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Abstract

Working memory (WM) and timing are generally considered distinct cognitive functions, but 

similar neural signatures have been implicated in both. To explore the hypothesis that WM and 

timing may rely on shared neural mechanisms, we used psychophysical tasks that contained either 

task-irrelevant timing or WM components. In both cases the task-irrelevant component influenced 

performance. RNN simulations revealed that cue-specific neural sequences, which multiplexed 

WM and time, emerged as the dominant regime that captured the behavioral findings. Over the 

course of training RNN dynamics transitioned from low-dimensional ramps to high-dimensional 

neural sequences, and depending on task requirements, steady-state or ramping activity was also 

observed. Analysis of RNN structure revealed that neural sequences relied primarily on inhibitory 

connections, and could survive the deletion of all excitatory-to-excitatory connections. Our results 

suggest that in some instances WM is encoded in time-varying neural activity because of the 

importance of predicting when WM will be used.

INTRODUCTION

Working memory (WM) refers to the ability to transiently store information, and 

subsequently use this information in a flexible manner for goal-oriented behaviors and 

decision makingorhan1,2. Timing, here, refers to the ability to track elapsed time after 

a stimulus, in order to anticipate subsequent external events or generate appropriately 
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timed motor responses3–5. While it is widely recognized that the ability to transiently 

store information about the past and prospectively anticipate external events are among the 

most fundamental computations the brain performs1–4,6–8, the fields of WM and timing 

have evolved mostly independently from each other because they have been seen as 

distinct cognitive functions with different underlying neural mechanisms. Yet, both share 

critical computational features. Both require transiently storing information, retrospective 

information in the case of WM and prospective information in the case of timing (e.g., 

when a delayed reward will occur). In some cases, these properties are mirror images of 

each other. For example, a timer, such as an hourglass, can be seen as encoding a transient 

memory that was recently flipped over and of generating a prediction as to when an external 

event may occur.

Similar neural signatures—including ramping activity and neural sequences—have been 

associated with both WM and the encoding of time3,5,9–14. Although early groundbreaking 

studies suggested that WM is encoded in steady-state persistent neural activity15–17, there 

is ongoing controversy regarding the neural encoding of WM9,10,18–21. Broadly speaking, 

in addition to steady-state persistent activity there are two additional classes of WM 

models9,10,22: 1) Time-varying patterns of neural population activity, which can include 

low-dimensional ramping activity as well as high-dimensional neural trajectories (including, 

neural sequences); and 2) activity silent mechanisms, in which short-term memory can be 

stored in the hidden state of neural networks—rather than ongoing spiking activity—through 

mechanisms such as short-term synaptic plasticity (STSP). Importantly, ramping activity, 

neural trajectories, and STSP-based changes in the hidden-state of networks have all been 

proposed to underlie timing as well3–5,23.

The diversity of neural regimes implicated in WM may, in part, be dependent on the 

presence or absence of implicit timing components. The brain is always attempting to learn 

the temporal structure of the external world even if it is not explicitly relevant to the task at 

hand 7,24. Implicit timing enables prediction of when events will take place, thus allowing 

for preparation and optimal allocation of cognitive resources. Indeed, recent human studies 

suggest an intimate connection between WM and timing, as WM can be impaired when 

information has to be retrieved at unexpected times7,25. Furthermore, some computational 

studies have implicitly linked the ability to encode elapsed time in a stimulus-specific 

manner11,14,26,27

We examine the hypothesis that WM and timing are, in some cases, essentially the same 

computation, i.e., a given stimulus and stimulus-specific elapsed time can be encoded in 

the same dynamic pattern of neural activity. thus rely on the same encoding mechanisms. 

We first developed two psychophysical tasks that use the same stimulus structure but vary 

whether the WM or timing components are explicit (required to solve the task) or implicit 

(task-irrelevant). Participants learned both task-irrelevant WM information during an explicit 

timing task, and task-irrelevant timing information during an explicit WM task. Given the 

ongoing challenges in identifying brain regions causally responsible for both the encoding 

of time and WM, and the success of using artificial neural networks to examine the neural 

dynamic regimes underlying a diverse set of cortical computations28, we trained recurrent 

neural networks (RNNs) on the same tasks the human participants performed. We show that 
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cue-specific neural sequences emerge as the dominant regime for encoding memoranda and 

elapsed time from the onset of each memorandum, but overall, that training stages, task 

structure and hyperparameters captured much of the diversity of the experimentally observed 

neural dynamic regimes.

RESULTS

The differential-Delay-Match-to-Sample and Interval-Stimulus Association tasks

As a first step towards addressing a potential link between WM and timing, we developed 

variants of the standard Delay-Match-to-Sample (DMS) working memory task. In its 

simplest form, a DMS task presents either of two cues (in our case, a star or circle 

denoted by A or B respectively), and following a delay period either of the two stimuli 

is presented again, resulting in four conditions (AA, AB, BA, BB). Participants are 

required to differentially respond to the match (AA, BB) versus nonmatch (AB, BA) 

conditions. Typically, the delay between the cue and probe is fixed or randomized, but in 

our differential-Delay-Match-to-Sample (dDMS) task the cues predicted the delay duration 

(Fig. 1a). For example, the AA and AB trials might be associated with a 1 s delay, and 

BA and BB trials with a 2.2 s delay—but the delay itself is task-irrelevant. To determine 

if subjects implicitly learned the temporal structure of the task and whether unexpected 

delays altered WM performance, the cue-delay contingency was reversed in 20% of the trials 

(see Methods). The second task (Fig. 1a, right), termed an Interval Stimulus Association 

(ISA) task, was based on the same exact stimulus structure as the dDMS task but framed 

differently: participants were explicitly instructed to press one key when there was a short 

delay followed by A (Short-A) or a long delay followed by B (Long-B), and another key 

after Long-A or Short-B trials. In the ISA task the interval (delay) is explicitly relevant, but 

the cue (the first stimulus) identity is irrelevant as it just serves as an indicator of t=0 for the 

interval. Note that during standard trials, the dDMS and ISA tasks are isomorphic—i.e., the 

correct responses could be produced with either strategy—the difference between the tasks 

lies in the reverse trials (Fig. 1a).

To determine if participants implicitly learned the cue-delay associations we analyzed 

the inverse efficiency (reaction time/accuracy), a measure designed to take into account 

between-participant differences in speed-accuracy tradeoffs29,30. In the dDMS task (Fig. 

1b) there was a main effect between Standard-Reverse trials (n = 27, F1,26 = 9.05, p<0.01, 

two-way ANOVA), indicating that the violation of temporal expectation in the reverse trials 

altered performance. There was also a main effect of the actual delay as expected from the 

well-known hazard rate effect (F1,26 = 11, p<0.001)31—after the short interval had elapsed 

there was increased certainty that the probe will appear at the long delay thus decreasing 

reaction time (RT). We also examined the raw RT and trial accuracy independently (Fig. 

S1), both exhibited a main effect of Reversal (RT: F1,26 = 7.41, p<0.05; Accuracy: F1,26 = 

13, p<0.005). To further validate the results of this novel task we performed a replication 

study (Fig. S2), which confirmed a significant Standard-Reverse effect in inverse efficiency 

(n = 39, F1,38 = 8.51, p<0.01), and RT (F1,38 = 9.02, p<0.005). There was no main effect 

of accuracy but there was an interaction between Standard-Reverse and the actual delay 

(F1,38 = 4.1, p<0.05). These results establish that participants implicitly learned the task-
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irrelevant cue-delay association during a WM task, and that reversing the standard temporal 

contingency affected WM performance.

