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Abstract

Microsimulation and Analytical Methods to Understand Urban Air Mobility

by

Pavan Yedavalli

Doctor of Philosophy in City and Regional Planning

University of California, Berkeley

Professor Paul Waddell, Chair

Over the last decade, a shift in mobility has occurred to accommodate different scales and
purposes of travel, with accessibility becoming a more prominent objective. Micromobility,
such as scooters and e-bikes, are beginning to redefine local travel. Transportation network
companies, such as Uber and Lyft, are questioning the need for private vehicle ownership.
Bus rapid transit and magnetic levitation are transforming the efficiency of public transit.
Autonomous vehicles are reimagining the commute to accommodate medium-distance trips
without the stress and lost time of driving. With technological advances in computing,
machine learning, batteries, semiconductors, connectivity, and electric propulsion, urban
air mobility is also becoming more popular, as it seeks to decrease the travel times for
long-distance trips in sprawled and congested metropolitan areas. In short, the new key to
mobility is multimodality. This dissertation focuses on the impact of urban air mobility on
metropolitan transportation networks.

Introducing a new mobility mode into a region has enormous effects across a variety of
metrics, including congestion, equity, sustainability, economic productivity, and long-term
travel behavior and land use decisions. Since many of these objectives are often intertwined
and complex, it is necessary to create tools to support infrastructure and policy decisions.
This dissertation unpacks the impact of urban air mobility on travel behavior and congestion
specifically, developing the foundational software simulation architecture for future scenario
planning and transportation analysis.

Microsimulation Analysis for Network Traffic Assignment (MANTA), a parallelized, GPU-
based microsimulation platform, is presented as an agile, modular, and extensible contribu-
tion to the transportation simulation and modeling literature. An improvement to MANTA’s
accuracy, namely traffic control inference using deep learning, is then proposed. Initial model-
ing and analytics of urban air mobility are then integrated into and output from an enhanced
MANTA, and a holistic modeling framework for ground traffic, ground-air coordination, and
aerial flight, known as SimUAM, is then presented. The dissertation concludes with boots
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on the ground, exploring which public agencies in the United States are prepared in planning
and policy to integrate urban air mobility into their transportation networks.
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Chapter 1

Introduction

1.1 Motivation

The history of large-scale aviation begins in the early 20th century, when twin jet engines,
with cowling around their circumferences for greater thrust efficiency and less drag, were
developed for larger planes for use in World War I, almost fifteen years after the Wright
brothers developed the first powered, manned, sustained flight aircraft [94]. Major aircraft
manufacturers such as Boeing and Douglas developed large-scale aircraft with powerful tur-
bojet engines, transporting hundreds of people per aircraft [218]. This fixed-wing aviation
technology continues to prevail for long-distance travel, with a global commercial aviation
industry enabling millions of people to travel across the world every day [218]. On the
other hand, rotor aircraft, such as helicopter, have largely remained niche aerial vehicles
due to their inefficiency against drag and when gaining lift, compounded by their relatively
prohibitive cost [218]. However, over the past two decades, rotors have become more aerody-
namic, and this greater efficiency has allowed for alternative propulsion techniques to fuel,
such as distributed electric propulsion [58, 221]. Urban air mobility (UAM) is a product
of these technical advancements, and the forthcoming electric vertical takeoff and landing
(eVTOL) aircraft are expected to leverage these new innovations for passenger and cargo
transport [58, 221].

Proponents believe that UAM will overcome transport inefficiencies by flying in lower
altitude airspace, moving quickly from point A to point B. The current architecture for UAM
envisioned by governmental agencies, academics, and industry leaders is a shared service in
which consumers request an on-demand aerial taxi, similar to the experience of ridesharing
services today [58, 77, 220, 194, 206]. By supplementing inter- and intra-city transportation
demand with UAM, advocates anticipate that travel times will be greatly reduced, and long-
run positive downstream effects may include lesser environmental degradation, decreased
energy costs, and fewer resources spent on infrastructure by leveraging free space.

Indeed, this is merely speculation rooted in excitement rather than objectivity. In reality,
UAM’s impacts are wholly unknown, and may be positive, negative, or both, depending on
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the geographic context, population investigated, and/or metric analyzed. In order to plan for
UAM as a new mode, we must first understand the range of UAM’s impacts on a metropolitan
region and its transportation network. To do so, we must do extensive simulation before
deployment, which will then inform planners, policymakers, and engineers as they conduct
cost-benefit analyses. This dissertation explores analytical methods of understanding UAM’s
impact on metropolitan regions, discerning whether UAM can indeed be the panacea to
congestion that proponents believe, and if so, in which deployments. Novel contributions
in regional-scale microsimulation and traffic control inference are first presented. UAM is
then integrated into this microsimulation framework, using the San Francisco (SF) Bay
Area as a case study. Feasible vertiport network designs under land use constraints as well
as detailed regional congestion analyses with varying aerial and vertiport assumptions are
presented. The dissertation concludes with a mixed-methods study on the preparedness of
local, regional, and state agencies for UAM, and the transportation planning implications
for this new mode.

1.2 Context of the Study

With technological advances in computing, machine learning, batteries, semiconductors, and
connectivity, a shift in mobility is occurring to accommodate different scales and purposes
of travel, with accessibility becoming a more prominent objective. Micromobility, such as
scooters and e-bikes, are beginning to redefine local travel. Transportation network compa-
nies (TNCs), such as Uber and Lyft, are questioning the need for private vehicle ownership.
Bus rapid transit and magnetic levitation are transforming the efficiency of public tran-
sit. Autonomous vehicles (AV) are attempting to reimagine the commute to accommodate
medium-distance trips in the comfort of an automobile without the stress and lost time of
driving. UAM as a concept is also becoming more popular, as it seeks to decrease the travel
times for long-distance trips in sprawled and congested metropolitan areas. In short, the
new key to mobility is multimodality. For every trip purpose, every person’s preferences,
and every distance traveled, experts believe there should be a safe, sustainable, equitable,
and efficient mode of travel available [50].

However, introducing a new mobility mode should assume a level of diligence that the
mode will be beneficial to most, if not all, people. Since UAM is an early concept, safety,
sustainability, equity, and efficiency cannot be guaranteed, and in fact, may become worse if
UAM is deployed irresponsibly. Effective deployment begins with comprehensive transporta-
tion planning and modeling, primarily through travel demand models and simulation [123].
Travel demand modeling has often been explored through two complementary lenses: trans-
portation models and traffic flow models [136]. Maeorivet et al. discuss how transportation
models operate at a high level, analyzing how households make certain travel decisions
about social, economic, and cultural activities, which then inform transportation policy and
infrastructure decisions [136]. There are two types of transportation model approaches: (1)
trip-based, and (2) activity-based.



CHAPTER 1. INTRODUCTION 3

While transportation models explore where travelers go and why, traffic flow models
describe how people are moving in the pipes themselves, specifically investigating the physical
propagation of travelers through a road network. There are traditionally three types of traffic
flow approaches: (1) macroscopic, (2) mesoscopic, and (3) microscopic, depending on the
level of traveler aggregation [228, 210, 182].

Both transportation and traffic flow models operate at the same levels of granularity,
from the coarsest aggregate macroscopic trip-based models to the most zoomed-in disaggre-
gate microscopic agent-based models. Simulation models encompass the gamut of different
analyses, often using aggregate and disaggregate analyses together [101]. When technological
capabilities exist, simulation models are extremely valuable in scenario planning and impact
analysis [101, 226].

Introducing a new mobility mode into a region has enormous effects across a variety of
metrics, including congestion, equity, sustainability, economic productivity, and long-term
travel behavior and land use decisions. While these objectives are often intertwined, it is valu-
able to investigate each independently to understand UAM’s upper and lower bounds. Using
simulation, this dissertation attempts to unpack the impact of UAM on congestion specifi-
cally, developing the foundational software architecture and testing framework by which the
subsequent measures can also be tackled in future research.

In the bulk of this work, the San Francisco (SF) Bay Area is used as a case study.
This is for two reasons. The first is the unique nature of economic and spatial growth of
the region, which produces interesting commuting patterns. Specifically, because the region
originally developed from the gold-boom town of San Francisco, it had assumed patterns of
monocentrism, in which most economic activity was centralized in the city, and thus much
of the travel, on all historic modes, was toward the city in the morning and away from the
city in the evening [45, 103]. As the region prospered over the twentieth and twenty-first
centuries, Oakland to the east emerged as an industrial hub, and San Jose, to the south
and the epicenter of Silicon Valley, emerged as a commercial and residential hub as well,
producing a new polycentrism in which there are multiple centers of economic and cultural
activity [45, 102, 121, 98, 134, 214]. Today, travel patterns in the SF Bay Area reflect both
this monocentrism and polycentrism, which makes the region’s findings highly adaptable to
either structure of any city across the world.

The second reason is functional. Researchers at University of California, Berkeley have
extensive access to both public and private travel data collectors across the region, including
the Bay Area Metropolitan Planning Organization, San Francisco Municipal Transit Author-
ity, California Department of Transportation, and major mobility providers such as Google,
Uber, Lyft, and Apple, all headquartered in the SF Bay Area.

1.3 UAM’s Trajectory

Before simulating and understanding UAM’s impacts, the challenges to deployment must be
highlighted. Historically with many new technologies, deployment is incremental; UAM’s
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implementation will likely follow a similar trajectory [100]. UAM is initially expected to
be expensive but become more affordable over time, as eVTOL aircraft technology becomes
more commoditized [100]. As traffic in the air remains low, the bottlenecks and operational
issues with unmanned traffic management (UTM) overseen by air traffic control will also
evolve [20].

Since UAM is in its rudimentary stages, developing the operational theory and logis-
tical architecture itself is challenging. Many stakeholders will play major roles in initial
deployment [39]. The aircraft are likely to be manufactured by leaders in industry, similar
to commercial aircraft today, and operations may be managed by private entities [58, 77,
194]. Duffy et al. note that logistics and infrastructure will be developed and maintained by
public agencies and businesses, but subsidized by private entities that rent out space, similar
to present-day airports [75]. Song et al. predict that operation and optimization will be reg-
ulated by aviation regulatory bodies, such as the FAA and EASA [196]. Balac et al. suggest
that the stops, known as vertiports, are also expected to be dispersed across metropolitan
regions, initially leveraging existing helipad locations, and eventually being placed in highly
connected areas where travel demand is dense, similar to subway and commuter rail [20].

There are several challenges to the adoption of UAM as well. Public perception, specifi-
cally related to safety and noise, must be managed in order to gain consumer trust and confi-
dence. The overflown are particularly concerned about the vehicles unpredictably falling out
of the sky [241]. Aircraft noise will also be a major parameter in community acceptance, and
it may dictate and restrict access to vertiports in specific geographic areas or certain times of
the day [220]. Different studies also show that privacy is a major concern for communities,
as UAM is often associated with military drones and increased government oversight [47,
53]. In addition, political polarization can dictate public opinion about unmanned aerial
vehicles (UAV), under which UAM is a subset [172].

Ultimately, UAM faces a challenging path to deployment, both in the United States and
across the world. Overcoming perception issues, developing viable business models, and
understanding its impacts on a variety of important transportation and societal issues are
paramount, and will ultimately dictate whether UAM takes off at scale.

1.4 Organization and Contribution by Chapter

In this dissertation, we develop a holistic simulation toolchain that investigates UAM’s im-
pacts on street network congestion, with the hope that the framework will become a founda-
tion for future scenario planning and transportation analysis. The toolchain’s architecture
and functionality are discussed in the subsequent chapters, with each chapter building on
the previous.

Chapter 2 introduces the field of travel demand modeling and presents the prevail-
ing paradigms, including the canonical four-step model (4SM). This model consists of trip
generation, trip distribution, mode choice, and traffic assignment across household counts,
classified by geography, income group, or other simple categories [96, 136, 118, 199, 12]. More
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disaggregation and granularity has recently been explored in activity-based models, which
are microscopic in nature and often provide a more direct representation of real-world human
behavior [227, 238, 210, 212, 236]. The chapter continues by exploring traffic flow theory and
the physical propagation of vehicles to understand their movements. Microsimulation Anal-
ysis for Network Traffic Assignment (MANTA), a parallelized, GPU-based microsimulation
platform, is presented as an agile, modular, and extensible contribution to the transportation
simulation and modeling literature.

Chapter 3 introduces new enhancements and disruptions to the aforementioned modeling
and simulation paradigms. It begins with a discussion of machine learning (ML) and how
it has augmented current simulation tools, detailing deep learning algorithms in the context
of simulation and traffic flow prediction. A novel example of machine learning to improve
simulation capabilities, specifically using convolutional neural networks to infer traffic control
at intersections, is then presented. Finally, emergent mobility modes and their impact on
simulation and modeling, from the perspectives of data collection and changes in travel
behavior, are discussed.

Chapter 4 reintroduces UAM as a mobility paradigm and describes the integration of
UAM into microsimulation. First, the planning and analysis of vertiport siting is presented.
Then, using the SF Bay Area as a case study, a regional travel time analysis of UAM with
a vertiport network design constrained by land use is given.

Chapter 5 provides additional analysis that incorporates a data-driven approach to
determine the total addressable market of UAM, as well as analytics across transfer times
and number of vertiports. It ends with a discussion about regional congestion with UAM
as part of the transportation network. This chapter provides a baseline for future work in
UAM mode choice modeling.

Chapter 6 replaces the initial assumptions made in the analyses of Chapter 4 with a full-
scale integrated multimodal toolchain, SimUAM, that simulates all components of a UAM
trip in the transportation network. This includes access and egress legs to the vertiports,
transfer and consolidation at the vertiports, and aerial travel using particular schedules as
well as conflict detection and resolution. By replacing static assumptions with dynamically
simulated ones, bottlenecks are more readily identifiable.

Chapter 7 zooms out to understand the planning requirements of integrating UAM
into the transportation network. It first introduces the challenges associated with deploying
UAM in metropolitan areas, citing significant issues such as equity, safety, and sustainability,
among others. A mixed-methods approach, with the development of a survey instrument
as well as the subsequent analytics, is then used to evaluate the preparedness of domestic
government agencies, including cities, metropolitan planning organizations (MPOs), and
states, for UAM.

Chapter 8 provides a conclusion of the work presented in the dissertation, as well as
future outcomes and research necessary to advance UAM simulation.
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Chapter 2

A Review of Transportation and
Traffic Simulation and Modeling

Mobility simulation has historically revolved around travel demand modeling to understand
how and to where humans move on both temporal and spatial scales [226]. Travel demand
modeling has often been explored through two complementary lenses: transportation models
and traffic models [136]. The chapter will discuss in turn each lens.

2.1 Introduction

Transportation Models

There are two types of transportation model approaches: (1) trip-based, and (2) activity-
based [182]. The transportation model that largely dominates travel demand modeling is the
aggregate four-step model (4SM), first formalized as a relationship between activity patterns
and transportation systems by Mitchell and Rapkin, as well as Beckmann et al. in the 1950s
and 1960s [136]. The 4SM first requires trip generation, in which the total number of trips
to and from a particular unit of geography is assigned. The second step is trip distribution,
in which the origins and destinations of these specific trips are determined [182, 123]. These
first two steps are straightforward byproducts of data collection.

Mode Choice and Choice Models

The third step is to evaluate the mode choice, selected among the set that includes the car,
bike, foot, public transit, and other forms of transport. Mode choice itself is a simple artifact
of the data, but it is more important to understand the parameters that affect mode choice.
Mode choice is quantitatively measured by both the expected absolute number of users for
each mode in a particular geography, and the probability that these users take each mode.
In order to understand the mode choice distribution, multinomial logit (MNL) models are
commonly used [136, 29].
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MNL models required in the third step of the 4SM are based on the microeconomic
theory of utility maximization, in which humans are believed to be rational actors who make
decisions that maximize their total value derived from a particular decision [29, 211, 210].
While research in psychology and behavioral economics has shown evidence that human
behavior is highly varied, dependent on individual motives, social and cultural norms, and
even groupthink, the assumption of rationality continues to be used as a basic foundation,
for the sake of simplicity and interpretability [136, 141]. Each mode’s utility contains a
systematic component and a stochastic component, as follows:

Udrive = Vdrive + εdrive (2.1)

where Vdrive is the systematic and observable utility and εdrive is the random error component.
In order for a traveler to pick driving against public transit or rideshare, for instance, we
assume that their Udriving > max(UPT , URS) where PT is public transit and RS is rideshare.
The probability of person n choosing to drive over other modes is specified as follows:

Pn(drive|Xn) =
eVdrive

eVdrive + eVPT + eVRS
(2.2)

where Xn represents the attributes of the person, PT is public transit, and RS is rideshare.
As with all probabilities, multinomial logit probabilities arise from dividing that choice by the
total number of choices. Determining these probabilities requires specifying utility equations
for each mode [29, 211]. Since we cannot observe the error ε, the only understanding we have
of a person’s utility for that mode is in the systematic component, V . It is important to note
that, in logit models, these probabilities can be derived only under the assumption that the
random error term of each alternative’s utility is independent and identically distributed (iid)
and follows the extreme value Gumbel distribution. V for a particular person is specified as
a linear combination of weighted parameters, as follows:

Vi,n = β0 + β1xi,n + β2xi,n + ...+ βkxi,n (2.3)

where n is the specific person, i is the alternative or choice, xi,n is the parameter included in
the utility equation, and βk is the coefficient that represents the weighting of that parameter
in the person’s overall decision to choose that alternative i.

In order to estimate these values, data are collected first. A stated or revealed preference
survey is typically designed to capture consumer demand for a particular mode choice. The
survey helps researchers understand current individual commuting habits and demographic
information of the respondent, generated using an orthogonal design [29, 211]. Several
sample scenarios are usually presented, with each respondent’s choosing their preferred mode
choice out of a given set of modes. Each alternative has several attributes, such as travel
time and price, each modeled by an xi in Equation (2.3). The survey data must then be
extensively cleaned and prepared for the MNL specification above. The coefficients, βk,
are then calculated based on maximum likelihood estimation. The likelihood of person n
choosing alternative i is specified as follows:
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L∗ =
N∏
n=1

P (Yn|xn; β) (2.4)

where Yn is the chosen alternative, xn represents all the explanatory variables, and β repre-
sents all coefficients. The probability P (i) is the likelihood that person n chooses alternative
i. Given this equation, we want to maximize the likelihood L∗ of predicting every person’s
mode choice, which then indicates a better model specification for that alternative. First-
order optimization tells us that in order to maximize, we must differentiate with respect to
β. Once we are able to estimate the various β coefficients for each alternative, then we can
assess each parameter’s statistical significance by analyzing its standard error and p-value.
This is often an exploratory and iterative process to determine the proper model specification
for each mode choice [29, 211]. Models are then compared to one another using likelihood
ratio tests and assessments of values of time (VOT), along with ρ2 values.

Traffic Assignment

The final step in the 4SM is traffic assignment, in which the specific paths in the network
from origin to destination are established. This is often done by finding a stable equilibrium
using shortest-path algorithms based on such impedances as travel time, distance, or cost
(from a metric such as fuel consumption) [136, 199, 204]. Since individuals’ route choices
affect others’ choices by imposing higher travel costs in the form of slower travel, traffic
assignment ideally should be modeled as a dynamic process, but since this often involves
more complexity, static traffic assignment, during which impedances are calculated only once,
is used. Unsurprisingly, static traffic assignment (STA) typically falls short in representing
the most realistic behavior on the network [136, 199, 204].

In order to understand how travel behavior is dictating congestion, we can calculate
travel times for each edge in a given region’s street network by simulating travel across all
transportation networks over a specified number of timesteps. This can involve aggregate and
disaggregate approaches, using both static traffic assignment and dynamic traffic assignment
(DTA), respectively. In STA, a map of congestion is created over time and space. Often,
to relate the edge travel time and edge congestion, the standard Bureau of Public Roads
(BPR) congestion function is used if data do not exist:

ti = t0(1 + α(
vi
ci

)β) (2.5)

where ti is the congested flow travel time, t0 is the free-flow travel time, vi is the number
of vehicles of edge i per unit time, and ci is the capacity (maximum number of vehicles) of
edge i per unit time [204]. The constant α is a linear multiplier while β is an exponential
multiplier of the volume-to-capacity ratio. In order to calculate α and β, we need edge data
about capacity and free-flow travel time. For simplicity, these are typically set as .15 and 4,
respectively, based on canonical data. Edge lengths, free-flow speeds, and each edge’s number
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of lanes are often obtained from such libraries as OpenStreetMap (OSM) and OSMnx, and
probe data for speeds are obtained from mobility providers. Once the road network, each
edge’s BPR coefficients, and node-based travel demand data are established, then the traffic
is simulated over a number of time iterations in order to obtain ti.

This macrosimulation requires a first-order optimization routine, such as the Frank-Wolfe
algorithm, which allocates traffic to each edge under a certain equilibrium condition, such as
user equilibrium (Wardrop’s first principle), shown below; or system equilibrium (Wardrop’s
second principle), shown further below [112].

min(Z) =
∑
a

∫ xa

0

ta(x)dx (2.6)

or

min(Z) =
∑
a

∫ xa

0

xta(x)dx (2.7)

subject to ∑
xa = C (2.8)

where ta is the travel time on link a, xa is the total number of flows on link a, and C is a
constant for total number of flows in Eq. 2.8. Colak et al. find that 15-30% of total time
lost in congestion is caused solely by selfish routing [56].

In simulation, DTA edge impedances must be constantly calculated and fed back into the
optimization or routing engine, often using heuristics such as time increments for calculation.

Traffic Flow Models and Theory

The last step of traffic assignment makes way for an area of scholarship that requires its own
detail: traffic flow models.

Fundamental Diagram of Traffic Flow

Traffic theory has historically developed in the context of automobiles on roads and high-
ways, but can also be applied more broadly across other forms of transport. This section
focuses on the automobile because of its prevalence and relevance to the overarching trans-
portation network within a metropolitan area. Traffic flows are often analyzed from a fluid
mechanics perspective [12]. Three major variables of traffic exist: flow, density, and speed (or
velocity) [199, 12], all represented in the fundamental theory of traffic flow, shown in Equa-
tion (2.9):

q = kv (2.9)
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Figure 2.1: The fundamental diagram of traffic flow that relates density, flow, and speed
(courtesy of [199])

where q is flow, k is density, v is speed (velocity). Flow is measured as the quantity of traffic
that moves from one point to another over a period of time. More specifically, it can be
the number of people, goods, or vehicles passing a point in a set period of time [199, 12].
Density is measured as the concentration of vehicles per unit distance per unit time. When
density is low, then the count of vehicles along the edge is small. When density is high, that
implies that vehicles are very close to one another and hardly moving [199, 12]. If they are
hardly moving or come to a full stop, the flow goes to zero, which means that the density
is at a maximum while the flow is zero. Speed can be classified as instantaneous speed
or mean speed [199, 12]. The instantaneous speed is given by the slope at a given point
in the space-time diagram, while the mean speed, which is more commonly used, occurs
when averaging the speed of all vehicles over a period of time at a particular point on the
transport network [199, 12]. When density is low and the flow is low, then the speed will
likely be at a maximum, representing free-flow speed. As flow increases, then the density
also increases, which then forces speeds to be adjusted to maintain safe distance headways.
As the density increases, speeds continue to drop; when jam density is reached, the speed
halts to zero. Similarly, as flow increases, speeds will decrease, but generally more slowly
over a large range of flows [199].

The first relationship, known as the fundamental diagram of traffic flow, shows density
on the x-axis and flow on the y-axis, and is a concave down graph in which the flow and
density increase until a maximum, shown in Figure 2.1, at which point the flow decreases,
despite density continuing to increase. The inflection point corresponds to the density that
produces the maximum flow. The derivative at a particular point gives the space mean
speed, which is the change in flow over the change in density in miles per hour [199, 12],
shown in Equation (2.10):
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us = qs (2.10)

where s is the average space headway. The second relationship is between speed and flow.
With flow on the x-axis and speed on the y-axis, we have the same flow-density curve, but
rotated 90 degrees clockwise. As the flow increases from zero, the speed initially decreases
very little, but gradually increases its rate of decrease as the flow continues to increase [199,
12]. Once the maximum flow is reached, the speed then starts to drop dramatically, as traffic
begins to move into a congestion phase [199, 12]. As a result, it is desirable for transportation
systems to operate at maximum flow, but in the real world, due to instability and congestion
immediately beyond maximum flow, most hope to operate at just below maximum flow with
room for error, at speeds slightly higher than those that occur at maximum flow. Since
capacity - a rate - is the maximum output flow that can be achieved within a given time
period, any attempts to put more vehicles into the system beyond capacity will result in
congestion [199, 12].

Flow Models

Given these fundamental parameters, we now elaborate on various traffic flow models, which
explicitly describe the physical propagation of traffic flows within a pipe or across many
pipes. These models can be broken down by their level of granularity in analysis, as there
are (1) macroscopic, (2) mesoscopic, and (3) microscopic models [136]. Macroscopic models
are based on fluid mechanics, and are the highest level of aggregation and thus the lowest level
of detail [136]. Mesoscopic models are at a lower level of aggregation than macroscopic ones,
and often use gas-kinetic theory in which driver behavior is considered [136]. Microscopic
models are at the lowest level of aggregation and contain the most detail, describing minute
interactions among vehicles in a pipe [136].

Macroscopic flow models are based on the continuity assumption in classic fluid me-
chanics, in which fluids should be treated as continuous media, such as a liquid in a pipe,
rather than distinct particles [136]. Traffic is considered an inviscid but compressible fluid,
and thus, flows, densities, and speeds are continuous variables, as noted by Maerivoet and
Moor [136]. This leads to the canonical LWR model, which states that traffic as a fluid
becomes less viscous as you move from congested to free-flow [223]. Such a notion implies
a wave motion to traffic, as drivers that go from congested to free flow generate a fan of
rarefaction waves [223]. The reverse of going from a low to high density regime results in a
shockwave [136]. Daganzo builds on this model to distinguish different lanes and different
types of drivers, which creates a capacity funnel [60]. This funnel shows that once a capacity
drop occurs, the recovery to the capacity-flow regime cannot occur spontaneously, and thus
it requires an exogenous mechanism [60]. Payne found that the LWR model is unsatisfactory
in modeling real-time traffic flows because it did not account for stop-and-go waves, instead
developing a higher-order model. He identifies three aspects in the momentum equation: (1)
convection term, which describes how the space-mean speed changes due to the arrival and
departure of vehicles at the time-space location, (2) relaxation term, which describes how
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vehicles adapt their speed to the conditions dictated by the fundamental diagram, and (3)
anticipation term, which describes how vehicles react to downstream traffic conditions [116].
However, Daganzo and the Berkeley school debunked these higher-order models in 1995, not-
ing physical flaws in higher-order models and the lack of numerical stability in the solution
space [136, 60].

Mesoscopic flow models look at aggregate characteristics like macroscopic ones, but they
also consider such microscopic characteristics as driver behavior. One common mesoscopic
model is the cluster model, which groups nearby vehicles together based on space-mean
speeds rather than doing analysis on individual vehicles [136, 223]. Leonard and Ben-Akiva’s
worked on CONTRAM and DynaMIT, respectively, using this model [136]. Another common
model is the headway distribution model, which is based on probability distributions of time
headways and successive vehicles [136, 223]. Buckley and Branston developed semi-Poisson
and generalized queuing models, respectively, under this umbrella. However, they assume
homogeneous traffic flows, which is inadequate to describe real-world traffic dynamics [41].
Yet another common model is the gas-kinetic model, which is based on a phase-space density
equation derived from Boltzmann’s theory of gas dynamics [136, 60]. From the equation,
we can get accelerations and interactions between the vehicles, as arriving and departing
vehicles cause a change in the distribution of vehicle speeds. Despite the deeper granularity,
mesoscopic models tend to fail at moderate to higher densities [136, 60, 12].

Microscopic models provide even greater granularity, giving explicit consideration to the
interactions between individual vehicles within a traffic stream, employing characteristics
like vehicle lengths, speeds, accelerations, and time and space headways. Car-following and
follow-the-leader models, based on details of the interaction between two neighboring vehicles
in a pipe, are the most widely known microscopic models [210]. The intelligent driver model
(IDM) is then based on these theoretical frameworks, described later in this chapter. There
are two stability criteria for car-following models: local and asymptotic [210]. Local stability
describes how initial disturbances in the behavior of a leading vehicle affect a following
vehicle. Asymptotic stability describes the behavior of the platoon of following vehicles,
with instability occurring after the fifth following vehicle [210].

Microscopic models also take into account lane changing dynamics. Specifically, there
are two types of lane changes: mandatory and discretionary [238]. Mandatory lane changes
occur when the vehicle must take an exit off of the road, while discretionary lane changes
occur for overtaking or voluntary movement [238]. In order to do a lane change, a check
is made to see whether it is physically possible to merge into an adjacent lane, using gap-
acceptance theory [238]. Within gap-acceptance theory, there are both optimal velocity
models and psycho-physiological spacing models that dictate driver behavior [136]. The
former manipulates the acceleration of a vehicle such that a vehicle’s desired speed is selected
on the basis of its space headway rather than just the speed of the leading vehicle. The latter
creates spacing based on a driver perception threshold to speeds, speed differences, and space
gaps.

Since microscopic models have greater granularity, its representation of real world dynam-
ics is strong, but the computational complexity during simulation often becomes intractable.
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As a result, traffic cellular automata (TCA) models have become more popular, as they
advance time with discrete steps and in space that is coarse-grained. These models are
flexible and efficient, but have low accuracy on a microscopic scale [136]. Brockfeld et al.
benchmarked ten common microscopic traffic models for accuracy of predicted travel times,
and found that the intelligent driver model and cell-transmission model performed best, with
accuracies of nearly 83% [38].

