. The 

solutions were then atomized for analysis. 

Collison atomizer49 was used to atomize the solutions (1.5 SLPM). Atomized particles were dried using 

two diffusion driers (RH < 10%) and sent to aerosol time-of-flight mass spectrometer (ATOFMS). ATOFMS 
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provided single particle size and chemical composition between 0.3-3.0 µm Dva (vacuum aerodynamic 

diameter).50 Further details on the instrument can be found elsewhere.50 In brief, particles are drawn into the 

ATOFMS nozzle inlet and are accelerated through two stages of differential pumping. The particles then pass 

through two orthogonally placed continuous wave lasers (Coherent, OBIS 1236438, 405 nm/50 mW and OBIS 

1236443 488 nm/ 30 mW, respectively). Particle velocity is calculated based on the particle transit time between 

the two lasers. External calibration curve generated using polystyrene latex spheres of known diameter and 

density is used to convert the velocity to Dva. Particle velocity also triggers pulsed Q-switched Nd:YAG laser 

(Quantel, 266 nm, 8 ns width, 700 µm spot size, 3 × 107 W cm-2) that desorbs and ionizes each particle. Positive 

and negative ions formed from each particles are detected simultaneously using a dual-polarity reflectron time-

of-flight mass spectrometer, equipped with microchannel plate detectors (MCP, Photonis, 931377). Acquired 

data were then imported into MATLAB (The Math-Works, Inc.) with software toolkit FATES51 for further data 

analysis. Equations (4.1) and (4.2) were used to calculate the uncertainty in the reported fractions of particles, 

where F is fraction, x is number of particles containing select ion marker, N is total number of particles, and SE 

stands for standard error of 1σ. Error reported in this study is 2σ for 95% confidence limit. 

        𝐹 =	 S
%

                   (4.1) 

 𝑆𝐸 = 	fT(96T)
%

                  (4.2) 

  

After sampling with ATOFMS, the particle flow was sent to aerosol particle sizer (APS, TSI Model 

3321, 1 SLPM sample flow), and scanning mobility particle sizer (SMPS Model 3936 and 3938, operating at 

0.3/3.0 SLPM sample/sheathe flow). APS and SMPS measures particles with aerodynamic diameter (Da) 

between 0.6 and 20 µm, and mobility diameters (Dm) between 0.013 and 0.7 µm, respectively.  Averaged number 

size distributions from the two instruments were merged by converting both Da and Dm to the physical diameter 

(Dp),52 assuming all particles had a density of 1.8 g cm-3 and were spherical.53 It is important to note that as the 

sampled particles were dried, the spherical particle assumption may not be accurate at all times. 

 Aerosol reaction flow tube (0.048 m i.d. x 1.5 m length) was used to probe the reactivity of the particles. 

HNO3 permeation tube (Kin-Tek, HRT-010.00-2022/60) in a temperature-controlled chamber (30 oC) was 
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utilized as a constant source of reactant gas and all reaction studies were performed after 30 min of system 

equilibration and atomizing NaCl particles through the flow tube to confirm the reaction as a daily standard. The 

concentration of the HNO3 for the LPS aggregate reactivity study was approximately 10 ppb, with residence 

time and relative humidity (RH) of the flow tube of 1.8 min and 50 ± 2 %, respectively. The exit flow of the 

flow tube was split between a RH and temperature probe (Vaisala, HMP110) and ATOFMS which sampled the 

particles after passing through two diffusion driers. 

 Atomized LPS particles were also collected for transmission electron microscopy (TEM) imaging using 

Aerosol Devices Inc. Liquid Spot Sampler for 60 min at 1 SLPM into 0.75 mL of liquid volume. Bulk sample 

prior to atomization were also taken. Bulk (5 µL) and spot sampler collected liquid (10 µL) were then applied to 

the TEM grids (Fisher Scientific, 50-930-847) and were prepared and stained using the methods outlined in 

Booth et al.54 and Passmore and Russo55 except for using uranyl acetate and not uranyl formate. These samples 

were then imaged using FEI Tecnai Spirit TEM with the settings of 120 kV, 1.5 s exposure time, and spot size 

of 3. Overview images were taken with ~20,000x magnification, where the detailed images reported in the 

manuscript are taken with ~50,000x magnification. Images and its metadata were acquired using SerialEM 

(https://bio3d.colorado.edu/SerialEM/, v.3.1.1a) and were analyzed using ImageJ (https://imagej.nih.gov/ij/). 

4.6.2 Lipopolysaccharide (LPS) System Preparation for Molecular Dynamics Simulations  

CHARMMGUI56 was used to build the LPS bilayer starting structure. The E.Coli O111 antigen and R1 

core structure were chosen, with 8 repeating units of the O111 antigen. The starting box structure was determined 

as 70 Å for the plane of the bilayer, with a 30 Å water buffer on both sides. Each molecule of LPS was placed 

in the bilayer with a surface area of 190 Å2 per LPS, for a total of 52 LPS molecules. The phosphates and 

carboxyl groups of the O111 repeats and Core domain were balanced with either Ca2+, Mg2+, or Na+. Each 

phosphate maintained a net charge of -1 in the simulation to replicate a ~ pH of less than 6 environment in the 

context of a sea spray aerosol. Approximately 77,000 TIP3P waters57–59 were placed in each system in the water 

buffer region as well as between the O antigens. The CHARMM36 force field60 was used to parameterize the 

molecules and the GROMACS 2018 MD engine61,62 was used to perform simulations.  
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4.6.3 Lipopolysaccharide (LPS) All-Atom Molecular Dynamics Simulations 

Simulations were minimized and equilibrated using a NVIDIA GK110 GPU (GeForce GTX Titan, 

NVIDIA, Santa Clara, CA). All production runs utilized the Extreme Science and Engineering Discovery 

Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.63 

Specifically, simulations were performed on the Bridges supercomputer, which is supported by NSF award 

number ACI-1445606 at the Pittsburgh Supercomputing Center (PSC).64 The structure went through one step of 

minimization using the steepest descent gradient65 algorithm and six steps of equilibration were performed. Each 

step of equilibration was performed for 250 ps of simulation, for a total of 1.5 ns of equilibration. GPU-enabled 

GROMACS 2018.3 production runs were carried out as an NTP ensemble at 298.15 K, with a 2-fs time step, 

and particle mesh Ewald66 electrostatic approximation with a nonbonding cutoff of 12 Å. Langevin dynamics67 

with a collision frequency of 1.0 ps-1, a pressure relaxation time of 2.0 ps, and with SHAKE bond constraints on 

hydrogen bonds.68 

4.6.4 Lipopolysaccharide Simulation Analyses 

Analyses were performed using built-in GROMACS modules and MDTraj69 in the IPython Jupyter 

Notebook environment.70 All IPython notebooks for this work will be made available as part of the UCSD 

Library Digital Collections: Center for Aerosol Impacts on Chemistry of the Environment (CAICE) 

(https://library.ucsd.edu/dc/collection/bb96275693). Images were taken with VMD.71 

4.6.5 Investigation into Marine PArticle Chemistry and Transfer Science (IMPACTS) Campaign 

Experiment Methods 

 Detailed experimental methods, including the phytoplankton bloom methods, on-line and off-line 

instrument sampling, and other sampling protocols can be found elsewhere.72–75 Simplified schematic drawing 

of the ocean-atmosphere interaction facility (OAIF), detailing the experiment setup involving the ATOFMS and 

the aerosol flow tube, is depicted in Figure 4.7. Filtered air using HEPA, activated carbon, and potassium 

permanganate filters were supplied to the headspace of the wave flume, with air flow speed of approximately 5 

cm s-1. Hydraulic paddle generated waves that broke off the angled beach, produced realistic sea spray aerosols 

(SSA) over the course of the induced phytoplankton bloom experiment. Port placed downwind of the breaking 
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waves sampled the aerosols to the connected instruments in the study through a laminar flow manifold. Flow 

tube parameters for the IMPACTS campaign were: HNO3 concentration of approximately 350 ppb, with 

residence time and relative humidity (RH) of the flow tube of 2 min and 60 ± 2 %, respectively. 

 

Figure 4.5: Averaged mass spectra of atomized LPS particles, with select ion markers used for identification of 
LPS containing particles in atomized samples of LPS salt solutions.  
 

 

Figure 4.6: Merged APS and SMPS Number (red) and calculated surface area (blue) size distributions of 
atomized LPS particles.   
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Figure 4.7: Schematic drawing of the simplified IMPACTS campaign experiment showing the OAIF and the 
ATOFMS with aerosol flow tube. Angled beach for breaking waves is colored brown.  
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Chapter 5  
All-Atom Molecular Dynamics Simulations Reveal 

Microemulsion-Like Phase Behavior in Model Submicron 
Marine Aerosols  

5.1 Abstract 

Submicron sea spray aerosols ejected through bursting film caps at the ocean surface contain nearly 

50% organic material by mass. Their morphology impacts their climate-relevant properties such as cloud 

condensation, uptake of atmospheric gases, and interaction with solar radiation. The study of submicron aerosols 

is hindered by limitations in single-particle analysis techniques, necessitating the use of computational methods 

to interrogate these systems at the molecular level. Here, large-scale all-atom molecular dynamics simulations 

are performed on 40-nm model aerosols to investigate how chemical complexity impacts the partitioning of 

organic material throughout the particle. We consider a range of organic constituents with varying chemical 

properties while also probing the impact of divalent cations. Our results indicate that despite variations in 

chemical complexity, complete phase separation between organic and aqueous components is unlikely. 

Surfactants readily partition between both the surface and interior and may play a role in stabilizing less-soluble 

organics in dispersed droplets. Our work suggests that submicron organic marine aerosols exhibit a 

microemulsion-like morphology in contrast to widely-accepted phase separation models.  

5.2 Introduction 

Atmospheric aerosols can impact climate by nucleating cloud droplets and ice crystals, scattering, 

absorbing, and reflecting solar radiation, and reacting with or sequestering atmospheric gases (e.g., pollutants). 

The representation of these aerosols in climate models contributes significant uncertainty to our predictions of 

global warming or cooling.1,2 Sea spray aerosols (SSA) released into the atmosphere through bubble bursting at 

the ocean surface contain a wide range of biological and organic molecules, including protein, saccharides, 

alkanes, and even whole or fragmented bacteria and viruses.3–7 The immense chemical diversity of SSA, 
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combined with significant limitations in single particle analysis techniques, makes the estimation of their climate 

impacts challenging.  

Aerosol morphology is a critical driver of atmospheric properties; particle surfaces are responsible for 

interacting with gases and sunlight,8–11 while the organization of their interior regulates the absorption and 

diffusion of water which can control reactivity and phase state.12,13 The current understanding of SSA 

morphology is derived from experimental observation. It has been widely accepted that SSA adopt a so-called 

“core-shell” morphology,13–18 in which organic materials phase separate to the aerosol surface to form a thick 

organic coating around the aqueous core (Figure 5.5A). Other biphasic morphologies have been observed, as 

well as an evenly-mixed homogeneous morphology (Figure 5.5).19–26 Microscopy techniques such as atomic 

force microscopy (AFM), scanning electron microscopy (SEM), and cryogenic transmission electron 

microscopy (cryo-TEM), while extraordinarily valuable, require the deposition of aerosols onto a substrate 

which alters particle shape and surface area,27 necessarily compromising the structural integrity of the particle. 

Other techniques such as microfluidics and aerosol optical tweezers (AOT) are similarly limited in their size 

resolution, aerosol generation methods, and for AOT, ability to investigate non-spherical particles.  

Molecular dynamics (MD) simulations have become a more popular method in recent years as an 

alternative to conventional wet lab techniques to interrogate a variety of properties of nanoscale aerosols, 

including water condensation,28–34 atmospheric gas uptake,35 coalescence,36 and phase state.17,30,32,33,37–41 A 

majority of studies investigate small aerosol clusters containing low molecular-weight mono- and dicarboxylic 

acids related to anthropogenic or natural emission of volatile organic carbon. Other studies have approximated 

sea spray by combining medium-chain fatty acids or free amino acids with saltwater clusters. A central limitation 

to all MD studies is balancing system size and complexity with simulation length, making the simulation of 

large, complex aerosols for statistically significant timescales particularly challenging. Thus, the aerosol models 

studied to date have largely contained simple binary mixtures in the size range of ~2-12 nm with simulation 

lengths of ~2-10 ns. However, despite the short timescales and small system sizes, these simulations have 

overwhelmingly supported experimental evidence that insoluble organics fully phase separate, typically 

resulting in an organic coating at the particle surface.   
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In the present work, we aim to bridge the gap between experimental resolution and previous small-scale 

studies by 1) extending the aerosol size up to four-fold in comparison to previous all-atom MD simulations; and 

2) increasing the chemical complexity of both the organic and inorganic phases to be more representative of 

nascent sea spray. Mimicking realistic SSA complexity, we simulate three different 40-nm diameter aerosol 

systems for 500-1000 ns each in triplicate. For each system, we increase the chemical complexity of the organic 

phase starting with a simple fatty acid and protein mixture, then adding perturbations of lipopolysaccharides, 

free glucose, and neutral glucose oligosaccharides. We evaluate particle shape and size, partitioning of the 

organic material, and extent of surface coverage by organic surfactants. Our simulations give us new insights 

into how particle phase and morphology are impacted by chemical diversity, and how that in turn may impact 

climate-relevant properties of submicron sea spray.  

5.3 Experimental 

5.3.1 Experimental Design. 

The driving science question was to investigate the impacts of chemical complexity on the phase, 

morphology, and dynamics of nanoscale marine aerosols. We had several limitations to keep in mind while 

designing the experiments. First, the CHARMM36 forcefield42–44 was used for all simulations, and care was 

taken to ensure that only molecules that had been sufficiently parameterized within the forcefield were 

investigated. Additionally, ion concentrations were kept within the forcefield accuracy limitations. Secondly, 

30-50 nm diameter aerosols are the most difficult to study experimentally due to their small size yet correspond 

to computationally large systems containing multiple millions of atoms and require leadership class computing 

facilities. We thus needed to carefully plan our simulations so that they would be computationally feasible and 

would still give statistically rigorous results. Finally, the largest limitation is the vast chemical complexity of 

nascent marine aerosols. There is consensus on, broadly, the major classes of organic compounds, but narrowing 

down our selection of molecular components to include the most impactful species was non-trivial. We 

ultimately chose to build three 40-nm diameter aerosol systems to be run in triplicate (9 total simulations), with 

each system representing a step up in chemical complexity, i.e., adding a new molecular component to the 

organic mass fraction.  
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The chemical components of the SSA models were selected based on the most up-to-date molecular 

analyses of nascent submicron SSA; although, it is worth noting that at the time of writing, only an estimated 

25% of the total chemical species found in SSA has been fully characterized.45 There is, however, a consensus 

on the classes of molecules observed in SSA. Fatty acids make up an estimated 2-20% of the observed organic 

species by mass, with chain lengths varying from 12-18 carbons for the most abundant subset.7 Thus, our most 

basic system (“B”) is composed of an organic fraction containing only saturated fatty acids in a 1:2:4:3 ratio of 

chain lengths 12, 14, 16, and 18 carbons, respectively. The mass fraction of proteinaceous material in SSA is 

unknown, but most likely highly variable. We chose to initialize our simple system with a number of 

Burkholderia cepacia lipases (BCL). BCL is a robust enzyme found in SSA that has, notably, been observed to 

retain some activity after aerosolization.4,46,47 This enzyme was also selected because of the authors’ familiarity 

with its structural, biological, and enzymatic properties, as well as the ease with which collaborators could 

incorporate it into subsequent laboratory studies.48,49 The number of lipases remains constant throughout our 

study at a mass fraction of approximately 3%. Finally, we initialized our basic system with 0.4 M NaCl to reflect 

the salinity of sea water. 

 To understand the specific impacts of chemical complexity on submicron SSA, we chose to both 

increase the cation complexity as well as the complexity of the organic species. In the subsequent two steps, the 

aqueous phase contained approximately 0.11 M Mg2+, 25 mM Ca2+, and 20 mM K+, in addition to the existing 

NaCl concentration. When considering the components of the organic fraction, we focused on systems that had 

been studied before both computationally and experimentally, so that our simulations could ultimately be 

validated by laboratory experiments. For the first step, system “L”, we added lipopolysaccharides, which are 

components of bacterial cell membranes that are often found in SSA due to cellular breakdown. We expected 

that this addition would be a valuable perturbation to the simple system in two major ways: first, it had been 

discovered that LPS-containing particles readily uptake and react with nitric acid in the atmosphere and are thus 

chemically significant.12,50 Second, based on previous studies, we expected that the interaction between LPS and 

divalent cations such as Ca2+ would cause a phase change12,51–56 within the particle that could be explored 

computationally.  
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 Finally, it is estimated that at least 2-10% of the organic carbon mass in submicron SSA is made up of 

poly- and oligosaccharides, as well as free saccharides, the most abundant monomer of which is glucose.45,57,58 

Based on this data, for the final system (labeled “A”), we added a combination of free glucose and laminarin, a 

neutral glucose oligosaccharide. Recently, Richards et al. demonstrated that free glucose and other 

monosaccharides in sufficiently high concentrations and in the presence of divalent cations—typical conditions 

within atmospheric aerosols—form supramolecular ion-bridging interactions that can induce phase transitions 

to a rigid gel.59 This unique phase behavior had been observed for macromolecular systems (such as those 

containing LPS described above) but not yet with small molecules. This final step up in complexity allows us to 

explore the impacts of neutral saccharides within the overall mixture and computationally explore any ionic 

bridging interactions that could lead to phase changes.   