We next performed separate experiments using the explicit timing ISA task (Fig 1c). 

Again, there was a significant main effect of Reversal (n = 22, F1,21 = 11, p<0.005) on 

inverse efficiency, as well as on RT (F1,21 = 9.2, p<0.01) and accuracy (F1,21 = 12.9, 

p<0.005). A replication study (Fig. S3), further confirmed a significant main effect of 

Standard-Reverse trials on inverse efficiency (n = 25, F1,24 = 8.81, p<0.01), RT (F1,24 = 

9.31, p<0.01), and accuracy (F1,24 = 7.78, p<0.05). These results establish that reversing 

the cue-delay contingency impairs performance on an explicit timing task in which the cue 

is task-irrelevant, and thus that participants are, in effect, implicitly storing the cue in WM 

during a timing task.

Neural sequences in RNNs encoding WM and time

A large body of neurophysiological data across brain areas has revealed a multitude 

of neural signatures during WM and timing tasks, including neural sequences12,32–38, 

and firing rate ramps39–43. Artificial neural networks, and RNNs in particular, have 

been invaluable in capturing the experimentally observed dynamics and elucidating the 

dynamic regimes capable of storing WM and encoding time11,44–47, but to date, with some 

exceptions11, these attempts have primarily focused on either WM or timing tasks. Thus, 

anchored by our dDMS task, we next examined which dynamic regimes emerge in RNNs 

trained to encode both time and WM (Fig. 2). Having established that humans trained on the 

dDMS task implicitly learn its temporal structure, the RNNs were trained on a timing+WM 

(T+WM) task, in which the RNN had to learn both the WM and temporal expectation 

components. RNNs were also trained on two control tasks: a pure WM task without any 

timing requirements (WM task), and the ISA task which required the RNN to explicitly 

learn the interval-stimulus association but not the match/nonmatch-to-sample component 

(ISA task). Note that these tasks do not perfectly parallel the psychophysical studies because 

the standard distinction between explicit and implicit learning used in the animal literature 

does not apply to simple RNN models. Nevertheless, to provide an approximation of the 

explicit/implicit distinction in the model, the cost weighting of the WM component was 

higher than that of the temporal component (see Methods).

RNNs were composed of 256 units and had either one (WM, ISA) or two (T+WM) output 

units. The first output represented the motor response (e.g., nonmatch detection), and the 

second output represented temporal expectation (implemented as a half-ramp based on 

anticipatory licking data35). The network was composed of three weight matrices: WIn, the 

input to the RNN; WRNN, the recurrent weights; and WOut, the connections from the RNN 

to the output. A number of steps were taken to enhance biological realism and improve our 

ability to dissect the mechanisms underlying the observed network dynamics (see below): 

1) Dale’s law was implemented; 2) to capture the low spontaneous activity rates of most 

cortical neurons a ReLU activation function with a bias of zero was used; 3) in order to 

focus our mechanistic analyses on the structure of WRNN, biases of the RNN units and WIn 

were not trained (see Methods).
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The dynamics of the RNNs during the delay period were dramatically different between 

tasks. RNNs trained on the WM task primarily converged to persistent fixed-point activity 

during the delay (Fig. 2a–b), in which individual units exhibited cue-specific constant levels 

of activity during the delay epoch (Fig. 2c). RNN’s trained on the T+WM exhibited dynamic 

activity during the delay that when sorted according to latency resembled neural sequences 

(Fig 2d–e). Individual units in these RNNs often exhibited Gaussian-like time fields, in 

response to one cue and the absence of a response or a different time field in response to the 

second cue (Fig. 2f). The dynamics in the RNNs trained on the ISA task (Fig. 2g–i), was 

more mixed. Specifically, in the example shown in Fig 2i–h both cues A and B triggered the 

same neural sequence (“erasing” WM information), followed by persistent activity after the 

initial 1 s period (corresponding to the short delay). This is an effective solution to the ISA 

task because a categorical encoding of short vs long intervals is sufficient to solve the task.

We compared the performance and dynamics of 17 RNNs trained on the three tasks. 

Performance, as measured by the correct response of the motor unit, was close to 100% 

during both the Standard and Reverse trials on all three tasks (Fig. 2j–k). To compare 

the dynamics of the RNNs across tasks we first quantified the effective dimensionality14 

and the sequentiality index35 across the delay periods (see Methods). The dimensionality 

was significantly higher in the T+WM task compared to both the WM and ISA task 

(p<10−6, Wilcoxon rank sum test), and there was a much smaller difference between the 

dimensionality for the WM and ISA tasks (p=0.01). The selectivity index was also higher in 

the T+WM task compared to the WM and ISA tasks (p<10−6 and p<10−4, respectively), and 

between the ISA and WM tasks (p<10−5). These results are consistent with the interpretation 

that RNNs converge to fixed-point attractors when they only need to encode WM, but to 

neural sequences when they need to encode both WM and elapsed time, and to mixed 

dynamics when they need to encode elapsed time and the nature of the first cue is task-

irrelevant (ISA task). We note, however, that there is some variability in the solutions RNNs 

converged to in each task, particularly during the WM and ISA task. Specifically, sequences 

could emerge during the WM tasks, while ramping activity and mixed dynamics could 

emerge in the ISA task (Fig. S4).

The T+WM task was designed to capture the human psychophysics data, and critically, in 

this task two distinct neural sequences generally encoded both WM and timing. Importantly, 

there is no clear apriori reason that high-dimensional trajectories that approximate neural 

sequences, should emerge as the dominant solution to encode WM and time. Indeed, 

intuitively, one might expect much lower dimensional cue-specific ramping activity to 

encode both WM and time (see below and Discussion).

Transition from low-dimensional ramping to high-dimensional neural sequences over the 
course of training

As stated above, either low-dimensional ramping activity or high-dimensional neural 

sequences can encode both WM and time. Furthermore, both types of dynamics have 

been observed experimentally during WM or timing tasks12,32–37,39–43. To date, ramping 

activity and neural sequences have been treated as fundamentally different dynamic regimes 
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to encode WM or time3,9,11,48. To determine if this is indeed the case, we analyzed the 

development of neural sequence across training in the T+WM task.

Visualization of RNN dynamics from early to late training stages revealed a continuous 

shift from steady-state activity, to ramps, to neural sequences, both at the population and 

single-unit level (Fig. 3a). Quantified across RNNs this transition was expressed as a 

progressive increase in the dimensionality of network dynamics (Fig. 3b). As expected—

because the WM task is the “explicit task” (higher cost weighting)—the WM performance 

(i.e., discrimination of match vs. nonmatch trials) peaked very early in training while the 

dimensionality was fairly low. At these early stages timing, as measured by the loss function 

of the timing output (Fig. 3c) or by the ability to decode elapsed time from each cue (Fig. 

3d), was poor, but increased progressively over the course of training. Finally, there was a 

strong positive correlation between dimensionality and time decoding performance (Fig. 3e).

The transition from ramps to neural sequences was driven by the “implicit” timing 

component of the task, because WM performance was high early in training. These 

results indicate that the same RNN can smoothly transition between ramping activity and 

neural sequences, and additionally that in both experiments and computational models 

dimensionality may be dependent on the degree of training and how well any implicit timing 

component has been learned.

