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 Spasticity is a debilitating neuro-muscular disorder which is characterized by 

involuntary muscle movements and stretch reflexes. There is a large population of the 

world who suffers with spasticity due to various diseases like Cerebral Palsy, Multiple 

Sclerosis, Spinal Cord Injury, Traumatic Brain Injury etc. The diagnosis standards of 

spasticity for treatment prescription are highly subjective, most of them either heavily 
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based on the clinicians’ “feel”, on voluntary movements by patients or mounting sensors 

on patients with no defined correlation to the assessment standards. Hence, they have high 

inter- and intra-rater variability. Spasticity is diagnosed every few weeks whereas extent 

of spasticity can vary more frequently. Thus, a subjective assessment which does not 

account for the dynamic nature of spasticity is not a good measure for treatment. Moreover, 

the account of patients and their family affect the treatment as well. Treatment 

effectiveness and costs can vary highly based on inaccurate assessment. This calls for a 

dire need of an objective, consistent and repeatable scale for spasticity assessment. For this 

purpose, we have developed an instrumented glove in hopes that it will give such an 

assessment. The research of this Thesis describes the development of this glove, the 

algorithms to obtain an assessment measure and techniques to validate said glove.  

We also intend to make this glove so it instruments the clinicians or raters rather than the 

patients. This comes out of a consideration of both convenience to the patients and their 

finances. 
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1. INTRODUCTION 

This chapter discusses what spasticity is, its symptoms, causes, diagnosis and 

reasons/developments that lead to the research in this Thesis. At the end of the chapter, I discuss 

the organization of the Thesis. 

1.1 What is spasticity? 

Spasticity is a neuro-muscular disorder characterized by an increase in muscle-tone or 

stiffness of the limbs. It often occurs in patients with problems like Cerebral Palsy (CP), Multiple 

Sclerosis (MS), Traumatic Brain Injury (TBI), Stroke, Spinal Cord Injury (SCI), Paralysis etc. It is 

typically caused by damage in the part of brain and/or spinal cord which is responsible for motor 

control. It affects 764,000 people and is diagnosed in two to three live births out of every 1,000 in 

the United States [2]. The pharmaceutical industry spends billions of dollars developing drugs to 

relieve spasticity, but these efforts are stymied by the lack of repeatable, objective metrics to 

quantify the outcomes; excessive dosage of drugs to treat spasticity can cause severe side effects 

such as such as seizures, blurred vision, and severe rashes, while inadequate dosage is ineffective 

at treating spasticity [1].  

It is estimated that spasticity affects more than 12 million people around the world. About 

80 percent of people with CP and MS have spasticity (of varying degree). Since an estimated 

500,000 people in the United States suffer with a form of CP, this means about 400,000 people 

suffer from some degree of spasticity. Similar statistics for MS show an estimated 400,000 people 

in the United States with MS and hence 320,000 people with some degree of MS-related spasticity 

[4]. Paresis and signs like increased stretch reflexes that occur with spasticity are collectively 
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referred to as upper motor neuron syndrome. Paresis particularly affects distal muscles, with 

reduced ability to perform fractionated movements.  

Damage to the motor pathways at cortical, brainstem and spinal cord levels cause the upper 

motor neuron syndrome, justifying the neurophysiological aspect of spasticity. The interval 

between injury and the appearance of spasticity varies from days to months according to the level 

of the injury.  

Pathophysiology  

The pathophysiologic basis of spasticity is incompletely understood. Polysynaptic 

responses may be involved in spinal cord–mediated spasticity, while enhanced excitability of 

monosynaptic pathways is involved in cortically mediated spasticity [3]. 

As discussed, the damage in cortical and spinal cord levels alters the balance of inputs from 

the descending pathways of motor control and spinal cord neurons. This causes the change and 

involuntary behavior of muscle tone. Subsequently, the muscles develop physical changes like 

shortening and contribute further to stiffness. 

1.2 Symptoms of spasticity 

Spasticity often has the following symptoms: [3], [4] 

• Increased muscle tone 

• Overactive reflexes 

• Involuntary movements, which may include spasms (brisk and/or sustained involuntary muscle 

contraction) and clonus (series of fast involuntary contractions) 

• Pain 

• Decreased functional abilities and delayed motor development 

• Difficulty with care and hygiene 

http://www.webmd.com/baby/guide/normal-labor-and-delivery-process
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• Abnormal posture 

• Contractures (permanent contraction of the muscle and tendon due to severe persistent stiffness 

and spasms) 

• Bone and joint deformities 

• Clonus 

• Weakness 

• Clasp-knife phenomenon 

• Hyperreflexia 

• Babinski sign 

• Flexor reflexes 

• Flexor spasms  

Loss of descending tonic or phasic excitatory and inhibitory inputs to the spinal motor 

apparatus, alterations in the segmental balance of excitatory and inhibitory control, denervation 

supersensitivity, and neuronal sprouting may be observed. [3] 

1.3 Diagnosis 

There are many methods to diagnose spasticity. There are clinical scales, which basically 

are based on a doctor’s “feel” of the patients’ stiffness. Therefore, these methods are very 

subjective. Clinical methods of assessment include: 

1. Ashworth and Modified Ashworth Scale 

2. Tardieu and Modified Tardieu Scales 

3. Hypertonia Assessment Tool 

4. Composite Spasticity Scale 

5. Gross Motor Function Classification System - Expanded & Revised (GMFCS - E&R) 

6. King’s Hypertonicity Scale 
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Secondly, there are neuro-physiological assessment tools which are inclusive of the 

neurological aspect of spasticity. There methods don’t always correlate to the actual level of 

spasticity even though the measurement correlation is usually high. These methods also often rely 

on voluntary motion by patients which is an undesirable property in assessment as the patients may 

or may not move to their full extent and this might cause them inconvenience. Some 

neurophysiological assessment tools are as follows: 

1. Electromyography 

2. Tonic stretch reflex testing 

3. H-reflex 

The third type of assessment tools are biomechanical tools. These are machines or use some 

mechanical tools to assess spasticity. Some of these methods are: 

1. Myotonometer 

2. Wartenberg Pendulum Test 

3. Three-dimensional pendulum test 

4. Dynamometry 

5. Measures using goniometry 

6. Inertial sensors 

7. Stiffness tool with robotic-assisted gait orthosis 

These methods are described and analyzed in detail in the following section.  

1.4 Prior work 

Spasticity is a velocity dependent neuro-muscular disorder characterized by muscle tone 

[17]. There are many assessment tools for spasticity assessment. Broadly, they are divided as (i) 
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Clinical assessment tools (ii) Neurophysiological assessment tools and (iii) Biomechanical 

assessment tools. Each of these methods is described and analyzed in the following text. 

Among the clinical assessment tools, the following have been proposed. The common 

problem with these are their subjective nature as they depend on feel and not hard measurements. 

a) Ashworth and Modified Ashworth Scales:  

Description: The Ashworth scale (AS) is a 5-point scale and the Modified (MAS) scale is 

a 6-point scale to account for catch-no catch (1 and 1+) [7]. Both AS and MAS assessments 

are done by moving the limb of the patient and the resistance “felt” by the doctor is reported 

as rating.  

Pros: MAS is the most widely used metric on account of its simplicity. 

Cons: MAS is a highly subjective rating [8-10]. It has high inter- and intra-rater variability 

[16, 26]. It has also been claimed that MAS does not consider the velocity aspect and only 

captures resistance to passive movement [11, 12]. It does not distinguish between neural 

and non-neural causes of resistance [11]. Considerable research has been put into 

understanding spastic models [13, 14], yet none address developing an objective metric.  

b) Modified Tardieu Scale (MTS):  

Description: The MTS scale measures spasticity over three speeds on a 6-point scale. MTS 

considers the strength and duration of the stretch reflex; the angle at which the stretch reflex 

is activated; the speed necessary to trigger the stretch reflex. The angle for catch (using 

goniometers) at high velocity stretch and the angle for full passive range at slow velocity 

stretch responses are measured [15]. Thus, it considers the velocity aspect of spasticity. It 

is suggested as the more appropriate metric over MAS because of this [11, 15].  
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Pros: The MTS performs better in case of intra and inter-rater reliability than MAS [16]. 

Cons: It’s inter-rater reliability is still not very good [16, 25]. Even though it is closer to 

actual description of spasticity given by Lance [17], the MTS is still subjective in nature. 

