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ABSTRACT	OF	THE	DISSERTATION	

	

Global	Analysis	of	Nutrient	Limitation	and	Microdiversity	of	Prochlorococcus	

by	

Lucas	James	Ustick	

Doctor	of	Philosophy	in	Biology	

University	of	California,	Irvine,	2022	

Professor	Adam	C.	Martiny	Irvine,	Chair	

	

	

Nutrient	supply	regulates	the	activity	of	phytoplankton,	but	the	global	biogeography	

of	nutrient	limitation	and	co-limitation	are	poorly	understood.	Bottle	incubation	

experiments	have	revealed	patterns	of	nutrient	limitation	but	have	limited	spatial	

coverage,	and	surface	nutrient	concentrations	are	below	detection	limits	in	much	of	the	

oligotrophic	ocean.	In	my	first	chapter	I	used	genomic	changes	as	an	indicator	of	adaptation	

to	nutrient	stress.	We	collected	909	surface	metagenomes	from	the	Atlantic,	Pacific,	and	

Indian	Ocean,	quantified	the	global	genome	content	of	Prochlorococcus	and	inferred	local	

nutrient	stress	based	on	shifts	in	nitrogen,	phosphorus,	and	iron	assimilation	genes.	Our	

‘omics-based	description	of	phytoplankton	resource	use	provided	a	nuanced	and	highly	

resolved	quantification	of	nutrient	stress	in	the	global	ocean.	

	 We	see	a	clear	association	between	genome	content	and	nutrient	limitation,	

but	the	underlying	population	genetics	of	these	genomic	differences	and	the	mechanisms	

by	which	they	arise	are	unknown.	In	my	second	chapter,	I	described	the	functional	

diversity	found	within	Prochlorococcus	and	captured	the	link	between	low	nutrient	
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adaptation	and	phylogeography.	I	analyzed	630	surface	ocean	metagenomes	and	quantified	

global	variation	in	gene	abundance,	phylogeny,	and	genomic	structure	through	consensus	

marker	genes	and	metagenomically	assembled	genomes	(MAGs).	The	analysis	of	functional	

diversity	and	phylogeography	revealed	widespread	flexibility	in	genomic	content,	with	a	

phylogenetically	conserved	haplotype	driven	by	P	limitation.	

	 While	omics-based	analysis	can	give	a	detailed	representation	of	a	microbial	

community,	these	methods	are	spatially	and	temporally	limited	to	the	time	and	location	of	

sampling.	Remote	sensing-based	descriptions	of	microbial	nutrient	limitation	have	been	

proposed	but	have	never	been	validated	in	situ.	For	my	third	chapter,	I	combined	remote	

sensing	and	metagenomically	derived	estimates	of	nutrient	limitation	to	expand	both	the	

temporal	and	spatial	extent	of	our	characterization	of	nutrient	limitation.	Based	on	this	in	

situ	validation	of	the	remote	sensing	products	I	analyzed	the	past	10	years	of	data	and	

captured	novel	seasonal	variation	and	a	recent	reduction	in	global	nutrient	limitation.	
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CH1:	Metagenomic	analysis	reveals	global-scale	patterns	of	ocean	nutrient	limitation	

	

Authors:	Lucas	J.	Ustick,	Alyse	A.	Larkin,	Catherine	A.	Garcia,	Nathan	S.	Garcia,	Melissa	L.	

Brock,	Jenna	A.	Lee,	Nicola	A.	Wiseman,	J.	Keith	Moore,	and	Adam	C.	Martiny	

	

Introduction:	

	 The	supply	of	nutrients	to	the	surface	ocean	exerts	a	fundamental	control	on	

phytoplankton	growth	(1)	that	may	be	further	exacerbated	by	future	climate-driven	

stratification	(2).	However,	there	is	currently	large	uncertainty	about	the	global	patterns	of	

nutrient	stress	and	the	possibility	of	limitation	by	multiple	nutrients	(3).	For	example,	

studies	have	independently	proposed	N,	P,	or	Fe	limitation	for	phytoplankton	growing	in	

the	North	Atlantic	Ocean	(4–6).	Thus,	the	role	and	interactions	of	each	nutrient	in	

regulating	phytoplankton	growth	is	still	unknown	for	large	parts	of	the	ocean.	

	 Experimental	nutrient	additions	and	biogeochemical	models	are	important	tools	for	

quantifying	ocean	nutrient	stress	(7).	Nutrient	additions	have	demonstrated	Fe	limitation	

in	upwelling	regions,	but	it	has	been	difficult	to	identify	the	limiting	nutrient	in	many	other	

places.	Multiple	elements	are	often	required	to	stimulate	growth	(8)	leading	to	a	proposal	

of	widespread	co-limitation	(7).	However,	nutrients	are	commonly	present	simultaneously	

in	low	concentration,	making	it	challenging	to	distinguish	between	co-limitation	and	the	

quick	exhaustion	of	non-limiting	nutrients	(9).	Bottle	experiments	can	also	introduce	

artifacts	and	are	labor	intensive,	leading	to	large	regional	gaps	in	coverage	(e.g.,	most	of	the	

Indian	Ocean)	(7).	Ocean	biogeochemical	models	predict	large-scale	patterns	of	nutrient	

limitation.	However,	the	degree	of	nutrient	stress	and	the	boundaries	between	major	
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nutrient-limitation	regimes	are	sensitive	to	uncertain	descriptions	of	uptake	and	growth	as	

well	as	external	nutrient	inputs	(10).	Thus,	there	are	methodological	and	conceptual	

challenges	associated	with	quantifying	the	biogeography	of	ocean	nutrient	stress.	

	 Prochlorococcus,	the	most	abundant	phytoplankton	in	oligotrophic	regions	(11),	can	

adapt	to	low	nutrient	conditions	via	gene	gains	and	losses.	The	fast	growth	and	large	

population	size	of	Prochlorococcus	results	in	a	close	association	between	genome	content	

and	local	nutritional	conditions	(11).	All	Prochlorococcus	genomes	include	the	pstABCS	

genes	for	direct	assimilation	of	available	inorganic	phosphate	(12,	13).	However,	cells	gain	

the	capacity	for	regulation	(e.g.,	phoBR)	and	assimilation	of	specific	P-containing	

compounds	when	inorganic	P	is	depleted.	They	also	detoxify	the	accidental	uptake	of	

arsenate	with	arsR/acr3	(14).	Under	high	P	depletion	and	stress,	cells	can	broadly	

assimilate	dissolved	organic	P	(DOP)	using	the	alkaline	phosphatases	phoA	and	phoX	(15,	

16).	A	similar	phylogenomic	hierarchy	of	adaptation	is	seen	for	nitrogen	and	iron	

acquisition	and	stress.	Prochlorococcus	cells	progressively	gain	the	capacity	for	ammonia,	

urea,	nitrite,	and	nitrate	uptake	with	increasing	N	stress	driven	by	energetic	costs	of	

converting	oxidized	N	compounds	into	glutamine	(17,	18).	Prochlorococcus	cells	carry	

genes	for	increasing	uptake	via	siderophores	and	additional	transporters	under	medium	Fe	

stress	(19)	and	have	lost	many	Fe-containing	proteins	under	severe	Fe	stress	in	HNLC	

zones	(20).	Thus,	genomic	content	of	cells	in	a	region	reflects	the	experienced	physiological	

nutrient	stress	and	the	biochemical	trade-offs	in	overcoming	the	severity	of	nutrient	stress	

by	loss	of	function	or	investments	in	acquisition	(21).	Thus,	we	propose	using	the	genome	

content	of	Prochlorococcus	populations	as	a	global-scale	biosensor	for	ocean	phytoplankton	

nutrient	stress.	
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Table	1.1:	Prochlorococcus	genes	associated	with	nutrient	stress	type	and	severity	
Ωtype,severity	 Function	 Marker	Genes	 References	
ΩFe,high	 Loss	of	Fe	

containing	
proteins	

HLIII-IV	core	genes	 (20)	

ΩFe,medium	 Fe	uptake	
(transporters)	

cirA,	expD,	febB,	fepB/C,	tolQ,	tonB	 (19)	

ΩP,high	 Alkaline	
phosphatase	

phoA,	phoX	 (12,	15)	

ΩP,medium	 P	starvation	
regulation,	
arsenate	

toxicity,	specific	
DOP	

assimilation	

arsR,	acr3,	chrA,	gap1,	mfs,	phoB/E/R,	ptrA,	
PMM707,	PMM721,	unkP1-5	

(12,	14)	

ΩN,high	 Nitrite	and	
nitrate	

assimilation	
and	uptake	

focA,	moaA-E,	moeA,	napA,	narB,	nirA	 (17)	

ΩN,medium	 Urea	and	
cyanate	
utilization	

cynA/S,	tauE,	ureA-G,	urtA,	unkN1-2	 (17,	18)	

	
Results	and	Discussion:	

	 We	collected	surface	metagenomes	from	the	Atlantic,	Pacific,	and	Indian	Ocean	to	

quantify	the	global	genome	content	of	Prochlorococcus	and	inferred	nutrient	stress	(Table	

S1.1).	909	samples	were	newly	collected	as	part	of	Bio-GO-SHIP	(22)	and	supplemented	

with	228	from	Tara	Oceans	and	GEOTRACES.	We	recruited	sequences	to	known	

Prochlorococcus	strains,	recorded	the	frequency	of	established	nutrient	acquisition	genes,	

and	normalized	to	Prochlorococcus	single	copy	core	genes.	Based	on	prior	biochemical	

knowledge	and	verified	by	phylogenomics	(and	without	reference	to	their	spatial	

distribution),	we	a	priori	classified	genetic	adaptations	for	overcoming	a	nutrient	stress	

type	and	severity	(Ω)	(Table	1.1).	Although	the	classification	of	adaptations	into	high,	

medium,	and	low	stress	partially	masks	the	complex	biochemical	tradeoffs	and	
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phylogenomic	trait	hierarchy	of	nutrient	use,	these	grouping	allow	us	to	quantify	the	

geographic	variation	of	nutrient	stress	environments	in	the	global	surface	ocean.	

	

	

Figure	1.1:	Variation	in	nutrient	stress	genes	among	Prochlorococcus	populations.	A:	

Principal	component	analysis	of	stress	genes	across	all	metagenome	samples	(grey	dots,	n	

=	1137).	Vectors	for	stress	genes	(𝑧!)	and	composite	metrics	(Ωs)	are	overlaid	and	colored	

according	to	nutrient	type	(red=Fe,	blue=P,	yellow=N,	grey=Low	Stress).	Outer	ring	

represents	angular	separation	and	the	boundaries	at	which	samples	are	categorized	by	

nutrient	stress	type	(Table	S2).	B:	Global	biogeography	of	nutrient	stress	type	defined	by	

the	angular	separation	in	Fig.	1A.	

	

	 An	ordination	of	nutrient	genes	demonstrated	a	continuum	of	stress	type	and	

severity	(Fig.	1.1A	and	S1.1).	The	first	principal	component	(28%	variance)	was	parallel	to	

the	occurrence	of	medium	and	high	N	stress	indicator	genes,	suggesting	that	the	largest	

cluster	of	samples	was	linked	to	N	stress.	The	second	principal	component	(20%	variance)	

separated	Fe	and	P	stress	genes,	where	vectors	for	Fe	and	P	stress	genes	pointed	nearly	

opposite	(0.9π	angular	difference).	There	was	also	a	spread	within	the	N	cluster	related	to	
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N	substrate	(Fig.	S1.2).	The	vectors	for	populations	with	only	ammonia	and	urea	

assimilation	genes	had	nearly	the	same	angle	but	were	separated	by	0.33π	from	

populations	containing	nitrite+nitrate	or	cyanate	genes	(Fig.	S1.1).	We	propose	that	these	

samples	were	associated	with	medium	vs.	high	N	stress.	Several	low	light	strains	of	

Prochlorococcus	can	use	nitrite	but	not	nitrate	with	a	dedicated	transporter	focA.	The	focA	

and	narB	vectors	were	near	opposite	(separated	by	0.88π)	suggesting	a	distinct	ecological	

niche	for	nitrite	assimilation	(cooler	waters	with	deeper	mixing,	Fig.	S1.1,	S1.2).	Samples	

associated	with	elevated	medium	and	high	P	stress	genes	were	predominantly	from	the	

North	Atlantic	Ocean	and	Mediterranean	Sea,	where	high	P	stress	has	been	proposed	

(6)(Fig.	1.1B).	Samples	associated	with	the	high	Fe	stress	genotype	were	mostly	from	the	

HNLC	regions.	However,	selection	for	medium	stress	genes	occurred	in	many	samples	

suggesting	widespread	adaptation	to	Fe	stress.	We	identified	sample	clusters	between	the	

N	and	Fe	as	well	as	N	and	P	gene	vectors	indicating	frequent	co-stress.	In	contrast,	Fe	and	P	

stress	genes	showed	low	correlation	(Fig.	S1.3)	and	there	were	rare	co-occurrences	of	Fe-P	

stress	genes.	In	sum,	the	ordination	of	Prochlorococcus	genes	could	identify	samples	with	

genes	linked	to	single	nutrient	stress	or	co-stress.	

	 Prochlorococcus	genome	content	confirmed	known	biogeographic	patterns	but	also	

revealed	several	previously	unrecognized	regions	of	nutrient	(co-)stress	(Fig.	1.1B).	We	

observed	genotypes	adapted	to	(i)	widespread	N	stress	in	oligotrophic	regions,	(ii)	P	stress	

in	the	North	Atlantic,	Mediterranean,	and	Red	Sea,	and	(iii)	Fe	stress	in	the	equatorial	

Pacific.	We	found	additional	smaller	regions	of	P	stress	adaptation	in	the	western	South	

Atlantic	and	North	Indian	Ocean.	Other	regions	with	Fe	stress	adaptation	included	the	

eastern	South	Pacific	Subtropical	Gyre,	temperate	regions	in	the	North	and	South	Atlantic,	
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and	the	Arabian	Sea.	Our	data	suggested	that	co-stress	was	widespread	but	mostly	included	

N	as	one	of	the	elements.	

	

	

Figure	1.2:	Global	biogeography	of	Prochlorococcus	nutrient	stress	type	and	severity.	

Based	on	their	biochemical	role,	genes	were	categorized	by	nutrient	stress	‘type’	and	

‘severity’	and	combined	into	a	composite	metric	(Ωs)	(Table	1.1).	Background	coloring	is	

based	on	an	interpolation	between	sampling	points	shown	in	dark	grey.	

