
UCLA
UCLA Electronic Theses and Dissertations

Title
Graphon Estimation by Empirical Bayes Approach and Causal Discovery from Multiple 
Populations

Permalink
https://escholarship.org/uc/item/66f5s9c4

Author
Peng, Zhanhao

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66f5s9c4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Graphon Estimation by Empirical Bayes Approach

and Causal Discovery from Multiple Populations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Zhanhao Peng

2021



c© Copyright by

Zhanhao Peng

2021



ABSTRACT OF THE DISSERTATION

Graphon Estimation by Empirical Bayes Approach

and Causal Discovery from Multiple Populations

by

Zhanhao Peng

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Qing Zhou, Chair

Graph is a natural representation of network data. Over the decades many researches

have been conducted on graph theory, graphical models and statistical network analysis.

Two main kinds of graphs: undirected graphs and directed graphs, each have their own

developments and help solve different kinds of problems. Our works made contributions

to these two regimes: nodes clustering and estimation in undirected graphs, and causal

structure estimation using directed graphs.

In the first part of the dissertation, we focus on one type of undirected graphical model:

the graphon (W-graph), including the stochastic blockmodel as a special case. It has been

widely used in modeling and analyzing network data. This random graph model is well-

characterized by its graphon function, and estimation of the graphon function has gained a

lot of recent research interests. Most existing works focus on detecting the latent space of the

model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or

connectivity parameters given the identified latent variables. In this project, we propose a

hierarchical model and develop a novel empirical Bayes estimate of the connectivity matrix
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of a stochastic blockmodel to approximate the graphon function. Based on the likelihood of

our hierarchical model, we further introduce a new model selection criterion for choosing the

number of communities. Numerical results on extensive simulations and two well-annotated

social networks demonstrate the superiority of our approach in terms of estimation accuracy

and model selection.

In the second part of the dissertation, we focus on one of the most popular directed

graphical models: Bayesian networks. The intuition of our work came from the liquid

association theory, which claims that gene regulatory strength differs by the cellular states.

We encode this phenomenon into a statistical model and propose an algorithm to discover

causal relations from observational data generated from different populations. We analyze

the relationship of edges with different weights and coefficients of node wise regression in two

populations. And we use this observed relationship to orient undirected edges in completed

partially directed acyclic graphs (cpDAGs). Numerical results on simulations and a real data

example show the effectiveness of our algorithm and its improvement on existing structural

learning methods.
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CHAPTER 1

Introduction

Graphical model (graph) is a perfect combination of probability theory and graph theory. It

is a natural tool to deal with the uncertainty and complexity problems in statistics and net-

works. Each individual corresponds to a vertex or node in the graph, while their relations are

modeled by edges between the vertices. In statistical model, nodes represent random vari-

ables, the existence and absence of edges between nodes represent conditional independence

assumptions, and together they are a compact representation of joint probability distribu-

tions. Meanwhile, graph is a natural representation of network data, consisting of relations

among a set of individuals, thus it constructs a bridge between the study of variable relations

and the analysis of networks.

There are two main kinds of graphs: undirected graphs and directed graphs, and there

are different types of studies dealing with the problems in these two categories. Undirected

graphs are popular with studies on nodes communities, they also have widely applications

in physics, biology, sociology and communication (Albert and Barabási, 2002). Network

data modeled by undirected graphs are often analyzed through statistical methods so that

the underlying properties of the network structure can be better understood via estimation

of model parameters. Examples of such properties include edge weights, degrees, clusters

and diameter (Barabási and Albert, 1999; Newman et al., 2002) among others. On the

other hand, directed graphs allow for causal interpretations, and studies have been focused

on graph structure estimation, causal inference on variables and other fields in machine

learning. Finding causal structures of directed graphs has become popular in many applied
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fields as well, including genomics, epidemiology and social sciences (Bang-Jensen and Gutin,

2002; Sachs et al., 2005; Gao and Cui, 2015; Greenland et al., 1999).

The main difference of the two kinds of graphs is the orderliness of pairs of nodes in the

graph. Define a graph G = (V,E) consisting of a set of vertices V = {V1, · · · , Vn} and a

set of edges E ⊆ V × V. When the elements of E are unordered pairs, i.e. for any nodes

Vi, Vj ∈ V, pair (Vi, Vj) and pair (Vj, Vi) have identical representation, then the graph is a

undirected graph. On the other hand, if the the elements of E are ordered pairs, the graph

is a directed graph. It is possible that a directed graph contains undirected edges (explained

in Section 1.3), which is called a partially directed graph.

In this dissertation we focus on some of the most widely applied undirected and directed

graphical models. Graphon (Section 1.1) has been very popular in the studies of undirected

graphical models, and Bayesian network (Section 1.3) is one of the most important directed

graphical model which have undoubtedly received the most attention in this field. Even

though they are all graphs represented by vertices and edges, statistical representations and

methods of analysis can be very different.

1.1 SBM and graphon

To better understand the heterogeneity among vertices in a network, community detection

and graph clustering methods (Girvan and Newman, 2002; Newman, 2004) have been pro-

posed to group vertices into clusters that share similar connection profiles. A large portion of

the clustering methods are developed based on the stochastic blockmodel (SBM) (Freeman,

1983), which constructs an interpretable probabilistic model for the heterogeneity among

nodes and edges in an observed network.

For a simple random graph on n nodes or vertices, the relationships between the nodes

are modeled by 1
2
n(n − 1) binary random variables representing the presence or absence of

an edge. The edge variables can be equivalently represented by an n × n adjacency matrix
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X, where Xij = 1 if node i and j are connected and Xij = 0 otherwise. We do not consider

self loops in this work, and thus Xii = 0 for i = 1, . . . , n.

Many popular graph models (Lloyd et al., 2012) make exchangeability assumption on

the vertices: the distribution of degrees and densities in the random graph is invariant

to permutation or relabeling of the vertices. A large class of exchangeable graphs can be

defined by the so-called graphon function (Lovasz and Szegedy, 2006). A graphon W (u, v)

is a symmetric function: [0, 1]2 → [0, 1]. To generate an n-vertex random graph given a

graphon W (u, v), we first draw latent variables ui from the uniform distribution U(0, 1) for

i = 1, . . . , n independently. Then we connect each pair of vertices (i, j) with probability

W (ui, uj), i.e.

P(Xij = 1|ui, uj) = W (ui, uj), i, j = 1, . . . , n. (1.1)

In particular, the stochastic blockmodel mentioned above can be seen as a special case of

the graphon model, where W (u, v) is a piecewise constant function. Abbe (2018); Lee and

Wilkinson (2019); Funke and Becker (2019) have summarized recent developments on the

model, including different types of SBM extension, the graph clustering methods, and the

model selection criteria. Under an SBM, the vertices are randomly labeled with independent

latent variables Z = (z1, . . . , zn), where zi ∈ {1, . . . , K} for i = 1, . . . , n and K is the number

of communities or clusters among all the nodes. The distribution of (Z,X) is specified as

follows:

P(zi = m) = πm, m ∈ {1, . . . , K}, i = 1, . . . , n,

P(Xij = 1|zi, zj) = θzizj , i, j = 1, . . . , n,
(1.2)

where
!

m πm = 1 and each θkm ∈ [0, 1]. Put π = (π1, . . . , πm) and Θ = (θij)K×K .

The original SBM (1.2) does not require that nodes in the same block should have higher

connectivity within the block, thus the values of the diagonal of Θ are not necessarily higher

than the rest. However, many community detection algorithms have a goal to assign nodes

into the same cluster when they have higher probability to connect with each other. Thus
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assortativity is often taken into account in the models. In assortative SBM (Gopalan et al.,

2012; Li et al., 2015), a constraint is added to control the parameters so that θij < θii

for i ∕= j. Lu and Szymanski (2019) proposed a regularized SBM to adjust the level of

assortativeness: By tuning the parameters, a desired level of assortativeness can be achieved.

It is worth mentioning that incorporating assortativeness is not a universal solution, and

bipartite network is a perfect example for networks with disassortativity, where connectivity

only exists between groups rather than within groups. Before applying assortative SBM to

real world data, cautions need to be taken, and background knowledge is essential when

making decisions on which model should be used.

Over years of research on SBM, the original model in (1.2) has been extended to achieve

a better fit to real world data. For real data one major concern is that some nodes can

reasonably belong to multiple groups, since even sharing the same membership labels, their

interactions with different nodes may vary. One extension to incorporate soft clustering on

the nodes is the mixed membership SBM (MMSBM) (Airoldi et al., 2008), in which the

latent variables are no longer labels that indicate the memberships, but vectors v ∈ RK

representing the probability of belonging to each group. Consequently, in different pairs

of nodes each node can belong to different groups. For a pair (i, j), the latent variable

zij ∈ RK contains exactly one 1 (0 for other elements), and is drawn from a multinomial

distribution with probabilities vi. Airoldi et al. (2008) also justified the effectiveness of

variational inference method on MMSBM, which inspired some variational EM approaches

to SBM and graphon estimation and facilitates the computation of model selection criteria

(see details in Section 1.2).

Another limitation of SBM is that any two nodes in the same block have the same degree

distribution, which makes it unlikely for the model to group nodes with very different degrees

into the same block. This becomes a problem when it fits the high skewness of the real world

networks. To address this problem, Karrer and Newman (2011) proposed degree-corrected

SBM (DCSBM), where the binary variable Xij from (1.2) is redefined as the number of edges
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between the pair of nodes (i, j), and naturally follows a Poisson distribution

Xij|Θ ∼ Poisson(αiαjθzizj), (1.3)

where each node gets an additional parameter α. When αi = 1, i = 1, . . . , n, this model

is essentially the same as the regular SBM. Typically the parameter is forced to sum to

the total degree within each block, i.e.
!

i:zi=u αi =
!

i:zi=u di, where di is the degree of

node i. Some recent methods were developed upon the DCSBM, such as brief propagation

algorithm for model selection (Yan et al., 2018), a unifying framework for modeling graphs

with parameters following exponential distributions (Aicher et al., 2014).

A model that is highly related to the stochastic blockmodel is the latent space model

(Hoff et al., 2002), where the latent variables Z are similarly associated with the nodes. The

latent variable does not represent the group membership but works as a coordinate that

determines the connection probability together with other nodes’ coordinates. The way of

calculating the probability

P(Xij = 1) =
e−d(zi,zj)

1 + e−d(zi,zj)
, (1.4)

is relatively more complicated than a block matrix Θ. In (1.4), d(·, ·) is a distance measure

such as Euclidean distance in the space defined. Handcock et al. (2007) has further proposed

a latent space cluster model by considering the prior distribution of the latent positions,

where (z1, · · · , zn) are assumed to be drawn from a mixture of K Gaussian distributions

independently, and each Gaussian distribution has a different mean and covariance matrix

that represents a different cluster, thus nodes membership and clustering are accounted for

explicitly. Developments on latent space models usually have heavy connections with SBM,

and these two types of models are not completely separate in the field of statistical network

analysis.

Graphons, with higher complexity compared to SBM, are seen as kernel functions for

random graph models (Lawrence, 2005). They seem to be a good compromise between
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SBM and the latent space model. Many works on graphon studied the exchangeability of

the model, where the ordering of random variables of the nodes have no information. We

re-write the graphon function W (u, v) in (1.1) as

W (u, v) = ρnf(u, v), (1.5)

where ρn > 0 and f(u, v) is normalized as a density function where
""

(0,1)2
f(u, v)dudv = 1.

Without loss of generality, we assume function f is in the Hölder class (Gao et al., 2015;

Klopp et al., 2017). And the scaling constant ρn can be estimated by

ρ̂n =

#
n

2

$−1 %

i<j

Xij (1.6)

for each network size n. Our simple stochastic network is then

Xij|ui, uj ∼ Bernoulli(ρnf(ui, uj)), 1 ≤ i < j ≤ n, (1.7)

with ui, uj as the latent variables. From the mechanism, we can see that any rearrangement

of the x and y axes of the function f(x, y) will result in the same probability distribution on

the unlabeled graphs.

In statistical network studies, graphs are theoretically divided into dense graphs and

sparse graphs based on their edge density. A dense graph with n nodes has the number of

edges |E| close to the maximal number of edges
&
n
2

'
. The oppsite, a graph with only a few

edges, is a sparse graph. In mathematics, dense and sparse graphs are defined as follows:

Let (Gn)n = G1, G2, . . . be a sequence of graphs, where each graph Gn = (Vn,En) consists

of a (finite) set of vertices and a (finite) multiset of edge En. Assume that the sequence

is growing, such that Vn ⊆ Vn+1 and En ⊆ En+1. We say that the sequence is dense if

|En| = Θ(|Vn|2) and sparse if |En| = o(|Vn|2), where |En| is the number of edges in Gn.

From the Aldous-Hoover theorem (Bickel and Chen, 2009), a graph that is represented

by an exchangeable random array, such as SBM and graphon (1.1), is either dense or empty.

Namely, the number of edges grows quaratically with the number of nodes (Lovasz and
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Szegedy, 2006; Orbanz and Roy, 2015). Graphon was originally studied as the limit object

of dense graph sequences (Lovasz and Szegedy, 2006; Borgs et al., 2016). However, some

empirical studies indicate that many real networks are sparse (Newman et al., 2002), thus it

would be meaningful to extend the exchangeable dense graphs into the sparse regime.

The generation of sparse graphs that obtain the property of random exchangeable graphs

are introduced by the graphex model (Veitch and Roy, 2015). The model changes the support

of graphon function from (0, 1)2 into R2
+ and naturally extends the model while preserving

its flexibility and tractability. Following the notations above, the graph is parameterized

by a symmetric measurable function similar to graphon W : R2
+ → (0, 1). For each pair of

nodes (i, j),

Xij|(θk,ϑk)k=1,2,... ∼ Bernoulli(W (ϑi,ϑj)) (1.8)

where (θk,ϑk)k=1,2,... is a unit-rate Poisson process on R2
+. To realize the process in simulation,

the range of node label (θk)k=1,2,... is truncated to (0,α]. In fact, these labels have no impact

on generation of the graph and are usually not used in statistical analysis. This model is

a generalization of the graphon for dense exchangeable graphs. The edge density of the

generated graph is determined by the function W , which can be referred to as the graphon

function too. The way to adjust the sparsity of the generated graph is to change the graphon

function W . Define

µ(x) =

( ∞

0

W (x, y)dy, (1.9)

ν(x) =

( ∞

0

W (x, z)W (y, z)dz, (1.10)

and assume µ is non-increasing, with generalized inverse µ−1(x) = inf{y > 0|µ(y) ≤ x}, such

that as x → 0,

µ−1(x) ∼ l(1/x)x−σ, (1.11)

where σ ∈ [0, 1] and l is a slowly varying function at infinity, i.e.

lim
t→∞

l(ct)

l(t)
= 1 (1.12)

7



for all c > 0. The value of σ and the limits of l determine the property of the graph, which

can be differentiated into dense and sparse cases:

• Dense: σ = 0 and limt→∞ l(t) = 0. In this case limx→0 µ
−1(x) < ∞, thus µ and W

have compact support.

• Sparse: σ = 0 and limt→∞ l(t) = ∞. In this case limx→0 µ
−1(x) = ∞, thus µ and

W have full support; σ ∈ (0, 1), µ and W have full support and µ has polynomially

decaying tails; σ = 1, µ has a very light tail, to make µ−1 and W integrable, l has to

go to zero sufficiently fast, this case will generate a very sparse graph.

Caron and Rousseau (2017) provided some examples of graphon function to generate

graphs with different density, such as the dense case: W (x, y) = (1− x)(1− y)Ix≤1Iy≤1, the

sparse case following the power law: W (x, y) = (x + 1)−1/σ(y + 1)−1/σ, and the extremely

sparse case: W (x, y) = 1
(x+1)(1+log(1+x))2

1
(y+1)(1+log(1+y))2

. In order to control the density and

network structure of generated data, such as incorporating the block structures in SBM,

Caron and Rousseau (2017) proposed an idea to factorize W . Considering the model (1.8),

change the range of ϑi from R+ to F , where F is a probability space. Then function

W : (R+ × F )2 → (0, 1), and (θk,ϑk)k=1,2,... are the points generated from a Poisson process

with mean measure dθudϑ on R+× (R+×F ). Denote ϑ = (σ, v) ∈ R+×F , let ξdϑ = dσGdv

where G is a probability distribution on F . Re-write W as

W ((σi, vi), (σj, vj)) = w(vi, σi)η(σi, σj), (1.13)

where w determines the local structure of the graph, which is similar to the graphon function

in dense graph model (1.1), and η tunes the sparsity behaviour of the graph. It has been

shown that this model has the same property as (1.8) and also has local structure similar to

stochastic blockmodel.

The sparse graphon model (1.8) and the method in (1.13) are considered to be good

choices for sparse exchangeable networks generation. Unfortunately from our experiments,
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the existing variational inference methods and spectral clustering methods did not work

well on sparse networks generated by this process. As a consequence, we were still using the

common setting to generate data from sparse graphs: using very small connection probability

so that the number of edges in the network is small.

1.2 Inference on SBM and graphon

Many efforts have been made on statistical inference of the SBM to detect block structures

as well as to estimate the connectivity probabilities in the blocks. Some classical and pop-

ular methods include Markov chain Monte Carlo (MCMC), degree-based algorithms and

variational inference among others.

MCMC is straightforward and simple as an algorithm, though its high computational

cost brings challenges. Nowicki and Snijders (2001) developed a Gibbs sampler to estimate

parameters for graphs of small sizes (up to a few hundred nodes), where the parameter

Θ can be updated in individual Gibbs steps. Some MCMC methods put parameter K,

i.e. the number of clusters, in the sampling process, integrating the graph clustering and

model selection into one algorithm (Palla et al., 2012; Fan et al., 2015; Tang et al., 2019;

Tang and Yang, 2014). These methods aimed at higher estimation accuracy and simple

implementation. Meanwhile, some efforts were made to reduce the computational complexity

to make MCMC feasible in real world network applications (Mørup et al., 2011; Li et al.,

2016).

