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ABSTRACT OF THE DISSERTATION

Label-efficient Bayesian Assessment of Black-box Classifiers
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Machine learning classifiers are currently widely used to make decisions about individuals,

across a broad variety of societal contexts: education admissions, health insurance, medical

diagnosis, court decisions, marketing, face recognition, and more—and this trend is likely to

continue to grow. It is now well-recognized that these machine learning models are susceptible

to built-in biases that can lead to systematic discrimination against protected groups. The

machine learning research community has begun to recognize this important issue and in the

past few years had devoted considerable research resources towards developing principles,

frameworks, and algorithmic solutions to address these problems.

In this general context, this work addresses the understudied problem of how to assess how

accurate, calibrated and fair a model may be, and how much confidence we should have in

this assessment given access to a limited amount of labeled data. To be specific, we propose

a Bayesian framework for assessing (with uncertainty) performance metrics of black-box

classifiers, which is particularly important when only a limited amount of labeled data is

available. To improve label-efficiency of the assessment, we develop active Bayesian assessment

strategies for an array of fundamental tasks including (1) estimation of model performance;

(2) identification of model deficiencies; (3) performance comparison between groups. When

unlabeled data is available, we develop a new hierarchical Bayesian methodology that leverages

xvii



information from both unlabeled and labeled data.

We demonstrate that our proposed approaches need significantly fewer labels than baselines,

via a series of experiments assessing the performance of modern neural classifiers (e.g., ResNet

and BERT) on several standard image and text classification datasets. One particular example

of how the proposed approach can be used is in the increasingly common situation where

the user of a blackbox classification model needs to assess its performance from a fairness

perspective, in a manner that is separate and independent from the claims made by the entity

that trained the model. We demonstrate that the methodology developed in this work is

well-suited to such an application.
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Chapter 1

Introduction

Complex machine learning models, particularly deep learning models, are now being applied

to a variety of practical prediction problems ranging from the diagnosis of medical images

[Kermany et al., 2018, Yi et al., 2019] to autonomous driving [Du et al., 2017, Caesar

et al., 2020]. As a result, software systems with embedded machine learning components are

becoming increasingly common.

It is increasingly important for the user of a model to have accurate and robust assessments

of the quality of the model’s predictions. However, as an example, “self-confident” estimates

provided by machine learning predictors can often be quite unreliable and miscalibrated

[Zadrozny and Elkan, 2002, Kull et al., 2017, Ovadia et al., 2019]. In particular, complex

models such as deep networks with high-dimensional inputs (e.g., images and text) can

be significantly overconfident in practice [Gal and Ghahramani, 2016, Guo et al., 2017,

Lakshminarayanan et al., 2017].

Thus, downstream users of black-box predictors will need the capability to carry out assessment

separately and independently from the training and evaluation procedures used when fitting

the model. This assessment could, for example, be conducted by organizations not involved
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in training the model, in a manner similar to the assessment of commercial products carried

out by regulatory agencies. Additional motivations for independent assessment include legal

requirements that may mandate independent model assessment, the need to build human

consumers’ trust in model predictions, and situations in which the predictor is deployed in

an environment with a different distribution over inputs and outputs than the one in which

the model was trained. Problems related to detecting and handling unexpected changes in

data distributions at deployment time, such as label shift [Lipton et al., 2018], are drawing

increasing attention from the machine learning community. Recent work [Recht et al., 2019]

has shown that even when closely following the process of creating the original data used to

train a model, the performance of classification models on test datasets can differ significantly

from the performance on the original dataset. Hendrycks and Dietterich [2019] and Ovadia

et al. [2019] found that both accuracy and calibration of classifiers are not robust to common

corruptions and perturbations, let alone to worst-case adversarial perturbations.

1.1 Outline & Contributions

In this work, we address the understudied problem of how to assess how accurate, calibrated

and fair a model may be, and how much confidence we should have in this assessment given

access to a limited amount of labeled data.

In Chapter 2, we develop a Bayesian framework for assessing performance metrics of black-box

classifiers. Our contributions are:

• We developed Bayesian techniques for estimating groupwise accuracy, reliability dia-

gram, expected calibration error (ECE), confusion matrix, misclassfication cost, and

performance difference;

• We discussed using self-assessment of prediction models as informative priors for
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Bayesian assessment;

• We illustrated a number of different ways that the framework can be used to understand

performance aspects of widely-used deep learning models and datasets.

Chapter 3 describes a framework for active Bayesian assessment of black-box classifiers,

using techniques from Bayesian active learning to efficiently select instances to label so

that uncertainty of assessment can be reduced for different assessment tasks. Our primary

contributions in this chapter are:

• We proposed a general framework for active Bayesian assessment for an array of

fundamental tasks including (1) estimation of model performance; (2) identification of

model deficiencies; (3) performance comparison between groups;

• We developed a set of Thompson sampling algorithms for label-efficient active assess-

ment;

• We demonstrated that our proposed approaches need significantly fewer labels than

baselines, via a series of experiments assessing the performance of modern neural

classifiers (e.g., ResNet and BERT) on several standard image and text classification

datasets.

In Chapter 4 we study the assessment of black-box classifiers in an algorithmic fairness

context.1 To provide a reliable answer to the question “can I trust my fairness metric",

we stress the importance of being aware of the uncertainty in group fairness assessment

especially when test size is relatively small. We propose a new framework for combining

labeled and unlabeled data to produce lower variance estimates, based on Bayesian calibration

of model scores on unlabeled data. The results clearly indicate that the proposed method can
1This work has been published as Ji, Smyth, Steyvers (2020) at Conference on Neural Information

Processing Systems.
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systematically produce significantly more accurate estimates of fairness metrics for different

classification models across different datasets and sensitive attributes. In particular, the three

primary contributions are

• We proposed a comprehensive Bayesian treatment of fairness assessment that provides

uncertainty about estimates of group fairness metrics;

• We developed a new hierarchical Bayesian methodology that leverages information from

both unlabeled and labeled examples;

• We demonstrated with systematic large-scale experiments across multiple datasets and

models that using unlabeled data can reduce estimation error significantly.
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Chapter 2

Bayesian Assessment of Black-Box

Classifiers

In this chapter, we develop a general Bayesian framework to assess black-box classifiers with

uncertainty estimates. We illustrate the utility of the framework via Bayesian inference with

posterior uncertainty for quantities such as groupwise accuracy, reliability diagram, expected

calibration error (ECE), confusion matrix, misclassfication cost, and performance difference.

2.1 Preliminaries

2.1.1 Notation and Problem Statement

We consider classification problems with a feature vector x and a class label y ∈ {1, . . . , K},

e.g., classifying image pixels x into one of K classes. We assume access to a trained prediction

model M that makes predictions of y given a feature vector x. In particular, we assume that

the model produces a numerical score for each class, reflecting its confidence, typically in
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the form of an estimate of the class-conditional probability pM(y = k|x) for k = 1, . . . , K.

Such probability estimates can be obtained from a logistic classifier, from the softmax output

layer of a neural network, from averages over leaf nodes in tree-based models, and so on. A

notational aside: for probabilities that are being generated by the model we use subscript M ,

e.g., pM (y = k|x). When we refer to the true probability with respect to the underlying true

distribution p(x, y) we drop the subscript, e.g., when using terms like p(y = k|x) and p(x) in

computing expectations.

2.1.2 Blackbox Classification Models

Many of the classification models are black boxes from the perspective of downstream users,

such as models developed remotely by commercial entities and hosted as a service in the cloud

[Yao et al., 2017, Sanyal et al., 2018]. For a variety of reasons (legal, economic, competitive),

users will often have no direct access to the detailed workings of the model, how the model

was trained, or the training data.

In this chapter, we focus on the problem of assessing the performance of a model on data

drawn from some unknown distribution p(x, y) representing the environment where the model

is being used. We are interested in the situation where the model is a black box, i.e. we

can observe the inputs x and the outputs pM (y = k|x) but don’t have any other information

about the inner-workings of M . Specifically, rather than learning a model itself we want to

learn about the characteristics of a fixed model that is making predictions in a particular

environment. To assess the performance of a black-box classifier, we adopt a Bayesian

framework and treat the metrics of interest (e.g. classification accuracy and calibration

error) as unknown parameters that we estimate from (limited) labeled data drawn from a

distribution p(x, y).
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2.1.3 Datasets and Classification Models

Table 2.1: Assessment datasets and models used in our experiments. Size refers to the
maximum number of labeled instances available for assessment.

Mode Size Classes Model

CIFAR-100 Image 10K 100 ResNet-110
ImageNet Image 50K 1000 ResNet-152

SVHN Image 26K 10 ResNet-152
20 Newsgroups Text 7.5K 20 BERTBASE

DBpedia Text 70K 14 BERTBASE

Datasets Throughout this chapter and the next chapter we will use several well-known

classification datasets, in combination with large-scale deep network classification models, to

illustrate Bayesian assessment.

• CIFAR-100 [Krizhevsky and Hinton, 2009]: A dataset of 32× 32 colored images from

the web, partitioned into 100 classes. There are 50,000 and 10,000 data points in the

train and test sets, respectively. 100 classes are grouped into 20 superclasses, e.g. for

superclass aquatic mammals, it includes five classes: beaver, dolphin, otter, seal and

whale.

• Street View House Numbers (SVHN) [Netzer et al., 2011]: A dataset of 32× 32 colored

images of cropped out house numbers from Google Street View, partitioned into 10

classes. There are 73,257 and 26,032 data points in the train and test sets, respectively.

• ImageNet [Russakovsky et al., 2015]: An image dataset of natural objects of variable

resolutions from the web, partitioned into 1000 classes. There are 1.2 million and 50,000

data points in the train and test sets, respectively.

• 20 Newsgroups [Lang, 1995]: A text dataset of news articles, partitioned into 20

categories by content. There are 11,293 and 7,528 data points in the train and test sets,

respectively.
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• DBpedia [Zhang et al., 2015]: A text dataset of structured content from the information

created by the Wikipedia project, partitioned into 14 classes. There are 560,000 and

70,000 data points in the train and test sets, respectively.

Prediction Models For image classification we use ResNet [He et al., 2016] architectures

with either 110 layers (CIFAR-100) or 152 layers (SVHN and ImageNet). For ImageNet we use

the pretrained model provided by PyTorch, and for CIFAR and SVHN we use the pretrained

model checkpoints provided at: https://github.com/bearpaw/pytorch-classification.

For text classification tasks we use fine-tuned BERTBASE [Devlin et al., 2019] models.1

Prediction models were all trained on standard training sets in the literature, which are

independent from the datasets used for assessment. The assessment datasets are based on

standard test sets used for each dataset in the literature. Detailed statistics of the test sets

are provided in Table 2.1. To facilitate reproducing our results we provide all of the model

predictions used in our experiments at: https://github.com/disiji/bayesian-blackbox.

2.2 Self-Assessment and Miscalibration

2.2.1 Self-Assessment of Classifiers

Accuracy The marginal accuracy of a classification model at x is defined as θ(x) = p(y =

ŷ|x). We also define regional accuracy over local regions of the input space. For any region

R in the input space, regional accuracy is the marginal probability that the predicted label
1The text classification models were trained by Robert Logan as part of a collaboration.
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matches with the true label, conditioned on x ∈ R:

θR = Ep(x,y|x∈R)[θ(x)] =

∫
R
p(y = ŷ|x)p(x|x ∈ R)dx. (2.1)

To estimate the classwise accuracies θR from data, a standard approach would be to empirically

approximate the integral above by sampling x, y pairs from the conditional distribution

p(x, y|x ∈ R). Equivalently, θR, conditioned on x ∈ R, can be modeled as an unknown

Bernoulli parameter with draws (xi, yi) leading to binary outcomes 1(yi = ŷi) ∈ {0, 1}, where

i = 1, 2, · · · , S. In this case, the frequency-based (maximum likelihood) estimate is:

θ̂R =
1

S

S∑
i=1

1(yi = ŷi). (2.2)

Confidence The classifier’s label prediction for a particular input x is ŷ = arg maxk pM (y =

k|x). We can define s(x) = pM(y = ŷ|x) as the score of a model, which is a function of x,

i.e., the class probability that the model produces for its predicted class ŷ ∈ {1, . . . , K} given

input x. This is sometimes also referred to as a model’s confidence in its prediction and

can be viewed as a model’s self-assessment of its accuracy when it predicts ŷ given x. We

can get a model’s self-assessed estimate of its own accuracy from unlabeled data by taking

the average of the model’s scores on the unlabeled data:

sR =
1

S

S∑
i=1

s(x). (2.3)

Calibration The classification model’s output is calibrated when it matches with the true

probabilities of labels. Meteorologists were among the first to think about calibration from

the perspective of forecaster evaluation. Brier [1950] introduced the Brier score to measure

the forecasts expressed with probabilities; Murphy and Winkler [1977] proposed reliability
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diagrams to visually inspect calibration behaviors; DeGroot and Fienberg [1983] discussed

the decomposition of classification loss into calibration and refinement losses. In the machine

learning literature, previous work mainly studies two types of calibration:

• Most of the previous work studies calibration by comparing model scores with accuracies,

e.g. Guo et al. [2017], Kull et al. [2017]. A model is binary calibrated when for any

input x its model score s(x) represents the likelihood that its prediction is correct, i.e.

1(y = ŷ) ∼ Bernoulli(s(x)),∀x. (2.4)

• A strictly stronger definition of calibration has recently been discussed in [Vaicenavicius

et al., 2019, Kull et al., 2019]. A model is multi-class calibrated when the multidi-

mensional model output pM(y = k|x) matches with the distribution of true label y, i.e.

y ∼ Cat(pM(y = k|x)),∀x. (2.5)

For a binary calibrated model M , the expectation of its accuracy at x is the model score s(x).

For a multi-class calibrated model M , with pM (y = k|x) we can compute the the expectation

of the confusion probabilities, i.e. the columns of the confusion matrix.

In practice, however, real-world machine learning models, especially deep learning models,

are rarely calibrated [Guo et al., 2017], making the self-assessment of classification models

unreliable. Thus, it is important to independently assess model performance with labeled

data instead of relying on a classifier’s self-assessment.
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2.2.2 Miscalibration of Classifiers

In this section, we discuss the tools and metrics used to diagnose and measure the binary

miscalibration of classifiers.

Reliability Diagram Reliability diagrams are a widely used tool for visually diagnosing

model calibration by comparing model scores and empirical accuracies [Murphy and Winkler,

1977, DeGroot and Fienberg, 1983, Niculescu-Mizil and Caruana, 2005]. These diagrams plot

the empirical sample accuracy θ(x) of a model M as a function of the model’s confidence

scores s(x). For a particular value s(x) = s ∈ [0, 1] along the x-axis, the corresponding y

value is defined as: Ex|s(x)=s[θ(x)]. If the model is perfectly calibrated, then θ(x) = s(x) and

the diagram consists of the identity function on the diagonal. Deviations from the diagonal

reflect miscalibration of the model. In particular, if the curve lies below the diagonal with

θ(x) < s(x) then the model M is overconfident (e.g., see Guo et al. [2017]).

To address data sparsity, scores are often aggregated along the x-axis into bins of equal width

or equal frequency, spanning the range [0, 1], e.g., DeGroot and Fienberg [1983], Niculescu-

Mizil and Caruana [2005], Guo et al. [2017]. We denote the b-th bin as Rb, and the bins

{Rb|b = 1, 2, · · · , B} form a partition of the input space determined by the model score s(x).

For example, with equal-sized binning, Rb = {x|s(x) ∈ [(b− 1)/B, b/B)}, where b = 1, . . . , B

(B = 10 is often used in practice). The accuracy of the model per bin is θb, which can be

viewed as a marginal accuracy over the region Rb, i.e.,

θb =

∫
Rb
p(y = ŷ|x)p(x|x ∈ Rb)dx. (2.6)

In practice, θb is computed based on a sample of labeled data for examples whose scores fall

in the b-th bin.
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Figure 2.1: Reliability diagram for ResNet-110 on CIFAR-100 and histogram for its model
scores. The red circles plot the binwise accuracies of 10 equal-width bins. The gray region
shows the deviation of the reliability curve from the diagonal. The blue histogram shows the
distribution of the model scores.

Figure 2.1 shows the reliability diagram of ResNet-110 on CIFAR-100. The average score

of ResNet-100 is substantially higher than its accuracy for all bins, i.e. ResNet-110 is

overconfident in its predictions. Apart from the reliability diagram, we also plot the histogram

for model scores (blue) in Figure 2.1. The distribution of model scores is highly skewed, with

model scores for about 60% of the data points being greater than 0.9. Guo et al. [2017] shows

that this type of miscalibration is common for modern neural networks, and it is influenced

by both model architecture and training.

Expected Calibration Error (ECE) We can quantify the amount of miscalibration with

metrics by measuring the divergence between s(·) and θ(·). Nixon et al. [2019] provides a

comprehensive review of the miscalibration metrics in machine learning literature. In this

chapter, we focus on expected calibration error (ECE) given that it is among the widely-used

calibration metrics (e.g., Guo et al. [2017], Ovadia et al. [2019]).
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ECE is defined as a weighted average of the absolute distance between the true accuracy θb

and the average score sb per bin:

ECE =
B∑
b=1

pb|θb − sb| (2.7)

where pb is the probability of a score lying in bin b. The accuracy of the model per bin

is θb, which can be viewed as a marginal accuracy over the region Rb in the input space

corresponding to s(x) ∈ Binb, i.e., θb =
∫
Rb
p(y = ŷ|x)p(x|x ∈ Rb)dx. When estimating ECE,

pb can be estimated with the model scores of unlabeled data, while estimating θb requires

true labels of the data points. For example, in Figure 2.1 ECE is 0.098, indicating moderate

miscalibration of ResNet-110 on CIFAR-100.

We also note that recent work, e.g. Vaicenavicius et al. [2019], proposed extensions of these

to the multi-class definition of miscalibration, but we leave out the discussion in this chapter.

2.3 Bayesian Assessment of Black-box Classifiers

Self-assessment of models is not reliable, where by self-assessment we mean a model’s estimate

of a performance metric based on its class-probability estimates. For example, in Figure 2.1,

the model’s self-assessment of its accuracy is 0.84, while the true accuracy of the model is

0.74. In order to obtain an independent and unbiased assessment of a classifier performance

metric such as accuracy, this must be done with a labeled test dataset that is independent

from that used to train the classifier. In the machine learning research literature it is common

to use relatively large test datasets (e.g., see Table 2.1) in order to insure that the empirical

estimate of performance (e.g., of accuracy) is reliable. However, in real-world environments

when black-box models are deployed, it will frequently be the case that a large labeled test

set is not available. For example it may be very expensive to obtain labels for various reasons.
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This is the motivation for Bayesian assessment: to make reliable inferences about classifier

performance using relatively little data and quantifying uncertainty about these inferences.

We treat classifier performance metrics θ as parameters of interest to estimate with labeled

data.2 It is natural to consider Bayesian inference in this context to represent the uncertainty

of the assessment, especially in situations where there is relatively little labeled data available.

In the reminder of this chapter, we develop a Bayesian assessment framework to independently

assess performance metrics with uncertainty.

We outline below our Bayesian approach to make posterior inferences about a performance

metric θ given labeled data D = {(xi, yi), i = 1, 2, · · · , N}. (xi, yi) are i.i.d.. p(θ) is a prior

distribution of θ, i.e. θ ∼ p(θ). For each data point i, the classification model M generates a

predicted label ŷi for a given xi. The Oracle is then queried to obtain a label outcome zi with

zi = fM(xi, yi). For example for accuracy estimation, we have zi = 1(yi = ŷi) where yi is a

stochastic function of xi and ŷi is a deterministic function of xi. We will refer to zi as the

label outcome and can define a likelihood (conditional probability of zi, given the unknown

performance metric θ) as zi ∼ qθ(zi), where qθ(zi) = Bern(zi|θ). Later we will extend the

definition to zi to cases other than accuracy.

With Bayes’ rule, the posterior distribution of the assessment metric θ after observing labeled

data D = {(xi, yi), i = 1, 2, · · · , N} is updated to:

p(θ|D) =
p(θ) ·

∏N
i=1 qθ(zi)∫

θ
p(θ) ·

∏N
i=1 qθ(zi) dθ

. (2.8)

For example for accuracy estimation, θ is the accuracy and p(θ) = Beta(α0, β0) is the prior

distribution of θ; zi = 1(yi, ŷi) is the binary outcome of the classifier, i.e. whether the

model prediction is correct. We can update the posterior distribution of θ in closed-form to
2Here we overload the notation θ. In the previous section, we use θ to represent accuracy. In the remainder

of this chapter θ represents the performance metric of interest which includes but is not limited to accuracy.
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Beta(α0 + r, β0 +N − r) where r is the number of correct label predictions by the model given

N trials, i.e. r =
∑N

i=1 1(yi = ŷi). As the amount of observed labeled data N increases, the

maximum a posteriori estimation (MPE) θ̂ converges to the true accuracy, and the variance

of θ̂ asymptotically decreases. For accuracy estimation, Liu [2008] proves that Bias(θ̂)2 is of

order O( 1
N2 ); Sawade et al. [2010] proves that Var(θ̂) is of order O( 1

N
).

