
UCLA
UCLA Electronic Theses and Dissertations

Title
Predicting the Selling Prices of Used Cars in Pakistan Using Various Statistical Learning
Models

Permalink
https://escholarship.org/uc/item/63f4t86t

Author
Song, Yulin

Publication Date
2024

Supplemental Material
https://escholarship.org/uc/item/63f4t86t#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63f4t86t
https://escholarship.org/uc/item/63f4t86t#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Predicting the Selling Prices of Used Cars in Pakistan

Using Various Statistical Learning Models

A thesis submitted in partial satisfaction of the requirements

for the degree

Master of Applied Statistics and Data Science

by

Yulin Song

2024

© Copyright by

Yulin Song

2024

ii

ABSTRACT OF THE THESIS

Predicting the Selling Prices of Used Cars in Pakistan

Using Various Statistical Learning Models

by

Yulin Song

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Xiaowu Dai, Chair

This thesis is dedicated to exploring the relationship between features of Pakistani used

cars and their prices, potentially providing insights to help relevant stakeholders of used cars

business make informed decisions. Multiple statistical learning methods involved in regression

analysis, namely Linear Regression, Elastic Net, Random Forest, and XGBoost, are utilized to

predictively model and quantitatively explain the said relationship.

From a Kaggle dataset of 77,878 rows and 14 columns (including response variable

“price”), data preprocessing was done, including removal of outliers, empty values, and missing

entries; re-grouping, re-naming, and conversion of certain variables, etc. Then, exploratory data

iii

analyses were conducted, including addressing non-normal or highly-correlated numerical

variables and overly homogeneous categorical variables. Next, the processed dataset (70,500

rows and 10 columns) was split into 80% training and 20% testing sets, and model evaluation

criteria of Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) were

determined. Following, the four models were applied on the training set, with the 9 main

predictors and all 36 pairs of the interactions served as a baseline design matrix, and natural-log

transformed “price” served as the response. After fitting models with corresponding methods of

dimension reduction method or hyper-parameter tuning, model evaluation criteria testing RMSE

and R2were calculated using prediction on the testing set. Eventually, XGBoost model stood out

as the final model due to optimal performance in both performance scores, and features such as

body type, engine volume, age, and transmission type, along with interacting effect between age

and the other three factors, were agreed by all four models to be important in predicting Pakistani

used car prices.

iv

The thesis of Yulin Song is approved.

Michael Tsiang

Hao Ho

David Anthony Zes

Xiaowu Dai, Committee Chair

University of California, Los Angeles

2024

v

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

Section 1.1: Background Information and Motivation ..1

Section 1.2: Literature Review ..2

Section 1.3: Research Question and Procedures ... 3

Chapter 2: Data Source and Preprocessing ... 4

Section 2.1: Data Source ... 4

Section 2.2: Data Preprocessing ..5

Chapter 3: Exploratory Data Analysis ...9

Chapter 4: Data Splitting and Model Evaluation .. 14

Section 4.1: Data Splitting ...14

Section 4.2: Root Mean Squared Error (RMSE) ...14

Section 4.3: Coefficient of determination (R2) ..15

Chapter 5: Methodologies and their Applications ...16

Section 5.1: Linear Model with Top-5 Significant Interactions ..16

Section 5.2: Elastic Net ... 21

Section 5.3: Random Forest .. 25

Section 5.4: XGBoost ..29

vi

Chapter 6: Conclusion, Limitations and Future Works ...32

Section 6.1: Conclusion ...32

Section 6.2: Limitations and Future works ... 34

Appendix A: R Code Chunks for Data Preprocessing .. 37

Appendix B: R Code Chunks for Exploratory Data Analysis ...43

Appendix C: R Code Chunks for Data Splitting ... 45

Appendix D: R Code Chunks for Linear Model ... 46

Appendix E: Interpreting Coefficients for Interaction Terms in Linear Model 48

Appendix F: R Code Chunks for Elastic Net Model ...49

Appendix G: R Code Chunks for Random Forest Model ... 51

Appendix H: R Code Chunks for XGBoost Model ...53

References ... 55

vii

LIST OF FIGURES

Figure 3.1: (Exploratory Data Analysis) Bar Plots for Categoricals in “car_processed” (Pg. 10)11

Figure 3.2: (Exploratory Data Analysis) Histograms for Numericals in “car_processed” 11

Figure 3.3: (Exploratory Data Analysis) Histograms for Log(Nums) in “car_processed” 12

Figure 3.4: (Exploratory Data Analysis) Scatter Plots for Log(Nums) in “car_processed” 12

Figure 3.5: (Exploratory Data Analysis) Correlation Plot for Log(Nums) in “car_processed”13

Figure 5.1: (Linear) ANOVA Tables for 9 Main Effects (left) and Top-10 Interactions (right) .. 18

Figure 5.2: (Linear) ANOVA for Model with 9 Mains and 5 Interactions 19

Figure 5.3: (Linear) Summary Output for Model with 9 Mains and 5 Interactions (Pg.19)20

Figure 5.4: (Elastic Net) Coefficients of Model with 8 Mains and 29 Interactions 23

Figure 5.5: (Elastic Net) Cross-Validation Curve (left); Shrinking Coefficients Paths (right)24

Figure 5.6: (Random Forest) 100-tree Model Result by Each Combination of Parameters 27

Figure 5.7: (Random Forest) Model Variable Importance Ranking Plot28

Figure 5.8: (XGBoost) Model Variable Importance Ranking Plot .. 31

viii

LIST OF TABLES

Table 2.1: (Data Source) Variables Information from “car_original” (Pg. 4-5) 5

Table 2.2: (Data Preprocessing) Description of Variables from “car_processed”9

Table 3.1: (Exploratory Data Analysis) Summary Statistics of Numericals in “car_processed” ... 9

Table 3.2: (Exploratory Data Analysis) Summary Statistics of Categoricals in “car_processed” 10

Table 5.1: (Linear) Assumption Testing Results ...21

Table 6.1: (Conclusion) All Sets of Performance Evaluation Scores (testing RMSE and R2) 33

1

Chapter 1: Introduction

Section 1.1: Background Information and Motivation

The market of automobiles in Pakistan, similar to that of many emerging automobile

markets in developing countries around the world, is rapidly growing in size. This increase in

popularity in privately owning an automobile in Pakistan is primarily attributed to the

contribution of the used vehicle market in comparison with the new vehicle market. According to

an article published on Pakistan’s largest second-hand automobile selling company’s website,

Pakwheels.com, in Pakistan in 2017, around 750,000 used cars were traded and around 200,000

new cars were purchased. Also, they conducted “... an industry survey in 2017... a total of 19,155

number of responses were recorded... 58% of the respondents said that they bought a second-

hand car, while 38% asserted that they bought a brand new car”, and that the used vehicles

buying percentage have increased slightly compared to previous surveys (Laghari, 2018).

Used cars have many usages in Pakistan, like for personal, commercial, ride-sharing, and

vintage car enthusiasts; but Pakistani preference leans from new to used cars is mainly due to

affordability. The Pakistani economy is small but quickly expanding. According to World Bank,

the GDP per capita for Pakistan in 2022 is 1,588.9 US Dollars which is around one eighth of

world average, but still enjoyed a compounded average annual growth rate of 2.54% per year

from the 2012 GDP per capita value of 1,236.9 US Dollars (“GDP per capita [current US$] -

Pakistan”, n.d.). This value is quite impressive, especially considering the impact of the COVID-

19 pandemic. In the car-making industry, local manufacturers currently produce little compared

to the amount of vehicle buyers. This shortage of local cars has naturally led to bigger portion of

imported cars, longer delivery times, higher taxes and import duties, and consequently

2

significantly higher premiums for new cars. Therefore, used cars have become a more affordable

and timely solution for Pakistani customers.

A basic concept from economics states that, in a market of a certain product (for both

goods and services), its demand and supply is mostly influenced by its own price. Furthermore,

The magnitude of this influence can be determined by several other related factors, such as

innovation and production technology levels, the actual or perceived difference from other

products of the same category or from the same market, the established or potential size and

activeness of the trade activity within a market or between several markets in a system, among

others. These economic rules also apply to used car markets in Pakistan, the focus of this paper.

Section 1.2: Literature Review

It is significant to accurately predict the prices of used cars based on their other features

and their environments. There exists extensive amount of research papers in predicting the sale

price of used cars in various countries or economic entities around the world.

One example of these research papers is the study by Peerun et al. from The Second

International Conference on Data Mining Internet Computing and Big Data in 2015, which

focused on predicting the prices of used cars in Mauritius. Their research aimed to develop four

models on 200 cars from various sources and a set of relevant features like engine volume, paint

type, transmission type, mileage etc., and found out that Support Vector Regression performs

slightly better than Linear Regression and Multi-Layer perceptron (MLP) and much better than

K-Nearest Neighbour (KNN) based on the criterion of Mean Absolute Error.