This is proven by change in variability (both) before and after training of raters [18]. It is 

less popular than MAS because MAS is simpler. 

c) Hypertonia Assessment Tool (HAT):  

Description: The HAT is a 7-item assessment tool: for spasticity (2 items), dystonia (3 

items) and rigidity (2 items).  

Pros: HAT has intermediate variability (less than MTS and in some cases, less than MAS). 

Cons: It is basically a binary rating confirming presence or absence of that subtype. The 

procedure is fairly more complicated than the above two tools [19]. The variability 

comparison (in pros) doesn’t make much sense because the HAT only gives binary 

assessment unlike MAS and MTS.  

Note: "Spasticity" is defined as hypertonia in which 1 or both the following signs are 

present: 1) resistance to externally imposed movement increases with increasing speed of 

stretch and varies with the direction of joint movement, and/or 2) resistance to externally 

imposed movement rises rapidly above a threshold speed or joint angle. "Dystonia" is 

defined as a movement disorder in which involuntary sustained or intermittent muscle 

contractions cause twisting and repetitive movements, abnormal postures, or both. 

"Rigidity" is defined as hypertonia in which all of the following are true: 1) the resistance 

to externally imposed joint movement is present at very low speeds of movement, does not 

depend on imposed speed, and does not exhibit a speed or angle threshold; 2) simultaneous 

co-contraction of agonists and antagonists may occur, and this is reflected in an immediate 
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resistance to a reversal of the direction of movement about a joint; 3) the limb does not 

tend to return toward a particular fixed posture or extreme joint angle; and 4) voluntary 

activity in distant muscle groups does not lead to involuntary movements about the rigid 

joints, although rigidity may worsen. [23] 

d) Composite Spasticity Scale (CSS):  

Description: It is a mixture of 3 measures: i) A 5-point scale to measure Achilles tendon 

jerk; ii) A doubly weighted 8-point MAS for full scale passive stretch reflex and iii) A 4-

point scale to measure clonus. The final assessment is the sum of all three measures. Thus, 

CSS ranges from 0-16.  

Cons: There have been no studies on inter and intra rater variabilities of this scale [20] and 

its occurrence in literature isn’t as prominent as other scales. It is not actively used 

clinically. There is nothing specific about speed variations.  

e) Gross Motor Function Classification System - Expanded & Revised (GMFCS - E&R) 

[24]: 

Description: The Gross Motor Function Classification System - Expanded & Revised 

(GMFCS - E&R) is a 5-level classification system that describes the gross motor function 

of children and youth with cerebral palsy based on their self-initiated movement with 

particular emphasis on sitting, walking, and wheeled mobility.  

Cons: It is a highly descriptive measure based on a self-report questionnaire which adds a 

high amount of bias. The focus of the GMFCS - E&R is on determining which level best 

represents the child's or youth's present abilities and limitations in gross motor function. 

Emphasis is on usual performance in home, school, and community settings. There is no 
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provision to include judgement about quality of movements or scope of improvement. This 

method also focuses only on the age group of 12-18 years.  

The neuro-physiological tests use some sensors to get measurements. There is some 

consistent disadvantage that all these tools display. They instrument the patient and they do not 

have a defined translation to extent of spasticity. All the neurophysiological tools and their variants 

are not commonly used since literature does not back these methods up with a direct correlation to 

level of spasticity [21, 22]. None of these methods correlate to spasticity levels and merely give 

measurements of passive reflex threshold, velocities and stretch angles 

The following are the neuro-physiological tools:  

a) Electromyography (EMG):  

Description: In EMG, recordings are obtained at joints like ankles. Patients are made to 

perform maximal isometric voluntary contractions and the measurements, co-contraction 

ratios and mean torque are measured.  

Pros: For the above measurements, results show less variability [21].  

Cons: The biggest disadvantage of this method is that the patient is instrumented with 

sensors like loadcell etc., and the patients are asked to perform voluntary motions. Sensors 

on their bodies become cumbersome and inconvenient for the patients. At the same time, 

asking patients to perform voluntary motion while they suffer from muscle stiffness may 

cause pain or difficulty to the patients and in addition, may cause less accurate readings.  

b) Tonic stretch reflex testing:  

Description: This method uses motors at various joints of the patients. Then, the torque and 

additional EMG measures are taken.  
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Cons: Even this method requires voluntary motion by the patient and patient is 

instrumented. 

c) Hoffman reflex of the Soleus muscle (H-reflex):  

Description: The H-reflex is basically the electrical analog of a stretch reflex. It essentially 

stimulates the soleus fibers (calf muscles). Low and high intensity of stimulus activates the 

motoneurons to generate a reflex response (H-wave) and direct activation (M-wave) of the 

soleus respectively. Ratio of max amplitudes of H and M gives level of spinal excitability. 

Pros: The variability is low. 

Cons: No defined correlation to spasticity. 

Many biomechanical assessment tools were proposed in order to measure or quantize the 

level of spasticity.  

a) Myotonometer:  

Description: Myotonometer is a portable electronic device capable of measuring the 

amount of muscle-tissue displacement per unit force applied using a linear array of 

transducers [27-29]. 

Cons: It requires a voluntary motion from the patient which would have variance between 

different patients. Moreover, patients with serious injury or disable may not able to produce 

such voluntary motion. [35] 

Some studies claim correlation to be significant but are a maximum of -60% (significant 

negative correlation) [34] [36] or are not in the spasticity range [37]. 

b) Wartenberg pendulum test:  
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Description: It can record the activity of the leg during swing [30]. It initially started as a 

qualitative measurement with doctor simply observing the swing of patient’s foot. Now, it 

is improved by use of electric goniometers (angle measurement sensors) or 3D motion 

analysis systems. The doctor holds the foot of the patient at full extension of leg, then drops 

the leg and the computer records motion and vibration [38].  

Pros: In the trials it has been tested, it showed high inter-rater correlation and shows 

promise that it can differentiate between some levels of spasticity [39]. 

Cons: Despite the promise, the current correlation to various levels of spasticity is weak 

[40] and the application of this method to the target population is debatable [38]. In 

addition, it can only work for the leg, and it is not suitable for other part of the body. 

c) Dynamometry: It can record the force and velocity during passively stretched motion. 

There is an experiment tries to correlate the torque during motion with the slope of work 

methods of spasticity [31]. Inertial sensor can record the angular position and angular 

velocity during the muscle flexion and extension [32]. 

Cons: There are not enough experiments that show how the measurements correlate to 

standards of spasticity. The amount of force used to perform such motion is an important 

aspect for spasticity assessment, and such sensor is not recording it.  

d) Robotic-assisted gait orthosis: It is implemented for measure the stiffness by produce 

torque to knee and hip [33]. The same study refers to this method as “not sensitive enough” 

for spasticity assessment. It also is not financially feasible just for assessment.  
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1.5 Treatment 

Treatment types are evaluated on a case to case basis. This evaluation depends on the 

underlying cause and severity of spasticity as well as the age of patient [4]. The common goals of 

treatment are: 

1. Relieving the signs and symptoms of spasticity 

2. Reducing the pain and frequency of muscle contractions 

3. Improving gait, hygiene, activities of daily living and ease of care 

4. Reducing caregiver challenges such as dressing, feeding, transport and bathing 

5. Improving voluntary motor functions involving objects such as reaching for, grasping, moving 

and releasing 

6. Enabling more normal muscle growth in children 

There are many different methods of treatment: 

Physical and Occupational Therapy 

Physical and occupational therapy for spasticity is designed to reduce muscle tone, improve 

mobility and alleviate pain. It comprises of stretching and strengthening exercises, casts, braces, 

cold pack applications or electric stimulations. 

Oral Medications 

When effects of spasticity affect day to day activities, oral medications are prescribed. For 

these to be effective, they can be suggested in combination with some other forms of treatment. It 

is essential that the patient or their family work closely with their clinician to devise a personalized 

treatment plan. If not, the side effects may be huge. 

Medications include: 
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1. Baclofen 

2. Benzodiazepines 

3. Dantrolene sodium 

4. Imidazolines 

5. Gabapentin 

Botulinum Toxin (BTA) Injections 

BTA, also known as Botox injections, when used in tiny amounts, have proven effective 

in paralyzing spastic muscles. Injection sites are carefully determined based on the pattern of 

spasticity. 

Surgery 

The primary neurosurgical procedures to treat spasticity are intrathecal baclofen (ITB) 

pumps and selective dorsal rhizotomy (SDR). 

