
UCLA
UCLA Electronic Theses and Dissertations

Title
Understanding Software Application Behaviour in Presence of Permanent and
Intermittent Hardware Faults

Permalink
https://escholarship.org/uc/item/6387x8wr

Author
Sharma, Ankur

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6387x8wr
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Understanding Software Application Behaviour

in Presence of Permanent and Intermittent

Hardware Faults

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

by

Ankur Sharma

2013

c© Copyright by

Ankur Sharma

2013

Abstract of the Thesis

Understanding Software Application Behaviour

in Presence of Permanent and Intermittent

Hardware Faults

by

Ankur Sharma

Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Puneet Gupta, Chair

Over past three decades technological advancement in fabrication of VLSI ICs

has been accompanied by shrinking of device sizes and scaling of supply volt-

age. While power, area and performance have constantly improved, hardware

reliability is becoming a growing concern. Due to increased process, voltage and

temperature (PVT) variations, the infant mortality rate has gone up. Coupled

with PVT variations, aging and wearout induced failures have exacerbated the

problem as devices unexpectedly fail while in operation. Although a significant

fraction of emerging failure and wearout mechanisms result in intermittent or

permanent faults in the hardware, their impact (as distinct from transient faults)

on software applications has not been well studied. In this work, we analyze

the impact of such failures on software applications and develop a distinguishing

application characteristic, referred to as similarity from basic circuit-level under-

standing of the failure mechanisms. We present a mathematical definition and

approximations for similarity computation for practical software applications and

experimentally verify the relationship between similarity and fault rate. Lever-

aging the dependence of application robustness on similarity metric, we present

example architecture independent code transformations to reduce similarity and

ii

thereby the worst case fault rate with minimal performance degradation. The

experiments with arithmetic unit faults show as much as 74% improvement in

the worst case fault rate on benchmark kernels with less than 10% performance

degradation.

iii

The thesis of Ankur Sharma is approved.

Lara Dolecek

Mani B Srivastava

Puneet Gupta, Committee Chair

University of California, Los Angeles

2013

iv

To my parents

v

Table of Contents

1 Introduction . 1

1.1 A Review . 2

1.2 Thesis Outline . 7

2 Modeling Fault and Fault Rate . 9

2.1 Fault Models . 9

2.2 Analytical Modeling of Fault Rate 16

2.3 Pictorial Representation of Fault Rate 21

2.4 Chapter Summary . 21

3 Similarity and Code Transformations 23

3.1 Practical Approximation to Similarity 23

3.2 Code Transformation . 28

3.3 Chapter Summary . 32

4 Experimental Setup and Results 33

4.1 Experimental Setup . 33

4.2 Results . 37

4.3 Chapter Summary . 46

5 Conclusions . 48

5.1 Conclusions . 48

5.2 Future Work . 49

References . 52

vi

List of Figures

2.1 Intermittent fault model parameters, adapted from [GSB08] 11

2.2 A general 2-bit multiplier logic block 12

2.3 Average conditional failure probability (CFP, γavg(k)) as a function of

the number of bits shared (k) between input vectors. Stuckat faults are

injected in three different locations (L) of three different designs (D) of

8-bit multipliers. 14

2.4 Average conditional failure probability (CFP, γavg(k)) as a function of

the number of bits shared (k > 15) between two pairs of input vectors.

For lower values of k, the curve almost remains flat. 16

2.5 (a) Subset of fault activating input vectors (b) Input vectors generated

by a faulty run of Fr application (c) overlap between the (a) and (b)

(shown in red). 21

3.1 CFP as a function of the number of operands shared (op), as obtained

from verilog simulations on 8-bit multiplier designs (see Section 2.1). . 26

3.2 An operand being shared between two input vectors, namely v1 and

v4 implies that there exist two pairs of two consecutive input vectors,

namely, {{v0, v1}{v3, v4}} and {{v1, v2}{v4, v5}}, each sharing an operand. 26

3.3 A general 2-bit multiplier logic block 28

3.4 An example code in its original version. 28

3.5 Code of Fig.3.4 after applying transformation Swap (Sw). Half the

operands are swapped. 29

3.6 Code of Fig.3.4 after applying transformation Swap-Negate (SwN). Half

the operands are swapped and multiplied by -1. 30

vii

3.7 Input vectors generated in a faulty run of Fr’s original (a) and trans-

formed codes - Sw (b) and SwN (c). 32

4.1 (a) VarEmu architecture for fault model emulation. (b) Enabling faults

using VarEmu based fault model implementation 36

4.2 Comparing the efficacy of code transformations Sw and SwN, under

optimization flags O3 and O0. (a) Reduction in standard deviation in

fault rate σnorm,avg
FR , (b) Reduction in strict similarity Ss. 44

5.1 Overlap (red region) between the fault activating input vectors (blue

region) and the input vectors generated (green region) by the original

(left column), Sw transformed (middle column) and SwN (right column)

transformed codes for three different faults - F1, F2 and F3. 50

viii

List of Tables

2.1 Frequently used notations . 10

2.2 Frequently used acronyms . 10

2.3 Frequently used phrases . 11

2.4 Conditional Failure Probability (CFP) as a function of the number of

bits guranteed to be shared (k), for fault z0 stuck-at 0 in the 2-bit

multiplier logic. As k increases, CFP increases exponentially. k = 0

implies atleast 0 bits are shared which means they can be any two 4-bit

input vectors. 13

2.5 Benchmark kernels: Count of multiply instructions, output type

and correlation between fault rate and error magnitude as obtained

from fault injection experiments with permanent stuck-at fault model. 16

3.1 Notations introduced in this chapter 23

3.2 Acronyms introduced in this chapter 24

3.3 Relaxed (Sr) and strict (Ss) similarity values for the original (Org),

swapped (Sw) and swap-negated (SwN) codes of all the applications.

Similarity values normalized with respect to Org are shown in the brackets. 30

4.1 Frequently used notations . 34

4.2 Frequently used acronyms . 34

4.3 Permanent/Stuck-at fault model: Correlating reduction in similarity

(Ss) and reduction in σFR and σFR/µFR due to Sw and SwN transfor-

mations. Similarity values are normalized with respect to the original

code. 39

ix

4.4 Intermittent/Stuck-at fault model: Table shows average normalized val-

ues of σFR and σFR/µFR due to SwN transformation for three different

burst lengths (lburst = 50, 500, 2500), corresponding to IS0, IS1 and IS2,

respectively. Values are normalized with respect to the original code

values corresponding to the respective burst length. 40

4.5 Permanent/Delay fault model: Results from experiments on two differ-

ent designs - one synthesized by the RC and the other synthesized by the

DC. Table shows average normalized values of σFR and σFR/µFR due

to Sw and SwN transformation. NTV refers to “No Timing Violations”. 40

4.6 Permanent/Stuck-at fault model: Average reduction in ωFR and ωEM

due to Sw and SwN transformations compared to the original code.

Maximum reduction of 74% is observed for Mm (shown in bold font). . 42

4.7 Intermittent/Stuck-at fault model: Average reduction in ωFR and ωEM

due to SwN transformation compared to the original code. IS0, IS1, IS2

correspond to three different burst lengths (lburst = 50, 500, 2500). . . . 43

4.8 Permanent/Delay fault model: Results from experiments on two differ-

ent designs - one synthesized by the RC and the other synthesized by

the DC. Average reduction in ωFR and ωEM due to Sw and SwN trans-

formations compared to the original code. NTV refers to “No Timing

Violations”. 43

4.9 Fault injection in adder instructions using permanent stuck-at fault

model. Values inside the brackets are normalized (with respect to the

original code, Org) strict similarity (Ss). 46

4.10 Runtime penalty in transformed codes. RSw,norm and RSwN,norm are

the runtimes of the transformed codes normalized with respect to the

original code’s runtime. 46

x

Acknowledgments

This thesis would not have been possible without the constant guidance and

support of my advisor, Prof. Puneet Gupta. Our frequent technical discussions

have been very fascinating and educative. I would like to thank Prof. Mani

Srivastava at UCLA, Prof. Rakesh Kumar at UIUC and Joseph Sloan at UIUC

for their valuable suggestions and constant inputs.

I would like to acknowledge the support of NESL lab members. Discussions

and technical support provided by Lucas Wanner and Salma Elmalaki was very

crucial in the successful completion of this project. My colleagues at NanoCAD

lab over the last two years: Abde Ali, John Lee, Rani Ghaida, Liangzhen Lai,

Tanaya Sahu, Shaodi Wang, Mukul Gupta, Mark Gottscho and Yasmine Badr

have all been very helpful. Time spent with them all would always be a memorable

experience. I would also like to express my thanks to my parents and my brother

for their unconditional support and encouragement.

Lastly, I would like to express my gratitude to the Almighty Supreme Lord for

bestowing upon me His choicest blessings and giving me the ability to think, to

analyze and to express.

xi

CHAPTER 1

Introduction

With the scaling of technology in the nanometer regime, increased process, volt-

age and temperature (PVT) variations have exacerbated the infant mortality rate.

Due to insufficent burn-in defective devices inevitably reach the end user [Bor05].

Moreover, due to multiple aging and wearout induced hardware reliability loss

mechanisms, it is expected that more components would suffer from unpredictable

operational or in-field failures [SAB04] [BSO05]. Wearout induced failures initially

manifest as intermittent faults and later develop into permanent faults [GSB08]

[GAM02] [SGH07]. Manufacturing residues may also result in intermittent con-

tacts [GSB08]. Recent work in [NKS12] has shown that failures arising from

process variations increasingly resemble the traditional permanent faults, i.e. the

hardware’s erroneous behavior is a function of its state rather than time. This

persistent nature of permanent and intermittent hardware faults as opposed to the

transient hardware faults, renders existing software based reliability mechanisms

either inefficient or inapplicable.

In this work, we study the impact of intermittent and permanent hardware

faults on software programs with a goal to robustify the latter against the former,

while incurring minimal run-time overhead. We observe that certain code sections

are more susceptible to such faults i.e., they can activate much larger number of

faults compared to the other sections of the code. Based on the basic circuit-level

understanding of failure mechansims we develop a code metric called “similarity”

to quantify its susceptibility to such faults. Leveraging their relationship, we

1

propose simple code transformations to reduce the similarity and thereby, optimize

the worst case fault rate.

1.1 A Review

In this section, we review the commonly known device level failure mechanisms.

Then we relate a representative subset of the existing work on software based

fault tolerance mechanisms including symptom based detection of hardware faults,

detection and reduction of silent data corruptions (SDC) and code optimizations

to improve the resiliency of the software program. Since SDC’s are the toughest

to detect and recover from, our work focusses on reducing SDC’s through simple

code transformations.

1.1.1 Hardware Failure Mechanisms

Time dependent dielectric breakdown (TDDB), also known as oxide breakdown

refers to the gradual formation of the conductive path (wearing out) through

the oxide layer. With decreasing oxide thickness, < 2nm now a days, the gate

leakage current is exponentially growing [Sta02]. Apart from increasing the power

consumption, gate current stresses the oxide eventually leading to breakdown.

