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Abstract

Life Cycle Regulation of Transportation Fuels:
Uncertainty and its Policy Implications

by

Richard J. Plevin

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Michael O’Hare, Chair

Many national and regional governments have been promoted biofuels as a strategy to mit-
igate the climate change effects of the existing petroleum-based transportation system. New
performance-based policies such as the California Low-Carbon Fuel Standard and the US Renew-
able Fuel Standard use Life Cycle Assessment (LCA) to estimate greenhouse gas (GHG) emissions
to determine the life cycle global warming effects of each fuel production pathway. However, the
current generation of policies have largely ignored the highly uncertain and often subjective nature
of LCA assessments. Considering these uncertainties raises questions about the appropriateness of
using an LCA-based estimate as a performance metric in public policy.

The objective of this dissertation is to characterize—qualitatively and quantitatively—the many
data, parameter, model, and decision uncertainties inherent to estimates of the life cycle climate
effects of transportation fuels, and to critically examine the robustness of these policies to these
uncertainties. As demonstrated herein, LCA-based fuel regulations may accomplish much less than
expected, and have the potential to cause more climate change than a business-as-usual scenario
absent biofuels. Alternative policies that acknowledge uncertainty and respect the limitations of
LCA—and thus of our understanding of the benefits of LCA-based policies—can be more robust
in achieving GHG reductions.
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CHAPTER 1

INTRODUCTION

“Performance-based standards depend on the ability of government agencies to spec-
ify, measure, and monitor performance, but reliable and appropriate information about
performance may sometimes be difficult if not impossible to obtain. When imple-
mented in the wrong way, or under the wrong conditions, performance-based reg-
ulation will function poorly, as will any regulatory instrument that is ineffectually
deployed.”

Coglianese et al. (2003)

1.1 MOTIVATION

Carbon dioxide emissions from the transportation sector comprise about one third of total CO2
emissions in the US, and 40% of the total in California (CARB, 2009a). Steep reductions in
national and state greenhouse gas (GHG) emissions will therefore require reductions in the trans-
portation sector. To help mitigate the climate change impact of this sector, new policies are being
implemented to reduce the global warming intensity1 (GWI) of transportation fuels, which are
presently dominated by petroleum-based gasoline and diesel. These regulations attempt to account
for the life cycle emissions of GHGs, i.e., the GHGs emitted during all phases of the fuel cycle, in-
cluding production, distribution, and use of all transportation fuels. In California, the Low-Carbon
Fuel Standard (LCFS) requires fuel blenders to reduce the GWI of the fuels they sell 10% or more
by 2020 (CARB, 2009a). At the US federal level, the updated Renewable Fuel Standard (RFS2)
combines volume mandates with life cycle GHG performance requirements (USEPA, 2010b). At
least twelve US states are currently considering the implementation of fuel standards based on Cal-
ifornia’s, though these may be superseded by a national standard (United States Congress, 2007b;

1The more common terms “carbon intensity” and “low-carbon” are misnomers. Some climate-active emissions
(e.g., N2O) and biophysical effects (e.g., albedo, evapotranspiration) are not a function of carbon content, and some
emissions of carbon (i.e., short-cycle biotic carbon) are not counted as part of “carbon” intensity. The form in which
carbon is emitted (e.g., CO, CO2, CH4, black carbon, organic carbon) would not, in principle, affect a fuel’s “carbon”
intensity, but each molecular form imparts a distinct global warming effect. Finally, I note that the term “carbon inten-
sity” was chosen for the LCFS not for scientific accuracy but because “low-global-warming-intensity fuel standard”
was insufficiently mellifluous. As in my prior publications, I use the term global warming intensity herein.
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Anon., 2009). Similar regulations have been proposed in British Columbia and the European Union
(European Parliament, 2009).

Unfortunately, life cycle assessment (LCA) is as much art as science: it is common for differ-
ent life cycle analysts to reach divergent conclusions when ostensibly examining the same prod-
uct (Farrell et al., 2006b; Plevin, 2009; Hoefnagels et al., 2010). The divergence is generally
attributable to different assumptions and methodological choices made by analysts (Farrell et al.,
2006b; Cherubini et al., 2009; Hoefnagels et al., 2010). In addition to a lack of methodological
consensus, process and emissions data are often variable or imprecisely known, especially for nat-
ural and agricultural systems. Finally, the regulations noted above require accounting for GHG
emissions that occur elsewhere in the global economy, mediated by commodity markets, induced
by biofuel production. Estimates of indirect effects are even more divergent and uncertain (Bab-
cock, 2009; Liska and Perrin, 2009).

As I illustrate herein, life-cycle-based fuel GHG policies presuppose a level of accuracy that is
beyond the reach of LCA. The many uncertainties inherent in standard LCA are well-characterized
in the literature, and the subject of how uncertainty is handled in LCA has been addressed in
several reviews (Lloyd and Ries, 2007; Heijungs and Huijbregts, 2004; Ross et al., 2002). The ISO
standards for LCA state clearly that “LCA addresses potential envirornmental impacts; LCA does
not predict absolute or precise environmental impacts due to”, among other things, “the inherent
uncertainty in modeling of environmental impacts” (ISO, 2006b). Standard LCA, which is based
on supply chain analysis, does not attempt to address induced (market-mediated) effects beyond the
supply chain. The techniques to estimate these effects are immature and subject to much debate,
with efforts by regulatory agencies such as CARB and USEPA currently defining the frontier of
the discipline.

Statistical uncertainties can be propagated through a life cycle model using various techniques,
the most common being Monte Carlo simulation. This capability is supported in several commercially-
available LCA tools such as GaBi, SimaPro, and Umberto2 and LCA databases such as EcoInvent
(Frischknecht et al., 2007). However, the treatment of uncertainty in LCA remains inconsistent,
incomplete, or more often, simply omitted (Lloyd and Ries, 2007). Studies that do quantify uncer-
tainty tend to focus on parameter uncertainty and a few alternative scenarios (Lloyd and Ries,
2007). Model uncertainty (discussed further in Section 2.2) appears responsible for more of
the overall uncertainty in biofuel GHG analysis than does variability and parameter uncertainty.
Key areas of unresolved LCA methodology include disagreements over how to estimate market-
mediated effects such as indirect land use change, how to handle co-products, questions about
which climate forcings to include in our global warming intensity measure, and how exactly to
aggregate these.

California’s LCFS requires that the life cycle GHG emissions from fuels used in light-duty ve-
hicles within California be 10% lower in 2020 than in 2010. To achieve this, each fuel is assigned a
GWI rating, and fuel blenders are required to reduce their average fuel carbon intensity (AFCI) to

2For more information on these products see http://www.gabi-software.com, http://www.pre.nl (SimaPro), and
http://www.umberto.de.

http://www.gabi-software.com
http://www.pre.nl
http://www.umberto.de
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the targeted level through (i) efficiency improvements, (ii) blending with lower-rated fuels, (iii) us-
ing banked credits from earlier over-compliance, or (iv) trading with firms that have over-complied
and thus generated reduction credits (CARB, 2009a). The LCFS fuel ratings are treated as accurate
to within 0.01 g CO2e MJ−1, yet without any consideration of uncertainty. Therefore, an important
question that has gone unanswered—and largely unasked—is this: Given the uncertainty inherent
in LCA, how confident are we that a nominally LCFS-compliant fuel scenario actually meets or
exceeds the targeted 10% reduction in global warming intensity? And if we aren’t highly certain
of meeting the reduction target, are we at least fairly certain that the policy will reduce, rather than
increase, GHG emissions? Similar questions pertain to RFS2 and to LCA-based policies being
considered or implemented elsewhere. To answer these questions requires an analysis of uncer-
tainty. I believe that an examination of uncertainty will lead to policies that more robustly achieve
their climate objectives. But first, we must overcome the habit of ignoring uncertainty.

1.2 GOALS

In the pages below, I analyze the efficacy of fuel policies that rely on life cycle assessment (LCA)
to quantify the relative climate effects of transportation fuel alternatives, and to consider possible
improvements to these policies. At the highest level, my question is simply this: Are we rea-
sonably sure that these policies mitigate, rather than exacerbate, climate change? Given the high
degree of uncertainty associated with the global warming intensity (GWI) of some fuel pathways—
particularly for crop-based biofuels—and the lack of consideration to system responses such as
market reshuffling and rebound effects, the answer is not obvious. The cumulative effect of these
factors on the efficacy of fuel GHG policies is poorly understood.

The purpose of my research is to examine whether the uncertainty surrounding estimates of the
relative climate effects of different transportation fuels is sufficiently broad that current policies
may be producing little benefit, or worse, producing disbenefits. In particular, I examine these
questions:

1. What is the character of the uncertainty in estimates of life cycle climate effects of transporta-
tion fuels? That is, what are the shapes of possible probability distributions under competing
scenarios?

2. Under what conditions will existing LCA-based policies fail to achieve their intended goals,
and under what conditions are they likely to succeed?

3. Given these uncertainties, what type of policies (or changes to existing policies) would be
produce a more robust reduction in the climate change effects of transportation?

1.3 CONTRIBUTIONS

My research offers contributions in four areas:



5

1. I examine the uncertainties inherent in estimates of the life cycle greenhouse gas (GHG)
emissions from transportation fuels. Although a few LCA studies consider and even quantify
portions of the uncertainty, there have been few studies focused on the uncertainty itself.

2. I characterize the uncertainty associated with indirect land use change, countering the mis-
taken notion that ILUC emissions should be ignored because estimates are highly uncertain.
Given the political environment surrounding ILUC (e.g., the Peterson (2009) amendment to
the Waxman-Markey bill), I believe this is a particularly timely and important contribution.
I believe my reduced-form model of ILUC can help shift the discussion of ILUC uncertainty
to a more useful direction, from assertions of “too much uncertainty” toward better char-
acterizations of that uncertainty and consideration of the implications of the uncertainty on
policy design.

3. I examine the efficacy of two approaches to regulating the GWI of fuels, the California
Low-Carbon Fuel Standard (LCFS) and the US Renewable Fuel Standard. Several other
jurisdictions are planning to emulate the CA LCFS, so it is crucial that we understanding of
the limits of this approach. I believe my work has the potential to inform and perhaps alter
the trajectory of these efforts in the US and abroad.

4. Finally, I provide methodological guidance on the use of LCA in policies to mitigate cli-
mate change. The “ILUC debacle” has highlighted important shortcomings in the standard
(attributional) approach to LCA. As I demonstrate, these shortcomings invalidate attribu-
tional LCA for use as a performance measure in public policy. However, the alternative
(consequential) approach is inherently uncertain, raising important questions about policy
robustness.

1.4 DISSERTATION STRUCTURE

This dissertation is organized in four parts, each consisting of multiple chapters.
Part I provides background information on the topics at the core of my resesarch. Chapter

2 introduces the concepts of life cycle analysis, uncertainty, and uncertainty analysis. Chapter 3
introduces key uncertainties in the global warming intensity of biofuels.

Part II examines uncertainties in estimates of the GHGs directly emitted across the biofuel
supply chain. Chapter 4 compares two life cycle models of GHG emissions from corn ethanol
production—GREET and BESS—using a meta-model to examine differences in assumptions and
identify errors and sources of disagreement. Chapter 5 uses Monte Carlo simulation in the GREET
model to explore the uncertainty surrounding the GWI of corn and cellulosic ethanol, gasoline, and
electricity.

Part III examines the uncertainty in estimates of emissions from land use changes induced
by the expanded production of biofuels. Chapter 6 reviews the challenges of modeling ILUC
emission. Chapter 7 explores the uncertainty in the ground-breaking Searchinger et al. (2008b)
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study of ILUC, using Monte Carlo analysis. Chapter 8 examines uncertainty in the ILUC emissions
for corn ethanol, using Monte Carlo analysis and interval analysis based on a reduced-form model
of ILUC.

Part IV concludes with an examination of the limitations of LCA-based fuel policy. Chapter 9
examines strategies for coping with uncertainty in the science-policy interface. Chapter 10 exam-
ines the efficacy of the LCFS at achieving emission reductions. Chapter 11 summarizes the main
results of my research and suggests further research to improve the design of fuel and transporta-
tion GHG policies.
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CHAPTER 2

BACKGROUND

“In the face of scientific uncertainty, regulatory outcomes depend critically upon what
conclusions are drawn from the data, and upon what level of certainty is required as a
prerequisite to regulatory action. The process of interpreting and applying incomplete
data is full of judgments, some of the type familiar to research scientists, others of the
type familiar to political actors. To the extent that these judgments are not objectively
determined by the data, they are not scientific in the sense that dominates popular
mythology. To the extent that factors other than scientific evidence inform them, they
are not scientific even in an expansive sense.”

Holly Doremus (2005)

2.1 PURPOSE AND SCOPE

This chapter introduces two core concepts underlying this dissertation: uncertainty (section 2.2)
and life cycle analysis (section 2.3).1 The intersection of these two topics, i.e., uncertainty in life
cycle assessment, is discussed in section 2.4. This chapter provides background information of a
more general nature. Chapter 3 focuses specifically on uncertainty in the LCA of biofuels.

The key points of this chapter (and of chapter 3) are that (i) owing to methodological challenges,
LCA is incapable of producing definitive, objective results, and (ii) LCA results are, in many cases,
highly uncertain. Although these limitations have been discussed frequently in the LCA literature,
they appear to have been overlooked in the design of LCA-based regulations.

1It is not my intention to provide complete reviews of these topics here, but rather to introduce concepts that
are addressed in more depth in subsequent chapters. For a more complete introduction to LCA, I recommend the
guidebook by Guinee et al. (2001), the report on Market information in life cycle assessment by Weidema (2003), and
the many excellent documents found at www.calcasproject.net, the website of the Co-ordination Action for innovation
in Life-Cycle Analysis for Sustainability. For more information on the representation and analysis of uncertainty, I
recommend Morgan et al. (1990) and Krupnick et al. (2006).

www.calcasproject.net
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2.2 UNCERTAINTY

Model building is a process of approximation, extrapolation, and simplification, resulting, in-
evitably, in divergence between modeled results and the processes modeled. That models are
imperfect and their results uncertain is not controversial. However, when model results form the
basis for a decision, it becomes essential to understand how and whether the uncertainty affects
the decision (Morgan et al., 1990; Krupnick et al., 2006). This requires quantitative analysis of
uncertainty. This section discusses the different types of uncertainty encountered in models, and
technique for combining and propagating these uncertainties through to model results.

2.2.1 TYPES OF UNCERTAINTY

Uncertainty can be viewed along several dimensions, and researchers have developed various ty-
pologies to categorize uncertainty (e.g., Morgan et al., 1990; Cullen and Frey, 1999; Krupnick
et al., 2006; Refsgaard et al., 2007). It’s generally agreed that the primary distinction among types
of uncertainty is between (i) variability resulting from heterogeneity of individuals in a popula-
tion, and across time or space, and (ii) lack of knowledge, which includes both parameter and
model uncertainty. A third category, decision uncertainty, involves subjective choices that define
the problem analyzed or how the model results are interpreted, e.g., the choice of analytic horizon
to consider and whether to use discounting (Krupnick et al., 2006). This can be considered a type
of epistemic uncertainty, since the decision-maker does not know which choice will best meet the
goals motivating the analysis.

In practice, the specifics of the typology are not terribly important, as the main function of a
typology of uncertainty is to guide analysts and decision-makers to consider all sources of uncer-
tainty. Figure 2.1 illustrates the typology of Krupnick et al. (2006), itself a composite produced
from several venerable sources such as Morgan et al. (1990) and Cullen and Frey (1999), among
others.

2.2.1.1 VARIABILITY

Variability (also known as aleatory, stochastic, or objective uncertainty) occurs when some em-
pirical quantity of interest actually exists within a population that varies across time, space, or
individuals (Krupnick et al., 2006). The requirement in a model of choosing one value to represent
this heterogeneity results in uncertainty. Variability is considered irreducible uncertainty in that
additional knowledge or research cannot change the basic feature of heterogeneity. This type of
uncertainty, however, is easier to represent objectively given the availability of empirical data from
which statistics can be drawn.

2.2.1.2 LACK OF KNOWLEDGE

Lack of knowledge (also known as epistemic, or subjective uncertainty), by definition, is not sup-
ported by empirical data. In the typology presented here, lack of knowledge is divided into two
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Uncertainty

Lack of 
knowledge

Parameter 
Uncertainty

Model 
Uncertainty

Decision 
UncertaintyVariability

• Choice of metric
• Discount rate
• Risk tolerance
• Utility functions
• Distributional
  considerations
• Scope of analysis
• Timeframe
• Scenarios chosen

• Structural choices
• Simplification
• Incompleteness
• Choice of
  distributions
• Correlations and
  dependencies
• System resolution

• Measurement error
• Unpredictability
• Conflicting data
• Extrapolation error
• Insufficient data

Figure 2.1: Typology of uncertainties, based on Krupnick et al. (2006)

categories: parameter and model uncertainty. Parameter uncertainty is similar to variability in that
both refer to empirical quantities. However, where variability concerns the heterogenous nature
of some quantity of interest, parameter uncertainty results from a lack of understanding of the
quantity of interest, and thus this type of uncertainty can may be reduced through further research.
The value of a single model parameter may have both stochastic and epistemic components. For
example, in a life cycle assessment, we may lack data about a particular production process and
use proxy data to represent that process. This component of the LCA will have stochastic uncer-
tainty associated with the proxy data as well as epistemic uncertainty related to how well the proxy
represents the process of interest. Since we lack data about the actual process in question, it is
impossible to quantify objectively the error introduced through the use of proxy data.

Model uncertainty differs from parameter uncertainty in that the former is related not to empir-
ical quantities, but to the relationships among model inputs and outputs. For example, we may not
know if a certain relationship is linear or non-linear, owing to inconclusive data or disagreement
among experts. However, as Morgan et al. (1990) note, the distinction is somewhat slippery since
a model parameter can be defined to select among different functional forms, converting model un-
certainty into parameter uncertainty. As noted above, the main purpose of the typology is to ensure
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that all uncertainties are considered; the specific category into which an uncertainty is grouped is
of little concern.

2.2.2 UNCERTAINTY ANALYSIS

Decision-makers who rely on models should be apprised of the uncertainty surrounding model
results (Morgan et al., 1990; Krupnick et al., 2006). Of particular importance is an understanding
of when model results span outcomes that would result in different decisions. In the regulatory
context, ignoring uncertainty can give a false impression of distinguishability among alternatives
(Weidema, 2000b; Basson and Petrie, 2007), which can result in regulations that fail to achieve
their goals, or worse, that promote outcomes contrary to those intended (Cherubini et al., 2009).

Here, I identify two important components of uncertainty analysis: sensitivity analysis, which
examines the relationship between a single model parameter and a model result, and uncertainty
propagation, which combines the uncertainties in model inputs to estimate the uncertainty in model
outputs.

2.2.2.1 SENSITIVITY ANALYSIS

The most common approach to examining model uncertainty involves local sensitivity analysis:
one model parameter at a time is perturbed while holding other parameters at their nominal value
and the change in model results is reported (Saltelli et al., 2006) . However, though widely used,
this type of analysis generally understates the uncertainty in a model. Saltelli et al. (2006) consider
local sensitivity analysis “illicit and unjustified” for all but strictly linear models, since in non-
linear models, the sensitivity to any single factor generally depends on the state of other variables.
As a result, the ranges in model output identified when perturbing single parameters will understate
the range possible when model parameters are altered simultaneously.

In contrast, global sensitivity analysis examines the contribution of individual parameters to
the overall uncertainty in the model output while allowing all parameters to vary. A common
global sensitivity analysis technique (supported in the Crystal Ball and @Risk software packages
for example) uses the results of a Monte Carlo simulation (discussed further below) to report
the rank correlations between input parameters and output parameters across the full range of
input values selected in the simulation. This type of decomposition, though inexact, identifies the
(generally few) parameters that contribute most of the variance, and thus where research might
most beneficially be focused to reduce uncertainty (Morgan et al., 1990).

The value of global sensitivity analysis is two-fold: (i) it identifies factors that might profitably
be studied further to reduce the uncertainty, and (ii) it identifies factors that contribute negligibly
to the total variance, thereby allowing for simplification of the model by treating those factors as
certain (Cariboni et al., 2007). I employ global sensitivity analyses in chapter 5 in the examination
of direct emissions, and in chapter 8, where I examine indirect land use change.
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2.2.2.2 UNCERTAINTY PROPAGATION

Given representations of the uncertainty in model inputs, the uncertainty in model outputs can be
estimated. This “propagation” can be performed using analytical methods or stochastic simulation.

ANALYTICAL METHODS. Uncertainties can be combined using error propagation equations such
as those given below for addition and multiplication of uncertain quantities. However, these an-
alytic methods are accurate only if (i) the uncertainties are uncorrelated, (ii) the uncertainties are
normally distributed, and (iii) the standard deviations of the normal distributions are less than about
30% of the mean (IPCC, 2000). When these conditions are not met, numerical solutions such as
Monte Carlo simulation can be used, as described in the next section. The following equations and
explanations thereof are taken from IPCC (2000, p. 6.12).

When uncertain quantities are combined additively, their combined uncertainty (subject to the
constraints above) can be computed as shown in equation 2.1.

Utotal =

√
(U1× x1)2 +(U2× x2)2 + ...+(Un× xn)2

x1 + x2 + ...+ xn
(2.1)

where:
Utotal is the percentage uncertainty in the sum of the quantities (half the 95% confidence interval

divided by the total (i.e., mean) and expressed as a percentage;
xi and Ui are the uncertain quantities and the percentage uncertainties associated with them,

respectively.
When uncertain quantities are combined multiplicatively, their combined uncertainty (subject

to the constraints above) can be computed as shown in equation 2.2.

Utotal =
√

U2
1 +U2

2 + ...+U2
n (2.2)

where:
Utotal is the percentage uncertainty in the product of the quantities (half the 95% confidence

interval divided by the total and expressed as a percentage;
Ui are the percentage uncertainties associated with each of the quantities.

STOCHASTIC SIMULATION. Also known as Monte Carlo simulation, this approach involves the
assignment of a probability distribution to each uncertain model parameter and the repeated evalu-
ation of the model using one value selected from each parameter distribution. The set of values for
a single model output computed by these simulations defines a frequency distribution from which
statistics can be calculated. Typical simulation use hundreds to thousands of model evaluations,
depending on the precision required.

Unlike the analytical methods described above, stochastic simulation provides accurate results
regardless of the shape of the probability distributions used to represent model parameters. How-



12

ever, for some models, running a full Monte Carlo analysis may be impractical owing to long
solution times—because of system complexity or simply because the modeling system requires
human intervention. In these cases, approximate results obtained using analytical methods may be
preferable to having no analysis of uncertainty at all (See, for example, the use of the Gaussian
Quadrature method to approximate uncertainty in the GTAP model in Hertel et al., 2010a).

Model uncertainty in particular and epistemic generally are challenging to represent proba-
bilistically. These uncertainties are frequently excluded from Monte Carlo analyses and instead
examined using discrete scenarios. However, when scenarios are used, it becomes difficult to
produce a single persuasive frequency distribution for use in decision analysis or regulation. Im-
portantly, in some models the differences between scenarios can overwhelm parameter uncertainty
and variability (Morgan et al., 1990; Krupnick et al., 2006).

CORRELATED VARIABLES. Correlation among variables can increase or decrease the variance
of functions of them. Generally, the variance of a sum or product of random variables is larger
if they are positively correlated, smaller if negatively. These correlations can be represented in a
Monte Carlo simulation to restrain the choice of values for correlated parameters to respect the
stated correlation. In some cases, correlations are difficult to assess, but it is possible to structure
the model so that the correlations are represented internally. For example, the difference in GWI
between two fuels—which share dependencies on the production and upstream use of electricity,
petroleum, natural gas, and so on—can be computed in each trial so that a distribution of the
difference can be produced that respects the values of shared model structures.

REPRESENTING EPISTEMIC UNCERTAINTY. Ferson and Ginzburg (1996) demonstrate that cal-
culations based on a uniform distribution are very different than those using an interval with the
same bounds when nothing is known about the shape of the probability distribution between those
bounds. Using a range asserts that the value of the parameter is located within the bound, but we
make no statement about the likelihood of any particular location, while using a uniform distribu-
tion asserts that the value is equally likely to occur at any point between the stated minimum and
maximum (Ferson and Ginzburg, 1996).

Aven (2010) comments on Ferson, downplaying the distinction between epistemic and stochas-
tic uncertainty, and taking the personalist view of probability. Specifically, Aven says that there
are two possible goals for an uncertainty analysis: (i) to obtain an objective description of the the
unknown quantities, or (ii) to obtain a scientific judgment about the unknown quantities from a
qualified group of people. The latter, of course doesn’t claim to be objective. The latter approach
recognizes that all uncertainty is relative to our present knowledge base and thus subjective (Mor-
gan et al., 1990; Aven, 2010). From this perspective, it is perfectly legitimate to assign subjective
probabilities that represent our belief that a parameter has a given probability. In this case, how-
ever, we must be careful to represent the resulting joint probability as similarly subjective. For a
decision-maker, the estimation of a subjective probability based on expert judgment is generally
better than no estimate of uncertainty at all, which is all too frequently the alternative (Morgan
et al., 1990).
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2.2.3 AVOIDING UNCERTAINTY ANALYSIS

Uncertainty analysis is too frequently avoided completely or performed in a half-hearted manner
and relegated to an appendix. There are clear disincentives for a modeler to perform uncertainty
analysis: representing uncertainty can add significant complexity to a model, and Monte Carlo sim-
ulation can be very time-consuming. In many cases, an examination of uncertainty will demon-
strate that the results of a modeling study are less clear than hoped. As Krupnick et al. (2006)
write:

“Overall, there is a tendency to avoid formal uncertainty analyses unless the uncer-
tainties can be included comprehensively and quantified precisely. An alternative—
arguably, preferred approach—would be to conduct uncertainty analysis as best as
possible, even if abilities are limited; almost any uncertainty analysis is better than
none at all.”

I agree wholeheartedly with this assessment, assuming that the limitations of the analysis are
properly characterized: if an analysis includes only a portion of the known uncertainties, it should
not be represented as characterizing the full uncertainty. However, it may be more important that
interested parties agree on the representation of uncertainty than that the representation is precisely
quantified.

2.3 LIFE CYCLE ASSESSMENT

2.3.1 HISTORY AND PURPOSE

Life cycle assessment (LCA) is a tool to help assess the total resource use and environmental effects
associated with products throughout their entire life cycle, from raw materials extraction, through
production, transportation, use, and disposal (ISO, 2006a). The concept of LCA emerged in the late
1960s to early 1970s, with the first formal scheme in the US dating to 1969 to compare disposable
versus reusable beverage containers (Hunt et al., 1996). An early focus of these studies, termed
Resource and Environmental Profile Analyses (REPA) centered on the choice between reusable
and disposable packaging or plastics versus paper products (Hunt et al., 1996). The OPEC boycott
and energy crisis of 1973 sparked greater interest in the energy component of these analyses, but
interest waned with the decline of petroleum prices, with public interest in LCA subsiding from
1975 to 1988 (Hunt et al., 1996).

According to ISO standard 14040 (ISO, 2006a), LCA can assist in

• “identifying opportunities to improve the environmental performance of products at various
points in their life cycle,

• informing decision-makers in industry, government or non-government organizations (e.g.
for the purpose of strategic planning, priority setting, product or process design or redesign),
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• the selection of relevant indicators of environmental performance, including measurement
techniques, and

• marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or
producing an environmental product declaration).”

While a full LCA aims to describe all important environmental effects (e.g., global warming,
eutrophication, acidification, human toxicity, resource consumption, biodiversity impacts), some
studies and regulations concern only the life cycle inventory of GHG emissions associated with
a product, typically expressed in terms of CO2 equivalents (CO2e), and generally including only
emissions of CO2, CH4, and N2O (Delucchi, 2010; Röös et al., 2010). These GHG-only analyses
are sometimes called carbon footprint analyses.

2.3.2 METHODOLOGICAL ISSUES WITH LCA

Despite the existence of ISO standards 14040–14044 (ISO, 2006b,a), life cycle assessment is
widely recognized in the literature as suffering from several methodological weaknesses (e.g., Wei-
dema, 1993; Finnveden, 1999; Weidema, 2000b; Ekvall and Finnveden, 2001; Björklund, 2002;
Delucchi, 2004; Reap et al., 2008b,a; Zamagni et al., 2008; Guinée et al., 2009; Finnveden et al.,
2009; Kendall et al., 2009; Delucchi, 2010). As a result, LCA is not capable of producing a single,
definitive description of the environmental footprint of a product. Rather, each LCA is a subjective
analysis based on a wide array of analyst choices, approximations, and simplifications—and many
uncertainties. An LCA result is best understood as a single plausible scenario among potentially
many plausible scenarios. These key methodological issues are discussed in the sections below.

2.3.2.1 DATA GAPS

Life cycle assessments require an enormous amount of data. Reconstructing the supply chain
contributing to any non-trivial product is a challenging task. If the specific origin of an input is
known, the producer may prefer not to reveal the details of the production practices. In many cases,
the specific origin is unknown, so the specific inputs and technologies employed are estimated, or
a process for which data is available is used as a proxy. In practice, many—if not most—of the
data for upstream processes in a life cycle inventory will be approximations or proxies.

2.3.2.2 SYSTEM BOUNDARIES AND TRUNCATION

To be practicable, LCA requires that system boundaries be set; processes beyond this boundary are
ignored on the principle that nth-order effects make ever-smaller contributions to the life cycle as n
increases. However, according to Suh et al. (2004), “there is no theoretical or empirical basis that
guarantees that a small mass or energy contribution will always result in negligible environmental
impacts”. Reap et al. (2008a) note that “while the individual inputs and outputs cutoff may be
insignificant, their total sum might change the results considerably.” In a consequential analysis,
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market-mediated effects such as indirect land use change can strongly determine the outcome of
an LCA even though these effects are completely outside the supply chain.

2.3.2.3 AGGREGATION OVER TIME AND SPACE

Most LCAs aggregate environmental effects spatially (Reap et al., 2008b). For well-mixed green-
house gases (CO2, CH4, and N2O), the location of emission is unimportant, so spatial aggregation
is appropriate. However, for most other environmental effects, (e.g. water consumption, discharge
of local and regional pollutants, and effects that are receptor-controlled) spatial aggregation pro-
duces results that may be of little value to decision-makers. As an example, summing water con-
sumption across wet and dry regions, or local air pollution over densely- and sparsely-populated
regions, produces values that bear little useful information for decision-making.

LCA also aggregates effects over time (Reap et al., 2008b). When emissions decay slowly
(e.g., CO2, N2O, persistent organic pollutants) the timing of discharges matters: when effects are
measured relative to a fixed point in time, early discharges cause more damage than later discharges
(O’Hare et al., 2009; Levasseur et al., 2010).

2.3.2.4 TREATMENT OF ELECTRICITY

The GHG emissions from electricity production systems vary greatly with fuel source and pro-
duction technology (Kim and Dale, 2005; Jaramillo et al., 2007). However, unlike material flows,
electricity does not flow from a specific power plant to a specific consumer; the electricity available
at any point in time is a function of the total, instantaneous production in an electrically-contiguous
grid.

In the US, average emissions in coal-dominated regions such as the portions of the midwest and
Rocky Mountains exceed 1000 g CO2e MJ−1, whereas in regions dominated by hydroelectric or
natural gas production systems, average emissions can be as low as 300–400 g CO2e MJ−1 (Plevin
and Mueller, 2008). However, given regional interconnections and transmission limitations, the
boundaries of the most relevant grid are not obvious. For US-based studies, some analysts use
political (e.g., state) boundaries (e.g., CARB, 2009a), others use one of the aggregation levels
defined by the National Electricity Reliability Council (NERC) (e.g., Sheehan et al., 2003; Plevin,
2009), and yet others use the US national average (e.g., Wang, 1999; Liska et al., 2009).

Electricity production varies not only spatially, but temporally, to meet demand that varies
over the day and year. Systems meeting the base load generally have higher capital costs but
lower marginal costs (e.g., nuclear, hydro, coal), whereas load-following systems that are used
only a portion of the day or year have lower capital costs and higher marginal costs (e.g., natural
gas). Thus the mix of production systems in use, and thus the GHG emissions, depends on which
systems are dispatched at any moment. In the short run, a different mix of plants is running during
peak production periods than is running during low production periods. In the long run, some
production systems are retired and new ones introduced, changing emission profiles over longer
timeframes as well. Therefore, if an analysis calls for using marginal emissions, it’s important to
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identify whether the short term “run margin” or the long term “build margin” is more appropriate.
Despite—or perhaps because of—the complexity resulting from this regional and temporal

variance, LCA studies generally assume average US grid emissions when electricity is consumed
(Weber et al., 2010)—or displaced, as in the case of cellulosic ethanol systems (Aden et al., 2002;
Sheehan et al., 2003; Wu et al., 2006). This is even the case in some nominally consequential LCA
studies such as the USEPA’s modeling for RFS2 (USEPA, 2010a).

To estimate the short-run change in emissions resulting from a new load, or the electricity
displaced by a new power source like a cellulosic ethanol biorefinery, an electricity dispatch model
can be used. For example, McCarthy and Yang (2010) use an hourly dispatch model to simulate
the mix of plants that will run to meet new demand for plug-in and fuel cell vehicles in California,
concluding that the marginal emission rate will exceed 600 g CO2e kWh−1, which is higher than
the CA grid average. Estimating long-run marginal emissions would require an electricity system
planning and investment model that considers the effects of policies such as renewable portfolio
standards and GHG emission caps.

2.3.2.5 TREATMENT OF CO-PRODUCTS

Many product systems—and virtually all bioenergy systems—yield multiple products. To iso-
late the environmental effects of one of the co-products, the environmental effects of the other
co-products are subtracted from the total effects of the combined system. There are two main ap-
proaches to accounting for co-products in LCA. Allocation methods uses simple accounting prin-
ciples (e.g., relative mass, energy content, or market price) to apportion gross emissions among
co-products. In contrast, the system expansion method (also known as displacement or substitu-
tion) estimates the emissions avoided by the substitution by co-products for other products in the
market. ISO 14040 recommends the use of system expansion where feasible, but considers alloca-
tion methods to be valid alternatives (ISO, 2006b). LCA results are highly sensitive to the choice
of allocation method (Kim and Dale, 2002; Wang et al., 2004; Thomassen et al., 2008; Luo et al.,
2009; Jaramillo et al., 2009; Guinée et al., 2009; van der Voet et al., 2010).

Many researchers have recognized that allocation methods fail to capture actual environmen-
tal impacts (Weidema, 1993; Ekvall and Finnveden, 2001; Reap et al., 2008a; Hoefnagels et al.,
2010; Wang et al., 2010). Consider two identical biodiesel facilities that co-produce glycerin. One
facility sells the glycerin to a cosmetics producer who uses it to produce soap, displacing some
other (presumably more expensive) source of glycerin. The other facility sells the glycerin to a
home heating fuel service where the glycerin is used instead of residual fuel oil. No matter which
allocation method is used, allocation incorrectly estimates the environmental effects of at least one
of these options. (And if it gets one right, it is only by sheer coincidence.) Other examples show
the difficulties of applying these methods as a general rule: electricity cannot be meaningfully
allocated on a mass basis, and ash, a combustion by-product which may contain useful minerals—
cannot be meaningfully allocated on an energy basis.

Market price is sometimes justified as a means of allocating environmental burdens by claiming
that the price of a good reflects the motivation for creating each of the co-products. However, using
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this approach, the environmental burden assigned to each co-product fluctuates with changing
market conditions, even if the environmental outcomes are unchanged. The main failing of this
approach is that it conflates cause and effect: LCA should be concerned with estimating outcomes,
irrespective of underlying motivations.

A more realistic estimate of the environmental effects of a co-product requires a market analysis
that reflects the changes in the market (and related environmental effects) induced by the introduc-
tion of the co-product into the market (Delucchi, 2004). Unfortunately, a market analysis requires
a great deal of data, and models do not exist for all markets. Thus, LCA practitioners are faced
with a choice between (i) difficult and uncertain market analyses that reflect reality, and (ii) simple
accounting rules that don’t reflect reality. Edwards et al. (2007b, p. 17), in their highly-cited study
of transport fuels in Europe wrote:

Many other studies have used “allocation” methods whereby energy and emissions
from a process are arbitrarily allocated to the various products according to e.g. mass,
energy content, “exergy” content or monetary value. Although such allocation meth-
ods have the attraction of being simpler to implement they have no logical or physical
basis. It is clear that any benefit from a by-product must depend on what the by-
product substitutes: all allocation methods take no account of this, and so are likely to
give flawed results.

The situation is more pithily summarized by Weidema (1993): “The advantage of allocation
by physical properties—its ability to give consistent results—may thus be offset by these results
being consistently wrong.”

STUDIES OF CO-PRODUCT TREATMENT. Wang et al. (2004) examined the effect of different
allocation methods on life cycle results for petroleum refinery products (figure 2.2.) Huo et al.
(2008) examined the effect on the soybean biodiesel life cycle of differences in allocation (figure
2.3.) Both studies show that the relative GHG emissions per unit energy changes as a result of
allocation method.

Other studies have suggested that the choice of co-product treatment isn’t terribly important.
For example, Curran (2007) examines five allocation methods (mass, volume, energy, market
value, demand) in comparing corn ethanol to gasoline, concluding that the choice of allocation
method doesn’t substantially change the result of the comparison. While this may be true for the
specific case examined, there is no theoretical basis for expecting this to be a generalizable result.
More importantly, Curran fails to recognize that these methods are “consistently wrong”, in the
words of Weidema (1993).

In study of a similar flavor, Wang et al. (2010) examine the effect of the choice of co-product al-
location method on GHG emissions for four biofuel pathways—corn ethanol, switchgrass ethanol,
soybean biodiesel, and renewable diesel. The study considers allocation by mass, energy con-
tent, market value, and process purpose, as well as displacement. The results are shown in figure
2.4. Even while recognizing that the allocation methods fail to reflect environmental outcomes,
Wang et al. (2010) conclude that “[c]onsistency in choice of co-product method may not serve the
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Figure 2.2: Well-to-pump GHG emissions for petroleum refinery products (g CO2e MJ−1) (Source:
Wang et al., 2004).

purpose of providing reliable LCA results.” (Though, importantly, the term “reliable” is left unde-
fined.) Arguments presented by Wang et al. (2010) against the displacement method include that
(i) it is “time intensive and resource consuming” compared to the convenient-but-unrepresentative
allocation methods, and (ii) that for co-products that are really the main product (e.g., 82% of
crushed soybean mass is soybean meal, not oil for biodiesel), the displacement method gives the
“unreliable” result that the meal displaces 130% of the emissions from the joint process. This latter
complaint, however, isn’t an indictment of the displacement method, merely of its implementation.
The question that should be asked is not “What is displaced by the soybean meal when I use soy-
bean oil to produce biodiesel?” but rather, “What is the net effect on GHG emissions when I
produce biodiesel (including its co-products) compared to the case in which I don’t produce the
biodiesel?” The GHG consequences estimated in the latter case will depend on the net change in
GHG emissions in all related markets—protein meal, vegetable oils, animal feed, petroleum diesel.

The bottom line is that co-product credits are generally a large percentage of overall biofuel
GHG emissions; if we cannot reliably estimate co-product credits, we cannot reliably estimate
biofuel GHG emissions.

2.3.2.6 TREATMENT OF BIOGENIC CARBON

Biomass growth fixes atmospheric CO2, which is released back to the atmosphere when the biomass
decays or is combusted. Rather than counting the offsetting photosynthetic sequestration of carbon
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Figure 2.3: Life cycle GHG emissions and emission changes of soybean biodiesel relative to
conventional fuels. 1, displacement; 2, energy-value-based allocation; 3, market-value-based allo-
cation; 4, hybrid I; 5, hybrid II. (Source: Huo et al., 2008).

and emissions, LCA studies frequently use an accounting short-cut in which both the photosyn-
thetic sequestration and subsequent emissions from combusting biogenic carbon are ignored in
GHG emission calculations (Rabl et al., 2007; van der Voet et al., 2010).

Several problems with this approach have been identified. First, while plant growth always
absorbs carbon in the form of CO2, the subsequent decay or combustion can release carbon as
CO2, CH4, non-methane volatile organic compounds, black carbon, or organic carbon, each with
a distinct warming (or cooling) effect. Second, sequestration and oxidation are balanced only
for short-cycle growth and harvesting: deforestation releases long-standing stores of carbon into
the atmosphere that are not necessarily replaced (Searchinger et al., 2009). Several studies have
demonstrated that GHG policies that treat all biogenic carbon as climate-neutral can lead to large-
scale deforestation since biofuels are credited with displacing fossil fuels, yet the loss of long-
sequestered biomass is ignored (Wise et al., 2009; Melillo et al., 2009).

A third, closely related problem is evident under a consequential framing: unless the CO2 se-
questration is additional to what would have occurred without, say, a biofuel program, the assumed
benefits of sequestration are necessarily indirect (Searchinger, 2010). Consider placing a new corn
ethanol plant in Iowa and using local corn to produce ethanol. Assume the corn was already being
produced for the feed or food markets. The carbon in the kernels would have been respired as
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Figure 2.4: WTW greenhouse gas emissions of petroleum fuels and biofuels (g CO2e MMBtu−1)
(Source: Wang et al., 2010).

CO2 by cattle or humans, but instead is emitted from fermentation and combustion. This ethanol
produced from these corn kernels is climate-neutral only if the feed and food are not replaced. If
replacement food is required, the production of that food must be counted. Searchinger (2010)
make the case that the supposed climate-neutrality of biofuels are subject to precisely the same
uncertainty as are ILUC emissions, as the two phenomena result from the same process.

A fourth problem with assuming carbon neutrality relates to co-product handling. For systems
that don’t generate co-products, assuming balanced biogenic carbon produces the same results as
counting the sequestration and combustion. However, in systems with co-products, where and
when the carbon is assumed to be sequestered and emitted can affect the life cycle results; under
the climate neutrality shortcut, the CO2 is not allocated with other flows (Luo et al., 2009). Several
analysts have recommended that biogenic carbon be handled explicitly in LCA, which would be
consistent with the treatment of all other environmental flows (Rabl et al., 2007; van der Voet et al.,
2010)

2.3.3 ATTRIBUTIONAL VERSUS CONSEQUENTIAL LCA

The LCA typology includes two distinct approaches: attributional and consequential LCA (Ekvall
and Weidema, 2004).2 An attributional LCA (ALCA) inventories and analyzes the direct environ-

2Some earlier papers referred to the attributional and consequential framings as “retrospective” and “prospective”,
respectively (e.g., Tillman, 2000).
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mental effects of some quantity of a particular product or service, recursively including the direct
effects of all required inputs across the supply chain, as well as the direct effects of using and dis-
posing of the product (ISO, 2006b). In simple terms, an attributional LCA of producing and using
a pencil catalogues the environmental effects of making and processing bits of wood, brass, paint,
rubber, and graphite, reaching back to include (for example) burning gasoline in a chain saw and,
in principle, making the electricity used to sharpen the chain saw blade.3 The chain of inputs to
inputs adds smaller and smaller quantities to the result, so cut-off critera are typically employed to
reduce the collection requirements, although it is recognized that this introduces a truncation error
of unknown magnitude (Suh et al., 2004).

ALCA relies on average activity levels and emission factors, and tends to focus on a small func-
tional unit, e.g., 1 MJ of biofuel. In its pure form, attributional LCA handles co-products through
allocation, as system expansion implies an analysis of change (Weidema and Ekvall, 2009). An
important simplification employed in ALCA is that analysis is performed on a static system—
increasing production of a product is treated as having no effect on prices or on other production
processes. Besides effects on other processes, a static analysis also treats environmental effects
within the supply chain as if they scale linearly with increases in the functional unit: the results of
an analysis for 1 liter of biofuel are assumed to scale linearly to tens of billions of liters. As the
case of indirect land use change (addressed in Part III) demonstrates, this ceteris paribus treatment
can result in significant errors in estimating environmental outcomes.

A consequential LCA (CLCA), in contrast, aims to describe the environmental effects of an
action or policy (Ekvall and Weidema, 2004). This approach estimates the net changes in envi-
ronmental effects given changes in a production system, recognizing that production is embedded
within an economic system that adjusts in response to these changes—and these adjustments pro-
duce additional environmental effects (Ekvall and Weidema, 2004; Delucchi, 2006; Kløverpris
et al., 2008). Simply put, while an attributional life cycle inventory (LCI) traces material and
energy flows, a consequential LCI follows causal chains (Ekvall and Weidema, 2004). Thus, a
consequential analysis of a policy to promote pencils would incorporate the effects of using—and
thus producing—fewer ballpoint pens and crayons.

The life cycle inventory compiled in support of an attributional LCA differs from that compiled
for a consequential LCA. Ekvall and Weidema (2004) write,

“When the aim is to describe the consequences of changes, it is usually not sufficient,
and perhaps not even relevant, to trace the materials in the product investigated back to
the cradle—that is, to the extraction or generation of the natural resources. The deci-
sion to buy the product does not necessarily imply an increase in the amount of natural
resources extracted. In general terms, the consequences of an action do not necessarily
propagate through the life cycle, but through the overall economic and technological
systems in chains of cause-and-effect relationships, somewhat resembling the ripples
caused by a stone thrown in a lake.

3Thanks to Mike O’Hare for the pencil and pens example.
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The natural starting point of a consequential LCI of a specific decision is the deci-
sion itself—that is, the point where the stone hits the water. The consequential LCI
describes how the decision affects the technological activity, both directly where the
decision is implemented and its secondary effects on the use of intermediate prod-
ucts. It goes on to describe how this decision is expected to affect, for example, the
production of these intermediate products as well as the use of the intermediate prod-
ucts in other processes. If it is possible to go further, the consequential LCI describes
how these changes, in turn, are expected to affect other production processes, the use
of energy, material and products in other parts of the technological system, and the
environmentally relevant physical flows to and from the affected activities. Hence,
the consequential LCI model does not resemble the traditional LCI model, where the
main material flows are described from raw material extraction to waste management.
Instead, it is a model of chains of causal relationships.”

CLCA relies on marginal rather than average activity levels and emission factors, and considers
the actual scale of change envisioned, e.g. billions of gallons of biofuel rather than 1 MJ of biofuel.
Importantly, the life cycle inventory in a CLCA is not limited to the supply chain, but includes
processes affected indirectly by the system under consideration as mediated through economic
markets.

The number of published LCAs using a consequential framework has increased sharply since
2008, with studies appearing on biofuels-induced land use change (Kløverpris et al., 2008; Rein-
hard and Zah, 2009), vegetable oils (Schmidt and Weidema, 2008; Schmidt, 2008, 2010), soybean
meal (Dalgaard et al., 2008), milk production (Thomassen et al., 2008), wind power Pehnt et al.
(2008), and product price differences (Thiesen et al., 2008). However, other than the works of
Kløverpris and Pehnt, none of these CLCAs utilize economic models. Rather, the authors simplis-
tically assume that a single marginal supplier and marginal product can be identified (Kløverpris
et al., 2008). This assumption may be valid for very small changes in the world’s market basket of
goods, but policy-scale changes such as those resulting from a national biofuel policy are probably
large enough to affect multiple suppliers and products (Ekvall et al., 2005; Mathiesen et al., 2009).
Indeed, the need to identify the affected commodities (i.e., technology and location) is one of the
reasons to deploy an economic model.

But while it’s easy to criticize the failings of more simplistic CLCAs, implemention of a more
methodologically satisfying analysis (i.e., employing global economic models) presents its own
challenges. Ekvall and Weidema (2004) note the benefits of integrating partial equilibrium analysis
into LCI to perform causal chain analysis, while recognizing the greater uncertainties that result
from this approach:

“It is reasonable to expect that the uncertainties in the economic analysis will be sig-
nificant. Describing the consequences of decisions also means facing the general chal-
lenge of futures studies. The future is inherently uncertain, and the actual future con-
sequences of decisions are highly uncertain. Dealing with this uncertainty requires
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that methods of futures studies are applied in the consequential LCI. The large uncer-
tainties also make it impossible or pointless to estimate the consequences far down the
cause-and-effect chains. This implies that the boundaries of the system investigated
should ideally be defined at the point where the consequences are so small, or the un-
certainties so large, that further expansion of the boundaries will yield no information
that is significant for any realistic decision.”

I believe Ekvall and Weidema are incorrect to suggest categorically that large uncertainties
“yield no information”. As shown in chapter 8, if the uncertainty range excludes some critical
value (e.g. zero), we have very important information despite broad uncertainty.

2.3.3.1 ALCA GENERALLY ANSWERS THE WRONG QUESTION

The attributional and consequential frameworks describe different systems and answer fundamen-
tally different questions (Weidema, 2003; Ekvall et al., 2005; Thomassen et al., 2008; Finnveden
et al., 2009). An ALCA is a static decomposition of natural and industrial emissions organized by
supply chain (Curran et al., 2005). This is a legitimate exercise that can provide useful information
to manufacturers about production alternatives (Finnveden, 2000). ALCA is incapable, by design,
of predicting the environmental effects of changes in production processes of a scale that affects
other markets.

For example (as discussed in §2.3.2.4), when the environmental burden of electricity use is
estimated in ALCA, the average grid mix is usually considered. In CLCA, the result depends on
the environmental burden of the next unit of electricity, which in turn depends on the timeframe
considered. In the short-run, this is a question of dispatch order, so the answer varies over time. In
the long-run, it’s a question of electricity industry expansion, i.e. the next power plant that would
be built. The consequential result also depends on policies such as renewable electricity quotas,
CO2 pricing, and emission caps on SO2, NOX, and so on (Pehnt et al., 2008).

Weidema and Ekvall (2009) argue that the results of an LCA are virtually always applied to
effect a change, thus CLCA is relevant in most application areas of LCA. They write:

“It can be argued that all LCAs ultimately aim at supporting decisions on the substitu-
tion between two product systems (Weidema 2003). In one way or the other, studies
of a single product are always later used in a comparative context. Even for hot-spot-
identification and product declarations, what appears to be stand-alone assessments of
single products have the ultimate goal to improve the studied systems, thus supporting
decisions that involve comparisons.”