Multiplexing of WM and elapsed time

To quantify the ability of the RNNs trained on the three tasks to encode both WM and 

elapsed time, we used a support vector machine (SVM) to decode both cue and time 

(Cue-Time)—i.e., elapsed time from the onset of each cue based on population activity. 

Visual inspection of a sample confusion matrix (predicted versus actual Cue-Time bin) 

revealed robust Cue-Time decoding in the T+WM task—and thus that cue-specific elapsed 

time could be decoded during the delay (Fig. 4a). In contrast, relatively little temporal 

information was present in the WM task dynamics. And while relatively good decoding of 

time was possible in the ISA task, ISA-trained RNNs often confused the cue that signaled 

the start of each delay. Specifically, the secondary diagonal lines of the confusion matrix 

indicate that the decoder confused whether time bins of 0.5 – 1 s were associated with 

Cue A or B. Across all tasks, the median performance, as measured by the correlation 

between predicted and actual Cue-Time bins, was above 80% (Fig. 4b, left), indicating 

that even the apparently persistent fixed-point activity in the WM retained a significant 

amount of temporal information. But decoding was progressively better from the WM, 

to ISA, to T+WM task as measured both the performance and MSE (Fig. 4a, right; 

all pairwise comparisons were significantly different with p values of at most p<10−5). 

Consistent with the need for stimulus-specific encoding of time in the T+WM task and 

stimulus-independent encoding of time in the ISA task, cross-cue decoding of time revealed 

very poor performance in the T+WM (and WM) tasks, but good decoding in the ISA task 

(Fig. S5).

We next asked if WM memory and time were multiplexed at the level of individual units

—as opposed to, for example, a modular strategy in which some units encoded WM and 

others time. Analysis of the correlation of the mean activity during the delay epochs revealed 
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largely nonoverlapping populations of units activated in response to the short and long 

cues in the WM and T+WM tasks but largely overlapping in the ISA task (Fig. 4c–d). 

The median Pearson correlation was close to zero across RNNs for the WM and T+WM 

tasks, but above 0.75 in the ISA task. These results reflect the preservation of cue-specific 

information during the delay period in the WM and T+WM tasks, but significant loss of 

cue-specific information during an explicit timing task (ISA). The multiplexing of WM and 

timing information in the T+WM task at the level of individual units was confirmed in the 

high levels of mutual information individual units contained about both cue and elapsed 

time, as well as the high degree of correlation between them (Fig. S6).

Neural sequences rely heavily on tuned inhibitory connectivity

Dynamic regimes that generate neural sequences have been observed in many brain 

areas12,32–38,49, and produced in a number of artificial neural network models13,14,26,50,51. 

While these studies have led to significant insights into the potential circuit mechanisms 

underlying neural sequences, the mechanisms underlying regimes in which the same units 

participate in multiple sequences, as well as the contribution of different synapse classes, 

are not fully understood. To begin to dissect the circuit principles underlying the emergence 

of neural sequences in the T+WM task we partitioned WRNN into its four sub-matrices 

W Ex Ex
RNN , W Ex Inℎ

RNN , W Inℎ Ex
RNN , W Inℎ Inℎ

RNN , and ordered both the pre- and postsynaptic neurons 

of the matrix according to peak firing latency during the delay (the long delay was 

used for visualization purposes). The sorting was performed separately for the Ex and 

Inh populations (Fig. 5a). Next, to extract any general structure underlying the neural 

sequences we averaged the segmented and sorted weight matrices across all 17 RNNs into 

a master weight matrix (Fig. 5b–d). Note that the weights of the entire network are shown, 

including the units that never fired during the long delay or whose peak was outside the 

delay—which were placed first in the sorting order—thus it is the weight structure of the 

latter units of the sorted sequence that are associated with the neural dynamics during the 

delay epoch. Additionally, the number of units participating in the delay dynamics varied 

considerably across RNNs. Despite these significant sources of variability, a dominant 

diagonal component is visible in the synaptic structure of all four weight submatrices in the 

T+WM task.

To quantify the structure of weight submatrices, we averaged the weights according to 

the relative differences in peak activity latency of the presynaptic units (essentially the 

average of the diagonals in Fig. 5b–d), allowing for the visualization of the net synaptic 

relationships between a presynaptic unit and the postsynaptic units that fired before or after 

it (Fig. 5e–g). In the T+WM task all four weight submatrices revealed peaks centered at 

approximately zero (corresponding to the main diagonal of the sub-matrices in Fig. 5c). The 

W Ex Ex
RNN  submatrix reveals that presynaptic excitatory units provide above-average input 

to excitatory units that fire shortly before and after it. The connectivity was biased in the 

forward compared to backward direction. While there were differences in the W Ex Ex
RNN

submatrix between the T+WM task compared to the other tasks, but it was the inhibitory 

connections that were most distinct. For example, the W Ex Inℎ
RNN  tuning was the broadest and 

much stronger in the T+WM task. Thus, there was a marked window of disinhibition from 

inhibitory to excitatory neurons with similar time fields (Fig. 5f)—in other words the Inh 
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units did not inhibit the excitatory neurons that activated them, but strongly inhibited “past 

and future” Ex units (see Discussion). To establish a causal link between the structure of 

each weight submatrix and the observed neural dynamics we examined RNN performance 

after shuffling all nonzero weights in each submatrix (Fig. S7). Shuffling either of the 

excitatory or inhibitory matrices resulted in catastrophic drops in performance in the WM 

and ISA tasks. In contrast for the T+WM task shuffling the excitatory weights W Ex Ex
RNN

or W Inℎ Ex
RNN ) led to median performance levels of approximately 75%, while shuffling the 

inhibitory weights W Ex Inℎ
RNN  or W Inℎ Inℎ

RNN  resulted in near-chance performance. The distinct 

weight matrix structure and the presence of strong feedforward modes in the RNNs trained 

on the T+WM task were also evident in the higher magnitude of the Schur modes of the 

weight matrix (Fig. S8)

These results indicate that in order for the same RNN to generate multiple sequences with 

shared units, it relies more on the connectivity structure of inhibitory connections than 

excitatory connections (i.e., both W Ex Ex
RNN  and W Inℎ Ex

RNN ). Specifically, the partial resistance 

to shuffling Ex→Ex or Ex→Inh weights indicates that the specific weight values of the 

non-zero connections are not as important as those of the Inh→Ex or Inh→Inh weights. 

Indicating that the excitatory weights provide a nonspecific excitatory drive, unit at any 

moment in time drive inhibitory units which specifically inhibit all other Ex units while 

opening a window of disinhibition for the current and next excitatory units in the sequence. 

These results generate the prediction that the most important site of plasticity for the 

generation of neural sequences is inhibitory plasticity onto excitatory neurons rather than 

between excitatory neurons.

Importance of hyperparameters

To determine if the emergence of neural sequences was dependent on RNN hyperparameters 

we contrasted the RNN dynamics trained on all three tasks across different hyperparameter 

configurations (see Methods), including learning rate, L2 activity regularization, noise in 

the recurrent units, WRNN initialization, presence or absence of Dale’s law, activation 

function, and the profile of the temporal expectation function (half- versus full-ramp), 

and the weighting of the WM and timing components (“implicit” versus “explicit”). Each 

hyperparameter took on values anchored around the default set of parameters used above, for 

a total of 366 RNNs over twelve seeds and the three tasks. Across all hyperparameters (Fig. 

S9), with one exception, the dimensionality of the dynamics during the delay period was 

significantly higher in the T+WM task compared to the WM task (p values of at most 10−4, 

Wilcoxon rank sum test) and the ISA task (p values of at most 0.001). We also confirmed 

the generality of the observed increase in dimensionality across training (Fig. 3) for a subset 

of hyperparameters and multiplexing of time and WM for all hyperparameters studied (Fig. 