While stress induces long-term parameter shifts which affect the power and the

performance of the device, oxide breakdown can even render it nonfunctional

depending upon the post-breakdown conduction.

Electromigration (EM) describes the atomic movement of metallic material

under electric field. Its a diffusive phenomena that creates voids and protrusions

causing opens (high resistance) and shorts in the interconnect. With decreasing

line-widths and increasing current densities, the mean time to failure is increasing

[HK89] [HRR99]. Stress migration (SM) is very similar to EM in terms of physical

phenomena and its circuit-level impact. While EM is caused by electric field, SM

2

is caused due to mechanical stress gradient [Ass03].

Hot carrier injection (HCI) refers to the injection of the “hot” carriers from the

substrate or the channel into the thin oxide gate, thereby heating up the device

and increasing the gate leakage at the cost of ON-current. Hot carriers can also

break Si-H bonds at the interface leaving behind dangling Si bonds that form the

interface traps. Oxide charges and interface defects produce threshold voltage

shift, transconductance degradation, drain current reduction, etc., and eventually

lead to device failure [MPR00].

With buried channel devices while HCI was the dominant concern, due to in-

creased field, temperature and use of surface channel devices, negative bias tem-

perature instability (NBTI) begins to become an issue [HDP06] [CSG11]. NBTI is

observed in pMOS transistors under negative bias. It is attributed to two types of

traps - interface traps due to dangling Si bonds, similar to HCI, and pre-existing

oxide traps. While both the traps degrade threshold voltage, degradation due to

oxide traps can be recovered upon removing the negative bias.

1.1.2 Software Based Fault Tolerance Mechanisms: Masking, detec-

tion and recovering from soft errors

In order to tolerate hardware failures various hardware and software based solu-

tions have been proposed in the literature. While hardware based solutions are

more effective in terms of coverage, detection latency etc., they usually come at

a high penalty - either in area/power or performance. For flagship processors

requiring high availablity, such solutions might be needed, but for commodity

processors cheaper software based solutions are preferred where 100% coverage

is not a requirement. Most of the existing software approaches are targetted at

transient hardware faults and make use of their impersistent nature.

Saha [Sah] presents a concise compilation of software techniques for fault tol-

3

erance. Some of the most commonly used techniques include checkpoint and roll

back, time redundant execution, recovery blocks, algorithm based fault tolerance,

executable assertions. These techniques either mask the failures or detect and re-

cover from them. Checkpointing based techniques [WHV95] periodically save the

system state, upon detection of an error roll back to the latest correct checkpoint

and re-execute. Checkpointing can be very effective when faults transiently ap-

pear. With persistent faults large number of roll backs and re-executions will be

required. If the fault is permanent, then re-executions do not help at all. Redun-

dancy based techniques like N-Version Programming [Avi85] and recovery blocks

[Ran75] leverage design diversity in the software to provide fault tolerance, al-

beit with high run-time penalties. Time redundant execution techniques perform

redundant computations either at instruction level, procedure level, or program

level to detect errors by comparing the results of duplicate executions [HLD05]

[OSM02] [OM01] [RCV05] [CRA06]. These schemes assume impersistent nature

of the failures and hope for different corruption signatures in the redundant execu-

tions to enable detection. However, intermittent and permanent failures can pos-

sibly lead to the same corruption signatures in the redundant executions because

faults persist in the same location for longer periods. Permanent fault detection

through time redundant task executions has been proposed in [AFK03]. Authors

inject permanent faults at some point in the application; if that fault appears

during the task execution and affects the redundant tasks in ‘detectably distinct’

ways then it can be detected. The probability of detection reduces as the task

size reduces. Algorithm based fault tolerance is achieved by encoding the input

data and modifying the algorithm to operate on the encoded data [HA84] [CD06]

[CFG05]. For very specific applications like matrix multiplication, it provides for

self-checking. Assertion based detection schemes apply checks on the control flow

or derive program specific invariants to trap deviation from the normal behavior

[Sah06] [GRS03] [And79].

4

1.1.3 Software monitors for in-field breakdown and SDC detection

Symptom based detection mechanisms have emerged as very effective low cost

solutions. Paul et. al. [WP06] propose several fault screeners to detect pertur-

bations from the expected result of an instruction and implement these screeners

at architecture level in the hardware. Fault screeners, essentially, maintain a his-

tory of past outputs by an instruction and compare the current result with the

previous outputs to detect any deviation. Authors use a random bit flip transient

fault model in their injection experiments. ReStore [WP06] is a combination of

checkpointing and symptom detection to safeguard the system against soft errors.

It detects symptoms like memory exceptions, incorrect control flow etc., and rolls

back to the last correct checkpoint. As discussed above, in presence of intermit-

tent and permanent faults, large number of roll backs and re-execution can totally

eclipse the benefits of this technique. SWAT [LRS08a] [LRS08b] is a software mon-

itor for detecting in-field breakdowns. It can detect fatal software symptoms like

application abort and kernel panic but provides no coverage against SDC’s. In a

subsequent work [SLR08] authors make use of range based program invariants to

detect SDC’s in presence of permanent faults. While SDC’s are reduced by 74%,

such program invariants are highly application specific and suffer from high false

positives [HAN12a], thereby severly affecting the performance. Other hardware /

software mechansims for online diagnosis of hardware defects have been presented

in [BSO05] [CMA07].

Since SDC’s do not leave behind any failure trace, they represent the worst-

case scenario. In addition, SDC rate in unbounded. Nonetheless, SDC detection

capabilities are required for broad adoption of symptom based detection mecha-

nisms. Therefore, recently published works [HAN12b] [HAN12a] [FGA10] focus

on detecting and reducing SDC’s, specifically due to transient faults. Shoestring

[FGA10] assumes all writes to the memory and function arguments are SDC

causing sites and uses instruction duplication to detect them. In [HAN12a] and

5

[HAN12b] authors generate more thorough application reliability profile using Re-

lyzer [HAN12b], identify SDC-hot sites at instruction level granularity and then

insert program level detectors in those specific locations only.

1.1.4 Program reliability metric and code optimizations

With the aim of improving the reliability of the software against faults, in the

past, researchers have studied the impact of various fault models on software pro-

grams and/or proposed code optimizations either at compiler level or at algorithm

level. [SK09] proposes program vulnerability factor to capture the resiliency of a

program to soft errors as independent from the hardware. Pattabiraman et. al.

[PKI05] developed metrics to identify critical application variables that need to

be protected with the aim to reduce system crashes and limit fault propagation.

Same authors study the impact of intermittent faults on applications [RPG10]

[WRP11] and conclude that because intermittent faults are very less likely to be

masked compared to the transient faults existing solutions to tolerate latter may

not be applicable to the former. Rehman et. al. [RSK12] [RSK11] perform static

estimations of the software’s reliability and trade-off performance for reliability

through compiler directed code optimizations. They study the occupancy of in-

structions in the pipeline stages and the life of variables in a program. Using

the arguments that instructions occupying pipeline stages for longer durations

and long-living variables are more vulenrable to soft errors they propose instruc-

tion rescheduling techniques to improve the software’s reliability. Cho et. al.

[CLM12] add application specific detectors to recover from soft errors. Sloan et.

al. propose algorithmic code optimizations by utilizing the fact that iterative ap-

plications like optimization problems, are more error-resilient than non-iterative

applications. Hence, they reformulate example problems as stochastic optimiza-

tion problem and employ the stochastic solver to solve them with the penalty of

as much as 1000X increase in the instruction count. They validate their approach

6

against random bit flip fault model which does not capture the persistent nature

of intermittent and permanent faults.

1.2 Thesis Outline

In this work, we study what sections of code can cause more SDC’s in presence

of permanent and intermittent faults and how can the SDC rate be reduced. Our

proposed architecture independent code transformations come at < 10% runtime

penality in the worst-case and complement the above techniques.

Our major contributions are

• We derive a mathematical model for fault rate to explain why permanent

and intermittent faults impact different applications differently.

• We develop a code metric called similarity to quantify its susceptibility to

such faults.

• We propose simple code transformations to reduce similarity and conse-

quently, the worst case fault rate.

Although the theory and the conclusions presented in this work are applicable

to any functional unit with two operands as inputs, we inject and study faults in

multiplier as they cause difficult to detect SDCs more often. Authors in [AFK03]

study detection of permanent faults in multipliers for the same reason. Although

we briefly mention the results with adder units, most of the executions result in

crashes or infinite execution that can be detected and diagnosed using low-cost

software monitors [LRS08a].

This thesis is organized as follows. Chapter 2 presents the fault models and the

analytical modeling of fault rate. This chapter contributes valuable insights into

the distinctive nature of permanent and intermittent fault models that are lever-

7

aged later to formally define similarity. Chapter 3 develops a practical approxima-

tion to efficiently compute similarity and presents code transformations. Chapter

4 describes our hybrid fault simulation/injection infrastructure and discusses the

impact of code transformations on fault rate. Finally, Chapter 5 concludes the

thesis.

8

CHAPTER 2

Modeling Fault and Fault Rate

In this chapter we’ll discuss the gate-level fault models for permanent and inter-

mittent faults used in this work and then, based on the charatersitics of these

models, analyze how persistent nature of these faults distinguishes them from the

transient faults. Then, we’ll analytically model the fault rate.

2.1 Fault Models

Various failure mechanisms, depending upon their circuit level impact, are classi-

fied into two categories - mechanisms that cause shorts or opens in gates or inter-

connects, like EM, and mechanisms that slow down a gate, like NBTI [GAM02]

[GGL02]. Former can be modeled at the gate-level as a stuck-at(0,1) fault or a

bridging fault. Since stuck-at fault model is the most widely used fault model,

we model the failures due to EM and SM by a stuck-at(0,1) fault. Slowing down

of a gate manifest itself as timing violation when the output of that gate transi-

tions and it lies on one of the critical paths. Hence we model the failures due to

mechanisms like NBTI, TDDB and HCI, as delay faults.

While permanent faults, once activated, persist for the entire lifetime of the

device, intermittent faults - either stuck-at or delay, are characterized by an activa-

tion period (ta) - when fault is active, an idle period (ti) - when fault is inactive,

and burst length (lburst) - number of times the activation-idle cycle repeats, as

shown in Fig.2.1. ta and ti as mentioned in [GSB08] are in terms of CPU cy-

9

{A, I, F} Application, Input, Fault tuplet

ta Duration of active cycle for intermittent faults

ti Duration of idle cycle for intermittent faults

lburst Burst length - number of active-idle cycles

v Input vector

{a, b} Two operands a and b of the input vector v

hF (vi) Fault function for fault F . Its a boolean expression such that

if v satisfies it, then it activates the fault.

