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Optimization of Rastered Beam for Increased Isotope Production at LANSCE
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The Isotope Production Facility (IPF) receives pulsed H+ beam from the accelerator

at the Los Alamos Neutron Science Center (LANSCE) to produce isotopes for various

research and medical uses. Work over 2 summers has been conducted to improve diagnostics,

reliability, and control for equipment on the IPF beamline, as well as to optimize beam

delivered to IPF to increase isotope yield. This second goal is the subject of this document.

Specifically, it is desired to maximize beam delivery onto a target without risking damage

to the target window or spill too much beam outside a specified aperture. A specified

beam profile and repeating beam raster pattern of concentric circles is currently being

xi



used to achieve this. The goal addressed here is to determine an improved beam profile

and raster pattern. While a specific answer is needed for certain operation conditions, a

general method is even better. A constrained optimization problem is formulated, and

several approaches for solving it are discussed. It is found that with appropriate design

of cost function, a Gradient Descent algorithm is effective at making improvements to a

good initial guess. A bounded Extremum Seeking algorithm also shows some effectiveness,

while some unbounded versions did not show effectiveness for this problem. The problem

formulation, models, methods, results, are presented. They show significant potential to

advance IPF’s goals of higher isotope production yield.
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Chapter 1

Background

In this chapter, we will give an overview of some previous work on beam optimization

for isotope production, describe characteristics specific to LANSCE and IPF, and describe

the method currently used for beam optimization at LANSCE.

1.1 Introduction to LANSCE and IPF

The Los Alamos Neutron Science Center (LANSCE) is home to a particle accelerator

that provides beam to multiple research facilities including the Isotope Production Facility

(IPF), Ultra Cold Neutron (UCN), Proton Radiography, Lujan, and Weapons Neutron

Research (WNR) Centers. There are in total 5 targets, and multiple beam “flavors” which

refer to different characteristics of beam modes. All receive H– except for IPF, which

receives H+ beam. Each are generated by respective injectors, then they get bunched

and accelerated down the beam pipe (which is under vacuum) to different energy levels:

typically 100 MeV for IPF and 800 MeV for the other facilities, as shown in figure 1.1. IPF

is a facility that irradiates various targets such as Rubidium metal or Rubidium Chloride

targets to create isotopes like Strontium-82. This is used in medical applications such

as cardiac imaging (figure 1.2). It is desired to use the beam for both production of
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isotopes(e.g. Strontium-82, Germanium-68, Sodium-32), and for research and development

purposes for new applications (e.g. Actinium-225). In general, the desire to increase the

isotope production yield (i.e. production rate) to maximize the efficiency of beam time.

Figure 1.1: Diagram of LANSCE accelerator. IPF receives diverted H+ 100 MeV
beam, while the H- beam continues to be accelerated to 800 MeV before being directed
to other experimental areas

Figure 1.2: Proton Emission Tomography (PET) scan of the heart muscle which uses
Strontium-82
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1.2 Background on Isotope Production

Bombardment of targets by protons has been a standard method for production

of various isotopes for a long time. Depending on specific goals (e.g. quantity vs purity)

and materials being used, methods vary greatly. However, many setups have a structure

similar to the diagram in figure 1.3. The source of protons is a pulsed beam from a proton

accelerator, and a rigid or foil “window” of some material (here, Inconel) separates the

accelerator pipe (under vacuum) from the target (which is typically submerged in water for

cooling). Often, there is a ring-shaped collimator upstream which absorbs excess beam that

doesn’t fall on the target. This window is subject to thermo-mechanical stress since it’s the

barrier between the vacuum of the beam-pipe and water in vessel holding the target. Since

the beam passes through the window, the window will also absorb some of the energy and

heat up. In addition, precautions must be taken to make sure the powerful beam is stopped

by the targets, collimator, or beam-stop. This means the characteristics of the beam and

the designs of the target window, beam stop, and collimator must be carefully chosen

to deliver beam without damaging the equipment involved. Also, adequate control and

protection systems are needed to keep the beam on target, surrounding equipment protected,

and personnel safe. This document is concerned with maximizing isotope production by

optimizing parameters of a beam who’s fundamental characteristics have been determined

in conjunction with the rest of the system design. This problem can be summarized in the

following form:

θ∗ = argmax
θ

P (θ) (1.1)

such that Ispill < Ilimit (1.2)

T (x, y, t; θ) < Tlimit ∀x, y, t (1.3)
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• θ consists of parameters that describe the beam.

• P (θ) is the isotope production rate, as function of theta.

• Ispill is the average total current falling on the collimator.

• Ilimit is the maximum current that the collimator can take in steady state. It is a

function of the design of the collimator and its cooling system.

• T (x, y, t; θ) is the temperature of the beam window at coordinate (x, y) at time t and

parametrized by θ

Solving the above problem is the ultimate goal, but function P (θ) represents a

great deal of un-modeled or poorly modeled behavior. Standard model-based optimization

methods would not work. Generally speaking, for all other factors (target material, chemical

handling process, etc) equal, more current on the target results in more isotopes produced.

In addition, uniformity of coverage is helpful for isotope production. An example uniform

beam distribution is shown in (figure 1.4). These qualities allows maximal interaction

with and utilization of all of the target material. However, the exact importance of quantity

vs uniformity isn’t well-understood or modeled. In order to keep the beam window from

overheating, more uniform distributions tend to do better since temperature extremes tend

to be less severe.

With this in consideration, the problem formulation can be summarized by

θ∗ = argmax
θ

αItarget(θ) + βf
(
Iave(x, y; θ)

)
(1.4)

such that Ispill < Ilimit (1.5)

T (x, y, t; θ) < Tlimit ∀x, y, t (1.6)
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Figure 1.3: Diagram (not to scale) of main components of the end of the IPF beam-line
which uses rastering. Raster magnets (not shown) are used to deflect the beam and
draw a raster pattern over the target. The deflection angle is exaggerated here (for IPF,
deviation angle from the z axis is 1× 10−4 rad). Beam travels from left to right, losing
energy as it passes through the beam window, target stack, and finally ending at the
beam-stop. The collimator is a ring that absorbs any excess beam that are off-target.
Beam Position and Phase Monitors (BPPMs) are sensors that will be described in
section 1.4.3

with additional terms

• Itarget(θ) is the average total current delivered onto the target, parametrized by θ

• Iave(x, y; θ) is the average current density delivered at coordinates (x, y), parametrized

by θ

• f(·) is some measure of uniformity

• α, β are coefficients that weigh the relative importance of total current vs uniformity

5



This is the problem form addressed by most previous researchers for this problem

(possibly with additional constraints based on their particular facility).

Figure 1.4: Ideal beam distribution for isotope production: uniformly distributed
without beam spill on the collimator

Because the proton beam consists of like charges traveling down the beam-pipe,

the beam spreads out. Therefore the current density in the plane orthogonal to beam

travel is not uniform, but well-approximated by a 2D-Gaussian distribution [1]. A typical

beam distribution from the LANSCE accelerator is shown in figure 1.5. To achieve beam

uniformity on the target, two general methods are employed: beam de-focusing and beam

rastering.

De-focusing involves spreading out the beam much wider than the target, so that the

middle section that reaches the target is roughly uniform in current density. A collimator

is used to absorb the excess beam that doesn’t fall onto the target. This method is very

wasteful, since so much of the beam ends up on the collimator instead of the target. For

6



Figure 1.5: Beam Profile, with IPF Target and collimator outlined in black and red. In
this figure and all other figures, the z-axis is normalized according to the time structure
of the beam.

example, in one application at Harvard, only the middle 5% of the beam is used and

95% of the beam is wasted [1]. Another de-focusing based method uses an aperture along

with a carefully shaped beam-stop before the target to block out the middle part of the

beam, allowing it to spread back out and fill in the middle section again. With the correct

geometry, this method is highly effective at achieving uniform beam distribution on the

7



target and more efficient than the method above. Still, a great deal of current is absorbed

by the beam-stop. For higher current applications, this may be too much beam for any

material to absorb without overheating, and it is still not as efficient as it could be. In

addition, it is often difficult to maintain wide beams for high currents [2].

Beam rastering involves using a beam that is narrow relative to the target, then

rastering (drawing) it over the target using a specified pattern. While often more complex,

this is much more efficient. Beam rastering for isotope production was proposed as early

as 1985, in which it is noted that the raster frequency must be “far greater than the

reciprocal of the thermal rise time (of the target window)” [3]. iThemba Labs in South

Africa is an example of a facility similar to LANSCE’s IPF that uses beam rastering. [2].

With the goal of maximum current subject to thermal constraints, the solution employed

there uses a single circle raster pattern. Given a fixed raster frequency, the remaining 2

parameters to determine are beam width and raster radius. The method for finding the

optimal combination of these parameters was trial and error by simulating the current

density and temperature. The resulting optimum found was with a raster diameter about

30% larger than the beam diameter. According to [2] this result is similar to results found

in TRIUMF, another Isotope Production Facility in Canada. Figure 1.6 shows graphs

from [2] for current density and simulated temperature for different combinations of raster

and beam diameters.