With Bayesian assessment, we can quantify the uncertainty of our assessment with the

posterior distribution p(θ|D), and posterior uncertainty asymptotically decreases as the

number of labeled data N increases. Next we demonstrate the importance of uncertainty for

model assessment. With an illustrative example, we show that even with real-world large

datasets like CIFAR-100, posterior uncertainty of accuracy and ECE are still considerably

large.

We then apply our Bayesian assessment framework to assess different performance metrics

θ. We do this by defining an appropriate prior p(θ) and likelihood qθ(z) for each metric

θ of interest. The metrics we study in this chapter include classwise accuracy, reliability

diagram, expected calibration error (ECE), confusion matrix, misclassfication cost and

accuracy difference.

2.3.1 Bayesian Groupwise Accuracy

Up to this point we have discussed marginal accuracy of a classifier: it is also natural to

consider groupwise accuracy such as the accuracy of a model when it predicts a particular

class, or when it makes a prediction conditioned on particular attribute values. In this thesis,

we assume that group membership of each data point is pre-computed, for example with its

predicted label, its model score, or its associated attributes. Given the group membership of

each data point, the input space is partitioned into regions {R1, R2, · · · , Rg, · · · , RG}.
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Figure 2.2: Estimated accuracy per class of a ResNet-110 image classifier on the CIFAR-100
test set, using our Bayesian assessment framework, with posterior means and 95% credible
intervals per class.

The groupwise accuracies can be treated as G independent unknown Bernoulli parameters

{θg, g = 1, 2, · · · , G}. Labeled observations (xgi, ygi), i = 1, . . . , Ng, are sampled randomly

per group conditioned on xgi ∈ Rg, leading to a binomial likelihood with binary accuracy

outcomes zgi = 1(ygi, ŷgi) ∈ {0, 1}:

θg ∼ Beta(αg, βg), g = 1, 2, · · · , G (2.9)

zgi ∼ Bern(θg), i = 1, 2, · · · , Ng (2.10)

In particular, as illustrated in Figure 2.2 a special case is classwise accuracy, the expected

accuracy of the model whenever it predicts class k (θk, k = 1, . . . , K), where the groups are

classes, and g and G are replaced notationally by k and K. This corresponds to having the

input region be the classifier’s decision region Rk = {x|ŷ = k}. The results show that there

is large amount of uncertainty for the classwise accuracies of CIFAR-100. For example, for

the most accurate classes such as keyboard, sunflower, motorcycle, etc., with this amount

of labeled data we can only state with confidence that the accuracy for these classes lies
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somewhere between about 0.87 and 0.98.

Inferring Statistics of Interest via Monte Carlo Sampling
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Figure 2.3: (a) MCMC-based ranking of accuracy across predicted classes for CIFAR-100
(where 1 corresponds to the class with the highest accuracy. (b) Posterior probabilities of
the most and least accurate predictions on CIFAR-100. The class with the highest classwise
accuracy is somewhat uncertain, while the class with the lowest classwise accuracy is very
likely lizard.

An additional benefit of the Bayesian framework is that we can draw samples from the posterior

to infer other statistics of interest. Here we illustrate this method with two examples.
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Bayesian Ranking via Monte Carlo Sampling We can infer the Bayesian ranking of

classes in terms of classwise accuracy or expected calibration error (ECE), by drawing samples

from the posterior distributions [Marshall and Spiegelhalter, 1998]. For instance, we can

estimate the ranking of classwise accuracy of a model for CIFAR-100, by sampling θ̂k’s (from

their respective posterior beta densities) for each of the classes and then computing the rank

of each class with the sampled accuracy. We run this experiment 10,000 times and then for

each class we can empirically estimate the distribution of its ranking. The MPE and 95%

credible interval of ranking per predicted class for the top 10 and bottom 10 are provided in

Figure 2.3a for CIFAR-100.

Posterior probabilities of the most and least accurate predictions We can estimate

the probability that a particular class such as lizard is the least accurate predicted class of

CIFAR-100 by sampling θ̂k∗ ’s (from their respective posterior beta densities) for each of the

classes and then measuring whether θ̂lizard is the minimum of the sampled values. Running

this experiment 10,000 times and then averaging the results, we determine that there is a 68%

chance that lizard is the least accurate class predicted by ResNet-110 on CIFAR-100. For

the most accurate class, there is more uncertainty, with keyboard, sunflower, and motorcycle

each having probability around 0.3 of being the most accurate predicted class. The posterior

probabilities for other classes are provided in Figure 2.3b, along with results for estimating

which class has the highest classwise accuracy.

2.3.2 Bayesian Reliability Diagrams

Another application of Bayesian groupwise accuracy estimation is to estimate reliability

diagrams, in which each group g corresponds to a bin b partitioned by model scores. We

can use a beta prior on each θb and define a binomial likelihood on the label outcome

zi = 1(yi = ŷi) within each bin (i.e., whether a model’s predictions are correct or not on each
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example in a bin), resulting in posterior beta densities for each θb.

Figure 2.4 shows Bayesian reliability diagrams for five datasets based on different amounts

of labeled data. We used a weak beta prior with pseudocount αb + βb = 2 centered on

the diagonal. Column 1 and 2 display reliability diagrams estimated using N = 100 and

N = 1000 randomly selected examples (respectively). Column 3 displays diagrams estimated

using the full set of available labeled examples for each dataset (e.g., the size column in Table

1).

With the full set of examples (column 3), the posterior means and the posterior 95% credible

intervals are generally below the diagonal, i.e., we can infer with high confidence that the

models are miscalibrated (and overconfident, to varying degrees) across all five datasets. For

some bins where the scores are less than 0.5, the credible intervals are wide due to little data,

and there is not enough information to determine with high confidence if the corresponding

models are calibrated or not in these regions. With N = 100 examples (column 1), the

posterior uncertainty captured by the 95% credible intervals indicates that there is not yet

enough information to determine whether the models are miscalibrated given only N = 100

labeled examples. In addition, the frequency-based and Bayesian estimates often disagree.

The frequency-based estimates are noisy and don’t provide any notion of uncertainty. The

Bayesian MPE estimates are also noisy but are more plausible given the smoothing from the

prior. With N = 1000 examples (column 2) there is enough information to reliably infer that

the CIFAR-100 model is overconfident in all bins for scores above 0.3. For the remaining

datasets the credible intervals are generally wide enough to encompass 0.5 for most bins,

meaning that we do not have enough data to make reliable inferences about calibration, i.e.,

the possibility that the models are well-calibrated cannot be ruled out without acquiring

more data. When the full test dataset is used (column 3), the frequency based estimates

(blue) and Bayesian estimates (red) are in close agreement.
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Figure 2.4: Bayesian reliability diagrams for five datasets (rows) estimated using varying
amounts of test data (cols). The red circles plot the posterior mean for θb under our Bayesian
model. Red bars display 95% credible intervals. Shaded gray areas indicate the estimated
magnitudes of the calibration errors relative to the Bayesian estimates. The blue histogram
shows the distribution of the scores for N randomly drawn samples.

20



2.3.3 Bayesian Calibration Error
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Figure 2.5: Bayesian reliability diagrams (top) and posterior densities for ECE (bottom) for
CIFAR-100 as the amount of data used for estimation increases. Vertical lines in the right
plots depict the ground truth ECE (black, evaluated with all available assessment data) and
frequentist estimates (blue). The red histogram summarizes N=1000 posterior Monte Carlo
samples for ECE using the Bayesian procedure.

We can also assess calibration-related metrics for a classifier in a Bayesian fashion using any

of the well-known various calibration metrics [Kumar et al., 2019, Nixon et al., 2019]. For

example, with a beta prior on θb, the posterior distribution over ECE is a weighted average

of the absolute value of B shifted beta posterior distributions corresponding to the individual

θb’s:

θb ∼ Beta(αb, βb), b = 1, 2, · · · , B (2.11)

ECE =
B∑
b=1

pb|θb − sb| (2.12)

The posterior is not available in closed form but Monte Carlo samples are straightforward to

obtain, by drawing samples from the posterior distributions of θb and computing ECE with

Eqn 2.12.
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An illustrative example for CIFAR-100 is shown in Figure 2.5, the prior distribution of

marginal accuracy within each bin is a beta distribution with its mean on the diagonal and

pseudocount α + β = 2. As the amount of data used increases, the credible intervals of the

Bayesian reliability diagram (left column) get narrower, the posterior density of ECE (right

column) converges to ground truth, and the uncertainty about ECE decreases. When the

number of samples is small, with the same set of randomly selected samples 100 samples

(row 1), the Bayesian estimation of ECE puts non-negative probability mass on ground truth

marginal ECE, where “ground truth" refers to the marginal ECE computed with all labeled

assessment data, while the frequentist method significantly overestimates ECE without any

notion of uncertainty.
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Figure 2.6: Percentage error in estimating expected calibration error (ECE) as a function of
dataset size, for Bayesian (red) and frequentist (blue) estimators, across five datasets.

In Figure 2.6 we show the percentage error (ECEN − ECE∗)/ECE∗ obtained for Bayesian

mean posterior estimates (MPE) and frequentist estimates of marginal ECE as a function

of the number of labeled data points N across five datasets. The percentage is computed

relative to the ground truth marginal ECE = ECE∗, where ECE∗ is computed as the ECE

on the full test data (Table 2.1) with the number of bins set as 10. The MPE is computed
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with Monte Carlo samples from the posterior distribution (examples of histograms of such

samples are shown in Figure 2.5). At each step, we randomly draw and label N queries from

the pool of unlabeled data and compute both a Bayesian and frequentist estimate of marginal

calibration error with these labeled data. We run the simulation 1000 times and report the

average ECEN over the N samples. Figure 2.6 shows that the Bayesian MPE estimates are

significantly and systematically more accurate in estimating ECE across all five datasets,

particularly when there is relatively little labeled data available.

Bayesian Estimation of ECE per Class

Similar to classwise accuracy, we can also model classwise ECE,

ECEk =
B∑
b=1

pkb|θkb − skb| (2.13)

by modifying the model described above to use regions Rkb = {x|ŷ = k, s(x) ∈ Rb} that

partition the input space by predicted class in addition to partitioning by the model score. pkb

is the probability of Rkb conditioned on Rk, i.e. the probability of the b-th bin for predicted

class k, and skb is the expected model scores of Rkb. This follows the same procedure as

for “marginal ECE” in the previous subsection except that the data is now partitioned by

predicted class k = 1, . . . , K, and a posterior density on ECEk for each class is obtained.

We performed Bayesian inference about both classwise accuracy and ECE performance. We

used beta priors with αk = βk = 1, k = 1, . . . , K for classwise accuracy, and αb = 2sb, βb =

2(1 − sb), b = 1, . . . , K for binwise accuracy. Figure 2.7 plots the resulting mean posterior

estimates (MPEs) and 95% credible intervals (CIs) for accuracy and ECE values for each

of the predicted classes for 5 datasets. The accuracies and ECE values of the model vary

substantially across classes, and classes with low accuracy tend to be less calibrated. There is

also considerable posterior uncertainty for these metrics even using the whole test set across
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Figure 2.7: Scatter plots of classwise accuracy and ECE for 5 datasets. Each marker
represents posterior means and 95% credible intervals of posterior accuracy and ECE for
each predicted class. Markers in red and blue represent the top-m least and most accurate
predicted classes, markers in gray represent the other classes, with m = 10 for CIFAR-100
and ImageNet, and m = 3 for the other datasets.

5 datasets. For CIFAR-100, ImageNet and 20 Newsgroups, the variance of classwise accuracy

and ECE among all predicted class is considerably greater than the variance of two other

datasets. The results also suggest that measuring classwise ECE is important for model

performance assessment because of its high variance among predicted classes.
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2.3.4 Bayesian Estimation of Confusion Matrices

In a manner similar to using a beta-binomial distribution to model accuracy, we can model

confusion probabilities using a Dirichlet-multinomial distribution. Conditioned on a predicted

class ŷ = k, the true class label y has a categorical distribution θjk = p(y = j|ŷ = k). We

will refer to θjk as confusion probabilities, since they resemble the elements of a confusion

matrix. For the i-th data point classified as ŷi = k, we can model the confusion probabilities

and the generative process of the label outcome zi = yi with a Dirichlet-Multinomial model:

θ·k ∼ Dirichlet(α·k), k = 1, 2, · · · , K (2.14)

zki ∼ Cat(θ·k), i = 1, 2, · · · , Nk. (2.15)

There are O(K2) parameters in total in K Dirichlet distributions, each of which is param-

eterized with a K dimensional vector α·k. We will return to the topic of confusion matrix

estimation in Section 2.4 where we discuss the effect of both informative and uninformative

priors for this task.

2.3.5 Bayesian Misclassification Costs

Accuracy assessment can be viewed as implicitly assigning a binary cost to model mistakes,

i.e. a cost of 1 to incorrect predictions and a cost of 0 to correct predictions. In this sense, the

predicted class with the lowest accuracy is equivalent to the class with the greatest expected

cost. However, in real-world applications, the costs of different types of mistakes can vary

drastically. For example, in autonomous driving applications, misclassifying a pedestrian as a

crosswalk can have much more severe consequences than other misclassifications.

To deal with such situations, we extend our approach to incorporate an arbitrary cost matrix

C = [cjk] to assign cost to different misclassifications, where cjk is the cost of predicting
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class ŷ = k for a data point whose true class is y = j. The classwise expected cost for

predicted class k is given by:

CM
Rk = Ep(x,y|x∈Rk)[cjk1(y = j)] =

K∑
j=1

cjkθjk. (2.16)

The posterior of CM
Rk is not available in closed form but Monte Carlo samples are straightfor-

ward to obtain, by randomly sampling θ·k ∼ Dirichlet(α·k) and computing CM
Rk deterministi-

cally with the sampled θ·k and the predefined cost matrix C. We will return to the topic of

costs in Chapter 3 where we develop label-efficient algorithms to determine which classes

have the largest expected cost for a model M .

2.3.6 Bayesian Estimation of Accuracy Differences

Comparison of performance between two groups is another important assessment task. For

example, when assessing a model’s group fairness, we are interested in the difference in model

accuracy between different ethnic groups and genders [Hardt et al., 2016]; when deciding

between 2 clinical trials, the difference of their success rate and the uncertainty of the

difference are important to patients. In both cases, obtaining labeled data is expensive, and

the uncertainty of the performance metrics is important for interpretability of the assessment.

Consider two groups g1 and g2 with a true accuracy difference ∆ = θg1 − θg2 . Our approach

uses the “rope” (region of practical equivalence) method of Bayesian hypothesis testing

(e.g., Benavoli et al. [2017]) as follows. The cumulative density in each of three regions

µ = (P (∆ < −ε), P (−ε ≤ ∆ ≤ ε),P (∆ > ε)) represents the posterior probability that the

accuracy of group g1 is more than ε lower than the accuracy of g2, that the two accuracies are

“practically equivalent,” or that g1’s accuracy is more than ε higher than that of g2, where

ε is user-specified. In our experiments we use ε = 0.05 and the cumulative densities µ are

estimated with 10,000 Monte Carlo samples. The assessment task is to identify the region

26



 accuracy, CIFAR-100, human vs trees

P( < ) = 0.96
P( ) = 0.04
P( > ) = 0.00

N1 + N2 = 992

-40.0% -30.0% -20.0% -10.0% 0.0% 10.0% 20.0%
 accuracy, CIFAR-100, woman vs man

P( < ) = 0.81
P( ) = 0.17
P( > ) = 0.01

N1 + N2 = 187 rope
Frequentist
Bayesian

Figure 2.8: Density plot for the differences of accuracy between two superclasses/classes of
CIFAR-100. Region of practical equivalence is [-0.05, 0.05]. Vertical solid lines in gold plots
the region of practical equivalence, vertical red dashed line plots the frequentist estimate
of accuracy difference. Left: two groups are predicted superclass “human” and “trees” in
CIFAR100. Right: two groups are predicted classes “woman” and “man” in CIFAR-100.

η = arg max(µ) in which ∆ has the highest cumulative density, where λ = max(µ) ∈ [0, 1]

represents the confidence of the assessment.

Bayesian estimation of group differences allows us to compare the performance between two

groups with uncertainty. For example, with prior distribution Beta(1, 1) and the full test set

of CIFAR-100, the posterior distribution of groupwise accuracies of ResNet-110 on superclass

“human” and “trees” are θg1 ∼ Beta(280, 203) and θg2 ∼ Beta(351, 162) respectively. The total

amount of labeled data for the two superclasses are 481 and 511. With random samples from

the posterior distributions of θg1 and θg2 , we can simulate the posterior distribution of the

difference in accuracy between “human” and “trees” ∆ = θg1− θg2 and compute its cumulative

density in each of three regions µ = (P (∆ < −ε), P (−ε ≤ ∆ ≤ ε),P (∆ > ε)). In Figure 2.8,

when ε = 0.05, ResNet-110 is less accurate on the predicted superclass “human” than on

“trees” with 96% probability. Similarly with 82% probability, the accuracy of ResNet-110 on
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“woman” is lower than “man”. Although the point estimates of the two performance differences

have values that are both approximately 10%, the assessment of “human” vs. “tree” is more

certain because more samples are labeled. We will return to the topic of Bayesian assessment

of group differences, in the specific context of algorithmic fairness, in the next chapter.

2.4 Uninformative and Informative Priors

To conduct Bayesian inference for the performance metrics, we need to specify the prior

distribution of the metric p(θ) and the generative model for the label outcome qθ(z). While

qθ(z) is either a Bernoulli or categorical distribution parametrized by θ for the metrics we

discussed before, for the priors, which are beta and Dirichlet distributions for all of the

metrics we considered, there is freedom in terms of how the parameters of the priors are

set. In this section we discuss the use of both informative and uninformative priors in this

context.

For accuracy-based metrics, e.g. groupwise accuracy, reliability diagram, ECE, accuracy

difference, we use a beta prior for each group g, i.e. p(θg) = Beta(θg;αg, βg). For a confusion-

based metric, e.g. the confusion matrix and misclassification cost, since we mainly focus

on confusion probabilities among different classes, and the data space is partitioned into

K groups by predicted labels, we use K instead of G to index the groups. For class k,

θ·k ∼ Dirichlet(α·k). N0 = αg + βg and N0 = ‖α·k‖1 are the pseudocounts, i.e. strength of the

beta prior and Dirichlet prior. We assume that the distributions of θg are independent across

different groups. Modeling the dependency across different groups, which could potentially

be useful when the number of groups is large, is an interesting direction for future work.

For setting the location of the mean of the prior, we discuss both uninformative and informative

priors in this section. We discuss setting the strength of the prior N0 in Chapter 3.
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2.4.1 Uninformative Priors

An uninformative prior can be created to reflect a balance among outcomes when no informa-

tion is available. The uninformative prior distribution we use is α = β = N0/2. For example,

when N0 = 2, the prior distribution p(θ) is a uniform distribution over [0, 1]. When N0 = 1,

we have Jeffrey’s prior on θ [Jeffreys, 1946]. For the uninformative prior for a confusion

matrix, we use αjk = N0/K, ∀j, k.

2.4.2 Use Self-Assessment of Classifiers as Informative Priors

If the classification model M is binary calibrated, model scores s(x) provide the estimated

accuracy of the classifier; if the model M is multi-class calibrated, model outputs pM (y = k|x)

can be used to compute the confusion probabilities of the classifier. Even if we believe a

model is not calibrated, as is often the case in practice, we can nonetheless use the model

scores as a prior and allow the label data to overcome this prior due to any miscalibration.

As we will see below, the model scores capture quite a bit of useful information about the

structure of the confusion matrix, even for miscalibrated models.

For groupwise accuracy, the informative beta prior for each group is Beta(N0sg, N0(1− sg))

where sg is the average model confidence for group g. In our experiments, sg is computed as

the empirical average of the model’s scores for group g over the unlabeled test data (Table 2.1).

As an informative prior for a confusion matrix, we compute α·k as the expectation of model’s

own outputs over Rk:

αjk ∝ Σx∈RkpM(y = j|x). (2.17)

In experiments, α·k is computed with the unlabeled test data (Table 2.1).
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Figure 2.9: Estimates of the confusion probabilities of ResNet-110 on CIFAR-100,
comparing the frequentist estimates (Frequentist), and mean posterior estimates of the
Bayesian method under uninformative prior(UPrior) and informative priors(IPrior), with
N = 10, 100, 1000, 10000 randomly selected labeled data point.

2.4.3 Illustative Results

To illustrate how the informative prior helps deal with sparsity, we plot the estimates of

the confusion matrix of ResNet-110 on CIFAR-110 obtained with the frequentist method

and the Bayesian method in Figure 2.9. The number of parameters to estimate O(K2) is

approximately the same as the number of labeled samples that are available. The strength of

both priors are 1. As was shown earlier in Figure 2.1, the informative prior is based on a

model that is significantly miscalibrated. For the frequentist and UPrior estimates, when the
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number of labeled data N is less than 1000, the structure of the confusion matrix is barely

captured, due to sparsity of the data relative to the number of parameters to be estimated.