Xi Bernouli random variable to indicate ith input vector, vi, ac-

tivates a fault

pi Failure probability associated with vi

N Total number of instructions accessing the faulty hardware

FR Fault rate random variable

EM Error magnitude random variable

µFR Fault rate for a given F and A, averaged over all I

σFR Standard deviation in fault rate for a given F and A, com-

puted over all I

ωFR Worst case fault rate defined as µFR + 3 ∗ σFR

ωEM Worst case error magnitude

γij Conditional failure probability for the pair of input vectors vi

and vj

Table 2.1: Frequently used notations

SDC Silent Data Corruption

CFP Conditional Failure Probability

Fr, Ac, Mm, Km, Ft Benchmark kernels: Fir, Autocorrelation, Matrix

Multiplication, Kmeans clustering, FFT

Table 2.2: Frequently used acronyms

10

Input vector v It is a bit vector feeding the inputs of a hardware

unit.

Fault activating input

vector

An input vector that activates a given fault.

Faulty run Refers to the tuplet {A, I, F} - an application A

executing an input I on a hardware with fault F .

Fault rate The fraction of input vectors that activate the fault

amongst all the input vectors that access the faulty

hardware in a faulty run.

Table 2.3: Frequently used phrases

Figure 2.1: Intermittent fault model parameters, adapted from [GSB08]

cles, in this work, however, we have assumed CPI (cycles per instruction) of 1

and treat the parameters in terms of instructions. Since we’ll be doing functional

simulations this assumption does not affect our results or conclusions.

2.1.1 Distinctive nature of permanent/intermittent stuck-at fault model

Stuck-at faults are activated by certain input vectors only. For instance, consider

the 2-bit multiplier logic block shown in Fig.2.2. If primary output z0 is stuck-at

0, it can be activated only when a0 = b0 = 1. In other words, a stuck-at fault, F ,

in some arithmetic unit that processes two operands a and b can be characterized

by a boolean expression referred to as fault function, hF (a, b) such that

hF (a, b) = 1 ⇔ {a, b} activate the fault F

11

Figure 2.2: A general 2-bit multiplier logic block

Therefore, for the fault z0 stuck-at 0, in the example above,

hz0=0(a, b) = a0b0

where a = a1a0 and b = b1b0.

It is quite intuitive that if two input vectors share a large number of bits, then

the probability of both of them simultaneously satisfying the fault function is

higher compared to the situation where vectors share fewer bits. In other words,

if an input vector vi = aibi (ai and bi are two operands concatenated together)

activates a fault then, another input vector vj = ajbj which shares many bits

with (or “looks very similar” to) vi, would also very likely activate the same fault.

Thus, we make the following observation:

The probability of an input vector activating the fault conditioned upon another

vector activating the fault, referred to as ‘conditional failure probability’ (CFP),

increases as the number of bits shared between the two vectors increases.

In the example above, if vector vi activates z0 stuck-at 0 and vj shares atleast

k bits with vi, then the CFP of vj has been tabulated in the Table 2.4 as a function

of k. In order to compute CFP, since we know the fault function, we make use

of the fact that CFP is same as the probability that a0 and b0 are amongst the

shared bits. When 4 bits are shared i.e., input vectors are identical, CFP is 1.

When atleast 0 bits are shared which means vj can be any input vector, CFP

is same as the unconditional failure probability. Since, Probability(a0 = 1) =

Probability(b0 = 1) = 1
2
, Probability(hz0=0(a, b) = 1) = 1

4
.

12

k 0 1 2 3 4

CFP 0.25 0.27 0.37 0.60 1.00

Table 2.4: Conditional Failure Probability (CFP) as a function of the number of bits

guranteed to be shared (k), for fault z0 stuck-at 0 in the 2-bit multiplier logic. As k

increases, CFP increases exponentially. k = 0 implies atleast 0 bits are shared which

means they can be any two 4-bit input vectors.

This observation is more strongly confirmed through verilog simulations on

three different synthesized gate-level 8-bit multiplier designs. One of them is

a general design synthesized using Cadence RTL Compiler [Cad] (D1) and the

other two designs are synthesized using Synopsys Design Compiler [Syn], out of

which one is a general design (D2) and another is based on “carry save array”

synthesis model (D3) - a Synopsys DesignWare Building Block IP. For each design

we injected faults in three different locations (L1, L2 and L3) and exhaustively

simulated each design-location with all possible 216 input vectors. Since the fault

function is very difficult to deduce for such a large design, CFP is computed as

the fraction of fault activating input vectors amongst all the input vectors that

share atleast k bits with a fault activating input vector. Then, its averaged over

all the fault activating input vectors. Fig.2.3 plots the average CFP as a function

of k. CFP rises exponentially with the amount of bit sharing. k = 0 refers to

“atleast zero bits shared” which means any and every input vector. Hence, the

CFP at k = 0 is same as the unconditional failure probability. While bit sharing is

a relative indicator of CFP, its absolute value is design dependent. For instance,

when 12 bits are shared out-of 16, for design-location pair D1L1, CFP is 0.19

whereas for D3L3, CFP is 0.31.

In case of transient faults, correlation between CFP and number of bits shared

is almost negligible because faults do not persist. Since fault at a location appears

for a very short duration, even if vi = vj, one of them activating the fault does not

13

Figure 2.3: Average conditional failure probability (CFP, γavg(k)) as a function of the

number of bits shared (k) between input vectors. Stuckat faults are injected in three

different locations (L) of three different designs (D) of 8-bit multipliers.

necessitate activation by the other input vector. Intermittent faults - since they

may persist for longer durations, exhibit positive correlation which is stronger

than the transient faults but weaker than the permanent faults.

If the input vectors generated during an application run share a lot of bits

amongst themselves, then their CFP is large implying that either a lot or a very

few of them activate faults in a given run. In the next section, we’ll derive variance

in the fault rate as a function of CFP and define similarity to capture CFP. Our

aim in this work is to curb the extreme fault rates by reducing CFP which is

achieved by code transformations that reduce bit sharing.

2.1.2 Distinctive nature of permanent/intermittent delay fault model

Timing violations are contingent upon the sensitization of critical paths which in

turn depends on the series of consecutive input vectors. Unlike stuck-at faults,

knowledge of the current input vector alone is not sufficient to determine a timing

violation. If the faulty unit is assumed to be isolated and not receiving any off

14

path inputs, then pair of the current and the previous input vectors to the faulty

unit is sufficient to model the delay faults, as also argued in [ZKE12]. Therefore,

if F is a delay fault, v = ab is any input vector that accesses the faulty unit and

v′ = a′b′ is the input vector previous to v, then,

hF (a, b, a′, b′) = 1 ⇔ {a, b} preceeded by {a′, b′} activate the fault F

The activation of a delay fault can, thus, be determined by two input vectors - the

current and the previous input vector. Fig.2.4 shows the average CFP associated

with a pair of vectors that share atleast k bits with another fault activating pair

of vectors. These results are obtained from gate-level timing simulations of D1,

D2 and D3 designs back-annotated with standard delay format (SDF) file and

operated at two different frequency overscaling factors - 10% (F1) and 5% (F2).

Since exhaustive simulations would have required 232 pairs of vectors, each vector

being 16-bit wide, we perform 100 Monte-Carlo runs and in each run 66000 input

vectors are simulated. Results shown in the figure are averaged over these 100

Monte-Carlo runs. Like in the case of stuck-at faults, here as well, the curve

exponentially grows with sharing larger than half the bits (k = 16). For lower

values, it remains almost flat. Also the absolute value of CFP for lower values of

k is much smaller compared to the stuckat faults because due to small frequency

overscaling factors very specific pairs of input vectors cause timing violations (or,

activate a delay fault).

Hereonwards, the theory and the conclusions thereof shall be built upon the

positive correlation between CFP and bit sharing. Since both the fault models

show this correlation, we’ll discuss only stuck-at fault model and, unless and

otherwise mentioned, same conclusions shall be applicable to the delay faults as

well, with the only difference that in the case of stuck-at faults, a single input

vector is considered whereas in the case of delay faults, two consecutive input

vectors are considered.

15

Figure 2.4: Average conditional failure probability (CFP, γavg(k)) as a function of the

number of bits shared (k > 15) between two pairs of input vectors. For lower values of

k, the curve almost remains flat.

App Mult Count Output Type Correlation

Ac 42195 1-D int vector 0.80

Ft 45056 1-D complex int vector 0.12

Fr 45000 1-D int vector 0.80

Km 46000 A double precision number 0.03

Mm 39304 An int matrix 0.80

Table 2.5: Benchmark kernels: Count of multiply instructions, output type and

correlation between fault rate and error magnitude as obtained from fault injection

experiments with permanent stuck-at fault model.

2.2 Analytical Modeling of Fault Rate

In this section, we derive variance in the fault rate as a function of CFP and define

similarity to capture CFP. Before doing the mathematical analysis we would like

to motivate the relevance of fault rate as a metric.

16

2.2.1 Fault Rate as a Metric

In this work, we are experimenting with following 5 integer benchmark kernels:

Autocorrelation (Ac), FIR Filter (Fr), Matrix Multiplication (Mm), Kmeans Clus-

tering (Km) and FFT (Ft). While Ac, Fr and Mm are simple multiply-accumulate

kernels where result of every multiply operation gets accumulated in the final out-

put, Km and Ft are comparatively more complex applications where results of

multiply operations can get masked with later operations in the code. We in-

jected permanent stuck-at faults at several locations (one at a time, more details

on the experimental setup are in the Chapter 4), and recorded the fault rate and

the error magnitude from several runs. Table 2.5 shows the average correlation

between these two quantities. We observe that for Ac, Fr and Mm, correlation is

0.80 but for Km and Ft correlation is very low (< 0.12). This is expected because

latter applications have high application-level masking. Also shown in the table

are the number of multiply instructions executed by each kernel in a single run

and the type of final output. Error magnitude for Ac, Fr, Km and Ft is computed

as the l2 norm of the difference between the observed faulty output and the golden

output. For Mm, we compute the “absolute sum value” norm of the residual ma-

trix. Therefore, for kernels with low application-level masking, reducing fault rate

reduces error magnitude as well.

Timing speculative architectures [EKD03] and their applications as in [SSK11]

exploit the rarity of sensitization of the critical paths to operate at the underscaled

voltages. With the help of hardware detection and recovery mechanisms, the rare

timing violations are corrected with some penalty, but because in the common

case timing is met, overall energy is saved. The energy benefits of such timing

speculative architectures critically require low fault rate. Similarly, performance

penalty due to recovery and reprocessing in checkpointing and roll back based

fault tolerance mechanisms is directly proportional to the fault rate [TR84].

17

2.2.2 Analytical Model

Assume that an application executes N instructions which generate N input vec-

tors feeding the faulty hardware. Let Xi indicate the event that a fault is activated

by the ith input vector vi. Xi is then a Bernoulli random variable:

Xi =

1 pi

0 1− pi

Where pi is the fault activation probability (referred henceforth as failure proba-

bility).

pi = Probability(hF (i) = 1)

Then we can express FR as,

FR =

∑N
i=1Xi

N

µFR =
1

N

(
E

[
N∑

i=1

Xi

])
=

1

N

(
N∑

i=1

pi

)

σ2
FR =

1

N2

E

(N∑
i=1

Xi

)2
−(N∑

i=1

E [Xi]

)2

ωFR = µFR + 3 ∗ σFR

µFR, σFR and ωFR are defined for a given fault F and application A, evaluated

over all the inputs I.