There are many caveats to our analysis given that the chemical compositions we explored are simplified 

approximations of realistic complexity. Given the enormous amount of chemical complexity within SSA, we 

maintain that the best approach is to start with a simple baseline and test small perturbations to understand the 

unique impacts of each contribution, which also gives us the opportunity to explore and extract previously 

unknown and untested intermolecular interactions in atomistic detail. We note that all fatty acids here are fully 

protonated to reflect the low pH environment of SSA.60–62 The fatty acid protonation state, as well as the lack of 

unsaturated fatty acids, gives the monolayers and aggregates unique properties that may not necessarily reflect 

the true properties found in natural SSA. For example, fully protonated fatty acids are largely insoluble, and their 

monolayers are highly rigid and gel-like, especially without double bonds which would increase its fluidity.63 

Additionally, protonated fatty acids preferentially aggregate into oil droplets in the aqueous phase, whereas 

anionic forms tend to assemble into micellar and lamellar structures.63,64 Finally, the work described in this paper 

represents primary, rather than aged, SSA; additional studies containing perturbations with more oxidized 

species are underway. 

5.3.2 Constructing Sea Spray Aerosol Models 

 All fatty acid structures and glucose are readily available and parametrized in the CHARMM36m42–44 

forcefield. Our laminarin oligosaccharide model was constructed using the CHARMM-GUI glycan modeler.65–
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67 The oligosaccharide contained a total of 15 glucose monomers linked together with 𝛽(1à3) linkages. 

Branches were incorporated at monomers 3 and 9 with 𝛽(1à6) linkages (see Figure 5.6). The E. coli 

lipopolysaccharide structure included here was generated using CHARMM-GUI’s LPS Modeler68 with Type 1 

Lipid A, an R1 core, and 8 O11-antigen repeats. Details for this structure can be found in Lee and Dommer et 

al.12 The structure of BCL (PDB ID: 3LIP)69 was prepared for a pH 5 environment using NAMD Psfgen.70 The 

number of water molecules was calculated based on an estimated45 relative humidity for the particles of 70%, 

amounting to ~50% water by mass.45 

The ingredients were distributed randomly during packing so as to allow the components to self-

assemble without introducing any bias into the system. All molecular structures were randomly packed into 16 

geometrically-distinct segments (to later combine into a sphere) using PACKMOL71 in 3 successive rounds of 

packing. The most difficult structures to place (macromolecular structures BCL, laminarin, and LPS) were 

packed first, followed by small molecules including fatty acids and glucose, and then ions and TIP3P72,73 water. 

Packing the ingredients into small segments, which could then be patched together into one 40-nm diameter 

sphere, rather than packing all ingredients into a single large sphere at once, significantly reduced the packing 

time needed. The authors note that for future system-building, packing time can be further reduced by packing 

the ingredients at their respective concentrations into one small box and simply replicating and translating the 

box as needed. We would also like to note that it is possible to easily avoid catastrophic calculation errors when 

determining the ion counts and neutralizing the total system charge by using VMD and NAMD’s Psfgen, 

Autoionize, and Solvate plugins,70,74 which are invaluable tools for building large and complex systems.  

 Due to the difficulty of packing all of the ingredients to our target mass percentages (and significant 

computing resource restrictions), each replicate was constructed independently and immediately launched into 

simulation. Subsequent replicates were generated by modifying the ingredient recipe slightly to improve the 

chances of hitting our target mass percentage values. Additionally, fluctuations in the random seed in the 

PACKMOL packing algorithm introduced subtle differences in the number of each ingredient placed for each 

of the packed segments. Thus, the initial molecular configurations between replicates of the same system contain 

small random, as well as guided, variations. Table 5.1 outlines the specific molecular components and their mass 

percentages within each model SSA construct.  
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Table 5.1: Molecular components of model SSAs and their mass percentages. Because of the variable nature of 
various carbohydrates and protein, the molecular weights of selected structures used in this work are provided. 
The systems are labeled B for the simplest system, “L” for the medium complexity system, and “A” for the 
highest complexity system. Numbers 1-3 represent each individual replicate.  

 

5.3.3 All-Atom Molecular Dynamics Simulation 

 The authors received a generous allocation through NSF-CAICE to run dynamics on the UIUC Blue 

Waters and TACC Frontera supercomputing facilities. Memory-Optimized NAMD 2.14, which has excellent 

scaling for very large systems across thousands of nodes,70,75–77 was used to run all all-atom explicit-solvent 

molecular dynamics simulations with periodic boundary conditions. Each 40-nm aerosol was placed in an empty 

box approximately 55 nm to a side. The authors note that, due to the large size of the SSA model, small 

deformations in the aerosol as it evolves could cause it to interact with itself across a PBC boundary if the box 

is not sufficiently large. We found that leaving a 75 Å buffer on all sides of the aerosol particle was sufficient to 

prevent self-interaction.  

Chemical Component, 
MW (g/mol) B1 B2 B3 L1 L2 L3 A1 A2 A3 

Organics 

Dodecanoic acid 3.40 3.67 3.63 2.59 2.79 3.81 2.06 2.00 2.10 

Tetradecanoic acid 7.75 8.38 8.31 5.91 6.37 7.97 4.64 4.58 4.80 

Hexadecanoic acid 17.41 18.85 18.68 13.26 14.3 14.65 10.44 10.31 10.81 

Octadecanoic acid 14.48 15.67 15.52 11.04 11.9 13.54 8.68 8.58 9.00 

BCL (34,100) 2.31 2.47 2.44 2.6 2.85 2.60 2.56 2.53 2.66 

LPS (10,798) -- -- -- 6.70 7.23 6.58 5.41 6.42 6.73 

Glucose -- -- -- -- -- -- 3.39 3.90 4.09 

Laminarin (506) -- -- -- -- -- -- 0.46 3.64 3.82 

Inorganics 

Water 51.92 48.07 48.55 56.60 53.22 49.64 58.30 55.25 53.10 

Na+ 1.01 1.13 1.12 0.16 0.17 0.16 0.4 0.37 0.39 

Ca2+ -- -- -- 0.18 0.20 0.18 0.18 0.24 0.24 

Mg2+ -- -- -- 0.09 0.10 0.09 0.17 0.23 0.24 

K+ -- -- -- 0.07 0.08 0.07 0.16 0.23 0.24 
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Each system was energy minimized, heated, and equilibrated in multiple steps. Conjugate-gradient 

energy minimizations were performed with fatty acid headgroups harmonically restrained first at 100 kcal/mol 

Å2 and then 10 kcal/mol Å2 for 15,000 cycles each. The systems were heated from 23 K to 298.15 K in increments 

of 25 K for 100 ps each at a 2-fs timestep. Finally, the systems were equilibrated at 298.15 K by slowly releasing 

harmonic restraints on the lipid headgroups over 500 ps. Production runs were carried out for 500 ns for each 

system and extended to 1 𝜇s in total for the B1 and A1 replicates. For all procedures, particle-mesh Ewald78 

electrostatics were employed for long-range electrostatic interactions; non-bonded van der Waals interactions 

and short-range electrostatics were calculated with a 12 Å cut-off. The SHAKE79 algorithm was used to fix 

hydrogen bond lengths and a Langevin thermostat with a damping coefficient of 5/ps was applied to maintain 

temperature control at 298.15 K. Table 5.2 details the atom counts for each system, as well as the total time 

simulated for each replicate.  

Table 5.2: Atom counts and total simulation time for each system. The systems are labeled B for the simplest 
system, “L” for the medium complexity system, and “A” for the highest complexity system. Numbers 1-3 
represent each individual replicate.  

 

5.4 Results and Discussion 

 To track the evolution of aerosol shape, we quantify the degree of asphericity, 𝜙, and the relative shape 

anisotropy parameter, 𝜅2, which can be derived from the radius of gyration tensors. A detailed description of the 

calculations and derivations used here is given in the Supporting Information.  As the nanoaerosols evolved, 

their initial spherical shape often deformed into an ellipsoid, which can be characterized using the asphericity 

term. This term is zero when the particle is a perfect sphere and increases as the shape evolves away from 

sphericity. In a complementary analysis, 𝜅2 was used to describe the symmetry of the particle. For rod-like 

symmetry, 𝜅2 approaches 1, where all atoms lie along a line, while a value of 0 indicates that the particle has a 

higher degree of symmetry, such as that of a perfect tetrahedron or sphere. The evolution of 𝜙 and 𝜅2 for each 

 B1 B2 B3 L1 L2 L3 A1 A2 A3 

Atom count (× 10') 3.083 2.907 2.933 2.649 2.462 2.731 2.102 2.670 2.546 

Simulation time (ns) 1,000 515 502 533 574 530 1000 597 593 
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replicate of each aerosol system is plotted over time in Figure 5.1. Our analysis of aerosol shape was based on 

the one developed by Karadima et al.17,18,80    

 
Figure 5.1: Evolution of aerosol shape over time, designated by the asphericity factor (top left) and relative 
shape anisotropy factor (bottom left).  MD snapshots of B1 and B2, corresponding to the xy and xz planes at 500 
ns, are provided on the right for visual shape comparison. Lipids are colored orange, red, and yellow, BCL 
appears in green, and water in blue. 
 
 Figure 5.1 indicates that the largest deviations from sphericity occur with the evolution of the B 

systems, which contain organic fractions composed of only fatty acids. The first and third B replicates also show 

the largest changes in symmetry, corresponding to the most dramatic changes in the 𝜅2 parameter. To illustrate 

the variations in aerosol shape, we provide MD snapshots from the 500 ns timepoint for replicates B1 and B2. 

The B1 replicate (solid line) evolves into an ellipsoidal shape within the first 100 ns of simulation time. B2 

(dashed line) initially approaches and hovers around 𝜙 = 1000 before falling to 𝜙 = 500 at 200 ns, which 

corresponds to a more spherical and symmetric structure than B1 and more closely resembles the shape of the 

other systems.  

 These dramatic evolutions in particle shape appear to correspond to the higher fatty acid content relative 

to the other systems. Fatty acids, particularly protonated fatty acids, have a high hydrophobicity and favor 
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formation of highly ordered structures on a rapid timescale. This self-assembly has been explored experimentally 

on bulk phase fatty acids in aqueous solutions63 and our work highlights a similar behavior. Once the surface 

saturates with a monolayer, fatty acids begin to aggregate in bulk, forming micelles and lamellar vesicles of 

tunable size based on fatty acid chain length, temperature, pH, and salt concentration.63,81–90 In fact, vesicle 

formation within intact supermicron sea spray has been observed previously by Patterson et al. via cryogenic 

transmission electron microscopy.3 However, nanoaerosols do not have sufficient volume for micelle or vesicle 

formation. Rather, the excess lipids—those not occupying space at the surface—will aggregate into amorphous 

oil droplets that either adsorb to the monolayer or are freely suspended in the aqueous phase. The aggregates 

that form in the present simulations often take the form of a bilayer and/or lipid agglomerate. For replicates B1 

and B3, the aggregate is a bilayer that bisects the aerosol nearly completely, leading to the evolution of an 

ellipsoidal shape; in the more spherical B2, the aggregate consists of double bilayers that adhere to one side of 

the particle (Figure 5.1).  

Of the 9 systems, 7 evolve rapidly and then reach a relatively constant value for both parameters within 

200 ns. B3 and A1, however, are much slower to converge. It is difficult to say without simulating to longer 

timescales whether any of the systems have reached a true equilibrium. The asphericity plot of replicate B2 

shows an extended plateau between t = 30 and t = 200 ns; if simulation time had stopped at 150 ns, the data 

would have appeared to be converged at that point. B1 seems to show a general plateau, however, there is still a 

significant variability to these parameters at this plateau. We believe that, while the simulations may not have 

reached a true equilibrium, they have reached a local energy minimum that is likely an important structure when 

considering the highly dynamic atmospheric environment of nascent sea spray.  
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Figure 5.2: Lipid clustering analysis. DBSCAN clustering reveals the kinetics of lipid aggregation over the 
course of the simulation. A) Fraction of lipids clusters over time, and B) Total number of clusters evolved over 
time. In the lower panel, we provide snapshots from MD simulations of the B1 replicate, with unique clusters 
colored by ID. Only the lipids are visualized.  
 

To understand the surfactant aggregation patterns, we clustered the fatty acids by position and the vector 

formed between the head and tail carbon atoms using the DBSCAN clustering method. This method doesn’t 

require a predetermined number of clusters and allows for unclustered groups (Figure 5.2). The carbon vector 

was selected as a clustering parameter to characterize the formation of monolayers in which all lipids obtain a 

similar directional orientation and tilt; that is, the hydrophobic tails align and the carboxylic headgroups facing 

the aqueous phase. The results of this analysis show that the surfactants aggregate rapidly into long-lived clusters 

in under 200 ns, with over 60% of the total lipids clustered in the first 30 ns. Figure 5.2 shows the fraction of 
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total lipids clustered as well as the total number of clusters calculated over the duration of the simulations. Here, 

we also provide snapshots from the MD simulations for replicate B1, with each cluster colored individually. 

Upon visual inspection, the first timepoint (30ns) already shows lipids organizing into their final clusters, with 

latter timesteps illustrating increased molecular alignment, greater surface coverage, and fewer unclustered 

patches.   

One of the goals of this study was also to understand how all of the organic material is distributed 

between the aerosol surface and interior. This partitioning of organic material is of particular importance to 

atmospheric chemistry. Aerosols provide surfaces for water evaporation and condensation (influencing 

hygroscopicity91 and cloud condensation)92, reactive uptake of atmospheric gases,10,50,93 and ice nucleation.94,95 

At planar interfaces, long chain saturated fatty acid surfactants form a tightly-packed monolayer at the 

air/aqueous interface that is known to have high rigidity, low fluidity, and impermeability to water—these are 

the aggregates that were identified above with our clustering method.63,96–100 However, these monolayer 

properties can be disrupted or otherwise influenced by additional chemical components. For example, adhesion 

to the aqueous side of the monolayer by polyelectrolytes, such as LPS or alginate,12,101 will slow molecular 

diffusion in all directions. Insertion of cosurfactants such as alcohols, cholesterols, or even shorter chain fatty 

acids may result in a more porous, higher-fluidity membrane.96,100,102–106 It has also been shown that BCL can 

insert into surfactant monolayers and significantly disrupt the lipid ordering,48,49 making the monolayers less 

stable and more permeable.  

To quantitatively evaluate the distribution of organic material throughout each aerosol, we subdivided 

each particle into concentric ellipsoids of equal volume, following the general methods described by Karadima 

et al.18 For the last snapshot of each simulation, we applied a convex hull method to approximate the bounding 

ellipsoid, then found a best-fit ellipsoidal mesh to describe the surface of the aerosol (See Section 6.7 for details). 

Using atom selections in VMD, we extracted the atoms located in each region defined as the surface, the bulk, 

or the core, and calculated their mass percentages (Figure 5.3, Illustration). We plotted the distribution of 

material by mass throughout the three regions (Figure 5.3, top panel).  

This analysis shows that the organic material largely distributes to either the surface or the core. 

Additionally, the distribution is common throughout all 9 systems, which suggests that the chemical complexity 
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of the organic fraction does not impact the distribution of material. This is a critical finding given that the so-

called “core-shell” morphology is the widely accepted paradigm for organic aerosol morphology. In other words, 

it is traditionally thought that the organic material should completely phase separate from the aqueous core to 

coat the particle surface as one thick layer.    

 

Figure 5.3: Distribution of organic material throughout the particle. Top panel: distribution of organic material 
(left) and protein (right) by mass percentage throughout the surface, bulk, and core regions. (See illustration to 
right for region labels).  Bottom panel: Selected snapshots representing cross-sections from B1, L1, and A3 
replicates at their final timesteps.  
 

However, when considering the true complexity of the organic phase, our results should not be 

surprising. Rather than consisting of oily alkanes which will completely phase separate, the majority of the 

organic material in our simulations is amphiphilic or water-soluble in character. Both fatty acids and LPS 

molecules contain hydrophobic tails and polar headgroups, and can thus participate in monolayer, micellar, and 

bilayer aggregation. Glucose, due to its small size and hydroxy groups, is highly soluble and will remain in 

solution. Bulky, branched laminarin, although less soluble than glucose, still contains polar hydroxyl groups that 

give it partial solubility. Most notably, the hydrophobic material aggregates into inclusions in the aerosol center. 
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Mael et al. recently observed this phenomenon during water uptake experiments: neither complete phase 

separation nor dissolution occurs in the case of some organics, leading to the formation of inclusions.91  

Finally, we wanted to understand how organic material aggregates at the surface. We expected that the 

most hydrophobic components, the fatty acid surfactants, would saturate the surface. Using the clustering data 

extracted from the simulations and shown above, we identified the fatty acid clusters that formed at the surfaces 

and estimated their total surface coverage (See Section 5.7 for calculation details). Figure 5.4 (lower panel) 

shows the fraction of surface area covered by monolayers compared to the total surface area of the final ellipsoid. 