1.3 Isotope Production at IPF

In the past, LANSCE’s IPF had used beam rastering with a single raster radius,

similarly to iThemba Labs. However, LANSCE recently experimented with more complex

patterns. First, it was found by geometric analysis that in order to achieve uniform current

density, there should be roughly a square root dependence between time spent at a radius

8



Figure 1.6: Target window temperature and beam distribution simulations at iThemba
labs. (beam diameter, raster diameter) are varied as indicated. The dashed line indicates
the best combination of the ones shown.

and the radius (i.e. R(t)
√
τ , τ = a “unit” amount of time [4]. This is illustrated in

figure 1.7 and is similar to a result found in [5]. Using this rule, they determined some

candidate patterns consisting of spirals drawn at a constant frequency. Unfortunately this

rule does not account for beam width, so this insightful but simple rule fails at smaller

radii where beam width plays a bigger factor. More complicated optimization through trial

and error was needed to complete the patterns near the center of the target, and it was

left un-optimized. The temperature constraint was checked later, rather than during the

optimization. Results for the spiral are still very good (figure 1.9), especially compared

to the single circle pattern (figure 1.8).
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Figure 1.7: Graph showing the proposed rule applied for a spiral raster pattern. The
time axis is time that should be spent a radial position, rather than the elapsed time
during a pulse of beam.

Currently, LANSCE’s IPF uses a raster sequences with radii selected from 3 possible

radii for 2 inch diameter targets and 5 possible radii for 2.5 inch diameter targets. The

resulting beam distribution for 2 inch targets is shown in figure 1.10 These patterns are

chosen over patterns used in [4] and [6] for two reasons. First, they cover the edges of the

target better(figure 1.10 vs figure 1.9). Secondly, it was more difficult to define and

detect a dangerous fault condition on the raster system for spirals than for a raster system

with concentric circles.

At IPF, targets are irradiated in run cycles that last several days or weeks. After

a run cycle, the targets are carefully removed for chemical processing at on-site hot-cell

processing facilities. The entire process from beginning of the run-cycle to extraction of

isotopes is on the timescale of days to weeks. Since the process of trying a new beam pattern

and evaluating its efficiency takes a very long time and is subject to many unmeasured

variables, beam patterns are rarely changed after being set. Improvements to beam

patterns are typically done by proposing a desired beam distribution and trying to find

the parameters (peak current, beam width, and raster sequence) that achieve the desired

distribution.

At this point is may be useful to address potentially confusing terminology. Current
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Figure 1.8: Current Density for original single-circle pattern

in this context refers to the total number of charges (i.e. protons), while energy refers

to the energy of each individual charge. Since each particle is a proton with fixed mass,

energy and speed are directly related as: v = c×
√

1− 1
(1+ E

m
)2

where c is the speed of light,

E is beam energy, and m is the rest mass of a proton (938 MeV). Beam and current will

be used interchangeably but mean the same thing (i.e. more beam = more current, rather

than higher energy). Energy is fixed at 100 MeV for the purposes of our study, though 41

and 72 MeV are used in special cases. As a convention, the beam travels along the z axis,

and x, y axes span the face of the circular target.
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Figure 1.9: Current Density for an employed spiral pattern over several pulses, starting
at different angels to ensure uniform coverage azimuthally. This is far more uniform
than the single circle pattern.

1.4 System Overview of IPF Beamline

This section will detail specific characteristics of the IPF Beamline.
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1.4.1 Beam pulse structure

Time Structure

IPF receives macropulses of 100 MeV protons at 120 Hz which is based on zero

crossings of standard 60 Hz AC power from the facility. However, every 6th pulse is missing

due to the operation of the accelerator, so it can also be considered a non-equally-spaced

100 Hz square wave. Each macropulse is approximately 625 µs long and is composed of

5 ns micropulses. These micropulses have very small magnitude variation so their effect

is ignored. For the purposes of this study, we assume the beam structure shown in the

figure 1.11 (which is fairly accurate when beam is running properly). The vertical axis is

the total current in the pulse (volume under the surface in figure 1.5). It is assumed that

during correct operation, there is no variation in energy or current during a macropulse.

Also, the rising and falling edges are considered instantaneous.

Spatial Structure (Beam Profile)

As mentioned in the previous section, the beam profile is best modeled as a 2D

Gaussian, as shown in figure 1.5. Current is the volume under the surface, while the

vertical axis values are current density in uA/cm2. Typically the beam peak current

Ipeak ≈ 5 mA and the beam widths σx ≈ σy = σ = 2.5 mm. Beam profile will refer

to current density delivered from a single unrastered macropulse (figure 1.5). Beam

distribution will refer to Iave, the current averaged over a long time window after the beam

is rastered following a specified raster sequence (figure 1.10).

1.4.2 IPF’s Target and Target Window

IPF’s target area resembles the setup described earlier and illustrated in figure 1.3.

There is stack of disc shaped targets submerged in water for cooling purposes, and they are
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either 2 or 2.5 inches (51 or 64 mm) in diameter, much wider than the beam. The beam

comes from the accelerator, passes through the beam window, and passes through each

target. In each step, it loses energy through the medium it passes through. Once passes

the last target, the protons are significantly slowed down or stopped. A beam-stop located

behind the target stack serves as a barrier that absorbs any remaining protons.

There is a metal beam window made of Inconel that separates the water in IPF

chamber from the vacuum of the beam pipe. It is extremely crucial that this beam

window does not break, or it would spill contaminated water into the beam pipe, resulting

in extremely costly and time-consuming repairs and clean-ups. While the pressure and

temperature differentials induce great stress, heating is the primary concern. The primary

failure mode for the window would be overheating due to water boiling off and resulting in

a thermal runaway.

There is a ring-shaped collimator in front of the beam window as well. The primary

purpose is to absorb excess beam that won’t hit the target, so that it doesn’t continue and

damage either the beam pipe walls or objects behind the target. This particular collimator

is unique because it has an adjustable aperture and is separated into 4 sections, each

outfitted with a current monitor. This provides some diagnostic information about how

much beam is spilling onto each section, indicating if the beam is not centered or if it’s

being rastered incorrectly.

The primary failure modes are target window overheating and collimator over-

current, so they are addressed here. Other possible failure modes are breakage of the beam

window through stress from a pressure differential, and a phenomenon called ratcheting

where the targets swell and fuse together. These effects are not well modeled or understood

so they are ignored for this analysis.
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1.4.3 Sensing

In-line, invasive diagnostic equipment called Harps and Wire Scanners are needed to

measure the beam profile. They are used when beam is at low current and low frequency

(roughly 4 Hz), and cannot be used when beam is in production mode (100 Hz). Therefore

they do not provide real-time measurements. However, the beam typically remains stable

so that these measurements remain accurate despite the change in frequency. Non-invasive

Beam Position and Phase Monitors (BPPMs) cannot detect beam profile, but they measure

beam centroid very accurately and quickly at 1 MHz (625 measurements per 625 µs

macropulse).

There is no measurement of temperature on the beam window. Instead, detailed

simulation studies have been done previously during the design of the beam window

(figures 1.16, 1.17).

1.4.4 Control

Beam profile cannot be automatically controlled online once a run-cycle begins.

Ipeak is set by an operator, while beam width σ is set using a long process of manually

focusing/de-focusing quadrapole magnets and reading measurements from a Harp.

Beam (x, y) position is controlled using steering and raster magnets. Horizontal

and vertical steering magnets keep the beam centered, while raster magnets draw the

concentric circles. Raster magnets have power supplies operated at 4.95 kHz, with amplitude

controlling radius and with fixed phase shift of appoximately 90 degrees. Due to 625 us

and 4.95 kHz, just over 3 circles are drawn on the target per macropulse (figures 1.13)

For simplification, radii are not changed during the macropulse, but right after. This way,

any system transients (figures 1.18, 1.19) have sufficiently decayed. Control of raster

(and steering) is done in open-loop, and fine adjustments are done during the accelerator
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tune-up period. This generally works, since this section of the accelerator is a very well

controlled environment. However work has been done developing monitoring and real-time

feedback control, enabled by the greatly improved equipment which provides faster BPPM

data.

The raster sequence cannot currently be changed online, however changes to raster

controller software could be made to enable this if desired. It would simply replace a

pre-programmed radius sequence in its memory with a sequence from an external source

that determines the best raster sequence in real-time.

1.4.5 Protection

In addition to the control system, a fail-safe protection system of interlocks is used

to turn off beam extremely quickly (approx. 200 µs) when errant conditions are detected.

In theory, we could use this system to deliberately cut some macropulses short and use

that as another way to arrive at an optimal IPF beam. However, this is not what the

protection system was designed for and operating this way would be too risky. We could

also change radii during a macropulse, resulting in patterns like spirals. However, for this

problem we do not address these 2 options and limit ourselves to concentric circles since,

as mentioned before, previous studies indicate these may be better [4], [6].

1.5 System Summary

Ipeak, σ, and raster sequence are the IPF beam parameters that define the IPF beam

and determine the average delivered current Iave and temperature T . These 3 parameters

make up the vector θ chosen to shape these 2 quantities as desired in order to solve the

problem defined in equations 1.4 - 1.6, then they are set by operators (beam profile)

or programmed into the raster controller (raster sequence). The raster sequence has the
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possibility of being modified online, while beam profile cannot be. Table 1.1 lists key

parameters for the IPF beamline.

Table 1.1: Table of key parameters. See chapter 3, equation 3.5 for description of
temperature models and parameters. *Raster sequence not listed here, see figure 1.12

Parameter Type Parameter Symbol Value Unit
Fixed

RepRate F 120 Hz
Macropulse length L 625 µs
Raster frequency f 4950 Hz
Ambient temperature Tambient 22 C
Beam window specific heat
coefficient

α 1.22 ×
106

C
s·µA/mm2

Beam window cooling coeffi-
cient

τ 8.37 s−1

Target Dependent
Target radius - 25 or

32
mm

Collimator radius rlimit 23 or
29

mm

Constraints
Max temp Tlimit 100 C
Max current spill on collima-
tor

Ilimit 0.4 to
2.0

µA

Baseline Beam Parameters
Peak current Ipeak 5 mA
Beam width σ 2.5 mm
Raster sequence R * mm

1.6 Optimization Method Currently Used

As stated before, the goal is for Iave to be well-distributed and maximal within

specified bounds, and without too much current spilling onto the collimator and without

beam window temperature exceeding Tlimit. The baseline IPF beam optimization routine

to pick IPF beam parameters following is educated trial and error using intuition.
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Intuitively, higher Ipeak means more total current on target, but it has higher max

current density so it further risks violating constraints. Lower σ allows more current to be

distributed near edges without spilling too much onto the collimator, but it increases peak

current density so it risks overheating parts of the target. We need small and large radii to

cover the target well. Smaller radii deposit much higher current density per pulse than

larger circles, since they cover less area during a macropulse, and beam “spills” over more

from the opposite side of the circle (figure 1.20).