On the other hand, the IPrior does a much better job of capturing the structure of the

confusion matrix, even with only a small number of labeled examples (e.g., first and second

columns).

2.5 Related Work

Assessment of Blackbox Models. The assessment tasks we investigated in this chapter

have been studied in different contexts, most of which focus on defining and optimizing

the related metrics. For example, many papers, e.g. Guo et al. [2017] show that complex

models such as deep networks with high-dimensional inputs (e.g., images and text) can

be significantly overconfident in practice. Nixon et al. [2019] provide a review of different

ways to measure miscalibration apart from ECE. Different methods have been developed

to recalibrate classification models, e.g. Naeini et al. [2015], Guo et al. [2017], Kull et al.

[2017]. The work described in this chapter is different to this earlier work in that it focuses

on a different question, i.e., assessing a trained blackbox model with Bayesian methods. For

example for calibration, our objective is to assess calibration and quantify the uncertainty of

our assessment, instead of trying to learn a more calibrated model.

Assess with Uncertainty Prior work on using Bayesian ideas in the context of classifier

assessment has tended to focus on very specific types of assessment. Goutte and Gaussier

[2005] propose a framework for Bayesian estimation of precision, recall, and F-score in an

information retrieval context, and Johnson et al. [2019] use Bayesian mixture models to

provide posterior distributions of diagnostic metrics (such as true positive rates) for medical

tests. Benavoli et al. [2017] develop a general Bayesian framework for comparing multiple

31



classifiers as an alternative to more traditional null hypothesis significance testing. Our

proposed approach shares a similar philosophy with this earlier Bayesian work in terms of

treating classifier performance metrics as parameters of interest about which we can perform

Bayesian inference. However, our framework is significantly more general than this prior

work, encompassing a broader range of metrics such as classwise performance metrics and

calibration metrics such as ECE.

Other work has proposed frequentist methods for uncertainty quantification in an assessment

context, e.g., resampling approaches such as the bootstrap for generating confidence intervals

on calibration performance [Bröcker and Smith, 2007, Vaicenavicius et al., 2019, Kumar et al.,

2019]. Our focus in this work is not to supplant these existing techniques, but instead to

supplement them by developing a Bayesian approach that includes the ability to incorporate

prior knowledge.

2.6 Conclusions

This chapter describes a Bayesian framework for assessing performance metrics of black-box

classifiers. Our contributions are:

• We developed Bayesian techniques for estimating groupwise accuracy, reliability dia-

gram, expected calibration error (ECE), confusion matrix, misclassfication cost, and

performance difference;

• We discussed using self-assessment of prediction models as informative priors for

Bayesian assessment;

• We illustrated a number of different ways that the framework can be used to understand

performance aspects of some widely-used deep learning models and datasets.
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There are a number of potential extensions of the approach for future work such as Bayesian

estimation of continuous functions related to accuracy and calibration. In the next chapter,

we show that our Bayesian assessment framework readily lends itself to active assessment of

blackbox classifiers.
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Chapter 3

Active Bayesian Assessment of

Black-Box Classifiers

In the previous chapter, we used Bayesian methods to assess black-box classifiers with

uncertainty quantification, and demonstrated that the uncertainty of the estimates is high

with a small amount of labeled data. In real-world deployment scenarios, labeled data for

assessment is likely to be scarce and costly to collect, e.g., for a model being deployed in a

diagnostic imaging context in a particular hospital. However, by allocating labeling budget

strategically among different regions of the input space, assessment can be carried out in

a more data-efficient manner. With this in mind, in this chapter we develop a framework

for active Bayesian assessment of black-box classifiers, using techniques from Bayesian

active learning to adaptively select data points to label so that uncertainty of assessment can

be reduced for different assessment tasks.

This chapter is organized as follows:

• In Section 3.1 we introduce the three types performance assessment tasks that we study

in this chapter: estimation, identification and comparison.
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• In Section 3.2 we first provide a brief review of multi-armed bandit problems and the

Thompson sampling algorithm.

• Then we outline the active assessment method by applying Thompson sampling to the

Bayesian assessment framework we proposed in Chapter 2, to address the assessment

tasks in a label-efficient manner.

• In Section 3.4 we describe the settings for the experiments.

• Then in Section 3.5, 3.6 and 3.7, we discuss how specific reward functions r can be

designed for different assessment tasks of interest, and demonstrate with empirical

results that our active Bayesian assessment performs better than traditional methods.

• In Section 3.9 we provide additional experimental results, where we compare with other

active learning methods, discuss choices for prior distributions, and describe sensitivity

analysis results, and so on.

• In Section 3.10 and 3.11 we review the related work, summarize our contributions and

discuss future directions.

3.1 Performance Assessment of a Blackbox Classifier

As in Chapter 2, we will use θ to indicate a performance metric of interest, such as

classification accuracy, true positive rate, expected cost, calibration error, etc. Our approach

to assess a metric θ relies on the notion of disjoint partitions of the input space. As discussed in

Chapter 2, there are multiple partitions that are of interest in practice. We use a general term

group to refer to the subsets created by the partition and index them with g = 1, 2, · · · , G.

• When studying classwise performance, one grouping of particular interest is where

groups correspond to a model’s predicted classes, i.e., g = k, and the partition of the
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input space corresponds to the model’s decision regions x ∈ Rk for k = 1, 2, · · · , K. If

θ refers to classification accuracy, then θk is the accuracy per predicted class k. For

prediction problems with costs, θk can be defined as the expected cost per predicted

class and so on.

• When studying calibration properties of a classification model in Chapter 2, we discussed

the groups g that correspond to bins b of a model’s score, i.e., s(x) ∈ binb, b = 1 . . . , B,

or equivalently x ∈ Rb where Rb is the region of the input space where model scores lie

in score-bin b. In this case g = b.

• Another example is when studying classwise ECE, we can also model ECEk of the

k-th predicted class by using regions Rkb = {x|ŷ = k, s(x) ∈ Binb} that partition the

input space by the predicted class in addition to the model score, i.e. g = {kb}. In an

algorithmic fairness context, for group fairness [Hardt et al., 2016] the groups g can

correspond to categorical values of a protected attribute such as gender or race, and θ

can be defined (for example) as accuracy or true positive rate per group.

For any instantiation of groups g and metric θ, there are three particular assessment tasks

we will focus on in this chapter: (1) estimation, (2) identification, and (3) comparison.

3.1.1 Estimation

For “estimation” , we mainly focus on risk estimation of black-box classifiers, which involves

measuring the distribution of the disagreement between model predictions and true labels. It

is important to assess the risk of a model to make informed decisions about the deployment

of a predictive model. For example, two of the tasks we discussed in Chapter 2 fall in this

category: (1) groupwise accuracy estimation: how often the model makes wrong predictions

in different regions of the input space; (2) confusion matrix estimation: the classes that a

classification model tends to confuse with.
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For both of the assessment tasks, the objective is to minimize the estimation error of θg across

G groups. Let θ1, . . . , θG be the set of true (unknown) values for some metric θ and some

grouping g. The goal of estimation is to assess the quality of a set of estimates θ̂1, . . . , θ̂G

relative to the true values, where the estimates are based on a finite set of labeled data. In

this chapter we will focus on the root mean square error (RMSE) loss
(∑G

g=1 pg(θg − θ̂g)2
)1/2

to measure the estimation quality, where the probability of each group pg = p(x ∈ Rg) can

be estimated from unlabeled data.

3.1.2 Identification

Instead of having good estimates of groupwise metrics for all G groups, sometimes we are more

interested in identifying the groups that the model has the best or the worst performance for.

This can be motivated for example by task allocation, e.g., finding the m predicted classes

that a model is least accurate on, so that whenever the model predicts one of these classes

the prediction decision is handed instead to a more accurate predictor (e.g., a human). For

example, suppose we have a dataset with K = 100 equally-likely classes (e.g., CIFAR-100)

and a budget where we can send 10% of our examples to a human to make predictions (and

the other 90% are made by our black-box model). One way to address this is to find the

set of 10 predicted classes that the model is least accurate for and use the human to make

predictions when ŷ is in this set. Recent work by Raghu et al. [2019] illustrates this type

of task allocation in a medical diagnosis context, showing that improvements in estimating

fine-grained model performance can yield significant gains for task allocation automation. In

their work the authors used a variety heuristics to identify which examples should be used for

prediction by human or machine—in Section 3.6 we illustrates how to address such problems

using Bayesian modeling and multi-armed bandits.

The goal of identification tasks is to identify extreme groups, e.g., g∗ = arg ming θg, such as
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the predicted class with the lowest accuracy (or the highest cost, swapping max for min).

We will also investigate methods for finding the m groups with highest or lowest values of a

metric θ.

3.1.3 Comparison

As discussed in Section 2.3.6, the goal of performance comparison is to determine if the

difference ∆ = θg1 − θg2 between two groups g1 and g2 is statistically significant, e.g., to

assess if accuracy or calibration for one group is significantly better than another group for

some black-box classifier.

A measure of the quality of a particular assessment method in this context is to compare

how often, across multiple datasets of fixed size, a method correctly identifies if a significant

difference exists and, if so, its direction. This is of particular relevance for example in the

case of groupwise algorithmic fairness, e.g. whether the model is equally accurate among

different demographical groups.

3.1.4 Active Assessment

For each of the three assessment tasks above, we need to make inference about θg for all

groups g. However, the strategy to allocate labeling budget among the groups is task-specific.

For example, for risk estimation, in order to minimize RMSE, the budget allocated to

each group should be proportional to the probability of each group pg; while for extreme

class identification, we should allocate more budget to the groups that are close to optimal

regardless of the group weights.

In this chapter, we develop a unified framework to strategically allocate labeling budget for

three tasks: estimation, identification, and comparison. Rather than relying on a random
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sample of labeled data points from the input distribution for inference, we propose to improve

data efficiency by extending our Bayesian framework to support active assessment by actively

selecting examples x for labeling in a data-efficient manner. Efficient active selection of

examples for labeling is particularly relevant when we have a potentially large pool of unlabeled

examples x available, and have limited resources for labeling (e.g., a human labeler).

In summary, the question we address in this chapter is: if we can only label N samples from

a large pool of unlabeled examples that are partitioned into G groups, how should we select

samples from G groups in a manner that is label-efficient for our each task?

3.2 Thompson Sampling for Multi-Armed Bandit Prob-

lems

In this section we first introduce the multi-armed bandit problems, and then provide a brief

review of the Thompson sampling algorithm, which is the main technique we use for active

Bayesian assessment.

3.2.1 Multi-armed Bandit Problems

The multi-armed bandit(MAB) problem was proposed to study the exploration-exploitation

trade-off in sequential decision problems, and it has been extensively studied across different

disciplines for decades [Lattimore and Szepesvári, 2020]. There is a colorful motivating story

for MAB problems: image a gambler enters a casino full of different slot machines, each one

with its own distribution of a reward. The distribution of the reward for each arm is not

told in advance. She needs to choose an arm to pull at each time, i.e. sequentially take

actions, to maximize her cumulative reward. As the gambler gradually learns about the
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reward of each arm by observing the outcome of each pull of the arms, she starts to face

the exploration-exploitation trade-off : by exploring the arms that she knows less about their

reward, she might find an arm that yields higher reward than the other known arms; or by

exploiting the arms which she already knows that have high expected reward, she is expected

to earn a high reward.

Apart from action and reward, budget is the other important concept for multi-armed bandit

problems. If the gambler has unlimited budget, i.e. she can stay in the casino forever and

pull the multi-armed bandit machine for an infinite amount of times, one of the trivial yet

optimal solution is to keep exploring until she finds one arm with a positive expected reward.

Then by continuing to pull this arm, her expected cumulative reward is guaranteed to be

positive infinite. In this story, the budget is the number of times that the gambler can pull

the arms. However, when the budget is finite, as is always in the case in the real world, it is

no longer a trivial problem to decide when she should switch from exploration to exploitation,

such that she can walk out the casino with the maximum amount of cumulative reward.

Mathematically, the multi-armed bandit problem can be summarized as follows:

Definition 3.2.1. Suppose there are G actions, for g = 1, 2, · · · , G, the reward of each action

g is a random variable rg whose distribution is unknown at the beginning. At the i-th step, if

the selected action ai = ĝ, by applying the action, a reward ri, which is a realization of rĝ,

is received. The objective of the multi-armed bandit problem is to maximize the cumulative

reward ΣN
i=1ri over N actions.

In general, instead of modeling rĝ directly, we assume there is a stochastic outcome zi for the

action ai = ĝ. Given the outcome zi, the corresponding reward is determined by the reward

function ri = r(zi|ĝ). In the casino example, zi would be the binary outcome of whether

the gambler wins when she pulls the ĝ-th arm at the i-th step, and ri is the corresponding

amount of reward.
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The multi-armed bandit problem has been studied since World War II and finding optimal

algorithms has proven to be challenging [Russo et al., 2018]. The first steps towards this

problem were taken shortly after the war. Robbins [1952] developed the “win stay, lose shift”

strategy, which is simple, non-optimal, but with provable guarantee that it is better than

random. Gittins and Jones [1979] proposed an algorithm named “the Gittins index”, which

gives an optimal solution under Bayesian setting when the prior is known and the reward

geometrically discounts as time passes. However, this method is mathematically intractable.

Since then an enormous body of work has been accumulated. Lattimore and Szepesvári [2020]

provides a throughout review. Among all the methods, Thompson sampling [Thompson,

1933, 1935] is a natural randomized Bayesian algorithm to heuristically balance between

exploration and exploitation, which has recently gained its popularity because of its strong

empirical performance on a spectrum of applications [Scott, 2010, Chapelle and Li, 2011,

Agrawal and Goyal, 2012].

3.2.2 Thompson Sampling

optimizer supervised 
learning

system
action
𝑎! = #𝑔

outcome
𝑧!

reward
𝑟! = 𝑟 𝑧!| #𝑔

online decision algorithm

model

𝑎!
𝑧!(𝜃

Figure 3.1: Online decision algorithm.

Online Decision Algorithms For multi-armed bandit problems, since exploration is

gathering information and exploitation is using the information to get an expected good
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reward, the decisions made early on influences how informed the later decisions would be.

Online decision algorithms have been studied to serve as mechanisms to make this type of

sequential decisions.

Figure 3.11 illustrates how an online decision algorithm works. At the i-th step, the previous

i − 1 actions together with their outcomes Hi−1 = {(aj, zj)|j = 1, 2, · · · , i − 1} form the

training data for the supervised learning model, where aj and zj are the action and the

outcome at the j-th step.

The supervised learning model parametrized by θ predicts the outcome z of each action g,

g = 1, 2, · · · , G. For example, in the casino example θ is a the set of G unknown probabilities,

where θg is the chance of success for the g-th arm of the slot machine, and the predictive

distribution of the outcome is z ∼ Bern(z|θg) according to the supervised model. For

each possible outcome z of action g, the corresponding reward is r(z|g), where r(·|g) is the

deterministic reward function for the g-th action.

By fitting to Hi−1, the supervised learning model generates a point estimation θ̃ of the model

parameter. For a frequentist supervised learning model, θ is already a point estimation of

the model parameter, i.e. θ̃ = θ. For a Bayesian supervised learning model, θ̃ can be the

mean posterior expectation or a posterior sample of the posterior distribution of θ. In this

chapter, the Thompson sampling method we use sets θ̃ as a posterior sample of θ.

Given the estimated rewards computed with θ̃, the optimizer selects the action ai that

maximizes the expected reward computed calculated by taking the integral over all possible

outcomes z. By applying the action ai = ĝ, the system generates an outcome zi, and the

agent receives the corresponding reward ri = r(zi|ĝ).
1Adapted from Figure 2.1 of Russo et al. [2018].
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Thompson Sampling: a Bayesian Online Decision Algorithm Thompson sampling

is a Bayesian online decision algorithm. Since it was first proposed by Thompson [1933], it

has been reinvented under different contexts multiple times [Wyatt, 1998, Strens, 2000]. The

basic idea of Thompson sampling is to assume a simple prior distribution on the parameters of

the reward distribution of every arm, and at each step, play an arm according to its posterior

probability of being the best arm.

At each step i, the prior distribution of the model parameter θ is its posterior at the previous

step, i.e. θ ∼ pi−1(θ). The outcome z of an action g is modeled by a conditional distribution

parametrized by θ, i.e. z ∼ qθ(z|g) for ∀g = 1, 2, · · · , G.

Given the model parameter θ, the expected reward of the action can be calculated by taking

the integral over all possible outcome z as Eqθ [r(z|g)]. Thompson sampling randomly selects

an action ai according to its posterior probability of being the arm with the highest expected

reward. The posterior probability can be expensive to compute yet easy to sample to from:

1. At each step i, we sample an estimate of the model parameter θ from its prior distribution

for trial i (which is the posterior having seen rewards up to trial i− 1), i.e. θ̃ ∼ pi−1(θ).

2. Conditioned on the sampled model parameter θ̃, the optimizer then selects the action

ĝ = arg maxg Eq
θ̃
[r(z|g)] that maximizes the expected reward, where r(z|g) is task-

specific.

The first step is the key difference between Thompson sampling and alternative such as

greedy methods which in most cases use a point estimate to represent the current belief. The

randomness in the first steps allows the online decision algorithm to explore actions that do

not have the highest intermediate expected reward according to the current belief.

After applying the action ai = ĝ, the outcome zi is used in return to update the posterior

distribution of the model parameters with Bayes’ theorem: pi(θĝ) ∝ pi−1(θĝ)qθ(zi|ĝ) And the
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Figure 3.2: Probability density functions over mean rewards for action1 (red solid curve)
and action2 (blue dashed curve) with budget N = 0, 10, 100, with the prior distribution of
expected reward set as Beta(1, 1) for both action1 and action2.

agent gets the corresponding reward ri = r(zi|ĝ).

Balance between Exploration and Exploitation By estimating θ with a Bayesian

model, Thompson sampling naturally balances between exploration and exploitation via

quantifying and updating the uncertainty of its belief about the expected reward of each

action. We demonstrate this property by simulating a simple online decision system with

Thompson sampling. This online decision system needs to sequentially decide between action1

and action2 with budget N . We assume the reward of each action is binary, with the true

mean reward set as 0.8 for action1 and 0.2 for action2.

In Figure 3.2, we plot the posterior distribution of the expected reward of two actions as the

budget N increases from 0 to 10 and 100. At the beginning of the sampling process(N = 0),

with a weak prior Beta(1, 1) for both θ0 and θ1, the probabilities of two actions being selected

by the Thompson sampling algorithm are equal because their posterior distributions of the

expected reward are identical. After applying N = 10 actions, action1 and action2 have been

selected for 6 and 4 times respectively, among which a positive reward has been received for

6 out of 6 times for action1, and 2 out of 4 times for action2. Comparing their posterior

distributions, we show that with the information gathered from 10 actions, the posterior
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Figure 3.3: Percentage of the times that action1 is chosen over action2 by Thompson sampling
averaged over 10000 independent runs, as a function of budget N . For each run, the setup is
the same as Figure 3.2. Shading indicates 95% error bar across 10000 runs.

distribution of the mean reward of action1 has greater maximum posterior estimation (MPE)

and lower variance. Thus in the next step, the Thompson sampling algorithm is more

likely to select action1 over action2. As N increases, the MPE of the posterior distribution

gradually converges to 0.8 for action1 and 0.2 for action2, and the uncertainty of the posterior

distribution drops. The online decision system is increasingly more certain that action1

provides greater expected reward than action2. To optimize the cumulative reward, the

probability of action1 being selected increases. The simulation shows that when N = 100,

the budget spent on action1 and action2 are 95 and 5.

In Figure 3.3 we plot the percentage of the times that action1 is selected by Thompson

sampling, averaged over 10000 independent simulations. When N = 0, the mechanism selects

two actions with equal probability for exploration; as N increase, the mechanism selects

action1 increasingly more frequently for exploitation.
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3.3 Active Assessment with Thompson Sampling

The Bayesian framework described in Chapter 2 readily lends itself to be used in Bayesian

active learning algorithms, by considering model assessment as a multi-armed bandit problem

where each group g corresponds to an arm or a bandit. Next we use Thompson sampling to

actively assess performance of black-box classifiers.

There are two key building blocks in the Bayesian assessment framework: (i) the assessment

model’s current belief (prior or posterior distribution) for the metric of interest θg ∼ p(θg),

and (ii) a generative model (likelihood) of the labeling outcome z ∼ qθ(z|g),∀g. Instead of

labeling randomly sampled data points from a pool of unlabeled data, we propose instead to

actively select data points to be labeled by iterating between:

1. labeling : actively select a group ĝ based on the assessment algorithms current belief

about θg, randomly select a data point xi ∼ Rĝ and then query its label;

2. assessment : update the assessment model given the outcome zi. This active selection

approach requires defining a reward function r(z|g) for the revealed outcome z for

the g-th group.

For example, if the assessment task is to generate low variance estimates of groupwise accuracy,

r(z|g) can be formulated as the reduction in uncertainty about θg, given an outcome z, to

guide the labeling process.

