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ABSTRACT OF THE DISSERTATION

Predicting Structures and Thermodynamic Properties for Molecular Crystals at Finite
Temperatures

by

Yonaton N. Heit

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, March 2016

Dr. Gregory Beran, Chairperson

Molecular crystals occur in a variety of chemically relevant problems, including

pharmaceuticals and organic semi-conductor materials. There has been much interest in

developing computational models which can predict crystal structures and properties ac-

curately and with reasonable computational expense. One such model, hybrid many-body

interaction (HMBI), fragments a chemical system into monomer, dimer, and many-body

interactions, each of which may be handled using a different level of theory. HMBI has

been used to predict crystal structures, lattice energies, and relative polymorph stability,

particularly in cases where other methods such as periodic density functional theory (DFT)

have struggled.

This dissertation extends the HMBI model in two important ways. First, the

computational cost of these calculations is significantly reduced by the development and

implementation of an algorithm to exploit space group symmetry. This algorithm reduces

the number of monomer and dimers calculations that need to be performed by eliminating

symmetrically equivalent ones. Exploitation of space group symmetry provides additional
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computational savings during a crystal geometry optimization by reducing the number

of degrees of freedom that need to be optimized, which tends to decrease the number of

optimization steps required to reach convergence.

Second, the ability to predict molecular crystal structures and properties at finite

temperature is developed by coupling the HMBI model with the quasi-harmonic approxima-

tion. Traditional approaches either neglect temperature or approximate it with a harmonic

vibrational model. However, molecular crystals expand appreciably with temperature and

this expansion has significant impacts on crystal properties. Typically, as crystals expand,

the lattice energy weakens and the phonon modes soften. Neglecting this expansion causes

thermochemical properties such as enthalpy and entropy to be overestimated near room

temperature. The quasi-harmonic HMBI model is demonstrated to predict temperature-

dependent molar volumes, thermochemistry, and mechanical properties in excellent agree-

ment with experiment for several small-molecule crystals—carbon dioxide, ice, acetic acid,

and imidazole. These developments also pave the way toward computational prediction of

molecular crystal phase diagrams as a function of temperature and pressure. Preliminary

results examining the high-pressure phase diagram of carbon dioxide are presented.
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Chapter 1

Introduction

Many molecules exhibit multiple distinct crystal packing motifs or polymorphs.

Small changes in crystal packing can have profound and disastrous effects. For example the

appearance of a previously unknown and insoluble polymorph of the anti-HIV drug, Riton-

avir, caused havoc for its maker, Abbot Laboratories. The drug had to be withdrawn from

the market and redesigned costing an estimated $250 million and preventing patients from

receiving treatment.1–3 Another example where a small change leads to large consequences

is addition of a t-butyl group to rubrene. Rubrene normally exhibits extremely high charge

carrier mobility. However, its t-butyl derivative adopts a different crystal packing motif

which has no measurable carrier mobility.4

Predicting the structure and properties of molecular crystals is challenging, but it

has applications ranging from pharmaceutical drugs to organic semiconductor materials. It

can be difficult to explore all possible crystal structures and properties experimentally. Com-

putational methods provide an excellent tool for predicting crystal structures and properties
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to supplement experimental work. Current applications of computational chemistry include

predicting crystal structures,5–13 determining the relative stability of polymorphs,14–19 pre-

dicting thermochemistry,14,20,21 interpreting vibrational spectroscopy experiments,17,18,22

and assigning NMR chemical shifts.23–25

Evaluating the energetics reliably in order to rank the predicted structures properly

is one of the key challenges in crystal structure prediction. Even when the polymorphs for

a crystal are known, their relative stabilities can be difficult to determine. Glycine,26

acetaminophen,27–29 and oxalyl dihydrazide16,19 are a few crystals that have contradictory

polymorphic stability ordering from different studies and methods. A 2015 survey by Nyman

and Day30 found that of 508 polymorphic species with 1061 crystals found that over half

of polymorphic pairs only differed by less about 2 kJ/mol and for over 95% by less than 7.2

kJ/mol. In order to distinguish these crystal, sub-kJ/mol accuracy or close to it is often

required. On the other hand, highly accurate models tend to be computationally expensive,

and one must balance between computational cost and accuracy.

Periodic density functional theory (DFT) is a widely used method19,20,26–29,31–43

due to its computational affordability. Unfortunately, despite many successful DFT predic-

tions, one often finds that different density functionals and dispersion corrections predict

contradictory polymorph stability orderings.16,26,39 It is not always obvious which functional

is optimal for a given crystal. There is also no obvious means for systemically improving

DFT, unlike wave function-based methods.

One of the simpler and useful wave function method, second-order Möller-Plesset

perturbation theory (MP2), is computationally expensive for periodic crystals. There are

2



various classical force field methods which are computationally cheap but not as accurate

as the methods based on electronic structure theory. In response to this problem, our group

has developed a fragment based QM/MM method, hybrid many-body interactions or HMBI

to model molecular crystals. HMBI has had many successes such as predicting relative

stability of polymorphs16 and benchmarking the lattice energy of crystals,44,45 which will

be discussed in Section 1.8.

Not only does one want to predict the relative lattice energy stability of poly-

morphs, but one wants to predict the temperature and pressure under which a given phase

will be stable. Mapping out phase diagrams for polymorphic crystals experimentally can

be challenging because polymorph transformations can be sluggish46,47 and/or path depen-

dent,48 meaning that a kinetically viable pathway to the thermodynamically stable phase

may not be available. This is not an issue for theoretical studies, since structure predic-

tions do not require knowledge of kinetic path taken to arrive at the crystals structure.

Many computational studies have explored the pressure and temperature dependence of

phase stability.18,36,49–51 Pressure dependence can be modeled fairly trivially, while tem-

perature dependence is more difficult because it involves contributions from phonon modes.

Using the harmonic approximation, vibrational frequencies can be determined computa-

tionally. Crystals do expand with temperature and this expansion can be captured with the

quasi-harmonic approximation by approximating how vibrational frequency changes with

volume.31,49,52,53 This dissertation will discuss the implementation of the quasi-harmonic

approximation into the HMBI model in order to improve the prediction of temperature-

dependent properties. The influence of thermal expansion of various thermodynamical

3



properties will be examined. In addition, to make these quasi-harmonic studies feasible,

an algorithm for exploiting space group symmetry to accelerate the calculations will be

explored.

1.1 Born-Oppenheimer Approximation

The center of all quantum mechanical calculations is the Schrödinger Equation.

Solving the Schrödinger Equation defines wave functions (Ψ) which are used to characterize

all measurable properties of a system. The time independent Schrödinger Equation is more

frequently used for chemical systems and describes a quantum system in a static state.

HΨ = EΨ (1.1)

The Hamiltonian (H) for a chemical system is generally defined as

H = −
∑
i

1

2
∇2
i −

∑
k

1

2mk
∇2
k +

∑
i

∑
k

Zk
rik
−
∑
i<j

1

rij
+
∑
k<l

ZkZl
rkl

(1.2)

the i and j are indices for electrons and the k and l are the indices for the nuclei. The

Laplacian Operator (∇2) defined as

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(1.3)

and when multiplied by 1
2 or 1

2mk
is the kinetic energy operator which defines the kinetic

portion of the energy. The Hamiltonian in Eq 1.2 characterizes the wave function for the
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electrons and nuclei. Due to the attraction and repulsion terms (Zkrik , 1
rij

, Zk
rik

) in the Hamil-

tonian, the motions of all particles are correlated. With the exception of the hydrogen-like

system (one nucleus, one electron), solutions to the Schrödinger Equation are a many-body

problem for which an analytical solution does not exist. They are various approximate

methods to solve the Schrödinger Equation (see Section 1.5). Most of these methods sim-

plify the Hamiltonian using the Born-Oppenheimer approximation. This approximation

factorizes the wave function into a product of electronic and nuclear wave functions.

Ψ = ΨelΨnu (1.4)

Since electrons are lighter and faster than nuclei, the Born-Oppenheimer approximation

also assumes that electrons relax in response to the position of fixed nuclei. The nuclear

kinetic operator (− 1
2mk
∇2
k) disappears since the nuclei is fixed and the nuclei repulsion (Zkrik )

is treated as a constant to form to electronic Hamililtonian.

Hel = −
∑
i

1

2
∇2
i +

∑
i

∑
k

Zk
rik

+
∑
k<l

ZkZl
rkl
−
∑
i<j

1

rij
+
∑
k<l

ZkZl
rkl

(1.5)

The electronic Hamiltonian applied only to the electronic wave function defines

the electronic energy.

HelΨel = EelΨel (1.6)

Since the position of the nuclei are fixed, the electronic energy is a function of the nuclei

position. This function is called the potential energy surface (PES). The PES is a very pow-
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erful tool for computational chemistry. Using this tool, atomic structure can be determined.

The nuclear geometry of a stable species is determined by minimizing the electronic energy.

Transition states which determine the pathways for chemical and physical changes occur as

saddle points in the PES. Bond length, bond angles and all position related parameters are

all defined by these stationary points on the PES.

The nuclear Hamiltonian includes what was left out of the electronic Hamiltonian,

the nuclear kinetic operator.

Hnu = −
∑
k

~2

2mk
∇2
k + Hel (1.7)

Because the nuclear and electron wave functions are separated, when this operator is applied

to the complete wave function (nuclear and electron) the electronic Hamiltonian will operate

only on the electronic wave function. This gives the electronic energy. Since the nuclear

kinetic operator determines the kinetic energy of the nuclei, this means nuclear potential

energy is equal to the only other energy term, the electronic energy.

(
−
∑
k

1

2mk
∇2
k + Hel

)
ΨelΨnu =

(
−
∑
k

1

2mk
∇2
k + V (R)

)
ΨelΨnu (1.8)

Hnu = −
∑
k

~2

2mk
∇2
k + V (R) (1.9)

The fact that using the Born-Oppenheimer Approximation, the electronic energy and the

nuclear potential are the same has implications for the next section. For more information
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of the Born-Oppenheimer Approximation see Refs 54 and 55.

1.2 Harmonic Approximation

In the Born-Oppenheimer approximation, the electronic energy omits nuclear vi-

brational motion due to neglecting the nuclei kinetic energy. The vibrational energy can

be captured by solving the nuclear Schrödinger equation (Eq 1.9). As established in the

last section, the potential V (R) is equal to the electronic energy at R. Solving the nuclear

Schrödinger Equation proves to be difficult because the nuclear potential is generally only

known at a given set of nuclear coordinates and not at all R. Determining the potential

at all R requires full characterization of the PES which is computationally unfeasible for

complex systems. Instead, the potential is expanded by a Taylor Series.

V (R) = V (R0) + (R−R0)
∂V

∂R0
+

1

2
(R−R0)T

∂2V

∂R2
0

(R−R0) + . . . (1.10)

The potential at a equilibrium reference state V (R0) is defined to zero. If the

reference state is a stationary point such as a minimum or saddle point, the potential first

derivative ( ∂V∂R0
) is also zero. All terms beyond the second order are assumed to be negligible.

Therefore the potential nuclear Hamiltonian can be replaced with the second order term of

the Taylor expansion.

Hnu = −
∑
k

1

2mk
∇2
k +

1

2
(R−R0)T

∂2V

∂R2
0

(R−R0) (1.11)

7



The nuclear coordinates are then redefined as mass-dependent coordinates

Yα =
√
mα(Rα −R0,α) (1.12)

Vα,β =
1

√
mαmβ

∂2V

∂R0,α∂R0,β
(1.13)

Hnu = −
∑
k

~2

2mk
∇2
k +

1

2
YTVY (1.14)

Since the mass-weighed Hessian matrix (V) is symmetric

Vα,β = Vβ,α (1.15)

it is diagonalizable. There exists some unitary matrix U, transforming Y into the some

basis of q

Y = Uq (1.16)

which diagonalizes the weighed Hessian matrix (V) by replacing Y with the right side of

Eq 1.16

Hnu = −
∑
k

~2

2mk
∇2
k +

1

2
qTUTVUq (1.17)

= −
∑
k

~2

2mk
∇2
k +

1

2

∑
α

εαq
2
α (1.18)

where α are the degrees of freedom of the k nuclei. This is a powerful transformation. The

8



nuclear potential is treated as a series of uncoupled one-dimensional harmonic oscillators

V (R) =
1

2

∑
α

εαq
2
α (1.19)

The mass-weighted force constant εα is used to determine the vibrational frequencies.

fα =
1

2π

√
εα (1.20)

These are the vibrational frequencies of the system vibrating about references geometry R0

which the Taylor Series in Eq 1.10 was expanded around. Since the first derivative in the

Taylor expansion is assumed to be zero, the frequencies are only defined when the reference

state is at a critical point such as a transition state or minimum. The mass weighted

force constant (εα) and the eigenvectors which are the columns of U are determined by

diagonalization of the the mass-weighed Hessian (V).

The frequencies introduce a temperature dependence into the energy. Temperature

is ill-defined in a quantum calculation and comes from statistical thermodynamics. In ther-

modynamics, temperature is defined by the average kinetic energy of a macroscopic system.

Partition functions link the states allowed by quantum calculations to the bulk properties in

thermodynamics. The vibrational energy determined by the standard vibrational partition

function is.

Evib = N
∑
α

hfα
2

+
hfα

exp
(
hfα
kT

)
− 1

 (1.21)

Additional nuclear energy terms such as the translational and the rotational energies are
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also determined using standard partition functions. This terms are significant for gas phase

molecules but condensed (liquid and solid) phase have no overall translation or rotational

energy.

In addition to allowing one to determine vibrational energy, vibrational frequencies

allows one to compute the entropy using the same standard partition functions.

Svib = N
∑
α

 hfα

T
[
exp

(
hfα
kT

)
− 1
] − kln [1− exp(hfα

kT

)] (1.22)

For gas phase molecules, an additional rotational and translational term in necessary to

determine the total entropy. For disordered crystals, such as Ih ice, configurational entropy

should also be included. If the system in question is the solid phase (no rotation or transla-

tion) and is ordered (no configurational entropy), the Gibbs free energy can be determined

by

G = Eel + PV + Evib − TSvib

= Eel + PV + Fvib (1.23)

The Gibbs free energy is significant since it determines the stability of a phase or structure.

The Helmholtz vibrational energy Fvib replaced the vibrational entropy and energy because

it simplifies the vibrational terms.

Fvib = Evib − TSvib

= N
∑
α

(
hfα
2

+ kT ln

[
1− exp

(
hfα
kT

)])
(1.24)
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While the equations in this section were outlined for a quantum mechanical po-

tential energy, molecular mechanics potentials such as those given in Section 1.6 may be

used instead. For more information the harmonic approximation see Ref 55.

1.3 Unit Cell Parameters

Crystals contain a enormous number of atoms or ions packed close together. If

these crystals are ordered, they can be represented by a series of identical unit cells. The unit

cell gives the positions of a small set of atoms in a position of R within a parallelepiped. The

unit cell’s dimensions are defined by three lattice vectors v1, v2, and v3. Using the periodic

boundary conditions (PBC), the position of atoms in other unit cells can be determined by

the translation vector x(κ)

R(κ) = R(0) + x(κ) (1.25)

x(κ) = a1v1 + a2v2 + a3v3 (1.26)

where a1, a2, and a3 are integer indices of a unit cell. The cell where a1,a2,a3 equal zero

is the central unit cell (κ = 0). It is often more convenient to determine the dimensions of

the unit cell using the six unit cell parameters (a, b, c, α, β, γ) rather than the three lattice

vectors. The lattice lengths a, b, and c are the lengths of the sides of the unit cell or the

lengths of three lattice vectors. The lattice angles α, β, and γ are the angles between the

sides of the unit cell or the angle between the lengths of three lattice vectors. The relation
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between the lattice vectors and lattice parameters are:

v1 =


a

0

0

 v2 =


b cos γ

b sin γ

0



v3 =


c cosβ

c
(

cosα−cosβ cos γ
sin γ

)
c

(√
sinα2−cosβ2−cos γ2+2 cosα cosβ cos γ

sin γ

)


(1.27)

Using the lattice parameters restricts the overall lattice vectors so that v1 must be along

the global x-axis and v2 must be in the xy plane.

1.4 Lattice Dynamics

1.4.1 Phonon Dispersion

Since a unit cell is a complete representation of the crystal, one could naively

determine the harmonic vibrational frequencies as described by Section 1.2, building a mass-

weighed Hessian from all the nuclear positions. This mass-weighed Hessian will provide the

vibrational frequencies of the atoms in the central unit cell vibrating in phase with all

periodic image atoms in adjacent cells. To capture the out-of-phase vibrations between

12



cells, a dynamical Hessian matrix is used,

Dα,β(l, l′,k) =
1√

MlMl′

∑
κ

∂V

∂Rα(0)∂Rβ(κ)
exp

(
−2πik · δRl,l′(0, κ)

)
(1.28)

where δRk,l(0, κ) is the distance vector between atom l in the central unit cell and atom

l′ in unit cell κ. The k-point vector k defines the propagation of phonons. Several sets

of dynamical matrices are set at k-points each with different vibrational frequencies. The

k-points are defined in reciprocal space or momentum space. The k-points in all subsequent

chapters are selected using a Monkhorst-Pack grid.56 The Monkhorst-Pack grid creates a

set of k-points so that they are parallel with the reciprocal lattice vectors b1, b2, and b3.

k = k1b1 + k2b2 + k3b3 (1.29)

where k1, k2, and k3 are integers. The reciprocal lattice vectors define the dimensions of

the Brillouin zone similar to how the lattice vectors define the dimensions of unit cell in

direct space. The reciprocal lattice vectors can be determined from the lattice vectors in

direct space by

b1 =
2π (v2 × v3)

|v1 · v2 × v3|
(1.30)

b2 =
2π (v1 × v3)

|v1 · v2 × v3|
(1.31)

b3 =
2π (v1 × v2)

|v1 · v2 × v3|
(1.32)
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When the k1, k2, and k3 all equal zero, the dynamical matrix reduces to the conventional

mass-weighted Hessian for the central unit cell, diagonalization of which produces that

standard in-phase γ-point phonon modes.

1.4.2 Quasi-Harmonic Approximation

It is well-known that crystals generally expand with increasing temperature. The

volume of phase I carbon dioxide increases by nearly 10% ( from 25.8 to 27.9 cm3) as the

temperature is increased from 15 to 190 K.57 On the other extreme, Ih ice expands by about

2% as the temperature increases from 10 K to 265 K.58 Ice Ih also presents an unusual case

of negative thermal expansion. The volume decreases slightly as the temperature increases

from 10 K to 70 K.

In the harmonic approximation, atoms vibrate around some equilibrium position.

Increasing temperature shifts the phonon populations toward higher-energy states, but the

equilibrium position does not change. Since there is no change in the equilibrium position

when temperature increases, the harmonic approximation fails to capture the thermal ex-

pansion of crystals. One solution to this issue is the quasi-harmonic approximation. This

approximation allows the crystal unit cell to expand (or compress). In doing so, the atom

positions will relax and alter the harmonic phonon frequencies. The quasi-harmonic ap-

proximation estimates these changes in the phonon frequencies due to changes in the cell

volume via Grünsensein parameters (γ):

γi = −∂ln (fi)

∂ln (V )
(1.33)
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Integrating Eq 1.33 allows for the determination of vibrational frequencie at a particular

cell volume based on the frequencies.

fi = fi,ref

(
V

Vref

)−γi
(1.34)

This equation is extremely powerful. As long as the frequencies at a reference volume

are known, the frequencies at any given volume can be determined. Interestingly, this

is without knowing positions of the atomic coordinates. The next question is the choice

for the Grünsensein parameters. Is it a constant or a function of volume? Otero-de-la-

Roza and Johnson performed linear, parabolic, and quartic fitting of the phase I carbon

dioxide Grünsensein parameters.31 They found that simpliest of the fitting, the linear fitting,

reproduced the Helmholtz vibrational energy (see Eq 1.24) of the most complex fit, the

quartic fitting, for about 200 cubic Bohrs around the reference volume. Since this is a

longer range than would be expected from thermal expansion, a linear fit with constant

Grünsensein parameters seem to be perfectly valid. The frequencies at only two volumes

are necessary to fit Grünsensein parameters numerical.

γi = −∂ln (fi)

∂ln (V )
≈ − ln (fi,2)− ln (fi,1)

ln (V2)− ln (V1)
(1.35)

With well-defined Grünsensein parameters and frequencies at a reference volume,

the Helmholtz vibrational energy is defined at any cell volume allowing for the Gibb’s free

energy to be minimized as a function of pressure and volume. With this one can obtain
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thermal expansion.

For more information on the quasi-harmonic approximation see Ref 59.

1.5 Electronic Structure Methods

Electronic structure methods solve the Schrödinger equation for the energy ab

initio or ”from the beginning”. This means that values for the system are found without

any a priori assumptions about strength or length of a bond, what angle between atoms

should be, or any other empirical or experimental values. All that is assumed about the

system are the position of the nuclei and the number of electrons. This contrasts force field

methods which will be discussed in Section 1.6. The electronic energy and wave function of

the system is determined using the Schrödinger Equation simplified by Born-Oppenheimer

approximation as seen in Section 1.1 (see Eq 1.6). Due to the complexities of the Schrödinger

Equation, electron structure methods start with the Hartree Fock (HF) method then include

a series of corrections

1.5.1 Hartree Fock Method

In Hartree Fock (sometimes called the self-consistent-field method), each electron

is treated as experiencing a mean field of the other electrons. The wave function of these

N electrons in this mean field is a Slater Determinant.
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Ψel =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(1) Φ2(1) Φ3(1) · · · ΦN (1)

Φ1(2) Φ2(2) Φ3(2 · · · ΦN (2)

Φ1(3) Φ2(3) Φ3(3) · · · ΦN (3)

...
...

...
...

Φ1(N) Φ2(N) Φ3(N) · · · ΦN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.36)

Each of the orbitals Φi are molecular orbitals. Only the ground state occupied orbitals are

included. Besides simplifying the wave function, Slater Determinants also has the advantage

that it observes the Pauli Exclusion Principle which require the wave function of fermions,

such as electrons, to be antisymmetrical. That is the wave function changes sign when two

electrons to switch orbitals.

Ψel(Φ1(1)Φ2(2)) = −Ψel(Φ1(2)Φ2(1)) (1.37)

The Hartree-Fock ground state energy is determined using the variational principle,

E0 =

∫
Ψ∗(r)HelΨ(r)dr∫

Ψ∗(r)Ψ(r)dr
(1.38)

According to the variational principle, the energies produced from an approximate wave

function will always be equal to or greater than the exact electronic energy.

Eel ≤ E0 (1.39)
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Initial guesses for the wave function of each orbital are chosen and through an iterative

process, the orbitals are optimized to minimize the ground state energy. In general, the

larger the number of orbitals or the basis set used, the better the results (see Section 1.5.4)

A more complete review of Hartree-Fock can be found in Ref 60

1.5.2 Post-Hartree-Fock Methods

Hartree-Fock itself does not provide very useful predictions but it offers a good

starting place for many more accurate methods. There are several post-Hartree-Fock meth-

ods that determine the correlation energy, the energy missed by Hartree-Fock.

E = EHF + Ecorr (1.40)

One popular post Hartree-Fock method is second order Møller-Plesset Perturbation Theory

or MP2. MP2 uses second-order perturbation theory to correct Hartree-Fock by adding the

missing correlation energy based on double excitations of electrons from occupied ground

state orbitals in the Stater Determinant to unoccupied or virtial orbitals.

Ecorr,MP2 =
∑
j<i

∑
a<b

(∫
Φ∗i (r1)Φ∗j (r2) 1

r1,2
Φa(r1)Φb(r2)dr1dr2

ei + ej − ea − eb

−

∫
Φ∗i (r1)Φ∗j (r2) 1

r1,2
Φb(r1)Φa(r2)dr1dr2

ei + ej − ea − eb

)2

(1.41)

The i and j are the occupied orbitals in Stater Determinant and a and b are the virtual

orbitals and the e’s are the Hartree-Fock orbital energies. MP2 does have steeper compu-

tation scaling with system size than HF, scaling as N5 versus N4 respectfully, where N is
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the number of orbitals or size of the basis set (see Section 1.5.4). For most small systems,

MP2 is affordable. The main issue with MP2 is that it overestimates the dispersion forces.

Because of this, MP2 overbinds systems that have large dispersion such as pi-stacked ben-

zene.61,62 This deficiency in describing dispersion interactions can be corrected by going

to higher-order perturbation theory, using the dispersion-corrected MP2C model,63–65 or

switching to coupled cluster theory.

Coupled cluster theory modifies the wave function through excitations of orbitals

in the Slater Determent from ground state to viritual orbitals using the excitation operator

T. Typically this operator is truncated to include only single and double excitations, in

which case the model is called coupled cluster singles and doubles (CCSD).

T = T1 + T2 + T3 + . . .+ Tn (1.42)

≈ T1 + T2

T1Ψ0 =
∑
i

∑
a

taiΨ
a
i (1.43)

T2Ψ0 =
∑
i<j

∑
a<b

ta,bi,j Ψa,b
i,j (1.44)

where Ψa
i is the Slater determinant of orbital i replaced by virtual orbital a, Ψa,b

i,j is the

Slater determine of orbital i and j replaced by virtual orbital a and b. The coupled cluster

wave function uses the truncated excitation operator in exponential form to modify the

Hartree Fock wave function. This exponential operator is expanded using a Taylor series
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ΨCCSD = e(T1+T2)Ψ0 (1.45)

=

(
1 + T1 + (T2 +

1

2
T2

1) + . . .

)
Ψ0

The CCSD energy equations are solved projectively. Correlation beyond double excitations

can be important, but full iterative inclusion of the triples is computationally impractical

for all but very simple systems. Instead, the triples contribution is estimated perturbatively

to create CCSD(T). CCSD(T) corrects the dispersion over binding of MP261,62 though the

computational cost is high compared to MP2 (N7 vs. N5 ). Large-basis CCSD(T) results

are often estimated by calculating the difference between MP2 and CCSD(T) in a small

basis set then adding it to the MP2 energies of a larger basis set.

∆CCSD(T ) = EsmallCCSD(T ) − E
small
MP2 (1.46)

ElargeCCSD(T ) ≈ E
large
MP2 + ∆CCSD(T ) (1.47)

Despite its simplicity, this method of appoximating large basis set CCSD(T) has been found

to be fairly reliable.61,62

1.5.3 Density Functional Theory

Density functional theory (DFT) provides a popular and computationally afford-

able alternative to wave function methods, since it provides reasonable accuracy at Hartee-
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Fock-like cost. Instead of solving the Schrödinger equation to find the many-dimensional

wave function, DFT computes the energy as a functional of the three-dimensional electron

density (ρ). The challenge is that the exact form of this energy functional is unknown.