Intrathecal Baclofen (ITB) 

In severe cases of spasticity, ITB is administered. This is done by implanting a pump under 

the skin that pumps dosage into the spine. Due to direct administering of medication, the relief is 

faster and has less side effects on the patient. Thus, ITB has been found to be extremely effective 

in treating spasticity. 

Selective Dorsal Rhizotomy (SDR) 

In SDR, the neurosurgeon cuts selective nerve roots (rhizotomy), the nerve fibers 

located just outside the back bone (spinal column) that send sensory messages from the muscles 

to the spinal cord. SDR is used to treat severe spasticity of the legs that obstructs simple or 

every day motions or activities.  
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1.6 Research of this Thesis 

As seen in the previous section, treatment of spasticity is a critical concern and thus it is 

equally critical to have accurate assessment tool. This is the basis for the research of this Thesis. A 

lot of research has been done in this area addressing the lack of quantitative metrics in spasticity 

assessment. This has been discussed in detail in Chapters 2 and 4. As part of this Thesis, we have 

developed an instrumented glove (hereby referred to as ‘the glove’) to obtain a repeatable and 

objective metric for spasticity assessment. This glove is mounted with force sensitive elements and 

a motion measurement unit to account for the force to move the arm during assessment and the 

speed during motion respectively (as spasticity is velocity dependent stretch reflex). The intention 

is to make the glove as consistent, repeatable and objective as possible. To assess the repeatability, 

we have developed a “mock patient”, which is a spasticity simulating mechanical arm. This serves 

as the ground truth for the glove measurements as obtaining repetitive measurements from actual 

patients with same levels of spasticity is not possible. 

In one of the clinical experiments conducted with 6 clinicians from Rady Children’s 

hospital and California Children Services, some personal communication revealed the effect of the 

methods of spasticity assessment on the medication. The clinicians were of the opinion that for the 

most part, assessment tools like MAS do not impact their dosage of medication. This is because 

they test the patients once every 6 weeks or so and spasticity can change in a matter of few hours. 

They must highly rely on the account of the patient and/or their family members to decide the state 

of the patient. This introduces a high amount of variation for medication which may prove either 

ineffective or lethal to the patient. The per annum healthcare cost for a patient with CP-spasticity 

is $46K as compared to $8K for a normal person. Thus, it is vital that the dosage prove effective to 

the patient from a healthcare as well as financial perspective. The clinicians also stated that the 

assessment is highly variable when they do testing and it would be immensely beneficial to have a 
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device that would not require high medical expertise to assess the patient. This is where the glove 

proves to be useful. This device can enable us to come up with an objective and consistent metric. 

By being able to assess the patient more often, this glove can also help in understanding spasticity 

better than ever before. 

1.7 Organization of this Thesis 

The Thesis is organized as follows: 

Chapter 2 is the paper [1] detailing the initial work and results that went into the 

development of the glove and the first mock patient. Chapter 3 details all the algorithms that have 

been implemented throughout the course of this Thesis and their results. Chapter 4 is the detail of 

the latest algorithms, validation and results of the project and the same draft has been submitted to 

the IEEE transactions in Biomedical Engineering. Finally, Chapter 5 is Conclusions and Future 

Scope of this project. This is followed by references and appendix. 
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2. AN INSTRUMENTED GLOVE FOR IMPROVING SPASTICITY 

ASSESSMENT  

2.1 Abstract 

An instrumented glove worn by caregivers that can augment subjective assessments of 

spasticity with an objective, repeatable metric with reduced inter- and intra- rater variability and 

improved resolution over existing standards is highly desirable. We present the design and 

preliminary results of such a system using commercial, off the shelf (COTS) components. The 

glove includes spatially-resolved, force-dependent resistive sensor elements and an inertial 

measurement unit. We developed a mock patient that is equipped with a mechanism to adjust the 

arm stiffness, a load-cell and a potentiometer to measure the work done to move the arm. The mock 

patient provides ground truth to validate the proposed concept. We report the power measured by 

the sensors in the mock patient to move the arm and the power estimated by the glove in moving 

the arm and show Pearson correlation coefficient of 0.64. We observe that raw sensor data and 

instrumentation errors contributed to significant outliers in these experiments. Initial assessments 

by clinician show promise of the proposed approach to improve spasticity assessment. Future work 

includes improvements to instrumentation and further clinical evaluations. 

2.2 Introduction 

Spasticity is a debilitating condition and the most common physical symptom of acquired 

brain injury, stroke, or other neuro-muscular disorders such as cerebral palsy, which affects 764,000 

people and is diagnosed in two to three live births out of every 1,000 in the United States. Patients 

with spasticity are unable to produce smooth and fluid limb movements due to the imbalance of 

signals from the brain and spinal cord to the muscles. The pharmaceutical industry spends billions 

of dollars developing drugs to relieve spasticity, but these efforts are stymied by the lack of 

repeatable, objective metrics to quantify the outcomes [1-3]; excessive dosage of drugs to treat 
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spasticity can cause severe side effects such as such as seizures, blurred vision, and severe rashes, 

while inadequate dosage is ineffective at treating spasticity. 

The current benchmark for assessing spasticity is the 6- point modified Ashworth score 

(MAS) shown in Figure 2.1 [4,5]. There are several limitations to this MAS, including poor 

interrater reliability and poor sensitivity to changes in spasticity [6- 8]. An approach that allows 

reproducible assessment with improved resolution is urgently needed to monitor patient progress 

under medication and eliminate negative reactions. 

This research is aimed at improving spasticity assessment by augmenting MAS with an 

objective, repeatable measure that shows finer level of details than MAS and has reduced variability 

in intra-rater and inter-rater scores. In Section II, we present prior efforts to improve spasticity 

assessment. In Section III, we present the development of an instrumented glove that senses 

pressure and hand motion during spasticity assessment. Since MAS is a highly subjective rating, 

we initially lacked a reliable criterion measure for verifying the glove measurements. To overcome 

repeatability issues, we present in Section IV the development of a mock-patient that was used to 

generate a “ground truth” criterion metric for validating objective scores from the glove. We present 

experimental results in Section V. In Section VI, we discuss sources of errors in the 

instrumentation, present future work and conclusions. 
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Figure 2.1: The Modified Ashworth Scale 

2.3 Prior work 

Many researchers have taken different approaches to address the lack of quantitative 

assessment of spasticity. Wearable devices [17, 18, 20] and EMG sensors [19] have been deployed 

on patients to detect spasticity symptoms, but the drawback is that such devices can be inconvenient 

and uncomfortable for the patient. Studies using electromyography (EMG) sensors [9, 19, 21] were 

carried out on patients with spasticity to characterize the patients’ muscle tones under flexion and 

extension. Wu et al. [9] measured the catch angle reliably by determining the instantaneous velocity 

and the time derivative of torque. Research by Park et al. [10] also targeted measurement of catch 

angle and elbow range of motion. Both of the above studies were focused on identifying the 

presence/absence of a catch phase for correlation to a MAS score between 1 and 2, but these studies 

did not provide a continuous scale to quantify the different levels of severity. The lack of a 

quantitative scale for spasticity was addressed by development of musculoskeletal models [11] or 

haptic simulations [12] to determine key physical parameters that contribute to spasticity. One of 

the most common models is the Haptic Elbow Spasticity Simulator (HESS) [12], [13], [14], in 

which the properties of spasticity are simulated with the muscle resistance as torque and the catch 

phase as an impulse. Development of the HESS simulator mainly benefits the doctors as they can 
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practice MAS assessments without requiring actual patients. Their research focused on modeling 

of spasticity and emphasized on the factors that characterized each MAS level. Alternatively, a 

mathematical model by Zakaria et al. [16] formulated the resistance as torque and accounted for 

additional parameters such as the angular velocity, modulus of elasticity etc. The above models 

have yet to be translated into physical tests that can be implemented on patients to track the 

spectrum of spasticity conditions. 

2.4 Instrumented Glove 

Our approach to improve spasticity assessment is an instrumented glove worn by the doctor 

during patient evaluation. We integrated a spatially-resolved, force dependent resistive sensor array 

(by Tekscan, [22]) and an inertial measurement unit (IMU) consisting an accelerometer, gyroscope 

and a magnetometer [23]. The force sensor on the glove measures the contact force being applied 

to move a patient’s limb. The level of muscular resistance to motion indicates severity of spasticity. 

Figure 2.2 (left) shows the force sensor integrated on to a golf glove. It has 18 sensing regions, with 

a total of 349 sensing elements that output a voltage proportional to the applied force. The raw 

output is a spatial map of 8-bit values for each sensing element. The data was collected at 20Hz. 