Traffic modelers use three alternative types of traffic assignment models to predict the
impact of travel demand on the network: (1) macroscopic, (2) mesoscopic, and (3) micro-
scopic, in decreasing order of traveler aggregation and increasing order of granularity [145,
229]. Macroscopic models are based on the continuum assumption in classical fluid me-
chanics. The traffic flow is treated as continuous, similar to a flow of a liquid in a pipe,
rather than that comprising of discrete vehicles [137]. These macroscopic models are use-
ful in analyzing traffic systems covering a wide area, often across regions, and on highways
where the overall speed dictates the macroscopic changes [123]. Unlike macroscopic models
that assume a continuous vehicular flow on the road link (edge), mesoscopic models employ
aggregated volume delay functions, by clustering a set of vehicles into packets and evalu-
ating the movement of these clusters [123]. In contrast to these models, microscopic traffic
simulation models provide even greater granularity, giving explicit consideration to the in-
teractions between individual vehicles within a traffic stream and employing characteristics
such as vehicle lengths, speeds, accelerations, time, and space headways [210].

Simulation Tradeoffs

Regional-scale transportation modeling has been dominated by the macroscopic and meso-
scopic models, due to their relative computational efficiency and familiarity [124]. However,
one of the significant drawbacks of these simulators is their lack of granularity. They are
limited by the accuracy of representing real-world vehicle dynamics, especially in congested
regimes and for emergency scenarios [210, 16]. Traffic flow dynamics are naturally an out-
come of the interaction of a many-particle system, where each particle exhibits different
characteristics [236]. Only a microsimulation model can capture these intricacies of indi-
vidual components and complex interactions with reasonable accuracy [133, 236, 210, 93].
However, microsimulation has a high computational cost due to the granularity required in
simulating of vehicle movements. Hence, regional-scale microsimulation has generally been
impractical [182, 123]. Although many traffic simulators exist, such as MATSim, SUMO,
AIMSUN, Polaris, TRANSSIM, VISSIM, and DynaMIT, among others, these simulators are
not designed to tackle large-scale traffic microsimulation efficiently [108, 125, 26, 14, 183,
165, 30]. As a result, techniques such as sampling a small fraction of the transportation de-
mand are currently employed to achieve regional-scale traffic models in a reasonable amount
of time and computational cost.

The next section describes a novel contribution to the microscopic simulator literature,
MANTA, that carefully addresses the granularity vs. spatial extent vs. computational time
tradeoff that exists.
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2.2 Background

This section introduces a massively parallelized GPU implementation of a metropolitan-scale
microsimulation engine - MANTA. MANTA is an agile regional-scale microsimulator capable
of efficiently simulating over 7 million agents at a spatial scale as large as the San Francisco
Bay Area, in under 10 minutes. First, we present the components of the simulation, then
the mathematical theory and implementation of the simulator, followed by the results of a
case study in the Bay Area. We then present the calibration and validation of the simulator,
performance benchmarks, limitations and future work, and finally the conclusions.

Traffic modelers use three alternative types of traffic assignment models to predict the
impact of travel demand on the network: (1) macroscopic, (2) mesoscopic, and (3) micro-
scopic, in decreasing order of traveler aggregation and increasing order of granularity [145,
229]. Macroscopic models are based on the continuum assumption in classical fluid mechan-
ics. The traffic flow is treated as continuous, similar to a flow of a liquid in a pipe, rather
than that comprising of discrete vehicles [137]. These macroscopic models are useful in an-
alyzing traffic systems covering a wide area, often across regions, and on highways where
the overall speed dictates the macroscopic behavior [123]. Unlike macroscopic models that
assume a continuous vehicular flow on a road link (edge), mesoscopic models employ aggre-
gated volume delay functions, by clustering a set of vehicles into packets and evaluating the
movement of these clusters [123]. In contrast to these models, microscopic traffic simulation
models provide even greater granularity, giving explicit consideration to the interactions be-
tween individual vehicles within a traffic stream and employing characteristics such as vehicle
lengths, speeds, accelerations, time, and space headways [210].

Metropolitan-scale transportation modeling has been dominated by the macroscopic and
mesoscopic models, due to their relative computational efficiency and familiarity [124]. How-
ever, one of the significant drawbacks of these simulators is their lack of granularity. They
are limited by the accuracy of representing real-world vehicle dynamics, especially in con-
gested regimes and for emergency scenarios [210, 16]. Traffic flow dynamics are naturally an
outcome of the interaction of a many-vehicle system, where each vehicle exhibits different
characteristics [236]. Only a microsimulation model can capture these intricacies of indi-
vidual components and complex interactions with reasonable accuracy [133, 236, 210, 93].
However, microsimulation has a high computational cost due to the granularity required in
simulating the vehicle movements. Hence, metropolitan-scale microsimulation has gener-
ally been impractical [182, 123]. Although many traffic simulators exist, such as MATSim,
SUMO, AIMSUN, Polaris, TRANSSIM, VISSIM, and DynaMIT, among others, these sim-
ulators are not designed to tackle metropolitan-scale traffic microsimulation efficiently [108,
125, 26, 14, 183, 165, 30]. As a result, techniques such as sampling a small fraction of the
transportation demand are currently employed to achieve metropolitan-scale traffic simula-
tion in a reasonable amount of time and computational cost.

This paper introduces a massively parallelized GPU implementation of a metropolitan-
scale microsimulation engine - Microsimulation Analysis for Network Traffic Assignment
(MANTA). MANTA is an agile metropolitan-scale microsimulator capable of efficiently sim-
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ulating over 7 million agents at a spatial scale as large as the San Francisco (SF) Bay Area, in
under 10 minutes. First, we present the components of the simulation, then the mathemat-
ical theory and implementation of the simulator, followed by the results of a case study in
the Bay Area. We then present the calibration and validation of the simulator, performance
benchmarks, limitations and future work, and finally the conclusions.

2.3 Components

The objective of this study is to perform a metropolitan-scale microsimulation of vehicular
traffic of the SF Bay Area, incorporating individual trips on a typical workday morning.
The microsimulator builds on the initial implementation by [87, 227]. In this section, the
network generation, demand creation, routing, and simulation architectures are described in
detail.

Street Network

For the case study, we use the SF Bay Area, which includes nine counties. The street
network is constructed from the OpenStreetMap (OSM) network within the polygonal hull
of the counties in the metropolitan area using the OSMnx library [34]. The network contains
all roads in the SF Bay Area, from large primary roads to tertiary streets. The OSM
network includes intermediary points representing curves or bends in the road links, which are
topologically unnecessary for network analysis [227, 34]. As these intermediary nodes do not
represent a real intersection, they are removed from the network used for the microsimulation.
The final network used for the microsimulation only includes nodes that represent physical
intersections or dead-ends. The resulting network is a connected graph of the San Francisco
Bay Area, where there exists a path from any node on the graph to any other node in the
graph. There are no hanging nodes without a path. Figure 2.2 shows the full network of
the SF Bay Area with 224,223 nodes and 549,008 edges. The number of lanes, length, and
free-flow speeds for each edge are extracted from OSM data or imputed. The speed limit of
each edge is taken from OSM, if available; if not, a free-flow speed limit is computed based
on the number of lanes and the type of road. If the number of lanes is not available, then a
recommended default value from OSM is used, depending on the type of road. For instance,
a tertiary road without a specified number of lanes is given a default speed limit of 20 mph,
and a motorway without a specified number of lanes is given a default speed limit of 57.5
mph.

Demand

The origin-destination (OD) demand is derived from data generated by the Bay Area Metropoli-
tan Transportation Commission (MTC) travel model [143]. For simplicity and considering
the near-symmetric bimodality of morning and evening travel demand [143], this study only
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Figure 2.2: The Bay Area Network with 224,223 nodes and 549,008 edges

considers the morning trips between 5 AM and 12 PM. The demand is further restricted to
only automobile trips, which includes private automobiles, transportation network company
(TNC) vehicles, and driving trips to transit stops. This demand does not consider public
transit trips, such as buses, or large freight trucks, as the Bay Area MTC travel demand
model is synthesized from only household travel data. While the data do not accurately
reflect the exact real-world network congestion, leaving approximately 250K trips off the SF
Bay Area road network for the 5 AM to 12 PM timeframe, the travel demand data remain
comprehensive with approximately 3 million trips [143]

The OD pairs constructed from the MTC model are available at the granularity of traffic
analysis zones (TAZ). TAZs are population density-based geographical areas typically larger
than blocks but smaller than zip codes. The SF Bay Area consists of 1454 TAZs. The travel
demand data is at the TAZ level (i.e., the OD pair represents a trip from an origin TAZ
to a destination TAZ). The microsimulation requires an origin and destination node within
its respective TAZ, which is achieved using a two-step process. First, all the nodes in the
road network are mapped to their respective TAZ polygon. Second, for each TAZ-level OD
pair, the origin-destination nodes are determined by sampling from a uniform distribution
within the origin and destination TAZs, respectively. This process differs from [227], where
origins and destinations are assigned to the centroid of their respective TAZs rather than
being distributed across different nodes within the TAZ. The random assignment avoids
unrealistic congestion at the centroids of the TAZs. The final OD demand has 3,269,864
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travelers.

Routing

After generating the network and the corresponding OD demand, the next step of the sim-
ulation is routing, where we compute the shortest-path between each origin and destination
pair. Routing algorithms have been bottlenecks in many traffic models, requiring either
significant pre-processing time or great computational cost [67]. The edge lengths, obtained
from OpenStreetMap, represent the length of the road link in meters, which is used as the
weight of the edge in the graph network for calculating the shortest path between nodes.

One of the significant contributions of this paper is the integration of a parallelized
Dijkstra’s priority queue single-source shortest-path (SSSP) algorithm, described in [247],
in which only the OD pairs required in the simulation are computed. The priority-queue
algorithm is parallelized with a hybrid MPI/OpenMP scheme, which allows for linear scaling
with millions of agents on a cluster. An open addressing scheme-based hashmap is used to
store key-value pairs of edge weights, which allows for faster update of the edge weights. This
open addressing scheme improves the performance of hashmaps by 20%, providing quicker
access to edges and connectivity. However, in this research, the road length is used as the
edge weight and remains unchanged throughout the simulation. This feature will be useful
in the future when the edge weights are updated dynamically based on traffic. A simulation
with 3.2 million OD pairs routes on the large SF Bay Area network is calculated within 62
minutes on an Intel I9 processor with 2 threads per core and 14 cores per socket.

Microsimulation

The microsimulation framework we adopt is an enhanced and extended version of the ar-
chitecture developed by [87]. The vehicles move in discrete timesteps of δt = .5 seconds,
following the state of the art microsimulators today [72]. The simulation described in this
paper models a typical morning workday from 5 AM to 12 PM. Each traveler in the OD
demand is randomly assigned a departure time within this specified range by sampling from
a normal distribution that roughly mimics the morning peak-hour behavior, with a peak
around 7:30 AM and a standard deviation of 45 minutes. The departure time specified for
individual vehicles in the simulation is presented in Figure 2.3.

At each timestep, the vehicle’s travel time, position, and velocity are updated. MANTA
employs a unique traffic atlas concept, akin to a texture atlas in the computer graphics
community or a discretization step in signal processing. Each road segment of length l is
discretized into l

tm
different compartments, where tm is the length of each compartment, in

meters, and is specified to be 1 meter in this implementation. Each 1 m compartment of the
road is assigned to a specific byte in the computer memory. Hence, a road represented in the
computer memory is a contiguous sequence of bytes. Each byte in memory can be occupied
by at most one vehicle, and records the velocity of the vehicle and reflects their real position
on the road lane [87]. Each road segment is represented as a new row in the 2D traffic atlas,



CHAPTER 2. A REVIEW OF TRANSPORTATION AND TRAFFIC SIMULATION
AND MODELING 18

Figure 2.3: Departure times are chosen between 5 AM to 12 PM to model the morning
hours. It follows a Gaussian distribution in which the bulk of the trips begin in the 8 AM
to 9 AM hour.

and ultimately has a different number of bytes depending on its length. The 2D array layout
of the road network requires less memory, making it parallelizable on a GPU rather than
requiring a graph-based approach. The traffic atlas significantly reduces the computational
cost of finding nearby vehicles, as it only involves looking up the status of neighboring cells
in the memory array. The lookup scheme on a 2D grid to identify the vehicle’s speed and
its neighbors’ speeds is parallelized with each thread on a GPU querying a specific block of
memory address, which significantly speeds up the computation on the GPU. This approach
varies from the traditional method, which requires checking the entire edge for neighboring
vehicles.

In MANTA, the vehicular movement on an edge is dictated by conventional car following,
lane changing, and gap acceptance algorithms [210]. The well-known Intelligent Driver Model
(IDM), as shown in Equation (6.1), is used to control the vehicle dynamics through the
network [213].

v̇ = a(1− (
v

vo
)δ − (

so + Tv + v∆v
2
√
ab

s
)2) (2.11)

where v̇ is the current acceleration of the vehicle, a is the acceleration potential of the vehicle,
v is the current speed of the vehicle, vo is the speed limit of the edge, δ is the acceleration
exponent, s is the gap between the vehicle and the leading vehicle, s0 is the minimum spacing
allowed between vehicles when they are at a standstill, T is the desired time headway, and
b is the braking deceleration of the vehicle [87, 227]. The exact position of each vehicle at a
given timestep is computed by double integrating the acceleration value v̇. Table 2.1 shows
the range of possible values for the IDM parameters a, b, T , and s0, which are derived based
on the simulations from [213]. These parameters are calibrated for the microsimulation of
the SF Bay Area using real-world data, with the process described in section 2.5.
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Parameter Value Units

a N (1, 10) m
s2

b N (1, 10) m
s2

T N (.1, 2) s

s0 N (1, 5) m

Table 2.1: IDM parameter ranges, derived from [213]

MANTA is designed to be modular to incorporate different vehicle profiles and dynamics.
In the future, these could include models for adaptive cruise control (ACC) and autonomous
vehicles. Specifically, since the IDM leveraged by MANTA has been used in ACC systems in
previous literature, it can be quickly adapted to accommodate for ACC in the future [119].
In ACC, the IDM maintains an appropriate relative distance to the lead vehicle, in contrast
to standard cruise control systems, whose objective is to maintain only a target speed [119,
146]. Automated and platooned systems are also capable of cooperative adaptive cruise
control (CACC), where there is communication among interacting vehicles [119]. Since the
control system in each vehicle can retrieve information from the adjacent vehicles, such as
the acceleration, velocity, and braking, these values can be stored as the IDM parameters
in MANTA. The current setup uses the same values across all vehicles, based on calibration
with real-world data (see section 2.5).

In addition to car following, vehicles can also change lanes within an edge. There are
two types of lane changes: mandatory and discretionary [87]. Mandatory lane changes occur
when the vehicle must take an exit off the road, while discretionary lane changes occur
during overtaking or voluntary movements [87]. The lane changing model gives the vehicle
an exponential probability from switching from a discretionary lane change to a mandatory
lane change, as shown in Equation (6.2).

mi =

{
e−(xi−x0)2

xi ≥ x0

1 xi ≤ x0

(2.12)

where mi is the probability of a mandatory lane change for vehicle i, xi is the distance of
vehicle i to an exit or intersection, and x0 is the distance of a critical location, which may
be the position of a particular message sign (such as a final exit warning) to the exit or
intersection (statically set to 1) [111, 236]. Intuitively, as the vehicle travels further along in
a path, its probability of making a lane change to make a turn or exit increases.

Once a vehicle has decided to change lanes, the maneuver is performed if the lead and
lag gaps are acceptable. A lane change dynamic involves interaction among three vehicles:
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the merging vehicle i, the lead vehicle a, and the lag vehicle b. The critical lead or lag gap
for a successful lane change is defined as the minimum distance to the following or lagging
vehicle at which a lane change can be performed, respectively, as shown in Equation (2.13)
and Equation (2.14).

glead = max(ga, ga + αavi + αi(vi − va)) + εa (2.13)

glag = max(gb, gb + αivi + αb(vi − vb)) + εb (2.14)

where glead is the critical lead gap for a lane change, glag is the critical lag gap for a lane
change, ga is the desired lead gap for a lane change, gb is the desired lag gap for a lane
change, vi is the speed of the merging vehicle i, va is the speed of the lead vehicle, vb is the
speed of the lag vehicle, αi is the anticipation time of vehicle i attempting to change lanes in
between vehicles a and b (in seconds), which have anticipation times αa and αb, respectively.
Because drivers perceive distances and times differently, this anticipation time varies from
vehicle to vehicle. The values of αi, αa, and αb were chosen in the range [0.05,0.40], based
on historically calibrated models [49]). If αi, αa, or αb equals 0, this means the anticipation
time of vehicle i, a, or b, for vehicle i to make a lane change is 0 (i.e., the vehicle anticipates
an extremely aggressive lane change with a low desired gap). Importantly, the anticipated
gap is calculated based on the assumption that other drivers will maintain their current
accelerations. For example, if the lag vehicle of the merging driver is decelerating, the
anticipated gap will increase. Finally, εa and εb are the random components, each normally
distributed with mean 0 and standard deviation 1, with units in meters. The values of ga
and gb are a function of the speeds of the merging, leading, and lagging vehicles (i, a, b,
respectively), but typically range between 1 to 5 meters at speeds below 25 mph and 5 to
10 meters at speeds above 25 mph [87].

The representation and modeling of intersections in this initial application of the traffic
simulator is simplistic and not representative of diverse real-world dynamics at intersections.
We consider two different types of traffic control. Case 1 traffic control is a flashing red
light at each node, where only one vehicle can move into the intersection at a particular
time. If the node contains n inbound edges and m outbound edges, the system will create
a round-robin of the nm combinations for all cars to pass through the intersection based on
their position in their lane queue [227]. Case 2 traffic control assigns every node as a green
light, where all cars pass through the intersection with no delay. This is clearly not realistic
for most nodes that have stop signs or traffic lights, but is plausible for nodes along highway
interchanges. However, congestion on the edge itself is still modeled, as each edge has a finite
capacity for vehicles and will not allow new vehicles from adjacent edges if the capacity is
reached. The results of the simulations for these two cases are discussed in section 2.5.

2.4 OD and Routing Results

Preliminary travel patterns already emerge from the initial routing calculation. Figure 2.4
displays a log histogram of edge volumes across the network, showing that the bulk of edges
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Figure 2.4: Histogram (log y-axis) showing the number of edges that see a particular vehicle
count across the time range simulated. The Bay Bridge is the most heavily traversed link
in the Bay Area, as it connects two major economic hubs: San Francisco and Oakland. The
subset of edges representing the Bay Bridge and its necessary feeder edges (7 in total) sees
a significant traffic volume of 30K trips, which has approximately 7.5K vehicles more than
the next highest edges. Most edges see fewer than 100 vehicles in the timeframe.

have vehicle counts below 1000 and are traversed infrequently. Only a small fraction of the
edges account for the majority of the most frequently traversed routes. Routes across the
Bay Bridge are shown in Figure 2.5. Unsurprisingly, the Bay Bridge remains a unique outlier,
as it accounts for a maximum volume of 31270 vehicles in the seven-hour duration. From [1]
by AC Transit and ARUP, 41727 trips out of a total of approximately 4M trips traverse the
Bay Bridge between 5 AM and 12 PM, representing 1% of all trips. This proportion of Bay
Bridge traversals matches the proportion from the routing output at roughly 0.98% (31270
trips out of 3.2M total trips in the SF Bay Area).

2.5 Simulation Results

Infrastructure and scenario planning requires a high degree of accuracy in modeling the
vehicle dynamics. This section highlights the calibration and validation techniques along
with the microsimulator results. Previous studies have relied on vehicle counts, queue lengths
at intersections, and vehicle speeds at loop detectors as ground truth data for calibration
and validation [204].

In this work, we adopt a novel approach of calibration and validation using link-based
speed data from the open-access Uber Movement project (https://movement.uber.com/
explore/san_francisco/speeds). Uber Movement uses GPS data from Uber vehicles to
calculate speeds at particular snapshots in time. The edge speeds are calculated using the
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Figure 2.5: A network showing all possible routes through the Bay Bridge

GPS locations of vehicles and the map data of the street network. The Uber app records
a vehicle’s location information every 1 to 2 seconds, including latitude, longitude, speed,
course, and timestamp of the GPS location ping. Uber uses map-matching with the latitude
and longitude of a particular GPS ping to determine when a driver enters and exits an edge.
The duration a vehicle spends on an edge is calculated as the time difference between when
the driver enters the street segment and when the driver leaves that segment. The edge
speed is then calculated as the length of the segment divided by the time taken to traverse.
Uber does not disclose the volume data, but notes that they ensure the validity of the data
by setting a minimum threshold for observations.

Calibration

Traffic microsimulators require calibration to real-world data to adequately represent ob-
served dynamics across a wide range of network structures and conditions [26]. In the IDM,
parameters a, b, T , and s0 are calibrated. The objective of the calibration process is to
minimize the sum of the errors between every edge’s speed from MANTA and the Uber data
(L1 norm). This optimization problem is specified in Equation (2.15),

min
N∑
n=1

|
∑K

k=1 vk,n
K

− vu,n| (2.15)

where vk,n is the calculated velocity of vehicle k on edge n, vu,n is the average Uber velocity of
edge n, K is the number of cars on edge n, andN is the number of edges that were successfully
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Figure 2.6: The calibration process: average mean difference between Uber and MANTA
speeds over time

matched between Uber’s street network and MANTA’s street network. Expanding further
in Equation (2.16),

min
a,b,T,s0

N∑
n=1

|
∑K

k=1

˙
[a(1− (

vk,n
v0,n

)δ − (
so+Tv+ v∆v

2
√
ab

s
)2]t

K
− vu,n| (2.16)

where t is the timestep (set as .5 seconds), a is the acceleration potential, b is the braking
potential, T is time headway, and s0 is the linear jam distance.

Given the highly nonlinear nature of the objective function, a numerical method is used
to optimize the IDM simulation parameters. We constrain the acceleration and deceleration
potential, a and b, respectively, to [1, 10] meters per second squared, headway time T to
[0.1, 2] seconds, and linear jam distance s0 to [1.0, 5.0] meters, and set the standard exponent
of the IDM, δ, to 4 [213]. A mini-batch gradient descent is then carried out across the entire
simulation, with each iteration executing runs for 5 different sets of a, b, T , and s0. We
accumulated the sum of difference in speed between MANTA and Uber for all edges. The
goal is to find the set {a, b, T, s0} that minimizes this sum of differences. The set that
produces the lowest mean difference is chosen as the nominal vector for the next iteration.
Each parameter is then perturbed by a value chosen randomly, sampled from a uniform
distribution, from [−1, 1] at the next iteration. Such a large range is used in order to
produce meaningful differences across sets within the next iteration. The perturbation range
then decreases by an order of magnitude at every iteration (e.g., iteration 3 uses [−.1, .1],
iteration 4 uses [−.01, .01], etc.). The calibration process converges once the mean difference
decreases below a desired threshold of .05 miles per hour, considering runtime limitations.
As shown in Figure 2.6, the calibration process converges after five iterations.
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Figure 2.7: Comparison of trip lengths in MANTA versus California Household Travel Survey
data. Median distance in MANTA is 6.46 km and in CHTS is 5.33 km.

Since the loss function in Equation (2.15) is non-convex across all of the calibrated pa-
rameters, this mini-batch gradient descent method will produce a local minimum and not
necessarily a global minimum. When a successive order of magnitude decay, producing a
larger perturbation range at every iteration, we observed that the gradient diverges, indicat-
ing a minima. Further research is required to improve the calibration method to approach
global optimality.

Validation

Validation is performed for both the routing algorithm and the traffic microsimulator. MANTA’s
routing algorithm is validated by comparing the routes against the California Household
Travel Survey (CHTS) data for the SF Bay Area [153]. Figure 2.7 presents the distances
traveled by each vehicle for both MANTA and CHTS. The distribution of distances is heav-
ily right-skewed, suggesting that most trips are fewer than 25 km. While CHTS data are
sparse (69000 trips versus 3.2M trips in MANTA), we can still see similarities. MANTA es-
timates the mean distance traveled as 11.3 km, which is close to 13.5 km in CHTS. Median
values are 6.46 km and 5.33 km in MANTA and CHTS, respectively. The 75th percentile
distances are also similar, at 13.6 km and 13.7 km for MANTA and CHTS, respectively.
The modest differences between the MANTA and CHTS routing data may be attributed to
stochastic error from random sampling of O and D location within the respective TAZs in
MANTA simulation.

The validation of the traffic microsimulator involves comparing the MANTA outputs to
Uber Movement distributions at specific timeslices. In particular, using Q2 Uber Movement
data from 2019, we compare results of the MANTA simulations and the Uber data for 95,510
edges, or 17%, of the total edges in the SF Bay Area network.
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We enhanced the IDM to include varying maximum speed limits for each individual to
better reflect real-world vehicular behavior. In the IDM, v0 represents the free-flow velocity
of a vehicle on an edge, typically the speed limit of each edge from OSM or from a standard
convention. However, in order to mimic the variance of driving patterns across travelers,
each driver’s maximum possible speed per edge, v0, is sampled from a Gaussian distribution
centered around the edge’s predetermined speed limit with a standard deviation of 2σs,
where σs is the standard deviation of vehicle speeds, obtained from the Uber data, at each
speed limit s. Every vehicle thus has a slightly different maximum allowable speed on each
edge it traverses.

We compare the distribution of speed on different edges between MANTA simulation
and Uber data. For the simulation run between 5 AM - 12 PM, we investigate the difference
in behavior at two different time periods: 5 AM - 6 AM, a less congested time period, and
8 AM - 9 AM, a more congested time period. Within each time period, we look at the
speed distribution curves at different speed limits. For instance, Figure 2.8 and Figure 2.9
show the speed distributions from MANTA on edges with 35 mph compared to the Uber
Movement data on those same edges, at the representative time periods. As expected, both
MANTA and Uber average speeds are higher between 5 AM and 6 AM (less congested) than
those between 8 AM and 9 AM (more congested time period).

Figure 2.11 and Figure 2.12 show the average speeds of MANTA and Uber across all
speed limits between 5 AM and 6 AM. At low-speed edges (< 30 mph), MANTA simulation
speeds are approximately 5 mph slower than Uber’s real-world data. This indicates that the
congestion effects are larger at lower speeds in MANTA. The Uber speeds also reflect that, in
the real-world, many drivers tend to go above the speed limits more so on edges with lower
speed limits than they do on edges with higher speed limits. For edges with speed limits
above 30 mph, MANTA estimates may be higher or lower than the Uber estimates. This
suggests that improvements can be made in both calibration and in modeling the individual
behavior of drivers with respect to speed limits.

Figure 2.13 shows the distribution of speeds for the 8 AM - 9 AM timeframe. Unlike the
less congested 5 AM to 6 AM timeframe, MANTA simulation speeds are equal to or slower
than Uber’s real-world data across all speed limits. This indicates that the IDM in MANTA
may be overly sensitive to congestion effects.

Comparing the 5 AM - 6 AM timeslice with 8 AM - 9 AM in MANTA, the average
speeds estimated in the early morning time period in general are higher by 3 to 9 mph across
all speed limits, with the greater differences being on edges with higher speed limits. This
intuitively suggests that roads with higher speed limits, such as highways, see less traffic at
the early morning hours, and thus vehicles can travel at higher speeds due to the lack of
congestion and lack of stoppage. However, roads with lower speed limits do not allow for
much higher speeds regardless of the time of the day. This is likely due to the presence of
frequent intersections in the city. The Uber data across the two timeslices also reflect this
difference.



CHAPTER 2. A REVIEW OF TRANSPORTATION AND TRAFFIC SIMULATION
AND MODELING 26

Figure 2.8: 5 AM - 6 AM

Figure 2.9: 8 AM - 9 AM

Figure 2.10: Kernel density plot comparing the MANTA and Uber distributions at 35 mph



CHAPTER 2. A REVIEW OF TRANSPORTATION AND TRAFFIC SIMULATION
AND MODELING 27

Figure 2.11: Average MANTA speeds across all speed limits [5 AM - 6 AM]. The means and
standard deviations are shown in parentheses.

Figure 2.12: Average Uber speeds across all speed limits [5 AM - 6 AM]. The means and
standard deviations are shown in parentheses.
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Figure 2.13: Average MANTA speeds across all speed limits [8 AM - 9 AM]. The means and
standard deviations are shown in parentheses.

Figure 2.14: Average Uber speeds across all speed limits [8 AM - 9 AM]. The means and
standard deviations are shown in parentheses.
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Figure 2.15: Average MANTA speeds across all speed limits [8 AM - 9 AM] in the red light
case. The means and standard deviations are shown in parentheses.

Red light / green light cases

In this study, we adopt a basic intersection model and consider two different conditions:
where every node is either a flashing red light or a green light. In the flashing red light
scenario, every vehicle is designed to stop at the intersection for 2 seconds before proceeding,
similar to a stop sign, which can result in vehicles backing up and subsequent queue spillback.
In the green light scenario, every vehicle can immediately access the intersection and proceed
with its next move. Figure 2.15 shows the distribution of average speed across different speed
limits. Between 5 AM - 6 AM, the average speed is 17.5 mph, while the speed decreases to
12.9 mph in the 8 AM - 9 AM timeslice. The reduction in speed between 8 AM and 9 AM
suggests increased congestion, in comparison to the free-flowing traffic in the early morning
between 5 AM - 6 AM.