As expected, the fraction of surface covered by lipids decreases with the total surfactant load: the percentage of 

fatty acids comprising the organic mass fraction decreases with increasing chemical complexity, from 100% (B) 

to 80% (L) to 70% (A).  
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Figure 5.4: Fatty acid patches coat the particle surface, with other surface-active material disrupting the surface 
coverage. In A) a representative snapshot of A1 is shown highlight fatty acid clusters in yellow and orange, LPS 
in purple, and BCL in green. B) BAM imagery highlights the surface disruption of fatty acid monolayers either 
with BCL (top) or LPS (bottom). C) Surface coverage by fatty acids calculations shows a decrease in surface 
coverage as fatty acid content decreases and as the organic complexity increases. D) Theoretical calculations of 
fatty acid surface coverage overestimate the coverage as compared to the observed surface coverage.  
 

To understand to what extent chemical complexity impacts how the surface saturates with fatty acids, 

we need to understand how many surfactants actually cover the surface with respect to how many surfactant 

molecules are available and compare this to the total surface area available. Thus, based on the number of lipids 

available and the final geometric surface area of the aerosol, we estimated how much of the surface should have 

theoretically been covered by lipids. In Figure 5.4 we compare the observed surface saturation with the 

theoretical saturation should every “site” at the surface have been occupied by a surfactant molecule. A value of 

zero indicates that there are exactly the same number of lipids as there are available sites at the surface, where 

every surface site is occupied by a lipid. A positive value indicates that there are more lipids than surface sites 
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available (surplus), and vice versa for negative values, i.e., a deficit means that there are less lipids than sites 

available for occupation at the surface. In the basic system (B), there are more lipids available than can fit at the 

surface, and we should expect 100% surface saturation. However, we observe that in each replicate, there are 

available sites at the surface that are unoccupied by lipids. For the most complex system (A), there is a lipid 

deficit for all replicates, but significantly less surfactants are present at the surface than would be expected. For 

all systems, there is significantly less surface covered by lipids than would be expected.  

There are many explanations for these results. The calculation assumes that lipids will continue to 

accumulate at the air/water interface until the surface is completely saturated. This assumption is based on the 

large free energy difference, ∆𝐺, between a surfactant molecule at the surface vs the monomer in bulk. The 

partitioning between the two states at equilibrium can be described by a Boltzmann distribution, 

W#
W.
=	𝑒(X.6X#) 0Y⁄ = 𝑒∆\ 0Y⁄ ,    (5.1) 

where p is probability, 𝜀 is energy, and the subscripts i and j correspond to the surface or dissolved/monomeric 

state. At the air-sea interface, fatty acid surfactants are stabilized at the surface by the hydrophobic effect and 

have a probability of occurring at the interface roughly proportional to the number of carbon atoms in their 

tails.63,107,108 Determining the free energies corresponding to the current fatty acid mixture is out of the scope of 

this work, but we provide a qualitative discussion of the impacts of chemical complexity on the distribution of 

organic material.  

Notably, as we pointed out earlier, surface active molecular species other than the fatty acids in these 

models are also competing for spots at the interface. BCL and LPS, which were not included in the lipid 

clustering analysis, are non-conventional surfactants. BCL contains a hydrophobic region that preferentially 

embeds into nonpolar/aqueous interfaces,48,49,109,110 and LPS contains Lipid A, which consists generally of two 

𝛽(1à6)-linked glucosamine units attached to 6 acyl chains with structural similarity to fatty acids C12-

C14.56,111,112 Accounting for the regions where Lipid A or BCL accumulates at the surface may explain a small, 

but not insignificant, lipid deficit at the surface.  

 An important observation from the lipid clustering analysis provided above is that the fatty acids that 

accumulate at the surface do not do so uniformly across the entire surface, but rather, group into tessellated 
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clusters with unique tilt angles, illustrated by the red and white patches visible in Figure 5.2. The clustered lipid 

patches, which are highly ordered, adopt a lower curvature than would otherwise be expected (Figure 5.8) and 

are separated by “rivers” in which the lipids relax into a more disordered phase. This behavior can be attributed 

to the balance between the high bending modulus of the fatty acid monolayer (i.e., energy required to perturb 

the equilibrium curvature) and the line tension of the curved particle surface. Upon visual inspection, we found 

that both LPS and BCL accumulate at aerosol surfaces at these rivers between lipid patches. Figure 5.4 shows 

a snapshot of the A1 particle surface with BCL (green) and LPS (purple) inserting between two fatty acid patches. 

This motif is consistent across all simulations containing BCL or LPS. BCL is more likely to be incorporated at 

the disordered river-like regions at the surface, rather than be integrated into a lipid patch. On the other hand, we 

found that the Lipid A region of LPS adsorbs to the surface in the rivers, but it also inserts readily into the fatty 

acid patches (likely due to the ability of fatty acid-like alkyl chains on Lipid A to align with the monolayer). 

Interestingly, we also found instances where the saccharide headgroup of the LPS also adsorbed to the surface 

in the river regions.  

 To corroborate our findings that BCL and LPS are likely to be found at the interface and that they 

preferentially insert between fatty acid patches, we conducted Brewster angle microscopy (BAM) experiments 

in which we added BCL or LPS into monolayers of our fatty acid mixture. Resulting BAM images are provided 

in Figure 5.4. Bright regions of the images indicate high organic content while dark regions indicate interfacial 

water. BCL (Figure 5.4, top image) appears to significantly disrupt the fatty acid monolayers, as expected and 

observed previously.48,49 However, it also appears to aggregate, forming holes in the monolayer with little to no 

organized fatty acid density. The LPS, on the other hand (Figure 5.4, bottom image), aggregates at the surface 

to form rivers, regions of high and low organic content. The behavior seen here, although describing a 

phenomenon at a larger scale than our simulations, is consistent with computational observations. It is unclear, 

however, what the orientation of the LPS is at the interface, but our simulations suggest that the entire LPS 

molecule is surface active. The Lipid A region can insert directly into and contribute to the bright regions with 

high fatty acid density, while the saccharide headgroup can adsorb to the surface and appear in the darker, river-

like regions. Further studies can help elucidate the mechanisms reported here.  
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 We posit that in organic SSA, the organic fraction is less likely to completely phase separate (as many 

models suggest), and more likely to exhibit microemulsion-like characteristics. Although the aerosol models 

simulated here are not large enough in volume to form a true emulsion, insights from this work suggest that the 

organics found in SSA have a range of chemical properties conducive to the formation and stabilization of less-

soluble domains. Proteins and saccharides, for example, have widely been used as emulsification agents in 

industrial applications.113–120 Polyelectrolyte saccharides in particular, such as the saccharides in LPS or alginate, 

have been found to form stabilized oil-in-water emulsions with cationic surfactants and surfactant-like 

proteins.117,120,121 Combined with the recent work suggesting that low-solubility biological macromolecules 

likely form inclusions in the particle center as they uptake water,91 we suggest that the surfactant-like properties 

of marine organic material can further enable the stabilization of such partially-soluble inclusions.  

5.5 Conclusion 

 We use ultra-large all-atom molecular dynamics simulations of submicron marine aerosols to 

understand the link between chemical complexity and aerosol morphology. We show that fatty acid surfactants 

readily aggregate and distribute to the surface and into oily aggregates within the aerosol. Simulations combined 

with BAM microscopy imaging suggest that rigid lipid monolayers at curved aerosol surfaces form 

discontinuous patches, separated by disordered regions in which amphiphilic species such as BCL and LPS can 

aggregate. The overall distribution of organic material throughout the particle is consistent across variations in 

the organic phase complexity, and in more complex particles, less of the aerosol surface is covered. We argue 

that organic SSA may not always phase separate to adopt a “core-shell” morphology where the aerosol surface 

is coated with a thick organic layer. Rather, we propose that organic SSA containing the full chemical complexity 

of biogenic marine material more likely adopts a microemulsion-like morphology, where amphiphilic surfactant-

like species stabilize domains of less-soluble organic inclusions in the aerosol center. 
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5.7 Supporting Information 

 

 

Figure 5.5: Possible SSA morphologies. Orange and blue colors represent organics and water, respectively.  
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Figure 5.6: Rendering of the laminarin molecular structure with two branch points located at monomers 6 and 
9. Below, a schematic diagram illustrating the linkages applied in the CHARMM-GUI Glycan Modeler.  
 

 

Figure 5.7: Estimates of surface lipid curvature compared to expected value of the curvature at the surface at 
that point given the best fit ellipsoid.  
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5.7.1 Calculation of Asphericity and Relative Shape Anisotropy 

Here, we use the definition of asphericity derived by Theodorou and Suter:80  

𝜙 = 𝑋+ − 9
+
(𝑌+ + 𝑍+), 𝜙 ≥ 0.     (5.2) 

The quantities 𝑋+, 𝑌+, and 𝑍+, are given by the symmetric radius of gyration tensor, 

𝑆 = o
𝑋+ 𝑋𝑌 𝑋𝑍
𝑋𝑌 𝑌+ 𝑌𝑍
𝑋𝑍 𝑌𝑍 𝑍+

p,      (5.3) 

such that the eigenvalues are 𝑋+ ≥ 𝑌+ ≥ 𝑍+. S, derived from the definition 

𝑆=,( =
9
%
∑ 𝑟=0𝑟(0%
0^9            (5.4) 

where N represents the number of atoms in the system, 𝑚 ∈ {1,2,3}, and 𝑛 ∈ {1,2,3}, is computed directly from 

atomic coordinates. The squared radius of gyration, 𝑅*+, is given by the first invariant of S, 

𝑅*+ = 𝑋+ +	𝑌+ +	𝑍+,           (5.5) 

and is used to calculate the relative shape anisotropy, k2. This term is a shape descriptor of the symmetry of the 

particle; that is, a value of 1 indicates a rod-like symmetry, where all atoms lie along a line, while a value of 0 

indicates the particle has a higher degree of symmetry, such as that of a perfect tetrahedron or sphere.1,3 Here, 

we use the definition of k2 given by Theodorou and Suter:1 

𝜅+ =
4!_/0(`

!6a!)!

b10
.           (5.6) 

A close inspection of this equation reveals that the quantity in the numerator is a function of the asphericity and 

the parameter acylindricity, given by 𝑌+ − 𝑍+, where a value of zero indicates perfect cylindrical symmetry. A 

more detailed description of these quantities is out of the scope of this work but can be found in the provided 

references.  

5.7.2 Organic Distribution by Volume 

To quantify distribution of organic material throughout the particle, we calculate the best-fit ellipsoid to the 

dataset. Let n, M be the total particle mass, and a, b, and c correspond to the dimensions of each semi-axis, as 
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illustrated by Figure 5.8. I can be calculated using the internal measure inertia command in VMD,74 which 

returns the eigenvalues and the principal axes. 

 

 

Figure 5.8: Sketch of an ellipsoid with axes of symmetry labeled.  

We then subdivide the ellipsoid into three regions by volume, termed “core,” “bulk,” and “shell,” using 

the approach outlined by Karadima et. al.18 Drawing concentric ellipsoids along the principle axis each 

enveloping approximately a third of the volume, we can describe the distribution of mass by type into each 

region of the particle.  

5.7.3 Estimation of Surface Curvature 

Here, we use the inverse radius of the best fit sphere as our definition of curvature. That is, for the given 

set of datapoints, we find the best fit sphere using a NumPy linear algebra least squares function. In this case, 

the data points are the points defined by the fatty acid headgroups. Figure 5.9 shows some example sphere fits 

to lipid selected lipid clusters.  
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Figure 5.9: Spherical fits to selected lipid clusters to demonstrate the sphere fit function.  

5.7.4 Estimation of Surface Area Coverage 

To estimate the total surface area, we must first know the area per lipid of the particular surface cluster. 

Surface clusters were identified manually by visual inspection. The estimation of area per lipid is non-trivial. 

There are many methods one could use for this calculation, but the procedure we followed is enumerated below.   

1. The radial distribution function (RDF) was calculated between the headgroups (the first carbon atoms) 

using MDTraj.122 This allows us to extract the average distance between headgroups. 

2. Using the RDF plot, we used NumPy123 to fit a gaussian curve of the function 

𝑔(𝑥) = 9
c√+e

exp	(6(S6f)
!

+c!
)     (5.7) 

to the first peak, which corresponds to the distribution of nearest headgroups. We then extract the mean 

value (𝜇) as the radius and the standard deviation (𝜎) as the error associated with the calculation.  

3. Using the radius r of the best fit sphere to the lipid cluster calculated via Section 5.7.3, we can estimate 

the average area covered by a lipid on a curved surface using the geometric principles of a spherical 

cap, illustrated in Figure 5.10, where the distance between two lipid headgroups is defined as 2a. 
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Figure 5.10: Diagram of spherical cap calculation. 

4. Multiplying the resulting area by the number of lipids in the cluster and propagating error appropriately 

gives the estimate of the total area covered by the lipid cluster. 

5.7.5 Estimation of Ellipsoidal Surface Area 

One equation estimating the surface area of an ellipsoid is given by Knud Thomsen’s Formula: 

𝑆 ≈ 4𝜋 {(,&)
2_(,P)2_(&P)2

M
|
9 Wg

     (6.8) 

where the constant p = 1.6075 gives an approximate error ≤1.061%.124–126 The estimated surface area can thus 

be calculated using the semi-axis values extracted from the best fit bounding ellipsoid calculation from Section 

5.7.1.  

5.7.6 Error Propagation 

Error was propagated using the equations in Table 5.3 for the analytical propagation of uncertainty.127 

Type of Analysis Example Equation Eq 

Addition/Subtraction 𝑥 = 𝑎 + 𝑏 − 𝑐 𝑠S = f𝑠,+ + 𝑠&+ + 𝑠P+ 6.9 

Multiplication/Division 𝑥 = 𝑎 × 𝑏 ÷ 𝑐 𝑠S
𝑥 = f(

𝑠,
𝑎 )

+ + (
𝑠&
𝑏 )

+ + (
𝑠P
𝑐 )

+ 6.10 
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Chapter 6 
AI-Driven Multiscale Simulations Illuminate Mechanisms of 

SARS-CoV-2 Spike Dynamics 

6.1 Abstract 

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore 

the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of 

infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more 

efficient investigation of spike dynamics in a variety of complex environments, including within a complete 

SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL 

Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike’s 

full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of 

the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can 

accelerate conformational sampling across different systems and pave the way for the future application of such 

methods to additional studies in SARS-CoV-2 and other molecular systems. 

6.2 Justification 

We: 

• develop an AI-driven multiscale simulation framework to interrogate SARS-CoV-2 spike dynamics, 

• reveal the spike’s full glycan shield and discover that glycans play an active role in infection, and 

• achieve new high watermarks for classical MD simulation of viruses (305 million atoms) and the 

weighted ensemble method (600,000 atoms). 

  

• 

• 

• 
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6.3 Performance Attributes 

Table 6.1: Performance attributes. 

Performance Attribute Our Submission 

Category of achievement Scalability, Time-to-solution 
Type of method used Explicit, Deep Learning 

Results reported on the basis of  Whole application including I/O 
Precision reported Mixed Precision 

System scale Measured on full system 
Measurement Mechanism Hardware performance counters, Application 

timers, Performance Modeling 
 

6.4 Overview of the Problem 

The SARS-CoV-2 virus is the causative agent of COVID19, a world- wide pandemic that has infected 

over 35 million people and killed over one million. As such it is the subject of intense scientific investigations. 

Researchers are interested in understanding the structure and function of the proteins that constitute the virus, as 

this knowledge aids in the understanding of transmission, infectivity, and potential therapeutics. 

 A number of experimental methods, including x-ray crystallography, cryoelectron (cryo-EM) 

microscopy, and cryo-EM tomography are able to inform on the structure of viral proteins and the other (e.g., 

host cell) proteins with which the virus interacts. Such structural information is vital to our understanding of 

these molecular machines, however, there are limits to what experiments can tell us. For example, achieving 

high resolution structures typically comes at the expense of dynamics: flexible parts of the proteins (e.g., loops) 

are often not resolved, or frequently not even included in the experimental construct. Glycans, the sugar-like 

structures that decorate viral surface proteins, are particularly flexible and thus experimental techniques are 

currently unable to provide detailed views into their structure and function beyond a few basic units. 

Additionally, these experiments can resolve static snapshots, perhaps catching different states of the protein, but 

they are unable to elucidate the thermodynamic and kinetic relationships between such states. 