For our analysis, we used the sum of the output of all the sensing elements. During the experiment, 

the researchers wore the glove and performed cycles of movement with the patient, such as elbow 

flexion and extension, and the sensor recorded the force F (Newtons) versus time as shown in Fig.  
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Figure 2.2: The instrumented glove with pressure sensors (left) and IMU (right) 

2.3 (A). The IMU is attached to the back of the glove as shown in Figure 2.2 (right). It is used to 

characterize the hand maneuvers during clinical assessment of spasticity. In this work, we use only 

the gyroscope data to estimate the power needed to manipulate a limb. The IMU data is collected 

at 20 Hz. The angular velocity v from gyroscope is converted to linear velocity at the location of 

the grip in the mock patient. The gyroscope data in a typical maneuver is shown in Figure 2.3 (B). 

We estimate the power to move the patient’s limb as F*v. In our initial study, five individuals with 

cerebral palsy volunteered to participate in this study. Participants and/or their parents provided 

informed consent as per the UCSD Human Subjects Internal Review Board regulations. 

Participants engaged in a modified Ashworth scale assessment with two physicians well-trained in 

this methodology (AS and his colleague) and then again by the same two physicians while wearing 

the spasticity measurement device. These data were collected in UCSD's Research on Autism and 

Development Laboratory. In this experiment, there was substantial inter-rater variability resulting 

in only 27% agreement in MAS values. Consequently, we were not able to use these data to validate 

the estimates from the glove sensors. To mitigate this, we created a mock patient capable of 

generating criterion metric (ground truth) that can be used to validate the objective numbers 

estimated from the glove sensors. 
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Figure 2.3: Low pass filtered raw sensor data. A. Total pressure from glove sensors over time. B. Linear velocity from 

gyroscope data. C. Force from load cell data. D. Linear velocity from differentiated potentiometer data. The positive 

half cycle corresponds to flexion and negative half to extension 

2.5 Mock Patient’s Arm Structure 

The mock patient has an arm structure as shown in Fig. 2.4. The arm has a lever connected 

to a disc clamped by a 5” clamp with stationary-bike brake pads, such that the resistance can be 

changed manually. The arm has an embedded load cell (model HX711 [24]) that senses the dead 

weight m due to the resistance set by the clamp. We compute the force to overcome this resistance 

as F = m*a, where a is standard gravity, 9.8 m/s2. We use the term “preset resistance on the mock 

patient” to denote the force required to move the arm. The units are Newtons. The mock patient 

also has a potentiometer [25] to sense the angular velocity v during flexion and extension. We use 

this to measure the power as F*v, in N-m/s. In our experiments, we measure the power from the 

mock patient sensors and use it compare with the power estimated from the sensors in the glove 

worn by the rater. 
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Figure 2.4: Model of the mock patient 

2.6 Results 

We investigated the agreement between measured power from the mock patient and 

estimated power from the glove. We focused on MAS values of 1+, 2 and 3 in this study. The 

values of 0 and 4 are easy to assess since they correspond to normal tone and rigid limbs, 

respectively. Similarly, a value of 1 is also easy to assess since it is characterized by catch and 

release. A well-trained physician in spasticity assessment (AS) tested the mock patient and 

identified the range of to be 20-90 Newtons for MAS values of 1+, 2 and 3. 
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Figure 2.5: Power measurement for the instrumented glove 

Spasticity is a highly velocity driven response [1], [2], [8], [14]. For both glove and mock 

patient, we converted the angular velocity to linear velocity and estimate the power to move the 

patient’s limb as F*v. Here, we present experimental results for two trials by 4 researchers. Figures 

2.5 and 2.6 show the power measured from the glove sensors and mock patient sensors, 

respectively, for different preset resistances on the mock patient. Note that while there are outliers 

in both cases, the mock patient data shows better agreement with the preset resistances, compared 

to that of the glove. From Figure 2.2, it can be seen that the force data from glove does not follow 

 

Figure 2.6: Power measurement for the mock patient 
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the cyclical nature of other sensors. Figure 2.7 shows the power measured from the mock patient 

sensors versus power measured from the glove sensors. We note that there are bias and variability 

issues in all these experiments. The Pearson correlation coefficient between the mock patient and 

the glove was 0.64. When we compute the agreement between the mock patient and glove for 

flexion and extension independently, the Pearson coefficients were 0.64 and 0.57 respectively. The 

experimenters gripped the mock patient at the wrist – flexion involved in pushing the mock patient 

arm, while extension involved pulling it. We performed another experiment with a physician (AS) 

performing MAS assessment for various resistance settings of the mock patient, as shown in Figure 

2.8. The physician did not know the resistance setting so that he could provide an unbiased 

assessment. This shows the promise of improving MAS ratings resolution with the instrumented 

glove.  

 

Figure 2.7: Instrumented glove versus mock patient 
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Figure 2.8: Power estimates for MAS values 

2.7 Discussions and Future Work 

There are some sources of error such as grip variation, posture, etc. that could introduce 

certain bias and also result in outliers in the measurements. In addition, we observed certain errors 

in the pressure sensor, similar to other researchers ([29] reported up to 34% errors). Further, our 

COTS instrumentation used different clock domains for the potentiometer, load cell, pressure 

sensor and the gyroscope. This resulted in significant drift in the alignment between pressure and 

gyroscope data; load cell and potentiometer data during each experiment. Future work must address 

(i) improvements in sensor reliability (ii) custom hardware to acquire glove sensor data with a 

common clock and mock patient sensor data with a common clock (iii) further testing by doctors 

to understand the statistical validity of results shown in Figure 2.7. 

2.8 Conclusions 

Spasticity is a debilitating neurological, musculo-skeletal condition, affecting people with 

CP, TBI, stroke, etc. This research addresses development of an instrumented glove to be worn by 

doctors while performing MAS assessment, a gold standard in current standard of care for diagnosis 

and treatment of spasticity. We presented a design of the glove based on COTS components. In 
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order to develop an objective metric from the glove measurements, we presented the development 

of a mock-patient arm with adjustable resistance to motion and sensors to report the load and 

angular displacement. We presented power (N-m/s) measured at the mock patient and estimated by 

the glove for various stiffness values that correspond to MAS values of 1+, 2 and 3. Our results 

demonstrate that the instrumented glove has a correlation of 0.64 with the mock patient. 

Preliminary assessment by a physician demonstrates that an objective metric based on measured 

power has improved resolution over MAS. Future work will include improvements to sensors, 

custom hardware to mitigate clock issues and additional characterization in clinical settings. 
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3. DESCRIPTION OF ALGORITHMS 

The objective of this research is to obtain a repeatable, objective metric that is consistent over 

inter- and intra-rater variabilities. This chapter describes all the algorithms and data processing 

performed considered and applied to obtain that metric. 

Four sets of data are obtained from the experimental setup (glove and mock patient). These are: 

(i) Poundage data from the glove (referred henceforth as glove data) 

(ii) Poundage data from the loadcell (referred henceforth as loadcell data) 

(iii) Angular speed data from IMU on the glove (referred henceforth as glove gyro) 

(iv) Angular speed data from the loadcell (referred henceforth initially as arm 

potentiometer and subsequently as arm gyro) 

The loadcell and glove data are “force-sensitive” sensors. However, their output is proportional 

to the pound-force applied to them and not actual force. We later multiple this data with acceleration 

(differential of gyroscope data) to obtain force. 

3.1 Initial Steps 

One of the initial steps of data processing was noise removal. The initial analysis included 

some rudimentary low pass filtering to observe the general trend of the data. This filtering was done 

with the knowledge that the doctors’ maneuvers are typically at 2Hz or less (2 maneuvers in one 

second). The term “maneuver” here refers to the action of moving the patient’s limb into flexion 

and extension. Thus, the stop band frequency was slightly higher than 2Hz. Additionally, 

considering the factor that spasticity is a velocity dependent phenomenon, it made intuitive sense 

that the power expended on the patient’s arm should increase as extent of spasticity increases. After 

considering almost 12 physical quantities like momentum, drag, power, kinetic energy etc., to 
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compare with our intuition, it was verified that power/work done showed a positive trend as the 

extent of spasticity increased.  

The following text describes the issues faced and steps undertaken to obtain denoised and 

reliable data: 

Data filtering: 

Of all the four data streams, the glove data was the most unreliable. Thus, to make the 

filtering more sophisticated, LPC, FFT based filtering and DWT denoising were attempted.  