	

	 Prochlorococcus	stress	genes	demonstrated	subtle	transitions	between	nutrient	

stress	type	and	severity	in	the	Atlantic	Ocean	(Fig.	1.2	and	Fig.	S1.4-7,	S1.13).	Samples	from	

three	independent	cruises	detected	a	transition	between	elevated	ΩFe	and	ΩP	moving	from	

north	to	south	around	40˚-50˚N	(Fig.	S1.4-7).	Subtle	Fe	stress	north	of	the	Gulf	Stream	has	

been	observed	in	past	physiological	analyses	of	phytoplankton	(23).	Genes	for	DOP	

utilization	and	associated	ΩP,high	above	one	were	observed	in	the	North	Atlantic	subtropical	

gyre	between	~40˚N	and	the	Intertropical	Convergence	Zone	(ITCZ)	but	peaked	near	30˚N	

(Fig.	S1.4-7).	An	exception	was	a	smaller	region	of	elevated	ΩFe,med	in	the	Canary	Current,	

where	upwelling	likely	relieved	macronutrient	stress.	In	the	central-eastern	gyre	core,	we	
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detected	ΩN,high	>	1	suggesting	adaptation	to	N-P	co-limitation.	Some	samples	from	the	

western	gyre	showed	an	unusual	combination	of	co-occurring	Fe-P	stress	genes.	A	

significant	meridional	shift	between	P	stress	and	other	nutrients	at	the	ITCZ	has	been	

suggested	(24).	In	support,	ΩP,high	and	ΩP,med	were	substantially	lower	in	the	South	Atlantic	

(ΩP,high=-0.5-0.5,	ΩP,med=-0.5-1)	and	constrained	to	a	small	western	gyre	region.	In	contrast,	

genotypes	in	the	eastern	South	Atlantic	indicated	adaptation	to	medium	Fe	stress	

(ΩFe,med=1-1.5).	This	is	consistent	with	recent	bottle	experiments	(8)	as	well	as	a	negative	

east-west	gradient	in	P	concentration	(25).	ΩN,high	was	positive	in	the	central	part	of	the	

South	Atlantic	subtropical	gyre	(ΩN,high=0.5-1)	indicating	strong	N	stress	in	the	region	(Fig.	

S1.4-7).	In	parallel	to	the	North,	ΩFe,med	rose	near	the	subtropical	front	towards	the	

Southern	Ocean.	Distinct	nutritional	regimes	are	thus	present	across	the	Atlantic	Ocean.	

	 The	Pacific	Ocean	also	showed	clear	transitions	in	stress	type	and	severity.	We	

detected	a	sharply	bounded	region	in	the	eastern	equatorial	Pacific	with	ΩFe,high	above	one	

(Fig.	S1.8-9,S1.13).	There	was	also	a	surrounding	zone	with	elevated	ΩFe,med	revealing	a	

wider	impact	of	upwelling	on	Fe	stress	than	indicated	by	macronutrient	concentrations	

(Fig.	S1.8-9).	To	the	north	of	the	HNLC	region,	ΩFe,med	was	eventually	replaced	with	elevated	

ΩN,high	(ΩN,high=0.5,	ΩFe,med=0)	and	some	P	stress	genes	near	Station	ALOHA.	ΩFe,med	was	

above	one	in	most	of	the	southeastern	Pacific,	which	was	consistent	with	Fe	stress	seen	in	

bottle	incubations	and	photophysiology	studies	(26,	27).	There	was	additional	elevated	

ΩN,high	in	the	South	Pacific	gyre	core	surrounded	by	a	wider	zone	with	high	ΩN,med	(Fig.	S9).	

In	the	western	South	Pacific,	we	mainly	detected	adaptation	to	N	stress	(ΩN,high=0.5-1.5,	

ΩN,med=0.5-1)(Fig.	S10).	However,	there	were	slight	increases	in	ΩP	towards	the	western	

edge	of	the	gyre	(ΩP,high=0-0.5,	ΩP,med=0-0.2)(Fig.	S10).	This	zonal	shift	towards	increasing	P	
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stress	was	consistent	with	the	low	P	concentrations	in	the	southwestern	Pacific	(25).	We	

lacked	samples	from	large	regions	of	the	Pacific	Ocean	(including	the	northwest)	

illustrating	the	significant	effort	required	to	cover	the	entire	Pacific	basin.		

	 We	previously	had	a	limited	understanding	of	nutrient	stress	in	the	Indian	Ocean	(7,	

28),	but	two	recent	GO-SHIP	cruises	greatly	improved	metagenomics	coverage.	Most	of	the	

Indian	Ocean	had	elevated	ΩN,high	and	ΩN,med	(Fig.	S1.11-13)	with	the	highest	values	seen	in	

the	Southern	Indian	Ocean	gyre.	N	stress	genes	decreased	north	of	the	equator	and	lowest	

in	the	Arabian	Sea	upwelling	region	(Fig.	S1.11,1.13).	We	detected	a	region	with	elevated	

ΩP,high	on	the	northeastern	side	of	the	Indian	Ocean	associated	with	several	fronts	from	the	

equator	to	the	Bay	of	Bengal	(Fig.	S1.12).	There	were	also	indications	of	some	P	stress	

adaptation	associated	with	the	south-flowing	Leeuwin	and	Agulhas	currents.	Samples	from	

GO-SHIP	I07N	(Fig.	S1.11)(ΩFe,high=0.5,	ΩFe,med=1-2)	and	Tara	Ocean	(Fig.	S1.13)(ΩFe,high=3,	

ΩFe,med=1)	both	demonstrated	high	ΩFe	in	a	small	upwelling	region	near	10˚S	on	the	western	

side	of	the	basin.	This	zone	of	high	ΩFe	is	supported	by	satellite	and	model	studies	(29).	

There	was	also	widespread	elevated	ΩFe,med	in	most	of	South	Indian	Ocean	gyre	and	in	a	few	

samples	in	the	Arabian	Sea	(30).	Overall,	our	metagenomics	assessment	greatly	expanded	

our	understanding	of	nutrient	stress	across	the	Indian	Ocean	basin.	

	 We	speculate	that	the	global-scale	biogeography	of	Prochlorococcus	multinutrient	

adaptation	is	stoichiometrically	linked	by	nitrogen	fixation.	Prochlorococcus	can	use	

nutrients	at	a	stoichiometric	ratio	significantly	above	the	vertically	supplied	N:P	(31).	This	

leads	to	a	default	state	of	residual	phosphate	and	corresponding	N	limitation	in	

oligotrophic	regions	unless	additional	N	is	supplied	by	diazotrophs	(32).	Reflected	in	the	

relative	ordination	positions	in	Fig.	1a,	cells	appear	adapted	to	simultaneous	N-Fe	co-stress	
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if	the	external	Fe	supply	and	diazotroph	activity	are	low.	Moving	counter	clockwise	in	Fig.	

1.1a,	populations	are	mainly	N	stressed	at	an	intermediate	and	then	ultimately	P	stressed	

at	high	Fe	supply	and	N	fixation	rates	(33).	The	Atlantic	meridional	shift	in	nutrient	stress	

emerges	from	these	stoichiometric	interactions	(34).	We	see	signs	of	the	same	connections	

in	the	zonal	shifts	from	elevated	ΩFe,med	in	the	southeastern	towards	elevated	ΩP,med	and	

ΩP,high	in	the	southwestern	Atlantic	and	Pacific	Oceans.	Cellular	resource	demand	results	in	

adaptation	to	high	Fe	stress	in	the	upwelling	zone	in	the	equatorial	Pacific	Ocean	(35).	As	

the	water	flows	outwards,	cells	experience	and	adapt	to	first	medium	Fe/N,	then	high	N	

stress	and	even	some	P	stress	near	Station	Aloha	as	the	vertical	Fe:P	supply	ratio	increases.	

These	meridional	and	zonal	shifts	in	adaptation	to	nutrient	stress	mirror	a	recent	synthesis	

of	surface	phosphate	concentrations	(25).	An	exception	was	the	North	Indian	Ocean	and	

Bay	of	Bengal,	where	we	detected	a	region	of	high	ΩP	without	a	clear	connection	to	N-

fixation	(36).	We	detected	samples	with	unique	Fe-P	co-stress	in	the	western	North	

Atlantic.	As	Fe	and	P	stress	are	commonly	opposite	(Fig.	1.1A),	this	co-stress	may	be	linked	

to	the	lateral	advection	of	low	P	water	from	the	central	Atlantic	(37).	Despite	the	

exceptions,	our	‘omics-based	approach	supports	an	emergent	stoichiometric	connection	of	

oceanic	multinutrient	stress.	
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Figure	1.3:	Comparison	between	the	Prochlorococcus	biosensor	and	established	

approaches	to	characterize	nutrient	stress.	A-F:	A:	Comparison	between	Fe	addition	

experiments	and	genomic	Fe	stress	(ΩFe)	(n=55).	B:	Comparison	between	P	addition	

experiments	and	genomic	P	stress	(ΩP)	(n=55).	C:	Comparison	between	N	addition	

experiments	and	genomic	N	stress	(ΩN)	(n=55).	Small	letters	in	A-C	represent	a	Tukey	post-

hoc	comparison.	D:	Comparison	between	surface	phosphate	concentrations	and	ΩP	(n=	

658).	E:	Comparison	between	surface	nitrate	concentrations	and	ΩN	(n=	802).	F:	Summary	

of	Spearman	correlations	between	established	approaches	and	genomic	stress	(Ωs)	all	

correlations	are	significant	(p	<	5e-10).	Data	is	colored	by	stress	level	across	all	figures	

(red,	high	stress	ΩHigh	and	blue,	medium	stress	ΩMed).	

	

	 We	saw	significant	correspondences	between	Prochlorococcus	stress	genes	vs.	

nutrient	addition	experiments,	Earth	system	model	predictions,	and	the	depletion	of	

surface	nutrient	concentrations	(Fig.	1.3).	There	was	a	significant	increase	in	the	frequency	
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of	Prochlorococcus	stress	genes	from	no	limitation,	co-limitation	(2˚),	and	then	to	primary	

(1˚)	limitation	using	bottle	experiments	(Fig.	1.3A-C)	(7).	However,	there	was	no	distinction	

between	medium	and	high	stress	and	bottle	experiments.	

	 There	were	also	significant	negative	correlations	between	ΩP	and	ΩN	and	surface	

phosphate	or	nitrate	concentrations,	respectively	(Fig.	1.3D-F).	At	high	phosphate	

concentration,	ΩP	was	depressed	but	a	wide	range	in	ΩP	appeared	at	low	phosphate	

concentrations	(Fig.	1.3D).	There	was	also	a	significant	correlation	between	ΩN	and	nitrate	

concentrations,	but	again	with	a	considerable	spread	(Fig.	1.3E).	This	pattern	suggested	a	

large	spread	in	stress	among	Prochlorococcus	populations	at	low	nutrient	concentration	

and	could	be	driven	by	stoichiometric	interactions	with	other	nutrients	or	shifts	in	the	

supply	rate	of	nutrients	to	the	surface	ocean.	We	saw	limited	difference	between	Ωmed	vs.	

Ωhigh	and	the	respective	nutrient	concentration.	Thus,	the	metagenomic	approach	can	

delineate	stress	even	when	nutrients	are	severely	depleted.	

	 There	was	a	broad	agreement	between	Ω	and	simulated	nutrient	stress	in	an	Earth	

system	model	[CESMv2_BEC	(38)]	(Fig.	1.3F	and	Fig	S1.14).	The	strongest	overlap	in	Fe	

stress	was	observed	in	the	eastern	equatorial	Pacific.	However,	ΩFe	suggested	additional	

adaptation	to	Fe	stress	in	the	eastern	Pacific,	the	southeastern	Atlantic,	and	the	south-

central	Indian	Ocean	(Fig.	S1.14)	-	all	regions	where	the	biogeochemical	model	predicted	N	

stress.	This	is	at	least	partially	a	CESMv2_BEC	bias	as	both	satellite	and	other	model	data	

support	severe	Fe	stress	in	the	Indian	Ocean	region	(29),	and	recent	incubation	

experiments	find	some	Fe	stress	in	the	southeastern	Atlantic	(3).	CESMv2_BEC	and	ΩP	

agreed	on	P	stress	in	the	western	North	Atlantic,	but	ΩP	suggested	adaptation	to	P	stress	in	

the	wider	subtropical	North	Atlantic.	Both	efforts	detected	a	smaller	P	stress	region	in	the	
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southwestern	Atlantic.	However,	CESMv2_BEC	did	not	show	any	P	stress	in	the	northern	

Indian	Ocean.	There	was	broad	agreement	between	CESMv2_BEC	and	ΩN	throughout	most	

of	the	Pacific	and	Atlantic	Oceans.	However,	ΩN	suggested	stronger	N	stress	adaptation	in	

the	Indian	Ocean	than	captured	in	CESMv2_BEC.	With	the	exception	of	the	little-studied	

Indian	Ocean,	there	was	broad	agreement	in	the	regional	patterns	of	nutrient	stress	

between	an	Earth	system	model	and	our	‘omics-based	metric.	

	 There	are	several	important	caveats	to	consider.	First,	genomic	variations	can	

reflect	both	the	demand	for	nutrients	as	well	as	the	availability	of	different	nutrient	species.	

Cyanobacteria	upregulate	the	acquisition	of	oxidized	N	sources	at	a	low	ammonia	supply	

and	have	no	dedicated	sensory	proteins	for	the	concentration	urea	or	nitrate	(39).	In	

addition,	the	genome	organization	of	N	acquisition	supports	sequential	acquisition	of	

ammonia,	urea,	nitrite,	and	nitrate	genes	(Fig.	S1.15)(40).	For	example,	as	illustrated	by	our	

eastern	Pacific	Ocean	transect,	there	is	strong	upwelling	and	divergent	flow	of	nitrate	

centered	on	5˚S	(Fig.	S1.16).	At	the	upwelling	core	with	high	nitrate,	Prochlorococcus	solely	

contains	genes	for	ammonia	uptake	and	thus	likely	rely	on	recycled	ammonia,	followed	by	

urea	at	the	gyre	transition	(~15˚S),	and	then	nitrate	assimilation	within	the	gyre	(~30˚S).	

Moreover,	there	is	an	inverse	relationship	between	surface	nitrate	concentrations	and	

nitrate	reductase	in	Prochlorococcus.	Thus,	the	genome	regulation,	genome	organization,	

and	biogeography	of	Prochlorococcus	nutrient	acquisition	genes	suggest	a	first-order	

relationship	with	cellular	resource	demands	and	environmental	gradients	in	nutrient	

availability,	and	thus	an	experienced	stressful	supply.	However,	it	appears	unlikely	that	

cells	would	retain	these	genes	without	access	to	the	associated	resources	being	supplied	by	

community	recycling	(e.g.,	through	nitrification).	Secondly,	we	categorized	a	priori	each	
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gene	into	three	levels	of	stress	severity	based	on	their	biochemical	role,	phylogenomics,	

and	regulation	to	avoid	‘circularity’	in	our	quantification	of	nutrient	stress.	However,	the	

biogeographic	patterns	suggest	that	nitrite	assimilation	occurs	in	regions	with	deep	mixing	

and	likely	lower	N	stress,	whereas	cyanate	utilization	genes	co-vary	closely	with	high	N	

stress.	Furthermore,	medium	and	high	phosphate	stress	genes	generally	co-occur	

suggesting	a	limited	resolution	of	regional	P	stress.	Thus,	some	genes	could	be	reclassified	

or	added	to	the	classification	system	(e.g.,	assimilation	of	organic	N	sources)(41)	in	future	

analyses	to	refine	the	approach.	A	third	caveat	is	that	our	study	is	based	on	the	assessment	

of	nutrient	stress	adaptation	in	a	single	organism.	Prochlorococcus	is	the	smallest	and	most	

abundant	phytoplankton	in	most	nutrient-limited	marine	ecosystems	between	40˚N	and	

40˚S	(11).	However,	Prochlorococcus	is	not	abundant	or	even	present	in	many	coastal	or	

high-latitude	environments,	restricting	the	geographical	reach	of	the	technique.	