In addition to the rich structural datasets, researchers have used a variety of proteomic, glycomic, and 

other methods to determine detailed information about particular aspects of the virus. In one example, deep 

sequencing methods have informed on the functional implications of mutations in a key part of the viral spike 
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protein.1 In others, mass spectrometry approaches have provided information about the particular composition 

of the glycans at particular sites on the viral protein.2,3 These data are each valuable in their own right but exist 

as disparate islands of knowledge. Thus there is a need to integrate these datasets into cohesive models, such 

that the fluctuations of the viral particle and its components that cause its infectivity can be understood. 

In this work, we used all-atom molecular dynamics (MD) simulations to combine, augment, and extend 

available experimental datasets in order to interrogate the structure, dynamics, and function of the SARS-CoV-

2 spike protein (Figure 6.1). The spike protein is considered the main infection machinery of the virus because 

it is the only glycoprotein on the surface of the virus and it is the molecular machine that interacts with the human 

host cell receptor, ACE2, at the initial step of infection. We have developed MD simulations of the spike protein 

at three distinct scales, where each system (and scale) is informative, extensive, and scientifically valuable in its 

own right (as will be discussed). This includes the construction and simulation of the SARS-CoV-2 viral 

envelope that contains 305 million atoms and is thus among one of the largest and most complex biological 

systems ever simulated (Figure 6.1A). We employ both conventional MD as well as the weighted ensemble 

enhanced sampling approach (which again breaks new ground in terms of applicable system size). We then 

collectively couple these break-through simulations with artificial intelligence (AI) based methods as part of an 

integrated workflow that transfers knowledge gained at one scale to ‘drive’ (enhance) sampling at another. 
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Figure 6.1: Multiscale modeling of SARS-CoV-2. A) All-atom model of the SARS-CoV-2 viral envelope (305 
M atoms), including 24 spike proteins (colored in gray) in both the open (16) and closed states (8). The RBDs 
in the “up” state are highlighted in cyan) N-/O-Glycans are shown in blue. Water molecules and ions have been 
omitted for clarity. B) Full-length model of the glycosylated SARS-CoV-2 spike protein (gray surface) 
embedded into an ERGIC-like lipid bilayer (1.7 M atoms). RBD in the “up” state is highlighted in cyan. C) The 
glycan shield is shown by overlaying multiple conformations for each glycan collected at subsequent timesteps 
along the dynamics (blue bush-like representation). Highlighted in pink and red are two N-glycans (linked to 
N165 and N234, respectively) responsible for the modulation of the RBD dynamics, thus priming the virus for 
infection. The RBD “up” is depicted with a cyan surface. D) Two-parallel-membrane system of the spike-ACE2 
complex (8.5 M atoms). The spike protein, embedded into an ERGIC-like membrane, is depicted with a gray 
transparent surface, whereas ACE2 is shown with a yellow transparent surface and it is embedded into a lipid 
bilayer mimicking the composition of mammalian cell membranes. Glycans are shown in blue, whereas water 
has been omitted for clarity. Visualizations were created in VMD using its custom GPU-accelerated ray tracing 
engine. 
 

An additional significant challenge faced in bringing this work to fruition is that it pushes the boundaries 

of several fields simultaneously, including biology, physics, chemistry, mathematics, and computer science. It 

is intersectional in nature and requires the collective work of and effective communication among experts in 

each of these fields to construct, simulate, and analyze such systems - all while optimizing code performance to 

accelerate scientific discovery against SARS-CoV-2. 

Our work has brought HPC to bear to provide unprecedented detail and atomic-level understanding of 

virus particles and how they infect human cells. Our efforts shed light on many aspects of the spike dynamics 

and function that are currently inaccessible with experiment and have provided a number of experimentally 

testable hypotheses - some of which have already been experimentally validated. By doing so, we provide new 
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understandings for vaccine and therapeutic development, inform on basic mechanisms of viral infection, push 

technological and methodological limits for molecular simulation, and bring supercomputing to the forefront in 

the fight against COVID19. 

6.4.1 Methods 

6.4.1.1 Full-length, fully glycosylated spike protein  

In this work, we built two full-length glycosylated all-atom models of the SARS-CoV-2 S protein in 

both closed and open states, fully detailed in Casalino et al.4 The two all-atom models were built starting from 

the cryo-EM structures of the spike in the open state (PDB ID: 6VSB5) where one receptor binding domain 

(RBD) is in the “up” conformation, and in the closed state, bearing instead three RBDs in the “down” 

conformation (PDB ID: 6VXX6). Given that the experimental cryo-EM structures were incomplete, the 

remaining parts, namely (i) the missing loops within the head (residues 16–1141), (ii) the stalk (residues 1141–

1234) and (iii) the cytosolic tail (residues 1235–1273), were modelled using MODELLER7 and I- TASSER.8 

The resulting full-length all-atom constructs were subsequently N-/O-glycosylated using the Glycan Reader & 

Modeler tool9  integrated into Glycan Reader10 in CHARMM-GUI.11 Importantly, an asymmetric glycoprofile 

was generated (e.g., not specular across monomers) taking into account the N-/O-glycans heterogeneity as 

described in the available glycoanalytic data.2,3 The two glycosylated systems were embedded into their 

physiological environment composed of an ERGIC-like lipid bilayer12,13 built using CHARMM-GUI14, explicit 

TIP3P water molecules15, and neutralizing chloride and sodium ions at 150 mM concentration, generating two 

final systems each tallying 1.7 million atoms. Using CHARMM36 all-atom additive force fields16,17 and NAMD 

2.1418, the systems were initially relaxed through a series of minimization, melting (for the membrane), and 

equilibration cycles. The equilibrated systems were then subjected to multiple replicas of all-atom MD 

simulation production runs of the open (6x) and closed (3x) systems on the NSF Frontera computing system at 

the Texas Advanced Computing Center (TACC). A cumulative extensive sampling of 4.2 and 1.7 µs was attained 

for the open and closed systems, respectively. Additionally, a third, mutant system bearing N165A and N234A 

mutations was built from the open system in order to delete the N-linked glycans and delineate their structural 

role in the RBD dynamics. This system was also simulated for 4.2 µs in 6 replicas.4 
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6.4.1.2 ACE2-RBD complex MD simulations  

The model of the ACE2- RBD complex was based on cryo-EM structure trapping ACE2 as a homo-

dimer co-complexed with two RBDs and B0AT1 trans- porter (PDB ID 6M1719). Upon removal of B0AT1, 

ACE2 missing residues at the C terminal end were modeled using I-TASSER, whereas those missing at the N 

terminal end were taken from 6M0J and properly positioned upon alignment of the N terminal helix. Zinc sites 

including the ions and the coordinating residues were copied from 1R42. The construct was fully N-/O-

glycosylated using CHARMM-GUI tools for glycan modeling, reproducing the glycan heterogeneity for ACE2 

and RBD reported in the available glycoanalytic data.2,20,21 Similarly, the apo ACE2 homo-dimer was also built 

upon removal of the RBDs from the holo construct. The glycosylated models were embedded into separate lipid 

patches with a composition mimicking that of mammalian cellular membranes and simulated in explicit water 

molecules at 150 mM ion concentration, affording two final systems of 800,000 atoms each. MD simulations 

were performed using CHARMM36 all-atom additive force along with NAMD 2.14. The MD protocol was 

identical to that adopted for the simulation of the full-length spike and it is fully described in Casalino et al.4 

This work is fully detailed in Barros et al.22  

6.4.1.3 Weighted ensemble simulations of spike opening 

The spike must undergo a large conformational change for activation and binding to ACE2 receptors, 

where the receptor binding domain transitions from the “down’,’ or closed state to the “up,” or open state. 5 Such 

conformational changes occur on biological timescales generally not accessible by classical molecular dynamics 

simulations.23 To simulate the full unbiased path at atomic resolution, we used the weighted ensemble (WE) 

enhanced sampling method.24,25 Instead of running one single long simulation, the WE method runs many short 

simulations in parallel along the chosen reaction coordinates. The trajectories that rarely sample high energy 

regions are replicated, while the trajectories that frequently sample low energy regions are merged, which makes 

sampling rare events computationally tractable and gives enhanced sampling. The trajectories also carry 

probabilities or weights, which are continuously updated, and there is no statistical bias added to the system. 

Hence, we are able to directly obtain both thermodynamic and kinetic properties from the WE simulations.26  
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For this study, the closed model of the glycosylated spike from Casalino et al. was used as the initial 

structure by only keeping the head domain. The WE simulations were run using the highly scalable WESTPA 

software27, with the Amber GPU accelerated molecular dynamics engine28,29 version 18. Chamber30 was used to 

convert CHARMM36 force fields and parameters from the system developed by Casalino et al. into an Amber 

readable format. A TIP3P15 water box with at least 10 Å between protein and box edges was used with 150 mM 

NaCl, leading the total number of atoms to 548,881. Amber minimization was carried out in two stages. First 

the solvent was minimized for 10,000 cycles with sugars and proteins restrained with a weight of 100 kcal/mol 

Å2, followed by unrestrained minimization for 100,000 cycles. Next the system was incrementally heated to 300 

K over 300 ps. Equilibration and production were carried out in 2 fs timesteps with SHAKE31 constraints on 

non-polar hydrogens and NPT ensemble. Pressure and temperature were controlled with Monte Carlo barostat 

and Langevin thermostat with 1 ps-1 collision frequency. The particle-mesh Ewald (PME) method was used 

with 10 Å cutoff for non-bonded interactions. The system was first equilibrated for 21 ns of conventional MD. 

The RMSD of the alpha carbons began to level off around 16 ns, and 24 structures were taken at regular intervals 

between 16 and 21 ns to use as equally weighted basis states for the WE simulation. 

For each WE, tau was set to 100 ps of MD production followed by progress coordinate evaluation, and 

splitting / merging of walkers and updating weights, with a maximum of 8 walkers per bin. A two dimensional 

progress coordinate was defined by (i): the distance between the center of mass (COM) of the alpha carbons in 

the structured region of the spike helical core, and the alpha carbons in the four main beta sheets of the RBD 

(refers to RBD from chain A unless otherwise specified) and (ii): the RMSD of the alpha carbons in the four 

main beta sheets of the RBD to the initial structure (obtained from 1 ns equilibration). This simulation was run 

for 8.77 days on 80 P100 GPUs on Comet at SDSC collecting a comprehensive sampling of 7.5 µs, with bin 

spacing continuously monitored and adjusted to maximize sampling. 

After extensive sampling of the RBD closed state, the second progress coordinate was changed to the 

RMSD of the alpha carbons in the four main beta sheets of the RBD compared to the final open structure, 

obtained from system 1, after 1 ns of equilibration carried out with identical methods as the closed structure 

described above, which was initially calculated as 11.5 Å. This allowed more efficient sampling of the transition 

to the open state by focusing sampling on states which are closer in rotational or translational space to the final 
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state, rather than sampling all conformations that are distinctly different from the closed state. Bin spacing was 

continuously monitored and adjusted to maximize traversing the RMSD coordinate. The full transition was 

confirmed when the RMSD coordinate reached below 6 Å and the RBD COM coordinate reached above 8.5 Å 

(Figure 6.2). The simulation was stopped for analysis after 1099 iterations, upon running for 26.74 days on 100 

V100 GPUs on Longhorn at TACC and harvesting 70.0 µs. 

A second, independent WE simulation was conducted to determine if the findings of the initial 

simulation were reproducible, and to use the information on the free energy landscape of the successful transition 

in the first WE to inform bin spacing and target state definition to run an unsupervised simulation. After 19.64 

days on 100 V100 GPUs on TACC Longhorn and 51.5 µs of comprehensive sampling, successful transitions to 

the open state were observed, as well as further open states, in which the RBD was observed to be peeling off of 

the spike core. 
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Figure 6.2: Opening of the spike protein. VMD visualization of weighted ensemble simulations shows the 
transition of the spike’s RBD from the closed state to the open state. Many conformations of the RBD along its 
opening pathway are represented at the same time using cyan cartoons and a transparency gradient. Glycans 
appear as dark blue. 
 

6.4.1.4 Two-parallel-membrane system of the spike-ACE2 complex 

The SARS-CoV-2 virus gains entry into the host cell through a membrane fusion process taking place 

upon the recognition of the ACE2 receptors exposed on the host cell. This binding event triggers several, 

dramatic conformational changes within the spike protein, which becomes primed to pull the two membranes 

together for fusion, allowing the virus to pour the viral RNA into the host cell. In order to disentangle the 

mechanistic intricacies underlying this key process, we exploited the wealth of information obtained from the 

individual simulations described above to assemble an all-atom complex between the full-length spike and the 

ACE2 dimer. As a first step, equilibrated structures of the spike in the open state and of the ACE2-RBD complex 
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were extracted from their respective individual simulations. Subsequently, the spike protein was superimposed 

onto the ACE2- RBD complex by aligning the spikes’ RBD “up” with the RBD of the ACE2-RBD complex, 

allowing for a fairly vertical arrangement of the new construct. In order to preserve the best possible binding 

interface, the RBD of the spike was discarded, whereas the RBD from the ACE2-RBD complex was retained 

and linked to the rest of the spike. The spike-ACE2 complex was embedded into a double membrane system: 

the spike’s transmembrane do- main was inserted into a 330 Å 330 Å ERGIC-like lipid bilayer, whereas for 

ACE2 a mammalian cellular membrane of the same dimension was used. The two membranes were kept parallel 

to each other, allowing the use of an orthorhombic box. In order to facilitate the water and ion exchange between 

the internal and external compartment, an outer-membrane-protein-G (OmpG) porin folded into a beta barrel 

was embedded into each membrane. The OmpG equilibrated model was obtained from Chen et al.32 The 

generated two-membrane construct was solvated with explicit TIP3P water molecules, with the total height of 

the external water compartment matching the internal one exhibiting a value of 380 Å. Sodium and chloride ions 

were added at a concentration of 150 mM to neutralize the charge and reshuffled to balance the charge between 

the two compartments. 

The composite system, counting 8,562,698 atoms with an orthorhombic box of 330 Å 330 Å 850 Å, 

was subjected to all-atom MD simulation on the Summit computing system at ORNL using NAMD 2.14 and 

CHARMM36 all-atom additive force fields. Two cycles of conjugate gradient energy minimization and NPT 

pre-equilibration were conducted using a 2 fs timestep for a total of 3 ns. During this phase, the ACE2 and spike 

proteins and the glycans were harmonically restrained at 5 kcal/mol, allowing for the relaxation of the two lipid 

bilayers, the OmpG porins, water molecules and ions within the context of the double membrane system. We 

remark that the two lipid patches were previously equilibrated, therefore not requiring a melting phase at this 

stage. The dimension of the cell in the xy plane was maintained constant while allowing fluctuation along the z 

axis. Upon this initial pre- equilibration phase, a 17 ns NPT equilibration was performed by releasing all the 

restraints, preparing the system for production run. From this point, three replicas were run or a total of 522 ns 

comprehensive simulation time. By using the trained AI learning model, three conformations were extracted 

from this set of simulations, each of them representing a starting point of a new replica with re-initialized 
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velocities. A total of three additional simulations were therefore performed, collecting ∼180 ns and bringing the 

total simulation time to ∼702 ns. 

6.4.1.5 SARS-CoV-2 viral envelope.  

The full-scale viral envelope was constructed using the LipidWrapper program (v1.2) previously 

developed and described by Durrant et al.33 A 350 Å x 350 Å lipid bilayer patch used as the pdb input was 

generated using CHARMM-GUI with an ERGIC-like lipid composition and an estimated area per lipid of 63 Å. 

An icospherical mesh with a 42.5 nm radius, in accordance with experimentally-observed SARS-CoV-2 radii, 

was exported as a collada file from Blender (v2.79b) and used as the surface file.34  LipidWrapper was run in a 

Python 2.7 conda environment with lipid headgroup parameters “_P,CHL1_O3”, a lipid clash cut-off of 1.0 Å, 

and filling holes enabled. The final bilayer pdb was solvated in a 110 nm cubic box using explicit TIP3P water 

molecules and neutralized with sodium and chloride ions to a concentration of 150 mM. The final system 

contained 76,134,149 atoms. 

Since the LipidWrapper program operates via tessellation, lipid clash removal, and a subsequent lipid 

patching algorithm, the bilayer output attains a lower surface pressure than that of a bilayer of the same lipid 

composition at equilibrium. Due to this artifact, as the bilayer equilibrates, the lipids undergo lateral compression 

resulting in the unwanted formation of pores. Thus, the envelope was subjected to multiple rounds of 

minimization, heating, equilibration, and patching until the appropriate equilibrium surface pressure was 

reached. 

All-atom MD simulations were performed using NAMD 2.14 and CHARMM36 all-atom additive force 

fields. The conjugate-gradient energy minimization procedure included two phases in which the lipid headgroups 

were restrained with 100 and 10 kcal/mol weights, respectively, at 310K for 15,000 cycles each. The membrane 

was then melted by incremental heating from 25 K to 310 K over 300 ps prior to NPT equilibration. The 

equilibration sequentially released the harmonic restraints on the lipid headgroups from 100 to 0 kcal/mol over 

0.5 ns. Following this sequence, the structure was visually evaluated to determine whether to continue 

equilibration or to proceed with pore patching. Most structures continued with unrestrained equilibration for 4–

26 ns prior to patching, with longer unrestrained equilibrations attributed to later, more stable envelopes. 
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Patching of the envelope was done by overlapping the initial LipidWrapper bilayer output with the 

newly-equilibrated envelope. All superimposed lipids within 2.0 Å of the equilibrated lipids were removed to 

eliminate clashes. Superimposed lipids within 4.0 Å of an equilibrated cholesterol molecule were also removed 

to eliminate ring penetrations. The patched system, with new lipids occupying the pores, was then re-solvated, 

neutralized, and subjected to the next round of minimization, heating, and equilibration. 