On the other hand, the study by Jin from IEEE International Conference on Emergency

Science and Information Technology (ICESIT) in 2021 focused on predicting used cars’

3

reasonable prices in the United Kingdom. This study used data of 13,120 Mercedes vehicles

from 100,000 UK used cars’ scraped data, which was originally obtained from Kaggle, and

contained features of cars like transmission type, fuel type, miles per gallon etc. to fit 5 models,

and found out that Random Forest Regression performs better than Decision Tree Regression,

Support Vector Regression, Linear Regression and Polynomial regression because Random

Forest Regression produces the highest R2 of around 0.9.

These studies demonstrate the applicability of various statistical learning techniques in

predicting used car prices, which is increasingly sophisticated due to factors like global and

domestic economic conditions and shift in market trends.

Section 1.3: Research Question and Procedures

This paper focuses on understanding the relationship between features of used cars and

their final selling price. This paper aims to provide some suggestions to Pakistani used car

dealers to better balance their profit margin and customer counts, and to Pakistani used car

buyers and private sellers to be better informed and considerate with their decisions.

In this paper, several statistical learning methods are used to discover the relationship

between features of used cars and their prices. Necessary data preprocessing (outlier removal,

missing values removal or imputation, transformation of variables etc.), exploratory data analysis

and separation of processed data into training and testing sets is first performed. Then, the

statistical learning methods are introduced, and models using these methods are fitted on the

training set. Next, performance of each fitted result will be accessed and compared, and the result

produced by the best model will be used to make conclusions and recommendations about used

cars and their prices.

4

Four statistical learning methods were chosen for this paper, namely Linear Regression,

Elastic Net, Random Forest, and XGBoost. The selected ensemble of methods offers a

comprehensive approach by combining models with varying strengths and complexities - with

Linear Regression and Elastic Net being more straightforward, and Random Forest and XGBoost

being more sophisticated. The combination of these methods seeks to improve prediction

generalizability, performance and balance between robustness and overfitting for predicting the

prices in the dynamic Pakistani used cars market.

Chapter 2: Data Source and Preprocessing

Section 2.1: Data Source

The Pakistani used cars data was obtained from Kaggle, uploaded and improved by Talha

Barkaat Ahmad in 2023; this paper uses the dataset “pakwheels_used_car_data_v02.csv”, which

consists of 77,878 observations and 14 variables. The numerical variable “price” is treated as the

response (dependent) variable, and the other 13 are treated as the predictor (independent)

variables. Slightly modified variables descriptions are summarized below:

Variable Name Variable Type Variable Description
addref Numerical a unique ad reference (equivalent to ID number)
city Categorical advertisement city (location where vehicle is sold)
assembly Categorical imported or local
body Categorical body type of vehicle
make Categorical manufacturer of vehicle
model Categorical model variant of vehicle
year Numerical year of production
engine Numerical engine volume of vehicle (in cm3 or ml)
transmission Categorical Automatic/Manual
fuel Categorical Petrol/diesel/hybrid

5

Variable Name Variable Type Variable Description
color Categorical color of vehicle
registered Categorical registration number city/province of vehicle
mileage Numerical mileage (in kilometers)
price Numerical price of vehicle in PKR (Pakistan Rupee)

Table 2.1: (Data Source) Variables Information from “car_original” (Pg. 4-5)

Section 2.2: Data Preprocessing

To better solve the paper’s research question, necessary preprocessing procedures

(elimination or modification) were performed on the variables of the original data. These data

preprocessing procedures are summarized below.

For the change in response variable “price”:

 price (response, leaving with 77,295 rows and 14 columns)

 The 583 missing (“NA”) or empty (“”) values (less than 1% of total) were dropped,

because imputation of the response would be unreliable for prediction purposes;

 The highest price (529,000,000 Pakistan Rupee) is approximately 3 times higher than

the 2nd highest price, and it is a Toyota Corolla (an inexpensive car) which should be a

mistype. By inspecting into Corollas with similar features, a more reasonable price

should be 5,290,000 Rupees, so the unreasonable price was changed accordingly.

For the four removed predictor columns:

 addref (left with 77,295 rows and 13 columns)

 “addref” is an ID column with no missing, empty, or duplicate values, meaning there

exist no same cars or unidentifiable cars, therefore it was removed.

 Registered, make, models (left with 77,295 rows and 10 columns)

6

 The registered city (“registered”) is a lot less important and practical than the transacted

city (“city”). Also, instead of performing an analysis on models (and corresponding

manufacturers), this paper mainly focuses on the car’s inherent features, and makes and

models serves mainly identification purposes. Therefore, these three were removed.

For the remaining predictor columns:

 body (name changed to “body_group”, dimension unchanged)

 There are 8,857 missing or empty values in “body” (8,857 counts, over 10% but less

than 30% of all rows), so the empty values were imputed.

 Body types were grouped into the following categories:

 “Sedan” and “Compact sedan” into “Sedan” (30,827 counts);

 “Hatchback”, “Compact hatchback” and “Station Wagon” into “Hatchback”

(25,193 counts);

 “Pick Up”, “SUV”, “Compact SUV”, “Double Cabin”, “Single Cabin”, “Off-Road

Vehicles”, “MPV”, “Crossover”, and “Single Cabin” into “Utility” (9,586 counts);

 “Micro Van”, “Mini Van”, and “Mini Vehicles” into “Micro/Mini” (1,853 counts);

 “Van”, “Truck”, and “High Roof” into “Commercial” (847 counts);

 “Convertible” and “Coupe” into “Sports” (132 counts).

 For each of the 8,857 empty body types, a body type was randomly chosen based on the

probability given by the above proportions, with seed setting to 1 for reproducibility,

and the chosen body type is imputed on the empty value. For example, every empty type

is categorized into “Sedan” with probability 30,827 / 77,295, and so on;

 After imputation, there are 34859 in “Sedan”, 28,330 in “Hatchback”, 10,891 in

“Utility”, 2,111 in “Micro/Mini”, 960 in “Commercial” and 144 in “Sports”.

7

 assembly (dimension unchanged)

 Based on the original dataset description on Kaggle, “assembly” is either imported or

local, so it is assumed that an empty value represents a local car, therefore all empty

values were replaced with “Local”, and all “Imported” values remained unchanged.

 year (name changed to “age”, left with 72,672 rows and 10 columns)

 The “year” can be converted to “age” (years old) by subtracting the data source year

2023 by the specific “year”, for example “year” = “2020” is converted to “age” = “3”;

 The 4,623 (less than 10% of overall) missing (“NA”) or empty (“”) values were dropped

and not imputed because age of car is very important in predicting the price of car due to

aging of parts, change in fashion trends or technology etc, and imputing on the age of

car can be speculative and thus drastically impact the prediction accuracy.

 color (name change to “color_group”, left with 71,287 rows and 10 columns)

 The 1,385 missing (“NA”) or empty (“”) values, which constitutes less than 10% of all

observations, were dropped and not imputed because the unknown color of a car is

independent based on the known color of other cars or other features of the car; a empty

color can be attributed many factors, like color being too rare, too complicated to be

accurately described, or recently modified; Perhaps, the color was simply not reported;

 After inspection, some colors are very popular like white, silver, black, and grey; and

some “colors” are shades of the above, like “Solid White”, “Graphite Grey” etc; others

are less popular or perhaps rarely produced (like Purple and Pink);

 When the color is shades of white (the color value contains “White”, like “White” or

“Solid White”), they were converted to “White”, and so on; when the color are not in

the above groups, they were converted to “Others”.

8

 30,910 “White”, 12,047 “Silver”, 11,979 “Others”, 10,225 “Black”, 6,126 “Gray”.

 engine (left with 71,113 rows and 10 columns)

 Including only engine between 600ml and 6,600ml (the majority are in this range);

 Many engines outside of this range were possibly mistyped like 80ml Mercedes and

12,345 Honda Civic engines, so the 162 of them and 2 empty values were removed.

 fuel (left with 70,500 rows and 10 columns)

 The 613 missing (“NA”) or empty (“”) values (less than 10% of total) were removed

and not imputed because over 90% of known values (65,131 out of 70,500) are “Petrol”.

Imputing the empty values would include only low extra information and prediction

power, and prediction results and model performance would change only a little.

 city (city of car transaction, name changed to “city_popularity”, dimension unchanged)

 Since there are 291 car transaction cities with many of them have little amount of cars,

cities were re-categorized based on their popularity;

 City with at least 10,000 cars sold (Lahore, Karachi, and Islamabad) were

categorized to “high”; between 1,000 and 10,000 (Rawalpindi, Peshawar,

Faisalabad, Multan, Gujranwala, Sialkot) to “medium”; and the rest to “low”.

 No changes were made to “transmission” and “mileage”.

In addition to the operations done to manipulate the original dataset, all character

columns were individually converted to factors in R. This way, in the summary statistics of the

processed dataset in the Exploratory Data Analysis section, after the conversion, the count of

each unique factor level will be shown instead of only the total number (70,500) of observations.