S12).

The clear exception to the formation of higher dimensional regimes in the T+WM task 

compared to the WM and ISA task was the use of the softplus activation function versus 

the default ReLU function. Across all three tasks, convergence was significantly worse for 

the softplus compared to ReLU activation function (p<10−7 and p<10−3 for the number 

batches needed for convergence—if criteria were reached—and final loss value, respectively, 
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Wilcoxon rank sum test). The dimensionality of the dynamics for the RNNs trained with 

the softplus function was uniformly low at a value of 2 for all tasks. These data suggest 

that the use of a softplus function shifts the encoding of time and WM in the T+WM task 

to ramps rather than population clocks (Fig. S10). Indeed, by fitting the activity of the 

RNN units to both linear ramps and Gaussians during the delay, we observed a dramatic 

shift in the goodness of fit: while the units from RNNs trained with the ReLU activation 

function were on average very poorly fit by linear ramps, softplus units were fit quite well 

(Fig. S11). Consistent with the results above, indicating that low-dimensional ramps are 

not well-suited for flexible timing, the ability of softplus RNNs to generate the half-ramp 

timing output was worse (the MSE of the timing units was significantly higher compared 

to the ReLU RNNs; p<10−4, Wilcoxon rank sum test). The shift from high-dimensional to 

low-dimensional regimes with the softplus activation function, may be a result of its worst 

performance and an interaction between the learning algorithm and the continuous derivative 

of the softplus function (see Discussion).

As mentioned above, depending on brain area, both the high-dimensional neural sequences 

and low-dimensional ramps are indeed observed in timing and WM tasks (see Discussion). 

Thus our results establish that RNNs can account for both these experimentally observed 

regimes in a hyperparameter-dependent fashion. Raising the possibility that differential 

intrinsic neuronal properties in different areas could contribute to their observed dynamics.

Across all other hyperparameters, the dimensionality was higher in the T+WM task. 

Interestingly, some hyperparameters had surprising effects on the relative contribution of 

excitatory and inhibitory units. As described above, in the T+WM task the weights from 

the excitatory units contributed less to the dynamics than that of the inhibitory weights 

(Fig. 5 and Fig. S7), this phenomenon was further amplified when the noise of the 

recurrent units (σRNN) was increased from 0.005 to 0.05 (Fig. 6). At the default noise 

level of σRNN = 0.005, deletion of all excitatory-to-excitatory weights (i.e., zeroing the 

entire W Ex Ex
RNN  submatrix after training), resulted in a catastrophic drop in performance. 

Note that even in the absence of excitatory-to-excitatory connections (and biases of zero) 

some activity is driven by the noise. Surprisingly, at noise levels of σRNN = 0.05, ablation 

of all excitatory-to-excitatory connections, only had a modest effect on the dynamics and 

performance (median > 90%) during the T+WM task (Fig. 6c–d). Critically, in the ISA 

task deletion of excitatory-to-excitatory weights decreased performance to chance. In other 

words, there is a fundamental shift in circuit architecture when RNNs encode a single 

sequence (ISA) versus two sequences (T+WM). In the former case, RNNs rely heavily on 

excitatory-to-excitatory connections, but in the latter case RNNs rely primarily on inhibitory 

connections.

In the context of neurobiological circuits our interpretation of these findings is that 

when encoding cue-specific elapsed time, in some contexts, including high noise, RNNs 

autonomously converge to circuits architectures that resemble the circuit motifs of the 

striatum, cerebellum, and CA1, i.e., circuits in which there are no excitatory-to-excitatory 

connections, which are driven by external input and negative—rather than positive—

feedback loops27,52.
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Dynamic attractors

While it is widely accepted that the neural dynamics generated by recurrent neural circuits 

play a fundamental computational role in WM and timing, the dynamics itself has generally 

been interpreted in the context of standard dynamical system regimes of fixed-point 

attractors, saddle points, line attractors, and limit cycles. The high-dimensional trajectories 

and neural sequences observed in the T+WM tasks do not seem to neatly fit into these 

classes. But as with standard dynamic regimes, a critical question pertains to the stability 

of the trajectories, i.e. when perturbed, do trajectories further diverge, remain approximately 

parallel, or converge back to the original trajectory? To address this question, we performed 

perturbation experiments during the delay period.

We initially contrasted perturbed and unperturbed trajectories in the presence of frozen 

noise in RNNs trained on the T+WM task. At the level of individual units, the perturbation 

immediately altered activity levels, but over the course of hundreds of milliseconds, not 

only did activity converge back to the unperturbed levels, but converged in a manner that 

preserved the original temporal alignment (Fig. 7a). The effect of the perturbation at the 

population level can be visualized in the cross-Euclidean distance matrix (Fig. 7b), which 

shows that after the perturbation the main diagonal seems to converge back to close to zero. 

If the trajectory remained parallel to the original, the diagonal would not return to zero; 

and if it converged back, but either ahead or behind in time, the minimal values would 

be off the main diagonal. To quantify the effects of perturbations across RNNs trained 

on all three tasks we plotted the distance of the main diagonal between the perturbed 

and unperturbed trajectories (Fig. 7c). While the distance does not generally converge 

to exactly zero, the perturbed trajectory always converges back towards the unperturbed 

trajectory. These results are consistent with the notion that RNNs trained on the T+WM 

task implement dynamic attractors, i.e., locally stable transient channels53,54 in which the 

dynamic attractor is a “hypertube”. Within limits, perturbations of the trajectory can return 

to the hypertube in motion. Intriguingly, the stability of the neural sequences in the T+WM 

task was quantitatively comparable to the fixed-point attractor-like dynamics in the RNNs 

trained on the WM task. Perturbation analyses based on the direction and magnitude of 

the vector fields around the trajectories also revealed that the stability of the fixed-point 

dynamics of the WM task, and the dynamic attractors of the T+WM tasks were comparable 

(Fig. S13).

DISCUSSION

Working memory and the ability to encode and tell time on the scale of seconds—and 

thus predict and anticipate external events—are critical to a wide range of cognitive and 

behavioral tasks. Here we propose that, in some instances, WM and the encoding of elapsed 

time may be two sides of the same coin, i.e., both WM and elapsed time are represented 

in the same neural code. This link between WM and time is supported by our findings, 

and previous findings7,25, that WM is impaired when information has to be recalled at 

unexpected times, and evidence that in many cases WM is encoded in time-varying patterns 

of activity9,10,18,32,39,55,56.
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We first showed that during a WM task (dDMS), participants implicitly learn the task-

irrelevant cue-delay associations, and that the time at which the memorandum is accessed 

not only alters task RT, but accuracy as well. Conversely, during an explicit timing task 

(ISA), the task-irrelevant cue that marks t=0, also influenced both RT and accuracy. These 

findings are consistent with results showing that when stimulus-specific temporal structure 

is present during WM memory tasks, that recall is “dynamically prioritized” 25. These 

psychophysical results, of course, do not establish that WM and time are multiplexed at the 

neural level, but clearly demonstrate an interaction.