Our goal in this chapter is to demonstrate the utility of active assessment in general for

performance assessment rather than comparing different active selection methods. With this

in mind, we focus in particular on using Thompson sampling as our main active selection

method since we found it to be more reliable in terms of reliability and efficiency compared

to other methods such as epsilon-greedy and upper-confidence bound (UCB) approaches. We
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Algorithm 1 Thompson Sampling for Active Assessment(p, q, r,M)
1: Initialize the priors on metrics {p0(θ1), . . . , p0(θg)}
2: for i = 1, 2, · · · do
3: # Sample parameters for the metrics θ
4: θ̃g ∼ pi−1(θg), g = 1, . . . , G
5: # Select a group g (or arm) by maximizing expected reward
6: ĝ ← arg maxg Eq

θ̃
[r(z|g)]

7:
8: # Randomly select an input data point from ĝ-th group
9: xi ∼ Rĝ

10: # Compute the predicted label of the input data point
11: ŷi(xi) = arg maxk pM(y = k|xi)
12: # Query to get the true label (pull arm ĝ) and compute label output zi
13: zi ← f(yi, ŷi(xi))
14:
15: # Update parameters of the ĝ-th group
16: pi(θĝ) ∝ pi−1(θĝ)qθ(zi|ĝ)
17: end for

Figure 3.4: An outline of the algorithm for active Bayesian assessment using multi-arm bandit
Thompson sampling with arms corresponding to groups g.

include this additional discussion in Section 3.9.1.

Algorithm 1 describes a general active assessment algorithm based on Thompson sampling.

At each step i, a set of metrics θg, 1 . . . , G are sampled from the algorithm’s current belief,

i.e., θ̃g ∼ pi−1(θg) (line 4). As an example, when assessing groupwise accuracy, pi−1(θg)

represents the algorithm’s belief (e.g., in the form of a posterior Beta distribution) about

the accuracy for group g given i− 1 labeled examples observed so far. Conditioned on the

sampled θ values, the algorithm then selects the group ĝ that maximizes the expected reward

ĝ = arg maxg Eq
θ̃
[r(z|g)] (line 6) where r(z|g) is task-specific. The algorithm then draws an

input datapoint xi randomly from Rĝ, and uses the model M to generate a predicted label

ŷi. The Oracle is then queried (equivalent to “pulling arm ĝ" in a bandit setting) to obtain a

label outcome zi and the algorithm’s belief is updated (line 13) to update the posterior for

θĝ, where z ∼ qθ̃(z|ĝ) is the likelihood for outcome z.
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Note that this algorithm implicitly assumes that the θg’s are independent (by modeling belief

about θg’s independently rather than jointly). In some situations there may be additional

information across groups g (e.g., hierarchical structure) that could be leveraged (e.g., via

contextual bandits) to improve inference but we leave this for future work.

3.4 Experimental Settings

We conduct a series of experiments across datasets, models, metrics, and assessment tasks, to

systematically compare three different assessment methods:

• non-active sampling with uninformative priors (UPrior);

• non-active sampling with informative priors (IPrior);

• active Thompson sampling with informative priors (IPrior+TS).

Note that the non-active UPrior method is equivalent to standard frequentist estimation with

random sampling with weak additive smoothing. We use UPrior instead of a pure frequentist

method to avoid numerical issues in very low data regimes. We leave out the results of active

Thompson sampling with uninformative priors (UPrior+TS) to Section 3.9.

Before running each experiment (i.e., obtaining any labeled data), unlabeled data points

xi from the test set were assigned to groups (such as predicted classes or score-bins) by

each prediction model. Values for pg (for use in active learning in reward functions and in

evaluation of assessment methods) were estimated using the model-based assignments of test

datapoints to groups. Ground truth values for θg were defined using the full labeled test set

for each dataset. Estimates of metrics (as used for example in computing RMSE or ECE)

correspond to mean posterior estimates θ̂ for each method.
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We set the strengths of both IPrior and UPrior as αg + βg = N0 = 2 for Beta priors and∑
αg = N0 = 1 for Dirichlet priors in all experiments, demonstrating the robustness of

the settings across a wide variety of contexts. We conduct a Wilcoxon signed-rank test

with p=0.05 to determine the statistical significance between the best value and next best.

Best-performing values that are statistically significant, across the 3 methods, are indicated

in bold in our tables.

49



Table 3.1: Different (p, q, r) combinations for different assessment tasks. p(θ) is the distribution
of parameters of the assessment model, qθ(z|g) is the likelihood function of outcome z for the
g-th action, and r(z|g) is the corresponding reward. L is the set of historical labeled data
prior to y. θ̃ is the sampled model parameter from its distribution p(θ), θ̂|{L, z} is the MPE
of θ if the outcome is z.
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3.5 Estimation

3.5.1 Active Risk Estimation

The MSE for estimation accuracy for G groups can be written in bias-variance form as∑G
g=1 pg

(
Bias2(θ̂g) + Var(θ̂g)

)
. Given a fixed labeling budget the bias term can be assumed

to be small relative to the variance (e.g., see Sawade et al. [2010]), by using relatively weak

priors for example. It is straightforward to show that to minimize
∑G

g=1 pgVar(θ̂g) the optimal

number of labels per group g is proportional to
√
pgθg(1− θg), i.e., sample more points from

larger groups and from groups where θg is furthest from 0 or 1. While the group sizes pg

can be easily estimated from unlabeled data, the θg’s are unknown, so we can’t compute the

optimal weights a priori.

Active assessment in this context allows one to minimize MSE (or RMSE) in an adaptive

sequential manner. In particular we can do this by defining a reward function r(z|g) =

pg · (Var(θ̂g|L)−Var(θ̂g|{L,z})), where L is the set of labeled data seen to date, with the goal

of selecting examples for labeling to minimize the overall posterior variance at each step. For

confusion matrices, a similar argument applies but with multinomial likelihoods and Dirichlet

posteriors on vector-valued θg’s per group (see Table 3.1).

3.5.2 Experiments: Active Risk Estimation

We compared the estimation efficacy of each method as the labeling budget N increases, for

classwise accuracy (Table 3.2), confusion matrices (Table 3.3), and ECE (Table 3.4). All

reported numbers were obtained by averaging across 1000 independent runs, where a run

corresponds to a sequence of sampled xi values (and sampled θg values for the TS method).
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Evaluation We use RMSE of the estimated θ̂ relative to the true θ∗ (as computed from

the full test set) to measure the estimation error. For Bayesian methods, θ̂ is the MPE of θ’s

posterior distribution. For frequentist methods, θ̂ is the corresponding point estimation.

The estimation error of groupwise accuracy is defined as RMSE = (
∑

g pg(θ̂g − θ∗g)2)
1
2 . For

confision matrices, RMSE is defined as RMSE = (
∑

k pk(
∑

j(θ̂jk − θ∗jk)2)
1
2 where θjk is the

probability that class j is the true class when class k is predicted.

Table 3.2: RMSE of classwise accuracy across 5 datasets. Each RMSE number is the mean
across 1000 independent runs.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 200 30.7 15.0 15.3
5 500 20.5 13.6 13.8
10 1000 13.3 10.9 11.4

ImageNet 2 2000 29.4 13.2 13.2
5 5000 18.8 12.1 11.6
10 10000 11.8 9.5 9.4

SVHN 2 20 13.7 5.1 3.4
5 50 7.7 5.1 3.4
10 100 5.4 4.7 3.1

20 Newsgroups 2 40 23.9 12.3 11.7
5 100 15.3 10.8 10.3
10 200 10.4 8.7 8.8

DBpedia 2 28 14.9 2.0 1.5
5 70 3.5 2.3 1.2
10 140 2.6 2.1 1.1

Table 3.2 shows the mean RMSE of the estimates of classwise accuracy for the 3 methods on

the 5 datasets. The results demonstrate that informative priors and active sampling have

significantly lower RMSE than the baseline, e.g., reducing RMSE by a factor of 2 or more

in the low-data regime of N/K = 2. Active sampling (IPrior+TS) improves on the IPrior

method in 11 of the 15 results, but the gains are typically small. For other metrics and tasks

below we will see much greater gains from using active sampling.

Table 3.3 reports the mean RMSE across runs of estimates of confusion matrix entries for 4
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Table 3.3: Mean relative RMSE for confusion matrix estimation. Same setup as Table 3.2.
N/K N UPrior IPrior IPrior+TS

(baseline) (our work) (our work)

CIFAR-100 2 200 1.463 0.077 0.025
5 500 0.071 0.012 0.004
10 1000 0.001 0.002 0.001

SVHN 2 20 92.823 0.100 0.045
5 50 11.752 0.022 0.010
10 100 0.946 0.005 0.002

20 Newsgroups 2 40 3.405 0.018 0.005
5 100 0.188 0.004 0.001
10 200 0.011 0.001 0.000

DBpedia 2 28 1307.572 0.144 0.025
5 70 33.617 0.019 0.003
10 140 0.000 0.004 0.001

datasets2. To help with interpretation, we scaled the errors in the table by a constant θ0,

defined as the RMSE of the confusion matrix estimated with scores from only unlabeled data

, i.e. the estimate with IPrior when N = 0. Numbers greater than 1 mean that the estimate

is worse than using θ0 (with no labels). The results show that using informed priors (IPrior

and IPrior+TS) often produces RMSE values that are orders of magnitude lower than using

simple uniform prior (UPrior). Thus, the model scores on the unlabeled test set (used to

construct the informative priors) are highly informative for confusion matrix entries, even

though the models themselves are (for the most part) miscalibrated. We see in addition that

active sampling (IPrior+TS) provides additional significant reductions in RMSE over the

IPrior method with no active sampling.

In our ECE experiments samples are grouped into 10 equal-sized bins according to their

model scores. Table 3.4 reports the average relative ECE estimation error3, defined as

(100/R)
∑R

r=1 |ECEN − ˆECEr|/ECEN where ECEN is the ECE measured on the full test set,

2ImageNet is omitted because 50K labeled samples is not sufficient to reliably estimate ground truth for a
confusion matrix that contains 1M parameters.

3We report error for overall ECE rather than error per score-bin since ECE is of more direct interest and
more interpretable.
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Table 3.4: Mean percentage estimation error of ECE with bins as groups. Same setup as
Table 3.2.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 20 76.7 26.4 28.7
5 50 40.5 23.4 26.7
10 100 25.7 21.5 23.2

ImageNet 2 20 198.7 51.8 36.4
5 50 122.0 55.3 29.6
10 100 66.0 40.8 22.1

SVHN 2 20 383.6 86.2 49.7
5 50 155.8 93.1 44.2
10 100 108.2 80.6 36.6

20 Newsgroups 2 20 54.0 39.7 46.1
5 50 32.8 28.9 36.6
10 100 24.7 22.3 28.7

DBpedia 2 20 900.3 118.0 93.1
5 50 249.6 130.5 74.5
10 100 169.1 125.9 60.9

and ˆECEr is the esimated ECE (using MPE estimates of θb’s), for a particular method on the

r-th run, r = 1, . . . , R = 1000. Both the IPrior and IPrior+TS methods have significantly

lower percentage error in general in their ECE estimates compared to the naive UPrior

baseline, particularly on the 3 image datasets (CIFAR-100, ImageNet, and SVHN).

3.6 Identification

3.6.1 Best Arm(s) Identification

To identify the best (or worst performing) group, ĝ = arg maxg θg, we can define a reward

function using the sampled metrics θ̃g for each group. For example, to identify the least

accurate class, the expected reward of the g-th group is Eq
θ̃
[r(zi)|g] = qθ̃(y = 1)(−θ̃g)+qθ̃(y =

0)(−θ̃g) = −θ̃g. Similarly, because the reward functions of other identification tasks (Table 3.1)
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are independent of the value of y, when the assessment tasks are to identify the group with

the highest ECE or misclassification cost, maximization of the reward function corresponds

to selecting the group with the greatest sampled ECE or misclassification cost.

To extend this approach to identification of the best-m arms4, instead of selecting the arm

with the greatest expected reward, we pull the top-m-ranked arms at each step, i.e. we query

the true labels of m samples, with each sample x randomly drawn from each of the top

m ranked groups. This method can be seen as an application of the general best-m arms

identification method proposed by Komiyama et al. [2015] for the problem of extreme arms

identification. They proposed the multiple-play Thompson sampling (MP-TS) algorithm, and

proved that MP-TS has the optimal regret upper bound when the reward is binary. When

m = 1, MP-TS is equivalent to TS. In our experiments, we use TS for best arm identification

and MP-TS for top-m arms identification, and refer to both of the methods as TS in this

chapter for simplicity.

We also experimented with a modified version of Thompson sampling (TS) called top-two

Thompson sampling (TTTS) [Russo, 2016] but found that that TTTS and TS gave very

similar results—so we just focus on TS in the results presented in this section. We include the

additional discussion in Section 3.9.2. In the Appendices, we describe the sampling process to

identify the least accurate arm(s) with TS (Algorithm 2), TTTS (Algorithm 3) and MP-TS

(Algorithm 4).

3.6.2 Experiments: Identification of Extreme Classes

We compare the methods for identification of the top-m classes with the lowest accuracy

(Table 3.5), the highest ECE (Table 3.6) and the highest misclassification cost (Figure 3.6).
4This is typically referred to as best-k arms identification in the literature. We use the symbol m to avoid

overloading k. Best arm identification is a special case of Best-m identification when m = 1.
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Evaluation For our identification experiments, for a particular metric and choice of groups,

we conducted 1000 different sequential runs. For each run, after each labeled sample, we rank

the estimates θ̂g obtained from each of the 3 methods, and compute the mean-reciprocal-rank

(MRR) relative to the true top-m ranked groups (as computed from the full test set). The

MRR of the predicted top-m classes is defined as MRR = 1
m

∑m
i=1

1
ranki

where ranki is the

predicted rank of the ith best class. Following standard practice, other classes in the best-m

are ignored when computing rank so that MRR = 1 if the predicted top-m classes match

ground truth. We set m = 10 for CIFAR-100 and ImageNet, and m = 3 for the other datasets.

Table 3.5: Percentage of labeled samples needed to identify the least accurate top-1 and
top-m predicted classes across 5 datasets.

Dataset Top m UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 1 81.1 83.4 24.9
10 99.8 99.8 55.1

ImageNet 1 96.9 94.7 9.3
10 99.6 98.5 17.1

SVHN 1 90.5 89.8 82.8
3 100.0 100.0 96.0

20 Newsgroups 1 53.9 55.4 16.9
3 92.0 92.5 42.5

DBpedia 1 8.0 7.6 11.6
3 91.9 90.2 57.1

Table 3.6: Percentage of labeled samples needed to identify the least calibrated top-1 and
top-m predicted classes. Same setup as Table 3.5.

ECE, Top 1 ECE, Top m

Dataset IPrior IPrior+TS IPrior IPrior+TS

CIFAR-100 88.0 43.0 90.0 59.0
ImageNet 89.6 31.0 90.0 41.2
SVHN 58.8 40.7 88.4 77.6

20 Newsgroups 69.0 27.9 90.3 50.5
DBpedia 27.9 8.1 89.1 55.6

Table 3.5 shows the mean percentage of labeled test set examples needed to correctly identify

the target classes where “identify" means the minimum number of labeled examples required
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so that the MRR is greater than 0.99. The percentage is computed relative to the full test set.

For all 5 datasets the active method (IPrior+TS) clearly outperforms the non-active methods,

with large gains in particular for cases where the number of classes K is large (CIFAR-100

and Imagenet).

Similar gains are obtained in identifying the least calibrated classes. Table 3.6 shows that the

improvement in efficiency is particularly significant when the classwise calibration performance

has large variance across the classes (as shown in Figure 2.7), e.g., CIFAR-100, ImageNet

and 20 Newsgroups.

Misclassification Cost Matrices To assess misclassification cost of the models, we ex-

perimented with 2 different cost matrices on the CIFAR-100 dataset:
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Figure 3.5: Cost matrices used in our experiments. (left): human, (right): superclass.

• Human: the cost of misclassifying a person (e.g., predicting tree when the true class is

a woman, boy etc.) is more expensive than other mistakes.

• Superclass: the cost of confusing a class with another superclass (e.g., a vehicle with

a fish) is more expensive than the cost of mistaking labels within the same superclass

(e.g., confusing shark with trout).
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Figure 3.6: MRR of 3 assessment methods for identifying the top 1 (top) and top 10 (bottom)
highest-cost predicted classes, with 2 different cost matrices (right and left), averaged over
100 trials. See text for details.

We set the cost of expensive mistakes to be 10x the cost of other mistakes. In Figure 3.5, we

plot the two cost matrices.

Figure 3.6 compares our 3 assessment methods for identifying the predicted classes with

highest expected cost, using data from CIFAR-100, with two different (synthetic) cost matrices.

In this plot the x-axis is the number of labels (queries) and the y-value is the average (over

all runs) of the MRR conditioned on the number of labels. The curves show the MRR as

a function of the number of labels (on average, over 100 runs) for each of the 3 assessment

methods. The active assessment (IPrior+TS) is clearly much more efficient at identifying the

highest cost classes than the two non-active methods. The gains from active assessment were

also robust to different settings of the relative costs of mistakes (details in Section 3.9.5).
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3.7 Comparison

3.7.1 Active Comparison with ROPE

As discussed in Section 2.3.6, we can compare the performance of two groups θg1 and θg2

using the “rope” (region of practical equivalence) method. The goal of Bayesian performance

comparison is to estimate (η, λ), where η is the region in which ∆ has the highest cumulative

density, and λ = max(µ) ∈ [0, 1] represents the confidence of the assessment.

Using Thompson sampling to actively select labels from g1 and g2, at the i-th step, when

we get a zi for a data point from the g-th group, we update the Beta posterior of θg. The

resulting decrease in uncertainty about θg depends on the realization of the binary variable zi

and the current distribution of θg. We use λ to measure the amount of evidence we gathered

from the labeled data from both of the groups. Then we can select the group in a greedy

manner that has the greater expected increase Eq
θ̃
[λ|{L, (g, z)]−Eq

θ̃
[λ|L], which is equivalent

to selecting the arm with the largest Eq
θ̃
[λ|{L, (g, z)]. This approach of maximal expected

model change strategy has also been used in prior work in active learning for other applications

[Freytag et al., 2014, Vezhnevets et al., 2012].

3.7.2 Experiments: Comparison of Groupwise Accuracy

Evaluation We compare the results of rope assessment (η, λ) with the ground truth values

(η∗, λ∗). The assessment is considered as a success if (1) the direction of difference is correctly

identified η = η∗ and (2) the estimation error of cumulative density is sufficiently small

|λ− λ∗|/λ∗ < 0.05. In the experiments, we evaluate η and λ with the 10,000 Monte Carlo

samples from current estimation of ∆ after every 10 labeled samples. We set ε = 0.05 in

“rope”, i.e. the performance for two groups are considered to be “practically equivelent” when
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|θg1 − θg2| < 0.05.

Table 3.7: Average number of labels across all pairs of classes required to estimate λ for
randomly selected pairs of groups.

UPrior IPrior IPrior+TS

CIFAR-100, Superclass 203.5 129.0 121.9
SVHN 391.1 205.2 172.0

20 Newsgroups 197.3 157.4 136.1
DBpedia 217.5 4.3 2.8

For comparison experiments, Table 3.7 shows the results for the number of labeled data points

required by each method to reliably assess the accuracy difference of two predicted classes,

averaged over independent runs for all pairwise combinations of classes.5 The results show that

actively allocating a labeling budget and informative priors always improves label efficiency

over uniform priors with no active assessment. In addition, active sampling (IPrior+TS)

shows a systematic reduction of 5% to 35% in the mean number of labels required across

datasets, over non-active sampling (IPrior).

3.8 Discussion

As we demonstrated in the last three sections, our results clearly demonstrate that the active

Bayesian assessment framework is significantly more label-efficient and accurate across a wide

array of assessment tasks. Overall, we find that IPrior+TS outperforms IPrior, and that

IPrior is more effective than UPrior. As we discussed in Section 2.4, even though the model

is not well-calibrated there is nonetheless valuable information about confusion probabilities

available from the model’s estimates of class-conditional probabilities. Results are statistically

significant in all rows in all tables, except for SVHN results in Table 3.7.
5ImageNet is left out from this set of experiments because there are only 50 samples per predicted class.

For CIFAR-100, instead of comparing performance among 100 predicted classes, each of which only contains
100 samples. We make the comparison among 20 superclasses instead.
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3.9 Additional Experimental Results

In this section, we include the additional experimental results, including (1) comparisons with

alternative active learning algorithms, (2) comparisons between Thompson sampling and

top-two Thompson sampling for best arm identification, (3) comparisons between IPrior+TS

and UPrior+TS, (4) sensitivity analysis for hyperparameters, and (5) sensitivity analysis for

cost matrix values.

3.9.1 Comparisons with Alternative Active Learning Algorithms

There are a variety of other active learning approaches, such as epsilon greedy and Bayesian

upper-confidence bound(UCB) methods, that could also be used as alternatives to Thompson

sampling.

• Epsilon-greedy: with probability 1− ε the arm currently with the greatest expected

reward is selected; with probability ε the arm is randomly selected. We set ε as 0.1 in

our experiments.