The variable descriptions from the resulting “car_processed” dataset is reported below:

9

Original
Variable Name

Updated
Variable Name

Variable
Type

Updated Description in italics and
Original Description in regular test

city city_popularity Categorical popularity of the transaction city
assembly Categorical imported or local
body body_group Categorical Body type in combined groups
year age Numerical Age of the car (in 2023)
engine Numerical engine volume of vehicle (in cm3 or ml)
transmission Categorical Automatic/Manual
fuel Categorical Petrol/diesel/hybrid
color color_group Categorical color of vehicle in combined groups
mileage Numerical mileage (in kilometers)
price Numerical price of vehicle in PKR (Pakistan Rupee)

Table 2.2: (Data Preprocessing) Description of Variables from “car_processed”

Note that deleted variables “addref”, “make”, “model” and “registered” are excluded here

because they were removed during the preprocessing phase.

Chapter 3: Exploratory Data Analysis

The first step in the exploratory data analysis is to produce summary statistics tables of

the nine predictors (3 numerical and 6 categorical) and the response numerical “price” of the

updated dataset “car_processed”.

age (years) engine (ml) mileage (km) Price (PKR)
Minimum 1 600 1 110,000
1st quarter 4 1,000 39,000 1,500,000
Median 8 1,300 81,000 2,712,500
Mean 10.09 1,395 92,809 3,778,827
3rd quarter 16 1,600 12,3456 4,485,000
Maximum 33 6,600 1,000,000 170,000,000

Table 3.1: (Exploratory Data Analysis) Summary Statistics of Numericals in “car_processed”

10

city_popularity assembly body_group
low 15,894 Imported 21,423 Sports 123
medium 16,158 Local 49,077 Commercial 854
high 38,448 Micro/Mini 1,972

Utility 9,318
Hatchback 25,887
Sedan 32,346

transmission fuel color_group
Manual 31,630 Diesel 2,717 Gray 6,039
Automatic 38,870 Hybrid 2,652 Black 10,162

Petrol 65,131 Silver 11,930
Others 11,789
White 30,580

Table 3.2: (Exploratory Data Analysis) Summary Statistics of Categoricals in “car_processed”

In addition, bar charts of categorical variables with descending ordered frequency were

constructed and are provided below.

11

Figure 3.1: (Exploratory Data Analysis) Bar Plots for Categoricals in “car_processed” (Pg. 10)

From the summary statistics and the bar plots, the vast majority of fuel types of cars (over

90%) is petrol. Usually, variables like this where a value has much more presence than any other

values often result in low variance and thus less impact on formation of models, so greater care

for “fuel” is needed in modeling processes.

Histograms for the numerical variables (age, engine, mileage, price), histograms were

constructed to examine the overall distribution. To apply the modeling methods, it is necessary to

check if there are distributions with significant departures from approximate normality.

Figure 3.2: (Exploratory Data Analysis) Histograms for Numericals in “car_processed”

From the above histograms, all four numerical predictors are right-skewed with varying extent

and thus not approximately normal, so transformations are necessary on these variables before

fitting models. In the end, natural logarithm transformations are performed on each of the four

numerical variables, and their column names are changed accordingly (from age to log_age,

from engine to log_engine, and so on), and the resulting histograms are shown below:

12

Figure 3.3: (Exploratory Data Analysis) Histograms for Log(Nums) in “car_processed”

Now they better adhere to the approximately-normal requirement.

Next, the results of pairwise correlations between these four numerical variables will be

presented; if the correlation plot and scatter plots in the next step show any pairs of extremely

high negative or positive correlation between numerical predictors, it might be necessary to

avoid including both variables together.

Figure 3.4: (Exploratory Data Analysis) Scatter Plots for Log(Nums) in “car_processed”

13

Figure 3.5: (Exploratory Data Analysis) Correlation Plot for Log(Nums) in “car_processed”

From the pairwise scatter plots, there do not seem to be approximately pairwise linear

relationships between the three numerical predictors; from the correlation plot, the pairwise

correlation between the three numerical predictors are also relatively low, so there is lower

chance of pairwise collinearity between numerical predictors when fitting models.

For numerical predictors and the numerical response, from the pairwise scatter plots,

there seems to be strong negative linear relationship between “log_age” and “log_price” and

strong positive linear relationship between “log_engine” and “log_price”. The direction and

strength of the relationships of the said two pairs of variables are also visible from the correlation

plot. However, there seems to be no approximately linear relationship or correlation between

“log_mileage” and “log_price”, so greater care might be needed when analyzing the effect of

“log_mileage” in further models.

14

Chapter 4: Data Splitting and Model Evaluation

Section 4.1: Data Splitting

Before using various statistical learning methodologies to fit the models, the

“car_processed” dataset was split into training dataset (56,400 rows, 80 percent of total

observations) and testing dataset (14,100 rows, 20 percent of total observations). The splitting

was done using random sampling without replacement. A seed in R was set using set.seed()

function; by setting a seed (an integer), the pseudo-random output can be reproduced. In this

paper, the seeds was set to 1. Later, each model will be fitted on the same training dataset and

evaluated on the same testing dataset.

Section 4.2: Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is a widely used metric to evaluate the performance of

regression models. It quantifies the standard deviation of the residuals, which represents the

distance between the observed (actual) values and the values predicted by the regression model.

In other words, RMSE quantifies how much, on average, the model's predictions deviate from

the actual values.

The formula for RMSE is: , where represents the

actual values, represents the predicted values, and is the number of observations, and a low

RMSE means better fit to the testing dataset. RMSE is sensitive to the scale of the data, meaning

that its value is expressed in the same units as the outcome variable (in this case, natural log of

the price of cars in Pakistan Rupee “PKR”).

15

Section 4.3: Coefficient of determination (R2)

Coefficient of determination (R-squared, often written as R2) is also a widely used metric

to evaluate the performance of regression models. It is a statistical measurement that represents

the proportion of the variance for a dependent variable that is explained by an independent

variable (in simple regression model) or independent variables (in multivariate regression model).

The formula for R2 is:

 where represents the actual values, represents the predicted values, represents

the mean of actual values, and is the number of observations. Note that Sum of

Squares of Residuals plus Sum of Squares Explained equals Total Sum of Squares.

 R2 is an intuitive statistic that gives information about model’s goodness of fit. R2 takes

on the value between 0 and 1 (included); suppose R2 = 0.4, this means that 40% of the

variability of the response variable has been accounted for by the model, and the

remaining 60% of the variability is unaccounted for by the model. R2 of 0 means that the

model is completely ineffective in predicting the outcome and R2 of 1 means that the

model is completely effective in predicting the outcome.

 Note, R2 is the squared value of the Pearson coefficient of correlation R between two

vectors “x” and “y” , takes on the value between -1 and 1 (inclusive), and the formula is:

16

 where represents the y values, represents the mean of y values, represents the

x values, and represents the mean of x values.

Chapter 5: Methodologies and their Applications

Section 5.1: Linear Model with Top-5 Significant Interactions

In statistics and data science, linear regression is a fundamental statistical learning

method used extensively in a wide spectrum of fields ranging from health science to e-commerce.

Linear regression is often used as a baseline for other statistical methods to model and analyze

the relationships between a dependent (or response) variable and one or more independent (or

predictor) variables. When there is only one independent variable, the process is called simple

linear regression; when there are two or more independent variables, the process is called

multiple linear regression, which is the case here. This paper is aiming to predict the outcome of

the dependent variable (log_price in this case) based on the linear combination of independent

variables. Note that multiple linear regression is different from multivariate linear regression,

which is to predict multiple dependent variables that are correlated, rather than a single

dependent variable.

A linear regression with only the main effects (each of the predictors on their own)

assumes the predictors variables independently influence the response, but in real-world

scenarios, often there are more complex interactions involved. A linear regression with

interactions terms allows for investigating of how the relationship between one predictor and the

response changes across the levels of another predictor.

17

This paper considers the 2-way (pairwise) interaction effects between the predictors in

linear regression analysis because many features of a used car do not influence the sale price by

themselves. For example, an aging car might not decrease in value if the car is driven very

infrequently (mileage grows slow) or if the car is very reliable, or even its popularity suddenly

grows. Another example, for the same model, an imported car might not be more expensive

compared to a local car, if the imported car is manual and the local car is automatic.

A multiple linear regression, same as simple or multivariate linear regression, is modeled

through an error term, often noted as Ɛ, which is an random variable that is unobserved and

serves as noise to the linear relationship. Given a dataset , multiple linear

regression equation for a particular observation (row) i with all pairwise interactions takes the

form of:

where represents the ith response value, to represent the ith value of the 1st to pth

predictor, represents the intercept coefficient, to represent the corresponding

coefficient of the p main effects, to represent the corresponding coefficient of each

of the interaction terms, and represents the error term. When fitting a linear regression,

the sum of squared error loss function is minimized, namely

where is the vector .

As a baseline for linear regression, a model with all main effects and 2-way interactions

are considered. However, since there are 9 predictors (main effects), there are 36 pairwise

interactions, which is too computationally expensive for linear model. Therefore, a dimension

18

reduction method is applied so that only the few interaction terms with the highest statistical

significance will be kept for the linear model. Before deciding which interaction terms (and main

effects) will be kept, an ANOVA (stands for ANalysis Of VAriance) table is computed. Below,

not the whole ANOVA table is printed (since the vast majority of interaction terms p-values are

much smaller than 0.01). Instead, the ANOVA tables for main effect and interactions with top 10

F-values are printed below.