In standard Kohn-Sham DFT, the functional is written as a sum of a kinetic energy

piece for a non-interacting system of electrons (Ts[ρ]), classical nuclear-electron (Ene[ρ]) and

electron-electron (J [ρ]) Coulombic terms, and an exchange-correlation functional (Exc[ρ]):

EDFT = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (1.48)

The exchange-correlation functional captures the missing correlation from the kinetic energy

term and the differences between classical and quantum mechanical Coulombic interactions

(exchange). Different density functional methods vary based on the particular functional

form adopted for the exchange-correlation functional.

In the context of molecular crystals, it should be noted that conventional semi-

local density functionals fail to describe dispersion interactions,66 since dispersion is a non-

local phenomenon. It is common to correct these functionals with post-hoc dispersion

corrections67 such as D2,68 D3,69 TS,40 or MBD.29,41,70

Even with these dispersion corrections, one often finds that different density func-

tionals predict different polymorph stability orderings, and the correct result is not always

obvious. Oxalyl dihydrazide has five known polymorphs and different functionals and dis-

persion corrections order the stability differently.16,19 Other examples include the pharma-

ceuticals B5 and DB7.39
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1.5.4 Basis Sets

In quantum computational chemistry, basis sets are used to represent orbitals.

They are the equivalent of atomic orbitals in atomic theory. Each orbital is an atom-

centered an Slater-type orbital (STO) is a linear combination of Gaussian type orbital

(GTO).

φi(STO) =
∑
a

caφa(GTO) (1.49)

The STO can represent s, p, d, etc orbitals (called s-like, p-like, d-like, etc). The molecular

orbitals are linear combination of the Slater-type orbitals.

Φ =
∑
i

φi(STO) (1.50)

In general, larger the basis sets (more STOs) provide better results because they provide

more flexibility for the MOs. Dunning basis orbitals, the cc-pVXZ (n = D,T,Q,5,6,...)

and the augmented basis set aug-cc-pVXZ (that include diffuse functionals), are commonly

used because they provide smooth energy convergence with increasing basis set size. The X

indicates the zeta level (double, triple, quadruple, etc) which as the level increases so does

the size of the basis set.

Since the energy converges with increasing basis set size, the energy can be extrap-

olated to a basis set of infinite size also called the complete basis set limit (CBS). Typically,

the triple zeta (TZ) and qudruple zeta (QZ) basis set are used for this extrapolation. When

extrapolating the MP2 to the complete basis set, the HF and the correlation energy are
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extrapolated separately then added together to get the CBS.

ECBSHF = EQZHF +
EQZHF − ETZHF

exp (1.54(4− 3))
(1.51)

ECBScorr =
43EQZcorr − 33ETZcorr

43 − 33
(1.52)

ECBSMP2 = ECBSHF + ECBScorr (1.53)

This extrapolation is generally not performed for CCSD(T). Instead CCSD(T) correction

is added to the MP2/CBS energies as shown by Eq 1.46 and 1.47. Typically the CCSD(T)

correction is found using cc-pVDZ or aug-cc-pVDZ.

One of the side effects of using a finite basis set is basis set superposition error

(BSSE). When determining the interaction energy of two molecules, the energy of them

together in a dimer is subtracted from the energy of the individual molecules.

E(int) = E(AB)− E(A)− E(B) (1.54)

For atom-centered basis sets like the ones discussed here, the number of basis functions

increases with the numbers of atoms. The calculation of dimer of molecule A and B have

more basis functions than either molecule by itself. This leads to artificial stabilization of

the dimer which is not present in the monomer. This inconstancy in the treatment of the

basis set increases error in the interaction energy, the BSSE. The most common correction
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to the BSSE is counterpoise correction. The basis set for the monomers is increased to

include the basis functions of the full dimer. These extra functionals are included through

ghost atoms. Ghost atoms are atoms that do not the nuclei and electrons in the calculation

but basis functions centered around the nuclei are.

E(int) = E(AB)AB − E(A)AB − E(B)AB (1.55)

1.6 Classical Force Field Methods

Section 1.1 shows how the Born-Oppenheimer approximation can determine the

nuclear potential from the electronic energy determined by quantum calculations (see Sec-

tion 1.5). The nuclear potential can also be determined from models based on classical

molecular mechanics. Molecular mechanics force fields tend to be less accurate than quan-

tum mechanics ones, but they are also computationally cheaper. Classical models are

particularly adept at modeling longer-range interactions (about > 10 Å), for which the dif-

ferences between quantum and classical models are often small. Many different flavors of

MM models exist. Three models are discussed here. The first one, AMBER, is presented

because it is simple and easy to understand and the other two, AMOEBA and AIFF, are

used in subsequent chapters.

1.6.1 AMBER

AMBER (Assisted Model Building with Energy Refinement) is simple force field

model that is commonly used to simulate systems like proteins that are too large for more
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computationally expensive models. Like most MM models, energy can be separated into

intramolecular and intermolecular terms.

E = Eintra + Einter (1.56)

The intramolecular terms involve bond, angle, and dihedral terms that occur within a single

molecule,

Eintra = Eb + Ea + Ed (1.57)

The first two terms, the bond (Eb) and the angle (Ea) are treated as harmonic potentials

between two and three atoms respectively moving about an equilibrium position r0,b and

θ0,a.

Eb =
∑
b

kb(rb − r0,b)
2 (1.58)

Ea =
∑
a

ka(θa − θ0,a)
2 (1.59)

The dihedral term Ed describes the potential of a dihedral angle made of a four-atoms bond

chain rotating around an equilibrium angle γd in a Fourier series.

Ed =
∑
d,n

Vn
2

[1 + cos (nφd − γd)] (1.60)
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The intermolecular portion includes electrostatic and van der Waals terms.

Einter = Eelect + EvdW (1.61)

The electrostatic term is described using a point change Coulomb potential. Nuclei are

commonly used as charge centers but other change groups such as lone pairs may also be

used.

Eelect =
∑
i,j

qiqj
4πε0ri,j

(1.62)

The last terms is the van der Waals. The van der Waals is an overarching term for non-

covalent, non-electrostatic interactions. One of the more significant van der Waals forces is

dispersion. The van der Waals interactions are described using the Lennard-Jones potential.

Evwd =
∑
i,j

4εi,j

[(
σi,j
ri,j

)6

−
(
σi,j
ri,j

)12
]

(1.63)

CHARMM, OPLS, and TIPnP (n = 3-5) are examples of other models that other models

are similar to AMBER. For more information on AMBER is REF 71.

1.6.2 AMOEBA

AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applica-

tions) is another MM force field. While AMOEBA and AMBER have the same intramolecu-

lar/intermolecular energy separation as shown in Eq 1.56, the intramolecular/intermolecular
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breakdown differs in a number of ways. The intermolecular interactions separates the elec-

trostatic into permanent and induced electrostatic terms.

Einter = Epermelect + Eindelect + EvdW (1.64)

The permanent electrostatic term treats electron density using a point multipole represen-

tation up to the rank of quadrupole,

Mi
perm = [qi, µix, µ

i
y, µ

i
z, Q

i
xy, Q

i
xz.....]

T (1.65)

where qi is the charge of atom i, µi is the dipole, and Qi is the quadrupole. The perma-

nent multipoles are computed from distributed multipole analysis (DMA)72 on the quantum

mechanical electron density of the isolated molecule in its equilibrium geometry. The perma-

nent electrostatic interactions between atoms/molecules are treated as a series of pair-wise

interactions of multipoles at nuclear charge sites.

Epermelect =
∑
i<j

(Mi)TTijMj (1.66)
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where the interaction matrix between atom i and j is

Tij =



1 ∂
∂xj

∂
∂yj

∂
∂zj

∂
∂x2j

· · ·

∂
∂xi

∂2

∂xi∂xj
∂2

∂xi∂yj
∂2

∂xi∂zj
∂3

∂xi∂x2j
· · ·

∂
∂yi

∂2

∂yi∂xj
∂2

∂yi∂yj
∂2

∂yi∂zj
∂3

∂yi∂x2j
· · ·

∂
∂zi

∂2

∂zi∂xj
∂2

∂zi∂yj
∂2

∂zi∂zj
∂3

∂zi∂x2j
· · ·

∂2

∂x2i

∂3

∂x2i ∂xj

∂3

∂x2i ∂yj

∂3

∂x2i ∂zj

∂4

∂x2i ∂x
2
j
· · ·

...
...

...
...
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1

ri,j
(1.67)

As a polarizable force field, Amoeba uses induced dipole moments to describe how the

electron density (as represented by the permanent multipoles) are polarized by an external

field.

µiind,l = αi

∑
j

∑
m

T i,jl,mM
j
perm,m +

∑
j′

∑
m

T i,j
′

l,mµ
j′

ind,m

 (1.68)

where the α is the polarizability for atom i, j are atoms on other molecules and j′ are the

other atoms. The polarizability is determined by atom type. Notice that Eq 1.68 implies

that the induced dipoles of all the atoms are interdependency since the induced dipoles

on one atom depends on the induced dipoles on all other atoms, which means they must

be solved for iteratively. The polarization energy is determined using the Thole’s damped

interaction method.73

AMOEBA treats its van der Waals interaction using a buffered 14-7. While not as

widely used as a Lennard-Jones Potential, this method better represents the the pair-wise

interactions of noble gas.74 All the parameters in this equation a determined by atom type.
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Evdw =
∑
i<j

εij

(
1.07

ρij + 0.07

)7
(

1.12

ρ7
ij + 0.12

− 2

)
ρij =

rij
r0
ij

(1.69)

AMOEBA has two extra terms in the intramolecular portion that are not in the AMBER

model, the out-of-plane term Eoop and the bond-angle cross term Ebθ.

E = Eb + Ea + Ed + Eoop + Ebθ (1.70)

The out-of-plane term uses a Wilson-Decius-Cross-function to restrain the sp2

hybrid trigonal center from out-of-plane motions. The bond-angle cross terms allows the

two bonds to stretch when the angle between them is reduced. The bond and angle terms

are not treated harmonically. Instead the bond term is treated with a fourth-order Taylor

expansion of a Morse potential and angles are treated with a sixth-order potential. For

more details on AMOEBA see Ref 75.

Eb =
∑
b

kb(b− b0)2
[
1− 2.55(b− b0) + 3.793125(b− b0)2

]
(1.71)

Ea =
∑
a

ka(θa − θ0,a)
2

[
1− 0.0014 (θa − θ0,a) + 5.6 ∗ 10−5 (θa − θ0,a)

2 (1.72)

−7.0 ∗ 10−7 (θa − θ0,a)
3 + 2.2 ∗ 10−8 (θa − θ0,a)

4

]
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Eoop =
∑
χ

Kχχ (1.73)

Ebθ =
∑
bθ

Kbθ

[
(b− b0) +

(
b′ − b′0

)]
(θ − θ0) (1.74)

1.6.3 AIFF

The ab initio force field (AIFF) is another polarizable force field. Unlike AMOEBA,

all parameters used for the intermolecular terms are derived from quantum calculations,

while AMOEBA only derives the multipoles using quantum calculations. Also AIFF pa-

rameters are determined at the current molecular geometry, rather than at the equilibrium

geometry like in AMOEBA. This makes AIFF more reliable, but also more computation-

ally expensive since the parameters have to be rederived at every geometry. AIFF does not

include any intramolecular terms. As will be discussed in chapter 1.8, the fragment-based

method which uses AIFF determines all intramolecular energy using quantum mechanics.

For the intermolecular terms, the electrostatic term is separated into permanent

and induced electrostatics. Long-range van der Waals terms are described by a dispersion

term. Short-range terms like exchange that are normally lumped in to the van der Waals

contribution are captured by quantum calculations in the fragment-based method.

E = Epermelect + Eindelect + Edisp (1.75)
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The permanent electrostatic term is similar to the electrostatic term in AMOEBA.

Epermelect =
∑
i<j

(Mi
perm)TTijMj

perm (1.76)

The multipoles are truncated at quadruples for hydrogens while heavier atoms truncate

at hexadecapoles. Unlike AMOEBA, all induced multipoles, not just the dipoles, are po-

larized. Similar to AMOEBA, the induced dipoles are interdependent and determined

self-consistently through an iterative process to converge the induction energy.

M i
ind,l = −

∑
j

∑
l′

∑
m

αill′fn(r, β)T i,jl′,m

(
M j
ind,m +M j

perm,m

)
(1.77)

The induction energy is given by

Eindelect =
1

2

∑
i

∑
j

∑
l

∑
m

M i
ind,lfn(r, β)T i,jl,mM

j
perm,m (1.78)

Atom i and j are any atom not on the same molecule. The polarizablity in AIFF’s

αill′ have different values depending on which rank (e.g. change, dipole, quadropole) of the

multipoles while AMOEBA has a single polarizablity for an atom. The Tang and Toennies

damping function fn(R, β) was introduced to weaken induction in the short range to avoid

the polarization catastrophe. The subscript n is the order of the electrostatic interaction

r−ni,j in the interaction matrix, T i,jl′,m (once the derivative is applied in Eq 1.67)

fn(r, β) = 1−
n∑
k=0

(
βrk

k!

)
exp(−βr) (1.79)
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The AIFF model includes both 2-body and 3-body dispersion terms.

Edisp = E2−body
disp + E3−body

disp (1.80)

E2−body
disp = −

∑
i<j

(
f6(rij , β)

C6

r6
ij

+ f8(rij , β)
C8

r8
ij

)
(1.81)

E3−body
disp =

∑
i,j,k

f9(rij , β)C9
1 + 3 cos a cos b cos b

r3
ijr

3
ikr

3
jk

(1.82)

where a, b, and c are the angles made between atoms i,j, and k not the same molecule.

The dispersion coefficients (Cn) are derived using integration over the isotropic frequency-

dependent polarizabilities. See citation 72 for more details. Three-body Axilrod-Teller-

Muto dispersion term is often neglected in force fields, but it can be significant in crystals

of non-polar molecules such as benzene.76,77

1.7 Symmetry

Molecular and crystal symmetry is significant for many molecular properties such

as the selection rules for electronic transitions, IR/Raman spectroscopy, and chirality. The

symmetry of a molecule determines its point group. Examples of point groups in the

Schoenflies notation are C2v, C1, and D3d. Point groups denote a set of symmetry operations
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that when applied to the member produces an identical structure.

q2 = Rq1 (1.83)

The q are nuclear position of the atoms in the molecule and R is the matrix representation

of the operator. While the coordinates of each atom may change due to the operation,

the overall structure is unchanged as each atom whose position is altered is replaced by an

identical atom.

Possible symmetry operators include rotation, reflection, inversion, improper ro-

tations, and the identity. The rotation operator rotates around some axis by 360/n degrees

where n is some integer. A rotation operator is denoted by Cn or n. A reflection operation

or a mirror plane operator requires a plane which has identical atoms/positions on either

side. The reflection operator moves the atom to the same placement on the other side of

the plane. The reflection operation is usually denoted by σ or m. The inversion operator

changes the sign of the x,y, and z coordinate in a Cartesian coordinate system with an origin

at the inversion center. The inversion center is usually the molecule’s center of mass and

denoted by i. An improper rotation or roto-inversion operation is a Cn operation followed

by reflection. The rotation axis and the reflection plane are perpendicular. The improper

rotation is denoted by Sn or n̄. The identity operation, denoted by I or E, does not change

the coordinates of any atoms. All point groups have the identity operator. Note the choice

of origin and axes are significant for these operations to reproduce the same molecule.

Periodic crystals belong to space groups as well as point groups. Space groups are

similar to point groups, except the symmetry involves not only the symmetry operator R,

33



but also a translational component t.

q2 = Rq1 + t (1.84)

Because of the periodicity of the crystal and the space group operations, many atoms or

ions are symmetrically equivalent. It is common to specify the coordinates of atoms of the

crystal in terms of only the symmetrically unique atoms and to have the rest defined by the

space group operations. The cell composed of only symmetrically unique atoms is called the

asymmetric unit. Space group symmetry is significant for Chapter 2. For more information

on point and space group symmetry see Ref 78.

1.8 HMBI

1.8.1 Formalism

Many fragment-based methods exist,79–81 most of which fall under a common,

unifying framework.82,83 Fragment approaches for molecular crystals typically decompose

the total energy of a crystal according to a many-body expansion,

E = E1−body + E2−body + E3−body + .... (1.85)
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The first term in the many-body expansion describes the one-body or intramolecular inter-

actions, which is just the sum of energy of the individual molecules.

E1−body =
∑
i

Ei (1.86)

The next term is the two-body or pairwise intermolecular interactions. This term is the

sum of energies of the all dimers subtracting their one-body contributions.

E2−body =
∑
i,j

(Ei,j − Ei − Ej) (1.87)

The three-body intermolecular interactions are the sum of the energies of the trimers sub-

tracting the two-body and one body interactions. The three body and higher-order terms

are all combined into the many-body terms.

The one-body (intramolecular conformation) and short-range two-body terms con-

tribute the most to the crystal lattice energy. Therefore, the HMBI model partitions the two-

body terms into short-range and long-range dimers based on the intermolecular distance.

The one-body and short range two-body interactions are modeled with quantum mechan-

ics. The long-range two-body interaction and the many-body interactions are treated with

molecular mechanics.

EHMBI = EQM1−body + EQMSR−2−body + EMM
LR−2−body + EMM

many−body (1.88)
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where

EMM
many−body = EMM

full − EMM
SR−2−body − EMM

LR−2−body − EMM
1−body (1.89)

With subsequent manipulations, one arrives at the final, working HMBI equation:

EHMBI = EQM1−body + EQMSR−2−body + EMM
LR−2−body

+EMM
full − EMM

SR−2−body − EMM
LR−2−body − EMM

1−body

= EMM
full +

(
EQM1−body − E

MM
1−body

)
+
(
EQMSR−2−body − E

MM
SR−2−body

)
= EMM

full +
∑
i

(
EQMi − EMM

i

)
+
∑
i<j

dij(R)
(

∆2EQMij −∆2EMM
ij

)
(1.90)

where

∆2Eij = Eij − Ei − Ej (1.91)

As noted in Section 1.5.4, one typically needs to correct for basis set superposition error

using the counterpoise correction. When doing so, the molecule energies Ei and Ej are

determined using the same “dimer” basis set as for the dimer energy Eij .

The sigmoidal function dij(R) in Eq 1.90 is used to transition smoothly between

the short-range QM and the long-range MM treatment of the two-body interactions. It is

defined by two cutoffs, c1 and c0. If the distance of the closest atoms of the molecules in

the dimers R is less than c1, dij(R) is equal to 1. If R greater than c0, dij(R) is equal to 0.
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If R is between c0 and c1,

dij(R) =
1

1 + exp
(

2|c0−c1|
(c1−R) −

|c0−c1|
R−c0

) (1.92)

The cutoffs c1 and c0 usually only differ by 1 Å. Cutoffs should be carefully chosen since

number of QM dimers increase quickly. Conservative cutoffs of 9 and 10 Å are often used.44

When determining the unit cell energy of an infinite crystal with periodic boundary con-

ditions (PBC), the energy of the full crystal is determined by Ewald summation84 and

two-body interactions between molecules inside and outside the unit cell are considered,

Eq 1.90 becomes

EHMBI = EMM
PBC +

∑
i

(
EQMi − EMM

i

)
+
∑
i<j

dij(R)
(

∆2EQMij −∆2EMM
ij

)
+

1

2

∑
i,k

dik(R)
(

∆2EQMik −∆2EMM
ik

)
(1.93)

where i and j are molecules inside the central unit cell and k are the molecules outside the

central unit cell. The two-body interaction between molecule i and molecule k is halved

because only one of the molecules that make up the dimer is in the unit cell.

The user can choose which QM and MM methods to use for the different terms in

HMBI. Typically, MP2 or CCSD(T) are used for the QM terms. Both Amoeba and AIFF

have been successfully applied for the MM terms, with the latter generally giving more

reliable results.45,85
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1.8.2 Previous Successes of HMBI Model

HMBI has been demonstrated to be a reliable method. The errors in energy

of clusters of small molecules relative to full quantum mechanics are small.86 The lattice

energy of small molecule molecular crystals were within 2-4 kJ/mol of the experimental

results when the basis set of the qm portion was extrapolated to the complete basis set and

CCSD(T) correction was used.44 HMBI has determined the lattice parameters of a series

of molecular crystals with an average RMS error of 1.6%.87 HMBI also correctly ordered

the stability of the polymorphed of oxalyl dihydrazide where other computational methods

such as disperson-corrected periodic DFT failed.16

HMBI has gone beyond just reproducing experimental results, it has also been

used to answer chemically interesting questions. HMBI was used to demonstrate the near-

degeneracy of the two polymorphs of aspirin and to explain the energetics as an interplay

between a more relaxed intramolecular conformation in form I and the improved intermolec-

ular interactions arising from the long, catemeric chains of hydrogen bonds in form II.15

HMBI was also used to explore the controversial proton-ordering in ice XV. Previous DFT

calculations suggested a ferroelectric proton arrangement (i.e. a non-zero cell dipole mo-

ment) in the unit cell, while the structure inferred from experiment had an antiferroelectric

arrangement (zero dipole moment). HMBI MP2 and CCSD(T) calculations predict that the

anti-ferroelectric structure inferred from experiment is indeed more stable, apparently con-

firming the experimental results.88 Interestingly, however, subsequent fully periodic MP2

calculations (without any fragment approximation) predict that the ferroelectric structure

is more stable,89 re-igniting the controversy. Finally, the HMBI code using a fragment-

38



based DFT method has proved very successful in predicting nuclear magnetic resonsance

chemical shifts.90,91

1.9 Outline of this Dissertation

Although HMBI has already proved useful for modeling clusters and periodic crys-

tals, there are serveral ways in which it can be improved. First, the computational effort of

HMBI is dominated by the evaluation of QM dimer contributions for the short-range two-

body interactions. As mentioned in Section 1.8.1, the number of QM dimers in a calculation

is determined by the QM/MM cutoffs. At the conservative 9 and 10 Å cutoffs, a typical

small-molecule crystal requires require hundreds for QM dimer calculations. In an extreme

case, the acetamide crystal requires approximately a thousand dimers at these cutoffs due

to the unusually high 18 monomers in the unit cell.

However, large numbers of the monomer and dimer calculations in HMBI are

redundant. Periodic crystals belong to space groups with specific symmetry operators.

Using these operators to identify symmetry equivlent dimers, we can trim the number of

expensive QM calculations required for the crystal. In the case of acetamide, exploiting

symmetry leads to a 18 fold decrease in the number of dimer calculations required. In

addition to reducing the number of dimers, employing space group symmetry reduces the

number degrees of freedom for a unit cell geometry optimization, thereby often reducing the

steps required to converge the optimization. The details of an efficient algorithm to exploit

space group symmetry in HMBI calculations are discussed in Chapter 2.92

Second, previous research using HMBI neglected consideration of finite temper-
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atures and pressures, despite their potentially significant impacts on crystal structures,

stabilities, and other properties. Pressure dependence can be added to the model relatively

easily, but accounting for thermal vibrational free energy is more challenging. In particular,

the crystal structure expands upon heating, which weakens the lattice energy and alters the

vibrational mode frequencies. To incorporate these finite-temperature effects, the HMBI

model is coupled here to the quasi-harmonic approximation which accounts for the effects

of the changing crystal structure on the phonon modes. Chapter 3 demonstrates that the

combination of high-accuracy electronic structure calculations and quasi-harmonic expan-

sion allows one to predict the structure, thermochemistry, and mechanical properties of

carbon dioxide in excellent agreement with experiment.93 Chapter 4 extends the analysis of

quasi-harmonic thermal expansion to several other small-molecule crystals.94 It particularly

examines how sigificant thermal expansion is for predicting thermochemistry accurately. Fi-

nally, Chapter 5 provides preliminary results exploring the application of these techniques

to predicting the solid phase diagram of carbon dioxide as a function of temperature and

pressure. The work in Chapters 3–5 is feasible in large part due to the symmetry algorithms

developed in Chapter 2.
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Chapter 2

Exploiting space group symmetry

in fragment-based molecular

crystal calculations

2.1 Outline

The HMBI and other fragment-based methods enable high-level ab initio elec-

tronic structure calculations in for molecular crystals. Such studies remain computationally

demanding, however. Here, we describe a straightforward algorithm for exploiting space

group symmetry in fragment-based methods which often provides computational speed-ups

of several fold or more. This algorithm does not require a priori specification of the space

group or symmetry operators. Rather, the symmetrically equivalent fragments are identified

automatically by aligning the individual fragments along their principle axes of inertia and
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testing for equivalence with other fragments. The symmetry operators relating equivalent

fragments can then be worked out easily. Implementation of this algorithm for computing

energies, nuclear gradients with respect to both atomic coordinates and lattice parameters,

and the nuclear Hessiaxn is described. For a brief review of space group symmetry, see

Section 1.7.

2.2 Introduction

Molecular crystal structure plays an important role in determining the physical and

chemical properties of a wide variety of materials, ranging from pharmaceuticals3,95,96 to

organic semiconductors.4,97–99 A given organic molecule may crystallize in several different

forms, or polymorphs. Modeling the subtle energetic differences among these polymorphs

often requires accurate quantum mechanical treatments such as those made possible through

fragment-based electronic structure methods.15–18,22,33,45,80,88,100–110

Fragment-based methods such as HMBI were discussed in Section 1.8.1. Frag-

ment approaches for molecular crystals typically decompose the energy of the total crystal

according to a many-body expansion

Ecrystal = E1−body + E2−body + E3−body + · · · (2.1)

where a one-body term involves the energy of a single molecule, a two-body term involves the

interaction between a pair of molecules, etc. Higher-order terms in this expansion grow in-

creasingly expensive computationally both because they involve larger numbers of molecules

in each fragment and because there are a combinatorial number of possible groupings of the
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fragments (e.g. many more trimers exist than dimers). For both physical reasons and prac-

tical computational efficiency, one frequently approximates the three-body and higher terms

in some fashion. For example, electrostatic embedding is often used to capture many-body

polarization effects.17,102,111 Alternatively, our hybrid many-body interaction (HMBI) ap-

proach treats the one-body and short-range two-body interactions with quantum mechanics,

while the long-range two-body and higher-order terms are approximated with a polarizable

force field.44,45,80

Even with fragmentation, accurate molecular crystal calculations can be very com-

putationally demanding,44,64 so it is important to perform these calculations as efficiently as

possible. In a fragment method like HMBI, the cost of evaluating the two-body interactions

in the crystal forms the computational bottleneck in evaluating crystal energetics, optimiz-

ing structures, or calculating harmonic vibrational frequencies. Done naively, calculating

the two-body contribution to the lattice energy from all pairs of molecules lying within 10 Å

of each other in a crystal like formamide requires evaluating some 250 dimer interactions.