Since permanent faults are activated by only certain input vectors, σ2
FR can

be decomposed into two factors:

1. Variance due to randomness in the input vector itself which is captured by

the non-extreme values of pi. pi is a function of the distribution of input

vector vi, the implementation of the faulty hardware and location of the

fault, if it is a stuck-at fault. In case of delay faults, critical paths depend

on the specific implementation itself.

18

2. Variance due to correlation between the input vectors. Since two input

vectors vi and vj can be highly correlated, for instance, they can be iden-

tical, events Xi and Xj may also be correlated. Mathematically, pj|i =

Probability(Xj = 1|Xi = 1) need not be same as pj. pj|i is the CFP dis-

cussed in the Section 2.1. Since pi|j and pj|i may not be same, CFP is

redefined as, γij =
pi|j+pj|i

2
. Hence, γij = γji.

σ2
FR in terms of pi and CFP can be derived as follows:

σ2
FR =

1

N2

E

(N∑
i=1

Xi

)2
−(N∑

i=1

E [Xi]

)2

=
1

N2

E

[
N∑

i=1

X2
i

]
+ E

[
N∑

i=1

N∑
j=1,j 6=i

Xi.Xj

]
−

(
N∑

i=1

pi

)2

=
1

N2

(
N∑

i=1

pi −
N∑

i=1

(pi)
2 − 2

N∑
i=1

N∑
j=1,j>i

pipj + E

[
N∑

i=1

N∑
j=1,j 6=i

XiXj

])

(2.1)

where E
[∑N

i=0

∑N
j=1,j 6=i XiXj

]
can be computed as follows:

E

[
N∑

i=0

N∑
j=1,j 6=i

XiXj

]
=

N∑
i=1

N∑
j=1,j>i

(E [XiXj] + E [XiXj])

=
N∑

i=1

N∑
j=1,j>i

(
pipj|i + pjpi|j

)
Therefore,

σ2
FR =

1

N2

(
N∑

i=1

(
pi − p2

i

))
︸ ︷︷ ︸

Randomness due to individual instruction

+

1

N2

N∑

i=1

N∑
j=1,i>j

(
pipj|i + pjpi|j − 2pipj

)
︸ ︷︷ ︸

Randomness due to correlation

 (2.2)

19

Thus the Eqn.(2.2) shows σ2
FR as a function of CFP. So far we have established

that the σ2
FR is a function of CFP which is proportional with the amount of bit

sharing. Therefore, certain applications whose input vectors share large number

of bits, are susceptible to large fault rates. Since the amount of bit sharing is a

property of the code, partly independent of the input, we motivate a code metric

called Similarity (S), to capture the impact of bit sharing, in other words, CFP.

Its defined as follows:

S =
1

N2

N∑
i=1

N∑
j=1,i>j

(
pj|i + pi|j − pi − pj

)
=

1

N2

N∑
i=1

N∑
j=1,i>j

(2γij − pi − pj) (2.3)

Subtracting pi and pj emphasize the contribution of correlation between input

vectors towards σ2
FR. If all the input vectors are uncorrelated then S = 0. In

other words, similarity does not contribute towards σ2
FR. Assuming, pi = p ∀ i,

pS is the second term in the Eqn.(2.2).

Due to impersistent nature of the transient faults, fault activation by a given

input vector usually does not influence the fault activation by another input vector.

Hence, for the transient faults, pj|i ∼ pj and as a result, as N → ∞, σ2
FR → 0.

In case of intermittent faults, γij not only depends on the correlation between

the input vectors but also the distance between them. If two input vectors are

identical but separated by large number of instructions (more than the duration of

the fault), even if one of them activates the fault, other would not. Consequently,

the contribution of the correlation term in the Eqn.(2.2) reduces with reduction

in the fault duration.

20

Figure 2.5: (a) Subset of fault activating input vectors (b) Input vectors generated by

a faulty run of Fr application (c) overlap between the (a) and (b) (shown in red).

2.3 Pictorial Representation of Fault Rate

Every input vector is composed of two operands and hence, it corresponds to a

unique point in the 2-D integer space. Therefore, fault rate can be visualized as

the overlap between the input vectors generated by the application and the set

of fault activating input vectors. Fig.2.5a-c show the input vectors generated by

application Fr in a faulty run, subset of input vectors that activate the fault and

the overlap between the two. The amount of overlap is proportional to the fault

rate.

2.4 Chapter Summary

In this chapter, we have discussed the fault models that we use to model the

hardware failure mechanisms. Utilizing the fault model characteristics, we make

an observation that correlates the CFP for a pair of input vectors with the number

of bits shared between them. Therefore, large amounts of bit sharing amongst

the input vectors generated during a faulty run of an application implies large

CFP which in turn implies that either a lot or a very few of them simultaneously

21

activate the fault (high σ2
FR). Thus, in order to formally express σ2

FR as a function

of CFP, we analytically model the fault rate as a random variable. Since we are

interested in curbing the high fault rates observed for certain applications, we

define a code metric called Similarity that captures the CFP. In the next chapter,

we shall propose a practical approximation to statically compute similarity and

also discuss code transformations to reduce it.

22

CHAPTER 3

Similarity and Code Transformations

In this chapter we propose an approximate definition/procedure to statically esti-

mate similarity based on the observation that CFP is directly proportional to the

number of bits shared. Then we present a couple of example code transformations

that reduce similarity and thereby, reduce variance and the worst case fault rate.

3.1 Practical Approximation to Similarity

Similarity is defined in the Section 2.2.2, as

S =
1

N2

N∑
i=1

N∑
j=1,i>j

(2 ∗ γji − pi − pj)

where pi and pj are the unconditional failure probabilities of input vectors vi

and vj and γji is the CFP. From the discussion in the Section 2.1 we had empirically

as well as intuitively established that CFP is proportional to the number of bits

shared between the two input vectors. Since the amount of bit sharing is a good

relative indicator of the CFP, that can approximate similarity for the code. But

this requires thorough profiling and can not be done statically at compile time.

S Similarity

Sr Relaxed similarity

Ss Strict similarity

Table 3.1: Notations introduced in this chapter

23

Org Original code

Sw “Swap” transformation

SwN “Swap-Negate” transformation

Table 3.2: Acronyms introduced in this chapter

However, using this observation, we propose an approximate definition/procedure

to efficiently estimate the similarity:

S ∼ 1

N2

N∑
i=1

N∑
j=1,i6=j

wij (3.1)

where, wij is a weight assigned to a pair of input vectors {vi, vj} in proportion

to the number of “non-constant” operands shared between them. For simplicity,

we equate wij to the number of non-constant operands shared. But the actual

value of the weights would depend on the design and the fault location. Non-

constant operands refer to those operands whose values are independent of the

input to the application. Mathematical justification for constant operand sharing

not contributing to the similarity is the following. Assume vi and vj are two

input vectors in stuck-at fault model. Let {ai, bi} and {aj, bj} be their operands,

respectively, such that bi = bj = K and ai and aj share atleast 0 bits, in other

words, they are independent. Then,

γij = Probability(Xi = 1|Xj = 1)

= Probability(hF (ai, K) = 1|hF (aj, K) = 1)

= Probability(hF,K(ai) = 1|hF,K(aj) = 1)

= Probability(hF,K(ai) = 1) since, ai and aj are independent

= Probability(hF (ai, K) = 1)

= pi

24

where, hF,K(ai) := hF (ai, K). Hence, such input vectors do not contribute towards

the similarity as per Eqn.(2.3). Based on the results of verilog simulation on

different 8-bit multiplier designs for location L1 and frequency overscaling factor

(F1=10%) (see Section 2.1), we computed CFP as a function of the number of

operands shared. The results are shown in the Fig.3.1a and 3.1b, respectively.

There are following observations:

• With increase in the number of operands shared, CFP also increases. This is

expected because in case of stuck-at faults, atleast 1 operand sharing implies

either half or all the bits are shared in the extreme cases and three-fourth

bits are shared in the average case.

• Operand sharing is only a relative indicator of the CFP. Its absolute value

is design dependent. Therefore, for a single operand sharing, while CFP for

D1L1 is 0.25, for D2L1 it is 0.30. This is even more evident for delay faults.

• While in case of stuck-at faults, two operand sharing guarantees a CFP of

1, in case of delay faults, four operand sharing results in a CFP of 1. This

is because delay fault activation is dependent on the two consecutive input

vectors.

Similarity computation under stuck-at fault model Vs delay fault

model: Similarity computed under stuck-at fault model considering operand shar-

ing amongst pairs of single input vectors is almost half the similarity computed

under delay fault model where operand sharing amongst pairs of two consecutive

input vectors are considered. This is so because for every pair of input vectors

sharing atleast one operand, there are two pairs of consecutive input vectors shar-

ing that many operands. An example is shown in the Fig.3.2. Rarely observed

three or more operand sharing makes stuck-at fault similarity slightly less than

half of the delay fault similarity.

25

Figure 3.1: CFP as a function of the number of operands shared (op), as obtained from

verilog simulations on 8-bit multiplier designs (see Section 2.1).

Figure 3.2: An operand being shared between two input vectors, namely v1 and

v4 implies that there exist two pairs of two consecutive input vectors, namely,

{{v0, v1}{v3, v4}} and {{v1, v2}{v4, v5}}, each sharing an operand.

26

Strict vs relaxed operand sharing: In stuck-at fault model, we distinguish

between two types of operand sharing: strict and relaxed. Strict operand sharing

occurs between two input vectors vi and vj when (ai == aj)||(bi == bj) and

relaxed operand sharing occurs when (ai == aj)||(bi == bj)||(ai == bj)||(bi ==

aj). In the discussion above, operand sharing was strict. Corresponding to these

two types of operand sharing, we can compute strict similarity (Ss) and relaxed

similarity (Sr), where the latter is always greater than or equal to the former.

This distinction is necessary because for certain faults that satisfy hF (a, b) =

hF (b, a), reduction in strict similarity, say, by swapping the operands, does not

guarantee reduction in σFR because activation of such faults is independent of

the operand order. For instance, consider z0 stuck-at 0, in Fig.3.3. Its fault

function is hz0=0(a, b) = a0b0 = hz0=0(b, a). Therefore, in a set of vectors that

share one of the operands, by swapping the operands of a few of them, strict

similarity can be reduced but fault rate would not be affected. To rectify this

anamoly, relaxed operand sharing should be considered because it is also immune

to operand order. On the other hand, for other types of faults, σFR may reduce

while relaxed similarity does not change. An example for such a fault is n1 stuck-at

0 in the same figure. Its fault function is hn1=0(a, b) = a0b1 6= b0a1 = hn1=0(b, a).

Hence, by swapping the operands, relaxed similarity would not change but fault

rate would change. Therefore, strict operand sharing needs to be considered for

such types of faults in order to correlate similarity with the σFR. In practice,

its difficult to determine if a fault function is commutative with respect to the

operand order, we’ll propose a code transformation to reduce both - relaxed as

well as the strict similarity. In delay fault model, operand order almost always

matters due to transistor stacking effect.

