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ABSTRACT OF THE DISSERTATION 
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by 
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When facial emotion recognition is performed in unconstrained settings, humans 

outperform state-of-the-art algorithms. The major technical problems of a state-of-the-art 

system are that: (1) frames in the training data are used build a model for prediction of 

emotion, including the frames that are redundant or not necessary to describe a person‘s 

emotions. (2) The Gabor filter, a frequently used feature descriptor in the field of 

computer vision, captures background texture as important edge information when it is 

noise. Additionally, the amount of computer memory required to describe faces using the 

Gabor filter is undesirably high. (3) Most of the current algorithms do not generalize to 

unconstrained data because each person expresses his/her emotions in different ways, and 

the persons in the testing data are not the same persons encountered in the training data. 

These technical challenges cause current approaches to perform inadequately. We 

address each of these problems by presenting novel algorithms that are based on the 
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human visual system. The first system, called vision and attention theory, down samples 

the training and testing data temporally to reduce the memory cost in the same way that 

the human visual system pays attention to scenes. The second system, called background-

suppressing Gabor filtering, represents the face in the same way the human visual 

system‘s non-classical receptive field represents a grating to overcome background 

texture. The third system, called score-based facial emotion recognition, scores a frontal 

face image‘s relationship to references of a face. It addresses the issue of a person not 

being present in the training data. We thoroughly test all systems on four different, 

publicly available datasets: the Japanese Female Facial Expression Database, Cohn-

Kanade+, Man-Machine Interface and the Audio/Visual Emotion Challenge. We find that 

our systems perform better than other state-of-the-art systems. This work shows promise 

for the detection of facial emotion in unconstrained settings. 
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GLOSSARY OF TERMS AND ABBREVIATIONS 

      score. See Equation 4. 

Affective computing Systems designed to accept human non-verbal input or designed to 

react to human emotional states. 

AIR Avatar image registration. See [10]. 

Apex labels (With emotions) The time point where an emotion is most visibly 

intense. Also known as apex. 

Arousal (With emotions) a person’s interest in the situation. Also known as 

activation.  

AU Facial action unit. Facial action units are the minimal set of 

possible facial muscle movements. They are numbered, e.g. AU7 

would refer to the seventh facial action unit defined in [3]. 

AVEC The Audio/Visual Emotion Challenge. A yearly grand challenge 

dataset for video-based facial emotion recognition in terms of the 

Fontaine emotional model [1]. 

Background texture Repeated patterns with the same orientation. 

Bank (With Gabor filters) a set of filters. 
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Big-six The concept posited by Paul Ekman that there are six basic 

emotions that are universal across all cultures. See [2]. 

Bootstrapping A machine learning technique to subsample the training data. 

Cells A portion of the V1 area that responds to a specific grating. 

CK+ The Cohn-Kanade+ database. A database for video-based facial 

emotion recognition in terms of Ekman big-six emotions [2]. 

Correlation Pearson product-moment correlation coefficient. See Equation 3. 

DBN Dynamic Bayesian network. See [7]. 

DC-offset (With Fourier transform) a phenomena that would cause the lowest 

frequency of the DFT to have the highest energy. 

DCT Discrete cosine transform. See [5]. 

DFT Discrete Fourier transform. 

Dominant frequency  (With Vision and Attention Theory) The frequency 

corresponding to the frequency of highest energy of the DFT of the 

temporal feature. 

Duchene smile A smile involving raised cheek muscles. Sometimes considered to 

be an authentic smile. 

Dynamic (With temporal sampling) sampling at a rate which changes as 

opposed to uniform sampling. 

Expectancy (With emotions) a person’s feelings of familiarity. 

Expression energy  An improved SIFT-Flow algorithm for measuring facial motion. 



  xvi  

Expression Facial muscle movement. In this dissertation, expression 

specifically refers to a facial action unit. See AU. 

FERA Facial emotion recognition and analysis 2011 grand challenge held 

at the IEEE AFGR workshops. A video-based facial emotion 

recognition database in terms of Ekman big-six emotions [2]. 

Fiducial feature points Landmark points on the face that were found to be 

important for facial emotion recognition in [4]. 

Fixations When an eye fixates on an object. 

Fontaine emotion model The Fontaine emotional model. A system for describing 

emotion that is capable of describing complex emotions. See [1]. 

FPLBP  Four-patch local binary patterns. An improved LBP that models 

relationships to other pixels as opposed to just encoding local 

texture. 

Fusion (In classification) when a method fuses multiple sources of 

information. 

Gabor energy filter A filter that approximates how gratings are perceived by the visual 

cortex at a low level. 

Gesture Facial or bodily movements. 

Grating A pattern of parallel lines with a specific width and orientation. 

HMM Hidden Markov model.  
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JAFFE The Japanese Female Facial Expression database. A database for 

image-based facial emotion recognition in terms of Ekman big-six 

emotions [2], consisting of images of only Japanese females. 

LBP Local binary patterns. A facial feature descriptor commonly used 

in facial emotion recognition. 

LBP Local binary patterns. A facial feature descriptor that encodes local 

texture. 

LBP-TOP Local binary patterns from three-orthogonal planes. A 

spatiotemporal version of LBP. 

LDCRF Latent-dynamic conditional random field. An improvement of 

conditional random fields.  

LFW Labelled faces in the wild. An image-based face verification 

database. See [65]. 

Local appearance features (With facial feature descriptors) when an algorithm 

describes the face by examining local pixel neighborhoods as 

opposed to the global representation of the face. 

Local (With facial feature descriptors) considering the neighboring 

pixels. 

LPQ Local phase quantization. A facial feature descriptor based on local 

patches described in the frequency domain. 

Maximal response (With background suppressing Gabor filtering) the detected edge at 

a pixel with the highest magnitude. 
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MMI-DB The Man-Machine Interface database. A database for video-based 

facial emotion recognition in terms of Ekman big-six emotions [2]. 

NCRF  Non-classical receptive field. The ability of the human visual 

system to remove background texture from a stimulus. 

Nyquist rate  A should be sampled at twice the highest frequency present to 

avoid introducing errors. Also known as Nyquist frequency.   

Optical flow An algorithm that computes the motion between two frames. 

OSE One-shot emotion.  A method for person-independent classification 

based on OSS. 

OSS One-shot scores. See [13]. 

Person-dependent Recognition when the individuals in testing are the same 

individuals in training. 

Person-independent Recognition when the individuals in testing are not the same 

individuals in training. 

Power (With emotions) a person’s feeling of control over oneself or the 

situation. Also known as potency or power-control. 

Proposed The method proposed in the chapter. 

RBF Radial basis function. A kernel function for SVM. See [9]. 

ROI Region of interest. (With face detection) the region where the 

face(s) is located in an image. 

Saccades Rapid eye movements. 
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Segmented (With video data) when a video is given in a cut form that covers 

on the significant portions of the video. 

SIFT Scale invariant feature transform. See [6]. 

SIFT-Flow An algorithm that computes the motion between two frames 

similarly to optical flow. See [11]. 

Sub-regions The process for extracting facial features where the face is divided 

into equally sized non-overlapping sub-regions to account for face 

morphology. Also known as cells, and gridding. 

SVM Support vector machine. A machine learning algorithm. 

SVR Support vector regression. A machine learning algorithm related to 

SVM. 

Temporal feature  (With Vision and Attention Theory) a feature describing the 

amount of change from frame to frame. 

TPLBP Three-patch local binary patterns. An improved LBP that models 

relationships to other pixels as opposed to just encoding local 

texture. 

UA Unweighted accuracy. Average true positive rate among all 

classes. 

Valence (With emotions) a person’s feelings toward the situation. 

Viola-Jones The Viola and Jones face detector. See [8]. 

WA Weighted accuracy. Also known as classification rate. 

XOR Exclusive OR. 
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CHAPTER 1  INTRODUCTION 

Among the first researchers in the field of facial emotion and expression 

recognition was Charles Darwin who published, ―Expression of the Emotions in Man and 

Animals,‖ in 1872 [7]. Darwin connected human expressions and bodily movements to 

emotional states. Communication between two humans is a complex process that 

involves more than just speech. We communicate non-verbally with gestures, pose and 

expressions. Gestures are a general term for motion of the body. For example, a person 

could give thumbs up while communicating and this is considered a gesture. Pose refers 

to the position and orientation of the body. For example, a person could pose by turning 

his/her face away from another person while communicating. Expressions are facial 

muscle movements, e.g. muscle movements corresponding the opening of a mouth. 

Expressions and emotions are not the same. Emotions are the underlying feelings of a 

person, which may be revealed his/her expressions, pose and gestures. 

The understanding of human expressions and emotions is a biological process—

particularly when framed in the context of their origins in mammals as Charles Darwin 

studied them. When two humans communicate, they use their hands to gesture, they use 

their facial muscles to form expressions, they focus their gaze, and they pose their face. 

Facial expressions are critically important in this non-verbal communication between 

humans. 
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Video-based facial emotion recognition is an important field of study where face 

video of a human is captured and computer algorithms must detect his/her facial 

expressions to infer his/her underlying emotional state. Expression/emotion recognition 

has applications in medicine (Asperger‘s Syndrome [8], Autism Spectral Conditions [9]), 

video games (Xbox Kinect [10]), human-computer interaction (embodied conversational 

agents [11]), deception detection [12] and affective computing. Affective computing is a 

field where computer interfaces are able to project expressions to facilitate non-verbal 

communication with a human. There has been an increased interest in facial emotion 

recognition and the field has seen great advances. However, a system that can detect 

facial emotions in unconstrained settings has yet to be seen.  

Novel computer algorithms for facial emotion and expression recognition based 

on the human visual system are the focus of this dissertation. In Chapter 2 we discuss the 

related work for sampling methods, feature representations and classification schemes. In 

Chapter 3 we discuss the categories and systems for quantifying emotion, the datasets and 

the metrics to be used in the dissertation. In Chapter 4 we discuss a method for 

downsampling video data based on the human attention. In Chapter 5 we discuss a 

method for feature representation based on non-classical receptive field, the ability of the 

human visual system to remove background texture when perceiving gratings. In Chapter 

6 we discuss a method for classification that can be used when a person has no 

representation in the training data. In Chapter 7 we give the conclusions of the 

dissertation. 
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CHAPTER 2  RELATED WORK 

In the baseline visual system for the Facial Emotion Recognition and Analysis 

2011 (FERA) [13] and the Audio/Visual Emotion Challenge (AVEC) datasets [14] [15], 

face region-of-interest (ROI) is extracted which is then aligned by eye corner points. 

Subsequently, Local Binary Patterns (LBP) [16] are extracted as histogram-based 

features, and the emotions are classified with a support vector machine (SVM). In [17], 

the top approach for discrete emotions on the FERA dataset, Yang and Bhanu introduced 

a novel registration procedure called avatar image registration. It was found that a better 

registration method greatly improved performance. In [4], Valstar et al. tracked 20 

fiducial facial points and classified them using a probabilistic actively learned SVM. 

In [18], Ramirez et al. quantified eye gaze, smile and head tilt with a commercial 

software (Omron OKAO Vision and Fraunhofer Sophisticated High-speed Object 

Recognition Engine) and used a Latent-Dynamic Conditional Random Field (LDCRF) 

[19] classifier. It was concluded that properly choosing classifier had a significant impact 

on performance. In [20], Glodek et al. modeled their system after the human perception's 

capability to separate form and motion. Gabor filters captured spatial information, and 

correlation features captured temporal information. The features were fed into multiple 

stages of filtering and non-linear pooling to further simulate human perception. It was 

found that the emotions expressed in AVEC were subtle and difficult to detect. In [21], 
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Dahmane and Meunier proposed an approach for representation of the response to a bank 

of Gabor energy filters with histograms. An SVM with a radial basis function was used as 

a classifier. In that work, succeeded in compressing the feature vector length of the Gabor 

filter. 

In [22], Nicolle et al. used 3-D model fitting, and global and local patch-based 

appearance features. These features were extended temporally with log-magnitude 

Fourier spectrum. A correlation based feature selector was proposed and a Nadaraya-

Watson estimator was used as a classifier. During ground-truth labeling, the expert 

watches the video, and then notes changes in the label. There is a time delay between the 

actions in the video and when the expert notes the change. They found that accounting for 

this delay improved classification rate. In [23], Soladie et al. employed two active 

appearance models, one to quantify head pose, and one to quantify smile. A Mamdani 

type fuzzy inference system was used. The features included who the person was 

speaking with, duration of sentences, and how well engaged the person was in the 

conversation with the embodied agent. It was found that this situational context greatly 

improved performance. In [24], Maaten used the baseline features, the derivative of 

features, and   -regularized linear least-squares regression. In [25], Ozkan et al. proposed 

a concatenated hidden Markov model (co-HMM). The label intensity values were 

discretized into bins. An HMM was trained to detect a specific bin, e.g., if there were ten 

quantization levels, then there would be ten classifiers each detecting if that specific level 

was present. A final HMM fused these outputs at the decision level. However, it was 

found normalizing the ground-truth intensities per-person had a better impact on 
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performance. In the video-based approach in [26], Savran et al. extended local 

appearance features to the temporal domain by taking the mean and standard deviation in 

sliding temporal windows. AdaBoost was used as a feature selector, and  -support vector 

regression (SVR) was used to regress the labels. 

A. Sampling Methods 

In this section we discuss state-of-the-art methods with a particular interest to how 

samples are selected for model training and for testing. Some approaches have attempted 

to address the sampling issue. In [20], Glodek randomly sampled the video frames. In 

[21], a downsampling method was proposed that changed granularity of sampling based 

on whether or not a change was detected in the predicted label. A limitation of this 

system is that it assumes that the system can correctly predict the label. In [27], Zhu et al. 

reduced the number of frames in the dataset with a bootstrapping procedure. This method 

requires the apexes to be labeled. The apex is the time point where emotion is most 

intense. We propose a method that does not require peak frame labeling. In [26], Savran 

et al. down sampled the training data to frames that had an emotion label intensity greater 

than    from the mean emotion intensity. No framework for downsampling test data was 

provided. In [28], Jiang et al. proposed a texture descriptor that extended Local Phase 

Quantization (LPQ) features to the temporal domain. It was called Local Phase 

Quantization from Three Orthogonal Planes. The paper also investigated three 

downsampling methods: randomly selecting frames, bootstrapping, and a heuristic 

approach that found two subsets of the data to describe static appearance descriptors and 

dynamic appearance descriptors. It was found that the heuristic method was the best 
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performer. All of the methods in [28] focused on training data selection, and required 

apex labels.  