Weidema and Ekvall (2009) identify a small number of cases in which ALCA could be consid-
ered: (i) “Studies at a societal level, where the entire environmental impact of all human activities
is studied”, though improvements or changes would need to be analyzed using CLCA; (ii) “Studies
on environmental taxation, where the focus is less on the consequences of the tax, but rather on
who is to carry the burden”, although, again, the effect of the tax would need to be modeled using
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CLCA; and (iii) “Studies that seek to avoid blame or to praise or reward for past good behaviour”,
as such an analysis is inherently not about change, but about attribution, which can follow any
desired rules. For essentially all other uses of LCA, a consequential approach is preferred.

2.3.3.2 SCALE EFFECTS AND NON-LINEARITY

In general, the environmental effects of a production system depend on the magnitude examined.
Effects are not linear with scale because resource constraints can increase marginal (monetary and
environmental) cost at increasing scales, and because economic feedbacks in the form of price
changes can amplify or dampen effects (Bento and Landry, 2009; Porder et al., 2009).

Guinee et al. (2001) recognize that attributional LCA offers a crude representation of reality
that might not be appropriate for decision-making:

“LCA deals with complex, interwoven networks of industrial, agricultural, household
and waste management activities dispersed over many locations and potentially span-
ning many decades. The mechanisms governing the dynamics of these activities are of
a technical, economic, social, cultural and political nature. The mathematical relation-
ships that describe these real mechanisms are, by principle, non-linear and dynamic
and will often exhibit hysteresis and irreversibility. No such a model of ‘true reality’
exists, and an LCA model must inevitably introduce a multiplicity of crude simplifi-
cations.”

The authors concede that when considering “strategic decisions having large-scale implica-
tions” such as the use of LCA-based performance measures in public policy, “dynamic, non-linear,
complex modeling may be imperative” (Guinee et al., 2001, Part 3, p. 18).

A policy-relevant LCA should consider market affects: in general, an environmental policy
would accomplish little if its effect on markets were negligible. Since CLCA alone attempts to
capture market effects, policy-relevant LCA requires the consequential approach (Ekvall et al.,
2005). Although this approach is difficult and the results uncertain, we are better off asking the
right question and dealing explicitly with uncertainty than asking the wrong question because we
prefer specious precision. The latter approach recalls the drunk who, though he lost his keys in
a dark corner of the parking lot, looks for them under the lamppost because the light is better
(Weidema, 2009).

2.3.3.3 BLENDED ATTRIBUTIONAL AND CONSEQUENTIAL LCA IS INCOHERENT

Elements of CLCA and ALCA are often blended in practice (Weidema, 2003). Consequential anal-
ysis frequently enters into ALCA in the handling of co-products. When analyzing a system that
produces multiple products, the ISO standard for LCA recommends the use of systems expansion
(discussed in section 2.3.2.5) to account for these (ISO, 2006b). However, the system expansion
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approach is consequential in nature since any analysis of displacement effects must include a com-
parison to a baseline (Weidema, 2000a). Importantly, this is a fundamentally different framing
than used in an attributional analysis, which relies on static decomposition.

Under system expansion, if a system produces two products, P1 and P2, an analysis focused
on P1 would subtract from the total effects those estimated to be avoided through the production
of P2, on the assumption that some substitute for P2 is displaced in the market. If one focuses
instead on P2, treating P1 as the co-product, credit would be given to P1 for displacing some
other product. However, the sum of the credits for P1 and P2 do not, in general, equal the result
of the ALCA for the combined product system. Take the example of corn ethanol and its co-
product, distillers grains (DGs). Corn ethanol displaces gasoline, while DGs displace animal feeds
such as whole corn and soybean meal. There’s no reason to expect an ALCA of the ethanol-DG
system to equal the sum of the ALCAs for displaced gasoline and animal feed. The sum of co-
product credits, however, does—by definition—equal the first-order consequential effects of the
combined production system: the net change in emissions resulting from co-producing P1 and
P2 is the emissions from production minus the emissions avoided when these products enter the
marketplace, net of price and income effects (Delucchi, 2005).

Combining static ALCA of the main product with consequential analysis of co-products pro-
duces a result that is methodologically incoherent, representing neither a static system nor the
effects of a change in production. If the purpose of the analysis is a static decomposition to allo-
cate emissions among different end products, then ALCA can be used, and any arbitrary allocation
method is equally acceptable. However, if the purpose of the analysis is to estimate the net envi-
ronmental effects of a change in the quantity of some product produced, then a marginal analysis is
appropriate for all aspects of the system—unless we believe average values approximate marginal
values. This, however, will differ across products and inputs and should be demonstrated rather
than simply assumed.

2.3.3.4 DEFINING “NEW” LCA

A project is underway in Europe to address the many limitations of what they call “ISO-LCA”, to
produce a “new LCA” that is more informative. The Co-ordination Action for innovation in Life-
Cycle Analysis for Sustainability (CALCAS) project4 has published many useful reports on the
limitations of ISO-LCA as well as proposed improvements. Documents produced for the CALCAS
projects provide a thorough examination of the shortcomings of traditional (attributional) LCA
and guidance for how to broaden LCA to overcome these limitations (e.g., Zamagni et al., 2009;
Weidema and Ekvall, 2009; Schepelmann et al., 2009).

2.3.4 ECONOMIC INPUT-OUTPUT LCA

An alternative (or, increasingly, a complement) to process-based LCA is Economic Input-Output
LCA (Suh et al., 2004). EIO-LCA is based on national input-output tables such as those produced

4See http://www.calcasproject.net for more information.

http://www.calcasproject.net
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in the US by the Department of Commerce, with data added to reflect resource extraction and
environmental discharges (Hendrickson et al., 2006). EIO-LCA represents average emissions per
dollar expended in each sector, within the bounds of the IO table. To model global economic
linkages would require a global IO data for both expenditures and emissions.

Within the bounds of the IO data used, EIO-LCA solves the truncation problem associated with
process-based LCA (Suh et al., 2004). Lenzen (2000) argues that the truncation error inherent in
process-based LCA can underestimate environmental impacts by as much as 50% in some cases,
whereas the uncertainties of IO-based LCAs are often lower. However, while EIO-LCA is more
complete in assessing (some) upstream impacts, EIO-LCA lacks the detail needed to distinguish
individual products such as specific fuel pathways (Heijungs et al., 2006; Hendrickson et al., 2006).
EIO-LCA also assumes that environmental effects are linearly related to expenditures, which is
likely a poor assumption in a rapidly expanding and evolving sector such as the biofuels sector
(Reap et al., 2008a). (Attributional process LCA also assumes linearity of effects; consequential
LCA does not.) Other important limitations of the EIO-LCA approach are discussed in Reap et al.
(2008a).

A hybrid approach combining process-based and EIO-based has been used in numerous stud-
ies to combine the strengths and avoid the pitfalls of the two separate approaches (Facanha and
Horvath, 2006; Suh and Huppes, 2005). A hybrid fuel cycle analysis could be implemented in
which the primary fuel pathway would be analyzed using process-based methods, with some up-
stream emissions factors based on EIO-LCA.5 The hybrid approach has been employed in several
manufacturing applications (Hendrickson et al., 2006).

In a hybrid fuel cycle model, EIO-LCA would be most useful for estimating the effects of
elements such as building materials, capital equipment, and the upstream emissions for fuels such
as coal and uranium for which prices are relatively stable. Many of the emissions from the fuel
cycle are due to use of other fuels (or other fractions of the crude slate, in the case of refining),
such as petroleum and natural gas, which suffer high price volatility, decreasing the accuracy of an
expenditure-based approach such as EIO-LCA.6

2.4 UNCERTAINTY IN LCA

Most LCA studies do not attempt to quantify uncertainty. Indeed, several surveys of the han-
dling uncertainty in LCA have concluded that uncertainty is generally handled badly or not at
all (Björklund, 2002; Ross et al., 2002; Heijungs and Huijbregts, 2004; Lloyd and Ries, 2007).
Although this situation is improving, most analyses of uncertainty in LCA consider only param-

5Heijungs et al. (2006) argue that such a hybrid tool is a virtual requirement for implementing the LCA-based
portions of the EU’s integrated product policy, since EIO-LCA lacks data on the product use and disposal phases,
whereas performing detailed process-based LCAs on a wide range of consumer products is highly impractical.

6Even if average prices are used to smooth volatility for a single fuel, large inter-annual variations could create
instabilities in the relative expenditures among fuel-dependent sectors, due to potential differences in short- and long-
run price elasticities between sectors. This would result in an unpredictable divergence between the historical data and
current impacts.
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eter uncertainty (Lloyd and Ries, 2007; Finnveden et al., 2009; de Koning et al., 2010). Besides
data gaps and variability, there is model uncertainty surrounding GHG estimates, including which
GHGs to account for (Brakkee et al., 2008); whether to use the de facto standard 100-year global
warming potentials or some other aggregation period (ISO, 2006b), or perhaps longer integration
periods with discounting (Delucchi, 2003). As discussed in §2.3.2.5, there is also considerable
debate surrounding the proper treatment of co-products in LCA, resulting in unresolved model
uncertainty.

The life cycle assessment (LCA) literature is replete with discussions of the challenges posed
by uncertainty (see, for example: Huijbregts, 1998; Finnveden et al., 2000; Lenzen, 2000; Björklund,
2002; Ross et al., 2002; Ciroth et al., 2004; Heijungs and Huijbregts, 2004; ISO, 2006b; Lloyd and
Ries, 2007; Reap et al., 2008b; Liska and Perrin, 2009; Weidema, 2009; Finnveden et al., 2009).
Björklund (2002) writes,

“The credibility of LCA can be questioned if the results cannot be accompanied by
adequate uncertainty analyses. Presenting results merely as point estimates without
uncertainty distributions is an unreasonable overestimation of their exactness. How-
ever, there is also a risk that incomplete methods for uncertainty analysis give a false
sense of credibility.
...
It is likely that quantitative uncertainty analyses of many comparative LCAs would
not be able to show any significant differences between the alternatives, either because
estimates of uncertainty are too conservative, or because LCA practitioners actually
have too much trust in the reliability of the results.”

Similar conclusions are reached by other analysts (e.g., Finnveden, 2000; Reap et al., 2008b).
Even the ISO LCA standard states that “LCA does not predict absolute or precise environmental
impacts” (ISO, 2006a). Yet, despite broad recognition of the importance of uncertainty in LCA,
many life cycle studies continue to ignore uncertainty, creating an illusion of precision (Weidema,
2009). This illusion has resulted in LCA-based regulations which, as this dissertation demon-
strates, expect more than LCA can deliver.
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CHAPTER 3

UNCERTAINTY IN LIFE CYCLE GHG EMISSION ESTIMATES FOR BIOFUELS

“It is likely that quantitative uncertainty analyses of many comparative LCAs would
not be able to show any significant differences between the alternatives, either because
estimates of uncertainty are too conservative, or because LCA practitioners actually
have too much trust in the reliability of the results.”

Anna Björklund (2002)

3.1 PURPOSE AND SCOPE

Chapter 2 presented general information about uncertainty and life cycle assessment, including the
treatment of uncertainty in LCA. This chapter continues with this theme, focusing on important
uncertainties in life cycle GHG analyses of transportation fuels, with a focus on biofuels. Sub-
sequent chapters will quantify many of the uncertainties, but first we examine them qualitatively.
Note that uncertainty in estimates of indirect emissions is addressed at length in part III and thus
not discussed in this chapter.

3.2 UNCERTAINTY IN FUEL CYCLE ANALYSIS

Uncertainty has played a large role in the public discourse surrounding fuel greenhouse gas (GHG)
regulations, stakeholders have focused primarily on the uncertainty surrounding estimates of the
emissions from land conversion induced by the expansion of biofuel feedstock production (Gal-
lagher, 2008; Babcock, 2009; Kim et al., 2009; Liska and Perrin, 2009).1 Meanwhile, important
uncertainties in the rest of the life cycle analysis have gone largely unexamined.

Most fuel cycle GHG studies produce only point estimates (e.g., Chambers et al., 1979; Pi-
mentel, 1991; DeLuchi, 1993; Shapouri et al., 1995; Wang, 1999; Wang et al., 2004; Pimentel and
Patzek, 2005; Farrell et al., 2006c; Wang, 2007; Pont, 2007). Where uncertainty is treated quanti-
tatively, the analysis is often incomplete: not all important uncertain parameters are analyzed, and

1This conversion can occur directly by planting feedstocks on former grassland or forest, or indirectly through
market linkages. The latter case is generally referred to as indirect land use change, or ILUC.
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the criteria for deciding which parameters to include in the uncertainty analysis are frequently not
stated (e.g., Contadini, 2002; Bernesson et al., 2006; Brinkman et al., 2005; Edwards et al., 2007b).

The two most comprehensive studies to date are those by Brinkman et al. (2005) in the US, and
Edwards et al. (2008) in Europe. Brinkman et al. (2005) estimated uncertainty in the emissions
of GHGs and criteria pollutants from a wide range of transportation fuels and vehicles used in the
US, based on the GREET model. This analysis did not examine uncertainty importance, so while
some 700 GREET model parameters are assigned probability distributions, there is no indication
of the relative importance of these uncertainties. (I address this shortcoming in my own analysis
of uncertainty using GREET in chapter 5). It is interesting to note that despite having added a
stochastic capability to the GREET model for the Brinkman et al. study in 2005, none of the
subsequent GREET-based reports released by Argonne National Lab have used this capability.

Edwards et al. (2008) examined the effect on biofuel GHG emissions of the uncertainty in
direct (most notably emissions of N2O from agricultural soils) and indirect effects, concluding that
“[t]he uncertainties of the emissions due to indirect effects, much of which would occur outside
the EU, mean that it is impossible to say with certainty that the net GHG effects of the biofuels
programme would be positive.”

Malça and Freire (2010) studied uncertainty in the life cycle energy use and GHG emissions
of rapeseed oil, including both parameter uncertainty and model uncertainty associated with the
choice of co-product allocation method. This study also examined the contribution to variance
of each uncertain model parameter. For no allocation or allocation by mass, energy, or economic
value, soil N2O emissions contributed about 40% of the variance, and carbon emissions from soil
(at the feedstock production site) contributed about 37% of the variance. Under these allocation as-
sumptions, the total variance related to nitrogen fertilization was about 57%, including N2O (40%),
N2O GWP (9%), N fertilizer application rate (4%) and N fertilizer production (4%). System ex-
pansion resulted in much greater uncertainty, with different contributions to variance: soy meal
substitution credit contributed 35% of the variance, and soil N2O emissions and soil carbon emis-
sions contributed 26% and 23%, respectively. The total variance associated with N fertilization of
about 37%. Figure 3.1 shows the results of this study, highlighting the much greater uncertainty
associated with system expansion. The authors conclude that “the high uncertainty observed in
GHG emissions limits the conclusions and does not confirm the significant GHG emission savings
reported” in studies that didn’t consider uncertainty. Notably, this study assumed that rapeseed
oil was produced on set-aside land and thus doesn’t include any emissions from indirect land use
change. Nor did the study consider the other model and decision choices an analyst must make,
such as those discussed in §3.3.

3.3 DEFINING LIFE CYCLE CLIMATE EFFECTS

One reason that different fuel GHG analyses yield different results is that the phrase “life cycle
climate effects” doesn’t describe a unique analysis, but a class of possible analyses which approx-
imate this idea with potentially very different operational definitions (as demonstrated by Farrell
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Figure 3.1: Greenhouse gas (GHG) emissions results: scenario and parameter uncertainty.
Whiskers represent the range from 5th to 95th percentile and the box represents the interquar-
tile range. The diamond shows the median. Dashed lines identify the 5th and 95th percentile values
for GHG emissions from fossil diesel (FD). Econ = economic; S Exp = system expansion; CV =
coefficient of variation. (Source: Malça and Freire, 2010)

et al., 2006b; Hammerschlag, 2006; Plevin, 2009). For example, a modeler must decide, inter alia,
the following:

1. Use regional or national averages for feedstock production and conversion processes, or
focus on a specific production system?

2. Which regional and temporal approach should be used to estimate the GHG emissions related
to electricity use or displacement? (Weber et al., 2010)

3. Estimate marginal or average effects?

4. How will co-products be handled?

5. Which climate effects should be included—just three primary GHGs, or other gases and
particulates, as well as biophysical effects such as albedo, and evapotranspiration?

6. How are GHG effects aggregated into a single indicator?
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7. Examine a system retrospectively or anticipate technological changes?

8. Examine only the supply chain, or include indirect effects?

9. If indirect effects are included, which ones, and how exactly will these be modeled?

10. Should several scenarios be examined, and if so, which?

Different choices by modelers will result in analyses that answer slightly different questions.
LCA results are highly dependent on these and other subjective choices made by the modeler and
as a result, neither absolute nor relative GHG ratings are stable across analyses. Since LCA results
are not observable, we cannot compare a set of results to empirical data to determine which set of
choices most accurately represents the relative climate effects of different fuels.

3.3.1 WHICH EMISSIONS TO CONSIDER

LCA typically considers only one category of climate effects—direct greenhouse gases. Within
this category, studies generally consider at most six gases (or groups of gases) defined in the Kyoto
Protocol as contributing to global warming effects: CO2, methane (CH4), nitrous oxide (N2O),
hydroflourocarbons (HFC), perflourocarbons (PFC), and sulfur hexafluoride (SF6). Fuel cycle
models typically consider only the first three gases, on the presumption that little or no HFC, PFC,
or SF6 is emitted in the life cycle of transportation fuels (USEPA, 2009b, p. 302). The standard
approach for estimating climate effects is to count the emissions of the “big three” gases—CO2,
CH4, and N2O—and to weight these by the latest IPCC global warming potential values (e.g.,
Forster et al., 2007) using a 100-year time horizon (Wang, 1999, 2008b; CARB, 2009a; USEPA,
2010b).

However, several other compounds emitted over fuel life cycles are climate-active: carbon
monoxide (CO), non-methane volatile organic compounds (NMVOC), sulfur dioxide (SO2) oxides
of nitrogen (NOX ), black carbon (BC), and organic carbon (OC) all affect climate, though their
global warming potentials are generally more uncertain (Delucchi, 2003; Larson, 2006; Sanhueza,
2009).

3.3.2 BIOGEOPHYSICAL CLIMATE EFFECTS

In addition to the emissions of direct and indirect GHGs and aerosols, biogeophysical changes
caused directly or induced by biofuels can result in changes in radiative forcing and precipitation
(Feddema et al., 2005; Thompson et al., 2009; Georgescu et al., 2009).

Albedo measures the fraction of incident solar radiation reflected by an object or surface
(Forster et al., 2007; Thompson et al., 2009). Land cover with lower albedo absorbs more so-
lar energy than land cover with higher albedo. For example, forests are generally darker than
agricultural land, and therefore absorb more solar radiation, reducing, and in some cases, reversing
the climate benefits of afforestation (Thompson et al., 2009). Similarly, deforestation to grow crops
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in some cases will increase albedo, counteracting some of the negative climate effects induced by
biofuel expansion. Indeed, desertification is considered to have contributed substantial negative
radiative forcing—equivalent to the warming of 20% of the anthropogenic CO2 emitted—in the
past several decades (Rotenberg and Yakir, 2010). The cooling effect of reduced tillage, owing to
the higher albedo of crop residues, can be as large as the carbon sequestration benefits associated
with this practice (Lobell et al., 2006).

An estimation of the albedo and other biogeophysical changes on radiative forcing induced
by biofuels, and combining these effects, which are largely regional (Feddema et al., 2005), with
those of global GHGs is beyond the scope of this dissertation.

3.3.3 AGGREGATION OF CLIMATE EFFECTS

The Global Warming Potential (GWP) system used by the IPCC provides “CO2 equivalence” fac-
tors for non-CO2 GHGs, thereby allowing bundles of GHG emissions to be aggregated into a single
metric (Forster et al., 2007). However, as different gases have different atmospheric lifetimes, the
“equivalence” is not absolute, but relative to a very specific definition: the radiative forcing (RF)
caused by a 1 kg pulse of a non-CO2 gas, divided by the RF caused by a 1 kg pulse of CO2,
integrated over a fixed time horizon (Forster et al., 2007).

There are two important implications of this definition: (i) GWPs truncate climate effects at
the end of the integration period, so that while CO2 continues to affect climate long beyond 100
years, only the first 100 years of radiative forcing is considered; and (ii) gases such as CH4, with
shorter residence times than that of CO2, have very different GWP values under different choices
of time horizon, as illustrated in table 3.1.

Table 3.1: Global warming potentials for the “big three” greenhouse gases from the IPCC’s Fourth
Assessment Report (Forster et al., 2007).

Chemical Lifetime (years) 20-year GWP 100-year GWP 500-year GWP

CO2 ∼100a 1 1 1

CH4 12 25 72 7.6

N2O 114 289 298 153

aCO2 equilibrates between atmosphere, ocean, and terrestrial biosphere. The∼100 lifetime reflects
the time particular CO2 molecules remain in the atmosphere, but neglects this equilibration process.
Thus, although the ∼100 year lifetime is generally accepted, 20–30% of fossil fuel CO2 remains
in the atmosphere for centuries. As a result, the mean lifetime of elevated CO2 concentration is on
the order of tens of thousands of years (Archer et al., 2009).

Although the Kyoto Protocol has settled on 100-year GWPs for national GHG inventories, it is
worth considering whether climate policies should reflexively use this timeframe for comparison,



33

as this choice implicitly prioritizes reductions in long-term warming over reductions in near-term
warming. This tradeoff is especially pronounced for black carbon, a short-lived aerosol with a
high near-term GWP. The choice of time horizon is ultimately arbitrary in an LCA, yet this choice
affects which set of emissions, and ultimately, which set of activities may be targeted for reduction
(Jackson, 2009).

Finally, we note that the IPCC assigns a 35% uncertainty (describing a span of two standard
deviations) to its global warming potential estimates (Forster et al., 2007). This uncertainty is
frequently omitted even in fuel cycle models that do model uncertainty (e.g., GREET).

3.4 CO-PRODUCTS OF BIOFUELS

Most biofuel production systems yield co-products in addition to the biofuel. Grain ethanol sys-
tems co-produce distillers grains with soluble (DGS), which is widely used as animal feed. Many
oilseeds produce both oil and high-protein meal, also used as animal feed. Fatty-acid methyl ester
(FAME) biodiesel systems co-produce glycerin, which can be used for energy or as a chemical
feedstock. Cellulosic and sugarcane ethanol systems can generate surplus electricity that is ex-
ported to the grid. The choice of allocation method strongly determines the results of many biofuel
GHG assessments (Farrell et al., 2006b; Cherubini et al., 2009; Huo et al., 2009; Kim et al., 2009;
Luo et al., 2009; Hoefnagels et al., 2010).

In the case of corn ethanol, the state of the art for assigning credit for co-produced distillers’
grains (DGs) is to estimate the quantity of other feed products displaced by the DGs and to subtract
from the ethanol life cycle the GHG emissions associated with these displaced products. The
question asked, therefore, is “What is the marginal effect on GHG emissions for utilizing DGs
in place of other feed?” This raises several methodological problems. First, the actual quantity
of DGs used is based on a cost and nutritional optimization that differs by type of livestock, and
is thus subject to disagreement over the most appropriate static values to assume for uses that
respond dynamically to commodity prices. Second, as discussed in §2.3.3.3, blending a change-
based analysis of co-products with a static analysis of the main product, though common practice,
is incoherent. A fully consequential analysis would produce a different result, and both cannot be
correct. The fully consequential analysis answers a coherent question, i.e., the net GHG emissions
resulting from a change in production of a given magnitude. The blended model answers no
coherent question.

Cellulosic ethanol production provides another interesting case for estimating co-product cred-
its. As modeled in GREET and most other analyses, cellulosic ethanol is awarded a credit for
the fossil carbon emissions avoided by the export of co-produced electricity to the grid. In most
analyses, this additional biomass-fired electricity is assumed to replace the average grid electricity
in the local region. However, determining the net change in electricity production requires consid-
eration of short- and long-run system dynamics, which are affected by policies such as CO2 caps
and renewable portfolio standards (RPS). For example, the Energy Information Agency projects
that the greatest contribution of distributed biomass power generation in states with an RPS will be
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cellulosic ethanol facilities (EIA, 2010, p. 70). Under a binding RPS, co-produced electricity from
ethanol facilities will displace more expensive renewable electricity that would otherwise be re-
quired by the standard. Without a detailed electricity dispatch and investment model, it is difficult
to project which sources are actually displaced (Jaramillo et al., 2009), and therefore to project the
GHG credits to assign to the ethanol. (Note: figure 5.1 shows the effect of different assumptions
about the electricity displaced by cellulosic ethanol facilities.)

Modeling system expansion requires detailed knowledge of the (often, global) markets affected
by co-products. Modeling global markets is indeed uncertain, but this uncertainty reflects the state
of our knowledge of the net climate effects of expanding biofuels production. A method that is
wrong but less uncertain does not reduce uncertainty, it merely hides it. When these results are used
in public policy, we risk promoting higher-GHG fuels over lower-GHG fuels, in direct conflict with
policy goals (Cherubini et al., 2009).

Despite this risk, some regulatory efforts have chosen allocation over system expansion. For
example, recent German biofuel legislation settled on allocation by lower heating value since this
is the most predictable (Fehrenbach et al., 2007), apparently preferring “precise but inaccurate”
over “accurate but imprecise”. This approach gives the same credit to two co-products of equal
heating value when one is combusted to displace a high-GHG alternative and the other converted
to methane on disposal in a landfill.

Analysts often justify allocation methods by appealing to expediency. For example, Huo et al.
(2009) write:

When the choice is between the displacement method and the allocation method, the
displacement method tends to be chosen if the uncertainties and difficulties associated
with it are solved, because it can reflect the energy use and emissions actually saved
as a result of the coproducts replacing other equivalent products. Nevertheless, the al-
location approaches have been more widely used, because they are less data-intensive
and less challenging than the displacement approach.

Mark Delucchi has suggested that if we’re willing to accept methods that don’t reflect actual
environmental outcomes, an even less data-intensive approach would be to allocate burdens based
on the relative number of letters in the names of each co-product (pers. comm. 2009).

3.5 FEEDSTOCK PRODUCTION

The LCA of natural systems such as biofuel feedstocks is more challenging than that of industrial
systems. Spatial and temporal variability in natural systems, not only among producers but for
individual producers, is generally much greater than variability in engineered systems. As a result
environmental effects such as GHG fluxes from cropland are more challenging to measure or model
than those of industrial systems.

The supply-chain focus in ALCA misrepresents the effects of changes in production from nat-
ural systems, as this implicitly compares the production process to a fictitious “null” option that
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suggests that if the product were not created, the impacts associated with its production would be
avoided (Kaltschmitt et al., 1997). This assumption is surely incorrect for crop-based biofuels.
Take the example of a new corn ethanol facility. Corn biorefineries are generally built where corn
is already grown, which means that the corn use by the new facility was previously used in some
other manner. While we can use sophisticated methods to measure or model the GHG fluxes in the
specific corn fields producing the feedstock consumed by the biorefinery, this corn was produced
before the biorefinery arrived, so its emissions are part of the baseline. Thus, the GHG effect of a
new biorefinery is a function of the replacement of the displaced corn. Note that the prior use of
corn (e.g., as animal feed) may not be replaced with corn at all, but perhaps by some combination
of distillers grains, protein meal, urea, and other feedstuffs—or not replaced at all as a result of
price-induced demand reduction.

In general, there is no reason to expect that the processes used to replace the corn that was
diverted to ethanol production have GHG emissions that are approximated by those of the corn
consumed at the biorefinery. Therefore, improved modeling or measurement at the corn field
that is actually in the supply chain may improve precision, but not accuracy. If the production is
displaced abroad, the change in emissions can be quite large, owing to differences in yield, and
to different practices in the production of agrochemicals. For example, Chinese ammonia (from
which nitrogen fertilizer is produced) is derived from coal, often in inefficient facilities, resulting
much higher GHG emissions than for the same fertilizer used in the US, which is generally derived
from natural gas (Zhou et al., 2010). Thus the GHG emissions for any corn production displaced
to China would not be approximated by those of average Midwest corn.

3.5.1 SOIL GHG FLUXES

3.5.1.1 N2O EMISSIONS FROM SOIL

Nitrous oxide (N2O) is released from soils by nitrification and denitrification processes. N2O is
a potent greenhouse gas: emission of 1 kg N2O produces about 300 times the global warming of
1 kg CO2 over 100 years (Forster et al., 2007). The release of N2O from agricultural soils is the
single largest contributor to the life cycle greenhouse gas (GHG) for crop-based biofuels, and one
of the largest contributors across many biofuel production cycles (Smeets et al., 2009; Hsu et al.,
2010). The rate of emissions of N2O (per unit N applied) is perhaps the most uncertain direct effect
in the GHG profile of crop-based biofuel feedstocks (Crutzen et al., 2007; Edwards et al., 2008;
Erisman et al., 2009; Smeets et al., 2009; Soimakallio et al., 2009; Del Grosso et al., 2010; Hsu
et al., 2010).

Soil emissions of N2O depend on several site-specific characteristics such as soil moisture,
temperature, pH, and availability of nitrogen and organic carbon (Mosier et al., 1998; Erisman
et al., 2009). N2O emissions generally vary with fertilizer application rate, but also result from
nitrogen fixation by legumes and from atmospheric deposition of NOXand NH3 from combustion
sources (Mosier et al., 1998). The emissions are highly variable over very small distances (i.e. 10
inches or less), and they vary in time (e.g. large pulses can occur after rain soaks the soil) (Mosier
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et al., 1998; Dalal et al., 2003; Gibbons et al., 2006). Nitrogen that runs off into waterways can be
emitted as N2O far from the field in question (Mosier et al., 1998). Recent research indicates that
N2O emissions from anoxic zones caused by fertilizer runoff may be much higher than previously
understood (Codispoti, 2010).

The Tier I method described in the IPCC’s guidelines for GHG inventories includes several
N2O emission pathways, as show in table 3.2. The first is the direct of N2O from the fertilized field,
resulting from nitrification and denitrification. This emission rate is expressed as a percentage of
elemental N that is directly released to the atmosphere as N2O. In addition to these direct emissions,
a fraction of the applied N is volatilized as NH3 , and oxides of nitrogen (NOX ). When these
gases and their products (NH+

4 and NO−3 ) are deposited onto soils and waterways they result in
additional N2O emissions. The default values for these factors, and their associated uncertainty
ranges (expressed as ±2 standard deviations, or approximately a 95% confidence interval) are
shown in 3.2 (De Klein et al., 2006, table 11.1).

The rate of emission of N2O per unit of nitrogen (N) fertilizer applied is highly uncertain,
with a distinct right tail. Figure 3.2 shows the joint distribution for N2O emission rate, with the
parameters represented by lognormal distributions with 5th and 95th percentile values set according
to the ranges given by the IPCC, as shown in table 3.2.2 Owing to this skew, the mean of the joint
distribution (1.65%) is greater than the point estimate based on the default values (1.325%).

Table 3.2: Uncertainty ranges for factors used in Tier 1 N2O emission calculations. (Source:
De Klein et al., 2006, Tables 11.1 and 11.3)

Parameter Default value Uncertainty range

For N additions from mineral fertilizers, etc. (kg
N2O-N [kg N]−1)

0.01 0.003 – 0.03

Fraction of N volatilization 0.10 0.03-0.3

Conversion of volatilized N to N2O (kg N2O-N [kg
N]−1)

0.01 0.002-0.05

Fraction leached 0.30 0.1-0.8

Conversion of leached N to N2O (kg N2O-N [kg
N]−1)

0.0075 0.0005-0.025

3.5.2 SOIL CARBON

Agricultural soil can sequester carbon, thereby offsetting other GHG emissions, or they can release
carbon as CO2 (Anderson-Teixeira et al., 2009). Soils can also be a net source or sink of methane

2The IPCC guidelines do not specify the probability distribution associated with these parameters, only the ranges.
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Figure 3.2: N2O emissions rate for applied N fertilizer, assuming lognormal distributions for input
parameters with the 5th and 95th percentile values set to the ranges given by the IPCC guidelines
and presented in table 3.2.

(CH4) (Torn and Harte, 1996; Lashof et al., 1997). Some biofuel GHG models (e.g., GREET,
discussed below) include an assumed change in soil carbon resulting from bioenergy production
(Wang, 1999). Estimates of soil carbon changes are very uncertain: the sign and magnitude of
the change vary with feedstock, climate, soil type, land use history, and management practices,
and the effect varies over time and space. Any estimate of SOC change is therefore dependent
on the specific scenario modeled (e.g., switchgrass replacing corn versus switchgrass on former
grassland) and given any scenario, there will be spatial and temporal variability.

For example, the GREET model assumes large soil carbon sequestration benefits for cellulosic
ethanol produced from switchgrass and farmed trees: 48,500 g CO2 per dry ton of switchgrass,
and 112,500 g CO2 per dry ton of farmed trees. These values produce in credits of 6.3 and 14.7 g
CO2e MJ−1 in the respective ethanol pathways.3 However, this level of sequestration depends on

3These carbon sequestration estimates are exactly half the value cited in GREET documentation (Wang, 1999, p.
80) as coming from personal communication with Mark Delucchi in 1998. Neither Delucchi nor GREET developers at
Argonne National Lab could explain why the values were halved, nor could they explain the assumptions underlying
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assumptions about the nature of the land on which the crops are growing. The specific switchgrass
scenario modeled in GREET (Wu et al., 2006) is based on a 2002 analysis using the POLYSYS
model and an assumed switchgrass price of $27.50 per dry ton, projecting that 39% of the switch-
grass would be grown on conventionally-tilled cropland, and assuming none would be grown on
CRP land (Andress, 2002). If this were the case, then the switchgrass would presumably induce
ILUC emissions, which were not considered in GREET. If, instead, switchgrass were produced
on CRP land, the potential gain in soil carbon would depend on the length of time since the land
went out of cropping; if the land were in grasses long enough, there would be no additional carbon
storage associated with producing switchgrass (Andress, 2002, p. 4). Indeed, tilling the grass to
plant switchgrass would result in net emissions of CO2.

In its analysis for RFS2, USEPA assumes switchgrass sequesters a large amount of SOC, al-
though the report it cites on this subject notes that the “SOC response to a conversion to switchgrass
will depend on initial SOC levels and management, projecting SOC accumulation under soils with
low initial C content in the top 30-cm of soil (< 40 Mg C ha−1) with “higher rates of accumulation
under lowland ecotypes. (Thomson et al., 2009, p. 7). However, Figure 3.3 (Thomson et al., 2009,
p. 8) shows that the range of SOC accumulation levels was quite wide for initial SOC < 40 Mg
ha−1, while for higher initial SOC levels, a loss of SOC occurred in several locations.

3.5.2.1 TILLAGE AND SOIL CARBON SEQUESTRATION

Many studies have found that conservation tillage increases soil C sequestration compared to con-
ventional tillage—however this finding is now in dispute. Baker, Ochsner et al. (2007) show that
the conventional wisdom is a result of insufficiently deep soil sampling. Samples are generally
taken from less than 30 cm of depth, which appears to be above the level at which conventional
tillage deposits carbon, whereas most of the soil C increase under no-till occurs at these shal-
lower depths. Thus the studies upon which conventional wisdom is based may have significantly
underestimated the soil C sequestration from conventional tillage. Baker et al. (2007) conclude
that “it is premature to predict the C sequestration potential of agricultural systems on the basis
of projected changes in tillage practices, or to stimulate such changes with policies or market in-
struments designed to sequester C”. Additional studies have confirmed these findings (Gál et al.,
2007; Blanco-Canqui and Lal, 2008; Yang et al., 2008). For example, Blanco-Canqui and Lal
(2008) report that no-till increases soil organic C (SOC) concentrations in the upper layers of some
soils, but it doesn’t store SOC more than plow tillage for the whole soil profile, confirming Baker’s
conclusion. Gál et al. (2007) write:

”[w]hile no-till clearly resulted in more OC [organic carbon] and N accumulation in
the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply
with depth. Indeed, moldboard plowing resulted in substantially more OC and N, rel-
ative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently
to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains

the values. Delucchi disclaims these 12-year-old estimates (pers. comm.)
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Figure 3.3: Simulated annual change in soil organic C (SOC) to 30-cm depth as related to initial
soil C levels at the seven calibration dataset locations in the upper southesastern United States.
(Thomson et al., 2009, p. 8).

under long-term no-till are highly dependent on sampling depth and, therefore, tillage
comparisons should be based on samples taken well beyond the deepest tillage depth.”

They conclude that “the most important contribution of our study was to confirm the necessity
of deep sampling for improved accuracy in the assessment of C or N sequestration with no-till ver-
sus conventional tillage.” Yang et al. (2008) conclude that the differences in soil C sequestration
between no-till and conventional till disappear when the entire plow layer is considered, and im-
portantly (relative to Gal et al.) write that sampling beyond the plow layer would be prohibitively
expensive given the number of samples required to detect statistically significant differences that
are small compared to the large amount of carbon in deeper samples.

In addition, shifting from conventional-till (CT) to no-till (NT) can increase N2O emissions
for a decade or more, eliminating any climate benefits from the carbon storage of no-till in some
regions (Six et al., 2004). Six et al. write: “NT systems increase GWP relative to CT practices,
in both humid and dry climate regimes, and longer-term adoption (410 years) only significantly
reduces GWP in humid climates. Mean cumulative GWP over a 20-year period is also reduced
under continuous NT in dry areas, but with a high degree of uncertainty.” (Note that this paper
relies on shallow samples to estimate carbon storage of NT, and so it may overestimate the increase
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carbon storage of NT, which only strengthens their result.)

3.5.2.2 REVERSIBILITY

Most biofuel LCAs treat the sequestration of one unit of carbon in soil or biomass as equivalent to
the avoided emission of one unit of fossil carbon. However, as sequestration is reversible, whether
these are equivalent depends on the storage duration. When viewed over a 100-year interval,
sequestering a unit of carbon for 55 years is equivalent to avoiding emission of the same unit of
carbon as CO2 (Moura Costa and Wilson, 2000). In terms of biofuel GHG analysis, the climate
benefit of a given quantity of carbon sequestration is uncertain because the date of future release
of the CO2 is unknowable. To address this uncertainty, Moura Costa and Wilson suggest crediting
each unit of sequestered carbon with 1/55th (0.0182) of a unit of carbon per year, thereby providing
incentives to the credit recipient to ensure the continued storage of the carbon.

Alternatively, an LCA could account for this uncertainty by discounting the carbon storage
benefit based on the probability of reversal before 55 years, though there may little empirical basis
for estimating such probabilities. For example, conservation tillage can be reversed to combat
pests, the arrival of which are unpredictable: despite a rise in no-till agriculture in the US, some
farmers are finding that they have to return to tillage to combat “super-weeds” that are resistant
to the herbicide Roundup, which has been used extensively for years on GMO corn and soybean
crops engineered to resist the herbicide (Neuman and Pollack, Neuman and Pollack).

3.5.3 UNCERTAINTIES IN AGRICULTURAL PRODUCTION DATA

In the US, agricultural data collected by the US Department of Agriculture’s National Agricultural
Statistics Service (NASS) and Economic Research Service (ERS) underlie all major life cycle
analyses of biofuels currently produced in the US. USDA reports these data as averages for each
parameter (e.g. agrichemical application rates, yield, on-farm energy use, incidence of no-tillage),
per state, as if the values were independent. In general, a different result would obtain if the
global warming intensity of feedstock production were computed for each farm, with these “whole
system” results averaged across some region of interest (Farrell et al., 2006c; Plevin, 2009) rather
than computing the LCA based on independently averaged factors. This is because, in general, for
a non-linear function f (x,y), f (avg(x),avg(y)) 6= avg( f (x,y)). The computation of GWI is non-
linear as it involves the product of factors such as fertilizer application rates and the fraction of
acres receiving fertilizer application, as well as division by yield to produce the desired functional
unit. Thus, LCAs have unwittingly used f (avg(x),avg(y)) as a proxy for avg( f (x,y)).

Other issues with agricultural data are discussed in chapter 4.

3.6 BIOFUEL PRODUCTION

The emissions from the conversion of feedstocks to biofuel are less uncertain than those of feed-
stock production, as virtually all the emissions result from the combustion of easily-measured
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quantities of fossil fuels. The main uncertainty in biofuel production phase is whether the chosen
method for accounting for co-products accurately represents environmental effects, discussed in
§2.3.2.5.

Estimates of production emissions also depend on the timeframe considered and whether we
seek a value for the average production of a fuel (say, across the US) or for a specific facility. For
use in the LCFS, average values are of little interest, as the regulation targets individual produc-
ers. For RFS2, EPA has made determinations regarding classes of biofuels, so it should consider
the uncertainty inherent in averaging across facilities. There is additional epistemic uncertainty
associated with projections of future technologies, as USEPA has done for RFS2.
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PART II

UNCERTAINTY ANALYSIS OF DIRECT LIFE CYCLE EMISSIONS
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CHAPTER 4

GREET-BESS ANALYSIS META-MODEL (GBAMM)

“All models are wrong, but some are useful.”
George Box

4.1 PURPOSE AND SCOPE

The BESS model has been promoted by its creators as an “improved” model of the life cycle GHG
emissions from corn ethanol, suitable for use in regulations such as the California LCFS. BESS’s
estimate is 25% lower than that of the GREET model, on which the LCFS is based. This large
difference raised questions about which model was more accurate. I developed a life cycle meta-
model to compare the GREET and BESS models in detail and to explain why the results from these
models diverge. I found two main reasons for the divergence: (i) BESS models a more efficient
biorefinery than is modeled in the cases to which its results have been compared, and (ii) in several
instances BESS fails to properly count upstream emissions. The detailed examination of these two
models highlights the data gaps and subjective choices that are inherent to LCA.

Although this analysis explains the gap between the two models, I found that both models
would be improved with better data on corn production practices and by better treatment of agri-
cultural inputs. However, as explained in Part III, the differences between GREET and BESS are
overwhelmed by uncertainty in the emissions from indirect land use change.

The chapter was published as an article in the Journal of Industrial Ecology, volume 13, num-
ber 4, pages 495-507, c©Yale University, available at http://dx.doi.org/10.1111/j.1530-9290.2009.
00138.x. The version presented here integrates the published supporting information into the main
text, but is otherwise identical to what appeared in the journal, other than the addition of this
section.

4.2 INTRODUCTION

4.2.1 BACKGROUND

With the development of fuel regulations based on life cycle greenhouse gas (GHG) emissions
(e.g., CARB, 2009a; USEPA, 2009a) the accurate assessment of the global warming intensity

http://dx.doi.org/10.1111/j.1530-9290.2009.00138.x
http://dx.doi.org/10.1111/j.1530-9290.2009.00138.x
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(GWI) of transportation fuels has acquired new and important financial implications. Regulators
in California have decided to rely on the GREET model (Wang, 2008b, 1999), but other models
exist and warrant examination. One such model is BESS, which produces much lower estimates of
the life cycle greenhouse gas (GHG) emissions from the production of corn ethanol than do prior
models (Liska et al., 2009).

The goal of this analysis is to document why the results from BESS and GREET diverge so
widely. This analysis is based on GREET 1.8b, released in September of 2008, and focuses on
the “Midwest natural gas” (MW-NG) scenario in Liska et al., for which details are provided in
spreadsheet form in their article’s supporting materials (Liska et al., 2009). The MW-NG scenario
describes a dry-grind facility in the Midwest using average Midwest corn as feedstock and natural
gas for thermal energy, assuming that 35% of the DGS co-product is dried, another 30% partially
dried, with the final 35% delivered wet to local markets.

We note that this analysis does not include estimates of the GHG fluxes attributable to indi-
rect land use change (iLUC). Including iLUC emissions has a potentially large effect on the corn
ethanol life cycle (CARB, 2009a; Searchinger et al., 2008b; USEPA, 2009a), however, as neither
GREET nor BESS includes iLUC emissions, this issue is not addressed further in this comparison.

4.2.2 COMPARING LIFE CYCLE MODELS

Liska et al. (2009) compared results from their BESS model to results from three other models:
GREET (Wang, 1999), EBAMM (Farrell et al., 2006b), and BEACCON (Plevin and Mueller,
2008). BESS incorporates updated crop production, co-product credit and biorefinery performance
data to produce fuel global warming intensity (GWI) ratings (g CO2e MJ−1) for corn ethanol. The
BESS estimates are much lower than those from other models. The authors indicate that their lower
GWI estimates result from the use of newer data, however our analysis shows that (i) the technical
characteristics of the corn ethanol production systems modeled in BESS differ in important ways
from the systems represented in the other models, and (ii) the BESS model does not include several
upstream elements of the corn ethanol life cycle that are accounted for in the other models.

There are three primary areas of interest in comparing life cycle models:

1. Life cycle inventory (LCI) data: the quantities and emission factors for all inputs and pro-
cessing steps, and the quality of the data.

2. System boundaries: which life cycle elements are included in the analysis and which pro-
duction systems are modeled?

3. Implementation: the behavior of the analytic system, as implemented. Does the model be-
have as advertised?

To understand differences between models in any of the above areas requires holding the other
factors constant across the comparisons. For example, to compare the effect of updating agricul-
tural and process efficiency data requires holding system boundaries and implementation constant
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while using different LCI data. A single life cycle model can also be used to compare estimates for
different system configurations, such as systems with and without cogeneration units, or systems
with and without an anaerobic digester. However, simultaneously changing all of these factors
confounds the analysis. As shown in Table 4.1, Liska et al. compare model results for funda-
mentally incommensurate scenarios which use different system boundaries and functional units.
Liska et al. compare their result in BESS for a natural-gas fired dry-grind biorefinery located in
the U.S. Midwest in which only 35% of the co-produced distiller’s grains with solubles (DGS)
are fully dried, to scenarios examined in the three other models in which 100% DGS drying is
assumed. Reduction in co-product drying represent an important industry trend, however, a more
illuminating model comparison would examine the same the scenario in each model.
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My analysis focuses on GREET for three reasons: (i) EBAMM and BEACCON were designed
for specific studies and are derivative of older versions of GREET1, (ii) Argonne National Lab-
oratory continually updates and fixes errors the GREET model, and (iii) GREET (with regional
modifications) serves as the basis for the fuel ratings under California’s Low-Carbon Fuel Stan-
dard, among other regional and state efforts (CARB, 2009a).

4.3 METHODS

To understand the divergence between BESS and GREET we developed the GREET-BESS Anal-
ysis Meta-Model (GBAMM) to directly compare all key elements in the LCA of corn ethanol as
performed by the two models. The model is similar in many respects to the ERG Biofuel Analysis
Meta-Model (EBAMM) developed by the Energy and Resources Group at the University of Cali-
fornia, Berkeley (Farrell et al., 2006a), however in the present case we also compare the emission
factors used in the two models.

I first define consistent terms of analysis:

1. Functional unit: 1 MJ of denatured ethanol, containing 4.7% (vol) conventional gasoline
denaturant. We assume the denaturant has a global warming intensity (GWI) of 92 grams of
carbon dioxide equivalent per megajoule (g CO2e MJ−1).2

2. Figure of merit: Grams per MJ of denatured ethanol of life cycle emissions of CO2,
CH4, and N2O, weighted by their 100-year CO2-equivalent global warming potential val-
ues (GWPs), as per the Intergovernmental Panel on Climate Change’s (IPCC) fourth assess-
ment report (Forster et al., 2007). GREET also accounts for conversion of carbon in volatile
organic compounds (VOC) and carbon monoxide (CO) to CO2 in the atmosphere, but this
amounts to less than 0.3 g CO2e MJ−1 for the pathway analyzed, so we disregard it in this
analysis.

3. System boundary: The analysis includes agricultural input production and transport, farm
equipment production3, feedstock production, feedstock transport, biorefinery equipment
production, feedstock conversion, co-product processing and distribution, denaturant pro-
duction and transport, and ethanol distribution. Credit is assigned for avoided life cycle

1 EBAMM was developed in 2005 to enable a meta-analysis of prior studies of the energy balance of corn ethanol
production, and its greenhouse gas (GHG) accounting is based on GREET 1.6. BEACCON was designed to explore
the differential effects on ethanol production cost of a price on CO2, across a range of dry-grind system configurations
and policy options. BEACCON is derivative of GREET 1.7.

2 Greenhouse gases (GHGs) are often measured in the mass of CO2e, or the amount of CO2 that would cause the
same level of radiative forcing as the emissions of the greenhouse gas in question. One megajoule (MJ) = 106 joules
(J, SI) 239 kilocalories (kcal) 948 British Thermal Units (BTU).

3 GREET 1.8b models farm equipment only, whereas BESS includes a line item for “depreciable capital” both on
the farm and at the biorefinery. The total emissions estimate for capital in both models, however, is very similar (0.7 g
CO2e MJ−1 in GREET versus 0.726 g CO2e MJ−1 in BESS for their IA-NG case.)
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GHG emissions for products displaced by co-produced distiller’s grains. Non-CO2 emis-
sions from fuel combustion are not included.

Spatial boundary: corn and ethanol production are assumed to take place in the U.S. Mid-
west, using average production and electricity production data for the top 12 ethanol pro-
ducing states. (The two base cases use each models’ estimate of US average electricity
emissions; the adjusted cases use the same Midwest average emission factor.) GHG fluxes
associated with direct and indirect land use change are not considered in this analysis.

4. Temporal boundary: We attempt to model current practices, although data limitations pre-
vent accurately modeling corn production. Both models rely on on-farm energy use data
from 2001. For fertilization rates, GREET and BESS use 2001 and 2005 data, respectively,
however GREET extrapolates from these values to estimate practices in 2010, and BESS
uses average corn yield from 2003-2005 to approximate current practices.

Using these definitions, we estimate two values for each model: (i) a baseline value using the
data provided with the model attempting to match the values reported in BESS and GREET, and
(ii) a value based on adjusting system boundaries and model data as required to meet the definition
stated above or to correct errors. The adjusted results are indicated with an asterisk after the name,
i.e. BESS* and GREET*. Modified values are clearly indicated in the spreadsheet model.

