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ABSTRACT OF THE DISSERTATION

Potential theory on Sierpiński carpets

with applications to uniformization

by

Dimitrios Ntalampekos

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Mario Bonk, Chair

This research is motivated by the study of the geometry of fractal sets and is focused on uni-

formization problems: transformation of sets to canonical sets, using maps that preserve the

geometry in some sense. More specifically, the main question addressed is the uniformization

of planar Sierpiński carpets by square Sierpiński carpets, using methods of potential theory

on carpets.

We first develop a potential theory and study harmonic functions on planar Sierpiński

carpets. We introduce a discrete notion of Sobolev spaces on Sierpiński carpets and use this

to define harmonic functions. Our approach differs from the classical approach of potential

theory in metric spaces discussed in [HKS15] because it takes the ambient space that contains

the carpet into account. We prove basic properties such as the existence and uniqueness

of the solution to the Dirichlet problem, Liouville’s theorem, Harnack’s inequality, strong

maximum principle, and equicontinuity of harmonic functions.

Then we utilize this notion of harmonic functions to prove a uniformization result for

Sierpiński carpets. Namely, it is proved that every planar Sierpiński carpet whose peripheral

disks are uniformly fat, uniform quasiballs can be mapped to a square Sierpiński carpet

with a map that preserves carpet modulus. If the assumptions on the peripheral circles

are strengthened to uniformly relatively separated, uniform quasicircles, then the map is a

quasisymmetry. The real part of the uniformizing map is the solution of a certain Dirichlet-

ii



type problem. Then a harmonic conjugate of that map is constructed using the methods of

Rajala [Raj17].
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an actual Sierpiński carpet, as defined in the Introduction. . . . . . . . . . . . . 57

2.4 A square relative Sierpiński carpet (S,Ω). Here Ω has two boundary components,

the curves that are not squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Illustration of the uniformizing map in Theorem 3.1.1. . . . . . . . . . . . . . . 104

3.2 The curves γs and γ̃t, and the corresponding Jordan regions Ωs,h and Ω̃t,h. . . . 142

3.3 Case 1 (left) and Case 2b (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 144

ix



ACKNOWLEDGMENTS

This long journey of pursuing a PhD in Mathematics would not have been completed, had

it not been for the help and contribution of many people.

First and foremost, I would like to thank my advisor, Mario Bonk, for guiding me through-

out my PhD at UCLA. He has been a true teacher, sharing his expertise in the field and

constantly providing deep insight to my questions. He has always been patient and support-

ive through times of difficulty, when the “math was not working”. I will always keep in mind

his advice to “have multiple pots on the stove”, meaning that if one problem is stubborn and

refuses to be solved, then a good option is to switch to another problem for a while, before

returning to the original one. Of course, this is not the easiest thing in the world, unless

someone like Mario keeps you constantly motivated to work on challenging and intriguing

problems. Last but not least, I thank him because he has provided me with precious career

advice, as well as comments and corrections on my papers and on this dissertation, which

substantially improved the presentations.

I am also grateful to many others in the UCLA Mathematics department and in particular

to John Garnett, for being an excellent teacher and taking time to answer my questions, to

Huy Tran, for numerous discussions on various research topics, and to Yiannis Moschovakis,

who provided me with valuable advice in the early stages of my PhD. Moreover, I am

deeply indebted to my “undergraduate advisor” Dimitrios Betsakos at Aristotle University

of Thessaloniki, who motivated me to pursue a PhD degree and prepared me thoroughly

by spending a great deal of time in our meetings teaching me advanced real and complex

analysis.

Beyond mathematics, it has been the continuous support of my family and friends that

helped me travel from Greece to the other end of the world in order to pursue this degree.

I am grateful to my parents, and to my siblings, Eleni and Filotas, for their love and for

always being there when I needed them. Thanks go to my colleagues and friends at UCLA

and especially to Assaf, Eden, Ian, and Maria, for all the adventurous moments that we had

together. I cannot omit my “Greek family” in LA, Daniel and Deborah, and also Aristos,

x



Christos, George D., Manos, Nikos, Yiannis L., and the amazing musicians George K. and

Yiannis K. for making LA feel like home with the numerous “Greek gatherings” we have had.

There is also a long list of friends—certainly more than I can mention here—that have always

been there when I needed them, and most of all I would like to thank Apostolis, Magda (or

Bette), Stavros and Vasso, for their long skype calls to either listen to my whining or rejoice

with me.

The author was partially supported by NSF grant DMS-1506099 during the completion

of this dissertation.

xi



VITA

2013–2018 Graduate student and teaching assistant, Department of Mathematics,

UCLA.