B. Feature Representations 

In this section we discuss state-of-the-art methods with a particular interest in the 

feature representation used by that method. A comprehensive survey of audio and visual 

emotion recognition methods and categorization of human emotions are given in [29]. 

Facial features in state-of-the-art methods can be grouped into two categories: geometric 

features, e.g. tracking of fiducial feature points [4], or local appearance features, e.g. 

texture and color features. Of particular interest to this work are local appearance 

features, the most commonly used of which are Local Binary Patterns (LBP) [16]. 

Though the features are often referred to as LBP features, they are actually histograms of 

an LBP coded image. LBP quantifies textures at a pixel level by encoding the 

microtexture of a pixel and its neighborhood with an 8-bit code. Current methods often 

divide the frontal face into sub-regions and compute the histogram of LBP codes for each 

sub-region. For example, in [15], the face was divided evenly into       sub-regions, 

or grids, and the outer regions were discarded because they corresponded to the regions 

of a face where there were no facial expressions. Uniform LBP features have been used 

as the baseline for recent facial emotion recognition grand challenges [15]. There have 

been many improvements to the original LBP feature. [30] proposed Three-Patch and 

Four-Patch Local Binary Patterns (TPLBP, FPLBP). Whereas LBP encodes a 

microtexture of a single pixel, TPLBP and FPLBP encode larger patterns and 

homogeneity of a region by comparing a pixel's microtexture to the microtextures of 
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neighboring pixels. [31] proposed extending LBP to a spatiotemporal feature with the use 

of three orthogonal planes (LBP-TOP). [32] extended LBP to the spatiotemporal domain 

with monogenic signals analysis and phase-quadrant encoding and a local XOR operator 

in three orthogonal planes (STLMMBP). 

Not all facial emotion recognition methods use LBP as a local appearance feature. 

The top approach for the Facial Emotion Recognition and Analysis challenge for discrete 

emotions used Local Phase Quantization (LPQ) [17]. In LPQ, the phase of a per-pixel 

discrete Fourier transform (DFT) quantifies the texture. It was found that the phase of 

DFT of a local neighborhood is invariant to centrally symmetric blur. Sub-region 

histograms give LPQ a compact representation. [5] used a difference image to quantify 

facial motion, and a discrete cosine transform (DCT) to compress the feature vector size. 

[6] proposed the scale-invariant feature transform (SIFT), which quantifies local features 

with the maxima and minima of a difference-of-Gaussians. Recently, it was used by [33], 

where the SIFT features were computed at 83 fiducial feature points.  

C. Classification Schemes 

In this section we discuss related work with a particular interest on cross-database 

testing and classification schemes. In [8], Ghanem used optical flow to track facial 

points, and focused on segmenting the video temporally. Results were reported on 

interdatabase experiments on MMI and CK+. In [34], Li et al. made a distinction between 

facial expressions, gestures caused by emotion, and facial feature points. A dynamic 

Bayesian network modeled the relationship between each of the three levels. In [35], 

Miao et al. proposed a novel supervised extension to kernel mean matching. A class to 



  8  

class matching was performed with a limited number of samples. Wolf et al. [30] 

proposed learning-with-side-information, and four-patch and three-patch local binary 

patterns (LBP). It is not a facial emotion recognition approach, but it is notable because it 

is the face processing pipeline that inspired the score-based approach presented later in 

the dissertation. In [20], Glodek et al. separately processed visual information along two 

separate pathways that represented appearance and dynamic information, resembling the 

processing pathways in the human visual system.  
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CHAPTER 3  EMOTIONS, DATASETS AND 

METRICS 

A. Quantifying Emotion 

Before emotions and expressions are detected, they must first be quantified. This 

is an ongoing field of research in psychology and neuroscience, and we will highlight 

three ways to quantify emotions and expressions. We use discuss three labeling systems: 

action units [3], emotions based on the Ekman big six [2] and the Fontaine emotional 

model [1], which is an extension of affective dimensions. 

Expressions are facial muscle movements. Ekman and Friesen [3] defined the 

minimal set of facial muscle movements, or action units (AUs), that are used in 

expressions. This is the Facial Action Coding System. For example, a smile consists of 

AU 6 and AU 12. AU 6 indicates that a person‘s cheeks are raised. AU 12 indicates that 

the corners of a person‘s lips are being pulled outward. This often occurs when smiling. 

Emotion differ from expressions in that they are the underlying mental states that may 

illicit expressions. A common system for discrete emotional states is the Ekman big six: 

happiness, sadness, fear, surprise, anger and disgust. Ekman posits that these six 

emotions are basic emotions that span across different cultures [2]. 

A different system for emotion labels is the Fontaine emotional model [1] with 

four affect dimensions: valence, arousal, power and expectancy. An emotion occupies a 
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point in this four-dimensional Euclidean space. Valence, also known as evaluation-

pleasantness, describes positivity or negativity of the person‘s feelings or feelings of 

situation, e.g., happiness versus sadness. Arousal, also known as activation-arousal, 

describes a person‘s interest in the situation, e.g., eagerness versus anxiety. Power, also 

known as potency-control, describes a person‘s feeling of control or weakness within the 

situation, e.g., power versus submission. Expectancy, also known as unpredictability, 

describes the person‘s certainty of the situation, e.g., familiarity versus apprehension. For 

a more detailed explanation, the reader is referred to [1]. With this system, multiple 

emotions can be expressed at the same time. An Ekman big six emotion occupies a region 

in each of these four dimensions. 

For example, happiness would be positive valued valence because the person 

would feel positive about the situation. It would have positive arousal, because the person 

would enjoy the situation. It would have positive power, because a person would likely 

need to feel in control of himself to feel happy. It may be any value for expectancy, 

because a person may or may not be both surprised and happy. 

 

 

Figure 1: Overview of how emotions are projected and perceived by other humans. 

(Orange) Prediction of another humans‘ emotion is a two-step process of perceiving a 

person‘s face a low level and predicting what emotion is being expressed. 

In the previous paragraphs, we discussed the process by which a human expresses 

their emotions with their face. An overview of how humans communicate their emotions 

non-verbally is given Figure 1. First, a human has an underlying emotion. That human 

Underlying 
Emotion 

Facial Action 
Units 

Low-Level 
Perception 

Prediction of 
Emotion 
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will move their facial muscles, which are quantified by AUs. Groups of AUs form a 

gesture, such as a smile. These muscle movements are projected and perceived by 

another human. It is processed by the human visual system at a low-level, and a judgment 

is made by the other human as to what emotion the person is expressing. It is possible 

that the expressions projected by the human are not the underlying emotion, such as when 

a person is acting or when a person is being deceptive. In certain cultures outward 

displays of emotion are frowned upon. This is why detecting the emotions of another 

human can be a difficult task. 

Table 1: Comparison of Publicly Available Data Sets 

     Class Percentage (%) 

Name Type Apex Labels # Samples Anger Disgust Fear Happy Sad Sur. 

AVEC [14] Continuous No Affective Dimensions 270225 Regression problem, class percentage N/A. 

CK+ [36] Segmented Yes Big-six 296 14.9 15.4 14.9 20.7 15.4 18.6 

MMI [37] Segmented Yes Big-six 118 14.5 18.9 8.1 22.6 9.1 26.7 

JAFFE [38] Images No Big-six 198 25.3 18.7 18.2 14.6 19.7 3.5 

 

Table 2: Summary of experiment parameters of related work. 

Method # Video/Image  I/D Validation Classes 

Ghanem [8] 100  D 3 fold Joy, anger, sadness, 

disgust 

Li et al. [34] 309  I Leave-one-subject-out Big-six 

Miao et al. [35] -  I Leave-one-subject-out Big-six 

Poursaberi et al. [39] 96  D Leave-one-out Big-six 

Yang and 

Bhanu [17] 

316  I Leave-one-subject-out Big-six 

This Dissertation See Table 3  I Leave-one-subject-out Big-six 

 

Table 3: Class percentage for positively expressed AU for CK. 

AU1  AU2  AU4  AU5  AU6  AU7  AU9 

29.2 19.6 31.7 16 22.7 22.1 10.2 

AU10   AU12  AU15  AU20  AU24  AU25  AU27  

2.5 23.1 15.1 14.1 8.6 60.1 15.5 
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B. Datasets 

The field of facial emotion and expression recognition has advanced with the help 

of publicly available data sets. Among the first was the First Japanese Female Expression 

Data set [40]. Since then, there have been many data sets available: Cohn-Kanade+ 

(CK+), MMI Facial Expression Database (MMI-DB), the First Facial Expression 

Recognition and Analysis grand challenge (FERA), the Audio/Visual Emotion Challenge 

(AVEC), ordered by date. The field has moved toward more spontaneous, naturally 

collected data. A comparison of publicly available data sets is given in Table 1.  A 

comparison of the experimental parameters of related work is given in  

Table 2. 

1. The Japanese Female Facial Expression Database 

JAFFE is an image dataset that has images of varying emotion intensity. We 

follow the data methodology in Miao et al. [35], where the person ‘NM‘ is not used. We 

use only images/video where there is a frontal face. We use a single multiclass classifier. 

2. Cohn-Kanade+ 

The second dataset used is CK [36]. We use this database to test the quality of 

results of the proposed sampling method, when apex labels are provided. The length of 

segments range from 3 frames to over 100. We also use it to for cross-database tests 

when comparing results to other classification schemes. The percent of positively 

expressed action unit (AU) are given in  

Table 3. We follow the testing methodology in Koelstra et al. [41]. An AU is selected if it 
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has more than 10 positive examples. We focus on the following actions units (AU): {1, 2, 

4, 5, 6, 7, 9, 10, 12, 15, 20, 24, 25, 27}. The reader is referred to Lucey et al. [36] for a 

more detailed explanation of the data. We use leave-one-person-out cross-validation. A 

binary classifier is used for each AU. 

3. Man-Machine Interface Database 

MMI-DB [37] is frontal face video data similar to CK. For most videos, the 

emotion peaks near the middle of the video. The percentage of class for each emotion is 

given in Table 4. We use leave-one-person-out cross validation. We use all sessions that 

have emotion labels, and we consider the classes with at least 10 positive examples. We 

use only frontal faces. A multi-class classifier is used. 

Table 4: Class percentage for MMI-DB emotions. 

Anger Disgust Fear Happy Sad Surprise 

21.1 13.9 13.0 19.7 14.4 17.9 

4. The Audio/Visual Emotion Challenge 

AVEC 2011 [14] and 2012 [15] are grand challenge datasets. In this chapter, they 

are used to compare the performance of a proposed method to other state-of-the-art 

methods. It is a non-trivial, unconstrained dataset: (1) the frame rate is too high to load all 

frames into memory. For example, if AVEC 2012 has 1351129 frames, if LBP features 

and baseline audio features [15] are used which have 7841 dimensions, and if double 

floating points are used for each feature, it would require 8.48 GB to load all frames into 

memory. This exceeds the memory of most computers (88.9% of computers have up to 

only 8 GB of computer memory according to a recent hardware survey [42]). (2) The 

subjects are free to change pose, and use hand gestures, and (3) the videos are not acted. 
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The videos are not pre-cut, and a person can express multiple emotions per video. In the 

AVEC datasets, a person is presented with an embodied agent who engages the person in 

conversation, and causes emotionally colored conversations by being biased to express a 

particular emotion, such as belligerence or sadness. Emotions expressed in this scenario 

are natural, continuous, and spontaneous. An example is available online in Figure 2. In 

this example, a person is interacting with a specific character named Spike. Spike is 

confrontational, and aggravates the person during conversation. Note that the person is 

smiling, but not from being pleased. The smile is caused by the person being polite and 

exercising restraint in response to hostility. A classifier is used for each affect dimension. 

 

Figure 2: QR code leading to the web page at: 

https://www.youtube.com/watch?v=6KZc6e_EuCg 

The AVEC datasets are divided into three partitions: (a) 31 interviews of 8 

different individuals form the training set. It is used as samples for a training model. (b) 

32 interviews of 8 individuals, who are different from the training set form the 

development set. It is used as the testing fold in the training phase, and (c) 32 (AVEC 

2012) or 11 (AVEC 2011) interviews of new individuals who are not in the development 

or training set form the testing set. The testing set is the official validation fold with 

which algorithms are compared to each other. The average length of all the videos in 

AVEC 2011 is          frames with a standard deviation of        . All results are 
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given in terms of the frame level subchallenge. The percentage of positively expressed 

affective dimension for the training and development datasets for AVEC 2011 dataset are 

given in Table 5. The percentages for the testing set are not available because the labels 

are withheld by the challenge organizers.  

Table 5: Class percentage rate for AVEC 2011. 

Sets Arousal Expectancy Power Valence 

Training 47 46 51 55 

Develop   56 40 59 64 

C. Metrics to Quantify Performance 

The AVEC datasets have two scoring systems. In AVEC 2011 [14] the metrics 

are weighted accuracy (WA) and unweighted accuracy (UA). Weighted accuracy is the 

classification rate, and is also known as percent correct, calculated as follows: 

WA  
 

  
∑  (  )

   
       

  

   
  1 

where     is the number of true positives of class  ,     is the number of false positives of 

class  , and  (  ) is the percentage of class. Unweighted accuracy is defined as: 

UA  
 

  
∑

   
       

  

   
  2 

This metric is used because some classes in the data have disproportionate percentage. 

For example, positive valence has a percentage of class higher than 60% in the training 

fold. 

In the AVEC 2012 scoring system, each emotion‘s value is given a real number. 

The task is a regression problem. The algorithm detects the real valued emotion on a per-

frame basis. While there are many metrics that could be used to quantify performance, 
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the official metric for AVEC 2012 is Pearson product-moment correlation coefficient 

with the ground-truth. It is calculated as: 

  
 ,(    )( ̂    ̂)-

    ̂
 3 

where   is the vector of the ground-truth labels across all videos concatenated into a 

single vector;  ̂ is the vector of predicted labels;    is the mean of  ; and    is the 

standard deviation of  . Results for CK+ are given in terms of true positive rate, false 

positive rate, false negative rate, true negative rate, precision, recall and   -score. The   -

score is:  

    
(precision   recall)

(precision   recall)
 4 
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CHAPTER 4  BIOLOGICALLY INSPIRED FRAME 

SELECTION 

Current methods perform well on datasets acquired in controlled situations, e.g. 

the Japanese Female Facial Expression database [43], Cohn-Kanade (CK) [36], the MMI 

Facial Expression Database (MMI-DB) [37], and the Facial Emotion Recognition and 

Analysis (FERA) challenge dataset [13]. However, the Audio/Visual Emotion Challenge 

(AVEC) datasets [14] [15] present difficult challenges. With previous datasets, each 

dataset was small enough to be loaded into memory at once, even for cases of high 

feature dimensionality. Previous approaches could reduce the number of frames to be 

processed by taking advantage of apexes of emotions, such as in CK. The most intense 

and discriminative frames corresponding to the apexes were labeled so a method could 

choose to retain them only. 