Figure 5.1: (Linear) ANOVA Tables for 9 Main Effects (left) and Top-10 Interactions (right)

From the ANOVA tables in Figure 5.1, it seems that all main effects are statistically

significant at significance level (alpha) of 0.05, meaning that the probability of each respective

predictor having the F-value that big given their respective degrees of freedom, is less than 0.05

(in fact, the probabilities are all very close to zero). These pieces of information mean that the

null hypothesis (the predictor’s contribution to the “baseline model” is not statistically significant)

is rejected for each of the individual main effects. Therefore, for the dimension reduction process,

all main effects are kept.

In Figure 5.1, it seems that only including the top-5 significant interactions (out of 10) is

a reasonable choice for further reducing dimension, since the top-5 significant interactions all

19

have F-value of over 1,000 and the percentage reduction of F-value from the 5th to the 6th

interaction is the greatest among all. An updated ANOVA table is:

Figure 5.2: (Linear) ANOVA for Model with 9 Mains and 5 Interactions

The updated ANOVA table shows that all 9 main- and 5 interaction-effects are

statistically significant at alpha level of 0.05. And the summary output of the linear regression is

printed below:

20

Figure 5.3: (Linear) Summary Output for Model with 9 Mains and 5 Interactions (Pg.19)

Note that the main effect “log_age” is not statistically significant in the regression output

but is statistically significant in the ANOVA table. This result indicates that when combined with

its interaction effects, “log_age” contributes significantly to the model; however, when

considered on its own, “log_age” as a main effect does not contribute to the model linearly.

Since the price in Pakistani Rupee (PKR) is in natural log (as well as age, engine volume

and mileage), meaning of the coefficients are different than when they are not in natural log, and

thus the interpretations need to be adjusted accordingly.

 For log_age, log_engine, log_mileage:

 Keeping all other variables constant, for every 10% increase in age, engine volume, or

mileage, the car price on average increases by respectively -0.26%, 10.94%, 0.81%,

calculated by ln(1+0.1) times the respective coefficients (-0.0274, 1.1483, and 0.0853).

 For categorical variables:

 Keeping all other variables constant, compared to “base”, which is the first values in

each variables in the summary statistics (city_popularity = low, assembly = Imported,

body_group = Sports, transmission = Manual, fuel = Diesel, color_group = Gray), each

variable on average would result in increase of the car price by (e -1) × 100%;

 For example, keeping all others constant, a local car is on average (e-0.4680-1) × 100% =

-37.37% more expensive, or 37.37% cheaper than imported cars, or a black car is on

average (e0.0756-1) × 100% = 7.85% more expensive than gray cars.

Interpretations for coefficients of the interaction terms are included in Appendix E.

21

Model assumptions of the linear regression model on training are checked in R using

their respective popular test methods: Autocorrelation (dependence) of errors using Durbin-

Watson Test, heteroskedasticity (non-constant variable) of errors using Breusch-Pagan Test and

non-normality of errors using Kolmogorov-Smirnov Test:

Tests p-value
Autocorrelation using Durbin-Watson Test 0.89
Heteroskedasticity using Breusch-Pagan Test < 0.00000000000000022

Non-normality using Kolmogorov-Smirnov Test < 0.00000000000000022

Table 5.1: (Linear) Assumption Testing Results

The test results shows that auto-correlation test is passed but the other tests failed (based

on significance level of 0.05), even after attempting to transforming non-normal numerical

variables. Nevertheless, the linear model can be used given good performance scores, because

the large sample size of the training set (56,400) might still satisfy the normality requirement.

After fitting the model onto the training set, the linear model is used to predict on the testing set

for calculating performance scores.

The prediction yields the performance scores of testing RMSE of 0.3145 and testing R2 of

0.8484, which will be compared to the corresponding result of the other models.

Section 5.2: Elastic Net

Elastic net is a regularization and variable selection method that linearly combines the

regression regularization (penalty) terms L1 and L2, respectively applied by Lasso (Least

Absolute Shrinkage and Selection Operator) and Ridge Regressions, allowing for a more flexible

and comprehensive constraint on the coefficients. The elastic net penalized sum of squared error

loss function is minimized, namely

22

where represents the penalty parameter and is a parameter that weights the contribution of

the L1 and the L2 penalty terms. Notice that when equals 0, the loss function is equal to that

of Ridge, and when equals 1, the loss function is equal to that of Lasso.

Compared to linear regression, Elastic Net is better in both facilitating the reduction of

the complexity of models by performing dimension reduction and stabilizing the prediction

model when there is multicollinearity among predictors.

In this paper, Elastic Net serves as a bridge between linear regression and more complex

tree-based methods like Random Forest and XGBoost. The essence of applying Elastic Net

model on the training set is the detailed process of tuning the parameters, which is important for

optimizing the balance between bias and variance, so that the model fitting on unseen data (like

the manually separated testing set) can produce relatively accurate and consistent results. The

parameter tuning process and the model fitting process are described below, and R package of

“glmnet” is utilized with seed setting to 1.

 The elastic net model is fitted using values between 0 (equivalent to Ridge) and 1 (Lasso),

in increments of 0.01.

 For each , an Elastic Net model using 10-fold cross validation is fitted on the training set;

the model fit result is then returned. The result includes a vector of mean cross-validation

errors corresponding to each value of . Then, the which corresponds to the lowest

cross-validation error is chosen.

23

 Eventually, the value corresponding to the lowest error is 0.77. This value is used to

fit the final elastic net model.

The is 0.0003, and the corresponding mean of cross-validation error is 0.0984. The

output of coefficients of the elastic model is printed below:

Figure 5.4: (Elastic Net) Coefficients of Model with 8 Mains and 29 Interactions

From the output, it seems that 8 main effects are included as well as 29 out of 36 2-way

interactions. Specifically,“city_popularity” are not significant on its own and 2 of its interactions,

as well as “log_engine” and 3 of its interactions, in addition to “fuel” and 2 of its interactions.

Next, two plots would be shown to better understand how to select the optimal value, and

change in coefficients for different predictors as a function of .

24

Figure 5.5: (Elastic Net) Cross-Validation Curve (left); Shrinking Coefficients Paths (right)

On the left, the plot shows the cross-validation curve, and is used to assist in selecting the

ideal value, which is the regularization parameter. Each red dot represents the mean cross-

validation error for a specific value, and the left of the two vertical dotted lines usually

correspond to the that minimizes mean cross-validation error. The chosen is 0.0003, so the

x-axis intercept of that left-side dotted vertical line is approximately ln(0.0005) = -8.11.

On the right, the plot illustrates the paths of the coefficients for different model predictors

as grows. When equals 0.0003 and log() = -8.11, many of the lines (coefficients) have

not converge to zero; but as grows to a very large value, the vast majority of the coefficients

25

become zero, indicating that few predictors remains significant when applying a sufficiently

large penalty term.

After fitting the elastic net model with chosen and values that minimizes cross-

validation error on the training set, the model is used to predict on the testing set for calculating

performance scores. For the Elastic Model with equals 0.77, the testing RMSE of Elastic Net

is 0.3083, which is slightly lower than that of the linear model (0.3145), and the testing R2 of

0.8543 is slightly higher than that of the linear model (0.8484). Based on these pieces of

information, The elastic net model with 8 main effects and 29 interaction terms is more ideal

compared to the linear model with all main effects and 5 most significant interaction terms.

Next, the Random Forest method will be introduced and model will be fitted and

evaluated.

Section 5.3: Random Forest

Random Forest, or Random Decision Forest, is an tree-based ensemble learning method

for classification, regression and other tasks that functions by combining the predicting power or

multiple decision trees together, which typically has better accuracy achievable by any single

tree. Furthermore, combining multiple trees, the risk of overfitting is mitigated - a common risk

in complex predictive methods. Random Forest was chosen for the regression task for this paper

because it returns the mean or average prediction of the individual trees, thus anomalies in

prediction are smoothed out, and the underlying trends of the prices are usually captured with

better accuracy.

The creation of a random forest involves constructing a set of decision trees through

bagging (bootstrap aggregating), which itself can reduce overfitting and increase stability of the

26

several decision trees by training and combining multiple models on different subsets of the

training set. In addition to bagging, A random forest introduces additional randomness by

considering a random subset of features at each split (node) instead of all features, and as a result

the forest gives more importance to important features, implicitly performing feature selection.

Just like the Elastic Net model, the Random Forest model can also handle high-

dimensional datasets and effortlessly capture non-linear relationships and interactions (just like

2-way interactions previously considered) without the need for explicit engineering of the

features. Also, similar to Elastic Net, carefully tuning the Random Forest parameters are of

superior significance in optimizing the results. For Random Forest, the parameters usually

include the minimum size of terminal nodes (“min.node.size”) and the number of features

considered as candidates in each split (“mtry”), etc. The model fitting process is described below,

R packages of “caret” and “ranger” packages are utilized, and seed is again set to 1.

 The training control method is again 10-fold cross validation, and splitting rule is set to

variance. A 3 by 3 tuning grid of possible hyper-parameters (a total of 9 combinations) is

created, setting 10, 15, and 20 for both “mtry” and “min.node.size”, and will be searched on

by the model fitting method later.