Static vs profile-based similarity computation. Using the procedure

outlined in Eqn.(3.1), strict as well as relaxed similarity which is inherent to a code,

can be statically computed. An example computation of strict similarity for stuck-

27

Figure 3.3: A general 2-bit multiplier logic block

f o r (i = 0 ; i < N; i++) {

d [i] = e ∗ f [i]

}

Figure 3.4: An example code in its original version.

at fault input vectors is the following: consider the computation kernel code shown

in Fig.3.4. N input vectors share the first operand with the value e. Thus, there

are
(

N(N−1)
2

)
pairs strictly sharing an operand. In absence of any information

about f [i] and e, operand sharing amongst elements of array f or amongst element

of array f and scalar e can not be ascertained. Therefore, for this code, Sr = Ss =

N−1
2N

. Drawback of static computation is that if there is no compiler visible operand

sharing in the source code then statically computed similarity will be zero. To

account for the contribution of application inputs, similarity averaged over several

profiled executions needs to be computed. Since one of our benchmark kernels,

Km, has zero compiler visible operand sharing amongst multiply instructions, we

compute similarity using fault-free profiled runs.

3.2 Code Transformation

Since applications with large amounts of operand sharing are more susceptible to

high fault rates, it is in the best interest to reduce the operand sharing. In this

section, we present two simple architecture independent code transformations to

28

f o r (i = 0 ; i < N; i=i+2) {

d [i] = e ∗ f [i] ;

}

f o r (i = 1 ; i < N; i=i+2) {

d [i] = f [i] ∗ e ;

}

Figure 3.5: Code of Fig.3.4 after applying transformation Swap (Sw). Half the operands

are swapped.

reduce similarity and thereby, curb the worst case fault rates, ωFR.

First transformation is called as Swap (Sw). In Sw, for-loop is divided into

equal halves and each half increments by 2 instead of 1. While the operand order

is unchanged in one of the loops, in the other loop, operands are swapped. Fig.3.5

shows the application of Sw on the example original code (Org) of the Fig.3.4. As

computed in the previous section, Ss,Org = N−1
2N

due to N input vectors sharing

an operand. However, with Sw, there are only half as many input vectors sharing

a particular operand, although there are two sets of them - one sharing the first

operand and the other sharing the second operand. Therefore, when statically

computed, strict similarity would be,

Ss,Sw =
1

N2

(
2

[
N
2

(
N
2
− 1
)

2

])
=

N − 2

4N

which is approximately, 2X smaller than Ss,Org. Relaxed similarity does not

change, however. For Km, both the operands of all the multiplies are same due

to the nature of distance computation kernel - (x ∗ x + y ∗ y). Therefore, for Km,

Sw leaves Org unchanged.

Second transformation, Swap-Negate (SwN), is an improvement over Sw to

reduce even the relaxed similarity. In SwN, operands are not only swapped but

29

f o r (i = 0 ; i < N; i=i+2) {

d [i] = e ∗ f [i] ;

}

t2 = −e ;

f o r (i = 1 ; i < N; i=i+2) {

d [i] = (− f [i]) ∗ t2 ;

}

Figure 3.6: Code of Fig.3.4 after applying transformation Swap-Negate (SwN). Half

the operands are swapped and multiplied by -1.

also multiplied by -1. Reduction in strict similarity is obvious, as discussed above.

Reduction in the relaxed similarity comes about because the value of the operand

being shared by the input vectors in one of the sets is e, but in the other set

its −e. Therefore, with SwN both the relaxed as well as the strict similarity are

reduced. Fig.3.6 shows the application of SwN to Org. In presence of loop-carried

dependences, the two for-loops should be interleaved to maintain the iteration

order.

App Sr(1e-3) Ss(1e-3)

Org Sw SwN Org Sw SwN

Fr 15.9 15.9 (1.00) 10.5 (0.66) 14.9 7.95 (0.53) 7.94 (0.53)

Ac 8.70 8.70 (1.00) 5.32 (0.61) 5.50 4.36 (0.79) 3.25 (0.59)

Mm 8.60 8.60 (1.00) 8.17 (0.95) 4.70 4.31 (0.92) 4.30 (0.91)

Km 0.40 0.40 (1.00) 0.37 (0.96) 0.40 0.38 (0.96) 0.37 (0.96)

Ft 0.10 0.10 (1.00) 0.10 (0.98) 0.04 0.04 (1.00) 0.04 (1.00)

Table 3.3: Relaxed (Sr) and strict (Ss) similarity values for the original (Org), swapped

(Sw) and swap-negated (SwN) codes of all the applications. Similarity values normalized

with respect to Org are shown in the brackets.

30

Table 3.3 tabulates the relaxed and strict similarity under stuck-at fault model

due to both the code transformations and the original code. Following are the

important observations:

• Relaxed similarity for a given code version is always greater than the strict

similarity. This is expected because strict operand sharing is a special case

of relaxed operand sharing.

• Sw does not reduce the relaxed similarity whereas SwN reduces both the

similarity values. This has already been explained above.

• In all but one application, namely Ac, reduction in strict similarity due to

either code transformations is almost same because both of them swap the

operands and thereby reduce strict operand sharing.

Ft and Km have very low absolute similarity and hence, much less scope for

reducing it further.

Sw and SwN are two different mechansims to recursively break a loop into

two independent loops and swap the operands in one of the loops. Additionally,

in case of SwN, swapped operands are negated. Thus, they can be applied to

any arithematic operation, not only multiplies, irrespective of operand sharing.

However, when SwN is applied to adder operations final result of the add operation

should be negated for correctness. Moreover, whenever either of them are applied

where there is no operand sharing, transformed S and σFR are dictated by the

inputs to the application and hence, the reduction is not guaranteed. We’ll see

in the results that for Fr, Ac and Mm, transformations on adder operations can

actually hurt because none of them have any compiler visible operand sharing and

their absolute similarity values are very low.

Code transformations “spread out” the application’s input vectors. Fig.3.7a-c

show the input vectors generated by the Org, Sw and SwN versions of Fr in a

31

Figure 3.7: Input vectors generated in a faulty run of Fr’s original (a) and transformed

codes - Sw (b) and SwN (c).

faulty run. Swapping is equivalent to mirroring across x = y line and negating

is equivalent to mirroring across the origin. Since both the transformations swap

the operands and input vectors in the Org look symmetric across the origin, plots

(b) and (c) look identical.

3.3 Chapter Summary

In this chapter we’ve proposed an approximate definition for the similarity metric

based on operand sharing and outlined a procedure to statically compute it. Since

applications with larger similarity values are more susceptible to larger worst case

fault rates, we proposed two simple and architecture independent code transfor-

mations to reduce similarity. In the next chapter, we’ll present the fault injection

infrastructure and discuss results of fault injection experiments, particularly the

impact of code transformations on variance in the fault rate and the worst case

fault rate.

32

CHAPTER 4

Experimental Setup and Results

In this chapter, we’ll describe the experimental set up including fault injection

infrastructure and fault inject parameters, and discuss the results of fault injection

experiments.

4.1 Experimental Setup

4.1.1 Hierarchical Fault Simulation

The common mode to evaluate any fault tolerance mechanism has been the injec-

tion of specific fault models like stuck-at, random bit-flip etc. at various design

abstractions like gate-level, micro- architecture level etc. Both are critical factors

in the evaluation methodology. Since fault models have already been discussed

in Chapter 2, here we’ll focus on the second factor, namely, the abtraction level

at which faults are injected. In our work, we want to study the impact of faults

modeled at the gate-level on applications. Due to several levels of hierarchy in

between, although accurate, full gate-level simulation is very slow. On the other

hand, fault injection at micro- architecture or higher levels does not capture the

complex interactions in the lower levels. For instance, a stuck-at fault injected at

micro-architecture level can be implemented by fixing an output bit of a latch to

0 or 1 but in reality a stuck-at fault at gate level might affect several output bits

[LRK09]. To deal with this trade-off between speed and accuracy, in the past, hier-

archical simulation infrastructures have been proposed [LRK09] [MLN02] [KIR99]

33

ta Duration of active cycle for intermittent faults

ti Duration of idle cycle for intermittent faults

lburst Burst length - number of active-idle cycles

FR Fault rate random variable

EM Error magnitude random variable

µFR Fault rate for a given F and A, averaged over all I

σFR Standard deviation in fault rate for a given F and A, com-

puted over all I

ωFR Worst case fault rate defined as µFR + 3 ∗ σFR

ωEM Worst case error magnitude

µnorm,avg
FR µFR normalized and averaged over F

σnorm,avg
FR σFR normalized and averaged over F

ωnorm,avg
FR ωFR normalized and averaged over F

ωnorm,avg
EM ωEM normalized and averaged over F

Ss Strict similarity

Table 4.1: Frequently used notations

CFP Conditional Failure Probability

Fr, Ac, Mm, Km, Ft Benchmark kernels: Fir, Autocorrelation, Matrix

Multiplication, Kmeans clustering, FFT

Org Original code

Sw “Swap” transformation

SwN “Swap-Negate” transformation

PS, IS, PD Fault models: Permanent Stuck-at, Intermittent

Stuck-at, Permanent Delay

Table 4.2: Frequently used acronyms

34

[PBM00]. To improve the performance of gate-level fault simulations, Mirkhani

et. al. combine behavioral and gate-level VHDL models. While gate-level models

are used to inject and propagate faults in the faulty hardware, behavioral models

are used to propagate faults that appear at the input ports. Kalbarczyk et. al.

prepare fault dictionaries for a give nfault model through off-line lower- level sim-

ulations and use them for fault propagation during higher level simulation. Li et.

al. couple a microarchitectural simulator with a gate-level timing level simulator

which is selectively and on-demand invoked to perform accurate gate-level fault

simulations.

Our fault injection infrastructure closely resembles [LRK09] as far as delay

fault simulations are concerned. We inject faults in architecture visible multiply

instructions using VarEmu [rev], an instruction-level emulator. A gate-level tim-

ing simulator, Mentor ModelSim, back-annotated with the SDF file from the logic

synthesis is coupled with VarEmu. It is selectively and on-demand invoked to

accurately model the architecture-level manifestations of gate-level delay faults.

Communication between ModelSim and VarEmu is implemented via linux sockets.

For stuck-at faults, however, to achieve the same accuracy while not incurring the

run-time overhead due to communication with an external simulator, we trans-

lated every single gate-level synthesized netlist with a unique fault injected into

it, into a C++ equivalent and linked it with the VarEmu. Since implementating

a timing model in C++ is extremely difficult, similar translation for delay fault

simulation was not possible.

4.1.2 VarEmu

Fig.4.1a presents an overview of the VarEmu architecture for fault model emu-

lation in our experiment. Applications in a virtual machine (VM) interact with

VarEmu by enabling and disabling faults in the execution of emulated instructions.