The AVEC datasets explore the problems of a continuous emotion dataset, where 

it is computationally undesirable to select all the frames for processing. There are 

approximately one and a half million frames of video. The expressions in the dataset are 

subtle, spontaneous, and difficult to detect. The people in the videos are expressing 

emotions in a natural setting. The videos are not segmented. The apex labels are not 

given and it may be difficult to detect them automatically. In this chapter, we propose a 

principled method for downsampling the frames for facial emotion and expression 
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recognition. The method is inspired by the behavior of the human visual system. It can 

take advantage of apexes if they are provided, but they are not required.  

We propose emulating the behavior of the human visual system to address the 

challenges in the AVEC datasets. The focus of work in this chapter is video-based 

temporal sampling. The contributions of the method discussed in this chapter are: 

(1) We exploit vision and attention theory [44] [45] from perceptual psychology 

to determine an appropriate sampling rate. We assign a dynamic, temporal granularity 

that is inversely proportional to how frequent the visual information on a person's face is 

changing. The method improves average correlation with the ground-truth for all affect 

dimensions on the AVEC 2012 frame-level subchallenge testing set over the baseline 

approach by a factor of 2.7. 

(2) We provide a framework for the method to integrate information from apex 

labels, if they are provided. The method improves average    measure across 14 different 

classes by 7.6 over [17]. 

(3) We provide a framework for using match-score fusion temporally. The 

method improves average weighted accuracy on all classes on the AVEC 2011 frame-

level subchallenge development set over the use of uniform sampling of 1 frame per 

segment and no fusion by 5.4%. 

A. Motivation 

In the AVEC datasets, videos are captured at a high frame rate and over a long 

period of time. This makes it difficult to train a model for classification using all the 

frames in the dataset. An easy solution is to temporally down sample the video at a 
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uniform, low frame rate. Unfortunately, this procedure results in a loss of precision as it 

does not have the ability to precisely detect when the emotion changes. A dynamic 

sampling rate is desired that assigns a lower frame rate to parts of the video where the 

person is idle, and a higher frame rate to parts of the video where the person is animated. 

For example, in Figure 3, there are two different segments of the same video which merit 

different sampling rates. In Figure 3-(a), the person is changing his pose, opening his 

mouth, furrowing his brow, using his cheek muscles, and raising his eyebrows. Many 

frames are needed to describe this segment. In Figure 3-(b), the person holds his 

expression, so this segment would need only a few frames to be described. Therefore, we 

propose a method that applies a dynamic sampling rate which would allocate fewer 

frames for data analysis when the individual is idle, and more when the individual is 

active. The large volume of data poses the following problems to a downsampling 

procedure: 

 

Figure 3: Two different segments of AVEC [14] development video 14. (a) Many frames 

are required to describe the person‘s pose change and facial expressions. (b) The person 

is less expressive and the segment needs few frames to be described. 

1. Processing Cost 

Though related work [27] propose dynamic downsampling, these methods prune 

samples late in the recognition pipeline, i.e. the decision to remove a sample from 

consideration occurs at the very end of the recognition pipeline. With the AVEC datasets, 
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processing each frame would be too costly. To prevent unnecessary computation the 

downsampling should occur as early as possible in the video processing pipeline. 

2. Must Not Use Apex Labels  

Use of the apex label is popular in facial expression and emotion recognition, and 

results show that features from the apex region improve classification rates [46] [47] [48]. 

However, the apexes must be manually labeled by an expert. If an algorithm is used to 

detect the apexes, the labeling can have errors. Situations may arise in the AVEC datasets 

where expressions are so subtle that extracting apex information is a difficult task for 

both humans and computers. There is a need for annotation free facial emotion and 

expression recognition. Our method does not require apex labels.  

B. Technical Approach 

When viewing a natural scene, the human visual system exhibits a saccade-

fixation-saccade pattern [49]. Fixations are moments where the eye fixes on an object, 

and visual information is processed. Saccades are rapid movements of eyes, where 

information is not being processed. First the eyes saccade, then fixate, and this procedure 

is repeated. The latency between two saccades decreases with the increasing frequency of 

temporal changes of visual information in the scene. We propose a method that emulates 

this process for emotion and expression recognition. Human perception of faces is 

different than recognition of scenes or other objects. However, the focus of work is the 

concept of attention, the length of focus on a scene, not recognition. The temporal 

frequency of visual information in the scene affects the amount of attention given to a 
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part of the scene. Our algorithm is inspired by this physical process and emulates 

attention by downsampling a video. 

 

Figure 4: System overview. (1) Extraction of ROI. (2) Partitioning of video into smaller 

segments, formation of temporal feature that quantifies motion, and computation of the 

dominant frequency of the temporal feature. (3) Downsampling of the video segment. (4) 

Registration of frames. (5) Appearance feature extraction. (6) Classification/regression. 

The overview of this work is shown in Figure 4: (1) face ROI is detected with 

Viola-Jones [50]. (2) The video is partitioned into segments. Within each segment, the 

visual information is quantified with temporal features. We apply a discrete Fourier 

transform to the temporal feature to find the dominant frequency, the frequency of the 

temporal feature with the most energy. (3) The video is down sampled at the dominant 

frequency. (4) The selected frames after the downsampling are aligned with avatar image 

registration [17]. (5) Appearance features are generated in local regions, for each selected 

frame. (6) Initial a posteriori probabilities of emotion labels in each frame in the video 

segment are generated from SVM [51]. The results are temporally fused at the match-

score level [52] to generate the final predicted labels. Section Chapter 4 B.1 discusses 

downsampling for continuous videos, Section Chapter 4 B.2 discusses downsampling 

when apex labels are given. The full emotion recognition pipeline is described in Section 

Chapter 4 B.3. 
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1. Downsampling Continuous Video 

Downsampling of a continuous video without time annotations for apexes is done 

as data comes in. The videos are segmented into uniformly sized smaller segments. Each 

segment is down sampled dynamically, and each segment has its own appropriate 

downsampling factor. Conventionally, each segment would be processed with a uniform 

downsampling factor. Psuedocode for the downsampling method is given in Algorithm 1. 

Algorithm 1: Computing the sampling rate for single segment/single apex 

1: procedure downsampleSegment(  ) 

2: for all frames     do 

3:      optical flow from     to   

4:  ( )   ∑ ‖   ( )‖    
5: end for 

6:     vector corresponding to all features   

7:  ̃      – mean of    

8:     Discrete Fourier transform of  ̃  

9:          ‖  ( )‖  
10: if    is given then 

11:      
    range                   

12:           
   

13: else 

14:       {Downsampling factor} 

15:         {Every  -th frame} 

16: end if 

17: return     
18: end procedure 

 

a) Time Partitioning Procedure 

The video   is segmented into equally sized non-overlapping segments of   

frames. The segment of video    contains the frames at indices   where:   

*                +. The down sampled video segment     contains the frames 

at indices   , where    is an ordered subset of  . Initially, the system delays for   
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frames, and processes a video segment of   frames at a time.  We start with     , so 

the first   frames form one segment. Then     , so the frames from   to      

form another segment and so on, until the end of the video. If there is a remainder, it 

forms its own segment. We chose parameter   such that the duration of each segment is 

1 s because 1 Hz is the maximum bound of the HVS according to vision and attention 

theory [49]. 

b) Computing the temporal feature 

     is created by resampling    at a lower frequency. The first step is to quantify 

facial expressions into a signal that varies with time. The signal's frequency must respond 

to changes of facial expression. Because the frame rate is high, and the ROI is a frontal 

face, optical flow can be exploited to quantify the facial expressions [53].     is optical 

flow between the frames    and     . It outputs a motion vector. The magnitude is 

summed for all pixels in an image to form a 1-D signal: 

 ( )   ∑ ‖   ( )‖ 
 

 5 

where  ( ) is the temporal feature for a single frame,   is a pixel, and ‖ ‖  is the 

magnitude. For the entire segment   , the temporal feature    is indicated by:    

, (  )  (    )    (      )-. Figure 5 shows how the video is segmented, 

how the optical flow is computed, and how the temporal feature is generated. As 

registration is costly, to reduce the number of frames to be registered, we compute the 

optical flow before registration. We do not use optical flow as a feature for classification, 

nor for alignment. 
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Figure 5: Overview of how the temporal feature is computed. The video is segmented 

into non-overlapping segments of length  . Optical flow is computed using a pair of 

adjacent frames. The result of the optical flow forms the temporal feature. 

c) Downsampling the video segment 

To compute the dominant frequency, first, the DC-offset is removed: 

 ̃      (  ) 6 

where  ( ) is the expected value operator. It is important to remove the DC-offset for 

two reasons: (1) it normalizes the temporal feature and (2) for real data, the   ( )—

corresponding to the coefficient at 0 Hz, the DC-offset—will be greater than other values 

of   , causing it to be selected as the dominant frequency.    is the discrete Fourier 

transform of  ̃ :       ( ̃ ), where    ( ) is the discrete Fourier transform, and   

is the frequency index. The frequency index corresponding to the frequency with the 

most energy   and is computed as follows: 

        
 
‖  ( )‖ 7 

where ‖  ( )‖ is the magnitude of   ( ). Note that the frequency in Equation 7 is not 

the Nyquist rate. The Nyquist rate applies to sampling a continuous signal in order to 

accurately reconstruct that signal. In this chapter we are downsampling a discrete signal 
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by removing samples in the signal which have not changed much. For this reason, we 

sample at the dominant frequency itself.  

The downsampling factor   is given by: (maximum frequency/dominant 

frequency). The frequency index   can be converted to the dominant frequency as: 

     . The maximum frequency index   corresponds to frequency   . It follows that: 

     . Let        . That is,     is every  -th frame of  . When the temporal 

feature has a high frequency,    , the downsampling factor is near 1, and all of the 

frames are preserved. When the temporal feature has a low frequency, the downsampling 

factor increases, and most of the frames are removed. 

2. Downsampling with Apex Labels 

When apex label information is given, instead of segmenting the video evenly, the 

system segments the video into durations centered at each apex. Instead of downsampling 

the segment evenly, the dominant frequency effects the duration of the segment. If the 

dominant frequency is high, then the method will select many frames at the apex; if low, 

only the frames nearest to the apex are selected. The human visual system has dynamic 

attention based on spatiotemporal changes of visual information. We realize attention as 

the number of selected frames. If there is not much change in the visual information, 

there is less attention given, and fewer frames are selected. 

a) Time partitioning procedure 

If apexes are provided, the video is partitioned into uniform segments of   

frames, centered at the midpoint of the apex frames. There is a segment for each apex, 
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and each segment is centered at that apex. Frames that are not near an apex will be 

removed. Let    be the location of an apex. It now follows that: 

      {      
 

 
        

 

 
} 8 

Ordinarily we down sample the segment evenly. However, when apex labels are 

given we reformulate the downsampling method to take advantage of these labels. At the 

apex, the expressions are strong and the emotion is more easily detected. For this reason, 

the frames in the duration centered at the apex should be retained, rather than 

downsampling uniformly, which may retain frames further away from the apex where 

emotions are more difficult to detect. An example comparing sampling at a uniform rate 

versus sampling at the apex is given in Figure 6. There is no change in the way   is 

computed. 

 

b) Downsampling the video segment 

In this formulation,      
  varies in duration according to  , and is defined as 

follows:  

     
  {      

 

 
        

 

 
} 9 

If apex labels are given,      
  is taken to be   . When the temporal feature has a high 

frequency,   frames are preserved and    is equivalent to      
 . When the feature has 

a low frequency, the number of frames approaches $1$, and most of the frames are 

removed.  
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Figure 6: Comparison of sampling at even intervals versus sampling at the apex. A video 

is given, and its expression intensity is given. Sampling at even intervals retains frames 

that are further away from the apex. They are weakly expressed, and they are not a good 

representation of the emotion being expressed. Sampling at the apex retains the frames 

where the emotion is most strongly expressed. 

3. Emotion Recognition Pipeline 

a) Face ROI extraction, registration and features  

Faces are detected with a boosted cascade of Haar-like features [50]. If a face is 

not detected in the frame, we assign the expected label to that frame. For classification, 

we assign the class label that has the highest percentage of class occurrence. For 

regression, we assign the average value of the emotion intensity from the training data. A 

better method for assigning the label in this situation would be a first-order Markov 

assumption, but this is not the focus of work (see [54]). If ROI is detected, faces are 

registered with avatar image registration. The reader is referred to [17] for a more in 

depth explanation. We use Local Binary Patterns (LBP) because they are the most 

popular features in the field for representing a face. The reader is referred to [31] for an in 

depth explanation. The features are computed for each frame in    . 
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b) Fusion 

A method is needed to temporally fuse and smooth the estimated emotions. For 

each segment    , we propose fusing the a posteriori probabilities for each frame 

computed by the classifier. A posteriori probabilities are obtained with SVM [51]. The a 

posteriori probabilities are fused with combination-based match-score fusion [52], in 

which the scores, or a posteriori probabilities, from different matchers are weighted and 

combined to obtain a final, single score. Let    be the feature vector of LBP features of 

frame   in    . Let   be the set of features of      {      
 }.     is the class label 

from one of the classes:         .    is the number of classes. The estimated label for all 

the frames in    is  ̃. Note that this assigns labels to all frames  , including those that 

were not selected for processing. Temporal smoothing is introduced by assigning all the 

frames in     the same label.  (     ) is the a posteriori probability of a class   . The 

first step of fusion is estimation of  (     ) for each frame in     with the method in 

[55].  

The second step aggregates the a posteriori probabilities from the selected frames 

into a single score. The classification rule for match-score fusion is:  

 ̃        
  
 .    

          / 10 

where  ( ) is the rule for aggregation, and    is the number of frames in   . The Sum 

rule is as follows: 

    .    
          /  

 

  
∑  (     )

    

 11 
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The Product rule is as follows:  

        .    
          /  ∏  (     )

    

 12 

The Min and Max rules are as follows: 

    .    
          /         

 (     ) 13 

    .    
          /         

 (     ) 
14 

The Mode rule      , differs from the above rules by assigning the most common label 

to each frame in the segment. 

The approach can be applied to regression by taking the result of the aggregation 

rule to be the final decision value. This replaces Equation 10, where a second classifier is 

applied: 

 ̃            .    
          / 15 

Note that, for regression, we do not estimate the a posteriori probability.  ( ) in the 

above equations is replaced with the decision values from SVR [51]. 