An alternate is the class of variational expectation maximization (VEM) algorithms. The

variational EM algorithm (Daudin et al., 2008) and variational Bayes EM (Latouche et al.,

2012) approximate the conditional distribution of group labels given the network data by a

class of distributions with simpler forms. For any distribution q(·) of the latent variables Z,

we can write a closed form approximate posterior distribution of the parameters (π,Θ) and

of the latent variables Z, where the observed-data log-likelihood can be decomposed into two
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terms,

ln p(X) = L(q(·)) + KL(q(·)‖p(·|X)), (1.14)

where

L(q(·)) =
%

Z

((
q(Z, π,Θ) ln

)
p(X,Z, π,Θ)

q(Z, π,Θ)

*
dπdΘ, (1.15)

and

KL(q(·)‖p(·|X)) = −
%

Z

((
q(Z, π,Θ) ln

)
p(Z, π,Θ|X)

q(Z, π,Θ)

*
dπdΘ. (1.16)

Minimizing (1.16) with respect to q(Z, π,Θ) is equivalent to maximizing the lower bound

(1.15) with respect to q(Z, π,Θ). However, when considering SBM, q(Z, π,Θ) is intractable,

thus we can assume that it can be factorized as

q(Z, π,Θ) = q(Z)q(π)q(Θ) = q(π)q(Θ)
N+

i=1

q(zi), (1.17)

where the optimal approximation q(zi) at vertex i follows a multinomial distribution. La-

touche et al. (2012) used a variational Bayes EM (VBEM) algorithm described in Beal and

Ghahramani (2003) to optimize over q(zi) and q(π), q(Θ) iteratively. Airoldi et al. (2008)

has shown that when being applied to MMSBM, variational EM outperforms MCMC, with

time complexity O(nK + 2K) versus O(n2).

Other inference methods include a degree-based algorithm proposed by Channarond et al.

(2012), which achieves classification, estimation and model selection from empirical degree

data. Suwan et al. (2016) recast the SBM to a random dot product graph (Young and Schein-

erman, 2007) and developed a Bayesian inference method with a prior specified empirically

by adjacency spectral embedding.

The inference on SBM has also gained attention in community detection field, which

involves the development of clustering methods in different types of networks. As a widely

studied community detection algorithm, in Section 2.2 we also use spectral clustering as
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an alternative clustering algorithm to demonstrate the uniform accuracy improvement of

our method. Spectral clustering was proposed by Ng et al. (2001) and became one of the

most widely used techniques in graph-based clustering due to its simple implementation and

promising performance. The algorithm operates on the Laplacian matrix L = D−X where

D is the degree matrix and X is the adjacency matrix. For undirected graphs, the degree

matrix is a diagonal matrix where each element represents the number of neighbors of the

corresponding node. With a predetermined number of clusters K, the algorithm computes

the eigenvectors of L, denoted as U. U should be a matrix with n rows where each row

represents a node, and each column is the eigenvector. For i = 1, . . . , n, let yi ∈ RK be the

vector corresponding to the i-th row of U. Finally, cluster the points yi, i = 1, . . . , n with

K-means algorithm (Lloyd, 1982) into clusters. Similar to VBEM, this method also needs

to specify the number of clusters thus model selection is necessary.

Due to higher model complexity, estimating a graphon is challenging. Some works

(Airoldi et al., 2013; Olhede and Wolfe, 2014; Latouche and Robin, 2016) have focused on

the nonparametric perspective of this model and developed methods to estimate a graphon

based on SBM approximation. These methods estimate a graphon function by partition-

ing vertices and computing the empirical frequency of edges across different blocks. Many

algorithms put emphasis on model selection (Airoldi et al., 2013) or bandwidth determina-

tion (Olhede and Wolfe, 2014). Latouche and Robin (2016) proposed a variational Bayes

approach to graphon estimation and used model averaging to generate a smooth estimate.

Other SBM approximation methods include the works by Boppana (1987), Chaudhuri et al.

(2012), COJA-OGHLAN (2010) etc, and rigorous consistency are guaranteed in these works

for the estimation. Borgs and Chayes (2017) has reviewed the development of graphon the-

ory over the last decades, and related models to estimate graphons on massive networks,

where non-parametric approaches (Kallenberg, 1999; Bickel et al., 2011; CHOI et al., 2012)

seem to out-perform SBM approximation.

After the block structure of a network is identified, most of the above methods simply use
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the empirical connection probability within and between blocks to estimate Θ. When the

number of nodes in a block is too small, the estimate can be highly inaccurate with a large

variance. Latouche and Robin (2016) developed an alternative method under a Bayesian

framework, where they put conjugate priors on the parameters (π,Θ). In particular, they

assume θab ∼ Beta(αab, βab) independently for a, b ∈ {1, . . . , K}, where the parameters

(αab, βab) in the prior are chosen in priori. Similar to the MLE, the connection probability

θab of each block is estimated separately and thus may suffer from the same high variance

issue for blocks with a smaller number of nodes. To alleviate this difficulty, in Chapter 2, we

propose a hierarchical model for network data to borrow information across different blocks.

Under this model, we develop an empirical Bayes estimator for Θ = (θab) and a model

selection criterion for choosing the number of blocks. Empirical Bayes method is usually seen

to have better performance when estimating many similar and variable quantities (Efron,

2010). This inspires our proposal as the connection probabilities can be similar across many

different communities. By combining data from many blocks, estimates will be much more

stable even if the number of nodes is small in each block.

1.3 Directed acyclic graph

Define a graph G = (V,E) consisting of a set of vertices V = {V1, . . . , Vp} and a set of edges

E ⊆ V × V. The vertices can be encoded with random variables X, such that a random

variable Xi in X = (X1, . . . , Xp) represents a vertex Vi in V. If both ordered pairs (Vi, Vj)

and (Vj, Vi) are in E, there is an undirected edge between Vi and Vj, denoted as Vi −− Vj. If

the ordered pair (Vi, Vj) ∈ E and (Vi, Vj) /∈ E, there is a directed edge denoted as Vi → Vj.

We say that Xi is a neighbor of Xj when there is a directed or undirected edge between

Vi and Vj. And Xi is a parent of Xj and Xj is a child of Xi when Vi → Vj. Let pa(Xi)

denote the set of all parents of Xi and ch(Xi) denote the set of all children of Xi. The union

set of all the parents of every node in ch(Xi) except Xi itself is called the spouses of Xi,
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i.e. sp(Xi) :=
,

Xk∈ch(Vi)
pa(Xk)\Xi. The sets of parents, children and spouses of Xi are all

the random variables in X that are dependent or conditionally dependent on Xi, the union

of these sets forms the Markov blanket (Pearl, 1988) of Xi, written as mb(Xi), which is

consistent with the definition, i.e. the Markov blanket of a random variable X in a random

variable set S = {X1, · · · , Xp} is any subset S ′ of S conditioned on which other variables

S\S ′ are independent with X,

X ⊥⊥ S\S ′ | S ′. (1.18)

A partially directed path from V1 to Vk is defined on a sequence of node (V1, . . . , Vk)

where Vi → Vi+1 or Vi −− Vi+1 for i = 1, . . . , k − 1. If there is no undirected edge in the

path, the partially directed path is a directed path. A node Vi is an ancestor of Vj and Vj

is a descendant of Vi if there is a directed path from Vi to Vj. A v-structure is defined as

Vi → Vk ← Vj where Vk is the collider. A directed cycle is defined as a directed path from

one node to itself, and a partially directed cycle is a partially directed path from one node

to itself.

A graph G is a Directed Acyclic Graph (DAG) if G contains only directed edges without

any directed cycles in the graph. DAG encodes conditional independencies of nodes in the

graph. For a graph with p nodes {V1, . . . , Vp}, denoting Xi as the value of variable Vi, the

joint probability distribution can be factorized as

P (X1, . . . , Xp) =

p+

i=1

P (Xi|pa(Xi)), (1.19)

the set of the variables X is also said to form a Bayesian network.

One of the most important concepts in the study of Bayesian networks is d-seperation

introduced by Pearl (1988), who later introduced Markov Equivalence on DAG (Verma and

Pearl, 1990a).

Definition 1.1 (d-connectedness) A path between two vertices X and Y is active (d-

connected) if there is a collider free (unblocked) path between them.
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Definition 1.2 (d-seperation) Vertices X and Y are d-connected conditioned on a set

of vertices Z (X, Y /∈ Z) if there is a collider-free path between X and Y that traverses

no member of Z. If no such path exists, then X and Y are d-separated (blocked) by Z.

Meanwhile, if a collider is a member of Z, or has a descendant in Z, it does not block any

path that passes this collider.

Definition 1.3 (Markov Equivalence) Let G1 and G2 be two DAGs defined on the same

set of vertices V. G1 and G2 are Markov equivalent, denoted as G1 ∼ G2, if they encode

the same set of conditional independencies. For any vertices X, Y ∈ V and set of vertices

Z ⊆ V, if X and Y are d-separated by Z in G1 if and only if X and Y are d-separated by Z

in G2, then G1 ∼ G2.

A Markov equivalence class of DAGs encode the same Markov properties as in Defini-

tion 1.3. The skeleton of G is obtained by ignoring the direction of edges in G. A Markov

equivalence class of DAGs is the set of DAGs that share the same skeleton and the same

v-structures (Verma and Pearl, 1990a). Shown by Andersson et al. (1997), an equivalence

class can be uniquely represented by a completed partially directed acyclic graph (cpDAG)

that has both directed and undirected edges without directed cycles.

It is natural to interpret the direction in DAG as causal relations, and edges can represent

the strength of “causal influence” (Hauser and Bühlmann, 2012). Causal structure estima-

tion under the DAG framework has been the one of most popular problems in causal learning.

Because of the ability of identifying confounding variables and modeling dependency rela-

tions, DAGs have been utilized as a tool in many fields, including epidemiology (Greenland

et al., 1999), genomics (Gao and Cui, 2015), health and medical studies (Williams et al.,

2018; Tennant et al., 2020) and social sciences (Velikova et al., 2014).
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1.4 Structure learning algorithms on DAG

To put the estimation of DAG structure and causal relations into a statistical framework,

structure equation model (SEM) (Pearl, 2009) is proposed. Tarka (2018) has reviewed his-

torical and recent developments on it. SEM typically consists of a set of equations with

explanatory variables. The joint distribution in DAGs can be represented by a set of struc-

tural equations

X = AX+ E, (1.20)

where the vectors X and E denote the random variables in the graph and their corresponding

exogenous noises. The (i, j)-th element of the matrix A represents the strength of direct

causal effect of node Vi on Vj. All the variables can be arranged in a topological order, which

means that the nodes can be put into a linear ordered sequence, for every directed edge in

the DAG, the parents always come before the children in the order. The matrix A can be

converted into a strictly lower triangular matrix by permuting its rows and columns based

on the topological order.

Suppose X = (X1, . . . , Xp) ∼ Np(0,Σ), then there exists a weighted adjacency matrix

A = (aij)p×p and Ω := diag(ω2
j ) such that Σ = (I−A)−TΩ(I−A)−1, and

Xj =
%

i:Xi∈pa(Xj)

aijXi + εj, εj ∼ N (0,ω2
j ), j = 1, . . . , p, (1.21)

where εj are mutually independent, and independent from pa(Xj).

(1.21) defines a linear Gaussian structure equation model (SEM). The weighted adjacency

matrix A represents edge coefficients of DAG G. Structural learning methods on Gaussian

SEM aim to estimate (A,Ω) from i.i.d. samples of X = (X1, . . . , Xp).

The problem of DAG structure learning is challenging and rewarding, and a substantial

amount of research has been dedicated to this problem. Some major obstacles include

the high complexity, as the number of possible DAGs is super-exponential to the number of
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vertices (Robinson, 1977); the acyclic nature of DAGs that heavily increases the computation

time; the unidentifiability of the true DAG from the equivalence class.

There are two main approaches to structure learning of a DAG, constraint-based method

and score-based method. The constraint-based method uses substantial amount of condi-

tional independence tests to recover the conditional independence relationships between the

variables. A well-known constraint based algorithm is the conceptual Inductive Causation

algorithm (Verma and Pearl, 1990b) that was implemented in the PC algorithm (Spirtes

et al., 2001). The PC algorithm recursively deletes edges based on conditional indepen-

dence tests from a complete undirected graph, then orients v-structures in the skeleton and

the remaining edges without any new conditional independencies or directed cycles being

introduced. Other well-known constraint-based methods include the max-min hill-climbing

(MMHC) algorithm (Tsamardinos et al., 2006) and fast causal inference (FCI) (Spirtes et al.,

2001). Different from the PC algorithm, FCI allows the presence of latent variables and can

sometimes discover unknown confounding variables.

The PC algorithm is one of the oldest algorithms that provides an architecture for future

constraint-based method development, it sets several assumptions on the data distribution

P on DAG G (Spirtes et al., 2001).

Assumption 1.1 (Causal Markov) A node V in G is independent of all its non-descendent

nodes in G when given pa(V).

Assumption 1.2 (Faithfulness) No hidden conditional independence holds unless entailed

by the Causal Markov relationship.

Assumption 1.3 (Causal Sufficiency) When two variables have their values observed in

the data, the common causes should also have been observed.

Under these assumptions, the PC algorithm is guaranteed to converge to the true Markov

equivalence class in the large sample limit. The steps of the algorithm are illustrated in
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Figure 1.1. The true DAG is shown in red (it is the only graph in its equivalence class),

the estimation procedures are shown on the right. (I) PC first starts with a fully connected

graph. (II) It deletes edges through independence tests, the edge Va −− Vb is removed

since Va ⊥⊥ Vb. (III) It then deletes edges through conditional independence tests, the edge

Va −− Vd and Vb −− Vd are removed since Va ⊥⊥ Vd|Vc and Vb ⊥⊥ Vd|Vc. (IV) PC identifies

v-structures and (V) finalizes orientation without introducing new v-structures. The v-

structure Va → Vc ← Vb in the graph is identified by the fact that Va ∕⊥⊥ Vc|Vb whereas

Va ⊥⊥ Vc. In some cases, orientation rules do not apply to an undirected edge, the algorithm

will leave the edge as undirected, thus the output is a partial DAG.

When the data is non-discrete, PC algorithm works well in linear Gaussian DAG, i.e. in

the SEM each variable can be represented as a linear combination of other variables, and

the noise term follows a Gaussian distribution. However, when the form of dependence is

unknown, conditional independence tests face more difficulties. Recently many approaches

based on functional causal models (FCMs) have been proposed, where the effect between

variables are written as functions (Hoyer et al., 2009; Zhang and Hyvärinen, 2009; Zhang

et al., 2015).
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Figure 1.1: Illustration of PC algorithm mechanism.

The score-based methods typically consist of a score metric and a search algorithm.

The score metric evaluates the goodness of fit of the estimated DAG to the data, and the
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search algorithm maximizes the scoring function, which are designed in various ways, such

as Bayesian information criteria (BIC) (D and Heckerman, 1997), l1-penalized likelihood (Fu

and Zhou, 2013) among others. Some popular score-based algorithms include K2 algorithm

(Cooper and Herskovits, 2004), GES algorithm (Chickering, 2003) and CCDr algorithm

(Aragam and Zhou, 2015).

Since DAGs in the same equivalence class encode the same set of conditional indepen-

dencies, for DAGs that are Markov equivalent, conditional independence tests have the

same outcomes, and score functions have the same values. Thus a single DAG cannot be

differentiated from its equivalence class from observational data. This is known as the non-

identifiability issue of linear Gaussian DAGs.

It is natural to believe that interventions on the data can solve the identifiability prob-

lem, however, interventions or sets of compared experiments are not easy to achieve in

practice. Even though randomized controlled experiment is the gold standard tool for causal

inference, the high expense can make the experiments impracticable. For instance, wet

lab molecular biological experiments require a lot of effort and costs. Moreover, in many

modern science studies, the huge amount of variables and a lack of background knowledge

makes it more challenging. Facing this issue, researchers have made effort on causal infer-

ence from observational data (Verma and Pearl, 1990b; Chickering, 2003; Heckerman et al.,

1995; Judea, 2010). Some studies have made identifiability assumptions and tried to solve

the non-identifiability problem (Shimizu et al., 2006, 2011; Hoyer et al., 2009; Peters et al.,

2014; Peters and Bhlmann, 2013; Monti et al., 2020; Wang and Zhou, 2021). Several meth-

ods exploit the non-linear and non-Gaussian structural equation models to identify the true

DAG from purely observational data. Shimizu et al. (2006) developed a method to discover

the true causal structure assuming non-Gaussian errors under the linear SEM and proposed

a linear non-Gaussian acyclic model (LiNGAM), and further developed a direct method for

learning a linear non-Gaussian structure equation model (DirectLiNGAM) (Shimizu et al.,

2011) that requires no algorithmic parameters and converges fast. Hoyer et al. (2009) proved
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that nonlinearity can distinguish single DAGs from their equivalence class, and proposed a

non-linear noise additive (NNA) model, which was implemented by Peters et al. (2014) later.

Zhang and Hyvärinen (2009) proposed a post-nonlinear (PNL) causal model: Taking two

variable case as an example, the effect y is generated by a post-nonlinear transformation on

the non-linear function of the cause x plus the noise e,

y = f2(f1(x) + e), (1.22)

where f1 is non-constant and f2 is invertible, x and e are independent. It is a very general

model, and both LiNGAM and NNA can be seen as special cases of PNL: In LiNGAM, f1

is linear and e is non-Gaussian, f2 is the identity mapping; in NNA, f1 is non-linear and f2

is the identity mapping. If the other direction y → x is true, the data generating process

given by PNL is

x = g2(g1(y) + e′), (1.23)

where g1 is non-constant, g2 is invertible, y and e′ are independent. Zhang and Hyvärinen

(2009) has established the conditions for the identifiability of causal directions in PNL causal

model.

Assumption 1.4 The data (x, y) are generated by the PNL causal model (1.22), with f1

and f2 being third-order differentiable.

Assumption 1.5 Densities pe and px are third-order differentiable, pe is positive on (−∞,+∞),

and (log pe)
′′ is zero at most at some discrete points.

Suppose the data were generated from the PNL model given the required conditions

above, and f1 is not invertible, then the causal directions can be determined in principle.

There are five special situations that PNL fails to identify causal relations (e.g. linear

Gaussian case), which are listed in the paper (Zhang and Hyvärinen, 2009). Despite the

ability to orient undirected edges in most cases, these FCM methods are not computationally
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efficient as in the linear case, thus a typical practice is to first use conditional independence

tests to estimate a cpDAG and then apply the non-linear methods for further orientation.

Recent developments on causal discovery using observational data have been reviewed

by Mooij et al. (2016) and Glymour et al. (2019). In Chapter 3 we also propose a simple

method for causal discovery from observational data.