• Bayesian upper-confidence bound (UCB): the arm with the greatest upper confidence

bound is selected at each step. In our experiments we use the 97.5% quantile, estimated

from 10,000 Monte Carlo samples, as the upper confidence bound.

We compare epsilon greedy, Bayesian UCB and Thompson sampling (TS) on the tasks to

identify the least accurate and the top-m least accurate predicted classes across five datasets.

Figure 3.7 plots the curves of MRR obtained with three methods as the number of queries

increase. We use the uninformative prior with prior strength 2 for all three algorithms. The

results show that the MRR curves of Thompson sampling always converge faster than the
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Figure 3.7: Mean reciprocal rank (MRR) of the classes with the estimated lowest classwise
accuracy with the strength of the prior set as 2, comparing Thompson sampling (TS) with
epsilon greedy and Bayesian UCB, across five datasets. The y-axis is the average MRR over
1000 runs for the percentage of queries, relative to the full test set, as indicated on the x-axis.
In the upper row m = 1, and in the lower row m = 10 for CIFAR-100 and ImageNet, and
m = 3 for the other datasets.

curves of epsilon greedy and Bayesian UCB, indicating that Thompson sampling is broadly

more reliable and more consistent in terms of efficiency for these tasks.

3.9.2 Comparisons between Thompson Sampling and Top-Two Thomp-

son Sampling for Best Arm Identification

For best identification problems, apart from Thompson sampling, we also experimented with

a modified version of Thompson sampling called top-two Thompson sampling (TTTS) which

has theoretical advantages for identifying the best arm in a pure exploration mode [Russo,

2016].

• Top-two Thompson sampling (TTTS) is a modified version of TS that is tailored for

best arm identification, and has some theoretical advantages over TS. Compared to TS,

this algorithm adds a re-sampling process to encourage more exploration. At each step,

with probability 1− β the algorithm selects the class I which has the highest expected

62



reward; in order to encourage more exploration, with probability β the algorithm

re-samples until a different class J 6= I has the highest expected reward. β is a tuning

parameter. When β = 0, there is no re-sampling in TTTS and it is reduced to TS.

Figure 3.8 compares TS and TTTS for identifying the least accurate class for CIFAR-100.

The results show that two methods are equally efficient across 5 datasets. For TTTS, we set

the probability for re-sampling to β = 0.5 as recommended in Russo [2016]. We found that

for the problems and datasets we investigated in this section that TS and TTTS gave very

similar performance.
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Figure 3.8: Mean reciprocal rank (MRR) of the class with the estimated lowest classwise
accuracy with the strength of the prior set as α + β = 2, comparing TS and TTTS, across
five datasets. The y-axis is the average MRR over 1000 runs for the percentage of queries,
relative to the full test set, as indicated on the x-axis.

3.9.3 Comparisons Between IPrior+TS and UPrior+TS

We use the comparison between UPrior+TS and IPrior+TS to demonstrate the influence

of informative priors when samples are actively labeled for identifying the least accurate

top-1 or top-m predicted classes. We set the strength of both the informative prior and the

uninformative prior as 2.

The results in Figure 3.9 illustrate that the informative prior can be helpful when the prior

captures the relative ordering of classwise accuracy well (e.g., ImageNet), but less helpful

when the difference in classwise accuracy across classes is small and the classwise ordering
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Figure 3.9: Comparison of the effect of informative (red) and uninformative (blue) priors on
identifying the least accurate predicted class with Thompson sampling across 5 datasets. The
y-axis is the average MRR over 1000 runs for the percentage of queries, relative to the full
test set, as indicated on the x-axis. In the upper row m = 1, and in the lower row m = 10 for
CIFAR-100 and ImageNet, and m = 3 for the other datasets.

reflected in the “self-assessment prior" is more likely to be in error (e.g., SVHN, as shown in

Figure 2.7.). In general, across the different estimation tasks, we found that when using active

assessment (TS) informative priors (rather than uninformative priors) generally improved

performance and rarely hurt it.

3.9.4 Sensitivity Analysis for Hyperparameters

In Figure 3.10, we show Bayesian reliability diagrams for five datasets as the strength of the

prior increases from 10 to 100. As the strength of the prior increases, it takes more labeled

data to overcome the prior belief that the model is calibrated. In Figure 3.11, we show MRR

of the m lowest accurate predicted classes as the strength of the prior increases from 2 to 10

to 100. And in Figure 3.12, we show MRR of the m least calibrated predicted classes as the

strength of the prior increase from 2 to 5 and 10. From these plots, the proposed approach

appears to be relatively robust to the prior strength.
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Figure 3.10: Bayesian reliability diagrams for five datasets (columns) estimated using varying
amounts of test data (rows) with prior strength (αb + βb for each bin) set to be (a) 10 and (b)
100 respectively. The red circles plot the posterior mean for θb under our Bayesian approach.
Red bars display 95% credible intervals. Shaded gray areas indicate the estimated magnitudes
of the calibration errors, relative to the Bayesian estimates. The blue histogram shows the
distribution of the scores for N randomly drawn samples.
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Figure 3.11: Mean reciprocal rank (MRR) of them classes with the estimated lowest classwise
accuracy as the strength of the prior varies from (a) 2 to (b) 10 and (c) 100, comparing active
learning (with Thompson sampling (IPrior+TS)) with no active learning(Frequentist), across
five datasets. The y-axis is the average MRR over 1000 runs for the percentage of queries,
relative to the full test set, as indicated on the x-axis. For each of (a), (b) and (c), in the
upper row m = 1, and in the lower row m = 10 for CIFAR-100 and ImageNet, and m = 3 for
the other datasets.
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Figure 3.12: Mean reciprocal rank (MRR) of the m classes with the estimated highest
classwise ECE as the strength of the prior varies from (a) 2 to (b) 5 and (c) 10, comparing
active learning (with Thompson sampling (IPrior+TS)) with no active learning(Frequentist),
across five datasets. The y-axis is the average MRR over 1000 runs for the percentage of
queries, relative to the full test set, as indicated on the x-axis. For each of (a), (b) and (c),
in the upper row m = 1, and in the lower row m = 10 for CIFAR-100 and ImageNet, and
m = 3 for the other datasets.
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3.9.5 Sensitivity Analysis for Cost Matrix Values

We also investigated the sensitivity of varying the relative cost of mistakes in our cost

experiments. Results are provided in Table 3.8. A pseudocount of 1 is used in the Dirichlet

priors for Bayesian models. We consistently observe that active assessment with an informative

prior (IPrior+TS) performs the best, followed by non-active assessment with an informative

prior (IPrior) and finally non-active assessment with an uninformative prior (UPrior).

Table 3.8: Number of queries required by different methods to achieve a 0.99 mean reciprocal
rank(MRR) identifying the class with highest classwise expected cost. The cost types are
“Human” (left) and “Superclass” (right).

“Human” “Superclass”
Cost Top m UPrior IPrior IPrior+TS

1 1 9.6K 9.4K 5.0K
10 10.0K 10.0K 9.4K

2 1 9.3K 9.3K 4.4K
10 9.8K 10.0K 8.4K

5 1 9.5K 9.7K 4.5K
10 9.6K 10.0K 7.9K

10 1 9.3K 9.1K 2.2K
10 9.6K 9.7K 7.4K

Cost Top m UPrior IPrior IPrior+TS

1 1 9.9K 10.0K 2.2K
10 9.8K 9.9K 5.9K

2 1 10.0K 10.0K 2.2K
10 9.9K 9.9K 5.2K

5 1 9.9K 10.0K 1.8K
10 9.9K 9.9K 5.3K

10 1 10.0K 9.8K 1.4K
10 9.9K 9.9K 4.0K

3.10 Related Work

There has been a limited amount of previous work on non-active methods for label-efficient

performance assessment. For non-active label-efficient risk estimation, Sawade et al. [2010]

and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to

allocate labeling resources among different groups. In the information retrieval literature,

label efficiency of model assessment has mainly been studied from the perspective of leveraging

incomplte judgements, instead of using actively labeled data [Aslam et al., 2006, Yilmaz

and Aslam, 2006, Moffat et al., 2007]. A significant difference between our work and this

prior work on label-efficient assessment is our framing of the assessment problem as an MAB
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problem and addressing it via Bayesian active assessment.

While there is a large literature on active learning and multi-armed bandits (MAB) in general,

e.g., Settles [2012], Russo et al. [2018], Lattimore and Szepesvári [2020], our work is the first

that applies ideas from Bayesian active learning to general classifier assessment, building on

MAB-inspired, pool-based active learning algorithms for data selection [Thompson, 1933,

Komiyama et al., 2015, Russo, 2016].

There are also non-Bayesian active learning methods for model assessment. Nguyen et al.

[2018] selects samples for estimating visual recognition performance of an algorithm on a fixed

test set, by individual accuracy of data points as latent variables to estimate accuracy and

precision of recognition systems with large-scale noisy labels, for applications like multi-label

tags and instance segmentation. Similar ideas have also been explored in the information

retrieval literature. Sabharwal and Sedghi [2017] use system output ranking to select samples

to estimate PR curve of the information retrieval system with error bound; Li and Kanoulas

[2017] and Rahman et al. [2020] select test items to label and estimate performance on

unlabeled data; Voorhees [2018] and Rahman et al. [2019] use ideas from multi-armed bandits

to construct test datasets. However, this line of prior work is significantly narrower in scope

in terms of performance metrics and tasks compared to the more general approach we propose

here.

3.11 Conclusions

In this chapter, we developed active assessment methods to improve label-efficiency of black-

box classifiers assessment using techniques from Bayesian active learning. Our primary

contributions are:

• We proposed a general framework for active Bayesian assessment for an array of
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fundamental tasks including (1) estimation of model performance; (2) identification of

model deficiencies; (3) performance comparison between groups;

• We developed a set of Thompson sampling algorithms for label-efficient active assess-

ment;

• We demonstrated that our proposed approaches need significantly fewer labels than

baselines, via a series of experiments assessing the performance of modern neural

classifiers (e.g., ResNet and BERT) on several standard image and text classification

datasets.

There are a number of interesting directions for future work, such as Bayesian estimation

of continuous functions related to accuracy and calibration (rather than over regions).

The framework can also be extended to assess a particular model operating in multiple

environments using a Bayesian hierarchical approach, or to comparatively assess multiple

models operating in the same environment.

A related direction is to consider environments where humans are in the loop where, given

a constraint on the number of problems that can be allocated to humans, the goal is to

identify for which types of prediction problems human accuracy will most likely exceed model

accuracy.

The techniques we use in this chapter can in principle be replaced by any Bayesian ac-

tive learning algorithms designed for MAB problems—determining optimal active learning

approaches for model assessment problems is also an interesting avenue for future research.
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Chapter 4

Assess Fairness with Unlabeled Data and

Bayesian Inference

In this chapter, we investigate the problem of reliably assessing group fairness when labeled

examples are few but unlabeled examples are plentiful. We propose a general Bayesian

framework that can augment labeled data with unlabeled data to produce more accurate and

lower-variance estimates compared to methods based on labeled data alone. Our approach

estimates calibrated scores for unlabeled examples in each group using a hierarchical latent

variable model conditioned on labeled examples. This in turn allows for inference of posterior

distributions with associated notions of uncertainty for a variety of group fairness metrics.

We demonstrate that our approach leads to significant and consistent reductions in estimation

error across multiple well-known fairness datasets, sensitive attributes, and predictive models.

The results show the benefits of using both unlabeled data and Bayesian inference in terms

of assessing whether a prediction model is fair or not.
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4.1 Introduction

Machine learning models are increasingly used to make important decisions about individuals.

At the same time it has become apparent that these models are susceptible to producing

systematically biased decisions with respect to sensitive attributes such as gender, ethnicity,

and age [Angwin et al., 2017, Berk et al., 2018, Corbett-Davies and Goel, 2018, Chen

et al., 2019, Beutel et al., 2019]. This has led to a significant amount of recent work in

machine learning addressing these issues, including research on both (i) definitions of fairness

in a machine learning context (e.g., Dwork et al. [2012], Chouldechova [2017]), and (ii)

design of fairness-aware learning algorithms that can mitigate issues such as algorithmic bias

(e.g., Calders and Verwer [2010], Kamishima et al. [2012], Feldman et al. [2015], Zafar et al.

[2017], Chzhen et al. [2019]).

In this chapter we focus on an important yet under-studied aspect of the fairness problem:

reliably assessing how fair a blackbox model is, given limited labeled data. In particular, we

focus on assessment of group fairness of binary classifiers. Group fairness is measured with

respect to parity in prediction performance between different demographic groups. Examples

include differences in performance for metrics such as true positive rates and false positive

rates (also known as equalized odds [Hardt et al., 2016]), accuracy [Chouldechova, 2017],

false discovery/omission rates [Zafar et al., 2017], and calibration and balance [Kleinberg

et al., 2016].

Despite the simplicity of these definitions, a significant challenge in assessment of group

fairness is high variance in estimates of these metrics based on small amounts of labeled data.

To illustrate this point, Figure 4.1 shows frequency-based estimates of group differences in

true positive rates (TPRs) for four real-world datasets. The boxplots clearly show the high

variability for the estimated TPRs relative to the true TPRs (shown in red) as a function of

the number of labeled examples nL. In many cases the estimates are two or three or more

72



50 100 200
nL

-100%

-50%

0%

50%

100%
D

iff
er

en
ce

 in
 T

PR
Adult, Gender

50 100 200
nL

-100%

-50%

0%

50%

100%
Bank, Age

50 100 200
nL

-100%

-50%

0%

50%

100%
Compas-R, Gender

50 100 200
nL

-100%

-50%

0%

50%

100%
Compas-R, Race

Figure 4.1: Boxplots of frequency-based estimates of the difference in true positive rate (TPR)
for four fairness datasets and binary sensitive attributes, across 1000 randomly sampled
sets of labeled test examples of size nL = 50, 100, 200. The horizontal red line is the TPR
difference computed on the full test dataset.

times larger than the true difference. In addition, a relatively large percentage of the estimates

have the opposite sign of the true difference, potentially leading to mistaken conclusions.

The variance of these estimates decreases relatively slowly, e.g., at a rate of approximately 1
n

for group differences in accuracy where n is the number of labels in the smaller of the two

groups1. Imbalances in label distributions can further compound the problem, for example

for estimation of group differences in TPR or FPR. For example, consider a simple simulation

with two groups, where the underrepresented group makes up 20% of the whole dataset,

groupwise positive rates P (y = 1) are both 20%, and the true groupwise TPRs are 95% and

90%. In Figure 4.2, we show in this simulation that a large number nL of labeled examples

(at least 96,000) is needed to ensure there is a 95% chance that our estimate of the true TPR

difference (which is 0.05) lies in the range [0.04, 0.06]. Yet for real-world datasets used in the

fairness literature (e.g., Friedler et al. [2019]; see also Table 4.1 later in the chapter), test

set sizes are often much smaller than this, and it is not uncommon for the group and label

distributions to be even more imbalanced.

The real-world and synthetic examples above show that frequentist assessment of group

fairness is unreliable unless the labeled dataset is unrealistically large. Acquiring large

amounts of labeled data can be difficult and time-consuming, particularly for the types of
1Stratified sampling by group could help with this issue (e.g., see Sawade et al. [2010]), but stratification

might not always be possible in practice, and the total variance will still converge slowly overall.
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Figure 4.2: Percentage of 10000 independent simulations whose estimates of ∆ TPR are in
the range [0.04, 0.06], as a function of the number of labeled examples nL.

applications where fairness is important, such as decision-making in medical or criminal

justice contexts [Angwin et al., 2017, Berk et al., 2018, Rajkomar et al., 2018]. This is in

contrast to applications such as image classification where approaches like Mechanical Turk

can be used to readily generate large amounts of labeled data.

To address this problem, we propose to augment labeled data with unlabeled data to generate

more accurate and lower-variance estimates compared to methods based on labeled data

alone.

4.2 Notation and Problem Statement

We use the same set of notation as the previous chapters: Consider a trained binary

classification model M , with inputs x and class labels y ∈ {0, 1}. The model produces

scores2 s(x) = pM(y = 1|x) ∈ [0, 1], where pM denotes the fact that this is the model’s

estimate of the probability that y = 1 conditioned on x. When there is no ambiguity, we

use s instead of s(x) to implicitly represent the model score as a deterministic function of

x. Under 0-1 loss the model predicts ŷ = 1 if s ≥ 0.5 and ŷ = 0 otherwise. The marginal
2Note that the term “score" is sometimes defined differently in the calibration literature as the maximum

class probability for the model. Both definitions are equivalent mathematically for binary classification.
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accuracy of the classifier is p(ŷ = y) and the accuracy conditioned on a particular value of

the score s is p(ŷ = y|s). A classifier is calibrated if p(ŷ = y)|s) = s, e.g., if whenever the

model produces a score of s = 0.9 then its prediction is correct 90% of the time.

For group fairness we are interested in potential differences in performance metrics with

respect to a sensitive attribute (such as gender or race) whose values g correspond to different

groups, g ∈ {0, 1, . . . , G− 1}. We will use θg to denote a particular metric of interest, such as

accuracy, TPR, FPR, etc. for group g. We focus on group differences for two groups, defined

as ∆ = θ1 − θ0, e.g., the difference in a model’s predictive accuracy between females and

males, ∆ = p(ŷ = y|g = 1)− p(ŷ = y|g = 0).

We assume in general that the available data consists of both nL labeled examples and nU

unlabeled examples, where nL � nU , which is a common situation in practice where far more

unlabeled data is available than labeled data. For the unlabeled examples, we do not have

access to the true labels yj but we do have the scores sj = pM (yj = 1|xj), j = 1, . . . , nU . For

the labeled examples, we have the true labels yi as well as the scores si, i = 1, . . . , nL. The

examples (inputs x, scores s, and labels y if available) are sampled IID from an underlying

joint distribution p(x, y) (or equivalently p(s, y) given that s is a deterministic function via

M of x), where this underlying distribution represents the population we wish to evaluate

fairness with respect to. Note that in practice p(x, y) might very well not be the same

distribution the model was trained on. For unlabeled data Du the corresponding distributions

are p(x) or p(s).

4.3 Beta-Binomial Estimation with Labeled Data

Consider initially the case with only labeled data DL (i.e., nU = 0) and for simplicity let

the metric of interest ∆ be group difference in classification accuracy. In Section 2.3.6 we
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discussed Bayesian assessment of model performance between two groups. In this section, we

use the same Beta-Binomial model to assess group fairness, which is defined as the difference

of model performance between two groups.

Let Ii = Iŷi=yi , 1 ≤ i ≤ nL, be a binary indicator of whether each labeled example i

was classified correctly or not by the model. The binomial likelihood for group accuracy

θg, g = 0, 1, treats the Ii’s as conditionally independent draws from a true unknown accuracy

θg, Ii ∼ Bernoulli(θg). As in earlier chapters in this thesis, we can perform Bayesian inference

on the θg’s by specifying conjugate Beta(αg, βg) priors for each θg, combining these priors with

the binomial likelihoods, and obtaining posterior densities in the form of the beta densities

on each θg.

From here we can get a posterior density on the group difference in accuracy, p(∆|DL) where

∆ = θ1 − θ0. Since the density for the difference of two beta-distributed quantities (the θ’s)

is not in general in closed form, we use posterior simulation (e.g., Gelman et al. [2013]) to

obtain posterior samples of ∆ by sampling θ’s from their posterior densities and taking the

difference. For metrics such as TPR we place beta priors on conditional quantities such as

θg = p(ŷ = 1|y = 1, g). In all of the results in the chapter we use weak uninformative priors

for θg with αg = βg = 1. This general idea of using Bayesian inference on classifier-related

metrics has been noted before for metrics such marginal accuracy [Benavoli et al., 2017],

TPR [Johnson et al., 2019], and precision-recall [Goutte and Gaussier, 2005], but has not

been developed or evaluated in the context of fairness assessment.

This beta-binomial approach above provides a useful, simple, and practical tool for under-

standing and visualizing uncertainty about fairness-related metrics, conditioned on a set of

nL labeled examples. However, with weak uninformative priors, the posterior density for ∆

will be relatively wide unless nL is very large, analogous to the high empirical variance for

frequentist point estimates in Figure 4.1. As with the frequentist variance, the width of the

posterior density on ∆ will decrease relatively slowly at a rate of approximately 1
nL
. This
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motivates the main goal of the chapter: can we combine unlabeled examples with labeled

examples to make more accurate inferences about fairness metrics?

4.4 Leveraging Unlabeled Data with a Bayesian Calibra-

tion Model

Consider the situation where we have nU unlabeled examples, in addition to the nL labeled

ones. For each unlabeled example j = 1, . . . , nU we can use the model M to generate a score,

sj = pM(yj = 1|xj). If the model M is perfectly calibrated then the model’s score is the

true probability that y = 1, i.e., we have sj = pM(yj = 1|sj) and the accuracy equals sj if

sj ≥ 0.5 and 1−sj otherwise. Therefore, in the perfectly calibrated case, we could empirically

estimate accuracy per group for the unlabeled data using scores via

θ̂g = (1/nU,g)
∑
j∈g

sjI(sj ≥ 0.5) + (1− sj)I(sj < 0.5) (4.1)

where nU,g is the number of unlabeled examples that belong to group g. Metrics other than

accuracy could also be estimated per group in a similar fashion.