The observation that humans learn the temporal structure of the dDMS task justified training 

RNNs on a task that required learning of WM and elapsed time (the T+WM task). RNNs are 

not well suited to study certain psychophysical phenomenon, including implicit learning and 

behavioral reaction times, as they are not bounded by evolutionarily cognitive strategies 

or resource optimization constraints. But they have consistently captured the dynamic 

regimes observed in the brain and provided insights into the biological circuit mechanisms 

underlying the dynamics28,44,45,47,57. Indeed, consistent with these previous studies, our 

results revealed RNN dynamics that mirrored a large range of experimental observations.

Fixed-point and dynamic representations.

Early experimental15,16 and computational58,59 studies of WM focused on stable persistent 

activity, and provided an intuitive computational framework to transiently store memory 

information in a time-independent fashion. That is, precisely because information was 

encoded in a fixed-point attractor, a given memorandum could be retrieved at any time 

using the same encoding/decoding scheme. A counterintuitive aspect of storing WM in time-

varying neural trajectories is that the downstream circuits must recognize that even though 

the code is changing in time, the memorandum is the same11. However, as long as WM is 

encoded in unique nonoverlapping trajectories, downstream areas can either automatically 

generalize across time48 or learn to recognize the trajectory at all timepoints. Indeed, here, 

even though the dynamics during the delay period of the T+WM task was time-varying and 

high-dimensional, performance was near perfect at the learned standard and reverse delays, 

and generalized to novel intermediary intervals (Fig. S14).

Dynamic activity has been observed during the delay period in many WM tasks, and it has 

been shown that the temporal structure of tasks can itself influence the observed dynamics. 

For example, a task with a fixed delay generated transient dynamics in a premotor area, 

while random delays resulted in more persistent and stable patterns60. However, in another 

study, the sequentiality of population activity in the PFC was larger in a WM task with 

a random compared to a fixed delay61. One advantage of the dDMS task—in contrast to 

standard DMS tasks in which all stimuli share the same delay—is that if WM is encoded 

in persistent stable activity, both memoranda should elicit fixed-point dynamics. However, 

if WM is multiplexed with time, the duration or speed of the dynamics should be distinct 

across different memoranda.
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Ramps versus Sequences

There is ongoing debate regarding the neural regimes underlying both WM and the 

coding of elapsed time on the scale of seconds. Critically, however, with the exception 

of stable persistent activity, the candidate mechanisms for both WM and timing are largely 

overlapping. Ramping activity, neural sequences, complex neural trajectories, and “activity-

silent” models have all been raised as possible mechanisms for both WM and timing. In the 

context of WM, activity-silent mechanisms have generally focused on short-term synaptic 

plasticity, which can maintain a memory of previous activity in the absence of ongoing 

neural activity9,22,62. Similarly, early computational models and subsequent experimental 

results suggest that short-term synaptic plasticity underlies some forms of sensory timing, by 

encoding elapsed time in the so-called “hidden state” of neural circuits 23,63,64.

Neural sequences and high-dimensional activity have been observed across many brain 

areas during working memory and timing tasks12,32–37,61,65–67. Conversely, low dimensional 

ramping activity has also been observed across areas and tasks39–43,68–70. Furthermore, even 

within a single brain area different classes of excitatory neurons may differ in the degree 

to which they encode time and WM41. The diversity and complexity of the experimental 

findings make it challenging to develop area-specific computational models. But here we 

have shown that depending on task structure and hyperparameters RNNs converge to fixed-

point attractors, ramping firing rate, or neural sequences. Critically, we show that from the 

perspective of the circuitry generating the dynamics, ramps and neural sequences may not 

represent fundamentally different regimes since there is a transition from ramps to neural 

sequences over the course of training.

It is notable that the although across all hyperparameters WM and timing were multiplexed, 

the softplus activation function dramatically shifted RNN dynamics from encoding time in 

neural sequences to ramping activity (Figs. S10–S11). Our results are consistent with the 

fact that ReLU activation function is often considered to lead to better convergence than 

softplus activation71 as convergence time and final cost values were worse with the softplus 

function. Arguably, one might also consider the ReLu function to be more naturalistic in 

that they would seem to better capture the discrete nature of neuronal thresholds and can 

have output values of zero. However, there are counterarguments based on noise-induced 

“smoothing” that continuous functions may be more naturalistic72,73. Future studies will 

have to examine the strong impact of the activation function on RNN dynamcs, but our 

results clear suggest a strong interaction between the learning algorithm and the continuous 

derivative of the softplus function.

The current study does not speak to activity-silent models, but provides insights to the 

potential tradeoffs between encoding information in neural sequences and ramping activity. 

Specifically, despite their apparent complexity and higher dimensionality, neural trajectories 

approximating neural sequences emerged in a highly robust manner across ReLU-RNNs 

trained on the T+WM task. This is consistent with previous RNN models trained on WM 

or timing tasks, in which neural sequences were observed47,74,75 and models of WM that 

rely on sequential dynamics13. A previous computational study has observed the emergence 

of low dimensional ramping dynamics that can encode time during WM tasks11, this study 

however, did not examine tasks that require stimulus-specific encoding of WM and time. 
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The low dimensional dynamics observed in that study are consistent with those obtained 

here with the softplus activation function, but a direct comparison is difficult because 

Cueva et al11 used smaller RNNs that did not implement Dale’s rule (and used tanh 

activation function). Here we show that task structure, hyperparameter choices, and training 

stages, likely accounts for these differences. But a critical question across experimental 

and computational studies pertains to the computational tradeoffs between the high- and 

low-dimensional representations of WM and time. One clear tradeoff pertains to ease of 

generalization to novel delays, and the use of the neural representations by downstream 

areas to create arbitrary time-varying outputs. While ramping activity in RNNs is a highly 

limited representation in terms of its ability to generate outputs other than ramps (even 

including the half-ramp used here), ramps are well suited to temporal generalization48. In 

contrast, neural sequences provide a robust high-dimensional set of basis functions that can 

drive arbitrarily complex temporal outputs including the default half ramp used here35.

Conclusions and predictions

Internally generated high-dimensional neural trajectories, including neural sequences, have 

been reported in a large number of brain areas across many tasks12,32–37,49,61,65–67, and 

present in many computational models 14,47,53,74,76. We postulate that this is because 

neural sequences represent a canonical dynamic regime to encode WM, time, and generate 

motor patterns. The relatively high dimensionality, stability, and quasi-orthogonality of 

neural sequences, make them well suited for downstream areas to generate either simple or 

complex time-varying output patterns35. Our results predict that neural sequences observed 

in vivo are not solely the product of feed-forward architectures as proposed in some 

models51,77, but require recurrent connectivity that can implement feedforward dynamics. 

These results are in general agreement with those of Rajan et al14 and Orhan and Ma74, 

which show that neural sequences emerge from non-symmetric but recurrent connectivity. 

In contrast to those studies, however, we implemented separate populations of excitatory 

and inhibitory neurons, and found that inhibitory (Inℎ Ex and Inℎ Inℎ) connections 

were more important than excitatory (Ex Ex and Ex Inℎ) connections (Fig. S7). 

And surprisingly we observed that in some hyperparameter regimes RNNs could perform 

well even after deletion of all Ex Ex connections (Fig. 6). Overall our results suggest 

that, at least in our RNNs, sequence generation relies on non-specific excitation (e.g., 

reflected in the fact that shuffling the nonzero Ex Ex weights did not dramatically 

impair performance in the default RNNs) that lead to suprathreshold activity through a 

transient window of disinhibition27. In other words, the active population of inhibitory 

units, disinhibit the currently active and to be activated excitatory neurons while blanketing 

the off-diagonal excitatory neurons with inhibition78. Regarding the biological mechanisms 

underlying the emergence of neural sequences our results also predict that neural sequences 

are strongly dependent on inhibitory plasticity, and somewhat paradoxically, can be 

independent of structured excitatory-to-excitatory connections57.