C. Experiments 

1. Experimental Parameters  

After ROI extraction, all face images are resized to         with bicubic 

interpolation. For avatar image registration, we train the avatar reference image from the 

development data subsampled at 12 fps for detection. The parameters specific to avatar 

image registration are:    , 
 

  
     , and the number of iterations is 3. All three of 

these parameters are empirically selected from the previous work [17]. The parameters 

specific to LBP [16] are: the number of local regions is 8, patterns are computed for 8 
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neighbors at a radius of 1, and there are       sub-regions on the entire face image. All 

classifiers are SVM [51]. The parameters specific to the SVM are: an RBF kernel is used, 

the cost    , and      . The feature vectors are normalized to ,    -. For 

regression, an  -SVR is used [51]. The parameters specific to the regression algorithm 

are:      .  

Selecting the initial number of frames  : There should be enough frames in   to 

describe the expression in progress. In the unconstrained case, an expression can be very 

quick. If that expression was a microexpression, it could be as fast as 1/25th of a second, 

requiring 25 fps [56].  MMI-DB videos were captured at 24 fps, so we recommend 

     for MMI-DB. We chose      frames. It is validated empirically. 

AVEC 2012 is also used for selecting parameter  . A value is selected 

empirically by varying N in powers of 2 seconds: *          +. The results are given in 

Figure 7. N=50 gives the best performance. The performance decreases as N is reduced 

below 50 frames. For decreasing values of N, the upper bound of   decreases, and more 

frames are to be selected. The worst performer is 6 frames per segment. 

 

Figure 7: Average correlation of all affect dimensions on development set, AVEC 2012 

frame-level subchallenge for varying values of  . 

2. Experimental Results  

Training results that select the best performing combination of registration 

method and fusion rule are given in Section Chapter 4 C.2.a). Results comparing 
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temporal feature methods on MMI-DB are given in Section Chapter 4 C.2.b). Testing 

results on AVEC 2011 and AVEC 2012 are given in Section Chapter 4 C.2.c). Testing 

results on CK are given in Section Chapter 4 C.2.d). A discussion on memory cost and 

visual examples of the proposed downsampling method are given in Section Chapter 4 

C.2.e). 

Table 6: Weighted Accuracy Results for Various Sampling Methods, Registration 

Methods and Fusion Methods for AVEC 2011 Development set. 

  
WA Result 

Sampling Reg Rule Arousal Expectancy Power Valence Average 

Proposed AIR Sum 71.7 62.1 63.4 65.3 65.6 

Proposed AIR Max 71 60.7 63.2 64.8 64.9 

Proposed RST Min 70.1 61 62.1 65 64.5 

Proposed RST Mode 71 61.9 61.8 62.6 64.3 

Proposed RST Sum 70.7 60.2 63 63 64.2 

Proposed RST Prod 69.6 61.9 61.2 62.8 63.9 

Proposed RST Max 69 60.1 61.6 64.6 63.8 

Proposed AIR HMM 68.5 62 59.8 64.9 63.8 

Proposed AIR Prod 70.2 59.8 60.5 64.3 63.7 

Proposed AIR Mode 71.6 59.5 60.9 62.6 63.6 

Proposed RST No 69 59.6 62.1 63.6 63.6 

Proposed AIR Min 70.1 59.2 60.8 62.6 63.2 

Proposed AIR No 69.1 55.5 62.5 64.7 62.9 

Uniform 3 AIR Sum 69.3 57.7 61 63.7 62.9 

Uniform 6 AIR Sum 67.7 60 57.9 62.9 62.1 

Uniform 9 AIR Sum 67.6 57.2 60.2 61.4 61.6 

Uniform 6 AIR Mode 67.9 56.7 58.7 62.3 61.4 

Uniform 3 AIR Mode 65.9 61.6 59 58.5 61.2 

Uniform 9 AIR Mode 68.3 55.6 58.8 58.6 60.3 

Uniform 1 AIR No 65 56.3 57 62.4 60.2 

Sampling: sampling rate. Uniform: uniform number of frames. Reg: registration method. AIR: avatar image registration. RST: 

similarity transform. Rule: fusion rule. HMM: hidden Markov model. WA: weighted accuracy. 

 

a) Selection of registration method and fusion rule 

The selection of the best performing combination of registration method and 

fusion rule is made with the development set on AVEC 2011. This experiment also tests 

the performance gain when using the proposed method versus a uniform sampling rate. 
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The results for different registration techniques, sampling methods, and rules are given in 

Table 6. The methods are ranked in descending order of average performance across all  

four classes. Under sampling method, Uniform indicates that a uniform number of frames 

were selected for each segment, Proposed indicates that the proposed method was used. 

RST indicates that a similarity transform was used with eye points as control points. Sum 

refers to the sum rule; Product, product rule; Min, min rule; Max, max rule; Mode, the 

mode rule; and no fusion, the labels are assigned without any fusion. HMM indicates 

hidden Markov model fusion detailed in [54].  

The best performer (Proposed + AIR + Sum) improves classification rate by 5.4% 

versus Uniform 1 + AIR + No fusion. This is the combination that is used in the 

following experiments, except for AVEC 2011 testing results, which are the original, 

official entry results of the challenge that used the Max rule. The combinations can be 

grouped into three categories: (1) dynamic downsampling with avatar image registration, 

(2) dynamic downsampling with similarity transform based registration, and (3) uniform 

downsampling with avatar image registration. It is clear that methods with the proposed 

dynamic sampling rate (groups 1 and 2) are better than methods that sample uniformly 

(group 3). While the two best performers use AIR registration, the difference between 

avatar image registration (group 1) and similarity transform registration (group 2) is not 

as clear. Replacing avatar image registration with similarity registration does not cause a 

significant drop in performance. Proposed + AIR + Sum and Proposed + RST + Sum 

have a difference of 1.4\% on the average. For AVEC 2011, we conclude that intelligent 
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selection of frames is a greater contributor to classification rate than a better registration 

algorithm. 

 

Table 7: Confusion Matrices for MMI-DB. 

(a) 
 

(b) 

Yang and Bhanu [17] 
 

Uniform Sampling of 1 Frame 

 
An Di Fe Ha Sa Su 

  
An Di Fe Ha Sa Su 

An 71.7 2.2 2.2 6.5 4.4 13 
 

An 76.4 4.7 6.8 2.2 2.2 8.7 

Di 12.9 48.4 16.1 6.5 0 16.1 
 

Di 9.7 64.5 9.7 3.2 3.2 9.7 

Fe 27.6 0 58.6 3.5 0 10.3 
 

Fe 24.1 0 55.2 0 6.9 13.8 

Ha 9.5 0 4.8 76.2 0 9.5 
 

Ha 11.9 0 2.4 76.2 2.4 7.1 

Sa 25 0 6.3 6.3 59.4 3.1 
 

Sa 28.1 0 6.3 3.1 53.1 9.4 

Su 18.4 2.6 7.9 0 5.6 65.8 
 

Su 21.1 7.9 5.3 0 0 65.8 

(c) 
 

(d) 

Proposed with Frame Differencing as Temporal Feature 
 

Proposed with Dense-SIFT as Temporal Feature 

 
An Di Fe Ha Sa Su 

  
An Di Fe Ha Sa Su 

An 78.3 6.5 0 4.4 4.4 6.5 
 

An 76.1 6.5 0 0 4.4 13 

Di 9.7 67.7 12.9 0 0 9.7 
 

Di 9.7 58.1 16.1 3.2 0 12.9 

Fe 27.6 0 58.6 3.5 0 10.3 
 

Fe 17.2 0 69 3.5 0 10.3 

Ha 14.3 7.1 9.5 61.9 0 7.1 
 

Ha 14.3 4.8 2.4 69.1 0 9.5 

Sa 21.9 0 6.3 0 62.5 9.4 
 

Sa 21.9 3.1 0 3.1 59.4 12.5 

Su 15.8 2.6 2.6 0 2.6 76.3 
 

Su 18.4 0 2.6 0 0 79 

(e) 
        

Proposed with Optical Flow as Temporal Feature 
        

 An Di Fe Ha Sa Su 
        

An 73.9 4.4 4.4 0 8.7 8.7 
        

Di 6.5 74.2 6.5 0 0 12.9 
        

Fe 17.2 3.5 69 0 0 10.3 
        

Ha 9.5 4.8 2.4 76.2 0 7.1 
        

Sa 21.9 0 0 3.1 71.9 3.1 
        

Su 21.1 2.6 5.3 2.6 2.6 65.8 
        

An: anger. Di: disgust. Fe: fear. Ha: happiness. Sa: sadness. Su: surprise. 

b) Evaluation of temporal feature  

We evaluate the use of optical flow as a temporal feature versus SIFT flow and 

frame differencing with MMI-DB empirically in Table 7. Weighted and unweighted 

accuracies are given in Table 8. When using a different temporal feature,     is replaced 

by the new method (frame differencing or dense SIFT), the   -norm of the difference 

between frames   and     is still used. For uniform sampling of 1 frame, the frame at 

the apex is the only frame used. In [17], Yang and Bhanu temporal smoothed the result 
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by taking the mode predicted label and assigning it to the video. It is similar to the 

proposed approach, but it does not incorporate downsampling and uses Local Phase 

Quantization (LPQ) features. It has the worst performer because it uses all the frames, 

including the frames furthest away from the apex. Frame differencing is the fastest 

method for computing the temporal feature, but it has the worst performance among other 

temporal features.  

Table 8: Weighted accuracy and unweighted accuracy on MMI-DB for varying temporal 

features. 

Method WA UA 

Yang and Bhanu [17] 63.4 64.8 

Uniform Sampling of 1 Frame 65.2 66.6 

Prop. + Frame Differencing Temporal Feature 67.6 68.4 

Prop. + Dense-SIFT Temporal Features 68.4 69.4 

Prop. + Optical Flow Temporal Feature 71.8 72 

Prop.: Proposed. UA: unweighted accuracy. WA: weighted accuracy. 

SIFT flow improves performance, but it is the slowest temporal feature optical 

flow has a better performance and speed. Retaining only 1 frame is worse than the 

proposed downsampling method. We conclude that, for MMI-DB, there are instances 

where retaining more than 1 frame can improve classification rate, if those frames are 

intelligently selected. 

c) Results without apex labels  

Results on the official AVEC 2011 testing and development sets are given in 

Table 9. The proposed method is compared to the two other entries that employed a 

dynamic sampling rate and it is always the best or second best performer for the 

development set. On the testing set, it improves weighted accuracy by 9.8%, and 

unweighted accuracy by 7.0% over the baseline approach. In [21], the method pays more 
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attention when the predicted label changes, which assumes that the prediction is accurate, 

which is not always the case, especially for a difficult dataset such as AVEC 2011.  We 

believe that the proposed method does well because it is the only downsampling method 

based on changes of visual information of the face.  

Table 9: Comparison to Other Methods on AVEC 2011 Frame-level Subchallenge 

Testing Set. 

(a) Development Set 

 
Arousal Expectancy Power Valence Average 

Method WA UA WA UA WA UA WA UA WA UA 

Proposed Method 71.7 67.8 62.1 59.8 63.4 61.8 65.3 60.7 65.6 62.6 

Glodek et al. [20] 58.2 53.5 53.6 53.2 53.7 53.8 53.2 49.8 54.7 52.6 

Dahmane and Meunier [21] 54.9 55 51.8 51.2 53.2 52.8 56.6 55.5 46.6 53.6 

Baseline [14] 60.2 57.9 58.3 56.7 56 52.8 63.6 60.9 59.5 57.1 

(b) Testing Set 

 Arousal Expectancy Power Valence Average 

Method WA UA WA UA WA UA WA UA WA UA 

Proposed Method 56.5 56.9 59.7 55.1 48.5 49.4 59.2 56.7 56 54.5 

Glodek et al. [20] 56.9 57.2 47.5 47.8 47.3 47.2 55.6 55.6 51.8 52 

Dahmane and Meunier [21] 63.4 63.7 35.9 36.6 41.4 41.1 53.4 53.6 48.5 48.8 

Baseline [14] 42.2 52.5 53.6 49.3 36.4 37 52.5 51.2 46.2 47.5 

Table 10: Comparison to Other Methods on AVEC 2012 Video-based Frame-level 

Subchallenge Testing and Development Sets. 

Video-only Development Set 

Method Arousal Expectancy Power Valence Average 

Baseline [14] 0.151 0.122 0.031 0.207 0.128 

Proposed Method 0.379 0.199 0.244 0.385 0.302 

Nicolle et al. [22]* 0.354 0.538 0.365 0.432 0.422 

Ozkan et al. [25] 0.117 0.076 0.062 0.2 0.114 

Savran et al. [26] 0.306 0.215 0.242 0.37 0.283 

Yang and Bhanu [17] 
 

0.173 0.099 0.164 0.198 

Video-only Testing Set 

Method Arousal Expectancy Power Valence Average 

Baseline [14] 0.077 0.128 0.03 0.134 0.093 

Proposed Method 0.302 0.244 0.199 0.279 0.252 

Nicolle et al. [22]** - - - - - 

Ozkan et al. [25]** - - - - - 

Savran et al. [26] 0.251 0.153 0.099 0.21 0.178 

Yang and Bhanu [17] 0.19 0.105 0.142 0.177 0.154 

*Best performing video feature. 

**Video-only testing set not reported. 
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Results on AVEC 2012 frame-level subchallenge are given in Table 10. For the 

development set, Nicolle et al. [22] has the best performance, but they did not provide 

video-only testing results. They noted that the ground-truth labelers had a time delay 

when recording the label, and they incorporated meta-data of who the user was speaking 

with, e.g. if the embodied agent speaking to them was belligerent. Though this improved 

performance, it is ad hoc in the sense that rater time delay may be specific to AVEC 

2012, and meta-data about who the person is speaking to may not be available with other 

datasets. 

Table 11: Apex label results compared to other methods for 14 AUSs on CK 

 
Facial Action Unit 

Method 1 2 4 5 6 7 9 10 12 15 20 24 25 27 Avg 

Proposed 85.3 93 87.7 69.6 90.5 62.4 68.5 43.5 76.9 71 74 65.2 93.6 84.2 76.1 

Koelstra et al. [41] 86.8 90 73.1 80 80 46.8 77.3 48.3 83.7 70.3 79.4 63.2 95.6 87.5 75.9 

Valstar et al. [4] 87.6 94 87.4 78.3 88 76.9 76.4 50 92.1 30 60 12.3 95.3 89.3 72.7 

Yang et al. [17] 82 92.1 82 58.6 84.9 52.5 68.4 34.8 68.2 66.7 65.7 51.1 85.6 67.2 68.6 

Avg: Average of all AUs. 

d) Results with apex labels 

The efficacy of the proposed method with apex labels on CK is given in Table 11. 