4.3.1 BASELINE ESTIMATES

The well-to-tank GWI for 4.7% denatured ethanol estimated in GREET for a natural gas dry-grind
facility, using average US grid emissions, excluding GREET’s estimated CO2 emissions from land
use change (about 1 g CO2 MJ−1) and including emissions for farm equipment is 64.4 g CO2e
MJ−1. We use this as the baseline GREET value.

The baseline value for the BESS MW-NG scenario is given as 45.1 g CO2e MJ−1 in the BESS
supporting materials. Thus we have a gap of (64.4 – 45.1) = 19.3 g CO2e MJ−1 to explain. The
following sections explain the specific differences found between the models.

GBAMM matches the baseline results to within 0.5% of the values estimated in the original
models.

4.3.2 ADJUSTMENTS TO THE MODELS

This section briefly summarizes the adjustments made to the two models. The rationale for and
implications of these adjustments are discussed in the subsequent sections.

4.3.2.1 ADJUSTMENTS TO BESS

BESS* adopts emission factors from GREET with one exception: the original BESS emission
factors for seed production and field emissions of N2O are maintained. All BESS corn production
data are maintained in BESS* except for lime application rate, which is taken from GREET. BESS*
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adopts from GREET fuel lower heating values, as per table S2.6 (available in Supplement S2 on the
Journal’s Web site), as well as the emissions for production of corn farming equipment. Biorefinery
data in BESS* were adjusted to an anhydrous basis.

4.3.2.2 ADJUSTMENTS TO GREET

GREET* adopts biorefinery performance assumptions from BESS since these define the target of
analysis. BESS and GREET estimate slightly different co-product GHG credits: 16.9 and 17.4
g CO2e MJ−1, respectively. Since biorefinery performance assumptions include natural gas con-
sumption for drying distiller’s grains, GREET* also adopts BESS’s co-product credit assump-
tion. GREET* adopts the 12-state Midwest average electricity emission factor (weighted by 2009
ethanol production). GREET* adopts the emissions for biorefinery equipment from BESS.

4.4 RESULTS

4.4.1 LIFE CYCLE EMISSION FACTORS

An important difference between GREET and BESS is the models’ treatment of upstream emis-
sions. GREET tracks energy flows through the full fuel life cycle, for a wide range of transportation
fuels, estimating emissions from production, transport, and storage of fuels and feedstocks, com-
bustion of fuels. It augments these combustion emissions by tracking important non-combustion
GHG sources such as field emissions of N2O. At its base, GREET relies on values from other stud-
ies or exogenous calculations, for example, to estimate the energy and emissions for the production
of fertilizers, and for the energy required to produce a bushel (bu) of corn.

To estimate the GWI of corn ethanol, GREET uses its own calculations of the life cycle GHG
emissions for the production and combustion of fossil fuels, and for the production of electricity.
However, since GREET does not separately model foreground and background processes, changes
made to model a specific production process (e.g., for corn ethanol) can have unintended side-
effects. For example, changes to the electricity grid affect all uses of electricity throughout the
model, effectively placing the entire life cycle of all modeled processes within the defined grid.
Similarly, modeling a specific ethanol refinery affects the use of ethanol pervasively in the model,
such as for goods transport. Derivative models such as EBAMM (Farrell et al., 2006a), Biofuels
Emissions and Cost Connection (BEACCON) (Plevin and Mueller, 2008), and GBAMM that im-
port life cycle emission factors from GREET separate the foreground analyses from background,
avoid this “bleed-through” effect.

BESS is a more narrowly-focused model, addressing only corn ethanol produced in dry-grind
facilities. It does not model the life cycle of fossil fuel or electricity production, but instead adopts
emission factors from other sources. In several cases, BESS relies on emission factors from the
IPCC’s guidelines for national greenhouse gas inventories, but these are not life cycle emission
factors, so reliance on these factors undercounts emissions. For fossil fuel and electricity use on
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the farm and by the biorefinery, BESS estimates life cycle emissions based on the fuels’ production
efficiencies, but as shown below, this also generally undercounts emissions.

4.4.1.1 UPSTREAM EMISSIONS FOR FOSSIL FUELS

To estimate the life cycle emissions for fossil fuels, BESS first divides the quantity of each fuel
used by the corresponding “energy efficiency” for that fuel, following Shapouri et al. (2004), to
estimate total energy use. To compute GHG emissions, this larger quantity of fuel is multiplied by
the fuel’s direct combustion emission factor, sourced from IPCC inventory guidelines.

The “efficiency” approach is reasonable for calculating an energy balance, as Shapouri et al. do,
since in an energy balance, only the total energy matters—other fuel characteristics are irrelevant.
However, this approach does not produce a correct life cycle GHG result, since it treats all upstream
energy use for each fuel as simply combustion of more of the same fuel, and therefore doesn’t
account for the variable GHG intensity of upstream processes.

For example, BESS uses a conversion efficiency of 94% for natural gas, meaning that of the
total natural gas consumed to meet a given end use, 6% is lost en route. However, the upstream
emissions calculated in GREET account for about 15% of the total life cycle emissions per unit
of natural gas combusted in industrial boilers, more than double the upstream emissions estimated
using the “efficiency” method. This difference is because the combustion of natural gas yields CO2,
whereas leakage releases CH4, 25 times more potent than CO2 per unit of natural gas (Forster et al.,
2007).4 This distinction is irrelevant in energy accounting, but essential in GHG accounting.

In addition, upstream processes for each fuel don’t simply use more of the same fuel: coal
production involves mining and transport, using a variety of energy sources, as well as leakage of
coal-bed methane, so applying the energy efficiency of coal production understates the life cycle
GHG emissions from coal use.

We note that while the implied emission factors in BESS are generally lower than those derived
in GREET, the diesel factor is higher in BESS. Since the ethanol pathway modeled uses much
more natural gas than diesel, the net effect of the BESS approach is to underestimate emissions.
Table 4.2 shows the GHG intensities for fossil fuels in GREET and BESS. In GREET, these are life
cycle GHG intensities, but in BESS they represent the emissions from burning a greater amount
of each fuel based on the energy efficiency of production. For example, if the energy efficiency
of producing natural gas is 94%, and the emission factor for combusting natural gas is 56 g CO2e
MJ−1, then the “life cycle” emission factor in BESS is (56 g CO2e MJ−1) / 0.94 = 60 g CO2e
MJ−1. BESS* adopts life cycle emission factors for fossil fuel from GREET, increasing the GWI
estimated in BESS by 2.3 g CO2e MJ−1.

We note that the LPG production efficiency used in BESS, as reported by Shapouri et al. (2004,
Table 2) appears too high at 98.9%. GREET 1.8 shows a well-to-pump energy efficiency of 89.3%
for LPG. Curiously, in an earlier paper, Shapouri et al. (2002) show an efficiency of 89.8% for

4The factor of 25 is for a 100-year integration period; CH4 is 72 times more potent than CO2 over a 20-year
integration period. Thus, for a model using 20-year GWPs, the approach used in BESS diverges yet further.
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Table 4.2: Comparison of fuel GHG intensities in BESS and GREET, (g CO2e MJ−1). BESS uses
energy efficiency as a proxy for upstream GHG emissions. GREET calculates life cycle GHG
emissions, including fuel combustion.

Fuel BESS GREET

Gasoline 88 93

Diesel 98 91

LPG 64 77

Natural Gas 60 66

LPG. It appears that the digits were transposed in the 2004 report showing 98.9%. LPG is a small
contributor to total GWI: applying the GREET factor increases GWI by only 0.2 g CO2e MJ−1.

4.4.1.2 ELECTRICITY

BESS’s handling of electricity is deficient in three ways: (i) inappropriate aggregation levels are
used to determine the relevant mix of power plants, (ii) upstream emissions for fuel production and
transport are based on energy efficiency rather than actual emissions, and (iii) transmission and
distribution (T&D) losses are handled incorrectly.

In the US, electricity is produced in tightly-connected grid regions with interconnects between
regions through which a relatively small amount of electricity is imported and exported Kim and
Dale (2005). The most appropriate aggregation level for determining per-kWh emissions are these
North American Electricity Reliability Council (NERC) regions. Although this approach misses
the smaller regional imports and exports, the NERC region provides a more accurate representation
of local electricity grid mix than either the state or national level, neither of which effectively
captures the electrical reality of the grid.

Following the “Midwest average” approach of the MW-NG scenario, we compute the average
emission factor for the 12 states for which corn farming data are averaged.5 Coal-fired electricity
is more prevalent in this region than in the US as a whole, resulting in a higher regional emission
factor. The life cycle emission factor for electricity “at the plug” (including 8% transmission and
distribution [T&D] losses) in GREET for the US is 780 kg CO2e MWh-1, whereas the 12-state
Midwest average emission factor is 910 g CO2e kWh-1. The value assumed in BESS is 745 kg
CO2e MWh-1.

Liska et al. cite Shapouri et al. (2004) as the source for electricity production efficiency of
38.5%. In fact, Shapouri et al. use the figure 39.6% efficiency for electricity production, with a

5 This average is based on regional emission factors computed in GREET 1.8b using 2004 electricity data from US
EPA’s eGRID 2006 v1.2, weighted by each states’ fraction of US annual ethanol production as of January, 2009. See
the spreadsheet model for details.
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misnamed T&D “efficiency” of 1.087%. Estimates of energy losses during electricity transmission
and distribution are typically in the range of 8% (as in GREET 1.8b) to 9.5% (Kim and Dale,
2005). An 8% T&D loss represents 92% efficiency, or a “loss factor” of (1/0.92) = 1.087. It
appears that Liksa et al. may have subtracted the mislabeled 1.087 “percent” from 39.6% to yield
their efficiency factor of 38.5%.

The combined efficiency of 39.6% conversion efficiency and 92% T&D efficiency is the prod-
uct of these values, or 36.4%. However, although the 38.5% value is mentioned in the BESS
documentation, it’s not clear whether this value is used in the model itself. BESS* adopts the
life cycle emission factors for electricity estimated for GREET*, increasing the GWI estimated in
BESS by 1.5 g CO2e MJ−1.

4.4.1.3 FUEL HEATING VALUES

BESS and GREET assume slightly different lower heating values for fossil fuels and ethanol, as
shown in Table 4.3. Fossil hydrocarbons contain a variable mixture of molecules; estimates of
heating values depend on assumptions about the composition of these blends. Anhydrous ethanol,
in contrast, consists of a single molecule (C2H5OH) so estimates of heating value are more con-
sistent. BESS* adopts the energy values from GREET, although this has a negligible effect on the
estimated GWI.

Table 4.3: Lower heating values for fuels in GREET and BESS.

Heating values
(LHV)

Units GREET BESS

Gasoline MJ/L 32.6 31.8

Non-road diesel MJ/L 38.5 36.2

LPG MJ/L 23.7 25.6

Natural gas MJ/m3 36.6 34.0

Anhydrous ethanol MJ/L 21.3 21.1

4.4.2 GENERAL ISSUES WITH AGRICULTURAL PRODUCTION DATA

Agricultural survey data collected by the USDA’s National Agricultural Statistics Service (NASS)
and Economic Research Service (ERS) underlie all major life cycle analyses of US corn ethanol
and soybean biodiesel. USDA reports these data as averages for each parameter (e.g. agrichemical
application rates, yield, on-farm energy use, incidence of no-tillage). Individual agrichemical rates
are also reported using separate averages for application rate and percent of acres treated—and in
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the case of lime, the number of years between treatments. Although this reporting approach treats
these parameters as independent, some of these values are clearly correlated (Farrell et al., 2006c).

In general, estimates of the GWI of corn will differ if estimated (a) using independently-
averaged parameters or (b), averaging individual per-farm estimates. The latter approach inher-
ently accounts for correlations; the prior approach does not. The size of the bias introduced by the
pervasive use of separately averaged parameters in life cycle assessment can only be estimated by
comparison with a bottom-up analysis. However, since a bottom-up analysis is not available, this
study uses the USDA data as reported.6

4.4.3 PLANTED VERSUS HARVESTED ACRES

An issue that was overlooked in several earlier corn ethanol energy analysis is that agricultural data
on energy use and inputs are reported per planted acre, whereas yields are typically reported per
harvested acre (Wu et al., 2006, section 3.3). Calculations can be performed on a per-planted or
per-harvested acre basis; either approach requires adjusting some of the data.

GREET adjusts agricultural inputs to a harvested acre basis, applying a 90% harvested-to-
planted acre ratio, as documented in Wu et al. (2006). This is based on USDA data from 1988 to
2005, and although not stated, appears to be for all corn planted in the US. However, the cornbelt
has a higher than average ratio of harvested to planted acres, as shown in Table 4.4.

4.4.4 WATER AND SEED ENERGY

Energy for irrigation and seed production, which are included as separate line items in BESS, are
accounted for in GREET’s estimate of total farm energy use. This factor is left unchanged in
BESS*.

We note that Liska et al. assume that 100% of the energy for seed production is in the form
of agricultural diesel fuel. This seems incorrect, given that seed production is basically corn pro-
duction, and diesel contributes only 10% of total emissions in corn production. The 9.7 MJ kg−1

for seed corn used in BESS originates with Graboski (2002, p. 27-28), estimated as 467% of the
total per unit energy for corn production. This higher energy demand is a result of the much lower
yields for hybrid seed corn (owing to less dense planning), and to higher drying demands.

4.4.5 CUSTOM WORK AND INPUT HAULING

When computing on-farm energy usage, BESS appears to exclude two categories of energy use
included in prior USDA studies and in GREET: custom work and input hauling. Custom work
refers to energy used by third parties hired to perform a range of field operations. Input hauling
refers to energy required to move inputs to the farm. In Shapouri et al. (2004), these two categories
amount to 9% of the total on-farm energy use for the average of nine major corn-growing states
based on 2001 USDA survey data. It’s worth noting that the energy used for custom work is

6 The author is currently developing a bottom-up analysis of corn GWI based on USDA survey data.
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Table 4.4: Corn acres planted and harvested in 2001. (Source: USDA Quick Stats,
http://www.nass.usda.gov/QuickStats).

State Planted (106 acres) Harvested (106 acres) Harvested:Planted ratio

Illinois 11.00 10.85 99%

Indiana 5.80 5.67 98%

Iowa 11.70 11.40 97%

Kansas 3.45 3.05 88%

Michigan 2.20 1.90 86%

Minnesota 6.80 6.20 91%

Missouri 2.700 2.60 96%

Nebraska 8.100 7.75 96%

North Dakota 0.88 0.71 80%

Ohio 3.40 3.17 93%

South Dakota 3.80 3.40 89%

Wisconsin 3.40 2.60 76%

United States 75.70 68.76 91%

12-state avg 63.23 59.29 94%
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quite uncertain: the USDA survey data include only the expenditure for custom work, from which
fuel use must be estimated (Graboski, 2002), and Shapouri et al. (2004) do not document the
assumptions underlying their calculation. This energy use is included in GREET, but since it’s
unclear whether it’s included in BESS, BESS* does not add this factor.

4.4.6 AGRICULTURAL DATA VINTAGE AND YIELD

Life cycle studies of biofuels typically average crop yields over a few years to avoid giving too
much weight to a single anomalous year. Shapouri et al. (2004) use this approach in their energy
balance for 2001 corn ethanol, combining the average yield from 2000-2002 with data on corn
production practices for 2001. Assuming a long-term trend in yield, bracketing the year in question
helps smooth out annual variations owing to temperature and precipitation differences.

Liska et al. use average yield data from 2003-2005 with on-farm energy use data from 2001,
fertilizer data from 20057, and manure application data from 1997, with all values based on
weighted averages by harvested area in 12 states: South Dakota, Minnesota, Iowa, Wisconsin,
North Dakota, Illinois, Indiana, Michigan, Nebraska, Ohio, Kansas and Missouri.

The use of yields, energy use, and production practices from different periods introduces a
bias, though owing to a lack of complete data, the magnitude and direction of the bias are unclear.
Dividing per-acre energy use for 2001 by the higher average yield achieved in later years—9.6 Mg
ha−1 for 2003-2005 versus 8.7 Mg ha−1 for 2000-2002—reduces the estimate of GHG emissions
versus the approach used by Shapouri et al. All else equal, higher yields require greater per-hectare
fuel use for certain operations (e.g., harvesting and drying corn), although this effect may be miti-
gated by increases in energy efficiency. The approach used by Liska et al. implicitly assumes that
despite a 9% increase in yield, per-hectare energy use remained constant.

GREET is based on 2001 USDA corn production data, using average values from 9-states rather
than 12-states as in BESS. GREET, however, extrapolates from the 2001 data to predict chemical
application rates, biorefinery energy use, and many other parameters.8 By default, GREET uses
values extrapolated to 2010, providing a “forward-looking” analysis. Table 4.5 shows the values
of several important corn ethanol parameters in GREET for years 2001 and 2010. The GREET
scenarios in this analysis use the 2010 projections since this best matches the intention in BESS to
reflect current practices.

Excluding lime, which is discussed below, the difference between the BESS and GREET ap-
proaches is negligible in practice: applying the GREET agricultural input assumptions (other than
lime) to BESS increases the GWI estimate by only 0.3 g CO2e MJ−1. However, while the two
approaches yield similar results, it is difficult to say whether either one accurately represents cur-

7 According to table 4 in the BESS User’s Guide (version 2008.3.1) and table 1 of the spreadsheet version of BESS
examined here, the MW-NG scenario relies on year 2001 data for on-farm energy use and agricultural inputs. However,
according to Liska (responding to an earlier draft of this analysis), the fertilizer inputs for the MW-NG scenario are
mislabeled and all BESS scenarios use 2005 fertilizer data.

8 GREET also extrapolates yield, but this is used only for corn stover yield and machinery energy use. GREET
represents all agricultural inputs and energy use on a per-bushel basis.
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Table 4.5: Key Agricultural and biorefinery parameters in GREET 1.8b for 2001 and 2010. As-
sumes 100% drying of distillers grains.

Parameter Units 2001 2010

Energy Btu gal-1 15,363 12,635

Nitrogen g N bu−1 480 420

Phosphorus g P2O5 bu−1 167 149

Potassium g K2O bu−1 196 174

Lime g CaCO3 bu−1 1,370 1,202

Anhydrous ethanol yield gal bu−1 2.65 2.72

Biorefinery energy demand Btu gal-1 36,900 36,000

rent corn production practices. Clearly, what is required for an accurate assessment is an updated
set of corn production data. Hopefully the U.S. Department of Agriculture (USDA) will resume
collection of these data.

4.4.7 AGRICULTURAL LIME

4.4.7.1 TYPES OF LIME

Lime is added to agricultural soils to neutralize acidity. Agricultural lime (aglime) is generally
calcitic or dolomitic limestone that is crushed and ground (De Klein et al. 2006, 11.27). Cal-
citic limestone consists mostly of calcium carbonate, or CaCO3, whereas dolomitic limestone
contains 10-50% dolomite (CaMg(CO3)2), and 50-90% calcium carbonate (Spectrum Analytic,
Inc., 2009a). Another form is calcium oxide (CaO), also known “burnt lime” since it results from
heating CaCO3 to liberating the CO2 molecule, leaving CaO.

The emission factors for lime production and use depend on which type of lime is assumed.
The production of CaO releases the CO2 from calcium carbonate in the production phase, whereas
the application of aglime results in a loss of CO2 from the field. The IPCC’s Tier 1 method for
estimating the field emissions from liming assumes that 100% of the carbon in aglime is emitted
as CO2, though with a one-sided uncertainty range of -50%, meaning the value might be less that
100% (De Klein et al., 2006, 11.27-11.30). Recent empirical data also support a lower emission
rate (Biasi et al., 2008).

Unfortunately, the USDA’s corn production surveys that provide the liming rates used by
GREET and BESS did not ask the farmer what type of lime was used. In the GREET model,
lime is assumed to be CaCO3, and 100% of the CO2 from lime is assumed to be emitted in the
field.
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For lime production emissions, GREET adopts the production emissions assumed for potash
(KCl), while using distinct transportation distances for lime (Wu et al., 2006). The basis for this
equivalence isn’t clear. In an earlier study, Graboski estimated much lower energy use for limestone
mining (54 Btu/lb) than for potash mining (2,059 Btu/lb), since most limestone is produced in
surface quarries, whereas most of the potash used in the Midwest is produced in Saskatchewan
using more energy-intensive shaft mining operations (Graboski, 2002, 86-88).

Although the BESS User’s Guide is silent on the type of lime assumed, the BESS spreadsheet
indicates the use of “high Ca” lime, and adopts the IPCC’s emission factor for production of CaO,
which accounts for the CO2 emission in production rather than in the field (Hanle et al., 2006,
2.23). However, this factor excludes emissions from the mining and transportation of lime.

The GREET emission factors for lime production and field emissions appear to be too high.
The BESS factor is clearly too low, since it omits mining and transport. BESS* currently uses
the lime emission factors from GREET, although neither model’s treatment of lime is completely
satisfactory.

4.4.7.2 LIME APPLICATION RATE

Lime application rate has been a source of considerable confusion in analyses of corn ethanol.
Prior life cycle studies cite various USDA reports showing application rates that ranged across
three orders of magnitude, with the high and low values ultimately attributed to errors in reporting
(Graboski, 2002; Farrell et al., 2006c; Wu et al., 2006). USDA reports lime rate using three terms
(i) the percentage of acres receiving lime, (ii) the tons of lime per treated acre, and (iii) the number
of years between applications. The average lime rate is thus product of the first two terms divided
by the third. The average rate for corn in 2001 was about 400 lb ac−1 (Wang et al., 2007).

A footnote in the spreadsheet prepared by Liska and colleagues states: “Average lime applica-
tion rates for all states were determined by multiplying the percent of area with lime applications
by the national average lime application rate of 400 lb ac−1 (448 kg ha−1)”. The lime application
rate derived this way and used in BESS is 212 kg per ha. However, since the average already
accounts for the percentage of acres treated, applying this fraction again incorrectly reduces the
application rate.

The 2010 lime application rate in GREET (1,202 g CaCO3 bu−1) is extrapolated from an
average per planted acre rate in 2001 of 1,264 g CaCO3 bu−1 (Wu et al., 2006). At the 2010
yield of 158 bu ac−1 assumed in GREET, this is equivalent to 469 kg CaCO3 ha−1, more than
double the rate used in BESS, but close the value noted in the BESS documentation, prior to the
adjustment.

BESS* adopts the lime application rate from GREET. Adjusting BESS* to use GREET’s lime
application rate and emission factors increases the GWI estimate in BESS by 3.8 g CO2e MJ−1.
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4.4.8 FERTILIZERS

BESS takes data from several sources for its estimates of the energy requirements to produce
fertilizers (N, P, and K), and lime. Nitrogen fertilizer energy is taken from Snyder et al. (2007),
phosphate and potassium from Kongshaug (1998), and lime from Graboski (2002) via Farrell et al.
(2006b). Several issues with these data are discussed below.

4.4.8.1 NITROGEN FERTILIZER

Snyder et al. report energy values from GREET 1.8a (Snyder et al., 2007, Table 4) for three types of
nitrogen fertilizer: (i) ammonia (actually including anhydrous ammonia, aqua ammonia, nitrogen
solution and “other”), (ii) urea, and (iii) ammonium nitrate (actually including ammonium nitrate,
ammonium sulfate, and ammonium thiosulfate) (Wang 2008). The energy value in BESS (45 MJ
kg−1 N) is the value for category (i) only, and it is the lowest value of the three. The values for the
categories (ii) and (iii) are 53 and 65 MJ kg−1 N, respectively. The weighted average of these in
GREET (assuming that 71% of the N is applied in the form of anhydrous ammonia, 21% as urea,
and 8% as ammonium nitrate) is 49 MJ kg−1 N, 10% greater than the value adopted in BESS.

Although Snyder et al. also report life cycle CO2e emission factors for fertilizers and lime,
Liska et al. adopt the emission factor for ammonia production given in the IPCC’s greenhouse
gas inventory guidelines as their emission factor for N fertilizer. This factor excludes emissions
from the production and transport of natural gas (the primary input to the ammonia process), the
conversion of ammonia to the various forms of fertilizer actually used, and for the transport of the
resulting fertilizer.

Production phase GHG emission factors vary widely across N fertilizer types (Kongshaug
1998; Nemecek and Erzinger 2005). Nitric-acid-based fertilizers in particular have high global
warming potentials owing to N2O losses in the synthesis of nitric acid (Snyder et al. 2007). To
represent average production practices in an LCA, the weighted average of the emissions from the
various type of fertilizers used should be used (Nemecek and Erzinger, 2005).

According to the USDA, anhydrous ammonia accounted for only 15% of nitrogen fertilizer
applied in 2005, as shown in Table 4.6. Indeed, most of the ammonia produced in the US is
converted to other forms of nitrogen fertilizer (Worrell et al., 2000). However, it is difficult to
find data on which types of fertilizers are applied to a specific crop; statistics reported by USDA
generally show only total nitrogen applied without distinguishing the form used.

Snyder et al (2007), report that the current mix of N sources used in North America have an
average life cycle GHG emission factor of about 4 kg CO2e kg−1 N, though this is diminishing
over time as the use of ammonium nitrate declines and the use of anhydrous ammonia and urea
increases. The emission factors in GREET and BESS are 3.06 and 2.63 kg CO2e kg−1 N, respec-
tively. BESS* adopts GREET’s nitrogen fertilizer emission factor, adding 0.72 g CO2e MJ−1 to
the GWI in BESS*.
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Table 4.6: Forms of nitrogen fertilizer applied in 2005, and percentage by mass. Source: http:
//www.ers.usda.gov/Data/FertilizerUse/Tables/FertilizerUse.xls.

Form applied Material tons Percentage

Anhydrous ammonia 3,857,891 15%

Aqua ammonia 420,879 2%

Ammonium Nitrate 1,420,653 6%

Ammonium Sulfate 1,181,609 5%

Nitrogen solutions 10,499,854 42%

Sodium nitrate 21,353 0%

Urea 5,211,665 21%

Other 2,629,043 10%

Total 25,242,947 100%

4.4.8.2 SOIL EMISSIONS OF NITROUS OXIDE AND CO2

Both BESS and GREET rely on the IPCC Tier I method for calculating N2O released from agricul-
tural soils. BESS estimates that 1.8% of applied N is released as N2O. This rate includes emissions
resulting from manure application and from nitrogen in above- and below ground biomass, but is
expressed in terms of applied chemical N.

Although GREET’s stated emission rate for N2O emissions from applied N fertilizer is 1.325%,
GREET accounts separately for the N in above- and below-ground biomass. Combining all soil
N2O sources in GREET and expressing these emissions in terms of N fertilizer application results
in an effective emission rate of 1.74%. As these rates are very close, we didn’t adjust the N2O
emissions in either model.

BESS includes emissions from manure, however this estimate is based on manure data from
1997. It’s unclear whether these data are representative of current practices. It’s also unclear
whether the USDA corn production data for nitrogen applications already include manure. In this
regard, both models would be greatly improved by access to current and more complete data.

GREET also accounts for field emissions of CO2 from the portion of nitrogen fertilizer assumed
to be in the form of urea. (It accounts for the capture of atmospheric CO2 in the production of urea
as well.) Adding these emissions to BESS* add 0.5 g CO2 MJ−1 to the fuel’s GWI.

http://www.ers.usda.gov/Data/FertilizerUse/Tables/FertilizerUse.xls
http://www.ers.usda.gov/Data/FertilizerUse/Tables/FertilizerUse.xls
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4.4.8.3 PHOSPHORUS AND POTASSIUM FERTILIZER

As with nitrogen and lime, several forms of phosphorus and potassium fertilizers are used in agri-
culture. To simplify matters for farmers, phosphorus and potassium fertilizers are rated by their
K2O and P2O5 equivalence, respectively, although these two chemical forms are never present in
the actual fertilizer (Spectrum Analytic, Inc., 2009c,b). Thus the masses of P2O5 and K2O reported
by USDA do not reflect the actual mass of fertilizer produced, transported, or applied, and the LCI
must be adjusted accordingly (Graboski 2002, 86-87).

Approximately 90% (by mass) of the potassium fertilizer applied to US crops is in the form
of potassium chloride (KCl) (USDA 2009, Table 5; Graboski 2002). KCl is rated as 60-62%
K2O equivalent, so applying, say, 100 lbs of K2O-equivalent requires about 100/0.61 or 163 lbs of
KCl, 63% more mass than suggested by the ”K2O” application rate reported by USDA, affecting
production and transport emissions (Spectrum Analytic, Inc., 2009c; Graboski, 2002). Other forms
of potassium fertilizer (e.g., potassium sulfate, potassium-magnesium sulfate, potassium nitrate)
have lower K2O-equivalence ratings, so the remaining 10% of potassium fertilizer would require
yet larger mass adjustments (Spectrum Analytic, Inc., 2009c).

BESS takes life cycle GHG emission factors for P2O5 and K2O from EBAMM (Farrell et al.,
2006b), which are derived from GREET 1.6. GREET adjusts production energy and emissions of
phosphorus fertilizer to a P2O5 basis, but the assumptions underlying this (particularly the P2O5
equivalence ratio) are not clear. GREET treats the mass of K2O reported by USDA as equal
to the mass of fertilizer applied, which understates the mass produced and transported, and thus
undercounts emissions, as indicated above. However, as GREET is the ultimate source for the
emission factors for K2O in both models, we ignore this mass adjustment for the present analysis.

4.4.9 FUEL ETHANOL PRODUCTION

Fuel ethanol plants produce denatured ethanol: pure anhydrous ethanol is blended with some form
of gasoline to render the alcohol non-potable, thereby avoiding beverage alcohol taxes. ASTM
D 4806, the standard for fuel ethanol, permits only natural gasoline, gasoline components, or
unleaded gasoline to be used as a denaturant. Denaturant volume can range from 1.96 to 5%;
producers adjust the fraction between these limits to minimize cost (Kotrba, 2008).

The most common denaturant is natural gasoline, also known as natural gas condensate, a
low-density, liquid hydrocarbon by-product of natural gas production (NaturalGas.org, 2009). To
our knowledge, the life cycle of natural gasoline production remains unexamined. In practice,
fuel cycle LCAs that include denaturant generally use conventional unleaded gasoline as a proxy,
even though the production processes for natural gasoline and these refined petroleum products
are quite distinct. However, as most of the life cycle GHG emissions from natural or conventional
gasoline result from the fossil carbon in the fuel, we don’t expect the GWI of natural gasoline to
be substantially lower than that of gasoline. Lowering the GWI of denaturant in GBAMM from 92
to 85 g CO2e MJ−1 reduces the fuel ethanol GWI by only 0.5 g CO2e MJ−1. The present analysis
nominally uses conventional gasoline as denaturant.
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Denaturant is often omitted in ethanol LCAs. Even in studies that are careful to distinguish be-
tween denatured and pure anhydrous ethanol, the denaturant fraction may not be reported (e.g., Wu,
2008). BESS models anhydrous (non-denatured) ethanol since it takes no account of denaturant
blending. Biorefinery data underlying the MW-NG scenario are based on survey data from the Re-
newable Fuels Association (RFA), documented by Argonne National Laboratory (Wu, 2008; Liska
et al., 2009). These survey data (e.g. biorefinery yield and energy use) are provided on a denatured
basis, assuming 4.7% denaturant.9 We adjusted the biorefinery performance data in BESS* to an
anhydrous basis by assuming 4.7% denaturant, reducing yields and increasing energy usage given
that each denatured liter contains only 0.953 L anhydrous ethanol. That is, we multiplied yields by
95.3% and divided energy inputs by 95.3%. As with GREET, we then add denaturant to anhydrous
ethanol to estimate the GWI of the final product. Table 4.7 shows an example calculation using
the reported GWI (43.7 g CO2e MJ−1) of ethanol from the MW-NG plant modeled in BESS (after
subtracting 1.4 g CO2e MJ−1 for distribution), assuming a 4.7% denaturant level using conven-
tional unleaded gasoline (92 g CO2e MJ−1). Note that GWI calculations require weighting the
blendstocks by their percentage contribution to energy, not to volume. Accounting for denaturant
adds 3.5 g CO2e MJ−1 to the calculated GWI in BESS*.

Table 4.7: Characteristics of anhydrous ethanol (as per BESS), denatured ethanol, and denaturant.

Fuel By volume By energy GWI Energy content
(g CO2e MJ−1) (Btu/gal, LHV)

Denaturant (conv. gaso-
line)

4.7%a 7.15% 92.0b 116,920

Anhydrous ethanol 95.3% 92.85% 43.7c 76,330

Denatured ethanol 100% 100% 47.2 77,722
a According to May Wu of Argonne National Lab, the denaturant level averaged 4.7%
for plants in the RFA survey (pers. comm.).
b Assuming conventional gasoline as denaturant.
c Example value calculated in BESS, minus 1.4 g CO2e MJ−1 for distribution.

4.5 DISCUSSION

The baseline values for the GWI of corn ethanol, as estimated by BESS and GREET, are 45.1 and
64.4 g CO2e MJ−1, respectively, indicating an initial difference of 19.3 g CO2e MJ−1. Adjusting

9 According to email correspondence with May Wu of Argonne National Lab, author of the memo cited by Liska,
et al. “RFA suggested 4.7% denaturant for the analysis.”



62

GREET to use biorefinery performance and co-product credit assumptions from BESS’s MW-NG
scenario reduces GREET’s estimate of GWI by 3.9 g CO2e MJ−1 to 61.3 g CO2e MJ−1.

Adjusting BESS* to account for missing upstream emissions and denaturant, adjusting biore-
finery data to a denatured basis, and adopting GREET’s lime rate and agricultural input emission
factors, raises the estimated GWI from that model to 60.7 g CO2e MJ−1, effectively closing the
gap between the models.

Table 4.8 shows the major differences between the two models, by category, with differences
expressed in the change in g CO2e MJ−1 attributable to changing a single value from the baseline
case in the indicated model to the value used in the adjusted case. Owing to interactions among
parameters, the values associated with adjusting each factor separately depends on the order in
which the changes are applied. However, the values shown do reflect the relative magnitudes of
the individual differences.

Table 4.8: The changes to baseline GWI estimates from BESS and GREET, expressed in grams
of CO2e MJ−1, adjusting each factor separately. With all factors considered simultaneously, the
adjustment to BESS totals 15.6 g CO2e MJ−1.

Parameter or category Results of adjustments Results of adjustments
to BESS (g CO2e MJ−1) to GREET (g CO2e MJ−1)

Biorefinery performance -4.3

Lime rate and emission fac-
tors

+3.8

Denaturant blending +3.4

Adjust data to denatured basis +3.1

Fossil fuel emission factors +2.3

Electricity emission factor +1.5

Corn farming equipment +0.8

CO2 field emissions from urea +0.5

Co-product credit +0.4

Ag. input emission factors +0.3

Heating values +0.03

Total adjustment +15.7 -3.9

Both models rely primarily on 2001 corn production data—the last year for which comprehen-
sive data are available from USDA, and both attempt to adjust these data to approximate current
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performance. Lacking current data, it is difficult to know whether GREET’s approach of extrapo-
lation, or BESS’s approach of updating a portion of the agricultural data results in a more accurate
assessment of current corn production practices. Better data is clearly required.

Figure 4.1 shows the contribution of each emission category to the gross emissions per MJ of
anhydrous ethanol, before applying co-product credit. Although this graph is based on GREET*,
the graph for BESS* is quite similar, as the purpose of this exercise was to close the gap between
the adjusted versions of these models. This figure illustrates that properly accounting for lime and
nitrogen fertilizer emissions is quite important to the life cycle of corn ethanol, and that reducing
the natural gas use at the biorefinery is essential to lowering the GWI of corn ethanol.

Figure 4.1: Contribution to gross emissions per MJ anhydrous corn ethanol, before considering
co-product credit, as estimated in GREET*. (N.B. This figure does not include land use change.)

The modeling of corn ethanol could be improved in both models. BESS would be improved
if the authors (i) adopt the life cycle GHG emission factors from a reputable life cycle inventory
database or spreadsheet model such as GREET or GHGenius for fossil fuels and electricity, (ii)
improve treatment of lime use, and (iii) model denatured rather than anhydrous ethanol. GREET’s
modeling of corn ethanol would be improved with (i) endogenous calculation of on-farm energy
use, (ii) explicit modeling of denaturant, especially natural gasoline, and (iii) better treatment of
K2O and P2O5 fertilizer usage and lime production energy. Both models—indeed all life cycle
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models of biofuels—would benefit from more complete and current agronomic data on feedstock
production and bottom-up estimates of feedstock GWI.
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CHAPTER 5

GREET UNCERTAINTY ANALYSIS

“Calculating the climate impact of biofuels is so complex, and our understanding is
so incomplete, that we can make only general qualitative statements about the overall
impact of biofuels on climate.”

Mark Delucchi (2010)

5.1 PURPOSE AND SCOPE

This chapter presents uncertainty analyses of life cycle GHGs of several fuel pathways based on the
Greenhouse Gas, Regulated Emissions and Energy use in Transportation (GREET) model, devel-
oped by Argonne National Laboratory (ANL) (Wang, 1999). The purposes of this chapters are (i) to
identify which parameters are the most important contributors to the variance in ethanol and gaso-
line GWI, and (ii) to produce a rough characterization of the relative magnitude of the uncertainty
in GWI for bio- and petro-fuels. This analysis allows me to compare the direct emission uncer-
tainties (estimated herein) with those of indirect land use change for corn ethanol, described in the
chapter 8. For these purposes, it is sufficient to restrict my analysis to ethanol (from corn, switch-
grass, and farmed trees) and gasoline. I consider the two cellulosic ethanol pathways (switchgrass
and farmed trees) to examine the importance to GWI uncertainty of assumptions regarding soil
carbon sequestration and electricity co-product credits.

In this analysis, I did not attempt to review and refine the default GREET probability distribu-
tions for most of the model parameters. To do so would be require a large effort that, in my view,
would add little additional value. GREET is primarily an attributional life cycle model, though it
uses system expansion in many cases for co-product handling. As noted in chapter 2, the life cycle
inventory in attributional models such as GREET rely on supply chain analysis and do not include
indirect effects such as ILUC. As discussed in chapter 2.3.3.3, combining an attributional anal-
ysis in GREET with a consequential analysis of ILUC (and other indirect effects) is incoherent.
Understanding the consequences of expanded biofuel production requires consequential modeling,
which requires a different life cycle inventory than the one modeled in GREET. If our objective is
to anticipate or guide policy consequences, attributional modeling can be misleading.

That said, the uncertainty analysis presented in this chapter is still valuable since regionalized
versions of GREET provide the basis for GWI ratings in the California LCFS, and for similar
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regulations being considered in the Northeastern US. It is therefore useful to (roughly) characterize
the uncertainty in this type of attributional modeling and understand its magnitude relative to that
of ILUC emissions.

5.2 INTRODUCTION

During the development of the California Low-Carbon Fuel Standard and the federal Renewable
Fuel Standard, stakeholders and regulators engaged in a vigorous debate over the uncertainty in
estimates of indirect land use change.1 In this debate, the GWI estimates for the remainder of the
fuel cycle—calculated using the GREET model in the case of the LCFS—were treated as though
known precisely. Indeed, in the California LCFS, values for each fuel pathway are treated as
though known to the hundredeth of a gram of CO2e per megajoule (CARB, 2009a).

As demonstrated herein, the global warming intensity (GWI) of petroleum fuels is much nar-
rower than that of biofuels. About 80% of the life cycle global warming effect of petroleum fuels
results from the combustion of the fossil carbon in the fuel (NETL, 2008). The upstream portion
of the petroleum fuel life cycle is variable owing to heterogeneity in the chemical composition
of different crude oil feedstocks in refinery configuration, however this variance has only a small
effect on total GWI, so even allowing for these uncertainties results in a relatively narrow distri-
bution. The global warming effects of biofuels, in contrast, are entirely upstream or indirect2, and
result from several highly variable natural processes such as soil N2O emissions and soil carbon
sequestration. We therefore expect the global warming effects of crop-based biofuels to be far less
certain, even excluding indirect land use change.

In this chapter, I examine the uncertainty in GWI for the fuels most immediately relevant to
the California LCFS: California reformulated gasoline (CARFG), California electricity, Midwest
corn ethanol, switchgrass ethanol, and farmed tree ethanol. More specifically, I determine which
parameters are key contributors to uncertainty in GWI for these fuel pathways, and quantify and
compare the uncertainty in GWI for these pathways.

5.2.1 PRIOR STUDIES

Several studies have examined the uncertainty in the life cycle GHG emissions from transportation
fuels (e.g., Brinkman et al., 2005; Edwards et al., 2008; Malça and Freire, 2010). These studies are
summarized below.

Argonne National Laboratory (ANL) collaborated with General Motors (GM) in 2005 to ap-
ply GREET to a range of fuels as produced and consumed in the US (Brinkman et al., 2005).
During this project, ANL added the ability to run GREET under Crystal Ball3 to perform Monte

1I examine uncertainty related to emissions from indirect land use change in chapter 8.
2This assumes that the emission of biogenic carbon is treated as climate-neutral, which is approximately correct

for short growth cycles, but untrue for unsustainably harvested biomass.
3ANL later abandoned Crystal Ball, distributing instead a much simpler (but free) Excel add-in to perform Monte

Carlo simulation.
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Carlo analysis, and distributions were defined for some 700 model parameters. For criteria pollu-
tants, ANL established probability distributions by reading 1999 emissions data from the National
Emissions Inventory into Crystal Ball and having the software perform curve-fitting, then project-
ing these values to 2016, accounting for anticipated emission controls (Brinkman et al., 2005, p.
34). ANL assembled a group of experts to develop projections of future technology and subjective
probability distributions informed by the 1999 data and expert judgment.

The Brinkman et al. study reported results for E85 rather than for pure denatured ethanol. The
uncertainty ranges for biofuels in that study were narrower and more symmetrical than the results
presented herein. For E85 from cellulose and corn they estimated 154 ±27 and 451 ±35 g CO2e
mile−1, respectively, where the range identifies the 80% confidence interval (from the 10% to the
90% value of the output frequency distribution); for reformulated gasoline, they estimated GHG
emissions of 552 ±21 g CO2e per mile driven (Brinkman et al., 2005, Table D-1).

The definitive study of GHG emissions from fuel and vehicle systems in Europe has been con-
ducted (with regular updates) by a consortium of EUCAR (the European Council for Automotive
R&D), CONCAWE (the oil companies’ European association for environment, health and safety
in refining and distribution) and JRC/IES (the Institute for Environment and Sustainability of the
EU Commission’s Joint Research Centre) (Edwards et al., 2007a, 2008). This series of reports
is sometimes referred to as the JEC (JRC-EUCAR-CONCAWE) study. In concordance with this
chapter and other studies, the authors concluded that biofuel GWI is dominated by the “huge un-
certainty” in estimates of GHG emissions from soils. The JEC study rejected the commonly used
IPCC Tier I method for calculating N2O emissions, which uses generic (not crop or region specific)
emission factors for direct and indirect (leached) N2O emission as a function of N applied. Rather,
the JEC study used the DNDC soil chemistry model to calculate daily N2O emissions based on
specific crop and soil characteristics across Europe.

Unlike the Brinkman et al. (2005) report, the JEC study used an incremental approach to esti-
mate the difference in GHG emissions between two “realistic” future scenarios, one with a given
alternative fuel and one without.4 GHG emissions from refining operations were based on alter-
ing the product slate of European refineries to produces less of the refined product (gasoline or
diesel) assumed to be displace by the alternative fuel under examination. Co-product credits were
assigned for avoided production, assumed displaced by co-products.

The JEC study was implemented using the E3database5 LCA tool. Unfortunately, neither the
JEC studies nor the E3database documentation present the probability distributions assumed by the
model. However, a review of the E3database documentation indicates that the uncertainty analysis
in this tool is more limited than in GREET or in the present chapter (Schurig et al., 2009). The
only parameters that can be treated stochastically are restricted to energy and material inputs and
emissions of CH4 and N2O. Global warming potentials, emissions or sequestration of CO2 from
agricultural soils, variance in the physical and chemical characteristics of petroleum and refined
products, and model choices such as co-product allocation methods are therefore not included in

4A similar approach was followed by the USEPA in its RFS2 analysis.
5See http://www.e3database.com/.

http://www.e3database.com/
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the uncertainty analysis. Only four types of input distributions are supported: normal, uniform,
triangular, and double triangle. Uncertainty results in the JEC study are limited to graphical pre-
sentation of error bars for which the meaning of the bars is not stated. It is therefore difficult to
compare these results to those of GREET or of this study. JEC estimates of GWI for both petroleum
and biofuels are generally lower than those of GREET.

Malça and Freire (2010) examined uncertainty in the GWI and energy efficiency of rapeseed
oil (RO) as a substitute for fossil diesel fuel in an attributional LCA. Their analysis considered
parameter uncertainty and model uncertainty related to the choice of co-product handling. They
assumed rapeseed was grown on set-aside land and thus incurred no indirect land-use change
emissions. Unlike most other studies, Malça and Freire (2010) include the ±35% uncertainty for
the 90% confidence interval around GWP values, as per the IPCC (Forster et al., 2007), though
they considered only the 100-year time horizon. The study also considered a range of possible
soil organic carbon (SOC) changes, from carbon uptake to carbon emissions. They conclude that
uncertainties in the rate of N2O emission and in soil carbon changes are the main contributors to
uncertainty in the GWI of most biofuels. (The Malça and Freire study is discussed further in §3.2,
and GHG results from that study are presented in figure 3.1.)

MacLean and Spatari (2009) examined the contribution of enzymes and process chemicals to
the conversion of corn and cellulosic feedstocks to ethanol. They found that while the contribu-
tion of these inputs in the corn case is minor (approximately 3% of life cycle GHGs), enzymes and
chemical production contributes 30–35% of life cycle GHGs in the cellulosic ethanol pathways ex-
amined, or approximately 9 g CO2 MJ−1 out of 27–29 g CO2 MJ−1 for two near-term simultaneous
saccharification and co-fermentation (SSCF) processes. Other estimates are even higher: MacLean
and Spatari note that the GHGenius model developed by Natural Resources Canada (based on ear-
lier work by Mark Delucchi) estimates that enzymes contribute approximately 50 g CO2 MJ−1

to the cellulosic ethanol life cycle, though this is for currently available technology. Despite the
magnitude of the emissions from these inputs, most LCA studies of cellulosic ethanol neglect to
include them. Notably, GREET does not include enzymes and chemicals in its life cycle inven-
tory for cellulosic ethanol (Wu et al., 2006). This oversight, as well as the longstanding exclusion
of ILUC emissions in biofuel LCA, demonstrates that unlike observable quantities, LCA-based
metrics are only as good as our modeling.

These studies evaluate average fuels, thereby propagating variance across production facilities
through estimates of GWI. I follow the same approach here. An alternative would be to analyze the
GWI uncertainty for a specific facility, holding performance parameters such as energy use, fuel
yield, co-product yield constant, while allowing feedstock production parameters to vary. How-
ever, it is not clear whether facilities opting for specific ratings under the LCFS will be able to
include the rating of specific feedstock production systems. This would further narrow the un-
certainty by pinching agrochemical application rates and on-farm energy use, with the remaining
uncertainty reflecting mostly N2O emission rate and, for cellulosic feedstocks, soil carbon seques-
tration rate. Of course, these final parameters could be measured (within limits) rather than using
national or regional averages. There is thus a trade-off between modeling very specific systems
with relatively low uncertainty, and modeling more generic systems that include not only param-
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eter uncertainty such as the N2O emission rate, and model uncertainty such as co-product credits,
but also variability across production systems. Which of these is most appropriate depends on the
purpose served by the analysis. In a regulatory setting, the appropriate choice of uncertainty and
variability to include should reflect the specificity of the regulatory accounting protocol.

Under the California LCFS, fuel produced from known types of facilities are assigned a GWI
rating appropriate to that the combination of feedstock and conversion technology used. This com-
bination is referred to as a pathway. The regulation allows facilities to apply for a facility-specific
rating if the result is at least 5 g CO2e MJ−1 lower than the default rating for that pathway. In these
cases, the variability among production facilities is eliminated, but the result applies only to a spe-
cific facility. In the context of the LCFS, the present analysis can be thought of as characterizing
the uncertainty in the default values for each modeled pathway.

5.3 METHODS

5.3.1 THE GREET MODEL

This analysis is performed in the Greenhouse Gas, Regulated Emissions and Energy use in Trans-
portation (GREET) model, developed by Argonne National Laboratory (ANL) (Wang, 1999).
GREET tracks life cycle energy use and emissions of CO2, N2O, CH4, CO, NOX , SO2, non-
methane volatile organic compounds (NMVOCs), and particulate matter as PM2.5 and PM10 for
a wide range of fuel production systems and vehicles. GREET estimates total greenhouse gases
(GHGs) as CO2 equivalent emissions by applying the 100-year GWPs from the IPCC’s Fourth As-
sessment Report (Forster et al., 2007) to total life cycle emissions of CO2, N2O, and CH4, as well
as counting the oxidation of the carbon fraction of CO and NMVOCs to CO2. GREET does not ac-
count for direct or indirect GWPs for the other emissions it tracks. It includes (direct) soil carbon
changes associated with the production of bioenergy feedstocks, but does not include emissions
from indirect land-use change (ILUC).

5.3.2 UNCERTAINTY ANALYSIS

I used Monte Carlo simulation to perform both uncertainty importance analysis and uncertainty
propagation. The stochastic analysis module provided with GREET does not include an uncer-
tainty importance analysis capability, nor does it provide access to the simulation data, which
would allow uncertainty importance to be estimated using other tools.6 GREET does, however,
include probability distributions for over 700 model parameters. These distributions are declared
on the “Distributions” worksheet by identifying the worksheet and cell address of each variable,
naming the distribution (e.g., NORMAL, LOGNORMAL, UNIFORM), and providing parameters
that define the named distribution. Rather than manually entering into Crystal Ball the hundreds

6I verified this in conversations with GREET developers at ANL and the programmers who developed GREET’s
stochastic module. Although ANL declined to fund the programmers to add an uncertainty importance analysis capa-
bility to the module, ANL was very helpful during my development effort.
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of distributions in GREET, I developed a Visual Basic module7 to read the distribution definitions
and apply them programmatically in Crystal Ball using the Visual Basic application programming
interface available with Crystal Ball. My VBA module is listed in Appendix A; my modifications
to the distributions provided in GREET are discussed in §5.3.4.