 Random Forest Model is trained using the “ranger” package. The training process

searches on the tuning grid, with the total number of trees set to 100, importance

calculation method set to “impurity” (the importance based on the impurity decrease

contributed by each variable) and performance metric set to RMSE.

The final random forest model selected by the training process is the model with “mtry”

equals 10 and “min.node.size” equals 20, as this combination of parameters has the lowest

RMSE.

27

Figure 5.6: (Random Forest) 100-tree Model Result by Each Combination of Parameters

Furthermore, a graph is shown for the most important features from the random forest

model with the most important features shown on the top. Note that the importance ranking did

not distinguish between interaction terms and main effects so interpretation of the result should

be done with more caution.

28

Figure 5.7: (Random Forest) Model Variable Importance Ranking Plot

From the plot, it seems that “log_engine:transmission”, “log_engine”, “log_age:fuel”,

“body_group:transmission, “assembly:log_age”, “transmission:log_age”, “transmission”,

“log_age”, “body_group:log_age” are some of the most important features according to the

29

random forest model. Therefore, the Random Forest model shows that features like “log_engine”,

“transmission”, “log_age” and “body_group” are important in determining the price of cars.

Then the model is used to predict on the testing set to evaluate performance. For a 100-

tree Random Forest model with parameters of “mtry” equals 10 and “min.node.size” equals 20,

testing RMSE of 0.1971 is a lot lower than the linear (0.3145) and the elastic net (0.3083)

models, and testing R2 of 0.9405 is also a lot higher than that of the linear (0.8484) and the

elastic net (0.8543) models, making random forest more ideal compared to the linear and elastic

net models.

Next, a XGBoost model will be fitted, and its performance will decide if Random Forest

or XGBoost model will be used as the ideal model.

Section 5.4: XGBoost

XGBoost, abbreviation for eXtreme Gradient Boosting, initially released in the mid-

2010s, is an advanced implementation of gradient boosting algorithms, designed to optimize both

speed and performance, making it suitable for large datasets. XGBoost has gained immense

popularity since then in machine learning competitions and real-world applications due to its

capability to deliver high-performance models with a relatively simple set of hyper-parameters

compared to traditional gradient boosting methods.

Similar to Random Forest, XGBoost uses an ensemble of decision trees as their base

learners and the final prediction is made by aggregating the predictions from all individual trees.

However, unlike Random Forest, which builds each decision tree separately and combines their

predictions by summing or averaging, XGBoost builds tree sequentially; in fact, it builds trees in

a way that each subsequent model attempts to correct the errors made by the previous trees. This

30

sequential process proceeds until a certain condition has met (like a specific number of tress are

constructed, no further improvements can be made).

XGBoost also often performs better than Random Forest models in predictive tasks,

especially on datasets where the relationship between features and target is complicated and non-

linear; in addition, XGBoost has a wider range of hyper-parameters to be tuned (like for

parameters control regularization process and boosting process etc.), thus having more control

over the model than Random Forest, but also usually means longer training times despite being a

more scalable and efficient model. For this analysis, the parameter tuning process includes

learning rate (“eta”, takes on values from 0 to 1 which corresponds to gradual increase of

regularization strength), maximum depth of tree (“max_depth”), and subsample ratio of number

of observations of the training set before growing trees (“subsample”).

For the modeling process, R package of “xgboost” is used and seed is again set to 1.

 The learning objective is regression with minimized loss function, and the hyper-parameter

grid is defined manually with 3 parameters having 3 values each (27 combinations):

 “eta” is set to 0.05, 0.1, and 0.15; “max_depth” is set to 5, 10, and 15; and “subsample”

is set to 0.5, 0.7, and 0.9.

 For each of the parameter combination, a 10-fold cross-validation is performed with 100

maximum boosting iterations, and training stops if RMSE hasn’t decreased for 10 rounds.

The final XGBoost model selected by the training process is the model with “eta” equals

0.1, “max_depth” equals 10 and “subsample” equals 0.9, as this combination of parameters has

the lowest RMSE.

31

Similar to before, a graph is shown for the most important features from the xgboost

model, with the most important shown on the top.

Figure 5.8: (XGBoost) Model Variable Importance Ranking Plot

From the plot, compared to the one for Random Forest model, it seems that

“log_engine:transmission” is still the most important but its importance is much more prominent;

“log_age:fuel”, “log_engine”, “body_group:transmission”, “transmission”,

32

“body_group:log_age”, “log_age”, “assembly_log_age” follows right after. It seems that most

of the top predictors are same for XGBoost and Random Forest Model. Same as Random Forest,

the XGBoost model shows that features like “log_engine”, “transmission”, “log_age” and

“body_group” are important in determining the price of cars.

Then the model is used to predict on the testing set to evaluate performance. For a 100-

maximum-iterations XGBoost model with “eta” of 0.1, “max_depth” of 10, and “subsample” of

0.9, the testing RMSE of 0.1965 is slightly lower than the Random Forest (0.1971) and largely

lower than the linear (0.3145) and the elastic net (0.3083) models. On the other hand, the testing

R2 of 0.9409 is also slightly higher than that of random forest (0.9405) and largely higher than

that of the linear model (0.8484) and the elastic net model (0.8543).

Based on the performance scores of testing RMSE and R2, XGBoost Model stands out as

the best performing model among the four models in this paper: Linear Regression, Elastic Net,

Random Forest and XGBoost.

Chapter 6: Conclusion, Limitations and Future Works

Section 6.1: Conclusion

The objective of this paper is to use several statistical learning methods to find the

relationship between features of Pakistani used cars and their price. Four methods are used in this

paper, and their model performances based on testing RMSE and R2, along with chosen model

parameters after applying 10-fold cross validation on tuning the hyper-parameters, are

summarized into a table below.

33

Model
Name

Model Parameters
after 10-Fold Cross Validation

(In italics if the parameter was tuned)

RMSE
(lower = better)

R2

(higher = better)

Linear N/A 0.3145 0.8484
Elastic
Net

 (alpha) = 0.77
 Penalty term (lambda) = 0.0003

0.3083 0.8543

Random
Forest

 feature size at split = 10
 minimum node size = 20
 number of trees = 100

0.1971 0.9405

XGBoost learning rate = 0.01
 maximum tree depth = 10
 row ratio before trees = 0.9
 column ratio during trees = 0.7
 maximum boosting steps = 100
 training stops if RMSE hasn’t

decreased for 10 rounds

0.1965 0.9409

Table 6.1: (Conclusion) All Sets of Performance Evaluation Scores (testing RMSE and R2)

XGBoost is chosen as the final model due to its outstanding model performance

evaluation scores. In addition, from the importance ranking of features, “log_engine:transmission”

is the most important. Following that feature are “log_age”, “log_engine”, “fuel” as well as

interactions related to these factors. The “body_group” feature is not important alone but is

important interacting with “transmission” and “log_age”. Therefore, the XGBoost model implies

that age, engine size, transmission type and body type of the used car are particularly useful in

determining the sale price. These features are agreed by the Random Forest Model, while the

Linear and Elastic Model puts more importance on the interaction between age and the other

three factors.

It is agreed by the four models age, engine size, transmission type and body type are

some of the most influential factors alone, as well as interacting effects between age and the

other three factors. Therefore, using these pieces of information, Pakistani used cars buyers and

private car sellers can be better informed about their purchase, and used car dealers’ business

34

decision makings can be more reasonable and they can become more financially and popularly

successful.

Section 6.2: Limitations and Future works

While contributing valuable insights into predicting Pakistani used car prices, this study

has several limitations that are worth to be noticed and some future works that can be done.

Firstly, this dataset contains data only from the year 2023 and mainly sourced from

Kaggle and not from primary sources like used car companies or government institutions. Not

enough primary (and secondary) sources also means insufficient incorporation of

interdisciplinary research involving economics, public transportation or urban design, thus this

paper may not capture the full spectrum of the relationships of used car prices and their features

and potentially affect the generalization and accuracy of the findings. In the future, collaborating

with primary and secondary source providers, including industry stakeholders, government

institutions and professionals in the field, as well as expanding ranges of time and regions, could

further bridge the gap between theoretical models and practical applicability about understanding

the relationships between car features and their final sale prices.

Additionally, imperfect dimension reduction methods were applied and some necessary

assumptions were violated when fitting the linear regression model (despite efforts to transform

non-normal numerical variables) thus might have caused the choice of final model to be

inappropriate. Therefore, more methods of dimension reduction will be considered like Principal

Component Regression (PCR) and Partial Least Squares (PLS), so more assumptions might be

passed and the prediction power of the model might be stronger.

35

Likewise, hyper-parameter tuning processes of the Random Forest and XGBoost Models

only involve searching grids with limited combinations of parameters due to constrained

computation power and insufficient prior knowledge about the effects of the different

combinations, possibly oversimplifying complex relationships. As a result, measures will be

taken to expand the choices of values of parameters for tuning by including Random Search,

which samples a random subset of the potential parameter space, and Sequential Model-Based

Optimization (SMBO) methods. These methods might require expanded computation power and

a cluster computing system could be utilized in further research.