When every node is a green light, the average speed across all speed limits for the 5
AM - 6 AM time period is 24.5 mph. The average speed across all speed limits decreases
to 17.8 mph for the 8 AM - 9 AM time period. Each speed limit’s average speed is shown
in Figure 2.13. The average difference in speed across all speed limits between the early
morning timeslice (Figure 2.11) and the 8 AM - 9 AM peak hour timeslice (Figure 2.13) in
the green light case is 4.6 mph. For the red light condition (whose figures are not shown out of
brevity), it is 6.7 mph. The deltas between the two timeslices, as well as the absolute speeds,
highlight notable differences in the traffic behavior between the two timeslices. Specifically,
the average speeds in both timeslices under the red light condition is about 5 mph lower
than the green light condition. Such low speeds are unsurprising given that every vehicle
must stop and wait its turn in the intersection queue. Since the IDM parameters have been
tuned to the real-world Uber data, which is better represented by the green light scenario,
the red light scenario does not match the Uber data as closely as the green light scenario
does.
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Figure 2.16: Fit to lognormal distribution for 20 mph speed limit in green light scenario
(case 2)

Figure 2.17: Fit to normal distribution for 45 mph speed limit in green light scenario (case
2)

Notably, in Figure 2.13, the lower speed limits’ distributions tend to be right-skewed,
following a lognormal pattern, while the distributions at higher speed limits become more
centered and follow a normal distribution. Snapshots of these phenomena are shown in Fig-
ure 2.16 and Figure 2.17.
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2.6 Performance benchmarks

This section describes the computational performance of the two core components of MANTA:
routing and the microsimulator engine.

Routing performance

In our network of approximately 225K nodes, 550K edges, and 3.2M OD pairs, the SSSP
routing algorithm carries out the computation of all OD pairs’ routes in approximately
62 minutes on a single node. Figure 2.18 shows the time-required to run up to 1 million
agents on a distributed compute cluster utilizing both MPI and OpenMP parallelization
schemes. Figure 2.19 shows that the strong scaling results of the routing algorithm matches
the theoretical scaling up to 1024 cores for routing 1 million agents. In comparison to existing
routing algorithms, such as the heuristic-based Ligra [190] and iGraph [57], the priority-queue
based Dijkstra is 2.2% and 55% faster, respectively, on a single node. The priority-queue
Dijkstra algorithm also has higher effective CPU usage of 94.1% with an average RAM usage
of 4.81 GB.

Microsimulator performance

The computational performance of the MANTA simulator is compared with Simulation for
Urban Mobility (SUMO) and JDEQSIM, a parallelized alternative available in MATSim, two
well-known open-source simulators in transportation. The simulation of the SF Bay Area
network and the demand between 5 AM - 12 PM are used for the comparison exercise. SUMO
offers two options to build the network: one that contains internal links or lanes within
intersections, and one that does not contain internal links [125]. Considering MANTA’s
simplified intersection model, the SUMO model without internal links is the most appropriate
comparison. The SUMO model with internal links is also included for completeness.

Section 2.6 shows the runtime comparison of MANTA against SUMO and JDEQSIM.
The table also indicates when the results are linearly extrapolated, due to the inability to
complete simulations in a reasonable time. Extrapolating the simulation runtime linearly,
MANTA performs nearly 27000x faster than SUMO. MANTA carried out the full microscopic
simulation of 3.2M trips at .5 s timesteps in 4.6 minutes, while SUMO’s simulator is estimated
to take nearly 87 days, linearly extrapolated from the initial run of 194 minutes for 5000
trips. SUMO also has a mesoscopic simulator, which requires approximately 29 hours (1740
minutes) for the SF Bay Area simulation.

A primary reason for such a dramatic difference in runtimes is that typically SUMO
uses a traffic assignment model for routing. When the routes are fixed, as in this example,
SUMO sees undesired jamming, as many roads are not filled to their capacities while other
roads are filled excessively. The resulting congestion increases the simulation time in SUMO
to achieve equilibrium. Unlike SUMO, MANTA is a dynamic model and does not perform
equilibrium traffic assignment. In other words, MANTA does not minimize the total travel
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Figure 2.18: Time required to route agents using priority-queue Dijkstra algorithm for the SF
Bay Area network on distributed computing environment (MPI + OpenMP) parallelization.
Tests were run on 32 nodes with Intel Xeon Skylake 6142 processors.

time of the entire system, but instead assumes that each driver will take the shortest route
based on distance. Notably, SUMO’s microsimulation does not support parallelization; only
the routing algorithm is parallelized, which is not germane for this comparison.

JDEQSIM is a discrete event-based mesoscopic simulator that uses event handling to
communicate every person’s activity to the rest of the Behavior, Energy, and Autonomy
Modeling (BEAM) platform[229]. The event handler manages billions of activities and events
(specifically when vehicles enter and exit edges), which produces a significant overhead in the
generation and synchronization of events across the threads. MANTA, on the other hand, is
a time-based simulator that does not have overhead from the constant generation of events.
In addition, the texture mapping of MANTA is optimized for fast GPU array manipulation,
which yields significant speedup compared to the CPU implementation in JDEQSIM [229].

Figure 2.20 shows the comparison of runtimes between JDEQSIM and MANTA. The JD-
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Figure 2.19: Speedup of priority-queue routing algorithm for the Bay-Area network on dis-
tributed computing environment (MPI + OpenMP) parallelization. Tests were run on 32
nodes with Intel Xeon Skylake 6142 processors.

EQSIM runtime is approximately 6.6 minutes, on average over 50 runs, and is comparable to
MANTA’s runtime of 4.6 minutes. The GPU parallelized traffic microsimulation in MANTA
is 43% faster than aggregated simulators such as JDEQSIM. In comparison to the SUMO
microsimulation, MANTA is several orders of magnitude faster. Considering the finer level
of behavioral granularity achieved by MANTA at the runtime of the mesoscopic JDEQSIM,
these results clearly demonstrate the applicability of MANTA for metropolitan-scale traffic
microsimulations.

Other parallel microsimulators exist as well, including [46, 27, 151], but they either
require expensive supercomputing facilities or carry out simulations on smaller networks
with longer computation times.
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Simulator Time (mins) Type

MANTA 4.6 Full

SUMO meso simplified (MeS) 1620 Full

SUMO micro simplified (MiS) 114858 Lin. extrap.

SUMO meso advanced (MeA) 1740 Full

SUMO micro advanced (MiA) 123500 Lin. extrap.

JDEQSIM 6.6 Full

Table 2.2: MANTA’s runtimes compared to SUMO and JDEQSIM. Full implies that the
entire simulation was able to complete. Lin. extrap. implies that only part of the simulation
was able to complete and the full time was linearly extrapolated from this preliminary time.

Figure 2.20: Simulator runtimes (log scale y-axis) across different simulators. MANTA
performs slightly better than the parallelized mesoscopic JDEQSIM and is on the same order
of magnitude. MANTA performs significantly better than the mesoscopic version of SUMO
with either the simplified (MeS) or advanced intersection modeling (MeA). The microscopic
version of SUMO with simplified intersections (MiS) and advanced intersections (MiA) could
not be run completely, and thus times were linearly extrapolated, reflecting that it would
take tens of days to complete.
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2.7 Limitations

The traffic microsimulation in MANTA achieves significant advances in computational per-
formance using metropolitan-scale networks and demand, but important limitations remain.
The first limitation is the use of simplified intersection modeling. A more accurate inter-
section modeling will produce precise travel times and a better representation of the vehicle
dynamics.

The second limitation is the demand profile. This work uses a synthetic Bay Area MTC
2017 travel model that represents the daily demand in five large time blocks and carries out
a static traffic assignment. A more realistic model could integrate a dynamic travel demand
model, such as ActivitySim, with MANTA.

The modular structure of MANTA offers the ability to vary different components of the
network analysis, such as routing and vehicular dynamics. MANTA currently can accom-
modate different routing algorithms, such as Dijkstra, A*, and Contraction Hierarchy. In
addition, while MANTA currently uses the Intelligent Driver Model, it has the functionality
to leverage other driver models. Incorporating dynamic routing, where the edge weights
are based on travel times on the edge rather than the length of the edge, will improve the
predictive accuracy of near-real-time simulations, such as evacuations.

2.8 Conclusions

This paper presents a novel traffic microsimulator, MANTA, that addresses the challenges
of accurate traffic microsimulation at the metropolitan-scale. MANTA is highly efficient and
is capable of simulating real-world traffic demand with a fine level of granularity on very
large-scale networks. The runtime efficiency of MANTA is achieved by efficiently coupling a
distributed CPU-parallelized routing algorithm and a massively parallelized GPU simulation
that utilizes a novel traffic atlas to map the spatial distribution of vehicles as contiguous bytes
in memory. The capability of MANTA is demonstrated by simulating a typical morning
workday of the nine-county SF Bay Area network with 550K edges and 225K nodes, and
approximately 3.2M OD pairs. The routing calculations are completed in 62 minutes, and
a simulation of 7 hours from 5 AM to 12 PM with .5 second timesteps is completed in 4.6
minutes. This is several orders of magnitude faster than the state of the art microsimulators
with similar hardware. Achieving compelling performance in both efficiency and accuracy,
MANTA offers significant potential for fast scenario planning in both short- and long-term
applications in metropolitan and metropolitan-scale analysis.
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Chapter 3

Machine Learning and Emergent
Mobility: Advances in Transportation
Simulation and Modeling

This chapter presents emerging contributions to simulation and modeling, with a specific
focus on the use of machine learning (ML) techniques to augment existing frameworks. The
chapter concludes by describing how emergent mobility modes and new technologies are
altering how we approach transportation simulation and modeling more broadly.

3.1 Machine Learning in Simulation

Machine learning (ML) and deep learning techniques have gained increased traction over the
past decade, specifically in technical problems requiring what has been deemed “artificial
intelligence.” Leveraging large-scale data for prediction and classification, machine learning
has pervaded disciplines of inquiry long thought unrelated to computer science, including
city planning and transportation [232]. Advanced ML applications have been deployed both
in simulation and in real-world remote systems to understand and control mobility for bet-
ter urban outcomes. Indeed, deep learning and computer vision using convolutional neural
networks has been leveraged in sense-and-avoid systems deployed in emergent mobility tech-
nologies, such as AV and UAM [4, 69, 83, 105, 66]. Deep reinforcement learning algorithms,
including policy gradients and Q learning, have been used in remote traffic control and op-
timization [232, 13, 69, 234, 86]. Traffic flow prediction has also benefited from ML, as
nonparametric algorithms and neural networks have been utilized to perform traffic state
estimation as well as forecasting in a variety of geographies [202, 207, 149, 115].

Given the critical nature of understanding the impact of such emergent mobility technolo-
gies as AV and UAM on urban outcomes, which include sustainability, equity, and economic
productivity, leveraging ML in unique and innovative ways will prove useful for modeling
and simulating more accurately travel behavior dynamics. The first section provides a brief
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overview of machine learning and its theoretical foundation. The second section highlights
the literature in traffic flow prediction that leverages machine learning methods. The final
section presents open areas of research in urban simulation that may benefit from different
ML models.

Overview of ML

The concept of machine learning is derived from a data-driven approach to understanding
systems and phenomena. In traditional programming, the CPU often takes as inputs data
and the program itself, producing an output of the program performing particular functions
on the data [63]. However, machine learning differs in both input and output. Specifically,
the CPU now takes data and the output as inputs, instead producing the program as its
output [63]. In other words, the CPU is determining the program or function that best
represents the data based on output feedback [63, 113].

As a result, every machine learning algorithm has three major components: (1) represen-
tation, (2) evaluation, and (3) optimization. Representation is the broad term for the model
generated and used [63, 113]. Each model varies from another in the way it learns from the
data. Evaluation is necessary to determine the effectiveness of the model in carrying out the
objective task. Optimization is important in improving the model once it has been initially
evaluated.

It is also critical to note the various types of learning, which use different algorithms for
particular applications. The first type of learning is supervised learning, which requires that
ground truth data exist to confirm that the algorithm is learning from known data [63, 174].
In other words, there is a correct answer for the data during training. The second type of
learning, and the converse, is unsupervised learning, for which the data do not have any labels
on the input data [63, 113]. This inherently makes unsupervised learning more exploratory
in nature, and its primary goal is to find structure or patterns in the data that perhaps may
be obvious to human intuition. However, unsupervised learning is not as prevalent due to
challenges in application [113]. The final type is reinforcement learning, in which an agent
carries out a task in an unknown environment based on rewards and punishments [128].
Reinforcement learning is a key contributor to the artificial intelligence generally seen in
robots and humanoids.

Optimization

Developing a useful model is perhaps the most critical component of machine learning. In
order to generate a strong model, the mathematical theory behind machine learning relies on
optimization theory. Specifically, in all types of learning, the model or learner must learn from
input data in order to produce a particular output, whether in a prediction, classification,
or an agent-based task such as moving toward or avoiding an object. However, it must learn
based on optimizing for a particular objective, such as minimizing the error between the
input and output. For example, in a supervised learning context, when the learner develops
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a prediction Yi, it is optimal that this prediction is as close to a known ground truth output
Yi′ , and thus the goal of the model is to minimize the error by calculating the appropriate
parameters, α, β,&δ, of the model that will do so. The error minimization becomes the cost
or loss function, which is convex, as shown in Equation (3.1):

J(α, β, δ) =
1

N

N∑
i=1

|α + βXi + δX2
i − Yi| (3.1)

and thus the objective is:

min
α,β,δ

J(α, β, δ) (3.2)

In order to minimize J , first-order optimization must be carried out by calculating the partial
derivatives of α, β,&δ with respect to J . From Newtonian calculus, the next step is to set
each parameter’s partial derivative to 0 in order to find its optimal value, with an example
in Equation (3.3) [113]:

∂J

∂α
= 0 (3.3)

While this procedure is tractable even by hand for low dimensional problems, in real-world
applications, the cost function can have thousands or even millions of parameters that must
be optimized to our objective. As a result, it becomes computationally intractable to solve
directly for each of these parameters. To overcome this challenge, gradient descent, an
iterative algorithm designed to search for the optimal values for each parameter, is frequently
used in machine learning and deep learning [31].

In gradient descent, α, β,&δ are initialized randomly, and at each iteration, the par-
tial derivatives (or gradients) are calculated simultaneously such that the their values are
updated, eventually leading to a global minimum if the function is convex, as shown in Equa-
tion (3.4) and ????:

α < −α−R∂J
∂α

(3.4)

β < −β −R∂J
∂β

(3.5)

δ < −δ −R∂J
∂δ

(3.6)

where R is the learning rate, an adjustable hyperparameter that can determine the speed
and accuracy of the convergence. In particular, a small R may converge slowly but a large
R may overshoot the minimum or may fail to converge altogether. A particular version of
gradient descent known as the Adam optimizer is often used in deep learning in order to
find the optimal weights and biases for each layer. Adam optimization often performs better
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than standard gradient descent due to the existence of saddle points, which are not optima
but still have gradients equal to 0; as a result, the standard gradient descent algorithm may
stay stuck at that value despite its not being a minimum of any sort.

Loss Functions

While in nonparametric models the loss function is often an error minimization such as
root-mean-squared error, in many neural network architectures used for classification, the
training will be driven by errors in distributions [128, 63]. Shown in Equation (3.7), the
cross-entropy function minimizes the distance between two probability distributions.

E = −
∑

Y ∗i log(Yi) (3.7)

where Y ∗i represents the actual probabilities while Yi is the computed probabilities.
Cross-entropy loss increases as the predicted probability diverges from the correct classifi-

cation, and thus, a perfect model would have a log loss of 0. Indeed, minimizing cross-entropy
loss is equivalent to performing maximum likelihood estimation, assuming classification la-
bels are independent, as shown below [184]:

Ŷi =Ŷi

N∏
i=1

P (Ŷi = Y ∗i)

=Ŷi

N∑
i=1

logP (Ŷi = Y ∗i)

=Ŷi

N∑
i=1

M∑
j=1

P (Y ∗i = j) logP (Ŷi = Y ∗i)

=Ŷi

∑
i=1

N
−H(P (Y ∗i , P ((̂Yi))

=Ŷi

∑
i=1

N
H(P (Y ∗i , P ((̂Yi))

(3.8)

Models in nonparametric machine learning, deep learning, and deep reinforcement learn-
ing utilize different optimization techniques, and specifically gradient descent, for different
applications. However, virtually all contexts require an objective function, such as cost or
likelihood, that must be minimized or maximized, respectively.

Traffic Flow Prediction

ML frameworks have recently been used extensively in traffic flow prediction, which has
become an urgent issue in transportation policy and planning. Modeling vehicle movements
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over time is critical in understanding travel behavior, infrastructure provision and traffic
control, sustainability impacts, and providing real-time routing.

Nonparametric Techniques

Traffic flow prediction specifically attempts to estimate the number of vehicles given a specific
spatial region and time interval, such as a road segment in a peak commute hour. Prediction
depends on historical and real-time data, which is often collected from GPS data from
smartphones and its associated applications, loop detectors within roads, radars, and street
cameras [135, 231]. Previous traffic models have been shallow in using empirical data, and
thus with greater computing capabilities, leveraging the plethora of traffic data may make
it more accurate. Huang et al. noted that many existing techniques to predict traffic flow
have used time-series [110]. This parametric time-series approach utilizes variations of the
autoregressive-moving average, which focuses on the temporal variation of traffic flow to
predict future traffic flows [135, 110, 168]. However, it assumes linear relationships between
major macroscopic parameters such as density, flow, and speed with their future values, which
inherently limits its representativeness in the real-world, particularly considering nonlinear
incidental traffic phenomena such as accidents, construction, and shockwaves [110, 59].

As a result, nonparametric methods such as k-nearest neighbors (kNN) have become
popular due to their ability to learn any functional form of the data, rather than being limited
to parametric relationships such as linearity [200]. kNN is a supervised learning algorithm in
which labeled training data (x, y) are given, and the goal is to find the relationship between
x and y by learning a function h, such that h : X → Y . By finding h, given an unknown
x, we can predict h(x) = y for that value of x [113]. Since the objective in kNN is to find
data points that resemble the data x as closely as possible, a distance, or similarity metric d,
must be calculated from x to each point. Many distances can be used, but one of the most
common is the Euclidean distance, as shown in Equation (3.9):

d(x, x′) =
√

(x1 − x′1)2 + (x2 − x′2)2 + · · ·+ (xn − x′n)2 (3.9)

Then, if each point’s d < ε, where ε is a cross-validated threshold, then it will be part of
a set A [113]. The conditional probability is then calculated for a class, or the fraction of
points in A, which, in the case of traffic flow prediction, may be congested or free-flow, for
instance. The conditional probability is calculated in Equation (3.10) [63]:

P (y = j|X = x) =
1

K

∑
i∈A

I(y(i) = j) (3.10)

The highest conditional probability is then chosen as the classification for the input x. Several
works use a kNN approach to classify road segments based on other road segments whose
characteristics include volume, speed, and occupancy rate [245, 163].

Other nonparametric machine learning techniques that have been used include support
vector machines and nonlinear regression [110, 114, 200]. It is also crucial to note that while
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model accuracy is important, it is also equally important to understand the environment,
whether in space, time, or even required resources for a particular geography, in which the
model is developed and utilized [195].

Neural Networks

In addition to nonparametric machine learning approaches, deep learning has become in-
creasingly more expedient in traffic flow prediction due to the ability of neural networks
to understand patterns in nonlinear inputs and also due to the availability of large-scale
datasets [135]. Much research has used multilayer neural networks to predict traffic flows
based on such data as GPS trajectories and static loop detectors [135, 168, 114].

The building block neural network is the feedforward neural network, also known as a
multilayer perceptron. A feedforward neural network architecture contains several steps.
Typically, the methodology requires several neural layers, the first of which is the input layer
of neurons and the following layers are hidden layers of neurons [128]. Each neuron in a
neural network carries out a weighted sum of all its inputs and then adds a bias; the value
of the output determines whether the neuron should ‘fire’ or ‘activate’ [128, 184]. Since the
goal in both classification and regression problems is to determine a function of the inputs,
f(x1, x2, . . . , xm) that can accurately explain the observed outputs (y1, y2, . . . , ym) [128], the
function, f , is the nonlinear activation function and is the decision rule for activating the
neuron. Many activation functions exist, such as the sigmoid, softmax, rectified linear unit
(ReLU), and hyperbolic tan [63]. In the ReLU, shown in Equation (3.15), the activation
function is thresholded at zero. Compared to the sigmoid, the ReLU does not have compu-
tationally intensive operations like exponentials. In addition, the sigmoid also suffers from
vanishing gradients since it squashes all values between 0 and 1 [184].

f(x) = max(0, x) (3.11)

Despite these benefits of the ReLU, the decision of activation functions depends on the
context, as binary classifiers may use simple step functions while less constrained functions,
such as the ReLU or softmax, can provide a range of activations.

Other popular neural network architectures include the recurrent neural network (RNN)
and convolutional neural network (CNN). RNNs take as inputs not only the current input,
but also what they have “perceived” previously in time, essentially using the output at time
t − 1 as an input to time t, along with the new input at time t; this is known as back-
propagation. However, simple RNNs that must find connections between the final output
and data several timesteps before are limited, since there is often an exponential number of
multiplications that occur within the hidden layers of the network. Similar to one of the sig-
moid function’s drawbacks, this creates derivatives that will vanish, which makes it difficult
for processors to compute and for networks to learn [128]. For this reason, long short-term
memory (LSTM) architectures, a subset of RNNs that maintain gradients through the back-
propagation process, are often used, since they preserve the errors in a gated cell. RNNs
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may be useful in analyzing trajectory data in a specific street network over long timespans,
perhaps to develop long-term congestion models.

In CNNs, one neuron does a weighted sum of the input vector across only a subset of
the input vector, sequentially choosing different shifted subsets of the input vector, similar
to convolution in signal processing [160]. Each neuron reuses the same weights, while in
feedforward networks, each neuron has its own set of weights [168, 128]. Typically, a number
of layers are used, primarily because the initial layer represents the high level features of
the input vector while subsequent layers represent more detailed features, reflected by more
filters in those layers [184].

Finally, each neuron will be a weighted sum of all of its inputs with the bias, which will
then become the input to a nonlinear activation function. The activation function in this
last layer, particularly in CNNs, is typically the softmax, as shown in Equation (3.12):

softmax(Ln) =
eLn

‖eL‖
(3.12)

where Ln is the weighted sum of all inputs and biases, and the softmax itself is the output
of each neuron. In a standard classification setting, the output layer of the neural network
must have n output neurons, where n is the number of possible classification types. For
instance, in the example of classifying the road segment as either congested or free-flow, the
output layer will have 2 output neurons.

Overfitting

While there are substantial differences in each ML model’s methodology, in almost all super-
vised machine learning techniques, overfitting on known training data is often a significant
issue. Specifically, since the learned model is based purely on training data, the model’s ac-
curacy on the training data can be close to 100%, but the model may be unable to produce
accurate results when presented with unknown test input data. In nonparametric models,
cross-validation, randomization, and regularization of data are often ways to minimize noise
and enhance generalizability [63]. In a sample loss equation in Equation (3.13), regulariza-
tion penalizes a greater number of parameters, hoping to simplify the model away from the
exact training data.

J = (y − ŷ)2 + λw2 (3.13)

where J is the cost function, y is the actual data, ŷ is the predicted data, and λ is the
regularization parameter that is essentially determined by the degree of dropout. Deep
learning also uses regularization, manifested as a dropout layer in neural networks. Since
overfitting is caused by the model being excessively tuned to only the training data and
not being broadly generalizable to new test data, the dropout routine drops a random set
of neurons by setting them to zero. This will cause robustness in the system in such a
way that the classification or regression can still be made accurately without these neurons,
which would be more specific to the actual input data anyhow. Another approach in deep
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learning to battle overfitting is applying a maxpool layer, which downsamples the input.
Since the input layer produces a value that shows that there is a specific feature that exists
in the input, maxpooling allows that feature’s exact location not to be as important as its
location relative to other features. This not only can decrease overfitting but also reduce the
computational burden.

3.2 An Example: Traffic Control Inference using

Deep Learning

Motivation

Traffic flow prediction and simulation are broadly important for transportation policy and
planning. However, one of the glaring issues with existing traffic simulators is a lack of
understanding of traffic control in cities. Several cities possess manual records of their
many intersections, but they are often neither accessible nor comprehensive. Knowing all
traffic control in a metropolitan area has been a challenging point for planners and travel
modelers. Only certain cities have organized databases that outline the type of traffic control
at each intersection, but even those, such as the one in San Francisco, is relatively sparse. In
addition, since the traffic control that does exist is within only one city, it is not sufficiently
comprehensive to cover many origin-destination pairs of travel demand, which are often
across cities within a metropolitan area. Google Maps has also been incorporating traffic
control into their maps and traffic forecasts, but their approach and the geographies covered
remain unknown.

For this reason, instead of manually parsing inexact and inadequate databases, it is pro-
posed to infer traffic control using more easily obtainable data and with advanced deep
learning. Image recognition and computer vision techniques using convolutional neural net-
works (CNNs), highlighted by Zhang, Olah, Hofleitner, and Krizhevsky, serve as inspirational
models [246, 157, 158, 106, 126]. Gao et al. and Liang et al. have used machine learning
and deep learning techniques to optimize traffic signals, and Lv et al. are one of only a few
groups who have used deep learning to understand traffic flow [135, 86, 131]; however, there
has been little work that has used deep learning to infer traffic control for simulation. In
this section, advanced deep learning techniques are used on granular travel demand data to
infer traffic control, an aforementioned limitation of MANTA’s current implementation. Los
Angeles is used as a case study, with the greater goal of extrapolating the method to other
cities for which we have mobility trajectory data.

Methodology

The methodology consists of: (1) assembling and cleaning granular trajectory data, provided
by Nokia HERE, (2) assigning these data to specific nodes that are already labeled with traffic
control, (3) converting the trajectory data for each node into contour heatmap images, and
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Figure 3.1: All nodes in the bounding box of the Nokia HERE data

(4) using these image data as both training and test data in the convolutional neural network,
leveraging advanced computer vision models.

Trajectory Data

In collaboration with the Connected Corridors project at UC Berkeley, we acquired data from
Nokia HERE, which contain trajectories - speed, measured in meters per second, over time
samples - from specific devices across the northeastern Los Angeles region, which includes
Los Angeles, Glendale, Pasadena, Arcadia, and Monrovia. These devices include but are
not limited to smartphones, connected cars and trucks, and loop detectors embedded in the
roads. There are 19 million total data points, which is the product of the number of specific
devices and each trajectory that the device captures. These data will subsequently be known
as probe data.

Street Network

We then obtain the street network of this region, based on the bounding box of lati-
tude/longitude pairs of the data, from OpenStreetMap (OSM). This map is converted to
a Python graph using the packages OSMnx and geopandas. The resulting graph contains
roads (edges) and intersections (nodes) that are located within the area in question, as shown
in Figure 3.1.

OSM, as an open-source project, is constantly updated by volunteers of the global com-
munity, and one major component of recent update has been specific traffic control at the
network nodes. While far from comprehensive, the Los Angeles region fortuitously has suffi-
cient traffic control information for the purpose of the project. In particular, there is a large
number of nodes within the area in question that are labeled with a specific type of traffic
control by OSM, within the choice set: traffic signal, stop, turning circle, or a motorway
junction (exit/off-ramp). We then map the nodes that have labeled traffic control, as shown
in Figure 3.2.
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Figure 3.2: All nodes with traffic control in the bounding box of the Nokia HERE data

Figure 3.3: Sample trajectory in space from a particular device

Data Processing and Cleaning

The first round of data cleaning involved dropping unnecessary columns and filtering data to
specific providers with complete devices. There are both fleet and consumer devices, but this
study narrowed down to several specific sets of consumer devices, namely CONSUMER21,
CONSUMER14, and CONSUMER11, due to the high number of data points, the gran-
ularity, and the greater randomness in standard human movement, rather than relatively
deterministic truck trajectories. We then convert the speed units and remove any missing
values. In total, there are 19M points for the concatenated dataset of all three consumer
devices.

The second round of data cleaning involves sorting the data by here id, a term from Nokia,
of the data for each device. We then need to make sure each sample from each trajectory is
occurring every 10 seconds at the most. If samples are greater than 10 seconds, then that
point becomes the start of a new trajectory. Then, all trajectories with more than two data
points are kept, while those with fewer are filtered out, since they are not useful if there is
only one data point. Within the fully concatenated dataset, there are 63228 unique here
ids. A sample trajectory is shown in Figure 3.3, which shows a particular device’s movement
over space.

The next round of data cleaning is to find the nearest node with ground truth traf-
fic control, previously shown in Figure 3.2, to each one of the trajectory points. This is
done by calculating the Haversine distance between the points, which is in radians, shown
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in Equation (3.14):

d = 2r arcsin

√
sin2 φ2 − φ1

2
+ cosφ1 cosφ2 sin2 λ2 − λ1

2
(3.14)

where d is the distance between the two points, r is the radius of the Earth (specified as
6.371 ∗ 106m), φ1 and φ2 are the latitudes of points 1 and 2, respectively, and λ1 and λ2 are
the longitudes of points 1 and 2, respectively. The Haversine distance is commonly used in
navigation and geography due to its accuracy over a oblate spheroid surface like the Earth.

After determining the distances from each trajectory point to each node in the bounding
box, a BallTree query is done to find the nearest node within that tree. The BallTree is
used because of its efficiency of organizing points in a multidimensional space and ignoring
points that are known to be further away than the point just explored. Since the units are
in radians, we then convert back to degrees and then to a linear distance unit, specifically
meters and feet. As a result, we now have 3501 unique nodes and 1899761 total points. Each
labeled node has a varied number of nearest trajectory points, each of which contains speed
and distance to the node.

The next step is to filter the nodes that have fewer than 100 points. The value of 100
is chosen arbitrarily, but intuitively we want to have a relatively dense number of points for
each node without substantially decreasing the number of nodes available. This value can
become a modifiable hyperparameter in future iterations of the project.