Consistent with the notion that memory serves both retrospective and prospective 

functions79–81, we propose that when WM tasks contain temporal structure, WM and time 

are multiplexed either in neural sequences or ramping activity. Furthermore, the diversity 
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of experimentally observed neural correlates in WM studies, is in part a reflection of 

temporal structure of the tasks used. The dDMS task provides a means to address the 

interaction between WM and implicit timing, as it allows for comparison of the neural 

dynamics in response to stimuli that have the same WM requirements, but different temporal 

requirements as to when items in WM will be used.

Multiplexing of WM and time impose additional challenges for downstream decoding48, 

and is unlikely to be a universal encoding scheme for WM. However, multiplexing 

of WM and time may comprise an effective computational strategy in some instances, 

because, in addition to the need to transiently store retrospective information the brain is 

continuously attempting to predict when external events happen, including when WM will 

be used. Additionally, WM and time may be multiplexed because it provides a learned task-

dependent manner to control how long items need to be stored, potentially implementing an 

expiration time on storage and optimizing cognitive resources.

METHODS

Human psychophysics

All human psychophysics experiments were approved by the Institutional Review Board of 

UCLA. Participants provided informed consent before participating and were paid for their 

participation. Experiments were conducted online, with hosting provided by Gorilla (https://

gorilla.sc/) and recruitment provided by Prolific (https://www.prolific.co/). The precision 

and accuracy of timing on the Gorilla platform (i.e. of visual presentation and reaction 

time) provides temporal precision with standard deviations of approximately 8-21 ms 

depending on the exact browser, operating system, and device82,83. Participants accessed 

the experiment using personal computers running Google Chrome or Mozilla Firefox. No 

other device types (i.e. phones or tablets) or browsers were allowed. All analyses relied on 

within subject statistics, thus decreasing the impact of cross-platform variability. Participants 

on the Prolific platform were only eligible for the study if they were between the ages of 

18 and 40, residing in the United States, fluent in English, and had never participated in an 

online study from our laboratory on Prolific. Before beginning the task, participants read 

and signed an informed consent form that asked them to: 1) complete the study in a quiet 

place without distractions, 2) maximize their browser window and not adjust it during the 

experiment, 3) have normal or corrected-to-normal vision, and 4) not participate if they had 

a history of seizures, epilepsy, or stroke. After providing consent, participants completed a 

short demographics form including their age, handedness, and gender. Participants were then 

given instructions on how to perform the task, which stressed the importance of both speed 

and accuracy. Participants were also informed that if they were faster and more accurate 

than the average of the other participants in a given sample of participants, they would 

receive a bonus payment. Across all experiments 130 participants (62 female, 5 left-handed, 

mean age = 29, range 18-40) participated in the study (each participant only took part 

in a single study). Data from seventeen participants were excluded from analysis due to 

low accuracy (less than 70%) or consistently slow reaction times (RT) such that too few 

trials met inclusion criteria (less than 50% of total possible trials in any Reversal x Delay 

condition remaining after RT exclusion, see below).
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differential-Delayed-Match-to-Sample (dDMS) task.—The background was always 

white, and all stimuli were black and presented in the center of the screen. First, a 150 ms 

duration fixation cross was presented, which indicated the start of a new trial. Following a 

500-1000 ms interval, a 150 ms duration visual cue was presented, which could either be 

a black circle or black star, matched for area, with 50% probability. After the delay epoch 

(see below), a 150 ms duration probe stimulus was presented that was either the same or 

remaining stimulus with 50% probability. Participants were instructed to press one of two 

buttons on their keyboards, F or J, to indicate whether they thought the cue and probe stimuli 

matched or did not match (counterbalanced across participants). The response period was 

unlimited in duration, and the task did not proceed unless a response was given. All incorrect 

responses were followed by negative feedback (a “thumbs down” icon). After each response 

there was a 1500-2000 ms intertrial interval.

The critical manipulation was the delay time, i.e., the interval between the cue (first 

stimulus) offset and probe (second stimulus) onset. When appearing as a cue, one stimulus 

(e.g. the circle) was followed by a delay of 1 sec on 80% (“Standard”) of the trials, and a 

delay of 2.2 sec on the remaining 20% (“Reverse”) of the trials. The other stimulus (e.g. the 

star) was followed by a 2.2 sec delay on 80% (“Standard”) of the trials and a 1 sec delay on 

20% (“Reverse”) of the trials. The mapping between the cue stimulus and the likely memory 

delay was counterbalanced across participants.

Five blocks of 80 trials (64 Standard, 16 Reverse) were presented for a total of 400 trials. 

In each block trial order was pseudorandomized with the following constraints: 1) The 

first eight trials of each block were always standard trials. 2) A Reverse trial could not 

immediately follow another reverse trial. Participants were given eight standard practice 

trials with each cue before the first block. Participants were given the opportunity to take 

short breaks between each block. Each block took approximately eight minutes to complete, 

and participants finished the experiment in 45 minutes on average. A replication study of the 

dDMS task (Fig. S2) was preregistered (doi.org/10.17605/OSF.IO/XK3JH).

Interval-stimulus association (ISA) task.—The interval-stimulus association (ISA) 

task was identical in stimulus structure to the dDMS task, but rather than being instructed 

to compare the cue and probe stimuli to each other, participants were instructed to make 

a decision based on the probe stimulus and the delay: e.g., press the F key in response 

to a short delay followed by a circle or a long delay followed by a star (Short-Circle 

or Long-Star), and press the J key in response to a long delay followed by a circle or 

a short-delay followed by a star (Long-Circle or Short-Star). The mapping between the 

response button and the pair of opposing interval-probe combinations was counterbalanced 

across participants. Participants were instructed that for any given trial the cue stimulus 

could be either a Circle or Star and that the cue stimulus was irrelevant to the task beyond 

indicating the onset of the delay interval. But as in the dDMS task, the cue stimulus identity 

(Circle or Star) predicted the delay interval on 80% of the trials (Standard trials), while for 

the remaining 20% of the trials, the cue stimulus was followed by the other delay interval 

(Reverse trials).
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Analysis and Statistics.—Trials with RTs outside of the range of 100-3000 ms were 

discarded. Three measures of performance were used: accuracy (percent correct), RT, and 

the inverse efficiency score (IES). For each condition for every participant, trials with RT 

values larger than four standard deviations away from the mean were discarded. RTs were 

calculated as the median of the remaining trials for that condition. The inverse efficiency 

score (IES), a combined measure of speed and accuracy in which larger values indicate 

worse performance, was calculated as the median RT divided by accuracy.

Statistics were based on within-subjects 2 x 2 ANOVAs with a Reversal (Standard vs. 

Reversal trials; e.g., Circle→Short/Star→Long versus Circle→Long/Star→Short) factor 

and the actual delays (Short vs. Long) factor.

Recurrent Neural Network Model

RNN architecture and training.—RNNs were composed of 256 units, an input layer, 

and an output layer composed of one (WM and ISA tasks) or two (T+WM task) units. The 

dynamics of the default RNN were described by:

τ dr
dt = − r + W RNNr + W Inu + bRNN + φ

+

Where u is the input vector, and bRNN is the bias of the units. Each unit received private 

Gaussian noise φ = 2τσRNN N(0,1), where N(0,1) represents a normal distribution with a 

mean of 0 and a standard deviation of 1. The threshold linear function [ ]+ represents a 

ReLU function in which all negative values become 0.