For both uncertainty importance and uncertainty propagation, I ran a 2,500-trial Monte Carlo
simulation. GREET uses circular calculations that, by default, are evaluated using 100 iterations.
To make the Monte Carlo simulation tractable, I reduced the number of iterations per trial to 10.

5.3.2.1 UNCERTAINTY IMPORTANCE

In many cases, a small number of parameters account for the majority of uncertainty in model
results (Morgan et al., 1990). Identifying these parameters helps guide further research to reduce
uncertainty, and helps streamline uncertainty propagation since the typically much larger set of
parameters that contribute very little to overall uncertainty need not be represented as uncertain.

To estimate uncertainty importance, Crystal Ball saves all inputs to and outputs from a Monte
Carlo simulation and computes the rank correlation between the inputs and each output parameter,
then normalizes these to sum to 100%. This provides a global measure of sensitivity, i.e., the con-
tribution of each parameter to the overall variance, across the full range of values for all uncertain
model inputs.

5.3.2.2 SCENARIOS

As shown in figure 5.1, the GWI of cellulosic biofuels depends on the type of electricity assumed
to be displaced. To analyze uncertainty importance, I used a discrete uniform distribution to se-
lect between four electricity displacement options in GREET: (i) US grid average, (ii) natural
gas combined-cycle (NGCC), (iii) coal integrated gasification combined cycle (IGCC) and (iv)
biomass IGCC.

To separate this scenario uncertainty from variability in the pathways defining the cellulosic
ethanol pathway, I also performed a two-dimensional Monte Carlo analysis that used a 2500-trial
simulation for each electricity displacement possibility. The results are shown in figure 5.10.

5.3.3 FUEL PATHWAYS CONSIDERED

I examine uncertainty in five fuel pathways: California reformulated gasoline (CARFG), California
electricity, and ethanol from corn, switchgrass, and farmed trees. All scenarios are run for the year
2010.

This analysis uses the baseline cellulosic ethanol facilities defined in GREET. For corn ethanol,
I updated GREET to use dry mill performance characteristics taken from Mueller (2010). The

7The Visual Basic Module is available at http://plevin.berkeley.edu/tools/CBG.xlm.

http://plevin.berkeley.edu/tools/CBG.xlm
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biorefinery performance characteristics, as modeled, are shown in table 5.1. For cellulosic feed-
stocks, a GREET parameter declares the fraction of the feedstock that is converted to ethanol; the
remainder is used for process energy.

Table 5.1: Default ethanol biorefineries modeled in GREET. Energy use = total imported energy
consumed in ethanol production (natural gas plus electricity); EtOH fraction = fraction of biomass
used to produce ethanol – the remainder is used for process energy.

Feedstock Yield Energy use EtOH fraction

Corn 2.8 gal bu−1 31,480 Btu gal−1 n/a

Farmed trees 90 gal (dry
ton)−1

n/a 55%

Switchgrass 95 gal (dry
ton)−1

n/a 60%

5.3.3.1 CORN ETHANOL

To model corn ethanol in natural-gas-fired dry mills, I applied data presented in a recent dry mill
survey (Mueller, 2010), which indicates that natural gas dry mills use 8.1 MJ (HHV) of natural
gas and 0.192 kWh of electricity and per liter ethanol. Converting these to English units yields
values nearly identical to those assumed by the BESS model (Liska et al., 2009; Plevin, 2009). For
GREET purposes, these translate to a total of 31,480 Btu gal−1 ethanol, with 92% of the energy
used in the form of natural gas, and 8% in the form of purchased electricity. The survey results
presented in Mueller (2010) show a 12% coefficient of variation (CV) for natural gas use, a 31%
CV for electricity use, and a 4% CV for ethanol yield. Yield averaged 2.81 gal (anhydrous) bu−1.

These performance parameters are adopted for the present analysis, with normal distributions
defined with the given standard deviations. Given that natural gas provides over 90% of the total
energy, I ignored the larger CV of electricity and assigned a 12% CV to the total energy value
in GREET. Although these performance parameters are clearly not independent, I treat them as
independent in the analysis owing to lack of data on correlations. The best way to handle these
data would be to compute the GWI of each facility separately, treating the production system as an
integral whole, thus bypassing the need to represent correlations among the averaged parameters.
Unfortunately, the data are proprietary and unavailable.

In this analysis, I adopt GREET’s assumptions regarding corn production. In my comparison of
the BESS and GREET models, I concluded that the differing assumptions in these models resulted
in insignificant differences in terms of GHG emissions from corn production (Plevin, 2009).
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5.3.3.2 CELLULOSIC ETHANOL

Two bio-chemical cellulosic ethanol pathways were considered, based on switchgrass and farmed
trees. Both pathways are represented by the stock GREET parameters and distributions. Farmed
trees and switchgrass production are assumed to result in a net gain in soil CO2. The sequestration
parameters for these feedstock were represented in GREET by the distributions shown in table 5.2.
Table 5.3 lists the distributions for ethanol yield for the two cellulosic ethanol pathways.

Table 5.2: Parameters defining triangular distributions for CO2 emissions for land use change for
ethanol feedstocks. Negative values indicate sequestration.

Feedstock Units Minimum Likeliest Maximum

Corn g CO2 bu−1 0 195 390

Switchgrass g CO2 [dry ton]−1 -97,000 -48,500 0

Farmed
trees

g CO2 [dry ton]−1 -225,000 -112,500 0

Table 5.3: Parameters defining normal distributions for ethanol yield emissions for cellulosic
ethanol feedstocks.

Feedstock Units 20th percentile 80th percentile

Switchgrass gal [dry ton]−1 80 103

Farmed
trees

gal [dry ton]−1 76 98

5.3.3.3 CALIFORNIA REFORMULATED GASOLINE

Given the predominance of the carbon in the fuel in the GWI of gasoline and diesel, there isn’t a
great deal of value in precisely identifying the uncertainties in upstream emissions. Even a 50%
variance would only alter the total GWI by ±7% or so. Therefore, I simply adopt the parameter
values and distributions provided in GREET related to California reformulated gasoline (CARFG).

5.3.3.4 ELECTRICITY

To estimate the GWI of electricity used in electric vehicles, I used GREET’s representation of
average CA grid electricity, with generation from the following sources 0.0% oil, 36.6% natural
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gas, 13.3% coal, 20.5% nuclear, 1.3% biomass, and 28.3% “other” sources, which are assumed in
GREET to produce no GHG emissions. The GWI of electricity (at the plug) includes GREET’s
estimate of 8% losses from transmission and distribution.

For comparison on a MJ-to-MJ basis with liquid fuels, I adopted the approach defined in the CA
LCFS of applying an energy efficiency ratio (EER) to represent the inherently greater efficiency
with which a MJ of “fuel electricity” is used in an electric or plug-in hybrid vehicle, compared to
the efficiency of an internal combustion gasoline engine. CARB defines the EER as the ratio of the
miles driven per energy unit of an alternative fuel to the miles driven per energy unit consumed for
a comparable vehicle using gasoline (CARB, 2009a, p. ES-18). CARB calculated EER values by
dividing the fuel economy for a given fuel-vehicle combination by the fuel economy for a reference
gasoline vehicle, where the reference vehicle chosen was the one that is “most similar in size and
style”, however when data was lacking, the agency used engineering analyses to determine EER
(CARB, 2009a, p. IV-16). CARB notes that the actual ratio varies with battery size, vehicle
size, and drive cycle, and for many vehicle types, the data required to make these estimates was
quite limited (CARB, 2009a, p. ES-18). Moreover, the EERs initially calculated (e.g., for electric
vehicles: 4.0 for 2000 Nissan Altra; 2.3 for 2003 Toyota RAV4; 3.5 for 2006 AC Propulsion
eBox) were then divided by 1.3 to account for an projected 30% increase in reference gasoline
efficiency between 2009 and 2016 owing to AB1493 (CARB, 2009b, p. C-9). The required choice
of scenarios and vehicles to consider lends a certain arbitrariness to the estimate of EER (Andress
et al., 2010).

CARB has set the EER for electric vehicles to 3.0, but recognizes that the value is only ap-
proximate, writing that “the staff has provided EER values that are to be used until such time that
there is more robust data available to better establish the EER” (CARB, 2009a, p. ES-18). To
represent these many uncertainties, I conservatively characterized the EER using a triangular dis-
tribution with minimum and maximum values of 2.7 and 3.3, respectively, using a best estimate of
3.0. As discussed in §5.4.1.1, even with this narrow uncertainty range, EER was by far the largest
contributor to variance for “fuel electricity.”

This analysis assumes that vehicles charge using the current average CA grid mix. In fact,
the actual emissions associated with EV use depends on the mix of power plants generating when
the vehicle plugs in, and so varies according to when users charge their vehicles. It also depends
on whether one considers vehicle charging to be marginal, in which emissions calculations would
be based on the dispatch margin (last plant dispatched), or if vehicles are assigned the average
emissions of all generation online at the time of charging. (These challenges related to treatment
of electricity in LCA, including assumptions of average and marginal electricity, are discussed in
§2.3.2.4.)

5.3.4 MODIFICATION TO GREET PARAMETERS AND DISTRIBUTIONS

GREET includes probability distributions for over 700 parameters, about half of which relate to
vehicles and are outside the scope of this study. The other half of the parameters relate to the
many fuel production pathways represented in GREET. Most of these parameters were used as
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defined in the model. In addition, several parameters that are treated as constants in GREET
were assigned the probability distributions described in §5.3.4. Lacking empirical data for these, I
generally assigned triangular distributions with maximum and minimum values 10% or 20% above
and below the assumed GREET value. The purpose of this ad hoc assignment of distributions
was not to accurately assess the resulting uncertainty, but simply to determine if these values
were important contributors to uncertainty. This approach allowed me to systematically ignore
unimportant uncertainties from the analysis, and to identify those requiring further research.

In some cases, values used as constants in formulae in GREET are actually uncertain. To
accommodate these in the stochastic simulation, the formulae were modified to refer to a cell
rather than a constant value, and the cell was assigned a distribution based on the value originally
used in GREET. This was done for the percent of CO2 in lime (CaCO3) that is emitted in the field
after application. GREET assumed 100% emission, but there is evidence that this varies, and under
come conditions can result in net CO2 sequestration (Hamilton et al., 2007). Similarly, GREET
assumes that Ammonia, Urea, and Ammonium Nitrate (AN) comprise 70.7%, 21. 1%, and 8.2%,
respectively, of the N applied in feedstock production. For this analysis, I represented the first two
fractions as triangular distributions ranging 4% above and below the values stated above, with the
AN taking up the remainder.

I treat the distribution for the rate of soil N2O emissions from applied nitrogen slightly dif-
ferently than in GREET. Where GREET represented this rate using a triangular distribution with
minimum, likeliest, and maximum values of 0.4%, 1.325%, and 4%, respectively, I modeled the in-
dividual components of the overall N2O emissions rate based on the IPCC Tier I method, using the
stated uncertainties for each, represented using lognormal distributions. To produce a distribution
for use in GREET, I ran a separate Monte Carlo simulation to produce a frequency distribution
for N2O emission rate (figure 3.2) and then used Crystal Ball’s curve fitting feature to find the
best match. The resulting distribution was a lognormal distribution with mean of 1.65%, standard
deviation of 1.11%, and location of 0.02%.

For the global warming potentials for CH4 and N2O I assigned distributions based on IPCC
guidance, which indicates ±35% representing a 90% confid 2-sigma around mean (Forster et al.,
2007).

5.3.5 SCENARIOS CONSIDERED

For cellulosic ethanol pathways (differentiated into woody and herbaceous8 feedstocks in GREET),
the overall GWI depends on two questionable assumptions: (i) production of biomass results in a
large soil carbon sequestration benefit—112.5 kg CO2 ton−1 for woody biomass and 48.5 kg CO2
ton−1 for herbaceous biomass (Wu et al., 2006), and (ii) co-produced electricity displaces average
US grid electricity.

The soil carbon sequestration in switchgrass production results from an assumption that 39% of
the feedstock is grown on cropland. We note that competition with food for cropland would trigger

8Herbaceous biomass in GREET refers to switchgrass.
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indirect land use changes which are not included in GREET. If switchgrass is grown instead on
non-cropland (e.g., CRP land), ILUC would be avoided, but the soil sequestration benefit would
be eliminated. Indeed, if the establishment of switchgrass involves tillage, sizable direct land-use
conversion emissions would result.

To examine the sensitivity to these parameters, I adjusted the electricity displacement assump-
tion to vary between (i) US grid average, (ii) natural gas combined-cycle (NGCC), and (iii) biomass
integrated gasification combined-cycle (IGCC), and varied the soil carbon sequestration assump-
tion between the default GREET value and zero. As depicted in figure 5.1, changing only these
two parameters causes the GWI of ethanol from woody and herbaceous biomass to range from -13
to 12 g CO2 MJ−1, and 12 to 22 g CO2 MJ−1, respectively. (GREET considers only direct emis-
sions, so ILUC is not included in these estimates.) The effect is larger on woody biomass because
the carbon sequestration assumption is more than double that of switchgrass. Note that zeroing out
the soil carbon sequestration flips woody biomass ethanol from net sequestration to net emissions,
though still with a very low GWI.

Figure 5.1: Range of results for cellulosic biofuel GWI (g CO2 MJ−1) in GREET, varying assump-
tions of the type of electricity displaced and the amount of soil carbon sequestered. Indirect land-
use change is omitted from these estimates. NGCC=natural gas combined-cycle; IGCC=integrated
gasification combined-cycle.
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5.4 RESULTS

5.4.1 UNCERTAINTY IMPORTANCE ANALYSIS

For each fuel pathway, fewer than 10 parameters contributed at least 1% of the total variance. In
all cases, these parameters accounted for at least 85% of the variance. The 24 parameters and the
pathways to which they contributed at least 1% of the variance are listed in table 5.4.

The contribution to variance for key parameters in the electricity, CARFG, woody and herba-
ceous cellulosic ethanol, and corn ethanol fuel pathways are illustrated in figures 5.2 through 5.7.
For each fuel pathway, uncertainty importance was examined for GWI using 100-year global
warming potentials for CH4 and N2O. The discussion below identifies parameters contributing
at least 1% of the variance in each fuel pathway. For all fuel pathways examined, fewer than 10
parameters contributed 1% or more of the variance, and these parameters accounted for 85–90%
of the total variance.

5.4.1.1 ELECTRICITY

Even with a modest spread—a triangular distribution representing a ±10% range—the EER con-
tributed 72% of the variance in the EER-adjusted electricity life cycle for average California elec-
tricity (figure 5.2). Uncertainties related to natural gas (recovery and processing efficiency, global
warming potential of CH4) contributed an additional 13% of the variance. However, as illustrated
in figures 5.8 and 5.9, the overall uncertainty in the GWI of electricity is low compared to biofuels.

Figure 5.2: Contribution to variance for EER-adjusted CA electricity. EER = energy efficiency
ratio, NA = North America, NG = natural gas, GWP = global warming potential.
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Table 5.4: Parameters contributing at least 1% of the variance in modeled fuel pathways. CG =
conventional gasoline; LHV = lower heating value; CARFG = California reformulated gasoline;
effic. = efficiency; EtOH = ethanol; N = nitrogen; GWP = global warming potential; EER = energy
efficiency ratio; NA = North American; NG = natural gas; CA = California; C = carbon;

Parameter Pathway

CG LHV CARFG

CARFG refining effic. CARFG

Corn dry mill energy use CARFG, Corn EtOH

Crude recovery effic. CARFG

N fertilizer N2O emission rate CARFG, Corn and Switchgrass
EtOH

CG C ratio CARFG

CH4 GWP CARFG, CA Electricity

EER CA Electricity

NA NG recovery effic. CA Electricity

NA NG processing effic. CA Electricity

Coal C ratio CA Electricity

Farmed tree CO2 sequestration Woody EtOH

Type of electricity displaced by cellulosic biore-
finery

Woody and Switchgrass EtOH

Woody EtOH electricity production rate Woody EtOH

Farmed tree farming energy Woody EtOH

N2O GWP Woody, Switchgrass, and Corn
EtOH

Woody EtOH yield Woody EtOH

Switchgrass N application rate Switchgrass EtOH

Switchgrass CO2 sequestration Switchgrass EtOH

Switchgrass EtOH yield Switchgrass EtOH

Switchgrass EtOH electricity production rate Switchgrass EtOH

Switchgrass farming energy Switchgrass EtOH

Corn EtOH plant energy Corn EtOH

Corn N application rate Corn EtOH

Corn ILUC adder Corn EtOH
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5.4.1.2 CALIFORNIA REFORMULATED GASOLINE (CARFG)

As illustrated in figure 5.3, the top contributors to variance in the GWI of CARFG are refining
efficiency (33%) and in parameters describing the chemical characteristics of conventional gasoline
(47%), including lower heating value (32%), density (13%), and carbon ratio (2%). An additional
4% is contributed by the GWP values for CH4 (3%) and N2O (1%). However, as discussed below
and illustrated in figures 5.8 and 5.9, the overall uncertainty in the GWI of CARFG is relative low
compared to biofuels, as over 80% of the GWI is attributable to the carbon in the fuel itself.

Figure 5.3: Contribution to variance for reformulated gasoline. CARFG = California Reformulated
Gasoline, Conv. Gasoline = conventional gasoline, GWP = global warming potential.

5.4.1.3 CELLULOSIC ETHANOL

For cellulosic ethanol produced from farmed trees (figure 5.4), the overwhelming drivers of vari-
ance are the CO2 emissions (sequestration, in this case) from land use change during feedstock
production (63%), and the type of electricity displaced by co-produced electricity (17%). Electric-
ity yield (kWh gal−1) contributed 3% of the variance.

For switchgrass ethanol (figure 5.5), the main drivers of variance were N2O emission rate
(35%), nitrogen fertilization rate (26%), soil carbon sequestration (8%), ethanol yield (6%), N2O
global warming potential (5%), the type of electricity displaced (4%), and farming energy use
(2%). In total, 66% of the variance relates to N2O emissions.

5.4.1.4 CORN ETHANOL

The main drivers of variance in the corn ethanol life cycle (figure 5.6) relate to nitrogen fertiliza-
tion: N2O emission rate (53%), N fertilization rate (13%), and N2O GWP (5%), together contribut-
ing 71% of the variance. Biorefinery energy use contributed 15%. Variables such as corn farming
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Figure 5.4: Contribution to variance for ethanol from farmed trees. LUC = land use change.

energy, lime application rate, and the amount of corn displaced by DDGS contributed about 1%
each to the overall variance.

5.4.1.5 CORN ETHANOL WITH INDIRECT LAND USE CHANGE

Although GREET does not include emissions from indirect land use change (ILUC), the CA LCFS
does. To compare the relative importance of the (very approximate) uncertainty in ILUC with the
uncertainties in the direct emissions estimated in GREET, I included a triangular distribution for
ILUC ranging from 0 to 100 g CO2e MJ−1, with the most likely value set to the value adopted by
CARB, 30 g CO2e MJ−1. Under these assumptions, (figure 5.7), the ILUC “adder” contributes
77% (100-year GWP) with nitrogen-related emissions dropping to 11–13% of the total.

5.4.2 UNCERTAINTY PROPAGATION

To propagate uncertainty, I ran a 2500-trial Monte Carlo simulation using the distributions de-
scribed above. The distributions resulting from these runs are presented below in two forms: as
box plots (figure 5.8, and as frequency distributions (figure 5.9). The greatest uncertainty is visible
in the GWI for corn and switchgrass ethanol pathways, largely a result of nitrogen fertilization and
resulting N2O emissions. Farmed trees require less nitrogen per dry kg of biomass and thus are less
affected by the uncertainty in the N2O emission rate. In general, the interquartile ranges for the
biofuel pathways were approximately 3–4 times broader than those of CARFG or EER-adjusted
electricity. The GHG emissions from both corn and switchgrass ethanol show a very small prob-
ability of being greater than those of CARFG, however these distributions do not include indirect
effects such as ILUC. It’s also important to note that the corn ethanol pathway modeled here repre-
sents an efficient, natural gas fired dry-mill that dries only two-thirds of its distillers grains. Many
other configurations—including several that produce higher GHG emissions—are possible.
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Figure 5.5: Contribution to variance for switchgrass ethanol. N = nitrogen, GWP = global warming
potential, NG = natural gas.

One topic that warrants discussion is the treatment of the co-product credit for electricity co-
generated by cellulosic ethanol facilities. I have framed this analysis as producing distributions for
the default values for pathways used by a regulator such as CARB. The type of electricity displaced
by these facilities will differ regionally by grid composition and by policies affecting competition
among electricity generators, e.g., the existence of binding renewable generation requirements that
treat cellulosic ethanol facilities as renewable electricity providers.

To bound the range of possibilities, I ran three Monte Carlo simulations for cellulosic ethanol,
assuming the type of displaced electricity was US grid average (the assumption used by USEPA for
RFS2), natural gas combined-cycle NGCC, and biomass IGCC. The results from these scenarios
are shown in figure 5.10. The GHG displacement of woody ethanol pathway is more sensitive than
the switchgrass ethanol pathway to the type of electricity assumed to be displaced since this prior
contains more lignin and generates more electricity per ton of biomass.

As expected, fixing the type of displaced electricity caused different parameters to rise above
the 1% threshold of uncertainty importance. For example, assuming electricity from woody ethanol
production displaces the US grid results in a 1.7% contribution to variance from the efficiency
of utility-scale coal boilers, and when NGCC electricity is assumed to be displaced, natural gas
turbine efficiency rises to contribute 1% of the variance.

5.5 DISCUSSION AND CONCLUSION

The uncertainty around GWI for fossil fuel dominated pathways such as gasoline and electricity
is much narrow than the uncertainty around biofuel GWI. This is true for corn ethanol and both
cellulosic ethanol pathways examined. The GWI estimates for biofuels are highly uncertain even
without considering ILUC.
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Figure 5.6: Contribution to variance for corn ethanol. GWP = global warming potential, N =
nitrogen, DDGS = dried distillers’ grains with solubles.

As expected, relatively few parameters are responsible for most of the variance in the five path-
ways considered. Assumptions about electricity displacement and soil carbon sequestration are
critical to the GWI of cellulosic ethanol. Parameters related to nitrous oxide emissions contributed
much uncertainty to all biofuel pathways examined. The energy efficiency ratio (EER) dominates
the uncertainty for electricity, but the overall uncertainty is small.

5.5.1 UNCERTAINTY IN ESTIMATING THE CLIMATE EFFECTS OF PETROLEUM FUELS

The uncertainty in estimates of the GHG emissions is much narrower for petroleum fuels than
for biofuels. Approximately 80% of the life cycle GHG emissions of gasoline and diesel fuels
result from the combustion of the carbon in the fuel (NETL, 2008), which is directly observable.
Significant uncertainties remain in the smaller upstream fraction of emissions related to explo-
ration, production, and refining. The main challenges are the variability of crude oil and lack
of publicly-available data on oil production and refining processes (NETL, 2008). Finally, co-
product allocation among the slate of refinery products can be somewhat arbitrary. For example,
the GREET model relies on a “rule of thumb”, which allocates “60% of total refining process fuel
use to gasoline production, 25% to diesel production, and the remaining 15% to other petroleum
products” (Wang, 2008a). Analysts from the US National Energy Technology Laboratory (NETL)
used a more sophisticated approach, allocating emissions from each major refinery process to the
fuels that utilize that process. We note that the NETL estimates of the life cycle GHG emissions for
gasoline and diesel are 101.6 and 100.3 g CO2e MJ−1 respectively, somewhat higher than the val-
ues of 95.9 and 94.7 g CO2e MJ−1 adopted by CARB in the LCFS. The NETL values are estimates
for the US for 2005, while the CARB estimates are for fuel used in California in 2010.
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Figure 5.7: Contribution to variance for corn ethanol, including emissions from indirect land use
change (ILUC). iLUC = indirect land use change, N = nitrogen.

5.5.2 LIMITATIONS OF THIS ANALYSIS

Substantial model uncertainty remains related to the use of ALCA for policy purposes, and to the
blending of ALCA and CLCA. For example, in an attributional analysis, the life cycle inventory
includes the feedstock entering the biorefinery. In the LCFS, GWI protocol doesn’t include differ-
entiated corn farming emissions; rather, an average value is used. However, this value measures
the wrong thing from a net GHG perspective: what matters are the emissions associated with the
crops grown to replace whatever is displaced by corn ethanol—which may not even be corn, much
less average corn. In the RFS2, EPA estimates the emissions from the net change in farming prac-
tices, which is quite different. Many more variables and model uncertainties are involved here,
plus projections of these data to 2022.

For corn, GREET treats amount of urea, soybean, and corn displaced by DDGS, as well as a
reduction in CH4 emissions as uncorrelated variables. Clearly these are correlated, though they are
treated as uncorrelated in this analysis.

As is the norm in GREET, this analysis did not consider the climate effects of aerosols and
indirect GHGs.

GREET doesn’t include a crop yield parameter. Rather, GREET includes farming energy use
and application rates for fertilizer, pesticide, and lime per unit of crop harvested that are computed
outside of GREET. If yield were explicitly represented, it would likely be of great significance to
the GWI uncertainty since it is spatially and temporally variable. As noted in chapter 4, GREET
would be improved by endogenizing farming energy calculations, allowing the regional averages
and their underlying assumptions to be considered in an uncertainty analysis.
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Figure 5.8: Box plots representing the GWI (g CO2 MJ−1, 100-year GWP) of five fuel pathways
resulting from a 2500-trial Monte Carlo simulation of five fuel pathways in GREET. The blue
boxes show the interquartile range; the line across the box indicates the median. The ends of
the whiskers show the maximum and minimum values. The crossbars identify the 2.5 and 97.5
percentile values. Note that these distributions do not include indirect effects such as ILUC. EtOH
= ethanol; Wood EtOH = ethanol from farmed trees; Herb. EtOH = herbaceous (switchgrass)
ethanol; CARFG = California reformulated gasoline; CA elec. w/EER = California electricity,
divided by energy efficiency ratio (EER).
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Figure 5.9: Frequency distributions corresponding to the box plots shown in figure 5.8 Note that
these distributions do not include indirect effects such as ILUC. EtOH = ethanol; Wood EtOH =
ethanol from farmed trees; Herb. EtOH = herbaceous (switchgrass) ethanol; CARFG = California
reformulated gasoline; CA elec. = California electricity, unadjusted; CA elec. w/EER = California
electricity, adjusted by energy efficiency ratio (EER).
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Figure 5.10: Monte Carlo simulation results for cellulosic ethanol assuming different displacement
scenarios for co-produced electricity. Note that these distributions do not include indirect effects
such as ILUC. EtOH = ethanol; Wood EtOH = ethanol from farmed trees; Herb. EtOH = herba-
ceous (switchgrass) ethanol; NGCC = natural gas combined-cycle; BIGCC = biomass integrated
gasification combined-cycle.
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PART III

UNCERTAINTY ANALYSIS OF INDIRECT LIFE CYCLE EMISSIONS
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CHAPTER 6

UNCERTAINTY IN ESTIMATING EMISSIONS FROM INDIRECT
LAND USE CHANGE

“Too large a proportion of recent ’mathematical’ economics are mere concoctions, as
imprecise as the initial assumptions they rest on, which allow the author to lose sight
of the complexities and interdependencies of the real world in a maze of pretentious
and unhelpful symbols.”

John Maynard Keynes1

6.1 PURPOSE AND SCOPE

This chapter catalogues the wide range of uncertainties inherent in the estimate of emissions from
biofuel-induced indirect land use change. This chapter takes a purely qualitative approach; I do
not attempt to quantify the uncertainties, I merely describe the limitations of our knowledge. The
challenge of accurately quantifying the uncertainty in models of the emissions from indirect land
use change (ILUC) provides the rationale for instead using a reduced-form model to examine ILUC
uncertainty, presented in chapter 8.

This chapter includes some text adapted from O’Hare, Plevin, Martin, Jones, Kendall, and
Hopson, 2009, “Proper accounting for time increases crop-based biofuels’ greenhouse gas deficit
versus petroleum”, Environmental Research Letters 4(2).

6.2 OVERVIEW

When bioenergy crops displace food and feed crops, the displacement can trigger the conversion
of lands, somewhere on the globe, from forest or grassland to cropping (Searchinger et al., 2008b;
Dumortier et al., 2009; Hertel et al., 2010a; Al-Riffai et al., 2010). This result occurs because
agricultural land is a constrained resource, and the demand for food and feed is highly inelastic
(Kløverpris et al., 2008). This phenomenon is market-mediated in that the effects are transmitted

1According to http://en.wikiquote.org/wiki/John Maynard Keynes, this quote is from Keynes’ 1935 book “A Gen-
eral Theory of Employment Interest and Money”, Book 5, Chapter 21, Section 3, pg. 298.

http://en.wikiquote.org/wiki/John_Maynard_Keynes
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through global markets linked by commodity substitutability and competition for land (Laurance,
2007).

The combined social-ecological system through which indirect land use change (ILUC) oper-
ates is complex in the mathematical sense of involving non-linear relationships (e.g., feedbacks
and thresholds) not all of which are well-understood or well-characterized by existing models
(Costanza, 2003; Parker et al., 2008). Computable General Equilibrium (CGE) models are de-
signed to capture these economic relationships as well as possible, however, economic effects are
only one of several interacting drivers of land conversion (Geist and Lambin, 2002; Pfaff et al.,
2007). In addition, many economists have questioned the theoretical underpinnings of these mod-
els, as discussed further in section 6.3. Even if the models were perfectly valid theoretically,
practical issues of data quality and sectoral resolution limit our ability to precisely model land use
changes. Estimates of changes in the demand for agricultural land are therefore uncertain, and the
presence of substantial epistemic uncertainty limits our ability to calculate objective probability
density functions (pdf) for these model outputs.2

Figure 6.1 illustrates the steps required to estimate the climate effects of biofuels expansion.
In step a, an economic model projects changes in crop, pasture, and forestry areas resulting from
expanded biofuels production. As most economic models are not spatially explicit, the changes
in production areas must be mapped onto specific ecosystem types (step b). Next, we estimate
the carbon fluxes from land use change in the identified ecosystems (step c). Finally, the LUC
emissions are aggregated in some manner to compare these to the effects of the baseline petroleum-
based fuel (step d).

Choose 
increment 
in biofuels 
production

a. Estimate 
global 
market 
impacts

c. Estimate 
carbon flux

b. Map new 
acreage to 
ecosystem 

types

d. Aggregate 
emissions 

to compare 
to gasoline

e,g., 2 to 15 
billion gal/yr

economic model 
estimates net 

crop area changes

may be 
endogenous or 

based on 
historical data

some portion of 
above-ground and 

soil carbon is 
assumed lost

may involve C 
cycle modeling, 
amortization, 

discounting, etc.

Figure 6.1: Schematic of indirect land use change calculation

As described in sections 6.4.1 and 6.4.2, both the mapping of economic results to land cover
types (step b) and the estimation of carbon fluxes from conversion (step c) are highly uncertain,
owing to limitations in identifying land cover types and forest growth dynamics using remote
sensing, as well as uncertainties in the estimation of ecosystem carbon stocks. The choice of

2See chapter 8 for a quantitative analysis of ILUC emissions resulting from corn ethanol expansion.
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treatment of the different time profiles of emissions between biofuels and petroleum-based fuels
involves stochastic, epistemic, and decision uncertainty O’Hare et al. (2009).

The following three sections describe the many uncertainties and subjective model choices
embedded in the current generation of ILUC emissions models.

6.3 UNCERTAINTY IN ECONOMIC MODELING

Economic equilibrium models attempt to predict the effects on the global economy (in the case
of general equilibrium) or a small number of sectors (in the case of partial equilibrium) resulting
from a “shock” to an assumed starting equilibrium state. Jansen (1994) describes well some the
uncertainties prevalent in this form of modeling:

“The factors that influence economic agents’ decisions are so numerous and their in-
terrelation is so complex that a full description is impossible. Therefore, economic
models highlight a few salient factors and are used by economists to discover inter-
relationships. But since even the very choice of the variables influences the outcome,
the perception of economic reality must be personal indeed. Economists are (or should
be) aware of this and many agree that the world is best described through (subjective)
probability. Apart from the uncertainty introduced by a subjective choice of reduction
of the complex reality, we encounter problems in economic modelling because data
are generally observed with error.”

In addition to parameter uncertainty, CGE models involve model uncertainties that are difficult
quantify, such as choice of functional form for production and demand functions, the degree of
sectoral and regional aggregration, and the process used to build the underlying social accounting
matrix (SAM), the choice of exogenous and endogenous parameters (the “closure”), the choice of
baseline year, and the calibration of model parameters to that year. These uncertainties are not
generally included in uncertainty analyses of CGE models, yet these choices can substantively
affect model outcomes (Jansen, 1994; Roberts, 1994; McKitrick, 1998; Abler et al., 1999). Im-
portantly, model uncertainty is difficult to quantify, because we cannot compare results to the real
world to gauge the model’s accuracy. More generally, all complex, open systems (including CGE
models) in which processes are incompletely understood, and input data incompletely known, are
fundamentally unverifiable (Oreskes et al., 1994). Discussing the issue of validation, Hertel (1999)
writes:

“One question which consumers of AGE [applied general equilibrium] model results
often ask is: ’Has the model been validated?’ This is a reasonable question to ex-
pect from an analyst seeking advice on a policy reform which may end up shifting
hundreds of millions of dollars around the economy. How can we be assured that the
model bear any relationship to reality? The typical answer is that the AGE model, like
any simulation model, has not been econometrically estimated and therefore cannot
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be subjected to the usual forecasting tests. To the extent that (a) the individual compo-
nents of the system are based on plausible, perhaps even econometrically estimated,
relationships, (b) the underlying social accounting matrix is accurate and reflects the
best economy-wide data available, and (c) the equilibrium assumptions and macro-
closure are plausible, then the assertion is that the results will indeed shed relevant
light on what might actually happen if the proposed reforms were implemented.
...
Realistically, any such ’validation’ effort will inevitably involve a certain amount of
tinkering with the model in order to improve its performance. In this sense, such exer-
cises are really a more elaborate method of calibration (but something short of formal
econometrics) in which the model is fitted to multiple data points. In this sense they do
not constitute proof that the model will perform well in future simulations. However,
such efforts to compare model performance to economic history will go a long way
to addressing the criticism that AGE models bear little or no relationship to reality.”
(Hertel, 1999)

“Shedding relevant light” is less challenging than the task of estimating ILUC emissions with
confidence. Given the inherent complexity of the real world economy and human economic be-
havior, economic equilibrium models are necessarily coarse representations of the real world. Re-
counting the limitations of CGE models, Bewley (2007) cautions that “it would surely be unwise
to elaborate the model in order to simulate an entire economy in detail with the hope of making
accurate predictions.” Owing to computational practicalities, data limitations and the exclusion of
important aspects of the real economy in CGE models, Bewley counsels that “[s]uccessful simula-
tions use reasonably simple models to give rough estimates” (Bewley, 2007).

Partial equilibrium (PE) models present some similar and distinct challenges. PE models gen-
erally offer greater resolution than do CGE models, as they focus on one or two sectors, but by
definition, they lack linkages to other sectors (Kretschmer and Peterson, 2010). Biofuels obviously
span the agricultural and energy sectors, and there are several less-obvious linkages between these:
natural gas is the primary input to nitrogen fertilizer production; energy prices affect crop pro-
duction costs; several biofuel pathways co-produce and export electricity; and cellulosic biofuel
producers may compete with biomass electricity producers for resources. PE models can be more
accurate when dealing with shocks that are not expected to have large impacts beyond the sector(s)
modeled, but for larger shocks or dominant sectors, the isolation of the modeled sectors becomes
a limiting factor in these models. PE models also frequently lack an explicit representation of land
as a constrained resource, which of course prevents these models from examining the competition
for agricultural land the occurs as biofuels scale up (Kretschmer and Peterson, 2010).

6.3.1 CRITIQUES OF ECONOMIC EQUILIBRIUM MODELS

Empirical models, including CGE models, represent three types of information: (i) analytical, in-
cluding the basic theoretical underpinnings of the model, which identify critical parameters and
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relationships functional; (ii) functional, which defines how the analytical information is repre-
sented in the model; and (iii) numerical, which defines the values of model parameters (McK-
itrick, 1998). CGE models have been criticized in all three areas (Harrison et al., 1993), raising
fundamental questions about the predictive capacity of these models.

The following list summarizes some of the limitations of CGE models as described in the eco-
nomic literature. These items reflect a range of uncertainties related to all three types of information
noted above. When considering analyses of the uncertainty in CGE model results (including ILUC
estimates), it’s important to bear in mind that most, if not all, of these uncertainties are generally
excluded from the analysis.

1. The fundamental notions that equilibrium obtains, or that the equilibrium predicted by the
model is unique or stable are false (Ackerman, 2002; DeCanio, 2003; Scrieciu, 2007).

2. The calibration approach limits CGE models to use functional forms “which embody restric-
tive assumptions about the structure of the industries being modeled” (McKitrick, 1998),
and the choice of functional form is influential in CGE model performance (Roberts, 1994;
McKitrick, 1998). Ackerman (2005) writes:

“Any modeling exercise involves simplification of reality. The question is not
whether simplifications are involved, but whether those simplifications clarify or
distort the underlying reality. Unfortunately, in the case of CGE models of inter-
national trade, it is all too clear that model structures and assumptions introduce
unintended distortions into the results.”

3. CGE models require strong assumptions (e.g. about optimizing behavior and competitive
markets) that are typically violated in the real world (Bergman, 2005; Ackerman, 2005).

4. CGE models rely on the assembly of national accounts information in the form of a Social
Accounting Matrix (SAM) (or the equivalent data in a database), including data from dis-
parate sources that can be based on inconsistent assumptions (Grassini, 2007). The choice of
data, and the manner by which the data are massaged to force the SAM into equilibrium are
subjective decisions made by the analyst which can strongly influence model results (Shoven
and Whalley, 1984; Mitra-Kahn, 2008).

5. Limitations imposed by the structure of the SAM, which are violated in real economies,
restrict the range of model outcomes. Hertel (1999) writes:

“These SAMs detail all the basic accounting identities which must hold for the
economy to be in equilibrium. Those who work with AGE models quickly recog-
nize that these identities are as important as the behavioral assumptions. The fact
that households cannot spend more than they earn, or that the same unit of labor,
land or capital cannot be simultaneously employed in two different places, serves
to tightly circumscribe the range of possible GE outcomes.”
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6. Parameter values used in functional forms are set in a process called “calibration”, which
ensures that these values are consistent with the base year data (Mitra-Kahn, 2008). CGE
model parameters typically are calibrated to a single year’s data. Given that any single year
involves unique circumstances that may not generalize, the model is sensitive to the choice of
baseline year (Shoven and Whalley, 1984; Roberts, 1994; McKitrick, 1998; Scrieciu, 2007).
This is particularly the case for developing countries, as their economies are inherently less
stable (Roberts, 1994). Shoven and Whalley (1984) write:

“A crucial point in using calibration is that because of the reliance on a single ob-
servation, the benchmark data typically do not identify a unique set of values for
the parameters in any model. Particular values for the relevant elasticities are usu-
ally specified on the basis of other research, and these serve to identify uniquely
the other parameters of the model along with the equilibrium observation. This
typically places a lot of reliance on literature surveys of elasticities and, as many
of the modelers have observed in discussing their own work, it is surprising how
sparse (and sometimes contradictory) the literature is on some elasticity values.
Also, although this procedure might sound straightforward, it is often exceed-
ingly difficult because each study is different from every other and recognizing
and taking account of these differences is necessary.”

7. Elasticities are at the core of CGE models, yet estimating valid, generally-applicable elastic-
ities is difficult. Kehoe et al. (2005) write:

“Many estimated parameters, including some of the elasticities, are not what
Robert Lucas calls ”deep” – invariant parameters of tastes and technology. This
means that their estimates are subject to the Lucas critique that they are policy-
regime specific, so that values estimated with data from one regime cannot be
used for analysis of data from a different regime. Even if the data are treated
as representing an equilibrium, the restrictions on parameters that an equilibrium
implies are rarely imposed in estimation.
...
Often no estimates exist of required parameters, so they are guessed; or multiple
estimates exist that are contradictory. In the econometric literature different es-
timation procedures, different data series, and different theoretical concepts are
used, making it very difficult to use estimates drawn from the literature.”

8. Every equation in a CGE model contains both an endogenous and exogenous variable, but
the choice of which to endogenize is up to the modeler. The choice of endogenous and
exogenous variables is called the “closure”. The number of possible closures grows expo-
nentially with the number of balancing equations in the model, and each closure potentially
yields different results (Mitra-Kahn, 2008).
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9. Sectors and regions are highly-aggregated, with a single price and elasticity assigned to each
sector, despite often significant intra-sectoral heterogeneity (Hertel et al., 2007).

10. Static models lack any concept of time; all transactions effectively clear simultaneously
(Grassini, 2007). Short-term transient price spikes cannot be represented in this framework,
although these may trigger largely irreversible land use change3, as well as bankrupting
businesses (Galbraith, 2008). So-called dynamic models are, in fact, “lurching” static mod-
els that move from one timeless equilibrium to the next, useful only for comparative static
analyses, just as are static models (Grassini, 2007; Mitra-Kahn, 2008).

6.3.2 SUMMARY

Computable General Equilibrium models, in practice, are reduced-form models of theoretical rep-
resentations of the economy, that diverge from reality in many ways, some important. The models
represent a small number of homogenous commodity groups, regions, and actors, based on a social
accounting matrix that has been adjusted to suit the requirements of the model, i.e. to ensure that
all markets clear even though they didn’t in the real world. The model’s solution represents an
instantaneous transition to an equilibrium state that exists only in theory, and may not be unique or
stable in any case. The approaches used to shock the initial equilibrium produce side effects that
are inseparable from the effect we wish to model, i.e. the expansion of biofuels production.

In summary, even CGE modelers recognize that it would be “unwise” (Bewley, 2007) to expect
these models to offer more than coarse approximations that might “shed light” on policy outcomes
(Hertel, 1999). CGE model results are influenced by a range of subjective choices on the part of
the modeler, and the models are subject to model and parameter uncertainties that are generally
excluded from sensitivity analyses due to computational and data limitations. Unfortunately, the
model uncertainty cannot be quantified, as we have no better model to use as a benchmark, nor
can we measure outcomes against the real global economy, in which ceteris non paribus. Many
economists question the theory, assumptions, data, model form, and predictive capacity of CGE
models.

Even if the models could reproduce recent history, the use of calibration to a specific data set
and year leaves open the question of whether the same model can accurately predict deviations
from that initial state. Given our inability to verify these models, we are faced with potentially
large—and inestimable—model uncertainty.

Given regulations that require the assignment of life cycle GHG ratings to different fuel path-
ways, an important question is whether these models are capable of producing reasonably objective
point estimates. Clearly, any model can be used to operationalize the estimation of the ILUC emis-
sions for use in regulation, but without consideration of the uncertainty in these estimates, we don’t

3For example, an anticipated large price increase in soybean price due to a shift from soybean to corn production in
the US may trigger land use conversion to accomodate soybean production elsewhere, with attendant CO2 emissions.
Even if subsequent reduction in soybean price after markets adjust results in the release of the converted land, the
CO2 that was lost quickly will take years to be sequestered again in biomass, causing net global warming over any
reasonable policy time horizon.
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know how confident we can be that regulations based on these models will have their intended ef-
fect.

6.4 UNCERTAINTY IN ECOSYSTEM CARBON ACCOUNTING

The GHG emissions resulting from conversion to cropping vary with land cover types and across
regions. Estimating ILUC emissions therefore requires assumptions about the specific land cover
types converted as a result of biofuels expansion. As most economic models are not spatially
explicit, other approaches must be used in conjunction with the economic model output to predict
the land cover types affected. Given a specific land cover conversion, we can estimate the emissions
that result from conversion. In this section, we explore the uncertainties in these components of
the ILUC emissions model.

6.4.1 UNCERTAINTY IN PREDICTING AFFECTED ECOSYSTEMS

The translation of economic model output to carbon emissions, and the attribution of these emis-
sions to a quantity of fuel, involve many additional uncertainties, including:

1. Error rates of 30–40% in recognizing specific land cover types in remote sensing based on
satellite imagery (Harris et al., 2008). That is, the land cover type for 30–40% of the pixels
is miscategorized, based on ground-truthing.

2. Extrapolation uncertainty in the assumption that past (gross) patterns of land use change are
predictive of future land use changes.

3. Extrapolation uncertainty in the assumption that market-mediated land use changes follow
the general pattern observed over time from all drivers of land use change.

4. Approximation uncertainty in the use of average carbon stocks to represent the carbon stocks
of converted land (Houghton, 2005).

5. Variability in the estimation of above-ground carbon stocks.

6. Variability in the estimation of below-ground carbon stocks based on above-ground carbon
estimates (Ramankutty et al., 2007).

7. Variability in the portion of above-ground carbon converted to CO2 (and other GHGs) when
land is cleared.

8. Variability in the quantity of carbon released from below-ground stocks when land is cleared,
and in the rate of release of this carbon.
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9. Epistemic uncertainty in the quantity of fuel to which the ILUC emissions should be as-
signed. This turns on model choice parameters for the estimated biofuels production period,
and projections of future crop and biorefinery yields.

10. Approximation uncertainty in the use of proxies in regions for which little data is available.
For example, in the Woods Hole carbon accounting data underlying the Searchinger analysis
(and our own analysis with GTAP), the region covering China, India, and Pakistan is assigned
to a single ecosystem type based on the value for European grasslands.

6.4.1.1 CAUSES OF LAND USE CHANGE

In mapping economic model outputs to specific affected ecosystem types, the analyses performed
to date are based on the assumption that a marginal increase in LUC in any region can be esti-
mated from supply and demand functions for commodities and land. Agricultural extensification
is recognized as a leading proximate cause of deforestation, however the underlying driving forces
include social processes such as human population growth and migration, and national policies
affecting agriculture, land use, and economic development (Geist and Lambin, 2002), as well as
cultural, technological, and institutional issues, all interacting in complex relationships (Schaeffer
et al., 2005). According to Geist and Lambin (2002), “[a]t the underlying level, tropical defor-
estation is also best explained by multiple factors and drivers acting synergistically rather than by
single-factor causation, with more than one-third of the cases being driven by the full interplay of
economic, institutional, technological, cultural, and demographic variables measures.”

Deforestation is thus best understood as an emergent characteristic of a complex system, with
a range of proximate and ultimate causes. Given this complexity, the ability to predict LUC from a
single driver such as commodity price increases, may be quite limited, and thus a core assumption
underlying ILUC modeling is called into question, resulting in model uncertainty that is difficult
to quantify.

6.4.1.2 IDENTIFYING THE AGRICULTURAL FRONTIER

Even if the causal chain were well-characterized, economic models such as GTAP and FAPRI
are not spatially explicit, and therefore cannot predict the specific land cover types affected by
extensification.

The approach used in recent modeling efforts (e.g., Searchinger et al., 2008b; Harris et al.,
2008) is to examine the history of land use change in each region to identify the agricultural
frontier. All extensification induced by biofuels expansion is assumed to affect the same types
of land cover as identified in the historical record in each affected region.

Although it is a reasonable first approximation, it is unclear whether the historical record has
much predictive power. For many reasons, this may not be the case for large shocks and decadal
time horizons. For example, changes in the proportion of each land type in close proximity to
transportation networks or population centers, changes in laws regarding ecosystem protection,
and distinct agronomic requirements for different crops, may alter these ratios. This approach also
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treats all forest-to-cropping LUC as equivalent, whether resulting from colonization and subsis-
tence farming, or from timber harvesting followed by commercial agriculture. When colonists
deforest for subsistence agriculture, they might burn the trees or field because it’s cheap and they
lack access to timber markets. When agribusinesses deforest, they might arrange clearing at no
net cost by selling the wood. These two vectors are likely to affect different areas and have differ-
ent GHG consequences, and the latter is arguably more likely to be induced by commodity price
increases. Unfortunately, causality is not distinguishable from satellite imagery.

This approach includes both statistical uncertainty in the estimates of historical land use pat-
terns as well as epistemic uncertainty regarding the predictive value of these historical patterns.
The distributions of possible values for these parameters are not known.

6.4.1.3 WINROCK / USEPA APPROACH

In support of EPA’s EISA rulemaking, Winrock International assembled emission factors for re-
gions thought to be affected by biofuels expansion (Harris et al., 2008). Winrock relied on MODIS
land cover data for the years 2001 and 2004 collected by NASA satellites.4 The areas showing
land cover changes between the two years were categorized according to the “before” and “after”
states to identify conversions to cropping and pasture from various prior cover types.

According to Winrock’s report, land cover is correctly categorized (relative to ground-truthing)
for only 60–75% of the pixels examined, across different continents, with North America offering
the lowest accuracy (Table 6.1). While this clearly leaves considerable room for misidentification,
the effect on carbon estimates it is not clear: identifying a savanna as shrubland would result in
less error in terms of carbon emissions than, say, identifying a savanna as a forest.

Table 6.1: Accuracy of MODIS land cover classification for the globe and continental regions
(Harris et al., 2008).

Region Accuracy Estimate (%)

Global 71.6

Africa 61.7

Australia & Insular
Asia

71.9

Eurasia 67.8

North America 61.3

South America 75.4

4MODIS data are available at http://edcdaac.usgs.gov/modis/mod12q1v4.asp

http://edcdaac.usgs.gov/modis/mod12q1v4.asp
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For the biofuels analysis, Winrock reclassified the original 17 land cover types available in
MODIS into six more easily distinguished classes: cropland, forest, grassland, savanna, shrubland,
and mixed. After reclassifying the data from 2001 and 2004, the data were compared to identify
changes. Reclassification introduces additional approximation uncertainty as several land cover
types in each region are combined into a single class and assigned one emission factor.

6.4.2 UNCERTAINTY IN ESTIMATING CARBON FLUXES

The carbon losses from conversion a specific ecosystem type to cropping or pasture will vary by
location, land use history, and by the specific method of conversion. Since it is impossible to
attribute a specific instance of deforestation to biofuels expansion, we can at best attempt to model
the average effect of land use conversion for each ecosystem type.