For LPC based filtering: An LPC filter of order 2 was chosen. The LPC coefficients were 

found using the gyroscope data. 

For FFT based filtering: From FFT, the first 2 peak frequencies of data were found. This 

was used to find the cutoff frequency for a Butterworth filter. 

For DWT denoising: DWT was found using a Haar wavelet. From the detail and 

approximate coefficients, two approaches were considered: (i) reconstruct signal from only 

approximate coefficients (ii) reconstruct signal from most significant detail and approximate 

coefficients. 

The loadcell data was a relatively much less noisy data and hence was filtered using a 

Butterworth low pass filter (LPF). 

For the glove gyro and loadcell potentiometer data, LP filtering was initially performed. 

Subsequently, the potentiometer started displaying high impulse spike noise. For this reason, 

median filtering was implemented for the potentiometer. 

This issue with the potentiometer was later attributed to connection issues. After analysis, 

it was revealed that the potentiometer tended to disconnect from the mock patient, thus rendering 
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chunks of data gibberish. After assessing some solutions like 3D printed fixtures for fixing the 

potentiometer, we decided to replace the potentiometer with a gyroscope breakout board. This made 

it less prone to connection errors and made it easier to mount and replace it.  

Thus, at this point, the loadcell and both gyroscopes had the same filtering process and the 

glove needed something more sophisticated. All final filtered data are in the Results chapter.  

The correlation method: 

As described above, the glove data had the most noise. As can be seen in Figure 3.1, some 

parts of the glove are not covered and some not used during motion. This paved way for a new 

method.  

 

Figure 3.1: Glove sensel matrix 

Until the previous step, the data obtained was the raw sum of every pixel element. In this 

approach, data from every pixel was used. Thus, initially a data from a matrix of 25x30 force 

sensing elements (sensels) is obtained. Out of these 750 data streams, only 25x38 (700 sensels) are 

filled with sensors and the rest are zeros. This is illustrated in Figure 3.2. 
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Figure 3.2: Frame by frame data from every glove sensel 

Each of these 700 data streams is passed from an LPC filter. The gyroscope data correlates 

to the glove data as they are collected during the same maneuver on the same instrument. Thus, the 

glove data is correlated with each of the 700 waveforms. The sensels with highest correlation with 

the gyroscope data were used to obtain the final glove data waveform (by raw sum). The figure 3.3 

shows the bar graph showing correlation of each sensel with gyroscope data. This data was later 

used to find the force in power calculation.  

 

Figure 3.3: Maximum correlation of every sensel data with glove gyroscope data 
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Later during experimentation, it was found the instead of eliminating the data with least 

correlation, it was better to find the weighted mean of data stream of each sensel with respect to its 

correlation value. This essentially boosted the energy of the more relevant sensels and suppressed 

the non-relevant ones. The reasoning behind boosting method over elimination method was that 

the former retained the bias offered by some noisy or non-relevant sensels which in turn helped 

preserve the properties of glove data as a whole whereas the latter eliminated them altogether. The 

method is revisited later in this chapter. The waveforms of the glove data before and after 

processing: 

 

Figure 3.4: Raw glove data 
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Figure 3.5: Glove data after sensel boosting 

The problem of drift: 

Even though the data from the gyroscopes was less noisy, it had a different issue: drift. The 

gyroscope data noticeably drifts from the glove and loadcell data. The analysis initially started with 

a point by point analysis of the time series and hence this became a problem. The following 

solutions were employed to mitigate the issue.  

Dynamic Time Warping: DTW is a method that only looks at trend of data and 

stretches/shrinks the signal as depicted in Figure 3.6: 
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Figure 3.6: Illustration of Dynamic Time Warping 

However, this method was highly susceptible to variations in amplitude and frequency 

from a coding perspective (which varies highly among all doctors). Thus, the following method 

was used instead.  

Peak detection: In this case, the extremities of the waveform were considered as opposed 

to the entire waveform. This is depicted in Figure 3.7: 

 

Figure 3.7: Peaks of gyro data used for power calculation in arm and glove 
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During the flexion and extension, the maximum speed occurs mid motion (just like SHM). The 

processing for flexion and extension is explained later in this chapter. This is the intuition behind 

choosing the peak speed in the waveform. 

The following approaches were used succeeding the method in chapter 2.  

3.2 Approaches Attempted 

3.2.1 Processing on selected sensels: 

In this method, the glove data is obtained by boosting relevant sensels and LPC filtering. 

The loadcell data and both gyroscopes’ data are filtered with the common low pass filter. The power 

on the glove is calculated by multiplying the median of peak values of the glove data obtained and 

the median of peak values of glove gyro data (to eliminate outliers in peaks). Loadcell power is 

found by the same method.  

The result obtained by this method as compared to the method in Chapter 2 is detailed in 

the results chapter. 

The flow chart for the method is shown in Figure 3.8.   

3.2.2 Model based approaches: 

In order to obtain more accurate glove data, some model based approaches have been tried. 

Among the methods tried, the two most tried methods were SVM and linear regression. The aim 

was to get better correlation between loadcell and glove data. Thus, I attempted to apply the loadcell 

data to model and obtain hyperplane for SVM classification. However, the two issues as to why 

this approach did not work were: (i) Each of the sensel was assumed independent while classifying 

which is not true. (ii) The SVM model was an overly complicated model for this data. 
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Thus, the second approach: linear regression was considered. This turned out to be an over 

simplification of the problem. Thus, in both these cases, the results obtained were worse than those 

obtained in Chapter 2. The plots are shown in the Results chapter.  

During this attempt, Fei Deng [1] modeled a neural network that does non-linear regression 

and thus fits the data well. The structure of and results from neural network are described in the 

next chapter. 

3.2.3 Aggregation method: 

This method is the latest development in this research and described in detail in the next 

chapter. 

 

Figure 3.8: Flow chart to boost relevant sensels of glove using glove gyro data  

3.3 For Flexion and Extension 

For flexion and extension, the same algorithms can be applied with segmentation at some 

point of the algorithm. Preferably, the segmentation is done when the final glove waveform is 
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obtained after filtering. The motion of flexion and extension is very similar to a Simple Harmonic 

Motion. Thus, the segmentation is done as show below: 

 

Figure 3.9: Force data in flexion and extension 

 

Figure 3.10: Gyroscope data in flexion and extension 

Once this segmentation is done, any of the above described algorithms can be applied to 

find the flexion and extension spasticity values. 
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4. AN INSTRUMENTED GLOVE FOR AUGMENTING SPASTICITY 

ASSESSMENT WITH OBJECTIVE METRICS 

4.1 Abstract 

In this contribution, we propose an instrumented glove worn by experts to augment 

subjective assessments of spasticity with an objective, repeatable metric with reduced inter- and 

intra- rater variability and improved resolution over current best practices. We present the system 

design and validation using commercial, off the shelf (COTS) components. The glove includes 

spatially-resolved, force-dependent resistive sensor elements and an inertial measurement unit 

(IMU). We describe development of a mock patient equipped with a mechanism to adjust the arm 

stiffness, a load-cell and an IMU to measure the work done to move the arm. The mock patient 

provides ground truth to validate the proposed concept. We report the power measured by the 

sensors in the mock patient to move the arm and the power estimated by the glove in moving the 

arm and show Pearson correlation coefficient of 0.9 with untrained users. With experts trained in 

spasticity assessment, the correlation was 0.7 and 0.8 with and without outliers, respectively. We 

identify the sources of errors during expert assessment trails and the limitations of the COTS 

realization of the glove and the mock patient. We conclude with recommendations for improving 

the glove electronics, mock patient realization and guidelines for experts to incorporate limitations 

of electronics in the proposed system to improve spasticity assessment and patient care. 

4.2 Introduction 

Spasticity is a neuro-muscular disorder characterized by an increase in muscle-tone or 

stiffness of the limbs. It often occurs in patients with problems like Cerebral Palsy (CP), Multiple 

Sclerosis (MS), Traumatic Brain Injury (TBI), Stroke, Spinal Cord Injury (SCI), Paralysis etc. It is 

typically caused by damage in the part of brain and/or spinal cord which is responsible for motor 

control. It is estimated that spasticity affects more than 12 million people around the world. About 
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80 percent of people with cerebral palsy (CP) and Multiple Sclerosis (MS) have spasticity (of 

varying degree). Since an estimated 500,000 people in the United States suffer with a form of CP, 

this means about 400,000 people suffer from some degree of spasticity. Similar statistics for MS 

show an estimated 400,000 people in the United States with MS and hence 320,000 people with 

some degree of MS-related spasticity [1]. The pharmaceutical industry spends billions of dollars 

developing drugs to relieve spasticity, but these efforts are stymied by the lack of repeatable, 

objective metrics to quantify the outcomes [2-4]; excessive dosage of drugs to treat spasticity can 

cause severe side effects such as such as seizures, blurred vision, and severe rashes, while 

inadequate dosage is ineffective at treating spasticity.  