Furthermore, the re-categorization process for categorical variables (like body type, color

and city) might need refining, because some values might fit into more than one group, or that

the process itself might obscure the differences between groups. Besides, the decision to drop

certain variables from the original dataset, the decision to drop or impute the missing or empty

values, and the method of imputation can also be improved. This way, there could be a better

balance between preventing the loss of valuable information, preventing the removal of columns

with significant relevance, and preventing the imputation of non-representative known values

onto the missing values. For missing values, imputing them with mean or median values or using

K-Nearest Neighbors (KNN) Imputation might result in better model performances.

Lastly, data splitting (into training and testing sets) can include more options, even

though the 80%-20% random split method used in this paper is the most conventional method.

Subject to computation power constraints, Leave-p-Out, Monte-Carlo Cross Validation or K-

Fold Validation might be potential data splitting candidates that could improve the performance

of the model. On the other hand, additional model evaluation methods like Adjusted-R2 (for

drastically different amount of predictors used between each method), Mean Absolute Error or

36

Median Absolute Deviation (for numerical predictors that are far from being approximately

normal even after transformations) could be useful in determining the ideal model for answering

the research questions.

37

Appendix A: R Code Chunks for Data Preprocessing

```{r read_data}
Library(tidyverse)
# read data
car_original <- read.csv("pakwheels_used_car_data_v02.csv")
```

```{r make_copy}
# check the structure of dataset and make a copy of original
str(car_original)
head(car_original)
car_processed <- car_original
```

```{r price_column}
# check if there is any missing or empty values in price
sum(is.na(car_processed["price"]) | car_processed["price"] == "")
# first, drop all observations without price (583 rows, less than 10% of total rows)
# 77878 -> 77295 rows and 14 columns
library(tidyr)
car_processed <- car_processed %>% drop_na(price) %>% filter(price != "")

# by visual inspection, the highest price is a Toyota Corolla
# and is appproximately 3 times the price of the next, so we put 529,000,000 as
5,290,000 Rupees

max_price <- max(car_processed$price)
car_processed[car_processed$price == max_price, ]$price <- 5290000

dim(car_processed)
```

```{r check_missingvalues_predictors}
# check the count of missing or empty observations for all columns
colSums(is.na(car_processed) | car_processed == "")
```

```{r columns_removed}
# check if addref has any missing, empty, or duplicate variables (result: none)
sum(duplicated(car_original$addref))
sum(is.na(car_processed["addref"]) | car_processed["addref"] == "")
# since there is no missing nor duplicate values in "addref" (id), we can delete it,
left with 13 columns
car_processed <- car_processed[, -which(names(car_processed) == "addref")]
dim(car_processed)



38

# register city (registered) not too important and practical

# Instead of performing an analysis on models and corresponding manufacturers,
# we are more interested in their features
# so models and manufacturers removed
# we remove those three columns left with 10 columns
car_processed <- car_processed[, -which(names(car_processed) == "registered")]
car_processed <- car_processed[, -which(names(car_processed) == "make")]
car_processed <- car_processed[, -which(names(car_processed) == "model")]

# check dimension of remaining dataframe (n = 77295 k = 10)
dim(car_processed)
# check the count of missing or empty observations for all columns
colSums(is.na(car_processed) | car_processed == "")
```

```{r body_column}
# (missing 8857, little over 10% of total), but body is important, so kept, and
imputation will be on the missing or empty values
library(tidyr)
# change the name of body to body_group
names(car_processed)[3] <- "body_group"

# check the count of body_group from top to bottom
car_processed %>% count(body_group) %>% arrange(desc(n))

# change body to different categories
car_processed = car_processed %>%
mutate(body_group = case_when(body_group %in%

c("Sedan", "Compact sedan") ~ "Sedan",
body_group %in% c("Hatchback", "Compact hatchback", "Station Wagon")

~ "Hatchback",
body_group %in% c("Pick Up", "SUV", "Compact SUV", "Double Cabin",

"Off-Road Vehicles", "MPV", "Crossover", "Single Cabin") ~ "Utility",
body_group %in% c("Van", "Truck", "High Roof") ~ "Commercial",
body_group %in% c("Convertible", "Coupe") ~ "Sports",
body_group %in% c("Micro Van", "Mini Van", "Mini Vehicles") ~

"Micro/Mini",
body_group == "" ~ ""))

car_processed %>% count(body_group) %>% arrange(desc(n))

# Proportional imputation
set.seed(1) # for reproducibility
prob <- c(30827, 25193, 9586, 1853, 847, 132) / sum(c(30827, 25193, 9586, 1853, 847,
132))
body <- c('Sedan', 'Hatchback', 'Utility', 'Micro/Mini', 'Commercial', 'Sports')



39

# For each empty value, randomly choose a body type based on the known proportions
imputed_body <- sample(body, size = 8857, replace = TRUE, prob = prob)
car_processed$body_group[car_processed$body_group == ""] <- imputed_body

car_processed %>% count(body_group) %>% arrange(desc(n))

# change "body" character column, to factor column
car_processed$body_group = factor(car_processed$body_group, levels = c("Sports",
"Commercial", "Micro/Mini", "Utility", "Hatchback", "Sedan"))
```

```{r assembly_column}
# check unique values of "assembly"
unique(car_processed$assembly)
# in "assembly" variable, change empty values to "local"
car_processed$assembly <- ifelse(car_processed$assembly == "", "Local", "Imported")
# change "assembly" character column, to factor column
car_processed[, "assembly"] <- as.factor(car_processed[, "assembly"])
# check unique variable of "assembly", updated
unique(car_processed$assembly)
# check dimension of remaining dataframe (unchanged)
dim(car_processed)
```

```{r year_column}
# since data is from 2023, we would change name "year" to "age", and calculate the
respective ages
names(car_processed)[4] <- "age"
car_processed$age <- 2023 - car_processed$age

# drop all observations without age (4623 rows, less than 10% of total rows)
# and by common knowledge, (age of car) would be very important in predicting the
price of car
# 77295 -> 72672 rows and 10 columns
library(tidyr)
car_processed <- car_processed %>% drop_na(age) %>% filter(age != "")
dim(car_processed)
# check the count of missing or empty observations for all columns
colSums(is.na(car_processed) | car_processed == "")
```

```{r color_column}
# color would be important in predicting the price of car (paint color)
# change name of color to color_group
names(car_processed)[8] <- "color_group"

# drop all observations without color (1197 rows, less than 10% of total rows)



40

# and color can be missing or empty due to a variety of factors
# 72672 rows and 10 columns
library(tidyr)
car_processed <- car_processed %>% drop_na(color_group) %>% filter(color_group != "")
# check the count of each color and rank from top to bottom
car_processed["color_group"] %>% count(color_group) %>% arrange(desc(n))

# in color, if the color contains "White" then its "white and off-white", and so on.

library(stringr)
car_processed = car_processed %>%
mutate(color_group = case_when(str_detect(color_group, regex("White", ignore_case =

T))~ "White",
str_detect(color_group, regex("Black", ignore_case = T)) ~

"Black",
str_detect(color_group, regex("Grey", ignore_case = T)) ~

"Gray",
str_detect(color_group, regex("Silver", ignore_case = T))

~ "Silver",
TRUE ~ "Others"))

car_processed %>% count(color_group) %>% arrange(desc(n))

# check the count of missing or empty observations for all columns
colSums(is.na(car_processed) | car_processed == "")

# change "color" character column, to factor column
car_processed$color_group = factor(car_processed$color_group, levels = c("Gray",
"Black", "Silver", "Others", "White"))
```

```{r engine_column}
# only include engine volume 600 to 6600 ml, as they include the majority,
# and by some search, many cars outside this engine volumn range is input incorrectly

library(tidyr)
car_processed <- car_processed %>% drop_na(engine) %>% filter(engine != "")

# create a logical vector that indicates which rows have engine size between 600 and
6600
engine_filter <- car_processed$engine >= 600 & car_processed$engine <= 6600

# subset the dataframe using the logical vector
car_processed <- car_processed[engine_filter, ]

# 71287 -> 71113 rows and 10 columns
dim(car_processed)
# check the count of missing or empty observations for all columns



41

colSums(is.na(car_processed) | car_processed == "")
```

```{r fuel_column}
# check the count of each fuel and rank from top to bottom
car_processed["fuel"] %>% count(fuel) %>% arrange(desc(n))
# drop all observations without fuel type (613 rows, less than 10% of total rows)
# and by common knowledge, fuel type would be important in predicting the price of
car
# 71113 -> 70500 rows and 10 columns
library(tidyr)
car_processed <- car_processed %>% drop_na(fuel) %>% filter(fuel != "")
dim(car_processed)

# check the count of missing or empty observations for all columns
colSums(is.na(car_processed) | car_processed == "")

# change "fuel" character column, to factor column
car_processed$fuel = factor(car_processed$fuel)
```

```{r city_column}
# check the count of each city (city where car is transacted) and rank from top to
bottom
car_processed["city"] %>% count(city) %>% arrange(desc(n))

# change the city to 3 groups (popular, moderate, unpopular) based on car transaction
count
# First 3 - popular (Lahore, Karachi, Islamabad)
# Rank 4 to 9 - moderate (Rawalpindi, Peshawar, Faisalabad, Multan, Gujranwala,
Sialkot)
# Rank 10 and above - unpopular (the rest)
# column name change: city -> city_popularity
names(car_processed)[1] <- "city_popularity"
car_processed$city_popularity <-
ifelse(car_processed$city_popularity %in% c("Lahore", "Karachi", "Islamabad"),

"high",
ifelse(car_processed$city_popularity %in%
c("Rawalpindi", "Peshawar", "Faisalabad", "Multan", "Gujranwala", "Sialkot"),
"medium", "low"))

# change "city_popularity" character column, to factor column
car_processed$city_popularity =
factor(car_processed$city_popularity, levels = c("low", "medium", "high"))

# check dimension of remaining dataframe (unchanged)
dim(car_processed)
# show the first 10 rows of remaining dataframe



42

head(car_processed, 10)
```

```{r transmission column}
# check the count of each transmission and rank from top to bottom
car_processed["transmission"] %>% count(transmission) %>% arrange(desc(n))

# change "transmission" character column, to factor column
car_processed$transmission = factor(car_processed$transmission, levels = c("Manual",
"Automatic"))
```

```{r mileage column}
# no changes needed for mileage
```