A comparison is made with other methods according to    measure. Yang and Bhanu 

[17] method does not take advantage of apex frame labeling. The proposed method takes 

advantage of apex labeling and it performs better. We performed best for 4 AUs. Valstar 

and Pantic [4] perform best for 6 AUs. However, the proposed method has a higher 

average    measure among all the other works. The comparison to [17] demonstrates the 

importance of incorporating temporal information. Intuitively, assuming that each frame 

is equally discriminative, selecting as many frames as possible, such as in Yang and 

Bhanu [17], should increase the true positive rate by introducing more samples for the 
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fusion. However, samples that are further away from the apex contain less relevant 

information of the expression being captured. Frames further away from the apex are 

close to neutral. They are not good examples of the expression being expressed, and they 

reduce accuracy. The proposed method sampled frames at the apex, and Koelstra et al. 

[41] modeled the temporal phases including the apex. This may explain the gap in 

performance, because [17] does not model the apex.  

e) Memory cost savings and temporal feature results  

In the following, we discuss the memory cost saving for each dataset, and show 

examples of the temporal feature. For AVEC 2011, the total number of frames for the 

development, training and testing (video sub-challenge) partitions are 

*                    +, respectively. The proposed method down sampled the 

number of frames by a factor of 16.6, retaining *                + frames. For CK, 

the proposed method sampled          frames. For MMI-DB the proposed method 

sampled         . A comparison of the number of frames reduced by the proposed 

method is given in Table 12. 

Table 12: Summary of Frames Used for Each Dataset 

 AVEC 2011 AVEC 2012 CK MMIDB 

# of Videos 74 95 488 222 

# of Frames 1090476 1351129 8795 23466 

Proposed 65871 76960 1536 764 

Dahmane and Meunier [21] 196051 239920 - - 

Savran et al. [26] - 232600 - - 

Glodek et al. [20] 740 950 4930 2220 

 

Because the method in [26] retains outliers based on the regression label, it can 

only be applied to continuous label intensities, such as in AVEC 2012. The method 
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would process each testing frame uniformly. In [21], for continuous data, we categorized 

the labels into 10 bins. This method is not applicable to apex labeled data, where the 

videos are segmented and have a single class label. In [20], frames are sampled 

uniformly. The method's memory cost is proportional to the number of videos, so the 

method does not reduce memory cost well for datasets with many videos, such as CK and 

MMI-DB.  Though the method has the least number of frames for AVEC 2011 and 

AVEC 2012, it may sample the long videos too sparsely to precisely detect when emotion 

changes. The proposed method can be used to reduce the number of frames on all four 

datasets, both on continuous and discrete data, and on segmented and unsegmented data. 

It is the best or second best method for reducing memory cost on all four datasets. 

A detailed example of two continuous video segments from AVEC 2012, and two 

apex labeled segments from MMI-DB is given in Figure 8. The magnitude has been 

normalized to provide a better understanding of the results. The time range has been 

normalized because MMI-DB segments are of different lengths. For the discrete Fourier 

transform, the frequency is normalized to ,   -. The first example in Figure Figure 8 (a) 

is of a person who does not use many expressions (Neutral). In this case the dominant 

frequency is at .06 cycles/frame, so only a few frames would be selected. The second row 

is of a person who is using many expressions and changing her pose (Expressive). 

Intuitively, many frames will be required to describe this segment, which is corroborated 

by the dominant frequency being at .34 cycles/frame. The third row is of a person who 

holds his expression for a long time at the apex (Apex Expressive). The dominant 

frequency is at .42 cycles/frame. In this example, there are 62 frames in the cycle, thus 
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            frames would be selected. It can be observed from the example frames 

that his expression is held at the apex for roughly half of the frames, corroborating 

keeping 26 of the 62 frames. The fourth row is of a person who weakly expresses his 

emotion (Apex Neutral). In this case, the dominant frequency is .04 cycles/frame, so very 

few frames would be selected. 

D. Conclusions  

In this chapter, vision and attention theory was employed to temporally down 

sample the number of frames for video-based emotion and expression recognition. It was 

found that a uniform frame rate decreases performance and can unnecessarily increase 

memory cost for high frame rates. With the proposed method, AVEC 2011 is down 

sampled by a factor of 16.6 and weighted accuracy is improved over the baseline 

approach by 9.6% on the testing set. AVEC 2012 is down sampled by a factor of 17.6 and 

correlation is improved over the baseline by .159 on the testing set. CK is down sampled 

by a factor of 5.72 and the    measure for AU detection is improved by 0.3. MMI-DB 

dataset is down sampled by a factor of 30.1 respectively and weighted accuracy for 

emotion recognition is increased over [17] by 8.4\% for all sessions. Unlike previous 

works, we reported results on all four datasets.  

The conventional process of using a short duration of frames centered at the apex 

was corroborated with the proposed sampling method and extended to allow for an 

increase in duration when appropriate. It was found that top methods from previous 

challenges [17] did not generalize to continuous data sets. In that challenge, registration 

was found to be a significant contributor to performance, whereas, in the AVEC datasets, 
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we have found that registration does not significantly contribute to performance. Previous 

datasets were segmented to the time points of most significance, and we posit that, for 

continuous datasets, a method must be critical in its selection of frames. A limitation of 

the current work is that the frames are processed in evenly sized segments, which may 

cause a boundary effect if an unlabeled apex is close to the segmentation boundary. 

However, this can be addressed by using overlapped boundary segments. 
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Figure 8: (a) From top to bottom, a continuous video segment of a neutrally expressive 

person; a continuous video segment of an expressive person; an apex segment of a person 

who is expressive; an apex segment of a person who is less expressive. (b) The temporal 

feature of each of the examples, and (c) the discrete Fourier transform of the temporal 

feature. Note that both the continuous neutral and apex labeled less expressive examples 

have a low dominant frequency, whereas the other two expressive examples have a 

higher dominant frequency. Black arrow indicates dominant frequency. 
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CHAPTER 5  BIOLOGICALLY INSPIRED 

FEATURES 

State-of-the-art methods use features with two properties: the first property is the 

generalization to factors encountered in unconstrained facial emotion recognition, and the 

second property is a compact feature representation. For example, Local Phase 

Quantization (LPQ) features are robust to blur, and use histograms to reduce feature 

vector size [57]. Local Binary Pattern (LBP) features can be rotation invariant, robust to 

monotonic grayscale transformation from shadows, and also use histograms to reduce 

feature vector size [16]. The original formulation [38] of the Gabor energy filter does not 

have either of these properties. We propose background suppressing Gabor energy 

filtering. The proposed method removes background texture with a generalization step, 

and reduces feature vector size with a computational efficiency step. We improve 

performance over other frontal face feature representations used for the Audio/Visual 

Emotion Challenge (AVEC) 2012 grand-challenge dataset [15]. We compare the 

performance of the generalization step and computational efficiency step on the Cohn-

Kanade+ (CK+) dataset [36].  
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A. Motivation  

In recent emotion recognition grand challenges [15] [13], Gabor filters were not 

the most commonly used local appearance feature. Out of the top six approaches for 

AVEC 2011, only one approach used a Gabor energy filter [20]. Approaches preferred 

LPQ, LBP or active appearance models. The Gabor filter is historically important and it 

is utilized in various computer vision applications. We assert that it can still be 

effectively applied to facial emotion if the following technical challenges are addressed: 

(1) Generalization: Gabor energy filters do not generalize well in unconstrained 

settings, because a Gabor energy filter captures edge magnitudes at almost all 

orientations, including edges from noise due to background texture. Current local 

appearance features have additional steps in an effort to be more generalizable and 

robust. Wu et al. [58] addressed this by extending the Gabor filter to temporal domain 

with Gabor motion energy (GME) features. However, the feature vector size was 

increased by the number of temporal scales over the original Gabor energy filter, which 

already has a large feature vector size. For example, the feature vector was increased by a 

factor of 3.72 between Lyon and Akamatsu [38] and Wu et al. [58]. We address this 

technical challenge with background suppressing Gabor energy filtering, which removes 

the edges due to background noise but retains the significant edges that correspond to the 

edges of the objects in a scene. We also compute texture at a pixel, microtexture level, so 

the method is invariant to monotonic grayscale transformations. 

(2) Computational efficiency: Gabor energy filters produce a response for each 

filter in its bank. The feature dimensionality of a Gabor feature vector is a product of the 
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size of the image by the number of scales and the number of orientations. For example, a 

Gabor energy filter bank at 6 orientations, 3 scales, and a square image of     

    results in a dimensionality of 405000. The dimensionality of LBP is 5900 in Yang 

and Bhanu [17] regardless of the image size. Dahmane and Meunier [21] addressed this 

with sub-region histograms, similar to LBP. However, their approach lacked a 

generalization step. We propose to combine maximal edge response and soft orientation 

histograms to create a compact representation for emotion recognition. 

We contribute a novel method that improves the Gabor energy filter. It 

generalizes well because of its ability to suppress background texture. It has a low feature 

vector dimensionality because of soft orientation histograms.  We demonstrate its 

efficacy on the non-trivial AVEC 2012 grand-challenge dataset [15]. We thoroughly 

examine the impact on performance of each part of the algorithm on the CK+ dataset.  

Additionally, we apply the method to bio-imaging data and examine the quality of edges 

extracted. 

B. Technical Approach 

The proposed system overview for extracting local appearance is described in 

Figure 9: In the generalization step, (1) the input image is filtered by a bank of Gabor 

filters, all fixed in scale at the pixel-level and varying for   different orientations. (2) 

Background texture of the input image is estimated on a per-pixel basis and removed 

from the result of each filtered image. In the computational efficiency step, (3) the bank 

of responses is condensed into a maximal response, a representation that retains the most 

intense edges and their orientations across all of the filters in the bank. (4) The image is 
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divided into     subregions to account for face morphology, and soft orientation 

histograms, where bin counts are weighted by the magnitudes of their edges, are 

computed for each region. The histograms from each sub-region are concatenated to form 

the feature vector for the input image.  

 

Figure 9: System overview of the proposed texture descriptor.   denotes convolution 

operation. 

1. Gabor Energy Filter 

A Gabor filter is a band-pass filter that can detect edges of a specific orientation 

and scale. Conventionally, an image is filtered by many Gabor filters with different 

parameters, and the collection of filters is called a bank. Each filter in the bank is tuned to 

a different orientation and scale. Under specific conditions, the Gabor filter can 

approximate the behavior of the human visual system [59]. The first component of the 

human visual cortex that processes visual information is the V1 area, located in the 

occipital lobe [59]. Parts of the V1 area form cells, and each cell responds to edges of a 

specific magnitude and orientation, called a grating. This is referred to as the Classical 

Receptive Field [60]. The Gabor energy filter emulates this process by creating a bank of 

filters where each filter responds to a specific grating. Let   be an input image. A Gabor 

energy filter for a specific magnitude and orientation is: 
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 (             )   
 ̃     ̃  
      (  

 ̃

 
  ) 16 

where   and   are the pixel location.   is the spatial aspect ratio that is a constant, taken 

to be 0.5. It effects the eccentricity of the filter.   is the angle parameter that tunes the 

filter to specific orientations.   is the wavelength parameter that tunes the filter to specific 

spatial frequencies, or magnitudes. In pattern recognition, this is also referred to as scale. 

   is the variance. It determines the size of the filter.   is the phase offset taken to be   

and  .  ̃ and  ̃ are defined as:  

 ̃              17 

 ̃               18 

Conventionally, the scales and orientations in the bank are selected such that the half-

magnitude of each filter overlaps with others [59]. An example of a Gabor filter bank is 

given in Figure 10. The Gabor filter can be used as local appearance filter by tuning the 

filter to a local neighborhood while still varying the orientation:   ⁄      , and varying 

 . By considering pixel intensities in a local neighborhood in the same way that LBP 

computes a microtexture, the proposed method is invariant to monotonic grayscale 

transformations. For the rest of the paper,  (       ) is shorthand for the following:  

 (                  ).  (   ) is filtered by  (       ), and by  (       ) and the 

magnitude of both is taken to be the result. This is called the Gabor energy filter:  

 (     )  √((   )(       ))
 
 ((   )(       ))

 
 19 

where (   )(       ) is the convolution of  (   ) and  (       ). 
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2. Generalization Step 

Equation (19) captures the edge information. It responds to edges in the same way 

a simple cell in the human visual system responds to a grating. However, the human 

visual system is able to detect edges in the presence of background texture. This is called 

the pop-out effect [60], and an example is given in Figure 11. In Figure 11(a), a series of 

vertical edges are presented, but the edge which is perpendicular to the other edges 

appears to pop out of the image. In Figure 11(b), a triangle is presented over a 

background texture that is parallel to one of the sides of the triangle. The pop-out effect 

makes it difficult to detect the one side of the triangle. It appears as a capital ‗L‘. The 

complex cells in the human visual cortex estimate background texture to focus on edges 

that are not consistent with the background texture. If the Gabor energy filter from 

equation (19) were applied to the images in Figure 11, it would detect a high energy in 

the direction of the background texture, and a low energy for the orientations associated 

with the perpendicular line, or the ‘L‘. The background texture is referred to as the Non-

Classical Receptive Field. In some conditions, with the stimulus presented in Figure 11, 

the human visual system suppresses the Non-Classical Receptive Field to better represent 

the edge information. The proposed feature should emulate this effect. 
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(a) (b) (c) 

Figure 10: (a) Visualization of a bank of Gabor filters in the frequency domain for 4 

scales and 8 orientations, with parameters selected so that the half magnitudes overlap 

[59]. The visualization was created by taking the maximum value of the energy of each 

filter. (b) The grating corresponding to the spatial representation of the Gabor filter 

marked ‗1‘ in (a). (c) The grating of ‗2‘ in (a). Note that the grating in (c) is barely 

visible. This is because (c) is tuned to detect high frequency edges, which correspond to a 

pixel neighborhood in the spatial domain. 

The Non-Classical Receptive Field   is estimated as a weighted Gabor filter:  

 (     )  (   )(   )  20 

where the weight function   is:  

 (   )  
 

‖ (   (   ))‖
 

 (   (   ))   21 

where  ( )   ( )   , where  ( ) is the Heaviside step function.    (   ) is a 

Difference of Gaussians:  

   (       )  
 

      
 
 
     

      
 

    
 
 
     

      22 

where   is a weight.    is the variance, the same as in equation 16. This ensures that the 

filter is bounded within the original Gabor filter. For visual examples the reader is 

referred to [62].  (   ) resembles the ridges of a Mexican hat filter. When applied as the 

weight, equation (20) captures the edge information surrounding the current pixel. This 

allows background texture to be estimated on a per-pixel basis. The background 

suppressing Gabor energy filtered result   ̃ is:  

 ̃(     )   ( (     )    (   ))   23 
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where   is a parameter that effects how much of the background texture is removed. 