An operating system driver handles the interaction of applications with a virtual

35

Figure 4.1: (a) VarEmu architecture for fault model emulation. (b) Enabling faults

using VarEmu based fault model implementation

hardware device which exposes the VarEmu interface to the VM. When starting

VarEmu, user provides a configuration file that contains instructions selected by

the user to be configured as faulty instructions. During execution of the trans-

lated code, the decoded instruction contains a parameter which defines whether

this instruction is susceptible to faults or not. The faulty instruction is replaced

by an alternative function. Inside that function, for delay faults, operands of the

instruction are communicated to the ModelSim which simulates the design and

returns the output. Enabling and disabling faults are done using a fine-grained

switch of calling a system-call function in the emulated software, as illustrated in

Fig.4.1b. OS has been kept fault-free.

36

4.1.3 Fault Injection Parameters

For fault injection experiments we use Cadence RTL Compiler synthesized 32-

bit multiplier design. We inject three fault models: Permanent/Stuck-at (PS),

Permanent/Delay (PD) and Intermittent/Stuck-at (IS), in the computation kernel

of the application. Since we want to study the impact of hardware faults on SDC,

we do not inject faults in OS which often has some detectable catastrophic impact.

For fault types PS and IS, 300 candidate fault locations are randomly chosen

and a fault - stuck-at (0 or 1), is injected in one of those locations. While, for

the PS model, fault remains alive through out the execution of the computation

kernel, for the IS model, faults are injected in the beginning of the kernel. With

ta and ti set to 100, we study the impact of three different burst lengths lburst =

{50, 500, 2500} on correlation between the similarity and the variance in the fault

rate. For fault type PD, frequency was overscaled by 20% to induce delay faults.

With 5 applications, each but Km1 with three versions - one original and two

transformed, and 100 randomly generated inputs per application version, there are

300∗(4∗3+1∗2)∗100 = 420, 000 faulty runs for PS model; (300∗(4∗3+1∗2)∗100)∗

3 = 1, 260, 000 faulty runs for the IS model and 1∗(4∗3+1∗2)∗100 = 1400 faulty

runs for the PD model. Each application version is compiled with ARM C/C++

compiler without any optimization flags. We’ll separately study the impact of

optimization flags on the efficacy of code transformations. We’ll also briefly discuss

the results of fault injection in adder instructions.

4.2 Results

In this section, we discuss the results of fault injection experiments, specifically,

the average impact of the code transformations on σFR, (σFR/µFR), ωFR and

ωEM, relative (normalized) to the original code. EM is the error magnitude. To

1kmeans application has two versions - original and SwN transformed code

37

report these average normalized values for each one of the quantites we introduce

four notations - σnorm,avg
FR , (σFR/µFR)norm,avg, ωnorm,avg

FR and ωnorm,avg
EM , respectively.

For each fault-model/application pair, all four average normalized values have

been computed in three steps: 1) We record FR and EM for every faulty run

{A, I, F}. 2) Then we compute σFR, σFR/µFR, ωFR and ωEM over all Is. 3)

All four quantities corresponding to the transformed codes are normalized with

respect to the original code, and then averaged (arithmetic mean) over all those

faults whose µFR < 0.1. We do not analyze faults with average fault rate more

than 0.1 assuming that the higher fault rates would inevitably cause detectable

catastrophic failures.

4.2.1 Impact of code transformations on σFR and (σFR/µFR).

According to the Eqn.(2.2), σFR depends on failure probabilities, in addition to

CFP. Thus, if failure probabilities which are roughly captured by µFR, dramati-

cally change, reduction in similarity may not guarantee a reduction in σFR. That’s

why, to be conservative and avoid interference due to drastic changes in µFR, we

perform averaging and normalization only over those faults whose average fault

rate due to the transformations remains within 1.25X and 0.75X of the original

code. This is in addition to the above-mentioned upper bound of 0.1 on the av-

erage fault rate. Both these “filters” are mutually exclusive and serve entirely

different purposes. We report (σFR/µFR)norm,avg for the same reason. Tables

4.3-4.5 show σnorm,avg
FR and (σFR/µFR)norm,avg for PS, IS and PD fault models,

respectively.

For PS faults (see Table 4.3), there are two important observations:

• Both the transformations reduce σFR as well as σFR/µFR. Reduction in

both these quantities follows the reduction in the strict similarity, Ss. While

reduction is maximum for Fr (Ss reduces to 0.53X and σFR reduces to 0.57X

38

App Ss σnorm,avg
FR (σFR/µFR)norm,avg

Sw SwN Sw SwN Sw SwN

Fr 0.53 0.53 0.58 0.57 0.61 0.61

Ac 0.79 0.59 0.83 0.79 0.82 0.77

Mm 0.92 0.91 0.72 0.69 0.72 0.69

Km 0.96 0.96 1.00 0.97 1.00 0.97

Ft 1.00 1.00 1.00 0.98 1.00 0.96

Table 4.3: Permanent/Stuck-at fault model: Correlating reduction in similarity (Ss)

and reduction in σFR and σFR/µFR due to Sw and SwN transformations. Similarity

values are normalized with respect to the original code.

by SwN), it is negligible for Km and Ft.

• Reduction in σFR as well as σFR/µFR, due to SwN is consistently atleast

as much as due to Sw. This is because, while Sw reduces only the strict

similarity, SwN reduces both - the strict as well as the relaxed similarity.

For IS fault model, we experimented with three different burst lengths (lburst)

- {50, 500, 2500}. Corresponding fault models are referred to as IS0, IS1 and IS2,

respectively. Table 4.4 reports average reduction in σFR and σFR/µFR due to

SwN transformation. Impact of Sw transformation is very similar to SwN. Since

the values for σFR and σFR/µFR are considerably different, we would analyze

σFR/µFR. As briefly discussed in the section 2.2.2, contribution of similarity to

σFR, depends on the intermittent fault duration. There are three observations:

• For less enduring faults, even significant reduction in similarity may not

effect any reduction in σFR. Therefore we observe in the Table 4.4, with

IS0 fault model, while SwN reduces σFR/µFR for Ac to 0.78X, it increases

to 1.17X for Mm.

• As fault duration increases, σFR/µFR reduces for all but Km.

39

App σnorm,avg
FR (σFR/µFR)norm,avg

IS0 IS1 IS2 IS0 IS1 IS2

Fr 1.05 0.75 0.61 0.96 0.76 0.62

Ac 0.72 0.81 0.77 0.78 0.92 0.89

Mm 1.15 1.28 0.94 1.17 1.16 0.91

Km 0.80 1.10 1.10 1.30 1.11 1.07

Ft 0.93 1.31 1.07 0.88 1.04 0.97

Table 4.4: Intermittent/Stuck-at fault model: Table shows average normalized values

of σFR and σFR/µFR due to SwN transformation for three different burst lengths

(lburst = 50, 500, 2500), corresponding to IS0, IS1 and IS2, respectively. Values are

normalized with respect to the original code values corresponding to the respective

burst length.

App RC synthesized design DC synthesized design

σnorm,avg
FR (σFR/µFR)norm,avg σnorm,avg

FR (σFR/µFR)norm,avg

Sw SwN Sw SwN Sw SwN Sw SwN

Fr 0.62 0.53 0.96 0.84 0.02 0.02 0.24 0.27

Ac 1.01 0.98 0.99 1.01 0.75 0.65 0.86 0.78

Mm 0.66 0.67 0.67 0.68 0.76 0.89 0.75 0.89

Km NTV NTV NTV NTV NTV NTV NTV NTV

Ft NTV NTV NTV NTV 1.03 1.13 1.01 1.24

Table 4.5: Permanent/Delay fault model: Results from experiments on two different

designs - one synthesized by the RC and the other synthesized by the DC. Table shows

average normalized values of σFR and σFR/µFR due to Sw and SwN transformation.

NTV refers to “No Timing Violations”.

40

• Reduction is consistently more with IS2 than IS1.

In case of Km, multiplier instructions are very far apart - with lburst = 2500, the

number of multiplies encountered while the fault is active is only 1.1% of the total

multiply instructions compared to >20% in the other applications.

For PD fault model (see Table 4.5), we observed that the number of timing

violations are highly application dependent. In all timing violations, it is noted

that one of the operands of the current input vector is a small positive number and

the other operand is a small negative number. In Ft, usually one of the operands

has a large magnitude and in Km, both the operands are always the same. Hence

for both these applications no timing violations are observed (see columns 2-5

of the table). For other applications, reductions in σFR/µFR are low because

as observed in Fig.2.4, conditional failure probability does not rise much untill

more than 75% bits are shared, which is equivalent to very rare three or more

operand sharing between pairs of input vectors. Conditional failure probability

is also affected by the underlying design. We experimented with a Synopsys

DC synthesized multiplier design using “carry-save-array” synthesis model and

much larger reductions were observed as shown in the last four columns of the

same table. With DC synthesized design, we observed 4X reduction in σFR/µFR

caused by 64X reduction in σFR and 17X reduction in µFR, for Fr. This high

impact is an extreme demonstration of the effectiveness of the proposed code

transformations. In the original code of Fr, the first operand is shared more than

the second operand and it was observed that first operand very strongly dictated

the timing violations. Hence, compared to the transformed codes where both the

operands are made to be shared equally, original code induces more extreme fault

rates. Unlike in stuck-at fault model, with delay faults we do not expect SwN to

improve σFR/µFR more than Sw because the concept of relaxed similarity is not

applicable to delay faults due to transistor stacking effect, as mentioned in the

Section 3.1.

41

App ωnorm,avg
FR ωnorm,avg

EM

Sw SwN Sw SwN

Fr 0.88 0.88 0.93 0.93

Ac 0.92 0.78 0.96 0.88

Mm 0.85 0.57 0.85 0.57

Km 1.00 1.00 1.00 0.96

Ft 1.00 0.83 1.00 0.92

Table 4.6: Permanent/Stuck-at fault model: Average reduction in ωFR and ωEM due

to Sw and SwN transformations compared to the original code. Maximum reduction of

74% is observed for Mm (shown in bold font).

4.2.2 Impact of code transformations on ωFR and ωEM.

Subject to the reduction in µFR, reduction in σFR implies reduction in ωFR and,

for some applications, in ωEM as well (see section 2.2.1). Results in Tables 4.6-

4.8 show the average reductions in these two quantites for all three fault models.

For the PS model, the maximum improvement observed was 74% in Mm due to

combined reduction in σFR as well as µFR. Negligible improvement for Km and

Ft is due to negligible reduction in the original similarity. For the IS model, with

short fault duration (IS0) benefits are unpredictable, whereas with the larger fault

durations (IS1,IS2), benefits improve from IS1 to IS2. In case of PD fault model,

we experimented with two multiplier designs. With RC design, improvements

in ωFR are smaller compared to the improvements with DC design for the same

reasons as mentioned above.