To simplify the problem, σ is fixed. Then, a number of distinct allowable radii is set,

and a sequence is derived from only these radii in order to make Iave look like a uniform

distribution up to the collimator aperture. For example, for the 2” target, radii are picked

from r1 = 4.6, r2 = 10.4, and r3 = 16.4 mm. Out of 21 total pulses, 3 of them are r1, 7 are

r2, and 11 are r3.

Then to ensure that temperature does not exceed limits, the order is determined by

spacing the smaller radii as far apart as possible, and then Ipeak is reduced if necessary.

Results for the 2” target are depicted in figures 1.12, 1.10, and 1.17. While this

method is effective at utilizing our intuition about the problem and does find fairly good

solutions, it is not rigorous and structured enough to search the entire parameter space for

more optimal solutions.

In this chapter we introduced the problem of beam optimization for isotope produc-

tion, described the relevant components of the IPF beamline, and illustrated important

quantities that describe the goals and constraints of this problem. With this background

information in mind, and with the baseline optimization method as a benchmark, we can

more formally define the problem and scope at hand.
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Figure 1.10: Beam Distribution from baseline raster sequence currently being used.
During each macropulse, 3.1 circles are drawn, so it’s slightly non-radially symmetric.
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Figure 1.11: IPF beam time structure

Figure 1.12: Raster sequence used for 2” target
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Figure 1.13: Beam Distribution from one macropulse rastered with radius 10.4 mm.
Note the overlap; the beam is not perfectly radially symmetric because 3.1 circles are
drawn per macropulse. The overlap occurs at different radial locations so the average
beam distribution (figure 1.10) is more radially symmetric.
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Figure 1.14: the IPF beamline includes steering and raster magnets (for both X and
Y directions) and several BPPMs for measuring beam (x,y) position

Figure 1.15: BPPMs measure beam (x,y) at 1 MHz at various z locations along the
beamline. The right figure shows the time axis as well.
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Figure 1.16: Thermal Simulation heat map for a 3 circle pattern

Figure 1.17: Temperature vs time for 1.2 sec, sampled at the 3 raster radii for a 3 circle
pattern. Temperatures at Node A, B and C are plotted in the graph. Note that point
A (closest to middle, in blue) has the hottest temperature extremes. This is because
smaller raster circles deliver the same amount of beam over a smaller area, increasing
the beam density. Also note that steady state is reached within about 1 second.
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Figure 1.18: Block diagram showing components that control beam (x,y) position on
target. The components with transients are blue.

Figure 1.19: Magnetic field of raster magnets have transients when changing amplitudes.
Here, the raster radius is changed around 0.017 and 0.025 sec, before which, previous
transients have long decayed. This makes control of the raster system straightforward.
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Figure 1.20: A slice of charge density delivered from a single macropulse when rastered
with different radii (i.e. a slice using y = 0 of a graph similar to figure 1.13).The beam
is Gaussian, so the charge density looks Gaussian far from the center at r = 0. For
smaller r, it doesn’t look Gaussian anymore because the effect of beam ”spilling” from
when y doesn’t equal 0.
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Chapter 2

Problem Scope and Formulation

The goal of this project is to improve the method for optimizing IPF beam as defined

in equations 1.4 - 1.6, and to get specific solutions for nominal system parameters and

operating conditions. However, we’ll make two minor changes to simplify the problem.

First, we’ll change the raster frequency f from 4950 to 4800. Having f = 4950 results

in 3.1 circles drawn per macropulse, while f = 4800 results in exactly 3 circles. This

small change makes the problem radially symmetric to improve uniformity and simplify

calculations. (4950 was used previously simply because it was the fastest frequency the

power supply could operate at, and it was still approximately radially symmetric). With

radial symmetry, we can replace (x, y) with r to more concisely describe the problem and

simplify later calculations. With those changes, we get a new form of equations 1.4 -

1.6. The descriptions for each variable is restated here for convenience.

θ∗ = argmax
θ

αItarget(θ) + βf
(
Iave(r; θ)

)
(2.1)

such that Ispill < Ilimit (2.2)

T (r, t; θ) < Tlimit ∀r, t (2.3)
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with

• θ consists of parameters that describe the beam. They consist of Ipeak, σ,R ∈ Rn,

where n is the number of radii in the raster sequence before being repeated.

• Itarget(θ) is the average total current delivered onto the target, parametrized by θ

• Iave(r; θ) is the average current density delivered at radius r, parametrized by θ. This

also referred to as beam distribution and is depicted in figure 1.10.

• f(·) is some measure of uniformity

• α, β are coefficients that weigh the relative importance of total current vs uniformity

• Ispill is the average total current falling on the collimator

• Ilimit is the maximum current that the collimator can take in steady state. It is a

function of the design of the collimator and its cooling system

• T (r, t; θ) is the temperature of the beam window at radius r at time t and parametrized

by θ

• Tlimit is the maximum allowable temperature for the beam window. Typically it is

set as 100 C.

We define two levels of success:

1. Improve on the baseline solutions for nominal system parameters and constraint

conditions.

2. Get solutions modified constraint conditions to show some degree of generalizability.

In particular find good solutions for Tlimit or Ilimit adjusted upwards in case it is

determined that we can operate the beam less conservatively.
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For both, the optimization algorithm is allowed to use the baseline sequence as an

initial guess since it is available.

The problem of determining the optimal distribution (i.e. the α
β

ratio) is a question

of physics, so it is not the main goal here. We’re focusing on finding a method that can

solve for beam parameters to produce any reasonable current distribution. In concept,

there are model-free optimization methods that could bypass this issue(i.e. solve the

problem from equations 1.1 - 1.3). These methods include Extremum Seeking and

Reinforcement Learning (both discussed in Chapter 4). However, they are both iterative,

and require measurements of cost J . As mentioned before, the process of measuring the

isotope production rate after a run-cycle is on the scale of days or weeks, so these methods

would take extremely long to test. In addition, IPF has production quotas so only very

limited experimentation can be done. For these reasons we solve the problem in equations

2.1 - 2.3.

A bonus would be to achieve real-time feedback control of the beam distribution.

This means accounting for disturbances in the system and being able to modify the raster

sequence online. Major disturbances are unlikely to happen so this is not a high priority.

We now have a mathematical description of the problem and some specific measures

of success. In the next chapter, we’ll describe models used to describe the relationships

between θ and the above quantities in the optimization problem.
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Chapter 3

Models

This chapter describes how to compute the terms needed to calculate the quantities

in our optimization problem we defined in equations 2.1 - 2.3. As mentioned earlier, going

from Iave(r; θ) to Isotope Production rate P (θ) is not well-modeled, so it is not attempted

here. The general understanding is that more total current that is better distributed is

advantageous, which is reflected in equation 2.1. Recall that the parameter vector θ is

composed of Ipeak, σ, and the raster sequence R.

3.1 Beam distribution Iave(r; θ)

The beam profile model is a 2D Gaussian centered wherever the raster magnets are

currently deflecting the beam.

I(x, y, t; Ipeak, σ, µ) =
Ipeak

2πσ2
exp

[
− (x− µx)2 + (y − µy)2

2σ2

]
(3.1)

with µx = r cos(2πft), µy = r sin(2πft) (3.2)

If we integrate this equation over one macropulse and look at one slice where y = 0

and rename x to r, we get the charge density accumulated during that macropulse (several
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steps skipped)

dQimp(r; Ipeak, σ,R) =
Ipeak

2πσ2

∫ L=625µs

t=0

exp

[
− r2 − 2rR(imp) cos(2πft) +R(imp)

2σ2

]
dt

(3.3)

with

• index of macropulse in sequence imp

• raster sequence R ∈ Rn, n =number of macropulses in a sequence

To get Iave(r) we simply take the sum of equation 3.3 over the raster sequence

and divide the elapsed time.

Iave(r; Ipeak, σ,R) =
1

∆t

nmp∑
imp=1

dQimp(r; Ipeak, σ,R) (3.4)

with

• number of macropulses in sequence nmp

• time ∆t = 6
5

1
F
nmp (since 1 in 6 pulses is missing), with F = 120 Hz RepRate

Once Iave(r) is obtained, one can approximate Itarget by revolving Iave(r) for r < rlimit

about the y-axis in order to generate a volume. Then, Ispill = Itotal − Itarget, where

Itotal = Ipeak ∗ L ∗ F ∗ 5
6

(multiplying Ipeak by its duty cycle).

3.2 Temperature T (r, t; θ)

We simulate the temperature of the window on the water-cooled side. The tem-

perature model assumes constant beam energy and current during the macropulse, a flat
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target window with no thickness, and no radial conduction. Heat enters from the beam on

one side and exits through the cooling water on the other side. It follows Newton’s law of

cooling with conduction coefficient τ , and heats up with specific heat α

∂T (r, t)

∂t
= αI(r, t)− τ(T (r, t)− Tambient) (3.5)

with α, τ empirically determined based on existing temperature simulation results figure

1.17.