From here, we must now start visualizing the points for each node, specifically with
respect to time, distance, and speed. In order to do this, a colormapped scatterplot is
created, with the x-axis as time, y-axis as distance from the node, and the intensity of the
color representing the speed, as shown in Figure 3.4. Note that the timestamps are in GMT,
and thus it can be seen that much of the slower speeds occur at the morning and evening
commute hours in PST. The nature of the heatmap does not require distinguishing time
zones.

From this colormapped scatterplot, we must make this relatively sparse set of points
denser in order for the image classifier to differentiate images more closely. The chosen
method to do so is linear interpolation, which can fit curves using linear polynomials to
construct new points within the scatterplot. After this linear interpolation for each node’s
data, we produce contour heatmaps, with an example shown in Figure 3.5.

Neural Network

Our ultimate goal is to classify nodes accurately with their correct traffic control. This
means our neural network will have 4 outputs, since we want to classify nodes into one of
the four different classes noted above. The contour heatmaps produced for each node will
be the input to the CNN. As specified above, each node’s heatmap contains the time of
each trajectory point, the distance from each trajectory point to the node, and the speeds of
all trajectory points whose closest node is the specified node, and also linearly interpolated
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Figure 3.4: Sample node with its associated trajectory points across time, distance from
node, and speed.

Figure 3.5: Sample node with its associated trajectory points across time, distance from
node, and speed, linearly interpolated to create a heatmap.
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points with similar values. Each image is converted into a 64x64 two-dimensional vector of
pixels. This number was chosen arbitrarily, but may be adjusted to other powers of 2 for
higher granularity. The color of the image must also be preserved within the pixelated array,
as it is represented as a third-dimension with three possible RGB values. Finally, the traffic
control label for each node is appended to each image for use in training the model, making
it a supervised CNN. Within the 3501 nodes/images, 80% of them are randomly assigned to
the training set and 20% are randomly assigned to the test set. This is a standard train/test
split in the machine learning community, but can be altered as the designer sees fit.

From the keras library within TensorFlow, a Sequential model is used so that we can
easily and linearly stack layers onto the neural network from input to output. Each image is
of size 64x64x3. In the initial design of the CNN, the output of the first layer is 32 channels,
a standard specification. The kernel size is 5, which is both the height and the width of the
2D convolutional window. The stride controls how the filter convolves around the input, and
is specified as 1 to reflect that the filter shifts one unit at a time. The activation function
used in this layer is the ReLU, as specified in Equation (3.15).

f(x) = max(0, x) (3.15)

From here, a maxpool layer is applied. As mentioned before, the goal of this layer is to
downsample the input to a pool size by a factor of 5. The hope is that the input layer
produces a value that shows that there is a specific feature that exists in the image, and thus
that feature’s exact location is not as important as its location relative to other features.
This can decrease the computational cost and also help to avoid overfitting.

The second convolutional layer follows the same skeleton as the first, but this has more
output channels, with 50 (in the initial design). The reason for more layers is that the initial
layer represents the high level features of the heatmap image and the subsequent layers
represent more detailed features, which is typically reflected by more filters. The activation
function is still the ReLU, as specified in Equation (3.15).

The third convolutional layer repeats the first and second, with the only change being
an even greater number of filters, at 80.

After the three convolutional layers, there is one dropout layer, which is added to prevent
overfitting. The dropout routine simply drops a random set of neurons by setting them to
zero, with this dropping one quarter of neurons. This will cause redundancy in the system in
such a way that the classification can still be made accurately without these neurons, which
would be more specific to the actual input data. Note that we cannot do dropout on the
convolutional layers because the same weights are reused, so it is not useful.

The output of the dropout layer is then flattened so that it can be fed into the dense,
fully-connected layers. There are two layers, each having 512 neurons and ReLU activation.
Each neuron will be a weighted sum of all of its inputs with the bias, which will then become
the input to a nonlinear activation function.

After this, we do another dropout of one half. The final layer must output the number
of possible classifications, which, in this case, is 4, where we want to label each intersection
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Figure 3.6: Training accuracy using ReLU as the activation function for all layers except the
output layer

as having a traffic light, stop sign, turning circle, or a motorway junction. The activation
function in this last layer is the softmax.

The training itself will be driven with the cross-entropy as the loss function. Because
there are more than two classifications (four), we use categorical cross entropy instead of
binary cross-entropy.

Results

The convolutional neural network described above trains the model and fits it to the training
data with 100 epochs and a batch size of 100 in each epoch. The accuracy of the training data
in the first five epochs hovers between 40% and 50%. The accuracy then gradually increases
over each epoch, going up quickly between the fifth and tenth epochs and increasing at
a pace between logarithmic and linear. It eventually converges to approximately 94%, as
shown in Figure 3.6. The total number of trainable parameters, 5947064, reflects the total
number of input weights and bias terms with every hidden input.

Accuracy and loss are inversely related, thus as the accuracy increases over each epoch,
the loss decreases over that same time, starting at above 8.5 and eventually decreasing to
.16 in the 100th epoch, as shown in Figure 3.7.

On the unknown test data, for which we have the labels but the model does not, it
accurately classifies the traffic control at particular nodes 68% of the time. A sample classi-
fication and the success or failure is shown in Figure 3.10. This already is an improvement
over random classification, as with random chance, it would be a 25% possibility of classifica-
tion. It is also an improvement on using a uniform random classification, as the distribution
of traffic control is 49% traffic lights, 31% motorway junction, 14% turning circle, 6% stop.
With deciding simply to label every node as a traffic light, it would be 49% accurate. This
shows an improvement of nearly 20% with the initial CNN.
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Figure 3.7: Training loss using ReLU as the activation function for all layers except the
output layer

An improvement to the model involves increasing the number of outputs for each con-
volutional layer. The goal of this is to increase the number of movement directions in the
convolution itself, as a 3D matrix (or tensor) will require a 2D convolution that can convolve
over more combinations of the vectorized image. By increasing each convolution layer from
32, 50, 80 to 50, 100, 200, respectively, the results improve. Specifically, the training accu-
racy increases to 99%, with the loss decreasing to .016, an order of magnitude lower than
with the previous filter sizes, as shown in Figure 3.8 and Figure 3.9. This greater training
accuracy and higher test accuracy suggests that the model still severely overfits on the train-
ing data, but still produces a higher test accuracy. Since a neuron in a CNN does a weighted
sum across a small region of pixels, it intentionally operates on three dimensional chunks
of data, with height, width, and the number of channels. When increasing the number of
channels, it continues to reuse the same set of weights, slightly adjusted, as determined by
the model from the image, which may explain the better test accuracy. We generally do not
want a network that is not constrained, since then the neurons will directly remember the
training data rather than having to make assumptions about features, such as vertical lines
and colors, to emphasize when the images are more constrained.

In order to improve the model, many further hyperparameters can be adjusted, such as
the activation function, the dropout rates, the type of optimizer used, and the number of
neurons in the fully connected layers.

Instead of using the ReLU activation function, the function, as specified in Equa-
tion (3.16) was applied in all layers except the output layer. However, this produced a
lower training accuracy of approximately 68% while also being much more computationally
intensive.

σ(x) =
1

1 + e−x
(3.16)



CHAPTER 3. MACHINE LEARNING AND EMERGENT MOBILITY: ADVANCES IN
TRANSPORTATION SIMULATION AND MODELING 51

Figure 3.8: Training accuracy with 50, 100, and 200 filters for the convolutional layers (with
ReLU activation function)

Figure 3.9: Training loss with 50, 100, and 200 filters for the convolutional layers (with ReLU
activation function)
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Figure 3.10: A random set of 30 test images shows success rate of approximately 70% overall
with ReLU activation.

The tanh function, specified in Equation (3.17) was also used in all the layers except the
output, which under 40 epochs produced a 99% training accuracy.

tanh(x) =
ex − e−x

ex + e−x
(3.17)

This produced the highest test accuracy at 72%, as shown in Figure 3.11 and Figure 3.12.
The tanh function follows similar activation logic to the ReLU function, but because it
contains several exponentials, it is considerably slower. Thus, the accuracy vs. efficiency
tradeoff exists in this scenario, where the ReLU produces a comparable accuracy to the tanh
function but in much shorter time.

Another hyperparameter that was adjusted is the learning rate itself. The learning rate
can determine the magnitude by which the weights change at every epoch. A larger learning
rate can lead to much greater noise and varying accuracies over time, while smaller training
rates take much longer because the weights hardly change over each epoch. With the learning
rate at .001, the training accuracy did not exceed 48%, reflecting the CNN’s inability to find
weights due to the large discrepancies from previous weights. However, when the learning
rate was decreased by an order of magnitude to .0001, the training accuracy skyrocketed,
going above 90%. The learning is initially very slow, as shown in Figure 3.6, but after several
epochs, the CNN begins increasing its performance very quickly.
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Figure 3.11: Training accuracy with 50, 100, and 200 filters for the convolutional layers (with
tanh activation function)

Figure 3.12: Training loss with 50, 100, and 200 filters for the convolutional layers (with
tanh activation function)
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Figure 3.13: A random set of 30 test images shows success rate of approximately 72% overall
with tanh activation.

Future Work

While this method produces significant improvement to the state of the art, the inference
can still be made even more accurate. One method may be to use time lag trajectory points
for the contour plot/heatmap. In other words, given the heatmap contains real data and
interpolated data of the nearest trajectory points to each node, it may be useful to include
the previous and following points in time of each point as well, regardless of whether those
points are associated with the node by distance. This could weigh the temporal aspect of
traffic control moreso than the distance.

Another approach is to use transfer learning. Image classification and computer vision
are ripe areas for transfer learning because there are several large datasets, such as ImageNet,
for which training models have already been developed. The filters in the first layer of the
already developed CNN models may learn to recognize edges, gradients, and solid color areas;
the second layer may have detected circles or angles; and so on. This can be also be used in
a comparative study.

Yet another approach, as mentioned above, is to optimize more hyperparameters, perhaps
by using a heterogeneous combination of loss and activation functions, or adjusting the
number of convolutional layers. Countless combinations of hyperparameters can be done,
but they must be considered in a reasonable and logical fashion.

As traffic control inference becomes more accurate, agent-based microsimulations, in-
cluding MANTA, can become better models for human mobility. A similar methodology for
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using image classification on trajectory data may unveil other insights as well, such as high
betweenness centralities over time and space of particular nodes, which can be used for more
optimal traffic engineering.

Conclusions

The use of the state-of-the-art convolutional neural net (CNN) in order to infer traffic con-
trol of street intersections proves to be useful. While accuracy still can be improved, the
results show that deep learning methods using computer vision and image classification of
human mobility trajectory data is a promising technique for future inference problems. The
tanh-based, three-layer CNN with 512 neurons produces the highest training and test accu-
racies, at 99% and 72%, respectively, showing that the model can be relatively generalizable
without significant overfitting, classifying nearly 3 out of 4 nodes accurately on average.
The ReLU-based CNN produces nearly comparable test accuracy at 70%, but is much faster
because it does not do computations of exponentials, thus producing a designer tradeoff
between accuracy and efficiency. This work can be the foundation of future traffic control
inference that can be input into OpenStreetMap for various geographies across the world,
given extensive trajectory data collected from smartphones, and eventually used in advanced
microsimulation travel models.

Understanding and optimizing traffic control has been an open research area for decades.
With the advent of autonomous vehicles, there is a hope that traffic control will be eliminated
altogether, in favor of platooned and connected vehicles that negotiate intersections collab-
oratively. However, that reality remains decades away, and indeed the interaction between
human-driven cars and autonomous vehicles will continue necessitating the understanding
and simulating of traffic control.

Additional ML Techniques in Simulation

Another important research area of urban simulation that can leverage advanced machine
learning techniques is to improve the efficiency of macro- and micro traffic simulators them-
selves. Similar to using training data to determine the most accurate model for traffic flow
prediction, it may be a significant improvement to the computational intensiveness of current
simulators if it is possible simply to run only a few runs of a full simulator without losing
accuracy in future runs. Specifically, with these few runs, each run’s output data can be used
as training to develop a nonparametric or deep neural network model of future simulator
outputs. Indeed, this may allow the potential for much faster simulation, a major bottleneck
in today’s simulators [227, 209, 166]. One approach in doing so is to use the state-of-the-art
traffic simulator, compute its benchmarks, train on only a few simulations, and then run the
model on the outputs, producing metrics that may be validated against real simulator runs,
ideally showing equal or better accuracies with larger speedups.

Yet another area is in leveraging deep reinforcement learning in agent-based models. Since
much transportation simulation has moved toward activity-based and agent-based models,
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deep reinforcement learning may be useful due to its ability to use exploration of solution
spaces, or understanding how agents can develop specific behaviors based on a particular
environment [164]. While agent-based modeling generally focuses on understanding behavior
in an environment and reinforcement learning focuses on developing agents that can learn
to negotiate that environment, determining how to use reinforcement learning rather than
traditional logit and probit models in agent-level decision-making is an open area of research
that can broaden the scope of urban simulation. Since reinforcement learning tackles the
problem of correlating immediate actions with delayed returns, through an agent learning
new information, it may be a natural complement, or perhaps even a substitute, to traditional
discrete choice models [164].

3.3 Autonomous Vehicles (AV)

While machine learning continues to augment simulation and modeling, one new mobility
paradigm, autonomous vehicles (AV), is also forcing the community to develop new capacity.
Many questions remain about the impact of this new mode’s integration into the transporta-
tion landscape, and simulations and modeling must consider these to inform policy and
infrastructure.

AV is still in the inchoate stages of development and deployment. Major industry players,
including Waymo, Tesla, Cruise, and Aurora have been progressing with near-market-ready
AVs, as much of the enabling technology was developed in academia nearly two decades
before [208]. Thanks to more powerful real-time computing, granular perception sensors and
algorithms, advanced machine learning and computer vision, and ubiquitous connectivity,
AV (and connected AV [CAV]) manufacturing is growing rapidly [17, 139].

Just as AV technology advances, simulation and modeling for AV has also been forced to
evolve. The congestion effects of AV on cities have been found using agent-based microsimu-
lations in different geographies [32, 80]. Within these microsimulations, traffic theory is now
being amended to accommodate AV’s capabilities. Since stop-and-go waves begin to occur
after a particular threshold of vehicular density with human drivers, as Stern et al. note,
much research has been devoted to learning how AV will influence bulk traffic flow [197].
Anderson et al. believe that AVs can affect congestion positively by reducing traffic delay,
decreasing the number of accidents, and enhancing vehicle throughput, but may affect con-
gestion negatively by increasing VMT [7]. In addition, Bagloee et al. note that because
AVs can be fine-tuned to a great deal of precision, they can cruise at higher speeds while
maintaining lower space headways between vehicles [17]. Stern et al. find that more than 20
vehicles operating in a circle can create waves almost instantaneously, primarily due to the
arbitrary stop-and-go of human drivers. However, by controlling the velocity of a single vehi-
cle in the flow, such as through injecting an AV into the circle, the waves begin to dissipate,
reducing the standard deviation in the speed of all the cars in the circle by 50% [197]. This
can have benefits not only to congestion, but also to fuel consumption, as the savings is as
much as 40 percent when aggregated across all the cars in the traffic flow [197]. These studies
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assume only a basic theory of autonomous control, and much of the technical development
occurring is far more advanced than this system, reflecting even greater potential.

Similarly, Wu et al. developed Flow, a computational software platform that enables the
development of reliable traffic controllers, including mixed-autonomy traffic in the aforemen-
tioned circle [232]. Using the deep reinforcement learning method of policy gradients, they
develop different scenarios such as platooning vehicles, which improves the average velocity
of the human-driven vehicles [232]. Qian & Yang assess AV impact on traffic flow as well,
proposing a multi-class traffic flow model that encompasses the car-following behavior of
both human-driven vehicles and AVs [173]. They model this mixed flow by considering the
interactions of different classes of traffic streams, based on such parameters as the density of
vehicles [173]. These streams stay consistent with the flow physics, but are data-driven com-
pared to the theoretical LWR model [173]. Their model can accurately capture shockwaves
of integrating multiple classes, and ultimately can produce realistic congestion propagation
and accurate travel time predictions [173].

3.4 Urban Air Mobility (UAM)

As AV attempts to transform travel on the surface, urban air mobility (UAM) is doing so
above the surface. Instead of adjusting transportation supply on the ground to increase
the capacity of roads or make driving less unproductive, academic and industry leaders are
envisioning a world in which daily transportation can occur in low altitude skies as well [127,
77]. As previously described, AV is now deeply within the scope of simulation and modeling,
but UAM has only cursorily been researched in the simulation and modeling community.

In order to simulate UAM holistically, an integrated land use, travel demand, and trans-
portation model would be a gold standard for city and regional planners [237, 225]. Basic
templates exist from AV for understanding emergent modes’ effects on cities, but they still
must be extended [178, 229]. Specifically, simulations must develop the capability to do
sensitivity analyses based on UAM adoption rates, network designs, and different variants
of urban air transit and air taxi to find optimal deployments based on a set of constraints,
such as minimizing total travel times or emissions [23, 237]. While aggregate approaches
have been traditionally used in travel demand modeling, disaggregate activity-based models
are also gaining traction and may be useful in this goal [99, 227]. Since such decisions as
mode choice are conditioned on residential location choice and employment location choice,
the daily activity pattern of an individual or household can be generated and thus be used
as a more realistic input into the simulation models [175, 227]. Initial research has leveraged
mesoscopic models and MATSim to evaluate UAM networks in Sioux Falls and Munich,
but the contributions have been primarily in software integration and not in impact assess-
ments [178, 180].



CHAPTER 3. MACHINE LEARNING AND EMERGENT MOBILITY: ADVANCES IN
TRANSPORTATION SIMULATION AND MODELING 58

Understanding the Potential Impacts of UAM

This section reviews potential impacts, considerations, and unanswered questions with re-
spect to five thematic areas: (1) travel behavior/land use, (2) equity, (3) safety, (4) noise,
(5) sustainability

Travel Behavior/Land Use

Several analyses have attempted to estimate the potential impacts of UAM passenger services
on travel behavior and land use. Many of these studies are based on four core assumptions.
First, most of these studies assume that UAM will likely be a shared platform due to the
high cost of aircraft [220]. Second, these studies generally assume that users will require
smartphones for access, similar to transportation network companies (TNCs) [107]. Third,
these studies generally anticipate that vertical take-off and landing aircraft (VTOL) will
takeoff and land from vertiports, take-off and landing infrastructure for UAM in metropolitan
areas that operate similar to helipads and heliports [77, 127]. Fourth, many of these studies
assume that early UAM operations will start using an ”air metro” operational model that
includes aircraft flying along several initial high-volume travel corridors between a small
network of vertiports. [216].

Under these assumptions, UAM’s effect on travel behavior and urban form can be de-
tailed more comprehensively. Emerging mobility technologies such as autonomous vehicles
(AV) and UAM seek to tackle one of the known issues of mode choice and third party lo-
gistics operations, travel time, a theoretically and empirically known ‘bad’, or a factor that
increases disutility [199, 89]. Both AV and UAM tackle this problem in different ways.
UAM seeks to decrease real journey time, while AV seeks to decrease perceived travel time
by reallocating time previously spent driving with more productive uses, such as working
or sleeping. Both decrease generalized travel cost, but UAM’s approach is arguably more
direct. The anticipated decrease in generalized travel cost due to UAM may change travel
behavior in several ways.

First, total VMT, either on the surface or in the air, may decrease, as some long distance
travel or movement of goods over 30 miles could be shifted to aerial modes [220]. Circuity
factor, the ratio of distance traveled over the ground versus the distance traveled via air for
the same OD pair, consistently exceeds 1.2 in the U.S. and 2 in other countries across the
world [117], suggesting that miles traveled will almost certainly decrease. However, this is
contingent on three issues. One is the efficient placement of vertiports to not only maximize
the number of travelers, logistics, or emergency providers able to use UAM, but also to
decrease the first mile/last mile connections to the vertiports themselves.

As described above, if the generalized cost of travel decreases in any form, then the bid-
rent model suggests that there will be movement away from the central business district
(CBD), which enables sprawl [6]. However, if the expectation in the U.S. is 500M UAS
deliveries and 750M passenger trips by 2030, infrastructure devoted to the automobile,
primarily parking and road capacity, may decrease [216]. Instead, urban mixed-use infill
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development could follow transit-oriented development near vertiport stations, public transit
stations, and along active and public transportation corridors. This may motivate more
residential clustering by increasing accessibility of these highly attractive areas of high land
value [104]. Lower density suburbs may also do infill development with the goal of creating
higher accessibility areas near their local vertiports [70, 74, 35]. As a result, both centrality
and dispersion may result. Specifically, the metropolitan urban form will likely be more
polycentric and sprawled from a macroscopic scale, but each center may have higher densities
and accessibilities near their local transit stations and vertiports [2]. Known issues with
macroscopic sprawl include higher VMT and greater emissions from automobiles [33]. The
sprawl that may result may also have an adverse impact on the environment if the aircraft
are not fully electric, similar to AV [8, 73].

Equity

A number of equity concerns have been raised with respect to UAM, most with respect to
affordability and scalability. As it stands, many are concerned that UAM as a passenger
use case will only be accessible to affluent households [140, 64, 100]. On-demand passenger
services using helicopters in cities such as New York City, Mexico City, San Francisco, and
São Paulo are premium products serving a predominantly wealthy clientele [224]. While
electrification, aircraft autonomy, and scaled operations have the potential to increase usage
among a broader market demographic, the extent to which these services could be affordable
to a mass market is not well understood beyond early market studies based on a variety
of assumptions [216]. Even with the most optimistic scenarios, mass market adoption may
not be achievable, as UAM could still be unaffordable and inaccessible for disadvantaged
communities, low-income households, and older adults.

UAM has two additional potential impacts on equity as well. First, as noted in the
previous section, to the extent that UAM could reduce travel on the surface transporta-
tion network, UAM also has the potential to induce travel demand. If this were to occur,
low-income travelers dependent on driving and public transportation would likely bear a
disproportionate share of the negative impacts associated with induced demand, primarily
increased congestion and longer travel times [96, 136]. Second, UAM could also directly
compete with and reduce demand for commuter rail or long-distance public transportation,
leading to increased fares and/or reductions in service. These changes may also dispropor-
tionately affect the underprivileged and minority groups, who are the highest proportion of
public transit riders in many cities [120, 50].

Additionally, the placement of vertiports may also adversely affect vulnerable popula-
tions in a number of ways. Vertiports may be located in low-income and disadvantaged
communities, causing unwanted noise, traffic (air and ground access/egress), and other en-
vironmental impacts [96, 48, 220]. Conversely, vertiports could be located in areas far
from low-income centers due to lower demand, thereby disincentivizing usage by low-income
households, creating an inequitable feedback loop.
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Equity remains a notable challenge to UAM deployment, and UAM’s effects on it and
plans to address it vary considerably. Affordability, scalability, and infrastructure placement
all may have detrimental effects on disadvantaged communities. Specifically, if UAM re-
mains a niche service for goods or for passenger transport, these communities may never
experience its benefits, and worse, may experience the negative externalities associated with
UAM, including increased noise, congestion if vertiports are placed nearby, and emissions
if initial VTOL aircraft are not electric [148, 155, 53]. If UAM is not able to scale consid-
erably or if vertiports are placed further away from disadvantaged communities, rendering
it effectively unusable by them, public resources used to create UAM infrastructure may
have been unnecessarily diverted from mobility programs to help disadvantaged communi-
ties further, such as enhanced bus frequency and reliability [154]. Conversely, if vertiport
location is accessible, costs for UAM decrease to affordable levels, and noise and emissions
from aircraft are minimized or eliminated, UAM may have positive equity impacts. While
vertiport location choice under equity constraints remains an open area of research, aircraft
development to decrease noise and eliminate emissions while also bringing down cost is a
priority for the nearly 250 companies currently operating in the UAM space [3].

Safety

Safety represents a notable challenge for the deployment of urban air mobility. Both airspace
users and the overflown are concerned about aircraft, and planners and policymakers must
establish legal and regulatory frameworks to minimize any safety risks [220, 242, 77, 2].
Several studies have shown that the public typically associates UAM with helicopters, small
aircraft, and general aviation, which have relatively poor safety records [147]. From 2003
to 2013, general aviation (GA) recorded 7.5 fatal accidents per 100 million miles traveled
compared to 1.3 and .068 for the automobile and commercial aviation, respectively [148].
Due to the perceived association with general aviation and helicopters, UAM aircraft must
be designed to overcome the perception of safety risk in addition to having equivalent or
better levels of safety (EBLS) of commercial aviation, especially given their operation above
more populated, thus riskier, environments [155, 220, 156, 148]. With aviation, the public
tends to focus on fatalities per accident instead of total fatalities per year or relative safety to
other modes [65, 152]. Due to association, UAM requirements will likely need to overcome
this perception. To improve community and user perception of safety, successful small-scale
demonstrations are needed before mass market deployment [140, 187].

Several significant real hurdles to an immaculate safety record include human error,
inclement weather, and the lack of accurate sense-and-avoid technology in the air [73,
176]. In general aviation, 80% of accidents are caused by pilot error [148]. Thus, in
manned UAM, [155] notes that pilots must maintain safe separation, vehicle control, and
mission and vehicle management in order to minimize safety risks. In both manned and
unmanned UAM, unpredictable wind gusts can cause the feedback control systems either
not to sense the force quickly enough or to over-correct once sensed, causing unforeseeable
behavior [169]. In unmanned UAM, sense-and-avoid technology is primarily driven by
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advanced deep learning, sensing, and real-time visual data collection techniques, which are
still in its inchoate stages [155]. In addition, perceived hurdles also exist, particularly in
unmanned, autonomous aircraft, which communities fear will fall out of the sky [242].

Two different perspectives of safety exist, the rider in UAM aircraft and the overflown.
Riders must be assured of their safety onboard the aircraft, likely at the order of magnitude
of safety of commercial aviation. The overflown must be assured of the aircraft’s stabil-
ity and low probability of being in an accident above their homes [90, 242]. Legal and
regulatory frameworks are currently being developed at different levels of decisionmaking,
including unmanned traffic management in the airspace by NASA, and both pilot and drone
certification by the FAA and EASA in Europe [194, 20, 148, 156].

Noise

Another major constraint for UAM will be noise in the skies. As UAM aircraft will be
multirotor VTOL, they are particularly susceptible to noise, which is caused by each blade
entering the region of the previous blade while rotating [8, 39, 82]. Two scenarios may unfold
with UAM: (1) a single, infrequently flown aircraft with an irritant noise that subsides as
it quickly travels away, and/or (2) constant noise from many aircraft flying in the skies for
many hours of the day. Decreasing this sound exposure level (SEL) over time for either
scenario is currently a notable challenge in both aircraft and rotor design as well as planning
of facility location and airspace restrictions [215]. For goods mobility on smaller aircraft,
experts have targeted SEL below 60 dB at heights up to 300 feet [186].

However, it is not only the volume that matters. [241] found in Los Angeles, Mexico
City, Switzerland, and New Zealand that the type of noise (more mathematically known as
frequency), in addition to volume, is also a concern for communities being overflown [241].
The known reference of acceptable sound is that of a bee buzzing, which respondents have
found to be less obtrusive in both volume and type of sound [241]. However, communities
vary in their preferences [88, 241].

Flight altitudes remain a key variable to SEL. The higher the altitude, the lower the SEL,
but higher altitudes above 10,000 feet also drain batteries more quickly on takeoff and landing
functions, thus constraining UAM aircraft to lower airspace. In addition, higher altitude
flying may also interfere with commercial aviation in class A, which is not acceptable [206].
As a result, class B, C, and D airspaces around major airports and above communities are
expected to be used, but these are at lower altitude between 300 and 3000 feet, making them
much noisier to those on the ground [206]. Because of noise concerns, many communities
have restricted helicopter routes, resulting in fragmented local, state, and federal regulations
and guidance. Aircraft manufacturers and operators may need to adapt to this existing
ecosystem of regulations in order for communities to integrate UAM in low-level airspace [216,
206].

Accordingly, the diverse legal and regulatory frameworks across different communities will
also prove challenging from both the technical and planning lenses. Theoretically, legislation
and regulation could enable communities to establish noise limitations when airspace users



CHAPTER 3. MACHINE LEARNING AND EMERGENT MOBILITY: ADVANCES IN
TRANSPORTATION SIMULATION AND MODELING 62

develop flight plans (a concept known as constrained flight plans) [127]. If UAM flight
paths must avoid noise sensitive land uses (versus taking the most direct route), operations
could become increasingly complex, creating challenges associated with battery range and
travel time savings. Additionally, different communities, even if adjacent to each other, have
different thresholds for noise, making constrained flight plans particularly challenging [222].

Sustainability

As multimodal mobility becomes more prevalent, the sustainability impacts of each mode
need to be objectively evaluated to preempt future deployment. In the U.S., transportation
accounts for 28% of all greenhouse gas (GHG) emissions, the highest proportion of any
sector. Within the transportation sector, 83% of GHG emissions are emitted by automobiles
and trucks [217]. While sustainability research in EVs and micromobility continues, UAM’s
remains unclear and its research agenda more complex [faria, 144]. Three major questions
must be asked with respect to sustainability for UAM: (1) Do UAM aircraft itself generate
more emissions? (2) Will UAM create more sprawl, and if so, will that increase lead to more
emissions? (3) Are there indirect operations and outcomes of UAM that will lead to more
emissions, such as deadheading? In this section, these three questions will be addressed.