Multiple methods have been proposed to assess spasticity, the most commonly used being 

a subjective scale called the Modified Ashworth Scale (MAS) [5-6]. The methods and scales for 

spasticity assessment lacks repeatability, consistency, or objectiveness [7-8]. This results in 

inaccurate prescription of treatment which is either inadequate or copious to the patients resulting 

in either no relief or seizures. Some of the methods proposed for spasticity management are 

described in the next section.  

The current best practice of spasticity assessment requires a high level of medical training 

and yet result in inconsistent numbers with high inter- and intra- rater variability. Typically, 

spasticity assessments are done weeks and months apart.  Given the subjective nature and poor 

resolution of the MAS scale, it becomes difficult to incorporate long-term assessments in patient 

care. Consequently, accounts from patients and their family members are also factored in treatment 

options. 

Due to the above reasons, this research focused on a repeatable, objective and consistent 

metric that can be employed easily across clinicians or raters of varied medical expertise. We 

developed an instrumented glove with an array of sensors to sense force and arm motion and 
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compute an objective rating reflecting the amount of work done to move the limb. We also built a 

“mock patient” to serve as the “ground truth” and aid the development of this instrumented glove  

The paper is organized as follows: Section II describes the currently present metrics for 

spasticity assessment and prior research to address the lack of repeatable assessment metrics. 

Section III describes the development of the instrumented glove and the mock patient. Section IV 

details the experimental protocol for data collection, description of clinical trials and algorithms 

that go into calculating the metric. Section V presents the results from the experimental data and 

the algorithms from Section IV. Section VI is the conclusion and the future scope. 

4.3 Prior Work 

There are many methods to diagnose spasticity. There are clinical scales, which basically 

are based on a doctor’s “feel” of the patients’ stiffness. Therefore, these methods are very 

subjective. Clinical methods of assessment include: 

1. Ashworth and Modified Ashworth Scale: MAS is the most widely used metric on account of 

its simplicity. MAS is a highly subjective rating [7, 9-10]. It has high inter- and intra-rater 

variability [11-12]. It has also been claimed that MAS does not consider the velocity aspect 

and only captures resistance to passive movement [13-14]. It does not distinguish between 

neural and non-neural causes of resistance [13]. Considerable research has been put into 

understanding spastic models, yet none address developing an objective metric.  

2. Tardieu and Modified Tardieu Scales: In MTS, the angle for catch (using goniometers) at high 

velocity stretch and the angle for full passive range at slow velocity stretch responses are 

measured [15]. Thus, it considers the velocity aspect of spasticity. It is suggested as the more 

appropriate metric over MAS because of this [15]. The MTS performs better in case of intra 

and inter-rater reliability than MAS [16]. It’s inter-rater reliability is still not very good [16] 

[17]. Even though it is closer to actual description of spasticity given by Lance [18], the MTS 
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is still subjective in nature. This is proven by change in variability (both) before and after 

training of raters. It is less popular than MAS because MAS is simpler. 

3. Hypertonia Assessment Tool [19] 

4. Composite Spasticity Scale [20] 

5. Gross Motor Function Classification System - Expanded & Revised (GMFCS - E&R) [21] 

6. King’s Hypertonicity Scale 

Secondly, there are neuro-physiological assessment tools which are inclusive of the 

neurological aspect of spasticity. There methods don’t always correlate to the actual level of 

spasticity even though the measurement correlation is usually high. These methods also often rely 

on voluntary motion by patients which is an undesirable property in assessment as the patients may 

or may not move to their full extent and this might cause them inconvenience. Some 

neurophysiological assessment tools are as follows: 

1. Electromyography 

2. Tonic stretch reflex testing 

3. H-reflex 

The neuro-physiological tests use some sensors to get measurements. There is some 

consistent disadvantage that all these tools display. They instrument the patient and they do not 

have a defined translation to extent of spasticity. All the neurophysiological tools and their variants 

are not commonly used since literature does not back these methods up with a direct correlation to 

level of spasticity [22-23]. None of these methods correlate to spasticity levels and merely give 

measurements of passive reflex threshold, velocities and stretch angles 

The third type of assessment tools are biomechanical tools. These are machines or use some 

mechanical tools to assess spasticity. Some of these methods are: 

1. Myotonometer 
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2. Wartenberg Pendulum Test 

3. Three-dimensional pendulum test 

4. Dynamometry 

5. Measures using goniometry 

6. Inertial sensors 

7. Stiffness tool with robotic-assisted gait orthosis 

These methods either get too bulky for the patient or reply on the voluntary motion of the 

patients which is not reliable [24]. Some studies also mention a not so significant correlation with 

clinical scales [25-27].  

Many researchers have taken different approaches to address the lack of quantitative 

assessment of spasticity. Wearable devices [28-30] and EMG sensors [31] have been deployed on 

patients to detect spasticity symptoms, but the drawback is that such devices can be inconvenient 

and uncomfortable for the patient. Studies using electromyography (EMG) sensors [31, 32] were 

carried out on patients with spasticity to characterize the patients’ muscle tones under flexion and 

extension. Wu et al. [33] measured the catch angle reliably by determining the instantaneous 

velocity and the time derivative of torque. Research by Park et al. [34] also targeted measurement 

of catch angle and elbow range of motion. Both the above studies were focused on identifying the 

presence/absence of a catch phase for correlation to a MAS score between 1 and 2, but these studies 

did not provide a continuous scale to quantify the different levels of severity. The lack of a 

quantitative scale for spasticity was addressed by development of musculoskeletal models [35] or 

haptic simulations [36] to determine key physical parameters that contribute to spasticity. One of 

the most common models is the Haptic Elbow Spasticity Simulator (HESS) [37-39], in which the 

properties of spasticity are simulated with the muscle resistance as torque and the catch phase as 

an impulse. Development of the HESS simulator mainly benefits the doctors as they can practice 

MAS assessments without requiring actual patients. Their research focused on modeling of 
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spasticity and emphasized on the factors that characterized each MAS level. Alternatively, a 

mathematical model by Zakaria et al. [40] formulated the resistance as torque and accounted for 

additional parameters such as the angular velocity, modulus of elasticity etc. The above models 

have yet to be translated into physical tests that can be implemented on patients to track the 

spectrum of spasticity conditions. 

4.4 Experimental Setup 

The experimental setup consists of two parts: a) the instrumented glove and the b) mock 

patient. The instrumented glove is intended to be worn by the raters/clinicians who assess the 

patients. The sensors on the glove would then give an estimate of the extent of spasticity. We have 

decided to instrument the raters instead of the patients for the following reasons: 

1. It is more convenient for the patients to not wear instruments or sensors as seen from previous 

studies in section II 

2. Considering the doctor-patient ratio, it makes more financial sense to instrument the doctors 

The mock patient is a validating ground truth for the glove. This is used to simulate 

consistent conditions for the glove to test. 

A. Instrumented Glove: 

Our approach to improve spasticity assessment is an instrumented glove worn by the doctor 

during patient evaluation. We integrated a spatially-resolved, force dependent resistive sensor array 

(by Tekscan, [41]) and an inertial measurement unit (IMU) consisting an accelerometer, gyroscope 

and a magnetometer [42]. The force sensor on the glove measures the contact force being applied 

to move a patient’s limb. The level of muscular resistance to motion indicates severity of spasticity. 

Figure 4.1 (right) shows the force sensor integrated on to a golf glove. It has 18 sensing regions, 

with a total of 349 sensing elements that output a voltage proportional to the applied force. The raw 

output is a spatial map of 8-bit values for each sensing element. The data was collected at 20Hz. 
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For our analysis, we used the sum of the output of all the sensing elements. During the experiment, 

the researchers wore the glove and performed cycles of movement with the patient, such as elbow 

flexion and extension. The IMU is attached to the back of the glove as shown in Figure 4.1 (left). 

It is used to characterize the hand maneuvers during clinical assessment of spasticity. In this work, 

we use only the gyroscope data to estimate the power needed to manipulate a limb. The IMU data 

is collected at 20 Hz. The angular velocity v from gyroscope is converted to linear velocity at the 

location of the grip in the mock patient. We estimate the power to move the patient’s limb as F*v. 