Note that the model for I(r, t) is linear in Ipeak, and the temperature model is

also affine in I(r, t) (linear but offset by Tambient). This means that T (r, t) and Iave, the

quantities that show up in our constraints, are affine in Ipeak. If a solution θ violates a

constraint, we can easily scale Ipeak down to the exact value needed to meet the constraint.

For example, suppose with some optimization method the solution θ′ has I ′peak, which

results in maximum temperature Tmax. To bring Tmax to the constraint boundary Tlimit we

compute

I∗peak = I ′peak ×
Tlimit − Tambient

Tmax − Tambient

(3.6)

with σ∗ = σ′,R∗ = R′.

Ispill is linear in Ipeak so a similar procedure can be done to bring it to the constraint

boundary.
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3.3 Simplifications

Iave is only needed after a sufficiently long time interval, while T is needed all the

time to ensure constraints are never violated. However, it will never get hotter than at

the end of a macropulse because it will immediately begin cooling. We assume cooling

during a macropulse is negligible since it’s so short and heating typically has a much larger

effect. Also, since the change in temperature is linear with current, we can add the current

during a macropulse all at once, at the end of the macropulse. We can discretize the time

in our system on two levels: first within the a macropulse index imp in order to get charge

density delivered per macropulse dQimp(r; Ipeak, σ,R) (equation 3.3), and then at the end

of each macropulse to get the temperature at the end of that macropulse Tend(r, imp). We

also need to track the temperature at the beginning of each pulse.

To get a steady state result for temperature, we run the simulation for 100

macropulses (1 sec), after which steady state has been approximately achieved. Steady

state for average current will be achieved after one whole raster sequence has been finished.

In summary, we use equation 3.7 (time discretization of equation 3.3) and

procedure in equations 3.8 - 3.11, along with averaging over the whole raster sequence

(equation 3.4) to get Iave(r), and Tend(r, imp). Ispill and Itarget can be obtained from Iave(r)

as described earlier. All quantities needed to evaluate the cost and constraints are now

computed.

dQ(r, imp; Ipeak, σ,R(imp)) =
Ipeak

2πσ2

625us/∆t∑
it=0

exp

[
− r2 − 2rR(imp) cos(2πfit∆t) +R(imp)

2σ2

]
∆t

(3.7)

• time interval ∆t
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• index of macropulse in sequence imp

• raster sequence R(i) ∈ Rn, n =number of macropulses in a sequence

Tbeg(r, imp = 0) = Tambient ∀r (3.8)

for imp = 0→ end : (3.9)

Tend(r, imp) = Tbeg(r, i) + αdQ(r, imp) (3.10)

Tbeg(r, imp + 1) = Tambient +
(
Tend(r, imp)− Tambient

)
exp

[
tbeg(imp + 1)− tend(imp)

τ

]
(3.11)
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Chapter 4

Methods Overview

In chapter 2 we’ve defined the optimization problem with cost and constraints

related to Iave(r) and T (r, t), and in chapter 3 we’ve described how those 2 quantities are

computed as a function of θ. In this chapter, we discuss several approaches for solving

the optimization. Some of these approaches were extensively investigated and have results

shown in following chapters, while others are proposed for future work.

4.1 Properties of the Optimization Problem

We first discuss some properties of the problem at hand (equations 2.1 - 2.3).

• Parameter vector θ consists of beam profile parameters Ipeak and σ, as well as a raster

sequence R ∈ Rn, where n is the number of circles in the sequence before it’s repeated

again. We can choose n to be smaller to reduce the dimension of the problem to

make it easier to solve, but this may result in a less optimal solution. The baseline

sequence in 21 long, and for our investigation we keep it approximately this long.

• This a continuous space problem, i.e. all quantities θ, J(θ) are in R or Rn.
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• The cost and constraints are extremely nonlinear in the parameters. It doesn’t

fit in the category of problems for which most structured approaches like convex

optimization will work. There’s no way to know that the optimum has been achieved.

The cost is extremely difficult to visualize and there’s no guarantees or intuition

about the shape. We do notice that Iave(r) is independent of the order if radii in θ,

but T (r, t) is highly dependent on the order.

These properties make the problem very difficult to solve accurately and well. Due

to its complexity, we expect that it will need a good deal of human intervention through

trial and error and manual tuning. We’ll favor simple approaches who’s mechanism is easy

to understand and visualize, so that we can guide them to good solutions.

Another issue is the question of solving this problem offline ahead of time, or online

while isotopes are being produced, in a scheme where the optimization algorithm serves

as a controller. Our problem is deterministic, the cost is static, and the environment is

very carefully regulated to operate at the nominal specified behavior. It is well-modeled,

and, in fact, simulation is required in order to compute the cost that we defined in 2.1

- 2.3 (except from target foil irradiation analysis as used in [6], but this process is only

approximate and takes far too long to for use in an iterative optimization procedure).

Therefore we’re losing very little from simulating the cost and running the optimization

offline. We will solve the problem to get θ∗, then use that as a setpoint.

4.2 Recasting the Optimization Problem, Designing

a new Cost

Equations 2.1 - 2.3 best communicate the optimization intent, but it is very

difficult to solve this problem. We eliminate the constraints and add them as components

to the objective cost J(θ), and now solve a minimization problem defined using equations
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4.1 - 4.8. In the figures in the results section, we refer to (the negative of) the objective of

the first problem form (equation 2.1) as the true cost and equation 4.1 as design cost.

θ∗ = argmin
θ

J(X(θ);ψ, φ) (4.1)

with

J(θ) = −α1Itarget (4.2)

−α2

[ ∑
r<rlimit

Iave(r; θ)
]

(area under curve) (4.3)

−α3Iave(0; θ) (4.4)

−α4Iave(rlimit; θ) (4.5)

+α5

[
max
r<rlimit

(Iave(r; θ))− Iave(0; θ)

]
(maximum deviation) (4.6)

+β1

[
g

(
γ1

[
Ispill − (Ilimit − Ioffset)

])]
(violation of aperture constraint) (4.7)

+β2

[
g

(
γ2

[∑
r,t

(
T (r, t; θ)− (Tlimit − Toffset)

)])]
(violation of temperature constraint)

(4.8)

State X(r, t; θ) = [Iave(r; θ);T (r, t; θ)]

Constraints ψ :, rlimit, Ilimit, Tlimit

Cost parameters φ : αi, βi, γi, rlimit, Ilimit offset, Tlimit offset

Barrier functions g(·) e.g. x4, for x > 0 or ex
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Equations 4.2 and 4.3 handle the maximal current goal, while equations 4.4

- 4.6 handle the uniformity goal. Equation 4.7 and 4.8 account for the constraints.

Barrier functions g(·) are chosen to smoothly but severely increase near constraints Ilimit or

Tlimit, and cost parameters φ shape these functions as well as the overall contribution of

each cost component. In order to achieve meaningful and valid solutions, we’ll need to play

around the with cost parameters.

4.3 Solving for Cost Minimization J(θ)

For solving the minimization problem equation 4.1 directly, two simple gradient-

based methods were proposed. They have been both been used extensively for other

complicated high-dimensional problems. Note on terminology: both these methods are

iterative methods which have parameters (like a, k, α, ω) that are used to find the optimal

parameters θ (Ipeak, σ, R) for our system. The parameters of the algorithm will be referred

to as hyperparameters to avoid confusion with parameters of our problem θ.

4.3.1 Extremum Seeking

Extremum-seeking (ES) is a model-free gradient-based method that is a very powerful

tool for optimization and/or control of poorly-modeled, noisy systems, or time-varying

systems. It has many variants, some of which will be discussed here. It has used extensively

for both offline and real-time optimization in a huge number of industrial applications,

including for tuning components of particle accelerators ( [7], [8], [9]), other physics problems

like laser-pulse shaping( [10]), and maximizing energy generation of wind turbines and

photovoltaic microconverters [11].
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Concept

An introduction to ES is given in [12]. Given some cost function J(θ), the basic

idea is to build a dynamic system with perturbations for θ that responds J(θ) in such a

way that θ is driven towards the unknown extrema of J(θ) over time.

Full details are in [12], but the following summarizes an illustrative case of a

single input system with quadratic cost. Consider the system in figure 4.1. The cost

function under consideration is named f(θ). The integrator, multiplicative and additive

perturbations are the other part of the system. Defining error as θ̃ = θ̂ − θ∗, we find that

the average system follows

∂θ̃ave
∂t

=
kf ”a2

2
θ̃ave (4.9)

If kf ” is negative, this system is stable and error goes to zero. Averaging theory

guarantees that for sufficiently large ω, if the initial estimate θ̂(0) is within some region of

convergence of θ∗, then θ̂ will converge to a small neighborhood of θ∗ [13]. The neighborhood

(i.e. error bound) is smaller for larger ω and smaller a.

A more multivariable version(also from [12]),which we’ll refer to as MV ES, is shown

in figure 4.2, with cost Q : Rn → R, K diagonal with elements ki, and

S(t) =
[

a1 sin(ω1t) . . . an sin(ωnt)
]T

(4.10)

M(t) =
[ 2

a1

sin(ω1t) . . .
2

an
sin(ωnt)

]T
(4.11)

It would be implemented as a difference equation with a small time discretization

∆t as follows:
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Figure 4.1: (copied from [12]) Block diagram for a simple single input cost map f(·).
θ̂ is the current estimate of θ∗, and it is perturbed by signal a sin(ωt).

Figure 4.2: (copied from [12]) Block diagram for a multi-input cost map Q(·). Ĝ is
the current gradient estimate, θ̂ is the current estimate of θ∗, and it is perturbed by
signal S(t).