43

Appendix B: R Code Chunks for Exploratory Data Analysis

```{r summary_df}
# check the summary statistics of the car_processed dataset
summary(car_processed)
```

```{r bar_charts}
layout(matrix(1:6, nrow = 2))
# bar plots of categoricals
for (i in c(1,2,6,7)) {
# Compute the frequency table
freq_table <- table(car_processed[,i])
# Order the table by decreasing frequency
ordered_table <- freq_table[order(-freq_table)]

barplots <- barplot(ordered_table, col = "lightblue",
main = c("Barplot of",colnames(car_processed[i])), las = 1, cex.names = 1.8,
ylim = c(0, max(ordered_table) * 1.1))

text(x = barplots, y = ordered_table + 3, labels = ordered_table,
pos = 3, cex = 1.6, col = "darkgreen")

}
for (i in c(3,8)) {
# Compute the frequency table
freq_table <- table(car_processed[,i])
# Order the table by decreasing frequency
ordered_table <- freq_table[order(-freq_table)]

barplots <- barplot(ordered_table, col = "lightblue",
main = c("Barplot of",colnames(car_processed[i])), las = 2,

cex.names = 1.3, ylim = c(0, max(ordered_table) * 1.1))
text(x = barplots, y = ordered_table + 3, labels = ordered_table,

pos = 3, cex = 1.3, col = "darkgreen")
}
```

```{r histograms, fig.width = 10, fig.height = 4}
par(mfrow=c(1,4))
# histograms of numericals
n_breaks = 30
for (i in c(4:5,9:10)) {
hist(car_processed[[i]],main = c("Histogram of",colnames(car_processed)[i]),

xlab = colnames(car_processed)[i], breaks = n_breaks, cex.main = 1.6, cex.lab =
1.6)
}
```

```{r approximate_boxcox}



44

library(MASS)
layout(matrix(1:4, nrow = 2))
boxcox(price~age, data = car_processed)
boxcox(price~engine, data = car_processed)
boxcox(price~mileage, data = car_processed)
```

```{r histograms_after_transformation, fig.width = 10, fig.height = 4}
# add "log_" to column names of all 4 numerical variables
colnames(car_processed)[c(4:5,9:10)] <- paste0("log_",
colnames(car_processed)[c(4:5,9:10)])

# log transform all 4 numerical variables
car_processed[,c(4:5,9:10)] <- log(car_processed[,c(4:5,9:10)])

par(mfrow=c(1,4))
# histograms of numericals
n_breaks = 30
for (i in c(4:5,9:10)) {
hist(log(car_processed[[i]]),main = c("Histogram of",colnames(car_processed)[i]),

xlab = colnames(car_processed)[i], breaks = n_breaks, cex.main = 1.6, cex.lab =
1.6)
}
```

```{r correlation_of_numericals, fig.width = 80%}
library(corrplot)
# Plot the Correlation
corrplot <- corrplot(cor(car_processed[,c(4:5,9:10)]),

type = 'lower', tl.col = "black", tl.cex = 1.8, cl.cex = 1.8)
```

```{r scatterplot_of_numericals,fig.width = 8, fig.height = 6}
plot(car_processed[,c(4:5,9:10)], upper.panel = NULL)
```


45

Appendix C: R Code Chunks for Data Splitting

```{r splitting_of_data}
# separate training and testing, and setting seed for reproducible results
set.seed(1)
train_id <- sample(1:nrow(car_processed),floor(0.8 * nrow(car_processed)))
train <- car_processed[train_id,]
test <- car_processed[-train_id,]
```


46

Appendix D: R Code Chunks for Linear Model

```{r linear_model_null}
options(scipen = 999)
library(MASS)

# start with all main effects with all 2-way interactions
anova_summary <- anova(lm(log_price~.^2, data = train))
```

```{r linear_model_reduce_process}
# it looks like all main effects should be included
# all 2-way interactions and main effects are too computationally complex
# We choose 2-way interactions effects with 5 highest F value (more than 1000)
# which means 5 lowest p-value, and 5 most significant
# as our final model of linear regression

interaction_terms <- grep(":", rownames(anova_summary), value = TRUE)
anova_summary_main_effects <- anova_summary[!(rownames(anova_summary) %in%
interaction_terms),]
anova_summary_interactions <- anova_summary[rownames(anova_summary) %in%
interaction_terms,]

sorted_anova_summary_top_10 <- head(anova_summary_interactions %>%
arrange(desc(`F value`)),10)

# View the summary main effects
print(anova_summary_main_effects)
# View the sorted summary interactions show top 10 (take top 5)
print(sorted_anova_summary_top_10)
```

```{r linear_model_reduced}
options(width = 100)
linear_fit_interactions = lm(log_price ~ . + log_age:transmission + log_age:assembly
+

assembly:transmission + log_age:log_engine + log_age:log_mileage,
data = train)
anova(linear_fit_interactions)
summary(linear_fit_interactions)
```

```{r linear_model_assumptions}
library(lmtest)
# dw test for autocorrelation
dwtest(linear_fit_interactions)



47

# bp test for non-constant variance
bptest(linear_fit_interactions)
# ks test for normality
ks.test(residuals(linear_fit_interactions), "pnorm",

mean = mean(residuals(linear_fit_interactions)),
sd = sd(residuals(linear_fit_interactions)))

```

```{r prediction_for_linear_model}
pred_1 <- predict(linear_fit_interactions, test)
# RMSE
RMSE = sqrt(mean((test$log_price - pred_1) ^ 2))
RMSE

#R^2
ss_total <- sum((test$log_price - mean(test$log_price))^2)
ss_res <- sum((test$log_price - pred_1)^2)
r_squared <- 1 - (ss_res / ss_total)
r_squared
```


48

Appendix E: Interpreting Coefficients for Interaction Terms

in Linear Model

 For log_age:log_engine and log_age:log_mileage:

 Keeping all other variables constant, for every 10% increase in engine or every 10%

increase in mileage, given that 10% increase in age happen at the same time, a car on

average is respectively 0.59% and 0.28% cheaper, calculated by ln(1+0.1) times the

respective coefficients (-0.0621, -0.0289).

 For log_age:assemblyLocal and log_age:transmissionAutomatic:

 Keeping all other variables constant, a local car (compared to an imported car) or an

automatic car (compared to a manual car), given that a 10% increase in age happen at

the same time, a car on average is respectively 1.50% and 1.60% more expensive,

calculated by ln(1+0.1) times the respective coefficients (0.1571, 0.1682).

 For assemblyLocal:transmissionAutomatic:

 Keeping all other variables constant, a local and automatic transmission car, compared

to a imported and manual transmission car, is on average (e-0.3254-1) × 100% = -27.78%

more expensive, or 27.78% cheaper.