In practice, however, many classification models, particularly complex ones such as deep

learning models, can be significantly miscalibrated (see, e.g., Guo et al. [2017], Kull et al.

[2017], Kumar et al. [2019], Ovadia et al. [2019]) and using the uncalibrated scores in such

situations will lead to biased estimates of the true accuracy per group. The key idea of

our approach is to use the labeled data to learn how to calibrate the scores such that the

calibrated scores can contribute to less biased estimates of accuracy. Let

zj = E[I(ŷj = yj)] = p(yj = ŷj|sj) (4.2)
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be the true (unknown) accuracy of the model given score sj. We treat each zj, j = 1, . . . , nU

as a latent variable per example. The high-level steps of the approach are as follows:

• We use the nL labeled examples to estimate groupwise calibration functions with

parameters φg, that transform the (potentially) uncalibrated scores s of the model to

calibrated scores. More specifically, we perform Bayesian inference (see Section 4.5 below)

to obtain posterior samples from p(φg|DL) for the groupwise calibration parameters φg.

• We then obtain posterior samples from pφg(zj|DL, sj) for each unlabeled example

j = 1, . . . , nU , conditioned on posterior samples of the φg’s.

• Finally, we use posterior samples from the zj’s, combined with the labeled data, to

generate estimates of the groupwise metrics θg and the difference in metrics ∆.

We can compute a posterior sample for θtg, given each set of posterior samples for φtg and

zt1, . . . , z
t
nU

, by combining estimates of accuracies for the unlabeled examples with the observed

outcomes for the labeled instances:

θtg =
1

nL,g + nU,g

(∑
i:i∈g

I(ŷi = yi) +
∑
j:j∈g

ztj

)
(4.3)

where t = 1, ..., T is an index over T MCMC samples. These posterior samples in turn can be

used to generate an empirical posterior distribution {∆1, . . . ,∆T} for ∆, where ∆t = θt1 − θt0.

Mean posterior estimates can be obtained by averaging over samples, i.e. ∆̂ = (1/T )
∑T

t ∆t.

Even with very small amounts of labeled data (e.g., nL = 10) we will demonstrate later in

the chapter that we can make much more accurate inferences about fairness metrics via this

Bayesian calibration approach, compared to using only the labeled data directly.
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Figure 4.3: Hierarchical Bayesian calibration of two demographic groups across four dataset-
group pairs, with posterior means and 95% credible intervals per group. The x-axis is the
model score s for class y = 1, and the y-axis is the calibrated score. Instances in each group
are binned into 5 equal-sized bins by model score, and blue and red points show the fraction
of positive samples per group for each bin.

4.5 Hierarchical Bayesian Calibration

Bayesian calibration is a key step in our approach above. We describe Bayesian inference

below for the beta calibration model specifically [Kull et al., 2017] but other calibration

models could also be used. The beta calibration model maps a score from a binary classifier

with scores s = pM(y = 1|x) ∈ [0, 1] to a recalibrated score according to:

f(s; a, b, c) =
1

1 + e−c−a log s+b log(1−s) (4.4)

where a, b, and c are calibration parameters with a, b ≥ 0. This model can capture a wide

variety of miscalibration patterns, producing the identity mapping if s is already calibrated

when a = b = 1, c = 0. Special cases of this model are the linear-log-odds (LLO) calibration

model [Turner et al., 2014] when a = b, and temperature scaling [Guo et al., 2017] when

a = b, c = 0.

In our hierarchical Bayesian extension of the beta calibration model, we assume that each group

(e.g., female, male) is associated with its own set of calibration parameters φg = {ag, bg, cg}

and therefore each group can be miscalibrated in different ways (e.g., see Figure 4.3). To

apply this model to the observed data, we assume that the true labels for the observed
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Figure 4.4: Graphical model for hierarchical Beta calibration as described in Section 2.4 of
the main chapter. Γ is the hyperprior on π, representing the fixed parameters for the normal
and truncated normal hyperpriors described in Section 2.4 in the main chapter.

instances are sampled according to:

yi ∼ Bernoulli
(
f(si; agi , bgi , cgi)

)
(4.5)

where gi is the group associated with instance i, 1 ≤ i ≤ nL. For any unlabeled example

j = 1, . . . , nU , conditioned on calibration parameters φgj for the group for j, we can compute

the latent variable zj = f(sj; . . .)I(sj ≥ 0.5) + (1− f(sj; . . .))I(sj < 0.5), i.e., the calibrated

probability that the model’s prediction on instance j is correct.

We assume that the parameters from each individual group are sampled from a shared
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distribution:

log ag ∼ N(µa, σa) (4.6)

log bg ∼ N(µb, σb) (4.7)

cg ∼ N(µc, σc) (4.8)

where π = {µa, σa, µb, σb, µc, σc} is the set of hyperparameters of the shared distributions.

We complete the hierarchical model by placing the following priors on the hyperparameters

(TN is the truncated normal distribution):

µa ∼ N(0, .4), σa ∼ TN(0, .15) (4.9)

µb ∼ N(0, .4), σb ∼ TN(0, .15) (4.10)

µc ∼ N(0, 2), σc ∼ TN(0, .75) (4.11)

These priors were chosen to place reasonable bounds on the calibration parameters and allow

for diverse patterns of miscalibration (e.g., both over and under-confidence or a model) to be

expressed a priori. We use exactly these same prior settings in all our experiments across all

datasets, all groups, and all labeled and unlabeled dataset sizes, demonstrating the robustness

of these settings across a wide variety of contexts. In Section 4.9.4 we conduct sensitivity

analysis and show that the method is robust to settings of the priors.

The model was implemented as a graphical model (see Figure 4.4) in JAGS, a common

tool for Bayesian inference with Markov chain Monte Carlo [Plummer, 2003]. All of the

results in this paper are based on 4 chains, with 1500 burn-in iterations and 200 samples

per chain, resulting in T = 800 sample overall. These hyperparameters were determined

based on a few simulation runs across datasets, checking visually for lack of auto-correlation,

with convergence assessed using the standard measure of within-to-between-chain variability.

Although MCMC can sometimes be slow for high-dimensional problems, with 100 labeled
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data points (for example) and 10k unlabeled data points the sampling procedure takes

about 30 seconds (using non-optimized Python/JAGS code on a standard desktop computer)

demonstrating the practicality of this procedure.

4.5.1 Theoretical Considerations:

Lemma 4.5.1 below relates potential error in the calibration mapping (e.g., due to misspecifi-

cation of the parametric form of the calibration function f(s; . . .)) to error in the estimate of

∆ itself.

Lemma 4.5.1. Given a prediction model M and score distribution P (s), let fg(s;φg) :

[0, 1]→ [0, 1] denote the calibration model for group g; let f ∗g (s) : [0, 1]→ [0, 1] be the optimal

calibration function which maps s = PM(ŷ = 1|g) to P (y = 1|g); and ∆∗ is the true value

of the metric. Then the absolute error of the expected estimate w.r.t. φ can be bounded as:

|Eφ∆−∆∗| ≤ ‖f̄0 − f ∗0‖1 + ‖f̄1 − f ∗1‖1, where f̄g(s) = Eφgfg(s;φg), ∀s ∈ [0, 1], and ‖ · ‖1 is

the expected L1 distance w.r.t. P (s|g).

Proof.

|Eφ∆−∆∗| = |(Eφ1θ1 − Eφ0θ0)− (θ∗1 − θ∗0)|

≤ |Eφ0θ0 − θ∗0|+ |Eφ1θ1 − θ∗1| (triangle inequality)

= ‖f̄0 − f ∗0‖1 + ‖f̄1 − f ∗1‖1 (Lemma 4.5.2)

Lemma 4.5.2. Given a prediction model M and score distribution P (s), let fg(s;φg) :

[0, 1]→ [0, 1] denote the calibration model for group g; let f ∗g (s) : [0, 1]→ [0, 1] be the optimal

calibration function which maps s = PM(ŷ = 1|g) to P (y = 1|g); and θ∗ is the true value of

the accuracy. Then the absolute value of expected estimation error w.r.t. φ can be bounded
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as: |Eφθg − θ∗g | ≤ ‖f̄g − f ∗g ‖1, where f̄g(s) = Eφgfg(s;φg),∀s ∈ [0, 1], and ‖ · ‖1 is the expected

L1 distance w.r.t. P (s|g).

Proof.

θ∗g = P (y = 0, ŷ = 0|g) + P (y = 1, ŷ = 1|g)

=

∫
s<0.5

P (y = 0|s)P (s|g)ds+

∫
s>=0.5

P (y = 1|s)P (s|g)ds

=

∫
s<0.5

(1− f ∗(s))P (s|g)ds+

∫
s>=0.5

f ∗(s)P (s|g)ds

Similarly, our method makes prediction about groupwise accuracy with calibrated scores

given P(φ):

Eφgθg = Eφg
∫
s<0.5

(1− fg(s;φ))P (s|g)ds+

∫
s≥0.5

fg(s;φ)P (s|g)ds

=

∫
s<0.5

(1− Eφfg(s;φ))P (s|g)ds+

∫
s>=0.5

Eφfg(s;φ)P (s|g)ds

=

∫
s<0.5

(1− f̄g(s))P (s|g)ds+

∫
s>=0.5

f̄g(s)P (s|g)ds

Then the absolute estimation bias of estimator Eφ∈Φθφ is:

|Eφθg − θ∗g | = |
∫
s<0.5

(f̄(s)− f ∗(s))P (s|g)ds+

∫
s>=0.5

(f ∗(s)− f̄(s))P (s|g)ds|

≤
∫
s<0.5

|f̄(s)− f ∗(s)|P (s|g)ds+

∫
s>=0.5

|f ∗(s)− f̄(s)|P (s|g)ds

=

∫
s

|f̄(s)− f ∗(s)|P (s|g)ds

= ‖f̄ − f ∗‖1

Thus, reductions in the L1 calibration error directly reduce an upper bound on the L1 error
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in estimating ∆. The results in Figure 4.3 suggest that even with the relatively simple

parametric beta calibration method, the error in calibration (difference between the fitted

calibration functions) (blue and red curves) and the empirical data (blue and red dots) is

quite low across all 4 datasets. The possibility of using more flexible calibration functions is

an interesting direction for future work.

4.6 Datasets, Classification Models

One of the main goals of our experiments is to assess the accuracy of different estimation

methods, using relatively limited amounts of labeled data, relative to the true value of the

metric. By “true value" we mean the value we could measure on an infinitely large test

sample. Since such a sample is not available, we use as a proxy the value of metric computed

on all of the test set for each dataset in our experiments.

Datasets We performed experiments with six different real-world datasets. Specifically, we

use the Adult [Dua and Graff, 2017], German Credit [Dua and Graff, 2017], Ricci [Supreme

Court of the United States, 2009] and Compas datasets (for recidivism and violent recidi-

vism) [Angwin et al., 2017] all used in Friedler et al. [2019], as well as the Bank Telemarketing

dataset [Moro et al., 2014].

For all datasets, we preprocessed the data using the code from Friedler et al. [2019] 3. We

removed all instances that have missing data, and represented categorical variables with

one-hot encoding. As in Friedler et al. [2019], for all datasets except Adult we randomly

sampled 2/3 of the data for training and use the remaining 1/3 for test. For the Adult data

we re-split the training set of the original data into train and test as in Friedler et al. [2019].
3https://github.com/algofairness/fairness-comparison/blob/master/fairness/preprocess.

py
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Table 4.1: Datasets used in this chapter. G is the sensitive attribute, p(g = 0) is the
probability of the privileged group, and p(y = 1) is the probability of the positive label. The
privileged groups g = 0 are gender: male, age: senior or adult, and race: white or Caucasian.

Dataset Test Size G p(g = 0) p(y = 1)

Adult 10054 gender, race 0.68, 0.86 0.25
Bank 13730 age 0.45 0.11

German 334 age, gender 0.79, 0.37 0.17
Compas-R 2056 gender, race 0.7, 0.85 0.69
Compas-VR 1337 gender, race 0.8, 0.34 0.47

Ricci 40 race 0.65 0.50

Summary statistics (e.g., test set size) are provided in Table 4.1. Below we provide additional

details about these datasets in terms of background, and relevant attributes.

• Adult: The Adult dataset4 from the UCI Repository of Machine Learning Databases

is based on 1994 U.S. census income data. This dataset consists of 14 demographic

attributes for individuals. Instances are labeled according to whether their income

exceeds $50,000 per year. In our experiments, “race" and “gender" are considered sensi-

tive attributes. Instances are grouped into “Amer-Indian-Inuit," “Asian-Pac-Islander,"

“Black," “Other" and “White" by race, and “Female" and “Male" by gender. “White"

and “Male" are the privileged groups.

• Bank: The Bank dataset5 contains information about individual collected from a

Portuguese banking institution. There are 20 attributes for each individuals, including

marital status, education, and type of job. The sensitive attribute we use is “age,"

binarized by whether a individual’s age is above 40 or not. The senior group is considered

to be privileged. Instances are labeled by whether the individual has subscribed to a

term deposit account or not.

• German: The German Credit dataset6 from the UCI Repository of Machine Learning
4https://archive.ics.uci.edu/ml/machine-learning-databases/adult
5http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
6https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german
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Databases describes individuals with 20 attributes including type of housing, credit

history status, and employment status. Each instance is labeled as being a good or bad

credit risk. The sensitive attributes used are “gender" and “age" (age at least 25 years

old) and the privileged groups are defined as “male" and “adult."

• Compas-R: The ProPublica dataset7 contains information about the use of the COMPAS

(Correctional Offender Management Profiling for Alternative Sanctions) risk assessment

tool applied to 6,167 individuals in Broward County, Florida. Each individual is labeled

by whether they were rearrested within two years after the first arrest. Sensitive

attributees are “gender" and “race." By “gender", individuals are grouped into “Male"

and “Female"; by “race", individuals are grouped into “Caucasian." “Asian," “Native-

American," “African-American," “Hispanic" and “Others." The privileged groups are

defined to be “Male" and “Caucasian."

• Compas-VR: This is the violent recidivism version8 of the ProPublica data (Compas-R

above), where the predicted outcome is a re-arrest for a violent crime.

• Ricci: The Ricci dataset9 is from the case of Ricci v. DeStefano from the Supreme

Court of the United States (2009). It contains 118 instances and 5 attributes, including

the sensitive attribute “race." The privileged group was defined to be “White." Each

instance is labeled by a promotion decision for each individual.

Classification Models We used the following classification models in our experiments:

logistic regression, multi-layer perceptron (MLP) with a single hidden layer of size 10, random

forests (the number of trees in the forest is set to 100), Gaussian Naive Bayes. The models

were trained using standard default parameter settings and using the code provided by Friedler

et al. [2019]. Predictions from the trained models were generated on the test data. Sensitive
7https://github.com/propublica/compas-analysis
8https://github.com/propublica/compas-analysis
9https://ww2.amstat.org/publications/jse/v18n3/RicciData.csv
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attributes were not included as inputs to the models during training or test.

4.7 Illustrative Results
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 nU = 10034
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Figure 4.5: Posterior density (samples) and frequentist estimates (dotted vertical blue lines)
for the difference in group accuracy ∆ for 4 datasets with nL = 20 random labeled examples
for both the BB (Beta-binomial) and BC (Bayesian calibration) methods. Ground truth
is a vertical black line. The underlying model is an MLP. The 20 examples were randomly
sampled 20 different times. Upper plots show the histograms of posterior samples for the
first sample, lower plots show the 95% posterior credible intervals for all 20 runs, where the
x-axis is ∆.

To illustrate our approach we compare the results of the frequentist, beta-binomial (BB),

and Bayesian calibration (BC) approaches for assessing group differences in accuracy across

4 datasets, for a multi-layer perceptron (MLP) binary classifier. We ran the methods on

20 runs of randomly sampled sets of nL = 20 labeled examples. The BC method was given

access to the remaining nU unlabeled test examples minus the 20 labeled examples for each

run, as described in Table 4.1. We define ground truth as the frequentist ∆ value computed

on all the labeled data in the test set.

Figure 4.5 shows the results across the 4 datasets. The top figure corresponds to the first run

out of 20 runs, showing the histogram of 800 posterior samples from the BB (blue) and BC
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(red) methods. The lower row of plots summarizes the results for all 20 runs, showing the 95%

posterior credible intervals (CIs) (red and blue horizontal lines for BC and BB respectively)

along with posterior means (red and blue marks).

Because of the relatively weak prior (Beta(1,1) on group accuracy) the posterior means of

the BB samples tend to be relatively close to the frequentist estimate (light and dark blue

respectively) on each run and both can be relatively far away from ground truth value for

∆ (in black). Although the BB method is an improvement over being frequentist, in that it

provides posterior uncertainty about ∆, it nonetheless has high variance (locations of the

posterior means) as well as high posterior uncertainty (relatively wide CIs). The BC method

in contrast, by using the unlabeled data in addition to the labeled data, produces posterior

estimates where the mean tends to be much closer to ground truth than BC.

The posterior information about ∆ can be used to provide users with a summary report that

includes information about the direction of potential bias (e.g., p(∆ > 0|DL, DU ), the degree

of bias (e.g., via the MPE ∆̂), 95% posterior CIs on ∆, and the probability that the model

is “practically fair" (assessed via p(|∆| < ε|DL, DU), e.g., see Section 2.3.6 and Benavoli

et al. [2017]). For example with BC, given the observed data, practitioners can conclude

from the information in the upper row of Figure 4.5, and with ε = 0.02, that there is a 0.99

probability for the Adult data that the classifier is more accurate for females than males; and

with probability 0.87 that the classifier is practically fair with respect to accuracy for junior

and senior individuals in the Bank data.
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4.8 Experiments and Results

4.8.1 Assessment of ∆ Accuracy, TPR and FPR

In this section we systematically evaluate the quality of different estimation approaches by

repeating the same type of experiment as in Section 4.7 and Figure 4.5 across different fairness

metrics and different amounts of labeled data nL.

In particular, for each value of nL we randomly sample sets of labeled datasets of size nL,

generate point estimates of a metric ∆ of interest for each labeled dataset for each of the BB

and BC estimation methods, and compute the mean absolute error (MAE) between the point

estimates and the true value (computed on the full labeled test set). The frequency-based

estimates are not shown for clarity—they are almost always worse than both BB and BC.
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Figure 4.6: Mean absolute error (MAE) of the difference between algorithm estimates and
ground truth for group difference in FPR, as a function of number of labeled instances, for 8
different dataset-group pairs. Shading indicates 95% error bars for each method.

As an example, Figure 4.6 illustrates the quality of estimation where ∆ is the FPR group

difference ∆ for the MLP classification model, evaluated across 8 different dataset-group

pairs. Each y-value is the average of 100 different randomly sampled sets of nL instances,
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where nL is the corresponding x-axis value. The BC method dominates BB across all datasets

indicating that the calibrated scores are very effective at improving the accuracy in estimating

group FPR. This is particularly true for small amounts of labeled data (e.g., up to nL = 100)

where the BB Method can be highly inaccurate, e.g., MAEs on the order of 10 or 20% when

the true value of ∆ is often less than 10%.