1.5 Outline

In this dissertation, we propose two methods related to graph modeling. The remaining

chapters of the dissertation are organized as follows:

• In Chapter 2, we propose a hierarchical model and develop a novel empirical Bayes

estimate of the connectivity matrix of a stochastic blockmodel to approximate the

graphon function. Based on a regularized likelihood under our hierarchical model, we

further introduce a new model selection criterion for choosing the number of com-

munities. Numerical results on extensive simulations and two well-annotated social

networks demonstrate the superiority of our approach in terms of estimation accuracy

and model selection.

• In Chapter 3, we propose an edge orientation algorithm for causal discovery in cpDAGs.

We go through our intuition behind the model, justify the theory, and verify the

effectiveness of the algorithm by experiments on different simulated datasets and a

real protein-signaling network. Numerical results demonstrate the improvement of our

algorithm on existing structural learning methods.

• In Chapter 4, we conclude the dissertation with discussion and future work.
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CHAPTER 2

An empirical Bayes approach to stochastic

blockmodels and graphons

This chapter introduces a method for parameter estimation and model selection on undi-

rected graphical models. In Section 2.1, we will develop our empirical Bayes method for

the SBM and the graphon, focusing on connection probability estimation and model selec-

tion on the number of blocks. Then we will compare the performance of our methods with

other existing methods on simulated data in Section 2.2 and on two real-world networks in

Section 2.3.

Our method has two major novel components: 1) shrinkage estimation for connectiv-

ity parameters, and 2) a novel likelihood-based model selection criterion, both under our

proposed hierarchical model. As demonstrated by extensive simulations and experiments

on real-world data, these contributions give us substantial gain in estimation accuracy and

model selection performance, especially for graphons. Moreover, our method is very easy

to implement and does not cost much extra computational resources compared to existing

approaches.

2.1 An Empirical Bayes method

Let us first consider the SBM. After the vertices of an observed network have been partitioned

into clusters by a graph clustering algorithm, we develop an empirical Bayes estimate of

the connection probability matrix Θ based on a hierarchical Binomial model. Under this
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framework, we further propose a model selection criterion to choose the number of blocks.

Our method consists of three steps:

• Graph clustering For a network with n vertices, cluster the vertices into K blocks

by a clustering algorithm. Let Z : [n] → [K] denote the cluster assignment, where

[m] := {1, . . . ,m} for an integer m.

• Parameter estimation Given Z, we find an empirical Bayes estimate -ΘEB = (θ̂EBij )K×K

by estimating the hyperparameters of the hierarchical binomial model.

• Model Selection Among multiple choices of K, we select the K̂ that maximizes a

penalized marginal likelihood under our hierarchical model.

In Section 2.1.3, we generalize our method to the graphon model, following the idea of SBM

approximation to a graphon.

Given the Z estimated by either variational Bayes approach or spectral clustering, we

will develop our hierarchical model and empirical Bayes estimates.

2.1.1 Estimating connection probabilities

In this subsection, we consider the SBM and assume a partition Z : [n] → [K] of the nodes

is given, where K is the number of blocks. Note that Z−1(a) for a ∈ [K] is the subset of

nodes in the a-th cluster. Let

Bab = {(i, j) : (i, j) ∈ Z−1(a)× Z−1(b), i < j}

be the collection of node pairs in the (i, j)th block. According to the SBM, the connection

probability between any (i, j) ∈ Bab is θab. Recall that X = (Xij) is the observed adjacency

matrix. Let XB
ab =

!
(i,j)∈Bab

Xij be the number of edges in block (a, b). Then, we have

XB
ab | θab ∼ Binomial(nab, θab), (2.1)
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where nab = |Bab| = |Z−1(a)| · |Z−1(b)| for a ∕= b and naa = |Z−1(a)| · (|Z−1(a)|− 1)/2 as self

loops are not allowed. Based on the empirical frequency of edges in the block (a, b), we have

an MLE for the edge connection probability

θ̂MLE
ab =

XB
ab

nab

, a, b ∈ {1, . . . , K}. (2.2)

When K is large, the number of nodes, and thus nab, in some blocks will be small, which

leads to a high variance of the MLE. To stabilize the estimates, we may borrow information

across blocks to improve estimation accuracy. To do this, we set up a hierarchical model

by putting conjugate prior distributions on θab. To accommodate the heterogeneity in θab,

we use two sets of hyperparameters so that the within and between-block connectivities are

modeled separately:

θab | (αd, βd) ∼ Beta(αd, βd), a, b ∈ {1, . . . , K}, (2.3)

where d = 0 for a = b and d = 1 for a ∕= b, i.e. the diagonal and off-diagonal elements

of the connectivity matrix Θ follow Beta(α0, β0) and Beta(α1, β1), respectively. The prior

distribution (2.3) together with (2.1) defines the distribution [X,Θ | (αd, βd)d=0,1]. Here

(αd, βd), d = 0, 1, are hyperparameters to be estimated by our method. A diagram of our

model is shown in Figure 2.1. The connectivity parameters θab, a, b ∈ {1, . . . , K}, follow

beta distributions of two sets of hyperparameters, i.e. (α0, β0) for diagonal blocks (red) and

(α1, β1) for off-diagonal blocks, and the number of edges XB
ab in a block, depends on θab as in

(2.1). Note that the use of two sets of hyperparameters is in line with common assumptions

of the stochastic blockmodel, such as assortativity (Danon et al., 2005) or disassortativity,

i.e. within-group connectivities are different than between-group connectivities.

The conditional posterior distribution of θab given (XB
ab,αd, βd) is

θab|(XB
ab,αd, βd) ∼ Beta(αd +XB

ab, βd + nab −XB
ab),
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Figure 2.1: A diagram of the hierarchical model.
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and the conditional posterior mean of θab is

θ̂EBab (αd, βd) ≡ E(θab|XB
ab,αd, βd) (2.4)

=
αd +XB

ab

αd + βd + nab

= ηab
αd

αd + βd

+ (1− ηab)
XB

ab

nab

,

for a, b ∈ {1, . . . , K}, where

ηab =
αd + βd

αd + βd + nab

∈ [0, 1] (2.5)

is the shrinkage factor that measures the amount of information borrowed across blocks.

When the variance among θab across the blocks is high, αd and βd will be estimated to be

small. Thus, ηab will be close to 0 so that the estimate θ̂EBab will be close to θ̂MLE
ab . When

the variance among θab is low, our estimates of αd and βd will be large, the shrinkage factor

approaches 1, and eventually θ̂EBab will become identical across all blocks. In this case, we

are essentially pooling data in all blocks to estimate θab. Generally speaking, the shrinkage

factor ηab is determined by the data through the estimation of the hyperparameters (αd, βd),

and it leads to a good compromise between the above two extreme cases.

Given the partition Z from a graph clustering algorithm, we maximize the marginal

likelihood of the observed adjacency matrix X to estimate the hyper-parameters (αd, βd) for

d = 0, 1. Let Xab denote the adjacency submatrix for nodes in the block (a, b) defined by the

partition Z. Integrating over Θ, the marginal log-likelihood function for the diagonal blocks

is

L(α0, β0|X, Z) =
K%

a=1

logP(Xaa|α0, β0)

=
K%

a=1

log

(

θaa

P(Xaa|θaa)p(θaa|α0, β0)dθaa

=
K%

a=1

log Beta(α0 +XB
aa, β0 + naa −XB

aa)−K log Beta(α0, β0),

(2.6)

where Beta(x, y) =
" 1

0
tx−1(1 − t)y−1dt is the beta function. Similarly, the marginal log-
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likelihood function for the off-diagonal blocks is

L(α1, β1|X, Z)

=
%

a<b

log Beta(α1 +XB
ab, β1 + nab −XB

ab)−
1

2
K(K − 1) log Beta(α1, β1).

(2.7)

We find the maximum likelihood estimates of the hyper parameters, i.e.

(α̂d, β̂d) = argmax
αd,βd

L(αd, βd|X, Z), (2.8)

for d = 0, 1. Then we can estimate Θ by plugging the MLE of the hyper-parameters in (2.8)

into (2.4), i.e.

θ̂EBab =

.
/0

/1

θ̂EBaa (α̂0, β̂0), a = b

θ̂EBab (α̂1, β̂1), a ∕= b

. (2.9)
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Figure 2.2: A typical contour plot of the likelihood functions.

Since the hyper-parameters are estimated by using all blocks, our empirical Bayes esti-

mates of θab also make use of information from all data to improve the accuracy. Though
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(2.8) does not have a closed form solution, we can use an optimization algorithm such as

bounded limited-memory BFGS (L-BFGS-B) (Byrd et al., 1995) to find the maximizer. As

shown in Figure 2.2, the left figure L(α0, β0) and the right figure L(α1, β1) from a graph

generated by a SBM with n = 200, K = 5, θab = 0.7 for a = b and θab = 0.3 for a ∕= b. The

maximizers are marked as stars in the plots. For a typical dataset, the global maximizers

can be easily found.

Suwan et al. (2016) developed a different empirical Bayesian method for SBMs under a

random dot product graph formulation. They introduce K latent positions, ν1, . . . , νK ∈

Rd, and define the connection probabilities by inner products between the latent positions,

θab = 〈νa, νb〉 for 1 ≤ a, b ≤ K. The prior distribution for νk is a multivariate Gaussian

distribution νk ∼ Nd(-µk, -Σk). In particular, the parameters -µk, -Σk in the prior are chosen by

Gaussian mixture modeling of pre-estimated latent positions obtained via adjacency spectral

embedding. Thus, these prior distributions are called empirical priors and they are used to

model the uncertainty in the latent positions ν1, . . . , νK . In our method, the hyperparameters

(α, β) in the beta prior distributions are not pre-estimated by a separate method, but instead

are estimated under a coherent hierarchical model. In addition to modeling uncertainty in

the connectivity probabilities θab, the hyperparameters also lead to information sharing via

shrinkage.

2.1.2 Selecting partitions

So far we have regarded the number of blocks K as given in our empirical Bayes method.

The choice of K will certainly impact the performance of our method. If K is too small,

for SBM many blocks will not be identified, and for graphon the approximated function will

only have a small number of constant pieces, both leading to highly biased estimates. On the

other hand, if K is too big, the number of vertices in each block will be very small, resulting

in high variances. Thus, it is important to select a proper number of blocks to achieve the

best estimation accuracy.
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Our empirical Bayes approach under the hierarchical model also provides a useful criterion

for this model selection problem. Note that (2.6) and (2.7) define the conditional likelihood

of X given the hyperparameters (αd, βd) and the partition Z input from a graph clustering

algorithm. We can compare this likelihood for different input partitions and select the best

one.

Suppose we have m candidate partition schemes Z1, . . . , Zm. Denote the corresponding

number of communities by K1, . . . , Km. Our goal is to choose the optimal partition that

maximizes the joint likelihood of the observed adjacency matrix X and the partition Z with

a penalty on the model complexity. To do this, we include Z in our model as in (1.2) and

put a Jeffreys prior (Jeffreys, 1946) on π, i.e.

π ∼ Dirichlet(τ1, . . . , τK), τ1 = . . . = τK = 1/2.

For a partition Z with K communities, the joint likelihood of X and Z given the hyper-

parameters (α0,α1, β0, β1) is

P(X, Z|α0,α1, β0, β1)

= P(X|Z,α0,α1, β0, β1)

(
P(Z|π)p(π)dπ

= P(X|Z,α0,α1, β0, β1)
Γ(
!K

i=1 τi)
2K

i=1 Γ(ni + τi)

Γ(n+
!K

i=1 τi)
2K

i=1 Γ(τi)
,

(2.10)

after marginalizing out the parameter π, where ni is the number of nodes in cluster i defined

by the partition Z. Maximizing over the hyperparameters leads to the MLE (α̂0, α̂1, β̂0, β̂1)

defined in (2.8). Evaluating the likelihood (2.10) at the estimated hyperparameters, we

define the goodness-of-fit part for our model selection criterion as

JZ = logP(X, Z|α̂0, α̂1, β̂0, β̂1)

=
%

d∈{0,1}

L(α̂d, β̂d|X, Z) + log
Γ(
!K

i=1 τi)
2K

i=1 Γ(ni + τi)

Γ(n+
!K

i=1 τi)
2K

i=1 Γ(τi)
,

(2.11)

where L(α̂d, β̂d|X, Z) is as in (2.6) and (2.7) for d = 0, 1. Following the ICL-like (integrated

complete likelihood) criterion in Mariadassou et al. (2010), we add two penalty terms to
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control model complexity: The first term corresponds to a penalty on the number of param-

eters in π and the second the number of parameters in Θ. Therefore, our model selection

criterion is to choose the partition

Ẑ = argmax
Z∈{Z1,...,Zm}

)
JZ − 1

2

3
(K − 1) log n+

K(K + 1)

2
log

n(n− 1)

2

4*
, (2.12)

where K is the number of clusters defined by the partition Z. As we have mentioned in the

introduction, there are quite a few graph clustering algorithms, and the performance of many

of them is highly dependent on the input number of partitions. Our criterion for selecting

the number of clusters applies to any method used for the node clustering step, and thus it

protects our method from inferior input node clustering results. The ICL model selection

criterion (2.12) is indeed an approximation to the marginal likelihood P(X|K) (Mariadassou

et al., 2010). The joint likelihood depends on the EB estimates of the hyperparameters,

which is unique to our hierarchical model. While the VBEM criterion (Latouche et al.,

2012) uses a standard SBM likelihood without a hierarchical structure nor estimation of

priors. We can easily apply other penalty terms in various model selection criteria to our

likelihood, and fully expect similar behavior in terms of selecting the number of clusters,

since most of them approximate in some way the marginal likelihood or the Bayes factor.

2.1.3 Graphon estimate

Now we assume that the true model is a graphon as in (1.1). We use an SBM with K blocks

as an approximation to the graphon, i.e., we approximate W (u, v) by a piecewise constant

function: We divide the unit interval [0, 1] into K pieces based on π so that the length of

the k-th piece is πk. Let the endpoints of these pieces be ck =
!k

i=1 πi for k = 1, · · · , K and

put c0 ≡ 0. Then the graphon function defined on [0, 1]× [0, 1] is approximated by a K ×K

blockwise constant function,

5W (u, v) = θab if (u, v) ∈ [ca−1, ca)× [cb−1, cb).

To estimate a graphon W , we first run a clustering algorithm to estimate a partition
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Z and then apply the empirical Bayes method to obtain θ̂EBab . Let nk denote the size of

the the k-th cluster of vertices. We calculate its proportion to estimate πk by π̂k = nk/n

and compute the cumulative proportion ĉk =
!k

i=1 π̂i for k = 1, · · · , K. Define a binning

function,

bin(x) = 1 +
K%

k=1

I(ck ≤ x), (2.13)

and the graphon W is then estimated by

6W (x, y) = θ̂EBbin(x),bin(y), x, y ∈ [0, 1). (2.14)

As shown by Bickel and Chen (2009), the graphon is not identifiable in the sense that

any measure-preserving transformation on [0, 1] will define an equivalent random graph.

Following their method, imposing the constraint that

g(x) =

( 1

0

W (x, y)dy

is nondecreasing leads to identifiability. For SBM approximation, the corresponding con-

straint is that

g(l) =
K%

k=1

πkθlk (2.15)

is nondecreasing in l. This constraint can be satisfied by relabeling the K clusters of nodes.

As for the SBM, selecting a proper number of clusters K is important for the estimation

of a graphon. We will apply the same model selection criterion (2.12) to choose the optimal

partition Z and the associated K among a collection of partitions.

2.2 Results on simulated graphs

In this section we present numerical results on graphs simulated from stochastic blockmodels

and graphon functions. We compare our method with other existing methods in terms
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of estimating connection probabilities (Section 2.1.1) and model selection for choosing the

number of clusters (Section 2.1.2).

For stochastic blockmodels, we compare our estimated connectivity matrix -ΘEB (2.9) to

the maximum likelihood estimate -ΘMLE as in (2.2) and the variational Bayes inference -ΘVBEM

from Latouche et al. (2012). Variational Bayes inference provides a closed-form approximate

posterior distribution for (π,Θ) by minimizing the KL divergence between an approximated

and the underlying distributions of [Z | X]. It constructs point estimates for the parameters

based on EM iterations. We compute the mean squared error (MSE)

MSE =
1

n(n− 1)

n%

i=1

%

j ∕=i

(-Θ′
ij −Θ′

ij)
2 (2.16)

of an estimated n × n connection probability matrix -Θ′. Here, Θ′ = (Θij)n×n is the true

connection probability matrix among the n nodes, i.e. Θ′
ij = θab if Z

∗(i) = a and Z∗(j) = b

for i, j = 1, . . . , n, where Z∗ is the true partition, and -Θ′
ij = θ̂ab if Z(i) = a and Z(j) =

b. For graphons, 6W (x, y) is estimated by SBM approximation as in Section 2.1.3, and

correspondingly the MSE is calculated as

MSE =

(( 1

0

(W (x, y)− 6W (x, y))2dxdy. (2.17)

Due to the nonidentifiability of graphons, the MSE is calculated after relabeling node clusters

based on the constraint (2.15) to make 6W comparable to W .

We compare our model selection criterion (2.12) to the variational Bayes method devel-

oped by Latouche et al. (2012) (VBEM) and the cross validation risk of precision parameter

(CVRP) in Airoldi et al. (2013). The CVRP is defined as

JCVRP(K) =
2K

n− 1
− (n+ 1)K

n− 1

K%

i=1

(
ni

n
)2, (2.18)

where ni is the number of vertices in group i. Then, the number of clusters K is selected by

minimizing the risk JCVRP, i.e.

K̂CVRP = argmin
K

JCVRP(K). (2.19)

We use JEB, JVBEM and JCVRP to denote the three criteria above respectively.
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2.2.1 Results on SBMs

We designed a constrained SBM that generates affiliation networks, i.e. two vertices within

the same community connect with probability λ, and from different communities with prob-

ability ε < λ. We also added a parameter ρ ∈ (0, 1] to control the sparsity of the graph. The

corresponding true connectivity matrix is

Θ∗ = ρ

7

8888889

λ ε · · · ε

ε λ · · · ...
...

. . . ε

ε · · · ε λ

:

;;;;;;<

K∗×K∗

,

where K∗ is the number of communities.

To generate dense graphs (model 1), we set λ = 0.9, ε = 0.1, and ρ = 1. We generated

graphs with n = 200 vertices and the number of communities K∗ ∈ {10, 11, . . . , 18}. For

each choice of K∗, we generated 100 networks independently. For each network, all the nodes

were randomly divided into K∗ clusters with equal probability 1/K∗, and then connected

according to the connectivity matrix Θ∗ and their cluster labels. Note that the simulated

node clusters had very different sizes, ranging between 7 and 35, due to the high variance in

block size.