Furthermore,	co-existing	taxa	could	show	divergent	nutrient	stress	profiles	due	to	

physiological	differences	(21,	31,	42).	However,	Prochlorococcus	generally	has	the	highest	

nutrient	uptake	affinity	and	is	least	likely	to	experience	cellular	nutrient	stress	(43).	We	

also	found	a	significant	correspondence	between	our	stress	metric	and	three	established	

approaches	implying	that	we	capture	the	general	community	physiological	state	in	the	

regions	analyzed.	A	fourth	caveat	is	the	use	of	genomic	changes	to	assess	the	underlying	

physiological	state.	A	genome-based	approach	will	work	in	populations	with	rapid	

adaptation	to	local	conditions.	Transcriptomic	or	proteomic	approaches	may	work	better	

in	ecosystems	with	longer	generation	times,	but	these	approaches	are	more	labor	intensive	

and	affected	by	strong	diurnal	expression	changes.	Thus,	‘omics-based	assessments	of	



 

14 
 

nutrient	stress	should	be	carefully	calibrated	to	the	biological	behavior	of	the	targeted	

ecosystem.		

	 Connecting	‘omics-based	microbiome	studies	and	biogeochemically	important	

processes	is	a	widespread	convergence	challenge,	and	links	have	been	elusive	and	mainly	

correlation-based	(44).	Our	stress	metric	builds	upon	30	years	of	studies	of	

Prochlorococcus	physiology	and	adaptation	to	different	nutrient	regimes	and	allows	for	a	

mechanistic	description	of	resource	utilization.	It	is	also	a	semi-quantitative,	cost-effective,	

and	standardized	way	of	assessing	nutrient	stress	and	does	not	require	labor-intensive	

incubation	experiments.	Finally,	we	can	provide	a	sensitive	description	of	phytoplankton	

stress	and	identify	nutrient	stress	severity	for	multiple	elements	simultaneously	(9).	Thus,	

our	findings	demonstrate	how	we	can	harness	‘omics-based	information	to	develop	a	

nuanced	and	high-resolution	understanding	of	global	biogeochemistry.		

	

Materials	and	Methods	

Metagenomes	

We	combined	newly	collected	surface	samples	(<	25	m	depth)	from	our	participation	in	

GO-SHIP,	AMT28	(https://doi.org/10.1101/2020.09.06.285056)	as	well	as	previously	

published	metagenomes	from	Tara	Oceans	(45),	and	GEOTRACES	(46)	(Table	S1.1).	

	

Bio-GO-SHIP	Sequencing	

For	a	full	data	descriptor	of	new	Bio-GO-SHIP	metagenomes	please	see	Larkin	and	

colleagues	(22).	In	brief,	between	2-10	L	of	surface	water	was	sampled	from	either	Niskin	

rosette	deployments	or	through	shipboard	continuous	circulating	seawater	systems.	DNA	
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was	collected	via	gentle	peristaltic	pump	filtration	(Masterflex,	Cole-Parmer,	Vernon	Hills	

IL,	USA)	through	sterilized	tubing	and	onto	0.22	µm	Sterivex	filters	(Millipore,	Darmstadt,	

Germany).	DNA	was	preserved	in	1620	µl	lysis	buffer	(23.4	mg	mL-1	NaCl,	257	mg	mL-1	

sucrose,	50	mmol	L-1	Tris-HCl,	20	mmol	L-1	EDTA)	and	stored	at	-20°C.	To	extract	DNA,	

Sterivex	filters	were	first	incubated	in	lysozyme	(4.35	mg	mL-1	final	conc.)	for	30	min	then	

incubated	in	a	Proteinase	K	(0.09	mg	mL−1	final	conc.)	and	SDS	solution	(0.5%	final	conc.)	

overnight	at	55°C	(47,	48).	DNA	was	precipitated	using	ice-cold	isopropanol	(100	%)	and	

sodium	acetate	(245	mg	mL−1,	pH	5.2),	pelleted	via	centrifuge	for	30	min	at	4°C,	and	

resuspended	in	TE	buffer	(10	mmol	L-1	Tris-HCl,	1	mmol	L-1	EDTA).	DNA	was	then	purified	

using	a	Clean	and	Concentrator	kit	(Zymo	Research	Corp.,	Irvine,	CA,	USA).	Finally,	DNA	

was	quantified	using	a	Qubit	dsDNA	HS	Assay	kit	and	a	Qubit	fluorometer	(ThermoFisher,	

Waltham,	MA,	USA)	and	subsequently	diluted	to	a	common	concentration	of	2	ng/µl	in	

Tris-HCl	buffer	(10	mmol	L-1,	pH	8.0).			

	 Metagenome	libraries	were	prepared	using	a	modified	Tagment	DNA	Enzyme	and	

Buffer	Kit	(Illumina,	San	Diego,	CA,	USA)	(49,	50).	Diluted	DNA	(2	ng)	was	added	to	2.5	µl	

tagmentation	reactions	(1.25	μl	TD	buffer,	0.25	μl	TDE1)	and	incubated	at	55°C	for	10	min.	

Next,	8bp	unique	dual	index	(UDI)	barcodes	were	annealed	to	the	metagenome	libraries.	

Tagmentation	product	(2.5	µl)	was	added	to	24.5	µl	PCR	reactions	(1.02	µM	per	UDI	

barcode,	204	µM	dNTPs,	0.0204	U	Phusion	High	Fidelity	DNA	polymerase	and	1.02X	

Phusion	HF	Buffer	[ThermoFisher,	Waltham,	MA,	USA]	final	conc.).	The	PCR	reaction	

proceeded	as	follows:	72°C	for	2	min.,	98°C	for	30	s,	followed	by	13	cycles	of	98°C	10	s,	

63°C	30	s,	72°C	30	s,	and	a	final	extension	step	of	72°C	for	5	min.		
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	 To	optimize	metagenome	sequence	fragment	size	distribution	to	200-600	bp,	

metagenome	libraries	were	individually	bead-cleaned	using	a	buffered	solution	(58.4	mg	

mL-1	NaCl,	1	mmol	L-1	EDTA,	10	mmol	L-1	Tris-HCl,	180	mg	mL-1	PEG-8000,	0.055%	Tween-

20	final	conc.)	of	Sera-mag	SpeedBeads	(ThermoFisher,	Waltham,	MA).	Libraries	were	then	

quantified	using	a	Qubit	dsDNA	HS	Assay	kit	(ThermoFisher,	Waltham,	MA)	and	a	Synergy	

2	Microplate	Reader	(BioTek,	Winooski,	VT,	USA).	Metagenome	libraries	were	pooled	at	

equimolar	concentration.	Pooled	library	concentration	and	sequence	fragment	size	

distribution	were	verified	using	a	KAPA	qPCR	platform	(Roche,	Basel,	Switzerland)	and	a	

2100	Bioanalyzer	high	sensitivity	DNA	trace	(Agilent,	Santa	Clara,	CA),	respectively.	Finally,	

pooled	libraries	were	sequenced	on	either	a	HiSeq	or	NovaSeq	platform	(150	bp	paired-

end	chemistry,	300	cycles;	Illumina,	San	Diego,	CA,	USA).	

	

Read	Recruitment	and	Quality	Filtering	

	 Raw	reads	were	quality	controlled	and	adapter	sequences	were	removed	using	

Trimmomatic	v0.35	(51).	Reads	were	recruited	using	Bowtie2	v2.2.7	(52)	against	115	

reference	genomes	with	representatives	of	each	major	ecotype	of	Prochlorococcus	and	

Synechococcus	as	well	as	abundant	heterotrophic	bacteria	(Pelagibacter	and	Roseobacter)	

to	help	reduce	false	recruitments	(Table	S1.3).	The	following	flags	were	used	with	bowtie	2	

--no-unal	--local	-D	15	-R	2	-L	15	-N	1	--gbar	1	--mp	3.	SAM	files	were	then	sorted	and	

indexed	using	‘samtools’	v1.3	into	BAM	files	(53).	

	

Profiling	Recruited	Reads	



 

17 
 

	 Anvi’o	v5	was	used	to	profile	the	recruited	reads	(54).	All	open	reading	frames	were	

aligned	and	clustered	using	NCBI	BLAST	(55)	and	MCL	(56)	through	the	Anvi’o	pangenomic	

workflow	(57).	These	clusters	were	curated	and	selected	by	searching	for	target	nutrient	

stress	genes	(Table	1.1)	and	single	copy	core	genes	(SCCG).	

	

Gene	Selection	and	Categorization	

	 We	categorized	genes	by	nutrient	stress	type	(F,	P,	and	N)	and	severity	(high,	

medium,	and	low)	based	on	past	biochemical	knowledge	regarding	gene	regulation	and	

functional	trade-offs,	which	are	verified	by	phylogenomics	(Table	1.1,	Fig.	S1.15).	We	

associated	high	Fe	stress	with	the	Prochlorococcus	HLIII	and	HLIV	ecotypes	that	have	lost	

many	Fe	containing	proteins	that	confer	key	metabolic	functions.	This	ecotype	is	only	

detected	in	warm	HNLC	zones	(20).	Medium	Fe	stress	was	described	by	additional	Fe	

uptake	proteins	and	siderophore	production	seen	in	populations	in	the	equatorial	Atlantic	

Ocean	(19).	Low	Fe	stress	was	linked	to	commonly	expressed	proteins	under	Fe	stress	and	

found	in	nearly	all	Prochlorococcus	strains	(58).	High	P	stress	was	characterized	by	the	

usage	of	broad	spectrum	DOP	utilization	using	the	P	stress	inducible	alkaline	phosphatases	

phoA	and	phoX	(12,	15).	Alkaline	phosphatases	are	highly	induced	under	strong	P	stress	so	

broad	utilization	of	DOP	is	likely	a	very	costly	trait.	Medium	P	stress	was	linked	to	genes	

responsible	for	P	stress	regulation	(phoBR	and	ptrA),	arsenate	detoxification	(arsR,	acr3),	

the	putative	uptake	of	specific	DOP	molecules	(chrA,	gap1	and	mfs),	and	the	outer	

membrane	porin	specific	to	P	passage	(phoE).	The	regulation	of	medium	and	high	P	stress	

genes	are	all	controlled	by	the	two-component	response	regulator	phoBR	and	thus	clearly	

linked	to	P	stress	(12).	Low	P	stress	was	described	by	genes	responsible	for	inorganic	P	
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uptake	across	the	cytoplasmic	membrane	(pstABCS)	and	present	in	all	Prochlorococcus.	We	

categorized	N	stress	based	on	a	bioenergetics	trade-off	for	using	different	N	sources.	

Nitrate	and	nitrite	are	highly	oxidized	and	thus	reduced	to	ammonium	before	

incorporation	into	amino-groups	(17).	Thus,	we	linked	high	N	stress	genes	to	

nitrite/nitrate	assimilation.	This	included	nitrate	(narB)	and	nitrite	reductases	(nirA),	

genes	for	the	biosynthesis	of	the	required	cofactor	molybdopterin,	and	the	nitrate	and	

nitrite	transporters	(focA	and	napA)	(40).	These	genes	are	repressed	at	elevated	

ammonium	concentration	supporting	the	higher	energetic	cost	of	using	nitrate	and	nitrite	

(17).	We	linked	medium	N	stress	to	the	assimilation	of	urea	and	cyanate	as	these	substrates	

match	the	oxidation	state	of	ammonium	and	thus	only	require	a	hydrolysis	step.	Again,	the	

genes	are	repressed	under	replete	ammonium	conditions	suggesting	that	urea	and	cyanate	

are	energetically	less	favorable	than	ammonium.	Low	N	stress	was	linked	to	genes	

upregulated	under	N	stress	but	present	in	most	or	all	Prochlorococcus	genomes.	A	few	

genes	(unkN	and	unkP)	used	in	this	analysis	have	an	unknown	function	but	have	been	

shown	in	previous	studies	to	respond	to	nutrient	stress	conditions	and	co-occur	with	other	

stress	gene	(and	thus	categorized	accordingly)(12,	40).	

	

Normalization	Method	

	 Gene	abundances	from	Anvi’o	were	normalized	using	custom	Matlab	scripts	

(MATLAB,	version	9.5.0.944444	(R2018b)	(2018))	publicly	available	at	

github.com/ljustick/metagenome-cluster-coverage.	Nutrient	gene	(i)	coverage	was	

normalized	by	single	copy	core	gene	(SCCG)	coverage	giving	us	our	gene	frequency	(fi)	(eq.	

1).	We	calculated	to	total	Prochlorococcus	SCCG	coverage	by	first	calculating	the	average	
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SCCG	coverage	of	each	ecotype	clade	(c)	and	then	summing	the	averages	together	to	get	the	

total	species	coverage.	Any	samples	with	less	than	5X	total	Prochlorococcus	SCCG	coverage	

were	removed	from	the	analysis.	For	samples	with	less	than	1X	Prochlorococcus	HNLC	

clade	SCCG	coverage,	fi	of	all	Fe	high	genes	were	set	to	0.	

	

Eq.	1	

𝑓! =
(𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑔𝑒𝑛𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)!

∑ [𝐴𝑉𝐸(𝑐𝑙𝑎𝑑𝑒	𝑆𝐶𝐶𝐺	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)]"#
"$%

	

	

To	capture	the	global	variation	of	each	gene	and	normalize	abundance,	we	evaluated	the	z-

score	(zi)	of	each	individual	gene	across	the	entire	data	set	by	subtracting	the	mean	(𝜇!)	

from	the	gene	frequency	(fi)	and	dividing	by	the	standard	deviation	of	the	gene	(𝜎!)	(eq.	2).	

Eq.	2	

𝑧! =
(𝑓! − 𝜇!)

𝜎!
	

We	then	took	the	average	zi	of	genes	grouped	by	nutrient	type/severity	(s)(Table	1.1),	

which	we	named	Ωs	(eq.	3).	

Eq.3	

Ω& =
∑ (𝑧!)
#!
!$%
𝑛&

	

	

Analyzing	Gene	Distributions	

	 To	capture	the	global	patterns	of	each	gene	and	their	interrelation,	we	performed	a	

principal	component	analysis	using	singular	value	decomposition	of	zi	for	all	genes	and	Ω	in	
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Matlab.	Based	on	this	principal	component	analysis,	we	characterized	the	angle	in	radians	

(𝜃)	for	each	gene	and	sample	within	our	dataset.	𝜃	was	then	used	to	broadly	categorize	the	

types	of	stress	and	co-stress	(Figure	1.1	and	Table	S1.2).	We	calculated	the	Euclidean	

distance	between	each	Ωs	using	the	matlab	function	pdist.	Similarly	to	capture	the	global	

patterns	of	z,	we	calculated	the	Euclidean	distance	between	zi	and	created	an	average	

linkage	hierarchical	clustering	between	z	profiles.	

	

Comparison	to	Bottle	Experiments	

	 We	compared	our	metagenomic	stress	metric	against	limiting	nutrient	bottle	

incubation	experiments.	We	used	the	bottle	experiments	described	previously	(7)	for	iron	

(n=55),	phosphate	(n=55),	and	nitrate	(n=55)	incubations.	In	order	to	compare	

metagenomic	stress,	we	interpolated	Ω	to	15	geospatial	degrees	from	our	data	points	using	

DIVA	in	Ocean	Data	View	(R.	Schlitzer,	Ocean	Data	View	(2016))(59)	and	matched	any	

bottle	experiments	that	fell	within	this	interpolation.	The	data	was	matched	by	taking	the	

average	of	four	interpolation	points	around	the	latitude	and	longitude	of	the	bottle	

experiments.	The	distributions	were	quantified	using	a	one-way	ANOVA	in	Matlab	to	

capture	significant	differences	in	the	mean.	