After ten rounds of equilibration and patching, 24 spike proteins with glycans, 8 in the closed and 16 in 

the open state, were inserted randomly on the envelope using a house tcl script. A random placement algorithm 

was used in accordance with experimental microscopy imaging which has suggested that there is no obvious 

clustering of the spikes and no correlation between RBD state and location on the spike surface34 The number 

of spikes was selected based on experimental evidence reporting a concentration of 1 spike per 1000 nm2 on the 

envelope.34 The new structure containing spikes was re-solvated, neutralized, and processed to remove clashing 

lipids prior to further simulation. The resulting cubic solvent box was 146 nm per side and contained 304,780,149 

atoms. The spike-inclusive envelope was then subjected to three more equilibration and patching sequences. The 

final virion used for all-atom MD production runs had a lipid envelope of 75 nm in diameter with a full virion 

diameter of 120 nm. The complete equilibration of the viral envelope totaled 41 ns on the TACC Frontera system 

and 75 ns on ORNL Summit. Full-scale viral envelope production simulations were performed on Summit for a 

total of 84 ns in an NPT ensemble at 310 K, with a PME cutoff of 12 Å for non-bonded interactions. 

6.5 Current State of the Art 

6.5.1 Parallel molecular dynamics 

NAMD35 has been developed over more than two decades, with the goal of harnessing parallel 

computing to create a computational microscope36,37 enabling scientists to study the structure and function of 

large biomolecular complexes relevant to human health. NAMD uses adaptive, asynchronous, message-driven 

execution based on Charm++.38,39 It was one of the first scientific applications to make use of heterogeneous 

computing with GPUs40, and it implements a wide variety of advanced features supporting state-of-the-art 

simulation methodologies. Continuing NAMD and Charm++ developments have brought improved work 

decomposition and distribution approaches and support for low overhead hardware-specific messaging layers, 
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enabling NAMD to achieve greater scalability on larger parallel systems.41,42 NAMD incorporates a collective 

variables module supporting advanced biasing methods and a variety of in-situ analytical operations.43 

Simulation preparation, visualization, and post-hoc analysis are performed using both interactive and offline 

parallel VMD jobs.44–47 NAMD has previously been used to study viruses and large photosynthetic complexes 

on large capability-oriented and leadership class supercomputing platforms, enabling the high-fidelity 

determination of the HIV-1 capsid structure48, the characterization of substrate binding in influenza49, and the 

structure and kinetics of light harvesting bacterial organelles.50 

6.5.2 Weighted Ensemble MD simulations 

The weighted ensemble (WE) method is an enhanced sampling method for MD simulations that can be 

orders of magnitude more efficient than standard simulations in generating pathways and rate constants for rare-

event processes. WE runs many short simulations in parallel, instead of one long simulation, and directly gives 

both thermodynamic and kinetic properties, which most enhanced sampling methods cannot do. The simulations 

go through “resampling" where simulations are merged for over-sampled regions and replicated for rare regions 

so that regions are continuously sampled regardless of energy barriers. The simulations also carry probabilities 

or “weights" that are continuously updated and no statistical bias is added to the system, so we are able to directly 

obtain both thermodynamic (e.g., free energy landscape) and kinetic (e.g., rates and pathways) properties from 

the simulation. In addition, the WE method is one of the few methods that can obtain continuous unbiased 

pathways between states, so this was the most suitable method for us to obtain and observe the closed to open 

transition for the spike system. Before the WE method was applied to the spike system under investigation here 

(about 600,000 atoms), the largest system used for the WE method was the barnase-barnstar complex (100,000 

atoms).51 

6.5.3 AI-driven multiscale MD simulations 

A number of approaches, including deep learning methods, have been developed for analysis of long 

timescale MD simulations.52 These linear, non-linear, and hybrid ML approaches cluster the simulation data 

along a small number of latent dimensions to identify conformational transitions between states.53,54 Our group 

developed a deep learning approach, namely the variational autoencoder that uses convolutional filters on contact 
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maps (from MD simulations) to analyze long time-scale simulation datasets and organize them into a small 

number of conformational states along biophysically relevant reaction coordinates.55 We have used this approach 

to characterize protein conformational landscapes.56 However, with the spike protein, the intrinsic size of the 

simulation posed a tremendous challenge in scaling our deep learning approaches to elucidate conformational 

states relevant to its function. 

Recently, we extended our approach to adaptively run MD simulation ensembles to fold small proteins. 

This approach, called DeepDriveMD57, successively learns which parts of the conformational landscape have 

been sampled sufficiently and initiates simulations from undersampled regions of the conformational landscape 

(that also constitute “interesting” features from a structural perspective of the protein). While a number of 

adaptive sampling techniques exist58–64 , including based on reinforcement learning methods65, these techniques 

have been demonstrated on prototypical systems. In this paper, we utilize the deep learning framework to suggest 

additional points for sampling and do not necessarily use it in an adaptive manner to run MD simulations (mainly 

due to the limitations posed by the size of the system). However, extensions to our framework for enabling sup- 

port of such large-scale systems are straightforward and further work will examine such large-scale simulations. 

6.6 Innovations Realized 

6.6.1 Parallel molecular dynamics 

Significant algorithmic improvements and performance optimizations have been required for NAMD 

to achieve high performance on the GPU-dense Summit architecture.18,39 New CUDA kernels for computing the 

short-range non-bonded forces were developed that implement a “tile list” algorithm for decomposing the 

workload into lists of finer grained tiles that more fully and equitably distribute work across the larger SM 

(streaming multiprocessor) counts in modern NVIDIA GPUs. This new decomposition uses the symmetry in 

Newton’s Third Law to eliminate redundant calculation without incurring additional warp-level synchronization. 

CUDA kernels also were added to offload the calculation of the bonded force terms and non-bonded exclusions. 

Although these terms account for a much smaller percentage of the work per step than that of the short-range 

non-bonded forces, NAMD performance on Summit benefits from further reduction of CPU workload. NAMD 

also benefits from the portable high-performance communication layer in Charm++ that communicates using 
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the IBM PAMI (Parallel Active Messaging Interface) library, which improves performance by up to 20% over 

an MPI-based implementation.39,41 

Additional improvements have benefited NAMD performance on Frontera. Recent developments in 

Charm++ now include support for the UCX (Unified Communication X) library which improves performance 

and scaling for Infiniband-based networks. Following the release of NAMD 2.14, a port of the CUDA tile list 

algorithm to Intel AVX-512 intrinsics was introduced, providing a 1.8 performance gain over the “Sky Lake” 

(SKX) builds of NAMD. 

A significant innovation in NAMD and VMD has been the development of support for simulation of 

much larger system sizes, up to two billion atoms. Support for larger systems was developed and tested through 

all-atom modeling and simulation of the protocell as part of the ORNL CAAR (Center for Accelerated 

Application Readiness) program that provided early science access to the Summit system. This work has greatly 

improved the performance and scalability of internal algorithms and data structures of NAMD and VMD to 

allow modeling of biomolecular systems beyond the previous practical limitation on the order of 250 million 

atoms. This work has redefined the practical simulation size limits in both NAMD and VMD and their associated 

file formats, added new analysis methods specifically oriented toward virology66, and facilitates modeling of 

cell-scaled billion-atom assemblies, while making smaller modeling projects significantly more performant and 

streamlined than before. 

6.6.2 Multiscale molecular dynamics simulations  

Often referred to as “computational microscopy,” MD simulations are a powerful class of methods that 

enable the exploration of complex biological systems, and their time-dependent dynamics, at the atomic level. 

The systems studied here push state of the art in both their size and complexity. The system containing a full-

length, fully- glycosylated spike protein, embedded in a realistic viral membrane (with composition that mimics 

the endoplasmic reticulum) contains essentially all of the biological complexity known about the SARS-CoV-2 

spike protein. The composite system contains 1.7 million atoms and combines data from multiple cryo-EM, 

glycomics, and lipidomics datasets. The system was simulated with conventional MD out to microseconds in 

length, and several mutant systems were simulated and validated with independent experiments. 
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A related set of experiments utilizing the weighted ensemble method, an enhanced sampling technique, 

explored a truncated version of the spike protein (600,000 atoms with explicit solvent) in order to simulate an 

unbiased spike protein conformational transition from the closed to open state. This is the largest system, by an 

order of magnitude, that has been simulated using the WE method (biggest system until now was 60,000 atoms). 

Using calculations optimized to efficiently make use of extensive GPU resources, we obtained several full, 

unbiased paths of the glycosylated spike receptor binding domain activation mechanism. 

The second system increases the complexity by an order of magnitude by combining the spike system 

described above with a full- length, fully-glycosylated model of the ACE2 receptor bound into a host cell plasma 

membrane. This system represents the encounter complex between the spike and the ACE2 receptor, contains 

two parallel membranes of differing composition, has both the spike and ACE2 fully glycosylated, and forming 

a productive binding event at their interface. The composite system contains 8.5 million atoms with explicit 

water molecules and provides unseen views into the critical handshake that must occur between the spike protein 

and the ACE2 receptor to begin the infection cascade. 

Our final system is of the SARS-CoV-2 viral envelope. This system incorporates 24 full-length, fully-

glycosylated spike proteins into a viral membrane envelope of realistic (ER-like) composition, where the 

diameter of the viral membrane is 80nm and the diameter of the virion, inclusive of spikes, is 146 nm. Until now, 

the largest system disclosed in a scientific publication was the influenza virus, which contained 160 million 

atoms. The SARS-CoV-2 viral envelope simulation developed here contains a composite 305 million atoms, and 

thus breaks new ground for MD simulations of viruses in terms of particle count, size, and complexity. 

Moreover, typical state of the art simulations are run in isolation, presenting each as a self-contained 

story. While we also do that for each of the systems presented here, we advance on state of the art by using an 

AI-driven workflow that drives simulation at one scale, with knowledge gained from a disparate scale. In this 

way, we are able to explore relevant phase space of the spike protein more efficiently and in environments of 

increasing complexity. 
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6.6.3 Using AI for driving multiscale simulations  

MD simulations such as the ones described above generate tremendous amounts of data. For e.g., the 

simulations of the WE sampling of the spike protein’s closed- to-open state generated over 100 terabytes of data. 

This imposes a heavy burden in terms of understanding the intrinsic latent dimensions along which large-scale 

conformational transitions can be characterized. A key challenge then is to use the raw simulation datasets (either 

coordinates, contact matrices, or other data collected as part of a standard MD runs) to cluster conformational 

states that have been currently sampled, to identify biologically relevant transitions between such states (e.g., 

open/closed states of spike), and suggest conformational states that may not be fully sampled to characterize 

these transitions.54  To deal with the size and complexity of these simulation datasets, approaches that analyze 

3D point clouds are more appropriate. Indeed, such approaches are becoming more commonly utilized for 

characterizing protein binding pockets and protein-ligand interactions. We posited that such representations 

based on the C𝛼 representation of protein structures could be viable to characterize large-scale conformational 

changes within MD simulation trajectories. We leverage the 3D PointNet based67 adversarial autoencoder (3D-

AAE) developed by Zamorski and colleagues68 to analyze the spike protein trajectories. In this work, we employ 

the chamfer distance based reconstruction loss and a Wasserstein69 adversarial loss with gradient penalty70 to 

stabilize training. The original PointNet backbone treats the point cloud as unordered, which is true for general 

point clouds. In our case however, the protein is essentially a 1D embedding into a 3D space. This allows us to 

define a canonical order of points, i.e., the order in which they appear in the chain of atoms. For that reason, we 

increase the size-1 1D convolutional encoder kernels from the original PointNet approach to larger kernels up to 

size 5. This allows the network to not only learn features solely based on distance, but also based on 

neighborhood in terms of position of each atom in the chain. We found that a 4-layer encoder network with 

kernel sizes [5, 3, 3, 1, 1] and filter sizes [64, 128, 256, 256, 512] performs well for most tasks. A final dense 

layer maps the vectors into latent space with dimensionality 64. For the generator, we only use unit size kernels 

with filter dimensions [64, 128, 512, 1024, 3] respectively (the output filter size is always the dimensionality of 

the problem). The discriminator is a 5 layer fully connected network with layer widths [512, 512, 128, 64, 1]. 
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Figure 6.3: 3D-AAE training and test results. A) The loss progression for reconstruction, discriminator and 
validation loss over 100 epochs. B) The t-SNE plot visualization of the reduced latent space, with training 
embeddings represented in grey and test examples represented in color over the range of RMSD values. Outliers 
identified in the outlier detection stage are represented with an outlined diamond. C) VMD visualization of 
outlier structures (yellow, orange, dark orange) aligned and compared to the starting structure (blue). 
 

The trajectories from the WE simulations were used to build a combined data set consisting of 130,880 

examples. The point cloud data, representing the coordinates of the 3,375 backbone C𝛼 atoms of the protein, 
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was randomly split into training (80%) and validation input (20%) and was used to train the 3D-AAE model for 

100 epochs using a batch size of 32. The data was projected onto a latent space of 64 dimensions constrained by 

a gaussian prior distribution with a standard deviation of 0.2. The loss optimization was performed with the 

Adam optimizer, a variant of stochastic gradient descent, using a learning rate of 0.0001. We also added 

hyperparameters to scale individual components of the loss. The reconstruction loss was scaled by 0.5 and the 

gradient penalty by a factor of 10. 

The embedding learned from the 3D-AAE model summarizes a latent space that is similar to variational 

autoencoders, except that 3D-AAEs tend to be more robust to outliers within the simulation data. The 

embeddings learned from the simulations allow us to cluster the conformations (in an unsupervised manner) 

based on their similarity in overall structure, which can be typically measured using quantities such as root-mean 

squared deviations (RMSD). 

We trained the model using several combinations of hyperparameters, mainly varying learning rate, 

batch size and latent dimension. For visualizing and assessing the quality of the model in terms latent space 

structure, we computed t-SNE71 dimensionality reductions on the high-dimensional embeddings from the 

validation set. A good model should generate clusters with respect to relevant biophysical observables not used 

in the training process. Therefore, we painted the t-SNE plot with the root mean squared deviation (RMSD) of 

each structure to the starting conformation and observed intelligible clustering of RMSD values. We tested this 

model on a set of trajectories from the full-scale spike-ACE2 system, using the same atom selection (3,375 C𝛼 

atoms) as the corresponding WE spike protein. We subsequently performed outlier detection using the local 

outlier factor (LOF) algorithm, which uses distance from neighboring points to identify anomalous data. The 

goal of the outlier detection step is to identify conformations of the protein that are most distinct from the starting 

structure, in order to story board important events in the transition of the protein from an open to closed 

conformation. Although the number of outlier conformations detected can be a parameter that the end-user can 

specify, we selected 20 outlier conformations, based on the extreme LOF scores. These conformations were 

visualized in VMD and further analyzed using tilt angles of the stalk and the RBD. The final selection included 

3 structures which were used as the starting conformations for the next set of simulations. These ‘outlier’ 

conformers are cycled through additional MD simulations that are driven by the ML-methods. 
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6.7 How Performance Was Measured 

6.7.1 3D-AAE 

Since this application dominantly utilizes the GPU, we do not need to profile CPU FLOPs. Instead, we 

measure FLOPs for all precisions using the methodology explained in Yang et al.72 with the NVIDIA NSight 

Compute 2020 GPU profiling tool. We collect floating point instructions of relevant flavors (i.e. adds, mults, 

fmas (fused multiply adds) and tensor core operations for FP16, FP32 and FP64) and multiply those with 

weighting factors of {1, 1, 2, 512} respectively in order to transform those into FLOP counts. The sum of all 

these values for all precisions will yield our overall mixed precision FLOP count. To exclude FLOPs occurring 

during initialization and shut- down, we wrap the training iteration loop into start/stop profiler hooks provided 

by the NVIDIA CuPy Python package. 

Table 6.2: NAMD AVX-512 FP operation breakdown. 

 

6.7.2 NAMD 

NAMD performance metrics were collected on TACC Frontera, using the Intel msr-tools utilities, with 

NAMD 2.14 with added Intel AVX-512 support. FLOP counts were measured for each NAMD simulation with 

runs of two different step counts. The results of the two simulation lengths were subtracted to eliminate NAMD 

startup operations, yielding an accurate estimate of the marginal FLOPs per step for a continuing simulation.73  

FLOP counts were obtained by reading the hardware performance counters on all CPU cores on all 

nodes, using the rdmsr utility from msr-tools.4 At the beginning of each job, the “TACC stats” system programs 

the core performance counters to count the 8 sub-events of the Intel FP_ARITH_INST_RETIRED. Counter 

values are summed among the 56 cores in each node, and ultimately among each node. Each node-summed 

counter value is scaled by the nominal SIMD-width of the floating-point instruction being counted and the 8 

classes are added together to provide the total FLOP count per node. The hardware counters do not take masked 
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SIMD instructions into account. SIMD lanes that are masked-out still contribute to the total FLOPs, however 

static analysis of the AVX-512-enabled NAMD executable showed that only 3.7% of FMA instructions were 

masked. 