Aircraft Emissions Many manufacturers have a goal of certifying electric vertical take-
off and landing (eVTOL) in the 2020s. These aircraft could be zero emission, if powered
by a clean electric grid; however, life cycle emissions are often not considered as part of
this calculus. Several aircraft manufacturers have begun exploring hybrid-powered aircraft
designs as well, primarily to enable power intensive operations such as hovering [147, 117].
Internal combustion engine (ICE) VTOL is also being explored for particular use cases that
may be one-off or naturally have lower environmental footprints [2].

Several future scenarios of aircraft distribution exist.

1. eVTOL

2. eVTOL, hybrid VTOL

3. eVTOL, hybrid VTOL, ICE VTOL

The extent of UAM aircraft emissions not only depends on the likelihood of these scenar-
ios, but also the share of each mode in each scenario. Both the scenario likelihoods and mode
shares are heavily dependent on expected use cases. Case (3) may be the most likely because
it can encompass a variety of use cases in both passenger and goods UAM. For example, [2]
found that ICE VTOL are more appropriate for operations that are more infrequent but
require longer flight times and range, such as rural emergency response [2]. For the use case
of passenger UAM, eVTOLs emit fewer GHGs on a VKT basis compared with ICEVs for
trips beyond 35 km, but the average ground-based vehicle commute is only 17 km, and trips
exceeding 35 km account for only 15% of all vehicle trips, suggesting that there is a niche
passenger service that may use eVTOL or hybrid VTOL. [117]. However, while one 100 km
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point-to-point trip with one pilot results in 35% lower GHG compared to an ICEV, it is also
28% higher compared to an EV [117]. Indeed, if EVs significantly penetrate the market by
the time UAM is deployed at scale, UAM’s environmental benefit will likely decrease. If
UAM’s life cycle emissions are less than EV’s life cycle emissions, there will be benefit to
widespread UAM deployment for both passenger and goods.

Sprawl Location theory in urban economics suggests that as transport costs are reduced,
movement away from the center occurs [96]. Thus, if passenger UAM is adopted at scale for
longer distance trips, it is likely that the urban boundary expands as citizens and employers
move further away, contributing to polycentric urban sprawl [5, 192, 43]. This sprawl may
lead to even greater transport costs and potential emissions across the suburban centers,
particularly if freight and passenger vehicles do not move toward cleaner fuel sources [217].
However, if light freight and cargo delivery use goods UAM within smaller areas to replace
inefficient routes of last-mile delivery trucks, there can be sustainability benefits even with
the added sprawl [40] Alternatively, on a local scale, accessibility may increase near potential
vertiports due to more urban infill and more activities that are conducive to active modes
of transit, also positively contributing to sustainability [24].

Indirect effects Depending on the scenario and use case for UAM, several other im-
pacts may occur. If passenger UAM is deployed at scale and effectively replaces long-distance
drivers, the new perceived increase in level of service on the road may induce further demand
for the car and subsequently increase congestion and emissions altogether [76, 122]. How-
ever, the scale to which UAM must penetrate to realize an induced demand effect remains
unknown.

Passenger UAM may also be affected by ongoing and future pandemics, such as COVID-
19. With COVID-19 forcing many employees to work remotely, air pollution and emissions
have decreased across the world [3]. As of this writing, it is unclear to what degree future
work will be done remotely [3]. If this proportion is high, congestion may decrease altogether
as there is less travel demand. However, if the proportion of remote work remains low, then
the level of road congestion may increase if the metropolitan area heavily depends on public
transit, which may then push travelers to UAM [109]. The effect of this change will vary
depending on the type of aircraft.

In addition, the exact paradigm of passenger UAM will dictate various impacts. For ex-
ample, if the aerial taxi paradigm prevails, then deadheading, in which aircraft continuously
fly around until a passenger requests service, will become significant. Studies have shown
that deadheading in TNCs, in both commuting and between rides, account for nearly 45%
of all TNC VMT, and thus emissions [230]. This same behavior may occur with passenger
UAM since parking the aircraft in specific places will not be optimal for routing or schedul-
ing [77]. If it is an urban air metro paradigm, the capacity of the aircraft, the headways
between them, and the transfer delays at vertiports will dictate its ability to substitute
travelers currently using less green modes [216].

Meanwhile, goods UAM may also find a niche due to ongoing and future pandemics.
Household consumption of delivery services has increased substantially [18]. If these deliver-
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ies are currently using ICEVs, then their replacement with EVs or goods UAM will become
a sustainability improvement in the future, depending on the degree of adoption [18].

Contributions

Chapter 5 and Chapter 6 of this dissertation provide novel simulation evaluation tools and
analytics that help to understand the impacts of UAM on travel behavior. Indeed, the state
of the art to understand UAM’s impact on the urban environment - be it in sustainability,
equity, or efficiency - is still young, and the forthcoming contributions presented in this
dissertation attempt to further the research agenda as the excitement and interest in this
new mode continues [28]. Chapter 7 focuses on urban air mobility and its introduction into
cities, specifically whether local and regional government agencies are prepared for this new
mobility mode and the impacts to their communities that should be expected if deployed at
scale.
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Chapter 4

Planning and Designing Land
Use-Constrained Networks of Urban
Air Mobility Infrastructure

4.1 Introduction

Urban air mobility (UAM) is a concept that envisions safe, sustainable, affordable, and
accessible air transportation for passenger mobility, cargo delivery, and emergency man-
agement within or traversing a metropolitan area [127, 77, 167, 19, 54]. In recent years,
developments in electric and hydrogen propulsion; vertical and short takeoff and landing
(VTOL/STOL) aircraft; and other technologies are creating renewed interest in on-demand
urban aviation [127, 77].

While UAM may be enabled by the convergence of many factors, several challenges, in-
cluding community acceptance, safety, equity, planning and implementation, airspace man-
agement, and operations, could create barriers to mainstreaming [54]. The deployment of
UAM will require a network of landing facilities; charging and/or refueling infrastructure;
and digital infrastructure for advanced air traffic management. While UAM may be able to
use existing helipads initially, growth of the sector will likely require additional facilities for
aircraft (e.g., takeoff and landing, parking, and maintenance) and passengers (e.g. waiting,
boarding, access, and egress) [77, 107, 150, 180]. However, establishing new facilities could
face a variety of barriers, such as local opposition, infrastructure costs, and multimodal
integration [241, 147].

Several market studies conducted prior to the global pandemic estimate a market po-
tential for UAM passenger service between $2.8 to $4 billion US in the United States by
2030 [142, 68]. However, Johnston et al. (2020) and Lineberger et al. (2019) find that
limited infrastructure has the potential to constrain the growth of UAM [68, 142].

A number of studies have attempted to develop standard terms, definitions, and a tax-
onomy of takeoff and landing infrastructure sizes and configurations [142, 68]. Generally,
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these studies classify three sizes of UAM takeoff and landing infrastructure, from largest to
smallest: 1) vertihubs; 2) vertiports/vertibases; 3) and vertipads/vertistations. Table 4.1,
adapted from Cohen et al., provides additional information on these facilities [54]. Other
terms include skyports and aerodromes. UAM may also be able to use existing infrastructure
such as heliports, airports, and waterways (for amphibious operations). In this paper, the
authors will refer to UAM infrastructure as vertiports [21].

Table 4.1: Taxonomy and Definitions of UAM Infrastructure (adapted from Cohen et al.)

Type of UAM infrastructure Description

Vertihub A larger facility (possibly with multiple floors)
to accommodate numerous landing pads with
parking for multiple aircraft. Johnston et al.
(2020) estimate vertihubs would be
approximately 70,000 square feet, spread across
multiple floors, and cost between $6 and $7
million US to build.

Vertiport/vertibase A medium-sized facility intended to
accommodate up to three landing pads and up
to six parked aircraft. Johnston et al. (2020)
estimates vertiports/vertibases would be
approximately 23,000 square feet and cost
between $500,000 and $800,000 US to construct.

Vertipad/vertistation A single landing pad and parking stall intended
to accommodate one or two parked aircraft.
Johnston et al. (2020) estimate that vertipads
would be approximately 6,000 square feet and
cost between $200,000 and $400,000 US to
construct.

In a fully mature network, Johnston et al. (2020) estimate that large cities (e.g., London,
New York City, and Tokyo) could require 85 to 100 takeoff and landing pads comprised of
three to five vertihubs, ten to fifteen vertiports, and five to ten vertipads [142]. The study
estimates that this infrastructure would require a capital investment of $35 to $45 million
US with annual operating costs of $110 to $130 million US per year. In medium-sized cities
(e.g., Atlanta, Denver, and Düsseldorf), the study estimates a network of 38 to 65 takeoff
and landing pads spread across two to three vertihubs, five to ten vertiports, and three to five
vertipads. The investment required for medium-sized cities is estimated at $15 to $20 million
US for capital costs and $35 to $50 million US annually for operations. Johnston et al. (2020)
estimate that electric charging infrastructure could represent up to 75 percent of the total



CHAPTER 4. PLANNING AND DESIGNING LAND USE-CONSTRAINED
NETWORKS OF URBAN AIR MOBILITY INFRASTRUCTURE 67

initial capital costs and that electricity could also represent 30 to 35 percent of the estimated
annual operating expenses [142]. The study concludes that UAM infrastructure will likely
be smaller scale during initial service deployment and will require a combination of private
sector investment, public sector subsidies, and non-aeronautical revenue sources (similar to
revenue generated by airports from retail, landside access, and other sources) [142].

Vertiport Siting and Network Design

Several studies have examined vertiport siting and network design both qualitatively and
quantitatively. Fadhil et al. (2018) utilizes a weighted linear combination (WLC) method
to identify potential vertiport locations in both Los Angeles and Munich using qualita-
tive data from subject matter experts [79]. Rothfeld et al. (2018) uses a similar weighted
combination based on qualitative location suitability and a location-allocation optimization
algorithm [179, 178, 180]. The study uses MATSim, an agent-based simulation framework
for travel behavior analysis. Daskilewicz et al. (2018) analyzes the spatial distribution of
jobs, income, and population in the San Francisco Bay Area and Los Angeles to maximize
travel time savings [62]. The study concludes that optimal vertiport locations would likely
be in higher income census tracts.

Uber Elevate (2016) develops a k-means clustering method using long-distance Uber
rides to identify potential vertiport locations in Los Angeles and London [77]. However,
because the study uses proprietary data from one service provider, the results are limited.
Bulusu et al. (2020) also uses a k-means clustering model to explore the San Francisco
Bay Area [42]. However, demand data for the study are not comprehensive for the entire
metropolitan region, an important consideration to understand the broader impacts across
the transportation network [91]. Lim & Hwang (2019) and Syed et al. (2017) also use k-
means clustering in Seoul and Washington D.C., respectively [132, 203]. Both studies find
that the location of vertiports is more important than the number of vertiports. One notable
downside to k-means clustering is that vertiport locations are susceptible to outliers, which
may place vertiports further away from the majority of demand. If vertiports are further
away, then demand for UAM may change altogether. Additionally, some vertiport locations
considered suitable in the model may be impractical in the real world when considering noise,
equity, and other concerns.

A number of studies have found that UAM adoption could be influenced by vertiport
placement [19, 178, 188]. This study suggests feasibility constraints, such as zoning and
parcel areas of potential locations, should also be considered. Robinson et al. (2018) uses
vacant land parcel information in South Florida to understand the potential for short takeoff
and landing aircraft. However, the larger parcels required for STOL operations may not be
needed for VTOL aircraft [177]. Wu & Zhang (2020) develops a single-allocation hub-and-
spoke optimization formulation for Tampa, Florida. The study uses LiDAR and Geographic
Information Systems (GIS) to identify potential vertiport locations based on available ground
spaces and land use restrictions [233].
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Figure 4.1: The San Francisco Bay Area Network

Antcliff et al. (2016) suggests the San Francisco (SF) Bay Area could be an early adopter
market for UAM because of the high percentage of long-distance or “super” commuters,
weather, and geography [8]. In addition, the existence of multiple urban centers in the
region tends to result in bidirectional traffic patterns that could reduce “deadhead” flights
without paying passengers and improve the operational efficiency and profitability of early
operations [193].

This paper is organized into three sections. The first section introduces a novel modeling
methodology that could be used to estimate the number of recommended vertiports, using
fast, high-fidelity regional-scale microsimulation. The second section highlights the results
of the model. The final section concludes with a discussion of study limitations and pro-
poses recommendations to help advance UAM infrastructure planning, implementation, and
community integration.

4.2 Methodology

Vertiport network design requires determining the location of every vertiport in the metropoli-
tan area with all the other locations of vertiports in mind. As such, we introduce a clustering
algorithm for optimal vertiport locations, based on existing travel demand in the SF Bay
Area. These locations are specifically made to be feasible by introducing land use and
zoning constraints. In this section, the microsimulator, street network, demand, network
optimization, land use constraints, and overarching simulation procedure are described.
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Microsimulator

This paper uses Microsimulation Analysis for Network Traffic Assignment (MANTA), a
fast, parallelized, GPU-based regional-scale traffic microsimulator. MANTA can simulate
millions of trips along a given street network in only a few minutes, using the intelligent
driver model, gap acceptance, and lane changing algorithms to move the vehicles on each
edge as they interact with other vehicles [239]. This version of MANTA also leverages a
priority queue Dijkstra’s algorithm for the routing of trips. MANTA has been calibrated
and validated with open source Uber Movement data [239].

MANTA is used over existing simulators for several reasons. In transportation simulation,
tradeoffs exist across granularity, spatial scale, computational time, and simulator costs.
While many simulators exist that satisfy several of these, none is able to satisfy all four to
enable quick scenario planning. A high granularity is necessary for UAM analysis because of
the sensitivity of UAM demand to variations in travel time [77]. The spatial scale also needs
to encompass greater metropolitan regions since UAM is expected to address longer trips by
distance and time [77, 19]. Due to the high granularity and large spatial scales necessary for
analysis, computational times of existing simulators are too long – on the order of days –
for fast sensitivity analysis [239]. Since MANTA is a GPU-based simulator, the cost of the
processors is also more affordable than more powerful machinery such as high-performance
computing (HPC) architectures, which allows it to be accessible to researchers [239].

Network

The street network is constructed from the OpenStreetMap (OSM) network of the San
Francisco Bay Area using the OSMnx library. The network is cleaned to remove nodes at
curves or bends in edges in OSM that are not topologically accurate [34]. The resulting
network contains 224,223 nodes and 549,008 edges. The metropolitan region’s nodes are
shown in Figure 4.1.

Demand

This study uses the San Francisco Bay Area’s Metropolitan Transportation Commission’s
(MTC) Travel Demand Model One. The MTC model uses a population synthesizer that
locates households based on the 2000 Decennial Census Public Micro-sample, where each
traffic analysis zone (TAZ) typically has a similar population and can range from the size of
a block to several square miles [143]. It is then validated across years 2000, 2005, 2010, and
2015. Using this behavioral data, this study uses a granular microsimulation that randomly
assigns origins and destination, sampled from a uniform distribution, within a traffic analysis
zone to a network node in that TAZ [226].

A simplified method is used to determine demand for UAM, by filtering automobile
trips with travel times ≥ 30 minutes, known as Marchetti’s Constant [138]. Marchetti’s
Constant is limited by its lack of true behavioral realism, but can be a useful tool because
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of its simplicity [25]. A preliminary run in MANTA is performed using 3.2M trips from San
Francisco Bay Area MTC between 5 AM and 12 PM on a typical day, and the resulting
travel times are then filtered to ≥ 30 minutes [239].

Network Optimization

The vertiport network design problem can be viewed as an uncapacitated variant of the
facility location problem (FLP), a common formulation in transportation and operations
research [71]. This problem is uncapacitated because the maximum number of aircraft is not
specified for each facility. The objective is to minimize the sum of the distances traveled to
and from every traveler’s nearest vertiport, based on every traveler’s origin and destination.
The uncapacitated FLP is shown in Equation (4.1).

minimize
∑

i∈V,j∈D

dijxij (4.1a)

subject to
∑
i∈V

xij = 1 : ∀j ∈ D, (4.1b)∑
i∈V

yi ≤ k, (4.1c)

∀i ∈ V, ∀j ∈ D : xij ∈ {0, 1}, (4.1d)

∀i ∈ V : yi ∈ {0, 1} (4.1e)

where V is the number of vertiports, D is the number of travelers (demand), xij is whether
traveler j is connected to vertiport i, and yi is if the vertiport is open to use. The first
constraint in Equation (4.1b) indicates that every demand point is assigned to only one
vertiport. The second constraint in Equation (4.1c) requires that the number of active
vertiports must be less than or equal to the specified k, the maximum number of vertiports.
The third and fourth constraints in Equation (4.1d) and Equation (4.1e) indicate that xij
and yi, respectively, are binary variables.

In this study, this linear programming problem is reformulated using an unsupervised
k-medians clustering approach. Thus, for each cluster, the objective function transforms
into Algorithm 1. The first step of the algorithm is to randomly select k points from the
demand as cluster centroids, sampled from a uniform distribution. Then, at every iteration
t, each node is added to a cluster based on its minimum distance to each of the k centroids.
The next step recalculates the median of that cluster, and every new median cluster point
has its cluster points d recalculated, again based on the minimum distance of each demand
point to the nearest of the k clusters. Finally, the algorithm converges to a set of cluster
centroids with its associated demand points.

The k-medians algorithm calculates the L1 norm absolute (Manhattan) deviation between
points [61]. This contrasts with the squared deviations computed in a k-means problem.
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Algorithm 1 k-medians Clustering for Vertiport Location

1: procedure k-medians(D)
2: D = {d1, d2, ..., dn} is the set of input demand points
3: Randomly initialize K clusters, C = {η1, η2, ..., ηk} according to uniform distribution
4: while |ηk,t+1 − ηk,t| > ε do
5: for {n = 1, ..., N} do
6: Find center ηk ∈ C closest to point dn
7: Assign demand point dn to center ηk

8: for {k = 1, ..., K} do
9: Calculate median of all points in cluster k
10: Assign new center ηk as median

Land Use Constraints and Parcel Assignment

As previously discussed, land use and zoning requirements can limit vertiport placement [226].
To plan a vertiport network, additional factors should be considered in addition to UAM
demand. A holistic optimization must be executed to understand not only what is efficient,
but also what is possible.

Using parcel level data from the San Francisco Bay Area, land use is constrained to
parcels that are zoned office or mixed-use office space, light and heavy industrial (including
warehouses), retail, and parking structures [147, 220, 77]. These parcels are believed to
have compatible zoning for vertiports and minimum requirements that allow for take-off and
landing operations at a feasible scale. The nearest vertiport parcels that satisfy these land
use constraints are assigned using a fast BallTree nearest neighbor search. This technique
recursively divides the data into nodes defined by a centroid to perform a single distance
calculation for lower and upper bounds [159].

Additionally, the parcels that support larger vertiports are also considered. Cohen (1996)
suggests that the area needed for helicopter takeoffs and landings should be ≥ 14 acres [55].
However, literature on eVTOL suggests that vertiports may require a considerably smaller
footprint of approximately 1.4 acres (or 60,000 square feet) [81]. Because of the diversity of
aircraft currently under development, the model considers parcels between 1.4 and 14 acres
as potentially suitable for vertiport infrastructure [220].

Simulation

After potential eligible vertiport parcels are identified, the model simulates how the parcel
locations may impact travel behavior. The nearest node to each vertiport parcel is used as a
proxy point for later input into the MANTA traffic microsimulator. Please refer to Figure 4.2
for an example. Trips that have the same origin and destination vertiports are eliminated
and assumed to be a driving trip (e.g., the trip is too short to be served by UAM). The
subsequent analysis assumes that the remaining eligible trips have been assigned as UAM
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Figure 4.2: In San Francisco, a sample vertiport parcel (red) determined from the clustering
algorithm and its nearest node (orange) that is used in subsequent microsimulation

trips.
The demand used in the original ground travel simulation run in MANTA is parsed into

trips from (1) the origin to its nearest origin vertiport, (2) origin vertiport to destination
vertiport, and (3) the destination vertiport to the destination. The travel time of the first
leg from the origin to the nearest vertiport is computed with an initial run in MANTA. The
travel time from vertiport to vertiport is calculated using the Haversine distance, which is
the great-circle distance between two points on a sphere given their longitudes and latitudes.
The aerial travel time is then calculated assuming a flight speed of 150 mph [77]. The travel
time from the destination vertiport to the final destination is then simulated in MANTA. To
calculate an accurate departure time for those trips requires both the previous legs’ travel
times and estimated transfer delays at the vertiports, as shown in Equation (4.2).

Td = To + To,overt + Tovert,dvert + 2Tvert (4.2)

where Td is the departure time at the destination vertiport for the final destination, To is
the departure time of the traveler from the origin to the origin vertiport, To,overt is the travel
time via automobile from the origin node to the origin vertiport, Tovert,dvert is the aerial travel
time between vertiports, and Tvert is the transfer delay at each vertiport. Tvert is assumed to
be 10 minutes at each vertiport, based on the maximum acceptable waiting times for transit,
security, embarkation, and disembarkation [10].

4.3 Modeling Results

This section details the results from both the clustering and the simulation processes. The
clustering process determines the location of the vertiports from the k-medians algorithm,
and then maps that parcel to the nearest feasible parcel – and subsequently, node – based on
the land use constraints. The regional-scale simulation uses the MANTA traffic microsim-
ulator to calculate the final congested travel times of each driving and multi-modal UAM
trip.
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Figure 4.3: Converged map of k = 10 original cluster centroids across the San Francisco Bay
Area, in radians, based on OD nodes of the street network

Clustering

Due to the randomization of the initial points, several trials are run to determine the final
convergence points for the k-medians clustering algorithm. Convergence occurs between 3
and 15 iterations, depending on k. At k = 10, the cluster points, in radians, are shown
in Figure 4.3.

When k is low, the mean distance between the calculated cluster point and the nearest
feasible vertiport parcel is high, but as k increases, the mean distance of parcels to the
initially calculated median points stabilizes between 15 to 23 km, as shown in Figure 4.4.
This large distance suggests that feasible vertiport sites may be challenging to find and thus
limit the overall value of UAM altogether.

While a greater number of vertiports may reach more potential users within a shortest
distance from a vertiport, many of the initial cluster points found are similar but simply
farther from usable parcels. This suggests that land use patterns may be similar across
localities. Resulting vertiport parcels are shown in Figure 4.5 for k = 10 and k = 50.

In Figure 4.5, k = 10 creates a sparse network while k = 50 creates a much denser
network of vertiports. When k increases, the vertiports appear in the major low-density
suburbs adjacent to San Francisco Bay itself, often near a large thoroughfare or highway
(e.g. CA-82 in the Peninsula, Interstate 880 in Oakland, and Interstate 280 in San Jose).
Interestingly, San Francisco, with over 800,000 residents and a dense financial district, shows
only two feasible parcels in the k = 50 design and only one feasible parcel in the k = 10
design. This suggests zoning constraints could have a notable impact on the potential number
of UAM vertiports [162].

From these parcels and the calculated departure and travel times for UAM trips, the
model simulates the UAM trips using MANTA.
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Figure 4.4: Distances between calculated clusters and feasible parcels shows that as k in-
creases, the mean distance tends to decrease. The green triangle represents the mean distance
and the orange line represents the median distance. The box and edges show interquartile
range, minimum, and maximum distances.

Simulation

Several analytical assessments are made from the simulator outputs. The first explores
average UAM travel times across k compared to non-UAM driving trips. The mean travel
times of UAM and non-UAM across k vertiports are shown in Figure 4.7. UAM shows
benefit over driving the same trip at k ≥ 40, but shows benefit across both modes together
in the transportation network only once k ≥ 100.

The kernel density estimation of the time deltas between the UAM and non-UAM scenar-
ios across k are shown in Figure 4.6. In this plot, a negative number indicates that a UAM
trip’s time is longer than the same trip’s time when driving. A positive number indicates
that driving takes longer than UAM for the same trip. The mean delta in travel time for
k = 10 is -32 minutes, k = 20 is -13 minutes, and k = 30 is -7 minutes, showing that at low k,
the travel times from origin to destination are significantly faster when driving compared to
using UAM. However, the mean delta in travel time becomes positive at k ≥ 40, suggesting
there must be at least 40 vertiports for the average UAM trip to be faster than the average
driving trip. A significant decrease in UAM travel time - nearly 20 minutes - occurs from
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Figure 4.5: Adjusted cluster centroids (vertiport parcels) across the San Francisco Bay Area
that satisfy local land use requirements for k = 10 (blue) and k = 50 (orange)

k = 10 to k = 20 and from k = 60 to k = 70 vertiports. At k ≥ 70, the rate of change
in travel time begins to plateau again, suggesting that k = 70 may be a good compromise
for the number of vertiports in the San Francisco Bay Area to provide travel time benefit.
k = 100 vertiports is an inflection point in which the mean travel time for trips with both
UAM and driving becomes lower than the mean travel time for only driving across all trips.

Even using Marchetti’s Constant, not all trips would logically be assigned to UAM. Fig-
ure 4.8, where k = 10, shows an example of a trip where UAM travel time is worse than
driving. In this figure, the vertiports (red and light blue, respectively) are out of the way
from the origin and destination (peach and green, respectively), increasing the total travel
distance and time.

On the other hand, an example of a UAM trip with a better travel time than driving
is shown in Figure 4.9, where k = 70. In this figure, the vertiports are along the route of
a vehicle trip, reducing the travel time that would otherwise be required to deviate to the
nearest vertiport.

The second assessment is to understand how area constraints of the parcels affect vertiport
locations and subsequent travel times. Given k = 70, Figure 4.10 shows the mean travel
times of UAM compared to the non-UAM scenario when adjusting for area of the parcel
needed, A, from 2 to 14 acres by increments of 2. Intuitively, the mean travel times with
UAM increase as the area constraints increase, confirming that land parcels of large areas
such as 14 acres are less accessible and less prevalent. Only if the acreage constraint is
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Figure 4.6: Difference in travel times between driving and UAM across k when parcels
constrained to industry, retail, office, and parking garages, and to 2 acres or larger. Positive
values imply longer non-UAM travel times and negative values imply longer UAM travel
times

below 2 acres does the mean travel time of UAM remain competitive with driving. This
result suggests that a larger network of smaller vertiports makes more sense than a smaller
network of larger facilities, as described in Table 4.1. It may be necessary to build vertically
or create seamlessly multiplexed FATOs and TOLAs in small spaces. With the expectation
that UAM use VTOL instead of STOL aircraft, parcel areas A ≤ 2 acres are feasible if
vertiports are designed efficiently [206, 130].

Limitations and Future Work

Several limitations exist in the model. The first is the aerial travel time assumption, which
currently is computed by a Haversine distance metric and a static assumption of aircraft
speed at 150 mph. As of May 2021, there were over 200 aircraft under development, and
the average speeds of these aircraft are unknown. The precise times of each component of
the flight, such as takeoff, cruise, and landing are also not considered [117]. In addition,
exact flight trajectories that consider collision avoidance and weather are not incorporated.
Ongoing work includes the integration of accurate unmanned aerial simulation [235].
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Figure 4.7: Mean travel times across k in UAM scenarios vs. mean travel time in a non-UAM
scenario when parcels constrained to industry, retail, office, and parking garages and to 2
acres or larger. For 10 ≤ k ≤ 30, UAM takes longer than driving for the same trip. For
40 ≤ k < 100, driving takes longer than UAM for the same trip. k ≥ 100 produces shorter
mean travel times across all trips.

Figure 4.8: The origin, destination, and vertiports in an example UAM trip. Origin in peach,
destination in green, vertiport nearest the origin in red, and vertiport nearest the destination
in light blue. This trip would not benefit from UAM because the vertiports are far from
the origin and destination and in opposite directions of the desired direction of travel. The
driving distance between origin and destination is 15 miles, while the driving and aerial
distances together with UAM is approximately 38 miles.
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Figure 4.9: The origin, destination, and vertiports in an example UAM trip. Origin in
blue, destination in orange, vertiport nearest the origin in brown, and vertiport nearest the
destination in magenta. This trip benefits from UAM because the vertiports are along the
way if the trip was made driving. The driving distance between origin and destination is
18.6 miles, while the driving and aerial distances together with UAM is approximately 15.5
miles.

Figure 4.10: Mean travel times for UAM and non-UAM scenarios as area constraints of
vertiport parcels varies. When A = 2 acres, mean UAM travel times are lower than non-
UAM, but as A > 2, mean travel times are at least 20 minutes higher for UAM than for all
trips while driving.
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Another limitation is the assumption of fixed 10-minute transfer times at the vertiports.
In actuality, transfer times will likely vary based on the size and location of a vertiport. For
example, it may take passengers longer to board and disembark at larger and more congested
facilities. Because this could impact the comparative travel times between UAM and other
modes of transportation, methodological advancements should attempt to more accurately
estimate the time of the boarding, disembarkation, and transfer process based on the number
of flights and passenger volumes at proposed vertiports [180].

The third limitation is the assumption of Marchetti’s Constant, which may not always
accurately reflect individual behavioral patterns [44]. Efforts to replace Marchetti’s Constant
involve UAM activity-based specifications to reflect more accurate individual behavioral
patterns. This will allow for more accurate multimodal mode shares, as the model currently
compares UAM vs. driving rather than all modes in the transportation network (e.g. public
transit, biking, transportation networking companies, etc.). Several studies have already
looked into this [85, 180, 233].

Another limitation is that the travel time analysis does not assume dynamic traffic as-
signment, where vehicles may change their routes in the middle of the trip or because of more
recent congestion before embarking on the trip. This is currently an ongoing improvement
in MANTA.

An important consideration for future work is to generalize the methodology for other
metropolitan areas. The SF Bay Area has a strong central business district in San Fran-
cisco as well as a number of other large economic centers throughout the region (e.g., San
Jose/Silicon Valley, Oakland, Tri-Valley, etc.). These economic centers contribute to a num-
ber of region-specific multidirectional travel patterns. As a result, the results of this study
could be applied to metropolitan areas with both one large center (i.e., monocentric regions)
and many multiple centers (i.e., polycentric regions) [214, 121]. The SF Bay Area also has a
number of air traffic control (ATC) and infrastructure restrictions, which were not considered
in this study but could be analyzed part of future research.