	

Comparison	to	CESM	Model	and	Surface	Nutrient	Concentrations	

	 We	compared	our	metagenomic	stress	metric	against	estimates	of	nutrient	

limitation	by	the	Community	Earth	System	Model	(CESM)	Biogeochemical	Elemental	

Cycling	(BEC).	The	version	used	here	is	modified	from	CESM	v1.21,	but	includes	most	of	the	

science	modifications	incorporated	into	CESM	v2.0.	Modifications	include	an	explicit	ligand	
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iron	model	and	variable	P	quotas	in	the	plankton	groups	and	sinking	export	(60).	Model	

output	was	averaged	over	the	last	20	years	of	a	600-year	simulation,	to	remove	short-term	

variability.	The	ocean	model	was	forced	with	a	repeating	30-year	cycle	of	National	Center	

for	Atmospheric	Research	and	National	Centers	for	Environmental	Prediction	(NCAR-

NCEP)	Core	2	forcings	corresponding	to	years	1980	to	2009.	The	model	includes	three	

explicit	phytoplankton	groups:	diatoms,	diazotrophs,	and	small	phytoplankton	with	

variable	P	and	Fe	quotas.	We	compare	the	model	nutrient	stress	for	the	small	

phytoplankton	group	with	Ωs	values.	The	nutrient	limitation	factors	are	functions	of	

ambient	nutrient	concentrations	and	group-specific	half-saturation	nutrient	uptake	

affinities	where	the	highest	stress	nutrient	limits	growth.	The	model	includes	labile	and	

semi-labile	dissolved	organic	matter	pools	for	carbon,	nitrogen,	and	phosphorus,	with	

independent,	data-constrained	lifetimes	(61).	To	quantify	the	correlation	between	the	

model	predictions	and	Ωs,	we	gridded	model	nutrient	limitation	by	1˚	and	performed	a	

Spearmen	correlation	test	with	the	corresponding	Ωs	values,	which	fell	within	the	grid.	

Similarly,	for	any	samples	with	surface	phosphate	or	nitrate	measurements	we	performed	

a	Spearmen	correlation	against	the	corresponding	Ωs	values.	
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Ch	2:	Phylogeography	of	functional	traits	in	Prochlorococcus	

	

Authors:	Lucas	J.	Ustick,	Alyse	A.	Larkin,	Adam	C.	Martiny	

	

Introduction:	

	 Microbial	communities	harbor	vast	phylogenetic	diversity	that	is	tightly	linked	to	

biogeographic	partitioning	of	environments.	High	resolution	microbial	diversity	has	been	

revealed	through	advances	in	sequencing	technologies	(62–64).	Fine	scale	phylogenetic	

differences,	termed	microdiversity	(greater	than	97%	16S	similarity),	have	been	shown	to	

distinguish	physiologically	distinct	populations	(65–67).	Moreover,	these	diverse	microbial	

populations	harbor	distinct	functional	traits	conserved	across	various	phylogenetic	depths,	

from	broad	scale	differences	between	species	to	fine	scale	differences	between	bacterial	

strains.	Microdiversity	partitions	important	microbial	traits	such	as	antibiotic	resistance,	

toxin	production,	nutrient	uptake,	and	phage	resistance	(12,	68–70).	While	there	is	a	clear	

connection	between	microdiversity	and	genome	content,	specific	functional	groups	have	

not	been	identified	in	many	communities.	Functional	differences	between	closely	related	

microbes	can	confer	significant	competitive	advantages	and	niche	specialization.	

Considering	this	it	is	important	to	capture	both	microdiversity	and	the	corresponding	

functional	differences	between	closely	related	populations.	

	 In	the	numerically	dominant	and	well-studied	phytoplankton	Prochlorococcus,	we	

observe	a	clear	phylogenetic	organization	of	traits	(71,	72).	Prochlorococcus	phylogeny	first	

diverges	at	the	deepest	taxonomic	resolution	by	differences	in	adaptation	to	light,	with	a	

low	light	(LL)	and	high	light	(HL)	clade	(66).	Within	the	highlight	clade	Prochlorococcus	
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partitions	further	based	temperature	with	a	high	temperature	(HLII)	and	low	temperature	

ecotype	(HLI)	(73,	74).	Within	these	well-established	ecotypes	we	observe	phylogenetic	

microdiversity	that	follows	clear	spatial	differentiation	(71,	75,	76).	This	microdiversity	has	

also	been	linked	to	differences	in	genome	content	but	the	specific	functional	differences	are	

unknown	(77).	It	has	been	hypothesized	that	differences	in	adaptation	to	nutrient	

limitation	(specifically	to	P	and	N	limitation)	may	be	associated	with	microdiverse	lineages,	

but	no	clear	phylogenetic	sub	clades	have	been	identified	in	Prochlorococcus	(78).	

	 Adaptations	to	both	low	phosphorus	and	nitrogen	conditions	have	yet	to	be	

associated	with	any	clearly	delineated	phylogenetic	sub	clades	or	haplotypes	in	

Prochlorococcus.	Although	these	adaptations	vary	spatially	and	are	indicative	of	local	

nutrient	conditions	(79),	the	presence/absence	of	these	genes	does	not	follow	phylogenetic	

structure	at	the	ecotype	levels	(12,	40,	78).	While	specifically	exploring	the	phylogeny	of	the	

genes	narB	(nitrate	reductase)	and	nirA	(nitrite	reductase),	the	presence/absence	of	these	

genes	did	not	sort	into	clear	phylogenetic	clades	within	HLII	and	had	a	sporadic	

distribution	(78).	It	was	suggested	that	this	structure	arose	through	vertical	evolution	of	

the	traits	from	basal	lineages	and	then	gene	loss	events	in	HLII	resulted	in	the	sporadic	

distribution	of	narB	and	nirA.	Others	have	proposed	an	alternate	hypothesis	that	nutrient	

acquisition	traits	are	shared	through	horizontal	gene	transfer	and	thus	do	not	follow	a	clear	

phylogenetic	pattern	(12,	80).	It	is	thus	unclear	how	variability	in	nutrient	adaptation	

arises	and	if	it	is	phylogenetically	conserved	at	the	microdiverse	phylogenetic	level.	
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Figure	2.1:	Hypothesizes	about	the	drivers	of	microdiversity	and	the	expected	

distributions.	Nutrient	limitation	hypothesis	A).	Nutrient	and	dispersal	limitation	

hypothesis	B).	

	

	 Here,	we	aim	to	link	the	global	microdiversity	and	phylogeography	of	the	

Prochlorococcus	HLII	clade	with	population-specific	functional	diversity.	Specifically,	we	

isolated	reads	that	mapped	to	the	marker	gene	rpoC1	to	capture	the	phylogeography	of	

Prochlorococcus	and	simultaneously	quantified	differences	in	the	functional	

Prochlorococcus	gene	content	from	630	surface	metagenomes.	We	then	assembled	

metagenomically	assembled	genomes	(MAG)	of	the	novel	haplotypes	identified.	We	

hypothesized	that	functional	differences	in	Prochlorococcus	HLII	would	be	primarily	driven	

by	adaptation	to	different	(P	vs.	N	limitation)	nutrient	regimes.	We	present	here	two	

different	hypotheses	about	the	phylogenetic	structure	of	Prochlorococcus	HLII	

microdiversity.	The	first	hypothesis	predicts	microdiversity	will	be	driven	by	differences	in	

adaptation	to	nutrient	limitation	and	the	resulting	haplotypes	will	be	globally	dispersed	

(Figure	2.1A).	In	this	case,	we	would	expect	global	haplotypes	that	are	differentiated	based	
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on	nutrient	conditions,	i.e.	N	limitation	vs.	P	limitation.	The	second	hypothesis	predicts	

microdiversity	will	be	driven	by	differences	in	adaptation	to	nutrient	limitation	but	will	

also	be	dispersal-limited	(Figure	2.1B).	In	this	case,	we	would	expect	regionally	limited	

haplotypes	that	are	differentiated	based	both	on	location	and	nutrient	condition.	For	

example	we	would	expect	P	limited	populations	in	the	Atlantic	Ocean	to	occupy	a	different	

phylogenetic	clade	than	samples	that	are	P	limited	in	the	Indian	Ocean.	This	project	

constitutes	the	first	global	assessment	of	both	Prochlorococcus	microdiversity	and	

functional	diversity	on	a	global	scale.	

Results:	

	 We	analyzed	630	surface	ocean	metagenomes	and	isolated	reads	that	mapped	to	

Prochlorococcus	HLII	reference	genomes	in	order	to	link	phylogenetic	and	functional	

diversity	at	the	microdiverse	population	level.	We	first	characterized	the	global	functional	

diversity	within	HLII	by	quantifying	the	variation	in	gene	abundance	across	the	global	

ocean	which	we	will	refer	to	as	genomic	diversity	and/or	distance	in	this	study.	We	then	

related	this	diversity	to	phylogeny	by	creating	a	consensus	sequence	of	reads	that	recruited	

to	the	marker	gene	rpoC1	which	we	will	refer	to	as	phylogenetic	diversity	and/or	distance.	

Based	on	the	relationship	of	genomic	and	phylogenetic	diversity,	we	then	created	targeted	

metagenomically	assembled	genomes	to	better	understand	the	genomic	structure	of	the	

new	clade.	
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Figure	2.2:	Global	Genomic	Diversity	of	HLII.	Principal	component	analysis	of	gene	

distributions	with	environmental	co-variates	(A,B).	Vector	length	of	co-variates	is	based	on	

variance	explained	by	the	environmental	factor	(A,B).	Annotations	of	the	100	most	

informative	genes	for	each	component	(C).	

	

	 Variation	in	the	flexible	genome	of	Prochlorococcus	HLII	revealed	widespread	

functional	diversity	linked	to	environmental	processes.	We	performed	a	PCA	analysis	on	

the	normalized	abundance	of	the	variable	gene	content	of	the	HLII	ecotype.	To	

contextualize	this	dimensional	reduction	we	fit	the	PCA	with	temperature	and	the	

abundance	of	nutrient	acquisition	genes	grouped	by	type	(Fe/P/N)	(79).	The	top	100	genes	

that	contributed	to	each	principal	component	were	isolated	and	counted	based	on	NCBI	

clusters	of	orthologous	groups	annotations	(COGs).	PC1	captured	13%	of	the	total	variance	

in	gene	content	and	had	the	strongest	correlation	with	temperature	(Spearman	rho=0.74,	
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p<0.05)(Figure	2.2A,	S2.1A,	Table	S2.1).	PC1	was	primarily	informed	by	genes	annotated	as	

H	(coenzyme	metabolism),	J	(translation),	and	L	(replication	recombination	and	

repair)(Figure	2.2C).	PC2	captured	8%	of	the	total	variance	and	was	enriched	in	the	

Atlantic	Ocean	and	depleted	in	the	Indian	Ocean	Samples	(Figure	2.2A,	S2.1B,	Table	S2.1).	

This	component	was	primarily	informed	by	genes	annotated	as	E	(amino	acid	metabolism	

and	transport),	G	(carbohydrate	transport	and	metabolism),	and	H	(coenzyme	

metabolism).	PC3	captured	6%	of	the	total	variance	and	was	primarily	informed	by	genes	

annotated	as	M	(cell	wall/	membrane/	envelop	biogenesis)(Figure	2.2,	S2.1C,	Table	S2.1).	

PC4	captured	4%	of	the	total	variance	and	was	primarily	informed	by	genes	annotated	as	P	

(inorganic	ion	transport	and	metabolism).	PC4	also	had	a	strong	positive	correlation	with	

acquisition	and	metabolism	genes	for	phosphorus	(Spearman	rho=0.88,	p<0.05)	and	a	

negative	correlated	with	iron	genes	(Spearman	rho=-0.79,	p<0.05)	(Figure	2.2B,	S2.1D,	

Table	S2.1).	Overall,	functional	gene	content	was	correlated	with	differences	in	

temperature	and	nutrient	regimes,	while	showing	widespread	variation.	
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Figure	2.3:	Global	Phylogenetic	Diversity	of	Prochlorococcus	HLII.	Clustering	of	the	

rpoC1	marker	gene	based	on	sequence	similarity,	with	corresponding	cruise	and	

metagenomically	derived	nutrient	limitation	Omega	(A).	Spatial	distribution	of	groups	

based	on	the	clustering	of	rpoC1	consensus	sequences	(B).	

	

	 Phylogenetic	microdiversity	of	Prochlorococcus	populations	showed	systematic	

biogeographic	distributions.	We	identified	two	stable	clusters	which	appeared	in	over	60%	

of	our	bootstraps	and	two	unstable	clusters	which	appeared	in	fewer	than	60%	of	our	

bootstraps	(Figure	2.3A).	We	identified	a	large	cluster	found	across	the	globe,	which	we	

called	cluster	1,	and	a	second	highly	conserved	cluster	(present	in	92%	of	bootstraps)	

found	primarily	in	the	North	Atlantic	Ocean	and	in	the	northeastern	region	of	the	Indian	

Ocean	(Figure	2.3A,	2.3B).	The	highly	conserved	cluster	was	associated	with	significantly	

higher	abundance	of	phosphorus	genes	than	cluster	1	(Omega	P	high	mean	=	1.48)	as	well	

as	significantly	lower	abundance	of	iron	genes	so	we	named	the	cluster	HLII-P	(Omega	Fe	

med	mean	=	-0.63)(Figure	2.3A,	S2.2).	A	Mantel	test	comparing	the	pairwise	distance	

between	samples	based	genomic	distance	verses	phylogenetic	distance	revealed	that	only	

14%	of	genomic	variation	within	HLII	can	be	explained	by	phylogeny	(R2=.142	P<0.001).	A	

majority	of	differences	in	the	abundance	of	genes	(86%)	was	not	linked	to	phylogeography.	

Notably	cluster	HLII-P	had	a	significantly	higher	functional	genome	PC4	values	than	cluster	

1	(cluster	1	PC4	mean	=	-1.60,	HLII-P	PC4	mean	=	20.79,	p	<	0.001),	suggesting	that	HLII-P	

spatially	co-occurred	wherever	PC4	was	enriched	(Figure	2.3A,	2.3B,	S2.1,	S2.2).	This	

indicates	that	the	functional	genome	PC4	captured	the	phylogenetically	conserved	

functional	type	of	HLII-P.	The	phylogeography	of	our	samples	reveals	strong	link	between	
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phylogeny	and	phosphorus	limitation,	while	a	majority	of	the	functional	differences	were	

not	associated	with	microdiverse	populations.	

	

	

Figure	2.4:	Variance	explained	by	environmental	factors	and	distance	model.	(A)	

Variance	explained	by	based	on	PERMANOVA,	variables	are	presented	in	the	same	order	as	

they	were	used	in	the	model.	All	relationships	shown	are	significant	(p-value	<	0.01).	(B,C)	

Distance	decay	of	genomic	distance	(B)	and	phylogenetic	distance	(C).	Overall	linear	fit	(red	

and	dashed),	within	cruise	linear	fit	(yellow),	and	between	cruises	linear	fit	(blue).	