4.2.3 Impact of code optimizations on efficacy of code transformations

In order to evaluate the efficacy of code transformations we compiled all our

applications - both the original as well as the transformed versions, with the high-

42

App ωnorm,avg
FR ωnorm,avg

EM

IS0 IS1 IS2 IS0 IS1 IS2

Fr 0.98 0.88 0.86 0.99 0.92 0.90

Ac 0.78 0.80 0.79 0.85 0.90 0.89

Mm 1.01 0.98 0.93 1.00 0.98 0.93

Km 0.65 0.98 0.98 1.49 1.25 1.11

Ft 1.00 1.03 1.03 0.94 1.00 1.00

Table 4.7: Intermittent/Stuck-at fault model: Average reduction in ωFR and ωEM due

to SwN transformation compared to the original code. IS0, IS1, IS2 correspond to three

different burst lengths (lburst = 50, 500, 2500).

App RC synthesized design DC synthesized design

ωnorm,avg
FR ωnorm,avg

EM ωnorm,avg
FR ωnorm,avg

EM

Sw SwN Sw SwN Sw SwN Sw SwN

Fr 0.64 0.57 0.79 0.75 0.02 0.02 0.68 0.66

Ac 1.01 0.99 1.03 1.00 0.77 0.68 0.92 0.79

Mm 0.87 0.88 0.97 0.98 0.88 0.94 0.87 0.97

Km NTV NTV NTV NTV NTV NTV NTV NTV

Ft NTV NTV NTV NTV 1.03 1.04 1.11 1.22

Table 4.8: Permanent/Delay fault model: Results from experiments on two different

designs - one synthesized by the RC and the other synthesized by the DC. Average

reduction in ωFR and ωEM due to Sw and SwN transformations compared to the original

code. NTV refers to “No Timing Violations”.

43

Figure 4.2: Comparing the efficacy of code transformations Sw and SwN, under opti-

mization flags O3 and O0. (a) Reduction in standard deviation in fault rate σnorm,avg
FR ,

(b) Reduction in strict similarity Ss.

est optimization flag O3. We injected permanent stuck-at faults and computed

σnorm,avg
FR , due to both the code transformations. Fig.4.2a compares σnorm,avg

FR for

codes compiled with optimization flag O3 and without any optimization flag (O0).

Under O3, reductions in σnorm,avg
FR are always lesser than O0. This can be explained

by observing the reductions in strict similarity (Ss) as shown in the Fig.4.2b. Due

to O3 optimization, strict similarity does not reduce as much as it reduces un-

der O0. This is because compiler while unrolling the loops does not preserve the

operand order as determined in the high-level code. Moreover, in order to reduce

the instruction count, in case of SwN transformation, compiler reverses most of

the negations which are actually redundant. Consequently, the impact of SwN is

largely the same as that of Sw. For Ft, code transformations under O3 worsen

σnorm,avg
FR , again in agreement with Ss. This is because Ft has the lowest similarity

amongst all 5 applications, hence the profile based similarity is largely determined

by the inputs to the application and the operand order determined at the compile

time.

Conclusion is that, alhough we applied our code transformations by modifying

44

the high-level code, compiler can likely do a better job by applying transformations

automatically since it can preserve them through the compiler optimizations. This

is out of scope for this work.

4.2.4 Fault Injections in Adder Instructions

We briefly studied the impact of code transformations applied to the adder op-

erations for three applications, namely, Fr, Ac and Mm with PS fault model.

Other two applications could not be emulated on VarEmu as they resulted in

segmentation fault in every execution.

Like Km does not have compiler visible operand sharing amongst multiply

instructions, neither of the three applications have compiler visible non-constant

operand sharing amongst adder instructions. Increment and comparison opera-

tions in the for-loop share constant operands which do not count towards similar-

ity. Note that all of them are different multiply-accumulate kernels. As a result,

the absolute similarity values are very small. Table 4.9 shows the strict similarity

alongwith the average normalized σFR and σFR/µFR. Due to low levels of sim-

ilarity, firstly, profile based similarity computation is determined by the inputs

and code transformations do not guarantee a consistent reduction in similarity,

and secondly, the contribution of similarity towards σFR is very small. Hence, as

expected, they do not correlate. Therefore, it is concluded that the “blind” trans-

formations that are applied in absence of any operand sharing can hurt instead of

benefitting.

While transformations arrest the worst-case fault rates, they increase the prob-

ability of atleast one fault activation because input vectors generated by the trans-

formed codes are more diversified and hence, more chances of atleast one of them

activating the fault. Nonetheless, results show that the transformations also im-

prove the µFR. In the ongoing work we are trying to understand the dynamics

45

App Ss(1e-5) σnorm,avg
FR (σFR/µFR)norm,avg

Org Sw SwN Sw SwN Sw SwN

Fr 1.33 1.37(1.03) 3.46(2.60) 1.43 1.40 1.57 1.68

Ac 1.08 0.81(0.75) 2.76(2.57) 1.02 0.75 1.02 0.98

Mm 6.54 5.42(0.83) 3.63(0.55) 1.08 1.08 1.03 1.03

Table 4.9: Fault injection in adder instructions using permanent stuck-at fault model.

Values inside the brackets are normalized (with respect to the original code, Org) strict

similarity (Ss).

App Ac Ft Fr Km Mm

RSw,norm 1.01 1.01 1.00 1.00 1.00

RSwN,norm 1.02 1.01 1.09 0.98 1.08

Table 4.10: Runtime penalty in transformed codes. RSw,norm and RSwN,norm are

the runtimes of the transformed codes normalized with respect to the original code’s

runtime.

between the µFR and the similarity. It demands more careful analysis because

µFR is a strong function of inputs and the fault location rather than being just

inherent to an implementation.

Both the transformations have minimal performance overhead of < 10% as

recorded in the Table 4.10. For estimating performance overhead, benchmarks

were executed on the host machine (x86 64) machine instead of VarEmu because

due to binary translation, runtime numbers obtained from VarEmu are not mean-

ingful.

4.3 Chapter Summary

In this chapter we have described our hierarchical fault injection infrastructure

and discussed the results of fault injection experiments with different fault models.

46

We specifically discuss the impact of code transformations on standard deviation

in the fault rate and the worst case fault rate. Our main observations are:

• Permanent/Stuck-at fault model: Both the code transformations reduce

standard deviation in the fault rate in proportion with the reduction in

similarity. Improvement due to Swap-Negate code transformation is always

atleast as much as due to Swap transformation.

• Intermittent/Stuck-at fault model: For small fault durations, reductions are

unpredictable but as the fault duration increases, similarity better models

the standard deviation in the fault rate.

• Permanent/Delay fault model: Although code transformations almost al-

ways improve the standard deviation in the fault rate and the worst case

fault rate, improvements are heavily design dependent.

• Runtime penalty of both the transformations is less than 10%.

47

CHAPTER 5

Conclusions

5.1 Conclusions

High cost of hardware reliability mechanisms motivate a need for software based

reliability mechanisms. While existing software reliability mechanisms can effec-

tively mask or detect and recover from transient faults, they are not suitable for

intermittent and permanent faults because latter are persistant and therefore,

do not get usually masked. There are many symptom-based softwar monitors

that detect the in-field breakdown of the hardware device. However, they rely on

catastrophic symptoms and thus, silent data corruptions (SDC) escape them.

In this work, we have studied the impact of permanent and intermittent hard-

ware failures on the SDC fault rate in software applications and based on our

analysis developed a code metric similarity that correlates with the standard devi-

ation in the fault rate. Leveraging this dependence, we have proposed architecture

independent code transformations to reduce similarity and thus, curb the worst

case fault rates by as much as 74% and in one extreme case, we even observe 55X

reduction, with less than 10% performance degradation.

We conclude that similarity as a code metric can be reliably applied to model

standard deviation in the fault rate for permanent stuck-at fault model. For in-

termittent stuck-at faults correlation between similarity and standard deviation

improves with the fault duration. In case of delay faults due to 1) heavy depen-

dence on the underlying design which affects the absolute value of conditional

48

failure probability, and 2) highly varying average fault rate which affects the stan-

dard deviation as well, correlation is comparatively weaker.

5.2 Future Work

In the ongoing work, we are studying the impact of similarity on average fault rate.

Depending upon the underlying hardware design and the location of the fault, the

average fault rate can either improve, degrade or remain unchanged due to the

proposed code transformations. In Fig.5.1, the fault rates due to the original as

well as the transformed codes of Fr application, executing the same input, on

three different faults (F1, F2 and F3) have been pictorially shown. Swap (Sw)

and swap-negate (SwN) transformations distribute the input vectors which are

originally along Y-axis, along X-axis as well as the Y-axis. In case of fault F1,

since near X-axis not many fault activating input vectors are present, the fault

rate improves by 1.67X with either transformations. In case of F2, fault activating

input vectors are oriented along the X-axis, hence, tranformations degrade the

fault rate by 1.80X. Lastly, with F3, fault activating input vectors are equally

spread along the X and the Y-axis, hence transformations do not change the fault

rate significantly. Although early observations hint that the fault rate reduces

when originally it is large and the spread of the fault activating input vectors is

smaller in comparison, it is not verified and needs further analysis.

In future, we would like to automatically detect the opportunities for code

transformations and implement them at the compiler level. Apart from architec-

ture independent code transformations we would explore architecture dependent

code transformations. For instance, we observed that delay faults in ripple carry

adder are more probable when a small positive operand is added to another small

negative operand due to long propagation carry chain. We verified with some pre-

liminary experiments that by shifting the operands to the left by small amounts

49

Figure 5.1: Overlap (red region) between the fault activating input vectors (blue region)

and the input vectors generated (green region) by the original (left column), Sw trans-

formed (middle column) and SwN (right column) transformed codes for three different

faults - F1, F2 and F3.

50

delay faults can be exponentially reduced. Such code transformations would not

only reduce the standard deviation but also the average fault rate.

51

References

[AFK03] Joakim Aidemark, Peter Folkesson, and Johan Karlsson. “On the
probability of detecting data errors generated by permanent faults us-
ing time redundancy.” In On-Line Testing Symposium, 2003. IOLTS
2003. 9th IEEE, pp. 68–74. IEEE, 2003.

[And79] Dorothy M Andrews. “Using executable assertions for testing and fault
tolerance.” In 9th Fault-Tolerance Computing Symp, pp. 20–22, 1979.

[Ass03] JEDEC Solid State Technology Association et al. “Failure mechanisms
and models for semiconductor devices.” JEDEC Publication JEP122-
B, 2003.

[Avi85] Algirdas Avizienis. “The N-version approach to fault-tolerant soft-
ware.” Software Engineering, IEEE Transactions on, (12):1491–1501,
1985.

[Bor05] Shekhar Borkar. “Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation.” Micro,
IEEE, 25(6):10–16, 2005.

[BSO05] Fred A Bower, Daniel J Sorin, and Sule Ozev. “A mechanism for on-
line diagnosis of hard faults in microprocessors.” In Proceedings of the
38th annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 197–208. IEEE Computer Society, 2005.

[Cad] Cadence. “RTL Compiler.”.

[CD06] Zizhong Chen and Jack Dongarra. “Algorithm-based checkpoint-free
fault tolerance for parallel matrix computations on volatile resources.”
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, pp. 10–pp. IEEE, 2006.

[CFG05] Zizhong Chen, Graham E Fagg, Edgar Gabriel, Julien Langou, Thara
Angskun, George Bosilca, and Jack Dongarra. “Fault tolerant high
performance computing by a coding approach.” In Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 213–223. ACM, 2005.