However, many of these dimers are symmetrically equivalent due to the overall P21/c space

group symmetry of the crystal. Therefore, one only needs to calculate the symmetrically

unique fraction of those dimers to obtain the correct crystal energy.

Some of the most common molecular crystal space groups exhibit four symmet-

rically equivalent molecules in the unit cell, and speed-ups of four- to eight-fold are often

achievable by exploiting space-group symmetry. Other space groups have higher symmetry

factors, which can lead to even greater savings. In acetamide (R3c symmetry), for exam-

ple, there are eighteen symmetrically equivalent monomers, and can one obtain eighteen-fold
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computational speed-ups by using symmetry to eliminate the redundant dimer calculations.

In principle, one could implement tables of symmetry operators for each of the 230

space groups112 in the software handling the calculations, then specify the space group of

the crystal in question, and use the symmetry operations found in those tables to identify

symmetrically redundant calculations. Such an approach is tedious to implement, however.

Of course, one could implement symmetry for only the most common space groups,113 which

would capture a large fraction of known organic molecular crystal structures, but not all.

Sode and Hirata implemented specific space group operators for their study on hydrogen

fluoride, for example.100

This paper describes a simple alternative approach for identifying and exploiting

symmetrically equivalent monomers and dimers in a fragment-based molecular crystal cal-

culation. This approach does not require one to implement space group tables or even to

know the symmetry of the system a priori. Rather, it relies on rotating each monomer

or dimer fragment to a common orientational frame based on the principle axes of inertia,

and then testing for equivalence with other fragments. The symmetry operators relating

the equivalent fragments can be extracted straightforwardly. Once the list of symmetrically

unique monomers and dimers is known, one can compute the crystal energy readily. Ex-

ploiting the symmetry equivalences in nuclear gradients and Hessians requires slightly more

programming effort, but it can also be done.

The discussion here assumes that the calculation of the entire crystal is being

broken down into a series of monomer fragments as per the HMBI approach, and that

those fragments are then combined to form dimers. However, the ideas employed herein
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can be generalized readily to incorporate higher-order terms in the many-body expansion

(e.g. trimers) or to other fragmentation schemes.

2.3 Theory

2.3.1 Identification of symmetrically equivalent fragments

The first step of the symmetry algorithm is to generate a complete list of monomer

and dimer fragments whose quantum mechanical energies will be used to determine the total

energy of the crystal. In HMBI, this list includes all monomers in the central unit cell and

all “short-range” dimers for which the molecules are separated by less than a user-defined

cutoff radius. The dimer list contains both dimers involving two molecules in the central

unit cell as well as those involving one periodic image molecule that lies outside the unit

cell.

This list is subsequently pruned by identifying the symmetrically equivalent mono-

mers and dimers. In addition, one determines the space group symmetry operators R and

t,

q2 = Rq1 + t (2.2)

that relate the Cartesian atomic coordinates of an atom in fragment 2, q2, to the symmetri-

cally equivalent atom in fragment 1, q1 via a 3×3 rotation matrix R and a 3×1 translation

vector t.

To identify the symmetrically equivalent monomers in the central unit cell, each

molecule is translated to center-of-mass coordinates and rotated into standard nuclear ori-
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entation. That is, the monomer’s symmetric 3×3 inertia tensor is calculated according

to

I =


∑

imi(y
2
i + z2

i ) −
∑

imixiyi −
∑

imixizi

−
∑

imiyixi
∑

imi(x
2
i + z2

i ) −
∑

imiyizi

−
∑

imizixi −
∑

imiziyi
∑

imi(x
2
i + y2

i )

 (2.3)

where xi, yi, and zi are the center-of-mass Cartesian coordinates of the i-th nucleus and mi

is its mass, and the sums run over all nuclei in the monomer. The three eigenvectors of the

inertia tensor define the orthogonal principle axes of inertia, and the eigenvalues provide

the corresponding moments of inertia. The monomer is then rotated so that its axes of

inertia align with the coordinate axes.

For a general, asymmetric top with three non-degenerate moments of inertia, we

adopt the convention that the largest moment is aligned along the z-axis, the middle moment

is aligned along the y-axis, and the smallest moment is aligned along the x-axis. For a

symmetric top, the axis of inertia corresponding to the non-degenerate eigenvalue is aligned

along the z-axis. The monomer is then rotated about the z-axis until the atom with the

lowest projection into the xy-plane (in center-of-mass coordinates) lies in the xz-plane.

For a spherical top, the three moments of inertia are degenerate and cannot be used to

uniquely specify the orientation. Instead, the molecule is rotated such that one of the

multiple equivalent atoms closest to the origin lies along the z-axis, and an equivalent atom

is rotated into the xz-plane. For a linear top, the molecule is aligned along the z-axis.

Once the molecules have been oriented in this manner, symmetrically equivalent

monomers will have identical atomic coordinates to within mirror-plane reflections along

the principle axes and some small, finite numerical tolerance (e.g. 10−4 Å). Therefore, one
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can easily test pairs of monomers for symmetry equivalence.

Once a pair of symmetrically equivalent monomers is identified, the space group op-

eration relating them can be found trivially. The rotation operator mapping from monomer

1 to monomer 2, R2←1 is obtained as the appropriate product of the individual rotation

operators Ri used to rotate the individual molecules into standard nuclear orientation and

any mirror reflection operators M required to make the monomers equivalent.

R2←1 = RT
2 MR1 (2.4)

The translation operator t2←1 is simply given by the vector difference between the centers

of mass of each monomer after the rotation of monomer 1 has been performed with respect

to the origin of the global coordinate system.

The same procedure can be applied to the list of possible dimers. Degeneracies

among the moments of inertia are rare for dimers, so most dimers will be asymmetric tops.

In the end, one stores a list of symmetrically unique fragments. Exploiting space group

symmetry in fragment-based molecular crystal calculations, the degeneracy factor σ of each

symmetrically unique fragment, and the set of space group operations that generate the

symmetrically equivalent fragments from the unique one.

For crystals with high symmetry point group fragment, the symmetrical equiva-

lency between atoms on unique monomers is exploited using point group symmetry. See

Appendix A for details.
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2.3.2 Incorporating symmetry into the fragment-based HMBI model

The fragment-based quantum/classic hybrid many-body interaction approach treats

the important one- and short-range two-body interactions with quantum mechanics (QM),

while the long-range two-body and many-body interactions are treated with a classical

polarizable molecular mechanics (MM) force field,

EHMBI
total = EQM1-body + EQMshort−range 2-body + EMM

long−range 2-body + EMM
many-body (2.5)

To compute the MM terms for a periodic crystal in practice, one computes the full MM

crystal energy lattice sum (EMM
crystal), subtracts off the one-body and short-range two-body

MM interactions, and replaces them with their QM counterparts:

EHMBI
crystal = EMM

crystal +
∑
i

(
EQMi − EMM

i

)
+
∑
i<j

dij

(
∆2EQMij −∆2EMM

ij

)

+
1

2

∑
i

images∑
k

dik

(
∆2EQMik −∆2EMM

ik

)
(2.6)

In this expression, i and j correspond to monomers in the central unit cell, while k corre-

sponds to periodic image monomers. The two-body interactions are given as the difference

between the dimer energies Eij and the monomer energies Ei and Ej : ∆2Eij = Eij−Ei−Ej .

The sigmoidal function dij(R) is used to interpolate smoothly between the short-range QM

and long-range MM treatments of the two-body interactions and is defined in Ref. 45.

Having identified the set of symmetrically unique monomer and dimer fragments

as per Section 2.3.1, one needs only compute the energy for each unique fragment and
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multiply each term in the HMBI energy equation by a symmetry factor σ corresponding to

the degeneracy of that particular monomer or dimer in the crystal:

EHMBI
crystal = EMM

crystal +
∑′

i

σi

(
EQMi − EMM

i

)
+
∑′

i<j

σijdij

(
∆2EQMij −∆2EMM

ij

)

+
1

2

∑′

i

images∑′

k

σikdik

(
∆2EQMik −∆2EMM

ik

)
(2.7)

The primes on the sums indicate that they run over only symmetrically unique fragments.

In practice, the number of symmetrically unique monomers that need to be cal-

culated is reduced from the number of molecules in the full unit cell (Z) to the number of

molecules in the asymmetric unit cell (Z ′). The number of dimer calculations needed for

the energy is reduced by a factor of up to two times the number of symmetry operations in

the space group, as will be discussed in Section 2.6.

2.3.3 Crystal structure optimization

Optimizing a crystal structure with N atoms in the unit cell requires minimizing

the energy with respect to both the 3N nuclear coordinates describing the atomic positions

and with respect to the six unit cell lattice parameters (a, b, c, α, β, and γ). Imposing

symmetry on the crystal simplifies geometry optimization in two ways. First, because many

of the monomer and dimer fragments are symmetrically equivalent, one need only compute

the forces for the symmetrically unique subset. Second, symmetry imposes constraints on

the motions of the atoms—the overall space group symmetry must not be disrupted during

the optimization. In practice, this means that the length of the nuclear gradient is reduced
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from 3N to 3N(Z ′/Z) degrees of freedom.

For example, crystalline formamide (HCONH2) adopts P21/c symmetry, with four

molecules (24 atoms total) in the unit cell and 3N = 72 components in the nuclear gradient

(plus six lattice parameter terms). However, all four molecules are equivalent by symmetry

and the asymmetric cell contains only one molecule (6 atoms). Imposing space group

symmetry during the optimization reduces the length of the gradient vector four-fold, to

only 18 atomic coordinate terms (plus six lattice parameter terms). Note that if the point

group symmetry is exploited for crystals with high symmetry monomers, the gradient vector

could further be reduced. (See Appendix A) In the end, exploiting symmetry (1) reduces

the number of fragment calculations required for each force calculation and (2) reduces the

number of degrees of freedom that need to be optimized, which often reduces the number

of geometry optimization cycles required to reach convergence.

2.3.4 Symmetry in the nuclear gradient

Expressions for the HMBI nuclear gradient have been presented previously.87 Here,

those expressions are modified to include the symmetry factors σi and σij . The nuclear

gradient of the HMBI energy with respect to the l-th Cartesian coordinate of atom q on
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symmetrically unique monomer z given by,

∂EHMBI
crystal

∂qzl
=

EMM
crystal

∂qzl
+ σz

(
∂EQMz
∂qzl

− ∂EMM
z

∂qzl

)

+
∑′

i<j

σijdij

(
∂∆2EQMij

∂qzl
−
∂∆2EMM

ij

∂qzl

)

+
∑′

i<j

σij
∂dij
∂qzl

(
∆2EQMij −∆2EMM

ij

)

+
1

2

∑′

ik

σikdik

(
∂∆2EQMik

∂qzl
−
∂∆2EMM

ik

∂qzl

)

+
1

2

∑′

ik

σik
∂dik
∂qzl

(
∆2EQMik −∆2EMM

ik

)
(2.8)

The primed sums run over only symmetrically unique fragments. A detailed expression for

the gradient of the switching function dij has been provided previously.87

The two-body gradient terms in Eq 2.8 contribute only if either monomer i and/or

j (or i or k in the periodic image terms) is symmetrically equivalent to monomer z,

∂∆2Eij
∂qzl

=
∂Eij
∂qzl

− ∂Ei
∂qzl
− ∂Ej
∂qzl

(2.9)

However, an additional subtlety arises in the two-body contributions to the gradient. The

final gradient only has elements corresponding to the atoms of monomer(s) z which lie(s)

in the asymmetric unit cell. However, some of the symmetrically unique two-body con-

tributions may be calculated in terms of monomers that are nominally different from z,

but which are equivalent to it by symmetry. In those cases, one must rotate the gradient

contributions for those atoms onto the atoms of monomer z via the rotation operator Rz←i

computed in Eq 2.4. One or both monomers in the dimer may be symmetry equivalent
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to monomer z in the asymmetric cell, so contributions with respect to the atoms in each

monomer within the dimer are rotated independently (see Figure 2.1):

∂∆2Eij
∂qzl

=
∑
l′

(
∂∆2Eij
∂pil′

)(
∂pil′

∂qzl

)
+
∑
l′

(
∂∆2Eij

∂pjl′

)(
∂pjl′

∂qzl

)

=
∑
l′

Rz←ill′

(
∂∆2Eij
∂pil′

)
+
∑
l′

Rz←jll′

(
∂∆2Eij

∂pjl′

)
(2.10)

If i or j equals z, then the rotation matrix is the identity matrix. If either monomer i or j

is not symmetrically equivalent to monomer z, then the corresponding rotation matrix is a

3× 3 zero matrix.

Note that one often employs a counterpoise correction to compensate for basis

set superposition error when optimizing molecular crystals. This implies that the monomer

contributions in Eq 2.9 involve ghost basis functions and are already in the same orientation

as the dimer term. If no counterpoise correction is applied, however, one needs to ensure the

monomer and dimer contributions are rotated to the same frame before evaluating Eq 2.9.

In addition, the evaluation of Eq 2.8 also requires the analogous rotation of con-

tributions involving the gradient of the damping function dij ,

∂dij
∂qzl

=
∑
l′

Rz←ill′

(
∂dij
∂pil′

)
+
∑
l′

Rz←jll′

(
∂dij

∂pjl′

)
(2.11)

2.3.5 Symmetry in the lattice parameter gradient

Fully optimizing a crystal structure also requires minimizing the energy with re-

spect to the six unit cell lattice parameters (a, b, c, α, β, γ). Ref 87 expresses the gradient
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Figure 2.1: If monomers i and j are equivalent by symmetry to monomer z in the asymmetric
unit cell, the two-body contributions to the gradient (black arrows) from the highlighted
red atom on each monomer in dimer (i, j) must rotated onto the corresponding red atom
on monomer z.

of the HMBI energy with respect to lattice parameter u as,

∂EHMBI
crystal

∂u
=
∂EMM

crystal

∂u
+
∂E′

∂u
(2.12)

where ∂E′

∂u corresponds to the gradient of the last five terms in Eq 2.8 and u is one of the six

lattice parameters. Because there are only a handful of lattice parameters and because the

force field calculations are computationally inexpensive, we generally obtain the gradient

of the full MM crystal energy with respect to the lattice parameters,
∂EMM

crystal

∂u , via finite

difference, while ∂E′

∂u is determined analytically.

Evaluating these gradients ∂E′

∂u is easier in terms of the Cartesian components of
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the lattice column vectors v1,v2, and v3:

(v1 v2 v3) =


a b cos γ c cosβ

0 b sin γ c cosα−cosβ cos γ
sin γ

0 0 c

√
sin2 γ−cos2 α−cos2 β+2 cosα cosβ cos γ

sin γ

 (2.13)

Note that v1 lies along the global x-axis, v2 lies in the xy plane, and v3 can lie anywhere

in xyz space. Using the chain rule of differentiation, the energy gradient with respect to

the lattice parameters can be related to the gradients with respect to the unit cell vector

components vεl,

∂E′

∂u
=

3∑
ε=1

∑
l=x,y,z

∂E′

∂vεl

∂vεl
∂u

(2.14)

By definition (see Eq 2.13), three of the partial derivatives of vεl are zero(
∂v1y

∂u = ∂v1z
∂u = ∂v2z

∂u = 0
)

and can be neglected. The remaining six terms are given by (cf.

Eq 2.6),

∂E′

∂vεl
=

∑
i<j

dij
∑
q

∂qijl
∂vεl

(
∂∆2EQMij

∂qijl
−
∂∆2EQMij

∂qijl

)

+
∑
i<j

(
∆2EQMij −∆2EMM

ij

)∑
q

∂qijl
∂vεl

∂dij

∂qijl

+
∑
ik

dik
∑
q

∂qikl
∂vεl

(
∂∆2EQMik
∂qikl

−
∂∆2EQMik
∂qikl

)

+
∑
ik

(
∆2EQMik −∆2EMM

ik

)∑
q

∂qikl
∂vεl

∂dik

∂qikl
(2.15)

As before, i and j refer to monomers in the central unit cell, while k refers to a periodic

image monomer. The index qij sums over atoms in dimer (i, j), and l refers to the Cartesian
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coordinates x, y, or z. The
∂qijl
∂vεl

terms come from the chain rule,

∂E′

∂vεl
=
∑
q

∂E′

∂ql

∂ql
∂vεl

(2.16)

As described previously,87 expressing the gradients in terms of Cartesian coordinates instead

of fractional ones means that the one-body terms do not contribute to the lattice parameter

gradient, Eq 2.15. The exception are monomers belonging to high symmetry point groups.

In these cases, the coordiates of atoms of symmetrial unique monomers may adjust as lattice

parameters relax to preserve symmetry. These special cases are addressed in Appendix A.

Note that Eq 2.15 does not include any symmetry factors σij , and that the sums run

over all possible dimers instead of just the symmetrically unique ones. Employing symmetry

in the lattice parameter gradient involves capturing how the individual monomers translate

to preserve symmetry as the lattice parameters change. To do so, we first compute the

gradient contributions for the the symmetrically unique dimers (y, z) and rotate them using

the space group operators to generate the complete set of gradient contributions,

∂Eij

∂qijl
=
∑
l′

(
∂Eyz
∂pyzl′

)(
∂pyzl′

∂qijl

)
=
∑
l′

Rij←yzll′

(
∂Eyz
∂pyzl′

)
(2.17)

where Rij←yz is the rotation operator that transforms dimer (y, z) into dimer (i, j), and

qijl refers to the l-th Cartesian coordinate on atom q in dimer (i, j), and pyzl′ is defined

analogously.

In addition, to preserve symmetry while changing the lattice vectors, one must

translate the monomers appropriately (Figure 2.2). The amount of translation is determined
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Figure 2.2: Changing the unit cell lattice vectors requires translating the monomers to
preserve the symmetry equivalence of dimers (i, j) and (x, y) via rotation operator Rij←xy.

by the translation operator t in the space group operator (Eq 2.2). Accordingly, the term

∂ql
∂vεl

in Eq 2.16 is given by,

∂ql
∂vεl

=
tl
∂vεl

= l̂t (2.18)

where l̂t are the elements of the fractional coordinate representation of the translational

operator t = x̂tv1 + ŷtv2 + ẑtv2.

With all of these ingredients, the final expressions for the gradient with respect to

each lattice parameter (Eq 2.12) are computed as,

∂EHMBI
crystal

∂a
=
∂EMM

crystal

∂a
+
∂E′

∂v1x
(2.19)

∂EHMBI
crystal

∂b
=
∂EMM

crystal

∂b
+
∂E′

∂v2x
cos γ +

∂E′

∂v2x
sin γ (2.20)
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∂EHMBI
crystal

∂c
=

∂EMM
crystal

∂c
+
∂E′

∂v3x
cosβ +

∂E′

∂v3y

cosα− cosβ cos γ

sin γ

+
∂E′

∂v3z

√
sin2 γ − cos2 α− cos2 β + 2 cosα cosβ cos γ

sin γ
(2.21)

∂EHMBI
crystal

∂α
=

∂EMM
crystal

∂α
+ c

sinα

sin γ

(
− ∂E′

∂v3y

+
∂E′

∂v3z

cosα− cosβ cos γ√
sin2 γ − cos2 α− cos2 β + 2 cosα cosβ cos γ

)
(2.22)

∂EHMBI
crystal

∂β
=

∂EMM
crystal

∂β
+ c sinβ

(
− ∂E′

∂v3x
− ∂E′

∂v3y

1

tan γ

+
∂E′

∂v3z

cosβ − cosα cos γ

sin γ
√

sin2 γ − cos2 α− cos2 β + 2 cosα cosβ cos γ

)
(2.23)

∂EHMBI
crystal

∂γ
=

∂EMM
crystal

∂γ
+ b

(
− ∂E

′

∂v2x
sin γ +

∂E′

∂v2y
cos γ

)
+c

(
∂E′

∂v3y

cosα− cosβ cos γ

sin2 γ

+
∂E′

∂v3z

cos2 α cos γ + cos2 β cos γ − 1
2 cosα cosβ(3− cos 2γ)

sin2 γ
√

sin2 γ − cos2 α− cos2 β + 2 cosα cosβ cos γ

)
(2.24)

To preserve the space group symmetry, gradients with respect to any 90◦ or 120◦ lattice angle

are constrained to be zero, and gradients with respect to any equivalent lattice constants

are combined and treated as a single entry in the gradient during optimization. The steps

for constructing the lattice parameter gradient are summarize in Table 2.1.
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Table 2.1: Algorithm for computing the energy gradient with respect to lattice parameter
u. Note that the loop over dimers in step 2 includes both dimers in the central unit cell
and those involving periodic image monomers.

1) Compute
∂EMM

crystal

∂u via finite difference (while preserving symmetry)

2) Construct ∂E′

∂vεl
for each lattice vector component vεl

loop over all dimers (i, j)

generate
∂∆2EQMij

∂qijl
and

∂dij

∂qijl
from symmetrically unique dimer (x, y) via Rij←yzll′ (Eq 2.17)

compute ∂ql
∂vεl

(Eq 2.18)

increment ∂E′

∂vεl
(Eq 2.15)

end loop over dimers

3) Transform ∂E′

∂vεl
into ∂E′

∂u (Eq 2.19–2.24)

4) Compute
∂EHMBI

crystal

∂u =
∂EMM

crystal

∂u + ∂E′

∂u

2.4 Symmetry in the nuclear Hessian and finding crystal

phonons

Computing crystal phonon modes and frequencies in the harmonic approximation

requires constructing the nuclear Hessian. Here we focus on frequencies at the Γ-point,

though one can generalize this to obtain frequencies at other points in reciprocal space via

lattice dynamics.114 The Hessian is a 3N × 3N matrix, which is diagonalized to produce

three translational modes and 3N−3 phonon modes. In contrast to the gradient, one should

not use symmetry to reduce the size of the overall Hessian, as this will eliminate all but the

symmetric vibrational modes. However, one can use still symmetry to generate the full set

of one- and two-body contributions inexpensively from the symmetrically reduced set.

The second derivative of the energy with respect to the l-th coordinate on atom q
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and the m-th coordinate on atom p is given by,

∂2EHMBI
crystal

∂ql∂pm
=

∂2EMM
crystal

∂ql∂pm
+

(
∂2∆EQMi
∂ql∂pm

− ∂2∆EMM
i

∂ql∂pm

)

+dij

(
∂2∆2EQMij
∂ql∂pm

−
∂2∆2EMM

ij

∂ql∂pm

)

+
∂2dij
∂ql∂pm

(
∆2EQMij −∆2EMM

ij

)
+
∂dij
∂ql

(
∂∆2EQMij
∂pm

−
∂∆2EMM

ij

∂pm

)

+
∂dij
∂pm

(
∂∆2EQMij

∂ql
−
∂∆2EMM

ij

∂ql

)

+
∑
n=i,j

∑
k

dnk

(
∂2∆2EQMnk
∂ql∂pm

−
∂2∆2EQMnk
∂ql∂pm

)

+
∑
n=i,j

∑
k

∂2dnk
∂ql∂pm

(
∆2EQMnk −∆2EMM

nk

)

+
∑
n=i,j

∑
k

∂dnk
∂ql

(
∂∆2EQMnk
∂pm

−
∂∆2EMM

nk

∂pm

)

+
∑
n=i,j

∑
k

∂dnk
∂pm

(
∂∆2EQMnk

∂ql
−
∂∆2EMM

nk

∂ql

)
(2.25)

where

∂2∆2Eij
∂ql∂qm

=
∂2Eij
∂ql∂qm

− ∂2Ei
∂ql∂qm

− ∂2Ej
∂ql∂qm

(2.26)

Once again, rotation matrices are used to rotate the one-body and two-body con-

tributions from the symmetrically unique dimers to the various symmetrically equivalent

contributions to generate a complete set of one- and two-body contributions. In this case,

two rotation matrices are needed—one for each atomic coordinate used to differentiate the
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energy. One obtains:

∂2Ei
∂qil∂p

i
m

=
∑
l′

∑
m′

(
∂rzl′

∂qil

)(
∂2En

∂rzl′∂s
z
m′

)(
∂szm′

∂pim

)
=

∑
l′

∑
m′

Ri←zll′

(
∂2En

∂rzl′∂s
z
m′

)
Ri←zmm′ (2.27)

and

∂2∆2Eij

∂qil∂p
j
m

=
∑
l′

∑
m′

(
∂rzl′

∂qil

)(
∂2∆2Enk

∂rzl′∂s
z′
m′

)(
∂sz

′
m′

∂pjm

)

=
∑
l′

∑
m′

Ri←zll′

(
∂2∆2Enk

∂rzl′∂s
z′
m′

)
Rj←z

′

mm′ (2.28)

The one-body term (Eq 2.27) only contributes if both atoms q and p lie on monomer i. These

contributions are obtained by rotating the symmetrically equivalent contributions from

atoms r and s on symmetrically unique monomer z. The two-body term contributes only

if atoms q and p lie on monomers i and/or j, and they are equivalent to the symmetrically

unique two-body contributions from atoms r and s on monomers z and z′. Once all the

elements of the Hessian are computed, the Hessian can be mass-weighted and diagonalized

to obtain the vibrational modes.

2.5 Computational Methods

Quantum mechanical calculations were performed using a development version

of the Q-Chem software package115 with dual-basis RI-MP2116,117,117–119 and the aug-cc-

pVDZ basis set (and the corresponding density-fitting and dual basis sets).120–122 Only
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valence electrons were correlated in the MP2 calculations, and counterpoise corrections were

applied for each dimer calculation to compensate for basis set superposition errors. The

molecular mechanics calculations were performed using the Tinker 6.2 software package.123

and the AMOEBA force field.75

In the HMBI fragment calculations, the transition between QM and MM treat-

ments of the pairwise interaction energies was performed between 9–10 Å.44 Geometry

optimizations were performed using the L-BFGS algorithm124 as implemented in the open-

source DL-FIND geometry optimizer125 using hybrid delocalized internal coordinates. Em-

ploying space group symmetry increases the magnitude of individual nuclear gradient el-

ements considerably, since contributions are effectively multiplied by the number of sym-

metrically equivalent monomers in the unit cell. Therefore, the default convergence criteria

for the root-mean-square (3.0 × 10−4 hartrees/bohr) and maximum gradient element sizes

(4.5× 10−4 hartrees/bohr) were scaled up by the ratio Z/Z ′ in the space-group symmetry

optimizations.