Table 4.2: MAE for ∆ Accuracy Estimates, with nL = 10, across 100 runs of labeled
samples, for 4 different trained models (groups of columns) and 10 different dataset-group
combinations (rows). Lowest error rate per row-col group in bold if the difference among
methods are statistically significant under Wilcoxon signed-rank test (p=0.05). Estimation
methods are Freq (Frequentist), BB, and BC. Freq and BB use only labeled samples, BC
uses both labeled samples and unlabeled data. Trained models are multi-layer perceptron,
logistic regression, random forests, and Gaussian naive Bayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Dataset, Attribute Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult, Race 16.5 18.5 3.9 16.4 18.7 2.9 16.5 18.2 3.2 17.6 18.9 3.6

Adult, Gender 19.7 17.4 5.1 19.1 16.1 2.2 17.7 17.4 4.8 19.7 16.2 5.4

Bank, Age 15.9 13.9 2.5 13.9 13.0 1.4 11.8 11.1 1.0 15.5 13.7 1.7

German, Age 34.6 19.8 5.0 37.1 21.2 8.7 33.6 18.7 8.2 36.6 20.4 11.5

German, Gender 30.7 21.6 8.2 25.6 17.4 6.3 27.7 19.3 8.6 30.0 20.1 6.5

Compas-R, Race 31.5 21.0 4.2 31.7 20.4 4.8 29.3 20.3 2.4 33.5 23.2 8.4

Compas-R, Gender 33.7 21.6 5.0 34.3 21.9 3.8 36.3 23.3 4.4 40.5 25.5 13.7

Compas-VR, Race 18.7 17.1 4.0 18.5 15.6 4.4 18.2 15.8 2.4 26.6 19.8 6.5

Compas-VR, Gender 20.6 16.9 5.4 19.9 16.6 5.3 22.3 19.0 6.3 31.3 21.5 9.8

Ricci, Race 23.5 17.7 14.6 14.6 14.6 7.9 6.3 12.2 2.1 8.9 13.1 1.6

In Appendix B.1 we show that the trend of results shown in Figure 4.6, namely that BC

produces significantly more accurate estimates of group fairness metrics ∆, is replicated

across all 4 classification models that we investigated, across FPR, TPR and Accuracy

metrics, and across all datasets. To summarize the full set of results we show a subset in

tabular form, across all 4 classification models and 10 dataset-group pairs, with nL fixed:

Table 4.2 for Accuracy with nL = 10 and Table 4.3 for TPR with nL = 200. (We used

larger nL values for TPR and FPR than for accuracy in the results above since TPR and

FPR depend on estimating conditional probabilities that can have zero supporting counts in
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Table 4.3: MAE for ∆ TPR Estimates, with nL = 200. Same setup as for Table 4.2.
Compas-VR race and Ricci race are not included since there are no positive instances for
some groups, and some entries under Freq cannot be estimated for the same reason.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Dataset, Attribute Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult, Race — 12.5 5.8 — 14.7 7.0 — 14.3 4.6 — 14.6 3.0

Adult, Gender 16.3 14.3 4.3 15.8 14.0 4.6 16.1 14.2 7.3 15.0 13.4 11.5

Bank, Age 16.8 15.0 4.8 17.7 15.9 4.2 16.6 14.9 3.1 17.3 15.7 2.3

German, Age 4.7 4.7 3.0 5.6 5.4 2.6 5.1 5.1 3.1 6.8 6.5 2.8

German, Gender 0.7 1.0 1.6 3.3 3.3 2.1 3.1 3.2 2.1 4.8 4.7 2.2

Compas-R, Race — 7.6 2.5 — 7.9 2.6 — 9.2 2.1 — 4.5 2.0

Compas-R, Gender 10.0 9.5 1.9 10.0 9.4 1.8 11.3 10.7 2.6 5.6 5.5 0.3

Compas-VR, Gender 14.9 12.2 2.9 8.9 10.7 2.0 14.6 10.5 7.2 12.5 10.0 1.3

the labeled data, causing a problem for frequentist estimators). The results above and in

Appendix B.1 demonstrate the significant gains in accuracy that can be achieved with the

proposed approach.

4.8.2 Discussion

For concreteness we demonstrated our results with three popular fairness metrics (∆ accuracy,

TPR, and FPR) in the chapter. However, we can directly extend this approach to handle

metrics such as calibration and balance [Kleinberg et al., 2016] as well as ratio-based metrics.

In particular, by predicting the distribution of class labels y with the calibrated model scores,

any fairness metric that can be defined as a deterministic function of calibrated model scores

s, labels y and groups g can leverage unlabeled data to reduce variance using our proposed

method.

Consideration of the bias-variance properties of the different methods reveals a fundamental

trade-off. The labeled data contribute no bias to the estimate but can have high variance for

small nL, whereas the unlabeled data (via their calibrated scores) contribute little variance

but can have a persistent bias due to potential misspecification in the parametric calibration
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model. An open question, that is beyond the scope of this work, is how to balance this

bias-variance trade-off in a more adaptive fashion as a function of nL and nU , to further

improve the accuracy of estimates of fairness metrics for arbitrary datasets. One potential

option would be to a more flexible calibration method (e.g., Gaussian process calibration as

proposed in Wenger et al. [2020]). Another option would be to automatically quantify the

calibration bias and trade-off the contributions of labeled and unlabeled data accordingly in

estimating θg’s and ∆.

In the next section, we provide additional results about:

• evaluation of the calibration coverage of the posterior credible intervals generated by

different methods (Section 4.9.1);

• comparisons with an alternative calibration model, i.e. LLO calibration (Section 4.9.2);

• ablation study by comparing with non-hierarchical Bayesian calibration (Section 4.9.3);

• sensitivity analysis for the calibration priors (Section 4.9.4).

4.9 Additional Results

4.9.1 Calibration Coverage of Posterior Credible Intervals

We can generate posterior credible intervals on ∆ (as shown in red in Figure 4.5) for both

the BB and BC methods by computing upper and lower percentiles from posterior samples

for ∆. Below in Table 4.4 we show the coverage of 95% credible intervals for both the BB

(beta-bernoulli) and BC (Bayesian-calibration) methods, for the multi-layer perceptron model.

Coverage is defined as the percentage of credible intervals (across multiple different labeled
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datasets of size nL) that contain the true value: a perfectly calibrated 95% credible interval

would have 95% coverage.

Table 4.4 shows that while the coverage for both methods is generally not far from 95% there

is room for improvement. For example, for small values of nL the coverage of both methods

is often too high (above 95%), with some evidence of coverage decreasing as nL increasing.

Generating accurate posterior credible intervals is a known issue in Bayesian analysis in the

presence of model misspecification (e.g., Syring and Martin [2019]) and is an interesting

direction for future work on Bayesian analysis of fairness metrics.

Table 4.4: Calibration Coverage of Posterior Credible Intervals Comparison, across
1000 runs of labeled samples of different sizes nL for 10 different dataset-group combinations
(rows). Estimation methods are BC (Bayesian-Calibration) and BB (beta-bernoulli). Trained
model is multi-layer perceptron.

nL = 10 nL = 20 nL = 40 nL = 100

Group BC BB BC BB BC BB BC BB

Adult, Race 99.9 97.7 98.6 93.5 96.2 93.2 92.3 95.3
Adult, Gender 100.0 96.4 99.7 95.5 99.2 94.9 96.8 95.5
Bank, Age 99.4 98.7 98.8 98.5 98.0 96.4 93.7 95.3
German, age 99.9 98.8 99.6 98.1 99.0 98.3 96.9 98.3

German, Gender 99.1 97.4 99.1 97.4 97.7 96.4 94.6 97.8
Compas-R, Race 99.3 98.8 99.4 97.2 99.1 96.7 99.3 96.6

Compas-R, Gender 99.3 97.7 99.3 97.0 98.6 95.9 97.6 96.5
Compas-VR, Race 99.6 100.0 98.6 97.8 97.9 95.2 97.5 93.1

Compas-VR, Gender 96.3 97.2 94.3 96.5 95.4 96.1 95.8 97.1
Ricci, Race 93.2 99.7 91.4 99.7 — — — —

4.9.2 Error Results with LLO Calibration

Our hierarchical Bayesian calibration approach can be adapted to use other parametric

calibration methods. In addition to the beta calibration method described in the main paper,

we also experimented with LLO (linear in log odds) calibration.

Table 4.5 shows a direct comparison of the mean absolute error (MAE) rate for estimation of
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differences in accuracy between groups (same setup as Tables 4.2 and 4.3 in terms of how

MAE is computed). The results show that in general the MAE of the two calibration methods

tends to be very similar (relative to the size of the BB and frequentist MAEs) across different

dataset-attribute combinations, different prediction models, and different nL values.

4.9.3 Error Results with Non-Hierarchical Bayesian Calibration

In our hierarchical Bayesian calibration model we allows different groups to share statistical

strength via a hierarchical structure. In this section, we compare our proposed Bayesian

calibration model (BC) that uses this hierarchy with a non-hierarchical Bayesian calibration

(NHBC) approach.

Table 4.6 compares the mean absolute error (MAE) rate for both approaches in estimating

differences in accuracy between groups. The results show that (1) both BC and NHBC

significantly improve MAE compared to BB; (2) BC and NHBC are comparable in most

cases, but with the hierarchical structure the BC method avoids occasional catastrophic

errors that NHBC can make, e.g. when assessing ∆ Accuracy of a Gaussian Naive Bayes

model on Compas-R Gender and Compas-VR Gender.

4.9.4 Sensitivity Analysis for Calibration Priors

As discussed in Section 4.5, in our experiments we set the hyperparameters as

µa ∼ N(0, .4), σa ∼ TN(0, .15)

µb ∼ N(0, .4), σb ∼ TN(0, .15)

µc ∼ N(0, 2), σc ∼ TN(0, .75)
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Since we assumed that the parameters from each individual group are sampled from a shared

distribution: log ag ∼ N(µa, σa), log bg ∼ N(µb, σb), cg ∼ N(µc, σc), these prior distributions

encode a weak prior belief that the model scores are calibrated by placing the mode of ag, bg

and cg at 1, 1, and 0 respectively. We used exactly these prior settings in all our experiments

across all datasets, all groups, and all labeled and unlabeled dataset sizes, which already

demonstrates to a certain extent the robustness of these settings.

In this section we describe the results of a sensitivity analysis with respect to the variances

in the prior discussed in Section 4.5. We evaluate our proposed methodology over a range of

settings for the variances, multiplying the default values with different values of α, i.e.

µa ∼ N(0, .4α), σa ∼ TN(0, .15α)

µb ∼ N(0, .4α), σb ∼ TN(0, .15α)

µc ∼ N(0, 2α), σc ∼ TN(0, .75α)

with α ranging from 0.1 to 10. We reran our analysis, using the different variance settings,

for the specific case of estimating the change ∆ in accuracy estimates for the Adult dataset

grouped by the attribute “race," for each of the four classification models in our study and

with different amounts of labeled data.

Table 4.7 shows the resulting MAE values as α is varied. The results demonstrate that the

Bayesian calibration (BC) model is robust to the settings of prior variances. Specifically, as

α varies from 0.1 to 10 the MAE values with BC are almost always smaller than the ones

obtained with BB, and there is a broad range of values α where the MAE values are close to

their minimum The results also show that the BC method has less sensitivity to α when the

number of labeled examples nL is large, e.g. nL = 1000.
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Table 4.5: Comparing LLO and BC: MAE for ∆ accuracy estimates of LLO and BC,
with different nL. Mean absolute error between estimates and true ∆ across 100 runs of
labeled samples of different sizes nL for different trained models (groups of columns) and 10
different dataset-group combinations (groups of rows). Estimation methods are BC (Bayesian-
Calibration) and LLO (Linear in Log Odds Calibration). Both methods use both labeled
samples and unlabeled data.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n BC LLO BC LLO BC LLO BC LLO

Adult 10 3.9 3.8 2.9 2.8 3.2 3.2 3.6 3.5
Race 100 3.5 3.4 3.2 3.1 3.1 2.9 2.8 2.4

1000 1.6 2.3 1.7 2.0 1.4 1.5 1.4 1.6

Adult 10 5.1 5.1 2.2 2.3 4.8 4.7 5.4 5.0
Gender 100 4.4 4.3 1.9 2.0 4.1 3.7 2.7 2.7

1000 1.6 2.2 1.1 1.0 2.0 1.5 1.1 1.1

Bank 10 2.5 2.3 1.4 1.2 1.0 0.9 1.7 1.7
Age 100 2.0 2.0 1.2 1.2 0.9 0.9 1.1 1.2

1000 1.1 1.2 0.7 0.7 0.5 0.5 0.8 0.9

German 10 5.0 4.6 8.7 8.0 8.2 7.5 11.5 10.7
age 100 3.9 4.1 3.8 4.7 4.3 4.0 4.2 6.0

200 3.1 3.9 3.3 4.2 3.3 3.1 3.5 6.0

German 10 8.2 6.4 6.3 5.0 8.6 6.9 6.5 5.3
Gender 100 5.4 5.1 3.7 3.6 4.8 4.5 2.8 3.1

200 3.0 3.4 2.9 2.8 2.9 3.1 2.2 2.9

Compas-R 10 4.2 4.6 4.8 5.2 2.4 2.5 8.4 8.2
Race 100 2.8 4.4 3.4 4.8 1.8 1.4 6.0 5.6

1000 1.6 5.0 1.6 4.4 1.2 1.1 1.8 2.9

Compas-R 10 5.0 4.3 3.8 3.9 4.4 4.1 13.7 13.0
Gender 100 3.3 2.7 2.6 2.3 2.7 2.8 8.0 7.4

1000 1.4 2.1 1.3 1.3 1.4 3.0 1.8 2.4

Compas-VR 10 4.0 3.9 4.4 4.7 2.4 2.9 6.5 6.4
Race 100 3.1 2.8 3.4 3.3 2.0 2.1 3.7 3.6

1000 0.8 1.5 0.8 0.8 0.8 2.5 0.9 1.8

Compas-VR 10 5.4 4.8 5.3 5.2 6.3 8.2 9.8 9.0
Gender 100 3.4 3.0 3.1 3.3 4.4 5.4 4.5 4.2

1000 0.9 1.2 0.9 1.5 1.0 1.7 0.9 0.9

Ricci 10 14.6 14.2 7.9 8.1 2.1 2.0 1.6 2.1
Race 20 9.8 13.6 7.1 6.6 1.5 1.6 2.1 2.5

30 6.5 12.1 4.6 4.2 1.1 1.4 2.0 2.3
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Table 4.6: Comparing Hierarchical and Non-hierarchical Bayesian Calibration,
MAE for ∆ accuracy estimates, with different nL. Mean absolute error between estimates
and true ∆ across 100 runs of labeled samples of different sizes nL for different trained models
(groups of columns) and 10 different dataset-group combinations (groups of rows). Estimation
methods are BB (beta-binomial), and NHBC (non-hierarchical Bayesian calibration), BC
(Bayesian calibration). BB uses only labeled samples, NHBC and BC use both labeled
samples and unlabeled data.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n BB NHBC BC BB NHBC BC BB NHBC BC BB NHBC BC

Adult 10 18.4 3.2 3.9 18.8 2.7 2.9 18.1 2.8 3.2 18.9 4.5 3.6
Race 20 16.1 3.3 4.4 16.7 2.9 3.4 16.3 3.0 3.7 16.8 4.1 3.7

40 13.1 2.8 4.5 14.0 2.9 3.7 14.4 2.9 3.8 14.4 3.7 3.3
100 8.6 2.7 3.5 9.2 3.0 3.2 9.0 2.6 3.1 9.6 2.4 2.8
1000 2.5 1.4 1.6 2.3 2.1 1.7 2.1 0.7 1.4 2.3 1.8 1.4

Adult 10 17.4 4.1 5.1 16.3 2.6 2.2 17.3 5.3 4.8 16.3 7.2 5.4
Gender 20 12.9 4.4 5.1 12.2 2.6 2.2 12.4 5.3 4.9 11.6 6.7 4.5

40 9.0 4.1 4.9 9.2 2.5 2.1 9.6 5.1 4.5 9.7 6.3 3.9
100 5.4 3.1 4.4 5.5 2.0 2.0 5.9 4.7 4.1 6.0 4.8 2.7
1000 1.9 1.4 1.6 1.7 1.0 1.1 1.5 1.8 2.0 1.5 0.9 1.0

Bank 10 14.0 1.7 2.5 12.8 1.5 1.4 11.2 1.1 1.0 13.7 1.4 1.7
Age 20 11.6 2.3 2.9 10.9 1.9 1.7 8.8 1.4 1.2 10.3 1.6 1.7

40 8.0 2.3 2.6 7.3 1.7 1.4 6.5 1.5 1.1 7.5 1.7 1.5
100 4.3 2.2 2.0 4.3 1.4 1.2 4.2 1.2 0.9 4.9 1.3 1.1
1000 1.5 1.2 1.1 1.6 0.8 0.7 1.4 0.6 0.5 1.7 0.7 0.8

German 10 19.7 5.6 5.0 21.3 10.3 8.7 19.1 8.2 8.2 20.4 14.2 11.5
age 20 18.1 6.0 4.4 18.6 6.7 6.4 16.7 7.0 7.0 18.8 9.9 9.0

40 15.9 6.7 4.8 15.0 5.6 4.9 11.7 6.6 5.8 14.9 6.4 6.9
100 7.9 5.8 3.9 7.5 5.5 3.8 8.2 6.5 4.3 9.1 4.4 4.2
200 4.2 3.7 3.1 4.4 4.1 3.3 4.7 4.1 3.3 4.7 3.8 3.5

German 10 21.5 10.5 8.2 17.6 7.0 6.3 19.4 8.5 8.6 20.0 5.9 6.5
Gender 20 16.2 10.0 7.8 13.2 7.1 5.1 14.1 8.4 7.8 15.4 5.9 4.9

40 11.6 9.2 6.6 11.4 8.4 4.5 11.1 7.7 5.9 11.1 6.1 3.8
100 7.1 6.5 5.4 6.9 6.6 3.7 7.0 6.1 4.8 5.9 6.4 2.8
200 3.2 3.3 3.0 4.0 4.0 2.9 3.6 3.4 2.9 4.0 4.0 2.2

Compas-R 10 21.1 2.9 4.2 20.7 4.0 4.8 20.3 1.4 2.4 23.1 6.6 8.4
Race 20 14.8 2.8 3.3 15.2 3.9 3.8 15.8 2.0 2.5 16.6 7.8 8.0

40 11.7 3.0 3.0 12.1 3.9 3.6 11.6 2.0 2.0 10.9 9.9 8.1
100 6.8 2.9 2.8 7.4 3.7 3.4 8.5 2.1 1.8 7.9 7.7 6.0
1000 2.0 1.5 1.6 1.9 1.6 1.7 1.9 1.3 1.2 1.9 1.9 1.8

Compas-R 10 21.3 3.8 5.0 22.0 3.4 3.8 23.4 3.5 4.4 25.4 19.1 13.7
Gender 20 18.5 3.8 5.1 18.4 3.3 4.0 17.4 3.3 4.6 21.4 23.8 12.3

40 12.2 3.4 4.0 13.0 3.0 3.3 13.7 2.8 3.6 15.0 23.8 9.5
100 8.8 3.2 3.3 9.1 2.7 2.6 8.5 2.1 2.7 9.8 15.5 8.0
1000 2.0 1.7 1.4 2.2 1.4 1.3 2.4 1.6 1.4 1.9 1.9 1.8

Compas-VR 10 17.4 4.0 4.0 15.6 4.4 4.4 15.7 2.6 2.4 19.7 6.1 6.5
Race 20 13.5 4.7 4.3 13.7 5.0 4.8 13.6 3.3 2.9 15.9 10.7 6.5

40 9.6 4.5 3.8 9.6 4.5 3.9 9.9 3.1 2.4 11.1 8.8 5.5
100 5.6 3.6 3.1 5.2 3.8 3.4 6.2 2.6 2.0 6.6 6.8 3.7
1000 0.9 0.8 0.8 0.9 0.8 0.8 0.9 0.8 0.8 1.1 1.2 0.9

Compas-VR 10 17.2 5.6 5.4 16.8 5.7 5.3 19.0 5.8 6.3 21.3 18.9 9.8
Gender 20 13.3 5.4 5.1 14.1 5.4 4.9 14.0 5.7 6.2 16.0 28.2 8.7

40 9.3 5.1 4.7 9.7 4.9 4.5 10.5 5.3 5.7 12.4 30.9 6.9
100 6.4 3.7 3.4 5.9 3.5 3.1 6.3 4.2 4.4 7.1 18.5 4.5
1000 1.0 0.8 0.9 1.0 0.9 0.9 0.9 0.9 1.0 1.4 0.9 0.9

Ricci 10 17.7 16.1 14.6 14.4 7.5 7.9 12.2 1.9 2.1 13.1 1.7 1.6
Race 20 11.2 11.8 9.8 9.3 7.2 7.1 8.5 1.5 1.5 9.5 2.0 2.1

30 7.4 7.7 6.5 5.8 5.1 4.6 6.0 1.1 1.1 6.4 1.9 2.0
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Table 4.7: Prior Sensitivity Results: MAE for ∆ accuracy estimates of the adult data
grouped by attribute “race," with different values of nL. Shown are mean absolute error
(MAE) values between estimates and true ∆ across 100 runs of labeled samples of different
sizes nL for different trained models (groups of columns). Estimation methods are BB
(beta-binomial) and BC (Bayesian-calibration) with different values of α (rows). BB uses
only labeled samples, and BC use both labeled samples and unlabeled data.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Method 10 100 1000 10 100 1000 10 100 1000 10 100 1000

BB 18.52 8.48 2.46 18.74 9.14 2.30 18.24 9.00 2.12 18.88 9.54 2.32
BC, α=0.1 2.63 2.60 2.27 2.46 2.49 2.13 2.87 2.84 2.43 4.67 4.51 0.78
BC, α=0.2 2.63 2.56 2.08 2.46 2.51 2.06 2.85 2.83 2.09 4.63 3.95 0.82
BC, α=0.3 2.60 2.52 1.88 2.42 2.51 1.95 2.85 2.79 1.86 4.44 3.36 0.97
BC, α=0.4 2.49 2.46 1.74 2.41 2.57 1.90 2.74 2.82 1.70 4.25 3.06 1.11
BC, α=0.5 2.49 2.38 1.71 2.44 2.60 1.82 2.82 2.77 1.65 4.01 2.86 1.43
BC, α=0.6 2.47 2.37 1.62 2.55 2.62 1.75 2.82 2.88 1.60 3.81 2.79 1.46
BC, α=0.7 2.61 2.48 1.51 2.36 2.63 1.70 2.90 2.86 1.54 3.54 2.80 1.50
BC, α=0.8 2.86 2.30 1.47 2.52 2.73 1.63 2.87 2.86 1.46 3.51 2.77 1.60
BC, α=0.9 2.93 2.27 1.43 2.44 2.82 1.64 2.87 2.90 1.46 3.14 2.91 1.58
BC, α=1.0 3.05 2.31 1.50 2.71 2.74 1.57 2.99 2.96 1.42 3.31 2.85 1.68
BC, α=1.1 3.14 2.37 1.45 2.65 2.86 1.55 2.90 3.10 1.40 3.25 3.03 1.65
BC, α=1.2 3.11 2.19 1.49 2.73 2.80 1.52 3.27 3.01 1.39 3.20 3.03 1.68
BC, α=1.3 3.48 2.30 1.51 2.91 2.94 1.54 3.11 3.21 1.39 3.15 2.96 1.71
BC, α=1.4 3.76 2.28 1.47 3.17 3.01 1.51 3.26 3.21 1.30 3.48 3.21 1.75
BC, α=1.5 3.67 2.20 1.49 3.12 2.94 1.51 3.46 3.05 1.34 3.23 3.19 1.66
BC, α=1.6 4.06 2.24 1.45 3.26 2.93 1.47 3.56 3.13 1.33 3.48 3.17 1.69
BC, α=1.7 4.02 2.27 1.46 3.46 3.15 1.46 3.75 3.10 1.27 3.43 3.19 1.74
BC, α=1.8 4.35 2.14 1.42 3.36 3.09 1.50 3.76 3.26 1.29 3.67 3.22 1.81
BC, α=1.9 4.35 2.30 1.48 3.48 2.94 1.42 3.54 3.30 1.28 3.82 3.35 1.84
BC, α=2.0 4.69 2.16 1.44 3.87 2.99 1.54 3.91 3.46 1.21 3.83 3.18 1.81
BC, α=5.0 8.11 2.54 1.63 6.31 3.32 1.53 5.32 4.13 1.31 5.25 3.82 2.13
BC, α=10.0 10.39 2.63 1.63 7.18 3.83 1.70 7.19 4.41 1.42 6.32 4.08 2.33

98



4.10 Related Work

Our Bayesian calibration approach builds on the work of Turner et al. [2014] who used hierar-

chical Bayesian methods for calibration of human judgement data using the LLO calibration

model. Other Bayesian approaches to classifier calibration include marginalizing over binned

model scores [Naeini et al., 2015] and calibration based on Gaussian processes [Wenger et al.,

2020]. The Bayesian framework of Welinder et al. [2013] in particular is close in spirit to

our work in that unlabeled examples are used to improve calibration, but differs in that a

generative mixture model is used for modeling of scores rather than direct calibration. None

of this prior work on Bayesian calibration addresses fairness assessment and none (apart

from Welinder et al. [2013]) leverages unlabeled data.