49

Appendix F: R Code Chunks for Elastic Net Model

```{r elastic_net_model_setup}
# response column of train and test (converted to matrix)
train_y_matrix <- train[10]
train_y_matrix <- as.matrix(train_y_matrix)
test_y_matrix <- test[10]
test_y_matrix <- as.matrix(test_y_matrix)
# design matrix (train to matrix) and design matrix (test to matrix)
train_design_matrix <- model.matrix(log_price~.^2, data =
data.frame(data.matrix(train)))
test_design_matrix <- model.matrix(log_price~.^2, data =
data.frame(data.matrix(test)))
```

```{r elastic_net_model}
library(glmnet)
## Elastic Net Model
# Firstly, we would tune the alpha value for the elastic net and choose the alpha
value that minimizes the cross-validation error.
# We create a sequence of alpha values and an empty list to store cv
alpha = seq(0,1,0.01)
cv.list.en = rep(NA, length(alpha))
set.seed(1)

# Then, we create a for loop to iterate through all alpha values
for (i in 1:length(alpha)) {
en.fit = cv.glmnet(train_design_matrix, train_y_matrix, nfold = 10, alpha =

alpha[i])
cv.list.en[i] = en.fit$cvm[en.fit$lambda == en.fit$lambda.min]

}

# which alpha value corresponds to the lowest cv error
alpha[which.min(cv.list.en)]

# final model for elastic net
elastic_net_fit = cv.glmnet(train_design_matrix, train_y_matrix, nfold = 10, alpha =
alpha[i])

# The lambda value that minimizes cv error & and minimum mean cv
min(elastic_net_fit$cvm)
elastic_net_fit$lambda.min

# coefficients of elastic net
coef(elastic_net_fit, s = 'lambda.min')
```


50

```{r elastic_net_model_plot, fig.height = 80%}
## Elastic Net Plot
par(mfrow = c(1,2))
plot(elastic_net_fit)
plot(elastic_net_fit$glmnet.fit, 'lambda')
```

```{r prediction_for_elastic_net_model}
pred_2 <- predict(elastic_net_fit, newx = test_design_matrix, s = 'lambda.min')
# RMSE
RMSE = sqrt(sum((test_y_matrix - pred_2)^2) / nrow(test_y_matrix))
RMSE
# R-squared
ss_total_2 <- sum((test_y_matrix - mean(test_y_matrix))^2)
ss_res_2 <- sum((test_y_matrix - pred_2)^2)
r_squared_2 <- 1 - (ss_res_2 / ss_total_2)
r_squared_2
```


51

Appendix G: R Code Chunks for Random Forest Model

```{r random_forest_model_setup}
train_design_y_matrix <- cbind(train_design_matrix,train_y_matrix)
test_design_y_matrix <- cbind(test_design_matrix,test_y_matrix)
library(caret)
library(ranger)
# Set up 10-fold cross-validation
train_control <- trainControl(method = "cv", number = 10, search = "grid")
```

```{r random_forest_model}
# Define the tuning grid
tune_grid <- expand.grid(mtry = c(10,15,20), min.node.size = c(10,15,20), splitrule =
"variance")

# Train the model
set.seed(1) # For reproducibility
rf_model <- train(
log_price ~ .,
data = train_design_y_matrix,
method = "ranger", # Specifies the Random Forest model
trControl = train_control,
tuneGrid = tune_grid,
num.tree = 100,
metric = "RMSE", # Choose performance metric, e.g., RMSE for regression tasks
importance = "impurity"

)

# Print the results
print(rf_model)
```

```{r random_forest_plot, fig.height = 10, fig.width = 10}
#check variables important plot to find which predictors affect the log_price
seriously,
#the top ones are most important ones
plot(varImp(rf_model))
```

```{r prediction_rf_model}
#predictions
pred_3 <- predict(rf_model, test_design_y_matrix)
rmse_3 <- sqrt(mean((pred_3 - test_y_matrix)^2))
rmse_3



52

# R-squared
ss_total_3 <- sum((test_y_matrix - mean(test_y_matrix))^2)
ss_res_3 <- sum((test_y_matrix - pred_3)^2)
r_squared_3 <- 1 - (ss_res_3 / ss_total_3)
r_squared_3
```


53

Appendix H: R Code Chunks for XGBoost Model

```{r xgboost_model_setup}
library(xgboost)

param_grid <- expand.grid(
eta = c(0.05, 0.1, 0.15),
max_depth = c(5, 10, 15),
subsample = c(0.5, 0.7, 0.9),
colsample_bytree = 0.7,
objective = "reg:squarederror",
booster = "gbtree"

)

# Initialize variables to store the best results
best_params <- list()
min_cv_rmse <- Inf
```

```{r xgboost_model}
# Convert the datasets to XGBoost's DMatrix format
dtrain <- xgb.DMatrix(data = train_design_y_matrix[, -47], label =
train_design_y_matrix[, 47])
dtest <- xgb.DMatrix(data = test_design_y_matrix[, -47], label =
test_design_y_matrix[, 47])

# Loop over the grid
for(i in 1:nrow(param_grid)) {
set.seed(1)
# Extract parameters for this iteration
params <- as.list(param_grid[i,])

# Perform 10-fold cross-validation
cv_results <- xgb.cv(

params = params,
data = dtrain,
nrounds = 100,
nfold = 10,
showsd = TRUE,
stratified = FALSE,
print_every_n = 10,
early_stopping_rounds = 10,
maximize = FALSE

)

# Find the best round for the current parameter set



54

best_rmse <- min(cv_results$evaluation_log$test_rmse_mean)

# Update best parameters if current model is better
if (best_rmse < min_cv_rmse) {

best_params <- params
min_cv_rmse <- best_rmse

}

cat("Finished grid iteration:", i, "/", nrow(param_grid),
"with RMSE:", best_rmse, "\nBest RMSE so far:", min_cv_rmse, "\n\n")

}

# Print the best parameters
print(best_params)

# Train the final model using the best parameters
best_model <- xgboost(
set.seed(1),
params = best_params[1:5],
data = dtrain,
nrounds = 100,
maximize = FALSE

)

print(best_model)
```

```{r xgboost_importance, fig.height = 10}
# Get importance matrix
importance_matrix <- xgb.importance(feature_names = colnames(train_design_matrix),
model = best_model)
print(importance_matrix)
xgb.plot.importance(importance_matrix,cex = 0.8)
```

```{r prediction_for_xgboost_model}
# prediction
pred_4 <- predict(object = best_model, newdata = dtest)
rmse_4 <- sqrt(mean((pred_4 - test_y_matrix)^2))
rmse_4

# R-squared
ss_total_4 <- sum((test_y_matrix - mean(test_y_matrix))^2)
ss_res_4 <- sum((test_y_matrix - pred_4)^2)
r_squared_4 <- 1 - (ss_res_4 / ss_total_4)
r_squared_4
```


55

References

Ahmad, T. B. (2023, September 29). Pakistan used car prices 2023. Kaggle.

<https://www.kaggle.com/datasets/talhabarkaatahmad/pakistan-used-car-prices-

2023?resource=download>

C. Jin, "Price Prediction of Used Cars Using Machine Learning," 2021 IEEE International

Conference on Emergency Science and Information Technology (ICESIT), Chongqing,

China, pp. 223-230, 2021.

Laghari, A. (2018a, May 31). Trends of buying used cars in Pakistan. PakWheels Blog.

<https://www.pakwheels.com/blog/trends-pakistan-used-car/>

S. Peerun, N. H. Chummun and S. Pudaruth, "Predicting the Price of Second-hand Cars using

Artificial Neural Networks", The Second International Conference on Data Mining Internet

Computing and Big Data, pp. 17-21, 2015.

The World Bank Group. (n.d.). GDP per capita (current US$) - Pakistan. World Bank Open Data.

<https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2022&locations=PK&start

=1960&view=chart>

	Chapter 1: Introduction
	Section 1.1: Background Information and Motivation
	Section 1.2: Literature Review
	Section 1.3: Research Question and Procedures

	Chapter 2: Data Source and Preprocessing
	Section 2.1: Data Source
	Table 2.1: (Data Source) Variables Information fro

	Section 2.2: Data Preprocessing
	Table 2.2: (Data Preprocessing) Description of Var

	Chapter 3: Exploratory Data Analysis
	Table 3.1: (Exploratory Data Analysis) Summary Sta
	Table 3.2: (Exploratory Data Analysis) Summary Sta
	Figure 3.1: (Exploratory Data Analysis) Bar Plots
	Figure 3.2: (Exploratory Data Analysis) Histograms
	Figure 3.3: (Exploratory Data Analysis) Histograms
	Figure 3.4: (Exploratory Data Analysis) Scatter Pl
	Figure 3.5: (Exploratory Data Analysis) Correlatio

	Chapter 4: Data Splitting and Model Evaluation
	Section 4.1: Data Splitting
	Section 4.2: Root Mean Squared Error (RMSE)
	Section 4.3: Coefficient of determination (R2)

	Chapter 5: Methodologies and their Applications
	Section 5.1: Linear Model with Top-5 Significant I
	Figure 5.1: (Linear) ANOVA Tables for 9 Main Effec
	Figure 5.2: (Linear) ANOVA for Model with 9 Mains
	Figure 5.3: (Linear) Summary Output for Model with
	Table 5.1: (Linear) Assumption Testing Results

	Section 5.2: Elastic Net
	Figure 5.4: (Elastic Net) Coefficients of Model wi
	Figure 5.5: (Elastic Net) Cross-Validation Curve (

	Section 5.3: Random Forest
	Figure 5.6: (Random Forest) 100-tree Model Result
	Figure 5.7: (Random Forest) Model Variable Importa

	Section 5.4: XGBoost
	Figure 5.8: (XGBoost) Model Variable Importance R

	Chapter 6: Conclusion, Limitations and Future Work
	Section 6.1: Conclusion
	Table 6.1: (Conclusion) All Sets of Performance Ev

	Section 6.2: Limitations and Future works

	Appendix A: R Code Chunks for Data Preprocessing
	Appendix B: R Code Chunks for Exploratory Data Ana
	Appendix C: R Code Chunks for Data Splitting
	Appendix D: R Code Chunks for Linear Model
	Appendix E: Interpreting Coefficients for Interact
	Appendix F: R Code Chunks for Elastic Net Model
	Appendix G: R Code Chunks for Random Forest Model
	Appendix H: R Code Chunks for XGBoost Model
	References