θi(n+ 1) = θi(n) +
2ki∆t

ai
sin(ωin∆t)J

(
θi(n) + ai sin(ωin∆t)

)
(4.12)

∀i, with a, ω, k ∈ Rn (4.13)

With ωi chosen so that ωi

ωj
is rational (i.e. none are a multiple of any other) and

ωi + ωj 6= ωk, if the cost map is locally quadratic, then the average system is
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∂θ̃ave
∂t

= KHθ̃ave,where H is the Hessian of the map at θ∗ (4.14)

If KH is negative, this system is stable. By averaging theory, for high enough ω

and with initial estimate θ̂(0) within some region of convergence to θ∗, θ̂ converges to a

neighborhood around θ∗. There is also a Newton version of this algorithm whose convergence

rate does not depend on the map’s Hessian [12], [14]. Both of these multivariable schemes

were applied and showed success in [11].

Another scheme, which we’ll refer to as Bounded ES, was developed in [15]. It is

based on the system in figure 4.3. The resulting average system follows

∂θ̄i
∂t

= −kiα
2
i

2

∂J

∂θ̄i
, ∀i (4.15)

This means that for the average system, the parameter vector descends the cost

function in the direction of the gradient at a speed proportional to the magnitude of the

gradient. As gradient approaches zero, the parameter updates approach zero. Like the

previous two schemes, if the initial guess is within some region of convergence of the local

minimum θ∗ and sufficiently high ω is used, the system will converge within a neighborhood

of θ∗ .

The update equations are implemented as

θi(n+ 1) = θi(n) + ∆t
√
αiωi cos

(
ωin∆t+ kiJ(θi(n))

)
(4.16)

α, ω, k ∈ Rn (4.17)
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Figure 4.3: (copied from [15]) Block diagram for Bounded ES scheme for cost J(·). This
shows the updates for a single element i of the parameter vector. The cost appearing in
the cosine term ensures bounded update rates.

An illustrative 2D case is shown in figure 4.4. This scheme ensures a constant

magnitude of update, while only the direction changes. This is useful in some applications

where, when implemented as a controller on a physical system, there are limits to how fast

the state can change, such as for a moving vehicle [15]. It has been successfully used on the

particle accelerator at LANSCE on two occasions for beam-tuning. In [7], it simultaneously

tuned a 22 element parameter vector in order to tune magnets that focus the beam in

the early stage of the LANSCE accelerator. In [8], it was used to tune a 2 element vector

of phase offsets that affect delivered beam intensity (also for this accelerator). In both

cases, the cost function is very complex and poorly modeled due to hysteresis of magnets

and factors such as temperature causing the lengthening or shortening wires, which causes

uncertain system delays.

Note the difference in average systems for MV ES and Bounded ES (equations

4.14,4.15). For stability of MV ES, the sign of K should be opposite of the sign of H.

For stability of the Bounded ES system, the sign of ki should be positive if searching

for a minimum and negative if searching for a maximum. The fact that the sign of this

hyperparameter doesn’t depend on the cost J is advantageous if J is complicated and

poorly understood (as in our case).

There are schemes which work for general nonlinear systems with internal dynamics,
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Figure 4.4: (copied from [15]) Illustration of Bounded ES for a 2D parameter vector
in with quadratic cost. While the magnitude of update is constant, the turning rate is
higher when moving in the wrong direction, and slower when in the correct direction.
On average, the estimate approached the minimum at (0, 0).

such as the one analyzed in [16]. These are interpreted as online implementations which

has ES acting as an adaptive controller, such as [9], [10]. In that case, the cost is a function

of state x, which has dynamics ẋ = f
(
x, α(x, θ)

)
, where parameters θ parametrize control

inputs to that system. It is in this case that ES is notably powerful as an adaptive controller.

When ES is applied to our optimization problem, J(θ) is a static map where θ is simply an

argument to the cost function rather than a control input to a dynamic system. Therefore,

we restrict our discussion to the schemes illustrated above which are for static maps.

Several other schemes have been proposed and used, including versions with stochas-

tic rather than periodic noise ( [17]) and discrete-time versions with both periodic ( [18] and

used in [9], [10]) and stochastic ( [19]) perturbations. Stochastic perturbations are useful

in cases where periodic perturbations are undesirable or impossible, such as in certain

biological processes. This is not an issue here. However, the randomness of perturbation

may be preferred to the periodic perturbation in the MV ES case in high-dimensional
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systems (the MV ES cases relies on orthogonality of between elements, i.e., ωi should

have a good spread without any harmonics overlapping). In general, these versions require

similar assumptions on the system and give similar guarantees to convergence within a

neighborhood of a local minima.

Summary of ES

Many ES methods exist which are proven to converge to a neighborhood of a local

extrema when the initial guess is within some region of convergence, if the parameters

of the ES system are chosen wisely. This means ω must be high enough (for the true

system to match the average system) and k must be of the correct sign (for stability of

the average system in MV ES and to travel in the correct direction for Bounded ES).

The hyperparameter a(or α in the Bounded ES case) is another parameter that affects

convergence rate and the size of the neighborhood in which convergence is guaranteed.

This method only requires computation of the cost J(θ) at each step, and the algorithm

does not need knowledge of the analytical form of J(θ) or its gradient.

Since our cost function has may have many unknown local minima, and the region of

convergence for each one is qualitative rather than exactly known, no form of ES guarantees

a global solution from an arbitrary initial guess. However it may be useful for finding local

solutions that are still significantly better than the baseline.

4.3.2 Gradient Descent

Gradient Descent is a model-based method for optimization, used in a huge range of

applications, perhaps most notably for for training artificial neural networks for classification

and regression problems [20]. Its applications also include finding parameters for adaptive

filters like LMS [21]. An application that doesn’t involve fitting model parameters to data

is error-minimization for GPS algorithms [22], but many more exist for other physical
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problems.

Concept

The goal of Gradient Descent, like ES, is to find the minimum of a cost function.

However, in this case the analytic form of the the cost function in terms of the parameters

to be optimized is assumed to be known.

We’ll refer to the most basic form of gradient descent as Steepest Descent. Starting

at an initial guess θ̂(0), it evaluates the gradient at that point, ∇θJ(θ). Then it takes a

step in that direction, with magnitude scaled by a parameter α. The update equation is

θk+1 = θk − α(∇θJ(θk)), α ∈ Rn (4.18)

For J with Hessian H with maximum eigenvalue λmax, if α < 2
λmax

, Gradient Descent

will converge within a neighborhood of stationary point where ∇θJ = 0 [21]. Once the

neighborhood of the minimum is reached, one may reduce α to shrink the neighborhood

of convergence. The region of convergence for this minimum is the “bowl” around the

minimum, up until where ∇θJ 6= 0.

One issue of Steepest Descent is convergence rate, for example when the cost function

has highly elongated level sets. Only using 1st order information at only θk may not be

enough. This may be solved by Newton’s method, which also uses the Hessian H to

determine the step. This works well if the cost function is quadratic or near quadratic.

θk+1 = θk + α[H(θk)]
−1(∇θJ(θk)), H ∈ Rn×n, typically α = 1 (4.19)

Other more computationally efficient ways to speed up learning without resorting to
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computing the Hessian and its inverse include adaptively changing components of step size

α [23], [24]. For our problem, convergence to the most optimal point is the main concern

rather than speed so those methods aren’t employed.

A bigger concern for us is being trapped in local minima. One possible remedy for

this (which also may speed up convergence) is using “momentum” [20], as implemented

below. The size of the step depends on both the gradient and the size of the previous step.

θk+1 = θk − (α(∇θJ)k + β∆θk), α, β ∈ Rn (4.20)

Others variants of Gradient Descent used for fitting parameters to data in statistical

models include Stochastic Gradient Descent and Batch Gradient Descent [20]. Those

are useful when loss is defined with respect to a model fitting error (like Mean Squared

Error), where there are multiple samples of observations X and outputs Y for a single set

of parameter values θk that can be used to compute the objective. Here, only one J is

defined by one θ, so those methods are not applicable for solving this problem as defined

in equation 4.1.

4.3.3 Summary: ES versus Gradient Descent

Both methods have been proven useful in many applications for optimization of very

complex, high dimensional cost functions. ES is model-free and requires design of several

parameters a, k, ω to find the optimum, while Gradient Descent requires α (and possibly β

if using momentum). Gradient Descent evaluates the exact gradient of the cost function to

make a step. Both methods guarantee convergence to a neighborhood of local minima if

the initial guess is within some region of convergence. The exact region of convergence is

not quantitatively known for ES, but is well understood for Gradient Descent.
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4.4 Alternate Approaches

Two other methods were considered for solving equation 4.1: using genetic al-

gorithms, and casting the problem as a optimal control problem and solving it with a

reinforcement learning method. Genetic Algorithms were not attempted, but they are

briefly discussed here. A particular reinforcement learning method was attempted and the

problem setup is discussed here as well.

4.4.1 Genetic Algorithms

Genetic Algorithms are non-gradient based methods for solving optimization and

search problems [25]. They have been particularly useful in discrete computational problems

such as scheduling systems [26], but have also been useful in engineering optimization

problems, such as design of turbine blades in a jet engine [27].

A genetic algorithm is based on the evolutionary processes of natural selection,

crossover of traits, and mutations. Rather than tracking a single candidate solution, it

keeps track of a population of solutions in each step. To initialize the algorithm, a group

of candidate solutions is encoded in some representation. During each iteration, each

candidate is evaluated for “fitness” to the objective. A subset of them are selected for the

next iteration. Then crossover step occurs, which blends traits from this subset to create

successors. Occasionally, mutations are introduced for increased diversity. This group of

successors is used in next iteration, and iterations continue until performance goals are

reached or changes are too small.