Initial experimental crystal structures were obtained from the Cambridge Crystal-

lographic Data Center for formamide(RefCode FORMAM01),126 acetic acid(RefCode AC-

ETAC01),127 acetamide (RefCode ACEMID05),128 and imidazole (RefCode IMAZOL06).129

See Figure 2.3.

2.6 Results and Discussion

The new symmetry-exploiting algorithm was utilized to optimize the structures,

compute lattice energies, and obtain the harmonic phonons at the Γ point for crystals of
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Figure 2.3: Crystals considered here (clockwise from top left): formamide (space group
P21/c), acetic acid (Pna21), imidazole (P21/c), and acetamide (R3c).
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Figure 2.4: Simple translational symmetry reduces the number of necessary dimer calcula-
tions involving one molecule in the central unit cell and one periodic image monomer by a
factor of two.

formamide, acetic acid, acetamide, and imidazole crystals. These results are compared

against those from calculations in which only simple translational symmetry in the dimers

arising from the use of periodic boundary conditions is exploited. This provides a nice

point of comparison, since an algorithm that exploits translational symmetry in the dimers

is trivial to implement, and it reduces the number of dimers involving one molecule in the

central unit cell and one periodic image monomer by a factor of two (Figure 2.4).

The calculation of the two-body (dimer) contributions forms the bottleneck in our

crystal calculations. Calculation of the one-body and force-field terms are computationally

negligible in comparison. Therefore, the discussion here focuses only on the dimer calcula-

tions. As expected, exploiting space group symmetry produces appreciable computational

savings in computing the lattice energies compared to the translational-symmetry-only al-

gorithm.

For the crystals with four molecules (Z = 4) in the unit cell and only one molecule
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in the asymmetric unit cell (Z ′ = 1), space group symmetry reduces the number of necessary

dimer calculations by three- to four-fold. For acetamide (Z = 18 and Z ′ = 1), however,

the savings are 18-fold. The same reductions in the number of dimers is obtained when

computing the Hessian. In all cases, the computational time is reduced by essentially the

same factor due to the elimination of the redundant dimer calculations.

The reason for non-integer savings factors Table 2.2 for cases like formamide and

imidazole (both P21/c) merits further discussion. As noted above, any dimer composed of

one molecule in the central unit cell and one molecule outside it exhibits one translationally

equivalent dimer due to the use of periodic boundary conditions. Each of these dimers can

be transformed according to the symmetry operators in the space group. Therefore, the

total number of symmetrically equivalent dimers will be up to two times the number of

space group operations in the crystal.

Table 2.2: Number of individual dimer calculations required to obtain the crystal energy or
harmonic phonon modes.

Space Z / Z ′ w/ Translational w/ Space Group Savings
Group Symmetry only Symmetry Factor

Formamide P21/c 4 / 1 248 80 3.1
Acetic Acid Pna21 4 / 1 212 53 4.0
Acetamide R3c 18 / 1 990 55 18.0
Imidazole P21/c 4 / 1 212 66 3.2

In the imidazole crystal with four space group operations in P21/c, for example,

this means each symmetrically unique dimer could occur up to eight times. However, for

certain sets of dimers in the crystal, multiple distinct symmetry operations produce the

same dimer, as shown in Figure 2.5. For instance, applying either an inversion operator i
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Figure 2.5: A given imidazole dimer can exhibit up to eight-fold degeneracy, with symmetry
equivalent structures arising from the four different space group operators and two trans-
lationally equivalent versions of each operator. However, for the particular dimer circled
in blue, half the operators are redundant, and only four distinct dimers exist in the crys-
tal (labeled A, B, C, and D above). For example, the figure on the right shows that two
different operations map from dimer A (blue circles) to dimer D (red circles). Therefore,
one can obtain only 4-fold savings instead of 8-fold savings for this set of dimers. Fur-
thermore, since simple translational symmetry alone captures half those savings, exploiting
space group symmetry provides only 2-fold additional savings.
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or an identity operator I plus a translation of one unit cell length in y to dimer “A” both

produce the same dimer “B.” This cuts the potential savings from symmetry in half, to

four-fold. Translational symmetry alone would capture half of those four-fold savings. For

example, reflecting dimer “A” through the xz plan and translating it by (0, -1/2, -1/2) in

fractional coordinates produces dimer “C.” However, the same reflection combined with a

different (0, -1/2, 1/2) translation produces dimer “D.” So compared to an algorithm that

just exploits translational symmetry, using space group symmetry adds only an additional

two-fold savings instead of the four-fold savings seen for many other dimers in the crystal.

In practice, then, the non-integer savings factors listed in Table 2.2 result from having

some dimers with 4-fold savings while others have only 2-fold savings beyond translational

symmetry alone.

While the computational savings provided by space group symmetry in computing

crystals energies and Hessians are useful, exploitation of symmetry can play an even larger

role in molecular crystal structure optimization by reducing both the cost of each gradient

evaluation and by facilitating convergence of the optimization by reducing the dimensional-

ity of the optimization problem, as demonstrated by greater savings on Table 2.3 compared

to Table 2.2.

As shown in Tables 2.4 and 2.5, the structures optimized with and without space

group symmetry are very similar. The root-mean-square deviations (rmsd15
130) between the

structures obtained with and without space group symmetry range 0.03–0.07 Å, while the

differences in energy and root-mean-square deviations in the harmonic vibrational frequen-
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Table 2.3: Number of geometry optimization steps and time required to optimize crystal
structures with and without space group symmetry on 40 processor cores.

w/ Translational Symmetry only w/ Space Group Symmetry Savings
# of Steps Days # of Steps Days Factor

Formamide 60 1.8 44 0.4 4.2
Acetic Acid 59 3.9 34 0.6 6.9
Acetamide 166a 57.3a 52 1.0 57.5
Imidazole 128 11.6 62 1.7 6.7

a Optimization aborted due to slow convergence. The resulting structure lies 2 kJ/mol per
monomer higher in energy than the converged structure optimized with symmetry.

cies are small (Table 2.5). Note that the implementation of the gradients and Hessian terms

have been validated via finite difference. The small variations in the structures optimized

with and without space group symmetry arise from minor differences in the optimization

procedure and from the flatness of the potential energy surfaces. In particular, when space

group symmetry is employed, the monomers are translated at each optimization step to

preserve symmetry upon changes in the lattice parameters. This translation is unnecessary

in the symmetry-free algorithm. This means that the two optimizations take slightly differ-

ent routes toward the potential energy minimum. Furthermore, reduction in length of the

gradient with space group symmetry magnifies individual gradient elements, which affects

the optimization step size and the point at which the root-mean-square gradient change

meets the convergence criterion. Finally, the crystal energy surfaces tend to be very flat,

making it possible to converge to slightly different structures with very similar energies, as

in the cases of acetic acid and imidazole.

For acetamide, the optimization with translational symmetry converged extremely

slowly and was aborted after 166 steps and almost two months on 40 processor cores. The

resulting structure lies ∼2 kJ/mol above that of the converged structure obtained with

space group symmetry.
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Table 2.4: Comparison of crystals structures optimized at the dual-basis RI-MP2/aug-cc-
pVDZ level with and without space group symmetry. Low-temperature experimental lattice
parameters are also provided for reference.

Crystal Symmetry a (Å) b (Å) c(Å) α (◦) β (◦) γ (◦)

Formamide Translational 3.596 9.315 8.556 90.39 125.59 89.99
P21/c Space Group 3.555 9.220 8.471 90 124.53 90

Expt @ 108 Ka 3.613 9.053 8.419 90 125.39 90

Acetic Acid Translational 13.340 3.909 5.898 89.64 90.03 90.19
Pna21 Space Group 13.384 3.907 5.903 90 90 90

Expt @ 40 Kb 13.151 3.923 5.762 90 90 90

Acetamide Translational 11.647 11.642 12.936 90.29 89.77 119.70
R3c Space Group 11.676 11.676 12.957 90 90 120

Expt @ 23 Kc 11.492 11.492 12.892 90 90 120

Imidazole Translational 7.362 5.296 9.821 89.84 120.03 89.98
P21/c Space Group 7.453 5.272 9.832 90 121.00 90

Expt @ 103 Kd 7.569 5.366 9.785 90 119.08 90
a Ref 126 b Ref 127 c Ref 128 d Ref 129

Table 2.5: Difference between the lattice energies (∆E = Etrans−Espace), optimized struc-
tures (in rmsd15 values for all atoms), and vibrational frequencies (rmsd) for the structures
optimized with space group symmetry relative to those using translational symmetry only.

Crystal ∆E (kJ/mol) Structure rmsd15 (Å) Vib. Freq. rmsd (cm−1)

Formamide -0.8 0.067 6.4
Acetic Acid 0.2 0.032 1.0
Acetamide 1.9 0.037 a

Imidazole 0.1 0.052 1.9
a Vibrational frequencies for acetamide were not computed without symmetry because the

structure optimization failed to converge.
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For formamide, the combination of MP2 and the AMOEBA force field appears

to prefer a slightly symmetry broken structure, leading to a larger discrepancy between

the structures obtained with and without symmetry. In particular, it appears that the the

AMOEBA force field used for the long-range and many-body terms appears to have some

reliability issues. A complete crystal structure relaxation starting from the experimental

structure converges to a very different structure than the experimental one. However,

partially relaxing the atomic positions in a fixed unit cell for a 5–10 cycles before relaxing the

cell parameters produces the experimentally observed structures. At the HMBI MP2/aug-

cc-pVDZ + AMOEBA level, the experimental-like structures lie 3-4 kJ/mol above the

seemingly artifactual one. For the comparison structure optimization without space group

symmetry, we also observe that the AMOEBA force field contributions lead to a 0.8 kJ/mol

preference for a symmetry-broken version of the experimental structure over the symmetry-

preserving one. However, single-point energy calculations on the optimized geometries

using the more reliable ab initio force field (AIFF)45 instead of AMOEBA for the MM

terms reverse the ordering, making the correct structure optimized with symmetry the

most stable structure by more than 1 kJ/mol. In any case, these issues do not affect the

performance of the space group symmetry algorithm, which is the primary focus here.

2.7 Conclusions

A straightforward algorithm for implementing space group symmetry in fragment-

based electronic structure calculations has been described. This algorithm does not require

one to specify the symmetry operations in advance. Rather, symmetry equivalence is de-
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termined by orienting each monomer or dimer fragment in a common reference frame and

comparing their structures. The space group operators relating symmetrically equivalent

fragments can be extracted readily.

The space group symmetry algorithm has been implemented for energy, nuclear

gradient, and harmonic phonon frequency calculations. Exploiting space group symmetry

typically accelerates the evaluation of all of these quantities by a factor of several times

or more, depending on the space group. The reduction in the degrees of freedom of the

symmetry-preserving gradient often provides additional computational savings during a

structure optimization.
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Chapter 3

Predicting finite-temperature

properties of crystalline carbon

dioxide from first principles with

quantitative accuracy

3.1 Outline

In the previous work, no attempt has been made to incorperate the effects of tem-

perature or thermal expansion into the HMBI model. In fact, most electronic structure

predictions neglect temperature and/or thermal expansion. Molecular crystal structures,

thermodynamics, and mechanical properties can vary substantially with temperature, and

predicting these temperature-dependencies correctly is important for many practical ap-
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plications in the pharmaceutical industry and other fields. Neglecting temperature could

potentially lead to erroneous results. Here, we demonstrate that by combining HMBI, us-

ing large basis set MP2 and even CCSD(T), with a quasi-harmonic treatment of thermal

expansion, experimentally observable properties such as the unit cell volume, heat capacity,

enthalpy, entropy, sublimation point and bulk modulus of phase I crystalline carbon dioxide

can be predicted in excellent agreement with experiment over a broad range of tempera-

tures. These results point toward a promising future for ab initio prediction of molecular

crystal properties at real-world temperatures and pressures. Review Section 1.4.2 for an

overview of the quasi-harmonic approximation.

3.2 Introduction

Moving beyond 0 K to predict molecular crystal structures and properties at fi-

nite temperatures represents the next frontier in modeling organic materials. Instead of

predicting a multitude of potential crystal polymorphs at 0 K, can we tell a pharmaceutical

chemist if the desired drug formulation is thermodynamically favored at room temperature?

Or can we predict the polymorphic phase diagram over a broad range of temperatures and

pressures? The unexpected appearance of a new, more stable polymorph of a drug can

have dire consequences for its stability or bioavailability, sometimes even forcing the drug’s

removal from the market until a new formulation can be developed.1–3

When manufacturing a drug tablet, the rapid decompression which occurs im-

mediately after compaction of the drug powder can lead to a variety of defects or even

catastrophic failure of the tablet.131 Mechanical properties like the Young’s modulus and
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the bulk modulus of a molecular crystal provide important insights into the bulk behavior of

pharmaceutical powders during the tabletting process.95,132,133 Given that such mechanical

properties can exhibit sizable temperature dependence, can we predict them at the relevant

temperatures?

Crystal structure prediction has undergone rapid advances over the past sev-

eral decades, with a number of successful predictions in the Blind tests of Crystal Struc-

ture Prediction,7–12 improved optimization algorithms for identifying stable crystal pack-

ing motifs,134–142 and major advances in dispersion-corrected density functional theory

(DFT)20,26,29,31,32,38,42,43,69 and fragment-based electronic structure methods using the many-

body expansion15–18,21,33,44,45,50,51,77,88,104,143,144 that enable the routine application of high-

accuracy quantum mechanical methods to organic crystals. Molecular crystal lattice ener-

gies can now be predicted to within sub-kJ/mol accuracy in certain cases,77 or within a few

kJ/mol more routinely.20,31,37,38,43,45

The next generation of molecular crystal modeling needs to move beyond 0 K lat-

tice energies and structures, and predict crystal structures and properties at the finite tem-

peratures and pressures where most real-world experimental applications occur. Progress in

this direction has already been made. For example, DFT studies of high-pressure molecular

crystal phases have become routine, and Hirata and co-workers have recently predicted the

phase boundary for phase I and phase III carbon dioxide with second-order Møller-Plesset

perturbation theory (MP2).18,50,51 They have also used similar calculations to simulate

various properties and spectroscopic features in ice,22,145 carbon dioxide,21,146 and other

systems.18 Reilly and Tkatchenko used harmonic free energy estimates with many-body
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dispersion-corrected density functional theory to rationalize the experimental preference for

form I aspirin over form II.14 However, most such studies, particularly those based on ab

initio methods beyond DFT, rely on structures optimized without consideration of temper-

ature. The volume of a molecular crystal unit cell often expands by several percent between

0 K and room temperature, with substantial impacts on many crystal properties.

Capturing these finite temperature effects is challenging. Molecular dynamics and

Monte Carlo simulations provide a conceptually straightforward means of accessing these

finite-temperature properties that has proved effective for studying organic crystal free

energies/phase diagrams,139,140,147–150 and nucleation/growth151–154 at the force field level.

However, achieving the requisite accuracy in larger, non-rigid molecules with force fields

remains a major challenge. On the other hand, the comparatively high computational cost

of more accurate electronic structure methods makes extensive configurational sampling

infeasible in most cases.

Instead, we demonstrate here that coupling large-basis second-order MP2 and

coupled cluster singles, doubles and perturbative triples (CCSD(T)) electronic structure

calculations with the quasi-harmonic approximation enables one to predict a wide variety

of properties of crystalline carbon dioxide (phase I) with unprecedented accuracy. The quasi-

harmonic approximation has a long-history in materials modeling, but to our knowledge, this

study represents the first time it has been combined with electronic structure calculations

that approach the ab initio limit for molecular crystals.

Carbon dioxide is much smaller than typical organic compounds, of course. It

also exhibits weaker many-body interactions than many larger and/or polar molecules.
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Nevertheless, it makes an excellent test case for several reasons: a wealth of experimental

data exists against which the predictions can be tested, its small molecular size makes it

feasible to assess the accuracy that can be obtained with calculations which approach the ab

initio limit, and it has also been the subject of many earlier DFT34–36,155 and smaller-basis

MP2 studies.21,50,51,146

We show that extrapolated complete basis set MP2 and CCSD(T) calculations pre-

dict the crystal volume within 2%, the heat capacity within 0.2R (< 5% for T = 50–190 K),

the sublimation enthalpy within 1.5 kJ/mol, and the sublimation entropy within 2 J/mol K

(2%), all over a temperature range spanning 200 K. CCSD(T) predicts the sublimation

point of dry ice (194.7 K) to within 6 K. In contrast to previous difficulties in modeling the

bulk modulus of crystalline CO2,21 we predict both its magnitude and temperature depen-

dence in excellent agreement with experiment. Overall, the ability to achieve quantitative

accuracy for a broad spectrum of molecular crystal properties in phase I carbon dioxide

provides much cause for optimism in the future extension of finite-temperature predictions

to larger, more chemically interesting species.

3.3 Theory

To determine the structure of phase I carbon dioxide at a given temperature T

and pressure P , one minimizes the Gibbs free energy G with respect to both the atomic

positions in the unit cell and the unit cell parameters (a, b, c, α, β, γ).

G(T, P ) = Uel + PV + Fvib(T ) (3.1)
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where Uel is the internal electronic energy, PV is the pressure-volume contribution, and Fvib

represents the Helmholtz vibrational free energy contribution. This latter contribution is

expressed in terms of the harmonic phonons ωk,i evaluated at multiple k-points in reciprocal

space:

Fvib(T ) =
NA

n

∑
k

∑
i

(
}ωk,i

2
+ kbT ln

[
1− exp

(
−
}ωk,i
kbT

)])
(3.2)

where n is the number of unit cells in the supercell approximation and NA is Avogadro’s

number.

Both Uel and Fvib are computed using the fragment-based hybrid many-body in-

teraction (HMBI) model,44,45,86,87 which allows one to perform high-level MP2 and even

coupled cluster calculations on periodic systems like molecular crystals with reasonable

computational cost. The phonons at a given k-point are evaluated by constructing and

then diagonalizing the mass-weighted dynamical matrix using the supercell approach,

Dα,β

(
l, l′; k

)
=

1√
MlMl′

∑
κ

∂2UEl
∂Rα(0)∂Rβ(κ)

exp
(
−2πik · δRl,l′(0, κ)

)
(3.3)

where ∂2UEl
∂Rα(0)∂Rβ(κ) are individual elements in the supercell Hessian92,156 involving the Rα

coordinate of atom l in the central unit cell (index 0) and the Rβ coordinate of atom l′

in the unit cell with index κ, and δRl,l′(0, κ) is the displacement vector between these two

atoms. The M ’s are the atomic masses. The exponential introduces the phase shift in the

harmonic motions of the periodic image atoms relative to the atoms in the central unit cell.

Unlike conventional periodic boundary condition models, the fragment approach

used in HMBI enables these equations to be evaluated for the supercell Hessian with minimal
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additional effort beyond the normal unit cell Hessian.17,156 All the necessary supercell QM

contributions to the force constants in Eq 3.3 can be constructed from contributions already

available from the standard unit cell Hessian. The only new contribution required is the full

supercell Hessian at the MM level. This allows one to capture phonon dispersion by using a

large supercell and sampling many k-points with comparatively low additional computation

cost.

The treatment of Fvib is potentially very computational demanding, since it would

normally require many cycles of geometry optimization and a phonon calculation for each

update in the unit cell parameters. Instead, we approximate the phonons for a given crystal

volume using the quasi-harmonic approximation (QHA). The QHA relates the i-th phonon

frequency ωi at a given volume V to a reference frequency ωi,ref obtained at some reference

volume Vref via the Grüneisen parameter for that phonon mode γi,

ωi = ωi,ref

(
V

Vref

)−γi
(3.4)

where

γi = −
(
∂ lnωi
∂ lnV

)
(3.5)

Overall, then, a reference crystal structure, unit cell volume, and phonon frequencies are ob-

tained at zero temperature and pressure by minimizing Uel, and the harmonic phonon modes

are computed using lattice dynamics. Two additional rounds of geometry optimization and

phonon calculation are performed with fixed unit cell parameters at cell volumes which
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are slightly larger and smaller than Vref . Here, the cell volume was expanded/contracted

by 10 Å3, or roughly 5%. The Grüneisen parameter for each of the 3N vibrational modes

is computed via finite difference using a linear model.31 The phonon frequencies at the

different volumes were matched via maximum overlap of the phonon eigenmodes.

With the reference frequencies, reference volume, and Grüneisen parameters ob-

tained from these three optimizations and lattice dynamics phonon calculations, one can

evaluate Fvib at any given temperature and unit cell volume. That allows one to find the

crystal structure at any temperature and pressure by minimizing the Gibbs free energy

(Eq 3.1).

The sublimation enthalpy and entropy were computed as the difference between

the value found for gas and 1/4 the value found for the crystal (because there are 4 molecules

in the unit cell).

∆Hsub = Hgas −
1

4
Hcrystal (3.6)

∆Ssub = Sgas −
1

4
Svib,crystal (3.7)

Once the crystal structures were obtained as a function of temperature and pressure, its

enthalpy was computed as the sum of the electronic energy of the crystal, Uel,crystal, plus a

pressure-volume term PV and a vibrational internal energy contribution, Evib,crystal.

Hcrystal = Uel,crystal + PV + Evib,crystal (3.8)

The vibrational internal energy was determined using standard harmonic oscillator expres-
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sion.

Evib,crystal =
NA

n

n∑
k

∑
i

~ωk,i
2

+
~ωk,i

exp
(
~ωk,i
kbT

)
− 1

 (3.9)

Since phase I carbon dioxide is an ordered crystal, its configurational entropy can be ne-

glected. Its entropy can be computed from the standard vibrational expression alone.

Svib,crystal =
NA

n

n∑
k

∑
i

 ~ωk,i
T
(
exp

(
~ωk,i
kbT

)
− 1
) − kb ln

[
1− exp

(
−
~ωk,i
kbT

)] (3.10)

The gas phase was modeled using standard ideal gas partition functions. Of course, the gas

may exhibit deviations from ideality at the low temperatures considered here, but they are

hopefully not too large. The enthalpy of the gas is given as the sum of electronic (Uel,gas),

translational (3/2RT ), rotational (RT ), vibrational (Evib) terms plus an additional factor

of RT from the PV term.

Hgas = Uel,gas +
3

2
RT +RT + Evib +RT (3.11)

where Evib is defined as:

Evib,gas = NA

4∑
i

~ωi
2

+
~ωi

exp
(

~ωi
kbT

)
− 1

 (3.12)

The entropy of the gas were computed as a sum of standard rotation, translation and,

vibrational partition functions.

Sgas = Strans,gas + Srot,gas + Svib,gas (3.13)
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where the terms are defined as:

Strans,gas = R ln

[(
2πmkbT

h2

)3/2
(
kbTe

5/2

p

)]
(3.14)

Srot,gas = R ln

(
8π2eTIkb
σh2

)
(3.15)

Svib,gas = NA

4∑
i

 ~ωi
T
(
exp

(
~ωi
kbT

)
− 1
) − kb ln

[
1− exp

(
− ~ωi
kbT

)] (3.16)

Note that the symmetry factor σ in Srot is 2 for carbon dioxide.

3.4 Methods

Crystal energies were computed using HMBI. (see EQ 1.90) All QM contributions

were calculated with either density-fitted MP2116,117,157,158 or CCSD(T)159,160 in the Dun-

ning aug-cc-pVXZ basis sets (abbreviated as aXZ here)120,121 using Molpro 2012.161,162

A counterpoise correction for basis set superposition error163 was employed for each two-

body dimer calculation. The energies, gradients, and Hessian elements were all extrapo-

lated to the complete basis set (CBS) limit using a two-point TQ extrapolation of both

the Hartree-Fock164 and correlation energy contributions.165 Energies and gradients at the

CCSD(T)/CBS limit were estimated by correcting the MP2/CBS limit values with the dif-

ference between CCSD(T) and MP2, ∆CCSD(T) ≈ CCSD(T) - MP2, computed in the

aug-cc-pVDZ basis set. MP2 phonons were used to evaluate Fvib in the CCSD(T) calcu-

lations. The MM contributions were computed using the Amoeba force field and Tinker

6.3.166 Intermolecular force field parameters for CO2 were generated using Poltype version
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1.1.3.167

The relative rigidity and lack of many-body polarization effects makes carbon

dioxide a good candidate for simple, fixed charge force field models, though the impor-

tance of many-body dispersion effects has been noted.168 For comparison with the HMBI

electronic structure results, the predictions here were repeated using the empirical CO2

potential of Cygan and co-workers.169 This flexible, three-point model includes standard

harmonic stretch and bend terms, point-charge electrostatics, and Lennard-Jones disper-

sion/repulsion terms. It was particularly parameterized to reproduce vibrational spectra,

which should help it capture the phonon contributions. The carbon dioxide quadrupole

moment also proves important for modeling its solid state,170 and the point charges in this

force field generate a molecular quadrupole of -4.22 D·Å, in good agreement with the ex-

perimental value of -4.27±0.18 D·Å.171 Additional test calculations with the TraPPE force

field,172 which uses the same functional form but slightly different empirical parameters,

produced similar results (not presented here). Of course, many other CO2 potentials exist,

and a more elaborate or physical potential (e.g. Ref 173 ) might.

Substantial computational savings were obtained by exploiting the Pa3̄ space

group symmetry of phase I CO2 throughout.92 Symmetry reduces the number of two-body

dimer calculations required from ∼100 to 5–9 (depending on the pressure). As discussed

in Chapter 2, symmetry also reduces the number of degrees of freedom that must be op-

timized to only the atomic coordinates present in the symmetrically unique monomer(s).

The symmetry algrithm in Chapter 2 deminstrates how the optimization’s the degrees of

freedom of a crystal could be reduced to the coordinates of atoms on the symmetrical unique
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monomers. For crystals with molecules that belong high symmetry point groups, such as

phase I CO2, the number of degrees of freedom can be reduced further. These special cases

are outlined in the Appendix A. For carbon dioxide the number of degrees of freedom in the

geometry optimization were reduced from 42 to two: the lattice constant a and the C=O

bond length.

3.5 Results and Discussion

The next sections compare the predicted and experimental values for thermal

expansion, thermodynamic properties, and the bulk modulus. All predicted values plotted

in Figures here.