Additional work should also consider the cost of UAM which can impact mode choice [89,
85, 233]. Currently, the model may overestimate demand if UAM is more expensive than
driving. Although more complex models are needed to compare UAM mode share alongside
not only privately-owned vehicles but shared vehicle fleets (e.g., transportation network
companies and automated taxis), the current model provides a methodological framework
for commencing exploratory analysis.

4.4 Conclusion

While federal preemption currently governs most aspects of UAM regulation, establishing
new UAM infrastructure is one area where local governments maintain a large amount of
authority. While local governments cannot limit where UAM operates in the airspace, they
can effectively limit where UAM aircraft take off and land through the zoning and siting
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of vertiports. As such, land use planning, zoning, and regulation represent important tools
that local governments can use to either support or hinder the growth of UAM.

Using a case study of the San Francisco Bay Area, we develop a vertiport design and
network simulation tool to understand the travel time effects of UAM vertiport networks
in the SF Bay Area under specific land use constraints. Given demand data at the zone
level (further granularized to the node level) and extensive land use data at the parcel
level, different UAM networks are developed with a varying number of vertiports and parcel
constraints. These different configurations are developed using k-medians clustering and
graph theoretic nearest neighbors. The vertiport locations are then integrated into the
fast, parallelized GPU-based MANTA traffic simulator to understand travel times of UAM
compared to driving. At k < 40 vertiports at feasible locations, the same trips using UAM
compared to driving have considerably higher travel times, but at k ≥ 40, UAM’s benefit
in travel time emerges. k = 100 vertiports is an inflection point in which the mean travel
time for trips with both UAM and driving becomes lower than the mean travel time for only
driving across all trips. In addition, as the area required for each parcel increases, travel times
increase, implying that greater focus must be placed on efficient vertiport designs in smaller
parcel areas. Although future research should incorporate additional modal connections
(i.e., shared mobility and active transportation) to vertiports, intuitively a larger network
of smaller vertiports could help reduce first- and last- mile travel distances and encourage
non-vehicular connections, such as walking and micromobility.

While quantitative methods are an effective tool for assessing the technical viability
of vertiport concepts, community engagement and local policy will be important to help
understand potential community concerns, such as noise, aesthetics, traffic congestion, equity
(i.e., displacement and gentrification), safety, and others. Community engagement will be an
essential part of understanding and mitigating the adverse impacts of vertiports on vulnerable
populations and communities. As part of the vertiport planning process, communities may
consider embedding public participation and engagement at multiple stages. As part of
long-range planning and visioning, communities may allow the public to discuss whether
UAM is an appropriate strategy, and conduct exploratory scoping to understand potential
UAM demand and the locations that could be compatible for vertiports. As the planning
process progresses, communities may pivot toward more in-depth engagement processes that
empower stakeholders to understand local concerns and use a variety of techniques to vet
vertiport concepts and alternatives. If or when a developer decides to build a vertiport,
additional community engagement should be sought and may be statutorily required by
local, state/provincial, and federal laws.

Given the potential for UAM to grow over the next 10 to 20 years, communities may
consider the potential impacts of UAM and planning considerations for multimodal inte-
gration and access/egress to vertiports. However, one challenge to establishing new UAM
infrastructure is that UAM decentralizes the impacts of aviation that have typically been
limited to airport facilities and their immediate surroundings. For this reason, UAM infras-
tructure and community integration will likely require close collaboration between aviation
and community stakeholders that have traditionally worked in silos.
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More research is needed to understand the potential impacts of vertiports on nearby com-
munities, and identify design strategies and policies that could mitigate potential adverse
impacts. Understanding the role of the built environment and its relationship to vertiport
placement will be important to prioritizing sustainable transportation access and integra-
tion with nearby land uses. Communities may also need to develop policies for managing
infrastructure access by multiple service providers, such as open, preferred, or exclusive ac-
cess policies. The public sector may also need to consider the willingness to provide public
support through mechanisms such as public-private partnerships. As the UAM marketplace
continues to evolve, community planning, public outreach, and continued research will be
important to understanding UAM’s impacts on the transportation ecosystem and to balance
community goals with commercial interests.
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Chapter 5

Assessing the Value of UAM through
Metropolitan-Scale Microsimulation

5.1 Introduction

Rapid advances in electric vertical takeoff and landing (eVTOL) aircraft, from higher battery
energy densities to distributed electric propulsion, are driving the excitement in Urban Air
Mobility (UAM). In parallel, the value proposition of UAM for a metropolitan area must
be understood to inform future policy, infrastructure, and investment in the space. Even
with enhancements of different driving modes, such as ridesharing and autonomous vehi-
cles, increased surface-level congestion suggests there is a demand not met by the current
transport modes; thus, UAM may fill the mid-to-long distance gap that the car is not effi-
ciently or sustainably addressing [198, 185]. By supplementing inter-urban and intra-urban
transportation demand with UAM, proponents anticipate that travel times will be greatly
reduced, and long-run positive downstream effects may include lesser environmental degra-
dation, less energy consumption, and fewer resources spent on infrastructure by leveraging
free space [77, 22, 194].

However, to truly understand whether these potential benefits exist, we must simulate
UAM travel in the transportation network. An initial evaluation of UAM compared di-
rectly against driving can provide insight. We compare against the automobile because it
has dominated long-range metropolitan travel in the United States for decades, far beyond
commuter rail and other public transit modes [11]. In addition, those with cars tend to have
higher incomes, which will likely also be the initial user base for UAM before it becomes
increasingly affordable over time and scale [90].

5.2 Background

UAM research for operations and infrastructure has insofar fallen in one of the following
major categories: 1. Discrete choice modeling for UAM ridership, or 2. Vertiport network



CHAPTER 5. ASSESSING THE VALUE OF UAM THROUGH
METROPOLITAN-SCALE MICROSIMULATION 83

design.
Surveys have been used to understand potential ridership and a traveler’s willingness to

pay, finding that younger and higher income individuals are more likely to use UAM as a
daily mode due to the greater time savings [90, 62, 92].

Vertiport network design has also been a popular subfield of UAM research, with a variety
of approaches to find optimal vertiport locations, including weighted linear combinations [78,
179, 178, 181], spatial distributions of jobs and incomes [62], and k-means and k-medians
clustering [77, 132, 203, 42, 237]. [181] used these designs to simulate UAM at a macroscopic
level in various locales. These analyses found that UAM provides travel time savings for less
than 1% of all trips and up to 15% if UAM adoption is high.

Many of these studies have presented stated preference discrete choice model results
and/or simulation at a macroscopic level of granularity. However, no UAM research has,
until now, has leveraged real-world data to determine demand, or high-fidelity, microscopic
simulation to provide increased accuracy of vehicle behavior in congested regimes [181, 240].
In this paper, we determine UAM demand using an iterative data-driven approach under
particular network designs, and subsequently microsimulate all trips at the regional scale,
converging on a set of multi-modal UAM trips that benefit in travel time compared to driving.

5.3 Methodology

There are four major components of the methodology: (1) Data-driven multi-modal UAM
demand generation, (2) Network design, (3) Driving and multi-modal UAM simulation, and
(4) Convergence to a set of UAM trips that will benefit. We use the San Francisco (SF)
Bay Area, one of the largest metropolitan regions in the United States, as the case study.
The SF Bay Area is used for two reasons: (1) its economic and spatial growth patterns lead
to both monocentrism and polycentrism, meaning that there was and continues to be one
large economic center, San Francisco, but now there is also more dispersed economic activity
across San Francisco, Oakland, San Jose, and peripheral cities such as Berkeley and Palo
Alto [45, 103]. This makes for unique commuting patterns that could be useful in analyzing
other cities of either monocentric or polycentric form. The second reason is functional, as
data are available from the local metropolitan planning organization and transit agencies
and many of the Silicon Valley mobility companies, such as Uber and Google.

Data-driven Multi-modal UAM Demand Generation

In this section, we describe a novel approach to determine the total addressable market of
UAM by microsimulating real trips based on ridership and aerial flight constraints. This
differs from the existing literature that uses stated preference surveys or static mode shares
to determine multi-modal UAM demand.

The travel demand data are generated by the Bay Area Metropolitan Transportation
Commission (MTC), the SF Bay Area’s metropolitan planning organization. MTC uses
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its Travel Demand Model One to synthesize trips from census and household travel survey
data [143], producing a full workday’s worth of trips on all modes. We filter the trips
only to driving for use in MANTA. We filter further to the morning 5AM-12PM timeframe,
producing approximately 3 million trips.

UAM demand is also based on aerial feasibility. A typical UAM quadrotor needs 2 miles
to climb to its cruise altitude (2,000 ft), as specified in Fe3 [235, 191], and shown in Figure 5.1.

Figure 5.1: A typical UAM flight trajectory, adapted from [191]

For two vertiports to be independent of each other, they must be separated by 4 miles.
Thus, for any UAM quadrotor having a cruise segment, the origin and destination vertiports
must be at least 6 miles apart for any feasible UAM mission. Section 5.3 shows that the
average distance of a trip from 5AM-12PM is 7.08 miles, and the number of trips whose
distances are 6 miles or greater is approximately 1.075M (37% of all trips). To understand
the morning peak, we filter trips to the 8AM-9AM timeframe, which produces approximately
1.25M trips, with a 7.09 mile average distance. The number of trips that are 6 miles or greater
in the 8AM-9AM slot is 481K (38% of all trips), as shown in Section 5.3. These proportions
reflect that the distances of trips in the 8AM-9AM morning peak hour are representative of
most trips throughout the full morning time period, suggesting that the 8AM-9AM hour for
UAM traffic is not only relevant but also generalizable.

The Bay Area MTC breaks down the region into spatial units known as traffic analysis
zones (TAZ). Each TAZ is a geographic unit that contains approximately 5,000 people, and
thus its size can range from several blocks to an entire zip code, as shown in Figure 5.2.
There are 1,454 TAZs in the SF Bay Area. Each trip has an origin and destination at the
TAZ granularity. However, this is insufficient accuracy given the variance in areas of TAZs.
Instead, we assign an origin and destination node to each trip by randomly sampling from a
uniform distribution of the set of nodes contained in the respective TAZ. The centroid nodes
are then calculated for each TAZ.

We now assume that every TAZ contains a vertiport, and that all vertiports can fly to all
other vertiports, giving 1, 4542 possible vertiport pairs. We assume that every TAZ centroid
is the location of that respective TAZ’s vertiport. Given the mission profile constraints
from [235, 191], we filter the 8AM-9AM trips to those whose vertiport distances are ≥ 6
miles, producing approximately 400K trips. As a result, approximately 83% of trips have
origin and destination vertiport distances that are ≥ 6 miles out of all the trips whose O to D
distances are ≥ 6 miles. Section 5.3 shows that the number of trips between 8AM and 9AM
exponentially declines as the inter-vertiport distance increases, preliminarily suggesting that
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Figure 5.2: The travel analysis zones (TAZ) in the San Francisco Bay Area

UAM, which is expected to be valuable for longer trips, may address only a minority of trips
rather than the majority of them.

Network design

In this data-driven approach to determine the proper multi-modal UAM demand, the next
step is the network design. Sample networks are created using k-medians clustering, partially
adapted from [237]. However, in this case, the k-medians clustering algorithm uses the trips
in the 8AM-9AM timeframe whose inter-vertiport distances are ≥ 6 miles, or approximately
400K trips. To understand the lower and upper bounds across the number of vertiports, k,
we loop across the set of k = 10, 30, 50, 70, 100 vertiports. The bulk of subsequent analysis
will be with these vertiports and at transfer times of 2 minutes at each vertiport. Figure 5.4
shows the vertiport networks produced from the k-medians clustering algorithm at k = 10,
k = 30, and k = 100.

Once a network of vertiports is created for each k, the number of UAM-eligible trips for
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Figure 5.3: In (a), the histogram of trips across distance from 5AM-12PM and from 8AM-
9AM. The average distance and standard deviations are similar. In (b), the number of trips
relative to the inter-vertiport distance for trips between 8AM and 9AM, showing a steep
decline in trips as the distance increases.

that k is determined. This number will vary across k, as a trip is UAM-eligible if the origin
and destination vertiports assigned from the k-medians clustering algorithm are different.
For instance, at a low k = 10, there will be more trips whose origin and destination vertiports
are the same because there are so few, highly spaced out vertiports available. However, at
k = 100, there will be more UAM-eligible trips because there is a higher likelihood that a
trip’s origin and destination vertiport are different. Figure 5.5 shows that at k = 10, there
are 235K UAM-eligible trips out of 400K. At k = 30, there are 341K UAM-eligible trips out
of 400K. At k = 100, there are nearly 387K UAM-eligible trips out of 400K. To satisfy the
aerial mission profile, we see that all UAM-eligible trips at k = 10 have O and D vertiport
distances that are ≥ 6 miles. At k = 30, there are 333K trips out of 341K, or 98% of trips.
At k = 100, there are 345K trips out of 387K trips, or 89% out of the original UAM-eligible
trips. The trips that do not satisfy this constraint are reassigned as driving trips.

Driving and Multi-Modal UAM Simulation

In order to simulate both driving and multi-modal UAM trips, we use Microsimulation
Analysis for Network Traffic Assignment (MANTA), the fast, GPU-based traffic microsimu-
lation platform, developed by this author [240]. Existing simulators have typically revealed a
tradeoff among accuracy, computational speed, geographic scale of simulation, and cost [240].
However, MANTA exhibits performance benefits in all of these areas, enabling it to be used
for agile scenario planning, such as with different UAM network designs and iterative con-
vergence techinques. In addition, MANTA’s ability to track the microscopic movements of
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Figure 5.4: Network designs determined from k-medians clustering at k = 10 and k = 100
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Figure 5.5: Distances

vehicles on the street network, namely lane changes, acceleration, and braking with respect
to other vehicles, enables a granularity and accuracy vital to travel time computations [240].

There are several steps in the simulation process. The first step is to simulate all 3M trips
in the 5AM-12PM timeframe as driving trips. This produces driving times for every trip,
which are later used as comparison in the travel time benefit analysis. This total number of
trips will be generalized as D in the rest of the paper.

For each k, a set of trips is determined as UAM-eligible, highlighted in the previous
section. Each of these trips is then broken down as a multi-modal UAM trip, which contains
three legs as well as transfer times at the vertiports: 1. Origin to its nearest origin vertiport
(access), 2. Origin vertiport to destination vertiport (aerial flight), and 3. Destination
vertiport to the destination (egress), as shown in Figure 5.6.

Figure 5.6: Every multi-modal UAM trip contains an access leg, transfer at the origin
vertiport, aerial leg, transfer at the destination vertiport, and an egress leg.
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The total travel time of each multi-modal UAM trip is shown in Eq. (5.1)

Ttrip = To,ov + Tov + Tov ,dv + Tdv + Td (5.1)

where Ttrip is the total travel time of the multi-modal UAM trip, To,ov is the travel time
via automobile from the origin node to the origin vertiport, Tov ,dv is the aerial travel time
between vertiports, Td is the travel time via automobile from the destination vertiport to
the destination node, and Tov = Tdv is the transfer time at each vertiport, which assumes a
buffer time for security, loading, and embarking (and vice versa).

For each k, this set of UAM trips, U , produces 2U car trips due to the presence of both
access and egress driving legs for each multi-modal UAM trip. This is then combined with
the rest of the demand D−U , which remain driving trips, producing a total of D+U trips
on the road. All of these trips are then simulated and processed in MANTA, and the total
travel times for the U trips are compared to the driving times for the same trips, as will be
shown later in the paper.

Convergence

While at each k the UAM-eligible trips are the ones offloaded to multi-modal UAM, this
does not take into account whether the user would choose multi-modal UAM over driving
at all. If this occurs, then simulating all the travelers based on that number of trips being
offloaded to UAM - while the others in the demand remain driving trips - will produce results
in which some travelers will wish to change their mode.

User equilibrium is a common problem in transportation simulation, in which one trav-
eler’s mode choice can affect the travel times of other travelers, who may then change their
mode choice due to the change in travel times [198]. For this reason, a user equilibrium
(UE), or Wardrop’s first principle, must be satisfied in which no traveler’s travel time on
their current route can decrease by changing to a different route or mode. This problem can
be addressed by using an iterative convergence algorithm, as shown in Equation (5.3).

Figure 5.7: Iterative convergence across multiple simulations narrows down the number of
trips that benefit from taking multi-modal UAM

Assuming travel time is the only parameter in our mode choice model, the traveler would
choose multi-modal UAM over driving if and only if its travel time with multi-modal UAM is
lower than that of driving. This convergence process is best explained with an example. For
instance, if there are 3M total trips, and 10% is offloaded to UAM, then 300K trips will take
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UAM and 2.7M trips will drive. Once this is simulated, we will notice that not all 300K trips
may benefit from using UAM (e.g., their travel times are, in fact, longer with multi-modal
UAM than driving). In this case, if 10% of the 300K trips did not benefit from UAM, then
there are 30K trips that did not benefit and 270K trips that did benefit. However, this benefit
was based on when there were 300K trips offloaded to UAM on the network while 2.7M trips
were still driving. The number of trips that benefit may change if we are to simulate again
with only the number of trips that benefited from UAM with the rest assigned to drive. In
other words, we must now re-simulate with 270K trips that take multi-modal UAM while
2.73M trips drive. As this iterative process continues, the delta in the number of trips that
benefit between each iteration will eventually decrease below a certain threshold, signifying
that the system converged to a user equilibrium of all travelers choosing the mode that best
minimizes their travel times. The process is formalized in Eq. (5.2) and (5.3).

βi = Td,i − Tu,i > 0 (5.2)

where β is the travel time benefit for trip i when taking UAM compared to driving, Td,i is
the travel time for trip i while driving, and Tu,i is the travel time for trip i while driving
. Let Nt be the total number of trips in {β1, β2, ..., βi > 0} for iteration t. Eq. (5.3) then
specifies the iterative convergence criterion in which all travelers are taking the mode that
produces travel time benefit compared to the other mode.

Nt+1 −Nt ≤ η (5.3)

where t is the iteration, and η is the threshold at which the system stabilizes, representing
the delta between the number of benefited trips between two successive iterations.

Generalizing, let D be the total number of trips and N1 the number of trips initially
assigned to multi-modal UAM in iteration 1. Thus, D − N1 trips are assigned as driving
trips and N1 trips are assigned as multi-modal UAM trips. Then, once all trips are simulated
in iteration 1, onlyN2 trips actually benefit from taking multi-modal UAM. Then, in iteration
2, D−N2 trips are assigned as driving trips and N2 trips are assigned as multi-modal UAM
trips. From the results of iteration 2, it may show that N3 trips benefited from taking multi-
modal UAM. Thus, in iteration 3, D − N3 trips are assigned as driving trips and N3 trips
are assigned as multi-modal UAM trips. This process continues and is reflected in Eq. (5.3).
Ultimately, we expect that N1 ≥ N2 ≥ N3 ≥ ...NT , where T is the total number of iterations
required to converge. The differences between unconverged and converged trips are shown
in the next section.

5.4 Results

For each k, the entire simulation process, including convergence, is carried out. Due to
the speed of MANTA, which is parallelized, each iteration takes under 6 minutes [240].
Such speed and performance allows for fast scenario planning and analysis across different
parameters.
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Transfer Times

As previously mentioned, an important consideration is the transfer time at the origin and
destination vertiports for each multi-modal UAM trip. From Figure 5.8, we can see that
the number of benefited trips across k is highly sensitive to the transfer time. At a transfer
time of 2 minutes at each vertiport, approximately 10% of the UAM-eligible trips benefit
(post-convergence) at k = 10, 35% at k = 30, and 65% at k = 100. The largest jump in
share of trips occurs between 10 and 30 vertiports, and the rate of improvement slows from
30 to 100 vertiports. At transfer times of 5 and 10 minutes, the number of benefited trips
decreases successively by approximately 6K trips at k = 10, 30K trips at k = 30, and 50K
to 70K trips at k = 100. For all k, the share of trips decreases at a higher rate when the
transfer time changes from 5 minutes to 10 minutes compared to when it changes from 2
minutes to 5 minutes. This suggests that the margin of benefit for many multi-modal UAM
trips, regardless of k, is likely around 10 minutes (the delta between two 10 minute transfer
times vs. two 5 minute transfer times). In Figure 5.8, the number of benefited trips across
k follows a logarithmic pattern across all transfer times.

Figure 5.8: The number of trips that benefit from multi-modal UAM

Convergence

For the following convergence analysis, the transfer time at each vertiport is assumed to
be 2 minutes. We select η = 10 trips, such that there is no more than a 10 trip delta
between the number of benefited trips in the previous iteration compared to the current
iteration. Across all k, a range of 2 to 5 iterations were required. Figure 5.9 shows that at
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k = 10 and k = 30, the number of benefited trips after convergence is almost 200K trips
fewer than before convergence. At k = 100, the number of converged trips differs from
the number of unconverged trips by approximately 130K. With convergence, the trips that
benefit have shorter multi-modal UAM travel times than those in the unconverged scenario,
which produces higher deltas between the multi-modal UAM travel time vs. driving for the
same trip.

From Section 5.4, the average distance of the trips that benefited after convergence shows
that higher distance trips, around 54 km, benefit more at the lower k = 10, and at k ≥ 30,
medium-distance trips below 40 km begin to benefit as well.

In Section 5.4, the travel time delta, δ, represents the difference in travel time between
driving and multi-modal UAM for the same trip. When δ < 0, the driving time is lower than
the multi-modal UAM time; when δ > 0, the multi-modal time is lower than the driving
time, and it is considered a trip that benefits. Across k, the average travel time delta stays
relatively stable around 20 to 23 minutes, which confirms that both multi-modal UAM and
driving times are still sensitive to the distance of the trips themselves.

Regional Analysis

For any new emergent mobility mode to gain traction for investment and infrastructure
provision, its impact on the existing transportation network must be evaluated. Specifically,
metropolitan planning organizations must understand the impacts to road congestion if a
new mode is introduced. The prevailing thought among proponents of UAM is that UAM
will be able to offload a sufficient number of trips such that the regional congestion on
the ground is noticeably improved. Indeed, this is generally reflected in the results, with
one caveat. The results in Figure 5.10 shows that changes in road congestion are highly
dependent on the vertiport network design, and particularly on k. As shown in Figure 5.10,
and assuming a transfer time of 2 minutes, at k = 10 and k = 100, the average travel time
of all trips on the road is lower than driving by approximately 1.5 to 5 minutes, respectively,
which is significant at an aggregate scale.

With the decreases in overall travel times and congestion, we must also address whether
incorporating a new mode is fair for those who never use it. In Figure 5.11, we find that
those who never take UAM very marginally benefit, from on average about 1/10th of a
minute at k = 10 to about 1 minute at k = 100. There is also a larger increase in benefit
from 10 vertiports to 30 vertiports, suggesting that there may be a sweet spot at a minimum
of 30 vertiports where all travelers, both multi-modal UAM and non-UAM users, benefit
noticeably.

5.5 Limitations and Future Research

An important finding shows that travel times are extremely sensitive to exact network de-
signs. When performing k-medians clustering, the algorithm chooses random points within
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Figure 5.9: The number of benefited trips across k = 10, 30, 100 after convergence
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Figure 5.10: At k ≥ 10, the average travel time on the road is lower than driving those same
trips, showing that there is benefit to having UAM in the transportation network once there
are at least 10 vertiports, with significant benefits occurring at 30 vertiports or more.

the street network that optimizes the objective. However, it does not consider whether these
nodes have intersecting edges that are small tertiary roads that could overflow with excess
congestion due to so many trips traveling to and from these few vertiports. An improvement
would be to actively select locations that are suitable for a vertiport as the vertiport can-
didates, considering land use parameters, ground congestion, and vehicle capacity of nearby
edges [189].

These results also reflect that vertiport capacities need to be incorporated into network
design and analysis, as there is severe demand imbalance across vertiports. As shown in Fig-
ure 5.12 at k = 10 vertiports, there are several vertiports servicing hundreds to even one
thousand trips more than other vertiports. This imbalance also exists at higher k.
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Figure 5.11: Trips that do not take UAM also benefit, albeit slightly, when UAM is an
available mode in the transportation network.

Figure 5.12: At k = 10, there is an imbalance among vertiports in how many trips are served

In addition to more optimal network design, further research should incorporate more
realistic constraints of the ground-air interface at the vertiport, considering both vertiport
and aircraft capacities, which will likely have a significant effect on total multi-modal UAM
travel times.
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5.6 Conclusion

This study provides a novel regional-scale microsimulation analysis of UAM’s benefit in a
metropolitan area, using the San Francisco Bay Area as a case study. We first present a data-
driven approach to determining UAM demand, and then subsequently simulate multi-modal
UAM along with driving trips across the entire metropolitan area using the fast, highly
parallelized regional-scale microsimulator MANTA. We find that the short distance trips are
gained by expanding the network to a higher k, and the long distance trips benefit across
all network designs. These benefits, though, are sensitive to transfer times at the vertiports,
suggesting that vertiport scheduling and capacity may become bottlenecks that limit the
value of UAM. We also find that at k ≥ 10 vertiports, the total regional congestion with UAM
as a mode is lower than if there was no UAM and all trips were driving trips, with noticeable
improvement to non-UAM travelers at k ≥ 30 vertiports. Even considering suboptimal
network design, this shows that UAM can have significant benefit for a metropolitan region.
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Chapter 6

SimUAM: A Regional-Scale
Multimodal UAM Toolchain

6.1 Introduction

When a new mode is introduced into a metropolitan transportation network, its impact on
individual travel behavior is often not readily understood [97]. To proponents, UAM directly
tackles one of the known parameters of mode choice, travel time, a theoretically and empiri-
cally known ‘bad’, or a factor that increases disutility [199, 89]. Assuming UAM operations
will use an on-demand model that includes aircraft flying along high-volume travel corridors
between a network of vertiports, analyses have attempted to estimate the potential impacts
of UAM passenger services on travel behavior, using predetermined vertiport locations and
simulating different modes of travel in different metropolitan areas [180, 216, 42, 237, 132].
However, these existing models assume static parameters in either ground traffic, vertiport
transfer times, aerial flight, or a combination of the three. For UAM, since its purported
value is in travel time savings, simulating the margins at a granular level, incorporating exact
dynamics and scheduling in each leg of the trip, is of utmost importance.

This paper proposes SimUAM, a holistic multi-modal toolchain that integrates ground
traffic microsimulation, ground-air interfacing at the vertiport, and aerial microsimulation,
producing exact travel times for both multi-modal UAM trips as well as other driving trips
across the region. Specifically, the MANTA component of SimUAM models road congestion
patterns of all driving trips, including the access and egress legs of the multi-modal UAM
trips. VertiSim models the exact ground-air interface at the vertiport to move the traveler
from the ground to a specific aircraft for the multi-modal UAM trips. The FE3 component
models the exact flight trajectories of these aircraft, incorporating conflict resolution and real
UAV mission profiles in the sky. For each multi-modal UAM trip, the interaction among
the three legs is exceedingly important in realizing the true value of UAM in a regional
transportation network. As a result, SimUAM is the first holistic toolchain, to the best
of these authors’ knowledge, that models all these interactions together dynamically and
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Figure 6.1: Simulation components for an individual multi-modal UAM trip

Figure 6.2: The full SimUAM model pipeline

granularly, as shown in Figure 6.1.
This paper is organized into the following sections. Section 6.2 details MANTA, the GPU-

based regional-scale road traffic microsimulator. Section 6.3 explains VertiSim, the granular,
discrete-event vertiport and pedestrian simulator. Section 6.4 discusses FE3, a NASA-
developed, GPU-based high-fidelity regional-scale microsimulator for air traffic. These three
components comprise the SimUAM architecture, shown in Figure 6.2. Section 6.6 describes
the performance metrics measured by SimUAM and experiments showing SimUAM’s benefit.
Finally, Section 6.7 and Section 6.8 highlight the limitations, future work, and conclusions
of this research.

6.2 MANTA: Microsimulation Analysis for Network

Traffic Assignment

The SimUAM framework relies on accurate ground traffic microsimulation in order to pro-
duce congested travel times for all the travel demand in the investigated region. In order



CHAPTER 6. SIMUAM: A REGIONAL-SCALE MULTIMODAL UAM TOOLCHAIN 99

to do so, we leverage Microsimulation Analysis for Network Traffic Assignment (MANTA),
an ultra-fast, highly-parallelized GPU-based microsimulation platform, developed by this
author [240]. Existing simulators have typically revealed a tradeoff among accuracy, compu-
tational speed, and geographic scale of simulation [240, 15, 46, 165, 175]. However, MANTA
exhibits performance benefits in all three of these areas, enabling it to be used for agile
scenario planning, particularly with an emergent mode such as UAM, whose deployment is
still in its inchoate stages. MANTA’s ability to track the microscopic movements of vehicles
on the street network, namely lane changes, acceleration, and braking with respect to other
vehicles, enables a granularity that remains vital in travel time computations [240].

Inputs

MANTA takes two major inputs: (1) Geographic network, comprised of edges and nodes in a
metropolitan geography’s street network, and (2) Origin-destination (OD) demand showing
traveler movements in the selected geography.

The geographic network, as described in [240], is derived from OpenStreetMap. We
use the network library OSMnx to determine the nodes that exist within the polygonal
hull of a metropolitan region, determined from widely available shapefiles for the region of
investigation [34]. The San Francisco (SF) Bay Area is shown in Figure 6.3 as an example
output of this process, and is also used as the area of investigation in Section 6.6 of this
paper. The SF Bay Area is chosen as the case study due to wide travel data availability and
massive geographic scale that reflects useful bidirectional commuting patterns.