A breakdown of floating-point instruction execution frequency for the AVX-512 build of NAMD across 

2048 nodes is shown in Table 6.1. For CPU versions of NAMD, arithmetic is performed in double precision, 

except for single-precision PME long-range electrostatics calculations and associated FFTs. In the GPU-

accelerated NAMD on Summit, single-precision arithmetic is used for both PME and also for short-range non-

bonded force calculations, significantly increasing the fraction of single-precision instructions, at the cost of 

requiring a mixed-precision patch-center-based atomic coordinate representation to maintain full force 

calculation precision. 

6.8 Performance Results 

6.8.1 3D-AAE training performance 

We used the aforementioned recipe for GPU profiling to determine the performance for the 3D-AAE 

training. We measure the FLOP counts individually for 2 training and 1 validation steps for a batch size of 32. 

The latent dimension of the model is a free hyperparameter and affects the FLOP count. We trained three models 

with latent dimensions 32, 64, 128 in order to determine an optimal model for the task and thus we profile and 

report numbers for all of those. All models were trained for 100 epochs with batch size 32 on a single V100 GPU 

each. As mentioned above, the train/validation dataset split is 80%/20% and we do one validation pass after each 

training epoch. Thus, we can assume that this fraction translates directly into the FLOP counts for these 

alternating two stages. Our sustained performance numbers are computed using this weighted FLOP count 

average and the total run time. In order to determine peak performance, we compute the instantaneous FLOP 

rate for the fastest batch during training. Note that the 3D-AAE does exclusively use float (FP32) precision. The 

performance results are summarized in Table 6.2. Although the model is dense linear algebra heavy, it is also 

rather lightweight so it cannot utilize the full GPU and thus only delivering 20% of theoretical peak performance. 
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Table 6.3: 3D-AAE training performance on one V100 GPU. 

 

Table 6.4: NAMD simulation floating point ops per timestep.  

 

As expected, the peak performance is very consistent between the runs. The big difference in sustained 

performance between latent dim 64 and the other two models is that the frequency for computing the t-SNE was 

significantly reduced, i.e., from every epoch to every 5th. The t-SNE computation and plotting happens after 

each validation in a background thread on the CPU, but the training epochs can be much shorter than the t-SNE 

time. In that case, the training will stall until the previous t-SNE has completed. Evidently, decreasing the t-SNE 

frequency reduces that overhead significantly. We expect that the other models would perform similarly if we 

would have enabled this optimization for those runs as well. The remaining difference in peak vs. sustained 

performance can be explained by other overhead, e.g., storing embedding vectors, model checkpoints and the 

initial scaffolding phase. Furthermore, it includes the less FLOP-intensive validation phase whereas the peak 

estimate is obtained from the FLOP-heavy training phase. 

6.8.2 NAMD simulation performance 

Low-level NAMD performance measurements were made on the TACC Frontera system, to establish 

baseline counts of FLOPs per timestep for the four different biomolecular systems simulated as part of this work, 

summarized in Table 6.3 with the breakdown of CPU FLOPs described in Table 6.1. Sustained NAMD 

performance measurements were obtained using built-in application timers over long production science runs of 

several hours, including all I/O, and reported in units of nanoseconds per day of simulation time. NAMD 

sustained simulation performance for the spike-ACE2 complex is summarized for the TACC Frontera and ORNL 

Summit systems in Table 6.4 and Figure 6.4. NAMD sustained simulation performance, parallel speedup, and 
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scaling efficiency are reported for the full SARS-CoV-2 virion in Table 6.5. Peak NAMD mixed-precision 

FLOP rates on ORNL Summit are estimated in Table 6.6 by combining sustained performance measurements 

with FLOPs/timestep measurements. 

 

Figure 6.4: NAMD scaling on Summit and Frontera for 8.5M- atom spike-ACE2 complex (upper lines) and 
305M-atom virion (lower line). Thin lines indicate linear scaling. 
 
6.9 Implications 

Our major scientific achievements are: 

(1) We characterize for the first time the glycan shield of the full-length SARS-CoV-2 spike protein 

(including the stalk) and find that two N-glycans linked to N165 and N234 have a functional role 

in modulating the dynamics of the spike’s RBD. This unprecedented finding establishes a major new 

role of glycans in this system as playing an active role in infection, beyond shielding (Fig. 1C) (Casalino 

et al., 2020b). 

(2) We discover that the human ACE2 receptor has a flexible hinge in the linker region near the 

membrane that enables it to undergo exceptionally large angular motions relative to the plane of 

the membrane. We predict this flexibility will aid forming productive complexes with the spike protein 

and may serve as a mechanical energy source during the cell fusion process (Barros et al., 2020). 
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(3) We openly share our models, methods, and data, making them freely available to the scientific 

community. We are committed to the shared set of principles outlined in Ref. (Amaro and Mulholland, 

2020): depositing findings as preprints in advance of formal peer review, making available our models 

at the time of deposition into a preprint server (Barros et al., 2020), and releasing the full datasets upon 

peer review (Casalino et al., 2020b). By doing so, the reproducibility and robustness of our findings and 

methods are enhanced, and the scientific findings from our simulations are amplified through reuse by 

others. 

(4) We describe for the first time unbiased pathways for the full closed-to-open transition of the 

spike’s RBD (Fig. 2), where knowledge of this pathway has the potential to inform on mechanisms 

of viral infection as well as potentially aid in the discovery of novel druggable pockets within the 

spike. Our work set a new milestone for the use of the weighted ensemble method in biomolecular 

simulation, increasing applicable system size by an order or magnitude over current state of the art. 

(5) We characterize the spike’s flexibility in the context of ACE2 binding. One of the most important 

properties of the spike protein is its intrinsic flexibility, a key feature that facilitates the interaction with 

the ACE2 receptors exposed on the host cell. Cryo-EM and cryo-ET structural data revealing the 

architecture of the SARS-CoV-2 viral particle showed that the spike can tilt up to 60º with respect to 

the perpendicular to the membrane.34,74 Behind this flexibility is the structural organization of the extra-

virion portion of the spike, composed of two major domains, the stalk and the head, that are connected 

through a flexible junction that has been referred to as “hip” (Figure 7.5A). Moreover, the stalk can be 

further divided into an upper and a lower leg, which correspond to the extra-virion alpha-helices of the 

coil-coiled trimeric bundle, and the transmembrane domain, which can be intended as the foot of this 

organizational scaffold. The stalk’s upper leg, lower leg and the foot are interspersed by highly flexible 

loops defined as “knee” and “ankle” junctions (Figure 6.5A). We then harnessed DeepDriveMD to 

perform adaptive MD on the Spike-ACE2 8.5 million atoms system. Following this workflow, we 

extracted three conformations from the first set of Spike-ACE2 MD simulations (replicas 1-3) and 

subsequently used them as starting points for a new round of MD (replicas 4-6). We then calculated the 

distribution of the overall spike tilting with respect to the perpendicular to the membrane (Figure 6.5E) 
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and of other three angles involving the stalk, namely the “hip” angle between the stalk’s up- per leg and 

the head (Figure 6.5B), the “knee” angle between the stalk’s lower and upper legs (Figure 6.5C), and 

the “ankle” angle between the perpendicular to the membrane and the stalk’s lower leg (Figure 6.5D). 

The AI-driven adaptive MD approach expanded the conformational space explored, especially for the 

knee and hip angles, showing average values of 18.5º ± 7.7º and 13.8º ± 7.6º for replicas 1-3, shifted to 

30.4º ± 5.1º and 18.8º ± 6.0º for the subsequent set of MD (replicas 4-6), respectively. The population 

shift is less pronounced for the ankle, exhibiting an average angle of 21.8º ± 2.7º. These results, in 

agreement with the data from Turonova et al.75 that however did not consider the spike in complex with 

ACE2, reveal large hinge motions throughout the stalk and between the stalk and the head that 

accommodate the interaction between the spike’s RBD and the ACE2 receptor, preventing the 

disruption of the binding interface. This is further highlighted by the overall tilting of the spike that 

remains well defined around 7.3º ± 2.0º (Figure 6.5E) showing that the stalk’s inner hinge motions 

prevent a larger scale bending that could potentially disrupt the RBD-ACE2 interaction. 

(6) Our approach points to the very near-term ability to accelerate the sampling of dynamical 

configurations of the complicated viral infection machinery within in the context of its full 

biological complexity using AI. The enormous amount of data arising from MD and WE simulations 

of the single spike served to build and train an AI model using the variational autoencoder deep learning 

approach, which we demonstrate to accelerate dynamical sampling of the spike in a larger, more 

complex system (i.e., the two parallel membrane spike-ACE2 complex). Thus, the combination of the 

AI-driven workflows together with the ground- breaking simulations opens the possibility to overcome 

a current major bottleneck in the development and use of such ultra-large scale MD simulations, which 

relates to the efficient and effective sampling of the conformational dynamics of a system with so many 

degrees of freedom. The scientific implications of such a techno- logical advance, in terms of 

understanding of the basic science of molecular mechanisms of infection as well as the development of 

novel therapeutics, are vast. 

(7) We establish a new high watermark for the atomic-level simulation of viruses with the simulation 

of the SARS-CoV-2 viral envelope, tallying 305 million atoms including explicit water molecules, 
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and exhibiting a strong scaling on Summit. The virion has a realistic ERGIC-like membrane, contains 

24 fully glycosylated full-length spikes (in both the open and closed states) and replicates the spatial 

patterning and density of viral proteins as determined from cryoelectron tomography experiments. 

These groundbreaking simulations, just now in the process of being fully analyzed, set the stage for 

future work on SARS-CoV-2 that will be unprecedented in terms of their ability to more closely mimic 

realistic biological conditions. This includes, for example, the ability to explore the interactions of the 

virus with multiple receptors on the host cell, or multiple antibodies. It will allow researchers to explore 

the correlated dynamics of the molecular pieceparts on the surface of the virus and the host cell, and the 

effects of curvature on such behavior. It will be used as the ground-truth in the development of other 

simulation approaches, including coarse grained simulation methods, which are under development.76 

It will aid in the development of methods related to the construction of complicated biological 

membranes. And the list goes on. 

(8) We developed an AI-driven workflow as a generalizable framework for multiscale simulation. 

Though we focus here on advances made relevant to COVID19, the methods and work- flow established 

here will be broadly applicable to the multiscale simulation of molecular systems. 
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Figure 6.5: Flexibility of the spike bound to the ACE2 receptor. A) Schematic representation of the two-parallel-
membrane system of the spike-ACE2 complex. (B-E) Distributions of the ankle, knee, hip and spike-tilting 
angles resulting from MD replicas 1-3 (darker color) and 4-6 (lighter color). Starting points for replicas 4-6 have 
been selected using DeepDriveMD. 
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 Chapter 7 
#COVIDisAirborne: AI-Enabled Multiscale Computational 
Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol 

7.1 Abstract 

We seek to completely revise current models of airborne transmission of respiratory viruses by 

providing never-before-seen atomic- level views of the SARS-CoV-2 virus within a respiratory aerosol. Our 

work dramatically extends the capabilities of multiscale computational microscopy to address the significant 

gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the 

atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our 

integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of 

aerosols and aerosolized viruses, while driving simulation method development along several important axes. 

We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full 

scientific impact of this work has yet to be realized. 

7.2 Justification 

We develop a novel HPC-enabled multiscale research framework to study aerosolized viruses and the 

full complexity of species that comprise them. We present technological and methodological advances that 

bridge time and length scales from electronic structure through whole aerosol particle morphology and dynamics. 

7.3 Performance Attributes 

Table 7.1 Performance Attributes. 

Performance Attribute Our Submission 

Category of achievement Scalability, Time-to-solution 
Type of method used Explicit, Deep Learning 

Results reported on the basis of  Whole application including I/O 
Precision reported Mixed Precision 

System scale Measured on full system 
Measurement Mechanism Hardware performance counters, Application 

timers, Performance Modeling 
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7.4 Overview of the Problem 

Respiratory pathogens, such as SARS-CoV-2 and influenza, are the cause of significant morbidity and 

mortality worldwide. These respiratory pathogens are spread by virus-laden aerosols and droplets that are 

produced in an infected person, exhaled, and transported through the environment1 (Figure 7.1). Medical dogma 

has long focused on droplets as the main transmission route for respiratory viruses, where either a person has 

contact with an infected surface (fomites) or direct droplet transmission by close contact with an infected 

individual. However, as we continue to observe with SARS-CoV-2, airborne transmission also plays a significant 

role in spreading disease. We know this from various super spreader events, e.g., during a choir rehearsal.2 

Intervention and mitigation decisions, such as the relative importance of surface cleaning or whether and when 

to wear a mask, have unfortunately hinged on a weak understanding of aerosol transmission, to the detriment of 

public health. 

A central challenge to understanding airborne transmission has been the inability of experimental 

science to reliably probe the structure and dynamics of viruses once they are inside respiratory aerosol particles. 

Single particle experimental methods have poor resolution for smaller particles (<1 micron) and are prone to 

sample destruction during collection. Airborne viruses are present in low concentrations in the air and are 

similarly prone to viral inactivation during sampling. In addition, studies of the initial infection event, for 

example in the deep lung, are limited in their ability to provide a detailed understanding of the myriad of 

molecular interactions and dynamics taking place in situ. Altogether, these knowledge gaps hamper our 

collective ability to understand mechanisms of infection and develop novel effective antivirals, as well as prevent 

us from developing concrete, science-driven mitigation measures (e.g., masking and ventilation protocols). 

Here, we aim to reconceptualize current models of airborne transmission of respiratory viruses by 

providing never-before-seen views of viruses within aerosols. Our approach relies on the use of all-atom 

molecular dynamics (MD) simulations as a multiscale ‘computational microscope.’ MD simulations can 

synthesize multiple types of biological data (e.g., multiresolution structural datasets, glycomics, lipidomics, etc.) 

into cohesive, biologically ‘accurate’ structural models. Once created, we then approximate the model down to 

its many atoms, creating trajectories of its time dependent dynamics under cell-like (or in this case, aerosol-like) 
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conditions. Critically, MD simulations are more than just ‘pretty movies.’ MD equations are solved in a 

theoretically rigorous manner, allowing us to compute experimentally testable macroscopic observables from 

time-averaged microscopic properties. What this means is that we can directly connect MD simulations with 

experiments, each vali- dating and providing testable hypotheses to the other, which is the real power of the 

approach. An ongoing challenge to the successful application of such methods, however, is the need for 

technological and methodological advances that make it possible to access length scales relevant to the study of 

large, biologically complex systems (spanning nanometers to one micron in size) and, correspondingly, longer 

timescales (microseconds to seconds). 

Such challenges and opportunities manifest in the study of aerosolized viruses. Aerosols are generally 

defined as being less than 5 microns in diameter, able to float in the air for hours, travel significant distances 

(e.g., can fill a room, like cigarette smoke), and be inhaled. Fine aerosols < 1 micron in size can stay in the air 

for over 12 hours and are enriched with viral particles.3,4 Our work focuses on these finer aerosols that travel 

deeper into the respiratory tract. Several studies provide the molecular recipes necessary to reconstitute 

respiratory aerosols according to their actual biologically-relevant composition.5,6 These aerosols can contain 

lipids, cholesterol, albumin (protein), various mono- and di-valent salts, mucins, other surfactants, and water 

(Figure 7.1). Simulations of aerosolized viruses embody a novel framework for the study of aerosols: they will 

allow us and others to tune different species, relative humidity, ion concentrations, etc. to match experiments 

that can directly and indirectly connect to and inform our simulations, as well as test hypotheses. Some of the 

species under study here, e.g., mucins, have not yet been structurally characterized or explored with simulations 

and thus the models we generate are expected to have impact beyond their roles in aerosols. 

In addition to varying aerosol composition and size, the viruses themselves can be modified to reflect 

new variants of concern, where such mutations may affect interactions with particular species in the aerosol that 

might affect its structural dynamics and/or vi- ability. The virion developed here is the Delta variant (B.1.617.2 

lineage) of SARS-CoV-2 (Figure 7.2) which presents a careful integration of multiple biological datasets: (1) a 

complete viral envelope with realistic membrane composition, (2) fully glycosylated full-length spike proteins 

integrating 3D structural coordinates from multiple cryoelectron microscopy (cryo-EM) studies7–10 (3) all 

biologically known features (post-translational modifications, palmitoylation, etc.), (4) any other known 
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membrane proteins (e.g., the envelope (E) and membrane (M) proteins), and (5) virion size and patterning taken 

directly from cryoelectron tomography (cryo-ET). Each of the individual components of the virus are built up 

before being integrated into the composite virion, and thus represent useful molecular-scale scientific 

contributions in their own right.11,12 

Altogether in this work, we dramatically extend the capabilities of data-driven, multiscale computational 

microscopy to provide a new way of exploring the composition, structure, and dynamics of respiratory aerosols. 