The input layer was composed of 32 inputs representing a range of 0 to 2π. Stimuli 

A and B were represented by non-overlapping patterns of activity centered at 1 and 5.2 

(corresponding to center activation at units 6 and 28). These patterns can be interpreted as 

retinotopic or tonotopic activation of two visual or auditory stimuli. The output units (z) 

were nonlinear readouts of the recurrent network:

z = sigmoid W Outr + bOut

Dale’s law was implemented by assigning 80% (205) of the units as excitatory and 20% 

(51) as inhibitory. After initializing W RNN to a random orthogonal matrix (gain = 0.5), the 

absolute weights of all presynaptic excitatory units were multiplied by 1.0, and those from 

the inhibitory units were multiplied by 4.0 (to maintain an approximate excitatory/inhibitory 

balance). During training all weights were clipped at zero during any zero-crossings. The 

weight matrix was multiplied by a diagonal matrix composed of 1’s and −1’s, corresponding 

to the excitatory and inhibitory units, respectively84.

To enhance our ability to dissect the circuit mechanisms underlying the observed dynamics, 

the recurrent biases were set to zero, and neither the recurrent biases or the Wln matrix was 

trained. This approach is consistent with the reverse hierarchy theory 85, and the notion that 

synapses higher in the processing hierarchy are more plastic. Additionally, this approach 
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ensured that the differential RNN dynamics across all networks could be attributed to 

WRNN, facilitating the synaptic structure analyses (Fig. 4). Thus, only the WRNN, WOut, and 

bOut, parameters were trained.

During training a first-order Euler approximation was used with a τ of 50 ms and a dt of 10 

ms, resulting in a discretization factor α = dt/τ = 0.2. RNNs were trained with ADAM and a 

batch size of 32. The loss function to be minimized was:

ℒ = mi, t* zi, t − ẑi, t
2

i, t

where ℒ represents the time and output unit averaged loss function. zi,t and ẑi, t represent 

the target and actual activity, respectively, of an output unit i at time t. m represents a cost 

mask that differentially weights the contribution of output units to the loss function during 

different points in time. The motor output target (z1,t) was a step function from 0 to 0.8 

at probe onset of the nonmatch trials, and when present, the temporal expectation output 

(z2,t) was a linear “half” ramp from 0 to 0.8 starting at 50% of the delay period until onset 

of the probe. For the motor output m1,t was equal to 2 from 250 ms before onset of the 

cue stimulus until the onset of the probe stimulus, and 5 during the probe until 500 ms 

after probe offset (to place a higher weight on the match/nonmatch response), with a grace 

period 5dt (m1,t=0) during the onset of the probe. For the temporal expectation output, 

the cost mask was always m2,t = 1. As with the psychophysics experiments, RNNs were 

trained on both the Standard and Reverse trials, but reversal trials comprised 10% of the 

total rather than 20%, to accelerate convergence (note that for the T+WM task the Reverse 

trials impose a “moving target” for the timing output pattern). Training was stopped when 

the loss reached 0.0015 for T+WM and 0.001 for the WM and ISA tasks, or reached a total 

125,500 update epochs. Different stop criteria were used for T+WM task because the reverse 

trials make it impossible to fully converge to the same loss values. RNNs were implemented 

in TensorFlow and based on Yang et al.45. Code is available at https://github.com/BuonoLab/

Timing-WM_RNN_2022.

During training the onset time of the first stimuli was uniformly varied between 250 and 

1000 ms on each trial. The standard delays were 1.0 (short) and 2.2 (long) s. During training 

these delays were jittered by ±10%, approximately corresponding to psychophysically 

observed Weber fractions86. It is important to note that the presence of “temporal noise” 

in the form of onset and delay time variability, contributes to the robustness of the solution, 

and that “spurious” solutions that do not generalize to different onset times or delays can 

emerge in the absence of this “temporal noise”.

Dimensionality.—To estimate the dimensionality of the dynamics during the delay periods 

we first concatenated the average activity of all units during the short and long delays for a 

final matrix of 256 units x 320 time bins. Concatenation is important to distinguish regimes 

in which both cues elicit similar sequences (e.g., in the ISA task) versus cases in which both 

cues elicit distinct sequences (e.g., in the T+WM task). Effective dimensionality was defined 

as the minimum number of principal components that captured at least 95% of the variance 

of the activity across time bins14.
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SVM Decoding.—For the decoding of Cue and elapsed time, the mean activity of each 

unit within 100 ms bin was used, comprising a total of 32 (10 and 22 bins for the short and 

long delays, respectively) input vectors of size 256 per trial. Thus target values represented 

Bins 1:10 for Cue A and Bins 1:22 for Cue B). SVMs were trained (SVMTRAIN 

from LIBSVM 1.2 for Matlab) using multiclass classification, a linear kernel, and a cost 

parameter of 100. The short and long delay data sets consisted of 25 delay epoch trials of 

the AA and BA conditions, and testing relied on leave-one-out cross-validation across the 25 

possible replications. Performance was quantified as the correlation between the predicted 

and target bins, as well as the mean squared error (MSE).

Mutual Information.—To estimate the per unit mutual information about the cue (i.e., 

whether the first stimulus was A or B), the activity was averaged from 100 ms after the end 

of the cue (to allow for decay of stimulus-evoked activity) to the end of the delay period 

for each trial. Activity levels were categorically binned into 10 bins from 0 to maximal 

activity for each unit. Mutual information was calculated across 25 trials of Cues A and 

B. To calculate mutual information across time, activity was averaged across ten evenly 

spaced time bins across the delay period, and again activity was categorically binned into ten 

activity levels. Maximal mutual information was 1 and 3.32 bits for the Cue and time mutual 

information estimates, respectively.

Schur decomposition.—Similar toprevious studies13,74, we performed Schur 

decomposition analyses on the learned recurrent weight matrices in the WM, T+WM, 

and ISA tasks. The schur decomposition function in Matlab was used to obtain an upper 

triangular matrix, representing the interaction of Schur modes. Then we ploted the number 

of Schur modes with least one interaction of magnitude greater than a range of threshold 

values (from 0 to 4).

Perturbation experiments.—To test the robustness of RNN dynamics to perturbations, 

we introduced activity to an input unit during the delay epoch to mimic a distraction 

produced by an irrelevant stimulus. Specifically, the perturbation input was at π for the 

input topological position (corresponding to center activation at 17th input) with random 

weights to the recurrent units similar to the standard inputs. Unless otherwise specified, the 

perturbation was introduced with the amplitude of 0.25, 500 ms after the onset of the first 

stimulus for a total duration of 50 ms. Control and perturbed trajectories were obtained using 

the same noise matrices across units and time (“frozen” noise).

Visualization of the velocity fields.—To further determine if the dynamics in the 

T+WM task is consistent with a dynamic attractor regime, we directly quantified the 

velocity fields around the learned neural trajectories. At each time point t on a given neural 

trajectory (r(t)) during the delay period, probe points were sampled from a disc with radius 

of 0.25 around r(t) orthogonal to the tangential direction of the trajectory at time t. These 

probe points were then fed into Equation 1 to obtain the corresponding velocity vectors. 

Angles between the velocity vectors and tangential/radial direction to the trajectory, along 

with the amplitude of the vectors were then computed and visualized.