The OD demand is generated from the local metropolitan planning organization (MPO),
which typically calibrates a travel demand model based on estimates from census and house-
hold travel data [143]. For the SF Bay Area, the data are derived from the Bay Area
Metropolitan Transportation Commission (MTC)’s Travel Demand One model.

Once each trip is assigned a mode, these trips are filtered to only driving trips, which
include driving alone, shared trips, and driving to transit. In the SF Bay Area, this totals
25M trips for the full day. This work focuses on the morning commute, from 5am-12pm, and
is filtered down to approximately 3M trips. Importantly, these trips may include multiple
passengers in the car, but these extra passengers are not considered in the number of trips.

The origin and destination of each trip is at a traffic analysis zone (TAZ) granularity,
which is a population density-based geographic unit used by MPOs across the nation, with
each TAZ area typically larger than a block but smaller than a zip code. This size is too
coarse for MANTA, which operates at the node level. As a result, once the origin and
destination TAZs are known, we randomly assign nodes to the origin and destination within
their respective TAZs, sampled from a uniform distribution, producing each trip as one from
an origin node to a destination node.



CHAPTER 6. SIMUAM: A REGIONAL-SCALE MULTIMODAL UAM TOOLCHAIN100

Figure 6.3: The San Francisco Bay Area region’s edges and nodes, defined by the polygonal
hull of its nine counties

Functionality

In MANTA, there are two major components: (1) routing and (2) microsimulation. The
initial routing algorithm developed in MANTA used a parallelized Dijkstra priority queue
implementation, which greedily selects the closest vertex that has not yet been processed.
This single source shortest path (SSSP) implementation could compute 3M routes, the num-
ber of driving trips from 5 AM to 12 PM in the SF Bay Area, in approximately 1 hour.

However, an update was made to integrate an ultra-fast, parallelized Open Source Rout-
ing Machine framework using Pandana, based on the contraction hierarchy scheme [84]. The
time it takes to compute the same 3M routes in the SF Bay Area is now under one minute.

MANTA is a time-based microsimulator that accounts for parallel changes that occur due
to the dependence of cars’ behaviors on one another. The vehicular movement on an edge is
dictated by conventional car following, lane changing, and gap acceptance algorithms [240,
210]. The well-known Intelligent Driver Model (IDM), as shown in 6.1, is used to control
the vehicle dynamics through the network [213].

v̇ = a(1− (
v

vo
)δ − (

so + Tv + v∆v
2
√
ab

s
)2) (6.1)

where v̇ is the current acceleration of the vehicle, a is the maximum possible acceleration
of the vehicle, v is the current speed of the vehicle, vo is the speed limit of the edge, δ is
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the acceleration exponent, s is the gap between the vehicle and the leading vehicle, s0 is the
minimum spacing allowed between vehicles when they are at a standstill, T is the desired
time headway, and b is the braking deceleration of the vehicle [240, 227]. The exact position
of each vehicle at the current timestep is computed using this calculated acceleration value
v̇.

In addition to car following, vehicles also follow lane changing rules, based on whether
the vehicle is making a mandatory or discretionary lane change. Mandatory lane changes
occur when the vehicle must take an exit from the edge, while discretionary lane changes
occur during overtaking a slower vehicle [240]. The lane changing model states that the
vehicle has an exponential probability of switching from a discretionary lane change to a
mandatory lane change as it proceeds through the edge, as shown in 6.2.

mi =

{
e−(xi−x0)2

xi ≥ x0

1 xi ≤ x0

(6.2)

where mi is the probability of a mandatory lane change for vehicle i, xi is the distance of
vehicle i to an exit or intersection, and x0 is the distance of a critical location to the exit or
intersection [111, 236].

Once a vehicle decides to change lanes, the maneuver is performed if the lead and lag
gaps of the cars in the lane to which it is changing are acceptable. The critical lead or lag gap
for a successful lane change is defined as the minimum distance to the following or lagging
vehicle that allows for a lane change, as shown in 6.3.

glead = max(ga, ga + αa1vi + αa2(vi − va)) + εa (6.3)

glag = max(gb, gb + αb1vi + αb2(vi − vb)) + εb (6.4)

where glead is the critical lead gap for a lane change, glag is the critical lag gap for a lane
change, ga is the desired lead gap for a lane change, gb is the desired lag gap for a lane
change, α is a system parameter (typically [0.05,0.40]) that controls the gap based on speed,
vi is the speed of the vehicle, va is the speed of the lead vehicle, vb is the speed of the lag
vehicle, and εa and εb are the random components [240].

MANTA is a parallelized, time-based simulator, rather than an event-based simulator,
and thus accounts for changes that occur for all vehicles in every timestep. A time-based
approach makes parallelization easier to implement, as synchronization protocols for event-
driven simulators is challenging. In addition, no overhead exists with time-based simulators,
which contrasts with event-based simulators, where millions to billions of events must be
constantly generated. Without this overhead, this allows for the ability to model more
granular movements in edges, not just events such as a vehicle entering or exiting an edge,
which often constitutes an event. The MANTA architecture is shown in Fig 6.4.
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Figure 6.4: The MANTA architecture

Calibration and Validation

MANTA has been calibrated against Uber Movement data on a per-edge basis for the San
Francisco Bay Area. First, 17% of edges in the San Francisco Bay Area network are matched
with the Uber Movement data [240]. Then, a mini-batch gradient descent algorithm is used
to iteratively converge to the optimal a, b, T , and s0 parameters of the Intelligent Driver
Model, shown in 6.1. In addition, each driver is outfitted with a different driver profile per
edge, based on a Gaussian distribution, with the speed limit of the edge as the mean and the
standard deviation of the Uber speeds on the edge as the standard deviation. This produces
closely matched edge speeds for the 17% of edges, as shown in Figure 6.5 [240]. Average
travel times and speeds are then closely validated with California Household Travel Survey
(CHTS) data as well as Uber Movement data [240]. As an example, Figure 6.5 shows the
mean edge speeds across all edges whose speed limits are 45 mph, for both MANTA and
Uber Movement. The average speeds differ by 3 mph and the standard deviations by below
1 mph, suggesting successful calibration.
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Figure 6.5: Kernel density estimator plot comparing MANTA microsim edge speeds vs. Uber
edge speeds on edges whose speed limits are 45 mph

From a performance perspective, MANTA can run one full simulation with 3M trips,
including routing, in 4.6 minutes on a machine with Intel i9-7940X CPU, 3.10 GHz clock
frequency and 28 cores. The GPU that runs the microsimulation component is an NVIDIA
GP104 (GeForce GTX 1080) with a 33 MHz clock.

MANTA provides the simulation backbone to the entire SimUAM platform, as all trips,
both driving and multi-modal UAM, must originate and end through MANTA. More infor-
mation can be found in [240]. However, as shown in the next section, multi-modal UAM
trips must be modeled by multiple interacting components, one of which is the ground-air
interface modeled by VertiSim.

6.3 VertiSim: Vertiport Ground-Air Interface

Modeling

Aircraft need infrastructure to land, taxi-in, park, load and unload passenger/cargo, charge,
repair, taxi-out, and take-off. Vertiports have to provide this infrastructure to handle pas-
sengers and aircraft within limited land use. Thus, they have limited throughput capacity.
This limitation makes vertiports the bottlenecks of the UAM system [219].

Vertiports are the transfer centers for passengers to change from one mode to another.
Therefore, transfers at the origin and destination vertiports must be simulated in order to
accurately calculate their transfer time. Additionally, aircraft turnaround time and taxiway
conflicts must be simulated for accurate throughput calculation.

In order to understand passenger waiting times and aircraft throughput, VertiSim has
been developed by the second author. VertiSim is an agent-based discrete-event simulator
capable of simulating millions of passengers and aircraft.
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Inputs

VertiSim takes as input vertiport locations and surface layouts (topologies). These are
comprised of TLOF pads, parking spaces, number of charging stations, number of security
lines/turnstiles at the vertiport entrance, distributions for stochastic walking times for pas-
sengers, passenger arrival schedule with passengers’ destination vertiport, aircraft arrival
schedule. It also takes several inputs for vertiport surface management strategies.

Functionality

The three major components of VertiSim are the (1) vertiport layout designer, (2) flight
generator, and (3) vertiport manager. The responsibility of the vertiport layout designer is
to create the node-link model of the input file. The flight generator then generates flights, as
the number of passengers accumulate to fly to the same direction, and assigns passengers to
available aircraft. If there is no available aircraft, the generator puts them in the departure
queue. It also generates flights for the passengers who waited more than Tmax, the maximum
waiting time threshold, specified intuitively as 10 minutes, without waiting for the aircraft to
be full. When there is a flight queue for the departing passengers in the waiting room, they
wait until their turn. The flight generator can assign new passengers to these underbooked
flights if passengers who are flying to the same direction arrive to the waiting room before
passengers leave the waiting room. The vertiport manager oversees the usage of the resources
of the vertiport for the agents. That is, it assigns a parking space and TLOF pad for the
aircraft and creates the taxi route for the aircraft. Ultimately, VertiSim is able to simulate
the departing passenger simulation, arriving passenger simulation and aircraft simulation at
the vertiport surface.

VertiSim is capable of simulating a variety of vertiport topologies. Every vertiport in the
given vertiport network can have a unique topology. Departing passenger flow in VertiSim
is as follows: (1) car to vertiport entrance, (2) security check/turnstile pass, (3) security
check/turnstile to waiting room, (4) waiting room to boarding gate, (5) boarding gate to
aircraft, (6) taxi-out, (7) take-off. Arriving passengers then disembark, go to the exit gate
at the vertiport surface, exit the vertiport at the ground level, and enter a car. From the
perspective of the aircraft, arriving aircraft request an available parking space. If there are
no available parking spaces, they loiter until one is reserved. They then land at the TLOF
pad assigned by the vertiport manager, taxi-in, unload the passengers, and finally charge.
These aircraft then become available for the departing passengers. When a parked aircraft
is assigned to a flight, they load passengers, reserve an available TLOF pad, taxi-out, and
take-off.

VertiSim outputs aircraft departure schedules, aircraft turnaround time statistics, pas-
senger transfer time statistics, and vertiport efficiency metrics. The VertiSim architecture is
shown in Figure 6.6.
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Figure 6.6: The ground/air interface at the vertiport

Steady-state data collection

The first passengers have priority to fly when the minimum number of passengers required to
fly to the same direction has been met, or if they have waited more than Tmax. Therefore, the
first agents wait less than the other agents. In order to collect accurate data, we remove the
data from the transient-state. Although there is no general guideline to identify transient-
state from steady-state, several methods exists. The first option is to choose a large enough
simulation time to eliminate the effects of the transient state. The second option is to
calculate across independent simulation runs the beginning time of the transient-state [37].
We have derived a formulation to detect the beginning of the steady-state region based on
our observations.

NA = NS ∗NTLOF ∗ 2 (6.5)

where NA represents number of pseudo-agents need to be added on top of the original demand
of each vertiport, NS is aircraft passenger capacity, and NTLOF represents number of TLOF
pads at the vertiport. For instance, on a 4 seat aircraft and 4 TLOF pad scenario, VertiSim
creates 32 passengers before the actual demand arrives. Pseudo-agents are randomly sampled
from the original demand file and removed at the end of the simulation.

Calibration and Validation

The parameters of VertiSim such as average human walk speed, aircraft ground speed are
determined from the literature and by subject-matter experts [129, 244]. Comparing the
location-time graphs of the passenger and aircraft agents to these studies confirm the proper
parameters.
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6.4 FE3: High-fidelity Aerial Simulation

In order to model UAM accurately, we must also simulate aerial component of the trip.
Leveraging the FE3 GPU-based microsimulation platform, developed at NASA, a mission
profile is created for every UAM trip, with a departure time, ascent and descent charac-
teristics, cruise altitude, and velocity/directional changes depending on wind patterns and
collision avoidance [235]. The FE3 platform is able to model these in-flight dynamics and
any subsequent flight trajectory shifts that contribute to changes in total flight time, mak-
ing it ideal for simulating UAM in congested airspace [235]. FE3 is a dynamic, high-fidelity
microsimulator leveraging a parallelized GPU architecture, similar to MANTA. Due to the
similarities in fidelity, the loose coupling is both seamless and interpretable.

Inputs

FE3 takes several structures as input. As described earlier, MANTA outputs the arrival times
of the multi-modal UAM trips to their respective origin vertiports, and VertiSim consolidates
these passengers into aircraft based on pedestrian walking times, aircraft arrival times, and
vertiport capacities. Once these passengers are assigned aircraft and then board, the aircraft
must go through the takeoff and landing process before it departs. As a result, FE3 takes as
input the aircraft departure times output from VertiSim. The passenger IDs are abstracted
away from FE3, which proceeds based on the assumption that all aircraft contain at least
1 passenger. In addition to the aircraft departure times, FE3 defines simulation related
parameters, such as the number of Monte Carlo simulations, temperature and humidity, and
the type of avoidance algorithm. It also has the ability to overwrite certain vehicle or device
model parameters, as shown in Figure 6.7.

Figure 6.7: FE3 aerial microsimulator architecture



CHAPTER 6. SIMUAM: A REGIONAL-SCALE MULTIMODAL UAM TOOLCHAIN107

Functionality

Fe3 is highly-parallelized using the CUDA programming language on graphics processing
units (GPUs). It is deployed on the Amazon Web Service (AWS) cloud for scalability, such
that the number of GPU instances can be dynamically deployed based on simulation needs.
Within the simulator, each aircraft’s flight in FE3 is governed by several models, specifically
trajectory, energy consumption, collision avoidance, vehicle communication and sensors, and
wind models [235].

The trajectory model consists of simulating the vehicle trajectory (in the inertial frame),
forces (in the body frame), kinematics (in the body frame), and the moments (in the body
frame) [235]. For multi-copters such as VTOL, the forces include: aerodynamic drags caused
by vehicle’s motion and wind, motor- generated forces that are always in z-direction of the
body frame, and the gravity force, which aligns with the z-direction of the inertial frame [235].

The energy consumption model contains two different methods, depending on the fidelity
required: (1) simple, in which the power is the product of torque multiplied by the rotational
speed, or (2) complex, in which DC motor power consumption is calculated as a product
of the input voltage and current. For a given motor, both models show that the consumed
energy is primarily a function of the motor’s rotational speed, which is driven by the desired
thrust and moments [235].

The collision avoidance model takes in the aircraft’s position, speed, and intent, and
intruder’s position, speed, and intent, although some many require information from multiple
intruders. FE3 uses a trajectory projection based method, which is one that predicts the
intruder’s trajectory based on the intruder’s current states (such as position and velocity)
and ranks resolutions with predefined maneuver options and rules [235]. Models included
are Detect and Avoid Alerting Logic for Unmanned Systems (DAIDALUS) and the Generic
Resolution Advisor and Conflict Evaluator (GRACE) [235].

The communication and sensor models are restricted by the vehicle power and size. High
transmission power increases the communication channel load and the signal interference, and
essentially reduces the signal reception probability [235]. Since the high-density operation
leaves a limited space for vehicles to avoid the potential conflicts, and the accuracy and
update frequency of the intruder’s states greatly affect the conflict avoidance algorithm’s
performance, the communication and detection capability plays a critical role in the analysis
of the UTM-type traffic system [235].

The wind model used by FE3 is The High Resolution Rapid Refresh (HRRR) system,
developed by the National Oceanic and Atmospheric Administration (NOAA) [235]. This
provides wind information at low-altitude airspace with great spatial and temporal resolu-
tions. The HRRR wind data cover two altitudes at 10m and 80m [235]. The spatial resolu-
tion is 3 km by 3 km and its temporal resolution is 15 minutes [235]. When implemented in
FE3, this model uses a spatially discretized database with turbulence intensity/uncertainty
associated with every location [235].
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Calibration and Validation

Since FE3’s trajectory and energy consumption models are governed by first-principles phys-
ical equations, their results are well-understood and reasonable. In addition, FE3’s models
for collision avoidance, communication, and wind, such as the DAIDALUS, GRACE, and
HRRR, are well-known and fully calibrated and validated [235].

6.5 Simulation

The SimUAM toolchain is now applied to the San Francisco Bay Area as a case study.
This toolchain combines network and origin-destination trip generation, ground traffic mi-
crosimulation, vertiport simulation, aerial traffic simulation, and UAM trip assignment and
modeling. Once these steps are complete, the final step is to simulate both UAM and non-
UAM trips[240, 235].

The first step is a standard MANTA simulation without UAM as a mobility option and
with all trips as driving-only trips. These results are used for later comparison.

The next step involves running a MANTA simulation with UAM as a mobility option. In
this scenario, there are several sequential steps. The first requires simulating in MANTA the
access leg of each multi-modal UAM trip, with the rest of the trips in the demand assigned
to driving.

After the toolchain runs, two experiments are presented, (1) S1, Simulated road traffic in
MANTA, and static vertiport transfer times and aerial flight times for the multi-modal UAM
trips, and (2) D1, Simulated road traffic in MANTA, simulated vertiport transfer times in
VertiSim, and simulated aerial flight times in FE3.

In the static experiment, S1, Once we have these initial times, we then simulate with static
transfer and aerial times. A 2 minute transfer time is assumed at the origin vertiport. Then,
each traveler is assumed to have access to an aircraft after 2 minutes at the origin vertiport,
and they embark on their flight. This flight also has static characteristics, specifically 138
mph (120 kts) cruise speed, 2000 feet cruise altitude, ascent/descent angles of 10 degrees,
and 100 fpm vertical climb. The flight path assumes a Haversine distance between the origin
and destination vertiports. After the flight lands at the destination vertiport, a 2 minute
transfer time at the destination vertiport is used.

In the dynamic experiment, D1, instead of assuming static transfer and aerial times,
travelers are simulated within the vertiport with VertiSim and are consolidated into aircraft.
These aircraft’s trajectories are then simulated in FE3. Once the flight lands at the destina-
tion vertiport, VertiSim, simulates the traveler’s movement from the aircraft to their egress
vehicle, as shown in Figure 6.1.

In both experiments, once the traveler reaches the egress vehicle, MANTA takes control
and simulates the full demand with all access and egress trips for UAM as well as all the
non-UAM driving trips.
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6.6 Performance Metrics

SimUAM’s value is derived from its ability to produce a comprehensive set of performance
metrics for all trips at both the microscopic person scale and the macroscopic regional scale.
Once a network design is input into SimUAM, it is able to simulate all the demand in the
region, assigning specific trips to multi-modal UAM and preserving the rest of the demand
as driving trips.

In S1, as mentioned earlier, the transfer times at the vertiports are statically assigned,
and the aerial flights follow standard mission profile assumptions that depart on demand for
each traveler. We evaluate the number of trips that benefit from taking multi-modal UAM,
which is defined as a trip whose travel time when taking multi-modal UAM is shorter than
the travel time of the same trip if it was driving only. Shown in Figure 6.8, we see that
as the transfer times increase, the number of benefited trips decreases across all k. We can
also see that the number of benefited trips increases as the number of vertiports increases,
with the largest increase occurring between 10 and 30 vertiports, with more marginal benefit
occurring as k increases further, ranging between 10K to 250K trips. This serves as a useful
upper bound of the total addressable market of urban air mobility.

Figure 6.8: The number of benefited trips when the ground-air interface is not modeled

Regional impact and addressable market

One of the major limitations of static assumptions is the inaccurate representation of aircraft
being on-demand (i.e., being available to fly immediately when the traveler requires it). In
experiment D1, we now model the ground-air interface at the vertiport in which the wait
times and consolidation times of passengers into aircraft, as well as the aircraft and vertiport
capacities. Using the number of benefited from a transfer time of 2 minutes above, we now see
after putting that demand through the full SimUAM toolchain that the number of benefited
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trips at k = 10, k = 30, k = 50, and k = 70 decrease significantly. In ??, we see that
the 23K trips at k = 10 to 5.3K trips, 125K trips at k = 30 to 11K trips, 171K trips at
k = 50 to 18K trips, and 212K trips k = 70 to 23K trips. This drop in the number of
benefited immediately shows the impact of real world constraints that will exist for UAM at
the vertiports themselves. Specifically, the number of takeoff and landing areas (TOLAs),
number of parking spaces for the aircraft, and the number of passengers per aircraft will
dictate the efficiency of multi-modal UAM as a beneficial transportation mode for travelers.
k = 100 is not calculated due to memory constraints for FE3.

In Figure 6.11, the number of benefited trips in the static S1 experiment shows a loga-
rithmic growth over k, but once the ground-air interface is modeled in the loosely coupled
SimUAM toolchain in D1, we see that the number of benefited trips increases relatively
linearly across k, showing that the waiting times and consolidation times at the vertiports
significantly decreases the potential of multi-modal UAM for networks of 30 vertiports or
fewer.

Figure 6.10: The number of benefited trips once the ground-air interface is simulated in
SimUAM significantly decreases across all k

The trips that benefit also change. Specifically, when considering the ground-air interface,
the trips that benefit are those that have even higher travel times than when we did not
consider the ground-air interface. For instance, at k = 10, the average driving time of
trips that benefit when not considering the ground-air interface is 94 minutes, but when
considering the ground-air interface, this increases to 101 minutes. The multi-modal UAM
times for these same trips also increase when considering the ground-air interface, going from
64 minutes to 77 minutes. This is unsurprising given the increase in transfer times due to
the ground-air interface bottleneck. This dynamic across k is shown in ??.
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Figure 6.11: The average travel time of benefited trips once the ground-air interface is
simulated in SimUAM significantly increases across all k (red vs. orange)

Vertiports

Per the existing literature, we assume a throughput of 240 flights per hour, including both
departures and arrivals [235]. At k = 10, the average transfer time once the ground-air
interface is considered dramatically increases to 49 minutes, as shown in Figure 6.12. With
a configuration of 4 TLOF pads, 16 parking spaces, and up to 4 seater aircraft, using the
initial total demand of 23K at a transfer time of 2 minutes, we see that the real transfer
times vary considerably across vertiports. The maximum average waiting time occurs at
Vertiport 6, whose traffic of over 4K passengers forces the average transfer time to be over 2
hours. At Vertiport 4, since the demand is below 1K, the average transfer time is only 3.85
minutes.

Figure 6.12: The average transfer time at k = 10 once the ground-air interface is considered

This shows that demand balancing may be important to decrease average waiting times
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at each vertiport. However, balancing the demand in a network with few vertiports may also
increase the access and egress driving times of these multi-modal UAM trips.

To investigate the effect of demand level on passenger transfer times, we have created 7
simulation scenarios with the vertiport configuration of 4 TLOF pads and 16 parking spaces
per vertiport. 30 seconds of aircraft arrival per vertiport (arrival of 2 minutes per TLOF) is
used for all cases. We use the same total demand, but now increase the number of vertiports
in the UAM network. Thus, the demand per vertiport decreases. Figure 6.13 shows that as
we decrease the demand, the average transfer time decreases down to an inflection point.
The decrease in the average transfer time is due to the increased passenger inter-arrival time,
which results in shorter queues for the flights. Decreasing the demand further actually results
in an increase in the average transfer time because the accumulation time for the required
number of passengers for a flight (4 passengers) increases. We also see that as we decrease
the demand, the average aircraft occupancy decreases, due to the ratio of the passengers
that wait more than Tmax (10 minutes) increases and the flight generator is triggered for
those passengers. Ultimately, waiting times decrease as k increases, but at 30 vertiports, the
consolidation time increases as well, due to the demand being distributed across all vertiports
rather than at certain vertiports.

Figure 6.13: The average transfer time and average aircraft occupancy with different demand
levels

Airspace

Once we simulate the aircraft in FE3, we see that there are now many aircraft congesting
the airspace, with 7,352 flights for k = 30 vertiports, shown in Figure 6.14. Note that
these aircraft trajectories do not consider airspace restrictions, which will further affect the
number of benefited trips if the airspace-restricted flight times are higher than the airspace-
unrestricted flight times. FE3 finds that with federated scheduling and no conflict resolution,
the average delay is 21.5 seconds per flight.
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Figure 6.14: The congested airspace of the San Francisco Bay Area at k = 30 vertiports

6.7 Limitations and Future Research

The SimUAM toolchain has one notable limitation: the inability to do iterative convergence
across a loosely coupled pipeline [YedavalliAssessing]. Due to the complex data input and
output of iterative convergence, an ongoing solution is to cross-compile both GPU-based
microsimulators, MANTA and FE3, and convert VertiSim into a GPU-based simulator. By
synchronizing the time, the convergence issue will be eliminated.

Due to the long transfer times at the vertiports, future research should involve optimal
network design to incorporate balanced vertiport networks. In addition, incorporating wait-
ing time and consolidation time into the network design will be able to decrease the average
transfer times across vertiports. Additional work involves refining the current components
and adding new components. MANTA is currently being enhanced to carry out dynamic
assignment, such that vehicles can adjust their routes based on the current congestion. FE3

is currently being refactored to account for larger demand scales and vertiport networks,
such as at k = 100, and also to consider local airspace restrictions. In addition, VertiSim is
being restructured as a parallel programming architecture.

6.8 Conclusion

This paper proposes a high-level multi-component architecture to integrate and model the
effects of introducing an emerging mobility technology, urban air mobility, into the trans-
portation network. Scholarship hitherto has tackled different components of this pipeline
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independently; however, in this research, we develop a full toolchain, SimUAM, to model
the ground traffic, vertiport, and aerial traffic with granular, agent-based, high-fidelity sim-
ulation. Initial results show that once the ground-air interface is modeled, the market for
UAM decreases across all network designs relative to models with static assumptions about
transfer times. However, we also find that improvements can be made to balance the de-
mand and optimize the networks for transfer time, likely increasing the number of benefited
trips closer to the total addressable market once more. SimUAM is the first of its kind to
incorporate fast, high-fidelity, regional-scale microsimulation on the ground and in the air
with detailed ground-air interface modeling at the vertiport, and can be used as a powerful
decision support system for UAM stakeholders.
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Chapter 7

Evaluating the Risks and Readiness of
U.S. Cities for UAM

7.1 Introduction

Advanced air mobility (AAM) is a broad concept focusing on emerging aviation markets
and use cases for on-demand aviation in urban, suburban, and rural communities. AAM
includes local use cases of about a 50-mile radius in rural or urban areas, and intraregional
use cases of up to a few hundred miles that occur within or between urban and rural areas.
Urban air mobility (UAM), a subset of AAM, envisions safe, sustainable, affordable, and
accessible air transportation for passenger mobility, cargo delivery, and emergency manage-
ment within or traversing a metropolitan area. In recent years, developments in electric and
hydrogen propulsion; vertical and short takeoff and landing (VTOL/STOL) aircraft; and
other technologies are creating renewed interest in on-demand urban aviation. A number of
pre-COVID market studies estimate the market potential of UAM passenger mobility and
goods delivery services to be between $74 to $641 billion US in 2035, with a wide variation
due to study assumptions (e.g., geography, use cases, aircraft types, inclusion of military
applications, etc.). Other studies also estimate a market potential for on-demand passenger
services between $2.8 to $4 billion US in 2030 [176, 54, 9, 201].

However, introducing a new mobility mode into a regional transportation network does
not occur in a black box. A new mode can create downstream effects - positive, negative,
or both - as has been shown with the automobile over the twentieth century [199, 77, 22,
243]. The extent of these short-term and long-term effects depend on the geographic context,
population investigated, type of deployment, and/or metric analyzed. Since transportation
is a public good, planning the responsible integration of UAM, as with other modes, requires
public stakeholder buy-in, both from agencies and their communities. With UAM, the public
sector must interface with infrastructure developers, aircraft manufacturers, utilities, service
providers, and communities to develop optimal policies and infrastructure for their respective
constituents.
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Given the vast number of planned deployments, federal preemption in many aspects
of aviation regulation, and range of potential impacts UAM could have on communities,
local and regional governments are faced with a situation where they need to evaluate the
potential impacts of UAM while simultaneously planning for the potential growth of on-
demand air mobility [220, 243, 216]. More research and planning are needed to help local
and regional governments plan and prepare in order to mitigate the potential adverse impacts
and maximize the potential benefits of UAM. While advanced air mobility may be enabled
by the convergence of many factors, several challenges, including community acceptance,
safety, equity, planning and implementation, airspace management, and operations, and
others could create barriers to the growth and mainstreaming of UAM [54].

The objective of this paper is to survey local, regional, and state governments on their
understanding of, planning capabilities, and institutional readiness for UAM. This paper is
organized into four sections: First, the authors provide an overview of the methodological
approach used to survey public agencies and an overview of the respondent demographics. In
the next section, the authors evaluate the results of the survey, organizing the findings into
three buckets: (1) broad UAM planning and concerns, with special attention given to safety,
sustainability, equity, noise, and multi-modal integration, (2) stakeholder engagement, and
(3) community engagement. In the final section, the authors conclude with limitations and
recommendations for additional research.

7.2 Survey Methodology

This paper presents the results of a survey of public agencies across the U.S. to gauge familiar-
ity, perceptions, and institutional readiness for UAM. The survey instrument was developed
in partnership with the Community Air Mobility Initiative (CAMI), a non-profit established
to educate and provide resources to the public and local and state decisionmakers. Study
advisory members from CAMI, National Aeronautics and Space Administration (NASA),
and faculty from UC Berkeley reviewed and commented on survey drafts, and completed a
pretest of the survey.

The survey was organized into five key sections. The survey first asked respondents to
answer questions about their agency’s existing experience with aviation planning (if any),
concerns with aviation impacts, and familiarity with UAM. Next, the survey asked questions
about each agency’s planning process and if they currently or are considering planning for
UAM. The survey also asked questions about the potential UAM use cases that may be under
consideration by public agencies. Additionally, the survey asked questions about existing
and planned stakeholder and community engagement activities with respect to UAM. The
final section of the survey explores specific UAM planning concerns, focusing on safety,
sustainability, equity, noise, and multimodal integration.