3.5.1 Thermal expansion

To begin, we predict the thermal expansion of the CO2 lattice at atmospheric

pressure by optimizing the quasi-harmonic Gibbs free energy at a series of different tem-

peratures. At 1 atm, the PV term only contributes ∼0.01 kJ/mol to the overall energy, so

it was neglected here. Figure 4.2 compares these predictions against experimental results

from Manzhelii et al,174 Krupskii et al,57 and the low-temperature fit (20–114 K) of Kee-

som and Köhler.175,176 In a small aug-cc-pVDZ basis set, MP2 substantially underbinds the

crystal, leading to a substantial over-estimation of the unit cell volume. As we approach the

complete-basis-set (CBS) limit, however the MP2 prediction improves dramatically, with

MP2/CBS underestimating the cell volume by only 2–3%. Fortuitously, the slightly smaller

aug-cc-pVQZ basis performs even better, with predicted volumes lying within ∼0.5% of
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Figure 3.1: Predicted thermal expansion of the CO2(s) unit cell compared to the experi-
mental values57,174–176 in gray.

experiment.

The errors are nearly constant across the entire temperature range. For instance,

MP2/CBS underestimates the volume by 0.5 cm3/mol (2%) at low temperatures, and this

error increases to only 0.7 cm3/mol (3%) at the sublimation point (194.7 K). Most of the

error is present already in the lowest temperature results, which suggests it largely stems

from the underlying fragment-based electronic structure treatment, rather than from the

quasi-harmonic approximation. The treatment of phonon dispersion via lattice dynamics is

also important here. Using Γ-point frequencies only causes the model to underestimate the

rate of thermal expansion noticeably as shown in Figure 3.2.

One might hope to obtain further improvements by moving beyond second-order

perturbation theory to the CCSD(T) level. However, previous work indicates that correla-
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Figure 3.2: Comparison of the MP2/aQZ thermal expansion with Γ-point only phonons
versus including phonon dispersion via lattice dynamics.

tion energy contributions beyond second-order perturbation theory are small in crystalline

CO2, with the lattice energy shifting by only ∼0.3 kJ/mol between MP2 and CCSD(T).45

Here, refining the thermal expansion predictions at the CCSD(T)/CBS level (with the free

energy computed as the sum of CCSD(T) internal energies and MP2 vibrational free energy

contributions) reduces the errors by only 0.1 cm3/mol. Nevertheless, these results show that

large-basis electronic structure calculations plus the quasi-harmonic approximation model

the temperature dependence of the carbon dioxide unit cell volume very reliably all the way

up to the sublimation point.

For comparison, the force field potential performs quite well at low temperature,
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Figure 3.3: Predicted enthalpies of sublimation at 1 atm (a) neglecting thermal expansion
and (b) with quasiharmonic thermal expansion, relative to the empirical data of Azreg-
Aı̈nou.177

predicting a cell volume that is roughly on par with the MP2/aug-cc-pVTZ calculation with

orders of magnitude lower computational cost. However, as the temperature increases, the

force field model expands the crystal volume much too rapidly.

3.5.2 Thermodynamic properties

Given the excellent treatment of thermal expansion, we next investigate the model’s

ability to predict thermodynamic properties such as the heat capacity and the enthalpies

and entropies of sublimation. Such properties are critical to determining polymorph sta-

bility at finite temperatures. For each of these properties, predictions were made with and

without the thermal expansion provided by the quasi-harmonic approximation.

Figure 3.3 plots the enthalpy of sublimation at 1 atm relative to the experimentally-

derived ∆Hsub determined by Azreg-Aı̈nou.177 Azreg-Aı̈nou derived these values using fits

to the experimentally observed heat capacity and vapor pressure data, ideal gas partition
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functions, various small corrections for gas imperfection, and other details.

The sublimation enthalpy is dominated by the crystal lattice energy. The zero-

point and thermal enthalpy corrections account for only ∼10% (at low temperature) to

∼25% or more (at the sublimation point) of the total sublimation enthalpy. Accordingly, the

sublimation enthalpy should behave similarly to the lattice energy with regard to the basis

set: Small-basis MP2 underestimates the CO2 lattice energy significantly, but using large

basis sets mostly corrects this error.44,45 As expected, small basis sets predict a sublimation

enthalpy that is too small, while MP2/aug-cc-pVQZ fortuitously predicts a sublimation

enthalpy in almost perfect agreement with experiment. Extrapolating to the complete-basis-

set limit produces a sublimation enthalpy that overestimates the experimental value by only

1.0–1.1 kJ/mol. CCSD(T)/CBS binds crystalline CO2 slightly more,45 which increases the

sublimation enthalpy further, to a value 1.3–1.4 kJ/mol too large. This accuracy is near

the limit of what is achievable with modern electronic structure theory. Errors in the

lattice energy of 1–2 kJ/mol represent a best-case scenario for practical molecular crystal

calculations,45,77 while errors of several kJ/mol are more typical.20,31,37,38,43

Figure 3.3 also highlights how the approximate treatment of anharmonicity and

thermal expansion via the quasi-harmonic approximation proves essential to capturing the

proper temperature dependence above 50 K. Without the quasi-harmonic approximation,

the theoretical calculations substantially overestimate the sublimation enthalpy at higher

temperatures. When the quasi-harmonic approximation is employed, however, the calcula-

tions obtain the correct curvature across a 200 K temperature range. Both the MP2/CBS

and CCSD(T)/CBS results predict the maximum in the sublimation enthalpy at 59 K, in
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excellent agreement with the 58.829 K reported by Azreg-Aı̈nou.177

Once again, the force field model used here performs almost as well as the MP2/aug-

cc-pVTZ results at low temperatures or when thermal expansion is neglected. However, the

exaggerated thermal expansion seen in Figure 4.2 is reflected in poor prediction of the

sublimation enthalpy at warmer temperatures.

Given the high accuracy of the MP2 and CCSD(T) sublimation enthalpy predic-

tions as a function of temperature, it is not surprising that the isochoric heat capacity,

CV , is also predicted reliably (Figure 3.4). The isochoric heat capacity of the crystal was

computed using the standard harmonic oscillator expression,

Cv =
R

n

n∑
k

∑
i

 ~ωk,i
kbT

(
exp

(
~ωk,i
kbT

)
− 1
)
2

exp

(
~ωk,i
kbT

) (3.17)

Note that CCSD(T) results are not provided because CCSD(T) phonons are unavailable.
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For the heat capacity, all models perform fairly well. Neglecting thermal expansion for-

tuitously causes small aug-cc-pVDZ basis MP2 to out-performs what should be the more

accurate large basis calculations relative to the experimental values of Krupskii et al57 and

Manzhelii et al.174 When thermal expansion is included, on the other hand, the accuracy

of the predictions does improve with increasing basis set, as one generally expects.

Similar to previously published small-basis MP2 results,21 we find that MP2 un-

derestimates the heat capacity slightly at low temperature. Errors of 1–1.5 J/mol K (0.1–

0.2R) are observed below 50 K. However, the results here perform better than the earlier

MP2 ones at moderate temperatures (e.g. ∼50–150 K), with errors typically well below 1

J/mol K (0.1R) in the range 50–150 K. At higher temperatures, the predictions begin to

deviate more noticeably from the experimental data, probably due to increased anharmonic-

ity in the phonons. This suggests that one might expect larger deviations from the correct

temperature-dependence of the sublimation enthalpy at higher temperatures. Nevertheless,

on the whole, MP2 predicts the heat capacity accurately across a fairly wide temperature

range. For comparison, the force field model behaves similarly to MP2/aug-cc-pVDZ and

aug-cc-pVTZ at low and intermediate temperatures, but it asymptotes more quickly than

the MP2 heat capacities at higher temperatures. This actually leads to a slightly better

prediction of the heat capacity near 200 K when thermal expansion is included, though the

result is somewhat fortuitous, given the problems seen earlier in the volume and sublimation

enthalpy.

Entropy also plays a critical role in phase stability. The entropy of sublimation

at the sublimation point (T=194.7 K) is well-known,178 but we are not aware of any ex-
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isting tabulation of the experimental sublimation entropy as a function of temperature.

Accordingly, we derived an empirical sublimation entropy from existing experimental data

according to:

∆Sempsub (T ) = ∆Sexptsub (194.7K)−
∫ T

194.7K

Cexptp,crystal(T )

T
dT

+ (Sgas(T )− Sgas(194.7K)) (3.18)

This expression relates the sublimation entropy at a given temperature to the experimental

value at 194.7 K plus corrections for how the entropies of the crystal and the gas change

as a function of temperature. The changes in the entropy of the crystal were computed via

integration of the experimental isobaric heat capacities,178 while the gas contributions were

evaluated using ideal gas partition functions and the experimentally determined rotational

constant179 and vibrational frequencies.180 The highest temperature for which the experi-
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Table 3.1: Predicted sublimation temperatures Tsub at 1 atm, and the corresponding en-
thalpies and entropies of sublimation at the experimental sublimation point of 194.7 K

With Thermal Expansion
Tsub ∆Hsub(194.7 K) ∆Ssub(194.7 K)
(K) (kJ/mol) (J/mol K)

Force Field 183.4 21.5 116.9
MP2/aug-cc-pVDZ 163.6 19.8 122.2
MP2/aug-cc-pVTZ 185.4 23.7 127.7
MP2/aug-cc-pVQZ 193.7 25.3 129.8
MP2/CBS 199.5 26.4 131.3
CCSD(T)/CBSa 201.4 26.6 131.3
Giauque and Egan178 194.7 25.2 129.6

No Thermal Expansion
Tsub ∆Hsub(194.7 K) ∆Ssub(194.7 K)

Force Field 172.9 24.0 139.2
MP2/aug-cc-pVDZ 157.1 21.2 135.7
MP2/aug-cc-pVTZ 179.0 24.9 139.1
MP2/aug-cc-pVQZ 187.4 26.3 140.3
MP2/CBS 193.4 27.3 141.2
CCSD(T)/CBSa 195.2 27.6 141.1
Giauque and Egan178 194.7 25.2 129.6

a Using MP2/CBS frequencies and thermal contributions.

mental isobaric heat capacities has been reported is 189.78 K. The isobaric heat capacities

at 194.7 K were linearly extrapolated to 55.51 J/mol K from the five highest temperature

values.

As shown in Figure 3.5, the quasi-harmonic treatment of thermal expansion proves

critical to obtaining the correct temperature dependence of the entropy. Without thermal

expansion, MP2/CBS overestimates the sublimation entropy above 50 K by up to 9%. In

contrast, including thermal expansion dramatically reduces the errors, predicting the subli-

mation entropy to within 1–2% throughout the 200 K temperature range. For comparison,

without thermal expansion, the force field mimics MP2/aug-cc-pVTZ. However, once ther-

mal expansion is included, the force field predicts an entropy of sublimation that decreases
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much too rapidly at higher temperatures.

Finally, the sublimation point can be predicted by combining the enthalpy and en-

tropy of sublimation to determine the temperature where ∆Gsub = 0. As shown in Table 4.3,

small aug-cc-pVDZ basis MP2 calculations underestimate the sublimation temperature by

30 K. Increasing the basis set, however, allows one to predict the experimental sublimation

temperature of 194.7 K within 5 K (MP2/CBS) or 7 K (CCSD(T)/CBS) when thermal

expansion is included. The CCSD(T) enthalpy and entropy of sublimation at 194.7 K are

predicted to within 1.2 kJ/mol (4%) and 1.7 J/mol K (1%), respectively.

If one neglects thermal expansion, CCSD(T)/CBS predicts a sublimation tem-

perature of 195.2 K, which agrees almost perfectly with the experimental temperature.

However, this accuracy results from fortuitous error cancellation—the ∆Hsub and ∆Ssub

values at 194.7 K are both 9–10% too large. The force field predicts sublimation tempera-

ture of 172.9 K without thermal expansion, or 183.4 K with thermal expansion. As before,

these values are similar to those obtained from MP2/aug-cc-pVTZ. One should note, how-

ever, that in the case where thermal expansion is included, the enthalpy and entropy of

sublimation are both underestimated considerably to produce the relatively good estimate

for the sublimation temperature.

Once again, these sublimation point predictions reiterate the importance of mod-

eling thermal expansion. More importantly, they hint toward a future where high-quality

ab initio prediction of phase diagrams as a function of both temperature and pressure may

be routine.
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3.5.3 Bulk Modulus

Mechanical properties like the bulk modulus are also of considerable interest for

many applications. To obtain the bulk modulus, one typically measures the crystal volume

as a function of pressure, and then fits the resulting data to an equation of state, treating

the isothermal bulk modulus at zero pressure (B0), its first pressure derivative (B′0), and

the unit cell volume at zero pressure (V0) as adjustable parameters. Many equations of

state exist, including the third-order Birch-Murnaghan181 and Vinet182 equations. Non-

linear least squares fits to these equations of state can be problematic, with the resulting

fit parameters being ill-constrained (i.e. a wide range of parameters produce comparably

good fits) and highly correlated.183,184 The resulting parameters depend strongly on the

reference volume at zero pressure (V0), especially when using the Birch-Murnaghan equation

of state.183 This challenge is particularly acute at room temperature, where crystalline

carbon dioxide does not exist at zero pressure, and V0 must be obtained via extrapolation

from finite-pressure volumes. Hence, considerable uncertainty surrounds the experimental

bulk modulus parameters for CO2.57,174,183–189

Theory can predict the pressure-volume data at a given temperature to fit the

equation of state, and it can predict the zero-pressure unit cell volume V0 via direct geometry

optimization. This latter feature enables one to validate the V0 obtained in a fit or even

constrain V0, if necessary, in order to extract B0 and B′0. Previous theoretical studies

have predicted a variety of bulk modulus values,21,34–36 though the difficulty in computing

these parameters reliably has been noted.21 These earlier studies either neglected thermal

expansion21,35,36 or omitted van der Waals dispersion,34,36 which is significant for CO2.35,146
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Here, we demonstrate that the combination of high-level electronic structure calculations

and a quasi-harmonic treatment predicts B0 and B′0 in excellent agreement with the best

experimental values across a wide range of temperatures.

Pressure versus volume curves were calculated by optimizing the crystal geometry

under a series of external pressures ranging from 0–10 GPa (0–20 GPa for 296 K) at 0 K,

130 K, 190 K, and 296 K under the quasi-harmonic approximation. Analogous calculations

were also performed at 0 K without the quasi-harmonic vibrational contribution Fvib. As

a representative example, Figure 3.6 compares the experimental and room-temperature

MP2/CBS predicted pressure versus volume curves with and without the inclusion of quasi-

harmonic thermal expansion. Inclusion of thermal expansion proves critical to reproducing

the experimental pressure/volume data. Differences between the curves with and without
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thermal expansion persist even at 20 GPa, where one might have hoped that the high

external pressure would obviate the need to treat thermal expansion.

For each temperature and level of theory, the values of V0, B0, and B′0 were

extracted via non-linear least squares fitting to the Vinet equation of state,

P = 3B0
(1− Ṽ )

Ṽ 2
exp

[
3

2
(B′0 − 1)(1− Ṽ )

]
(3.19)

where Ṽ = (V/V0)1/3. The Vinet equation of state fits prove much more robust than the

Birch-Murnaghan one for the CO2 P -V curves. The fits to the predicted P -V curves were

validated by performing a second set of fits in which V0 was fixed at the molar volume

obtained directly by optimizing the crystal at a given temperature and zero pressure. Both

sets of fits produced very similar volumes and bulk moduli.

Figure 3.7 compares the predicted values of B0 and B′0 obtained here to previ-

ously reported theoretical and experimental values. Without the quasi-harmonic approxi-

mation, the bulk modulus parameters obtained here are similar to earlier predictions using

MP2/aug-cc-pVTZ by Li and co-workers21 and various dispersion-corrected density func-

tional calculations.35 However, the bulk modulus shrinks several-fold upon heating to room

temperature, and the treatment of thermal expansion provided by the quasi-harmonic ap-

proximation is required to capture that.

Basis set effects are also fairly important for the bulk modulus—the MP2 B0

value increases by 30–130% (depending on temperature) from a small aug-cc-pVDZ basis

to the complete basis set limit. The pressure derivative B′0 is less sensitive to basis set.

Correlation beyond second-order perturbation theory proves relatively unimportant here.
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Figure 3.7: Experimental (gray) and predicted (colored) values of the (a) bulk modulus B0

and (b) its first pressure derivative B′0.The label “None” in the figures refers to calculations
which neglect temperature and the quasi-harmonic approximation entirely.

At 190 K, switching from MP2 to CCSD(T) increases V0 by 0.1 cm3/mol, increases B0 by

0.2 GPa, and does not alter B′0 (see Table S2 in the ESI†).

The experimental bulk modulus data exhibits considerable scatter, but the bulk

moduli B0 predicted here are consistent with most of the literature data across all tem-

peratures (Figure 3.7). Less experimental data exists for the first-pressure derivative B′0,

but values predicted here are in good agreement with the available experimental ones.

MP2/CBS overestimates the reported room temperature experimental values of B′0 by 5–

15%, but the predicted value lies within the typical experimental error bars. For instance,

the MP2/CBS predictions of B0 = 3.3 GPa and B′0 = 9.0 at 296 K are in excellent agree-

ment with the Vinet equation of state fit by Giordano et al,184 which found B0 = 3 ± 1

GPa and B′0 = 8.4 ± 0.8. The MP2 predictions are also consistent with the Vinet fits to

the Olinger186 and Liu183 experimental P -V curves reported by Giordano et al,184 which

exhibit even larger uncertainties. Moreover, the MP2 predictions compare well with exper-
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imental bulk modulus values at other temperatures, including those from Krupskii et al,57

Manzhelii et al,174 Bridgman,185 Liu,183 and Trusler.188

The experimentally obtained B0 = 6.2 GPa and B′0 = 6.1 values at 300 K reported

by Yoo et al187 are considerable outliers with respect to both our theoretical predictions

and the other experimental values. Ref 187 provides few details of the data or fitting pro-

cedure used for phase I, but their reported zero-pressure volume V0 = 25.1 cm3/mol is

substantially smaller than the values of ∼30 ±2 cm3/mol found by Giordano et al,184 31.4

cm3/mol inferred by Liu183, and 30.1 cm3/mol predicted by MP2/CBS geometry optimiza-

tion. In fact, their room-temperature V0 is smaller than the experimental volume of 25.8

cm3/mol at 6 K.57 Therefore, these bulk modulus values probably reflect a spurious fit to

the experimental data.

For comparison, the force field predicts a reasonable bulk modulus without tem-

perature or at 0 K (where only zero-point effects are included), but it exaggerates the

thermal expansion and predicts that the bulk modulus decreases much more rapidly with

temperature than experiments or the MP2 calculations indicate. Similarly, the first pressure

derivative of the bulk modulus is overestimated and increases too quickly with temperature

in the force field model. Note too that at 296 K, the CO2 crystal proved unbound with the

force field model, and no reasonable fit could be found to the Vinet equation of state.

In the end, the electronic structure results here demonstrate that theory can pro-

vide a powerful tool for predicting properties such as the bulk modulus, which can be

difficult to extract reliably from experiment. The calculations here provide support for the

room-temperature bulk moduli obtained by Giordano et al and others, while simultaneously
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suggesting that some reported values are unlikely. Furthermore, theory can be used to iden-

tify a plausible experimental zero-pressure volume, which is often a key step in extracting

bulk modulus parameters from experiment. Finally, the treatment of thermal expansion

proves critical to predicting the correct the temperature-dependence of the bulk modulus

parameters.

3.6 Conclusions

In summary, we are rapidly transitioning into an era where electronic structure

theory can directly predict a wide range of experimentally observable molecular crystal prop-

erties under practical temperature and pressure conditions. As shown here, the combination

of accurate electronic structure theory calculations and a quasi-harmonic treatment of ther-

mal expansion enables one to predict crystal structures, thermodynamics, and mechanical

properties for phase I carbon dioxide in excellent agreement with experiment. While the

simple force field considered here behaves very well at low temperatures and predicts results

on roughly par with those from MP2/aug-cc-pVTZ, the electronic structure calculations

provide substantially improved agreement with experiment at higher temperatures.

The performance of the quasi-harmonic approximation seen here does start to

degrade at higher temperatures, so it remains to be seen how well it performs in larger

crystals which are stable at room temperature and above. Still, the excellent performance

seen here up to 200 K (or room temperature for the bulk modulus) for carbon dioxide

provides considerable cause for optimism. Of course, the increased anharmonicity found

in larger, more flexible organic molecules will also create new challenges for the simple
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quasi-harmonic approximation used here.

The quantum mechanical calculations here are made feasible by fragment-based

electronic structure methods, which make MP2 and even coupled cluster calculations com-

putationally affordable for molecular crystals. Although the extrapolated complete-basis

MP2 and CCSD(T) calculations employed on CO2 here would be much more computa-

tionally challenging for a pharmaceutical crystal, in many cases one can probably obtain

useful predictions using a lower level of theory. MP2/aug-cc-pVTZ already predicts many

of the properties in reasonable agreement with experiment, albeit with several-fold less

computational effort than the larger-basis results. It may provide a useful level of theory

for modeling crystals of larger molecules. Continuing algorithmic developments and de-

creasing costs of computer hardware will hopefully make finite-temperature predictions on

chemically interesting organic molecular crystals routine in the near future.
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Chapter 4

How important is thermal

expansion for predicting molecular

crystal structures and

thermochemistry at finite

temperatures?

4.1 Outline

Molecular crystals expand appreciably upon heating due to both zero-point and

thermal vibrational motion, yet this expansion is often neglected in molecular crystal mod-

eling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid
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many-body interaction calculations to predict thermal expansion and finite-temperature

thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid, and imidazole.

Fragment-based second-order Møller-Plesset perturbation theory (MP2) and coupled clus-

ter theory with singles, doubles and perturbative triples (CCSD(T)) predict the thermal

expansion and the temperature dependence of the enthalpies, entropies, and Gibbs free

energies of sublimation in good agreement with experiment. The errors introduced by ne-

glecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free

energy. The resulting ∼1–2 kJ/mol errors in the free energy near room temperature are

comparable to or smaller than the errors expected from the electronic structure treatment,

but they may be sufficiently large to affect free energy rankings among energetically close

polymorphs.

4.2 Introduction

Molecular crystals occur in pharmaceuticals, organic semiconductor materials, and

many other areas of chemistry. The molecular packing in a crystal has substantial impacts

on its properties. Polymorphism, or the tendency for a given molecule to adopt multi-

ple distinct packing motifs, provides excellent examples of this phenomenon. Estimates

suggest that at least half of organic crystals exhibit multiple polymorphs.191 Undesirable

pharmaceutical polymorphs can exhibit reduced bioavailability,1–3,192 while at other times

alternative crystal forms may be targeted for their improved physical properties.

Computational chemistry plays an increasingly important role in predicting crys-

tal structures, phase diagrams, spectroscopic observables, mechanical properties, and other
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molecular crystal properties that can help characterize crystals or identify potential new

forms. Particular attention in recent years has been focused on crystal structure predic-

tion.6–8,12,13,193 The most stable crystal structures exhibit the lowest free energies. However,

rankings based on lattice energies, which neglect both thermal and vibrational zero-point

energy effects, are often used as proxy for free energy. Twenty years ago, Gavezzotti and

Filippini194 argued that the free energy contributions arising from room-temperature lattice

vibrational entropy are generally smaller than the enthalpic differences between polymorphs.

More recently, Nyman and Day30 surveyed 508 sets of polymorphic crystals and

found that the harmonic vibrational free energy contributions at 300 K often contribute ∼1

kJ/mol or less to the relative stabilities among polymorphs. Though the vibrational free

energy contribution is small, they observed that it frequently opposes the lattice energy

difference, which suggests that it will eventually lead to an enantiotropic phase transition

at some temperature (unless the crystal melts first). Indeed, in almost 10% of the cases

they considered, free energy rankings at room temperature predict a different polymorph

stability than the one inferred from the lattice energy. Such observations are consistent with

the frequency with which temperature-dependent transitions between polymorphs occur

experimentally.

Many examples where vibrational zero-point and free energy contributions fea-

ture in the context of polymorphism can be found in the literature, including glycol and

glycerol,195 pyridine,196 glycine,197 co-crystals of urea and acetic acid,198 and aspirin.14 In

aspirin, for instance, the two polymorphs are predicted to be virtually degenerate in lattice

energy, but the free energy appears to favor form I.14 A couple groups considered the impact
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of free energy ranking in the fourth blind test of crystal structure prediction, though the

free energy contributions did not significantly revise the lattice energy rankings in those

particular crystals.8

Temperature also plays an important dynamical role in molecular crystals. Ther-

mal averaging over lattice energy minima often effectively reduces the number of minima

on the free energy surface.199 Metadynamics studies on benzene,139 5-fluorouracil,140 and

pigment red 179200 each demonstrate a reduction from many lattice energy minima to a

smaller number of free energy minima, though the extent of reduction varies widely with

the nature of the system.199

Finite temperature effects on crystal properties are not limited to thermochem-

istry. For example, crystals typically expand upon heating, which affects the electronic

coupling and non-local electron-phonon coupling in organic semi-conductors. Shifting the

intermolecular separation between two adjacent anthracene molecules taken from the crys-

tal can alter the transfer integral by ∼30%, for example.201 Thermal expansion also narrows

the valence and conduction bandwidths in organic semiconductor materials like pentacene

and rubrene.202

All of these examples demonstrate the potential importance of accounting for fi-

nite temperature and computing free energies instead of lattice energies when modeling

molecular crystals. However, even studies that do estimate finite-temperature free energies

often do so using a fixed-cell harmonic approximation based on the minimum electronic en-

ergy structure, ignoring thermal expansion of the crystal. This is especially true when the

molecular crystals are modeled using computationally expensive electronic structure meth-
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ods instead of classical force fields. Thermal expansion alters many crystal properties. For

example, expansion-induced softening of the low-frequency intermolecular lattice phonon

modes will increase the magnitude of the entropic contributions. This raises the question:

How significant are thermal expansion effects in predicting molecular crystal properties at

finite temperatures?

Modeling thermal expansion requires minimizing the crystal structure at a given

temperature with respect to the free energy instead of the more readily computed electronic

energy. Using conventional molecular dynamics and/or free energy sampling techniques is

generally computationally prohibitive when using quantum mechanical techniques. Instead,

the quasi-harmonic approximation provides a computationally practical alternative to free

energy sampling techniques.52,203–205 It assumes that anharmonicity in the crystal arises

primarily from the intermolecular expansion. It approximates the crystal volume depen-

dence of the harmonic phonon frequencies in terms of a reference set of phonons and a set

of Grüneisen parameters which describe how those phonon frequencies change with volume.