	

	 Global	patterns	of	functional	and	phylogenetic	diversity	within	Prochlorococcus	HLII	

were	explained	by	different	environmental	factors.	We	calculated	the	variance	in	functional	
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diversity	and	phylogenetic	diversity	explained	by	a	variety	of	independent	variables	

(Figure	2.4).	First,	we	created	a	model	that	estimates	oceanographic	distance	between	

samples	in	order	to	calculate	the	amount	of	variation	explained	by	physical	distance	

(spatial	autocorrelation).	In	our	PERMANOVA	analysis	we	captured	the	variance	explained	

by	distance	to	remove	any	distance	effects	from	the	resulting	factors.	4.2%	of	functional	

diversity	could	be	explained	by	spatial	distance,	while	only	1.9%	of	phylogenetic	diversity	

could	be	explained	by	spatial	distance	between	samples	(Figure	2.4).	Once	distance	effects	

were	removed	temperature	explained	the	most	variance	in	genomic	diversity	3.2%	while	

phosphorus	gene	abundance	explained	the	most	phylogenetic	diversity	2.5%	(Figure	2.4).	

Overall	we	could	explain	more	of	the	genomic	diversity	(15%)	with	our	environmental	

factors	than	phylogenetic	diversity	(8%).	
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Figure	2.5:	Pro	HLII-P	MAG	annotations	of	P	acquisition	genes	compared	to	cultured	

genomes	(A).	Clustering	of	genomes	based	on	presence/absence	of	P	acquisition	genes	

present	in	the	MAG	IO9-1	(B).	Phylogenetic	tree	based	on	the	rpoC1	gene	with	GEYO	

(Synechococcus)	as	an	outlier	(C).	Bootstraps	show	at	the	corresponding	node.	

	

	 Metagenomically	assembled	genomes	(MAG)	revealed	genomic	conservation	of	the	

organization	and	presence/absence	of	P	acquisition	genes	within	HLII-P.	Notably	the	arsA	

gene	was	found	after	gap1	in	each	MAG.	This	organization	is	not	common	to	other	cultured	

HLII	genomes.	MIT9301	contains	arsA	in	another	region	and	MIT9312	does	not	contain	

arsA	in	its	genome	(Figure	2.5A,	2.5B).	The	similar	genetic	structure	of	the	phosphorus	
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genes	in	our	MAGs	suggests	a	common	origin	of	the	genes.	We	compared	the	

presence/absence	of	the	phosphorus	acquisition	genes	found	in	the	MAG	IO9-1	with	

cultured	Prochorococcus	HLII	genomes	(Figure	2.5B).	We	observed	a	hierarchy	of	

presence/absence	of	these	genes	and	grouped	the	genomes	based	on	this	pattern	(Figure	

2.5B).	We	then	created	a	phylogenetic	tree	based	on	the	rpoC1	gene	and	compared	this	to	

differences	in	gene	content	(Figure	2.5C).	This	phylogenetic	analysis	reveals	a	clade	which	

contains	genomes	which	all	have	the	full	or	majority	P	acquisition	gene	set	such	as	

MIT9314	and	RS50	(Figure	2.5C).	Our	analysis	of	our	HLII-P	MAGs	revealed	a	within	

ecotype	organization	of	P	acquisition	genes	which	corresponded	to	a	clade	within	our	

cultured	genomes.	

	

Discussion:	

	 We	observed	widespread	variation	in	genomic	diversity	with	a	weak	link	to	

phylogeny.	Previous	studies	observed	a	connection	between	microdiversity	in	

Prochlorococcus	and	nutrient	limitation	so	we	hypothesized	within	ecotype	functional	

differences	would	mirror	this	and	primarily	be	driven	by	differences	in	nutrient	conditions	

(47,	81).	In	our	analysis,	temperature	explained	the	most	variation	in	genome	content	

within	the	ecotype	HLII	while	P	limitation	had	the	strongest	correlation	with	phylogenetic	

differences	(Figure	2.4).	Our	hypothesis	was	incorrect	predicting	differences	in	genomic	

diversity	would	be	primarily	explained	by	nutrient	conditions,	but	phylogenetic	diversity	

was	clearly	linked	to	nutrients.	Most	previous	work	has	linked	phylogenetic	marker	genes	

to	environmental	processes	which	may	have	overestimated	the	total	effect	of	nutrient	

conditions	on	Prochlorococcus	genomic	diversity.	This	highlights	the	importance	of	
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evaluating	both	genomic	changes	along	with	phylogenetic	changes	since	functional	traits	

may	not	follow	phylogeny	due	to	processes	such	as	horizontal	gene	transfer	and	loss	of	

traits	through	genomic	streamlining	(11).	When	comparing	the	amount	of	variance	

explained	by	spatial	autocorrelation	we	observed	a	stronger	distance	decay	relationship	

between	gene	content	than	SNP	differences	(Figure	2.4B,	2.4C).	This	may	come	to	rise	

because	differences	in	gene	content	directly	come	with	a	competitive	advantage	and/or	

cost	and	can	instantly	be	selected	for/against.	This	contrast	phylogenetic	differences	which	

must	by	chance	appear	in	an	individual	with	a	competitive	advantage	and	are	thus	selected	

on	a	slower	timescales.	Microdiverse	differences	in	phylogeny	may	not	show	spatial-auto	

correlation	because	dispersal	overcomes	drift	in	a	manner	similar	to	the	Bass-Becking	

hypothesis,	‘everything	is	everywhere	but	the	environment	selects’	(82,	83).	This	pattern	is	

indicative	of	strong	contemporary	effects	combining	selection	and	rapid	dispersal	resulting	

globally	conserved	microdiverse	haplotypes	(84).	Alternatively,	our	metagenomically	

derived	phylogeny	may	not	have	the	resolution	to	capture	drift	between	these	populations,	

and	spatial	auto-correlation	is	masked	in	noisy	data.	

	 Our	analysis	supports	the	existence	of	a	novel	HLII-P	haplotype	with	important	

implications	about	the	mechanism	and	evolutionary	history	of	microdiversity	within	

Prochlorococcus.	The	presence/absence	and	organization	of	phosphorus	uptake	genes	does	

not	follow	phylogeny	at	the	ecotype	level	(12).	Our	analysis	reveals	a	clear	organization	of	

phosphorus	acquisition	genes	within	the	HLII	ecotype	highlighting	the	importance	of	

phylogenetic	assessment	across	phylogenetic	depths	(Figure	2.3,	2.5,	S2.2).	This	is	in	

contrast	to	nitrogen	acquisition	genes	which	have	not	shown	any	clear	within	clade	

organization.	For	nitrogen	acquisition	genes	it	has	been	hypothesized	that	they	evolved	
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vertically	then	were	lost	or	selected	for	in	more	recent	lineages	causing	the	sporadic	

distribution	of	the	trait	in	Prochlorococcus	ecotypes	(78).	While	there	is	evidence	some	P	

acquisition	genes	have	been	acquired	through	horizontal	gene	transfer	our	analysis	

suggests	the	full	set	of	P	acquisition	genes	is	phylogenetically	conserved	in	locations	of	

extreme	P	limitation	(80).	This	could	be	a	result	of	the	fact	horizontal	gene	transfer	is	more	

likely	to	happen	to	individuals	who	are	closely	related,	resulting	the	phylogenetic	

conservation	of	this	mobile	set	of	genes.	The	contrast	between	P	acquisition	and	N	

acquisition	is	interesting	based	on	the	spatial	patterns	of	nutrient	limitation	and	the	gene	

frequencies	in	natural	populations.	Gene	abundance	of	N	acquisition	genes	is	variable	and	

changes	along	a	continuous	gradient	globally,	while	presence	of	P	acquisition	genes	are	

more	spatially	limited	and	are	often	either	completely	absent	or	present	in	a	population	

(79).	The	difference	in	distributions	suggests	different	functional	processes	are	acting	on	P	

acquisition	vs.	N	acquisition	genes.	Novel	microdiverse	sub-taxa	can	evolve	by	either	the	

acquisition	of	a	new	trait	or	shifting	growth	optima	along	a	single	trait	axis	(85).	This	might	

also	explain	why	only	14%	of	genomic	changes	could	be	explained	by	phylogeny.	The	rest	

of	the	variation	may	be	due	to	regional	differences	in	N	limitation,	while	P	limited	regions	

appear	to	be	stable.	All	this	together	supports	our	nutrient	limitation	hypothesis	which	

predicted	microdiversity	will	be	driven	by	differences	in	adaptation	to	nutrient	limitation	

and	the	resulting	haplotypes	will	be	globally	conserved	(Figure	2.1A).	

	 While	metagenomics	does	allow	for	many	comprehensive	analyses	there	are	also	

various	caveats	related	to	these	analyses.	In	order	to	overcome	sequencing	error	and	short	

read	length	we	used	a	mapping-based	consensus	method.	This	method	cannot	capture	

underlying	diversity	in	non-dominant	sequence	types	(86).	Prochlorococcus	has	been	
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shown	to	have	multiple	co-existing	microdiverse	haplotypes	in	situ	which	vary	in	

abundance	(47).	This	makes	it	unclear	whether	our	HLII-P	haplotype	is	a	single	haplotype,	

or	the	phylogenetic	signal	is	due	to	multiple	co-existing	haplotypes.	There	are	also	some	

caveats	when	interpreting	MAGs.	Because	Prochlorococcus	populations	are	often	made	up	

of	multiple	closely	related	haplotypes	it	is	difficult	to	create	complete	assemblies	that	find	a	

consistent	path	through	the	assembly	graph	resulting	in	fragmentation	(87).	While	we	

postulate	that	the	consistent	assembly	structure	of	P	acquisition	genes	in	our	MAGs	is	a	

sign	of	selection,	it	could	also	be	a	result	of	divergence	in	unassembled	regions	that	are	not	

captured	in	our	assemblies.		

	 Connection	microdiversity	with	specific	functional	groups	has	been	a	challenge	in	

the	field	of	microbial	ecology.	Here	we	hypothesized	that	differences	in	gene	content	would	

be	primarily	driven	by	nutrient	conditions	and	proposed	3	hypotheses	about	the	selective	

pressures	that	drive	Prochlorococcus	microdiversity.	While	differences	in	genome	content	

were	better	explained	by	regional	differences	such	as	temperature,	phylogenetic	

microdiversity	was	clearly	linked	to	nutrient	conditions	with	globally	conserved	

haplotypes.	This	work	is	an	example	of	how	we	can	leverage	large	metagenomic	datasets	to	

capture	fundamental	patterns	and	relationships	between	microbes.	This	analysis	is	the	first	

direct	link	between	phylogenetic	microdiversity	and	functional	diversity	revealing	a	novel	

P	limitation	defined	haplotype.	Quantifying	the	connection	between	microdiverse	

haplotypes,	and	traits	is	important	to	link	microbial	processes	with	larger	ecosystem	

ecology.	

	

Materials	and	Methods:	
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Metagenomes	

	 We	analyzed	surface	metagenomes	(<25	m	depth)	from	Bio-GO-SHIP(22),	Tara	

Oceans(45),	and	GEOTRACES(88).	

	

Read	Recruitment	and	Quality	Filtering	

	 Raw	metagenomic	reads	were	quality	filtered	and	adapter	sequences	were	removed	

using	Trimmomatic	v0.35	(51).	Metagenomic	reads	were	recruited	using	Bowtie2	v2.2.7	

(52).	The	reads	were	recruited	to	a	reference	database	comprised	of	115	genomes	with	

representatives	of	each	major	ecotype	of	Prochlorococcus	and	as	well	as	Synechococcus,	

Pelagibacter	and	Roseobacter	to	help	reduce	miss	recruitment	of	closely	related	microbes	

(Table	S2).	Bowtie2	was	used	with	the	following	flags	--no-unal	--local	-D	15	-R	2	-L	15	-N	1	

--gbar	1	--mp	3.	Resulting	SAM	files	were	sorted	and	indexed	with	samtools	v1.3	into	BAM	

files	(53).	

	

Profiling	Recruited	Reads	

	 Recruited	reads	were	profiled	using	Anvi’o	v5	(54).	All	open	reading	frames	in	the	

reference	database	were	aligned	and	clustered	using	NCBI	BLAST	(55)	and	MCL	(56)	

follwing	the	Anvi’o	Pangenomic	workflow	(57).	All	gene	clusters	from	the	HLII	genomes	

were	extracted	and	separated	into	single	copy	core	genes	(SCCG)	and	genes	in	the	flexible	

genome	(non-SCCG).	

	

Metagenomic	rpoC1	Consensus	Sequences	
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	 Reads	which	recruited	to	the	rpoC1	gene	across	all	reference	genomes	were	

extracted.	Then	reads	were	separated	by	sample	and	ecotype	and	were	aligned	to	a	

reference	rpoC1	sequence.	Based	on	the	alignment	we	calculated	a	consensus	rpoC1	

sequence	for	the	HLII	ecotype	for	each	sample	in	our	dataset.	Consensus	sequences	were	

made	by	aligning	with	Bowtie2	(52),	then	the	consensus	was	calculated	and	quality	

controlled	by	samtools	(53).	Only	samples	that	passed	the	following	quality	metrics	were	

used	in	all	further	analysis:	a	minimum	of	2000	reads	that	mapped	to	rpoC1,	minimum	of	

5x	SCCG	coverage	of	HLII,	and	the	sample	must	be	at	least	90%	HLII	out	of	all	

Prochlorococcus	SCCGs.	

	

Gene	Analysis	

	 Sequence	coverage	for	All	non-SCCG’s	were	normalized	by	average	SCCG	coverage.	

This	is	done	in	order	to	normalize	gene	coverage.	This	gives	roughly	how	many	copies	of	a	

gene	there	are	per	individual	in	the	sample.	We	calculated	a	z-score	for	the	normalized	

abundance	of	each	gene	and	the	resulting	normalized	coverage	was	analyzed	using	PCA	

analysis	in	R.	We	then	extracted	the	top	100	genes	that	contributed	to	the	first	4	principal	

components	and	annotated	the	NCBI	COG	for	each	gene	using	from	the	Anvi’o	profile.	

	

Metagenomic	rpoC1	Consensus	Analysis	

	 Consensus	sequences	were	analyzed	using	R	(89).	Consensus	sequences	were	

transformed	into	binary	sequences.	Phylogenetic	distances	between	samples	was	

calculated	using	a	binary	Jaccard	from	the	Vegan	R	package	(90).	The	sequences	were	

hierarchically	clustered	using	hclust	with	the	mcquitty	method.	Number	of	clusters	was	
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selected	by	minimizing	the	sum	of	squares	within	each	cluster.	Resulting	clustering	was	

then	bootstrapped	1000	times	and	clusters	that	were	in	less	than	60%	of	the	bootstraps	

were	removed	from	further	analysis.	

	

Statistical	Analysis	

	 Spearman	correlation	between	Principal	components	and	environmental	factors	

was	calculated	in	R.	Pairwise	physical	distance	between	samples	was	modeled	in	R.	The	

distance	was	calculated	by	making	a	global	map	into	a	raster	image	with	400	rows	and	800	

columns	(~0.45	degree	squares).	Raster	squares	that	fell	on	land	were	made	impassible	

and	the	shortest	distance	was	calculated	between	all	samples	in	a	pairwise	fashion.	We	

then	took	our	distance	matrix	and	decomposed	this	into	a	single	continuous	component	

using	metaMDS	in	R.	This	was	done	so	the	distance	effect	could	be	in	cluded	in	our	

permanova	analysis.	Environmental	variables	were	correlated	to	phylogenetic	distance	and	

functional	distance	using	permanova	analysis	with	the	adonis2	package	in	R.	