We also used λ = 0.9, ε = 0.1 and ρ = 0.2 to generate sparse graphs (model 2), while

keeping K∗ = 10 but changing the network size n ∈ {200, 250, 300, 350, 400, 450}. For each

network size n, we followed the same procedure as in model 1 and generated 100 networks

independently.

For a simulated graph, we applied the variational Bayes algorithm (Latouche et al., 2012)

with an input number of clusters K = 1, . . . , 20, from which we obtained K communities

and a Bayesian estimate -ΘVBEM(K) of the connecting probabilities among the K×K blocks.

Given the estimated communities by the variational Bayes algorithm, we found -ΘMLE(K)

as in (2.2) and our empirical Bayes estimate -ΘEB(K) as in (2.9) and compared them to the
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VBEM estimate. As the estimates were functions of K, so were their MSEs as defined in

(2.16). Let MSEMLE(K) be the mean squared error of the MLE by plugging -ΘMLE(K) into

(2.16), where each element in -Θ′
ij is given by -ΘMLE(K) and the partition Z. Then we define

K̃ as the number of clusters that minimizes the MSE of the MLE, i.e.

K̃ = argmin
K

MSEMLE(K) (2.20)

over the input range of K. As our focus is on the estimation of the connectivity matrix, here

the MSE of parameter estimates is the gold standard criterion. Although degree distributions

and sub-graph patterns are very useful in evaluating a network model, they are less relevant

to our contribution since we are not proposing a new model but instead improving the

estimation accuracy of existing models.

For the 100 graphs generated under the same matrix Θ∗, they share the same K∗ while

each one of them defines a corresponding K̃. Both K∗ and K̃ were used in our comparisons

on model selection criteria for the number of blocks. In particular, for a general graphon,

K∗ may not be clearly defined and in such a case, K̃ serves as the reference for comparison.

For dense graphs (model 1), as shown in Figure 2.3, we compared the MSEs (2.16) of

the three estimates of Θ to the true connectivity matrix and presented the ratio of the MSE

of our EB estimate to the MSEs of the MLE and VBEM estimate. In the figure the true

number of blocks K∗ (marked in red) ranges from 10 to 18 and the results for graphs with

each K∗ are shown in a panel. For the 100 graphs generated under each K∗, the MSE ratios

of the estimates -ΘMLE and -ΘVBEM over -ΘEB are plotted against the input number of blocks

K chosen in the clustering step. For dense stochastic blockmodels, the accuracy of MLE

and that of VBEM were close, whereas EB gave better estimates for almost all K values, i.e.

MSE ratios were smaller than 100%. We see a significantly smaller MSE ratio when K is

close to K∗, especially when K∗ is relatively small. For example, the MSE ratios EB/MLE

and EB/VBEM were lower than 10% at K = K∗ when K∗ = 10, . . . , 15. When K∗ went

bigger, such as K∗ = 17, 18 in the simulation, the K̃ for most of the graphs was less than
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K∗, and the MSE ratios reached a minimum level at some K < K∗, which was slightly above

50%.

Table 2.1 presents the model selection results on the simulated dense graphs from model

1, among the K̂ chosen by (a) CVRP, (b) VEBM, and (c) EB. Each row in a table reports

the frequency of K̂ across 100 graphs. The last two columns report two mean absolute

deviations, the minimum of which among the three methods is in boldface for each K∗. We

define EK∗ and EK̃ as the average deviation of the selected number of blocks K̂ from K∗

and from K̃ respectively, i.e.

EK∗ =
1

M

M%

t=1

|K̂t −K∗|, EK̃ =
1

M

M%

t=1

|K̂t − K̃t|, (2.21)

where t ∈ {1, . . . ,M} is the index of the graphs generated under the same Θ∗, K̂t is the

estimated number of clusters by a model selection criterion, and K̃t is the K̃ defined by (2.20)

for the t-th graph. When K∗ was small, such as 10 ≤ K∗ ≤ 13, JVBEM and JEB gave the

same results, where both accurately selected K̂ = K∗ as the optimal number of blocks. As

K∗ increased, JEB outperformed JVBEM, and was comparable to JCVRP in terms of EK∗ . In

fact, for a limited graph size n = 200 here, the average number of vertices in each block will

be smaller as K∗ increases, making it hard for small communities to be detected. Therefore,

K̃ may better reflect the number of clusters that fit well the observed network. Considering

this, we see JEB had both smaller EK∗ and EK̃ than JVBEM in general, which indicates the

superiority of our model selection method. JCVRP showed relatively stable performance in

terms of EK∗ and EK̃ , but the results were not satisfactory for small K∗. Figure 2.4 and

Table 2.2 provides the values of the model selection criteria. In the figure, the true number

of blocks K∗ (marked as red) ranges from 10 to 18 and the results for graphs with each K∗

are shown in a panel. JCVRP, JVBEM, JEB are all standardized to [0, 1], and JCVRP is taken

negative, thus the model is selected by the maximizer of each criterion. For the 100 graphs

generated under each set of parameters, the values of three criteria are plotted against the

input number of blocks K = 1, . . . , 20 used in clustering. The number of clusters selected by
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Figure 2.3: MSE ratios in model 1 simulation.
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Table 2.1: Model selection comparison for model 1.

(a) CVRP

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃

10 99 1 0.99 0.99

11 100 1.00 1.00

12 3 96 1 1.02 1.02

13 67 33 0.67 0.67

14 6 93 1 1.06 1.06

15 23 77 1.23 1.26

16 2 13 85 1.17 1.31

17 1 29 70 1.31 1.33

18 3 87 10 1.93 1.27

(b) VBEM

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃

10 100 0.00 0.00

11 100 0.00 0.00

12 100 0.00 0.00

13 100 0.00 0.00

14 4 96 0.04 0.45

15 1 2 35 62 0.39 0.85

16 1 28 53 18 1.12 1.26

17 6 53 35 6 2.59 2.61

18 1 7 32 44 16 3.33 2.67

(c) EB

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃

10 100 0.00 0.00

11 100 0.00 0.00

12 100 0.00 0.00

13 100 0.00 0.00

14 100 0.00 0.00

15 1 99 0.01 0.04

16 30 70 0.30 0.44

17 33 67 1.33 1.35

18 1 95 4 1.97 1.31
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EB is highlighted by the dashed lines. In the table, the average MSE of the estimates -Θ to

Θ by the three methods of the 100 graphs generated under different K∗ are shown in each

row. The input number of clusters K ranges from 10 to 18, for each K∗ and K the minimal

MSE among three methods is boldfaced.

In summary, from the simulation results on dense graphs (model 1), EB has demonstrated

the highest estimation accuracy, especially when the clustering algorithm finds the true

number of communities, and the EB model selection criterion generally selects the best

model.

Detecting the true number of blocks for a sparse graph (model 2) is harder because of

fewer edge connections in a block. Thus, we fixed K∗ = 10 and varied the network size n

from 200 to 450. In terms of estimation accuracy, Figure 2.6 illustrates the results for graphs

with each network size n are shown in a panel, plotted in the same format as Figure 2.3.

The figure shows that our EB estimate had better performance than MLE in almost all the

cases (except when K = 1 under which the two estimates were identical), and the MSE

ratio kept decreasing as K increased. In particular, for K = K∗ = 10, the MSE ratio of

EB over MLE was about 95%. If the number of blocks is overestimated (say K > 15), the

MSE ratio can drop to < 90%. When compared to VBEM, for a small network size n and

a small number of blocks K, EB estimates can be slightly less accurate (< 5% increase in

MSE), but as K increases and becomes close to K∗, the MSE ratio goes down to the same

level as that of EB over MLE. As reported in Table 2.3, for all the cases JEB achieved the

best model selection performance with the smallest EK∗ and EK̃ among the three methods.

This highlights the usefulness of our model selection criterion for the more challenging sparse

graph settings. More details are shown in Table 2.4 and Figure 2.5, which are in the same

formats as Table 2.2 and Figure 2.4.
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Figure 2.4: Values of model selection criteria in model 1 simulation.
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Table 2.2: MSE values for model 1.

K∗ \ K 9 10 11 12 13 14 15 16 17 18 19 20

10

MLE 304 25 35 46 56 67 77 93 109 120 131 148 ×10−5

VBEM 304 25 36 46 55 66 76 90 106 116 127 143 ×10−5

EB 289 2 32 42 50 59 65 75 89 94 105 117 ×10−5

11

MLE 538 249 30 41 52 60 72 85 96 112 123 139 ×10−5

VBEM 538 249 31 41 52 60 72 85 95 111 120 136 ×10−5

EB 522 229 3 34 54 56 66 76 83 94 100 111 ×10−5

12

MLE 683 417 215 35 44 55 67 79 89 99 112 130 ×10−5

VBEM 683 417 216 36 45 56 67 79 89 100 112 129 ×10−5

EB 668 398 192 3 31 54 70 76 81 86 97 107 ×10−5

13

MLE 1012 708 434 212 41 51 62 75 85 98 111 128 ×10−5

VBEM 1012 708 434 212 42 52 63 76 86 99 112 128 ×10−5

EB 996 689 410 183 3 36 65 85 91 100 103 111 ×10−5

14

MLE 921 692 487 305 167 48 60 71 81 91 102 114 ×10−5

VBEM 921 692 488 305 168 49 61 73 82 93 104 116 ×10−5

EB 906 673 464 276 133 3 43 65 79 94 102 114 ×10−5

15

MLE 969 733 543 389 262 149 57 68 78 88 99 114 ×10−5

VBEM 969 733 543 390 263 150 58 70 81 91 102 116 ×10−5

EB 953 712 518 359 227 108 5 43 69 89 104 120 ×10−5

16

MLE 1044 842 653 495 361 237 137 70 77 89 101 114 ×10−5

VBEM 1044 842 653 495 362 238 138 72 80 92 104 117 ×10−5

EB 1028 822 629 466 326 197 91 16 43 74 97 115 ×10−5

17

MLE 1132 907 705 541 388 264 190 124 124 125 137 146 ×10−5

VBEM 1132 907 705 541 389 265 191 125 126 128 140 149 ×10−5

EB 1116 887 681 512 354 224 143 70 82 102 129 144 ×10−5

18

MLE 1097 905 733 583 458 348 247 161 137 142 141 164 ×10−5

VBEM 1097 905 733 583 458 348 248 162 139 144 144 167 ×10−5

EB 1082 886 709 553 423 307 199 107 81 96 104 143 ×10−5
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Figure 2.5: Values of model selection criteria in model 2 simulation.
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Figure 2.6: MSE ratios in model 2 simulation.
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Table 2.3: Model selection comparison for model 2.

(a) CVRP

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃

200 100 9 2.84

250 100 9 6.86

300 95 1 4 8.56 8.84

350 71 1 14 14 6.55 8.17

400 37 28 35 3.61 5.21

450 17 11 71 1 1.65 2.50

(b) VBEM

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃

200 28 51 19 2 8.05 2.18

250 8 30 42 13 6 1 6.16 4.04

300 1 11 31 37 20 4.36 4.59

350 14 43 36 7 2.64 4.22

400 3 34 47 14 1 1 1.27 2.83

450 1 3 37 52 6 1 0.54 1.25

(c) EB

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃

200 6 12 24 29 24 4 1 5.31 2.09

250 6 21 38 21 12 2 3.82 2.20

300 1 13 32 35 18 1 2.41 2.74

350 2 31 47 20 1.15 2.81

400 10 38 48 3 1 0.63 2.13

450 2 13 78 7 0.24 0.97
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Table 2.4: MSE values for model 2.

n \ K 1 2 3 4 5 6 7 8 9 10 11 12

200

MLE 229 225 225 229 236 238 247 256 266 269 273 283 ×10−5

VBEM 229 221 219 222 225 230 236 240 251 255 260 269 ×10−5

EB 229 224 224 227 233 233 239 243 250 250 251 258 ×10−5

250

MLE 230 217 204 192 186 182 184 187 192 193 202 206 ×10−5

VBEM 230 215 201 188 181 176 177 181 184 186 194 198 ×10−5

EB 230 217 203 192 185 180 180 181 182 182 187 190 ×10−5

300

MLE 231 208 186 165 147 130 121 120 118 124 128 133 ×10−5

VBEM 231 208 185 164 145 128 119 117 114 120 123 128 ×10−5

EB 231 208 186 165 147 130 120 117 113 117 119 123 ×10−5

350

MLE 231 202 175 151 129 110 94 81 74 75 77 77 ×10−5

VBEM 231 202 174 150 128 109 93 80 73 73 76 76 ×10−5

EB 231 202 175 150 128 110 93 80 73 72 73 72 ×10−5

400

MLE 232 201 171 141 117 95 77 61 49 44 43 45 ×10−5

VBEM 232 201 170 141 117 95 77 60 48 44 42 44 ×10−5

EB 232 201 170 141 117 94 77 60 47 43 41 42 ×10−5

450

MLE 232 199 167 139 114 91 70 52 36 25 26 28 ×10−5

VBEM 232 199 167 139 114 91 70 52 36 25 26 27 ×10−5

EB 232 199 167 139 114 91 70 51 35 24 24 26 ×10−5
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2.2.2 Results on graphon models

Following the same design as in Latouche and Robin (2016), we choose a graphon function

W (x, y) = ρλ2(xy)λ−1

with two parameters λ ≤ 1/
√
ρ. Here, ρ controls the sparsity of the graph, as the expected

number of edges is proportional to ρ, and λ controls the concentration of the degrees, so that

more edges will concentrate on fewer nodes if λ is large. We chose ρ ∈ {10−1, 10−1.5, 10−2}

and λ ∈ {2, 3, 5}, and simulated graphs of size n = 100 (model 3) and of size n = 316

(≈ 102.5) (model 4). For each network, we used SBM approximation (Section 2.1.3) with

the number of clusters K = 1, 2, . . . , 10. Using (2.20), we also defined K̃ as the number of

blocks that minimizes the MSE (2.17) of the MLE.

The MSE ratios between our EB estimate and the other two competing methods, MLE

and VBEM, are shown in Figure 2.7 for graphs of size n = 100 and Figure 2.8 for graphs of

size n = 316. In general, our EB method achieved higher accuracy with smaller MSEs than

the other two methods. For most cases, our EB estimate was more accurate than the MLE,

with the MSE ratios between 60% and 100%. Compared to VBEM, our EB estimate achieved

substantially smaller MSEs with ratios below 20%. For both graph sizes, the improvement

of the EB method over the other two competitors was especially significant when the graph

was sparse (ρ small).

The model selection results are reported in Table 2.5. In the table the reported is the

mean absolute deviation EK̃ for graphs generated under each combination of (ρ,λ). The

minimal EK̃ among the three methods is highlighted in boldface. Since the true number

of communities under the graphon model is not clearly defined, we used K̃ as the ground-

truth to evaluate model selection performance. For both n = 100 and n = 316, the mean

absolute deviation EK̃ (2.21) of the K̂ selected by our criterion JEB was either the smallest

or was very close to the smallest value among the three methods. While EB and VBEM

were generally comparable, CVRP showed unstable performance as its EK̃ could be much
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Figure 2.7: MSE ratios in model 3 simulation with graph size n = 100.
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Table 2.5: Model selection comparison for graphons.

n = 100 n = 316

CVRP VBEM EB CVRP VBEM EB

ρ = 10−1 λ = 2 1.16 0.96 1.11 4.92 2.55 2.38

λ = 3 5.42 1.54 2.03 5.8 1.92 1.91

λ = 5 3.88 1.28 1.63 7.43 1.66 1.50

ρ = 10−1.5 λ = 2 2.01 1.86 1.83 4.76 3.72 3.70

λ = 3 1.81 1.02 0.95 3.93 2.02 1.96

λ = 5 2.05 1.03 0.98 4.58 1.60 1.79

ρ = 10−2 λ = 2 0.86 0.85 0.86 2.56 2.24 2.25

λ = 3 1.41 1.45 1.48 1.48 1.35 1.31

λ = 5 1.52 1.61 1.7 2.77 1.72 1.67

larger than the other two methods in some cases (such as ρ = 10−1 and ρ = 10−1.5).

Similar to the illustration of the SBM results, under the case where the graph size (number

of nodes) n equals 100, Table 2.6 demonstrates the average MSE of the estimates -Θ to Θ∗

by the three methods. The average values of the 100 graphs generated under different set

of parameters ρ and λ are shown in each row. The input number of clusters K ranges

from 1 to 10, for each ρ, λ and K the minimal MSE among three methods is boldfaced.

Figure 2.9 shows the model selection curves. With the graphon W (x, y) = ρλ2(xy)λ−1,

ρ ∈ {10−1, 10−1.5, 10−2} and λ ∈ {2, 3, 5}, the results for graphs with each set of parameters

ρ and λ are shown in a panel. JCVRP, JVBEM, JEB are all standardized to [0, 1], and JCVRP

is taken negative, thus the model is selected by the maximizer of each criterion. For the

100 graphs generated under each set of parameters, the values of three criteria are plotted

against the input number of blocks K = 1, . . . , 10 used in clustering. The number of clusters

selected by EB is highlighted by the dashed lines. Table 2.7 and Figure 2.10 provide the

details of the results when n = 316 in the same way.
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Table 2.6: MSE values for model 3.