Despite its simplicity, the quasi-harmonic approximation provides a useful tool for

investigating how the unit cell volume and other properties of small-molecule crystals vary

as a function of temperature (though it does not address the dynamical thermal averaging

aspects mentioned earlier). In a recent study on crystalline carbon dioxide (phase I),93 we

demonstrated that a quasi-harmonic treatment of thermal expansion at the complete-basis-

set (CBS) limit second-order Møller-Plesset perturbation theory (MP2) or even coupled

cluster singles, doubles, and perturbative triples (CCSD(T)) level of theory accurately cap-

tures the ∼10% volume expansion that occurs between the minimum electronic energy
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structure and the structure near the 194.7 K sublimation point. The same model also al-

lows one to predict the sublimation enthalpy and entropy and the room-temperature bulk

modulus in excellent agreement with experiment. In contrast, neglecting thermal expansion

introduces appreciable errors in the predicted thermochemistry and mechanical properties.

These high-level calculations in a periodic crystal are made feasible using the fragment-based

hybrid many-body interaction (HMBI) model,44,86,144 which combines a QM treatment of

the intra- and dominant intermolecular interactions with a classical molecular mechanics

(MM) treatment of the weaker interactions.

Here, we extend the previous study by comparing predictions of finite-temperature

properties in several different small-molecule crystals: carbon dioxide, ice Ih, the orthorhom-

bic polymorph of acetic acid, and the α polymorph of imidazole. These relatively simple

crystals were chosen because they exhibit a variety of intermolecular packing interactions,

they have a experimental data available at various different temperatures, and they are small

enough to enable relatively high-level electronic structure methods to be employed. The

absence of appreciable conformational flexibility in these small molecules provides a best-

case scenario for the quasi-harmonic approximation, since any changes in the intramolecular

structures with temperature will be small.

In the following sections, we first examine the extent of thermal expansion that

occurs in each crystal due to zero-point and thermal contributions. The degree of expansion

observed varies with the types of intermolecular interactions found in the different crystals.

Second, we evaluate the performance of fragment-based electronic structure models with and

without quasi-harmonic expansion for predicting the enthalpies, entropies, and Gibbs free
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Figure 4.1: Clockwise from top left: Structures of phase I carbon dioxide, ice Ih, α imidazole,
and orthorhombic acetic acid.

energies of sublimation for these crystals over a range of temperatures. The predictions are

assessed against experimental data or empirical results derived from experiment. Finally,

we investigate the importance of electronic structure method and basis set on predicting

these properties correctly, and we attempt to decouple effects of the model chemistry on

the structure optimization/phonon calculation from those on the lattice energy evaluation.
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4.3 Theory

4.3.1 Quasi-harmonic structure optimization

The structure of a crystal at a given pressure and temperature is determined by

minimizing the Gibbs free energy,

G(T, P ) = Uel + PV + Fvib(T ) (4.1)

with respect to the atomic coordinates and unit cell lattice parameters. In this equation,

Uel is the internal (electronic) energy, PV is the pressure/volume contribution, and Fvib is

the Helmholtz vibrational free energy.

The electronic energy Uel is determined using the fragment-based hybrid many-

body interaction (HMBI) model.44,45,86,87 The HMBI model combines a QM treatment

of the individual molecules in the unit cell (1-body terms) and their short-ranged pairwise

interactions (SR 2-body terms) with an MM polarizable force field treatment of longer-range

(LR 2-body terms) and many-body intermolecular interactions,

Uel = EQM
1-body + EQM

SR 2-body + EMM
LR 2-body + EMM

many-body (4.2)

In practice, the short-range two-body QM terms capture interactions between molecules

inside the unit cell and the nearby periodic image cells, while the long-range two-body MM

terms are handled via Ewald summation.

The Helmholtz vibrational free energy Fvib(T ) is derived from standard harmonic
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oscillator vibrational partition function expressions obtained from statistical mechanics. It

includes both zero-point energy and thermal contributions to the free energy:

Fvib(T ) =
Na

ktotal

ktotal∑
k

∑
i

~ωk,i
2

+ kBT ln

[
1− exp

(
~ωk,i
kBT

)]
(4.3)

where ktotal the total number of k-point. Evaluating Fvib(T ) requires knowledge of the har-

monic vibrational frequencies for the current unit cell. In principle, this requires optimizing

the atomic positions with fixed lattice parameters followed by computing the phonon fre-

quencies via lattice dynamics. Unfortunately, that repeating that process for each step in

a free-energy minimization is very computationally demanding.

Instead, the i-th vibrational frequency ωk,i at a particular unit cell volume V

and k-point k is estimated relative to a reference harmonic frequency ωrefk,i computed at a

reference unit cell volume Vref according to the quasi-harmonic approximation. The quasi-

harmonic approximation defines the change of the i-th vibrational frequency with respect

to unit cell volume according to a Grüneisen parameter γk,i,

γk,i =
∂ωk,i
∂V

(4.4)

Integrating Eq 4.4 gives,

ωk,i = ωrefk,i

(
V

V ref

)−γk,i
(4.5)

Here, the reference volume and frequencies are obtained via optimizing the crystal unit

cell with respect to the electronic energy Uel. The Grüneisen parameters are determined

via finite difference, using two additional structure optimizations and vibrational frequency
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calculations performed in fixed unit cells that have been expanded or compressed by a small

amount.

The vibrational modes computed for a particular unit correspond to the zone-

center (k 6= 0) phonons. However, phonon dispersion at k 6= 0 can play an important role.

The phonon modes at a given k-point are evaluated via lattice dynamics,114 which involves

the construction and diagonalization of the mass-weighted supercell dynamical matrix,

D̂α,β(l, l′,k) =
1√

MlMl′

∑
κ

∂V

∂Rα(0)∂Rβ(κ)
exp

(
−2πik · δRl,l′(0, κ)

)
(4.6)

where ∂V
∂Rα(0)∂Rβ(κ) is an element of the supercell Hessian between coordinate α(0) of atom

l in the central unit cell and coordinate β(κ) of atom l′ in periodic image cell κ. δRl,l′(0, κ)

is the distance between atom l and l′.

A major advantage a fragment-based methods like HMBI or the binary interaction

model17 have over more traditional models like periodic DFT or periodic MP2 is that the

construction of the lattice dynamics supercell Hessian requires little additional computa-

tional cost compared to the standard unit cell Hessian. For HMBI, all the necessary QM

contributions to the supercell Hessian are already available in the standard unit cell Hes-

sian. The Hessian contributions arising from a monomer or a short range dimer two-body

interactions in the standard Hessian can be transposed onto the translationally equivalent

dimer in the supercell Hessian according to the periodic symmetry of the lattice. The only

additional HMBI contribution needed is the MM supercell Hessian, which requires mini-

mal additional computational effort compared to the cost of evaluating the QM two-body

Hessian contributions.
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4.3.2 Thermochemistry

Once the crystal structures and vibrational frequencies are known at a given tem-

perature and pressure, one can compute other thermodynamic quantities. Here, we predict

enthalpies, entropies, and Gibbs free energies of sublimation for comparison with experi-

ment. These are computed as the enthalpy, entropy, or free energy difference between the

gas and solid, with the solid contribution normalized according to the number of molecules

n in the unit cell:

∆Hsub = Hgas −
1

n
Hsolid (4.7)

∆Ssub = Sgas −
1

n
Ssolid (4.8)

∆Gsub = Hsub − T∆Ssub (4.9)

The enthalpy of the solid is computed from the electronic energy plus the PV term

and the vibrational energy Uvib

Hsolid = Uel,solid + PV + Uvib,solid (4.10)

The harmonic vibrational energy is determined from the standard vibrational statistical

mechanics equation,

Uvib,solid =
NA

ktotal

ktotal∑
k

∑
i

~ωk,i
2

+
~ωk,i

exp
(
~ωk,i
kBT

)
− 1

 (4.11)

The entropy of the solid is determined from its standard vibrational statistical mechanics
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equation plus the configurational entropy

Ssolid = Ssolid,vib + Sconf (4.12)

Ssolid,vib =
NA

ktotal

ktotal∑
k

∑
i

 ~ωk,i
T
(

exp
(
~ωk,i
kBT

)
− 1
) − kB ln

[
1− exp

(
~ωk,i
kBT

)] (4.13)

For most crystals considered here, the configurational entropy Sconf is set to zero. However,

the intrinsic proton disorder in ice Ih produces a non-zero configurational entropy ofR ln
(

3
2

)
according to the Pauling model.206

The gas phase is modeled as an ideal gas, with the enthalpy written as the sum of

the electronic energy, the translational and rotational, and vibrational energy plus a factor

of RT from the PV term.

Hgas = Uel,gas + Utrans,gas + Urot,gas + Uvib,gas +RT (4.14)

The translational energy (Utrans,gas) is equal to 3
2RT . The rotational energy (Utrans,gas)

is equal to RT for carbon dioxide (linear molecule) and 3
2RT for all other compounds

considered here. The vibrational energy contribution (Uvib,gas) is given by,

Uvib,gas = NA

∑
i

~ωi
2

+
~ωi

exp
(

~ωi
kBT

)
− 1

 (4.15)

The gas phase entropy is the sum of the vibrational entropy (Srot,gas), translation entropy
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(Strans,gas), the rotational entropy (Srot,gas)

Sgas = Svib,gas + Strans,gas + Srot,gas (4.16)

Like the solid, the gas phase vibrational entropy is determined from the standard harmonic

oscillator model,

Sgas,vib = NA

∑
i

 ~ωi
T
(

exp
(

~ωi
kBT

)
− 1
) − kB ln

[
1− exp

(
~ωi
kBT

)] (4.17)

The translation entropy is based on the ideal gas model,

Sgas,tran = R ln

[(
2πMkBT

h2

) 3
2

(
kBT exp

(
5
2

)
P

)]
(4.18)

The rotation of carbon dioxide is modeled as a linear ideal gas molecule,

Sgas,rot,CO2 = R ln

(
8π2eTIkB

σh2

)
(4.19)

For all other molecules considered here, the rotational entropy was modeled according to

the standard ideal gas rotational entropy expression for a non-linear polyatomic molecule,

Sgas,rot = R ln

(512π7T 3e3k3
BIAIBIC

) 1
2

σh3

 (4.20)

where the I’s are the moment of inertia. The number of symmetrical rotations (σ) is 2 for

carbon dioxide and water and 1 for acetic acid and imidazole.
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4.4 Computational Methods

Four crystals are considered here: ice Ih, carbon dioxide (phase I), acetic acid

(ambient-pressure orthorhombic phase), and imidazole (α polymorph). The initial acetic

acid and imidazole structures were taken from the Cambridge Structure Database (RefCodes

ACETAC01127 and IMAZOL06,129 respectively). The initial ice structure used the dipole-

free 16-molecule supercell obtained from Ref 207. All structures reported for carbon dioxide

here were obtained previously93 using the same quasi-harmonic techniques described here.

Electronic energies were calculated using the HMBI fragment approach. Sub-

stantial computational savings were achieved for acetic acid (Pna21 symmetry), imidazole

(P21/c) and carbon dioxide (Pa3̄) by exploiting space group symmetry for the energy, gra-

dient, and Hessian evaluations.92 Specific analysis of the symmetry for these crystals have

been presented previously.92,93 Ice exhibits P1 symmetry due to its disordered proton ar-

rangement, which means that only basic translational symmetry arising from the periodic

supercell can be exploited.

For structure optimizations and phonon frequency calculations, the QM contribu-

tions in HMBI were evaluated using the counterpoise-corrected163 density-fitted MP2116,117,157,158

and Dunning aug-cc-pVXZ (abbreviated to aXZ) basis sets120,121 as implemented in Mol-

pro 2012.161,162 Molpro uses analytical MP2 nuclear gradients, while the Hessian elements

were computed via finite difference of the gradients. Complete-basis-set (CBS) limit MP2

results were obtained using the standard two-point extrapolation models.164,165 In some

cases, calculations at the estimated CCSD(T)/CBS limit were also performed. For single-

point energies or geometry optimizations, this was done using a focal point method which
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combined MP2/CBS results with a correction for the difference between MP2/aDZ and

CCSD(T)/aDZ. For CCSD(T)-level quasi-harmonic optimizations in carbon dioxide, the

reference phonon frequencies and Grüneisen parameters were approximated using the val-

ues obtained at the MP2/CBS limit. See Ref 93 for details.

During the structure optimization and lattice dynamics calculations, the HMBI

MM contributions were computed with the Amoeba polarizable force field75,208 and Tin-

ker 6.3.166 Force field parameters for carbon dioxide were computed using Poltype167 as

described in Ref 93. A subsequent set of single-point energy refinements reported here re-

place the MM contribution with one evaluated using our ab initio force field (AIFF).45,72,85

The AIFF includes multipolar two-body electrostatics (up to hexadecapole), many-body

polarization, two- and three-body dispersion. These contributions are represented in terms

of distributed multipoles, distributed polarizabilities, and distributed dispersion coefficients

which are computed using asymptotically corrected PBE0 density functional theory and

aug-cc-pVTZ basis with CamCasp 5.6.209

For each crystal, the following steps were repeated with each electronic structure

method/basis set combination:

1. The crystal structure was first optimized with respect to the HMBI electronic energy

using a given method/basis set and Amoeba MM terms. Phonons were computed at

the same level of theory using lattice dynamics with a 3×3×3 supercell and a 3×3×3

Monkhorst-Pack k-point grid. These calculations provide the initial structure, refer-

ence unit cell volume V ref , and reference frequencies ωrefk,i used in the quasi-harmonic

approximation. Gas-phase molecules were optimized using the same electronic struc-
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ture method and basis set as the crystal.

2. Grüneisen parameters (Eq 4.4) were obtained via finite difference between phonon

frequencies obtained at two distinct unit cell volumes. Specifically, the optimized unit

cells from Step 1 were separately expanded and contracted isotropically by 10 Å3. For

each of these new unit cell dimensions, the atomic coordinates were relaxed subject

to fixed lattice parameters. Lattice dynamics phonon calculations were performed

on each optimized structure. Overlap of the normal mode eigenvectors was used to

ensure proper assignment of the frequencies between the two structures in the finite

difference.

3. Quasi-harmonic Gibbs free energy optimizations were then performed for each species

at each of several different temperatures. These calculations allow the unit cell to

relax due to zero-point energy and thermal expansion. The vibrational free energy

contribution to the crystal was estimated as a function of temperature and unit cell

volume according to Eqs 4.3 and 4.5. A pressure of 1 atm was used in all cases. The

PV term is negligible in the solid at this pressure and was omitted, but it was included

in the gas-phase free energies.

4. For each temperature, the enthalpies, entropies, and Gibbs free energies of sublimation

were computed at the same level of theory using the structures and quasi-harmonic

frequencies obtained from Step 3.

5. A second set of enthalpies of sublimation was computed for each geometry from

Step 3 in which the single-point electronic energy contributions (e.g. Uel in Eq 4.1)
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is computed using CCSD(T)/CBS QM and AIFF MM. Comparing these single-point

enthalpies at the same, high level of theory using geometries obtained with differ-

ent basis sets helps decouple the effects of crystal structure and electronic structure

method/basis set on the predicted enthalpies of sublimation.

6. Finally, the volumes, enthalpies, entropies, and Gibbs free energies were also evaluated

without the quasi-harmonic approximation (denoted “No QHA” in figures and tables).

In this case, the electronic energy optimized structures and the reference phonon

frequencies from Step 1 are assumed not to change with temperature when evaluating

the various statistical mechanics expressions in Section 4.3.2.

The specific electronic structure methods and basis sets applied to each of the

four crystals depends on the computational cost. For carbon dioxide, the small size of the

molecule and high symmetry in the phase I crystal enabled geometry optimizations using

up to MP2/CBS and even the estimated CCSD(T)/CBS limit. Despite the absence of

useful symmetry in ice Ih, the small size of water molecules enabled optimizations up to the

MP2/CBS limit. Post-MP2 corrections to the ice lattice energy and lattice constants are

small,44,107 so coupled cluster calculations were not performed on that crystal. Due to their

larger molecular sizes, the acetic acid and imidazole crystal optimizations were performed

using only the smaller aDZ and aTZ basis sets.

4.5 Results and Discussion

The following sections examine the convergence of the predicted molar volume,

enthalpy of sublimation, and entropy of sublimation for each of the four crystals both with
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respect to the method/basis set and relative to experiment. Experimental molar volumes

were obtained directly from the literature. The enthalpies and entropies of sublimation were

mostly derived empirically using experimental data found in the literature, as described in

the Appendix B.

Experimental uncertainties were not reported for many of the individual contri-

butions used to derive the enthalpies and entropies of sublimation. For enthalpies of sub-

limation, it is not unusual to find values reported in the literature that differ by several

kJ/mol. For instance, the ∆Hsub values reported for imidazole by Chickos and Acree210 in

the vicinity of room temperature vary from ∼75–85 kJ/mol. Even if one discards the largest

outlier (74.5 kJ/mol), the remaining values span a 5 kJ/mol range. Appreciable errors are

also likely for the empirical entropies of sublimation.

Finally, note that the some of the carbon dioxide data reported here comes from

an earlier publication, while other data is new. Specifically, the volumes in Figure 4.2,

sublimation enthalpies in Figure 4.3a, and sublimation entropies in Figure 4.4a have been

reported previously,93 while the CCSD(T)/CBS + AIFF enthalpies in Figure 4.3b and

sublimation temperatures in Table 4.3 are new here. The data for the other three crystals

is reported here for the first time.

4.5.1 Molar Volumes

The predicted molar volumes of each crystal were computed as a function of tem-

perature using several different electronic structure method/basis set combinations. These

results are compared against the corresponding experimental data in Figure 4.2. The “No

QHA” data in Figure 4.2 refers to the structures obtained by minimizing the electronic
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Table 4.1: Percent molar volume expansion arising from the zero-point vibrational energy
and thermal vibrational contributions. Percentages are reported relative to the electronic
energy minimized structure (no QHA).

Crystal Structures Tmax Zero-Pointa Thermalb Total

Carbon Dioxide CCSD(T)/CBS 190 K 2.9% 7.6% 10.5%
Ice MP2/CBS 265 K 3.3% 2.1% 5.4%
Acetic acid MP2/aTZ 278 K 2.1% 5.6% 7.7%
Imidazole MP2/aTZ 283 K 2.1% 4.2% 6.3%

a Expansion between the structures optimized at 0 K with and without quasi-harmonic
zero-point vibrational energy.
b Quasi-harmonic thermal expansion occurring between 0 K and Tmax.

energy instead of the quasi-harmonic Gibbs free energy.

Experimental temperature-dependent volume data for carbon dioxide and ice were

obtained from Refs 57 and 58, respectively. Experimental volumes for acetic acid at 40 K

(RefCode ACETAC07),211 83 K (ACETAC02),127 133 K (ACETAC03),212 and 278 K (AC-

ETAC01)127 were found in the Cambridge Structure Database. Experimental volumes

for imidazole were similarly obtained at 103 K (IMAZOL06),129 123 K (IMAZOL04),213

173 K (IMAZOL14),214 and room temperature.213,215,216 The Cambridge database contains

three different room-temperature structures for imidazole: 55.18 cm3/mol (IMAZOL05),

54.41 cm3/mol (IMAZOL10), and 55.23 cm3/mol (IMAZOL13). All three values are re-

ported here.

Before studying the performance of various models in detail, we examine broad

trends associated with the thermal expansion. Table 4.1 summarizes the predicted percent

expansions using the highest-level model chemistry reported for each crystal. First, we ob-

serve that ice expands the least (5.4%), while carbon dioxide expands the most (10.5%). The

6–8% percent expansion for the other two crystals lies in between these two extremes. These

expansion trends can be rationalized based on the crystal packing. Carbon dioxide is held
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together primarily by relatively weak quadrupolar and van der Waals interactions, which

allow for substantial expansion. In contrast, the strong three-dimensional hydrogen bond

network in ice inhibits thermal expansion. The other two crystals exhibit one-dimensional

hydrogen-bonded chains. Thermal expansion is hindered along the hydrogen bond chain

directions, but it occurs more readily in directions orthogonal to the chains.

Second, Table 4.1 decomposes the total expansion into the portion which occurs

solely due to zero-point vibrational energy (ZPVE) and the portion which arises from the

finite-temperature contributions. The former is the difference between the volumes of the

electronic energy minimized structures (“No QHA”) and the 0 K structures. The latter

reports the expansion between the 0 K and maximum temperature structures considered.

The expansion behaviors of the four crystals are also evident in Figure 4.2. In all cases, zero-

point vibrational energy drives a substantial fraction of the overall expansion. In ice, 60%

of the overall expansion occurs due to zero-point energy. Zero-point expansion represents a

smaller fraction of the overall expansion in the other three crystals, but it still amounts to

almost a third of the total expansion.

Next, we focus on the detailed performance of the models for individual crystals.

We previously93 examined the thermal expansion of phase I carbon dioxide using basis sets

of increasing size up to the MP2/CBS and CCSD(T)/CBS levels. These results are repeated

in Figure 4.2a for comparison with the other three crystals. The predicted MP2/aDZ mo-

lar volume is significantly too large at low temperatures, and that it expands too quickly

compared to the experimental crystal. Increasing the basis set toward the CBS limit de-

creases the volume for all temperatures, improving the agreement with experiment. In the
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Figure 4.2: Predicted thermal expansion of crystalline carbon dioxide, ice, acetic acid, and
imidazole. The “No QHA” volumes were obtained via conventional minimization of the
electronic energy.

CBS limit, MP2 underestimates the low-temperature volume, and this is slightly corrected

at the CCSD(T) level. This underestimation probably occurs in part due to the neglect

of repulsive three-body dispersion, which is significant carbon dioxide.168 Using the larger

basis sets also improves the rate of thermal expansion, producing expansion curves that are

nearly parallel to the experimental one.

Similar behavior is observed for ice. MP2/aDZ substantially overestimates the

molar volume at all temperatures, but using larger basis sets produces volumes that agree

with experiment to within 0.4 cm3/mol or less. Once again, MP2/aQZ and MP2/CBS

underestimate the molar volume. The models also modestly overestimate the rate of thermal

expansion in ice, most notably at higher temperatures. Experimentally, the crystal expands

by 1.6% between 10 K and 265 K. Over the same range, the quasi-harmonic MP2 calculations
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predict expansion of 3.1%, 2.5%, 2.2%, and 2.0% as the basis is increased along the series

aDZ, aTZ, aQZ, and extrapolated to the CBS limit, respectively. Increasing the basis set

size reduces the non-parallelarity error in the temperature dependence of the volume, just

as was seen for carbon dioxide.

Ice Ih is unusual in that it exhibits negative thermal expansion (i.e. the volume

actually decreases with increasing temperature) at low temperatures. Experimentally, the

volume at 70 K (roughly the minimum) is 0.06% smaller than the volume at 10 K. The

MP2/aDZ predictions miss this negative thermal expansion entirely. The larger-basis set

calculations do capture the correct qualitative behavior, though they are not quantitative.

The predicted volume decreases range from less than -0.01% in MP2/aTZ to -0.04% for

MP2/CBS). The models also underestimate the temperature range over which the negative

expansion occurs. Both MP2/aTZ and MP2/aQZ predict a minimum volume around 40 K

and MP2/CBS predicts the minimum around 25 K, compared to 70 K experimentally.

Previous studies indicate that the electronic energy minimum structure and the

lattice energy change little between MP2 and CCSD(T) treatments of the one-body and two-

body terms,44,107 so it seems unlikely that performing coupled cluster calculations would

alter the MP2 predictions significantly. The residual errors here most likely stem from

the force field treatment of the strong many-body polarization effects which arise from

cooperative hydrogen bonding and/or from the quasi-harmonic treatment. It would be

instructive to examine to what extent a more elaborate many-body water potential217,218

could correct the residual errors.

Like carbon dioxide and ice, the acetic acid molar volume improves as the basis
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set is increased from aDZ to aTZ. MP2/aDZ and MP2/aTZ consistently overestimate the

volume by ∼2.5 cm3/mol and ∼0.7 cm3/mol, respectively. The acetic acid quasi-harmonic

optimizations suffered from minor numerical convergence issues (particularly for MP2/aDZ)

which led to the slight roughness in the predicted expansion curves, but both curves are

generally parallel to the experimental one. Experimentally, the acetic acid crystal expands

by 5.6% between 40 K and 278 K, versus expansion of 5.3% and 5.4% with MP2/aDZ and

aTZ respectively. Based on the trends observed for carbon dioxide and ice, one might antic-

ipate smaller errors and improved parallelarity in a larger aQZ basis set. Those calculations

were not performed, however, due to their high computational expense.

Finally, imidazole provides an interesting case. In the previous three crystals,

MP2/aDZ substantially overestimated the crystal volume, and larger basis sets correct this.

In imidazole, MP2/aDZ already slightly underestimates the volume but is (fortuitously) in

excellent agreement with the experimental volumes. Increasing the basis set from aDZ to

aTZ shrinks the volume further, leading to much larger errors.

The problem stems from the strong π-electron van der Waals interactions in im-

idazole. MP2 exhibits known problems overestimating the strength of such non-covalent

interactions.62,219 Similarly, MP2 overestimates the lattice energy of crystalline imidazole

by 10–15% compared to CCSD(T).44,45 This overbinding apparently leads to a crystal struc-

ture that is too dense. From a practical point of view, this is potentially problematic for

optimizing such structures with fragment-based methods. Coupled cluster theory corrects

these weaknesses of MP2, but such calculations are generally too expensive for crystal struc-

ture optimization beyond the simplest crystals. Applying a dispersion correction to MP2
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as in the MP2C model63,65 helps, but analytic gradients of MP2C are not currently avail-

able. At present, dispersion-corrected periodic density functional theory methods probably

provide the best alternative for optimizing such crystals.67,220,221

As noted earlier, several experimental values have been reported for the molar

volume of imidazole at 283 K: two values around 55.2 cm3/mol, and one at 54.4 cm3/mol

(a difference of about 1.5%). The predicted thermal expansion of MP2/aDZ exhibits an

increased slope above 260 K that could support the two larger experimental volumes, while

the flatter slope of the MP2/aTZ thermal expansion curve is in better qualitative agreement

with the smaller experimental volume. Unfortunately, the predictions here do not appear

reliable enough to adjudicate among the different reported experimental volumes.

Overall, the thermal expansion results discussed here have a few important general

implications. First, the quasi-harmonic approximation reproduces the thermal expansion

fairly well in small, mostly rigid molecule crystals like these. Basis sets of at least triple-zeta

quality appear to be necessary to achieve fairly good volume agreement with experiment,

though the larger basis sets do slightly underestimate the volumes in carbon dioxide and

ice.