In its “Good Practices Guidelines” for national GHG inventories, the IPCC provides default
values for ecosystem conversions to cropland, including estimates of the uncertainty therein. These
uncertainties, which reflect variation in field observations in different places and times of a phe-
nomenon with intrinsic variation across locations, are in addition to the uncertainty in identifying
affected land cover types.

Even if we knew that a specific type of forest was affected, the use of average carbon content of
that forest type may be inappropriate since the processes underlying deforestation are unlikely to
randomly select forest stands for removal; rather, selection criteria may include factors such as tree
density and salability which may favor conversion of certain forest stands over others (Houghton,
2005). We have no data upon which to base estimates of this approximation uncertainty.

Figure 6.2 shows possible transitions following deforestation (Ramankutty et al., 2007). Com-
paring two satellite images of these different growth pathways will yield very different results
depending on the stage captured in the image.

6.5 ACCOUNTING FOR TIME

6.5.1 PROJECTING TOTAL FUEL PRODUCTION

The GWI of fuels is typically measured in units of g CO2e MJ−1. All of the preceding discussion
has focused on estimating the numerator, the quantify of CO2 emitted from induced LUC. We now
turn our attention to the denominator, the quantity of fuel over which to attribute these emissions.

The study by Searchinger et al. (2008b) simply assumed 30 years of corn ethanol production at
current yields, without allowing for any yield increases over that period. Projecting yield increases,
however, is a matter of guesswork. Given the multi-decadal time frames under consideration, the
feedstock, the conversion technology, and even the ultimate type of fuel produced can change in
ways that are fundamentally unpredictable, other than the reasonable expectation of increasing fuel
yield per unit area.

In a model that does allow for yield increases over time, one can either (1) hold area constant
and assume that more fuel is produced per originally-displaced crop area, or (2) hold fuel output
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Figure 6.2: Different pathways of carbon dynamics following deforestation. Depending on the
land-use practices following deforestation, vegetation carbon can either remain at a lower level,
or re-accumulate if the land is abandoned and allowed to regrow back into a forest. (Source:
(Ramankutty et al., 2007).)

constant and assume that over time, land is “released” as higher crop and/or conversion yields result
in the production of an equivalent quantity of fuel on smaller land areas. If the latter approach is
used, the disposition of the “freed” land must be considered. For example, some fraction of the
cropland might revert to a natural state, or the land might be used to grow other crops, thereby
relieving pressure on natural lands somewhere else. In either case, the GHG fluxes associated with
these assumptions could be considered in the model.

To demonstrate the effect of increasing yield on land requirements, we show the results of a
simple model of ethanol production using a combination of corn grain and stover from the same
land area. Table 6.2 lists the parameters of that model. Table 6.3 shows the combined effects
of increasing starch and conversion yields, and the introduction of cellulosic conversion of stover
over a 30-year period. By the end of this period, fuel yield more than doubles from about 450 to
over 900 gal acre−1, with the average yield in this period being over 700 gal acre−1, an increase
over the initial yield of nearly 60%. The land required to produce the initial annual quantity of fuel
shrinks by approximately one-third over 30 years.
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Table 6.2: Example parameterization of a simple model projecting fuel yield changes over time.
These assumptions include guesses about the rates of improvement and deployment of seeds and
conversion processes. Based on a 100 Mmgpy corn ethanol plant (denatured basis), with the addi-
tion of 25 Mmgpy stover-to-ethanol capacity. This configuration is similar to Poet’s Emmetsburg
plant.

Parameter Value Units

Starch ethanol capacity 1.0E+08 gal y−1

Cellulosic ethanol capacity 2.5E+07 gal y−1

Time horizon 30 y

Corn yield increase 2.0 bu ac−1 y−1

Starch yield increase 0.01 gal bu−1 y−1

Initial cellulosic yield 75 gal bdt−1

Cellulosic yield increase 2.0 gal bdt−1 y−1

Stover collected 35%

6.5.2 HANDLING DISTINCT EMISSION PROFILES OVER TIME

In most life cycle assessments, emissions of pollutants are summed without regard for when or
where these emissions occur (Hellweg et al., 2003; Levasseur et al., 2010). For well-mixed green-
house gases, it is appropriate to ignore the location of the emissions, as these are global pollutants.
However, for long-lived pollutants, summing emissions over time masks potentially important
differences among processes, especially if effects are measured at a fixed target date. In these
situations, early emissions are in the environment longer relative to the target date, and thus cause
greater environmental damage.

In the case of greenhouse gases (GHGs), global warming effects are usually aggregated by sum-
ming emissions of three gases (CO2, CH4, and N2O) weighted by their respective global warming
potentials (GWP). GWP is the measure of the cumulative radiative forcing (CRF) over a fixed time
horizon (e.g., 20 or 100 years) of a pulse of some gas compared to the CRF of an equal mass of
CO2 over the same period (Forster et al., 2007). Most LCAs use the 100-year GWPs published by
the IPCC (Forster et al., 2007).

In an LCA, it is appropriate to sum GWP-weighted GHG emissions for a process whose emis-
sions are largely coincident with production and use. Summing GWP-weighted GHG emissions
also makes sense in a national emissions inventory for a single year, because over the standard
100-year time horizon the specific release date within the inventory year is inconsequential to the
total CRF. In both of these cases, emissions are implicitly summed or compared using a consistent
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Table 6.3: Hypothetical fuel yield changes over time. As areal fuel yield increases, an initial unit
of land can produce more fuel, or the same fuel yield can be achieved on less land. The following
chart shows the results of increasing corn grain yields by 2 bu/ac/y, corn starch ethanol yields by
0.01 gal/bu/y, an initial cellulosic ethanol yield of 75 gal/bdt, increasing by 2 gal/bdt/y over 30
years. Until year 8, stover is assumed to be used for thermal energy in the grain ethanol process.

Year Corn
Yield
(bu/ac)

Starch
Yield
(gal/bu)

Starch
EtOH
(gal/ac)

Corn
Area
(ac)

Stover
used

(btd/ac)

Cellul.
Yield
(gal/bdt)

Cellul.
Yield
(gal/ac)

Areal
Yield
(gal/ac)

Land
Freed
(ha)

1 160 2.80 448 223,214 1.6 0 0 448 0
2 162 2.81 455 219,674 1.6 0 0 455 1,433
3 164 2.82 462 216,226 1.6 0 0 462 1,396
4 166 2.83 470 212,866 1.6 0 0 470 1,360
5 168 2.84 477 209,591 1.6 0 0 477 1,325
6 170 2.85 485 206,398 1.7 0 0 485 1,292
7 172 2.86 492 203,285 1.7 0 0 492 1,260
8 174 2.87 499 200,248 1.7 75 128 627 1,229
9 176 2.88 507 197,285 1.7 77 133 640 1,199

10 178 2.89 514 194,394 1.7 79 138 652 1,170
11 180 2.90 522 191,571 1.8 81 143 665 1,142
12 182 2.91 530 188,815 1.8 83 148 678 1,115
13 184 2.92 537 186,123 1.8 85 153 691 1,089
14 186 2.93 545 183,493 1.8 87 159 704 1,064
15 188 2.94 553 180,923 1.8 89 164 717 1,040
16 190 2.95 560 178,412 1.9 91 169 730 1,016
17 192 2.96 568 175,957 1.9 93 175 743 993
18 194 2.97 576 173,557 1.9 95 181 757 971
19 196 2.98 584 171,209 1.9 97 186 770 950
20 198 2.99 592 168,913 1.9 99 192 784 929
21 200 3.00 600 166,667 2.0 101 198 798 909
22 202 3.01 608 164,468 2.0 103 204 812 890
23 204 3.02 616 162,317 2.0 105 210 826 871
24 206 3.03 624 160,210 2.0 107 216 840 852
25 208 3.04 632 158,148 2.0 109 222 855 835
26 210 3.05 640 156,128 2.1 111 228 869 817
27 212 3.06 649 154,150 2.1 113 235 883 801
28 214 3.07 657 152,212 2.1 115 241 898 784
29 216 3.08 665 150,313 2.1 117 248 913 769
30 218 3.09 674 148,452 2.1 119 254 928 753
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integration period.
Since LCAs are defined in terms of a functional unit (e.g., emissions per MJ of fuel) (ISO,

2006b,a), emissions from preparatory processes, such facility construction, must be allocated over
the assumed lifetime of the facility to place these emissions in terms of the chosen functional unit
(Canals et al., 2007). In practice, these amortized emissions are generally assumed negligible and
ignored in LCA, resulting in a well-recognized “truncation error” (Guinée et al., 2006).

However, when considering indirect LUC caused by land-competitive biofuels, the assump-
tions that (i) emissions are largely coincident with production and use, or (ii) that preparatory
emissions are negligible, no longer hold. The release of carbon from land cover conversion is
fairly rapid. Most of the above-ground biomass is lost immediately (in the case of burning) or over
a small number of years (Fargione et al., 2008). By some estimates, approximately 20% of the
soil C is lost within about five years of the initial disturbance, with another 5% lost within about
20 years from the start of tillage (Houghton et al., 1991). The upfront iLUC emissions from land-
competitive biofuels must be allocated over (that is, causally linked to) a quantity of fuel produced
over decades, and the biofuel must be compared with a petroleum fuel with relatively small up-
front emissions. When we compare processes with very different emission profiles over decades,
the simple summation approach is no longer valid because it incorrectly sums the CRF of releases
measured over overlapping, but distinct, integration periods. This is not the same as summing the
CRF of these releases over a consistent, short time horizon during which all emissions occur. Dis-
counting emission flows, as some have proposed, only compounds the error, since GWPs apply no
discounting within their defined time horizon, and 100% discounting beyond the time horizon.

Several approaches have been proposed or used to account for the difference in emissions
profiles over time, from simple amortization, to discounting emission flows, to models based on
cumulative radiative forcing. In this section, we consider the ramifications of these alternatives.

6.5.2.1 STRAIGHTLINE AMORTIZATION

Several analysts have used straightline amortization to divide the up-front loss of carbon over an
assumed 30 years of biofuels production, ignoring the time profile of emissions (Searchinger et al.,
2008b; CARB, 2009a; USEPA, 2010b) . This approach is generally justified on the basis of its
simplicity, however, it underestimates the damages from biofuels that induce ILUC relative to
fuels without large up-front emissions, as described in §6.5.2.4.

6.5.2.2 DISCOUNTING EMISSION FLOWS

Cost-benefit analyses for projects with long-lived costs and benefits are usually assessed using
economic discounting to bring all costs and benefits back to a comparable present value (Board-
man, 2001). Some analysts have proposed following this approach for GHG emissions, directly
discounting physical GHG flows. However, discounting physical goods is an inappropriate ap-
plication of a financial metaphor, and it is inconsistent with the physical reality (Marshall, 2009).
Financial flows are one-time events, i.e. they have a ”residence time” of zero. Greenhouse gases, in
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contrast, have residence times measured in decades, causing continual social costs until the gases
leave the atmosphere. Modeling GHG flows as though they were financial flows, and discounting
each ’payment’ ignores this non-zero residence time.

Using financial discounting for physical flows would be plausible if damages were a linear
function of flow, in which case the physical and financial values would be interchangeable. But
damages are a function of temperature change, which in turn depends on cumulative radiative
forcing, which depends on the concentration of greenhouse gases (and other biogeochemical pro-
cesses). The residence time of the gases is central to the problem, thus the analogy to financial
flows breaks down.

Also unlike financial flows, the damages from a unit of CO2 are a function of concentration, so
the physical effects of a unit of CO2 today and next year are not the same. Assuming increasing
concentrations, the physical effect per unit CO2 will increase over time, whereas discounting flows
says the effect next year is reduced.

6.5.2.3 DISCOUNTING DAMAGES

More commonly, economists propose applying economic discounting to the economic damages
resulting from emissions (Delucchi, 2003; Guo et al., 2006; Marshall, 2009). This approach in-
corporates additional epistemic uncertainties (most notably the social cost of carbon) and model
choice parameters such as the discount rate and shape of the discounting function (Guo et al., 2006;
Weitzman, 2007).

6.5.2.4 CUMULATIVE RADIATIVE FORCING

O’Hare et al. (2009) present a model and discussion of the cumulative radiative forcing from bio-
fuel and gasoline GHG emissions, estimated using a simple model of atmospheric CO2 decay,
with and without economic discounting. This approach involves several policy choice parame-
ters which materially affect the measured benefits (or disbenefits) of the biofuel compared to its
petroleum alternative, such as:

• the biofuels production period,

• the analytic time horizon,

• the policy target date,

• whether to include reversion (see §6.5.2.5) and over what timeframe, and

• whether to use discounting, and at what rate.

Based on this model, O’Hare et al. (2009) proposed an alternative metric, fuel warming po-
tential (FWP), computed as the ratio of the CRF occurring over a given analytic horizon for the
studied biofuel, relative to that of the baseline petroleum fuel. This approach inherits the structure
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and limitations of the IPCC’s global warming potentials, rationalized to included emissions occur-
ring at different times within a given analytic horizon. They show that for the parameter values
assumed in the model, corn ethanol increases CRF by 15% compared to gasoline a 30-year analytic
horizon, whereas using straightline amortization over 30 years would indicate that ethanol reduces
GHG flows by 5%.

Levasseur et al. (2010) extend this approach to include the decay of CH4 and N2O, and suggest
the use of a dynamic life cycle inventory that is a function of the time horizon examined. Applying
their approach to the proposed rulemaking for RFS2, they conclude that “the lack of consideration
for the temporal prole of the emissions in traditional LCA tends to underestimate the impact of
LUC emissions.”

6.5.2.5 REVERSION TO NATURAL STATE

Some models include the potential for land use conversions to revert to a natural state after the
biofuels are no longer produced, e.g., (Delucchi, 2006). Land reversion could be included with
any of these approaches to handling time, however, in the case of simple amortization, eventual
reversion would cancel the effects of the initial land conversion. This result encourages the use
discounting to avoid this apparently inappropriate outcome.

Other analysts suggest than any carbon benefits of post-biofuel land reversion should be cred-
ited to the future land use change, if and when such conversion occurs (Marshall, 2009). Whether,
and to what degree, the LUC process is reversible is unpredictable. For one, any road-building
associated with agricultural development not only reduces the cost of continuing to farm converted
areas, relative to the cost of building roads elsewhere, the existence of the roads enables further
deforestation (Kirby et al., 2006; Pfaff et al., 2007; NASA Earth Observatory, 2008). In addition,
conversion of forests to pasture and soybean plantations causes drying (Butler, 2007b,a), which
increases susceptibility to forest fires, in turn causing more drying.

Crediting reversion also implicitly assumes that the marginal reduction in land pressure, as
mediated through markets existing when biofuels production ends will be equal to those estimated
under current market conditions. This validity of assumption is impossible to predict.

6.6 CONCLUDING REMARKS

This chapter enumerated the many challenges and uncertainties associated with estimating emis-
sions from biofuels-induced indirect land-use change. Differences in estimates of iLUC emissions
result in part from the many subjective choices that must be made by modelers, e.g., the choice of
modeling framework (economic or otherwise), technique for mapping economic results to affected
land cover types, the emission factors assumed for land-use conversion, and the treatment of time.
Given any combination of these subjective choices, many stochastic and epistemic uncertainties
remain. A single point estimate from a single model of ILUC emissions cannot be shown to be
more “correct” than another, which has led to the considerable conflict over these estimates the
regulatory processes for the California LCFS and the RFS2.
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CHAPTER 7

UNCERTAINTY ANALYSIS OF SEARCHINGER ET AL. ILUC MODEL

“It is better to be vaguely right than exactly wrong.”
Carveth Read.1

7.1 PURPOSE AND SCOPE

In this chapter, I present a stochastic version of the Searchinger et al. (2008b) model of indirect
land use change (ILUC) resulting from expansion of corn ethanol production. The underlying
FAPRI economic model is not publicly available, and the authors of the model have not examined
uncertainty, thus this analysis is limited by an inability to characterize the uncertainty in the eco-
nomic model results. Nonetheless, it is instructive to understand the portion of the uncertainty in
the post-economic-model portions of the ILUC emissions analysis.

A version of this analysis, co-authored with Andy Jones and Michael O’Hare, was submitted
to and reviewed by Environmental Research Letters. I decided to pull the paper after the initial
results from our analysis with Purdue University researchers indicated that the mean value from
an analysis of the same phenomenon using the GTAP model was below the 2.5% certainty value
from our analysis of the Searchinger et al. model—indicating that model uncertainty dominated
the stochastic uncertainty examined here. Although we decided not to publish the paper, we sub-
sequently used this stochastic version of the Searchinger et al. model with the results of Purdue’s
GTAP modeling for corn ethanol to produce uncertainty bounds around emission factors for use in
the Systematic Sensitivity Analysis performed with GTAP (Hertel et al., 2010a).

7.2 INTRODUCTION

In this chapter, I employ Monte Carlo simulation, sensitivity analysis, and parametric analysis to
help understand the possible range of emissions from indirect land use change. The model is based
on the work of Searchinger et al. (2008b), the first peer-reviewed analysis to quantify the ILUC

1This wonderful quote is often attributed to John Maynard Keynes, however, according to WikiQuotes (http://en.
wikiquote.org/wiki/John Maynard Keynes) the posthumous attribution of this quote to Keynes is erroneous. They cite
a book by Carveth Read, originally published in 1898, available at http://www.gutenberg.org/files/18440/18440-h/
18440-h.htm.

http://en.wikiquote.org/wiki/John_Maynard_Keynes
http://en.wikiquote.org/wiki/John_Maynard_Keynes
http://www.gutenberg.org/files/18440/18440-h/18440-h.htm
http://www.gutenberg.org/files/18440/18440-h/18440-h.htm
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emissions for corn ethanol. The Searchinger analysis employed a partial-equilbrium economic
model of the US agricultural sector developed by the Food and Agricultural Policy Research In-
stitute (FAPRI) to estimate market responses to increased ethanol production. In their base case,
Searchinger et al. increased ethanol production by 56 billion liters above projected levels for 2016,
applying estimates of carbon loss from the affected ecosystems and estimating the CO2 that would
be released from the LUC. (For a detailed description of that modeling effort, see Searchinger
et al., 2008a,b).

7.3 METHODS

7.3.1 APPROACH

I implemented a stochastic version of the carbon accounting model used in the Searchinger et al.
(2008b) by adding probability distributions around all key point estimate assumptions and using
Crystal BallTMto evaluate the model in a Monte Carlo simulation. All simulation runs in this study
were performed using 4,000 iterations and Latin Hypercube Sampling (this sampling scheme pro-
vides better definition of the tails of the result distribution). This approach produced a probability
distribution for the LUC-related emissions term, rather than a single point estimate.

In addition, I examined several alternative time horizons. Searchinger et al. assumed a 30-
year period for amortization of the loss of carbon, and for the foregone sequestration. There is no
scientific basis for selecting this particular time horizon over any other, so we examined alternatives
including 1 year (effectively no amortization), 20, 50, and 100 years.

7.3.2 UNCERTAINTY IN ECONOMIC MODELING RESULTS

The FAPRI model is not available to the public, nor did the Searchinger study quantify the un-
certainty in the economic modeling results. (See section 6.3 for a discussion of the many factors
contributing to uncertainty in these results.) The FAPRI model cannot easily be used in a Monte
Carlo simulation, as it involved a suite of loosely connected models whose inputs and outputs are
integrated manually by a team of researchers. Model evaluation is too slow (and too manual) to
run hundreds or thousands of times. A single run to achieve equilibrium after a large shock can
take a team of researchers up to three days to complete (Fabioso, 2007).

The FAPRI modeling effort results in a table of changes in acreage dedicated to each of nine
crops (barley, corn, peanut, rapeseed, sorghum, soybeans, sugar, sunflower, and wheat) by country
or region.2 The Searchinger analysis sums these acreage changes across crops for each of the
42 countries / regions represented. These sums are further aggregated into acreage changes for

2The countries and regions represented are: Algeria, Argentina, Australia, Brazil, Bulgaria and Romania, Canada,
China, CIS, Colombia, Cuba, Egypt, EU-25, Guatemala, India, Indonesia, Iran, Japan, Malaysia, Mexico, Morocco,
Nigeria, Other Africa, Other Asia, Other CIS, Other Eastern Europe, Other Latin America, Other Middle East,
Pakistan, Peru, Philippines, Rest of World, Russia, South Africa, South Korea, Taiwan, Thailand, Tunisia, Turkey,
Ukraine, US, Venezuela, and Vietnam.
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eleven larger regions, namely: Canada, Africa, Europe, Former Soviet Union, Latin America,
North Africa and Middle East, Developed Pacific, China-India-Pakistan, Southeast Asia, United
States, and Rest of World. The carbon flux calculations are then performed on these larger regions.

Parameter uncertainty includes statistical uncertainty in the estimation of historical values as
well as epistemic uncertainty about how well historical values and model structure predict future
values. As described above, equilibrium modeling includes a substantial amount of epistemic
uncertainty, which is inherently difficult to quantify. As described in section 7.3.7, we applied
probability distributions to the outputs of the FAPRI model, as we did not have access to the model
to use it in a Monte Carlo framework.

7.3.3 UNCERTAINTY IN ESTIMATING AFFECTED ECOSYSTEM TYPES

To assign the acreage changes resulting from the economic analysis to specific ecosystems, Search-
inger et al. assume that new land conversions will follow the pattern observed in the 1990s in each
region. For many reasons, this may not be the case for large shocks and decadal time horizons. For
example, changes in the proportion of each land type in close proximity to transportation networks
or population centers, changes in laws regarding ecosystem protection, and distinct agronomic re-
quirements for different crops may alter these ratios. Searchinger et al. estimate a global expansion
of 10.8 M ha of cropland induced by a 56 billion liter per year expansion of ethanol production.
This amounts to a 1% expansion relative to the amount of land classified by the FAO as arable or
in permanent crops (FAO, 2007). Thus, given the moderate shock size and lack of stronger data,
the historical pattern is a reasonable first approximation.

Reliance on historical patterns of land conversion for the present analysis involves both statis-
tical uncertainty as well as epistemic uncertainty regarding the predictive value of these data. The
distributions of possible values for these parameters are not known. However to include an ap-
proximation of these uncertainties in the simulation, we define a normal distribution whose mean
is the historic fraction of conversion observed in each ecosystem type used in the study, by region,
assuming a coefficient of variation of 25%. In each simulation run, the sampled percentages are
multiplied by the new total in each region to produce adjusted proportional rates of conversion for
each ecosystem type in each region, ensuring that the fractions sum to 100%.

7.3.4 UNCERTAINTY IN ESTIMATING CARBON FLUXES

Estimates of the carbon lost upon land conversion include uncertainties in several underlying quan-
tities: the carbon in the above-ground biomass, the carbon in the below-ground biomass (generally
estimated as a percentage of the above-ground biomass), the carbon in the soil, and the fraction
of all of this carbon that is lost upon conversion. Estimates of the carbon lost from conversion of
each ecosystem type reflect variation in field observations in different places and times of a phe-
nomenon with intrinsic actual variation across locations. However, there is also uncertainty in how
well these data represent the deforestation our analysis attempts to model. For example, the use
of average carbon content of particular forest ecosystems (e.g. temperate evergreen forest) may
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be too coarse since the processes underlying deforestation are unlikely to randomly select forest
stands for removal; rather, selection criteria may include factors such as tree density and salability
which may favor conversion of certain forest stands over others (Houghton, 2005). We have no
data upon which to base estimates of this uncertainty within ecosystem types, and our analysis
does not incorporate this factor.

In addition, there are insufficient data on the carbon content of some ecosystems. For example,
Searchinger et al. assume that the grasslands of the China-Pakistan-India region have the average
carbon content estimated for the grasslands of Europe. It is difficult to quantify such epistemic
uncertainty.

7.3.5 LOST FUTURE SEQUESTRATION

To estimate the sequestration that would have occurred had the land use conversion not taken place,
Searchinger et al. divide the annual net carbon uptake by forests by total forest area by ecosystem
in each region to produce a value denominated in tonnes carbon per hectare. These values are
multiplied by 30, the assumed number of years of lost sequestration, and a weighted average is
estimated for each region, per converted hectare. We recognize that the assumption that carbon
uptake continues unabated for 30 years will not hold true in all cases, but as discussed in section
7.4.1, the number of years of carbon uptake by those regions assumed to be gaining carbon has
relatively little influence on the LUC emissions term.

In the case of reforesting after a period of agricultural use, Searchinger et al. assume that 75%
of initial 25% lost soil carbon is recovered. As shown in Table 1, we assume this 75% value has a
triangular distribution ranging from 50% to 100%. This parameter, while uncertain, is not critical
to the outcome of the analysis, as demonstrated in section 7.4.1.

7.3.6 THE TREATMENT OF TIME

The release of carbon from ecosystem conversion is fairly rapid. By some estimates, approximately
20% of the soil C is lost within about five years of the initial disturbance, with another 5% lost
within about 20 years from the start of tillage (Houghton et al., 1991). For simplicity, this loss of
carbon is modeled by Searchinger et al. as an instantaneous change in stock. For a land use change
term to be used in a regulatory context measuring the life cycle emissions of GHGs from biofuels,
this stock change must be related to a unit of biofuel production, which is typically a megajoule of
fuel, resulting in units of g CO2 MJ−1.

To compute the required numeraire, Searchinger et al. use straightline amortization over an
assumed 30 years of biofuels production. This choice of divisor, however, is arbitrary; it is not
uncertain, but rather a matter of modeling or policy choice O’Hare et al. (2009).

7.3.7 CORRELATED VARIABLES

Correlation among variables can increase or decrease the variance of functions of them. Generally,
the variance of a sum or product of random variables is larger if they are positively correlated,
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smaller if negatively. In the FAPRI model, uncertainty in some parameters may lead to positive
correlations among land conversion estimates across regions (e.g. an increase in crop yields might
reduce land conversion in all regions), while other parameters may lead to negative correlations
across regions (e.g. a lower cost of production in one region may shift conversion to the region
from others). To assign uncertainty to the output of the FAPRI model, I separately vary the total
land conversion rate across all regions (inducing a positive correlation) as well as the fraction of
conversion occurring in each region (inducing a negative correlation). Based on a prior simulation
run, the total area changed was assigned a normal distribution with an 11% coefficient of variation.3

I assume a 25% coefficient of variation on the estimate of area converted indicated by the economic
model. The regional changes were normalized by dividing each by the total area changed in each
simulation draw, thereby converting the regional values into percentages. For each region, the
percentage change is multiplied by the sampled value for total area change to produce the area
change that is used subsequently in the model.

Clearly this approach is imperfect: while the normalization does capture the negative corre-
lation between regional changes, our approach implicitly treats yield in all regions as equal since
each region is made to compensate equally for other regions. More fundamentally, the 25% CV
for each region has no scientific basis. The correct approach to modeling the uncertainty in the
estimates of land conversion would be to introduce stochasticity into the parameters driving the
economic model, ensuring that each set of regional area conversions is internally consistent. Un-
fortunately, this option was not available.

The estimates of ecosystem carbon also involve correlated variables. The Searchinger et al.
model provides estimates of above- and below-ground carbon in land converted to agriculture from
various natural conditions. I treat these as independent, however the above-ground and below-
ground biomass (which is only a portion of the below-ground carbon) are positively correlated.
Our results therefore likely underestimate the variance in ILUC emissions to some degree.

7.3.8 ASSUMED PROBABILITY DISTRIBUTIONS

The most challenging aspect of many stochastic models is assigning probability distributions to
parameters. This is especially the case when the uncertainty is largely epistemic, as is the case here,
rather than statistical. This “meta uncertainty” (uncertainty about the variation) doesn’t prevent
us from exploring the model behavior, but it does prevent us from definitively quantifying the
uncertainty in the LUC term.

Table 7.1 describes the probability distributions used in this model. It is important to recognize
that most of these distributions are not parameters estimated by statistics of samples of random
variables with specific, assumed or theoretically known, distributions in the classical statistical
sense. They should be interpreted as intermediate distributions in a Bayesian sense, incorporating
a variety of information about the true values and summarizing subjective probability judgments
a reasonable person might hold on the basis of the reported values: “reasonable people” might

3In the sensitivity analysis, a 50% CV is applied to each region, resulting in a 23% CV for the total area.
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disagree about these distributions.
The distributions are implemented by reference to meta-parameters that define the coefficient

of variation for all parameters in each class listed in the table. Thus, the spreads can be adjusted to
explore the impact on the output distribution due to our uncertainty about the input distributions.

Each parameter class defines a set of parameters describing the same phenomenon in different
regions or ecosystems. The probability distribution is defined using the value from the Searchinger
et al. model as the mean, and applying the coefficient of variation indicated in Table 7.1. Several
distributions are taken from the IPCC’s guidelines for national GHG inventories (Eggleston et al.,
2006). The IPCC guidelines define default uncertainty levels, but they don’t specify the shapes
of these distributions, so I generally assumed lognormal distributions for non-negative parameters,
and normal otherwise.

Table 7.1: Probability distributions used in the model

Parameter Distribution Value CVa Min Max

Regional area change (applied to eco-
nomic model output)

normal 25%

Total area changed normal 11%b

C in vegetation lognormal 37.5%c

C in soil to 1m lognormal 45%d

% Soil C lost to 1m betaPERTe 25% f 0% 75%

Historic clearing by ecosystem normal 50%g

Forest area triangle -25% +25%

Forest regrowing area triangle -25% +25%

Uptake by regrowing forests triangle -25% +25%

Fraction of lost soil C regained in re-
growth (EU and FSU)

triangle 75% f 50% 100%

a CV (coefficient of variation) is the ratio of the standard deviation to the mean.
b Estimated in a prior Monte Carlo simulation using 25% CV around individual re-
gional area changes.
c IPCC (Eggleston et al., 2006, Section 5.3.1.5).
d IPCC (Eggleston et al., 2006, Table 2.3).
e The betaPERT distribution is bell-shaped and bounded on both extremes.
f Searchinger et al. (2008b).
g IPCC (Eggleston et al., 2006).
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7.4 RESULTS

Figure 7.1 shows the results from the stochastic simulation of the model. The mean value for the
LUC term is 110 g CO2 MJ−1, with the 95% certainty interval around the mean ranging from 70 to
168 g CO2 MJ−1. Note that an ILUC term of 70 g CO2 MJ−1 would render corn ethanol from all
current production methods worse than gasoline in life cycle GHG emissions (Plevin and Mueller,
2008). The ILUC emission distribution has a slight right tail as indicated by the asymmetric 95%
certainty interval. The mean value of 110 g CO2 MJ−1 from the stochastic analysis is about 6%
higher than the point estimate of 104 g CO2 MJ−1 from the same model.

As seen in Figure 7.2, about 95% of the total emissions are estimated to occur in five regions:
Latin America (29%), United States (22%), Southeast Asia (21%), and China-India-Pakistan (13%),
and Africa (9%). These results are a product of the area changed and the emissions rate per unit
area for each region. The large contribution in total CO2 emissions from Latin America is due
to the large area impacted, whereas the large contribution from Southeast Asia is due to the high
emissions rate. The United States has a moderately high emissions rate and area changed, resulting
in high total CO2 emissions.

Figure 7.1: Output distribution for Monte Carlo simulation of ILUC emissions term.
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Figure 7.2: Percent of total estimated CO2 emissions from ILUC by region.

7.4.1 ANALYSIS OF UNCERTAINTY AND SENSITIVITY

Ten parameters contribute about 80% of the total variance in the land use GHG term. Uncertainty
in the total land area converted is the largest single contributor to variance, accounting for nearly
one third of the total. Uncertainty in the assignment of regional area changes to specific ecosys-
tems contributes another 20% of the variance. Uncertainty in estimates of the carbon in soil and
vegetation accounts for nearly 40% of the variance.

7.4.1.1 THE TREATMENT OF TIME

Table 7.2 shows the value of the ILUC emissions term for alternative values (1, 20, 30, 50, and
100 years) of amortization period. Note that the effect is not simply proportional with respect to
the amortization period due to the uptake of carbon in some regions. Since sink capacity declines
over time as the forest or grassland reaches maturity in the cases of the 50 and 100 year time
horizons, we limited the uptake period to 30 years. The mean ILUC emissions term under 100-
year amortization is about 30 g CO2 MJ−1, which would indicate that expanding production of corn
ethanol in the US using the most common process, natural gas-fired dry-milling, would produce
a biofuel with approximately the same life cycle GHG emissions as gasoline (Plevin and Mueller,
2008).
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Table 7.2: The effect of amortization period on the LUC emissions term

Amortization Period Mean 2.5% value 97.5% value
(y) (g CO2 MJ−1) (g CO2 MJ−1) (g CO2 MJ−1)

1 3130 1960 4670

20 160 100 240

30 110 70 170

50* 65 40 100

100* 30 20 50
*Forest uptake was limited ton 30 years for existing and regrowing forests.

7.4.1.2 ACCOUNTING FOR CHARCOAL AND FOREST PRODUCTS

In their analysis of biofuel “carbon debt”, Fargione, Hill et al. (2008) estimate the portion of
above-ground biomass that is not emitted as CO2 during ecosystem conversion. Two categories
considered are carbon left in the ground during charcoal production, and wood that remains in
forest products for more than 50 years. Adding these carbon storage factors to our model for
all tropical rainforests and grasslands reduces the LUC term by approximately 5 g CO2 MJ−1.
Applying the default 90% oxidation factor from the IPCC’s greenhouse gas inventory guidelines
(Eggleston et al., 2006) similarly resulted in a decrease of about 5 g CO2e MJ−1 in the LUC term.

7.4.2 META-UNCERTAINTY ANALYSIS

A lack of data prevents making confident predictions of the probability density functions for most
input parameters to this model. To address this, I perform a limited meta-uncertainty analysis to
explore the effects on the output distribution of changes to key input distributions. Table 7.3 shows
these results for two model parameters. Increasing the coefficient of variation of regional area
change (an output from the economic model) from 25% to 50% increases the width of the 95%
confidence interval of the land use emissions term from 90 to 140 g CO2 MJ−1, all else equal.

7.5 DISCUSSION

In addition to statistical and model uncertainties, this model of market-mediated LUC emissions
is incomplete. For example, the parameter describing price-induced yield response affects the
outcome because it reduces the amount of land required to replace displaced crops. On the other
hand, crop yields are likely to decrease as agriculture expands into more marginal lands. There is
uncertainty about the magnitude of each of these effects; Searchinger et al. simply assumed these
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Table 7.3: Effects on mean and 95% certainty interval of LUC emissions term due to increasing
various model parameter distribution standard deviations.

Parameter CVa LUC emissions term (g CO2 MJ−1)
Base case Alternate Mean 95% prob. range

Low High Width

Base case 110 70 160 90

Regional area changeb 25% 50% 110 50 190 140

Gross uptake from re-
growing forest

25% 50% 110 70 170 100

a CV = coefficient of variation (standard deviation divided by the mean).
b The CV of Total Area Change is changed from 11% to 23% for the alternate case.

effects roughly cancel out.
In addition to the limitations listed in section 7.3.7, several structural changes to the model

could significantly affect the resulting ILUC emissions term. These include representing:

1. Marginal decreases in the productivity of land (increases ILUC term)

2. Higher relative weighting of near-term emissions (increases ILUC term)

3. Price-induced yield effect (reduces ILUC term)

4. Carbon recapture in post-conversion ecosystem (reduces ILUC term)

5. Albedo, especially snow on former forests (reduces ILUC term)

6. Other climate-related emissions such as SOX , NOX , and black carbon (variable)

Assumptions about land productivity and price induced yield improvements affect the mag-
nitude and uncertainty of the total area converted, which in turn affects total CO2 emissions. A
stochastic economic model would permit us to further decompose total area converted into indi-
vidual parametric and structural uncertainties that could be better characterized.

7.6 CONCLUDING REMARKS

These results are contingent on several key model choices such as the use of the FAPRI economic
model and a 30-year straightline amortization schedule. Other economic models may predict more
or less land use change in different regions (e.g., Dumortier et al., 2009; Hertel et al., 2010a; Al-
Riffai et al., 2010; Tyner et al., 2010), and a different treatment of time (O’Hare et al., 2009) will
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yield different results. Thus, although the present analysis captures several important parameter
uncertainties, significant model uncertainties remain.
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CHAPTER 8

REDUCED-FORM MODEL OF ILUC

“For some problems there comes a time when uncertainty is so high that conven-
tional modes of probabilistic analysis (including decision analysis) may no longer
make sense. While it is not easy to identify this point, investigators should continually
ask themselves whether what they are doing makes sense and whether a much simpler
approach, such as a bounding or order-of-magnitude analysis, might be superior.”

Morgan et al. (2009)

8.1 PURPOSE AND SCOPE

In this chapter, I develop a reduced-form model of the emissions from indirect land use change
(ILUC), parameterized from prior modeling ILUC studies, to examine the plausible bounds of
uncertainty surrounding estimates of these emissions. I estimate that the bounding range for emis-
sions from indirect land-use change (ILUC) from corn ethanol expansion is approximately 10 to
370 g CO2 MJ−1. Applying various probability distributions to model parameters, I find that the
broadest 95% central interval, i.e., between the 2.5 and 97.5 percentile values, ranged from 24 to
151 g CO2e MJ−1. ILUC emissions from corn ethanol expansion thus range from small, but not
negligible, to several times greater than the life cycle emissions of gasoline.

This analysis suggests that the ILUC emissions estimates of 30 g CO2 MJ−1 by CARB and 34
g CO2e MJ−1 by USEPA (for 2022) are at the low end of the plausible range; a value five times as
large is also plausible. The presence of epistemic uncertainty (ignorance) prevents the reliable es-
timation of a most likely value for ILUC emissions. The inherent challenge of modeling complex,
global systems suggests that this range is unlikely to be narrowed substantially. Fuel policies that
require narrow bounds around point estimates of life cycle GHG emissions are incompatible with
current and anticipated modeling capabilities. Alternative policies that address the risks associated
with uncertainty may more effectively achieve GHG reductions.

This chapter is based on a paper in review at ES&T as Plevin RJ, O’Hare M, Jones AD, Torn
MS, Gibbs HK. The greenhouse gas emissions from market-mediated land use change are uncer-
tain, but potentially much greater than previously estimated.
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8.2 INTRODUCTION

To help mitigate the climate change impact of the transportation sector, new policies are being
implemented in the US and Europe to reduce the so-called “carbon intensity” of road transporta-
tion fuels, presently dominated by petroleum-based gasoline and diesel. These regulations, in-
cluding the US Energy Independence and Security Act (EISA) of 2007, California’s Low-Carbon
Fuel Standard (LCFS) (CARB, 2009a; USEPA, 2010b) and Europe’s Renewable Energy Direc-
tive (RED) (European Parliament, 2009), promote greenhouse gas (GHG) reductions based on
estimates of the life cycle GHG emissions from various fuels. At least twelve US states have
committed to implementing low-carbon fuel standards similar to California’s (Anon., 2009).

EISA defined life cycle GHG emissions to include “significant indirect emissions such as sig-
nificant emissions from land use changes” (United States Congress, 2007a); the definition was
subsequently adopted verbatim into the California LCFS (California Office of Administrative Law,
2010). Indirect land use change (ILUC) emissions are those that occur when grassland and forest
is converted to additional cropland somewhere on the globe to meet the demand for commodities
displaced by the production of biofuel feedstocks. ILUC emissions are potentially large compared
to the direct global warming effects of processes in the biofuel supply chain, for any biofuel whose
feedstock competes with food for land.1 Indeed, these emissions may overwhelm the climate bene-
fits of some biofuels as previously estimated without consideration of indirect effects (Searchinger
et al., 2008b; Dumortier et al., 2009; Al-Riffai et al., 2010; Hertel et al., 2010a; USEPA, 2010b).

The challenge for policymakers is that estimating ILUC is a complex and inherently uncertain
endeavor integrating global economic modeling with detailed accounting of ecosystem carbon
(Delucchi, 2006; Kløverpris et al., 2008). Models of complex, global phenomena, especially for
systems dominated by human behavior and whose operating parameters are changing over the time
period comprising data sourcing and prediction period, are inevitably approximate.

Several studies that estimate ILUC emissions induced by the expansion of corn ethanol pro-
duction in the US (e.g. Searchinger et al., 2008b; CARB, 2009a; Dumortier et al., 2009; USEPA,
2010b) or the EU (Al-Riffai et al., 2010) have applied the following sequence of modeling steps:

1. An economic equilibrium model (e.g., FASOM, FAPRI, GTAP, MIRAGE) is used to project
the effects of increased biofuel production in the US on global land and commodity markets,
including (i) how much additional land will be brought into production to compensate for
land removed from other uses to produce biofuels and (ii) the approximate location of this
land.

2. Land use changes projected by the economic model are mapped to specific land cover types
based on historical patterns of land use change.

3. For each category of land cover conversion, the quantity and time profile of GHG emissions
from land use conversion are estimated.

1We note that other activities that compete with food for land, including other crops, roads, and development, also
cause ILUC emissions. Our purpose here is to estimate the marginal ILUC caused by biofuels production.
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4. To produce the desired GWI measure (e.g., grams of CO2-equivalent per MJ of biofuel), the
emissions induced by the expanded biofuel production are attributed to the quantity of fuel
produced over some designated time period.

Table 8.1 describes some of the uncertainties inherent in each of these modeling steps.2

8.2.1 PRIOR ESTIMATES OF ILUC EMISSIONS

Several studies have examined the ILUC emissions induced by expanding production in the US of
corn ethanol. Table 8.2 describes the model, data, and regional focus of each of five studies. Table
8.3 compares the results from these studies, including ranges estimated (using various methods)
by the authors of those studies.

Searchinger et al. (2008b) used a partial equilibrium model of the agricultural sector devel-
oped by the Food and Agricultural Policy Research Institute (FAPRI) and Center for Agriculture
and Rural Development (CARD), and ecosystem carbon and land conversion data assembled by
the Woods Hole Research Institute and estimate an ILUC emission factor of 104 g CO2e MJ−1,
resulting from an increase of 56 billion liters of corn ethanol. This model uses straight-line amor-
tization to distribute the LUC emissions across 30 years of fuel production3. Reducing the ethanol
increment to 31 billion gallons reduced the ILUC factor by about 10 g CO2e MJ−1.

Dumortier et al. (2009) used the FAPRI model to explore the sensitivity of ILUC emission
estimates to various assumptions regarding crop yield, the potential for deforestation in the US,
lower direct emissions from the ethanol production life cycle, and of using an enhanced model
which includes links the US ethanol and gasoline sectors. Results across these variants ranged
from 21 to 118 g CO2e MJ−1 with 30-year amortization of ILUC emissions.

Hertel et al. (2010a) used the GTAP computable general equilibrium model, combined with the
Woods Hole land cover and carbon accounting data taken from the Searchinger study, producing
a point estimate of 27 g CO2e MJ−1, based on 30-year amortization. Sensitivity analysis of key
economic parameters produced a range of 15 to 90 g CO2e MJ−1.

USEPA (2010b) used the forest and agricultural sector optimization model (FASOM) model
(Beach and McCarl 2010) and the FAPRI model (CARD, 2009), combined with a satellite data
analysis and model of LUC emissions developed by Winrock International (Harris et al., 2009). For
each fuel pathway considered, USEPA examined the uncertainty in their ILUC emissions estimate
resulting from land cover detection and land conversion carbon emissions. Table 3 shows the
central 95% intervals for ILUC emissions from corn ethanol expansion in 2012, 2017, and 2022;
the full range across years was 25 to 104 g CO2e MJ−1.

2Figure 2.1 presents the typology of uncertainty that was included in the version of this chapter submitted to ES&T.
3Assumed production period and therefore the quantity of fuel an initial ILUC discharge is amortized across is one

of several important issues raised by fuels with differing time discharge profiles. These questions are not central to the
present discussion–we use straight-line 30y amortization for comparison of models because it is widely familiar–and
discussed further in O’Hare et al. (2009).
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Table 8.1: Uncertainties in modeling ILUC emissions. V = Variability, P = Parameter uncertainty,
M = Model uncertainty, D = Decision uncertainty.

Component Category Description

Economic modeling V Elasticities
Crop yields

M Type of model (partial or general equilibrium; other)
Model resolution (number of regions and industrial sectors)
Functional forms and choice of closure
Choice of land classes to include

D Baseline year and analysis year

P Values of exogenous parameters (e.g., oil price)

Mapping to land cover
classes

V Accuracy of land cover classification by remote sensing
Reliability of land cover change detection

M Number and regional specificity of land cover classes
Predictive power of historical patterns of LUC
Reliability of land cover change detection

Estimating emissions
for land cover conver-
sion

V Above- and below-ground carbon stocks
Fraction of carbon emitted upon conversion
Annual foregone sequestration
Fraction of conversion through burning
Non-CO2 emissions from burning
Global warming potentials

M Use of average carbon stocks values as proxy for affected areas
Global warming potentials

D Years of foregone sequestration assumed
Which climate-affecting phenomena to include, (e.g., black carbon,
albedo, evapotranspiration)
Method of aggregating climate effects, e.g., combining regional and
global phenomena

Estimating total fuel
production

V Temporal and spatial variability in biofuel feedstock yields
Feedstock conversion yield

M Projected changes in crop yield over the production horizon
Projected changes in biorefining yields
Affects of climate change on crop productivity

D Assumed years of feedstock production following initial planting

Treatment of time D Analytic horizon over which to aggregate effects
Whether to apply discounting, at what rate, and to what (e.g.,
emission flows, radiative forcing, temperature change, or economic
damages)
Assumed years of feedstock production following initial planting
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Table 8.2: Models and data sources used to model ILUC emissions from corn ethanol expansion

Study Economic
model(s)

Land cover change
data

Emission
factors

Policy region

Searchinger et al. FAPRI Woods Hole (1990s) Woods
Hole

US

Dumortier et al. FAPRI GreenAgSiM IPCC US

Hertel et al. GTAP Woods Hole (1990s) Woods
Hole

US

USEPA FASOM,
FAPRI

MODIS-5 (2001-
2007)

Winrock
Int’l

US

Al-Raffai et al. MIRAGE MODIS-4 (2001-
2004)

IPCC EU

Al-Riffai et al. (2010) from the International Food Policy Research Institute (IFPRI) used the
MIRAGE computable general equilibrium model and a greatly modified GTAP-7 database to esti-
mate the ILUC effects triggered by EU biofuel mandates. For LUC emissions analysis, they relied
on the land cover change detection analysis produced by Winrock International (Harris et al., 2008)
for USEPA4, combined with IPCC emission factors . Unlike the other studies described above, Al-
Riffai et al include biofuel mandates in other countries (i.e., US and Brazil) in the baseline. They
examined the results of modifying several key elasticity parameters and explored different scenar-
ios describing alternative trade regimes, though results were not reported for all variants. The point
estimates for the BAU and “full trade liberalization” scenarios were 54 and 79 g CO2e MJ−1, based
on 20-year amortization. Converted to 30-year amortization for comparison to the other modeling
results gives a range of 36 to 52 g CO2e MJ−1.

The range of results from these studies demonstrates the presence of substantial model uncer-
tainty in estimates of ILUC emissions. Importantly, none of these studies examined the full range
of uncertainties in the economic modeling, land cover detection, carbon accounting, and the treat-
ment of emissions over time (Table 8.1). Where sensitivity analysis was performed in these studies,
it was almost exclusively local, one-at-a-time (OAT) analysis, describing changes in model results
caused by perturbations in individual parameters. In general, a global sensitivity analysis, i.e., one
that allows for simultaneous changes in multiple parameters, is required unless a model has been
proved to be linear. In non-linear models such as economic equilibrium models, sensitivity to any
single factor, in general, depends on the state of other variables (Abler et al., 1999; Saltelli et al.,

4Note that Al-Riffai used the version of the Winrock International analysis produced for USEPA’s proposed rule-
making for the US Renewable Fuel Standard. USEPA used an updated version of this analysis for its final rulemaking
that relied on a higher-resolution data set and a longer time interval.
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Table 8.3: Published estimates of ILUC emissions induced by expansion of corn ethanol in the US
and EU. All studies amortized ILUC emissions over 30 years, except Al-Riffai et al, who use 20
years. We present the Al-Riffai normalized to 30 years for comparison. To normalize all values to
20-year amortization, add 50% to each.

Study Target year Shock size ILUC factor Range
(109 L) (g CO2e MJ−1) (g CO2e MJ−1)

Searchinger et al.
(2008b)

2016 56 104 20 – 200a

Hertel et al. (2010a) 2001b 50 27 15 – 90c

Dumortier et al.
(2009)

2018/19 30 n/a 21 – 118d

USEPA (2010b) 2012 7.5 81 62 – 104e

USEPA (2010b) 2017 14 58 43 – 76e

USEPA (2010b) 2022 10 34 25 – 45e

Al-Riffai et al. (2010) 2020 f 0.47 36 36 – 53g

a Calculated from reported sensitivity results
b Analysis was performed using the GTAP-6 database, based on 2001 data, but the results were
adjusted post facto to account for the 10% greater average corn yield in 2010.
c Range is based on a combination of high and low values for various uncertain economic model
parameters.
d Range is based on evaluating alternative model assumptions.
e Range is 95% CI around mean considering only the uncertainty in satellite data analysis and
carbon accounting.
f Analysis was performed using the GTAP-7 database, based on 2004 data, using the model to
project out to 2020.
g Effect of additional 106 GJ after meeting 5.6% mandate. Higher value is for greater trade liber-
alization.
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2006). The range in results outlined by a global sensitivity analysis will generally be broader than
that of a local sensitivity analysis.