When    , there is no background texture suppression, and the result is a Gabor energy 

filter.  

3. Computational Efficiency Step 

Equation (23) retrieves the significant gratings of   less background texture. It is 

computed for   different orientations. Conventionally, the responses from the   

orientations would be concatenated and taken to be the feature vector. A method is 

needed to reduce the feature size. A representation of  ̃ is created that retains edges with 

maximum magnitude, for each pixel:  

 (   )     { ̃(     )           }   24 

Equation (24) is called the maximal response. Separately, an orientation map  (   ) is 

constructed that contains the orientation of the dominant edge in the maximal response, 

for each pixel:  

 (   )         { ̃(     )           }   25 

  
(a) (b) 

Figure 11: Two examples of the pop-out effect. (a) In this image, the eye is drawn to the 

horizontal line because the repeated vertical lines form a background texture that is 

suppressed by the human visual system.  (b) In this image, a triangle is presented along 
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with a diagonal pattern. The removal of background texture suppresses one side of a 

triangle to give the illusion of an ‗L‘. 

Equations (24) and (25) retain the information of the most dominant edge.   

retains the value of the maximum edge intensity, across all orientations, and   stores the 

specific orientation of the maximal edge. The image   is divided into   , equally sized, 

non-overlapping sub-regions. LBP and LPQ features use a hard histogram. That is, a 

histogram is computed that counts the number of microtextures.  We use a soft 

orientation histogram to represent each sub-region. Instead of equally counting the 

presense of each microtexture, the votes are weighted by their magnitude from the 

maximal representation:  

 (  )  ∑  (   )
 (   )  (   )   

   2

6 

where  ( ) is an   bin histogram. A histogram is computed in each grid. The      

grids are concatenated to form the feature vector for  .  

4. Emotion Recognition Pipeline 

Face regions-of-interest are detected with a cascade of Haar-like features [50]. 

The faces are registered with Avatar Image Registration, which is run for three iterations, 

based on tests in [17]. For facial emotion recognition, the following features are 

compared: (1) Gabor filter based features, (2) the contour map of a Gabor filter with Non-

Classical Receptive Field inhibition [60] (NCRF), this is the proposed method without 

the computational efficiency step, (3) the proposed method, (4) Local Binary Patterns 

(LBP) [61], (5) Three-Patch (TPLBP) and Four-Patch Local Binary Patterns (FPLBP)  
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Original Gabor Energy Filter Generalization Step 

(a) 

   

(b) 

   

(c) 

   

(e) 

   

Figure 12: Maximal response of the generalization step applied to faces from the Cohn-

Kanade+ dataset. (a-d) Note that the Gabor energy filter detects strong edges on the 

cheek, despite there being no visible edges in the image. These edges are detected from 

noise. Note that they are removed in the generalization step. (e) Teeth form a pattern that 

is detected as background noise and removed. 
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[30], (6) Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) [31], (7) 

Discrete Cosine Transform (DCT) [5], (8) dense SIFT features [6], and (9) sub-region 

histograms of a Gabor energy filter [21]. For regression, an  -SVR detects the emotion 

label intensity and, for classification, a linear SVM detects classes [51].   

C. Experiments 

1. Experimental Parameters 

For the background suppressing Gabor energy filtering:   ⁄       , values of   

were selected such that       ,    ,    . For equation (22),     and is chosen 

from previous work [60].   in the computational efficiency step is taken to be 64. All 

local histograms are calculated in neighborhoods of    . For LBP, patterns are 8-

neighbors with a radius of 1. For TPLBP and FPLBP, parameters are the same parameters 

in Wolf et al. [30]. Images are resized to         before processing. For the Gabor 

energy filter, there are 4 scales and 8 orientations, with all of the responses concatenated 

to make the feature vector. For LBP-TOP, the radii parameter for   and   is 1. 

2. Experimental Results 

a) Results on the Audio/Visual Emotion Challenge 

Results on AVEC 2012 are given in Table 13. Results are given on the 

development set, and they are generated with a 3-fold cross validation. We use the same 

folds from previous work [62]. In Table 13, average indicates the average correlation 

among the four labels of arousal, expectancy, valance and power. Size indicates the 

feature vector size. There is a clear dichotomy in the performance. There are three 
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categories of performance. The proposed method, FPLBP, and LBP, LBP-TOP and 

Gabor histograms are the best performers. DCT and LPQ features perform badly. 

TPLBP, SIFT, NCRF and the Gabor filter are the worst performers. The proposed 

method does better than the other methods in the categories of expectancy, valence and 

power. FPLBP performs better for arousal, but its variance is higher. Note that the pairing 

of LPQ and Avatar Image Registration was the best performer in the Facial Emotion 

Recognition and Analysis, discrete emotional states sub-challenge [17]. There is a 

relationship between the size of the feature vector and the performance.  

LBP and FPLBP are comparable in performance to the proposed method. 

However, LBP and FPLBP rely on the existence of coded microtextures. An LBP image 

of 8 neighbors and a radius of 1 is challenging to understand with the human eye. The 

proposed method produces a visually understandable contour map to humans. An 

example of background texture suppression is given in Figure 12. Note that for all 

examples the dominant contours from the eyes and mouth are extracted, but the Gabor 

filter detects many false alarms. In Figure 12(e), the teeth are detected as a background 

texture and removed in the generalization step. This is desirable because we want to 

detect the facial expressions from facial muscle movements. The teeth pattern in Figure 

12(e) would be detected as edges by the Gabor energy filter, falsely detecting edges that 

may indicate facial expressions in the center of the mouth.   

b) Impact of Generalization and Computational Efficiency with CK+ 

In this section, we explore the impact on performance from the generalization step 

and computational efficiency step. The three methods are compared: (1) a background 
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suppressing Gabor energy feature bank is used as a feature. The response of each filter is 

concatenated to form the feature vector. This represents the generalization step without 

the computational efficiency step. (2) The second method is the computational efficiency 

step applied to a Gabor energy filter, without the background suppression. This method 

represents the computational efficiency step without the generalization step. (3) The third 

method is the proposed method.  

Table 13: Results on AVEC 2012 development set frame-level sub-challenge. For 

correlation, higher is better. Bold: best performer. Underline: second best performer. 

Factor: the downsampling factor applied to the frame rate to fit all of the feature vectors 

into memory; smaller is better and 1.0 indicates that all the feature vectors fit into 

memory without requiring downsampling. Size: the size of the feature vector, smaller is 

better. 

 Pearson Product-moment Correlation Coefficient Feature 

Feature Arousal Expectancy Valence Power Average Factor Size 

DCT [5] 0.034 ± 0.015 0.078 ± 0.024 0.076 ± 0.024 0.063 ± 0.035 0.063 1.1 8192 

FPLBP [63] 0.425 ± 0.037 0.108 ± 0.050 0.291 ± 0.066 0.093 ± 0.033 0.229 1.0 200 

Gabor [38] 0.059 ± 0.047 0.019 ± 0.008 0.063 ± 0.043 0.012 ± 0.009 0.036 70.3 5.2 x105 

Gabor Hist. [21] 0.171 ± 0.058 0.080 ± 0.092 0.082 ± 0.073 0.067 ± 0.053 0.100 1.0 2048 

LBP [16] 0.434 ± 0.039 0.072 ± 0.030 0.257 ± 0.064 0.088 ± 0.032 0.213 1.0 5900 

LBP-TOP [31] 0.389 ± 0.016 0.092 ± 0.084 0.177 ± 0.013 0.084 ± 0.069 0.186 1.0 177 

LPQ [57] 0.032 ± 0.029 0.085 ± 0.014 0.072 ± 0.047 0.076 ± 0.026 0.066 3.5 25600 

SIFT [6] 0.037 ± 0.036 0.038 ± 0.024 0.073 ± 0.043 0.048 ± 0.028 0.049 3.5 25600 

TPLBP [63] 0.024 ± 0.034 0.047 ± 0.025 0.086 ± 0.030 0.039 ± 0.028 0.049 283.7 2.1x106 

Proposed 0.417 ± 0.035 0.143 ± 0.051 0.347 ± 0.062 0.124 ± 0.033 0.258 1.0 6400 

 

The true positive rate, false positive rate, false negative rate, true negative rate, 

precision, recall and   -score are given in Table 14. The negative samples greatly 

outnumber the positive samples, so the true negative rate is very high for all the AUs, 

except for AU17, which has a positive rate of 0.61. For this reason, more attention should 

be paid to the true positive, false negative and   -score. A summary comparing the 

average   -score values is given in Table 15. The generalization step by itself without the 

computational efficiency step is the worst performer of the three in all metrics. This is 
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due to the large feature dimensionality. Because there are 64 filters in the bank, the 

feature vector size is 1048576. The computational efficiency step by itself and the 

proposed method has a feature vector size of 6400. Also, because each pixel is taken to 

be a feature, there is an extreme sensitivity to alignment. Histograms in local regions 

allow for some tolerance of registration errors, which is why histograms were adopted for 

use in LBP and LPQ features. The pairing of generalization and computational efficiency 

is always the best performer.   

Table 14: Breakdown of performance of the different parts of the proposed method for 

different Facial Action Units on CK+. 

(a) Generalization Step Only 

AU True Positive False Positive False Negative True Negative Precision Recall   -score 

1 0.69 0.31 0.04 0.96 0.69 0.94 0.79 

2 0.67 0.33 0.03 0.97 0.67 0.96 0.79 

4 0.51 0.49 0.02 0.98 0.51 0.96 0.67 

5 0.57 0.43 0.06 0.94 0.57 0.91 0.70 

6 0.76 0.24 0.05 0.95 0.76 0.94 0.84 

7 0.80 0.20 0.08 0.92 0.80 0.91 0.85 

12 0.23 0.77 0.03 0.97 0.23 0.90 0.37 

17 0.90 0.10 0.21 0.79 0.90 0.82 0.86 

25 0.76 0.24 0.69 0.31 0.76 0.53 0.62 

 

(b) Computational Efficiency Step Only 

AU True Positive False Positive False Negative True Negative Precision Recall   -score 

1 0.73 0.27 0.05 0.95 0.73 0.94 0.82 

2 0.74 0.26 0.03 0.97 0.74 0.96 0.83 

4 0.60 0.40 0.03 0.97 0.60 0.96 0.74 

5 0.64 0.36 0.06 0.94 0.64 0.91 0.75 

6 0.82 0.18 0.05 0.95 0.82 0.94 0.88 

7 0.84 0.16 0.09 0.91 0.84 0.91 0.87 

12 0.33 0.67 0.03 0.97 0.33 0.91 0.49 

17 0.93 0.07 0.22 0.78 0.93 0.81 0.86 

25 0.86 0.14 0.02 0.98 0.86 0.97 0.91 

 

(c) Proposed Method 

AU True Positive False Positive False Negative True Negative Precision Recall   -score 

1 0.77 0.23 0.06 0.94 0.77 0.93 0.84 

2 0.79 0.21 0.04 0.96 0.79 0.95 0.86 

4 0.67 0.33 0.03 0.97 0.67 0.95 0.78 

5 0.69 0.31 0.07 0.93 0.69 0.91 0.78 

6 0.76 0.24 0.05 0.95 0.76 0.94 0.84 

7 0.80 0.20 0.08 0.92 0.80 0.91 0.85 

12 0.41 0.59 0.04 0.96 0.41 0.91 0.56 

17 0.95 0.05 0.24 0.76 0.95 0.80 0.87 

25 0.92 0.08 0.03 0.97 0.92 0.97 0.94 
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Table 15: Summary of results from Table 3 in terms of average   -score across all AUs. 

Higher is better. 

Method Average   -score 

Generalization Step Only 0.72 

Computational Efficiency Step Only 0.80 

Proposed method 0.81 

D. Conclusions 

In this paper, we proposed a novel procedure that extended the Gabor filter to be 

robust against background noise and reduced the feature vector size by a factor of 126.56, 

when comparing the proposed method to a Gabor energy filter [59]. The proposed texture 

descriptor was found to have competitive performance on the AVEC 2012 dataset. It was 

demonstrated that the generalization step and the computational efficiency step improved 

classification accuracy, and that even more performance is improved by combining the 

two parts of the proposed algorithm. It was also shown that the edges detected by the 

proposed method are more meaningful than a Gabor filter on bio-imaging data. 
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CHAPTER 6  SCORE-BASED FACIAL EMOTION 

RECOGNITION 

A major problem in video-based facial emotion recognition is that two people can 

express their emotions in entirely different ways. When a recognition model is trained, 

there is no guarantee that the expressions encountered in the testing data will be properly 

described a model that is developed using the training data. This is corroborated by a 

concept called idiosyncratic gestures [64]. A person‘s expressions are so unique to that 

person that they can be used for identification purposes. In the related field of face 

verification, learning with side information [30] has found success in overcoming the 

generalization problems encountered with the Labeled Faces in the Wild (LFW) 

challenge dataset [65]. In a state-of-the-art method, features, such as geometric or 

appearance features, are extracted and used as the feature vector for classification. In 

learning with side information, a score is computed that compares a queried frontal face 

image to background data, a reference frontal face images that are not the training frontal 

face images. Since the score does not directly compute similarity to training data 

samples, it alleviates problems from unique expressions and a lack of sufficient training 

examples from a specific person. 

We propose a method to overcome the generalization problem by comparing the frontal 

face image to background information and previous frames to capture temporal face 
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dynamics. We compute three scores: neutral score, temporal score, and one-shot emotion 

score. The method is inspired by One Shot Similarities (OSS) [30] which are motivated 

by a similar issue in face verification, but the method is significantly different. Efficacy 

of the method is tested on the Audio/Visual Emotion Challenge (AVEC) 2012 [15], and 

inter- and intradatset experiments on Cohn-Kanade+ (CK) [36], the Man-Machine 

Interface Facial Expression Database (MMI) [37], and the Japanese Female Facial 

Expressions dataset (JAFFE) [38]. 