Compared to our methods above, genetic algorithms have some advantages. They

are model-free and don’t make any assumptions about the cost function other than that an

optimum exists. The cost function can be extremely non-smooth. Constraints are easily

handled by simply not allowing them to exist in the population. Since there is population
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rather than a single point, there is less chance being trapped in local minima, and the

parameter space can be more completely explored. If initialized well and the process of

crossover and mutation are done wisely, it can find a fairly global optimum.

The main disadvantages compared to ES and Gradient Descent are in its complexity

to understand, implement, and tune. It is inherently a stochastic method and there are no

convergence guarantees to even local minima. The choice of selection and crossover criteria

depend strongly on the specific problem and require good domain knowledge. For these

reasons this method was not pursued.

4.4.2 Casting as an MDP, solving with Reinforcement Learning

For either the true cost J(θ) or curve-fitting loss l(θ), we can directly solve the

respective minimization problems for θ∗ = [I∗peak, σ
∗,R ∈ Rn], with n being the number of

radii in the raster sequence before it repeats again. This is an extremely high dimensional

space if we want n to be large, which would allow for more optimal solutions. The baseline

sequence used right now has n = 21.

An alternative is to notice that we could frame the problem as a discrete time Markov

Decision Process (MDP) whose accumulated stage cost over infinite time is either true

cost J(θ). An MDP requires a state space, action space, stage cost, and transition model

that takes xt to xt+1. We can consider Ipeak, σ as part of the transition model and define

each action at each time t to be the next raster radius R ∈ R. Then solving the MDP cost

minimization will result in a policy π(x) that maps from each state X(r) = [Iave(r), T (r)]

to a radius R to draw next. The MDP cost minimization problem is more fully defined

in equation 4.21 [28], and solving it means solving for π(x) ∀x ∈ X . To retrieve raster

sequence, we start at an initial state and run the policy, recording the actions that it took.

47



J∗ = min Jπ(x) =

[ ∞∑
t=0

γtg
(
xt, π(xt)

)
|xo = x

]
∀x ∈ X (4.21)

with

• xt ∈ X (states, i.e. average current and temperature at beginning of next pulse

X(r) = [Iave(r);Tbeg(r)])

• π(xt) : X → U policy mapping states to actions, i.e. raster radius R ∈ R

• g(x, u) : stage cost at each state x and performing action u

• γ : discount factor (not the same γ as in eqs 4.7,4.8, and usually close to 1)

Dynamic Programming would produce a globally optimal solution. However, we

notice that our problem has a continuous state space X(r) and continuous action space R,

while Dynamic Programming methods like Policy or Value Iteration work for discrete state

and action spaces. In fact, the state space is actually infinite dimensional since Iave(r) and

Tbeg(r) are functions. We would select a discretization for r to define the dimensions of

our state space, and discretizations for values that each of these states could take. For

this problem to be remotely accurate, the memory and computational requirements would

be far too high for Dynamic Programming to be feasible. A better approach would be

methods for continuous state and action spaces. Suitable Reinforcement Learning methods

are Policy Gradient methods such as DDPG, REINFORCE for continuous state and

action spaces [29], [30]. Those two methods use artificial neural networks to represent the

policy π. They have shown success in high dimensional state and action spaces simulation

environments such as OpenAIgym and Mujoco [31], [32]. We would still need to define

discretization for radial positions r, and our state would be [Iave(r), Tbeg(r)] at all of these

positions.
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Here we have a much smaller “action space” to search over, R instead of Rn. This

could potentially be an easier problem to solve. Also, we would arrive at a policy rather

than a single answer, allowing for closed-loop control.

However, the there’s now an enormous state space that was not relevant before. We

would need to solve this for all the relevant states that we may visit. It’s not immediately

clear whether solving an MDP will be easier than solving the original problem. Other

shortcomings are:

• Parameters in the optimization: Neither Ipeak nor σ can be solved in the optimization.

One can run the algorithm multiple times with different Ipeak, σ combinations to get

optimal R∗, then compare them afterwards.

• Accuracy: Iave(r) would need be tracked as a filter instead of a moving window

average in order to preserve the Markov property, so this would introduce some

modeling error.

• Reward/Cost shaping: We need to define the cost/reward per state that produce

the desired behavior. It may be more difficult shape these functions than the ones

listed before in equation 4.1. We also need to define our initial states and length of

episode (i.e. time-horizon) appropriately.

• Convergence: Solving this problem using DDPG or REINFORCE involves training a

neural network to represent a policy which maps states to actions. Inherently there is

no convergence guarantee here. It depends on many design choices such as network

architecture, learning rate for the networks, and batch size for training. It will be

harder evaluate performance and tune these hyperparameters.

• Policy Initialization: ES, Gradient Descent, and genetic algorithms have a straightfor-

ward way to start the optimization algorithm with a good guess. Here, we would need
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to initialize an entire policy function. Imitation Learning methods like GAIL [33]

exist to initialize policies, but this is a whole task in itself. Without initialization,

convergence is even more difficult.

Using REINFORCE was attempted (chosen over DDPG to ensure the solution was

unbiased), but due to the difficulties above it was not further pursued.

4.5 An Easier Sub-Problem

The problem defined in equations 2.1 - 2.3 and reformulated in equation 4.1

is very difficult because of the complex constraint and cost functions. In particular, the

temperature constraint is very difficult since it strongly depends on the order of circles

drawn.

With our knowledge about the problem, we can devise a multi-step approach. First,

we can use a structured optimization approach to find a raster sequence R and beam

width σ for the objective of achieving a desired “unit height” beam distribution Iave(r),

without considering the temperature. Then, we can manually reorder the raster sequence

through trial and error for minimal temperature extremes. This would mean placing the

small circles evenly spaced as possible within the sequence, since they deposit the highest

beam power density and produce the most severe temperature variations. Then we would

increase Ipeak until either the constraints on Ispill or Tlimit is violated.

This approach would not have an optimality guarantee since we are prescribing the

desired beam distribution. It would need some more trial and error for post-processing. It

could still end up with better results, since it is an easier cost to solve for the structured

optimization algorithm. Another benefit is that cost-shaping is easier: we determine a

desired shape such as a uniform distribution (figure 1.4), rather than need to tune the

weights of many different cost parameters in equations 4.2 - 4.8.

50



There are two proposed methods for achieving a specified beam distribution Iave(r):

Gradient Descent and Expectation Maximization. They were not extensively investigated

but could be the subject of future work.

4.5.1 Gradient Descent

Another way we can use Gradient Descent is to minimize the a “curve-fitting” loss

such as squared error, instead of the one in equation 4.1.

l(θ) =
N∑
ri

(
X(ri, θ)−X∗(ri)

)2
(4.22)

θ∗ = argmin
θ

l(θ) (4.23)

where X(r; θ) = Iave(r; θ), ri are different sample points, and N is the number of

sample points. Note that since each θ can generate different datasets to lead to different

l(θ), we can use techniques like Stochastic Gradient Descent and its variants which may

have better convergence properties. It’s not clear whether this cost is easier to minimize

than the original one.

4.5.2 Expectation Maximization

Expectation Maximization (EM) [34] is a statistical algorithm for Maximum Like-

lihood Estimation (MLE) for parameters of a statistical model when the model depends

on unobserved variables. Broadly speaking, it alternates between an expectation (E) step

where the expected log-likelihood is computed, followed by a maximization (M) step which

finds the parameters that maximize this expectation.

A popular use case is to learn the parameters of a mixture model for a probability
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distribution, which is a mixture of multiple components, each with a different distribution

and relative weight. In the case of a mixture of Gaussians, the E and M steps have closed

forms so that implementation is fairly straightforward [35]. The parameters include the

mean, covariance, and relative weight of each Gaussian. The user only needs to determine

the number of components to use and how to initialize them. The algorithm finds the

parameters that best match the observed dataset.

For our problem, we can generate a dataset whose probability distribution has

the same shape as the desired Iave(r). The components we have available for matching

the dataset would be in the form of equation 3.3, where R(imp), imp = 1, 2, . . . k are

the parameters being learned for k components. The E and M steps would be derived

analytically or done numerically.

Alternately, we can try in 2D. Generate a desired distribution Iave(x, y) to be

represented as the mixture of many Gaussians. Use the same E and M steps as for a

Gaussian mixture model, except that σ must be the same across all components. Once

the algorithm converges, inspect the locations of the Gaussians µi = (xi, yi) to figure out

which radii to choose and construct a raster sequence from those results. A downside of

this method is that the learned parameters have 2 degrees of freedom when they really

should have 1 (the radius from center). We’d need to hope that the results have µ arranged

in concentric circles so that it can be achieved by our raster system.

4.6 Summary

We desire a method to solve equation 4.1 as optimally as possible. The optimization

will be done offline since the problem is well-modeled and the system is well-controlled with

few disturbances. Since the problem has such high dimension with such a complex objective

function, we expect that finding a global solution will be very difficult. Our approach will

52



need lots of fine tuning and human intervention, so we desire simple algorithms that are

predictable and straightforward to tune. ES and Gradient Descent are the two classes of

algorithms considered. Other methods were discussed, but they do not make up the main

results.

Also note that since this will be computed offline rather than implemented as an

online controller, after a simulation of either of these methods with certain hyperparameters,

we have access to the entire trajectory of the optimization. We can take the parameter

values wherever in the optimization that is optimal, rather than only at the end. Our goal

is to pass through the lowest minima we can, without requiring that it is where we end up

in the end. Using momentum Gradient Descent and Extremum Seeking will ensure that

plenty of exploration will be done in search of these minima.
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Chapter 5

Methods Used

This chapter describes in better detail how methods were used to solve this specific

problem.