Second, unit cell volumes predicted by minimizing the electronic energy clearly

differ substantially from those observed experimentally at room temperatures. Based on

the crystals examined here and other studies,222,223 the volume expansion lies in the range

of ∼5–10%, especially if one also considers the zero-point expansion.

Third, it is common to benchmark models by comparing predictions against low-

temperature crystal structures.224 The results here highlight crystal structure optimizations
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which neglect zero-point vibrational energy should actually be a few percent smaller in

volume than the low-temperature experimental structures. In practice, small double-zeta

basis sets have often been used in fragment-based model crystal structure optimizations.

Assuming the pairwise interactions are counterpoise-corrected for basis set superposition

error as in the calculations here, double-zeta basis sets consistently underbind the molecules

(see Section 4.5.2) and overestimate the unit cell volume. This fortuitously leads to partial

error cancellation between the small basis set and the neglect of zero-point contributions.

4.5.2 Enthalpy of Sublimation

The previous section demonstrates that one can predict temperature-dependent

volumes for simple crystals consisting of small, rigid molecules fairly well using a quasi-

harmonic approximation. The next question is how important is treating thermal expansion

for predicting other crystal properties at finite temperatures? Given the general interest in

predicting polymorph/phase stability, we focus on the enthalpies (this section), entropies,

and Gibbs free energies (following sections) of sublimation here.

Figure 4.3 plots the predicted temperature-dependent sublimation enthalpies for

each of the four crystals against the experimental values. The left column (Figures 4.3a–

d) reports the enthalpies obtained by optimizing the crystal structure and evaluating the

electronic energy with a given level of theory (e.g. MP2/aTZ), and it compares the results

with (solid lines) and without (dotted lines) the quasi-harmonic approximation. The right

column (Figures 4.3e–h) plots the same enthalpies, except with the electronic energy Uel at

each data point replaced with a single-point energy on that structure evaluated using ex-
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Figure 4.3: Predicted enthalpies of sublimation at 1 atm. Figures on the left use the
same level of theory (e.g. MP2/aXZ + Amoeba) to optimize the structure and compute
the sublimation enthalpy. Those on the right replace the lattice energy with single-point
energies computed using CCSD(T)/CBS + AIFF. Curves drawn with solid lines include
quasi-harmonic thermal expansion, while dotted lines neglect it.
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trapolated CCSD(T)/CBS QM and AIFF force field MM contributions (instead of Amoeba

MM).

Consider first Figures 4.3a–d. As discussed previously,93 large-basis sets and

the quasi-harmonic approximation are important for capturing the correct temperature-

dependence of the sublimation enthalpy in carbon dioxide. In the absence of the quasi-

harmonic approximation, the enthalpy decreases too slowly at high temperatures. Fortu-

itously, quasi-harmonic MP2/aQZ reproduces the experimental carbon dioxide enthalpies

almost perfectly, while MP2/CBS and CCSD(T)/CBS slightly overestimate them by ∼1

kJ/mol.

The use of large basis sets is similarly important for the sublimation enthalpies in

the other crystals. The largest jump occurs between the aDZ and aTZ basis sets, though the

effects of larger basis sets still account for several kJ/mol. This matches earlier observations

for lattice energies. Like carbon dioxide, increasing basis set size improves the agreement

of the sublimation enthalpy with experiment for ice and acetic acid. In imidazole, however,

MP2 substantially overestimates the lattice energy,44,45 which translates to a significant

overestimation of the sublimation enthalpy. Agreement with the experimental enthalpy

actually deteriorates with increasing basis set size in imidazole.

Though significant basis-set dependence is observed in Figures 4.3a–d, it is unclear

to what extent this behavior reflects changes in the optimized crystal structure versus

differences in the lattice energy. To decouple these two effects, Figures 4.3e–h re-compute

the lattice energies Uel for every geometries using CCSD(T)/CBS plus AIFF MM terms.

Doing so dramatically reduces the differences in sublimation enthalpy across the structures
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Table 4.2: Comparison between the electronic lattice energy and the quasi-harmonic subli-
mation enthalpy based on CCSD(T)/CBS + AIFF energies, in kJ/mol.

Crystal Structure Elattice
a ∆Hsub(T )b Difference

Carbon Dioxide CCSD(T)/CBS 29.7 26.3 (190 K) 4.1 (16%)
Ice MP2/CBS 58.9 49.5 (265 K) 9.5 (19%)
Acetic acid MP2/aTZ 66.0 59.9 (278 K) 6.2 (10%)
Imidazole MP2/aTZ 91.6 87.3 (283 K) 4.3 (5%)

a Purely electronic lattice energy at the electronic energy minimum structure.
b Quasi-harmonic sublimation enthalpy at the highest temperature considered for each crys-
tal.

optimized with various basis sets. For ice and carbon dioxide, the structures computed

with MP2/aTZ or better produce CCSD(T)/CBS sublimation enthalpies that are nearly

indistinguishable. For all four crystals, enthalpies computed on the MP2/aDZ structures

are only moderately worse, though MP2/aDZ does not capture the temperature dependence

as well at higher temperatures.

For all temperatures, the CCSD(T) accuracy on the larger-basis structures here lies

within ∼1 kJ/mol of the experimental sublimation enthalpies for carbon dioxide and within

∼3–4 kJ/mol for the other three crystals. Most notably, using CCSD(T) instead of MP2 for

Uel also corrects a substantial portion of the error in the imidazole sublimation enthalpies,

as one might expect from earlier studies of the lattice energy.44,45 As discussed earlier,

errors in the experimentally-derived sublimation enthalpies themselves are also probably

up to several kJ/mol.

It is interesting to consider the difference between the lattice energy as computed

without consideration of temperature and the finite-temperature sublimation enthalpy. Ta-

ble 4.2 compares the CCSD(T)/CBS + AIFF lattice energy at the electronic energy mini-

mum structure (using the largest-basis structure optimization) to the sublimation enthalpy
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at the maximum temperature computed here. In all four crystals, the lattice energy is

4–10 kJ/mol larger than the sublimation enthalpy, which amount to up to 20% error. Zero-

point vibrational and finite-temperature effects clearly have a substantial impact on the

thermodynamic stability of the crystal.

Finally, how important is thermal expansion? The answer depends on the degree

of thermal expansion that occurs in the crystal. From Table 4.1, the amount of thermal

expansion increases according to:

ice < imidazole < acetic acid < CO2

As seen in Figure 4.3, the importance of quasi-harmonic thermal expansion behaves sim-

ilarly. The differences between the enthalpies of ice predicted with and without thermal

expansion are barely observable. Including thermal expansion when modeling imidazole

leads to only a slight improvement in the slope of the enthalpy curve. For acetic acid and

carbon dioxide, however, including thermal expansion clearly improves agreement with the

experimental sublimation enthalpies. Without thermal expansion, the sublimation enthalpy

in those species decreases too slowly at high temperatures. On the other hand, it is clear

that the quantitative effects of thermal expansion on the enthalpies here are relatively small

at ∼1–2 kJ/mol.

To summarize, temperature-dependent enthalpies of sublimation for these four

crystals can be predicted to within a few kJ/mol. Large-basis sets (and sometimes post-

MP2 correlation) are important for the lattice energy component. On the other hand, a

triple-zeta basis is probably sufficient for the geometry optimization. The effects of thermal
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Figure 4.4: Predicted entropy of sublimation at 1 atm. Curves drawn with solid lines include
quasi-harmonic thermal expansion, while dotted lines neglect it. Insufficient experimental
data was available to derive an empirical sublimation entropy for imidazole.

expansion on the sublimation enthalpies are modest—comparable to or smaller than the

underlying errors in the predicted sublimation enthalpies. Unsurprisingly, thermal expan-

sion becomes more important at high temperatures, especially in crystals that exhibit high

thermal expansivity.

4.5.3 Entropy of Sublimation

Next we examine the predicted entropies of sublimation, which are plotted in

Figure 4.4. As before, the solid lines correspond to the entropies predicted when including

quasi-harmonic thermal expansion, while the dotted lines neglect thermal expansion. Note

that we were unable to locate sufficient data to derive sublimation entropies for imidazole.
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The carbon dioxide entropies are identical to those reported previously.93

Two main features are notable in Figure 4.4. First, the sublimation entropies of

carbon dioxide and imidazole both exhibit modest basis-set dependence, while the basis-set

dependence is much smaller for ice and acetic acid. In the latter two cases, the individual

frequencies do exhibit the normal, expected variations with basis set, but these variations

largely disappear in the summed vibrational entropy contributions.

Second, including thermal expansion clearly improves the agreement of the pre-

dicted sublimation entropies with the empirical values derived from experiment. Most

notably, thermal expansion improves the slopes of the entropies at higher temperatures.

Unsurprisingly, the impact of thermal expansion on the sublimation entropies is largest in

the crystals which expand the most—carbon dioxide, acetic acid and imidazole. In carbon

dioxide near the sublimation point (195 K), the MP2/CBS sublimation entropy is overes-

timated by 7% when thermal expansion is neglected. In acetic acid at 278 K, neglecting

thermal expansion increases the sublimation entropy by 4% at the MP2/aTZ level. In

imidazole, the MP2/aTZ error is 3% at 283 K. Viewed another way, neglecting thermal

expansion in these cases introduces an error of about 1.5–2 kJ/mol in T∆S near room tem-

perature (or near the sublimation point in the case of carbon dioxide). That corresponds

to about half the magnitude of the error in the CCSD(T)/CBS sublimation enthalpies. For

ice, in contrast, the small degree of thermal expansion alters the MP2/CBS sublimation

entropy by only 1% at 265 K, or ∼0.5 kJ/mol in T∆S.

129



-3

-2

-1

 0

 1

 2

 0  50  100  150  200

E
rr

o
r 

(k
J
/m

o
l)

Temperature (K)

(a) Carbon Dioxide

∆Hsub

-T∆Ssub

∆Gsub

-5

-4

-3

-2

-1

 0

 1

 2

 0  50  100  150  200  250  300

E
rr

o
r 

(k
J
/m

o
l)

Temperature (K)

(b) Ice

∆Hsub

-T∆Ssub

∆Gsub

-5

-4

-3

-2

-1

 0

 1

 2

 0  50  100  150  200  250  300

E
rr

o
r 

(k
J
/m

o
l)

Temperature (K)

(c) Acetic Acid

∆Hsub

-T∆Ssub

∆Gsub

Figure 4.5: Estimated errors in the predicted enthalpies, entropies, and Gibbs free energies
of sublimation relative to experiment. Curves were generated by smoothing and splining
the available experimental and predicted values. Predictions with (solid lines) and without
(dotted lines) quasi-harmonic expansion are shown.
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4.5.4 Gibbs Free Energy of Sublimation

Finally, one might combine the enthalpies and entropies of sublimation to predict

the Gibbs free energy and determine phase stability. Given the sparsity of temperatures with

enthalpy and entropy data for each crystal (especially experimentally), Gibbs free energy

curves were generated as a function of temperature by smoothing and splining over the

available data. Based on these curves, Figure 4.5 plots the errors between the predicted and

empirical sublimation enthalpies, entropies (as −T∆S), and free energies. The enthalpies

here are the CCSD(T)/CBS + AIFF results using the MP2/CBS geometries (or MP2/aTZ

for acetic acid). The entropies used were computed at the same level as the geometry

optimizations. Imidazole is excluded from this analysis due to the lack of experimental

entropy data.

For the three crystals shown here, the sublimation free energy errors range from

∼0.5 kJ/mol in carbon dioxide to up to ∼4 kJ/mol in ice. For carbon dioxide and acetic

acid, the errors in ∆H and −T∆S have opposite signs and cancel somewhat when combined

into the free energy. For ice, on the other hand, the errors have the same sign, and the error

in the free energy is larger.

Focus now on the error introduced by neglecting thermal expansion. Figure 4.5

makes it clear that thermal expansion is more important for the entropy than the enthalpy at

high temperatures. However, the errors due to ignoring thermal expansion in carbon dioxide

and acetic acid partially cancel between the enthalpy and entropy at higher temperatures.

The resulting differences in the free energies with and without thermal expansion are ∼1

kJ/mol at the highest temperatures modeled. For ice, the thermal expansion errors in ∆H
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and −T∆S do not cancel in ∆G for the temperature range considered here, but they remain

small (< 0.5 kJ/mol).

To understand the cancellation of errors associated with thermal expansion, con-

sider the temperature dependence of the enthalpy and entropy of sublimation and how

crystal expansion affects them. Typically, the sublimation enthalpy initially rises with tem-

perature before reaching a maximum and turning over. This behavior is readily apparent

for carbon dioxide, acetic acid, and imidazole in Figure 4.3. For ice, this turnover is sub-

tle and difficult to see in the plots—the experimental enthalpy decreases by less than 0.1

kJ/mol between its maximum around 240 K and 270 K.

In terms of internal energy, the crystal is more stable than the gas due to its

favorable intermolecular interactions. Thermal contributions act to destabilize both phases.

The temperature dependence of the gas-phase enthalpy is dominated by the translational

and rotational contributions (4RT ), while for the crystal it is dominated by destabilization of

the lattice energy and the low-frequency mode vibrational contributions. Thermal expansion

weakens the intermolecular interactions (hence the change in lattice energy). It can also

soften the intermolecular lattice phonon modes (though the phonon density of states is not

strictly correlated with packing density30), which slightly stabilizes the crystal due primarily

to reduction in zero-point energy. In the crystals exhibiting appreciable thermal expansion

here, the changes in enthalpy are dominated by the decrease in lattice energy rather than

the vibrational contributions.

At low temperatures, heating destabilizes the gas more quickly than the crystal. At

higher temperatures, the thermal destabilization of the crystal becomes more pronounced
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relative to the gas, creating the observed maximum in the sublimation enthalpy. If thermal

expansion is neglected, however, the lattice energy does not decrease as it should. Ac-

cordingly, neglecting thermal expansion causes the turnover in the sublimation enthalpy to

occur too slowly at high temperatures, and ∆Hsub is overestimated.

The entropy of the gas is much higher than that of the crystal, leading to a large,

positive ∆Ssub. The sublimation entropy also exhibits a temperature dependence similar

to that of the enthalpy, with a maximum at intermediate temperatures. Once again, the

entropy of the gas increases more rapidly at low temperatures, but at higher temperatures

the low-frequency modes of the crystal dominate and cause the crystal entropy to rise faster

than that of the gas. This transition produces the turnover observed in the sublimation

entropies (Figure 4.4). Without thermal expansion, the lattice phonon frequencies are

typically too large, and their entropic contribution to the crystal too small. Thus, ∆Ssub

turns over too slowly. Note too that whereas thermal expansion generally destabilizes the

enthalpy of the solid (unfavorable), it increases the entropy (favorable). In other words,

thermal expansion is driven by entropy rather than enthalpy.

In the end, neglecting thermal expansion typically leads to overestimation of both

∆Hsub (because the solid is bound too strongly) and ∆Ssub (because the entropy of the solid

is underestimated) These enthalpy and entropy contributions enter the Gibbs free energy

with opposite signs, meaning that these errors arising from the neglect of thermal expansion

cancel somewhat. The ∼0.5–1 kJ/mol free energy errors associated with neglecting thermal

expansion are smaller than the size of the overall errors in the sublimation free energies.

On the other hand, about half the polymorph pairs in the Nyman and Day survey were
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separated by less than 2 kJ/mol (and many of those by <1 kJ/mol).30 In other words,

despite the small magnitude of these errors, thermal expansion might prove important for

polymorphs with very similar free energies.

Finally, we use the computed Gibbs free energies to predict the sublimation point

of carbon dioxide at 1 atm. We previously demonstrated93 (1) a strong basis set depen-

dence in the sublimation temperature, ranging from 163.6 K with MP2/aDZ to 199.2 K

for MP2/CBS, and (2) that CCSD(T)/CBS + Amoeba calculations with thermal expan-

sion slightly overestimate the sublimation point at 201.0 K, versus 194.7 K experimentally.

Despite overestimating both the enthalpy and entropy of sublimation, the CCSD(T)/CBS

model without thermal expansion predicts a sublimation point of 194.9 K due to fortuitous

error cancellation.

Here, Table 4.3 revises these predictions by performing CCSD(T)/CBS + AIFF

single-point energies on structures optimized with each level of theory. This both applies

a uniformly high-level electronic structure model to the QM electronic energy terms in all

cases, and it replaces the force field with the more accurate AIFF model that includes

estimates for Axilrod-Teller-Muto three-body dispersion. As expected from Figure 4.3e,

replacing the smaller-basis MP2 electronic energies with single-point CCSD(T)/CBS ones

calculation substantially improves the sublimation enthalpies and eliminates much of the

apparent basis set dependence in the predicted sublimation temperatures. The quasi-

harmonic temperature predictions now vary from 190.6 K (MP2/aDZ structures) to 198.0 K

(CCSD(T)/CBS structures).

The refined force field model also slightly decreases the sublimation enthalpies (due
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Table 4.3: Predicted sublimation temperatures for phase I carbon dioxide using various
electronic structure methods for the structure optimization/phonons and CCSD(T)/CBS
+ AIFF single point energies.

No Thermal Expansion
Tsub ∆Hsub(194.7 K) ∆Ssub(194.7 K)

Structure (K) (kJ/mol) (J/mol K)

MP2/aDZ 192.0 26.1 135.7
MP2/aTZ 191.8 26.7 139.1
MP2/aQZ 192.0 27.0 140.3
MP2/CBS 190.3 26.9 141.2
CCSD(T)/CBS 190.4 26.9 141.1

With Thermal Expansion
Tsub ∆Hsub(194.7 K) ∆Ssub(194.7 K)

Structure (K) (kJ/mol) (J/mol K)

MP2/aDZ 190.6 23.3 122.2
MP2/aTZ 197.2 25.3 127.7
MP2/aQZ 198.3 25.9 129.8
MP2/CBS 198.7 26.3 131.3
CCSD(T)/CBS 198.0 26.2 131.3
Giauque and Egan178 194.7 25.2 129.6

to the repulsive three-body dispersion), reducing the sublimation temperature by a few de-

grees Kelvin relative to the earlier work. Now both models with and without quasi-harmonic

expansion lie within 3–4 K of the experimental sublimation temperature of 194.7 K. For

comparison, a few degree change in the sublimation temperature corresponds to changing

the sublimation enthalpy by ∼0.5 kJ/mol, which is smaller than the level of accuracy one

can reasonably expect from the models. On the other hand, the quasi-harmonic model

predicts the sublimation temperature reliably through accurate predictions of both the en-

thalpy and entropy, while the calculations without thermal expansion rely on large error

cancellations between the overestimated enthalpies and entropies of sublimation.

135



4.6 Conclusions

In the end, the results here demonstrate that thermal expansion does indeed affect

molecular crystal properties, though its significance will depend on the specific crystal and

application. Unsurprisingly, the unit cell volume is most notably affected by thermal ex-

pansion. For the four crystals considered here, expansion of 5-10% is predicted between the

electronic energy structures and structures near room temperature. A sizable fraction of the

crystal expansion arises from zero-point vibrational energy. Accordingly, caution should be

taken when citing agreement between predicted electronic energy crystal structures which

omit zero-point energy and low-temperature experimental structures which include it. Crys-

tal properties that depend strongly on the distances and orientations of molecules, such as

charge transport in organic semiconductor materials, will also likely be affected by these

changes in unit cell volume with temperature.

For thermochemistry, neglecting thermal expansion leads to errors of up to a few

kJ/mol. Errors in the free energy tend to be smaller than those in the enthalpy and entropy

due to error cancellation, but they can still be of the same order of magnitude as the stability

differences between many crystal polymorphs. Additional error cancellation might occur

when comparing free energies between two different polymorphs, though the extent of that

cancellation would likely depend on how similarly the crystals expand with temperature.

In any case, for crystals in which the thermal expansion is appreciable and the energetic

separations between polymorphs is small, neglecting thermal expansion might lead to an

incorrect stability ordering.

Finally, the results here suggest that MP2/aug-cc-pVTZ provides a reasonable level
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of theory for optimizing crystal structures and calculating phonon modes, except in cases

like imidazole where MP2 is known to have problems describing the van der Waals dispersion

interactions. The smaller aug-cc-pVDZ basis set tends to overestimate the unit cell volume

significantly. The improvements in geometries offered by quadruple-zeta basis sets or larger

are small relative to the increase in computational costs. On the other hand, using larger

basis sets is important for achieving quantitative accuracy in the lattice energy. Finally, the

quasi-harmonic approach provides an effective tool for modeling thermal expansion and free

energies, at least for small rigid molecules like the ones studied here. The performance of the

quasi-harmonic model for conformationally flexible molecules requires future investigation.
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Chapter 5

Toward predicting the carbon

dioxide phase diagram

5.1 Outline

The polymorph phase diagram for carbon dioxide remains controversial. This

chapter describes preliminary efforts to model the phase diagram and potentially resolve

some of the open questions. We particularly focus on the phase transitions between phases

I–III. At the HMBI MP2/aug-cc-pVTZ level, the phase I/III transition is predicted to occur

6.8–10.1 GPa, depending on the temperature. Phase II is predicted to be less stable than

phase I and III until pressures above 25 GPa. However, it is widely believed that phase III

is only metastable relative to phase II, in contrast to the predictions here. Further study is

needed.
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5.2 Introduction

In the previous chapters, the significance of using thermal expansion when deter-

mining thermodynamic properties, especially for phase I carbon dioxide, was demonstrated.

It was established that HMBI, with the quasi-harmonic approximation, has the ability to

determine sublimation enthalpy and entropy as functions of temperature. The next question

is to what extent can the model be used to determine the relative stability of a compound’s

polymorphs at different temperatures and pressure?

Carbon dioxide exhibits multiple solid phases/polymorphs (as shown by a by Fig-

ure 5.1) with vastly different structures. Phase I carbon dioxide, or dry ice, is the longest

known and most studied of any of the polymorphs.21,31,35,36,50,57,146,174,177,178,183,225–228 It

belongs to the cubic Pa3̄ space group228 and is a molecular crystal. A second polymorph

of carbon dioxide, phase II, was first discovered by Liu in 1983.229 This polymorph was

assigned a space group of P42/mnm by Yoo et al.187 There is a controversy surrounding

the nature of phase II carbon dioxide. Yoo et al claims that phase II carbon dioxide has

elongated C=O bond distance and a large bulk modulus. From this, they proposed phase

II as an intermediate phase between the molecular phase (such as phase I and III) and the

covalent phases (such as phase V and the amorphous phases).187 More recent findings of

Datchi et al did not match those of Yoo et al. They found bond lengths similar to that of

gas phase carbon dioxide and much smaller bulk modulus, which would indicate that phase

II is molecular rather than intermediate in nature.230

Phase I carbon dioxide distorts into phase III when compressed under pressure at

room temperature. This phase was first discovered by Harson in 1985231 but detected by Liu
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a year earlier.183 While it is traditionally thought that this phase transition occurs around

11.8 GPa at room temperature183, it may occur anywhere between 7-15 GPa.226 Phase III

carbon dioxide transition to phase II by heating but phase II does not transition back to

phase III upon quenching. This has lead many to believe that phase III is a metastatic state

relative to phase II.46 In general, the kinetic nature and considerable hysteresis observed

with many of the phase transitions makes precise determination of the phase boundaries

experimentally challenging.47,48

Phase III was assigned a Cmca space group by Aoki et al.190 Interestingly, compu-

tational studies of phase III have reported the lattice lengths where a > b with experimental

results finding the opposite.36,50,51,227 Giordano and Datchi discovered another Cmca phase

which they labeled phase VII.232 The lattice parameters for this Cmca phase closely match

those predicted by theory and exist in the pressure-temperature range predicted by Bonev

et al.36 This brings into question whether the Cmca structure appearing in theoretical pa-

pers is phase VII instead of phase III. Here we will refer to the Cmca structure as phase

III.

While there are other polymorphs of carbon dioxide, this chapter will focus on

phases I, II, and III of carbon dioxide. Most of the other polymorphs are non-molecular

and HMBI is a poor model for non-molecular crystals. The structure of phase IV, which is

either molecular233 or molecular/covalent intermediate234, is in question233,235 so it was left

out of this study. The Gibbs free energy of each crystal was predicted at various pressure

and temperature to determine which polymorph is the thermodynamically favored form.

The unit cell of all crystals included are on Figure 5.2.
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Figure 5.2: The structure for phase I–Pa3̄ (left), phase II–P42/mnm (middle) and phase
III/VII–Cmca (right) of carbon dioxide
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5.3 Theory and Computational Method

The structure of the crystal unit cell were determined by minimizing the Gibbs

free energy.

G(T, P ) = Uel + PV + Fvib(T ) (5.1)

The quasi-harmonic approximation as detailed by Chapters 3 and 4 was utilized. The

relative thermodynamical favorability of a polymorph was determined by normalizing the

crystal by the number of monomers (i.e. dividing it by the number of monomers in the

cell).

In Chapter 4, structures optimized at the MP2/aTZ + Amoeba level proved par-

ticularly effective, especially when the single-point electronic energy was replaced with

CCSD(T)/CBS + AIFF. Therefore the same approach was used here. The frequencies

for the quasi-harmonic approximation were evaluated using a 3 × 3 × 3 Monkhorst-Pack

grid on a 3× 3× 3 supercell. Both Phase I and Phase III used 10 Å3 finite difference steps

to determine the Grüneisen parameters. Phase II used 5 Å3 finite difference steps since its

unit cell is approximately half the volume and has half the number of monomer of the other

cells.

Because the phase II unit cell has half the number of monomers in the unit cells, it

has significantly fewer vibrational frequencies in the 3× 3× 3 Monkhorst-Pack grid. While

the Gibb’s free energy was normalized by number of monomers, there was concern that

the difference between the number vibrational frequencies of the unit cell may create a

142



bias in the Holmholtz vibrational energy. A 1 × 1 × 2 cell for phase II was created. The

Holmholtz vibrational energy was determined for a 3 × 3 × 3 supercell of this cell using a

3× 3× 3 Monkhorst-Pack grid. Once the Gibbs free energy was normalized for the number

of monomers, there was little energy difference (0.006 kJ/mol) between the 2 × 1 × 1 cell

and the unit cell. This indicates that at the current Monkhorst-Pack scheme, Holmholtz

vibrational energy is converged.