Zhou et al. Page 18

Nat Hum Behav. Author manuscript; available in PMC 2024 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistics.—Comparison across RNN tasks relied on the nonparametric Wilcoxon rank 

sum test (.ranksum command in Matlab). All statistical tests are two-sided.

Data Availability.—Code for the RNN simulations is available at https://github.com/

BuonoLab/Timing-WM_RNN_2022. Human data and code for analysis is available at 

https://osf.io/HXSUG/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Humans implicitly learn the timing component of a WM task, and the WM component of 
a timing task.
a, Schematic of the differential-Delay-Match-to-Sample (dDMS) task, and the explicit 

timing Interval-Stimulus-Association (ISA) task. Note that the response patterns for the 

dDMS and ISA tasks only differ during the reverse trials. b, Inverse efficiency (RT/

accuracy) of human participants on the dDMS task across Standard (cyan) and Reverse 

(orange) trials. The short and long delays reflect the duration of the actual delay epochs 

(e.g., a long delay on a Standard trial is an “expected” delay, and a long delay on a Reverse 

trial corresponds to an “unexpected” delay). There was a significant main effect of Standard 

vs. Reverse conditions (n = 27, F1,26 = 9.05, p<0.01). c. Inverse efficiency in the ISA task 

across Standard and Reverse trials. There was a significant main effect of Standard vs. 

Reverse conditions (n = 22, F1,21 = 11, p<0.005).
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Fig. 2 |. Differential dynamics for the encoding of WM and time across in RNNs trained on three 
tasks.
a, Schematic of the RNN architecture and the inputs and target outputs for the WM task 

during the control and reverse conditions. b, Neurograms during the AA (upper row) and 

BA (lower row) conditions (A=red line above neurogram, B=green), sorted according to the 

peak time during the short (left) or long (right) delays (standard trials), the images in left 

and right subpanels of each row is based on the same data, but differentially sorted. The 

self-sorted neurograms (top left and lower right) are cross-validated (average of even trials 
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sorted on average of odd trials). Only the top 50% of units with the highest peak activity 

during the delay are shown. Heat map is normalized to one for each unit. The overlaid 

white line shows the “motor” unit (right y-axis). c. Mean activity of two sample units across 

all four trial types of the standard condition. d-f, Similar to a-c for the T+WM task. In e 
the activity of the “temporal expectation” output unit is shown in the overlaid gray lines. 

Note that while each cue elicits a neural sequence, each sequence is different, reflecting the 

embedding of multiple sequences within the RNN. g-I, Same as a-c for the ISA task. Note 

that in this example both cues A and B elicit approximately the same neural sequence (h), 

and the units exhibit similar time fields in response to cues A and B (i). j-m, Quantification 

across 17 RNNs trained on the three tasks. Performance (correct match/nonmatch responses) 

during Standard (j) and Reverse (k) trials, dimensionality during the delay epoch of the 

concatenated activity during the short and long trials (l), and the sequentiality index during 

the long trials (m). Whisker plots represent medians (circle centers), the interquartile range 

(boxes), and the most extreme values within 1.5x the interquartile range above or below the 

interquartile range (whiskers), dots represent “outlier” values.
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Fig. 3 |. Transition from low-dimensional ramping to high-dimensional neural sequences over the 
course of training.
a, Temporal activity profile of a sample unit (top) and neurograms (bottom) of activity in 

an RNN trained on the T+WM task at the stages of training corresponding to the vertical 

colored lines in (b). Note that in the neurograms the sorting order of the units in the panels 

is different. b, Performance of WM and population dimensionality (during the delay period) 

across training. The gray vertical line denotes when the mean WM performance reached 

0.95. c, Learning curve of the loss for the timing output. d, Same as (c) for MSE of the 

decoding of elapsed time from each cue. e, Relationship between the dimensionality and 

decoding time MSE averages across 17 RNNs.
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Fig. 4 |. Multiplexing of time and WM.
a, Confusion matrices of SVM decoding of Cue and time bins (100 ms) for a sample 

RNN trained on each task. Note that in this example, the ISA network often confuses time 

bins from approximately 0.5-1 sec during the short (Cue=A) and long (Cue=B) delays as 

reflected in the off-diagonal bands. b, Performance (left) and MSE (right) of the decoders 

across all RNNs. All pairwise comparisons for both Performance and MSE were significant 

at p<10−5 (Wilcoxon rank sum tests). c, Correlation between unit activity for sample RNNs 

during the short and long delays in the WM (left), T+WM (middle), and ISA (right) tasks. 

d. For the WM and T+WM tasks there was little or no average correlation across all 

units within each RNN (n=17 in each group). In the ISA task average correlation between 

unit activity in the short and long delay was high and significantly above the WM and 

T+WM tasks (p<10−4, Wilcoxon rank sum tests). Additionally, only the ISA correlation was 

significantly different than 0 (p<0.0005, sign rank tests).
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Fig. 5 |. Circuit motifs underlying the generation of multiple neural sequences.
a, Absolute weights of a sample recurrent weight matrix before training (left), log of weights 

after training on the T+WM task (middle), and the same posttraining weight matrix sorted 

by the peak latency times of the excitatory and inhibitory units (inset) during the delay 

epoch (right). b-d, The mean of the sorted weight matrices across all 17 RNNs trained on 

the WM (b), T+WM (c), and ISA (d) tasks. All matrices are plotted on the same log scale. 

e-g. Mean weights (linear scale) from presynaptic units averaged across all RNNs trained 

on each task. The presynaptic units are arranged according to their relative peak firing 

Zhou et al. Page 28

Nat Hum Behav. Author manuscript; available in PMC 2024 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



latency during the delay period. Thus ΔOrder=0 captures the mean synaptic weights between 

pre and postsynaptic units that have the same peak latency, ΔOrder values of 10 and −10 

capture the mean weights of the connections from presynaptic units to the postsynaptic units 

whose peak activity is 10 ms after or before, respectively, the peak of their corresponding 

presynaptic units.
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Fig. 6 |. In the presence of high noise ablation of all Ex→Ex connections has little effect on 
performance in the T+WM task.
a, Sample dynamics during the long (BA) trials with default low noise in the RNNs 

σ = 0.005 (left). Dynamics after ablation of all Ex→Ex connections (right). b, The mean 

performance for all three tasks fell from near-perfect to chance upon deleting all Ex→Ex 

connections. c, Dynamics corresponding to panel A in a sample RNN with noise σ = 0.05
before (left) and after (right) ablation of all Ex→Ex connections. d, In the presence of 

higher noise levels, the deletion of all Ex→Ex connections had a modest effect on the 

performance of the T+WM task, and a moderate effect on the WM task. Activity scales 

are the same in the left and right neurograms of panels a and c. Data from the same set of 

stimulations in Fig S9 (N=12 in each group).
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Fig. 7 |. Neural sequences instantiate dynamic attractors.
a, Activity profile (left) of a sample of 10 units in response to the B stimulus (long cue) 

in the absence (black) and presence (red) of a perturbation (frozen noise) for the T+WM 

task, and the unperturbed and perturbed neural trajectories in PCA space (right). Note that 

the trajectory converges back to the unperturbed trajectory in an approximately time-aligned 

manner as indicated by the overlapping time marker spheres. b, Cross-Euclidean distance 

matrix between the unperturbed and perturbed trajectories. c, Mean Euclidean distance 

between the unperturbed and perturbed trajectories after the perturbation at 0.5 s averaged 

across RNNs (left). Median Euclidean distance values (right) 1 s after the perturbation 

(t=1.5, dashed line).
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