5.1 Implementation

Gradient Descent and ES for directly minimizing design cost J(θ) are the two

methods that were extensively investigated. As mentioned before, all optimization was

done offline through simulation. Python was chosen to implement these algorithms and

compute all quantities needed. In particular, Gradient Descent required computing gradients

at every step. Since we’re using a model and simulating the system, we have the analytic

form of the gradient. It is very difficult to write out by hand, and it would change with

different discretizations of the problem. PyTorch, a Python package geared for machine

learning applications, was used to compute gradients more easily. It tracks operations

done on the parameter vector θ in order to compute J , so that the gradient can be easily

computed. Another Python package or symbolic math tool with similar functionality could

be used instead.
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5.2 Procedure

There were two main challenges in getting meaningful results. First, one must

choose the cost hyperparameters for a cost that, when minimized, result in a desired beam

distribution that satisfies the constraints. This means determining the trade off between

uniformity and total current delivered, as well as determining the shape of barrier functions

to prevent violation of constraints. The second challenge was to find hyperparameters for

the particular method that succeed at minimizing the cost that’s chosen. This usually

meant reducing the sensitivity to the cost to ensure smaller steps were taken. The goals

of correct cost-shaping and convergence were often at odds. Intuitive cost-shaping would

require very severe barrier functions. This would make the cost landscape more extreme so

that convergence is more difficult. A structured procedure was used to achieve results:

1. Define the goal: determine the desired shape for Iave(r) (i.e. prioritization of maximum

current vs maximum uniformity).

2. Define inputs: cost parameters, hyperparameters, and an initial guess.

3. Run the optimization to achieve lowest design cost. During each step, save the

design cost and its components. Also, compute the true cost (equation 2.1) of the

associated valid solution, obtained by scaling Ipeak according to equation 3.6 in

order to not violate constraints.

4. At the end of the optimization, select the parameters for the valid solution with lowest

true cost, and inspect the resulting total current, uniformity, and Iave(r) (figure 5.2).

If they are good enough, the process is complete.

5. If results need improvement, inspect the graphs for Iave(r) and T (r, t), as well as

the optimization trajectory. Determine whether to adjust hyperparameters for cost

shaping or convergence. For example, if after scaling, the temperature is at the limit
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and Ispill isn’t near Ilimit, then we know that temperature was the limiting quantity.

The cost should increase the penalty of temperature to move it away from that limit

and utilize the “budget” on Ispill.

As an example, the graphs and tables in figures 5.1 - 5.5, table 5.1 were produced

for one particular trial with Gradient Descent. Also note it was decided to use raster

sequences of length 20 instead of 21. This would keep our initial guess close to the baseline.

Also, since it’s a multiple of 5, the 1/6 missing pulses will always occurs in the same place

in the sequence for consistency.

Figure 5.1: Raster sequence determined from one trial of Gradient Descent. For
comparison, it also shows the baseline and initial guess used for this run. Best design
cost in is shown in red but is covered by best true cost. Notice that the sequence hasn’t
changed much, other than the small circles at the end being slightly larger.
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Figure 5.2: Iave(r) at the end of the trial. The red dashed line shows the result that had
the lowest design cost, an invalid solution because of a constraint violation. The black
line shows the best valid solution that was ever encountered during the optimization.
Recall that Itarget, the amount of current in uA delivered, is the volume obtained by
rotating this graph around the y axis. Here we see that there’s more total current for
our solution than in the baseline, without reducing coverage at the center of the target
(r = 0).

Figure 5.3: The hottest temperature on the target as a function of time. The points
plotted are actually only measured at the end (hottest part) of each macropulse. We
see that despite having much more current (as shown in figure 5.2), our solution (in
black) does not violate the temperature constraint of 100 C.
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Figure 5.4: The cost trajectories as a function of iteration number during the al-
gorithm. Total design cost (J) is plotting along with the component due to current,
Ilimit constraint, Tlimit constraint, and true cost. The corresponding components for the
baseline parameters are plotted for comparison. In this graph, we see that both design
(thick red) and true cost(thick black) drift lower than their corresponding baselines,
indicating good convergence behavior. At the end they drift slightly back up. This may
be from a hard constraint on parameters, preventing gradient descent from stepping in
the correct direction.

Table 5.1: Table of outputs to determine how successful this run was. The final result
is the last row. We see that this solution produced had higher Ipeak and put more
current on the target without violating the constraints (1.9 uA and 100 C). Tmax is at
the cosntraint, and is the limiter for Ipeak, while Ispill still has some margin. We may get
a better solution by increasing the penalty of temperature so that a “cooler” solution is
found, and Ipeak can be scaled higher for more total current.
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Figure 5.5: Parameter trajectories as a function of iteration number. Ipeak and σ
have markers, while the other curves are raster radii in the sequence. Here we see that
most parameters changed smoothly, but Ipeak stopped abruptly when it ran into a hard
boundary that was defined for it.
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Chapter 6

Results

This chapter illustrates the results obtained using specific methods described in the

previous chapter.

As a reminder, the goals were to find, for different trade-offs of total current and

uniformity, improved solutions for both the nominal system and one with different constraint

values.

6.1 Comparison of Methods

Of the methods discussed in chapter 4, Bounded ES and plain Gradient Descent were

the ones that yielded good results. MV ES and another discrete-time version in [18], using

the design guidelines in described in [9], were attempted. Despite extensive tuning of the

hyperparameters, both of these methods very quickly diverged within a few steps. The cost

and high dimension of this problem proved too difficult for these methods, which require the

function to be locally quadratic to guarantee local convergence. Newton-based ES wasn’t

investigated since the standard MV ES version didn’t show promise. Bounded ES did not

have these instability issues since it had bounded updates by its nature. REINFORCE was

attempted but was not successful because of difficulties with initialization, and not further
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pursued due to the expected complexity, accuracy, and cost/reward-shaping challenges.

The cost functions were found to be quite difficult to optimize. In an earlier version

of the problem, the Ispill condition was mistakenly enforced as a limit on Iave(rlimit) rather

than on total current outside rlimit. In this case, Gradient Descent and ES required the

same amount of tuning to achieve useful results. When the constraint form was corrected

(to better reflect the actual failure mode of the collimator), Gradient Descent would always

quickly diverge, even with much reduced step size α. It is suspected that this change

significantly modified the shape of the cost function, since it now depended on Iave(r)

in a more complicated way. A gradient clipping step (not a new concept) which limited

the 2-norm of each step fixed this issue and allowed it to be still effective. Bounded ES

still usually converged without modification. Momentum Gradient Descent did not show

improvement over plain Gradient Descent so results with that method are not shown.

6.2 Results for Bounded ES and Gradient Descent

Since the other methods did not yield relevant results, we show some detailed results

only for Bounded ES and Gradient Descent (with gradient clipping) for the 3 goals stated

above. In general, Gradient Descent performed better than Bounded ES. It tended to be

easier to tune because there were fewer parameters, and it usually reached more optimal

solutions.

6.2.1 Nominal system parameters, for different goals

Three different goals were defined: maximum current, maximum uniformity, and

the “mixed” goal which would unambiguously improve on the baseline in both areas. This

means depositing more current overall, without reduce coverage in the middle of the target.

For both methods, it was typically easiest to solve the maximum current goal, and
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it was very difficult to beat the baseline in terms of uniformity. This might be from the

fact that more intense temperature spikes are a direct result from putting more beam in

the middle, making the cost function very difficult there. Also, the baseline sequence is

already quite uniform, so it was hard to beat. A more uniform distribution could not be

found at all with Bounded ES. Gradient Descent found a solution using the older constraint

formulation mentioned above (figure 6.5). Table 6.1 shows a summary of results., and

figures 6.1 - 6.4 show the associated raster sequences and beam distributions.

Table 6.1: Summary of results for ES and Gradient Descent (GD) for nominal con-
straints. All solutions increased Ipeak in order to achieve higher Itarget without violating

the constraints. The measure of uniformity shown is Iave(0)
maxrIave(r) . For this metric, the

baseline couldn’t be beat. Gradient Descent proved to be more effective at increasing
Itarget.

Figure 6.1: Solution obtained from Bounded ES for maximum current goal. The
first graph shows the raster sequence. Notice that this shows more deviation from the
baseline than for the Gradient Decent example in figure 5.1. This was always the
case. The second graph shows the resulting beam distribution. As expected, it gives up
coverage on the center of the target for more total current.
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Figure 6.2: Solution obtained from Gradient Descent for maximum current goal.
The circles are slightly larger so that Ipeak can be increased without overheating the
center. There is higher current density at larger radial position r which greatly increases
total beam delivery.

Figure 6.3: Solution obtained from Bounded ES for mixed goal. Coverage at the
center of the target wasn’t compromised in achieving more overall beam delivery.

6.2.2 Off-nominal Constraint Values

We consider cases for higher Tlimit and higher Ilimit. This would be useful in the

cases that it is determined that isotope production can be run less conservatively, or the

cooling systems are upgraded or qualified for higher performance. Both methods were still

able to find good solutions. The results for the mixed goal are shown for each method, and

summary of their performance are in table 6.2. Figures 6.6 - 6.11 show the associated
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Figure 6.4: Solution obtained from Gradient Descent for mixed goal. As in figure
6.3, Iave(0) wasn’t reduced when achieving higher Itarget.