A. Motivation 

Despite the numerous advances to the state-of-the-art, a video-based approach has 

yet to be seen that performs well on AVEC, or in interdatabase experiments. There are 

two challenges to state-of-the-art methods: 

Uniqueness of expressions. A model is trained from the training data that best 

describes the emotions of the persons encountered in the training data. In testing, a person 

could be encountered that was never encountered in training data. A person‘s expressions 

and gestures are so unique to a person that they can be used for identification [64]. An 

example of different variations of a smile are given in Figure 13. This is encountered in 

the AVEC datasets [14, 15] and in interdataset experiments, where the persons in the 

training fold data are not the same persons in the testing data. In the presence of this 

technical challenge, state-of-the-art methods that perform well in training do not 

generalize to these experiments. In some cases, uniqueness of expressions resulted in 

classification rates below the class percentage rate for the AVEC datasets. This is similar 
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to the face recognition challenge Labeled Faces in the Wild (LFW) [65], where most 

individuals have only a single sample in the data. 

Insufficient examples. Unconstrained facial emotion recognition is person-

independent. The system must predict emotions of new individuals that are not in the 

training data. Because of uniqueness of expressions, in testing, there are insufficient 

examples to properly describe the emotion of a new individual. The top approach for 

discrete emotions on the FERA challenge [17] achieved 96% with person-dependent 

experiments–shared persons between folds, but the performance dropped 21% when 

conducting person-independent experiments. 

 

Figure 13: Examples of people smiling in different ways. (A) A strong, open mouthed 

smile with eyes squinted. (B) A strong smile. (C) A strong smile and pose change. (D) A 

strong smile. Though the top row (A-D) appears related, the faces in (A-C) are Duchene 

smiles, and (D) is not. Duchene smiles are characterized by use of mouth muscles and 

eye muscles. Note the formation of crows feet around the outer eye corners (B). (D) Does 

not use eye muscles, and is called a Pan-American smile. Duchene smiles are thought to 

be more genuine than Pan-American smiles, but this is not always the case. (E) A slight 

smile. (F) A crooked smile. (G) A subtle smile. (H) A crooked, slight smile. Though (E-

H) appear related, only (E), (G) and are Pan-American smiles. Note that (F) has slight 

crows feet forming in below his right outer eye corner. This is a weak Duchene smile. 

Similarly, (H) has crows feet forming on his left outer eye corner. 

We propose a method for comparing two face images for facial emotion 

recognition. It is compared to other face similarity metrics [66, 30] on MMI and found to 

better quantify the intensity of facial expressions. We propose three scores that can be 



  60  

used as features to address the generalization problem: one that measures the spatial 

change from a neutral face (neutral score), one that measures temporal changes between 

frames (temporal score), and one that compares the face to references of emotion (one-

shot emotion score). The method is demonstrated to generalize better than related work 

[67, 34, 35, 22, 25, 39, 26, 17], on AVEC, and on intra- and interdataset experiments with 

CK, MMI and JAFFE. Performance is improved over a state-of-the-art method that 

combines many features by 23.6% on interdataset experiments when training with MMI 

and testing on CK+. 

B. Technical Approach  

The system for facial emotion recognition follows (see Figure 14): (1) In training, 

reference faces of the big-six emotions, and a neutral reference are estimated from all the 

images in the training data. (2) The frontal face image is extracted with a boosted cascade 

of Haar-like features [50]. (3) Neutral score captures spatial motion of the frontal face 

with a comparison to a neutral reference face. (4) Temporal score captures temporal 

motion of the frontal face with a comparison to previous frames. (5) One-shot emotion 

(OSE) scores compare the face to background data of big-six emotions. (6) Neutral, 

temporal and OSE scores are measured with a novel SIFT-flow objective function. We 

supplement a state-of-the-art approach with side information to improve performance. 

The state-of-the-art approach in this work follows: (7) faces are registered with a SIFT-

based warping process [17]. (8) Local appearance features are extracted. We use LBP, 

four patch LBP (FPLBP) and three patch LBP (TPLBP) [30, 31] and other features. (9) 

The features are fused at the feature level [52]. (7) A support vector machine predicts the 
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labels by fusing the scores and an initial prediction by the state-of-the-art method at the 

decision-level [52].  

 

Figure 14: The proposed system integrates learning with side information (neutral, 

temporal, and one-shot emotion scores) with a state-of-the-art approach. (1) In training, 

references of characteristic emotion, and a neutrally expressive face are estimated. (2) In 

testing, a frontal face image is extracted. Learning with side information extracts the 

score features: (3) neutral score measures spatial motion from a reference face, (4) 

temporal score measures temporal motion between frames, and (5) one-shot emotion 

scores measure the distance to the reference of each emotion. (6) All three are measured 

with expression energy. The state-of-the-art approach extracts appearance information: 

(7) face images are registered, (8) appearance features are extracted, and (9) fused at the 

feature-level. (10) Final fusion of motion and appearance is done at the decision- level.  

1. Quantifying the Score of Two Images 

A function is needed to determine if a query frontal face image  ( ) is similar to 

the target frontal face image  ( ).   and   are of the same size, and   is a pixel location. 

The function  (   ) computes a score that gauges whether or not   and   are similar 

images. We compare two face images with an improved version of SIFT-Flow [66]. 

SIFT-flow warps the dense SIFT features between two images. Its original purpose was 

to align two images of similar content, and has been applied to face registration [17]. It 

resembles optical flow performed on dense SIFT descriptors. It is described as follows: 

(1) 128 dimensional SIFT descriptors of   and   are computed densely, for each pixel. 

They are    and    respectively. (2) The SIFT descriptors are matched using max-product 
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loop belief propagation [68]. An example is given in Figure 15. SIFT-Flow quantifies the 

changes between Figure 15-(A) and -(B). For a more detailed description, the reader is 

referred to [66]. 

 

Figure 15: An example of how expression energy can measure the difference between 

two frontal face images. (A) The query image. (B) The target image. (C) Visualized flow. 

Color indicates a change detected between (A) and (B). Note that the changes in eyes and 

mouth are detected. There is also a change detected her right nasolabial furrow–the crease 

in the cheek–because her jaw extends to her right between (A) and (B). 

For a frontal face image score, the objective function, of the SIFT-flow warping process 

can be used to describe the similarity between two images. If the objective function has a 

low score, the images are similar; if high, the images are different. SIFT-flow finds an 

optimal flow field   warping the SIFT features of   and  . The flow field has vertical 

and horizontal components:  ( )    ( )   ( ) . We propose modifying the SIFT-flow 

objective function to better detect changes in appearance of the face due to facial 

expressions. It is called expression energy, and is defined as follows:  

 ( ( ))  ∑ ‖  ( )    (   ( ))‖  
 

   ∑ (( ( )    )
  ( ( )    )

 )
 

   
27 

where  ( ( )) is the objective function that is minimized; ‖ ‖  is the L
1 
norm;   is a 

parameter;   (   ( )) are the dense SIFT features of   at   offset by  ( );    and 

( A )   ( B )   ( C )   



  63  

   are the mean motion in the   and   directions respectively. The proposed score 

function   is:  

 (   )   ( ( ))   28 

Assuming the images are of similar content, there is some SIFT feature in    that matches 

with the feature in   . With this assumption, the optimal  ( ) causes   ( )  

  (   ( ))   . The first term iterates for each pixel and finds the SIFT feature that 

matches according to an L
1 

norm difference. The second term constrains the motion to 

punish large changes. It sums the magnitude of all the motion vectors in  ( ). In a video 

sequence, assuming that the frame rate is sufficiently high, the optimal match should be 

spatially near to  . 

Is Equation 2 a metric? Equation 1 follows most properties of a metric. The non-

negativity principle requires that  ( )   . Note that the terms of Equation 1 are an    

norm and a squared magnitude. Because all terms of   are absolute value or squared, all 

values of   cause  ( )   . The identity of indiscernibles property requires that 

 ( )    when computing the score between two identical images. If the images are the 

same,    , it follows that  ( )     , so this property is satisfied. The symmetry 

property requires that,  ( ) is the same when warping     and vise versa.     will 

have the same magnitude as    , but an inverted angle. Note that the terms of 

Equation 25d o not incorporate the angle of  . Only the magnitude is considered, so this 

property is satisfied. 

However, it is not clear if the triangle inequality is satisfied. It would require that 

 (   )     (   )     (   ), given that   is another image.  ,   and   can be any 
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image, so there may be a condition that does not satisfy this property. For this reason, we 

do not refer to Equation 25 as a metric. It is a score. Despite this, the original formulation 

of SIFT-Flow has been used as a metric for scene and face recognition [66]. 

2. Discussion of Score Fusions 

The score function of the original SIFT-Flow method dSIFT−Flow (Q,T) uses the 

following objective function: 

 ( ( ))  ∑ ‖  ( )    (   ( ))‖  
 

   ∑ .( ( ))
 
 ( ( ))

 
/

 
  

   ∑ ∑ (     ( )   ( )       ( )   ( ) )
        

  

29 

where   is a parameter; and    is the neighborhood of pixels at  . The third term is the 

homogeneity term. It iterates for each pixel  , and then iterates for each pixel in its 

neighborhood   , where   is the iterator. It enforces  ( ) to have a similar value as its 

neighbors. The proposed objective function (Equation 27) differs from the original 

objective function of SIFT-Flow (Equation 29) in two ways. The first difference is that, 

in Equation 27, the motion vectors are offset by the mean translation of the flow field. In 

Equation 29, if there is a translation error in frontal face image detection, the translation 

would affect each  ( ), and increase the value of the objective function. This is not 

desirable because we want to detect motion due to motion of parts of the face, not a 

translation error from a coarsely registered frontal face image. A translation error would 

detect motion for all  . The improvements made in Equation 27 allow the score to be 

computed on images extracted with Viola and Jones [50] without fine registration, where 
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there is not much out-of-plane pose change. The ROI detector suffers from slight 

translation errors from frame to frame, which are handled by Equation 27. The second 

difference is that Equation 1 lacks the third term from Equation 3. It was removed 

because SIFT-flow was designed for scene alignment. In scene alignment, there are 

multiple objects in the frame that need their local structure preserved. This is achieved by 

ensuring that  ( ) warps similarly to its neighbors. Since we are only looking at a single 

object, the face, it is not needed. Because the third term was removed, we have reduced 

the number of weight parameters and reduced computation time. 

Wolf et al. [30] employed the Minkowski metric for comparing two images:  

          (   )  (∑   ( )   ( )  
 

)

 
 
  30 

where p is the degree. It is also referred to as the    
norm, or  -norm. For p = 1 this is the 

Manhattan distance, for       this is the Euclidean distance.  

a) Neutral Score 

The key motivation for learning with side information is that the feature space is 

not discriminative. Side information is used to create a more discriminative feature space. 

Neutral score addresses the question, ―how intense is the facial expression?‖ The score 

quantifies spatial motion in Q with a comparison to a reference of a neutrally expressive 

reference frontal face image. Because the score measures the degree of spatial motion, it 

is proportional to the intensity of the emotion being expressed, which is useful when the 

system has to predict the intensity value of emotion in a regression problem. It is also 

useful because certain emotions cause significant distortion of the face, such as surprise.  
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The neutral reference is a representation of a person‘s face without expressions, 

which is estimated from all the images in training data D. There exists an neutral 

reference         , which is a representation of a face without expressions, that which can 

be used to gauge how expressive a face image is. A pixel of a frame from a video  ( ), 

in the data D, is an independent observation of         , subject to noise from pose, gaze, 

expression, lighting conditions, etc. Assuming that the noise is additive and normally 

distributed, the observed pixel  ( ) is distributed according to: 

 ( )    (        ( )  )  31 

where  (        ( )  )  is a Normal distribution of mean         ( ) and standard 

deviation of  . Each pixel         ( ) must be estimated. The minimum variance, 

unbiased estimator solution to         ( ) is: 

 ̃       ( )  
 

  
∑  ( )

    
 32 

where  ̃       ( ) is the estimated value of         ( ) and    is the number of training 

images in the sequence. 

          ( )  is sensitive to registration errors. Without registration, 

        ( ) will be a blurry image because the facial features have not been aligned. To 

address this, we exploit avatar reference image [17]. It generates the reference of an 

image by computing an initial reference image, then warps the training images to the 

initial reference to create a better reference. Specifically, first,  ̃       ( ) is estimated 

from the images in  . Next, all the images in   are warped to  ̃       ( ). Let the 

warped images be   . This results in D0 being coarsely registered, so a better version of 
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 ̃       ( ) is recomputed from   . The process iterates. Let    be the result of warping 

the images in D0 to the better version of  ̃       ( ). The number of iterations is a 

parameter that is selected empirically. Let     be the neutral score: 

      (   ̃       )  33 

Examples of     for frontal face images from CK+ and the AVEC datasets are given in 

Figure 16. Estimated  ̃        is given in Figure 17 for three iterations. 

 

Figure 16: Frames from CK+ and AVEC with normalized neutral score     below each 

frame, in ascending order. Neutral score should be proportional to distance from a 

neutrally expressive face. In general, faces 1-15 are characterized by having no 

expressions, or a single slight expression; faces 16-23 are characterized by having a 

strong expression; and faces 24-30 are characterized by having multiple strong 

expressions. 

 

Figure 17: Estimated target reference images from CK+ and MMI. (1) Neutral reference 

 ̃       . (2-6)    j for disgust, fear, anger, happiness, sadness, and surprise. 
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Figure 18: Frames from CK+ and AVEC with normalized temporal score     below each 

frame. For CK the apex frame is compared to the first frame. For AVEC       . 
Temporal score should be proportional to the amount of temporal change between the 

two faces. For faces 1-4 a single part of the face has a weak expression. In faces 5-9, 

there are one or more regions of the face that are subject to strong facial expressions. In 

faces 10-15, the face has significantly changed from the previous time point. 

b) Temporal Score 

Temporal score addresses the question, ―what has changed from the previous 

frame?‖ It measures the temporal changes between two frames of the same video. 

Temporal score can be discriminative for emotions that cause sudden changes in 

expression. For example, a sudden change in temporal score can indicate surprise, 

because the expressions of the face suddenly change. The method should report a low 

score when the person has little or no change between frames, e.g. a smirk, and should 

report a higher score in situations when there is a large changes between frames, e.g. a 

full, open-mouth smile. For this score,     indicates the query image from a video at the 

current frame   , and        a frame from the same video from δ frames before t0. Let     

be the temporal score: 
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      (         )  34 

  is a parameter. Examples of     score are given in Figure 18. 

c) One-Shot Emotion Scores 

One-shot emotion scores address the question, ―is this emotion similar to other 

emotions?‖ It answers this in a way that does not directly compare   to specific examples 

in  . We do not want to generate a training model from positive examples from the 

persons in  , because each person expresses their emotion in a unique way. We 

overcome this by comparing   to a set of reference faces that describe the big-six 

emotions. The set of faces is called background data. 