	

Metagenomically	Assembled	Genomes	

	 Metagenomically	assembled	genomes	(MAGs)	were	created	using	the	following	

pipeline.	The	reads	were	quality	controlled	using	the	same	method	described	previously	

and	raw	assemblies	were	made	using	the	de	novo	assembler	SPAdes	(91).	Samples	were	

assembled	individually	using	the	metaSPAdes	assembly	pipeline.	Resulting	assembled	

contigs	were	binned	using	MetaBAT2	(92).	MAGs	were	quality	controlled	and	rapidly	

assessed	using	checkM	(93).	Mag	annotations	were	made	by	aligning	the	resulting	bins	

against	a	reference	of	phosphorus	acquisition	genes	using	BLAST	
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MAGs	Phylogenetic	Analysis	

	 A	phylogeny	of	the	MAGs	was	created	using	the	rpoC1	gene.	Sequences	of	the	rpoC1	

gene	were	extracted	from	all	Prochlorococcus	reference	genomes	and	a	single	

Synechococcus	genome	as	an	outgroup.	The	sequences	were	aligned	using	Mega7	(94)	and	

Muscle	(95).	Model	was	selected	based	on	the	maximum	likelihood	fit	of	24	different	

nucleotide	substitution	models	using	MEGA7.	GTR	+	G	+	I	was	selected	since	it	had	the	

lowest	Bayesian	Information	Criterion	and	Akaike	Information	Criterion	values.	The	

phylogenetic	tree	was	created	using	raxml	(96)	with	the	following	arguments	raxmlHPC	-f	a	

-x	318420	-p	318420	-N	100	-m	GTRGAMMAX	-O	-o	GEYO-Syn_CRD1_53540	-n	out_file	-s	

align_file	-w	out_dir.	The	resulting	tree	was	visualized	using	iTOL	(97).	
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Ch3:	Integration	of	Genomic	and	Remote	Sensing	Observation	to	Determine	Global	

Ocean	Nutrient	Stress	

	

Authors:	Lucas	J.	Ustick,	Toby	K.	Westberry,	Michael	J.	Behrenfeld,	Adam	C.	Martiny	

	

Introduction:	

	 In	the	surface	ocean,	primary	production	is	typically	limited	by	supply	of	nutrients.	

Future	climate	conditions	are	predicted	to	increase	thermally-driven	stratification,	which	

results	in	intensified	nutrient	stress	(98,	99).	Models	have	predicted	that	rising	surface	

ocean	temperature	will	have	significant	effects	on	primary	production	and	microbial	

community	composition	(100).	This	proposed	effect,	is	one	of	the	main	threats	to	marine	

ecosystem	productivity	and	biodiversity.	Nitrogen,	phosphorus,	and	iron	are	the	primary	

limiting	nutrients	in	the	global	ocean,	but	the	spatial	and	temporal	patterns	of	macro	

nutrient	limitation	are	poorly	understood.	

	 There	are	a	variety	of	methods	used	to	estimate	nutrient	stress	in	the	ocean	such	as	

bottle	incubation	experiments	and	Earth	System	Models,	but	each	has	its	own	associated	

caveats	and	limitations.	Nutrient	addition	experiments	have	been	used	to	capture	nutrient	

limitation	in	equatorial	upwelling	regions	where	there	is	chronic	Fe	limitation	but	it	has	

been	less	effective	at	identifying	limiting	nutrients	in	most	other	regions	(101).	Typically	

multiple	nutrients	are	required	to	increase	growth	resulting	in	proposed	co-limitation	in	

much	of	the	ocean	(3,	7)	Nutrient	addition	experiments	can	also	introduce	bottle	effects,	

disrupt	natural	communities,	and	are	labor	intensive	resulting	in	a	majority	of	the	ocean	

being	uncharacterized	both	spatially	and	temporally.	Ocean	biogeochemical	models	have	a	
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more	complete	range	of	spatial	and	temporal	predictions	but	rely	on	uncertain	descriptions	

of	nutrient	uptake,	growth,	and	nutrient	flux	estimations	(10).	Considering	this,	there	are	

methodological	challenges	when	trying	to	globally	quantify	the	spatial	and	temporal	

patterns	of	ocean	nutrient	limitation.	

	 A	convergence	between	omics	and	remote	sensing,	offers	a	potential	new	tool	for	

detecting	nutrient	stress	globally.	Recently,	metagenomics	provided	an	in	situ	

quantification	of	nutrient	stress	based	on	the	highly	abundant	cyanobacteria	

Prochlorococcus	(79).	This	omics’-based	assessment	used	the	presence	or	absence	of	

nutrient	uptake	and	metabolism	genes	to	identify	both	type	and	severity	of	nutrient	stress	

for	the	first	time	on	a	global	scale.	Phytoplankton	regulate	their	chl:C	ratio	in	response	to	a	

combination	of	light	intensity	and	nutrient	stress	(102).	The	variance	in	the	chl:C	ratio	is	a	

result	of	phytoplankton	optimizing	investment	in	light	acquisition	machinery	to	match	

nutrient	limited	growth	(103).	This	relationship	has	been	proposed	as	an	estimate	of	

nutrient	stress	in	the	ocean	using	remote	sensing	products	but	has	never	been	validated	in	

situ	(104–106).	Until	recently,	creating	a	link	between	these	remote	sensing	products	and	

in	situ	measurements	was	not	possible,	but	because	of	the	abundance	of	metagenomic	data,	

we	now	have	the	spatial	coverage	to	create	a	formal	validation.	

	 Here,	we	combined	in	situ	genomic	biomarkers	and	remote	sensing	to	detect	

nutrient	stress	across	the	last	20	years.	We	integrated	omics	with	remote	sensing	to	

globally	characterize	nutrient	stress.	We	asked:	What	are	the	global	contemporary	trends	

in	ocean	nutrient	stress?	We	hypothesized	that	remote	sensing	derived	nutrient	stress	

(chl:C	total	/chl:C	photo	acclimation)	will	correlated	with	N	and	P	limitation	in	our	
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metagenomically	derived	index.	We	also	hypothesized	that	temporal	patterns	of	nutrient	

stress	will	be	driven	by	differences	in	temperature.	

	

Results:	

	 We	analyzed	remote	sensing	measurements	of	chl:C	normalized	by	a	chl:C	photo-

acclimation	model	(Sigma	Σ)	from	2003-2020	and	linked	the	patterns	to	metagenomically	

derived	nutrient	stress	metrics	(Omega	Ω).	We	first	compared	Omega	nutrient	stress	with	

the	novel	remote	sensing	derived	Sigma	using	a	generalized	additive	model	(GAM).	After	

this	in	situ	validation	of	Sigma	nutrient	stress,	we	observed	the	global	patterns	of	Sigma	

averaged	across	2003-2020	and	compared	to	potential	environmental	drivers.	We	then	

quantified	the	novel	seasonal,	annual,	and	overall	trends	of	Sigma	nutrient	stress.	
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Figure	3.1:	In	situ	validation	of	satellite	derived	nutrient	stress	(Sigma).	Matchup	of	

satellite	derived	nutrient	stress	values	for	the	time	and	location	of	metagenomic	sampling	

(A).	GAM	model	prediction	of	Sigma	based	on	metagenomic	(Omega)	predictors	captures	

29%	of	total	variance	(B).	Contour	plot	of	relationship	between	predictors	(x	and	y	

axis)(Omega	N,P,Fe)	and	Sigma	GAM	predictions	(color	intensity)(C-E).	Black	points	

represent	sample	points	in	predictor	space.	

	

	 Satellite	derived	nutrient	stress	captured	the	general	patterns	of	metagenomically	

derived	nutrient	stress.	To	quantify	this	relationship,	we	created	a	GAM	to	predict	satellite	

derived	nutrient	stress	(Sigma)	based	on	three	metagenomic	indices	of	nutrient	limitation	

(Omega	N,	P,	Fe).	Our	GAM	modeled	the	co-variation	of	our	3	predictors	using	a	tensor	
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product,	smooth.	We	allowed	only	3	dimensions	for	the	bases	used	to	represent	the	smooth	

term	to	maximally	constrain	the	model.	The	GAM	model	was	able	to	capture	29%	of	the	

variation	in	Sigma	(Figure	3.1A,	3.1B).	When	looking	at	the	effects	of	each	predictor	on	the	

model,	we	see	that	single	nutrient	metagenomic	limitation	predicts	lower	values	of	Sigma	

than	co-stress	(Figure	3.1C-E).	Sigma	correlates	to	all	3	types	of	Omega	stress	included	and	

is	indicative	of	general	macro-nutrient	limitation	regardless	of	type.	In	the	model,	Omega	N	

explained	the	most	variation,	followed	by	Omega	Fe,	and	Omega	P,	which	explained	the	

least	amount	of	variation.	In	the	Pacific	Ocean,	we	see	the	change	in	Sigma	closely	follows	

Omega	Fe	in	the	equatorial	upwelling	and	peaks	at	27	degrees	south	which	corresponds	to	

the	switch	to	Omega	N	stress	(Figure	S3.1).	We	see	a	strong	correspondence	between	

Omega	N	and	Sigma	in	the	Atlantic	Ocean	(Figure	S3.2,	S3.3).	In	both	C13	and	AMT,	the	

highest	stress	is	at	~	20	degrees	south	(Sigma	=	0.3-0.4)	which	corresponds	to	the	highest	

nitrogen	stress	in	the	region	(Omega	N	=	0.5-0.75).	In	the	Southeastern	Indian	Ocean	(IO9	

stations	1-150),	we	see	a	tight	correspondence	between	Sigma	and	nitrogen	stress,	but	we	

observe	decoupling	in	the	Bay	of	Bengal	(IO9	stations	160-180)(Figure	S3.4).	The	model	

captured	the	general	patterns	of	Sigma	but	was	unable	to	capture	the	dynamics	in	regions	

such	as	the	Arabian	Sea,	and	the	Bay	of	Bengal	in	the	Indian	Ocean	(Figure	S3.4,	S3.5).	

These	regions	have	dynamic	eddies,	which	result	in	a	highly	variable	environment,	may	

cause	the	decoupling.	Overall,	our	in-situ	validation	of	satellite	derived	nutrient	stress	

revealed	a	close	association	between	Omega	stress	and	Sigma	stress.	
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Figure	3.2:	Global	mean	remote	sensing	derived	nutrient	stress	Sigma.	High	values	of	

Sigma	represent	communities	that	are	not	stressed	(blue)	with	low	values	of	Sigma	

representing	highly	nutrient	stressed	populations	(red).	

	

	 Global	distributions	of	satellite	derived	nutrient	stress,	Sigma,	displayed	systematic	

trends	across	the	oligotrophic	ocean.	In	our	data,	the	subtropical	gyres,	coastal,	and	

equatorial	upwellings	regions	showed	little	nutrient	stress	based	on	the	satellite	model	(Σ	

=	0.7-1).	Outside	of	these	regions	much	of	the	low	latitude	ocean	is	severely	nutrient	

stressed	(Σ	=	0.2-0.4).	When	comparing	the	global	trends,	we	see	the	southern	hemisphere	

shows	greater	levels	of	nutrient	stress	when	compared	to	the	northern	hemisphere.	
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Figure	3.3:	Monthly	variation	in	remote	sensing	derived	nutrient	stress	Sigma.	Blue	

values	represent	a	reduction	in	stress,	with	red	representing	an	increase.	

	

	 There	were	clear	seasonal	shifts	in	nutrient	stress	across	the	global	ocean	(Figure	

3.3).	We	averaged	monthly	changes	across	the	timeseries	to	capture	seasonal	trends	and	

observed	a	clear	seasonal	signal	with	stress	increasing	during	the	summer	and	decreasing	

in	the	winter.	This	seasonal	change	had	a	negative	correlation	with	changes	in	temperature	

and	explained	8%	of	variation	(Pearson	r=-0.29	P-val	<	0.05)(Figure	S3.6).	We	did	not	

observe	any	clear	trends	outside	of	seasonal	variability	between	the	north	and	south	

hemisphere.	
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Figure	3.4:	Annual	variation	in	remote	sensing	derived	nutrient	stress	Sigma.	Blue	

values	represent	a	reduction	in	stress,	with	red	representing	an	increase.	

	

	 Long	term	and	annual	trends	in	nutrient	stress	show	systemic	changes	and	a	

decoupling	between	nutrient	stress	and	temperature.	When	quantifying	the	long-term	

trend,	we	see	an	increase	in	nutrient	stress	in	the	northern	hemisphere	with	a	decrease	in	

the	southern	hemisphere,	primarily	driven	by	a	strong	reduction	in	stress	in	2019	and	

2020	(Figure	3.4,	3.5A,	3.5B).	Annual	trends	show	a	strong	response	to	the	El	Niño	
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Southern	Oscillation	(ENSO)	which	accounts	for	~40%	of	total	annual	variation.	The	

second	largest	annual	shift	was	the	reduction	in	nutrient	stress	observed	in	the	southern	

hemisphere	in	the	final	two	years	(2019-2020),	which	was	not	associated	with	any	clear	

oceanographic	trends	or	environmental	measurements	(SST,	nitrate	concentration,	and	

mixed	layer	depth).	While	we	see	a	very	slight	net	decrease	in	nutrient	stress	in	the	global	

ocean	from	2003	to	2020	(Figure	3.5C),	we	observe	a	significant	increase	in	sea	surface	

temperature	(Figure	3.5D).	We	do	not	detect	an	anthropogenic	trend	in	nutrient	stress	in	

the	ocean	from	2003	to	2020	and	only	observed	trends	linked	to	natural	oscillations	such	

as	ENSO	and	the	Pacific	Decadal	Oscillation.	

	

	

Figure	3.5:	Long	term	trend	in	remote	sensing	derived	nutrient	stress	Σ	and	

temperature.	Total	trend	in	remote	sensing	derived	nutrient	stress	Sigma	from	2003-
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2020	(A).	Histogram	of	Sigma	trend	with	zero	change	shown	by	the	vertical	line	(B).	Total	

trend	in	remote	sensing	derived	SST	from	2003-2020	(C).	Histogram	of	SST	trend	with	zero	

change	shown	by	the	vertical	line	(D).	

	

Discussion:	

	 We	captured	a	clear	relationship	between	remote	sensing	derived	nutrient	stress	

(Sigma)	and	metagenomically	derived	nutrient	stress	(Omega).	We	hypothesized	that	P	and	

N	metagenomic	stress	metrics	together	would	reflect	the	patterns	in	Sigma,	but	our	GAM	

model	revealed	the	remote	sensing	index	reflected	N,	P,	and	Fe	stress	(Figure	3.1).	This	

relationship	suggests	Sigma	captures	general	macro-nutrient	limitation	regardless	of	type.	