Figure 6.5: Solution obtained from Gradient Descent on a system with simpler
constraint on for Ispill. This cost function was easier to solve for this particular goal.
As expected, this trades off a great deal of current delivery for uniformity. In practice,
total beam delivery is more important than uniformity so other solutions would be more
likely to be used.

raster sequences and beam distributions.
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Table 6.2: Summary of results for ES and Gradient Descent (GD) for modified
constraints. The three cases are higher Ilimit, then Tlimit, and then higher both. For
baseline, Ipeak is scaled up while σ and raster sequence are held constant, until one of
the constraints is violated. This only results in change for the 3rd case. We again see
that Gradient Descent gave the best solutions for total beam delivery and the baseline
had the best percentage uniformity.

Figure 6.6: Solution obtained from Bounded ES for mixed goal for system with
increased Ilimit.
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Figure 6.7: Solution obtained from Gradient Descent for mixed goal for system with
increased Ilimit.

Figure 6.8: Solution obtained from Bounded ES for mixed goal for system with
increased Tlimit.
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Figure 6.9: Solution obtained from Gradient Descent for mixed goal for system with
increased Tlimit.

Figure 6.10: Solution obtained from Bounded ES for mixed goal for system with both
limits increased.
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Figure 6.11: Solution obtained from Gradient Descent for mixed goal for system with
both limits increased.
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Chapter 7

Conclusions and Future Work

In this document, we introduced the problem of optimizing beam for isotope

production. We then explained the models developed for simulating the system and

discussed several general approaches to solving the problem. This involved placing the

constraints in the original objective function to arrive at equations 4.1 - 4.8. Extremum

Seeking and Gradient Descent were the two methods that were extensively investigated for

solving this optimization because of their relative simplicity which were helpful for tuning

for a problem so complex.

We’ve found that using our family of cost functions in equations 4.1 - 4.8, Bounded

ES and Gradient Descent (with gradient clipping) were effective at exploring the parameter

space in the neighborhood of the baseline. Aided with the procedure described in Chapter 5

which exploited the linearity of the model with respect to parameter Ipeak, we were able to

improve the baseline significantly. In the process, we found that Gradient Descent tended to

do better and was easier to tune than Bounded ES due to it having fewer hyperparameters.

Further work could be done to improve the method used. The challenge was shaping

the cost and finding hyperparameters for the algorithm that would lead to a useful solution.

It was admittedly a difficult task for some goals. Choosing a better cost function family
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that better communicates design intent with better convergence properties may make theis

method easier to use.

Other approaches discussed in Chapter 4 could be tried to get better results. The

MDP framework and associated reinforcement learning algorithms such as DDPG and

REINFORCE have shown effectiveness in other continuous space, high dimensional problems

and might be effective here as well. Formulating an easier sub-problem as described in

chapter 4.5 may be an easier method to use.

Even with the results so far, the impact can be huge. IPF’s isotopes serve roughly

30,000 patients a month in medical imaging applications. Therefore even small percentage

increase in isotope yield have a significant impact. As seen in table 6.1, one solution

increased current delivery to from 416 to 475 µA without sacrificing any beam coverage on

the center of the target. This 14 percent increase in total current will translate to a similar

increase in number patients that IPF can serve.

Granted, the problem formulation used is not complete. As mentioned in chapter 1,

there are a few other failure modes resulting from coupled physical mechanisms occurring

in the targets that cannot be modeled. Other parts of the system can be optimized such as

the geometry of the target assembly and the water cooling system. IPF is pushing frontiers

globally in terms of beam delivered on target, and this effort is only one part of a wider

effort to increase isotope production.

70



Bibliography

[1] A. Koehler, R. Schneider, and A. Sisterson, “Flattening of proton does distributions
for large-field radiotherapy,” Medical Physics, vol. 4, no. 4, 1977.

[2] G. Steyn, C. Vermeulen, A. Botha, J. Conradie, J. Crafford, J. Delsink, J. Dietrich,
H. du Plessis, D. Fourie, Z. Kormany, M. van Niekerk, P. Rohwer, N. Stodart, and
J. de Villiers, “A vertical-beam target station and high-power targetry for the cyclotron
production of radionuclides with medium energy protons,” Nuclear Instruments and
Methods in Physics Research A, vol. 131, no. 144, pp. 136–138, 2013.

[3] V. Bechthold and R. Nickles, “Target foils,” in 1st International Workshop on Targetry
and Target Chemistry, pp. 5–8, 1985.

[4] J. Kolski, “Proposed varying amplitude raster pattern to uniformly cover target for
the Isotope Production Facility at LANSCE,” in Instrumentation and Beam Material
Interactions, pp. 148–150, 2014.

[5] Y. Batygin, “Uniform target irradiation by circular beam sweeping,” Nuclear Instru-
ments and Methods in Physics Research A, vol. 363, pp. 128–130, 1995.

[6] J. Kolski, J. Audia, H. Bach, Y. Batygin, J. Bradley, M. Connors, J. Engle, E. Espinoza,
E. Figueroa, E. Hall, M. Martinez, M. Nortier, D. Reass, W. Roybal, and H. Watkins,
“Varying amplitude raster pattern for high power isotope production targets,” in 6th
International Particle Accelerator Conference, pp. 2298–2300, 2015.

[7] A. Scheinker, “Model independent beam tuning,” in Proceedings of the 2013 Interna-
tional Particle Accelerator Conference, pp. 1862–1864, 2013.

[8] A. Scheinker, S. Baily, D. Young, J. Kolski, and M. Prokop, “In-hardware demonstra-
tion of model-independent adaptive tuning of noisy systems with arbitrary phase drift,”
Nuclear Instruments and Methods in Physics Research A, vol. 756, pp. 30–38, 2014.

[9] E. Schuster, C. Xu, N. Torres, E. Morinaga, C. Allen, and M. Krstic, “Beam matching
adaptive control via extremum seeking,” Nuclear Instruments and Methods in Physics
Research A, vol. 581, pp. 799–815, 2007.

71



[10] B. Ren, P. Frihauf, R. J. Rafac, and M. Krstic, “Laser pulse shaping via extremum
seeking,” Control Engineering Practice, vol. 20, pp. 674–683, 2012.

[11] A. Ghaffari, M. Krstic, and S. Seshagiri, “Extremum seeking for wind and solar energy
applications,” Mechanical Engineering, vol. 136, 2014.

[12] M. Krstic, Extremum Seeking Control, pp. 1–5. London: Springer London, 2013.

[13] H. Khalil, Nonlinear Systems. Pearson Education, Prentice Hall, 2002.

[14] A. Ghaffiri, M. Krstic, and D. Nesic, “Multivariable newton-based extremum seeking,”
Automatica, vol. 48, pp. 1759–1767, 2012.

[15] A. Scheinker and M. Krstic, “Extremum seeking with bounded update rates,” Systems
and Control Letters, vol. 63, pp. 25–31, 2014.

[16] M. Krstic and H.-H. Wang, “Stability of extremum seeking feedback for general
nonlinear dynamic systems,” Automatica, vol. 36, pp. 595–601, 2000.

[17] S.-J. Liu and M. Krstic, “Stochastic averaging in continuous time and its applications to
extremum seeking,” IEEE Transactions on Automatic Control, vol. 55, pp. 2235–2250,
2010.

[18] J.-Y. Choi, M. Krstic, K. B. Ariyur, and J. S. Lee, “Extremum seeking control for
discrete-time systems,” IEEE Transactions on Automatic Control, vol. 47, pp. 318–323,
Feb 2002.

[19] C. Manzie and M. Krstic, “Discrete time extremum seeking using stochastic perturba-
tions,” in IEEE Conference on Decision and Control, pp. 3096–3101, 2007.

[20] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016.

[21] S. Haykin, Adaptive Filter Theory (3rd Ed.). Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1996.

[22] A. Chiablaem, P. Supnithi, S. Klinngam, C. Panachart, A. Saekow, P. Kenpankho,
K. Watthanasangmechai, T. Yokoyama, T. Tsugawa, and M. Ishii, “Estimation
of the single gps-receiver bias using the gradient descent algorithm,” in 2016 13th
International Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON), pp. 1–5, 2016.

[23] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

72



[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1989.

[26] D. Corne, H.-L. Fang, and C. Mellish, “Solving the module exam scheduling prob-
lem with genetic algorithms,” Proceedings of the Sixth International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
1993.

[27] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1, pp. 66–73,
1992.

[28] N. Atanasov, “Infinite horizon problems and stochastic shortest path.” University
Lecture Notes, 2018.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR,
vol. abs/1509.02971, 2015.

[30] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016.

[32] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5026–5033, Oct 2012.

[33] J. Ho and S. Ermon, “Generative adversarial imitation learning,” CoRR,
vol. abs/1606.03476, 2016.

[34] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY,
SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[35] N. Vasconcelos, “Expectation maximization.” University Lecture Notes, 2018.

73


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Background
	Introduction to LANSCE and IPF
	Background on Isotope Production
	Isotope Production at IPF
	System Overview of IPF Beamline
	Beam pulse structure
	IPF's Target and Target Window
	Sensing
	Control
	Protection

	System Summary
	Optimization Method Currently Used

	Problem Scope and Formulation
	Models
	Beam distribution Iave(r;)
	Temperature T(r,t;)
	Simplifications

	Methods Overview
	Properties of the Optimization Problem
	Recasting the Optimization Problem, Designing a new Cost
	Solving for Cost Minimization J()
	Extremum Seeking
	Gradient Descent
	Summary: ES versus Gradient Descent

	Alternate Approaches
	Genetic Algorithms
	Casting as an MDP, solving with Reinforcement Learning

	An Easier Sub-Problem
	Gradient Descent
	Expectation Maximization

	Summary

	Methods Used
	Implementation
	Procedure

	Results
	Comparison of Methods
	Results for Bounded ES and Gradient Descent
	Nominal system parameters, for different goals
	Off-nominal Constraint Values


	Conclusions and Future Work
	Bibliography