ρ λ 1 2 3 4 5 6 7 8 9 10

10−1

2

MLE 80 26 28 34 43 47 57 70 80 91 ×10−4

VBEM 81 28 31 46 65 78 92 103 114 120 ×10−4

EB 80 26 26 31 38 40 46 54 58 62 ×10−4

3

MLE 229 78 47 50 57 62 73 83 94 104 ×10−4

VBEM 248 109 75 90 110 130 147 163 177 191 ×10−4

EB 229 77 47 48 53 58 66 73 79 84 ×10−4

5

MLE 680 247 161 144 144 148 153 164 171 184 ×10−4

VBEM 806 529 451 452 483 517 555 581 612 638 ×10−4

EB 680 248 161 145 144 145 150 158 163 171 ×10−4

10−1.5

2

MLE 8 11 13 14 17 18 21 22 24 25 ×10−4

VBEM 10 20 59 98 133 169 204 234 269 305 ×10−4

EB 8 11 13 13 15 14 14 15 16 16 ×10−4

3

MLE 23 13 16 19 24 28 32 34 40 42 ×10−4

VBEM 32 25 63 102 132 166 202 236 265 304 ×10−4

EB 23 13 15 15 18 19 21 21 23 23 ×10−4

5

MLE 68 30 32 35 40 45 54 64 70 88 ×10−4

VBEM 127 132 166 213 258 301 339 369 415 452 ×10−4

EB 68 30 30 31 33 36 39 42 45 49 ×10−4

10−2

2

MLE 82 190 239 336 346 429 425 442 498 490 ×10−6

VBEM 58 795 1525 2183 2821 3461 4098 4705 5248 5799 ×10−5

EB 82 187 185 232 273 224 219 192 202 192 ×10−6

3

MLE 23 44 53 58 68 71 68 73 74 67 ×10−5

VBEM 127 889 1644 2397 3103 3814 4509 5164 5774 6413 ×10−5

EB 23 43 47 48 53 52 52 53 54 43 ×10−5

5

MLE 68 136 153 160 173 165 174 171 160 166 ×10−5

VBEM 413 1129 1998 2941 3804 4667 5413 6215 6943 7586 ×10−5

EB 68 142 136 143 137 124 132 123 123 118 ×10−5
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Figure 2.9: Values of model selection criteria in model 3 simulation.
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Table 2.7: MSE values for model 4.

ρ λ 1 2 3 4 5 6 7 8 9 10

10−1

2

MLE 782 240 120 77 82 84 87 114 112 121 ×10−5

VBEM 783 244 122 78 121 177 228 270 327 374 ×10−5

EB 782 240 120 76 77 78 81 99 98 103 ×10−5

3

MLE 225 69 33 20 15 14 15 15 18 18 ×10−4

VBEM 230 82 44 29 23 26 31 36 42 48 ×10−4

EB 225 69 33 20 15 14 14 14 16 16 ×10−4

5

MLE 674 230 131 103 91 85 83 83 84 85 ×10−4

VBEM 719 379 268 242 234 232 234 241 248 257 ×10−4

EB 674 230 131 103 91 85 83 83 83 84 ×10−4

10−1.5

2

MLE 78 24 21 22 28 32 39 45 52 78 ×10−5

VBEM 80 26 32 138 242 342 450 512 623 686 ×10−5

EB 78 24 20 21 23 25 27 32 31 37 ×10−5

3

MLE 225 68 33 37 43 52 65 84 96 125 ×10−5

VBEM 244 102 62 151 248 323 416 455 517 559 ×10−5

EB 225 68 33 35 38 44 48 56 60 67 ×10−5

5

MLE 674 213 102 73 79 93 106 119 151 180 ×10−5

VBEM 853 641 506 472 577 680 785 854 903 947 ×10−5

EB 674 213 102 72 73 79 86 96 112 125 ×10−5

10−2

2

MLE 8 8 15 15 17 18 20 22 20 18 ×10−5

VBEM 10 20 176 305 476 626 778 915 1065 1250 ×10−5

EB 8 8 12 11 13 12 13 12 14 12 ×10−5

3

MLE 23 9 16 20 21 25 33 29 33 31 ×10−5

VBEM 33 19 168 325 471 656 792 994 1121 1301 ×10−5

EB 23 9 11 11 14 14 15 15 18 17 ×10−5

5

MLE 67 23 35 39 44 60 70 88 105 130 ×10−5

VBEM 124 120 196 358 523 655 829 984 1084 1277 ×10−5

EB 67 23 23 26 29 31 33 35 40 42 ×10−5
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Figure 2.10: Values of model selection criteria in model 4 simulation.
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We briefly summarize a few key observations from the simulation studies. It is seen that

EB estimates had smaller MSEs than the other two methods in most of the cases above.

For the dense SBM (model 1), the accuracy of EB estimate was much higher. The relative

low variance in connectivity across different blocks led to higher degree of shrinkage and

information sharing among the EB estimates. For the sparse SBM (model 2) and graphon

models (model 3 and 4), EB showed moderate improvements over the two competing methods

in general. When the graph is sparse, EB can be much more accurate than VBEM, as shown

in Figures 2.7 and 2.8. As for model selection, EB generally selected the number of clusters

K̂ that was closer to K∗ and K̃ in all the models above, which demonstrates the usefulness

of our hierarchical model for deriving likelihood-based model selection criterion.

2.2.3 Alternative clustering and complexity

Our results and numerical comparisons in section 2.2.1 and section 2.2.2 were conducted to

demonstrate the uniform accuracy improvement: By varying the input number of clusters

so some cluster results could be very inaccurate, our EB estimates reached smaller MSEs

for almost all the clustering results. To further demonstrate this point, we also applied our

EB estimates after spectral clustering. As shown in Figure 2.11, our method improved the

parameter estimation accuracy as well: The EB/MLE MSE ratio shows a similar pattern as

in Figure 2.3 for both (a) dense and (b) sparse SBMs (the same settings as in Figure 2.3,

K∗ = 10).

The computation of our EB method is only the maximization of the likelihood (2.6, 2.7).

The objective is the sum of two separate functions. Thus, we just need to maximize two

bi-variate functions, regardless of the problem size (n,K). In general, the computation time

is negligible compared to the graph clustering step. Table 2.8 reports the average running

times (in seconds) of spectral clustering (TC) and our EB estimation (TE) by BFGS for

various network size n and number of communities K, on a single 2.6 GHz Intel i7 core.
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Figure 2.11: MSE ratios in spectral clustering simulation.

Table 2.8: Simulation running time.

(n,K) (100, 10) (1000, 10) (1000, 100) (5000, 10) (5000, 100) (10000, 500)

TC 0.06 0.7 4.4 6.7 149 2696

TE 0.08 0.1 0.2 0.6 1.9 11.6

2.3 Real data examples

In this section, we apply our empirical Bayes method on two real-world networks, Emails

network data and French blogs data. The main reason we chose these two datasets is

their well-annotated memberships. For real-world networks, we do not have the underlying

connectivity matrix as the ground truth, which makes it difficult to evaluate estimation

accuracy. However, for a network with known node labels that indicate their community

memberships (the “ground truth”), the true partition Ztrue of the vertices is given. Thus, we
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will develop accuracy metrics based on Ztrue to compare different methods. On the real data,

besides MSE, we also used cross-validation as an objective evaluation criterion (Figure 2.12

and Figure 2.13).

2.3.1 Email-Eu-core network

The Email-Eu-core network (Eucore) is a directed network generated using email data from

a large European institute, consisting of incoming and outgoing communications between

members of the institute from 42 departments. Leskovec and Krevl (2014) organized the

data and labeled which department each individual node belongs to, i.e. the “ground-truth”

community memberships. The network has n = 1005 nodes and 25,571 directed edges, which

we converted to undirected ones by removing their orientations. We applied VBEM to detect

communities with an input number of clusters K = 30, 31, . . . , 50.

Given the known community memberships, we constructed a connectivity matrix Θ∗ =

(θ∗ab)K∗×K∗ with entries

θ∗ab = XB
ab/nab, a, b ∈ {1, . . . , K∗}, (2.22)

where XB
ab is the number of edges observed in block (a, b), nab = |Z−1

true(a)| · |Z−1
true(b)| for a ∕= b

and naa = |Z−1
true(a)| · (|Z−1

true(a)| − 1)/2, and K∗ is the true number of communities. Then

the MSE (2.16) between an estimate -Θ(K) and Θ∗ (2.22) were used as an accuracy metric

to compare estimated connectivity matrices, where K is the input number of clusters.

We also used test data likelihood as another comparison metric. We randomly sampled

70% of the nodes, denoted by Vo, as observed training data, and estimated a connectivity

matrix -Θ = (θ̂ij)K∗×K∗ from their edge connections and true memberships. Denote by Vt

the test data nodes not used in the estimation. Recall that Xij is the (i, j)th element in the

adjacency matrix of the network. Then test data likelihood Ltest was calculated according
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to (1.2) given the -Θ estimated by a method,

Ltest =
+

i∈Vo,j∈Vt

θ̂Xij
zizj

(1− θ̂zizj)
1−Xij ×

+

k<j∈Vt

θ̂
Xjk
zjzk(1− θ̂zjzk)

1−Xjk
, (2.23)

where zi, zj, zk are the known labels of the nodes. Note that Xij ∈ {0, 1} is the edge

connection between a vertex i in the training data and a vertex j in the test data, while

Xjk is the edge connection between two vertices j and k in the test data. We repeated this

procedure 100 times independently to find the distribution of test data likelihood Ltest across

random sample splitting of the n nodes into Vo and Vt.

The MSE ratios of EB over the other two competing methods were calculated and plotted

against K in Figure 2.12(a), which shows the ratio of MSE of EB estimate over that of MLE

and VBEM for different values of K. It is clear that EB achieved smaller MSE than the

other two methods for all values of K. The MSE ratios ranged from 60% to 90%. When

the input number of communities K was close to or greater than K∗ = 42, the improvement

of EB over the competing methods became more substantial. Figure 2.12(b) shows the

box-plot of test data log-likelihood values across 100 random sample splitting. From the

box-plots, we see that the test data likelihood of EB was significantly higher than the other

two estimates. These comparisons confirm that EB estimates were more accurate than the

other two competing methods in terms of both metrics.

We further applied the three model selection methods, CVRP, VBEM and EB, on the

whole network, and they gave estimates K̂ = 31, 43 and 37, respectively. The K̂ by VBEM

and EB were both reasonably close to the ground-truth of K∗ = 42.

2.3.2 Political blogs

Next we consider the French political blogosphere network from Latouche et al. (2011). The

network is made of 196 vertices connected by 2864 edges. It was built from a single day

snapshot of political blogs automatically extracted on October 14th, 2006 and manually

classified by the “Observatoire Presidentiel” project (Zanghi et al., 2008). In this network,
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Figure 2.12: Results for Email-Eu-core network analysis.
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Figure 2.13: Results for French blogsphere network analysis.
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nodes correspond to hostnames and there is an edge between two nodes if there is a known

hyperlink from one hostname to the other. The four main political parties that are present

in the data set are the UMP (french republican), liberal party (supporters of economic-

liberalism), UDF (moderate party), and PS (french democrat). However, in the dataset

annotated by Latouche et al. (2011) there are K∗ = 11 different node labels in total, since

they considered analysts as well as subgroups of the parties.

We applied the same analyses as in Section 2.3.1 with input K = 1, . . . , 20. The MSE

and test data likelihood results are shown in Figure 2.13. When K was close to or greater

than K∗ = 11, EB provided more accurate estimates than both MLE and VBEM with

smaller MSEs. Similarly, the box-plots in Figure 2.13(b) demonstrate that the test data

log-likelihood calculated with EB estimates was significantly higher than the two competing

methods. In terms of model selection, CVRP, VBEM and EB estimated K̂ = 1, 12 and 10

respectively, while the true K∗ = 11. Again, the latter two criteria worked quite well on this

network.
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CHAPTER 3

Causal discovery from multiple populations

This chapter introduces a method for causal discovery from observational data generated

from two populations. In Section 3.1, we introduce our intuition behind the project, which

is based on a phenomenon that gene regulatory strength differs by their cellular states.

In Section 3.2, we build a model to encode this phenomenon and deal with the situation

where data were generated under multiple populations that share the same graph structure.

We demonstrate and prove the effect of edges with different weights across populations on

coefficients of regression among nodes in networks. In Section 3.3, based on the observed

pattern of our defined difference indicator matrix obtained from node wise regression, we

propose an algorithm to discover causal relations and identify differential edges in cpDAGs.

Finally we analyze the performance of our algorithm on simulated and real world datasets

in Section 3.4.

3.1 Gene regulatory — intuition behind the work

High-throughput gene expression profiling has enabled the study of gene interactions and

activities. Different types of techniques, including microarray (Kuwabara, 2003; Passador-

Gurgel et al., 2007), RNA-sequencing (Mortazavi et al., 2008; Nagalakshmi et al., 2010;

Garber et al., 2011), single cell sequencing (Pennisi, 2012; Wen and Tang, 2018; Tang et al.,

2019) have generated an enormous amount of data on genome and transcriptome profiling.

These data have also made the inference of large-scale gene regulatory networks (GRNs)
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possible. Many different methods were developed to enhance the understanding of cell

growth, division, differentiation and development (EH, 2012; Chu et al., 2016), as well as

pathological mechanism (Madhamshettiwar et al., 2012; Emmert-Streib et al., 2014; Hu et al.,

2016). A GRN is a network where each vertex represents a type of gene, and regulators of

gene expression are connected to target genes by interaction edges. A GRN can be either

undirected or directed, and in our case we focus on directed networks, where the regulators

are the parents of the edges and target genes are the children. The edges can also bear

weights to specify the level of effect of a gene on another. Van den Broeck et al. (2020) has

reviewed the recent developments on GRN inference.

Gene functions and regulates other genes in the network via gene expression. The gene

expression process, summarized by Crick (1958, 1970), is very complicated and has been stud-

ied by many researchers for decades. The whole process includes several different phases,

starting from transcription and ending with producing gene product (often proteins). Tran-

scription is the process of copying a segment of DNA (contains gene sequence) into RNA.

The RNA that can encode protein is called messenger RNA (mRNA). Later in the transla-

tion process, mRNA is decoded to produce a specific amino acid chain, which later folds into

an active protein. Meanwhile, one of the major components of the transcription process is

transcription factors, which are proteins and hence are products of different genes. Conse-

quently, there is an indirect connection between the expression level of genes. Figure 3.1(a)

(Huynh-Thu and Sanguinetti, 2019) gives a schematic of a GRN, and shows how the GRN

is used to model the mechanism. In the figure, gene A directly regulates gene B, and both

genes express proteins that have combinatorial regulation on gene C via complex formation.

The abstracted structure of this regulatory system is shown by the directed network in the

right part of the figure.

Li (2002) has proposed a liquid association theory about genome-wide coexpression dy-

namics, i.e. the correlation of two genes may depend on the constantly varying cellular

state and other gene expression level. The author analyzed the yeast microarray data and
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Figure 3.1: An illustration of gene regulatory network (GRN) and differential edge.
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revealed how the correlation between genes are found to change when the expression levels

are different in various cell types. Chu et al. (2016) analyzed the transcriptomes of hu-

man embryonic stem cell-derived lineage-specific progenitors by single-cell RNA-sequencing

(scRNA-seq), and showed that genes may have different regulatory strength during cell de-

velopment and differentiation. To summarize the phenomenon in the network, as shown in

Figure 3.1(b), when two types of cells share the regulatory scheme among some genes, the

regulatory strength, represented as edge weight in the graph, varies in different cells or cell

types.

This phenomenon of GRN can be generalized to a situation where the same network

has various edge weights or functions between the vertices under different circumstances.

When the data is known to be generated from different populations, the observed data from

different populations can exhibit different patterns, which can be seen as an intervention

on the network that leads to alternated conditional distribution of the nodes. Even though

the manipulated vertices in the network are unknown from the observational data, it is still

possible to discover the causal structure from statistical analysis on the difference of their

relationship in different populations. In the following sections, we construct a statistical

model to deal with this situation and propose a method to discover causal relationships from

observational data.

3.2 Differential edges and difference indicator matrix

We assume that data Z ∈ Rn×p are independently generated from different known popu-

lations that sharing the same network structure G∗. In the dissertation paper we use two

populations to demonstrate the method, thus the data can be separated as Z′ ∈ Rn′×p and

Z′′ ∈ Rn′′×p, where n′ + n′′ = n. These assumptions are summarized in Assumption 3.1, in

which G′ = G′′ means that two DAGs are defined on the same set of nodes and have the

same graph structure (same unweighted adjacency matrix). The weighted adjacency matrix
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A′ = (a′ij)i,j={1,...,p} and A′′ = (a′′ij)i,j={1,...,p} have the same zero elements (∀ i, j ∈ {1, . . . , p},

a′ij = 0 ⇔ a′′ij = 0), and different values of non-zero elements (∃ i, j ∈ {1, . . . , p} s.t.

a′ij ∕= a′′ij). The error variance matrices Ω′ = diag(ω′
j
2)j=1,...,p and Ω′′ = diag(ω′′

j
2)j=1,...,p

have Ω′ = αΩ′′, where α is a constant scaling factor, e.g. α = 1, then each variable Xj

in the graph has the same variance of error in two populations ω′
j
2 = ω′′

j
2. Together, since

Σ = (I −A)−TΩ(I −A)−1, we have covariance matrices of two populations Σ′ ∕= Σ′′ that

leads to non-linearity in the model.

Assumption 3.1 The samples in the observed data Z are independently generated from two

populations Z =

7

9Z′

Z′′

:

<. And data Z′ and Z′′ are generated from a Gaussian DAG G′ (1.21)

with parameters (A′,Ω′) and G′′ with (A′′,Ω′′), respectively, where G′ = G′′, A′ ∕= A′′ and

Ω′ = αΩ′′.

Assume the existence of differential edges (Definition 3.1), i.e. some edges have different

weights in different populations, which is a common data generation process in real world

networks such as gene regulatory network. Given the observed data Z, many structural

learning algorithms in Section 1.4 can estimate the Markov equivalence class of the graph.

In the following part of the section, we show that differential edges can be simply captured by

regression among the nodes and thus distinguish DAGs in their Markov equivalence classes.

Definition 3.1 (Differential edge) In a DAG G, denote the weights of edge Vi → Vj as

a′ij and a′′ij (a′ij ∕= 0, a′′ij ∕= 0) in two populations respectively. If a′ij ∕= a′′ij, then the edge

Vi → Vj is a differential edge, otherwise it is a non-differential edge.

We first analyze the case in one population, denote X = (X1, . . . , Xp) as the generated

data, according to Assumption 3.1, X ∼ N (µ,Σ). If we have

Σ =

7

9 σii ΣT
−i,i

Σ−i,i Σ−i,−i

:

< , (3.1)
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then the matrix inverse Θ = (θij)i,j={1,...,p} is

Θ =

7

9 θii −θiiΣ
T
−i,iΣ

−1
−i,−i

−θiiΣ
−1
−i,−iΣ

T
−i,i Σ−1

−i,−i(I+ θii)Σ−i,iΣ
T
−i,iΣ

−1
−i,−i

:

< =

7

9 θii ΘT
−i,i

Θ−i,i Θ−i,−i

:

< , (3.2)

where Σ−i,j is a vector obtained by selecting the j-th column of the sub matrix that removes

the i-th row from matrix Σ, and Σ−i,−j is the sub matrix of Σ by removing the i-th row and

j-th column.