Let   be the set of big-six emotions:     *          +, where    is the number 

of emotions. Let     be the reference of emotion   . Let the set of background emotions   

be:   *  +. The one-shot emotion scores are: 

           
    

 (     )  35 

      
   .     /  

36 

A visual example is given in Figure 8. If a face is not similar to    ,      should 

have a lower score than       
. If a face is similar to    ,        should have a lower 

score than     .     is estimated for each emotion in   with the same method that 

computes  ̃       , but, instead of D, a subset of D is used where only the faces that 

positively express    are used. Estimated     for each emotion is given in Figure 17. The 

OSES scores are the pair       
and     . Equations 35 and 36 form the feature vector 

and an initial classification is done by SVM. 
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Figure 19: A: anger, D: disgust, F: fear, H: happiness, Sa: sadness and Su: surprise. Radar 

graphs of showing       
 for twelve face images. Each dimension on the radar graph 

indicates       
of the given frontal face image computed from the references in Figure 

17. A low score indicates that the face is similar to the reference for that emotion. The 

values are normalized to [0,1]. The top row is from CK+ and the bottom row is from 

JAFFE. Note that JAFFE is sometimes less expressive than CK+, causing different score 

values for the same emotion. However, surprise was the maximum score for both 

datasets, and was clipped at .5 (.8 for sadness) to better visualize the results. This is 

because it causes the most distortion of the face. Anger and fear are scored similar to 

sadness because the brow is lowered. The examples of happiness are Duchene smiles, so 

the cheeks are raised causing the appearance of squinted eyes, which is similar to the 

reference 
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d) Comparison to Learning with Side Information 

Examples of side information include one-shot similarity (OSS) and two-shot 

similarity [30]. In [30],   and   are two face images, and the system must determine 

whether they are the same.   is the query image, and   is the target image. In OSS, 

instead of utilizing the features for classification,   is compared to a set of unlabeled 

background data called junk faces, faces that are not of class   or  . The distance to the 

junk faces, in the feature space, is used as the feature for verification. These similarities 

cannot be directly applied for facial emotion recognition. We are querying one face, not a 

pair of faces. In OSE scores, we compare   to   and   to    , whereas OSS compares   

to   and   to  .  

3. Emotion Recognition Pipeline 

Faces are extracted with Viola and Jones [50]. In training, if there is no frontal 

face detected, the frame/image is removed from the training data. In testing, the 

frame/image is not classified, and the missing values are interpolated with the nearest 

prediction from a frame/image with a successfully detected frontal face. The state-of-the-

art approach in the paper is described as follows: faces are registered with avatar image 

registration [17]; LBP features [16], TPLBP and FPLBP features [30], and frame number  

are used as features; and features are fused at the feature level [52]. 

The state-of-the-art approach and the proposed approach are fused. An initial 

prediction of the label is generated using a support vector machine (SVM) for 

classification, or -support vector regression (SVR) for regression [51]. There are    + 3 
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initial predictions, one for    , one for    , one from the state-of-the-art approach, and 

one initial prediction for each pair of OSE scores (there are    emotions, so there are    

initial predictions from OSE scores). The final prediction is made by fusing the      

initial predictions the decision level [52] with another SVM/SVR. 

Additionally, for continuous datasets, temporal smoothing is introduced by 

aggregating all the initial predictions in a duration of   : if the current frame is   , the 

     initial predications for the frames in the range of             are 

concatenated to form the features for the SVM/SVR. When the range contains values 

before or after the start of the video, the missing values are interpolated with nearest 

neighbor. 

C. Experiments 

Section 1 gives the parameters used in the paper. Section a) gives unconstrained, 

continuous data results on AVEC 2012. Section b) gives generalization results with 

interdataset experiments on CK+, MMI and JAFFE.  

1. Parameters 

For the parameters specific to AVEC 2012: videos are subsampled by a factor of 

5, the delay for temporal score      , and the temporal smoothing parameter      . 

 ̃        and  ̃   are estimated the apex frames in CK+ and MMI. For CK+ and MMI: for 

STS, t0 is the apex frame and δ is the neutral frame. There is no temporal smoothing. 

 ̃        and  ̃   are estimated from the apex frames of which ever dataset is used for 

training, e.g. in C2M, D are the apex frames of CK+. For JAFFE: STS is not used. There is 
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no temporal smoothing. The class label of an image is taken to be the emotion label with 

the highest intensity. For SIFT-flow: α = 510 and γ = 1.257. For LBP: the radius is 1 and 

there are 8 neighbors. We divide the image into 10 × 10 sub-regions, and discard the 

outer 36 sub-regions, because these correspond to the outer regions of the frontal face 

where there are usually no facial expressions. For FPLBP and TPLBP: we use the same 

parameters as Wolf et al. [30]. For computing the avatar reference image,  ̃        and 

 ̃  : the algorithm is run for three iterations, and is trained on CK+ and MMI. For the 

SVM [51]: an RBF kernel is used, the cost c = 1, and γ = 2
8
. The feature vectors are 

normalized to [-1,1]. For the SVR:  -SVR is used, where      . 

2. Experimental Results 

a) Continuous Dataset Results on the Audio/Visual Emotion Challenge 

The proposed method is compared to three other top performers that reported a 

video-only result for the frame-level subchallenge on AVEC 2012. We also compare the 

results from different initial predictions. For OSE scores, the ne initial predictions for all 

  are taken to be the feature vector. The results are given in terms of the average across 

all classes, and in terms of correlation the ground-truth in Table 4. 

For the development set, Nicolle et al. [22] is the best performer for average 

correlation. This is because they took advantage of metainformation, such as who the 

user was speaking with. In this specific case, the person in video is speaking with a 

character who expresses only one emotion, and there may be a typical response based on 

who they were speaking with. The metainformation may not be available for other 
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datasets. The proposed method fusing all the features and scores is the second best 

performer for average correlation. 

For the testing set, Nicolle et al. [22] and Ozkan et al. [25] do not report results 

using video-only features. The final prediction method has the best average performance, 

except for arousal. Both the neutral and temporal only, and OSE score only methods are 

better than the state-of-the-art only method. We conclude that the use of scores is a better 

contributor to correlation than the use of appearance features. 

Table 16: Comparison to other methods on AVEC 2012 video-based frame-level 

subchallenge testing and development sets. 

Video-only Development Set 

Method Arousal Expectancy Power Valence Avg 

Baseline [15] 0.151 0.122 0.031 0.207 0.128 

Nicolle et al. [22]  0.354 0.538 0.365 0.432 0.422 

Ozkan et al. [25] 0.117 0.076 0.062 0.200 0.114 

Savran et al. [26] 0.306 0.215 0.242 0.370 0.283 

State-of-the-art  0.140 0.160 0.073 0.178 0.138 

N/T score only 0.160 0.280 0.258 0.253 0.238 

OSE score only 0.283 0.279 0.224 0.340 0.282 

Proposed fusion 0.332 0.372 0.278 0.349 0.333 

Video-only Testing Set 

Method Arousal Expectancy Power Valence Avg 

Baseline [15] 0.077 0.128 0.030 0.134 0.092 

Nicolle et al. [22] 

 ,   

- - - - - 

Ozkan et al. [25]   - - - - - 

Savran et al. [26] 0.251 0.153 0.099 0.210 0.178 

State-of-the-art  0.117 0.133 0.082 0.122 0.114 

N/T score only 0.258 0.274 0.187 0.181 0.225 

OSE score only 0.218 0.247 0.209 0.309 0.246 

Proposed fusion 0.240 0.346 0.215 0.334 0.284 

N/T: Neutral and temporal score. Italic indicates results from this paper. Bold indicates the best performer, underline indicates the 

second best performer. 
  Video-only testing set not reported. 
 Best performing video feature. 

b) Interdataset Experiments 

We test the person-independent generalization capability of the algorithm with 

interdataset experiments. There is no official testing methodology for interdataset 

experiments, though some works use CERT [69], which is a combination of many 
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datasets including CK+ [36] and MMI [37]. However, CERT uses some non-public 

datasets, so we cannot use this methodology. While CK+ and MMI datasets have been 

thoroughly addressed with intradataset experiments, with high classification rates [70, 

71], intradataset experiments with CK and MMI can have a classification rate as low as 

44.1% for a state-of-the-art system (Table 17). For these reasons, we conduct interdataset 

experiments with CK+, MMI and JAFFE. We conduct a 2-run testing validation: one 

dataset is used as the testing fold and one or more other datasets are used as the training 

fold. We compare our results to related work and also give results when using the initial 

predictions from different parts of the method. We also conduct intradataset experiments 

on CK+ and MMI. 

Results for inter- and intradatasets experiments on CK+, MMI and JAFFE are 

given in Table 17. In leave-one-subject-out, folds are created for each individual, to 

ensure person-independent generalization. The state-of-the-art only method does well on 

intradataset CK+, but not on interdataset MMI or any interdataset experiment. Both of the 

score only methods outperform the state-of-the-art only method for all interdataset 

experiments. A score-based feature space describes the differences between classes better 

than the state-of-the-art feature space. An example showing 5 faces for each of the 6 big-

six emotions from CK+ and JAFFE are given in Figure 20. From Figure 20, graphing the 

samples based on their OSE scores form more distinct clusters than graphing the samples 

based on their feature vector from the state-of-the-art only approach.  
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Figure 20: A comparison of the feature representations from the state-of-the-art approach 

versus the OSE scores for 30 samples from CK+ and JAFFE, using and MATLABs 

mdscale function that creates a 2-D representation of the samples based on Euclidean 

distance. (Left) The classes in the state-of-the-art only representation form clusters, but, 

with the exception of disgust, the clusters intersect and are congested in the center of the 

graph. (Right) The classes in the OSE score representation also form clusters. Though 

there are a few errors, the clusters are well separated. 

Table 17: Interdatabase testing for score-based facial emotion recognition on CK+, MMI-

DB and JAFFE databases. 

Method CK+ MMI C2M C2J MC2J M2C 

Ghanem [67] - 83.1 53.1 - - 85.1 

Li et al. [34] 87.4 - - - - - 

Miao et al. [35] - - 55.7 58.5 58.3 - 

Poursaberi et al. [39] - 87.7 - - - - 

Yang and Bhanu [17] 82.6 - - - - - 

State-of-the-art only 89.8 62.5 43.4 44.1 45.5 64.9 

N/T score only 89.0 78.0 56.8 51.0  52.0  72.0 

OSE score only 90.9 86.4 57.6 56.1 57.1 85.8 

Proposed fusion 92.4 90.5 61.9 58.1 60.1 88.5 

Acronym indicates which dataset was used for training and which was used for testing. N/T: Neutral and temporal score. C: CK+. M: 

MMI. J: JAFFE. For example, C2M indicates CK+ was used for training and MMI was used for testing. 
 Temporal score not used because dataset is images. 

 

D. CONCLUSION 

In conclusion, we describe a method for learning-with-side-information that 

computes scores from background information (references faces and a previous frame). 
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We demonstrate incorporating the scores with a state-of-the-art approach improves 

performance. Correlation with the ground-truth increased by a factor of 2.41 on 

AVEC2012. Classification rate increased by 5.1% when training with CK+ and testing on 

MMI; it increased 23.9% training on CK+ and testing on MMI. The scores are quantified 

with an improved version of SIFT-flow. We demonstrate that the improvements represent 

the intensity of an emotion better versus related work [66, 30]. The work shows promise 

for unconstrained person-independent emotion recognition. 
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CHAPTER 7  CONCLUSIONS AND FUTURE WORK 

One of the major themes of computer science is that algorithms are designed as 

either: (1) heuristics or (2) designed after biological and human systems. There are some 

cases where human-like systems do not perform well when compared to their heuristic 

counterparts. An example of this is Deep Blue and other chess playing algorithms, which 

use alpha-beta pruning. These heuristic algorithms perform better than human-like logic 

(IF-THEN) for chess. However, we found that facial emotion recognition systems 

designed to emulate the human visual system perform better than heuristics. Human 

facial expressions are intended to be understood by other humans, so it is possible that 

this is the reason why non-heuristics perform better than heuristics for facial emotion 

recognition. 

It was found that more samples is not better for building a training model for 

prediction of human emotions with the Audio/Visual Emotion Challenge. In Chapter 4 

we found that the majority of samples in a continuous video set are redundant and reduce 

performance a facial emotion recognition system. This suggests that HD quality video is 

not necessary for facial emotion recognition. High quality image resolution is not 

required for facial recognition, which is a similar field [72]. Microexpressions occur at a 

rate which requires between 15-25 fps, so it is necessary to capture a base frame rate of at 

least 25 fps. However, there are time segments during speech where a person is not 
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expressive. These redundant, non-discriminative samples outnumber the samples where a 

person is expressive and it is possible that this caused a decrease in performance. We do 

not recommend using HD spatial resolution and we recommend compressing the video 

temporally, leaving expressive parts of the video intact. It is possible that HD video is not 

necessary to recognition facial emotion. 

We presented a method that was able to detect facial emotion of individuals who 

had no representation in the training data. The algorithm in Chapter 6  shows promise for 

real world applications. In real world applications, you cannot expect an individual in 

testing to be represented in the training data. 

An anecdote is often said that computer vision is about the features. Consider the 

performance of the system that focused strictly on the best feature with AVEC 2012 in 

Chapter 5 : the average correlation across all classes was 0.258. Compare this to the 

system that focused on the classifier in Chapter 6 : 0.284 with similar parameters. The 

system that focused on sampling in Chapter 4  achieved an average correlation across all 

classes of 0.252. This seems to contradict the anecdote. The classifier was found to be the 

most important part of the system. Furthermore, using a state-of-the-art system and 

downsampling the videos temporally, in an intelligent way, has a similar impact on 

performance. This suggests that choosing the most representative samples for your 

problem is as important as the feature you select, and that choosing the right classifier is 

also as important.  
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A. Future Work 

With respect to Vision and Attention Theory downsampling, future work should 

investigate a better method for segmenting the videos. Currently, a video is segmented 

into uniformly sized non-overlapping subsegements, and the frames are subsampled 

within that subsegment. However, there may be an instance where the boundary of the 

subsegment falls at a time point where there is an important expression. Future work 

should dynamically segment the regions. Furthermore, future work should investigate the 

importance of specific subfeatures of the face to determine if subfeatures would require 

specific sampling rates from other subfeatures. With respect to background suppressing 

Gabor filtering, future work should investigate applications of the non-classical receptive 

field to improve the acutance of blurry images. With respect to score-based facial 

emotion recognition, future work should investigate the importance of what feature is 

used when computing the similarity between the face and the generalized representation 

of an emotion. 
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