8.2.2 CHARACTERIZING UNCERTAINTY

My analysis demonstrates that if we believe the input ranges are reasonable, the specific shape of
the pdfs isn’t important qualitatively: the choice of bounding values and the functional form drive
the results. Some analysts caution that stochastic and epistemic uncertainty must be propagated
separately in uncertainty analysis, using techniques such as probability bounds analysis (Ferson
and Ginzburg, 1996). Others (e.g. Morgan et al., 2009; Aven, 2010) argue that subjective probabil-
ities can be used to obtain a scientific judgment about unknown quantities. The result is likewise
a subjective assessment of probability. In the present chapter, I characterize plausible boundaries
around ILUC emissions using a simple and transparent model parameterized from the literature,
assigning subjective probability distributions to all parameters and propagating these uncertainties
through the model using Monte Carlo simulation. I employ several alternative sets of probability
distributions to examine the possible size and shape of the frequency distribution for ILUC emis-
sions, and we examine the contribution of each model parameter to the uncertainty in the result.
My objective is thus not to define an objective probability distribution around ILUC emissions,
but to characterize a plausible range of ILUC emissions that is robust to assumptions about the
underlying distributions of key parameters, and to consider how this information can inform fuel
GHG regulations.

8.3 METHODS

8.3.1 REDUCED-FORM MODEL

To explore the range of ILUC emission estimates that can result from alternative model parame-
terizations, I use a reduced-form model of ILUC (hereafter, RFMI) based on the nine parameters
described in the equations below and in Table 8.4. The net displacement factor for land (land NDF)
is the ratio of (a) hectares of new agricultural land brought into production to replace agricultural
production displaced by biofuel feedstocks, to (b) the hectares dedicated directly to additional bio-
fuel feedstocks. The average emission factor (AvgEmissionFactor) is the average mass of CO2
emitted per unit area for land converted to cropping. For the purposes of this model, I apply
straight-line amortization of the ILUC emissions over the total biofuel production occurring over
the presumed production period (TotalFuel) assumed to be associated with the initial ILUC emis-
sions, although I recognize that this approach underestimates the relative warming caused by ILUC
(O’Hare et al., 2009). Table 8.4 lists the parameters that are subjected to bounding analysis in the
reduced-form model.

The CO2 emissions resulting from land use conversion can be represented by the following
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equation:

ILUC(g CO2 MJ−1) =
AreaConverted(ha)×AvgEmissionFactor(Mg CO2 ha−1)× 106

TotalFuel(MJ)
(8.1)

Where

AreaConverted (ha) =
FuelIncrement (MJ y−1)

FuelYield (MJ ha−1y−1)
×NetDisplacementFactor (8.2)

AvgEmissionFactor (Mg CO2 ha−1) = ∑
i= f , g, w

EmissionFactori(Mg CO2ha−1)× Fractioni

(8.3)

where f is forest, g is grassland, and w is wetland.

TotalFuel (MJ) = AreaConverted (ha)×FuelYield
(
MJ ha−1 y−1)×ProductionPeriod (y)

(8.4)

From the form of equation (8.1) we can see that if the terms in the numerator have wide error
bars, and the denominator has relatively narrow error bars, the multiplicative form of the numerator
will result in a right-skewed bounding range: the high bounding value will be further from the point
estimate than is the lower bounding value. This is indeed the case, as demonstrated below.

RFMI is implemented in Microsoft ExcelTM. I use Monte Carlo simulation (implemented us-
ing the Crystal BallTMadd-in) to examine alternative probability distributions for model parameters
and to support uncertainty importance analysis. Lacking empirical basis for assigning probability
distributions to the model parameters, I explored the sensitivity of RFMI results to different prob-
ability distributions: uniform, triangular, betaPERT5, and lognormal. For the uniform, triangular,
and betaPERT distributions, the maximum and minimum values were set to those shown in Table
8.4, with the central value for the triangular and betaPERT set to the midpoint of the range. For
the lognormal case, lognormal distributions were assigned to the production period, average fuel
yield, and three emission factors by setting the 2.5% and 97.5% values of the distribution to the
ranges as shown in Table 4; the remaining parameters were assigned betaPERT distributions as
described previously.

5Like a triangular distribution, a betaPERT distribution has fixed minimum and maximum values and a most
probable value. However the betaPERT distribution has a bell shape which, relative to a triangular distribution, has
more probability density in the center and less at the extremes (Vose, 1997).
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To evaluate the relative contribution of each RFMI parameter to variance, I assigned all pa-
rameters uniform probability distributions ranging from their corresponding low and high values
indicated in Table 8.4 and ran a 10,000-trial simulation, using Latin Hypercube Sampling. While
the precise statistics of the output distribution are not meaningful, this approach allows us to esti-
mate the contribution to variance for each parameter based on the normalized rank correlation of
each parameter to the final amortized ILUC emissions value.

8.3.2 PARAMETER RANGES

Table 8.4 lists the bounding values assumed for each parameter in the present exercise, which apply
to ethanol from US corn. In the following sections I explain the rationale and evidentiary basis for
these ranges.

Table 8.4: Parameters and ranges explored using the reduced-form model for US corn ethanol.

Parameter Units Low High

Fuel yield MJ ha−1 y−1 3500 4500

Net displacement factor 25% 80%

Emission factor f orest Mg CO2 ha−1 350 650

Emission factorgrass Mg CO2 ha−1 75 200

Emission factorwetland Mg CO2 ha−1 1000 3000

Fraction f orest 15% 50%

Fraction:wetland 0% 2%

Fractiongrassland 1 – (forest + wetland frac-
tions)

Production period y 15 45

8.3.2.1 AVERAGE FUEL YIELD

Initial ILUC emissions are a function of the areal biofuel yield (MJ ha−1 y−1) at the time of
expansion. Searchinger et al. (2008b) assumed an annual corn ethanol yield of 3766 L ha−1;
Hertel et al. (2010a) assumed 3598 L ha−1. In its final rulemaking for RFS2, the USEPA (2010b)
assumed that corn ethanol yield will reach nearly 4423 L ha−1 in 2017 and 4692 L ha−1 in 2022.6

6The FASOM model, used by USEPA to estimate domestic LUC emissions, projects that in 2017, corn yield will be
174.5 bushels acre-1 (10.9 Mg ha−1) in 2017 and 185.1 bu acre-1 (11.6 Mg ha−1) in 2022, with a constant biorefinery
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Our analysis uses a range of 3500 to 4500 L ha−1 for average fuel yield over the modeled time
horizon.

8.3.2.2 NET DISPLACEMENT FACTOR

Land net displacement factor (NDF) reflects the number of hectares of new agricultural land pro-
jected to come into production per hectare of land used to meet the modeled increase in biofuels
production. The NDF includes the combined effects of (i) price-induced yield increases, (ii) rela-
tive productivity of land converted to cropping, (iii) price-induced reductions in food consumption,
and (iv) substitution by biofuel co-products such as distillers’ grains.

The NDF is perhaps the most challenging parameter to estimate since it is a result of a world-
wide economic system constantly seeking equilibrium and thus depends on many uncertain pa-
rameters and subjective choices in the economic models used. NDF is also the most influential
parameter in the RFMI because the range of values from prior studies is quite broad.

Values imputed for NDF vary from 28% of land used to meet the modeled increase in biofuels
production in the Hertel et al. (2010a) analysis, to 72% in the Searchinger et al. (2008b) analysis,
and higher in the USEPA (2010b) analysis. The NDFs estimated from USEPA’s published results7

for corn ethanol was 102% in 2012, 52% in 2017, and 29% 2022. However, as the full corn ethanol
mandate is projected by USEPA to be met in 2016, I ignore the 2022 value, averaging the values
for 2012 and 2017 to produce an estimate of 77%.

Our analysis thus uses a low value of 25% and a high value of 80% for NDF. I note this range
reflects the very significant model uncertainty more than the parametric uncertainty inherent in the
underlying models.

8.3.2.3 ECOSYSTEM CONVERSION FRACTIONS

The GHG emissions resulting from conversion to cropping vary with land cover type, cropping
system, and across regions.

The studies reviewed here estimated ILUC by first estimating the fractions of specific land
types converted as a result of biofuels expansion. As economic models are generally not spatially
explicit, prior modeling efforts have used other approaches to predict the land cover types affected.
Using this method, the predicted fraction of final LUC that occurs on prior forest, grassland, or
wetland is a function of both economic modeling results and historical data on land use conversion.
The economic models predict the countries (in the case of FAPRI) or agro-ecological zones (in the
case of GTAP) in which amounts of land conversion will occur. These results are combined with
historical data on land use conversion for the identified country or zone to determine the type of
land cover likely to be affected. A weakness of this approach is that it assumes that LUC induced

yield across the modeling horizon of 2.71 anhydrous gal bu-1 (404 L Mg−1) of corn.
7These results are for the FAPRI model only. See section 8.6 for an explanation of why I excluded the FASOM

results.
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through commodity markets has the same pattern of ecosystems and carbon stocks as does the
undifferentiated average LUC observable in the historical record.

Searchinger et al estimate that 52% of the LUC resulting from corn ethanol expansion occurs
on forested land, and 48% in grassland. Hertel et al estimate that 19% of the net conversion8 to
cropland comes from forest, and 81% from pasture. I was unable to derive a corresponding division
from the USEPA analysis.

I assume that the forest conversion fraction ranges from 15% to 50% of the total LUC induced
by biofuels expansion. Given the high emission factor for wetland conversion, but lacking empiri-
cal data on the fraction of conversion from wetlands, I allow this fraction to range from 0% to 2%.
The grassland fraction is computed as 100% minus the sum of the forest and wetland fractions,
and thus ranges from 48% to 85%.

8.3.2.4 LAND CONVERSION CO2 EMISSION FACTORS

I define a parameter representing the average CO2 emissions associated with the conversion to
cropland for each of three coarse land cover classes: forest, grassland, and wetland. The models
used by CARB and USEPA use more land classes, with differentiated emission factors for forest
and grassland subtypes. The coarse values used here for the three broad land cover classes represent
area-weighted averages of emissions from these subtypes, and thus depend on assumptions of the
occurrence of conversion for each of these subtypes.

Several challenges make it difficult to accurately estimate CO2 emissions from land use changes
across large regions. The carbon stocks in the original ecosystem must be estimated and our knowl-
edge of these remains limited, particularly in the tropics (Gibbs et al., 2007). Forest inventories
are often used to estimate carbon stocks, but as pointed out by (Houghton, 2005), inventories re-
main outdated and incomplete across the tropics. In regions where estimates do exist, there can
be a wide range in estimates of total biomass, as well as disagreement as to the locations of the
most and least carbon dense forests. In addition, Houghton notes that existing estimates are largely
for undisturbed forests. Natural disturbances and human activities add further variability to these
estimates. For example, it is not clear that the average carbon stock estimate for an ecosystem is
representative of the carbon released by LUC (Houghton, 2005).

Estimating the carbon fluxes from land use conversion requires estimates of the above- and
below-ground biomass and soil carbon stocks before and after the conversion, which are all both
variable from place to place and uncertain even in a specific location (Guo and Gifford 2002;
Gibbs, Brown et al. 2007; Ramankutty, Gibbs et al. 2007). Below-ground biomass is usually
estimated using a “shoots-to-roots” ratio based on estimates of above-ground biomass, so this
skewed uncertainty applies to below-ground biomass carbon as well.

Gibbs et al. (2008) estimate CO2 emissions for conversion of various tropical land cover types
to cropland, assuming a loss of all aboveground and belowground biomass and 25% of the carbon
in the first 1m of soil. They estimate a loss of 334 to 897 Mg CO2 ha−1 for tropical forests across

8Net conversion includes a relatively small amount of reversion (15% of total area change) from pasture to forest.
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all regions, with a range of 538 to 793 Mg CO2 ha−1 for the Americas, 202 to 482 Mg CO2 ha−1

for disturbed tropical forests across all regions, and 307 to 437 Mg CO2 ha−1 in the Americas.
Fargione et al. (2008) estimate the “carbon debt” (the change in above- and below-ground carbon
stocks 50 years after conversion) associated with the conversion of several land cover types to
biofuel feedstock production. They estimate a carbon debt of 702 Mg CO2 ha−1 for lowland
tropical rainforest in Southeast Asia, and 737 Mg CO2 ha−1 for Amazonian rainforest. Based
on different economic models, but using essentially the same emission factors, Searchinger et al.
(2008a) and Hertel et al. (2010a) estimated average emissions for forest conversion of 533 and
607 Mg CO2 ha−1, respectively. For the average emission factor for forest conversion, I assume a
range from 350 to 650 Mg CO2 ha−1.

For conversion of US central grasslands to cropland Fargione et al. (2008) estimate a carbon
debt of 134 Mg CO2 ha−1. Searchinger et al. (2008a) estimate the emissions for conversion of
temperate grasslands to be 199 Mg CO2 ha−1; for tropical grasslands, they estimate 104 Mg CO2
ha−1. Gibbs et al. (2008) estimate a loss of 52 to 103 Mg CO2 ha−1 for tropical grassland, and
126 to 348 Mg CO2 ha−1 for tropical shrubland and savanna. The average values estimated by
Searchinger et al and Hertel et al for grassland to cropland were 142 and 105 Mg CO2 ha−1,
respectively. For the average emission factor for conversion of grassland to cropland, I use a range
from 75 to 200 Mg CO2 ha−1.

The emission factor for conversion of moist tropical Southeast Asian forests from the Woods
Hole data set is 1146 Mg CO2 ha−1. Fargione et al. (2008) estimate a carbon debt for conversion
of peatland tropical rainforest in Southeast Asia to be 3452 Mg CO2 ha−1. Gibbs et al. (2008)
estimate the total loss of 5876 Mg CO2 ha−1 over 120 years for the conversion of peat soils. For
wetlands, I assume emissions range from 1000 to 3000 Mg CO2 ha−1.

8.3.2.5 PRODUCTION PERIOD

The RFMI treats all ILUC emissions associated with biofuels expansion as occurring instanta-
neously at the start of biofuel expansion.9 To include these emissions in fuel regulations that assign
a GHG rating to each unit of fuel, the emissions must be attributed to each unit of fuel associated
with the expansion. This, in turn, requires an estimate of the duration of this associated production.
The simplest approach uses straight-line amortization to distribute the emissions evenly over some
number of years of biofuels production. Searchinger et al. (2008b) assumed 30 years of biofuel
production, a value which has subsequently been adopted by both CARB and USEPA in their re-
spective rulemakings (CARB, 2009a; USEPA, 2010b). However, the 30-year assumption was not
based on empirical data, but rather was chosen to avoid being criticized as too low (Searchinger,
2009). In contrast, the EU Renewable Energy Directive requires that land use change emissions be
distributed evenly over 20 years of production (European Parliament, 2009, Annex V). Note that

9 I recognize this is a simplification of the actual emission profile and have written separately on this subject
(O’Hare et al., 2009). However, for simplicity in the exposition of the present bounding analysis, I have ignored these
complexities. The effect of this omission is to somewhat underestimate the GHG effects of biofuels relative to those
of gasoline, but this effect is small relative to the uncertainty ranges examined here.
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changing the assumed production period from 30 to 20 years increases the unit ILUC emissions
value by 50%.

Some biofuels, especially those cheap or efficient to produce such as Brazilian cane ethanol,
may be produced for longer than the 30 year “anchoring” value. Although the value for this param-
eter has been a model choice in practice, it can be treated as a variable whose most representative
value is uncertain. I allow a range of 15 to 45 years.

8.4 RESULTS

Assumings parameter independence, plausible (in the range-of-possibilities sense used here) values
for the ILUC factor based on interval analysis ranged from about 10 to 370 g CO2e MJ−1, as shown
in Figure 8.1.
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Figure 8.1: Parameter (panels a-d) and result (panel e) ranges for ILUC factor for US corn ethanol.
Values identified as RFMI (red) combine to produce the highest result; values identified as rfmi
(green) produce the lowest result. RFMI = Reduced Form Model of ILUC; EPA’12 = USEPA
results for year 2012; EPA’17 = USEPA results for year 2017.

8.4.1 PLAUSIBLE FREQUENCY DISTRIBUTIONS

Figure 8.2 shows the output frequency distributions from Monte Carlo simulations based four al-
ternative parameter distribution forms. Median values ranged from 60 to 66 g CO2e MJ−1. The
widest 95% central interval (24 to 151 g CO2e MJ−1) resulted from using uniform parameter dis-
tributions; the narrowest (34 to 111 g CO2e MJ−1) resulted from using betaPERT distributions.
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Maximum values were above 260 g CO2e MJ−1 for the cases with lognormal and uniform param-
eter distributions.

Results for all choices of input distributions were qualitatively similar; the output distributions
are approximately lognormal, with a prominent right tail. The parameter ranges result from many
underlying uncertainties, and may not bracket the full range of plausible values for each parameter.
However, if we believe that values within the chosen ranges are plausible given the uncertainties,
and I assume the values are independent, then the extreme values possible from the model (10 to
370 g CO2e MJ−1) are also plausible.

The ranges here are wider than those presented by the cited studies because I combined ranges
of input parameters derived from those studies. The bounding range produced by probabilistic
combination of even the uniform distribution (Figure 3) is narrower than that produced using inter-
val calculations (Figure 2) because the likelihood of all input parameters achieving their bounding
values simultaneously in the Monte Carlo simulation is quite slim. If the number of trials were
increased, the thin portion of the right tails in Figure 3 would extend toward the maximum value
(370 g CO2e MJ−1) shown in Figure 2. While I chose to define the “plausible” range as the cen-
tral 95% interval, it’s important to recognize that the fat right tails of these distributions represent
non-zero risk of very high ILUC emissions.

8.4.2 UNCERTAINTY IMPORTANCE ANALYSIS

The land net displacement factor accounts for about half the variance in the ILUC emission factor
when the production period is allowed to vary from 15 to 45 years; the production period itself
accounts for about 35% of the total variance. With the production period fixed at 30 years, the land
net displacement factor accounts for three-quarters of the variance in the ILUC emission factor.
Figure 8.3 shows the contribution to variance for each parameter under these two assumptions
about production period.

The land net displacement factor, while represented as a single parameter in RFMI, is a de-
rived result of economic models such as FAPRI and GTAP. As discussed earlier, it is unlikely that
modelers will be able to greatly reduce the uncertainty in this parameter.

8.5 DISCUSSION

8.5.1 POSSIBLE BIASES

Factors not taken into account here may create a bias in the estimates of ILUC emissions. First
I consider factors that increase our estimate of ILUC emissions, followed by factors that could
reduce our estimate. Perhaps most importantly, many of these factors harbor considerable uncer-
tainty, so including them in the analysis may increase the range of plausible results.
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8.5.1.1 FACTORS THAT MIGHT CREATE A DOWNWARD BIAS IN ILUC ESTIMATES

Several considerations suggest the warming effect of ILUC may be higher than prior estimates.
First, owing to temporal asymmetries in the gain and loss of ecosystem carbon, the use of net

area changes results in a systematic underestimate of emissions. When forests and grasslands are
converted to cropland, or forests converted to pasture, carbon is released much more quickly than it
is regained when the land reverts to a natural state. For example, clearing tropical forests by burn-
ing releases carbon essentially instantaneously, while it takes 100-150 years for a tropical forest to
return to a carbon plateau. Economic models and satellite images estimate net land use changes at
their highest resolution, which is inevitably somewhat coarse. Using net change numerically can-
cels gains and losses of cropland, despite the asymmetry in carbon flux. Emissions from shifting
land uses below this level of resolution are therefore systematically underestimated.

Second, other known climate forcing effects induced by ILUC have not been included in esti-
mates to date, including emissions of black carbon from biomass clearing, changes in albedo, and
changes in evapotranspiration. Including black carbon would likely increase the warming effect
of ILUC (Delmas, Lacaux et al. 1995; Bond and Sun 2005), whereas including albedo is likely
to somewhat reduce the warming effect since trees tend to be darker than row crops (Thompson,
Adams et al. 2009). Adding these effects would improve model completeness and reduce system-
atic error, but it would not reduce uncertainty.

Finally, competition among biofuel feedstocks and food crops results in higher food prices and
a reduction in food demand. A flaw with an exclusive focus on GHG emissions is that a nutritional
deficit induced by higher food prices is counted as a GHG benefit (Searchinger et al., 2008a). In
their modeling of ILUC emissions from corn ethanol expansion, Hertel et al. (2010b) estimate that
holding food consumption constant increases the ILUC factor by about 40%.

8.5.1.2 FACTORS THAT MIGHT CREATE AN UPWARD BIAS IN ILUC ESTIMATES

Several factors may cause ILUC emissions to be lower than estimated by prior studies. For ex-
ample, yield on recently converted crop land may not be lower than average yield where supply is
transportation bound. That is, high-productivity land may be available that is unused because of
logistical constraints. As prices rise, these constraints may be overcome.

In some regions (e.g. Brazil), double-cropping results in higher yield elasticity than if only
single-cropping is assumed. That is, if prices increase, farmers may plant more than one crop per
season, without requiring additional land.

The baseline emissions of methane (CH4) from wetlands is eliminated when these are converted
to cropping. This avoided emission of CH4 reduces the emission factor estimated if considering
only CO2 emissions.

In general, the models and thus the parameters I derive from them assume the continuation of
existing policies. If, instead, policies were implemented to steer land conversion toward already-
disturbed land, lower emissions than those estimated would result.

Trees have generally darker than cropland, as noted earlier, so conversion of forests to crops
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increases surface albedo and produces local cooling (Thompson et al., 2009).

8.6 COMMENTS ON THE USEPA ANALYSIS FOR THE RENEWABLE FUEL

STANDARD

In their regulatory impact analysis for RFS2, USEPA combined the results of two economic
models—FASOM for domestic emissions and FAPRI for foreign emissions—to estimate the net
change in global emissions associated with different fuel pathways. After reviewing USEPA’s anal-
ysis, I chose to draw parameters for RFMI from the FAPRI model rather than from the integrated
FAPRI-FASOM results. There are three reasons for this decision. First, I was unable to recon-
struct the reported integrated results based on the spreadsheets and documents made available by
USEPA. The results from the FAPRI model, in contrast, were quite easy to extract. Second, the
FAPRI international model uses the output of the FAPRI US model—not the output of the FASOM
model—and differences between these two US models grow over the modeling horizon to produce
a notable gap by 2022. Third, the large carbon sequestration benefit estimate by FASOM in 2022
appears to be an artifact of the model which I suspect could disappear if the carbon accounting
were handled more realistically in FASOM.

I discuss these issues in more detail below.

8.6.1 MODEL INTEGRATION ISSUES

The FASOM model estimates the changes in agricultural and forestry production resulting from
a change in biofuels production, and endogenously calculates net GHG fluxes using emission or
sequestration factors associated with each activity. Changes in soil GHG fluxes are calculated
using factors developed with the DAYCENT model and incorporated into FASOM.

The FAPRI modeling system estimates the changes in agricultural production resulting from a
change in biofuel production. As FAPRI doesn’t include GHG accounting, emissions from changes
in crop and livestock production are estimated externally to FAPRI using emission factors for fuels
and agricultural inputs from GREET, and LUC emission factors developed by Winrock Interna-
tional.

Since the FASOM model estimates changes in emissions for the US, USEPA subtracts the
estimated land use changes in the US from the FAPRI results, resulting in a “foreign” emission
estimate that can be added to the FASOM results.

Although USEPA attempted to bridge the gap between the two models, the models cannot pro-
duce the same result even with identical assumptions. For example, FASOM includes the forestry
sector and models switchgrass production, while FAPRI does neither. Although the two models
predict similar area change in the US in 2012, by 2022 their projections have diverged signif-
icantly, with FASOM estimating more than double the domestic land use change estimated by
FAPRI (Figure 8.4 and Figure 8.5)
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Since FAPRI doesn’t include switchgrass, when modeling switchgrass ethanol, USEPA sub-
tracted the area projected by FASOM to be planted in switchgrass from the available area in FAPRI
and re-equilibrated FAPRI to produce results for the analysis outside the US. However, in the case
of corn ethanol, the corn-only case (i.e., reducing corn ethanol from the RFS2 level to the baseline
level) results in a loss of corn acreage, and as a side-effect, a loss of corn stover collection. In
place of stover, FASOM projects that 2.8 million tons of switchgrass would be produced to meet
the cellulosic mandate in RFS2. However, in this case, USEPA did not adjust the FAPRI US model
to account for the production of switchgrass.

Because of this interaction between corn grain and stover, the USEPA emission estimate for
corn (grain) ethanol is meaningful only in the context of the RFS2 cellulosic biofuel requirement.
If, say, cellulosic ethanol comes to market more slowly than anticipated and Congress modifies the
RFS2 mandate, the projected planting of switchgrass would be incorrect, and a new value would
need to be calculated for corn ethanol.

8.6.2 QUESTIONS ABOUT GHG ACCOUNTING

8.6.2.1 GHG BENEFITS OF REDUCED TILLAGE

There is mounting evidence that the assumed carbon sequestration benefit of no-tillage over con-
ventional tillage may be an artifact of shallow sampling depth (Baker et al., 2007; Gál et al., 2007;
Blanco-Canqui and Lal, 2008; Yang et al., 2008; Batlle-Bayer et al., 2010). Baker et al. (2007) con-
clude that while “there are other good reasons to use conservation tillage, evidence that it promotes
C sequestration is not compelling.”

FASOM incorporates from DAYCENT emission factors for soil GHG fluxes. The specifics
of these factors and where exactly they are applied has not been documented by USEPA. Six
et al. (2004) conclude that conversion to no-till can increase N2O emissions for decades, result-
ing in a net increase in global warming potential—even assuming no-tillage results in carbon
sequestration—yet it’s unclear whether FASOM accounts for this. The large CO2e benefit FA-
SOM assigns to conversion to no-till seems to indicate that this N2O effect is not included.

8.6.2.2 FOREST CARBON SEQUESTRATION

The FASOM projections published by USEPA show large swings in forest carbon sequestration
and release over the time-steps modeled. For example, for corn ethanol in 2022, FASOM predicts
that non-combustion GHG emissions are net negative: 74 million tonnes of CO2 are sequestered
domestically as a result of corn ethanol expansion. The single largest factor is “C in afforested
forest above-ground biomass (w/o Litter)”, with projected sequestration of 99 million tonnes of
CO2. In addition, “C in cropped and pasture ag soil” accounts for sequestration of 29 million tonnes
CO2. On the emission side, “C in continuous and afforested forest soils” and “C in continuous
forest above-ground biomass (w/o Litter)” account for the release of 14 million and 38 million
tonnes CO2, respectively. The FASOM total includes a few categories of much less consequence.
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The 99 million tonnes sequestered through afforestation results from the increased sequestra-
tion in the corn case of 115 M tonnes CO2 versus the sequestration of 19 M tonnes CO2 in the
baseline case. The changes projected by FASOM at the 5-year time-steps are illustrated in Figure
8.6. The 99 M tonnes sequestered in 2022 represent a strong departure from the trend otherwise
apparent in the model results. Figure 8.6 shows the changes in carbon in biomass associated with
afforestation. The corn-only case (blue line) shows a very sharp peak in 2022, while the base-
line case (red line) showed a sharp drop, resulting in a large sequestration benefit for corn ethanol
(green line).

The only year in which FASOM projects sequestration of CO2 from afforestation is 2022; all
other years register net emissions. In years subsequent to 2022, the sequestration is reversed, with
relatively large positive emissions for 30 years following the end of the RFS2 program.

FASOM tracks the annual flows of carbon into and out of various biomass and soil categories.
Sequestration in biomass and soil is assigned a negative value, and emissions to the atmosphere
are assigned a positive value. These flows are summed in each time period, treating emissions and
sequestration as equivalent—regardless of the duration of the sequestration. The capture of one
ton of carbon in a tree results in a full sequestration benefit credited in the year in which it occurs,
even if the carbon is released the following year.

Accounting for flows without regard to the atmospheric residence time of CO2 or the reversibil-
ity of sequestration in natural systems overstates the value of temporary sequestration and under-
states the cost of re-release.10 The large sequestration registered in 2022 is mostly reversed in
2027, suggesting that the sequestration value of that temporarily captured CO2 is very small. Con-
sidering a 100-year time horizon, Moura Costa and Wilson (2000) conclude that CO2 must be
sequestered for 55 years to reach equivalence with avoiding emission of the same quantity of CO2,
given the residence time of CO2 in the atmosphere. This suggests that giving full equivalence to
CO2 stored for only 5 years overstates the value of the sequestration by a factor of 10.

8.7 CONCLUDING REMARKS

Several critics of ILUC modeling have suggested that the uncertainty inherent in estimates of
ILUC emissions should disqualify these estimates from fuel regulatory efforts such as California’s
LCFS and the US renewable fuel standard (e.g. Greenwood, 2008; Simmons et al., 2008). This
perspective views uncertainty as a flaw in the modeling process that must be corrected before
policy can be developed (van der Sluijs et al., 2005). For example, an amendment attached to the
American Clean Energy and Security Act of 2009 (H.R. 2454) in the US House of Representatives
would excise international ILUC emissions from the GHG accounting protocol in the renewable
fuel standard, and require a five-year National Academies of Science study to determine whether
models can project international LUC emissions “with reliability, predictability, and confidence”

10Many farmers who have used Monsanto’s Roundup herbicide (glyphosate) for years are now plowing up fields
previously managed without tillage, in an effort to eradicate glyphosate-resistant “super weeds” (Neuman and Pollack,
Neuman and Pollack). Plowing these fields reverses any sequestration benefits from no-tillage.
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(Peterson, 2009). As these terms are left undefined, the awkward implication of ignoring ILUC
because of uncertainty is that estimates of the direct emissions from fuel life cycles may also be
inadmissible for policymaking, as considerable parameter and model uncertainties are present in
all life cycle assessments (Finnveden, 2000; Björklund, 2002).

Ignoring ILUC emissions is equivalent to assigning a value of zero to this effect. If estimates
of the effect were (i) centered symmetrically (ii) at zero—that is, if the most likely and expected
values were zero—and (iii) if the cost of error were symmetrical across zero, it might be reason-
able to ignore ILUC emissions. However, our analysis and the modeling studies discussed herein
suggest that ILUC emissions for corn ethanol are not best approximated by zero, whatever esti-
mator is used. Several studies have projected significant ILUC emissions associated with other
food-competitive feedstocks such as soybeans, rapeseed, sunflower, wheat, palm oil, and switch-
grass (CARB, 2009a; Al-Riffai et al., 2010; USEPA, 2010b). The estimates of ILUC emissions
for corn ethanol of 30 g CO2 MJ−1 by CARB and 34 g CO2e MJ−1 by USEPA (for 2022) are at
the low end of the plausible range; a value at least five times as large is also plausible. Excluding
ILUC from these regulatory efforts provides only specious precision, and could result in perverse
policy outcomes.

The presence of irreducible and broad uncertainty in estimates of the life cycle GHGs from bio-
fuels highlights the limitations of performance-based regulations based on point estimates. Given
these limitations, policies that deal explicitly with the risk posed by potentially high ILUC emis-
sions might be more appropriate. Consideration of these risks has led to calls to slow the expansion
of biofuels until these risks can be reduced (Gallagher, 2008; Florin and Bunting, 2009). One clear
way to narrow the uncertainty and reduce the risk of large ILUC emissions would be to discour-
age biofuel feedstocks that compete with food for land, and to encourage others such as wastes,
residues, and certain algae production systems. However, even these can have indirect effects that
must be considered (Brander et al., 2009).
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Figure 8.2: Frequency distributions for four Monte Carlo simulations of ILUC emissions for US
corn ethanol using (i) betaPERT, (ii) triangular, (iii) lognormal, and (iv) uniform distributions for
model parameters. The green boxes in the upper half show the interquartile range; the line across
the box indicates the median. The ends of the whiskers show the maximum and minimum values
and the crossbars identify the 95% central interval, i.e., the 2.5 and 97.5 percentile values. The
blue curves in the lower half show the shape of the same frequency distributions.
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Figure 8.3: Contribution to variance of reduced-form model parameters. The top bar shows the
results for a fixed 30-yr production period, while the bottom bar shows results with production
period varying from 15 to 45 years, with all parameters represented by uniform distributions.

Figure 8.4: Estimates of land use change (LUC) from corn ethanol expansion under RFS2, based
on the FASOM model for the US and the FAPRI model for the rest of the world.
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Figure 8.5: Estimates of land use change (LUC) from corn ethanol expansion under RFS2, based
on the FAPRI model.
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Figure 8.6: Changes in ”C in afforested forest above-ground biomass (w/o Litter)” as projected in
FASOM for RFS2. Positive values indicate emissions to the atmosphere; negative values indicate
sequestration in biomass. Note that “corn only” represents meeting all RFS2 mandates except that
corn ethanol is produced at the lower baseline level. (Source: Author’s calculations from FASOM
results spreadsheet in the USEPA’s RFS2 docket.)
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PART IV

CONCLUSION
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CHAPTER 9

UNCERTAINTY IN THE SCIENCE-POLICY INTERFACE

“Management and regulatory agencies would be far better off, and far more transpar-
ent, were they to acknowledge, consider, and document these value-based judgments
than to pretend that the decision making framework is objective and value-free.”

Gregory et al. (2006)

9.1 PURPOSE AND SCOPE

A frequent response to concerns about uncertainty in LCA-based regulations is that “all regulations
involve uncertainty.” Although true, this statement denies potentially important differences in the
magnitude and nature of uncertainty. In the first section of this chapter, I examine the nature of
the uncertainty in several environmental regulations to determine whether LCA-based regulations
present a similar or greater challenge. In the second section, I present several (abstract) strategies
for coping with uncertainty and explore how these strategies have been applied in the regulatory
process of the LCFS.

9.2 UNCERTAINTY IN PERFORMANCE-BASED REGULATIONS

All regulations involve some degree of uncertainty, however the nature of uncertainty varies widely
among regulations. Performance-based regulations are based on an assumption that controlling a
given performance metric will achieve a desired regulatory outcome. Thus with performance-
based regulations there can be uncertainties both in the estimate of the performance metric, i.e.,
metric uncertainty, as well as in the accuracy with which the metric represents the effect the policy
is intended to address, i.e. proxy uncertainty.

Here I use the examples of several well-known environmental policies to contextualize the
uncertainty in LCA-based fuel policies.
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9.2.1 ACID RAIN PROGRAM

GOAL. Reduction of acid rain.1

PERFORMANCE METRIC. Tons of SO2 and NOX emitted by the electric power sector.

METRIC UNCERTAINTY. The quantity of interest is observable from smokestacks and measurable
in real-time using continuous emission monitoring systems, or in some cases using approved emis-
sion estimation methods (discussed further under Treatment of uncertainty). Regulated sources
report hourly emissions of SO2, NOX, and CO2. Estimation uncertainty involves measurement
error and temporal variability.

PROXY UNCERTAINTY. Proxy uncertainty is low since the mechanisms causing acid rain are well-
understood and the magnitude of the effect is directly related to the quantity of SO2 and NOX
emitted. Coal-fired power plants are responsible for two-thirds of SO2 emissions.

TREATMENT OF UNCERTAINTY. Continuous emission monitoring systems are considered reason-
ably accurate. Estimation procedures apply assumptions believed to generally overestimate actual
emissions, thereby incorporating the additional uncertainty associated with estimation (Napolitano
et al., 2007).

9.2.2 CLEAN AIR ACT: PARTICULATE MATTER

GOAL. Reduction of damage to human health from inhalable coarse particles 10 microns and
smaller (PM10) and fine particles 2.5 microns and smaller (PM2.5).2

PERFORMANCE METRIC. Sources are numerous and mobile, thus particulate matter is regulated
via ambient air quality standards, with maximum (average) levels for 24-hour and 1-year intervals.
For example, the 2006 update to the standard requires that the 3-year average of the weighted
annual mean PM2.5 concentrations from single or multiple community-oriented monitors must not
exceed 15µg m3, and the 3-year average of the 98th percentile of 24-hour concentrations at each
population-oriented monitor within an area must not exceed 35µg m3.

METRIC UNCERTAINTY. Particulate matter concentrations are observable and measurable, and
subject to measurement error, as well as temporal and spatial variability. Average measurements
depend on the location and frequency of measurement, and thus may vary from the concentrations
actually experienced by the population.

PROXY UNCERTAINTY. The Clean Air Act requires EPA to set air quality standards that protect
public health with “an adequate margin of safety.” Specific ambient pollution levels at which
“adequate safety” is achieved are uncertain, and concentration-response relationships vary across
individuals. Particle concentration may not be the best proxy for harm since different chemical
species can have different human toxicological properties.

1See http://www.epa.gov/airmarkets/progsregs/arp/basic.html for information on the Acid Rain Program.
2See http://www.epa.gov/oar/particlepollution for more information.

http://www.epa.gov/airmarkets/progsregs/arp/basic.html
http://www.epa.gov/oar/particlepollution


141

TREATMENT OF UNCERTAINTY. Uncertainty in the metric is addressed by using the 98th per-
centile of 24-hour concentrations as the estimator, rather than using a central estimator such as
mean or median. Safety margins were established based on a cost-benefit analysis that incorpo-
rated sensitivity analysis and Monte Carlo simulation based on expert elicitation of probability
distributions, e.g., for concentration-response relationships.

9.2.3 KYOTO PROTOCOL

GOAL. The goal of the Kyoto Protocol3 (KP) is the avoidance of “dangerous anthropogenic inter-
ference” in the earth’s climate system, as stated in the United Nations Framework Convention on
Climate Change.

PERFORMANCE METRIC. Nations listed in Annex I of the KP must reduce their net direct emis-
sions of “aggregate anthropogenic carbon dioxide equivalent emissions of the greenhouse gases”.
In practice, carbon dioxide equivalence means that the net emissions of each regulated gas is
weighted by its 100-year GWP value.

METRIC UNCERTAINTY. Emissions other than from agriculture are dominated by CO2, most of
which results from the combustion of fossil fuels and is thus relatively certain (Rypdal and Wini-
warter, 2001; USEPA, 2009b). The main uncertainties involve estimating emission factors and
activity levels for heterogenous sources across large geographic areas. Emissions from natural
processes, e.g., CH4 and N2O from agriculture, and biotic carbon fluxes, are highly variable spa-
tially and temporally. For the GHGs included in the KP, the IPCC assigns ±35% uncertainty
(defining a range of ±2 standard deviations) to GWP values. For inventories dominated by CO2
emissions, GHG inventory uncertainty is relatively low. For example, for the US, in which CO2
comprises about 85% of total GHG emissions, the 95% confidence interval for the 2007 national
GHG inventory (net of sources and sinks) was estimated to be -3% to +7% (USEPA, 2009b, p.
1-15). Uncertainties in emission trends are estimated to be ±4− 5% (Rypdal and Winiwarter,
2001).

PROXY UNCERTAINTY. GHG inventories are based on political boundaries, and thus subject to
leakage to non-Annex I countries. The set of emissions regulated under the KP does not include
known climate-active emissions such as aerosols or changes in biogeophysical effects such as
albedo. The GWP method masks trade-offs between emissions with stronger long- or short-term
forcings (Jackson, 2009), and truncates CO2 effects at the end of the chosen time period, though
much of the gas lingers in the atmosphere for centuries (Archer et al., 2009).

TREATMENT OF UNCERTAINTY. Parties to the agreement are encouraged, but not required, to
propagate uncertainty through their national GHG inventories. To date, uncertainty is not factored
into compliance monitoring or emission trading mechanisms. The issue of uncertainty in national
GHG inventories has long been discussed in the literature (e.g., Parkinson et al., 2001; Gupta

3See http://unfccc.int/resource/docs/convkp/kpeng.html.

http://unfccc.int/resource/docs/convkp/kpeng.html
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et al., 2003; Nahorski and Horabik, 2008), and there are ongoing international forums focused on
bringing this information into the KP and any successor agreements.

9.2.4 LOW-CARBON FUEL STANDARD

GOAL. Reduction of climate change impacts from the transportation sector.

PERFORMANCE METRIC. Life cycle emissions of three GHGs: CO2, CH4, and N2O, aggregated
to CO2-equivalents using 100-year GWP values defined by the IPCC. In the case of RFS2 and the
California LCFS, “life cycle emissions” is defined to include indirect emissions such as those from
ILUC.

METRIC UNCERTAINTY. For direct emissions, metric uncertainties includes those identified for
the Kyoto Protocol, plus uncertainty related to identifying all components of the supply chain. By
including indirect emissions, we add all the uncertainties associated with economic modeling and
projections into the future. Results are highly variable, unobservable, and require estimation of
potentially large, very uncertain indirect effects. The difference in estimates of life cycle GHGs
for individual fuels may be larger than the change a policy like the LCFS is attempt to induce.

PROXY UNCERTAINTY. Proxy uncertainties include those of the Kyoto Protocol. In addition,
the need to convert an up-front stock change from ILUC emissions into a per-MJ flow, requires
more complex time accounting than does an annual GHG inventory. Retaining a simple sum-of-
emissions approach with time-varying emissions creates proxy bias in favor of biofuels (O’Hare
et al., 2009). The size of biofuel programs violates the ceteris paribus assumptions underlying
attributional LCA, creating additional proxy uncertainty. Fuel substitutions are subject to leakage
(particularly reshuffling and the petroleum rebound effect) that is not captured in the performance
metric.

TREATMENT OF UNCERTAINTY. Uncertainty is not addressed in this regulation.

9.2.5 COMPARISON OF POLICIES

As these examples demonstrate, LCA-based regulation of fuels is more complex and uncertain than
other forms of environmental regulation. So while it’s true that all of these policies involve uncer-
tainties, LCA-based fuel policies involve greater uncertainty both in estimating the performance
metric and in the relevance of the metric to the policy goal.

Table 9.1 presents subjective estimates of the levels of metric and proxy uncertainty in the four
policies considered. Proxy uncertainty is medium for the Kyoto Protocol since it regulates CO2-
equivalent flows, while climate forcing is a function of atmospheric stock, thus the path to final
reductions matters but is not captured by the KP. Uncertainty is relatively low for the Acid Rain
Program, which targets immediate, measurable concentration levels related to current emissions
(Pizer, 2005), and strong scientific evidence links SO2 emissions with acid rain. The LCFS and
RFS2 share these uncertainties, but in addition, agricultural systems affected directly and indirectly
by biofuel feedstock production involve effects such as changes in albedo and evapo-transpiration
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that are not captured in the proxy. This is also be true under the KP, but this limitation applies
mainly to nations whose predominant GHG emissions are from agriculture and natural systems,
however the (Annex I) countries regulated under the KP are more developed countries whose
emissions are mainly from the combustion of fossil fuels.

Fuel GWI—the 100-year CO2-equivalence of the life cycle emission of three gases—is poorly
known, owing to pervasive data, parameter, and model uncertainty associated with the post facto
reconstruction of the supply chain and the estimation of indirect effects. Metric uncertainty is
therefore higher for LCFS and RFS2 than for policies relying only on direct measurements. In
addition, the adequacy of this proxy (even if it were perfectly known) is uncertain as the proxy
includes only a portion of the climate-forcing effects of fuel production and use, and the specific
climate forcing, temperature change, and damages associated with each fuel would be uncertain
even if the proxy were perfectly known.

Additional uncertainties affects both the RFS2 and LCFS proxies. In the RFS2 case, USEPA
has chosen to regulate near-term biofuels based on projected 2022 improvements (USEPA, 2010b).
Based on USEPA’s own estimates, near term fuels have much higher GWI ratings than they are
projected to have in 2022, thus the ratings used are not only uncertain, but clearly biased downward
(Plevin, 2010). In the LCFS case, the performance metric mixes attributional and consequential
approaches, ignores several non-negligible indirect effects that are included in the RFS2 analysis,
and fails to account for substantial leakage.

To comply with the “safety margin” required by the Clean Air Act, USEPA estimates particu-
late concentrations using the 98th percentile value rather than the mean or median value. Despite
the demonstrably greater uncertainty in estimating the climate effects of fuels, neither the RFS2
nor LCFS include any safety margin, implicitly treating estimates of fuel GWI as precise. CARB
(2009a, p. ES-32) writes that AB 32—the law under which the LCFS is authorized—requires that
emissions reductions be “real, permanent, quantifiable, verifiable, and enforceable.” It’s hard to
make the case that the LCFS meets these requirements.

Table 9.1: Comparison of uncertainties in performance-based environmental policies. Values rep-
resent author’s subjective appraisals.

Policy Metric uncertainty Proxy uncertainty

Acid rain program Low Low

PM2.5 standards Low Medium

Kyoto Protocol Low Medium

RFS2 High High

LCFS High High

In contrast to the metrics used in the other performance-based environmental policies discussed
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above, LCA methods are recognized as being incapable of establishing the objective truth about
the environmental performance of products as complex as transportation fuels (Finnveden, 2000;
ISO, 2006b). Uncertainty is indeed a common feature of environmental regulation. However, the
degree of uncertainty differs widely among environmental performance measures. As a result,
policies differ in their robustness to uncertainty.

9.3 STRATEGIES FOR COPING WITH UNCERTAINTY

The deep uncertainties such as those prevalent in estimates of biofuel GWI can blur categories that
are usually considered distinct—knowledge versus ignorance, objective versus subjective, facts
versus values, prediction versus speculation, science versus policy—creating “monsters” in the
science-policy-interface (van der Sluijs, 2005). The scientific community (including policymakers
relying on scientific judgement) can respond to these monsters using a variety of coping strategies.
Van der Sluijs identifies four styles of treating uncertainty: monster exorcism, monster adaptation,
monster embracement, and monster assimilation. Here I review how these coping strategies have
been used in the public review processes for the LCFS and RFS2.

MONSTER EXORCISM. This style views science as capable of producing unambiguous truths. In
this context, uncertainty is an aberration that should be expelled, and the focus of research should
be to reduce uncertainties. Examples of this perspective were evident related to the LCFS and
RFS2. In 2008, a group of biomass and biofuel researchers wrote to CARB chairwoman Mary
Nichols to recommend that CARB leave ILUC emissions out of the LCFS protocol. Simmons
et al. (2008) wrote:

We propose that a sound policy approach would be to base the initial LCFS on existing
data sets that possess scientific consensus. These include the direct impacts of renew-
able biofuels production. The scientific and economic communities can then take ad-
vantage of the necessary time over the next five years to fully understand, gather, and
validate the indirect impacts of biofuels production with empirical evidence that will
enable the implementation of a sound policy that can address any indirect impacts.

From this perspective, a more “sound” policy would be achieved when uncertainty has been
reduced or vanquished, and “scientific consensus” has been achieved. Similarly, US House of
Representatives agricultural committee chairman Colin Peterson proposed a climate bill amend-
ment requiring a five-year National Academies study that would study whether models existed
that could “project with reliability, predictability, and confidence” the emissions from international
ILUC induced by biofuels (Peterson, 2009). Until such time, international ILUC emissions would
be excluded from the RFS2 analysis.

In fact, this approach is consistent with the general practice in LCA of excluding highly uncer-
tain climate effects such as those of black carbon, sulfates, indirect GHGs, biogeophysical effects,
and indirect economic effects (Delucchi, 2010). Unfortunately, willfully ignoring uncertain effects
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provides only the illusion of certainty. In fact, the existence of these uncertain effects indicates
that our knowledge of the climate costs or benefits of many fuel alternatives is uncertain; ignoring
these effects doesn’t make it otherwise

Van der Sluijs notes that regulators may choose to hide or downplay uncertainty out of fear that
the explicit recognition of uncertainty would leave them liable to legal challenges. This points to
the implicit burden-of-proof borne by the regulator: in the US, products are generally considered
“innocent” unless proven “guilty”. Doremus (2005) writes that appeals to precaution must start
with openly conceding the uncertainties in the existing science. She writes:

“Conservationists have been loathe to admit to uncertainty. Perhaps they would be
more willing to take that plunge if they understood that doing so would enhance their
ability to appeal to precaution without ceding the political power of their claim to be
seeking scientifically legitimate regulatory decision making.”

A more precautionary approach would reverse the burden of proof, as does the European Com-
munity’s Registration, Evaluation, Authorisation and Restriction of Chemical substances (REACH)
regulations on industrial chemicals.4 REACH requires that manufacturers of industrial chemicals
evaluation and demonstrate that their products do not pose undue risks to health or the environment.
When there is high uncertainty, the party bearing the burden-of-proof is placed at a disadvantage.
For example, if biofuel producers were required to demonstrate the avoidance of ILUC, they would
face precisely the same uncertainties currently confronting CARB and USEPA.

MONSTER ADAPTATION. This style attempts to transform the monster so that it fits better in ex-
isting categories, typically by quantifying uncertainties. If there is no objective, empirical basis for
quantifying uncertainties, subjective estimates are used. This approach may also attempt to draw
clear distinctions between knowledge and ignorance, for example by creating subjective scenarios
within which a model based on “objective science” can be evaluated. Some “adapters” are un-
comfortable with even this much ambiguity, requiring that probabilities be assigned to scenarios to
allow their combination into a single distribution describing the phenomenon of interest.

Examples of this approach abound. The IPCC recommends the quantification of uncertainty in
its GHG inventory guidelines (IPCC, 2000). EPA guidelines recommend quantification of uncer-
tainty in regulatory environmental modeling (USEPA Science Advisory Board, 2006; NRC, 2007).
The LCA standard, ISO 14040, recommends quantification of uncertainty in life cycle analysis
(ISO, 2006b). Underlying these guidelines is the assumption that uncertainty can be meaningfully
rendered into probability distributions.

MONSTER EMBRACEMENT. This approach includes using uncertainty to deny the reality of en-
vironmental risks, and is frequently used to avoid regulation by framing uncertainty as a failure of
science (Doremus, 2005). This strategy was prevalent in stakeholder responses to the estimation
of ILUC emissions in both the LCFS and RFS2 processes. Strategic embracement of uncertainty
has certainly been a main strategy of climate change deniers.

4See http://ec.europa.eu/environment/chemicals/reach/reach intro.htm for more information on REACH.

http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm
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MONSTER ASSIMILATION. This style assimilates uncertainty into the management of environ-
mental risks, for example by recognizing that consensus about the truth of complex environmental
risks is unlikely. In the case of fuel policy, if we were to recognize that uncertainty in LCA often
precludes clear determination of the relative environmental effects of different fuels, we might con-
sider regulatory approaches that focus on risk, perhaps using qualitative assessments rather than
relying solely on quantification.