It	was	unexpected	that	Fe	limitation	would	contribute	to	this	signal.	Fe	limitation	has	its	

own	uniquely	identifiable	signal	in	remote	sensing	data	based	on	estimates	of	chlorophyll	

fluorescence	quantum	yield	(29,	107).	In	our	model,	N	captured	the	most	variation,	

followed	by	Fe,	and	P,	which	had	the	weakest	relationship	with	Sigma.	This	may	be	due	to	

the	fact	that	phytoplankton	have	more	flexibility	in	their	P	quotas	and	are	able	to	adapt	to	

low	P	conditions	resulting	in	less	of	a	growth	penalty	(108).	The	metagenomic	and	remote	

sensing	stress	metrics	diverged	in	highly	variable	regions	such	as	the	north	Indian	Ocean	

(Figure	S3.4,	S3.5).	The	north	Indian	Ocean	undergoes	seasonal	monsoons	(109,	110)	and	in	

the	Bay	of	Bengal	(111)	and	the	Arabian	Sea	(112),	eddies	cause	dynamic	nutrient	

conditions.	The	decoupling	of	metagenomics	and	remote	sensing	in	these	regions	may	be	

due	to	the	timescales	each	metric	responds	to.	The	metagenomic	index	Omega	measures	

adaptation	to	nutrient	conditions,	while	the	remote	sensing	index	Sigma	is	a	result	of	
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acclimation.	This	suggest	the	remote	sensing	index	is	more	indicative	of	current	conditions	

while	the	metagenomics	are	more	tuned	to	long	term	conditions	i.e.,	a	seasonal	average.	

	 We	hypothesized	the	temporal	patterns	in	satellite	derived	nutrient	stress	Sigma	

would	be	driven	by	temperature.	While	we	captured	a	strong	seasonal	relationship	

between	temperature	and	Sigma,	temperature	did	not	correlate	well	with	the	overall	

variation	in	nutrient	stress	from	2003-2020	(Figure	3.3,	3.5).	This	seasonal	connection	

could	be	due	to	other	seasonal	dynamics	not	measurable	by	satellites.	We	have	seen	a	

decline	in	total	phytoplankton	biomass	over	time	with	a	strong	connection	to	temperature	

in	previous	studies	(98).	Models	have	also	proposed	that	temperature	driven	stratification	

would	decrease	surface	nutrient	concentrations,	which	would	lead	to	increased	nutrient	

limitation	in	the	surface	ocean	(99).	We	observed	a	clear	increase	in	temperature	across	

our	data	but	saw	a	slight	decrease	in	nutrient	limitation	in	the	global	ocean	(Figure	3.5).	All	

this	together	suggests	phytoplankton	may	be	robust	to	the	effects	of	a	warming	ocean	and	

can	adapt	to	reducing	the	growth	penalty	of	these	low	nutrient	conditions.	Alternatively	

there	may	be	factors	we	did	not	measure	that	are	having	a	positive	effect	on	phytoplankton	

growth	such	as	C02	fertilization.	Longitudinal	studies	looking	at	microbial	community	

composition	and	adaptation	are	needed	to	better	understand	the	underlying	processes	

resulting	in	this	decoupling.		

	 Understanding	the	effects	of	a	warming	climate	on	primary	production	is	a	goal	

across	scientific	fields.	Nutrient	stress	exerts	a	fundamental	control	on	phytoplankton	

growth	and	is	important	for	informing	long	term	predictions	in	global	biochemical	models.	

Our	analysis	suggests	that	anthropogenic	climate	change	is	not	contributing	to	temporal	

patterns	of	nutrient	stress,	but	the	patterns	are	driven	by	natural,	seasonal	trends.	This	
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work	highlights	the	utility	of	connecting	omics-based	studies	with	remote	sensing.	Both	

methods	are	cost	effective	for	capturing	a	wide	range	of	data	types	across	large	spatial	and	

temporal	scales.	Convergence	between	fields	and	datatypes	is	paramount	for	creating	a	

more	complete	picture	of	the	role	of	microbes	in	past,	present,	and	future	global	

biogeochemistry.	This	work	suggest	more	in	situ	longitudinal	studies	of	microbial	

composition	and	processes	are	needed,	to	fully	understand	how	phytoplankton	are	

adapting	to	future	conditions.	

	

Materials	and	Methods:	

Metagenomic	Data	Curation	

	 Metagenomic	indices	of	nutrient	limitation	Omega	were	curated	from	(79).	We	

specifically	used	Omega	N	high,	Omega	P	high,	and	Omega	Fe	med.	Omega	Fe	med	was	used	

because	of	the	spatial	limitations	of	Omega	Fe	high.	

	

Sigma	Calculation	

	 All	remote	sensing	data	was	collected	from	ocean	color	generated	using	R2018	

MODIS-Aqua	products	available	from	the	OB.DAAC.	Specifically,	the	products	we	used	were	

derived	from	standard	Level	3	(~9.25km),	8-Day	(8D)	composites,	which	represent	a	

reasonable	compromise	between	coverage	and	temporal	resolution.	Sigma	was	calculated	

by	first	determining	the	chlorophyl	to	carbon	ratio,	then	the	ratio	is	normalized	based	the	

photoacclimation	model	from	(104–106).	Any	values	of	Sigma	above	1.2	were	removed	

from	the	analysis.	
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GAM	Modeling	

	 We	isolated	datapoints	that	corresponded	to	the	time	and	location	of	metagenomic	

sampling.	We	calculated	the	total	variance	explained	by	our	model	across	different	spatial	

and	temporal	averaging.	We	ended	up	averaging	the	data	spatially	in	an	18x18	grid	

spatially	(~1.494	degrees)	and	temporally	across	a	24	day	average.	Generalized	Additive	

Modeling	was	done	using	the	MGCV	package	in	R.	We	used	Omega	N	high,	Omega	P	high,	

and	Omega	Fe	med	as	predictors	for	Sigma.	We	calculated	the	tensor	product	interactions	

and	allowed	3	dimensions	for	the	bases	used	to	represent	the	smooth	term.	This	is	the	

minimum	amount	you	can	use	when	calculating	a	3	dimensional	tensor	product	

interaction.	This	was	done	in	order	to	constrain	the	model	as	much	as	possible.	Tensor	

product	smooths	were	used	since	each	predictor	is	made	up	of	relative	values	and	are	not	

on	the	same	scale.	We	applied	a	gaussian	family	to	the	model	and	used	the	mixed	model	

approach	via	restricted	maximum	likelihood	(REML).	Contour	plots	were	generated	using	

the	vis.gam	function	in	MGCV.	

	

Sigma	Analysis	

	 We	analyzed	the	patters	and	trends	of	Sigma	across	40S-40N	to	match	the	

distribution	of	the	metagenomic	data.	The	analysis	of	trends	was	done	in	matlab	using	the	

Climate	Data	Toolbox	doi:10.1029/2019GC008392.	Trends	were	calculated	across	

different	time	frames	(Monthly,	Yearly,	and	Total	Time	Series).	Correlations	between	

trends	were	calculated	in	matlab	using	the	Pearson	index.	Total	variance	was	decomposed	

using	EOF	analysis	with	and	without	seasonal	detrending.	
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Conclusion:	

	 Nutrient	limitation	in	the	global	ocean	is	one	of	the	main	factors	controlling	primary	

production.	Based	on	a	novel	metagenomic	dataset	I	first	characterized	global	patters	of	

nutrient	stress	in	type	(N,	P,	and/or	Fe)	and	severity	leveraging	Prochlorococcus	as	a	

biosensor.	Second,	I	captured	the	underlying	phylogeny	of	Prochlorococcus	nutrient	stress	

traits	and	proposed	a	novel	HLII-P	haplotype.	Finally,	I	connected	our	omics	derived	

nutrient	stress	with	a	novel	remote	sensing	model	to	quantify	the	temporal	and	seasonal	

shifts	in	nutrient	stress.	This	work	represents	interdisciplinary	projects	that	leverage	data	

and	theory	across	fields.	Historically	convergence	between	omics’,	biogeochemistry,	and	

remote	sensing	have	been	elusive.	Here	I	leveraged	large	new	metagenomic	datasets	and	

mechanistically	linked	gene	distributions	and	phylogenetic	patterns	to	biogeochemically	

relevant	processes.	My	work	builds	upon	decades	of	work	on	Prochlorococcus	physiology,	

and	microbial	modeling	to	provide	novel	insights	into	the	patterns	and	processes	of	ocean	

nutrient	limitation.	
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APPENDIX	A:	Ch.1	Supplemental	Figures	and	Tables 

 

Fig.	S1.1.	Principal	component	analysis	of	stress	genes	across	all	metagenome	

samples	overlaid	with	vectors	for	each	gene	(n	=	1137).	The	eigenvectors	for	stress	

genes	(zi)	and	composite	metrics	(Ωs)	are	colored	according	to	nutrient	type	(red=Fe,	

blue=P,	and	yellow=N).	This	figure	matches	Fig.	1A	but	has	gene	vectors	overlaid.	
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Fig.	S1.2.	Clustering	of	gene	abundances	(x-axis)	and	samples	(y-axis).	The	clustering	

is	based	on	an	Euclidean	distance	and	average	linkage	hierarchical	clustering	of	zi.	Genes	

are	colored	according	to	nutrient	type	(red=Fe,	blue=P,	and	yellow=N).	
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Fig.	S1.3.	Euclidean	distance	between	Ω	measurements	across	all	samples.	Ω	values	

are	ordered	by	first	severity	(high,	med,	low)	then	type	(Fe,	P,	N).	
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Fig.	S1.4.	Changes	in	nutrient	stress	genes	for	cruise	AE1319	and	BVAl46	to	the	

western	North	Atlantic	Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	

phosphorus,	yellow	for	nitrogen	genes.	a/e)	Z-score	of	individual	genes	ordered	by	high	to	

low	stress	genes	colored	by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	

type.	b/f)	high	stress	genes,	c/g)	medium	stress	genes,	d/h)	low	stress	genes,	i)	map	of	

BVAL	samples,	j)	map	of	AE1319	samples.	

	 	



 

75 
 

	

Fig.	S1.5.	Changes	in	nutrient	stress	genes	for	cruise	GA02	to	the	western	Atlantic	

Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	

nitrogen	genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	

by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	

genes	c)	medium	stress	genes	d)	low	stress	genes.	e)	map	of	GA02	cruise	samples.	
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Fig.	S1.6.	Changes	in	nutrient	stress	genes	for	cruise	AMT28	to	the	Atlantic	Ocean.	

Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	nitrogen	

genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	by	type.	

Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	genes	c)	

medium	stress	genes	d)	low	stress	genes.	e)	map	of	AMT	cruise	samples.	
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Fig.	S1.7.	Changes	in	nutrient	stress	genes	for	cruise	C13.5	to	the	western	North	

Atlantic	Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	

yellow	for	nitrogen	genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	

genes	colored	by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	

high	stress	genes	c)	medium	stress	genes	d)	low	stress	genes.	e)	map	of	C13.5	cruise	

samples.	

	 	



 

78 
 

	

Fig.	S1.8.	Changes	in	nutrient	stress	genes	for	cruise	P18	to	the	eastern	Pacific	Ocean.	

Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	nitrogen	

genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	by	type.	

Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	genes	c)	

medium	stress	genes	d)	low	stress	genes.	e)	map	of	P18	cruise	samples.	
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Fig.	S1.9.	Changes	in	nutrient	stress	genes	for	cruise	NH1418	to	the	central	Pacific	

Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	

nitrogen	genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	

by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	

genes	c)	medium	stress	genes	d)	low	stress	genes.	e)	map	of	NH1418	cruise	samples.	
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Fig.	S1.10.	Changes	in	nutrient	stress	genes	for	cruise	GP13	to	the	western	South	

Pacific	Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	

yellow	for	nitrogen	genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	

genes	colored	by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	

high	stress	genes	c)	medium	stress	genes	d)	low	stress	genes.	e)	map	of	GP13	cruse	

samples.	
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Fig.	S1.11.	Changes	in	nutrient	stress	genes	for	cruise	I07N	to	the	western	Indian	

Ocean.	Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	

nitrogen	genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	

by	type.	Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	

genes	c)	medium	stress	genes	d)	low	stress	genes.	e)	map	of	IO7N	cruise	samples.	
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Fig.	S1.12.	Changes	in	nutrient	stress	genes	for	cruise	I09N	to	the	eastern	Indian	

Ocean.	

Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	nitrogen	

genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	by	type.	

Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	genes	c)	

medium	stress	genes	d)	low	stress	genes.	e)	map	of	IO9	cruise	samples.	
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Fig.	S1.13.	Changes	in	nutrient	stress	genes	for	Tara	Ocean	global	sampling	program.		

Colors	across	the	figure	coincide	with	red	for	iron,	blue	for	phosphorus,	yellow	for	nitrogen	

genes.	a)	Z-score	of	individual	genes	ordered	by	high	to	low	stress	genes	colored	by	type.	

Composite	stress	(Ωs)	grouped	by	severity	and	colored	by	type.	b)	high	stress	genes	c)	

medium	stress	genes	d)	low	stress	genes	ordered	by	station.	e)	map	of	TARA	Oceans	cruise	

samples	colored	by	station.	
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Fig.	S1.14.	Comparison	between	nutrient	stress	predicted	using	metagenomics	and	

an	Earth	system	model.	The	columns	represent	nutrient	limitation	type	and	rows	

represent	the	Earth	system	model	as	well	as	stress	severity.	The	model	simulations	are	

from	CESM	BEC	v1.21.	
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Fig.	S1.15.	Variation	in	nutrient	acquisition	genes	among	representative	genomes	

from	Prochlorococcus	high-light	ecotypes.	Genes	classified	as	indicative	of	high,	medium,	

and	low	stress	in	this	study	largely	cluster	together.	Gene	presence	reveals	a	hierarchical	

structure,	whereby	low	stress	genes	are	present	in	nearly	all	genomes,	medium	stress	

genes	are	present	in	a	smaller	subset	of	genomes,	and	high	stress	genes	are	a	subset	of	

genomes	with	medium	stress	profiles.	An	exception	to	this	pattern	is	identified	for	Fe	

stress,	whereby	single	copy	core	genes	(SCCGs)	unique	to	the	HLIII/IV	ecotype	(i.e.,	the	

HNLC	ecotype)	were	used	as	an	indicator	of	high	Fe	stress.	Genes	that	were	absent	in	all	

high	light	genomes	are	not	depicted.	The	ordering	of	the	x-	and	y-axes	are	according	to	

average	linkage	hierarchical	clustering	of	the	presence	(black	squares)	versus	absence	

(white	squares)	of	nutrient	genes.	
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Fig.	S1.16.	Comparison	between	nitrate	concentration,	nitrate	genes	and	urea	genes	

across	the	P18	cruse.	Nitrate	concentrations	are	represented	in	blue	with	units	on	the	left	

axis.	Average	gene	abundances	relative	to	SCCG	abundance	shown	in	orange.	Nitrate	genes	

(narB,	moaA-E)	related	to	high	stress	represented	as	a	solid	line	and	urea	genes	(ureA-G)	

related	to	medium	stress	as	a	dashed	line.	
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Table	S1.1.	Metagenome	samples	across	individual	cruises	
Cruse/Dataset	 #	

Samples	
Region	 Citation	

AE1319	 11	 NW	Atlantic	 (22)	
AMT28	 59	 Atlantic	 (22)	
BATS	 20	 NW	Atlantic	 (46)	
BVAL46	 12	 NW	Atlantic	 (22)	
C13.5	 241	 Atlantic	 (22)	
GA02	 30	 Atlantic	 (46)	
GA03	 3	 N	Atlantic	 (46)	
GA10	 16	 SE	Atlantic	 (46)	
GP13	 33	 SW	Pacific	 (46)	
HOT	 21	 Station	ALOHA	 (46)	
I07	 249	 W	Indian	 (22)	
I09	 238	 E	Indian	 (22)	