There has also been work on uncertainty-aware assessment of classifier performance such as

the use of Bayesian inference for classifier-related metrics such as marginal accuracy [Benavoli

et al., 2017] and precision-recall [Goutte and Gaussier, 2005]. Although these approaches

share similarities with our work, they do not make use of unlabeled data. In contrast, the

Bayesian evaluation methods proposed by Johnson et al. [2019] can use unlabeled data but

makes strong prior assumptions that are specific to the application domain of diagnostic

testing. More broadly, other general approaches have been proposed for label-efficient classifier

assessment including stratified sampling [Sawade et al., 2010], importance sampling [Kumar

and Raj, 2018], and active assessment with Thompson sampling [Ji et al., 2020]. All of these

ideas could in principle be used in conjunction with our approach to further reduce estimation

error.

In the literature on algorithmic fairness there has been little prior work on uncertainty-aware

assessment of fairness metrics—one exception is the proposed use of frequentist confidence

interval methods for groupwise fairness in Besse et al. [2018].

Dimitrakakis et al. [2019] proposed a framework called “Bayesian fairness," but focused on
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decision-theoretic aspects of the problem rather than estimation of metrics. Foulds et al.

[2020] developed Bayesian approches for for parametric smoothing across groups to improve

the quality of estimation of intersectional fairness metrics. However, none of this work makes

use of unlabeled data to improve fairness assessment. And while there is prior work in fairness

on leveraging unlabeled data [Chzhen et al., 2019, Noroozi et al., 2019, Wick et al., 2019,

Zhang et al., 2020], the goal of that work has been to produce classifiers that are fair, rather

than to assess the fairness of existing classifiers.

Finally, there is recent concurrent work from a frequentist perspective that uses Bernstein

inequalities and knowledge of group proportions to upper bound the probability that the

difference between the frequentist estimate of ∆ and the true ∆ exceeds some value [Ethayarajh,

2020]. While this work differs from our approach in that it does not explore the use of unlabeled

data, the same broad conclusion is reached, namely that there can be high uncertainty in

empirical estimates of groupwise fairness metrics, given the typical sizes of datasets used in

machine learning.

4.11 Conclusions

To answer to the question “can I trust my fairness metric," we have stressed the importance

of being aware of uncertainty in fairness assessment, especially when test sizes are relatively

small (as is often the case in practice). To address this issue we propose a framework

for combining labeled and unlabeled data to reduce estimation variance, using Bayesian

calibration of model scores on unlabeled data. The results demonstrate that the proposed

method can systematically produce significantly more accurate estimates of fairness metrics,

when compared to only using labeled data, across multiple different classification models,

datasets, and sensitive attributes. The framework is straightforward to apply in practice and

easy to extend to problems such as intersectional fairness (where estimation uncertainty is
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likely a significant issue) and to evaluation of fairness-aware algorithms.

In particular, the three primary contributions are

• We proposed a comprehensive Bayesian treatment of fairness assessment that provides

uncertainty about estimates of group fairness metrics;

• We developed a new hierarchical Bayesian methodology that leverages information from

both unlabeled and labeled examples;

• We demonstrated with systematic large-scale experiments across multiple datasets and

models that using unlabeled data can reduce estimation error significantly.
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Appendix A

Supplemental Material for Chapter 3

A.1 Different Multi-Armed Bandit Algorithms for Best-

Arm(s) Identification

In Figure A.1 and A.2 we provide the algorithm for identifying the least accurate class with

Thompson sampling(TS) and Top-two Thompson sampling(TTTS). In Figure A.3 we provide

the algorithm for identifying the least accurate m classes with multiple-play Thompson

sampling(MP-TS).
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Algorithm 2 Thompson Sampling (TS) Strategy
1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α + nk,0, β + nk,1)
7: end for
8: # Select a class k with the lowest sampled accuracy
9: k̂ = arg mink θ̃1:K

10: # Randomly select an input data point from the k̂-th class and
compute its predicted label

11: xi ∼ Rk̂

12: ŷi = arg maxk pM(y = k|xi)
13: # Update parameters of the k̂-th metric
14: if ŷi = k̂ then
15: nk̂,0 ← nk̂,0 + 1
16: else
17: nk̂,1 ← nk̂,1 + 1
18: end if
19: until all data labeled

Figure A.1: Thompson Sampling (TS) for identifying the least accurate class.
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Algorithm 3 Top Two Thompson Sampling (TTTS) Strategy
1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α + nk,0, β + nk,1)
7: end for
8: # Select a class k with the lowest sampled accuracy
9: I = arg mink θ̃1:K

10: # Decide whether to re-sample
11: B ∼ Bernoulli(β)
12: if B = 1 then
13: # If not re-sample, select I
14: k̂ = I
15: else
16: # If re-sample, keep sampling until a different arm J is selected
17: repeat
18: for k = 1 to K do
19: θ̃k ∼ Beta(α + nk,0, β + nk,1)
20: end for
21: J = arg mink θ̃1:K

22: until J 6= I
23: k̂ = J
24: end if
25: # Randomly select an input data point from the k̂-th class and

compute its predicted label
26: xi ∼ Rk̂

27: ŷi = arg maxk pM(y = k|xi)
28: # Update parameters of the k̂-th metric
29: if ŷi = k̂ then
30: nk̂,0 ← nk̂,0 + 1
31: else
32: nk̂,1 ← nk̂,1 + 1
33: end if
34: until all data labeled

Figure A.2: Top Two Thompson Sampling (TTTS) for identifying the least accurate class.

112



Algorithm 4 Multiple-play Thompson sampling (MP-TS) Strategy
1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α + nk,0, β + nk,1)
7: end for
8: # Select a set of m classes with the lowest sampled accuracies
9: I∗ = top-m arms ranked by θ̃k.
10: for k̂ ∈ I∗ do
11: # Randomly select an input data point from the k̂-th class and

compute its predicted label
12: xi ∼ Rk̂

13: ŷi = arg maxk pM(y = k|xi)
14: # Update parameters of the k̂-th metric
15: if ŷi = k̂ then
16: nk̂,0 ← nk̂,0 + 1
17: else
18: nk̂,1 ← nk̂,1 + 1
19: end if
20: end for
21: until all data labeled

Figure A.3: Multiple-play Thompson Sampling (MP-TS) for identifying the least accurate m
classes.
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Appendix B

Supplemental Material for Chapter 4

B.1 Complete Experimental Results

In Figure 4 and in Tables 2 and 3 in the main paper we reported summary results of systematic

comparisons between the frequentist method, the Beta-Binomial model (BB) method, and

the Bayesian calibration (BC) method, in terms of the mean absolute estimation error as a

function of the number of labeled examples nL.

In this section we provide complete tables and graphs for these results. In the tables the lowest

error rate per row-column group is in bold if the difference among methods is statistically

significant under a Wilcoxon signed-rank test (p=0.05). As in the results in the main paper,

the results below demonstrate that BC produces significantly more accurate estimates of

group fairness metrics ∆ than the BB or frequentist estimates, across all 4 classification

models that we investigated, across FPR, TPR and Accuracy metrics, and across all datasets1

1—In Tables B.2 and B.3 there are entries where the frequentist estimates of TPR or FPR do not exist.
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Figure B.1: MAE for Accuracy: Mean absolute error (MAE) of the difference between
algorithm estimates and ground truth for group difference in accuracy across 100 runs, as a
function of number of labeled instances, for 10 different dataset-group pairs and 4 classifiers.
Shading indicates 95% error bars for each method (not shown for the frequentist curve to
avoid overplotting). Upper right corner shows the ground truth ∆ between the unprivileged
group and the privileged group.
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Figure B.2: MAE for TPR: Mean absolute error (MAE) of the difference between algorithm
estimates and ground truth for group difference in TPR across 100 runs. Compas-VR race
and Ricci race are not included since there are no positive instances for some groups. Same
setup as Figure B.1.
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Figure B.3: MAE for FPR: Mean absolute error (MAE) of the difference between algorithm
estimates and ground truth for groupwise difference in FPR across 100 runs. Same setup as
Figure B.2.
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Table B.1: MAE for ∆ Accuracy Estimates, with different nL. Mean absolute error
between estimates and true ∆ across 100 runs of labeled samples of different sizes nL for
different trained models (groups of columns) and 10 different dataset-group combinations
(groups of rows). Estimation methods are Freq (Frequentist), BB (Beta-Binomial), and BC
(Bayesian-Calibration). Freq and BB use only labeled samples, BC uses both labeled samples
and unlabeled data. Trained models are Multilayer Perceptron, Logistic Regression, Random
Forests, and Gaussian NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 10 16.5 18.5 3.9 16.4 18.7 2.9 16.5 18.2 3.2 17.6 18.9 3.6
Race 100 8.2 8.5 3.5 7.3 9.1 3.2 7.6 9.0 3.1 8.2 9.5 2.8

1000 2.5 2.5 1.6 2.1 2.3 1.7 2.0 2.1 1.4 2.3 2.3 1.4

Adult 10 19.7 17.4 5.1 19.1 16.1 2.2 17.7 17.4 4.8 19.7 16.2 5.4
Gender 100 5.5 5.4 4.4 5.6 5.5 1.9 5.9 5.9 4.1 6.2 6.0 2.7

1000 1.9 1.9 1.6 1.7 1.7 1.1 1.6 1.5 2.0 1.6 1.5 1.1

Bank 10 15.9 13.9 2.5 13.9 13.0 1.4 11.8 11.1 1.0 15.5 13.7 1.7
Age 100 4.4 4.3 2.0 4.3 4.3 1.2 4.3 4.2 0.9 5.0 5.0 1.1

1000 1.5 1.5 1.1 1.6 1.6 0.7 1.4 1.4 0.5 1.7 1.7 0.8

German 10 34.6 19.8 5.0 37.1 21.2 8.7 33.6 18.7 8.2 36.6 20.4 11.5
age 100 8.5 8.0 3.9 8.2 7.6 3.8 8.8 8.2 4.3 9.7 9.1 4.2

200 4.4 4.2 3.1 4.5 4.4 3.3 4.9 4.8 3.3 4.8 4.7 3.5

German 10 30.7 21.6 8.2 25.6 17.4 6.3 27.7 19.3 8.6 30.0 20.1 6.5
Gender 100 7.3 7.1 5.4 7.1 6.9 3.7 7.2 7.0 4.8 6.0 5.9 2.8

200 3.2 3.2 3.0 4.0 3.9 2.9 3.6 3.5 2.9 4.0 4.0 2.2

Compas-R 10 31.5 21.0 4.2 31.7 20.4 4.8 29.3 20.3 2.4 33.5 23.2 8.4
Race 100 6.8 6.8 2.8 7.4 7.4 3.4 8.7 8.5 1.8 8.2 7.9 6.0

1000 2.0 2.0 1.6 1.9 1.9 1.6 1.9 2.0 1.2 2.0 1.9 1.8

Compas-R 10 33.7 21.6 5.0 34.3 21.9 3.8 36.3 23.3 4.4 40.5 25.5 13.7
Gender 100 9.3 8.8 3.3 9.5 9.0 2.6 8.8 8.5 2.7 10.2 9.7 8.0

1000 2.1 2.0 1.4 2.2 2.2 1.3 2.4 2.4 1.4 1.9 1.9 1.8

Compas-VR 10 18.7 17.1 4.0 18.5 15.6 4.4 18.2 15.8 2.4 26.6 19.8 6.5
Race 100 5.5 5.6 3.1 5.1 5.1 3.4 6.0 6.3 2.0 6.8 6.6 3.7

1000 0.9 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.8 1.1 1.1 0.9

Compas-VR 10 20.6 16.9 5.4 19.9 16.6 5.3 22.3 19.0 6.3 31.3 21.5 9.8
Gender 100 6.4 6.3 3.4 6.1 6.0 3.1 6.3 6.3 4.4 7.3 7.1 4.5

1000 1.0 1.0 0.9 1.0 1.0 0.9 0.9 0.9 1.0 1.4 1.4 0.9

Ricci 10 23.5 17.7 14.6 14.6 14.6 7.9 6.3 12.2 2.1 8.9 13.1 1.6
Race 20 12.9 11.1 9.8 8.4 9.3 7.1 3.9 8.5 1.5 3.8 9.4 2.1

30 8.5 7.5 6.5 4.9 5.7 4.6 2.0 6.0 1.1 2.8 6.5 2.0
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Table B.2: MAE for ∆ TPR Estimates, with different nL. Mean absolute error between
estimates and true ∆ across 100 runs of labeled samples of different sizes nL for different
trained models (groups of columns) and 8 different dataset-group combinations (groups of
rows). Estimation methods are Freq (Frequentist), BB (Beta-Binomial), and BC (Bayesian-
Calibration). Freq and BB use only labeled samples, BC uses both labeled samples and
unlabeled data. Trained models are Multilayer Perceptron, Logistic Regression, Random
Forests, and Gaussian NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 40 — 16.3 7.0 — 16.7 9.3 — 17.9 6.2 — 23.6 4.5
Race 100 — 15.3 6.4 — 16.1 8.4 — 14.9 5.6 — 20.7 3.9

200 — 12.5 5.8 — 14.7 7.0 — 14.3 4.6 — 14.6 3.0

Adult 40 — 21.8 5.5 — 22.8 5.8 — 20.9 8.4 — 21.1 11.7
Gender 100 — 17.8 5.1 — 18.9 5.7 — 18.6 8.4 — 17.7 11.4

200 16.3 14.3 4.3 15.8 14.0 4.6 16.1 14.2 7.3 15.0 13.4 11.5

Bank 40 — 24.2 6.1 — 25.4 3.8 — 25.2 2.7 — 23.0 3.6
Age 100 25.9 20.0 5.0 25.7 20.4 4.0 20.9 16.6 2.8 24.9 19.6 2.6

200 16.8 15.0 4.8 17.7 15.9 4.2 16.6 14.9 3.1 17.3 15.7 2.3

German 40 — 15.0 3.9 — 18.4 3.0 — 11.3 3.6 — 16.7 6.3
age 100 8.9 8.0 3.5 10.7 9.7 3.1 8.0 7.1 3.5 12.9 11.5 3.3

200 4.7 4.7 3.0 5.6 5.4 2.6 5.1 5.1 3.1 6.8 6.5 2.8

German 40 2.6 4.5 2.3 11.8 10.0 2.4 9.4 8.1 2.4 15.0 13.1 3.8
Gender 100 1.4 2.1 2.0 6.5 6.3 2.1 5.9 5.8 2.3 7.7 7.4 3.1

200 0.7 1.0 1.6 3.3 3.3 2.1 3.1 3.2 2.1 4.8 4.7 2.2

Compas-R 40 — 15.2 3.4 — 16.3 3.4 — 14.8 3.2 — 10.1 2.2
Race 100 — 11.5 2.9 — 11.5 3.1 — 10.6 2.5 — 6.7 2.1

200 — 7.6 2.5 — 7.9 2.6 — 9.2 2.1 — 4.5 2.0

Compas-R 40 — 19.3 2.7 — 21.8 2.5 — 19.3 3.4 — 14.0 0.1
Gender 100 15.9 13.7 2.4 17.6 15.1 2.1 14.3 12.5 3.2 8.7 8.0 0.2

200 10.0 9.5 1.9 10.0 9.4 1.8 11.3 10.7 2.6 5.6 5.5 0.3

Compas-VR 40 — 23.0 3.8 — 27.0 2.2 — 20.9 9.0 — 21.1 1.2
Gender 100 — 18.0 3.2 — 19.7 2.1 — 16.3 8.1 — 14.9 1.2

200 14.9 12.2 2.9 8.9 10.7 2.0 14.6 10.5 7.2 12.5 10.0 1.3
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Table B.3: MAE for ∆ FPR Estimates, with different nL. Same setup as Table B.2.
Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 40 — 16.1 1.5 — 16.6 1.5 — 16.7 1.8 — 16.5 2.9
Race 100 — 9.6 1.2 — 10.1 1.5 — 10.5 1.7 — 10.7 2.8

200 — 5.7 1.2 — 6.3 1.6 — 6.4 1.8 — 6.6 3.4

Adult 40 7.1 6.9 2.6 7.2 7.1 2.6 8.3 8.1 3.7 10.3 9.8 5.1
Gender 100 4.4 4.3 2.3 4.3 4.1 2.2 5.2 5.1 3.5 6.6 6.4 4.7

200 3.2 3.3 2.5 3.2 3.2 2.3 3.7 3.7 3.4 4.7 4.6 4.6

Bank 40 2.4 2.5 0.5 3.6 3.7 0.6 4.1 4.2 0.7 8.5 7.9 1.3
Age 100 1.9 1.8 0.5 2.4 2.4 0.6 3.3 3.3 0.7 5.3 5.2 1.3

200 1.5 1.5 0.5 2.1 2.0 0.6 2.1 2.1 0.7 3.6 3.6 1.3

German 40 — 19.7 9.8 — 18.4 8.7 — 18.7 9.1 — 17.6 13.2
age 100 16.6 14.3 7.4 13.6 11.9 6.3 13.7 11.7 6.3 14.9 12.5 12.0

200 8.6 8.0 5.6 7.7 7.2 5.7 7.2 6.8 5.4 8.4 7.7 8.3

German 40 15.6 13.2 6.8 27.3 21.5 5.3 23.1 18.6 8.4 20.3 16.1 4.4
Gender 100 9.2 9.0 5.7 14.4 13.2 5.9 13.3 12.4 7.4 12.6 11.7 5.6

200 4.9 4.9 3.8 7.3 7.0 5.2 6.8 6.6 5.0 5.9 5.7 4.6

Compas-R 40 — 15.1 3.7 — 13.2 3.3 — 14.5 5.6 — 10.8 6.2
Race 100 — 8.4 2.7 — 8.5 2.4 — 10.0 4.6 — 7.3 4.4

200 — 6.8 2.1 — 5.9 1.9 — 6.7 3.7 — 4.9 3.4

Compas-R 40 — 13.5 3.4 — 15.0 2.4 — 16.2 4.9 — 10.9 4.2
Gender 100 7.7 7.4 3.2 8.5 8.3 2.4 11.5 11.0 5.0 7.4 6.9 5.3

200 5.3 5.2 2.7 6.1 6.1 2.0 8.5 8.4 4.4 5.1 5.0 5.6

Compas-VR 40 5.6 6.6 0.7 3.3 5.6 0.4 5.5 7.5 1.9 12.8 11.7 4.4
Gender 100 4.0 4.3 0.6 2.4 2.8 0.4 3.9 4.4 1.5 6.3 6.3 4.8

200 2.5 2.6 0.5 1.8 1.8 0.4 2.5 2.6 1.2 5.1 4.9 4.1
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