Given a Gaussian distribution, the conditional distribution of a single node Xi given the

rest of the nodes can be written as

Xi|X−i ∼ N (µi +Σi,−iΣ
−1
−i,−i(X−i − µX−i

),Σi,i −Σi,−iΣ
−1
−i,−iΣ−i,i). (3.3)

Without loss of generality, let µ = 0 and Θ = Σ−1 denote the precision matrix, then

Xi|X−i ∼ N (Σi,−iΣ
−1
−i,−iX−i,Σi,i −Σi,−iΣ

−1
−i,−iΣ−i,i),

∼ N (ΣT
−i,iΣ

−1
−i,−iX−i,Θ

−1
i,i ),

∼ N (− 1

θii
ΘT

−i,iX−i,
1

θii
).

(3.4)

From the conditional distribution (3.4), denote bXi∼X−i
as the coefficients of the regres-

sion of Xi on X−i, we have

bXi∼X−i
= − 1

θii
ΘT

−i,i. (3.5)

When the sample size goes to infinity, the estimated coefficients of regressing Xi on other

variables converge to values determined by the precision matrix Θ as in (3.5). The value

can be also written by the weights of the graph. Denote the weighted adjacency matrix

as A = (aij)p×p, as no edge exists from one node to itself, aii = 0 for i = 1, · · · , p. Let

Ã = I−A = (ãij)p×p, then

ãij =

.
/0

/1

−aij if i ∕= j,

1 otherwise.

(3.6)
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Then the precision matrix can be written as

Θ = (I−A)Ω−1(I−A)T = ÃΩ−1ÃT

=

7

88888888888889

1
ω2
1
ã11

1
ω2
2
ã12 · · · 1

ω2
j
ã1j · · · 1

ω2
p
ã1p

1
ω2
1
ã21

1
ω2
2
ã22 · · · 1

ω2
j
ã2j · · · 1

ω2
p
ã2p

...
...

. . .
...

. . .
...

1
ω2
1
ãi1

1
ω2
2
ãi2 · · · 1

ω2
j
ãij · · · 1

ω2
p
ãip

...
...

. . .
...

. . .
...

1
ω2
1
ãp1

1
ω2
2
ãp2 · · · 1

ω2
j
ãpj · · · 1

ω2
p
ãpp

:

;;;;;;;;;;;;;<

7

8888888888889

ã11 ã21 · · · ãj1 · · · ãp1

ã12 ã22 · · · ãj2 · · · ãp2
...

...
. . .

...
. . .

...

ã1i ã2i · · · ãji · · · ãpi
...

...
. . .

...
. . .

...

ã1p ã2p · · · ãjp · · · ãpp

:

;;;;;;;;;;;;<

,
(3.7)

where I is a p × p identity matrix, and Ω = diag(ω2
1, · · · ,ω2

p) is the variance of the error.

Then the element of the i-th and j-th column of Θ can be presented by the elements of the

adjacency matrix,

θij =

p%

k=1

1

ω2
k

ãikãjk = − 1

ω2
j

aij −
1

ω2
i

aji +

p%

k ∕=i,j

1

ω2
k

aikajk. (3.8)

As bXi∼X−i
∈ Rp−1, suppose bXi∼X−i

= (bXk|Xi∼X−i
)k={1,··· ,p}\i, where bY0|X∼Y represents the

coefficient of variable Y0 in the regression of X on Y, then we have

bXi∼X−i
= (bXk|Xi∼X−i

)k={1,··· ,p}\i = − 1

θii
ΘT

−i,i = − 1

θii
(θik)k={1,··· ,p}\i. (3.9)

In a DAG G, suppose we regress Xm on all other nodes except Xm, denoted as X−m,

then for any node Xt ∈ X−m, the coefficient of Xt is

bXt|Xm∼X−m = − θmt

θmm

= −
− 1

ω2
m
atm − 1

ω2
t
amt +

!p
k ∕=m,t

1
ω2
k
amkatk

1
ω2
m
+
!p

k ∕=m
1
ω2
k
a2mk

, (3.10)

thus the coefficient bXt|Xm∼X−m can be interpreted as a function of the weighted adjacency

matrix A.

We analyze the behavior of linear regression between Xm and X−m, assuming two pop-

ulations have differential edges between Vm and some of its neighbors. Write the weighted

adjacency matrix in two populations as A′ = (a′ij) and A′′ = (a′′ij) respectively. Denote the
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set of variables Xk ∈ pa(Xm) that have a′km ∕= a′′km as pa∗(Xm). Similarly denote the set of

variables Xk ∈ ch(Xm) that have a′mk ∕= a′′mk as ch∗(Xm). Finally denote all parents of the

node variables in ch∗(Xm) except Xm as sp∗(Xm), i.e. sp
∗(Xm) :=

,
Xk∈ch∗(Xm) pa(Xk)\Xm.

Removing all the zero terms in the weighted adjacency matrix in (3.10), we have

bXt|Xm∼X−m = −
− 1

ω2
m
atm − 1

ω2
t
amt +

!
k:Xk∈ch(Xm)∩ch(Xt)

1
ω2
k
amkatk

1
ω2
m
+
!

k:Xk∈ch(Xm)
1
ω2
k
a2mk

. (3.11)

If a random variable Xt is not in the Markov blanket (Section 1.3) of Xm, i.e. Xt /∈

mb(Xm), then Vt has no direct edge connected to node Vm, thus atm = amt = 0. Secondly it

has no common children with node Vm, which means for any variableXk ∈ X−m, amk ·atk = 0.

By plugging them into (3.10), we have bXt|Xm∼X−m = 0 for ∀Xt /∈ mb(Xm), which shows that

the regression of Xm on X−m is essentially the same as regressing Xm on mb(Xm). Thus for

Xt ∈ mb(Xm), (3.10) can be re-written as

bXt|Xm∼mb(Xm) = −
− 1

ω2
m
atm − 1

ω2
t
amt +

!
k:Xk∈ch(Xm)∩ch(Xt)

1
ω2
k
amkatk

1
ω2
m
+
!

k:Xk∈ch(Xm)
1
ω2
k
a2mk

. (3.12)

Definition 3.2 (Difference indicator matrix (DIM)) Write the node wise regression

coefficients in two populations as b′ and b′′, in which bXt|Xm∼X−m represents the coefficient

of Xt when regressing Xm on the rest of the variables in X. Difference indicator matrix

M = (mij)i,j={1,··· ,p} is defined by

mij =

.
/0

/1

1, if b′Xj |Xi∼X−i
∕= b′′Xj |Xi∼X−i

,

0, if b′Xj |Xi∼X−i
= b′′Xj |Xi∼X−i

.

Under Assumption 3.1, Section 3.5.1 proves the following effects of differential edges on

the difference indicator matrix M = (mij)i,j={1,...,p}. Suppose edge Vi → Vj is the only

differential edge connected to node Vi, given population level data, i.e. the parameters of

the SEM (A′,Ω′) and (A′′,Ω′′) are known, we have
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Figure 3.2: A demonstration of the relationship between differential edge and DIM.
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• mij = mji = 1,

• ∀Xk ∈ mb(Xi)\Xj, mik = 1,

• ∀Xt ∈ pa(Xj)\Xi, mti = 1,

• ∀Xq ∈ mb(Xi)\{Xj, pa(Xj)},mqi = mqj = 0.

If multiple differential edges exist, assuming that they do not cancel each other out, i.e. the

effect of each differential edge can be observed in DIM, DIM is the logical disjunction of the

separate DIMs obtained from assuming that merely a single differential edge exists.

Fig 3.2 gives an illustration of the relationship. In the figure the weighted adjacency ma-

trices in two populations are A′ and A′′ respectively, three different cases are demonstrated:

(a) Assume only the red blocks differ in value in two populations, i.e. α1 ∕= α2, β1 = β2, the

difference of the node wise regression coefficients is shown below as a binary DIM. We can

see that Xb is the parent of the differential edge, it has different regression coefficients to

all other nodes in its Markov blanket. The child of the differential edge Xe has a different

coefficient to Xb. Xc as the other parent of Xe also has a different coefficient to Xb. The rest

of the coefficients are the same in two populations. (b) Assume only the blue blocks differ in

two populations, i.e. α1 = α2, β1 ∕= β2, then Xd has different coefficients towards its Markov

blanket, and Xe, Xf are the variables with different coefficients on Xd. (c) Assume both the

blue and red blocks are different, i.e. α1 ∕= α2 and β1 ∕= β2, the result is the combination of

the above two cases, where the matrix can be seen as an element wise logical disjunction of

the results of (a) and (b).

3.3 Edge orientation by difference indicator matrix

In Section 1.4, we show that under linear Gaussian DAG assumption, the true DAG is not

identifiable from its Markov equivalence class from observational data. Whereas Assump-

tion 3.1 introduces non-linearity to our model, and we can utilize the non-linearity incurred
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from two populations to discover causal structure from cpDAGs. Based on the observation

in Section 3.2, we propose an algorithm to orient edges in cpDAGs. We start with directing

edges between single pair of vertices, then go through all the undirected edges and extend

the orientation to the whole graph.

3.3.1 Single edge orientation

Under Assumption 3.1, the effect of the differential edges on the difference indicator matrix

M has been explained in section 3.2. We can use the pattern of M and the graph structure

G to determine edge direction. For a node Vi in a pDAG G, define set Ci := {Xk : mki = 1},

set of potential children Pi := {Xk : uik = 1} where U = (uij)p×p is the unweighted (binary)

adjacency matrix of G. Denote mb(Xi) as the Markov blanket of Xi in G.

Algorithm 1: Single edge orientation

input : The target pDAG G, DIM M, the target undirected edge Vi −− Vj in G.

output: Direction of edge Vi −− Vj.

Initialize f = 0;

if Xj ∈ Ci and Pi

=
Pj

=
Ci = Ø and Σk:Xk∈mb(Xj)(1−mjk) > 0 then

set f = f + 1;

if Xi ∈ Cj and Pi

=
Pj

=
Cj = Ø and Σk:Xk∈mb(Xi)(1−mik) > 0 then

set f = f − 1;

if f > 0 then

return Vi → Vj;

else if f < 0 then

return Vi ← Vj;

else

return Vi −− Vj (edge cannot be oriented).

end
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Figure 3.3: A cpDAG to be oriented.

Algorithm 1 can orient single pair of nodes and their neighbors, as well as provide in-

formation about the differential edges. We use the following example to illustrate how this

algorithm works. Suppose we have a cpDAG as shown in Figure 3.3, which represents an

equivalence class in Figure 3.4. Assume the true DAG is Figure 3.4 (III) and the only dif-

ferential edge is Vc → Va. When the sample size goes to infinity, based on Section 3.2 the

observed matrix should be

M =

a b c d e
7

8888888889

:

;;;;;;;;;<

· 0 1 0 0 a

0 · 0 0 0 b

1 1 · 1 0 c

0 0 0 · 0 d

0 0 0 0 · e

.

With DIM M and the cpDAG G provided, we want to orient the edge Va −− Vc in G.

Defined by the algorithm, Ca = {Xc}, and the potential children set of Xa is Pa = {Xb, Xc}.

Similarly, Cc = {Xa}, Pc = {Xa, Xb, Xd}. Then we examine the Markov blanket of the

two nodes. The Markov blanket consists of the neighboring nodes and the spouses, and in

this example mb(Xa) = {Xb, Xc}, mb(Xc) = {Xa, Xb, Xd}, thus we have
!

Xk∈mb(Xa)
(1 −

mak) =
!

k∈{b,c}(1 −mak) = 1 and
!

Xk∈mb(Xc)
(1 −mck) =

!
k∈{a,b,d}(1 −mck) = 0. These

conditions guarantee that Xa is not the parent of the differential edge, since otherwise

∀k : Xk ∈ mb(Xa), mak = 1, and thus
!

Xk∈mb(Xa)
(1−mak) = 0. We can see that Xc ∈ Ca,
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Figure 3.4: Markov equivalence class of the cpDAG in Figure 3.3.

Pa∩Pc∩Ca = Ø and
!

Xk∈mb(Xa)
(1−mak) > 0. With all the criteria satisfied, the algorithm

should return the edge orientation Vc → Va.

Theorem 3.1 (Correctness of orientation) Under Assumption 3.1, if the input differ-

ence indicator matrix M is correct and pDAG G are consistent with the true DAG, then

Algorithm 1 guarantees the correctness of the orientation.

The correctness of the single edge orientation algorithm is summarized in Theorem 3.1. If

the observed data satisfies Assumption 3.1, according to Section 3.2 we can obtain a difference

indicator matrix M. When the input matrix M correctly indicates differences between the

population regression coefficients in all node wise regressions, we say M is correct. And we

say the partial DAG G is consistent with the true DAG G∗ if the edges in G∗ are presented

in G as either undirected edges or directed edges with correct directions. For example, G

can be the skeleton or the cpDAG of G∗. Giving the conditions above, Algorithm 1 outputs
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zero false case. The theorem can be proved by contradiction in Section 3.5.2.

Theorem 3.2 (Differential edges) Under the same assumptions of Theorem 3.1, if a sin-

gle edge Va −− Vb is oriented as Va → Vb by Algorithm 1, then Va → Vb is a differential edge,

all other edges connected to Vb are non-differential, all edges between Va and the common

children of Va and Vb are non-differential.

Theorem 3.3 (Neighboring nodes orientation) Under the same assumptions of Theo-

rem 3.1, if a single edge Va −− Vb is oriented as Va → Vb by Algorithm 1, then Vb is the

parent of its other neighboring nodes.

In fact, besides the orientation of the target edge, the algorithm provides further informa-

tion about the underlying differential edges (Theorem 3.2) as well as the direction of the

neighboring edges (Theorem 3.3). The proofs are provided in Section 3.5.2.

3.3.2 Graph orientation

In Section 3.3.1 we justified the correctness of the single edge orientation algorithm. Al-

gorithm 2 (DIMEO) extends the orientation results from Algorithm 1 to the whole input

cpDAG. The algorithm iteratively applies our single edge orientation algorithm and extends

orientation using the output additional information as well as the Meek’s rule, which was

found by Meek (1995) to complete orientation based on the graph pattern. Figure 3.5 demon-

strates the Meek orientation rule. When an edge is oriented by Algorithm 1, if one of the

four patterns in figure 3.5 is formed, the graph can be further oriented. Katz et al. (2019)

has summarized the Meek orientation rule as Lemma 3.1 and Lemma 3.2. The algorithm

uses a loop to iteratively orient undirected edges. Once an edge is oriented, the additional

information in Theorem 3.2 and Theorem 3.3 as well as Meek’s rule are applied for extension,

and the algorithm stops until no new orientation can be introduced after a traversal of all

the undirected edges.
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Algorithm 2: Graph edge orientation by DIM (DIMEO)

input : The target cpDAG G, DIM M.

output: An oriented graph G.

Identify undirected edges Va1 −− Vb1 , · · · , Vak −− Vbk in G;

Initialize index i = 1;

while i ≤ k do

if Vai −− Vbi is not oriented then

input G, M, Vai −− Vbi into Algorithm 1;

if Algorithm 1 outputs Vai → Vbi or Vai ← Vbi then

update G by adding the orientation of Vai −− Vbi and apply Meek’s rule;

set i = 1;

else

set i = i+ 1;

end

else

set i = i+ 1;

end

end

(I) (II) (III) (IV)

Figure 3.5: Motifs in Meek orientation rules.
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Lemma 3.1 If a node V is involved in any of the four Meek rules (pattern shown in Fig-

ure 3.5), and does not have an outgoing edge in the original graph G, then the oriented edge

(in the four motifs on the bottom of figure 3.5) is an incoming edge to node V .

Lemma 3.2 If a node V is involved in any of the four Meek rules (pattern shown in Fig-

ure 3.5), then either V has an outgoing edge or an adjacent undirected edge (in the four

motifs on the top of figure 3.5).

Theorem 3.4 Under Assumption 3.1, if the input difference indicator matrix M is correct

and G is the true cpDAG, Algorithm 2 guarantees correctness of the oriented edges.

The correctness of DIMEO algorithm is stated in Theorem 3.4. As DIMEO is essentially

an assembly of single edge orientations and extension based on single edge directions, correct-

ness of the algorithm is justified by correctness of the single edge orientation in Theorem 3.1.

When the true distribution of the population data is given, matrixM can be easily calculated

and is guaranteed to be correct. But when the method is applied on observed data with

a finite sample size, hypothesis tests need to be conducted to generate M from regression

coefficients in two populations. For a node Vm, when variable Xm is regressed on all other

variables X−m, denote the coefficients and their standard errors as (b′
Xm∼X−m

, s′Xm∼X−m
)

and (b′′
Xm∼X−m

, s′′Xm∼X−m
) respectively. Element wisely when comparing the coefficients of a

single node Xk on Xm, the p-value of the difference is approximated by

p = 2Φ(−
|b′Xk|Xm∼X−m

− b′′Xk|Xm∼X−m
|

>
s
′2
Xk|Xm∼X−m

+ s
′′2
Xk|Xm∼X−m

), (3.13)

where Φ(·) is the standard Gaussian cumulative distribution function, assuming the sample

sizes are large. The matrix of element wise p-values can be transformed into the binary DIM

by thresholding. For a pre-determined threshold t, when the p-value is smaller than t, the

corresponding element is 1, otherwise 0.

Paternoster et al. (1998) proposed (3.13) to test the equality of regression coefficients,

the test is essentially a simple two sample z-test, thus when the sample size goes to infinity,
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the type I and type II error converge to zero almost surely (Clogg et al., 1995), and the

significance level t can be chosen to be close to zero on large samples, which guarantees the

correctness of DIM M. Based on Theorem 3.4, given that the input cpDAG G is correct and

M is obtained from data X that satisfies Assumption 3.1, the number of mis-oriented edges

by DIMEO will be zero as sample size goes to infinity.

Before applying DIMEO, a correct cpDAG is required to theoretically guarantee 100%

accuracy of oriented edges. When applying DIMEO on real world data set, the true cpDAG

is unknown, thus structural learning algorithms are required first to estimate the cpDAG

from the observational data. As introduced in Section 1.4, constraint-based algorithms such

as PC and score-based algorithms such as CCDr can be used to obtain a cpDAG. The

consistency of PC algorithm is shown to hold on all causal graphs by Spirtes et al. (2001),

i.e. limn→∞ P(Ĝ ∕= G) = 0, where Ĝ is the cpDAG estimated by PC algorithm and G is

the true cpDAG. Aragam and Zhou (2015) has provided the convergence rate of the CCDr

algorithm. When these algorithms provide a correct estimate of the true cpDAG giving a

sufficiently large sample size, the requirements of the consistency of DIMEO are satisfied.