In our initial study, five individuals with cerebral palsy volunteered to participate in this study. 

Participants and/or their parents provided informed consent as per the UCSD Human Subjects 

Internal Review Board regulations. Participants engaged in a modified Ashworth scale assessment 

with two physicians well-trained in this methodology (AS and his colleague) and then again by the 

same two physicians while wearing the spasticity measurement device. These data were collected 

in UCSD's Research on Autism and Development Laboratory. In this experiment, there was 

substantial inter-rater variability resulting in only 27% agreement in MAS values. Consequently, 

we were not able to use these data to validate the estimates from the glove sensors. To mitigate this, 

we created a mock patient capable of generating criterion metric (ground truth) that can be used to 

validate the objective numbers estimated from the glove sensors. 
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Figure 4.1: Instrumented glove and IMU 

B. Mock Patient:  

The mock patient has an arm structure as shown in Fig. 4.2. The arm has a lever connected 

to a disc clamped by a 5”C-clamp with stationary-bike brake pads, such that the resistance can be 

changed manually. The arm has an embedded load cell (model HX711 [43]) that senses the dead 

weight m due to the resistance set by the clamp. We compute the force to overcome this resistance 

as F = m*a, where a is the differential of the velocity found by gyroscope data. We use the term 

“preset resistance on the mock patient” to denote the force required to move the arm. The units are 

Newtons. The mock patient also has a gyroscope [44] to sense the angular velocity v during flexion 

and extension. We use this to measure the power as F*v, in N-m/s. In our experiments, we measure 

the power from the mock patient sensors and use it compare with the power estimated from the 

sensors in the glove worn by the rater. 
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Figure 4.2: Mock patient with loadcell and gyroscope 

4.5 Experiments and Algorithms 

Two sets of data collection were done. One has 15 datasets from 8 non-clinician raters from 

a MAS range of 1+ to 3 (the MAS range settings we suggested by an expert - AS). The second data 

collection was done among 6 clinicians from various affiliations [47]. 

A. Experimental protocol 

The raters should hold the mock patient arm parallel to the wrist with thumb on the top side 

of them arm. In that position, they should do multiple flexion and extension maneuvers for a 20 

second duration. This counts as on trial. The raters do this for multiple weight settings. In this 

experiment, there are 6 weight settings at 3 pound increments from 5 to 20 pounds. All 6 trials 

count as one set. All the clinician and non-clinician raters did these sets for the purpose of this 

experiment.  

For each of the trials, there are four data streams collected from 4 sensors: glove pressure sensors, 

loadcell, gyroscope on the glove and gyroscope on the mock patient. 

B. Algorithm 

We get 4 sets of data from the entire setup. Force data and gyroscope data from both the 

mock patient and the glove. The consistent metric, as mentioned above, is power. However, certain 
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pre-processing steps need to be followed to obtain meaningful data information. The block diagram 

in Fig 4.3 explains the algorithm in use. 

 

Figure 4.3: Block diagram of algorithm. u(t,n) is data signal for nth sensel  

The data from glove pressure sensors has the highest amount of error among the four 

sensors. A neural network has been employed to remodel this data without the error terms using 

data from loadcell. The description of neural network is mentioned in the next section. The square 

root of sum of squared of the data is found for both glove and loadcell data. This assess the 

frequency content of the signal. Alternate intuition is to find the square root of sum of data FFT 

squared. This intuition is also due to assessment of energy content of the data. Both these yield the 

same result owing to the Parseval’s theorem. For the gyroscope data from both the mock patient 

and glove, we do FFT based low pass filtering and find the peak values. The median of these peaks 

is considered as the value of speed in computing power. Thus, finally, the product A*C for glove 

and B*D for mock patient give the power expended in the maneuvers (since F=m*a and a=dv/dt). 
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The analysis in [46] mentioned drift in signals as a major source of error. This algorithm aggregates 

the effect of drift and thus gives better result. 

Figure 4.4 shows the glove force vs loadcell force measure data. Similarly, figure 4.5 shows 

the glove and mock patient gyroscope data waveforms. The actual force in Newtons is found by 

multiplying the glove (or loadcell) data with its corresponding acceleration found using gyroscope 

data. 

 

Figure 4.4: Glove and loadcell force data 

 

Figure 4.5: Mock patient gyroscope data (top) and glove gyroscope data (bottom) 
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C. The Neural Network 

The instrumented glove contains a total of 349 sensing elements and records data at 20Hz. 

Thus, there are 349 dimensions for each sample. However, since each rater has different gripping 

and hand size, simply take the sum of the output of all the sensing elements will not match the 

loadcell reading in the mock patient. Even with same rate, there are disturbance can come from 

changing of gripping during the trial. Thus, it requires a robust approach to map the glove data to 

the loadcell reading. Since the dimension of the glove data is much larger than the dimension of 

the loadcell reading, the mapping can be solved using a neural network. 

The neural network contains an input layer, one hidden layer, and one output layer, and 

there are 100 neurons in the hidden layer, and 1 neuron in the output layer. The forward pass of the 

neural network is as follows: 

For the batch of training set, X=[x1, x2,…, xn], where each xi is a sample of glove data 

and n is the total number of samples in the training set. The output of the hidden layer Y(X) can be 

compute as: 

Y= tanh(WX) 

W is the weighting matrix corresponding to the input layer and hidden layer, where Wji 

corresponding to the ith neuron in the input layer, and jth neuron in hidden layer. Then, the output 

of the output layer can be computed as: 

Z= tanh(UY) 

U is the weighting matrix corresponding to the hidden layer and output layer, where Uj 

corresponding to jth neuron in hidden layer and output layer. Finally, Z=[z1, z2,…, zn]T is the 

predicted value given n samples of glove data. 
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Since the mapping is basically a regression problem, the loss function used in this problem 

is least square loss function. 

L(U, W)=‖T-Z‖2 

Which T=[t1, t2,…, tn]; T is the target of the prediction, and it is the loadcell reading from 

the mock patient. 

With the forward pass and the loss function, the weighting matrix of the neural network 

can be updated using gradient descent. For each weighting matrix: 

Wt+1=Wt-η∇L(Wt) 

Ut+1=Ut-η∇L(Ut) 

The derivate of the loss function with respect to each weighting matrix can be compute 

using the backpropagation algorithm.  

∂L∂U=-2(T-Z)*(1-tanh2(UY))Y 

∂L∂U=δY 

Where 

δ=-2(T-Z)*(1-tanh2(UY)) 

∂L∂W=δ(1-tanh2(WX))*X 

The results for the neural network performance are as follows: 
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Figure 4.6: Error in NN 

 

Figure 4.7: Glove vs loadcell before and after NN 

The dataset contains trials from 18 raters, and each rater preformed 6 trials from 5 pounds 

to 20 pounds with 3 pound increments. Each trial has 20 second, thus there are around 42000 

samples from glove and loadcell. The training set contains 80 percent of the dataset, and the testing 

set has 20 percent of the dataset. Figure 4.6 is the standard derivation of the testing set. It is trained 

using batch learning with learning rate of 10-6.  

In the first plot of Figure 4.7, the glove data is simply generated by taking the sum of the 

output of the sensing elements. The glove data in the second plot is processed using the neural 

network. The glove data in the second plot is more correlated with the loadcell reading. 
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4.6 Results 

For the data collected from clinicians and non-clinicians, power expended is calculated as 

explained in section IV.B. This section shows the results thus obtained.  

For the non-clinician data, the correlation between glove and loadcell force (A vs B on 

Figure 3) is shown in Figure 4.8. The Pearson correlation coefficient obtained is 88%. 

 

Figure 4.8: Loadcell data vs final glove data for non-clinicians' data. The correlation obtained is 88% 

The correlation between mock patient and glove gyroscope data (C vs D on Figure 3) is 

give in Figure 4.9. The Pearson correlation coefficient obtained is 83%. 

 

Figure 4.9: Arm gyro data vs glove gyro data for non-clinicians’ data. The correlation obtained is 83% 
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The result (A*C vs B*D in Figure 3) for the non-clinicians’ data is given below in Figure 

4.10. The result and Pearson correlation coefficient obtained is 90%. 

 

Figure 4.10: Final measure power (Arm) vs estimated power (Glove) in non-clinicians' data. The correlation 

coefficient obtained is 90% 

To further evaluate how the algorithm performs across different raters, the variation of final 

correlation between mock patient (measured) power and glove (estimated) power across raters is 

shown in Figure 4.11. 