5.4 Results and Discussion

All normalized Gibbs free energy on Figure 5.3 were set relative to the value for

phase I at the same temperature and pressure. By definition, phase I has a zero Gibbs

free energy at each temperature and pressure. At each temperature, the Gibbs free energy

vs pressure values are virtually linear. A thermodynamic phase transition occurs at the

intersection of two curves. At 0 K, the phase I/III intersection occurs at 10.2 GPa, and

the transition pressure decreases with increasing temperature. At 298 K, the transition is

about 8.5 GPa which is lower than the generally accepted 11.8 GPa.183 Shieh et al found

that the phase I→III transition occurs slowly with pressure, observing a mixture of phase

I/III between 7-15 GPa and a 50/50 percent composition between 8-9 GPa.226 Our results

fit well with their findings.

Our calculations predict phase III to be more stable than phase II until 29-34

GPa, depending on the temperature. At 0 K, the phase II/III transition was extrapolated

to 34.0 GPa, which decreases to 28.6 GPa at 700 K. In other words, phase III is predicted

to be thermodynamically stable over a broad region of the phase diagram, contrary to the
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Figure 5.3: The Gibbs free energy phases I, II, III relative to phase I at the same temperature
and pressure. The arrows marks the pressure in which the free energy lines intersect and
phase transition occurs. Some of the intersections occurred outside the predicted pressure
range. In these cases, the intersection was extrapolated.

conventional notion that phase III is experimentally metastable relative to phase II in this

region. The figure diagram predicted from these results is on Figure 5.4.

The free energy difference between phases II and III in this region are only 1

kJ/mol, which is on par with the 1–2 kJ/mol errors in the phase I carbon dioxide sublimation

energies predicted in Chapter 3. This might suggest that it will be difficult to resolve

these free energy differences theoretically. On the other hand, one might hope for partial

error cancellation in the free energy difference between two similar phases like these. The
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predicted unit cell volume could also be an important factor. At high pressures like these,

small differences in unit cell volume can lead to sizable contributions in the PV term that

appears in the enthalpy. Agreement between the predicted and experimental structures is

quite good here, at least for phase I and II. The structure of phase III presents a more

interesting set of questions, as discussed below.

Phase III and phase VII have an identical space group (Cmca). Like most other

theoretical studies found in the literature, we predicted phase III lattice parameters closer

to phase VII than III. Notably, phase III and VII differ in the lengths of the a and b

lattice parameters. Our predicted lattice parameters are in much better agreement with

those determined experimentally for phase VII. If the Cmca modeled is phase VII rather

than phase III, this may help explain why the Cmca phase is not metastable relative to

phase II as is thought. This does not explain why this Cmca phase is predicted to be the

preferred polymorph in the pressure-temperature region that phase II is observed. One

possible solution to this controversy surrounding the nature of phase II. If phase II carbon

dioxide is a molecular/covalent intermediate phase as suggested by Yoo, it may be difficult

for HMBI to model. HMBI builds fragments based on molecules. Therefore HMBI is bias

toward molecular systems.

Ignoring phase III, the phase I/II transition is about 10-12 GPa depending on the

temperature. Assuring the phase III is a metastable state, the phase I/II transition should

occur approximately around phase I/III transition. As shown by Figure 5.5, the predict

value fits perfectly within the experiment transition.
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Phase III was ignored.

147



5.4.1 Conclusion

HMBI predicts reasonable phase boundaries between phases I/III and phases I/II

but not between phases II/III. There is some question about whether the structure used

to model phase III is appropriate and how it differs from phase VII. However, even if

the structure modeled actually corresponds to phase VII, it is not obvious that it should

be stable in the pressure/temperature region where phase II is observed. One possible

explanation for the difficulties could be that phase II may actually be intermediate in

nature as suggested by Yoo et al, which could make the HMBI a poor choice for modeling

this system. However, Yoo’s result is experimentally controversial, and DFT calculations

also predict a molecular phase II.35,36 More research is needed to clarify the structures of

these phases and their thermodynamic stabilities.
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Chapter 6

Conclusions

Accurate and computationally affordable methods for modeling molecular crystals

will play an important role in fields such as pharmaceutical chemistry, energetic materials,

and organic semi-conductors. Fragment-based methods like HMBI provide a powerful tool

for achieving these goals. This dissertation has detailed two theoretical advances that

substantially improve the range of problems that can be tackled with HMBI:

1. An algorithm for accelerating HMBI calculations by exploiting space group symmetry

to eliminate redundant monomer and dimer fragment calculations.

2. The treatment of finite temperature effects in crystals by coupling HMBI and the

quasi-harmonic approximation.

With these tools, the effects of thermal expansion on molecular crystal properties were exam-

ined, first for carbon dioxide and then for several other crystals. The computational savings

reaped by exploiting space group symmetry were instrumental in these finite-temperature

studies.
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For phase I carbon dioxide, neglecting thermal expansion leads to underestimation

of the molar volume, overestimation of the enthalpy and entropy of sublimation, and over-

estimation of the bulk modulus. The importance of thermal expansion helped explain why

previous studies had had difficulty predicting the bulk modulus. Of course, carbon dioxide

is somewhat atypical for molecular crystals. It is small and very rigid. It is bound relatively

weakly, and it undergoes an unusually large degree of thermal expansion 8% between 15 K

and 190 K.57 Therefore, similar studies were repeated on ice, acetic acid, and imidazole

crystals. Thermal expansion has little impact in the enthalpy and entropy of sublimation

for Ih ice but this is not surprising considering that only expands by about 2% as the tem-

perature raises from 10 K to 265 K.58 On the other hand, both acetic acid and imidazole

show appreciable thermal expansion that affects the predictions of their properties.

Accurate thermochemistry predictions are particularly relevant to molecular crys-

tal polymorphism problems. Based on these thermal expansion studies, we conclude that

quasi-harmonic HMBI with high-level electronic structure methods can predict sublimation

enthalpies to within several kJ/mol of experiment. Neglecting thermal expansion can intro-

duce additional errors of a couple kJ/mol. The errors in the room-temperature entropies are

similar in magnitude. However, a sizable fraction of the errors in the enthalpy and entropy

cancel in the Gibbs free energy. In the end, it appears that neglecting thermal expansion

leads to errors of 1–2 kJ/mol in the Gibbs free energy at room temperature. Free energy

gaps of ∼1 kJ/mol or less occur moderately often between crystal polymorphs, so these

errors due to neglecting thermal expansion may be important in determining polymorph

stabilities.
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The next phase of this research is to extend these finite-temperature and pressure

modeling capabilities toward the prediction of molecular crystal phase diagrams. Prelimi-

nary results for the phase I, II, and III region of carbon dioxide were presented. Plausible

boundaries for phase I/III and phase II/III were found, but the phase II/III boundary does

not appear in good agreement with experiment. Phase III is believed to be metastable rel-

ative to phase II, but the predictions here suggest the opposite. A number of outstanding

questions regarding the phase diagram of carbon dioxide complicate the interpretation of

these results. First, there remains debate in the literature about whether phase II is a molec-

ular crystal or an molecular/covalent intermediate phase. If it is the latter, a fragment-based

method based on the many body expansion may not be an appropriate model. Ambiguity

also surrounds the structure of phase III versus phase VII, and whether the structure used

to model phase III here is correct.

In the longer term, these tools will hopefully enable more advanced molecular

crystal modeling in a variety of problems. Beyond the polymorphism and phase diagram

problems discussed here, these models may prove useful in predicting other crystal properties

which are sensitive to unit cell volume. Charge transport properties, for example, can vary

by large amounts upon small changes in packing density. Nuclear magnetic resonance

(NMR) chemical shifts are also sensitive to the fine details of crystal packing. Crystal

structure prediction, NMR chemical shift prediction, and solid-state NMR experiments

are often combined to solve crystal structures. The ability to predict room-temperature

structures instead of 0 K ones might increase the discrimination with which one can identify

the correct structure out of a set of candidate structures.
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Right now, the main bottleneck to employing quasi-harmonic HMBI is the evalua-

tion of the Hessian elements for the vibrational frequencies. Future research should explore

possibilities for utilizing more approximate models to compute the phonons. Such models

might include the use of small basis sets, DFT, or even MM potentials. In addition, all

of the systems considered here consist of largely rigid molecules. Future work is needed to

explore the performance of the quasi-harmonic model in crystals of conformationally flexible

molecules.
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Appendix A

Symmetry for crystals with high

symmetry point group molecules

In Chapter 2, a simple algorithm for implementing space group symmetry was

described. While the details given there will work for most crystals, that algorithm be-

comes problematic for crystals that contain molecules that belong to high symmetry point

groups. The algorithm assumes that each atom on a symmetrically unique monomer is also

symmetrically unique and, therefore, in the asymmetric unit. If these atoms are treated

as independent degrees of freedom during a crystal structure optimization, space group

symmetry may be broken. For such crystals, the symmetrical equivalence among atoms

in symmetrically unique monomers needs to be exploited using point group symmetry to

preserve the space group symmetry. Here we are defining a high symmetry molecule as

any molecule that contains atoms that are symmetrically equivalent. Examples of high-

symmetry crystals include phase I, II, and III carbon dioxide, phase I benzene, phase I
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urea, and phase II and IV ammonium nitrate. Note the details in this chapter assume that

the lattice angles are 90◦ and that there is a 1 to 1 mapping between x, y, and z Cartesian

and fractional coordinates. This will have to be modified for crystal unit cells whose lattice

angles are not 90◦.

A.1 Atom Rotation and Translation Vectors

The molecular point group is determined using known point group operators on

a symmetrical unique monomer in its standard nuclear orientation (for information on

standard nuclear orientation see Section 2.3.1). Once the point group is identified, the

operators are applied to each atom individually. If the coordinates match those of another

atom, two atoms are symmetrically equivalent. The list of symmetrically unique atoms are

stored similarly to how it is for the monomers and dimers. In principle, the only atoms

left should be the ones in the asymmetric unit. The rotational operator mapping atom p

to atom q on monomer 1 in monomer 1’s center of mass coordinates (not standard nuclear

orientation) is obtained from matrix Rq←p,

Rq←p = RT
1 O

q,pR1 (A.1)

where operator Oq,p is the point group operation that maps atom p to q in monomer

1’s standard nuclear orientation and R1 is the rotation matrix rotating monomer 1’s to

its standard nuclear orientation. Atoms p and q should have a space group operation
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demonstrating their symmetrical equivalence along with a point group operator.

q2 = Rq1 + t (A.2)

The rotational matrix matches that of a point group operator. The translational vector

tq←p is given by the vector difference between the atoms after the rotation of p is performed

with respect to the origin of the global coordinate system.

The rotational matrix found in Section 2.3.1 mapping monomer 2 to monomer 1

may map atom r on monomer 2 to atom p on monomer 1 instead of atom q in the asymmetric

unit. In order to map r to q, one must take the product of that rotational matrix mapping

monomer 2 to 1 and the matrix mapping atom p to q.

Rq←r = Rq←pR2←1 (A.3)

A translational vector mapping r to q on different monomers can be similarly found as the

translational vector mapping p to q on the same monomer.

A.2 Preserving Fractional Symmetry

In many of these high symmetry point groups, relative coordinates of certain atoms

in the molecule cannot be altered. For example, carbon dioxide is a linear molecule and

carbon is equidistant from both oxygens. The molecule belongs to the point group D∞h. If

the carbon moves towards either of the oxygen the point group changes to C∞v. In order

to maintain point group symmetry, the carbon must be fixed. The same principle is true
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for space group symmetry. Phase 1 carbon dioxide has a carbon at fractional coordinate

(0, 0, 0). The space group is Pa3̄ and one of the operators in this space group is inversion.

When this operator is applied, the carbon stays in the same location. If the carbon shifts

in any direction the space group symmetry is broken. Therefore the location of a carbon

has to be fixed during optimization. In order to preserve the space group symmetry, atoms

may have to be fixed at a particular fractional coordinate. Note that often an atom is not

entirely fixed; perhaps only one or two of the fractional coordinates are fixed. For an atom’s

fractional coordinate to be fixed it must satisfy one of the following criteria:

1. The atom’s corresponding Cartesian coordinate is zero when using the monomer’s

center of mass coordinates

2. An atom has a fractional coordinate of exactly 0, 1/6, 1/5, 1/4, 1/3, 1/2, or any of

these number multiplied by a positive or negative integer

In addition to fixing fractional coordinates of atoms, the linkage between the x, y,

and z coordinates of an atom must be considered. Consider the oxygen in phase I carbon

dioxide bonded to the carbon at (0, 0, 0). It is at 45◦ angles relative to the 3 lattice vectors.

In the fractional and Cartesian coordinates, the x, y, and z are the same. The space group

has a few operators where the fractional x, y, and z coordinates are switched. When these

operators are applied, the oxygen atoms is left in the same location. If the oxygen shifts so

that any of the angles are no longer 45◦ these coordinates no longer match and space group

symmetry is broken. Therefore the x, y and, z coordinates are linked. These coordinates

are turned into a single degree of freedom. The criteria for x, y, and/or z coordinates of an

atom to be turned into a single degree of freedom are:
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1. If any of an atom’s Cartesian coordinates have the same absolute value using the

monomers center of mass coordinate.

2. If the sum or difference of any atom’s fractional coordinates is exactly 0, 1/6, 1/5,

1/4, 1/3, 1/2, or any of these number multiplied by a positive or negative integer.

In most cases, either both or neither of these criteria is true. Note that all three coordinates

of an atom can be transformed to a single degree of freedom. In this case, the sum or

difference of all the fractional coordinates do not have to be a certain number, only the two

individually. For example, if an atom’s fractional coordinates are (0.567, 0.433, 1.567). The

difference of the x and z fractional coordinates coordinate is 1 and the sum of y and z is

also 2. Both x and y are linked to z and they are treated to a single degree of freedom, but

their sum or difference is no number of interest.

A.3 Optimizing Structure While Preserving Symmetry

Even though a fractional coordinate are may be fixed by symmetry, the corre-

sponding Cartesian coordinates are not. When the lattice parameters are relaxed, the

Cartesian coordinates can be shifted to maintain space group symmetry. In order to fix

fractional coordinates without fixing Cartesian positions, we must introduce the shift vector

sq. The shift vector is also used when the fraction x, y, and/or z coordinates of an atom are

linked but must maintain a certain sum or difference in order to preserve symmetry. Once

the linked x, y, and/or z coordinate single degree of freedom is updated by the optimizer,

adding the shift vector multiplied by the change in lattice vectors as a column matrix will
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maintain symmetry.

(∆v1∆v2∆v3)sq (A.4)

The entries of the shift vector are the determined by the follow criteria:

1. If an atom’s x, y, or z fractional coordinate is exactly 0, 1/6, 1/5, 1/4, 1/3, 1/2, or

any of these number multiplied by a positive or negative integer, that number (times

the multiplied integer) is placed into the corresponding shift vector entry.

2. If the sum of any atom’s fractional coordinate is exactly 0, 1/6, 1/5, 1/4, 1/3, 1/2,

or any of these number multiplied by a positive or negative integer, the sum is placed

into an entry of the shift vector. If the x and y sum is this number, that sum is placed

into the shift vector’s x entry. If the x and z sum is this number, that sum is placed

into the shift vector’s x entry. If the y and z sum is this number, that sum is placed

into the shift vector’s y entry.

3. If the difference of any atom’s fractional coordinates is exactly 0, 1/6, 1/5, 1/4, 1/3,

1/2, or any of these number multiplied by a positive or negative integer, that difference

is placed into shift vector. If the x and y difference is this number, that difference is

placed into the shift vector’s x entry. If the x and z difference is this number, that

difference is placed into the shift vector’s x entry. If the y and z difference is this

number, that difference is placed into the shift vector’s y entry.

Note that only an atom coordinate that is not a degree of freedom or that is linked to

another coordinate on the same atom can have a non-zero value in its entry in the shift

vector. The shift vector for an atom not in the asymmetric cell is determined by rotating

158



the shift vector using the rotation matrix mapping its symmetrically equivalent atom in

the asymmetric cell to it. During the optimization, the following steps are taken for high

symmetry point group molecules.

1. Determine the number of symmetrically unique monomers as described by Chapter 2.

2. Determine atoms in the asymmetric unit from the atoms on the symmetrically unique

monomers.

3. Determine which atoms in the asymmetric unit have to be fixed or have their x,

y, and/or z fractional coordinates linked. No fixed atom is a degree of freedom for

optimization. Linked x, y, and/or z coordinates are treated as a single degree of

freedom.

4. Determine shift vector for atoms in asymmetric cell.

5. Determine shift vector for atoms not in asymmetric cell using rotation matrices.

6. Determine number of symmetrical unique dimers described by Chapter 2.

7. Get gradient and coordinates from optimizer for every every degree of freedom for the

next optimization step.

8. Use linkage to update x, y and/or z for atoms in asymmetric unit based on the

coordinate for single degree of freedom given by the optimizer for the next optimization

step.

9. Use shift vector to update non-degrees of freedom or linked coordinates based on the

lattice parameters given for the next optimization step in order to maintain space
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group symmetry.

10. Apply space groups operators to the remaining coordinates for the atoms not in the

asymmetric unit.

11. Repeat steps 6-10 until crystal is relaxed.

Note that this method has not been tested for crystals with high symmetry point group

molecule and have lattice angles other than 90◦. Therefore it is assumed that there is a

one-to-one relationship between x, y, and z fractional and Cartesian coordinates.

A.4 Gradient for High Symmetry Point Groups

The nuclear gradient is mostly unchanged from the nuclear gradient in Section 2.3.4.
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(A.5)

Once the gradient for all the atoms in the symmetrically unique monomers are determined,

the gradient of atoms not in the asymmetric unit are mapped to atoms in the asymmetric
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unit using the atom rotation matrices.

∂E

∂qzl
=
∑
p

∑
l′

Rq←pll′

(
∂E

∂pzl′

)
(A.6)

The gradient for fixed atoms coordinates are zeroed. Any atoms with linked x, y, or z

coordinates combine their gradient into a single entry. The sign of the linked gradient may

have to be changed before combining if two of the linked coordinates in center of mass

coordinates have difference signs or if they are linked because the difference, rather than

the sum, between the coordinates in a particular number.

The lattice vector gradient from Eq 2.15 now includes an additional one-body

term.
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The
∂qil
∂vεl

term is the derivative of the change in the Cartesian coordinates of atom q

relative to monomer i’s center of mass. This term is equal to the difference in the monomer

and atom translational vector derivative with respect to the change in the lattice vector
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plus the entry in the shift vector.

∂qil
∂vεl

=
tql
∂vεl

−
til
∂vεl

+ ŝql = l̂qt − l̂it + ŝql (A.8)

where l̂it and l̂qt are the elements of the fractional coordinate representation of the trans-

lational operator of monomer i and atom q respectively. The dimer
∂qijl
∂vεl

term uses the

atom’s fractional coordinate translational operator instead of the monomer’s and includes

the atom’s shift vector.

∂qijl
∂vεl

=
tql
∂vεl

+ ŝql = l̂qt + ŝql (A.9)
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Appendix B

Experimentally Derived

Thermochemistry Data

The empirical enthalpies and entropies of sublimation used to validate the predic-

tions in Chapters 3 and 4 were obtained as a function of temperature for each crystal as

follows.

B.1 Carbon Dioxide

For carbon dioxide, temperature-dependent heats of sublimation at 1 atm were

taken from Azreg-Aı̈nou.177 The entropies of sublimation were derived according to:

∆Semprsub (T ) = ∆Sexptsub (194.7K)−
∫ T

194.7K

Cp,solid(T )

T
dT

+ (Sgas(T )− Sgas(194.7K)) (B.1)
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This expression was evaluated using the sublimation entropy at 194.7 K178 and heat capac-

ities for the crystal178 and gas-phase rotational constants179 and vibrational frequencies.180

See Ref 93 for details.

B.2 Ice Ih

Temperature-dependent experimental enthalpies of sublimation for ice Ih were

taken from the equation of state of Feistel and Wagner.236 Entropies of sublimation were

derived from experimental data according to:

∆Semprsub (T ) = Sgas(T )− Sgas(373.15K) + ∆Svap(373.15K) (B.2)

+Sliquid(373.15K)− Sliquid(273.15K) + ∆Sfus(273.15K)

+

∫ 273.15K

T

Cp,solid(T )

T
dT

The entropies for the gas and liquid water were found on the NIST/TRC Web Thermo

Tables.237 The entropy of vaporization and fusion were computed from the enthalpy of

vaporization and fusion at their transition points (∆Sfus(289.15K) =
∆Hfus(289.15K)

289.15K and

∆Svap(391.7K) =
∆Hvap(391.7K)

391.7K ). The enthalpies of vaporization and fusion at their tran-

sition point were taken from the Handbook of Chemistry and Physics.238 Isobaric heat

capacities from Ref 239 were converted to a smooth function using a cubic spline and

integrated using Mathematica.

164



B.3 Acetic Acid

For acetic acid, empirical enthalpies and entropies of sublimation were determined

by combining a series of reported values:

∆Hempr
sub (T ) = Hgas(T )−Hgas(298.15K) + ∆Hvap(298.15K) (B.3)

+Hliquid(298.15K)−Hliquid(289.6K) + ∆Hfus(289.6K)

+Hsolid(289.6K)−Hsolid(T )

∆Semprsub (T ) = Sgas(T )− Sgas(391.7K) + ∆Svap(391.7K) (B.4)

+Sliquid(391.7K)− Sliquid(289.6K) + ∆Sfus(289.6K)

+Ssolid(289.6K)− Ssolid(T )

The gas, liquid, and solid enthalpies (H(T )) and entropies (S(T )) at various temperatures

were taken from the NIST/TRC Web Thermo Tables.237 Values for the enthalpies of vapor-

ization240 and fusion241 were taken from the literature. The entropies of vaporization and

fusion were determined by dividing the corresponding enthalpy at the appropriate phase

transition temperature (∆Sfus(289.6K) =
∆Hfus(289.6K)

289.6K , ∆Svap(391.7K) =
∆Hvap(391.7K)

391.7K ).

Since the enthalpy of vaporization was reported at 298.15 K instead of at the boiling point

of 391.7 K, it was extrapolated to 391.7 K using data from the NIST/TRC Web Thermo
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Tables:

∆Hvap(391.7K) = ∆Hvap(298.15K) +Hgas(391.7)−Hgas(298.15K) (B.5)

−Hliquid(391.7) +Hliquid(298.15K)

B.4 Imidazole

Empirical sublimation enthalpies for imidazole were derived similarly to the pre-

vious crystals:

∆Hempr
sub (T ) = ∆Hsub(298.15K) +Hgas(T )−Hgas(298.15K) (B.6)

+

∫ 298.15K

T
Cp,solid(T )dT

The enthalpy of sublimation at 298.15 K was reported by Jiménez et al.242 Isobaric heat

capacities for solid imidazole243 were converted to a smooth function via cubic spline and

integrated using Mathematica. The enthalpy of gaseous imidazole at various temperatures

was computed using Eqs 4.14 and 4.15. Experimental vibrational frequencies were taken

from Billes et al.244 The gas-phase electronic energy contribution was omitted because the

value temperature T cancels with the one at 298.15 K. Insufficient data was found to derive

the empirical entropies of sublimation for imidazole.
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water clusters and ice: A many-body analysis.” J. Chem. Phys., 139, 244504 (2013).
doi:10.1063/1.4852182.

[104] Gillan, M.J., Alfè, D., Bygrave, P.J., Taylor, C.R., and Manby, F.R. “Energy bench-
marks for water clusters and ice structures from an embedded many-body expansion.”
J. Chem. Phys., 139, 114101 (2013). doi:10.1063/1.4820906.

[105] Neill, D.P.O., Allan, N.L., and Manby, F.R. “Ab initio Monte Carlo simulations of
liquid water.” In F. Manby, editor, “Accurate Quantum Chemistry in the Condensed
Phase,” pages 163–193. CRC Press, Boca Raton, FL (2010).

[106] Podeszwa, R., Rice, B.M., and Szalewicz, K. “Predicting Structure of Molecu-
lar Crystals from First Principles.” Phys. Rev. Lett., 101, 115503 (2008). doi:
10.1103/PhysRevLett.101.115503.

175



[107] Hermann, A. and Schwerdtfeger, P. “Ground-state properties of crystalline ice from
periodic Hartree-Fock calculations and a coupled-cluster-based many-body decom-
position of the correlation energy.” Phys. Rev. Lett., 101, 183005 (2008). doi:
10.1103/PhysRevLett.101.183005.

[108] Hermann, A. and Schwerdtfeger, P. “Complete basis set limit second-order Møller-
Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon.” J. Chem.
Phys., 131, 244508 (2009).

[109] Bludsky, O., Rubes, M., and Soldan, P. “Ab initio investigation of intermolecular
interactions in solid benzene.” Phys. Rev. B, 77, 092103 (2008).

[110] Tsuzuki, S., Orita, H., Honda, K., and Mikami, M. “First-principles lattice energy
calculation of urea and hexamine crystals by a combination of periodic DFT and MP2
two-body interaction energy calculations.” J. Phys. Chem. B, 114, 6799–6805 (2010).

[111] Fedorov, D.G. and Kitaura, K. “Extending the power of quantum chemsitry to large
systems with the fragment molecular orbital method.” J. Phys. Chem. A, 111, 6904–
6914 (2007).

[112] Hahn, T., editor. International Tables for Crystallography, Vol. A: Space-group sym-
metry. Springer, Heidelberg (2005).

[113] Brock, C.P. and Dunitz, J.D. “Towards a grammar of crystal packing.” Chem. Mater.,
6, 1118–1127 (1994).

[114] Born, M. and Huang, K. Dynamical Theory of Crystal Lattices. Clarendon Press
(1954).

[115] Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert,
A.T.B., Slipchenko, L.V., Levchenko, S.V., O’Neill, D.P., Distasio, R.A., Lochan,
R.C., Wang, T., Beran, G.J.O., Besley, N.A., Herbert, J.M., Lin, C.Y., Van Voorhis,
T., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath,
P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F.C., Dachsel, H., Doerksen,
R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden,
A., Hirata, S., Hsu, C.P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M.,
Lee, M.S., Liang, W.Z., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A.,
Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E.,
Woodcock III, H.L., Zhang, W., Bell, A.T., Chakraborty, A.K., Chipman, D.M., Keil,
F.J., Warshel, A., Hehre, W.J., Schaefer, H.F., Kong, J., Krylov, A.I., Gill, P.M.W.,
and Head-Gordon, M. “Advances in methods and algorithms in a modern quantum
chemistry program package.” Phys. Chem. Chem. Phys., 8, 3172–3191 (2006). doi:
10.1039/b517914a.

[116] Dunlap, B.I. “Fitting the Coulomb potential variationally in Xα molecular calcula-
tions.” J. Chem. Phys., 78, 3140–3142 (1983).
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