3.4 Numerical results

In this section, we report the results of our algorithms on simulated graphs and a real world

dataset. We first verified the results of the DIMEO algorithm given the population level

data, i.e. the underlying distribution of X is known, thus (A,Ω) in two populations can

be used to calculate the difference indicator matrix. We also verified the effectiveness of

the algorithm on simulated numerical data providing the true cpDAG structure. Finally we

combined DIMEO with two existing structural learning algorithms and compared it to a

recent nonlinear causal discovery method.
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3.4.1 Population level results on true cpDAG

We use the cpDAG in Figure 3.3 as an example to verify the DIMEO algorithm’s results. The

graph has 5 nodes and 6 undirected edges. Despite the simple structure, it is representative

and contains typical motifs in DAGs. While each edge can be either differential or non-

differential, there are 26− 1 combinations in total (assume that at least one differential edge

exists). We considered all the possible combinations of the differential edges in each of the

DAGs in Figure 3.4, giving a total of 12 DAGs. We simulated data from each distinct DAG

and checked if the edge directions in each DAG could be identified by the algorithm. In the

simulation for both populations, the weights of the non-differential edges were sampled from

a uniform distribution U(−1, 1), and the weights of differential edges were sampled from

U(−1, 0.1) and U(0.5, 1.5) respectively. The standard deviation of each error was sampled

from U(0.1, 0.2) independently.

Difference indicator matrix M could be obtained directly from the regression coefficients.

Considering the computational accuracy, we took the element as 1 if the absolute difference

between two coefficients was greater than 10−5 and 0 otherwise. Matrix M and the cpDAG

structure in Figure 3.3 were the input to DIMEO. Table 3.1 has enumerated all the identifi-

able cases among the combinations. In the table the first column represents the corresponding

true DAG in the equivalence class shown in Figure 3.4, the second column “underlying diff”

represents the true differential edge, the third column “indiff” are the edges that can either

be differential or non-differential, which have no effect in the orientation process. Except the

differential and indifferent edges, the rest of the edges have to be non-differential to guaran-

tee a successful orientation of DIMEO. Once the results from Algorithm 1 were generated,

most of the other edges in the graph could be oriented by the Meek’s rule. The columns

“Algo 1 ori” and “Final ori” show the edges oriented by Algorithm 1 alone, and the final

extended orientation results by DIMEO respectively. From Theorem 3.3, the single edge

orientation output from Algorithm 1 could be extended in its neighborhood, for example, in

DAG (III), when the differential edge Vc → Va was oriented, all the other nodes connected to
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Va should be its children, thus we could write it as Vc → Va → · (with no self loops formed).

Additionally, shown in column “Algo 1 additional”, Algorithm 1 provided information

about whether edges were differential according to Theorem 3.2. For example, when the

direction was determined as Vc → Va in DAG (III), we could know that the edge between Vc

and Va were differential while Va → Vb and Vc → Vb were non-differential. Moreover, when

the orientation was extended by Meek’s rule, other differential oriented edges could also be

detected through linear regression from the target nodes to their parents. In the case of DAG

(III), we could further check whether Vc → Vd and Vb → Vd were differential by regressing

Vd on Vb and Vc respectively.

Table 3.1: Population level results on Figure 3.3 graph.

DAG underlying diff indiff Algo 1 ori Algo 1 additional Final ori

I Vd → Vc Ve → Vd Vd → Vc → · a′dc ∕= a′′dc, a
′
ca = a′′ca, a

′
cb = a′′cb, a

′
db = a′′db All except Ve → Vd

I Ve → Vd Vb → Va, Vc → Va, Vc → Vb Ve → Vd → · a′ed ∕= a′′ed, a
′
db = a′′db, a

′
dc = a′′dc All except Vb → Vc

II Vd → Vb Ve → Vd Vd → Vb → · a′db ∕= a′′db, a
′
ba = a′′ba, a

′
bc = a′′bc, a

′
dc = a′′dc All except Ve → Vd

II Ve → Vd Vb → Va, Vc → Va, Vc → Vb Ve → Vd → · a′ed ∕= a′′ed, a
′
db = a′′db, a

′
dc = a′′dc All except Vb → Vc

III Vc → Va Vd → Ve Vc → Va → · a′ca ∕= a′′ca, a
′
ab = a′′ab, a

′
cb = a′′cb All

IV Vb → Va Vd → Ve Vb → Va → · a′ba ∕= a′′ba, a
′
bc = a′′bc, a

′
ac = a′′ac All

V Vc → Vd None Vc → Vd → · a′cd ∕= a′′cd, a
′
cb = a′′cb, a

′
db = a′′db, a

′
de = a′′de All

VI Vb → Vd None Vb → Vd → · a′bd ∕= a′′bd, a
′
bc = a′′bc, a

′
dc = a′′dc, a

′
de = a′′de All

VII Vc → Va Vd → Ve Vc → Va → · a′ca ∕= a′′ca, a
′
ab = a′′ab, a

′
cb = a′′cb All

VIII Vd → Vb Vd → Ve Vd → Vb → · a′db ∕= a′′db, a
′
ba = a′′ba, a

′
bc = a′′bc, a

′
dc = a′′dc All except Vd → Ve

IX Va → Vc Vd → Ve Va → Vc → · a′ac ∕= a′′ac, a
′
ab = a′′ab, a

′
cb = a′′cb, a

′
cd = a′′cd All

X Va → Vb Vd → Ve Va → Vb → · a′ab ∕= a′′ab, a
′
ac = a′′ac, a

′
bc = a′′bc, a

′
bd = a′′bd All

XI Vc → Vb None Vc → Vb → · a′cb ∕= a′′cb, a
′
ba = a′′ba, a

′
ca = a′′ca, a

′
cd = a′′cd, a

′
bd = a′′bd All

XII Vb → Vc None Vb → Vc → · a′bc ∕= a′′bc, a
′
ba = a′′ba, a

′
ca = a′′ca, a

′
cd = a′′cd, a

′
bd = a′′bd All

We explain the results using the first row in Table 3.1 as an example. The true DAG

structure is Figure 3.3 (I), when the underlying differential edge is Vd → Vc and all other edges

except Ve → Vf are non-differential (Ve → Vf can be either differential or non-differential, the

orientation results will be the same), provided the correct DIM M and cpDAG G. DIMEO

first oriented edge Vd −− Vc, and further provided orientation of Vc to other neighbors as

well as the information on differential edges. From the output of single edge orientation
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Algorithm 1, we have the orientation result Vd → Vc → · and information that Vd → Vc is

a differential edge and Vc → Va, Vc → Vb, Vd → Vb are all non-differential. DIMEO further

extended the orientation from Algorithm 1 by Meek’s rule and finally output orientation of

all edges except Ve → Vd.

We see that each DAG can be oriented, under some cases of differential edges combination.

The power of the algorithm varies on the true DAG structure. For cases like DAG (I) and

(II), 10 out of 63 cases could be oriented by DIMEO, while for cases like (V), (VI), (XI)

and (XII), DIMEO only worked when there was only one differential edge. In total, 192

out of 63× 6× 12 = 4536 (4%) undirected edges were oriented by DIMEO. However, when

the number of differential edges was less than or equal to two, which is highly possible in a

small network with only 6 edges, 152 out of 1512 (10%) edges could be oriented. And when

the number of differential edge was only one, 78 out of 432 (18%) undirected edges were

oriented.

3.4.2 Numerical results on true cpDAG

The population level, or the case when sample size goes to infinity, is the ideal case where

we can achieve orientation with zero error. In this section we compare the performance of

DIMEO on observed samples to the ideal case to verify the feasibility of the algorithm on

numerical data.

Again we simulated data from the 5-node cpDAG (Figure 3.3) using the same settings

as in Section 3.4.1. DIMEO was applied given the true cpDAG structure. In the simula-

tion, we tuned the number of differential edges d from 1 to 6. When d = 1, there were

6 combinations because of the 6 undirected graph in the cpDAG, and when d = 2, there

were
&
6
2

'
= 15 combinations and so on. We set the number of samples in each population

as N = {5000, 10000, 50000}, and the p-value cut-off threshold t = 0.005. Since the weights

were sampled randomly from uniform distributions, we repeated the process 100 times and

report the average of the output.
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Table 3.2: Numerical results on Figure 3.3 graph.

d U Ideal N TP OC R M acc1(%) diff acc2(%)

5000 0.972 0.917 0.006 0.167 99 0.653 97

1 6 1.080 10000 1.028 1.000 0.000 0.083 100 0.694 98

50000 1.000 1.000 0.000 0.083 100 0.781 100

5000 0.619 0.556 0.020 0.048 97 0.398 93

1–2 6 0.603 10000 0.619 0.579 0.020 0.024 97 0.464 93

50000 0.595 0.579 0.004 0.024 99 0.438 96

5000 0.224 0.208 0.025 0.046 90 0.174 90

1–6 6 0.254 10000 0.245 0.213 0.015 0.041 94 0.178 92

50000 0.251 0.245 0.001 0.009 99 0.188 94

Table 3.2 shows the accuracy of numerical results compared to the ideal case. In the

table, d represents the number of differential edges in the true DAG, we illustrate three

cases: d = 1, . . . , 6, d = 1, 2, and d = 1. As the graph only has 5 vertices and 6 edges,

it is likely that very few edges will be significantly different in two populations. Column

“U” shows the average number of undirected edges in each cpDAG. Column “Ideal” is the

number of oriented edges given the population level information (N = ∞), which is the

number of orientations that can be justified by Theorem 3.4 in each graph. For the results

on samples, the table provides: (1) TP: the number of total correct orientations, i.e. edges

correctly oriented by DIMEO from the observed data; (2) OC: the number of overlapping

edges that were correctly oriented in both ideal case and simulated case, which represents

the number of orientations that can be justified by the algorithm; (3) R: the number of

reversed edges, which were oriented by the algorithm but with wrong directions; (4) M: the

number of missing orientations, which should be oriented in the ideal case but were failed

to be detected by the algorithm from simulated data; (5) acc1 = TP/(TP+R): accuracy of
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oriented edges that have correct directions; (6) diff: average number of reported differential

edges in each graph; (7) acc2: accuracy of the reported differential edges, in which the false

cases are the number of non-differential edges that were identified as differential edges by

the algorithm. We can see that in all cases, the accuracy of orientation and information

about differential edges were above 90%. And when d = 1, our algorithm achieved the best

performance. Despite the fact that the overall power of the algorithm was relatively low,

the high accuracy validates the usefulness of the algorithm. And compared to the ideal case,

the application on samples had comparable performance, as both R and M were very small

compared to OC and TP.

In summary, the DIMEO algorithm can detect differential edges and orient them in

some cases. While it did not identify causal structure in all cpDAGs, it achieved a very high

accuracy among the oriented edges in the simulation. And the information about differential

edges was also overall reliable, which is another major advantage of DIMEO.

3.4.3 Comparison to other algorithms

In this section we implemented DIMEO on cpDAGs estimated from PC (Spirtes et al., 2001)

and CCDr (Aragam and Zhou, 2015). We also compared this approach to a recent non-

linear causal learning method named regression with subsequent independence test (RESIT)

(Peters et al., 2014) developed from additive noise models (Hoyer et al., 2009). RESIT can

identify causal relations from observational data by assuming non-linear noises. The first

step of the algorithm is to iteratively identify and sink nodes to yield a topological order of

the nodes. During this process, each remaining variable is regressed on all other variables

and the dependence between the residuals and the regressors is measured through hypothesis

tests. A variable will be sinked or removed if it has the least independence level among all

variables. In the next step, based on the estimated topological order, edges are removed

by further conditional independence tests. The RESIT algorithm was implemented in R by

Peters et al. (2014).
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Both PC and CCDr algorithms are available as R packages. We use the package bnlearn

(Scutari, 2010) to perform PC algorithm, more details about the algorithm can be found in

Colombo and Maathuis (2014). The R package sparsebn (Aragam et al., 2019) contains the

CCDr algorithm, which is a score-based method that is achieved by maximizing a regularized

likelihood under a concave penalty. The algorithm randomly outputs a DAG out of the

equivalence class, we used the cpdag function in bnlearn package to convert the DAG to its

corresponding cpDAG for causal discovery.

asia

tub

smoke

lung

xray

either

dysp

bronc

Figure 3.6: Network asia.

Due to the long computational time of RESIT, we ran these methods on a small network

Asia (or sometimes called lung cancer) from bnlearn network repository (Scutari, 2010).

The network has 8 nodes and 8 directed edges, corresponding to a cpDAG with 3 undirected

edges, which belongs to an equivalence class with 6 distinct DAGs (Figure 3.6). We simulated

data with number of differential edges varying from 1 to 8, the weights of the edges were

sampled with the same settings as in Section 3.4.1. The sample size was N = 1000 for each

population, and the experiments were repeated 100 times with different edge weights.

Table 3.3 provides the numerical results of the simulation. The columns have the same

meaning as in Table 3.2. We applied DIMEO on cpDAGs estimated from PC and CCDr, the

results are shown as “PC-DIMEO” and “CCDr-DIMEO” in the table respectively. CCDr in
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general had more undirected edges in estimated cpDAGs compared to PC. Column “TP”

represents the number of correct oriented edges in each graph, and “R” represents the re-

versed orientation. The accuracy is very high (≥ 90%) when d is small, such as d = 1, 2, 3.

And when d is large, i.e. most of the edges were differential, DIMEO still successfully ori-

ented some edges, while the accuracy was slightly lower. Column “diff” shows the number

of reported differential edges in each graph, the accuracy of this information was generally

over 90% except for a few cases. From the table, it is clear to see the effectiveness of DIMEO

in identification of causal relations from observational data.

Table 3.3: Numerical results on asia network simulation.

PC-DIMEO CCDr-DIMEO

d U TP R acc1(%) diff acc2(%) U TP R acc1(%) diff acc2(%)

1 5.55 0.43 0.00 100 0.35 100 6.49 0.37 0.00 100 0.29 100

2 5.64 0.37 0.02 95 0.31 96 6.46 0.34 0.01 98 0.28 98

3 5.70 0.32 0.02 94 0.26 93 6.45 0.33 0.02 95 0.28 98

4 5.70 0.31 0.03 90 0.24 90 6.46 0.34 0.02 94 0.29 97

5 5.58 0.36 0.04 89 0.29 89 6.39 0.37 0.03 92 0.33 97

6 5.42 0.38 0.06 87 0.29 89 6.29 0.38 0.40 91 0.36 99

7 5.04 0.36 0.05 87 0.30 94 6.13 0.33 0.05 86 0.35 99

8 5.26 0.39 0.01 98 0.35 100 6.28 0.28 0.07 80 0.32 100

In order to evaluate and compare the performance of the algorithms, we used structural

Hamming distance (SHD) and Jaccard index (JI). The SHD measures the shortest edit

distance between the estimated graph and the true graph, it is the total number of additions,

deletions and reversions of the edges needed to be taken to match the two DAGs. A lower

SHD indicates a better performance of structural and causal estimation. JI measures the

similarity between two graphs, it is the ratio of the number of common edges (with same

direction) over the number of edges in the union of all edges from two DAGs. A higher JI
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indicates higher similarity, thus better performance.
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Figure 3.7: Comparison of algorithms on asia network.

Figure 3.7 is the box plot of SHD and JI of three methods: PC-DIMEO, CCDr-DIMEO

and RESIT. The results were generated by 100 simulations on each d. PC-DIMEO and

CCDr-DIMEO represent the methods first applying PC and CCDr to estimate a cpDAG

and then running DIMEO on the cpDAG yielded from the structural learning step. For all

algorithms the p-value cutoff threshold was set to 0.001. In the figure, the x-axis is d that

represents the number of differential edges in the simulation, ranging from 1 to 8. We can

see that among three methods, RESIT had a relatively poor performance on the mixed data,

with the highest SHD and lowest JI in almost all cases, especially when d ≤ 4. The reason

could be that in the simulation the relationships between the variables were linear functions

with Gaussian noises within one population, though the mixed data from two populations

was essentially non-linear, RESIT failed to model this kind of non-linearity. PC-DIMEO

had slightly better performance than CCDr-DIMEO in terms of SHD, while CCDr-DIMEO

outperformed the others with respect to JI. These results show the effectiveness of DIMEO to

deal with data generated from multiple populations, as the performance of both PC-DIMEO

and CCDr-DIMEO were generally better than RESIT.
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Meanwhile, as listed in Table 3.4 (performed on a single 2.6GHz Intel i7 core), the

additional computational time required by including DIMEO was negligible. In summary,

when the data came from different populations with an existence of differential edges, the

DIMEO algorithm can efficiently improve the causal structural estimation results. The

algorithm is simple to implement and requires little computational power, thus can be a

very useful tool in causal learning.

Table 3.4: Algorithms average running time.

Method PC CCDr PC-DIMEO CCDr-DIMEO RESIT

Time (seconds) 0.050 0.108 0.056 0.116 168

3.4.4 Application on protein-signaling network

A bayesian network has been established from the multidimensional flow cytometry data by

Sachs et al. (2005). The authors have discovered 20 possible molecular pathways among 11

proteins/phospholipid, which constructed the true DAG structure (Figure 3.8) in our exper-

iment. Their dataset has N = 7466 observations and was obtained under 5 experimental

interventions on different nodes including akt (N = 911), mek (N = 799), pip2 (N = 810),

pka (N = 707) and pkc (N = 1636), as well as the control group (N = 2603).

PIP2
PLC

PIP3

Erk

Akt

PKA

PKC
p38

Jnk

Raf

Mek

Figure 3.8: Causal protein-signaling network.
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In order to conduct our experiment, we took the data under each intervention as a

separate population, thus we had 6 populations in total. And in order to keep the same

graph structure, when comparing the control group to other groups, we excluded the node

that was under intervention from the graph. For example, when comparing the control

group to group akt, the node akt and its connecting edges were removed from the true DAG

structure, and we only estimated the structure among the other 10 nodes. In total, we have

5 pairs of groups to compare, i.e. control group versus 5 experimental groups. And when we

input the data in the experimental groups, we did not use the information about which node

was manipulated, consequently the data we used in causal learning were essentially purely

observational.

We first applied PC and CCDr on the data and ran DIMEO on the estimated cpDAGs.