 

Figure 4.11: Variation of Pearson correlation coefficient (between final measured arm and estimated glove power) 

across non-clinicians 

Similarly, to investigate how the algorithm performs with varying weight settings across 

all raters, the said correlation is plotted for different weights across all raters in Figure 4.12. 
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Figure 4.12: Variation of Pearson correlation coefficient (between final measured arm and estimated glove power) 

among all non-clinicians across different weight settings 

The similar results are show in the following figures for the clinician datasets. It is 

noteworthy that with the non-clinician data, the experiment protocol was followed as instructed to 

the non-clinician raters. Thus, the results for non-clinician raters is under more controlled 

environment as compared to the clinicians’ data where some bias was introduced due to highly 

varying grip (as compared to what was mentioned in section IV.A) and left-handed doctors using 

a right handed-glove. 

The correlation between loadcell data and glove data is shown in Figure 4.13. The 

correlation coefficient is found to be 89%. 

 

Figure 4.13: Loadcell data vs final glove data for clinicians' data. The correlation obtained is 89% 
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The correlation between mock patient gyro data and glove gyro data is shown in Figure 

4.14. The correlation coefficient is found to be 71%. 

 

Figure 4.14: Arm gyro data vs glove gyro data for clinicians’ data. The correlation obtained is 71% 

The correlation between final measured power and estimated power is shown in Figure 

4.15. The correlation coefficient is found to be 74%. 

 

Figure 4.15: Final measure power (Arm) vs estimated power (Glove) in clinicians' data. The correlation coefficient 

obtained is 74% 

The variations of correlation between measured and estimated power across different raters 

and different weights are shown in Figure 4.16 and Figure 4.17 respectively. 
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Figure 4.16: Variation of Pearson correlation coefficient (between final measured arm and estimated glove power) 

across clinicians in descending order 

 

Figure 4.17: Variation of Pearson correlation coefficient (between final measured arm and estimated glove power) 

among all clinicians across different weight settings 

For various weight settings, the MAS value as assigned by the clinicians for various weight 

settings is shown below. 
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Figure 4.18: Variation of MAS rating by clinicians for varying weight settings 

4.7 Conclusions and Future Scope: 

In conclusion, we see that the glove gives very reliable variation and correlates to the ground 

truth. In cases where the correlation falls, the raters are either left handed (PD, PB and JG) or had 

high grip variations. As can be seen in Figure 4.11, the correlation is very stable across various 

raters, thus showing very positive signs for mitigation of inter-rater variability which is a huge 

concern in the other subjective metrics. By comparing Figures 4.10, 4.15 and 4.18; we see that 

there is a definite correlation between the estimated power and the MAS rating. Thus, we conclude 

that this estimate shows positive signs of being consistent unlike clinical tools in Section II. It also 

shows that it can correlate to MAS unlike the neurophysiological tools. By the consistency across 

weights in Figure 4.12, we can also conclude that it has the potential to be a repeatable metric. 

Thus, with some more improvement, this can be a repeatable, consistent and objective metric with 

a definitive mapping to standard spasticity measures. This glove needs to be only worn for 

assessment and thus does not require any clinical expertise on the rater’s part. 

For the future developments in this research, we aim to make the glove robust against grip 

variations. We also aim to improve the current mock patient to include high variety of spasticity 

profiles based on real patient data. As can be seen in Figure 4.18, the mock patient is repeatable for 
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weight settings and thus can be used to train inexperienced clinicians in spasticity assessment. We 

are experimenting with the resolution of the glove sensors in order to print our own flexible force 

sensors instead of the COTS sensors which have been established to have considerable variance 

[45] (up to 34%). Even though current algorithms mitigate drift effects, to allows for higher 

flexibility with sampling and processing, we would like to get all the sensors on a common clock. 

All these steps are essentially to improve sensor reliability and to mitigate grip issues. 

Chapter 4, in part is being prepared for submission for publication. The Thesis author and 

Fei Deng are among the authors for the same. 
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5. RESULTS 

This chapter details the results of approaches after Chapter 2. The scatter plots are arranged 

similar to the format of Chapter 4.  

Results for processing on boosted sensels’ data: 

 

Figure 5.1: Loadcell data vs Glove data for non-clinicians' data for sensel boosting algorithm. The correlation 

coefficient found was 68% 

 

Figure 5.2: Arm gyro vs Glove gyro for non-clinicians' data for sensel boosting algorithm. The correlation coefficient 

found was 83% 
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Figure 5.3: Arm power vs Glove power for non-clinicians' data for sensel boosting algorithm. The correlation 

coefficient found was 80% 

These results are on the new data sets. This data collection is described in Chapter 4. Data 

in Chapter 2 has not been used since. The same algorithm yielded the following results for 

clinicians’ data: 

 

Figure 5.4: Loadcell data vs Glove data for clinicians' data for sensel boosting algorithm. The correlation coefficient 

found was 67% 
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Figure 5.5: Arm gyro vs Glove gyro for clinicians' data for sensel boosting algorithm. The correlation coefficient found 

was 71% 

 

 

Figure 5.6: Arm power vs Glove power for clinicians' data for sensel boosting algorithm. The correlation coefficient 

found was 74% 

 

Results for approach in Chapter 4 (final algorithm) before Neural Network was applied – 
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Figure 5.7: Loadcell data vs Glove data for non-clinicians' data for final algorithm. The correlation coefficient found 

was 74% 

 

 

 

Figure 5.8: Arm gyro vs Glove gyro for non-clinicians' data for final algorithm. The correlation coefficient found was 

83% 
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Figure 5.9: Arm power vs Glove power for non-clinicians' data for final algorithm. The correlation coefficient found 

was 80% 

 

Figure 5.10: Variation of Pearson coefficient (between final measured arm and estimated glove power) across non-

clinician raters 

 

Figure 5.11: Variation of Pearson coefficient (between final measured arm and estimated glove power) across different 

weights for all non-clinician raters 
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Figure 5.12: Loadcell data vs Glove data for clinicians' data for final algorithm. The correlation coefficient found was 

69% 

 

Figure 5.13: Arm gyro vs Glove gyro for clinicians' data for final algorithm. The correlation coefficient found was 71% 

It is noteworthy that the high error in some clinicians is because they were left-handed 

doctors assessing with a right-handed glove. Apart from that, the bar charts show clear indications 

of a low inter-rater variability. 
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Figure 5.14: Arm power vs Glove power for clinicians' data for final algorithm. The correlation coefficient found was 

73% 

 

Figure 5.15: Variation of Pearson coefficient (between final measured arm and estimated glove power) across 

clinician raters 

 

Figure 5.16: Variation of Pearson coefficient (between final measured arm and estimated glove power) across different 

weights for all clinician raters 
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After using the Neural Network: These results are detailed in Chapter 4. A comparison of 

the results from Aggregation method, Sensel boosting algorithm and aggregation with Neural 

Network are as follows: 

 

Figure 5.17: Comparison between methods for non-clinician data 

 

Figure 5.18: Comparison between methods for clinician data 
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6. CONCLUSIONS AND FUTURE SCOPE 

Thus, from the research of this Thesis, we see that the Instrumented Glove shows definite 

promise of being a consistent, repeatable and objective measure for spasticity assessment. We see 

from Chapter 2 and 4 that it also correlates to the MAS whilst being more granular than MAS. We 

also see that the sensel boosting algorithm and the final (energy based) approach are effective 

methods of analyzing the glove data. The glove also shows a low rate of inter-rater variability. The 

glove is, however, sensitive to grip issues which need to be addressed. One of the key takeaway 

messages is that looking at inter-rater variabilities (bar charts showing variations), we see that it is 

significantly reduced. Thus, we have a trend depicting consistency and objectivity. 

In the future, it would be highly beneficial if all the data is collected from a single system. 

In this way, all data streams would be on a common clock and there will also be an ease of data 

collection. Once this is achieved, the next goal would be to make the glove processing real time 

and wireless. In this way, a rater could use a computer or phone after wearing the glove to test the 

patient and the result would be readily available. The development of the new mock patient [1] 

would highly benefit the validation of glove and also be used for training of new doctors. The 

functionality to download and recreate actual patient data would immensely help in improving the 

glove. As discussed in the previous chapters, the glove has close to 34% errors and for this reason, 

research is being done in printing our own glove with required resolution and much less errors. 

This will also fit the glove better and thus remove issues like sensor coverage etc. 
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