[CLM12] Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. “ERSA: Error
resilient system architecture for probabilistic applications.” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 31(4):546–558, 2012.

52

[CMA07] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria
Bertacco. “Software-based online detection of hardware defects mech-
anisms, architectural support, and evaluation.” In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 97–108. IEEE Computer Society, 2007.

[CRA06] Jonathan Chang, George A Reis, and David I August. “Automatic
instruction-level software-only recovery.” In Dependable Systems and
Networks, 2006. DSN 2006. International Conference on, pp. 83–92.
IEEE, 2006.

[CSG11] Tuck-Boon Chan, John Sartori, Puneet Gupta, and Rakesh Kumar.
“On the efficacy of NBTI mitigation techniques.” In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2011, pp.
1–6. IEEE, 2011.

[EKD03] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, et al. “Razor: A low-power pipeline based on circuit-level
timing speculation.” In Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on, pp. 7–18.
IEEE, 2003.

[FGA10] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
“Shoestring: probabilistic soft error reliability on the cheap.” In
ACM SIGARCH Computer Architecture News, volume 38, pp. 385–
396. ACM, 2010.

[GAM02] Pedro Gil, Jean Arlat, Henrique Madeira, Yves Crouzet, Tahar Jar-
boui, Karama Kanoun, Thomas Marteau, João Durães, Marco Vieira,
Daniel Gil, et al. “Fault representativeness.” Deliverable ETIE2 of
Dependability Benchmarking Project, IST-2000, 25245, 2002.

[GGL02] J Gracia, D Gil, L Lemus, and P Gil. “Studying hardware fault repre-
sentativeness with VHDL models.” In Proc. of the XVII International
Conference on Design of Circuits and Integrated Systems (DCIS), San-
tander (Spain), pp. 33–39, 2002.

[GRS03] Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda, and Mas-
simo Violante. “Soft-error detection using control flow assertions.” In
Defect and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th
IEEE International Symposium on, pp. 581–588. IEEE, 2003.

[GSB08] J Gracia, L Saiz, JC Baraza, D Gil, and P Gil. “Analysis of the
influence of intermittent faults in a microcontroller.” In Design and
Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008.
11th IEEE Workshop on, pp. 1–6. IEEE, 2008.

53

[HA84] Kuang-Hua Huang and Jacob A. Abraham. “Algorithm-based fault
tolerance for matrix operations.” Computers, IEEE Transactions on,
100(6):518–528, 1984.

[HAN12a] Siva Kumar Sastry Hari, Sarita V Adve, and Helia Naeimi. “Low-cost
program-level detectors for reducing silent data corruptions.” In De-
pendable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pp. 1–12. IEEE, 2012.

[HAN12b] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep
Ramachandran. “Relyzer: exploiting application-level fault equiva-
lence to analyze application resiliency to transient faults.” In Pro-
ceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, pp. 123–
134. ACM, 2012.

[HDP06] V Huard, M Denais, and C Parthasarathy. “NBTI degradation:
From physical mechanisms to modelling.” Microelectronics Reliabil-
ity, 46(1):1–23, 2006.

[HK89] Paul S Ho and Thomas Kwok. “Electromigration in metals.” Reports
on Progress in Physics, 52(3):301, 1989.

[HLD05] Jie S Hu, Feihui Li, Vijay Degalahal, Mahmut Kandemir, Narayanan
Vijaykrishnan, and Mary J Irwin. “Compiler-directed instruction du-
plication for soft error detection.” In Design, Automation and Test in
Europe, 2005. Proceedings, pp. 1056–1057. IEEE, 2005.

[HRR99] C-K Hu, R Rosenberg, HS Rathore, DB Nguyen, and B Agarwala.
“Scaling effect on electromigration in on-chip Cu wiring.” In Intercon-
nect Technology, 1999. IEEE International Conference, pp. 267–269.
IEEE, 1999.

[KIR99] Zbigniew Kalbarczyk, Ravishankar K. Iyer, Gregory L. Ries,
Jaqdish U. Patel, Myeong S. Lee, and Yuxiao Xiao. “Hierarchical sim-
ulation approach to accurate fault modeling for system dependability
evaluation.” Software Engineering, IEEE Transactions on, 25(5):619–
632, 1999.

[LRK09] Man-Lap Li, Pradeep Ramachandran, Ulya R Karpuzcu, Siva Hari,
and Sarita V Adve. “Accurate microarchitecture-level fault modeling
for studying hardware faults.” In High Performance Computer Archi-
tecture, 2009. HPCA 2009. IEEE 15th International Symposium on,
pp. 105–116. IEEE, 2009.

54

[LRS08a] Man-Lap Li, Pradeep Ramachandran, Swarup K Sahoo, Sarita V
Adve, Vikram S Adve, and Yuanyuan Zhou. “SWAT: An error re-
silient system.” In 4th Workshop on Silicon Errors in Logic-System
Effects, 2008.

[LRS08b] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V
Adve, Vikram S Adve, and Yuanyuan Zhou. “Understanding the prop-
agation of hard errors to software and implications for resilient system
design.” ACM Sigplan Notices, 43(3):265–276, 2008.

[MLN02] Shahrzad Mirkhani, Meisam Lavasani, and Zainalabedin Navabi. “Hi-
erarchical fault simulation using behavioral and gate level hardware
models.” In Test Symposium, 2002.(ATS’02). Proceedings of the 11th
Asian, pp. 374–379. IEEE, 2002.

[MPR00] S Mahapatra, Chetan D Parikh, V Ramgopal Rao, Chand R
Viswanathan, and Juzer Vasi. “Device scaling effects on hot-carrier in-
duced interface and oxide-trapped charge distributions in MOSFETs.”
IEEE Transactions on Electron Devices, 47(4):789–796, 2000.

[NKS12] Sani R Nassif, Veit B Kleeberger, and Ulf Schlichtmann. “Goldilocks
failures: Not too soft, not too hard.” In Reliability Physics Symposium
(IRPS), 2012 IEEE International, pp. 2F–1. IEEE, 2012.

[OM01] Nahmsuk Oh and Edward J McCluskey. “Procedure call duplication:
minimization of energy consumption with constrained error detection
latency.” In Defect and Fault Tolerance in VLSI Systems, 2001. Pro-
ceedings. 2001 IEEE International Symposium on, pp. 182–187. IEEE,
2001.

[OSM02] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. “Error
detection by duplicated instructions in super-scalar processors.” Reli-
ability, IEEE Transactions on, 51(1):63–75, 2002.

[PBM00] Marius Pirvu, Laxmi Bhuyan, and Rabi Mahapatra. “Hierarchical sim-
ulation of a multiprocessor architecture.” In Computer Design, 2000.
Proceedings. 2000 International Conference on, pp. 585–588. IEEE,
2000.

[PKI05] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K Iyer.
“Application-based metrics for strategic placement of detectors.” In
Dependable Computing, 2005. Proceedings. 11th Pacific Rim Interna-
tional Symposium on, pp. 8–pp. IEEE, 2005.

[Ran75] Brian Randell. “System structure for software fault tolerance.” Soft-
ware Engineering, IEEE Transactions on, (2):220–232, 1975.

55

[RCV05] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I August. “SWIFT: Software implemented fault tolerance.” In
Proceedings of the international symposium on Code generation and
optimization, pp. 243–254. IEEE Computer Society, 2005.

[rev] Omitted for blind review.

[RPG10] Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan.
“Towards understanding the effects of intermittent hardware faults on
programs.” In Dependable Systems and Networks Workshops (DSN-
W), 2010 International Conference on, pp. 101–106. IEEE, 2010.

[RSK11] Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jörg
Henkel. “Reliable software for unreliable hardware: embedded
code generation aiming at reliability.” In Proceedings of the sev-
enth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pp. 237–246. ACM, 2011.

[RSK12] S Rehman, M Shafique, F Kriebel, and J Henkel. “RAISE: Reliability-
Aware Instruction SchEduling for Unreliable Hardware.” In Design
Automation Conference (ASP-DAC), 2012 17th Asia and South Pa-
cific, pp. 671–676. IEEE, 2012.

[SAB04] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers.
“The impact of technology scaling on lifetime reliability.” In Depend-
able Systems and Networks, 2004 International Conference on, pp.
177–186. IEEE, 2004.

[Sah] Goutam Kumar Saha. “Software based fault tolerance: a survey.”.

[Sah06] Goutam Kumar Saha. “Application semantic driven assertions toward
fault tolerant computing.” Ubiquity, 2006(June):1, 2006.

[SGH07] Jared C Smolens, Brian T Gold, James C Hoe, Babak Falsafi, and Ken
Mai. “Detecting emerging wearout faults.” In Proc. of Workshop on
SELSE, 2007.

[SK09] Vilas Sridharan and David R Kaeli. “Eliminating microarchitectural
dependency from architectural vulnerability.” In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on, pp. 117–128. IEEE, 2009.

[SLR08] Swarup Kumar Sahoo, Man-Lap Li, Pradeep Ramachandran, Sarita V
Adve, Vikram S Adve, and Yuanyuan Zhou. “Using likely program in-
variants to detect hardware errors.” In Dependable Systems and Net-
works With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pp. 70–79. IEEE, 2008.

56

[SSK11] John Sartori, Joseph Sloan, and Rakesh Kumar. “Stochastic com-
puting: Embracing errors in architecture and design of processors and
applications.” In Compilers, Architectures and Synthesis for Embedded
Systems (CASES), 2011 Proceedings of the 14th International Confer-
ence on, pp. 135–144. IEEE, 2011.

[Sta02] James H Stathis. “Reliability limits for the gate insulator in CMOS
technology.” IBM Journal of Research and Development, 46(2.3):265–
286, 2002.

[Syn] Synopsys. “Design Compiler.”.

[TR84] Asser N Tantawi and Manfred Ruschitzka. “Performance analysis of
checkpointing strategies.” ACM Transactions on Computer Systems
(TOCS), 2(2):123–144, 1984.

[WHV95] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pe-Yu Chung, and
Chandra Kintala. “Checkpointing and its applications.” In Fault-
Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth
International Symposium on, pp. 22–31. IEEE, 1995.

[WP06] Nicholas J Wang and Sanjay J Patel. “ReStore: Symptom-based soft
error detection in microprocessors.” Dependable and Secure Comput-
ing, IEEE Transactions on, 3(3):188–201, 2006.

[WRP11] Jiesheng Wei, Layali Rashid, Karthik Pattabiraman, and Sathish
Gopalakrishnan. “Comparing the effects of intermittent and transient
hardware faults on programs.” In Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference
on, pp. 53–58. IEEE, 2011.

[ZKE12] Samy Zaynoun, Muhammad S Khairy, Ahmed M Eltawil, Fadi J Kur-
dahi, and Amin Khajeh. “Fast error aware model for arithmetic and
logic circuits.” In Computer Design (ICCD), 2012 IEEE 30th Inter-
national Conference on, pp. 322–328. IEEE, 2012.

57