The survey was conducted online using the Qualtrics platform from February to June
2021. Using publicly available databases, the authors assembled contact information for
key personnel at cities, metropolitan planning organizations (MPOs), local emergency man-
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agement agencies, state departments of transportation (DOTs), and public transit agencies
from the largest 100 metropolitan statistical areas (MSAs) in the U.S., and the three largest
MSAs in each state. The authors emailed a short description and a link to take the sur-
vey. C-level officials, division or department heads, practitioners and planners, and elected
officials responded to the survey. Approximately 500 people were contacted, yielding 105
responses, or a 21% response rate. However, respondents were not required to answer each
question and the response rate for some questions may be lower.

A summary of the institutional respondents and their role within their organization is
shown in Figure 7.1. Out of the 105 responses obtained, 47% of the sample represent MPOs,
24% representing cities, 16% represent state DOTs, 11% represent public transit agencies,
and the remainder represent other entities, such as emergency management agencies. Ad-
ditionally, the sample includes a sizable percentage of C-suite respondents (17%), division
directors (41%), and practitioners (32%). A map of respondents by location and jurisdiction
type is shown in Figure 7.2.

Figure 7.1: Respondents by jurisdiction type and by role within their organization
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Figure 7.2: Respondents by jurisdiction type and location across the United States

7.3 Survey Findings

The survey explores a variety of issues relevant to government agencies when planning for
UAM. This section is organized into two sections: (1) planning for UAM, with particular
detail given to the issues of safety, sustainability, equity, and noise, and (2) UAM integration
in the transportation network.

Planning for UAM

The planning process allows planners and policymakers to document the state of transporta-
tion networks (e.g., congestion and performance), and establish goals and policies to guide
future growth and infrastructure development (Cohen and Shaheen 2016). Integrating UAM
into the planning process can serve a few core functions. First, the potential impacts of
UAM can be modeled and forecasted as part of long-range planning efforts. Second, plan-
ners can integrate UAM as part of infrastructure capital and planning decisions, such as
where vertiports get placed and how they are integrated with surface transportation. Fi-
nally, integrating UAM into the planning process can allow public agencies to study the
impacts of UAM airspace corridors and vertiport placement on land use, circulation, noise,
safety, and other common elements of comprehensive plans.

In the U.S., federal preemption in aviation gives the Federal Aviation Administration
(FAA) exclusive authority to regulate aviation safety, the efficiency of the navigable airspace
and air traffic control, among other things [170]. For this reason, local, regional, and state
governments are not permitted to regulate aircraft operations, such as flight paths, altitudes,
or navigable airspace. However, local, regional, and state governments retain wide latitude
over the regulation of take-off and landing sites through land use and zoning. Typically, laws
related to local policy, such as land use, zoning, privacy, and law enforcement operations,
are generally not subject to federal regulation [170]. For these reasons, aviation stakehold-
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ers (e.g., air carriers, manufacturers, etc.) have generally had limited interaction with local
stakeholders, such as elected officials, planning departments, public works, and underserved
communities. These relationships are depicted in Figure 7.3. However, because UAM de-
centralizes the impacts of aviation beyond airports, understanding the potential impacts of
on-demand air mobility and the role of local and regional governments is important.

Figure 7.3: The Relationship between local communities, aviation stakeholders, and UAM
community integration

Recognizing this historical context, the survey first collected baseline data on the existing
aviation activities (if any) and familiarity with UAM. The survey asked three key questions.
First, public agencies were asked if they currently operate any aviation facilities, such as
airports or heliports. Second, public agencies were asked if they currently incorporate UAM
as part of existing planning documents. Third, public agencies were asked if they were
considering adding UAM into future planning documents.

Experience with Aviation and Incorporating UAM into Local, Regional, and
State Planning Processes

A number of local, regional, and state governments are engaging in a variety of planning
activities to prepare for UAM. In May 2021, the Texas senate passed Senate Bill 763 which
creates an Urban Air Mobility Advisory Committee at the Texas Department of Trans-
portation to assess current and potential state laws and regulations needed to facilitate the
development of UAM operations and infrastructure [205]. In May 2021, the Massachusetts,
Minnesota, and Ohio Departments of Transportation, as well as the North Central Texas
Council of Governments and the City of Orlando have signed agreements with NASA to
participate in a workshop series to identify practices that states and municipalities can use
to integrate UAM into local and regional transportation plans [95]. The City of Orlando
has developed a White Paper establishing a preliminary framework to explore how UAM
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could be integrated into the city’s transportation network [161]. In 2020, Los Angeles and
the World Economic Forum published Principles of the Urban Sky, which outlines seven
planning tenets necessary to ensure the sustainable and equitable integration of UAM into
cities [171]. These principles include planning and implementation considerations, such as
safety, sustainability, equity, and multimodal integration, among others.

The survey asked respondents about their existing experience with aviation, and existing
and planned efforts to incorporate UAM into local, regional, and state planning processes.
Among the public agencies responding to the survey, only a small percentage (9%) of the
sample had any direct experience operating aviation facilities, such as airports and heli-
ports. Seventy-eight percent of the sample that operated aviation facilities were municipal
governments. Forty-seven percent (n=49/105) of the public agencies responding to the sur-
vey indicated that they are currently incorporating UAM into existing plans. The public
agencies that most frequently reported incorporating UAM into existing plans were MPOs
(53% or n=26/49) and cities (44% or n=11/25). Comprehensive plans—also known as gen-
eral or master plans—are plans with a set of long-term goals and policies that communities
use to guide development decisions (Cohen and Shaheen 2016). Twelve percent of municipal
governments responding to the survey are incorporating UAM into comprehensive plans.
Additionally, 32% (n=8/25) are considering incorporating UAM into comprehensive plans
and 20% (n=5/25) into subarea plans. Similar to comprehensive plans, regional transporta-
tion plans (RTPs) are long-range plans that identify and analyze the transportation needs
of a metropolitan region. Twelve percent of MPOs responding to the survey are already
incorporating UAM into these RTPs (n=6/49). An additional 25% of MPOs (n=12/49) are
considering incorporating UAM into planning documents, such as regional transportation
plans (20%) and comprehensive plans (14%).

Eighty-two percent of cities and 64% of MPOs indicated that they are not currently or
considering incorporating UAM into their plans. Lack of familiarity with UAM or with avi-
ation planning were the two most important reasons that cities and MPOs are not currently
planning for UAM. Sixteen percent of cities and 27% of MPOs said they lacked familiarity
with UAM. Sixteen percent of cities and 22% of MPOs said they lacked familiarity with avi-
ation planning, which makes it difficult to incorporate UAM into their planning processes.
These findings suggest that more education and outreach is needed to help cities and MPOs
understand what UAM is, and how to plan for it, particularly given the lack of familiarity
with aviation among local and regional governments. Section 7.3 reflects these findings across
the different jurisdiction types.

As an emerging concept, UAM will face many barriers, particularly at the local and
regional levels of government, such as community concerns about noise, equity, multimodal
integration, safety, and sustainability. The survey asked respondents about their agency’s
perceptions toward UAM. Respondents were asked to rate their agency’s concerns about
UAM using a 10-point Likert scale ranging from 1 (not concerned at all) to 10 (extremely
concerned). The question consisted of 15 types of concerns commonly associated with UAM,
including those related to safety, sustainability, privacy, economic productivity, affordability,
neighborhood impacts, and visual pollution, among others. In doing so, the survey provides
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Jurisdiction
Type

% Operating
Existing Avia-
tion Facilities

% Incorpo-
rating UAM
into Exist-
ing Planning
Documents

% Considering
Incorporating
UAM into Fu-
ture Planning
Documents

City (n=25) 7% (n=7) 10% (n=11) 8% (n=8)

MPO (n=49) 0% (n=0) 25% (n=26) 11% (n=12)

State (n=17) 1% (n=1) 7% (n=7) 5% (n=5)

Public transit
agency (n=11)

0% (n=0) 3% (n=3) 3% (n=3)

Other (n=3) 1% (n=1) 2% (n=2) 2% (n=2)

Table 7.1: UAM Planning by jurisdiction type (Notes: (1) Percentages per column will not
add up to 100% due to how the data is presented. Instead, the sum of percentages in each
column will signify the total percentage of respondents who answered Yes to the question,
with the remaining percentage as No or Unsure), (2) Each percentage is rounded to the
nearest whole number.

early insights about different types of concerns among different types of public agencies (e.g.,
city, MPO, and state), and comparative levels of concern about various impacts among a
cohort of public agencies (e.g., municipal concerns about safety compared to other types
of UAM impacts). The survey found that noise was the most important concern among
city governments, followed by equity. In contrast, equity (followed by safety) were the most
important concerns of MPOs and state DOTs.

Noise Noise from surface transportation, aviation, and emergency services are frequently
cited as a common community concern in urban environments. In some cases, communities
have responded to concerns about aviation noise by closing airports and heliports. For
example, the City of Santa Monica is scheduled to close its airport in 2028. A number of
aspects of UAM could create noise nuisances for communities. Potential nuisances include
how loud an aircraft’s noise is, how an aircraft’s noise sounds, how long the noise persists, the
types of land uses where the noise is heard, the time of day the noise occurs, and differences in
noise characteristics associated with scaled operations (both number of aircraft and frequency
of flights). Noise was the highest ranked concern among municipal governments. Twenty-
eight percent of cities (n=7/25) reported having an ordinance restricting vehicular or truck
noise. Six percent of MPOs (n=3/49) also reported having similar restrictions on vehicle
noise. Generally, cities and MPOs had similar views on noise. Both were most concerned
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by the volume of the noise, followed by the time of day the noise occurs. In contrast, state
DOTs were more concerned with how the noise sounds (i.e., frequency/type of noise) and
secondarily the volume of UAM noise. Due to concerns about aircraft noise, UAM aircraft
may need to meet stricter noise standards due to anticipated low-level flight paths over
densely populated areas.

Equity Social equity may be one of the largest barriers to the growth of UAM. Common
equity concerns associated with UAM include the high-cost of flights that may not be afford-
able to a mass market; environmental impacts of flight paths and vertiports, such as noise,
traffic (air and surface), and visual pollution; and economic impacts, such as gentrification
and displacement, in neighborhoods around vertiports. Additionally, limited public funds
and expenditures on UAM could result in other foregone public investments that could have
a broader societal impact, such as investments in public transportation. Current on-demand
aviation services average approximately 149to300 US per seat (although some are consider-
ably more expensive). Today, these price points serve higher-income and business travelers,
and are inaccessible for the mass market. A study by Porsche Consulting forecast that on-
demand air taxis using eVTOL will cost $8 to 18 US per minute [201]. Another study by
McKinsey and Company estimates that UAM air taxi service will range between $131 to
$1,912 US per trip in 2030 (depending on vertiport density) [142].

MPO and state DOT respondents rated equity as their agency’s most important concern
associated with UAM. Equity was also ranked as the second most important concern among
municipal governments. For local governments and MPOs, the affordability of UAM and
the environmental impacts of both flight paths and vertiports were identified as notable
concerns. For state DOTs, the affordability of UAM and the economic impacts of vertiports
on neighborhoods, such as gentrification and displacement, were key concerns. Vertiport
and aircraft access for people with disabilities was also raised as a somewhat important
equity concern among all three agency types. The findings indicate that policies are needed
to expand affordability of UAM, ensure access for people with disabilities, and prevent
or mitigate the environmental and economic impacts of vertiports and UAM operations.
Across all jurisdiction types, affordability is the most important priority for agencies across
all jurisdiction types, with an average priority level of 5.0 out of 10. Environmental justice
and ADA access are next, with average ranks of 4.38 and 3.65, respectively. Economic
impacts on neighborhoods and social justice are prioritized in the middle, and those with less
access to services and tools such as banks and phones are prioritized among the lowest. Job
creation is the least concerning issue when evaluating the equity of emerging transportation
technologies, as shown in Figure 7.4.



CHAPTER 7. EVALUATING THE RISKS AND READINESS OF U.S. CITIES FOR
UAM 123

Figure 7.4: Average priority level of equity concerns across all jurisdiction types. The scale
is out of 10.0, with 10.0 being most concerned and 1.0 being least concerned.

Multimodal Integration The survey also asked if public agencies would be interested
in integrating UAM with existing surface transportation options. Both cities and MPOs
indicated that public transit and shared mobility were the most important modes of trans-
portation for UAM to connect with. State DOTs, however, indicated that it was most
important to connect UAM to shared mobility and private vehicles. This variation likely re-
flects differences in roles and responsibilities, as many state DOTs are generally more focused
on roads and highways. Twenty four percent of state DOTs that responded to the survey
(n=4/17) said they were considering integrating UAM with public transit. Additionally,
20% of both cities and MPOs (n=5/25 and n=10/49, respectively) also said their agency
was considering integrating UAM with public transportation. One MPO and one state DOT
(2% and 6%, respectively) also said their agencies were considering integrating UAM with
shared mobility. Another two MPOs and one state DOT (4% and 6%, respectively) said
they were planning on integrating UAM with a mobility-as-a-service platform where travel-
ers can access multiple transportation modes over a single digital interface. Notably, across
all jurisdiction types, the least important mode to integrate with was any version of private
vehicle, including privately-owned vehicles and privately-owned automated vehicles, shown
in Figure 7.7.
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Figure 7.5: Average priority level of integrating with existing modes across all jurisdiction
types. The scale is out of 10.0, with 10.0 being most concerned and 1.0 being least concerned.

Safety Supplemental expert interviews on the topic revealed that public agencies were
generally less concerned about safety due to the aviation sector’s safety record. However,
the interviewees were also unfamiliar with the different safety records of Part 91, Part 135
(scheduled), Part 135 (non-scheduled), and Part 121 services. These parts refer to the U.S.
Federal Aviation Regulations (FARs) that govern all aviation activities in the U.S. Part 91
of the FARs provides general operating and flight rules for small non-commercial aircraft
within the U.S. Part 135 primarily oversees commuter and on-demand operations. Part 121
regulates commercial airlines. While each of these service models have very different safety
records, the public sector generally perceived most aviation activities generally safe due to
the safety record of Part 121 carriers (i.e., airlines). This suggests that public agencies have
a high-level of trust in the aviation sector and believe that UAM services will have an equal
or better safety record than commercial airlines. More education and outreach may also be
needed to educate local and regional governments on aviation safety, and the factors that
contribute to variations among different types of FAA-regulated activities. The findings
confirm this, as cities and MPOs indicate that the number of fatalities is the highest priority
concern for UAM, but with an average priority level of 7.24 out of 10.0. However, states
indicate that the number of injuries is their highest priority concern, with an average priority
level of only 7.20 out of 10.0. Property damage is indicated as the least concerning safety
issue across all jurisdictions. Figure 2 gives further detail.
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Figure 7.6: Average priority level of safety concerns across cities, states, and MPOs. The
scale is out of 10.0, with 10.0 being most concerned and 1.0 being least concerned.

Sustainability Investments in UAM are closely linked to recent technological develop-
ments in electric, hydrogen, and other low and zero emission aircraft. Proponents of UAM
suggest a variety of potential environmental benefits, such as shifting single-occupant vehicle
drivers into shared electric aircraft with multiple passengers. However, UAM also has the
potential to induce demand due to factors such as reduced travel times. While more research
is needed to study the potential environmental impacts of UAM on communities, this survey
asked respondents to rate their environmental priorities with respect to the introduction of
UAM as a new mode of transportation. The survey found that reducing greenhouse gas
emissions were the most important UAM environmental priorities for municipalities. How-
ever, improving air quality was most important to MPOs and state departments. Despite
the variation in the top priority, reducing vehicle miles traveled (VMT) was ranked as the
second-highest priority across all three jurisdiction types.
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Figure 7.7: Average priority level of sustainability concerns across cities, states, and MPOs.
The scale is out of 10.0, with 10.0 being most concerned and 1.0 being least concerned.

The Role of Stakeholder Engagement

As the public sector prepares for early UAM deployments, both collaboration with UAM
stakeholders and community engagement will be important parts of the planning process to
help communities understand potential concerns, such as noise, aesthetics, traffic congestion,
equity (i.e., displacement and gentrification), safety, and others. Respondents were asked to
share information about their collaboration with UAM stakeholders. Twenty-eight percent
of cities (n=7), 27% of MPOs (n=13), and 29% of state respondents (n=5) reported currently
collaborating with key UAM stakeholders, such as organizations involved in education and
outreach; service providers; aircraft manufacturers; and vertiport and real estate developers.
Municipal governments most frequently reported collaborating with organizations involved
in education and outreach (24%, n=6/25), service providers planning on using novel aircraft
designs such as eVTOL (24%, n=6/25), and aircraft manufacturers (16%, n=4/25). A few
municipal respondents also reported collaborating with utility companies (12%, n=3/25),
vertiport developers (4%, n=1/25), real estate developers (4%, n=1/25), and UAM service
providers currently offering on-demand flights using helicopters (4%, n=1/25). Similarly,
MPOs also most frequently reported collaborating with organizations involved in education
and outreach (18%, n=9/49); service providers planning on using novel aircraft designs (12%,
n=6/49); and aircraft manufacturers (12%, n=6/49). One MPO (2%) also reported working
with a utility company on electric infrastructure for UAM.

Of the local and regional governments collaborating with UAM stakeholders, the majority
reported discussions related to planned passenger services using on-demand air taxis. While
local and regional governments more frequently reported ongoing collaboration with orga-
nizations involved in education and outreach, aircraft manufacturers, and service providers,
state respondents reported more varied collaboration activities. Three states (18%) reported
collaborating with organizations involved in education and outreach. Two states (12%) said
they were collaborating with UAM service providers using novel aircraft designs, utility com-
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panies, and UAM service providers using helicopters. One state (6%) reported collaborating
with aircraft manufacturers, vertiport developers, and other real estate developers. The re-
sults indicate a variety of emerging planning activities related to UAM, even though UAM
has not been widely integrated into local, regional, and state planning documents.

The Role of Community Engagement

Community engagement can play a crucial role in helping prepare the public for early de-
ployments of UAM and guide sustainable and equitable outcomes. In spite of relatively
robust stakeholder engagement, survey respondents reported much more limited community
engagement efforts. Only two cities (8%) and two MPOs (8%) reported currently working
with community-based organizations as part of UAM outreach. One city (4%) and three
MPOs (6%) said they were engaging local business leaders. Similarly, only two cities (8%)
indicated they were working with neighborhood leaders and associations on UAM-related
outreach activities. The lack of early community engagement with community stakeholders
could be due to the state of the industry of UAM at the time of the survey, such as limited
program deployments, lack of certified eVTOL aircraft, and the global pandemic, which may
have limited the ability for public agencies to engage their communities through in-person
methods. However, the lack of community engagement could also present a number of risks
for the public and private sectors if communities impacted by UAM are not provided op-
portunities for meaningful engagement in the transportation decision-making process. These
results suggest that the public and private sectors should enhance community engagement ac-
tivities around UAM planning and implementation with key constituencies, such as business
leaders, neighborhood associations, community-based organizations, residents, and others.

A variety of methods can be used to solicit public feedback as part of the UAM planning
process, such as in-person and virtual public meetings, workshops, focus groups, listening
sessions, social media, and websites. The survey also asked respondents to identify the
community engagement strategies their agency thought were the most suitable for UAM
planning and community engagement. Municipal governments indicated that the most ef-
fective community engagement strategies for UAM are focus groups (40%, n=10/25), social
media (36%, n=9/25), and listening sessions with the public (32%, n=8/25). MPOs reported
that the most effective UAM community engagement strategies are public meetings (35%,
n=17/49) and surveys (35%, n=17/49).

7.4 Limitations and Additional Research

There are three major limitations associated with this study. The first is sample size and
uniformity across the different types of jurisdictions, regions, and MSA populations. Our
sample is heavily skewed toward large metropolitan areas, primarily on the Pacific Coast,
Midwest, and Mid-Atlantic regions. A larger sample of responses across geography and
jurisdiction type could enable a more granular analysis.
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Another limitation is the survey’s focus on only noise as part of community acceptance.
While results show that many agencies have not yet formally engaged with their communities,
it is likely that issues outside of noise will also be important to them, such as affordability
and aesthetics. Future research should consider cross-referencing community concerns with
those of the agencies.

The final limitation is associated with the survey design. By not forcing responses to
particular questions, many agencies did not answer the entire survey, making cross-tabulation
for particular parameters challenging. An enhancement for future survey instruments would
be to force responses for all questions, acknowledging that the response rate may decrease
as a result.

Additional research includes using these data to understand next steps for targeted pol-
icymaking for the large MSAs, which have already shown greater preparedness and engage-
ment in UAM. A monolithic approach to regulation will not suffice, as regional variation and
regulatory differences for each jurisdiction type requires bespoke policy.

7.5 Conclusion

Over 100 public agencies provided detail about their engagement with UAM. As the first
comprehensive analysis of U.S. public agencies’ preparedness for UAM, this study revealed
many new findings. Planning priorities, the level of stakeholder engagement, and the type of
community engagement vary across jurisdiction type. All jurisdiction types trust that safety
will follow the rigorous standards set forth by the FAA for commercial aviation. All juris-
diction types also find that integrating UAM with public transit, shared modes, and active
modes is important, while integrating with private vehicles is a much lower priority. Variation
across jurisdiction type exists in sustainability, noise, and equity. Stakeholder engagement
has been relatively high across all jurisdiction types, with variation across jurisdiction type
among which stakeholders have been engaged. However, community engagement remains
low across the board and must be highlighted as a top priority for public agencies in the
near future.

The Pacific Coast is especially advanced in their current engagement with aviation as
well as their engagement with UAM in particular, with the Midwest and Southwest not
far behind. Large MSAs, particularly in the Pacific Coast and the southern United States,
have been preparing for UAM. Medium- and small-sized MSAs, on the other hand, are not
only not thinking about UAM, but are often not aware of or familiar with it. Accordingly,
UAM deployments are expected to be in the larger MSAs initially, likely beginning with
goods transport and slowly moving toward passenger mobility. These findings suggest that
targeted regional policymaking and infrastructure efforts for UAM is necessary to move UAM
forward.
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Chapter 8

Conclusion

8.1 Summary of Contributions

The twentieth century saw the rise of the automobile, and with it came dramatic shifts in
travel behavior and infrastructure provision. Over time, the increased reliance on the au-
tomobile has caused devastating gridlock, higher pollution, and unsustainable land use and
travel behavior in metropolitan areas across the world. Considering the significant implica-
tions to sustainability, equity, and productivity, transportation planning has become more
important than ever. In order to avoid the downstream effects of new mobility technologies,
greater care must be taken with their deployments. Now, planners, engineers, and policy-
makers are looking for alternatives to battle the growing transportation problem. Broad
types of initiatives exist, such as providing incentives for behavioral changes in mobility (e.g.
congestion pricing), replacing trips (e.g. telecommuting), and enhancing modal substitu-
tion by offering a wide variety of accessible transportation alternatives. Urban air mobility
(UAM) is emerging as one of these alternatives.

Introducing a new mode must go through a comprehensive transportation planning pro-
cess to understand its short- and long-term impacts. As it stands, the impacts of UAM,
both positive and negative, remain unknown. This dissertation broadly explores urban air
mobility by developing a software framework to understand its potential impacts and then
investigating government readiness to deploy UAM in their areas.

A novel traffic microsimulator, MANTA, which addresses the challenges of fast, accurate
traffic microsimulation at the metropolitan-scale, is first presented. MANTA is highly effi-
cient and is capable of simulating real-world traffic demand with a fine level of granularity
on very large-scale networks, offering significant potential for fast scenario planning in both
short- and long-term applications in metropolitan-scale analysis. Independent functionality
to infer traffic control using deep learning is then discussed, with future plans to incorporate
it into MANTA. The multi-layer convolutional neural network produces the accuracies of ap-
proximately 72%, classifying the correct traffic control in 3 out of 4 intersections, significantly
improving the state-of-the-art.
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UAM as a transportation mode is then integrated into the traffic microsimulation ar-
chitecture. UAM’s benefit in a metropolitan area is first understood under specific land
use constraints for vertiports. Its value is then analyzed at a more granular level using an
iterative, data-driven approach to determine the total addressable market for UAM. These
demands and networks are simulated in MANTA as multi-modal UAM trips along with
driving trips across the entire metropolitan area. Results show that short distance trips are
gained by expanding the network to a higher k, and the long distance trips benefit across all
network designs. A notable increase in market potential exists between k = 10 and k = 30
vertiports. Additionally, at all numbers of vertiports, the total regional congestion with
UAM as a mode is lower than if there was no UAM and all trips were driving trips. Finally,
non-UAM users are shown to benefit very marginally across all k, with up to 1 minute in
benefit on average at k ≥ 30.

These initial analyses assume static transfer times at the vertiports and basic aerial flight
time calculations, but better real-world modeling is necessary to understand the ground-
air interface at the vertiport. As a result, a holistic software toolchain, SimUAM, which
integrates high-fidelity ground traffic simulation, vertiport simulation, and aerial simulation,
is developed. Rather than assuming the ground-air interface as static, this analysis reveals
the real-world bottlenecks in UAM network optimization: vertiport capacities and aircraft
capacities, reflected in large waiting and consolidation times. Considering these constraints,
average transfer times fluctuate wildly across vertiports in different network designs, making
UAM load balancing an important future research topic and significant in dictating the
viability of UAM at scale.

The dissertation concludes with an evaluation of the preparedness of government agen-
cies for UAM deployment. Results show that large metropolitan statistical areas (MSAs),
particularly in the Pacific Coast, Midwest, and Southeast, have been actively engaging with
stakeholders in UAM and have already incorporated or are planning to incorporate UAM
into their plans. In addition, the majority of metropolitan planning organizations, states,
and cities are concerned about UAM’s equity implications. While many agencies have broad
plans for UAM, they have engaged minimally with their respective communities, suggesting
that public acceptance may become a bottleneck to UAM deployment. Hurdles for public
agencies exist, but these results indicate that UAM is no longer a futuristic mobility con-
cept, but instead a real transportation alternative that government agencies of many large
MSAs are already planning for. As a result, this interest further underscores the need for
transportation modeling tools such as SimUAM as decision support systems.

8.2 The (Sky) Ahead...

The simulation toolchain developed in this dissertation is necessary, but not sufficient. Even
deeper analysis and scenario planning must be conducted to understand UAM’s broader
impacts.

One of the main impacts that must be analyzed is the interaction between travel behavior
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and long-term land use. Most existing UAM studies assume that demand is exogenous to
network design. However, in reality, potential changes in travel time may lead to changes
in individual behavior altogether, which then has a significant impact on residential and
workplace location choices, and ultimately land use, in the long run. This impact is con-
tingent on the placement of vertiports to not only maximize the number of travelers, but
also to decrease the access and egress times to the vertiports themselves. Urban economic
theory suggests that both centrality and dispersion may result from a new mode like UAM,
and thus planning UAM with particular objectives of sustainability and equity in mind is
imperative [6, 216, 36]. The SimUAM toolchain has been made modular and extensible to
enable this functionality, as shown in Figure 8.1.

Figure 8.1: Incorporating the long-term land use loop

Another challenge is developing beneficial UAM network designs that optimize for safety.
Infrastructure for vertiports, vehicle charging, and airspace traffic management must mature
to maximize safety [77]. However, a feedback loop exists - as more users take UAM for daily
trips, congestion will begin to appear in the sky, which will not only cause concern for the
riders but also increase safety risks for both riders and the overflown [58, 155].

A related obstacle is the rate of adoption. From the rider perspective, Garrow et al.
show that stated ridership is much greater within younger, more affluent communities, and
anticipate that the first application will be time-sensitive business trips [90]. In addition,
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despite high capital costs associated with private ownership, studies show that Americans
prefer the personal vehicle model of flying cars over ridesharing options, which may limit the
scale of adoption, and accordingly may decrease any positive impacts in sustainability and
efficiency [155].

Economic productivity is yet another unknown impact of UAM. If travel time decreases
altogether, more time can be spent either at work or in leisure activities that may spur
the local economy [23]. However, in this scenario, induced demand may also create greater
congestion on the road and even in the skies. On the other hand, scenarios may exist where
UAM increases total travel times, rendering it an inadequate transportation alternative. In
preliminary research with AV, there are indeed economic productivity gains from decreased
travel times and a lower number of accidents, but ripple effects occur in which there is lower
demand for auto repair, traffic services, medical, insurance, and legal, leading to $1.2 trillion
in economic impact [51]. Similar effects could occur with UAM, but these analyses must be
adapted to every metropolitan or regional economy.

Finally, and perhaps most importantly, based on public agencies’ responses, understand-
ing the equity implications of UAM is a significant area of research. UAM’s effect may be
similar to the current impacts of ridesharing, which has often become a substitute for transit
rather than single-person automobile, and thus, careful planning must be done to ensure
more equitable outcomes [52].

8.3 Final Thoughts

Urban air mobility has real opportunity to provide benefits to travelers in metropolitan areas.
However, a fine line exists between benefit and harm. It is imperative that we understand
how to responsibly deploy this new mode to optimize for sustainability, equity, and efficiency,
among many other transportation planning objectives. As this dissertation has detailed,
developing the proper decision support systems, which include accurate UAM models and
extensible simulation architectures, is necessary before committing valuable resources and
time to deployment.

UAM enthusiasts and policymakers alike are now deeply engaged, and experts in various
disciplines from planning to transportation to computer science must be both visionary and
responsible at the same time. Integrating technology into society has never been at a more
significant inflection point, and understanding how to use technology to do service to society
will be the key to future success.
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