The numerical results are shown in Table 3.5. In three groups: control vs. akt, control vs.

pip2 and control vs. pkc, DIMEO failed to orient undirected edges, a possible reason could

be that the intervened nodes in these groups did not result in differential edges required in

our assumption. In the group control vs. mek, DIMEO successfully oriented 13% of the

undirected edges from PC’s output and 8% of the undirected edges from CCDr’s output.

Both orientation achieved very high accuracy over 98%. Similarly, for the group control

vs. pka, DIMEO oriented 21% and 28% of the edges for PC and CCDr respectively, with

accuracy rate 89% and 73%.

Figure 3.9 is the box plot of SHD and JI of the three methods. Some boxes have very

concentrated values, which means the estimated graph structures were very similar across the

100 groups of samples. Both PC-DIMEO and CCDR-DIMEO had clear advantage compared

to RESIT in terms of SHD, while three methods were relatively comparable evaluated by JI

in groups control vs. akt and mek. PC-DIMEO clearly outperformed RESIT by JI in all

the other three groups. Overall the two methods with DIMEO generated better structure

learning results.
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Table 3.5: Numerical results on flow cytometry data.

PC-DIMEO CCDr-DIMEO

Group U TP R acc (%) U TP R acc (%)

control vs. akt 2.40 0 0 – 4.68 0 0 –

control vs. mek 6.74 0.87 0 100 4.90 0.39 0.01 98

control vs. pip2 2.16 0 0 – 3.25 0 0 –

control vs. pka 7.30 0.17 0.02 89 5.23 1.46 0.53 73

control vs. pkc 7.18 0 0 – 3.46 0 0 –
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Figure 3.9: Comparison of algorithms on flow cytometry data.

3.5 Proofs

3.5.1 Differential edges and difference indicator matrix

As shown in Figure 3.10, in this section we justify the effect of differential edges on the

difference indicator matrix. In each case, the red node is regressed on its Markov blanket,

which includes the blue and gray nodes. We use the blue node to represent the target variable

we are interested in. The edge in red color represents the differential edge. We discuss three
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Figure 3.10: Target and regressor nodes.

situations (I), (II), (III) in the figure and show the effect of the differential edges on DIM.

In (3.10), the regression coefficient is the ratio of two elements in the precision matrix

Θ. Since we have Ω′ = αΩ′′ in two populations, the scaling factor α gets cancelled out, and

the value of α and Ω′, Ω′′ do not affect the change of coefficients.

Case I. Regression coefficients of Xe|Xb ∼ mb(Xb)

Denote the coefficients of regressing Xb on mb(Xb) in two population as b′ and b′′. First

let us check the change of bXe|(Xb∼mb(Xb)) when Xe ∈ mb(Xb). Assume ch∗(Xb) ∕= Ø, taking

the set of weights {abk}k:Xk∈ch∗(Xb) as variables in the function, then (3.12) can be written as

bXe|(Xb∼mb(Xb))({abk}k:Xk∈ch∗(Xb)) = −

!
Xk∈ch∗(Xb)

1
ω2
k
abkaek + C1

!
Xk∈ch∗(Xb)

1
ω2
k
a2bk + C2

, (3.14)

where C1, C2 are constant with respect to {abk}k:Xk∈ch∗(Xb). By taking the first order partial

derivative with respect to a single variable abk, we have

∂bXe|(Xb∼mb(Xb))

∂abk
= −

1
ω2
k
aek(

!
Xk∈ch∗(Xb)

1
ω2
k
a2bk + C2)− 2

ω2
k
abk(

!
Xk∈ch∗(Xb)

1
ω2
k
abkaek + C1)

(
!

Xk∈ch∗(Xb)
1
ω2
k
a2bk + C2)2

,

(3.15)

which is essentially a quadratic polynomial of abk divided by the square of another polynomial

of abk. It is clear that
∂bXe|(Xb∼mb(Xb))

∂abk
has finite zero points as the numerator is a non-

zero polynomial. Consequently, given that
!

Xk∈ch∗(Xb)
1
ω2
k
abkaek + C1 ∕= 0, bXe|(Xb∼mb(Xb))
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does not have constant piece with respect to abk, which also applies to other variables in

{abk}k:Xk∈ch∗(Xb). In conclusion, b′Xe|(Xb∼mb(Xb))
∕= b′′Xe|(Xb∼mb(Xb))

for ∀Xe ∈ mb(Xb) given

ch∗(Xb) ∕= Ø, i.e. when at least one of the edges from Xb to ch(Xb) is differential, the

regression coefficients b′
Xb∼mb(Xb)

are element-wisely different from b′′
Xb∼mb(Xb)

.

In the figure, as mb(Xb) = {Xa, Xc, Xd, Xe}, we have mba = mbc = mbd = mbe = 1 in

DIM.

Case II. Regression coefficients of Xb|Xe ∼ mb(Xe)

Under the same assumption that ch∗(Xb) ∕= Ø, for a node Xe ∈ mb(Xb), suppose outside

mb(Xb) there is no other differential edges, i.e. mb∗(Xe)\mb(Xb) = Ø. When Xe is regressed

on its Markov blanket mb(Xe), the coefficient of Xb can be written as

bXb|(Xe∼mb(Xe)) = −
− 1

ω2
e
aeb − 1

ω2
b
abe +

!
k:Xk∈ch(Xb)∩ch(Xe)

1
ω2
k
abkaek

1
ω2
e
+
!

k:Xk∈ch(Xe)
1
ω2
k
a2ek

, (3.16)

which can also be seen as a function of {abk}k:Xk∈ch∗(Xb). The behavior of the function

depends on the value of abe, aeb and abkaek for Xk ∈ ch(Xb) ∩ ch(Xe).

• If Xe ∈ ch(Xb)\sp(Xb), bXb|(Xe∼mb(Xe)) = Cabe, thus b
′
Xb|(Xe∼mb(Xe))

∕= b′′Xb|(Xe∼mb(Xe))
if

and only if a′be ∕= a′′be, i.e. if Xe ∈ ch∗(Xb) then b′Xb|(Xe∼mb(Xe))
∕= b′′Xb|(Xe∼mb(Xe))

.

• If Xe ∈ pa(Xb)\sp(Xb), bXb|(Xe∼mb(Xe)) =
C1aeb

C2+
1

ω2
b

a2eb
,
∂bXb|(Xe∼mb(Xe))

∂aeb
has finite zero points,

thus b′Xb|(Xe∼mb(Xe))
∕= b′′Xb|(Xe∼mb(Xe))

if and only if a′eb ∕= a′′eb, i.e. if Xe ∈ pa∗(Xb) then

b′Xb|(Xe∼mb(Xe))
∕= b′′Xb|(Xe∼mb(Xe))

.

• If Xe ∈ sp(Xb), bXb|(Xe∼mb(Xe)) = C +
!

Xe∈sp(Xb)
1
ω2
k
abkaek, thus b′Xb|(Xe∼mb(Xe))

∕=

b′′Xb|(Xe∼mb(Xe))
if and only if a′bka

′
ek ∕= a′′bka

′′
ek, i.e. if Xe ∈ sp∗(Xb) then b′Xb|(Xe∼mb(Xe))

∕=

b′′Xb|(Xe∼mb(Xe))
.

In conclusion, b′Xb|(Xe∼mb(Xe))
∕= b′′Xb|(Xe∼mb(Xe))

for ∀Xe ∈ pa∗(Xb) ∪ ch∗(Xb) ∪ sp∗(Xb),

and b′Xb|(Xe∼mb(Xe))
= b′′Xb|(Xe∼mb(Xe))

for all other nodes Xe in mb(Xb).

In the figure, as Xe, Xc ∈ pa∗(Xb) ∪ ch∗(Xb) ∪ sp∗(Xb), we have meb = mcb = 1 in DIM.
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Case III. Regression coefficients of Xd|Xe ∼ mb(Xe)

Assuming the same situation above where ch∗(Xb) ∕= Ø and mb∗(Xe)\mb(Xb) = Ø for

∀Xc ∈ mb(Xb), we now prove that the coefficients of Xc in regression of Xe on mb(Xe) are

the same in two populations except for case II mentioned above (bXb|(Xe∼mb(Xe)) in the figure).

For a node Xd ∈ mb(Xe)\pa∗(Xe), we have

bXd|(Xe∼mb(Xe)) = −
− 1

ω2
e
aed − 1

ω2
d
ade +

!
k:Xk∈ch(Xd)∩ch(Xe)

1
ω2
k
adkaek

1
ω2
e
+
!

k:Xk∈ch(Xe)
1
ω2
k
a2ek

, (3.17)

as mb∗(Xe)\mb(Xb) = Ø, we have a′ed = a′′ed, and a′ek = a′′ek as well as a′dka
′
ek = a′′dka

′′
ek for

∀Xk ∈ mb(Xe)\pa∗(Xe). Thus b′Xd|(Xe∼mb(Xe))
= b′′Xd|(Xe∼mb(Xe))

, i.e. the differential edges

connected to Xb does not affect coefficients of regression among other nodes in mb(Xb).

In the figure, if Vb → Ve is the only differential edge, for all other elements mij in DIM

except case I and II explained above, mij = 0.

3.5.2 Single edge orientation

Proof of Theorem 3.1

Given the correct DIM M = (mij), we aim to orient an edge between two nodes Va and

Vb. Suppose the true direction is Va → Vb, then the correct M should have mab = 1, i.e.

Xa ∈ Cb. We have the following possible situations about the differential edge:

(1) Va has a differential edge to at least one of the nodes in ch(Xa) and/or

(2) Vb has a differential edge to a common child of Va and Vb, i.e. nodes in ch(Xa)∩ch(Xb).

If (1) holds, we should have
!

Xk∈mb(Xa)
(1−mak) = 0, since ∀Xk ∈ mb(Xa), mak = 1.

If (2) holds, the common child Xk ∈ Pa ∩ Pb, also Xk ∈ Cb since it is in mb(Xb), thus

{Xk} ⊆ Pa ∩ Pb ∩ Cb.

In order to orient the edges as Va ← Vb, three requirements have to be met: Xa ∈ Cb,

graph G has Pa ∩ Pb ∩ Cb = Ø, and
!

Xk∈mb(Xa)
(1 − mak) > 0. As situation (1) and (2)
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are both contradictory to the requirements to orient the edge as Va ← Vb, the algorithm

guarantees no false orientation on Va → Vb.

Proof of Theorem 3.2

If an edge Va → Vb is oriented, three requirements in Algorithm 1 have to be satisfied. As
!

Xk∈mb(Vb)
(1 −mbk) > 0, all outgoing edges of node Vb are non-differential. And Xb ∈ Ca,

i.e. mba = 1, either Va → Vb is differential or there exists a collider Vc so that Va → Vc ← Vb,

and Va → Vc is differential. However, the later situation violates the requirement that

Pa ∩ Pb ∩ Ca = Ø because Xc ∈ Pa ∩ Pb and mca = 1, which means that Xc ∈ Pa ∩ Pb ∩ Ca.

This observation is summarized in Theorem 3.2.

Proof of Theorem 3.3

If an edge Va → Vb is determined, we can further orient other edges involving Vb. For

a node Vc that is not connected to Va, the edge direction can be determined since no new

v-structure should be introduced given the cpDAG. For a node Vc connected to both Va and

Vb, if Vc is the parent node of Vb, since Xb ∈ Pa ∩ Pc and Xb ∈ Ca (requirement for this

orientation), we should have Xb ∈ Pa ∩ Pb ∩ Ca, which is contradictory to the requirement

that Pa ∩ Pb ∩ Ca = Ø. Consequently, as written in Theorem 3.3, when an edge Va → Vb is

oriented by Algorithm 1, all other edges should be incoming edges to Vb as well.
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CHAPTER 4

Summary

The dissertation works on two problems associated with graphical models. The first one

is focused on undirected SBM and graphon models, we proposed an empirical Bayes (EB)

estimate as an alternative to the classic maximum likelihood estimate (MLE). Compared to

MLE and variational Bayes EM, our EB method achieved much higher accuracy on various

networks generated by stochastic blockmodels and graphons and on two well-annotated real

world networks. Besides, we have proposed a likelihood-based model selection criterion,

which generally outperforms other popular existing criteria. The second problem is about

causal discovery from multiple populations, we proposed a simple algorithm (DIMEO) based

on node wise regression within different populations. Several experiments show the fact that

DIMEO can efficiently deal with mixed data generated from different underlying populations,

providing a great boost to the existing structural learning methods.

4.1 Contributions

In Chapter 2, we developed an empirical Bayes estimate for the probabilities of edge connec-

tions between communities in a network. While empirical Bayes (EB) under a hierarchical

model is a well-established method, its application to SBMs is very limited before our work.

Our method is a natural fit to the SBM and the idea is generally applicable to different

community detection methods. It does not require complicated algorithms or heavy com-

putation, yet can effectively improve the estimation accuracy of model parameters. For the

large volume of published community detection or network clustering algorithms, our pa-
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rameter estimation method can be adopted as a superior alternate after the node clustering

step. SBM approximation to graphons could result in a large number of blocks, for which

case the EB often shows substantial advantage over the MLE, and this was a key motivation

for our generalization to graphon estimation.

In Chapter 3, we developed an algorithm using difference indicator matrix to discover

causal relations when the observed data were generated from different populations. Our

proposed algorithm DIMEO orients undirected edges in cpDAG by using difference indicator

matrix obtained from node wise regression. Several simulation studies and an application

on protein-signaling network data verified the effectiveness of the DIMEO algorithm. The

experiments on population level data (ideal case) and numerical simulations demonstrated

the high accuracy of the method. DIMEO applied after PC and CCDr algorithms successfully

oriented edges in cpDAGs, and outperformed a popular non-linear causal learning algorithm

RESIT in both simulation and real data experiments. Another major advantage of the

algorithm is its simplicity for implementation and low computation complexity, which makes

it a handy choice for causal learning when dealing with observational data generated from

different populations.

4.2 Discussion

For graphon estimation, though shrinkage in empirical Bayes approach leads to more accu-

rate estimate of the connectivity probabilities, the improvement depends on the variability

of the underlying connectivity matrix or graphon function. Typically, a higher variance re-

duces its improvement relative to the MLE. Therefore, for some graphon functions with high

volatility, EB cannot guarantee a better estimate, but from our simulation results, EB esti-

mate and MLE are usually comparable for such cases. A key observation from the numerical

comparisons is that the shrinkage estimation in our EB method improves the accuracy of

the estimator regardless of the accuracy in the node clustering step. A main reason for this
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observation is that EB estimate uses a very small number of hyperparameters, which effec-

tively reduces the model complexity and greatly minimizes the risk of overfitting the data.

This also helps the development of a good model selection criterion based on the marginal

likelihood.

We put a beta conjugate prior on connection probability Θ, and the estimates of the

hyperparameters (αd, βd)d={0,1} will not be 0. Thus when there is a true connectivity θab = 0

in block (a, b), which is likely to happen in sparse networks, our hierarchical model introduces

bias to the estimate of θab. However, since the empirical Bayes estimator is pooling data

in all the blocks, the overall accuracy should still be higher. To alleviate this biased fitting

problem, we can build the likelihood only on blocks with observed connections, or consider

adding only a proportion α of zero connectivity blocks. This method can be tested with

more experiments to find out which α works the best under different assumptions of SBM

and graphon.

We compared the model estimation accuracy by their mean squared error, which is a gold

standard criterion to evaluate parameter estimation. However several other metrics such as

KL-divergence of the estimated graphon function to the truth, deviation of the estimated

number of motifs in the graph to the true value, and divergence of degree distributions can

also be considered. For the application on real data, the goodness of fit of SBM or graphon

model to the dataset should be checked by comparison to other exisiting network modeling

methods. A decent fit of the stochastic blockmodel and graphon to the chosen dataset will

strengthen the persuasiveness of the usefulness of our method.

For the causal discovery work in the dissertation, our algorithm provides stable output

of orientation, and the potential uncertainty of the output is essentially from the data itself.

From the output of DIMEO we receive no information about the confidence level of the

estimation. In order to provide a measure of uncertainty of the output, we can use bootstrap

sampling from the data to yield a non-parametric distribution of the orientation results in

the graph, thus have a bootstrap confidence level of the estimated direction of each oriented
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edge.

4.3 Future works

As for the SBM and graphon estimation project, we have focused on parameter estimation

for binary and assortative stochastic blockmodels and graphons. In fact, this idea can be gen-

eralized to more sophisticated random graph models, such as SBM with mixed memberships

(Airoldi et al., 2008), SBM with weighted edges (Aicher et al., 2014), Nested (hierarchical)

SBM (Peixoto, 2014), and bipartite SBM (Larremore et al., 2014) etc. In particular, the

empirical Bayes method can be applied after node clustering to improve the estimation ac-

curacy and to identify a proper number of clusters for these models. This is left as future

work.

As for the second project, the current DIMEO algorithm is based on an assumption of

Gaussian noise and relies on linear regression to calculate difference indicator matrix. While

in many real world networks the noise distribution are non-Gaussian, and the weights of the

edges are not linear functions of the parent variables, in some cases the functions are discrete.

The idea can be extended to discrete DAGs and linear regression should be replaced with

generalized linear models. Usually in these cases a weighted adjacency matrix does not have

a simple form, and the relationship between the graph structure and DIM cannot be easily

found as in the Gaussian DAGs.

Here we consider a simple binary data case where the effect of variables can still be

quantified with simple numerical values. Assuming a large scale of data, the probability

distribution ofXi given its Markov blanketmb(Xj) = {Xi, Xk} can be listed as a contingency

table. Assume that each edge Vi → Vj has a value βij that is similar to the edge weight in our

method. From the observed data, in each population we are able to estimate probabilities
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P(Xj = 1) with logistic regression

log
P(Xj = 1)

1− P(Xj = 1)
= β0 + βijxi + βkjxk, (4.1)

where xi, xk = {0, 1} and βij, βkj are the regression coefficients. If a differential edge Vi → Vj

is interpreted as an edge with different βij in two populations, the difference indicator matrix

M is obtained from the comparison of βij for i, j = {1, . . . , p} in two populations.

The development of DIMEO based on other generalized linear model remains as a major

future extension of our work.

Meanwhile, the GRN construction still remains to be a challenging task, especially when

the gene expression data is obtained from single cell sequencing, which is known to suffer

from missing values and typically follows bi-model distributions that are more difficult to

model. While DIMEO deals with the differential edges in GRN, it does not solve the problem

of fitting the non-linear functions between genes. If a generalized version of DIMEO can be

developed and implemented we could hope to see a big step forward in the field of GRN

inference.
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