While a seemingly limitless number of putative hypotheses could result from these investigations, the first set 

of questions we expect to answer are: How does the virus exist within a droplet of the same order of magnitude 

in size, without being affected by the air-water interface, which is known to destroy molecular structure13 ? How 

does the biochemical composition of the droplet, including pH, affect the structural dynamics of the virus? Are 

there species within the aerosols that “buffer” the viral structure from damage, and are there particular conditions 

under which the impact of those species changes? Our simulations can also provide specific parameters that can 

be included in physical models of aerosols, which still assume a simple water or water-salt composition even 

though it is well known that such models, e.g., using kappa-Kohler theory, break down significantly as the 

molecular species diversify.14  
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Figure 7.1: Overall schematic depicting the construction and multiscale simulations of Delta SARS-CoV-2 in a 
respiratory aerosol. (N.B.: The size of divalent cations has been increased for visibility.) 
 
7.5 Current State of the Art 

Current experimental methods are unable to directly interrogate the atomic-level structure and dynamics 

of viruses and other molecules within aerosols. Here we showcase computational microscopy as a powerful tool 

capable to overcome these significant experimental limitations. We present the major elements of our multiscale 

computational microscope and how they come together in an integrated manner to enable the study of aerosols 

across multiple scales of resolution. We demonstrate the impact such methods can bring to bear on scientific 

challenges that until now have been intractable and present a series of new scientific discoveries for SARS-CoV-

2. 

7.5.1 Parallel molecular dynamics 

All-atom molecular dynamics simulation has emerged as an increasingly powerful tool for understanding 

the molecular mechanisms underlying biophysical behaviors in complex systems. Leading simulation engines, 

NAMD15, AMBER16, and GROMACS17, are broadly useful, with each providing unique strengths in terms of 
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specific methods or capabilities as required to address a particular biological question, and in terms of their 

support for particular HPC hardware platforms. Within the multiscale computational microscopy platform 

developed here, we show how each of these different codes contributes different elements to the overall 

framework, oftentimes utilizing different computing modalities/architectures, while simultaneously extending 

on state-of-the-art for each. Structure building, simulation preparation, visualization, and post-hoc trajectory 

analysis are performed using VMD on both local workstations and remote HPC resources, enabling modeling of 

the molecular systems studied herein.18–22 We show how further development of each of these codes, considered 

together within the larger-scale collective framework, enables the study of SARS-CoV-2 in a wholly novel 

manner, with extension to numerous other complex systems and diseases. 

7.5.2 AI-enhanced WE simulations 

Because the virulence of the Delta variant of SARS-CoV-2 may be partly attributable to spike protein 

(S) opening, it is of pressing interest to characterize the mechanism and kinetics of the process. Although S-

opening in principle can be studied via conventional MD simulations, in practice the system complexity and 

timescales make this wholly intractable. Splitting strategies that periodically replicate promising MD trajectories, 

among them the weighted ensemble (WE) method23,24, have enabled simulations of the spike opening of WT 

SARS-CoV-2.12,25 WE simulations can be orders of magnitude more efficient than conventional MD in 

generating pathways and rate constants for rare events (e.g., protein folding26 and binding27). The WESTPA 

software for running WE28 is well-suited for high-performance computing with nearly perfect CPU/GPU scaling. 

The software is interoperable with any dynamics engine, including the GPU-accelerated AMBER dynamics 

engine29 that is used here. As shown below, major upgrades to WESTPA (v. 2.0) have enabled a dramatic 

demonstration of spike opening in the Delta variant (Figures 7.5 and 7.6) and exponentially improved analysis 

of spike-opening kinetics. 

The integration of AI techniques with WE can further enhance the efficiency of sampling rare 

events.11,30,31 One frontier area couples unsupervised linear and non-linear dimensionality reduction methods to 

identify collective variables/progress coordinates in high-dimensional molecular systems.32,33 Such methods may 

be well suited for analyzing the aerosolized virus. Integrating these approaches with WE simulations is 
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advantageous in sampling the closed open transitions in the Delta S landscape (Figure 7.5) as these unsupervised 

AI approaches automatically stratify progress coordinates (Figure 7.5D).  

7.5.3 Dynamical Non-Equilibrium MD 

Aerosols rapidly acidify during flight via reactive uptake of atmospheric gases, which is likely to impact 

the opening/closing of the S protein.5,34 Here, we describe the extension of dynamical non-equilibrium MD (D- 

NEMD)35 to investigate pH effects on the Delta S. D-NEMD simulations35 are emerging as a useful technique 

for identifying allosteric effects and communication pathways in proteins36,37, including recently identifying 

effects of linoleic acid in the WT spike.38 This approach complements equilibrium MD simulations, which 

provide a distribution of configurations as starting points for an ensemble of short non-equilibrium trajectories 

under the effect of the external perturbation. The response of the protein to the perturbation introduced can then 

be determined using the Kubo-Onsager by directly tracking the change in atomic positions between the 

equilibrium and non-equilibrium simulations at equivalent points in time.  

7.5.4 OrbNet 

Ca2+ ions are known to play a key role in mucin aggregation in epithelial tissues.39 Our RAV simulations 

would be an ideal case-study to probe such complex interactions between Ca2+, mucins, and the SARS-CoV-2 

virion in aerosols. However, Ca2+ binding energies can be difficult to capture accurately due to electronic 

dispersion and polarization, terms which are not typically modeled in classical mechanical force fields. Quantum 

mechanical (QM) methods are uniquely suited to capture these subtle interactions. Thus, we set out to estimate 

the correlation in Ca2+ binding energies between CHARMM36m and quantum mechanical estimates enabled via 

AI with OrbNet. Calculation of energies with sufficient accuracy in biological systems can, in many cases, be 

adequately described with density functional theory (DFT). However, its high cost limits the applicability of 

DFT in comparison to fixed charge force-fields. To capture quantum quality energetics at a fraction of the 

computational expense, we employ a novel approach (OrbNet) based on the featurization of molecules in terms 

of symmetry-adapted atomic orbitals and the use of graph neural network methods for deep-learning quantum-

mechanical properties.40 Our method outperforms existing methods in terms of its training efficiency and 
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transferable accuracy across diverse molecular systems, opening a new pathway for replacing DFT in large-scale 

scientific applications such as those explored here.41  

7.6 Innovations Realized 

7.6.1 Construction and simulation of SARS-CoV-2 in a respiratory aerosol 

Our approach to simulating the entire aerosol follows a composite framework wherein each of the 

individual molecular pieces is refined and simulated on its own before it is incorporated into the composite 

model. Simulations of each of the components are useful in their own right, and often serve as the basis for 

biochemical and biophysical validation and experiments.11 

Throughout, we refer to the original circulating SARS-CoV-2 strain as “WT”, whereas all SARS-CoV-

2 proteins constructed in this work represent the Delta variant (Figure 7.2) All simulated membranes reflect 

mammalian ER-Golgi intermediate compartment (ERGIC) mimetic lipid compositions. VMD18,22, psfgen42 and 

CHARMM- GUI43 were used for construction and parameterization. Topologies and parameters for simulations 

were taken from CHARMM36m all-atom additive force fields.44–50 NAMD was used to perform MD 

simulations,15 adopting similar settings and protocols as in Casalino et al.11 All systems underwent solvation, 

charge neutralization, minimization, heating, and equilibration prior to production runs. Refer to Table 7.2 for 

abbreviations, PBC dimensions, total number of atoms, and total equilibration times for each system of interest. 
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Figure 7.2: Individual protein components of the SARS-CoV-2 Delta virion. The spike is shown with the surface 
in cyan and with Delta’s mutated residues and deletion sites highlighted in pink and yellow, respectively. 
Glycans attached to the spike are shown in blue. The E protein is shown in yellow and the M protein is shown 
in silver and white. Visualized with VMD. 
 

7.6.1.1 Simulating the SARS-CoV-2 structural proteins.  

Fully glycosylated Delta spike (S) structures in open and closed conformations were built based on WT 

constructs from Casalino et al.11 with the following mutations: T19R, T95I, G142D, E156G, Δ157-158, L452R, 

T478K, D614G, P681R, and D950N.8,51 Higher resolved regions were grafted from PDB 7JJI.7 Additionally, 

coordinates of residues 128-167 accounting for a drastic conformational change seen in the Delta variant S 

(graciously made available to us by the Veesler Lab) were similarly grafted onto our constructs.8 Finally, the S 

proteins were glycosylated following work by Casalino et al.11 By incorporating the Veesler Lab’s bleeding-

edge structure and highly resolved regions from 7JJI, our models represent the most complete and accurate 

structures of the Delta S to date. The S proteins were inserted into membrane patches and equilibrated for 3x110 

ns. For nonequilibrium and weighted ensemble simulations, a closed S head (SH, residues 13- 1140) was 

constructed by removing the stalk from the full-length closed S structure, then re-solvated, neutralized, 

minimized, and subsequently passed to WE and D-NEMD teams. The M protein was built from a structure 

graciously provided by the Feig Lab (paper in prep). The model was inserted into a membrane patch and 

equilibrated for 700 ns. RMSD-based clustering was used to select a stable starting M protein conformation. 
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From the equilibrated and clustered M structure, VMD’s Mutator plugin18 was used to incorporate the I82T 

mutation onto each M monomer to arrive at the Delta variant M. To construct the most complete E protein model 

to-date, the structure was patched together by re- solving incomplete PDBs 5X29,52 7K3G,53 and 7M4R.54 To 

do so, the transmembrane domain (residues 8-38) from 7K3G was aligned to the N-terminal domain (residues 

1-7) and residues 39 to 68 of 5X29 and residues 69 to 75 of 7M4R by their C𝛼 atoms. E was then inserted into 

a membrane patch and equilibrated for 40 ns. 

7.6.1.2 Constructing the SARS-CoV-2 Delta virion.  

The SARS-CoV-2 Delta virion (V) model was constructed following Casalino et al.55 using CHARMM-

GUI,56 LipidWrapper,57 and Blender,58 using a 350 Å lipid bilayer with an equilibrium area per lipid of 63 Å2 

and a 100 nm diameter Blender icospherical surface mesh.59 The resulting lipid membrane was solvated in a 

1100 Å3 waterbox and subjected to 4 rounds of equilibration and patching.55 360 M dimers and 4 E pentamers 

were then tiled onto the surface, followed by random placement of 29 full-length S proteins (9 open, 20 closed) 

according to experimentally observed S protein density.60 M and E proteins were oriented with intravirion C- 

termini. After solvation in a 1460 Å waterbox, the complete V model tallied >305 million atoms (Table 8.2). V 

was equilibrated for 41 ns prior to placement in the respiratory aerosol (RA) model. The equilibrated membrane 

was 90 nm in diameter and remains in close structural agreement with the experimental studies.60  
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Table 7.2: Summary of all systems constructed in this work. See Figure 8.3 for illustration of aerosol 
construction. 
 

 

7.6.1.3 Building and simulating the respiratory aerosol.  

Respiratory aerosols contain a complex mixture of chemical and biological species. We constructed a 

respiratory aerosol (RA) fluid based on a composition from artificial saliva and surrogate deep lung fluid 

recipes.6 This recipe includes 0.7 mM DPPG, 6.5 mM DPPC, 0.3 mM cholesterol, 1.4 mM Ca2+, 0.8 mM Mg2+, 

and 142 mM Na+, human serum albumin (ALB) protein, and a composition of mucins (Figure 7.3) Mucins are 

long polymer-like structures that are decorated by dense, heterogeneous, and complex regions of O-glycans. 

This work represents the first of its kind as, due to their complexity, the O-glycosylated regions of mucins have 

never before been constructed for molecular simulations. Two short (m1, m2, 5 nm) and three long (m3, m4, m5 

55 nm) mucin models were constructed following known experimental compositions of protein and 

glycosylation sequences39,61–64 with ROSETTA65 and CHARMM GUI Glycan Modeler.43 Mucin models (short 

and long) were solvated, neutralized by charge matching with Ca2+ ions, minimized, and equilibrated for 15-25 

ns each (Table 7.2). Human serum albumin (ALB), which is also found in respiratory aerosols, was constructed 

from PDB 1AO6.66 ALB was solvated, neutralized, minimized, and equilibrated for 7ns. Equilibrated structures 
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of ALB and the three long mucins were used in construction of the RAV with m3+m4+m5 added at 6 g/mol and 

ALB at 4.4 g/mol. 

 

Figure 7.3: Image of RAV with relative mass ratios of RA molecular components represented in the color bar. 
Water content is dependent on the relative humidity of the environment and is thus omitted from the molecular 
ratios. 
 

7.6.1.4 Constructing the respiratory aerosolized virion model.  

A 100 nm cubic box with the RA fluid recipe specified above was built with PACKMOL,67 minimized, 

equilibrated briefly on TACC Frontera, then replicated to form a 300 nm cube. The RA box was then carved into 

a 270 nm diameter sphere. To make space for the placement of V within the RA, a spherical selection with 

volume corresponding to that of the V membrane + S crown (radius 734 Å) was deleted from the center of the 

RA. The final equilibrated V model, including surrounding equilibrated waters and ions (733 Å radius), was 

translated into the RA. Atom clashes were resolved using a 1.2 Å cutoff. Hydrogen mass repartitioning68 was 

applied to the structure to improve performance. The simulation box was increased to 2800 Å per side to provide 
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a 100 Å vacuum atmospheric buffer. The RAV simulation was conducted in an NVT ensemble with a 4 fs 

timestep. After minimizing, the RAV was heated to 298 K with 0.1 kcal/mol Å2 restraints on the viral lipid 

headgroups, then equilibrated for 1.5 ns. Finally, a cross-section of the RAV model – including and open S, 

m1/m2, and ALB (called the SMA system) – was constructed with PACKMOL to closely observe atomic scale 

interactions within the RAV model (Figure 7.4).  

 
 

Figure 7.4: SMA system captured with multiscale modeling from classical MD to AI-enabled quantum 
mechanics. For all panels: S protein shown in cyan, S glycans in blue, m1/m2 shown in red, ALB in orange, 
Ca2+ in yellow spheres, viral membrane in purple. A) Interactions between mucins and S facilitated by glycans 
and Ca2+. B) Snapshot from SMA simulations. C) Ex- ample Ca2+ binding site from SMA simulations (1800 
sites, each 1000+ atoms) used for AI-enabled quantum mechanical estimates from OrbNet Sky. D) 
Quantification of contacts between S and mucin from SMA simulations. E) OrbNet Sky energies vs 
CHARMM36m energies for each sub-selected system, colored by total number of atoms. Performance of OrbNet 
Sky vs. DFT in subplot (𝜔B97x-D3/def-TZVP, R2=0.99, for 17 systems of peptides chelating Ca2+. Visualized 
with VMD. 

7.6.2 Parameter evaluation with OrbNet  

Comparison to quantum methods reveals significant polarization effects and shows that there is 

opportunity to improve the accuracy of fixed charge force fields. For the large system sizes associated with 

solvated Ca2+-protein interaction motifs (over 1000 atoms, even in aggressively truncated systems) conventional 

quantum mechanics methods like density functional theory (DFT) are im- practical for analyzing a statistically 

significant ensemble of distinct configurations (see discussion in Performance Results). In contrast, OrbNet 

allows for DFT accuracy with over 1000-fold speed-up, providing a useful method for benchmarking and 
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refining the force- field simulation parameters with quantum accuracy.41 To confirm the accuracy of OrbNet 

versus DFT (𝜔B97X- D/def2-TZVP), the inset of Figure 7.4E correlates the two methods for the Ca2+-binding 

energy in a benchmark dataset of small Ca2+- peptide complexes.69 The excellent correlation of OrbNet and DFT 

for the present use case is clear from the inset figure; six datapoints were removed from this plot on the basis of 

a diagnostic applied to the semi-empirical GFN-xTB solution used for feature generation of OrbNet.  

Figure 8.4E presents a comparison of the validated OrbNet method with the CHARMM36m force field 

for 1800 snapshots taken from the SMA MD simulations. At each snapshot, a subsystem containing a solvated 

Ca2+-protein complex was extracted (Figure 7.4E) with protein bonds capped by hydrogens. For both OrbNet 

and the force field, the Ca2+-binding energy was computed and shown in the correlation plot. Lack of correlation 

between OrbNet and the force field identifies important polarization effects, absent in a fixed charge description. 

Similarly, the steep slope of the best-fit line in Figure 7.4E reflects the fact that some of the configurations 

sampled using MD with the CHARMM36m force field are relatively high in energy according to the more 

accurate OrbNet potential. This approach allows us to test and quantify limitations of empirical force fields, such 

as lack of electronic polarization. 