Recognizing the high level of uncertainty in estimating ILUC emissions, the Gallagher review
of the indirect GHG emissions from biofuels (Gallagher, 2008) for the UK Renewable Transport
Agency concluded that “the balance of evidence shows a significant risk that current policies will
lead to net greenhouse gas emissions and loss of biodiversity”. Gallagher (2008) recommended
slowing down the expansion of biofuels until a better understanding was developed, and promoting
biofuels that avoided competition with food to limit the risk of high ILUC emissions. Florin and
Bunting (2009) concur, suggesting that given the high level of uncertainty, governments should
“take their foot off the accelerator” to provide time to better understand and fully consider the risks
of expanding biofuel production.

9.4 ADAPTING FUEL STANDARDS TO UNCERTAINTY

Fuel climate policies can incorporate uncertainty in GWI either by (i) revising standards such as
the LCFS and RFS2 that were designed without regard to uncertainty, or (ii) designing new poli-
cies that respect the limits of our ability to estimate GWI. Sections 9.4.1 and 9.4.2 present two
approaches to incorporating uncertainty into regulations that currently rely on point estimates of
GWI. Section 9.5 considers alternative regulatory approaches that recognize that we can’t accu-
rately quantify the GWI of many fuel pathways.

9.4.1 POLICIES USING THRESHOLD TESTS

Policies that require a comparison of a performance metric against a threshold (or baseline) can
incorporate uncertainty most simply by propagating uncertainty through the computation of the
performance metric and using a probabilistic comparison rather than comparing point estimates.
This approach immediately raises the question of how certain we need to be of meeting a given
threshold. For example, if the median value from the output distribution of the performance met-
ric just meets the threshold, there is a 50% chance that performance fails to meet the threshold.
This may not be deemed adequate assurane of policy outcomes. Increasing the required level of
certainty reduces Type I errors (i.e., reduces the chance of assigning unwarranted climate benefits)
while increasing Type II errors (i.e., increasing the chance of rejecting valid climate benefits.) Re-
quiring any level certainty greater than 50% provides incentives to reduce the penalty associated
with uncertainty (Gupta et al., 2003).

The choice of certainty level is a value-based judgment about which reasonable people will
disagree. Gupta et al. (2003) reviews several judicial interpretations of uncertainty levels (table
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9.2, derived from Weiss 2003) to suggest that requiring a minimum certainty of 67% would be
appropriate for compliance with the Kyoto Protocol, and consistent with legal reasoning.

Table 9.2: Judicial interpretation of uncertainty levels (Source: Gupta et al., 2003).

Percentage of
probability

IPCC “scien-
tific” uncer-
tainty

Juridical description of
uncertainty

Legal action that requires
this level of probability

99% Virtually certain Beyond reasonable
doubt

Criminal conviction

90–99% Very likely Clear and convincing
evidence

Quasi-penal civil actions

80–90% Likely Clear showing Granting temporary in-
junctions

67–80% Likely Substantial and credible
evidence

Evidence for impeachment

9.4.1.1 INCORPORATING UNCERTAINTY IN THE LCFS AND RFS2

In both the LCFS and RFS2, fuel GWI is computed as a point estimate using assumed best esti-
mates of values for all model parameters. For the RFS, compliance for each fuel pathway is based
on a comparison of (i) the point estimate GWI for the fuel and (ii) the designated reduction from
the 2005 petroleum fuel baseline, e.g., the GWI of cellulosic ethanol must not exceed 40% of the
GWI of 2005 gasoline. Compliance is binary; there is no additional benefit for exceeding the
requirement.

In the LCFS, fuel pathways are likewise assigned a point estimate GWI rating, however, com-
pliance is determined by comparing to a designated target the AFCI (Average Fuel Carbon Inten-
sity, i.e., the energy-weighted average GWI) of fuels sold by each regulated party. Thus, compli-
ance with the LCFS is also based on a binary test of AFCI versus a threshold. However, in the
LCFS, we can incorporate uncertainty either at the fuel pathway level or the AFCI level.

To incorporate uncertainty, the threshold comparison can be handled by computing a proba-
bility distribution representing the likelihood that the threshold has been met. For example, in a
Monte Carlo simulation it would be possible to compute GHGbio f uel−GHGgasoline

GHGgasoline
and then determine

the portion of the distribution below the reduction threshold of, say, 60%.
Finally, to be meaningful, this approach requires inclusion of all major uncertainties in the

output frequency distribution. Otherwise, the distribution will be unrepresentative of the actual
uncertainty and any conclusions drawn from will be misleading. For example, in its regulatory
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impact analysis for RFS2, USEPA (2010b) compared frequency distributions for biofuels with
the required reduction thresholds, but these distributions included only uncertainties in the remote
sensing and carbon accounting portions of the model (Plevin, 2010). Figure 9.1 is taken from
the Regulatory Impact Analysis for RFS2, showing a frequency distribution for the percentage
reduction in corn ethanol GWI versus the required 20% reduction threshold. As demonstrated in
chapter 8, uncertainties in the economic modeling dominate the uncertainty in estimates of ILUC
emissions, yet these uncertainties were not included in USEPA’s fuel GWI distribution. As a result
these distributions are not appropriate for the purpose of determining the probability of compliance.

Figure 9.1: Distribution of 2022 corn ethanol GWI reduction relative to 2005 gasoline (for natural
gas fired facilities producing 63% dry and 37% wet DGS, with fractionation). (Source: USEPA,
2010b, PDF p. 480).

9.4.2 POLICIES USING ABSOLUTE RATINGS

Some policies require assigning specific values to the climate effects or benefits of projects or
products. Examples include (i) the LCFS, (ii) the Kyoto Protocol’s Clean Development Mechanism
(CDM), by which Annex I countries can offset their emissions through the purchase of emission
reduction credits from certified projects in non-Annex I countries, and (iii) the REDD program,
discussed earlier, which offers similar credits for the protection of forests.
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Uncertainty can be incorporated into performance absolute ratings by applying the “conserva-
tiveness approach” to ratings (UNFCCC, 2006; Mollicone et al., 2007; Grassi et al., 2008). Under
this approach, project performance is estimated probabilistically, and an environmentally conser-
vative value is chosen from the uncertainty distribution. In the context of REDD, conservativeness
means that “when completeness or accuracy of estimates cannot be achieved, the reduction of
emissions should not be overestimated, or at least the risk of overestimation should be minimized”
(Mollicone et al., 2007). For policies rating fuel GWI, such as the LCFS, a conservative value
would be a high one. If the baseline petroleum fuel were treated as uncertain, a low value would
be conservative.5 Using a conservative estimate financially penalizes uncertainty, thereby encour-
aging better data collection (Brown, 2002; Grassi et al., 2008).

A straightforward way to incorporate uncertainty into the LCFS would be to estimate the GWI
of each fuel probabilistically, rating each fuel at its, say, 75th percentile value.6 This approach
implicitly places a higher value on reducing GHG emissions than on minimizing costs of compli-
ance, as the use of higher percentile values may result in the elimination of some climate change
mitigating options, requiring the use of more expensive alternatives. The cost-benefit tradeoffs
of different estimators for the LCFS would be technically difficult to analyze, as it would require
a sophisticated techno-economic model and would be burdened with all the uncertainties noted
herein as well as those related to the economics of climate change.

9.5 ASSIMILATING UNCERTAINTY INTO FUEL CLIMATE POLICY

A challenge to using either of the approaches described above in fuel GHG policies is the require-
ment to produce a single frequency distribution describing fuel GWI. While this is fairly straight-
forward for national GHG inventories, which count historical, observable, direct GHG emissions,
life cycle estimates of fuel GWI involve future, unobservable, indirect emissions, rendering these
estimates highly scenario-dependent and subject to epistemic uncertainty. To produce a single fre-
quency distribution we can therefore either model one out of possibly many plausible scenarios,
or we must somehow aggregate distributions produced for multiple scenarios into a single distri-
bution. The choice of scenarios and aggregation method are necessarily highly subjective. As a
result, both the frequency distribution and the choice of estimator are likely to generate as much
debate as have point estimates of ILUC emissions.

An alternative to policies requiring accurate quantification or even production of reliable fre-

5It is not useful treat the baseline as uncertain in the LCFS or RFS2. Both policies use a fixed baseline (2005 for
RFS2, 2010 for LCFS) against which reductions must be achieved. If the alternative fuels in question were replacing
the baseline fuel, the GHG benefit of using the alternative fuel would be the difference between the emissions from
that fuel and the baseline fuel, net of the rebound effect, as per equation 10.2. However, since the baseline is fixed,
and the policies require reductions out to 2020 (LCFS) and 2022 (RFS2), the alternative fuels do not replace the
designated baseline fuel. Moreover, in both policies, the GWI of the baseline fuel serves only to establish an arbitrary
performance target (e.g., a 10% reduction relative to 2010 fuels for the LCFS), so precision in the estimation of the
baseline GWI is of little relevance.

6This idea is explored in more detail in §10.5.1.1.
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quency distribution of GWI, would be to distinguish biofuels qualitatively. Biofuels that compete
with highly demand-inelastic good like food and feed pose a substantial risk of causing higher
GHG emissions than do petroleum fuels (and contribute to increasing global food prices.) One
approach to reducing this risk would be to replace food-competitive biofuels with lower-GWI,
second-generation biofuels as technologies to process lignocellulose become commercially viable.
This is distinguished from RFS2, which expands both corn-based ethanol and advanced biofuels.

Besides replacing higher-risk biofuels with lower-risk ones, this approach can avoid two prob-
lems associated with supply-side fuel policies, namely the petroleum rebound effect and mar-
ket reshuffling. As detailed in chapter 10, increasing domestic biofuel supplies reduces domestic
petroleum demand, which results in a slight decline in the global price of petroleum and thereby
causes an increase in consumption relative to a no-biofuels scenario; these market-mediated GHG
emissions are conceptually no different those from ILUC and should thus counted when estimating
the benefits of a fuel GHG policy. Under incomplete regulation, market reshuffling, i.e., merely dis-
placing rather replacing high-GWI fuels, can reduce or negate the apparent gains from the LCFS.

Replacing existing corn ethanol with low-GWI cellulosic biofuels would offer a number of
benefits:

1. Fuel could be produced from wastes and residues, freeing up land currently producing corn
for ethanol.

2. Some of the newly-available land could be used to produce higher-yielding cellulosic feed-
stocks, resulting in soil carbon sequestration as well as reductions in nitrogen fertilization
and reduced leaching to waterways.

3. By replacing an existing fuel, rather than expanding fuel supply, the rebound effect would
not be induced.

4. By replacing an existing fuel, the corn ethanol would not simply be reshuffled to non-
compliant markets. This, however, would require that corn ethanol production be phased
out, much like leaded gasoline and MTBE.

I recognize this to be a political nonstarter given the financial interests involved, as well as the
political interest in producing alternatives to petroleum to enhance energy security. This tension
highlights the climate-versus-security tradeoff surrounding the production of high-GWI fuels (in-
cluding those derived from oil sands, oil shale, and coal, as well as some biofuels). These tradeoffs
are largely absent for demand-side solutions. Reducing overall transportation energy use—whether
through behavior changes, mode shifting, or energy efficiency—reduces GHG emissions (with pol-
lution reduction co-benefits) while increasing energy independence.

9.6 PROSPECTS FOR REDUCING UNCERTAINTY

Policy robustness can potentially be improved by reducing uncertainty. More precise estimates of
soil GHG fluxes and biomass carbon are possible in principle, though to capture the fine spatial
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heterogeneity (e.g., of soil N2O emissions) would require an enormous effort. In any case, while
N2O emissions and carbon fluxes can be measured or modeled for a specific field, economic models
underlying ILUC estimates disagree on the continents and countries in which LUC occurs, thus the
type of ecosystems affected are highly uncertain. GHG fluxes are highly variable spatially, so this
uncertainty renders precise field-based measurements of little added value. Since ILUC dominates
the analysis of crop-based biofuels, we cannot accurately estimate GWI for these fuels.

As with long-term weather prediction, I believe we will have to simply accept our very limited
ability to accurately predict the behavior of complex systems.
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CHAPTER 10

ESTIMATING GHG REDUCTIONS FROM THE CALIFORNIA LCFS

“Unless science is targeted toward evaluating the effects of uncertainty on the design
and components of management alternatives, more and better science will not neces-
sarily lead to better information for decision makers. Even with well-targeted research
there will be residual uncertainties, often ones that are significant. What is important
to decision making is both the quality of the uncertainty judgments themselves and
the ability of stakeholders and decision makers to understand them, particularly when
judgements are contradictory.”

Gregory et al. (2006)

10.1 PURPOSE AND SCOPE

This chapter examines whether the Low-Carbon Fuel Standard is likely to produce reductions
in GHG emissions. Projecting the effect of the LCFS on net GHG emissions is a non-trivial
exercise—one that, to my knowledge, has not been attempted to date. Indeed, this is an important
area for future research.

To understand the efficacy of the LCFS, we would want to estimate the difference in net GHG
emissions between (i) a world with the LCFS and (ii) a world without the policy, including whether
this difference is statistically meaningful given uncertainty. To examine policy robustness we
would like to understand how policy efficacy varies across plausible scenarios. Unfortunately,
these analyses are beyond the scope of this dissertation. Rather, this chapter explores several of
the analytical issues associated with such an analysis. Although I focus on the LCFS, a few of
the issues relate to the Renewable Fuel Standard (RFS2) as well. These instances are noted as
appropriate.

10.2 INTRODUCTION

The life cycle assessment protocol employed in the California LCFS generates a global warming
intensity (GWI) rating for each fuel pathway, in units of g CO2e MJ−1. To comply with the LCFS,
petroleum blenders must achieve an average fuel “carbon” intensity (AFCI) at or below the target,
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which by 2020 ratchets down to 90% of the 2010 state-wide baseline AFCI for on-road fuels. The
state has set separate targets for gasoline and diesel fuels and their respective substitutes. The
LCFS is an intensity standard: a fuel use increase could overwhelms the AFCI decrease, resulting
in a net increase in GHG emissions. However, the increase would, in principle be smaller than
without the standard.

10.2.1 ANALYTIC BOUNDARIES OF THE LCFS

Although CARB has jurisdiction only within California state boundaries, the use of an LCA-based
performance metric allows the agency to extend its reach to wherever emissions occur, whether in
the supply chain or as a result of price effects. CARB justifies the LCFS by describing the damage
climate change will cause on the state. These damages are reduced only if the LCFS reduces the
warming effects that would have occurred absent the policy, net of leakage and all indirect effects.
The LCFS proposal starts with this (CARB, 2009a):

In this rulemaking, the Air Resources Board (ARB/ Board) staff is proposing to reduce
emissions of greenhouse gases (GHG) by lowering the carbon content of transportation
fuels used in California. The regulation is referred to as the California Low Carbon
Fuel Standard (LCFS). The LCFS will reduce GHG emissions from the transportation
sector in California by about 16 million metric tons (MMT) in 2020.

The boundaries of this analysis are not clearly identified. On the one hand, CARB writes that
the LCFS will reduce emissions of GHGs (location unspecified) by lowering the carbon content of
fuels used in California. Subsequently CARB writes that the LCFS “will reduce GHG emissions
from the transport sector in California”, but it’s unclear if “in California” modifies “transport sec-
tor” or “GHG emissions”. If the LCFS is intended only to reduce GHG emissions within the state,
then it would be inappropriate to use a life cycle framework, as this approach includes out-of-state
emissions.

Presumably, the intended meaning is that the LCFS will reduce GHG emissions globally by
reducing the carbon intensity of fuels used in California. This implies a need to account for policy
leakage. CARB (2009a, p. ES-33) also states that the LCFS “will provide overall societal benefits
by reducing GHG emissions from the transportation fuel pool”, however societal benefits do not
accrue unless global emission reductions are achieved, net of leakage.

10.2.2 LEAKAGE

Climate policies with less than global scope can displace GHG-emitting activities to areas beyond
the scope of the policy. This general phenomenon is known as leakage (Barker et al., 2007; Weber
and Peters, 2009; Chen, 2009). Schwarze et al. (2002) identify four distinct types of leakage:
activity, market, life cycle, and ecological.
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ACTIVITY SHIFTING. An emitting activity can relocate from a regulated to an unregulated juris-
diction. For example, with national boundaries on GHG inventories under the Kyoto Proto-
col, the relocation of a high emitter from one country counts as an emission reduction. If the
activity relocates to another regulated (i.e., Annex I) country, those emissions are accounted
for, but if the new location is a non-Annex-I country, the emissions are “lost”.

A closely-related type of leakage is reshuffling, which occurs when regulations cause a
reorganization of a market such that compliant goods are sold in regulated markets and
non-compliant goods are displaced to unregulated markets (Bushnell, 2008). This could
be thought of as “virtual” activity shifting.

MARKET EFFECTS. Price changes resulting from a policy can trigger an increase or decrease in
emissions elsewhere. ILUC is one such market effect. Another market effect that is often
singled out is known as the rebound effect, which occurs when efficiency improvements or
emission reduction strategies result in lower prices that, in turn, cause an increase in con-
sumption (and thus emissions) relative to the business-as-usual scenario (Sorrell and Dim-
itropoulos, 2008; Barker et al., 2009; Stoft, 2010).

LIFE CYCLE EFFECTS. Increasing or decreasing an activity can cause emission changes up and
down the supply chain. Given the LCA basis of the policies considered herein, this leakage
is inherently part of the GWI calculation.

ECOLOGICAL EFFECTS. Finally, changes in practices in one area can trigger increased or de-
creased emissions in adjacent areas. For example, a reforestation project might introduce a
pathogen that adversely affects a neighboring forest. Alternatively, protecting a forest might
buffer another forest from degradation that would otherwise occur.

Fuel substitution policies are susceptible to both reshuffling and rebound effects, thus any estimate
of GHG reduction benefits must take these into account. These two types of leakage are discussed
below.

10.3 LCFS MAY SIMPLY RESHUFFLE BIOFUEL MARKETS

In its rulemaking for the LCFS, CARB noted that incomplete policy coverage could result in mar-
ket reshuffling, resulting in “little or no net change in fuel carbon content on a global scale” (CARB,
2009a, p. ES-29). However, CARB concluded that “leakage is not expected” as a result of the
LCFS (CARB, 2009a, p. ES-34). This conclusion may have been based on the 2007 examination
of the LCFS by researchers at UC Berkeley and UC Davis (Farrell et al., 2007). That study raised
the prospect of market reshuffling in the context of the then-current renewable fuel standard (now
known as RFS1), but concluded that RFS1 would result in lower-GWI renewable fuels only “coin-
cidently” since higher-GWI renewable fuels were less expensive to produce (Farrell et al., 2007, p.
10). Importantly, RFS1 included a biofuel mandate, but no GHG performance standards, thus the
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dependence on “coincidence” to lower fuel GWI. However, in December 2007, five months after
the UC Study was completed, RFS2 was enacted under the Energy Independence and Security Act,
augmenting the volume mandate with a GHG performance standard. This raises the question of
whether RFS2 provides sufficient low-GWI fuel to meet the proposed low-carbon fuel standards
in California and eleven other states.

10.3.1 LOW-GWI BIOFUELS REQUIRED TO MEET A 12-STATE LCFS

On December 30, 2009, eleven northeastern US states signed a memorandum of understanding to
develop a low carbon fuel standard (LCFS) (Anon., 2009). These states, together with California,
which adopted its LCFS in April of 2009, together accounted for 29% of the motor gasoline and
ethanol consumed in the US in 20081. The total motor gasoline and fuel ethanol consumed in these
twelve states in 2008 is shown in Table 10.1.

Assuming that these eleven states adopt a policy similar to California’s, and assuming that the
only LCFS compliance strategy employed is the blending of low-GWI biofuels, the entire demand
for these fuels in the LCFS states can be met by the cellulosic biofuels mandated for 2020 by RFS2
(Figure 10.1). If all the RFS2-compliant fuel were ethanol, this quantity of biofuel would comprise
23% by volume of the blended gasoline consumed in the LCFS states. Assuming that all LCFS
states adopt E10 as the standard fuel, approximately 5 billion gallons of ethanol would need to be
sold in the form of E85. If so-called “drop-in” fuels that are fungible with petroleum-based fuels
become available, then the ethanol blend-wall would cease to be a concern.

Low-GWI fuels will be more valuable in LCFS markets than in unregulated markets. All else
equal, low-GWI fuels mandated by RFS2 will be attracted to LCFS markets, displacing the higher-
GWI corn ethanol currently in use to unregulated states or countries.

10.3.2 DIFFERENCES IN GWI UNDER LCFS AND RFS2

The approach to calculating the GWI of transportation fuels developed by CARB differs in impor-
tant ways from the approach adopted by USEPA for RFS2 (CARB, 2009a; USEPA, 2010b). Some
of these differences are listed in table 10.2. For example, CARB relies on the GREET model,
adapted to the California context. GREET is a (mostly2) attributional LCA model, and therefore
relies on average data. CARB uses the 2010 fuel slate as the baseline against which reductions
are measured, and analyzes all fuels in the present. For crop-based biofuels, CARB adds an esti-
mate of emissions from indirect land use change (ILUC), based on the a global equilibrium model
(GTAP), using a 2001 database, with a post hoc adjustment for higher crop yields in 2010 (Hertel
et al., 2010).

For RFS2, USEPA developed a novel consequential LCA modeling system, projecting changes
in emissions in 2022 with and without the RFS2, assuming a range of crop yield and technology im-

1Based on 2008 EIA data available at http://www.eia.doe.gov/emeu/states/ seds updates.html
2GREET is based primarily on attributional (static) analysis, but in some instances it handles co-products via the

displacement method, which is a consequential (change-based) approach.

http://www.eia.doe.gov/emeu/states/_seds_updates.html
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Table 10.1: 2008 motor gasoline and fuel ethanol use for transportation in twelve LCFS states and
US, 2008 (thousand bbl). Source: EIA

State/Region Motor gasoline Fuel ethanol vol% EtOH

California 360,261 23,683 6.2%

Connecticut 35,791 2,875 7.4%

Delaware 10,465 802 7.1%

Maine 15,607 1,169 7.0%

Maryland 64,257 4,371 6.4%

Massachusetts 67,214 5,028 7.0%

New Hamp-
shire

17,188 1,055 5.8%

New Jersey 102,677 7,801 7.1%

New York 134,206 9,827 6.8%

Pennsylvania 119,724 8,575 6.7%

Rhode Island 9,561 944 9.0%

Vermont 7,865 502 6.0%

12-state total 944,816 66,632 6.6%

United States 3,233,378 226,567 6.5%
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Figure 10.1: Year 2020 fuels mandated by RFS2 compared to low-GHG fuel required by 12 LCFS
states to meet a 10% reduction in GWI, assuming that cellulosic fuels (blue bar) achieve a 60%
reduction under the LCFS rating system.

provements occur by that date. To estimate emissions, USEPA combines land cover change emis-
sion factors with the results of two economic partial equilibrium models (FASOM and FAPRI).

Congress mandated that USEPA apply a 2005 petroleum baseline. USEPA estimated the GWI
of 2005 gasoline as 98,205 g CO2e MMBtu−1 (USEPA, 2009c, PDF p. 487), which is equivalent
to 93 g CO2e MJ−1. CARB uses a 2010 baseline for California reformulated gasoline, including
10% Midwestern corn ethanol with a GWI rating of 96 g CO2e MJ−1(CARB, 2009a).

Although the two regulatory systems measure different phenomena and thus produce incom-
mensurable ratings, for the present analysis, I assume that the advanced and cellulosic biofuels
mandated under RFS2 would achieve a 50% reduction in GWI in the CARB LCFS. Note that in
the RFS2 system, 4.5 billion gallons of advanced and 15 billion gallons of cellulosic biofuels must
be used by 2020, the final LCFS target date. These fuels must achieve a 50% (advanced) or 60%
(cellulosic) reduction in GWI relative to the 2005 petroleum fuel baseline. If other fuels (e.g., elec-
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Table 10.2: Methodological and data differences in global warming intensity calculations in Cali-
fornia LCFS and US RFS2

Attribute CARB / LCFS USEPA / RFS2

LCA framework Attributional (static, uses
average data)

Consequential (dynamic,
uses marginal data)

Models used GREET, GTAP FASOM, FAPRI, ASPEN,
others

Indirect effects consid-
ered

ILUC ILUC, changes in methane
from livestock and rice,
changes in on-farm energy
use and fertilization

Temporal framework 2010 fuel baseline, 2010
fuel analysis, 2001 ILUC
analysis with post hoc yield
adjustment

2005 petroleum baseline,
2022 biofuel and ILUC
analysis, including pro-
jected yield and technology
gains

Fuels considered Gasoline, diesel, natural
gas, biogas, hydrogen, bio-
fuels, electricity

Gasoline, diesel, biofuels
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Figure 10.2: Similar to Figure 10.1 except assuming that the average of advanced and cellulosic
biofuels achieves a 50% reduction under the LCFS rating system. Demand for low-GWI ethanol
in 12 LCFS states can still be met by the RFS2 mandate (blue and red bars together).

tricity, natural gas, hydrogen) are deployed to comply with the LCFS, the demand for biofuels in
LCFS markets will be reduced, and even less RFS2-mandated fuel will be required to meet LCFS
targets.

Assuming that the RFS2 mandates are met, the atmosphere may see no greater reduction with
these low carbon fuel standards than without them, at least in the light-duty vehicle market. While
RFS2 mandates only a small quantity of renewable diesel fuel (1 billion gallons by 2012), the
RFS2 does not preclude advanced and cellulosic diesel fuels. So some or all of the diesel AFCI
reduction could be met with RFS2 fuels as well, especially if “drop-in” fuels are commercialized.

Thus, in the context of RFS2, the benefit under the CA LCFS of vehicle electrification is
much greater than the benefit of using these low-GWI biofuels since the biofuels will be used in
any case (though perhaps elsewhere) and their supply is likely sufficient to meet LCFS targets.
Reductions achieved through vehicle electrification are more likely additional since current federal
policy doesn’t mandate vehicle electrification. The LCFS, however, gives equal incentives to both
compliance strategies based on their life cycle GHG emissions, even though one likely achieves
real reductions and the other may be achieved through reshuffling, with no net reduction in GHG
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emissions.

10.3.3 INTERNATIONAL LEAKAGE UNDER A NATIONAL LCFS

One potential benefit of the California LCFS, despite leakage, may be to provide an example for
other jurisdictions to implement similar policies, thereby increasing policy coverage. In theory,
expanded policy coverage reduces the opportunity for reshuffling.3 However, just as a limited
LCFS within the US may result in reshuffling domestically, a national LCFS is likely to drive
high-GWI petroleum fuels to unregulated regions (Kueter, 2009). An analysis by the US Energy
Information Administration of a 5% federal LCFS indicated that most of the reduction registered
using national accounting boundaries would be offset by international leakage as high-GHG fuels
(e.g., oilsands) are shipped to unregulated markets (Difiglio, 2009). Figure 10.3 shows the results
of that analysis: the US achieves a reduction in CO2 emissions of approximately 165 million
tonnes, but reshuffling causes an increase of about 130 million tonnes of CO2 in international
markets, offsetting nearly 80% of the measured domestic reductions.

10.3.4 LCFS AS BACKSTOP AGAINST WEAK RFS2 PROTOCOL

The LCFS will induce production of lower-GWI fuels if demand for these fuels exceed the level
mandated by RFS2, for example, if the LCFS GWI ratings are stricter than those of RFS2. In
an amendment to the American Clean Energy And Security Act of 2009 (H.R. 2454), agricultural
committee chairman Collin Peterson of Minnesota required the USEPA to drop international ILUC
estimates from its calculations of GWI (Peterson, 2009). If this amendment were to become law,
there would be no guarantee that fuels complying with RFS2 would achieve real reductions. The
international ILUC values in RFS2 for corn ethanol and soybean biodiesel are 31 and 43 g CO2e
MJ−1, respectively (Table 10.3): the ILUC factors for these fuels are 169% (corn ethanol) and 95%
(soybean biodiesel) of the required reduction relative to the baseline ratings for petroleum-based
gasoline and diesel. Therefore, without ILUC, corn ethanol that meets the mandated reduction
requirement under the (modified) RFS2 could easily generate net increases in GHG emissions,
and biodiesel may produce increases or reductions—uncertainty prevents us from knowing for
sure.

If the international ILUC values are stripped from the RFS2 rule, more stringent state-level
programs become much more important. The California LCFS includes ILUC emissions, and the
11 Northeast states have indicated an intention to do the same (Anon., 2009). Therefore, if the
Peterson amendment becomes law, the LCFS may indeed force production of lower-GWI fuels
and not simply reshuffle fuel produced under the RFS2 mandate.

3We must be careful not to attribute long-term GHG reductions that might be achieved under greater policy cover-
age to the near-term implementation of an LCFS with only partial coverage. Near-term policies that are less susceptible
to leakage, e.g., in situ GWI reductions or electrification, would be a good complement to these longer-term policies.
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Figure 10.3: Net CO2 reduction under a federal LCFS. Large reductions registered in the US (blue
region) are largely offset by increases outside the US (green region) resulting in a much reduced
net reduction (red region). (Source: Difiglio, 2009)

10.4 PETROLEUM REBOUND EFFECT

An increase in the production and use of renewable fuels in the US leads to a decrease in domestic
crude oil demand. This decrease in US oil demand causes a decline in the world oil price, which,
all else equal, spurs increased oil consumption abroad relative to the baseline without the additional
biofuels (Rajagopal et al., 2007; Rajagopal and Zilberman, 2010). This price-induced increase in
consumption—known as the global petroleum rebound effect (Stoft, 2010)—partially offsets the
GHG reduction benefits of substituting for petroleum (USEPA, 2010b, p. 512).

As with all projected baselines and counterfactual scenarios, the estimate of the rebound effect
is uncertain. Estimation of the effect is further complicated by the challenge of predicting OPEC
behavior in the face of the competition and price effects from biofuels and other alternatives to
petroleum Stoft (2010). However, inclusion of the rebound effect clearly reduces estimates of
the GHG reductions from fuel substitution. Based on a post facto analysis of several modeling
studies, Stoft (2010) estimated a global petroleum rebound effect of between 29% and 70%. Using
parameters derived from modeling for USEPA in support of RFS2 , Stoft estimates a rebound effect
of 32%, meaning that 1 MJ of biofuels displaces only 0.68 MJ of petroleum (Stoft, 2010). Barker
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Table 10.3: Baseline fuel ratings, international indirect land use change emission factors, and
required GHG reductions (g CO2e/MJ). (Source: USEPA, 2010b, author’s calculations).

Corn Soybean Corn Stover Switchgrass
Ethanol Biodiesel Ethanol Ethanol

Int’l ILUC emissions 31 43 3 15

Baseline fuel rating 92 91 92 92

Required reduction (%) 20% 50% 60% 60%

Required reduction (g CO2e
MJ−1)

18 46 46 46

Int’l ILUC as % of reduction 169% 95% 6% 27%

et al. (2009) estimate a rebound effect for efficiency policies in the transport sector ranging from
36% for the 2020 timeframe and 52% for 2030, with similar values for the overall economy.

10.4.1 INCLUDING THE REBOUND EFFECT IN ESTIMATES OF GHG BENEFITS

Virtually all biofuel LCA studies and some policy analyses (notably those of USEPA for RFS2 and
CARB for LCFS) simply assume no price effects, which is equivalent to assuming that oil produc-
ers respond to increases in biofuel production by reducing oil production to match the additional
quantities of biofuels. Typical of LCA, Guinée et al. (2009) ignore price effects to define the GHG
reduction achieved by bioenergy as:

Reductionnominal(%) =
GHG f ossil−GHGbio

GHG f ossil
∗100 (10.1)

The EU Renewable Energy Directive specifies the same approach to calculate the GHG savings
from biofuels (European Parliament, 2009, Annex V).

For a biofuel with GWI of 70 g CO2 MJ−1 and gasoline with GWI of 100 g CO2 MJ−1,
Reductionnominal =

100−70
100 = 30%. Equation 10.2 includes the rebound effect, R, expressed as the

percentage of a unit of fossil fuel used above the baseline, induced by the price reduction afforded
by expanding fuel supply.

Reductionrebound(%) =
(1−R)×GHG f ossil−GHGbio

GHG f ossil
∗100 (10.2)

Assuming a 32% rebound effect for petroleum as estimated by Stoft (2010), and assuming the



163

same biofuel and gasoline ratings as above, Reductionrebound = (1−0.32)∗100−70
100 = 68−70

100 = −2%,
meaning a 2% net increase in GHGs. In general, alternative fuels with a nominal GWI reduction
(as per equation 10.1) less than R result in a net increase in emissions when the rebound effect is
included.

In its analysis of the GHG reductions and economic benefits of the RFS2 program USEPA
(2010b) applied equation 10.1, assuming MJ for MJ replacement of petroleum fuels by biofuels,
despite including the rebound effect in their analysis of the program’s energy security benefits.
Similarly, CARB (2009a) estimated the GHG emissions from various LCFS compliance scenarios
using a linear scaling of the life cycle GHG emissions from each pathway as estimated in the
CA-GREET model (plus ILUC values for biofuels), ignoring both leakage and rebound effects.4

10.4.2 NOT ALL GWI REDUCTIONS TRIGGER THE REBOUND EFFECT

The LCFS allows producers to reduce AFCI four ways: (i) improving the GHG efficiency of
production processes, (ii) substitution of high-GWI fuels with low-GWI fuels, (iii) buying credits
from overcomplying firms, or (iv) using banked credits from prior years (CARB, 2009a). Reducing
the GWI of fuels in use does not trigger a rebound effect unless it reduces the price of fuel. Fuel
substitution, however, does trigger the rebound effect, since petroleum fuels not used in the LCFS
market become available in other markets. For this reason, reductions achieved through in situ
efficiency gains provide greater GHG reductions than do nominally-equivalent reductions achieved
via fuel substitution. Including the rebound effect in an LCFS would provide incentives to develop
“better biofuels before more biofuels”, to borrow a phrase from the late Alex Farrell (2008).

Because fuels differ in their indirect effects, ignoring these, or including only some of them
(e.g., ILUC) creates biases in a competitive system such as the LCFS. For example, neglecting the
petroleum rebound effect creates a bias toward fuel substitution over in situ improvements in GWI
such as increasing energy conversion efficiencies. Similarly, neglecting the uncertainties in our
understanding of the net GHG benefits of biofuels creates a system that prefers a fuel with a lower
mean but a long right tail due to ILUC, over another with a slightly higher, but much more certain
mean.

10.4.3 REBOUND EFFECT INTERACTION WITH ALTERNATIVE FUEL GWI

The quantity of substitute fuel required to achieve a given reduction in AFCI is inversely and non-
linearly related to the average GWI of the substitute. Figure 10.4 shows the blend level (by energy)
required (Y -axis) for biofuels with a given GWI (X-axis), assuming blending with a baseline fuel
rating 100 g CO2e MJ−1 to achieve a target of 90 g CO2e MJ−1. Increasing a biofuel’s GWI from
0 to 40 g CO2e MJ−1 increases the required blend level (by energy) from 10% to 17%, whereas
increasing GWI from 40 to 80 g CO2e MJ−1 increases blend level from 17% to 50%.

4Note that if LCFS compliance is achieved through reshuffling fuels mandated under RFS2, the rebound effect for
those fuels would be more appropriately attributed to the RFS2 rather than to the LCFS.
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Figure 10.5 shows the relationship between alternative fuel GWI and the rebound effect. Al-
though the nominal target AFCI (in this case, 90 g CO2e MJ−1) is met for all four biofuel ratings
(X-axis), lower GWI ratings require a greater quantity of biofuel (blue segment) and thus induce a
greater rebound effect (green segment.) Assuming a 32% global rebound effect, nominally meet-
ing an AFCI of 90 g CO2e MJ−1 using a biofuel rated at 68 g CO2e MJ−1 would induce a rebound
effect that eliminates any reduction in AFCI. Using a biofuel rated above 68 g CO2e MJ−1 results
an increase net emissions.

The implication of this analysis is that the LCFS should account for the rebound effect to
provide additional incentives for (i) in situ improvements, which don’t incur any rebound penalty,
and for (ii) very low-GWI substitutes, which minimizing the quantity of petroleum displacement
and thus minimize the rebound penalty. Note, however, that minimizing the rebound penalty means
simultaneously minimizing the energy security benefits of the LCFS, given a definition of energy
security based on the quantity of petroleum consumed.

Figure 10.4: Required alternative fuel blend level at different global warming intensities, assuming
a baseline fuel with a GWI of 100 g CO2e MJ−1 and a 10% reduction target.

10.4.4 GHG REDUCTIONS UNDER THE LCFS DEPEND ON THE PRICE OF PETROLEUM

The net effect on GHG emissions achieved by the LCFS depends in part on the relationship be-
tween the price of petroleum and the price of the marginal biofuel required to meet the regulation
(Rajagopal and Zilberman, 2010). Under high petroleum prices, the energy-equivalent price of al-
ternative fuels rises to the gasoline price. The additional biofuels extend total fuel supply, suppress-
ing the global petroleum price somewhat from what it would be in the absence of biofuels. This
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Figure 10.5: Relationship between alternative fuel GWI and rebound effect, assuming a baseline
fuel with a GWI of 100 g CO2e MJ−1, a 10% reduction target, and 32% petroleum rebound effect.

results in additional consumption of petroleum above the BAU scenario.5 Under low petroleum
prices, the mandated GWI reduction under the LCFS or RFS2 forces the use of relatively expensive
biofuels, increasing the price of fuel, and inducing reductions in fuel use in the regulated market
relative to BAU, tempered somewhat by the rebound effect in unregulated markets which enjoy
greater supply than under BAU.

The GHG reductions from an LCFS are therefore contingent on the projected relative prices of
petroleum and alternative fuels. This sensitivity should examined using scenarios.

5Holland et al. (2009) show that an LCFS behaves like a tax on fuels with GWI above the standard and a simul-
taneous subsidy of fuels with GWI below the standard. This subsidization results in increased consumption of fuels
compared to a tax on all fuels based on their GWI.
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10.5 MODELING THE LCFS

The effect of the LCFS on GHG emissions is the difference in GHG emissions in the world with the
policy versus those in the world without the policy. This type of change-based analysis is consistent
with the consequential LCA framework. The California LCFS, however, is based on the GREET
model, with an added term for ILUC emissions induced by biofuels. While the ILUC emissions
term captures one important difference between the two worlds, other important differences are
absent from the CARB LCA protocol, e.g., changes in methane from livestock and rice production;
changes in tillage and on-farm energy use—factors that are captured in the USEPA analysis for
RFS2. In addition, actual GHG reductions depend on the magnitude of the rebound effect and on
market reshuffling. Therefore, the performance measure driving policy differs fairly substantially
from a reasonable measure of policy effects. The divergence between these creates the possibility
of undesirable policy outcomes.

If we adopt Stoft’s estimate of the rebound effect, crop-based biofuels must achieve a minimum
32% reduction in life cycle GHG emissions—including indirect effects—just to achieve parity
with gasoline on a point estimate basis. In addition, owing to the skewed distribution for total
GHG emissions—resulting from uncertainty in N2O emissions as well as ILUC—the probabilistic
mean for biofuels GHGs is certainly higher than the point estimate, requiring further reductions
to ensure parity. Finally, if our goal is to ensure reduction, we should be relatively certain that
our chosen mitigation strategy actually achieves reductions commensurate with the cost of their
implementation and the opportunity cost of more certain strategies that we have forgone. Using
a mean value is insufficiently robust for this task. We could instead require, say, 90% certainty
that an emission reduction is achieved. This would in effect require a reduction of at least 50%,
including our best estimate of indirect emissions, just to gain a reasonable assurance that some
reduction was achieved.

The 10% reduction aimed for by the LCFS is not robust if it is achieved through the use of
large quantities of moderately low-GHG biofuels, especially given the likelihood of leakage. For
example, if the CA fuel mix included 50% biofuels that offered a 20% reduction (including ILUC),
the net effect, including Stoft’s estimate of rebound effect, would be an increase in emissions.
However, even without leakage, no rebound effect, and certainty about ILUC emissions, meeting a
shallow (e.g., 10%), near-term intensity reduction target may increase the cost of meeting a steeper
(e.g., 50% or 80%) reduction by mid-century. This is because increasing the use of biofuels—the
preferred option of petroleum companies—may suffice as a strategy to meet a 10% reduction, but
this strategy does not appear to put us on the path toward steeper reductions. In an examination
of alternative scenarios for meeting steep (50% and 80%) GHG reductions in the transportation
sector, McCollum and Yang (2009) conclude that:

[E]ven a small increase in average biofuel lifecycle carbon intensity due to LUC (e.g.,
+15 g CO2e MJ−1) would double the carbon intensity assumed in this study, elimi-
nating much of the GHG reduction potential in the scenarios. In sum, if supplies of
low-GHG biofuels are signicantly constrained for the reasons mentioned here, then a
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multi-strategy future with considerable penetration of electric-drive vehicles and de-
carbonized energy carriers (i.e., H2 and electricity) may be the only real option for
making emission reductions across all of transport. In this case, deep transport-wide
reductions on the order of 80% may be unachievable, though less stringent targets may
still be attainable.

There are several reason for this conclusion: (i) potentially large GHG emissions from ILUC
render the GHG benefits of first-generation (crop-based) biofuels very uncertain; (ii) non-crop-
based biofuel feedstocks (e.g., waste and sustainably harvestable residues) are too limited in supply
to achieve a 50% reduction across the fuel sector; (iii) fuel alternatives such as hydrogen (when
used in fuel cells) and electricity require 10–15 years of lead-time to deploy large numbers of
vehicles capable of using these fuels. The uncertain reduction in GWI achieved with biofuels may
come at the cost of delaying the deployment of lower-GHG alternatives. Of course, biofuels are
not mutually exclusive with options such as plug-in hybrid vehicles.

The requirement of a 50 or 60% GHG reduction under RFS2 should ensure that advanced
and cellulosic fuels achieve actual reductions (assuming iLUC remains included), but this is true
only if the policy is binding and these GHG thresholds are met. If petroleum prices are high
enough that biofuels are profitable, then production will be limited only by feedstock, blending, and
distribution limitations, regardless of GHG rating, since RFS2 doesn’t prohibit high-GHG fuels.
And since RFS2 defines floors rather than cielings, high petroleum prices would spur increases
in corn ethanol production as well as increased production of second generation biofuels. In this
sense, the main problem with RFS2 is not the specific rating system, but that the rating system is
relevant only if the mandate is binding.

10.5.1 A SOPHISTICATED MODEL

To estimate the GHG reductions achieved by the LCFS would require a model of the global econ-
omy that includes the agriculture, forestry, power, and fuel sectors (at a minimum). The model
would ideally include a representation of atmospheric GHG loading and decay, current and an-
ticipated biofuel and land-use policies, and projected trends in food demand. The model would
need enough technological and carbon accounting resolution to capture the interplay between fuel
GWI ratings and the LCFS credit price, allowing producers to maximize profit by investing in
GWI-reductions technology to increase the premium paid for their low-GHG fuels—or simply
by shuffling. The model would need to incorporate rebound effects as well, which implies some
representation of anticipated fuel demand, petroleum depletion, and OPEC behavior. This type
of model is beyond the scope of this dissertation, but it is worth considering to understand what
would be required to capture the important features of this problem.

Uncertainty in GHG ratings is a central issue in this policy, so uncertainty analysis would need
to be a central component of the model. Given the many epistemic uncertainties, large-scale sce-
nario analysis is probably more appropriate than Monte Carlo simulation (Lempert et al., 2003;
Morgan et al., 2009). Table 10.4 lists some of the parameters affecting estimates of ILUC emis-
sions. Other important modeling decisions include the choice of emission factors for LUC, the
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method for allocating ILUC emissions to each megajoule of fuel (e.g., straightline amortization or
fuel warming potential, with or without discounting). Additional factors that affect LCFS compli-
ance are the availability and GWI rating of advanced and cellulosic ethanol, and the availability of
electric vehicles. The actual GHG reductions induced by the LCFS will vary with the compliance
scenario that emerges from the distributed decisions of regulated parties.

To understand the robustness of the LCFS to all these uncertainties, we would want to evalu-
ate our model with many combinations of these (and other) parameter assumptions and modeling
choices. Within each scenario, variability and parameter uncertainty could be modeled stochas-
tically to produce a probability distribution for GHG reductions relative to BAU. Each scenario
could then be graded by the probability of meeting a decrease in actual GHG emissions. Given
sufficient economic resolution, we could also estimate the total cost for each compliant scenario
relative to BAU. This model would allow an examination of the circumstances under which the
LCFS would be likely to deliver GHG reductions, net of shuffling and leakage—and the scenarios
in which it would not. This, in turn, would provide guidance on alternative of complementary
policies that would increase the likelihood of achieving policy goals.

Table 10.4: A sampling of parameters affecting estimates of ILUC emissions

Parameter Possible values

Oil price Low Med High

Years of production 15 30 45

Land use policies None Weak Strong

Climate agreement None Developed world Global

Crop yields Below trend Historic trend Above trend

Food reduction Treat as GHG benefit Prevent in model

Scale of analysis National biofuels Global biofuels Global biomass

Type of model General equilibrium Partial equilibrium Agent-based

10.5.1.1 APPLYING THE CONSERVATIVENESS PRINCIPLE

One question we might ask of our model is how rating fuels conservatively (e.g., using the 75th

percentile GHG value rather than the mean as an estimator) would affect the performance of the
regulation in terms of GHG reductions and net social cost. Using a high-percentile estimator for
fuel GWI penalizes uncertainty and raises the cost of meeting the regulation. Since both emissions
and the social cost of carbon are uncertain (and especially if they both have right tails) the product
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of multiplying these might be high enough that social cost would be minimized by avoiding the
riskiest, food-competitive biofuels.

In the case of fuels for which a reliable probability distribution for GWI cannot be gener-
ated (e.g., for fuels with potentially large indirect effects), a subjective estimate of these effects
could be used, though any value chosen would be challenged by some stakeholders. I note that,
given the broad uncertainty in ILUC emissions, the decisions taken by the regulator to define the
GWI calculation protocol itself amounts to a subjective determination of ILUC—with the ensu-
ing controversy. The suggestion made here differs only in that the subjectivity would be openly
acknowledged, rather than hidden behind the imposing edifice of an economic model.

Given the uncertainty, we face a trade-off between risking rating fuels too high and foregoing
potentially cheaper mitigation alternatives and raising the social cost of compliance, or rating fuels
too low and risking causing more harm than necessary, even to the extent of causing more harm
than BAU without the policy. Using high-percentile estimators would result in larger risk penalties
for fuels with less certain GWI, such as biofuels, and smaller penalties on fuels with more certain
GWI, such as fossil fuels. As a result, some biofuels would be of no value in the LCFS, but
the 10% reduction would still need to be met the next best option (from the blender perspective),
which is presumably somewhat more expensive than the first choice. Thus, the certainty that the
policy goal was met would increase, though presumably at a higher cost. A similar result obtains
under the RFS2: the mandate must be met by compliant fuels: under stricter ratings, meeting the
standard requires greater certainty, either through using well-characterized fuels or fuels with very
low (mean) reductions, which provide headroom against uncertainty. Therefore, stricter rating
systems result in increased likelihood of meeting the standards, but at increased cost since low-
GWI biofuels such as those from cellulose and algae are presently more expensive than current
commercial biofuels.

10.5.2 A SIMPLE MODEL INCORPORATING REBOUND AND RESHUFFLING EFFECTS

Although the model outlined above is beyond the scope of this dissertation, a simple model can
serve to highlight the importance of including rebound and reshuffling effects.

To rate fuel pathways in the California LCFS, CARB uses attributional LCA (in GREET) to
estimate direct emissions. For crop-based biofuels CARB adds to this of ILUC emissions based on
the GTAP model. These ratings are summed, weighted by energy content to produce an average
fuel carbon intensity (AFCI) value for each regulated entity. Assuming the LCFS is binding, we
can expect the total statewide AFCI to exactly meet the nominal 10% reduction in 2020. However,
AFCI measures a reduction in fuel carbon intensity for fuels used in California. To estimate the
global change in GHG emissions resulting from the LCFS6, we need to account for reshuffling and
rebound effects.

6The change in emissions is the product of the megajoules of transportation fuel used and the AFCI value. We
can express the global change in terms of GWI if we assume the demand for megajoules of transportation energy is
constant in California for the target year. This simplifying assumption lends clarity to this exposition without affecting
the qualitative results of the analysis.
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The LCFS can achieve nominal AFCI reductions using three methods: in situ improvement,
induced new production, and reshuffling. As discussed earlier, in situ improvements, such as in-
creasing the efficiency of a boiler used in a fuel production process, does not trigger the petroleum
rebound effect. These improvements are “real” in the sense that the nominal improvement in AFCI
represents an actual improvement. The LCFS can also induce production of new, low-GWI bio-
fuels that would not have been produced under the business-as-usual scenario (i.e., under RFS2).
However, while these fuels may offer a real reduction in GWI relative to petroleum fuels, the pro-
duction of these fuels increases overall fuel supply and thus incurs a rebound penalty. Finally, fuels
that would been used elsewhere in the BAU scenario may simply be sold in CA and thus counted
toward AFCI even though relocation does not reduce net GHG emissions. In fact, to the extent
that reshuffling incurs greater transportation emissions, the use of these fuels in California could
somewhat increase GHG emissions.

METHODS. The question we would like to answer is how the actual emissions compare to the
BAU case. That is, what is the net effect of the LCFS on GHG emissions? To examine this, I
implemented a simple stochastic spreadsheet model that makes the following assumptions:

• On average, in situ improvement reduces the GWI of some set of biofuels from 100 to 75 g
CO2e MJ−1. The fraction of in-state biofuels from these “improved” pathways is represented
by a uniform distribution ranging from 0–20%.

• The GWI of fuels reshuffled into the LCFS market is represented by a uniform distribution
from 10–40 g CO2e MJ−1.

• The GWI of new biofuels induced by the LCFS is represented by a uniform distribution from
10–40 g CO2e MJ−1. This value represents the GWI that is used in the AFCI calculation. A
separate parameter allows for undercounting in ILUC emissions, represented by a uniform
distribution ranging from 0–60 g CO2e MJ−1. This parameter is added to the GWI parameter
for the purposes of estimating actual GHG changes. The fraction of in-state biofuels from
this new production is represented by a uniform distribution from 0–30%. The fraction of
in-state biofuels resulting from reshuffling computed as 1 minus the sum of the in situ and
new production fractions, and thus ranges from 50–100%.