NH1418	 24	 NW	Pacific	 (22)	
P18	 75	 W	Pacific	 (22)	
Tara	 105	 Global	 (45)	
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Table	S1.2.	Angular	intervals	of	nutrient	stress	type	for	the	PCA	analysis	(Fig.	1A	and	
S1)	
Stress	Type	 Above	𝜽	 Below	or	Equal	𝜽	 Number	of	Samples	
Fe	Stress	 0.8	𝜋	 1.3	𝜋	 215	
Fe/P	Co-Stress	 0.64	𝜋	 0.8	𝜋	 15	
P	Stress	 0.12	𝜋	 0.64	𝜋	 268	
P/N	Co-Stress	 1.9	𝜋	 0.12	𝜋	 95	
N	Stress	 1.46	𝜋	 1.9	𝜋	 432	
N/Fe	Co-Stress	 1.3	𝜋	 1.46	𝜋	 112	
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Table	S1.3.	Read	recruitment	reference	genomes	
Genome	 Species	
EQPAC1	 Prochlorococcus	
GP2	 Prochlorococcus	
HNLC1	 Prochlorococcus	
HNLC2	 Prochlorococcus	
MED4	 Prochlorococcus	
MIT0601	 Prochlorococcus	
MIT0602	 Prochlorococcus	
MIT0604	 Prochlorococcus	
MIT0701	 Prochlorococcus	
MIT0801	 Prochlorococcus	
MIT1312	 Prochlorococcus	
MIT1313	 Prochlorococcus	
MIT1318	 Prochlorococcus	
MIT1327	 Prochlorococcus	
MIT1342	 Prochlorococcus	
MIT9123	 Prochlorococcus	
MIT9201	 Prochlorococcus	
MIT9211	 Prochlorococcus	
MIT9215	 Prochlorococcus	
MIT9301	 Prochlorococcus	
MIT9302	 Prochlorococcus	
MIT9303	 Prochlorococcus	
MIT9312	 Prochlorococcus	
MIT9313	 Prochlorococcus	
MIT9314	 Prochlorococcus	
MIT9322	 Prochlorococcus	
MIT9401	 Prochlorococcus	
MIT9515	 Prochlorococcus	
NATL1A	 Prochlorococcus	
NATL2A	 Prochlorococcus	
PAC1	 Prochlorococcus	
RS50	 Prochlorococcus	
SB	 Prochlorococcus	
SCGCAAA795_I06	 Prochlorococcus	
SCGCAAA795_I15	 Prochlorococcus	
SCGCAAA795_M23	 Prochlorococcus	
SS120	 Prochlorococcus	
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UH18301	 Prochlorococcus	
XMU1401	 Prochlorococcus	
XMU1403	 Prochlorococcus	
XMU1408	 Prochlorococcus	
MIT9313	 Prochlorococcus	
Och114	 Roseobacter	
A9spades	 Pelagibacter	
AAA240_E13	 Pelagibacter	
AAA288_E13	 Pelagibacter	
AAA288_G21	 Pelagibacter	
AAA288_N07	 Pelagibacter	
AAA298_D23	 Pelagibacter	
AG_337_G04	 Pelagibacter	
AG_337_G06	 Pelagibacter	
AG_426_I15	 Pelagibacter	
AG_430_F16	 Pelagibacter	
AG_430_I06	 Pelagibacter	
B4spades	 Pelagibacter	
F4spades	 Pelagibacter	
HIMB058	 Pelagibacter	
HIMB083	 Pelagibacter	
HIMB114	 Pelagibacter	
HIMB122	 Pelagibacter	
HIMB1321	 Pelagibacter	
HIMB140	 Pelagibacter	
HIMB4	 Pelagibacter	
HIMB5	 Pelagibacter	
HIMB59	 Pelagibacter	
HTCC1002	 Pelagibacter	
HTCC1013	 Pelagibacter	
HTCC1016	 Pelagibacter	
HTCC1040	 Pelagibacter	
HTCC1062	 Pelagibacter	
HTCC7211	 Pelagibacter	
HTCC7214	 Pelagibacter	
HTCC7217	 Pelagibacter	
HTCC8051	 Pelagibacter	
HTCC9022	 Pelagibacter	
HTCC9565	 Pelagibacter	
IMCC1322	 Pelagibacter	
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IMCC9063	 Pelagibacter	
PRT004	 Pelagibacter	
SAR86B	 Pelagibacter	
BL107	 Synechococcus	
CB0101	 Synechococcus	
CB0205	 Synechococcus	
CC9311	 Synechococcus	
CC9605	 Synechococcus	
CC9616	 Synechococcus	
CC9902	 Synechococcus	
GEYO	 Synechococcus	
GFB01	 Synechococcus	
KORDI_100	 Synechococcus	
KORDI_49	 Synechococcus	
KORDI_52	 Synechococcus	
MITS9508	 Synechococcus	
MITS9509	 Synechococcus	
N19	 Synechococcus	
N32	 Synechococcus	
NKBG042902	 Synechococcus	
PCC7335	 Synechococcus	
RCC307	 Synechococcus	
REDSEA_S02_B4	 Synechococcus	
RS9916	 Synechococcus	
RS9917	 Synechococcus	
UW105	 Synechococcus	
UW106	 Synechococcus	
UW140	 Synechococcus	
UW179A	 Synechococcus	
UW179B	 Synechococcus	
UW69	 Synechococcus	
UW86	 Synechococcus	
WH5701	 Synechococcus	
WH7805	 Synechococcus	
WH8016	 Synechococcus	
WH8020	 Synechococcus	
WH8102	 Synechococcus	
WH8109	 Synechococcus	
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APPENDIX	B:	Ch.2	Supplemental	Figures	and	Tables	

	

Figure	S2.1:	Gene	component	distributions.	
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Figure	S2.2:	Environmental	Stats.	*	denote	significant	differences	in	mean.	
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Table	S2.1:	Spearman	Correlation	between	PCA	analysis	&	environmental	factors.	

	 PC1	 PC2	 PC3	 PC4	
P	 p=	2.2e-16	

rho=	0.3877267	
p=	0.0001964	
rho=	0.147982	

p=	0.04191	
rho=	-0.0810904	

p=	2.2e-16	
rho=	0.8771648	

Fe	 p=	7.31e-06	
rho=	-0.1775951	

p=	5.944e-09	
rho=	-0.2291705	

p=	0.0003255	
rho=	-0.1427433	

p=	2.2e-16	
rho=	-0.7884059	

N	 p=	5.638e-06	
rho=	-0.1800382	

p=	9.578e-08	
rho=	-0.2110631	

p=	2.2e-16	
rho=	0.3912358	

p=	2.2e-16	
rho=	-0.4713667	

Temp	 p=	2.2e-16	
rho=	0.739164	

p=	0.0009222	
rho=	-0.134813	

p=	2.2e-16	
rho=	-0.3827844	

p=	2.2e-16	
rho=	0.4637373	
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Table	S2.2:	Reference	Genome	Database	

Genome	 Accession	 Species	

EQPAC1	 GCA_000759875.1	 Prochlorococcus	

GP2	 GCA_000759885.1	 Prochlorococcus	

HNLC1	 GCA_000218705.1	 Prochlorococcus	

HNLC2	 GCA_000218745.1	 Prochlorococcus	

MED4	 GCA_000011465.1	 Prochlorococcus	

MIT0601	 GCA_000760175.1	 Prochlorococcus	

MIT0602	 GCA_000760195.1	 Prochlorococcus	

MIT0604	 GCA_000757845.1	 Prochlorococcus	

MIT0701	 GCA_000760295.1	 Prochlorococcus	

MIT0801	 GCA_000757865.1	 Prochlorococcus	

MIT1312	 GCA_001632005.1	 Prochlorococcus	

MIT1313	 GCA_001632065.1	 Prochlorococcus	

MIT1318	 GCA_001632045.1		 Prochlorococcus	

MIT1327	 GCA_001632125.1	 Prochlorococcus	

MIT1342	 GCA_001632145.1	 Prochlorococcus	

MIT9123	 GCA_000759935.1	 Prochlorococcus	

MIT9201	 GCA_000759955.1	 Prochlorococcus	

MIT9211	 GCA_000018585.1	 Prochlorococcus	

MIT9215	 GCA_000018065.1	 Prochlorococcus	

MIT9301	 GCA_000015965.1	 Prochlorococcus	

MIT9302	 GCA_000759975.1	 Prochlorococcus	

MIT9303	 GCA_000015705.1	 Prochlorococcus	

MIT9312	 GCA_000012645.1	 Prochlorococcus	

MIT9313	 GCA_000011485.1	 Prochlorococcus	

MIT9314	 GCA_000760035.1	 Prochlorococcus	

MIT9322	 GCA_000760075.1	 Prochlorococcus	
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MIT9401	 GCA_000760095.1	 Prochlorococcus	

MIT9515	 GCA_000015665.1	 Prochlorococcus	

NATL1A	 GCA_000015685.1		 Prochlorococcus	

NATL2A	 GCA_000012465.1	 Prochlorococcus	

PAC1	 GCA_000760235.1	 Prochlorococcus	

RS50	 GCA_001989415.1	 Prochlorococcus	

SB	 GCA_000760115.1	 Prochlorococcus	

SCGCAAA795_I06	 NA	 Prochlorococcus	

SCGCAAA795_I15	 NA	 Prochlorococcus	

SCGCAAA795_M23	 NA	 Prochlorococcus	

SS120	 GCA_000007925.1	 Prochlorococcus	

UH18301	 SAMN00011132	 Prochlorococcus	

XMU1401	 GCA_002812945.1	 Prochlorococcus	

XMU1403	 GCA_003208065.1	 Prochlorococcus	

XMU1408	 GCA_003208055.1		 Prochlorococcus	

A9spades	 NA	 Pelagibacter	

AAA240_E13	 SAMN02597172	 Pelagibacter	

AAA288_E13	 SAMN02597171	 Pelagibacter	

AAA288_G21	 SAMN02597281	 Pelagibacter	

AAA288_N07	 SAMN02597280	 Pelagibacter	

AAA298_D23	 GCA_000402655.1	 Pelagibacter	

AG_337_G04	 ERS3879006	 Pelagibacter	

AG_337_G06	 ERS3879008	 Pelagibacter	

AG_426_I15	 ERS3880727	 Pelagibacter	

AG_430_F16	 ERS3880946	 Pelagibacter	

AG_430_I06	 ERS3880974	 Pelagibacter	

B4spades	 NA	 Pelagibacter	

F4spades	 NA	 Pelagibacter	
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HIMB058	 SAMN02440920	 Pelagibacter	

HIMB083	 SAMN02597166	 Pelagibacter	

HIMB114	 SAMN02436217	 Pelagibacter	

HIMB122	 SRS843558	 Pelagibacter	

HIMB1321	 GCA_900177485.1	 Pelagibacter	

HIMB140	 ERS787856	 Pelagibacter	

HIMB4	 NA	 Pelagibacter	

HIMB5	 SAMN00016662	 Pelagibacter	

HIMB59	 SAMN00010387	 Pelagibacter	

HTCC1002	 SAMN02436088	 Pelagibacter	

HTCC1013	 SAMN02441456	 Pelagibacter	

HTCC1016	 SAMN02256429	 Pelagibacter	

HTCC1040	 SAMN02256395	 Pelagibacter	

HTCC1062	 SAMN02603690	 Pelagibacter	

HTCC7211	 SAMN02436224	 Pelagibacter	

HTCC7214	 SAMN02841172	 Pelagibacter	

HTCC7217	 SAMN02841150	 Pelagibacter	

HTCC8051	 SAMN02440710	 Pelagibacter	

HTCC9022	 SAMN02440781	 Pelagibacter	

HTCC9565	 GCA_012932795.1	 Pelagibacter	

IMCC1322	 GCA_000024465.1	 Pelagibacter	

IMCC9063	 SAMN02603337	 Pelagibacter	

PRT004	 NA	 Pelagibacter	

SAR86B	 GCA_000252545.1	 Pelagibacter	

BL107	 GCF_000153805	 Synechococcus	

CB0101	 GCA_000179235.2	 Synechococcus	

CB0205	 GCA_000179255.1	 Synechococcus	

CC9311	 GCF_000014585	 Synechococcus	
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CC9605	 GCF_000012625	 Synechococcus	

CC9616	 GCF_000515235	 Synechococcus	

CC9902	 GCF_000012505	 Synechococcus	

GEYO	 GCF_900473955	 Synechococcus	

GFB01	 GCA_001039265.1		 Synechococcus	

KORDI_100	 GCF_000737535	 Synechococcus	

KORDI_49	 GCF_000737575	 Synechococcus	

KORDI_52	 GCF_000737595	 Synechococcus	

MITS9508	 GCF_001632165	 Synechococcus	

MITS9509	 GCF_001631935	 Synechococcus	

N19	 GCF_900474045	 Synechococcus	

N32	 GCF_900473895	 Synechococcus	

NKBG042902	 GCA_000715475.1	 Synechococcus	

PCC7335	 GCA_000155595.1	 Synechococcus	

RCC307	 GCF_000063525	 Synechococcus	

REDSEA_S02_B4	 GCA_001628325.1	 Synechococcus	

RS9916	 GCF_000153825	 Synechococcus	

RS9917	 GCF_000153065	 Synechococcus	

UW105	 GCF_900473935	 Synechococcus	

UW106	 GCF_900474015	 Synechococcus	

UW140	 GCF_900474295	 Synechococcus	

UW179A	 GCF_900473965	 Synechococcus	

UW179B	 GCF_900474245	 Synechococcus	

UW69	 GCF_900474185	 Synechococcus	

UW86	 GCF_900474085	 Synechococcus	

WH5701	 GCA_000153045.1	 Synechococcus	

WH7805	 GCF_000153285	 Synechococcus	

WH8016	 GCF_000230675	 Synechococcus	
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WH8020	 GCF_001040845	 Synechococcus	

WH8102	 GCF_000195975	 Synechococcus	

WH8109	 GCF_000161795	 Synechococcus	

Och114	 GCA_000014045.1	 Roseobacter	
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Appendix	C:	Ch.3	Supplemental	Figures	

	

Figure	S3.1:	P18	Cruse.	Sigma	observations	(SAT)	and	model	predictions	(GAM)(A).	

Metagenomic	indices	of	stress	(Omega).	
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Figure	S3.2:	AMT	Cruse.	Sigma	observations	(SAT)	and	model	predictions	(GAM)(A).	

Metagenomic	indices	of	stress	(Omega).	
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Figure	S3.3:	C13	Cruse.	Sigma	observations	(SAT)	and	model	predictions	(GAM)(A).	

Metagenomic	indices	of	stress	(Omega).	
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Figure	S3.4:	IO9	Cruse.	Sigma	observations	(SAT)	and	model	predictions	(GAM)(A).	

Metagenomic	indices	of	stress	(Omega).	
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Figure	S3.5:	IO7	Cruse.	Sigma	observations	(SAT)	and	model	predictions	(GAM)(A).	

Metagenomic	indices	of	stress	(Omega).	
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Figure	S3.6:	Seasonal	trends	in	sea	surface	temperature.	
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