The practicality of OrbNet for these simulation snapshots with 1000+ atoms offers a straightforward 

multiscale strategy for refining the accuracy of the CHARMM36m force field. By optimizing the partial charges 

and other force field parameters, improved correlation with OrbNet for the subtle Ca2+-protein interactions could 

be achieved, leading to near-quantum accuracy simulations with improved configurational sampling. The 

calculations presented here present a proof-of-concept of this iterative strategy. 

7.6.3 AI-WE simulations of Delta spike opening 

While our previous WE simulations of the WT SARS-CoV-2 S- opening12 were notable in generating 

pathways for a seconds-timescale process of a massive system, we have made two critical technological 

advancements in the WESTPA software that greatly enhance the efficiency and analysis of WE simulations. 

These advances enabled striking observations of Delta-variant S opening (Figures 7.5 and 7.6). First, in contrast 

to prior manual bins for controlling trajectory replication, we have developed automated and adaptive binning 

that enables more efficient surmounting of large barriers via early identification of “bottleneck” regions.70 



 221 

Second, we have parallelized, memory-optimized, and implemented data streaming for the history-augmented 

Markov state model (haMSM) analysis scheme71 to enable application to the TB-scale S-opening datasets. The 

haMSM approach estimates rate constants from simulations that have not yet reached a steady state.72  

Our WE simulations generated >800 atomically detailed, Delta- variant S-opening pathways (Figures 

7.5B and 7.6) of the receptor binding domain (RBD) switching from a glycan-shielded ‘down’ to an ex- posed 

‘up’ state using 72 𝜇s of total simulation time within 14 days using 192 NVIDIA V100 GPUs at a time on 

TACC’s Longhorn supercomputer. Among these pathways, 83 reach an ‘open’ state that aligns with the structure 

of the human ACE2-bound WT S protein73 and 18 reach a dramatically open state (Figure 7.6). Our haMSM 

analysis of WT WE simulations successfully provided long-timescale (steady-state) rate constants for S-opening 

based on highly transient information (Figure 7.5C).  

 

Figure 7.5: Delta-variant spike opening from WE simulations, and AI/haMSM analysis. A) The integrated 
workflow. B) Snapshots of the ‘down’, ‘up’, and ‘open’ states for Delta S-opening from a representative pathway 
generated by WE simulation, which represents 105 speedup compared to conventional MD. C) Rate-constant 
estimation with haMSM analysis of WE data (pur- ple lines) significantly improves direct WE computation 
(red), by comparison to experimental measurement (black dashed). Varying haMSM estimates result from 
different featurizations which will be individually cross-validated. D) The first three dimensions of the ANCA-
AE embeddings depict a clear separation between the closed (darker purple) and open (yellow) con- formations 
of the Delta spike. A sub-sampled landscape is shown here where each sphere represents a conformation from 
the WE simulations and colored with the root-mean squared deviations (Å) with respect to the closed state. 
Visualized with VMD. 
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We also leveraged a simple, yet powerful unsupervised deep learning method called Anharmonic 

Conformational Analysis enabled Autoencoders (ANCA-AE)33 to extract conformational states from our long-

timescale WE simulations of Delta spike opening (Figure 7.5A,D). ANCA-AE first minimizes the fourth order 

correlations in atomistic fluctuations from MD simulation datasets and projects the data onto a low dimensional 

space where one can visualize the anharmonic conformational fluctuations. These projections are then input to 

an autoencoder that further minimizes non-linear correlations in the atomistic fluctuations to learn an embedding 

where conformations are automatically clustered based on their structural and energetic similarity. A 

visualization of the first three dimensions from the latent space articulates the RBD opening motion from its 

closed state (Figure 7.5D). It is notable that while other deep learning techniques need special purpose hardware 

(such as GPUs), the ANCA-AE approach can be run with relatively modest CPU resources and can therefore 

scale to much larger systems (e.g., the virion within aerosol) when optimized. 
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Figure 7.6: WE simulations reveal a dramatic opening of the Delta S (cyan), compared to WT S (white). While 
further investigation is needed, this super open state seen in the Delta S may indicate increased capacity for 
binding to human host-cell receptors. 
 

7.6.4 D-NEMD explores pH effects on Delta spike 

We performed D-NEMD simulations of the SH system with GROMACS74 using a ΔpH=2.0 (from 7.0 

to 5.0) as the external perturbation. We ran 3 200-ns equilibrium MD simulations of SH to generate 87 

configurations (29 configurations per replicate) that were used as the starting points for multiple short (10 ns) 

D-NEMD trajectories under the effect of the external perturbation (ΔpH=2.0). The effect of a ΔpH was modelled 
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by changing the protonation state of histidines 66, 69, 146, 245, 625, 655, 1064, 1083, 1088, and 1101 (we note 

that other residues may also become protonated75 ; the D-NEMD approach can also be applied to examine those). 

The structural response of the S to the pH decrease was investigated by measuring the difference in the position 

for each C𝛼 atom between the equilibrium and corresponding D-NEMD simulation at equivalent points in time38, 

namely after 0, 0.1, 1, 5 and 10 ns of simulation. The D-NEMD simulations reveal that pH changes, of the type 

expected in aerosols, affect the dynamics of functionally important regions of the spike, with potential 

implications for viral behavior (Figure 7.7). As this approach involves multiple short independent non-

equilibrium trajectories, it is well suited for cloud computing. All D-NEMD simulations were performed using 

Oracle Cloud. 
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Figure 7.7: D-NEMD simulations reveal changes in key functional regions of the S protein, including the 
receptor binding domain, as the result of a pH decrease. Color scale and ribbon thickness indicate the degree of 
deviation of C𝛼 atoms from their equilibrium position. Red spheres indicate the location of positively charged 
histidines. 
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7.7 How performance was measured 

7.7.1 WESTPA 

For the WE simulations of spike opening using WESTPA, we defined the time to solution as the total 

simulation time required to generate the first spike opening event. Spike opening is essentially impossible to 

observe via conventional MD. WESTPA simulations were run using the AMBER20 dynamics engine and 192 

NVIDIA V100 GPUs at a time on TACC’s Longhorn supercomputer. 

7.7.2 NAMD 

NAMD performance metrics were collected using hardware performance counters for FLOPs/step 

measurements, and application- internal timers for overall simulation rates achieved by production runs 

including all I/O for simulation trajectory and checkpoint output. NAMD FLOPs/step measurements were 

conducted on TACC Frontera, by querying hardware performance counters with the rdmsr utility from Intel msr-

tools and the “TACC stats” system programs. For each simulation, FLOP counts were measured for NAMD 

simulation runs of two different step counts. The results of the two simulation lengths were subtracted to 

eliminate NAMD startup operations, yielding an accurate estimate of the marginal FLOPs per step for a 

continuing simulation.76 Using the FLOPs/step values computed for each simulation, overall FLOP rates were 

computed by dividing the FLOPs/step value by seconds/step performance data reported by NAMD internal 

application timers during production runs. 

Table 7.3: MD simulation floating point ops per timestep.  

 

7.7.3 GROMACS 

GROMACS 2020.4 benchmarking was performed on Oracle Cloud Infrastructure (OCI) compute shape 

BM.GPU4.8 consisting of 8 NVIDIA A100 tensor core GPUs, and 64 AMD Rome CPU cores. The simulation 
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used for benchmarking contained 615,563 atoms and was run for 500,000 steps with 2 fs time steps. The 

simulations were run on increasing numbers of GPUs, from 1 to 8, using 8 CPU cores per GPU, running for both 

the production (Nose-Hoover) and GPU- accelerated (velocity rescaling) thermostats. Particle–mesh Ewald 

(PME) calculations were pinned to a single GPU, with additional GPUs for multi-GPU jobs used for particle–

particle calculations. Performance data (ns/day and average single-precision TFLOPS, calculated as total number 

of TFLOPs divided by total job walltime) were reported by GROMACS itself. Each simulation was repeated 

four times and average performance figures reported. 

7.8 Performance 

7.8.1 NAMD performance 

NAMD was used to perform all of the simulations listed in Table 7.2, except for the closed spike (SH) 

simulations described further below. With the exception of the aerosol and virion simulation, the other NAMD 

simulations used conventional protocols and have performance and parallel scaling characteristics that closely 

match the results reported in our previous SARS-CoV-2 research.55 NAMD 2.14 scaling performance for the 

one billion- atom respiratory aerosol and virion simulation run on ORNL Summit is summarized in Tables 7.4 

and 8.5. A significant performance challenge associated with the aerosol virion simulation relates to the roughly 

50% reduction in particle density as compared with a more conventional simulation with a fully populated 

periodic cell. The reduced particle density results in large regions of empty space that nevertheless incur 

additional overheads associated with both force calculations and integration, and creates problems for the 

standard NAMD load balancing scheme that estimates the work associated with the cubic “patches” used for 

parallel domain decomposition. The PME electrostatics algorithm and associated 3-D FFT and transpose 

operations encompass the entire simulation unit cell and associated patches, requiring involvement in 

communication and reduction operations despite the inclusion of empty space. Enabling NAMD diagnostic 

output on a 512-node 1B-atom aerosol and virion simulation revealed that ranks assigned empty regions of the 

periodic cell had 66 times the number of fixed-size patches as ranks assigned dense regions. The initial load 

estimate for an empty patch was changed from a fixed 10 atoms to a runtime parameter with a default of 40 

atoms, which reduced the patch ratio from 66 to 19 and doubled performance on 512 nodes. 
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Table 7.4: NAMD performance: Respiratory Aerosol + Virion, 1B atoms, 4 fs timestep w/ HMR, and PME 
every 3 steps. 
 

 

Table 7.5: Peak NAMD FLOP rates, ORNL Summit. 

 

7.8.2 WESTPA performance 

Our time to solution for WE simulations of spike opening (to the “up” state) (Figure 7.5) using the 

WESTPA software and AMBER20 was 14 𝜇s of total simulation time, which was completed in 4 days using 

192 NVIDIA V100 GPUs at a time on TACC’s Longhorn supercomputer. For reference, conventional MD 

would require an expected 5 orders of magnitude more computing. The WESTPA software is highly scalable, 

with nearly perfect scaling out to >1000 NVIDIA V100 GPUs and this scaling is expected to continue until the 

filesystem is saturated. Thus, WESTPA makes optimal use of large supercomputers and is limited by filesystem 

I/O due to the periodic restarting of trajectories after short time intervals. 

7.8.3 AI-enhanced WE simulations 

DeepDriveMD is a framework to coordinate the concurrent execution of ensemble simulations and drive 

them using AI models.77,78 DeepDriveMD has been shown to improve the scientific performance of diverse 

problems: from protein folding to conformation of protein-ligand complexes. We coupled WESTPA to 

DeepDriveMD, which is responsible for resource dynamism and concurrent heterogeneous task execution (ML 

and AMBER). The coupled workflow was executed on 1024 nodes on Summit (OLCF), and, in spite of the 

spatio-temporal heterogeneity of tasks involved, the resource utilization was in the high 90%. Consistent with 

earlier studies, the coupling of WESTPA to DeepDriveMD results in a 100x improvement in the exploration of 

phase space. 
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7.8.4 GROMACS performance 

Figure 8.8 shows GROMACS parallelizes well across the 8 NVIDIA A100 GPUs available on each 

BM.GPU4.8 instance used in the Cluster in the Cloud running on OCI. There is a performance drop for two 

GPUs due to inefficient division of the PME and particle-particle tasks. Methods to address this exist for the two 

GPU case17, but were not adopted as we were targeting maximum raw performance across all 8 GPUs. 

Production simulations achieved 27% of the peak TFLOPS available from the GPUs. Multiple simulations were 

run across 10 such compute nodes, enabling the ensemble to run at an average combined speed of 425 TFLOPS 

and sampling up to 1𝜇s/day. We note that the calculations will be able to run 20%–40% faster once the Nose-

Hoover thermostat that is required for the simulation is ported to run on the GPU. Benchmarking using a velocity 

rescaling thermostat that has been ported to GPU shows that this would enable the simulation to extract 34% of 

the peak TFLOPS from the cards, enabling each node to achieve an average speed of 53.4 TFLOPS, and 125 

ns/day. A cluster of 10 nodes would enable GROMACS to run at an average combined speed of over 0.5 

PFLOPs, simulating over 1.2 𝜇s/day. 
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Figure 7.8: GROMACS performance across 1–8 A100 GPUs in ns/day (thicker, blue lines) and the fraction of 
maximum theoretical TFLOPS (thinner, green lines); production setup shown with solid line and runs with the 
GPU-accelerated thermostat in dashed. 
 

A significant innovation is that this power is available on demand: Cluster in the Cloud with GPU-

optimized GROMACS was provisioned and benchmarked within one day of inception of the project. This was 

handed to the researcher, who submitted the simulations. Automatically, up to ten BM.GPU4.8 compute nodes 

were provisioned on-demand based on requests from the Slurm scheduler. These simulations were performed 

on OCI, using Cluster in the Cloud to manage automatic scaling. 

Cluster in the Cloud was configured to dynamically provision and terminate computing nodes based on 

the workload. Simulations were conducted using GROMACS 2020.4 compiled with CUDA sup- port. Multiple 

simultaneous simulations were conducted, with each simulation utilizing a single BM.GPU4.8 node without 

multi-node parallelism. 

This allowed all production simulations to be completed within 2 days. The actual compute cost of the 

project was less than $6125 USD (on-demand OCI list price). The huge reduction in “time to science” that low-

cost cloud enables changes the way that researchers can access and use HPC facilities. In our opinion, such a 

setup enables “exclusive on-demand” HPC capabilities for the scientific community for rapid advancement in 

science. 
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7.8.5 OrbNet performance 

Prior benchmarking reveals that OrbNet provides over 1000-fold speedup compared to DFT. For the 

calculations presented here, the cost of corresponding high-quality range-separated DFT calculations (wB97X-

D/def2-TZVP) can be estimated. In Figure 7.4E, we consider system sizes which would require 14,000–47,000 

atomic orbitals for wB97X-D/def2-TZVP, exceeding the range of typical DFT evaluations. Estimation of the 

DFT computational cost of the 1811 configurations studied in Figure 7.4E suggests a total of 115M core-hours 

on NERSC Cori Haswell nodes; in contrast, the OrbNet calculations for the current study require only 100k 

core-hours on the same nodes. DFT cost estimates were based on extrapolation from a dataset of over 1M 

ChEMBL molecules ranging in size from 40 to 107 atom systems considering only the cubic cost component of 

DFT.41  

7.9 Implications 

Our major scientific achievements are: 

(1) We showcase an extensible AI-enabled multiscale computational framework that bridges time and 

length scales from electronic structure through whole aerosol particle morphology and dynamics. 

(2) We develop all-atom simulations of respiratory mucins and use these to understand the structural basis 

of interaction with the SARS-CoV-2 spike protein. This has implications for viral binding in the deep 

lung, which is coated with mucins. We expect the impact of our mucin simulations to be far reaching, 

as malfunctions in mucin secretion and folding have been implicated in progression of severe diseases 

such as cancer and cystic fibrosis. 

(3) We present a significantly enhanced all-atom model and simulation of the SARS-CoV-2 Delta virion, 

which includes the hundreds of tiled M-protein dimers and the E-protein ion channels. This model can 

be used as a basis to understand why the Delta virus is so much more infectious than the WT or alpha 

variants. 

(4) We develop an ultra-large (1 billion+) all-atom simulation capturing massive chemical and biological 

complexity within a respiratory aerosol. This simulation provides the first atomic level views of virus-

laden aerosols and is already serving as a basis to develop an untold number of experimentally testable 
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hypotheses. An immediate example suggests a mechanism through which mucins and other species, 

e.g., lipids, which are present in the aerosol, arrange to protect the molecular structure of the virus, 

which otherwise would be exposed to the air-water interface. This work also opens the door for 

developing simulations of other aerosols, e.g., sea spray aerosols, that are involved in regulating climate. 

(5) We evidence how changes in pH, which are expected in the aerosol environment, may alter dynamics 

and allosteric communication pathways in key functional regions of the Delta spike protein. 

(6) We characterize atomically detailed pathways for the spike- opening process of the Delta variant using 

WE simulations, revealing a dramatically open state that may facilitate binding to human host cells. 

(7) We demonstrate how parallelized haMSM analysis of WE data can provide physical rate estimates of 

spike opening, improving prior estimates by many orders of magnitude. The pipeline can readily be 

applied to the any variant spike protein or other complex systems of interest. 

(8) We show how HPC and cloud resources can be used to significantly drive down time-to-solution for 

major scientific efforts as well as connect researchers and greatly enable complex collaborative 

interactions. 

(9) We demonstrate how AI coupled to HPC at multiple levels can result in significantly improved effective 

performance, e.g., with AI-driven WESTPA, and extend the reach and do- main of applicability of tools 

ordinarily restricted to smaller, less complex systems, e.g., with OrbNet. 

(10) While our work provides a successful use case, it also exposes weaknesses in the HPC ecosystem in 

terms of support for key steps in large/complex computational science campaigns. We find lack of 

widespread support for high performance remote visualization and interactive graphical sessions for 

system preparation, debugging, and analysis with diverse science tools to be a limiting factor in such 

efforts. 
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