• The rebound effect is represented by a uniform distribution ranging from 20–50%.

• For the purposes of this exercise, I assume the biofuel has the same heating value as gasoline.

RESULTS. In the calculation of actual percent change, I assume that (i) the change in GHG emis-
sions associated with reshuffling is zero, (ii) the net change associated with new fuel production is
discounted by the rebound effect as per equation 10.2, and (iii) the net change for in situ improve-
ments are treated as “real”, as noted above.

Running a 50,000 trial Monte Carlo simulation produced the output distribution for the actual
percent change in GHGs shown in figure 10.6. The 95% confidence interval ranges from -1.9%
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to +0.6%, meaning that 97.5% of the time, the actual emission reductions achieved were 1.9% or
lower. Moreover, 16% of the time there was a (small) net increase in GHG emissions. The median
change was -0.5%. i.e., essentially unchanged from BAU.

Figure 10.6: Frequency distribution for actual reductions in GWI (g CO2e MJ−1) for LCFS, includ-
ing new production, reshuffling, and rebound effects, allowing for the possibility of undercounting
ILUC emissions.

The 95% confidence interval for the fraction of the fuel base from biofuels ranges from 12–
18%, which is reasonably consistent with the scenarios considered by CARB, which range from
16–20% ethanol.

The contributions to variance of the parameters to this model are illustrated in figure 10.7. The
GWI contribution of undercounted ILUC emissions contributes 39% of the variance. The fraction
of biofuels undergoing in situ improvement contributes 26%. The rebound effect contributes 21%
of the variance, and the GWI of new production induced by the LCFS contributes 11%. The frac-
tion of biofuels from new production contributes 3%, and the GWI of reshuffled fuel contributes
1% of the variance.

Although the distributions used in this model are contrived, the analysis demonstrates that
when the rebound effect and reshuffling are taken into account, along with uncertainties in ILUC
emissions, the actual benefits from the LCFS appear to be small to negligible. The outcome in
terms of net GHG flows will be determined by the extent to which to LCFS is met by reshuffling,
new fuel production, and in situ GWI reductions. Although this outcome is uncertain, it appears
quite possible that much of the nominal reduction in AFCI can be achieved through reshuffling
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Figure 10.7: Contribution to variance of parameters in simple model of LCFS.

RFS2-mandated fuels.
A more complete model as described above would support a more refined analysis, though

many of the parameters therein would remain speculative. The more complex model, however,
would provide the basis for a robustness analysis, i.e., examination of a wide range of scenarios to
understand the conditions under which the policy resulted in desirable or undesirable outcomes.
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CHAPTER 11

CONCLUSION

“Point estimates of uncertain risk comparisons offer a simplicity that makes decisions
easier but makes wrong decisions well-nigh inevitable. Rather than either blinding
ourselves to the numbers or letting the numbers usurp all our power to discern and
choose, we should start fresh with Schopenhauer’s apt advice: “the value of what one
knows is doubled if one confesses to not knowing what one does not know.”

Adam M. Finkel (1995)

11.1 MAIN FINDINGS

This dissertation makes the following argument:

1. Life cycle assessment suffers severe methodological and data limitations and is incapable of
definitive estimates of environmental outcomes such as net climate effects.

2. Point estimates of life cycle global warming intensity (GWI) describe only one plausible
scenario, and many scenarios may be equally plausible. Point estimate GWI estimates are
therefore necessarily subjective.

3. Indirect effects (especially for biofuels) can strongly determine LCA results, but these effects
are unobservable and estimates of their magnitude are unreliable.

4. As a consequence of the above observations, GWI for many biofuels is highly uncertain and
subjective.

5. The climate benefits of performance-based regulations based on GWI are uncertain and dif-
ficult to assess.

6. Our inability to predict the climate effects of biofuels calls for policies that explicitly address
uncertainty, risk, and societal values.
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The first generation of life-cycle-based fuel regulations were drafted before the challenges of
estimating ILUC emissions were clear. As discussed herein, the GHG emissions due to ILUC
depend on projections decades into the future of several important parameters such as crop yields,
technological change, petroleum price, and other aspects of the global economy. Estimating ILUC
emissions therefore necessarily involves many subjective assumptions, stochastic uncertainty, and
considerable epistemic uncertainty. In short, there is not—and cannot be—a definitive, objective
estimate of the GHG emissions from indirect land use change induced by expanding biofuel pro-
duction.

The uncertainties surrounding ILUC emissions, soil N2O emission, soil carbon sequestration,
and co-product credits render the fuel-cycle GWI rating for biofuels highly uncertain, raising seri-
ous questions about the appropriateness of fuel GWI as regulatory performance metric. Regulators
faced with laws requiring the quantification of fuel-cycle GHG emissions will inevitably have to
defend subjective choices in defining the protocol used to estimate GWI. These regulations can
and should take account of the quantifiable uncertainties, which will differ across pathways. Un-
certainties can be propagated through the model so that a point estimate for fuel-cycle emissions
can be derived from the resulting output distribution. An argument has been presented for using
a high-percentile value to ensure compliance, though this increases the cost of compliance. This
trade-off between cost and certainty of emission reductions should be addressed openly.

Probabilistic comparisons do not entirely solve the problem, since model uncertainty and data
gaps cannot be represented probabilistically (Finnveden et al., 2000). Scenarios can be used to
compare methodological alternatives, but these results cannot always be meaningfully combined
into a single probability distribution.

Market-based policies like the LCFS can minimize the cost of meeting a defined target, how-
ever, since the climate effects of fuel alternatives are so uncertain, the policy may not reduce emis-
sions at all. Rather than building a complex, market-based system on highly-precise quantification
of an unobservable, subjective, and uncertain measure like life cycle GHG emissions, we should
recognize the limits of scientific analysis and develop policies that observe these limits. One ap-
proach would be to recognize, on a qualitative basis, that some fuel alternatives bear substantial
risk of making matters worse rather than better, and thus should be avoided.

Despite the uncertainty, evidence indicates that in at least some cases, policies promoting the
expanded use of biofuels will fail to achieve any near-term reduction in radiative forcing. If we
consider (i) market-mediated effects such as ILUC, (ii) properly treating the time profile of ILUC
emissions, (iii) uncertainty in the N2O emission rate from feedstock production, (iv) that existing
models treat reduced food consumption as a climate benefit, and (v) the global petroleum rebound
effect, crop-based biofuels appear to offer little, if any, climate benefit—and present a risk of large
disbenefits. In addition, the expansion of crop-based biofuels will incur other social costs, such
as increasing food prices, water consumption, water pollution, and eutrophication, and reducing
biodiversity (Fargione et al., 2010). These costs might be justified if crop-based biofuels offered
strong climate change mitigation potential, or strong energy security benefits. However, the high
end of the plausible range of net emissions from these fuels is quite high, suggesting that as an
environmental policy, crop-based biofuels most likely incur a net social cost. Weighing these envi-
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ronmental costs against energy security benefits is a value-based exercise about which reasonable
people will disagree.

11.2 TOPICS FOR FUTURE RESEARCH

During the course of my dissertation research, I encountered several topics that are worthy of
further research. I list them briefly here.

• Consequential LCA of electricity used and displaced in various fuel production pathways

• Consequential LCA of the effects of biofuel production on the production of petroleum fuels

• Effect on GWI of including black carbon, organic carbon, sulfates, NOX, and CO

• Effect of ILUC emissions of including black and organic carbon for biomass burning

• Methodological study of combining attributional and consequential elements in a single LCA

• Robustness analysis of the 12-state LCFS using a moderately-sophisticated model
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APPENDIX A

SOURCE CODE FOR CRYSTALBALL-GREET MODULE

’

’ CBG: CrystalBall-GREET

’

’ Reads GREET Dist_Spec data and sets up CB to run simulation

’

’ Rich Plevin

’ March 6, 2009

’

Option Explicit ’require variable declarations

Const CbgMajorVersion As Integer = 1

Const CbgMinorVersion As Integer = 5

Const CbgDistSheetName As String = "Distributions"

Const CbgFirstDistRow As Integer = 3

Const CbgTrials As Integer = 10

Const CbgUnknownDist As Integer = -1

Const CbgForecast As Integer = 99

Const CbgTagsCol As Integer = 1

Const CbgSheetCol As Integer = 2

Const CbgRangeCol As Integer = 3

Const CbgDistCol As Integer = 4

Const CbgName1Col As Integer = 5

Const CbgValue1Col As Integer = 6

Const CbgName2Col As Integer = 7

Const CbgValue2Col As Integer = 8

Const CbgName3Col As Integer = 9
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Const CbgValue3Col As Integer = 10

Const CbgNameCol As Integer = 11

’ where the name of the target workbook is stored

Const CbgTargetWorkbookCell As String = "E1"

Dim CbgCallingWorkbook As Workbook

Const Debugging As Boolean = True

’

’ Utility function

’

Private Function SheetExists(sName As String, wb As Workbook) As Boolean

’ Returns True if sheet exists in the specified workbook

Dim x As Object

On Error Resume Next

Set x = wb.Sheets(sName)

If Err.Number = 0 Then SheetExists = True Else SheetExists = False

End Function

’

’ Returns True if the workbook is open

’

Private Function WorkbookIsOpen(wbName As String) As Boolean

Dim x As Workbook

On Error Resume Next

Set x = Workbooks(wbName)

If Err.Number = 0 Then WorkbookIsOpen = True _

Else WorkbookIsOpen = False

End Function

’

’ Utility function to get the target workbook name from the designated cell.

’

Private Function TargetWorkbook() As String

Dim ws As Worksheet

Dim wbName As String

If Not SheetExists(CbgDistSheetName, CbgCallingWorkbook) Then

MsgBox "The worksheet ’" & CbgDistSheetName & _

"’ was not found in workbook ’" & _
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CbgCallingWorkbook.name & "’"

TargetWorkbook = ""

Exit Function

End If

Set ws = CbgCallingWorkbook.Worksheets(CbgDistSheetName)

wbName = ws.Range(CbgTargetWorkbookCell).Value

If Debugging Then Debug.Print "Target workbook is ’" & wbName & "’"

If (wbName = "") Then

MsgBox "A target workbook must be specified in cell " &_

CbgTargetWorkbookCell & _

" of the " & CbgDistSheetName & " sheet"

TargetWorkbook = ""

Exit Function

End If

TargetWorkbook = wbName

End Function

’

’ Run a GREET macro.

’

Private Function RunGreetMacro(macro As String) As Boolean

Dim wbName As String

RunGreetMacro = True ’ not sure if Run returns a status...

wbName = TargetWorkbook()

Application.StatusBar = "Running GREET macro " & macro

Application.Run "’" & wbName & "’!" & macro

End Function

’

’ Count the number of distributions for use with the status indicator.

’

Private Function countDistributions(ws As Worksheet) As Integer

Dim row As Integer

row = CbgFirstDistRow

’ Terminate when the worksheet column is empty.

Do While Not IsEmpty(ws.Cells(row, CbgSheetCol))
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row = row + 1

Loop

countDistributions = row - CbgFirstDistRow

End Function

’

’ Update the progress status line to display the percent completed.

’ Remembers the wbName to use on subsequent calls if not provided.

’

Private Sub updateProgress(percent, wbName As String)

Application.StatusBar = "Setup " & wbName & ": " &

Format(percent, "0\%") & " complete..."

End Sub

’

’ Clear the progress indication

’

Private Sub removeProgress()

Application.StatusBar = False

End Sub

’

’ See if a list of tags includes the given tag

’

Private Function MatchTag(tag As String, tagString As String) As Boolean

Dim tags As Variant

Dim i As Long

tags = Split(tagString, ",")

MatchTag = True

For i = 0 To UBound(tags)

If tags(i) = tag Then Exit Function

Next i

MatchTag = False

End Function

’

’ Interpret a Dist_Spec parameter tag as a Crystal Ball constant

’ for use with CB.DefineAltParms

’

Private Function ConvertParameter(name As String) As Integer

Dim code As Integer
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Select Case LCase(name)

Case "minimum ="

code = CbParmMinimum

Case "maximum ="

code = CbParmMaximum

Case "likeliest ="

code = CbParmLikeliest

Case "5th percentile ="

code = CbParmPercentile + 5

Case "10th percentile ="

code = CbParmPercentile + 10

Case "20th percentile ="

code = CbParmPercentile + 20

Case "50th percentile ="

code = CbParmPercentile + 50

Case "80th percentile ="

code = CbParmPercentile + 80

Case "90th percentile ="

code = CbParmPercentile + 90

Case "95th percentile ="

code = CbParmPercentile + 95

Case "alpha ="

code = CbParmAlpha

Case "beta ="

code = CbParmBeta

Case "scale ="

code = CbParmScale

Case "standard deviation ="

code = CbParmStDev

Case "mean ="

code = CbParmMean

Case "mode ="

code = CbParmMode

Case "location ="

code = CbParmLocation

Case "shape ="

code = CbParmShape

Case "rate ="

code = CbParmRate

Case Else
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code = CbParmNone

End Select

ConvertParameter = code

End Function

’

’ Convert a string distribution name (or "forecast") into an integer

’ value for Crystal Ball. Return the code if successful, or

’ CbgUnknownDist otherwise.

’

Private Function DistributionCode(name As String) As Integer

Dim code As Integer

Select Case LCase(name)

Case "normal"

code = cbDfaNormal ’ mean, stdev

Case "lognormal"

code = cbDfaLogNormal ’ mean, stdev

Case "triangular" ’ min, likeliest, max

code = cbDfaTriangular

Case "uniform" ’ min, max

code = cbDfaUniform

Case "beta" ’ alpha>0.3, beta>0.3, max, min (alpha+beta<1000)

code = cbDfaBeta

Case "betapert" ’ max, min, likeliest

code = cbDfaBetaPert

Case "weibull" ’ location, scale>0, shape >0.05

code = cbDfaWeibull

Case "gamma" ’ location, scale>0, shape >0.05, <1000

code = cbDfaGamma

Case "logistic" ’ mean, scale>0

code = cbDfaLogistic

Case "extval", "minextreme" ’ likeliest, scale>0

code = cbDfaMinExtreme

Case "maxextreme" ’ likeliest, scale>0

code = cbDfaMaxExtreme

Case "exponential" ’ rate

code = cbDfaExponential

Case "discrete" ’ minimum, maximum

code = cbDfaDiscreteUniform

’ "forecast" is a special case folded into distribution definitions
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Case "forecast"

code = CbgForecast

Case Else

code = CbgUnknownDist

End Select

DistributionCode = code

End Function

’

’ Define a single assumption from the given parameters.

’

Private Function DefineAssumption(row As Integer, tag As String, _

tagstr As String, targetWb As Workbook, _

sheetName As String, rangeName As String, distName As String, _

n1 As String, p1 As Variant, n2 As String, p2 As Variant, _

n3 As String, p3 As Variant, _

name As String) As Boolean

Dim ws As Worksheet

Dim dist As Integer

Dim rng As Range

DefineAssumption = False

If Not SheetExists(sheetName, targetWb) Then

MsgBox "CBG: Sheet ’" & sheetName & "’ not found in workbook " & _

targetWb.name

Exit Function

End If

Set ws = targetWb.Worksheets(sheetName)

ws.Select

On Error Resume Next

Set rng = ws.Range(rangeName)

If Err.Number <> 0 Then

MsgBox "CBG: Specified range " & sheetName & "!" & rangeName & _

" is invalid (row " & row & ")"

Exit Function
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End If

rng.Select

If Not (tagstr = "all" Or MatchTag(tag, tagstr)) Then

If Debugging And tagstr <> "" Then

Debug.Print "tagstr ’" & tagstr & "’ doesn’t match tag ’" & tag & _

"’ (row " & row & ")"

End If

Cb.ClearDataND ’ remove any previous distribution definition

DefineAssumption = True

Exit Function

End If

dist = DistributionCode(distName)

If dist = CbgUnknownDist Then

MsgBox "Unrecognized distribution type ’" & distName & _

"’ was specified (row " & row & ")"

Exit Function

End If

If dist = CbgForecast Then

’ "forecast" is a special case folded into distribution definitions

Dim displayAuto As Boolean

Dim displayWhileRunning As Boolean

Dim units As String

units = p1

If p2 = 0 Then displayAuto = False Else displayAuto = True

If p3 = 0 Then displayWhileRunning = False _

Else displayWhileRunning = True

Cb.DefineForeND name, units, displayAuto, displayWhileRunning

DefineAssumption = (Cb.MacroResult = cbErrNone)

Exit Function

End If

If dist = cbDfaDiscreteUniform Then

Cb.DefineAssumND dist, p1, p2, , , , name, , 0

DefineAssumption = True
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Exit Function

End If

’ Define the distribution according to the given parameters

Dim parm1 As Integer, parm2 As Integer, parm3 As Integer

Dim alt As Integer

parm1 = ConvertParameter(n1)

parm2 = ConvertParameter(n2)

parm3 = ConvertParameter(n3)

alt = Cb.DefineAltParms(dist, parm1, parm2, parm3)

If (alt = -1) Then

MsgBox "CBG: Failed to define alt params for " & distName & _

" (row " & row & ")"

Exit Function

End If

Cb.DefineAssumND alt, p1, p2, p3, , , name, , 0

If Cb.MacroResult = cbErrNone Then

DefineAssumption = True

Else

MsgBox "CBG: " & Cb.MacroResultDetail.Msg & " (row " & row & ")"

End If

End Function

’

’ Read the distribution descriptions from the "Distributions" sheet

’ and create the corresponding CB assumtions.

’

Private Function DefineAssumptions(tag As String)

Dim ws As Worksheet

Dim targetWb As Workbook

Dim wbName As String

Dim rng As Range

Dim row As Integer

Dim calc As XlCalculation

Dim iter As Boolean, events As Boolean

Dim maxiter As Integer, maxchg As Integer
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With Application

calc = .Calculation

maxchg = .MaxChange

maxiter = .MaxIterations

iter = .Iteration

events = .EnableEvents

.ScreenUpdating = False

.Calculation = xlCalculationManual

.Iteration = True

.MaxIterations = 20

.MaxChange = 0.001

.EnableEvents = False

End With

DefineAssumptions = False

On Error GoTo QUIT

If Not SheetExists(CbgDistSheetName, CbgCallingWorkbook) Then

MsgBox "CBG: The sheet ’" & CbgDistSheetName & _

"’ was not found in the current workbook."

Exit Function

End If

Set ws = CbgCallingWorkbook.Worksheets(CbgDistSheetName)

wbName = ws.Range(CbgTargetWorkbookCell).Value

If Debugging Then Debug.Print "Target workbook is ’" & wbName & "’"

If Not WorkbookIsOpen(wbName) Then

MsgBox "CBG: Target workbook ’" & wbName & _

"’ must be open prior to running CB-GREET"

GoTo QUIT

End If

Set targetWb = Application.Workbooks(wbName)

targetWb.Activate

Dim rows As Integer

rows = countDistributions(ws)

Call updateProgress(0, wbName)
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’ skip headings

row = CbgFirstDistRow

’ Terminate when the worksheet column is empty.

Do While Not IsEmpty(ws.Cells(row, CbgSheetCol))

Dim tagstr As String, sheetName As String

Dim rangeName As String, distName As String

Dim p1 As Variant, p2 As Variant, p3 As Variant

Dim n1 As String, n2 As String, n3 As String

Dim name As String

tagstr = ws.Cells(row, CbgTagsCol).Value

sheetName = ws.Cells(row, CbgSheetCol).Value

rangeName = ws.Cells(row, CbgRangeCol).Value

distName = ws.Cells(row, CbgDistCol).Value

p1 = ws.Cells(row, CbgValue1Col).Value

p2 = ws.Cells(row, CbgValue2Col).Value

p3 = ws.Cells(row, CbgValue3Col).Value

n1 = ws.Cells(row, CbgName1Col).Value

n2 = ws.Cells(row, CbgName2Col).Value

n3 = ws.Cells(row, CbgName3Col).Value

name = ws.Cells(row, CbgNameCol).Value

If name = "" Then name = sheetName & "!" & rangeName

If Debugging And row = 162 Then Debug.Print "Row 162: range is " _

& rangeName

If DefineAssumption(row, tag, tagstr, targetWb, _

sheetName, rangeName, distName, _

n1, p1, n2, p2, n3, p3, name) = False Then GoTo QUIT

row = row + 1

Call updateProgress((row - CbgFirstDistRow) / rows, wbName)

Loop

’If Debugging Then Debug.Print wbName & " has been updated."

DefineAssumptions = True
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QUIT:

removeProgress

If Debugging And Not Err.Number = 0 Then Debug.Print "Error: " &_

Err.Description

’CallingWorkbook.Activate

With Application

.MaxChange = maxchg

.MaxIterations = maxiter

.Iteration = iter

.Calculation = calc

.EnableEvents = events

.ScreenUpdating = True

End With

End Function

Public Sub SetupSim()

If Not Cb.CBLoaded() Then Cb.Startup

’ we handle errors ourselves

’ Cb.AlertOnMacroResultError False

’ Cb.AlertOnArgumentError False

Cb.ResetND

Cb.RunPrefsND cbRunMode, cbRunNormalSpeed

Cb.RunPrefsND cbRunSaveAssumptionValues, True

Cb.RunPrefsND cbRunUserMacros, False

’ Cb.SetCBWorkbookPriority (10) ’ call user-defined macros first

Set CbgCallingWorkbook = ActiveWorkbook

If DefineAssumptions("CornEtOH") Then

MsgBox "CBG: Simulation has been set up"

’ Cb.Simulation CbgTrials

Else

MsgBox "CBG: Simulation set-up failed"

End If

CbgCallingWorkbook.Activate ’ restore prior active workbook

End Sub
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APPENDIX B

KEY GREET DISTRIBUTIONS

GREET is programmed to perform analyses in user-selected target years from 2005 to 2020. Key
LCA parameters that are anticipated to change over time are represented in GREET in time series
tables (e.g., in the Fuel Prod TS and EF TS worksheets). To allow the specification of probability
distributions while accommodating variable target years, when the ”stochastic analysis” option
(Inputs!B7) is chosen, a macro finds all cells in the spreadsheet of a particular green color, and if
the cells in the next row of the same column is yellow, the value is assumed to represent a time
series. The macro then finds all references to the green cell and rewrites these to scale the value
selected during the Monte Carlo simulation by the value in the yellow cell (the point estimate for
the selected year) and the mean value for the distribution. The distributions shown in the following
tables are the distributions used in GREET before scaling.



212

G
RE

ET
 S
he

et
 

Ce
ll 

D
is
tr
ib
ut
io
n 

Pa
ra
m
et
er
1 

V
al
ue

1 
Pa

ra
m
et
er
2 

V
al
ue

2 
Pa

ra
m
et
er
3 

V
al
ue

3 
D
es
cr
ip
ti
on

 

A
g_

In
pu

ts
 

$B
$2

0 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

15
8 

M
ax

im
um

 =
 

0.
37

5 
Li

ke
lie

st
 =

 
0.

28
3 

A
m

m
on

ia
 p

ro
du

ct
io

n 
sh

ar
e 

of
 N

G
 a

s 
fu

el
 

A
g_

In
pu

ts
 

$B
$2

2 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
24

.3
 

M
ax

im
um

 =
 

30
.6

7 
Li

ke
lie

st
 =

 
27

.4
9 

A
m

m
on

ia
 to

ta
l p

ro
du

ct
io

n 
en

er
gy

 

A
g_

In
pu

ts
 

$B
$2

3 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
22

.4
6 

M
ax

im
um

 =
 

30
.2

8 
Li

ke
lie

st
 =

 
26

.3
7 

A
m

m
on

ia
 p

ro
du

ct
io

n 
na

tu
ra

l g
as

 

A
g_

In
pu

ts
 

$C
$4

5 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
27

.2
4 

M
ax

im
um

 =
 

71
73

 
Li

ke
lie

st
 =

 
36

00
.2

 
A

m
m

on
ia

 p
ro

ce
ss

 C
O

 e
m

is
si

on
s 

A
g_

In
pu

ts
 

$F
$2

2 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
1.

68
 

M
ax

im
um

 =
 

2.
86

 
Li

ke
lie

st
 =

 
2.

27
 

U
re

a 
pr

od
uc

tio
n 

to
ta

l e
ne

rg
y 

A
g_

In
pu

ts
 

$F
$2

3 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
1.

46
4 

M
ax

im
um

 =
 

2.
81

6 
Li

ke
lie

st
 =

 
2.

14
 

U
re

a 
pr

od
uc

tio
n 

N
G

 in
pu

t 

A
g_

In
pu

ts
 

$G
$4

7 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
53

.1
18

 
M

ax
im

um
 =

 
14

7.
55

 
Li

ke
lie

st
 =

 
10

0.
33

 
U

re
a 

pr
od

uc
tio

n 
P

M
10

 

A
g_

In
pu

ts
 

$H
$6

6 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
66

.7
%

 
M

ax
im

um
 =

 
74

.7
%

 
Li

ke
lie

st
 =

 
70

.7
%

 
Fr

ac
tio

n 
of

 N
 a

pp
lie

d 
as

 a
m

m
on

ia
 

A
g_

In
pu

ts
 

$I
$6

6 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
17

.1
%

 
M

ax
im

um
 =

 
25

.1
%

 
Li

ke
lie

st
 =

 
21

.1
%

 
Fr

ac
tio

n 
of

 N
 a

pp
lie

d 
as

 u
re

a 

A
g_

In
pu

ts
 

$J
$4

6 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
54

9.
3 

M
ax

im
um

 =
 

99
8.

8 
Li

ke
lie

st
 =

 
77

4.
1 

N
itr

ic
 a

ci
d 

pr
od

uc
tio

n 
N

O
x 

 

A
g_

In
pu

ts
 

$J
$5

1 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
16

48
 

M
ax

im
um

 =
 

14
18

3 
Li

ke
lie

st
 =

 
79

16
 

N
itr

ic
 a

ci
d 

pr
od

uc
tio

n 
N

2O
 

A
g_

In
pu

ts
 

$U
$2

2 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
2.

1 
M

ax
im

um
 =

 
7.

17
 

Li
ke

lie
st

 =
 

4.
64

 
P

ho
sp

ho
ric

 a
ci

d 
pr

od
uc

tio
n 

en
er

gy
 

A
g_

In
pu

ts
 

$U
$2

3 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
1.

54
6 

M
ax

im
um

 =
 

6.
8 

Li
ke

lie
st

 =
 

4.
17

3 
P

ho
sp

ho
ric

 a
ci

d 
pr

od
uc

tio
n 

N
G

 

E
le

ct
ric

 
$C

$1
31

 
B

E
TA

 
A

lp
ha

 =
 

2 
B

et
a 

= 
4 

S
ca

le
 =

 
0.

07
63

 
V

O
C

 fr
om

 N
G

 S
C

 tu
rb

in
e 

E
le

ct
ric

 
$C

$1
44

 
B

E
TA

 
A

lp
ha

 =
 

2 
B

et
a 

= 
4 

S
ca

le
 =

 
0.

07
63

 
N

O
x 

fro
m

 N
G

 C
C

 tu
rb

in
e 

E
le

ct
ric

 
$H

$1
57

 
B

E
TA

 
A

lp
ha

 =
 

1.
07

45
 

B
et

a 
= 

4.
54

8 
S

ca
le

 =
 

11
.8

65
 

P
M

2.
5 

fro
m

 c
oa

l b
oi

le
r 

E
le

ct
ric

 
$H

$2
09

 
B

E
TA

 
A

lp
ha

 =
 

19
.8

45
 

B
et

a 
= 

1.
14

85
 

S
ca

le
 =

 
0.

34
02

 
S

O
x 

fro
m

 b
io

m
as

s 
IG

C
C

 tu
rb

in
e:

 W
oo

dy
 

E
tO

H
 

$A
L$

16
8 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

55
%

 
M

ax
im

um
 =

 
55

%
 

Li
ke

lie
st

 =
 

55
%

 
Fr

ac
tio

n 
of

 b
io

m
as

s 
fo

r E
tO

H
; r

es
t f

or
 p

ow
er

 a
nd

 e
le

ct
ric

ity
 

E
tO

H
 

$C
$1

11
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

0.
99

2 
M

ax
im

um
 =

 
0.

99
2 

Li
ke

lie
st

 =
 

0.
99

2 
C

or
n 

di
sp

la
ce

d 
by

 1
 u

ni
t D

D
G

S
 

E
tO

H
 

$C
$1

12
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

0.
30

6 
M

ax
im

um
 =

 
0.

30
6 

Li
ke

lie
st

 =
 

0.
30

6 
S

oy
be

an
 m

ea
l d

is
pl

ac
ed

 b
y 

1 
un

it 
D

D
G

S
 

E
tO

H
 

$C
$1

13
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

0.
02

2 
M

ax
im

um
 =

 
0.

02
2 

Li
ke

lie
st

 =
 

0.
02

2 
U

re
a 

di
sp

la
ce

d 
by

 1
 u

ni
t D

D
G

S
 

E
tO

H
 

$F
$1

86
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

30
%

 
M

ax
im

um
 =

 
10

0%
 

Li
ke

lie
st

 =
 

90
%

 
Fr

ac
tio

n 
of

 C
aC

O
3-

C
O

2 
lo

st
 in

 th
e 

fie
ld

 

E
tO

H
 

$G
$1

13
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

-3
38

1 
M

ax
im

um
 =

 
-3

38
1 

Li
ke

lie
st

 =
 

-3
38

1 
A

vo
id

ed
 C

H
4 

em
is

si
on

s 
by

 li
ve

st
oc

k 

E
tO

H
 

$M
$1

76
 

B
E

TA
 

A
lp

ha
 =

 
7 

B
et

a 
= 

4 
S

ca
le

 =
 

3.
15

 
D

ry
 M

ill
 E

th
an

ol
 P

ro
du

ct
io

n:
 N

on
-C

om
bu

st
io

n 
V

O
C

 

E
tO

H
 

$M
$1

79
 

B
E

TA
 

A
lp

ha
 =

 
2 

B
et

a 
= 

2 
S

ca
le

 =
 

1.
71

 
D

ry
 M

ill
 E

th
an

ol
 P

ro
du

ct
io

n:
 N

on
-C

om
bu

st
io

n 
P

M
10

 

Fu
el

_P
ro

d_
TS

 
$A

A
$8

 
N

O
R

M
A

L 
20

th
 p

er
ce

nt
ile

 =
 

0.
89

 
80

th
 p

er
ce

nt
ile

 =
 

0.
93

 
 

 
C

ru
de

 n
ap

ht
ha

 re
fin

in
g 

ef
fic

. 

Fu
el

_P
ro

d_
TS

 
$A

E
$2

56
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
17

60
80

 
80

th
 p

er
ce

nt
ile

 =
 

29
34

60
 

 
 

Fa
rm

ed
 T

re
es

 F
ar

m
in

g 
E

ne
rg

y 
U

se
: B

tu
/d

ry
 to

n 

Fu
el

_P
ro

d_
TS

 
$A

E
$3

10
 

TR
IA

N
G

U
LA

R
 

10
th

 p
er

ce
nt

ile
 =

 
0.

37
 

90
th

 p
er

ce
nt

ile
 =

 
0.

42
 

Li
ke

lie
st

 =
 

0.
38

4 
B

io
m

as
s-

Fi
re

d 
P

ow
er

 P
la

nt
s 

ef
fic

ie
nc

y 
(IG

C
C

) 

Fu
el

_P
ro

d_
TS

 
$A

I$
25

6 
N

O
R

M
A

L 
20

th
 p

er
ce

nt
ile

 =
 

53
2 

80
th

 p
er

ce
nt

ile
 =

 
88

6 
 

 
N

 F
er

til
iz

er
 U

se
 fo

r F
ar

m
ed

 T
re

es
 F

ar
m

in
g 

Fu
el

_P
ro

d_
TS

 
$A

U
$2

56
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
16

29
20

 
80

th
 p

er
ce

nt
ile

 =
 

27
15

40
 

 
 

H
. B

io
m

as
s 

Fa
rm

in
g 

E
ne

rg
y 

U
se

 

Fu
el

_P
ro

d_
TS

 
$A

Y
$2

56
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
79

80
 

80
th

 p
er

ce
nt

ile
 =

 
13

29
0 

 
 

N
 F

er
til

iz
er

 U
se

 fo
r H

. B
io

m
as

s 
Fa

rm
in

g 

Fu
el

_P
ro

d_
TS

 
$B

O
$2

56
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

0 
M

ax
im

um
 =

 
39

0 
Li

ke
lie

st
 =

 
19

5 
C

O
2 

E
m

is
si

on
s 

fro
m

 L
an

du
se

 C
ha

ng
e:

 C
or

n 
Fa

rm
 

Fu
el

_P
ro

d_
TS

 
$B

S
$2

56
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

-2
25

00
0 

M
ax

im
um

 =
 

0 
Li

ke
lie

st
 =

 
-1

12
50

0 
C

O
2 

E
m

is
si

on
s 

fro
m

 L
U

C
: F

ar
m

ed
 T

re
es

 F
ar

m
 

Fu
el

_P
ro

d_
TS

 
$B

W
$2

56
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

-9
70

00
 

M
ax

im
um

 =
 

0 
Li

ke
lie

st
 =

 
-4

85
00

 
C

O
2 

E
m

is
si

on
s 

fro
m

 L
U

C
: H

.B
io

m
as

s 
Fa

rm
 

Fu
el

_P
ro

d_
TS

 
$C

$2
56

 
W

E
IB

U
LL

 
5t

h 
pe

rc
en

til
e 

= 
19

96
3 

95
th

 p
er

ce
nt

ile
 =

 
34

22
4 

50
th

 p
er

ce
nt

ile
 =

 
23

28
8 

C
or

n 
Fa

rm
in

g 
E

ne
rg

y 
U

se
: B

tu
/b

us
he

l o
f c

or
n 



213

Fu
el

_P
ro

d_
TS

 
$C

$3
10

 
N

O
R

M
A

L 
20

th
 p

er
ce

nt
ile

 =
 

0.
33

7 
80

th
 p

er
ce

nt
ile

 =
 

0.
35

8 
 

 
R

es
id

ua
l O

il-
Fi

re
d 

P
ow

er
 P

la
nt

s 
(U

til
ity

 B
oi

le
r)

 

Fu
el

_P
ro

d_
TS

 
$C

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
A

 N
G

 re
co

ve
r e

ffi
c.

 

Fu
el

_P
ro

d_
TS

 
$C

$8
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

0.
96

 
M

ax
im

um
 =

 
0.

99
 

Li
ke

lie
st

 =
 

0.
98

 
C

ru
de

 re
co

ve
ry

 e
ffi

ci
en

cy
 

Fu
el

_P
ro

d_
TS

 
$G

$2
56

 
W

E
IB

U
LL

 
10

th
 p

er
ce

nt
ile

 =
 

30
5 

90
th

 p
er

ce
nt

ile
 =

 
57

7 
50

th
 p

er
ce

nt
ile

 =
 

47
0 

N
 F

er
til

iz
er

 U
se

 fo
r C

or
n 

Fa
rm

in
g:

 N
 g

ra
m

s/
bu

sh
el

 

Fu
el

_P
ro

d_
TS

 
$G

$3
10

 
N

O
R

M
A

L 
20

th
 p

er
ce

nt
ile

 =
 

0.
33

7 
80

th
 p

er
ce

nt
ile

 =
 

0.
35

8 
 

 
N

at
ur

al
 G

as
-F

ire
d 

P
ow

er
 P

la
nt

s 
(U

til
ity

 B
oi

le
r)

 

Fu
el

_P
ro

d_
TS

 
$G

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
N

A
 N

G
 re

co
ve

ry
 e

ffi
c.

 

Fu
el

_P
ro

d_
TS

 
$G

$8
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

85
 

80
th

 p
er

ce
nt

ile
 =

 
0.

86
 

 
 

C
G

 re
fin

in
g 

ef
fic

. 

Fu
el

_P
ro

d_
TS

 
$K

$2
56

 
W

E
IB

U
LL

 
10

th
 p

er
ce

nt
ile

 =
 

88
 

90
th

 p
er

ce
nt

ile
 =

 
27

3 
50

th
 p

er
ce

nt
ile

 =
 

17
5 

P
2O

5 
Fe

rti
liz

er
 U

se
 fo

r C
or

n 
Fa

rm
in

g 

Fu
el

_P
ro

d_
TS

 
$K

$3
10

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

3 
M

ax
im

um
 =

 
0.

4 
Li

ke
lie

st
 =

 
0.

33
1 

N
at

ur
al

 G
as

-F
ire

d 
P

ow
er

 P
la

nt
s 

(S
im

pl
e 

C
yc

le
 G

as
 T

ur
bi

ne
) 

Fu
el

_P
ro

d_
TS

 
$K

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
N

A
 F

G
 re

co
ve

ry
 e

ffi
c.

 

Fu
el

_P
ro

d_
TS

 
$K

$8
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

84
 

80
th

 p
er

ce
nt

ile
 =

 
0.

87
 

 
 

FR
FG

 R
ef

in
in

g 
ef

fic
. 

Fu
el

_P
ro

d_
TS

 
$O

$2
56

 
W

E
IB

U
LL

 
5t

h 
pe

rc
en

til
e 

= 
18

 
95

th
 p

er
ce

nt
ile

 =
 

39
1 

50
th

 p
er

ce
nt

ile
 =

 
21

5 
K

2O
 F

er
til

iz
er

 U
se

 fo
r C

or
n 

Fa
rm

in
g 

Fu
el

_P
ro

d_
TS

 
$O

$3
10

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

45
 

M
ax

im
um

 =
 

0.
63

 
Li

ke
lie

st
 =

 
0.

53
 

N
at

ur
al

 G
as

-F
ire

d 
P

ow
er

 P
la

nt
s 

(N
G

C
C

 tu
rb

in
e)

 

Fu
el

_P
ro

d_
TS

 
$O

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
A

 N
G

 p
ro

ce
ss

in
g 

ef
fic

. 

Fu
el

_P
ro

d_
TS

 
$O

$8
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

84
 

80
th

 p
er

ce
nt

ile
 =

 
0.

87
 

 
 

C
A

R
FG

 re
fin

in
g 

ef
fic

. 

Fu
el

_P
ro

d_
TS

 
$S

$2
56

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
71

0 
M

ax
im

um
 =

 
21

29
.1

 
Li

ke
lie

st
 =

 
14

19
.4

 
g 

C
aC

O
3 

/ b
u 

co
rn

 

Fu
el

_P
ro

d_
TS

 
$S

$3
10

 
N

O
R

M
A

L 
10

th
 p

er
ce

nt
ile

 =
 

0.
31

5 
90

th
 p

er
ce

nt
ile

 =
 

0.
36

6 
 

 
C

oa
l-F

ire
d 

P
ow

er
 P

la
nt

s 
ef

fic
ie

nc
y 

(U
til

ity
 B

oi
le

r)
 

Fu
el

_P
ro

d_
TS

 
$S

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
N

A
 N

G
 p

ro
ce

ss
in

g 
ef

fic
. 

Fu
el

_P
ro

d_
TS

 
$S

$8
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

88
 

80
th

 p
er

ce
nt

ile
 =

 
0.

9 
 

 
C

D
 re

fin
in

g 
ef

fic
. 

Fu
el

_P
ro

d_
TS

 
$W

$3
10

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

4 
M

ax
im

um
 =

 
0.

53
 

Li
ke

lie
st

 =
 

0.
47

 
C

oa
l-F

ire
d 

P
ow

er
 P

la
nt

s 
ef

fic
ie

nc
y 

(IG
C

C
) 

Fu
el

_P
ro

d_
TS

 
$W

$3
4 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

96
 

80
th

 p
er

ce
nt

ile
 =

 
0.

99
 

 
 

N
N

A
 F

G
 p

ro
ce

ss
in

g 
ef

fic
 

Fu
el

_P
ro

d_
TS

 
$W

$8
 

N
O

R
M

A
L 

20
th

 p
er

ce
nt

ile
 =

 
0.

85
 

80
th

 p
er

ce
nt

ile
 =

 
0.

89
 

 
 

LS
D

 re
fin

in
g 

ef
fic

. 

Fu
el

_S
pe

cs
 

$B
$6

1 
LO

G
N

O
R

M
A

L 
M

ea
n 

= 
25

 
S

td
 D

ev
ia

tio
n 

= 
4 

Lo
ca

tio
n 

= 
0 

C
H

4 
G

W
P 

Fu
el

_S
pe

cs
 

$B
$6

2 
LO

G
N

O
R

M
A

L 
M

ea
n 

= 
29

8 
S

td
 D

ev
ia

tio
n 

= 
52

 
Lo

ca
tio

n 
= 

0 
N

2O
 G

W
P 

Fu
el

_S
pe

cs
 

$C
$1

1 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
12

06
00

 
M

ax
im

um
 =

 
14

06
00

 
Li

ke
lie

st
 =

 
12

84
50

 
C

on
v.

 D
ie

se
l L

H
V

 

Fu
el

_S
pe

cs
 

$C
$2

0 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
75

77
0 

M
ax

im
um

 =
 

78
65

0 
Li

ke
lie

st
 =

 
76

33
0 

E
th

an
ol

 L
H

V
 

Fu
el

_S
pe

cs
 

$C
$8

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
10

80
00

 
M

ax
im

um
 =

 
12

35
00

 
Li

ke
lie

st
 =

 
11

60
90

 
C

on
v.

 G
as

ol
in

e 
LH

V
 

Fu
el

_S
pe

cs
 

$D
$1

1 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
12

86
40

 
M

ax
im

um
 =

 
14

80
00

 
Li

ke
lie

st
 =

 
13

73
80

 
C

on
v.

 D
ie

se
l H

H
V

 

Fu
el

_S
pe

cs
 

$D
$2

0 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
83

66
0 

M
ax

im
um

 =
 

86
77

0 
Li

ke
lie

st
 =

 
84

53
0 

E
th

an
ol

 H
H

V
 

Fu
el

_S
pe

cs
 

$D
$4

9 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
20

23
00

00
 

M
ax

im
um

 =
 

21
01

00
00

 
Li

ke
lie

st
 =

 
20

60
85

70
 

C
oa

l H
H

V
 

Fu
el

_S
pe

cs
 

$D
$8

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
11

28
00

 
M

ax
im

um
 =

 
13

26
00

 
Li

ke
lie

st
 =

 
12

43
40

 
C

on
v.

 G
as

ol
in

e 
H

H
V

 

Fu
el

_S
pe

cs
 

$E
$1

1 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
29

52
 

M
ax

im
um

 =
 

33
57

 
Li

ke
lie

st
 =

 
31

67
 

C
on

v.
 D

ie
se

l d
en

si
ty

 

Fu
el

_S
pe

cs
 

$E
$2

0 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
29

71
 

M
ax

im
um

 =
 

29
98

 
Li

ke
lie

st
 =

 
29

88
 

E
th

an
ol

 d
en

si
ty

 

Fu
el

_S
pe

cs
 

$E
$4

4 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
21

.2
 

M
ax

im
um

 =
 

22
 

Li
ke

lie
st

 =
 

22
 

N
G

 d
en

si
ty

 

Fu
el

_S
pe

cs
 

$E
$8

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
27

21
 

M
ax

im
um

 =
 

29
52

 
Li

ke
lie

st
 =

 
28

19
 

C
on

v.
 G

as
ol

in
e 

de
ns

ity
 

Fu
el

_S
pe

cs
 

$F
$4

4 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

72
1 

M
ax

im
um

 =
 

0.
73

9 
Li

ke
lie

st
 =

 
0.

72
4 

N
G

 c
ar

bo
n 

ra
tio

 



214

Fu
el

_S
pe

cs
 

$F
$4

9 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

6 
M

ax
im

um
 =

 
0.

66
 

Li
ke

lie
st

 =
 

0.
63

7 
C

oa
l c

ar
bo

n 
ra

tio
 

Fu
el

_S
pe

cs
 

$F
$8

 
TR

IA
N

G
U

LA
R

 
M

in
im

um
 =

 
0.

85
 

M
ax

im
um

 =
 

0.
88

 
Li

ke
lie

st
 =

 
0.

86
3 

C
on

v.
 G

as
ol

in
e 

ca
rb

on
 ra

tio
 

In
pu

ts
 

$B
$2

10
 

LO
G

N
O

R
M

A
L 

S
td

 D
ev

ia
tio

n 
= 

1.
11

%
 

M
ea

n 
= 

1.
65

%
 

Lo
ca

tio
n 

= 
0.

02
%

 
N

2O
 e

m
is

si
on

 ra
te

 fo
r f

er
til

iz
er

 

In
pu

ts
 

$B
$3

94
 

D
IS

C
R

E
TE

 
M

in
im

um
 =

 
1 

M
ax

im
um

 =
 

3 
 

 
Ty

pe
 o

f e
le

ct
ric

ity
 d

is
pl

ac
ed

 b
y 

et
ha

no
l p

la
nt

 e
le

ct
ric

ity
 

In
pu

ts
 

$C
$3

14
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

25
%

 
M

ax
im

um
 =

 
25

%
 

Li
ke

lie
st

 =
 

25
%

 
P

er
ce

nt
 m

oi
st

ur
e 

of
 fa

rm
ed

 tr
ee

s 
du

rin
g 

tra
ns

po
rt 

In
pu

ts
 

$C
$3

15
 

TR
IA

N
G

U
LA

R
 

M
in

im
um

 =
 

15
%

 
M

ax
im

um
 =

 
15

%
 

Li
ke

lie
st

 =
 

15
%

 
P

er
ce

nt
 m

oi
st

ur
e 

of
 h

er
ba

ce
ou

s 
bi

om
as

s 
du

rin
g 

tra
ns

po
rt 

 


	List of Figures
	List of Tables
	I Introduction
	Introduction
	Motivation
	Goals
	Contributions
	Dissertation structure

	Background
	Purpose and scope
	Uncertainty
	Types of uncertainty
	Uncertainty analysis
	Avoiding uncertainty analysis

	Life cycle assessment
	History and purpose
	Methodological issues with LCA
	Attributional versus consequential LCA
	Economic Input-Output LCA

	Uncertainty in LCA

	Uncertainty in life cycle GHG emission estimates for biofuels
	Purpose and scope
	Uncertainty in fuel cycle analysis
	Defining life cycle climate effects
	Which emissions to consider
	Biogeophysical climate effects
	Aggregation of climate effects

	Co-products of biofuels
	Feedstock production
	Soil GHG fluxes
	Soil carbon
	Uncertainties in Agricultural Production Data

	Biofuel production


	II Uncertainty Analysis of Direct Life Cycle Emissions
	GREET-BESS Analysis Meta-Model (GBAMM)
	Purpose and scope
	Introduction
	Background
	Comparing Life Cycle Models

	Methods
	Baseline estimates
	Adjustments to the models

	Results
	Life cycle emission factors
	General issues with agricultural production data
	Planted versus harvested acres
	Water and seed energy
	Custom work and input hauling
	Agricultural data vintage and yield
	Agricultural lime
	Fertilizers
	Fuel ethanol production

	Discussion

	GREET Uncertainty Analysis
	Purpose and scope
	Introduction
	Prior studies

	Methods
	The GREET model
	Uncertainty analysis
	Fuel pathways considered
	Modification to GREET parameters and distributions
	Scenarios considered

	Results
	Uncertainty importance analysis
	Uncertainty propagation

	Discussion and Conclusion
	Uncertainty in estimating the climate effects of petroleum fuels
	Limitations of this analysis



	III Uncertainty Analysis of Indirect Life Cycle Emissions
	Uncertainty in estimating emissions from indirect land use change
	Purpose and scope
	Overview
	Uncertainty in economic modeling
	Critiques of economic equilibrium models
	Summary

	Uncertainty in ecosystem carbon accounting
	Uncertainty in predicting affected ecosystems
	Uncertainty in estimating carbon fluxes

	Accounting for time
	Projecting total fuel production
	Handling distinct emission profiles over time

	Concluding remarks

	Uncertainty analysis of Searchinger et al. ILUC model
	Purpose and scope
	Introduction
	Methods
	Approach
	Uncertainty in economic modeling results
	Uncertainty in estimating affected ecosystem types
	Uncertainty in estimating carbon fluxes
	Lost Future Sequestration
	The treatment of time
	Correlated Variables
	Assumed Probability Distributions

	Results
	Analysis of Uncertainty and Sensitivity
	Meta-Uncertainty Analysis

	Discussion
	Concluding remarks

	Reduced-Form Model of iLUC
	Purpose and scope
	Introduction
	Prior estimates of ILUC emissions
	Characterizing uncertainty

	Methods
	Reduced-form Model
	Parameter ranges

	Results
	Plausible frequency distributions
	Uncertainty importance analysis

	Discussion
	Possible biases

	Comments on the USEPA analysis for the Renewable Fuel Standard
	Model integration issues
	Questions about GHG accounting

	Concluding remarks


	IV Conclusion
	Uncertainty in the science-policy interface
	Purpose and scope
	Uncertainty in performance-based regulations
	Acid Rain Program
	Clean Air Act: Particulate Matter
	Kyoto Protocol
	Low-carbon Fuel Standard
	Comparison of policies

	Strategies for coping with uncertainty
	Adapting fuel standards to uncertainty
	Policies using threshold tests
	Policies using absolute ratings

	Assimilating uncertainty into fuel climate policy
	Prospects for reducing uncertainty

	Estimating GHG reductions from the California LCFS
	Purpose and scope
	Introduction
	Analytic boundaries of the LCFS
	Leakage

	LCFS may simply reshuffle biofuel markets
	Low-GWI biofuels required to meet a 12-state LCFS
	Differences in GWI under LCFS and RFS2
	International leakage under a national LCFS
	LCFS as backstop against weak RFS2 protocol

	Petroleum rebound effect
	Including the rebound effect in estimates of GHG benefits
	Not all GWI reductions trigger the rebound effect
	Rebound effect interaction with alternative fuel GWI
	GHG reductions under the LCFS depend on the price of petroleum

	Modeling the LCFS
	A sophisticated model
	A simple model incorporating rebound and reshuffling effects


	Conclusion
	Main findings
	Topics for future research


	Bibliography
	Appendices
	Source code for CrystalBall-GREET module
	Key GREET distributions