2015 Master of Arts in Mathematics, UCLA.

2013 Bachelor of Mathematics, Aristotle University of Thessaloniki.

PUBLICATIONS

Semi-hyperbolic rational maps and size of Fatou components, Ann. Acad. Sci. Fenn. Math.

43 (2018), 425–446.

A removability theorem for Sobolev functions and detour sets, submitted for publication,

preprint available at arXiv:1706.07687.
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CHAPTER 1

Introduction

One of the main problems in the field of Analysis on Metric Spaces is to find geometric con-

ditions on a given metric space, under which the space can be transformed to a “canonical”

space with a map that preserves the geometry. In other words, we wish to uniformize the

metric space by a canonical space. For example, the Riemann mapping theorem gives a

conformal map from any simply connected proper subregion of the plane onto the unit disk,

which is the canonical space in this case.

In the setting of metric spaces we search instead for other types of maps, such as bi-

Lipschitz, quasiconformal or quasisymmetric maps. One method for obtaining such a map

is by solving minimization problems, such as the problem of minimizing the Dirichlet energy∫
Ω
|∇u|2 in an open set Ω ⊂ C among Sobolev functions u ∈ W 1,2(Ω) that have some certain

boundary data.

To illustrate the method, we give an informal example. Let Ω ⊂ C be a quadrilateral,

i.e., a Jordan region with four marked points on ∂Ω that define a topological rectangle.

Consider two opposite sides Θ1,Θ3 ⊂ ∂Ω of this topological rectangle. We study the following

minimization problem:

inf

{∫
Ω

|∇u|2 : u ∈ W 1,2(Ω), u
∣∣
Θ1

= 0, u
∣∣
Θ3

= 1

}
. (1.0.1)

One can show that a minimizer u with the right boundary values exists and is harmonic on

Ω. Let D(u) :=
∫

Ω
|∇u|2 be the Dirichlet energy of u, and Θ2,Θ4 ⊂ ∂Ω be the other opposite

sides of the quadrilateral ∂Ω, numbered in a counter-clockwise fashion. Now, we consider

the “dual” problem

inf

{∫
Ω

|∇v|2 : v ∈ W 1,2(Ω), v
∣∣
Θ2

= 0, v
∣∣
Θ4

= D(u)

}
.
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Again, it turns out that a minimizer v with the right boundary values exists and is harmonic.

In fact, v is the harmonic conjugate of u. Then the pair f := (u, v) yields a conformal map

from Ω onto the rectangle (0, 1)×(0, D(u)); see [Cou77] for background on classical potential

theory and construction of conformal maps.

This example shows that in the plane harmonic functions that minimize the Dirichlet

energy and solve certain boundary value problems can be very handy in uniformization

theory. Namely, there exist more minimization problems whose solution u can be paired

with a harmonic conjugate v as above to yield a conformal map (u, v) that transforms a

given region to a canonical region. For example, one can prove in this way the Riemann

mapping theorem, the uniformization of annuli by round annuli, and the uniformization of

planar domains by slit domains; see [Cou77].

A natural question is whether such methods can be used in the abstract metric space

setting in order to obtain uniformization results. Hence, one would first need to develop a

harmonic function theory. Harmonic functions have been studied in depth in the abstract

metric space setting. Their definition was based on a suitable notion of Sobolev spaces

in metric measure spaces. The usual assumptions on the intrinsic geometry of the metric

measure space is that it is doubling and supports a Poincaré inequality. Then, harmonic

functions are defined as local energy minimizers, among Sobolev functions with the same

boundary data. We direct the reader to [Sha01] and the references therein for more back-

ground. However, to the best of our knowledge, this general theory has not been utilized yet

towards a uniformization result. As we see from the planar examples mentioned previously, a

crucial ingredient in order to obtain such a result is the existence of a harmonic conjugate in

the 2-dimensional setting. Constructing harmonic conjugates turns out to be an extremely

challenging task in the metric space setting.

Very recently this was achieved by K. Rajala [Raj17], who solved a minimization prob-

lem on metric spaces X homeomorphic to R2, under some geometric assumptions. The

minimization procedure yielded a “harmonic” function u, which was then paired with a

“harmonic conjugate” v to provide a quasiconformal homeomorphism (u, v) from X to R2.

The construction of a harmonic conjugate, which is one of the most technical parts of Ra-
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jala’s work, is very powerful. As a corollary, he obtained the Bonk-Kleiner theorem [BK02],

which asserts that a metric sphere that is Ahlfors 2-regular and linearly locally contractible

is quasisymmetrically equivalent to the standard sphere.

Another minimization problem in similar spirit is Plateau’s problem; see [Cou77]. This

has also recently been extended to the metric space setting [LW17] and its solution provides

canonical quasisymmetric embeddings of a metric space X into R2, under some geometric

assumptions. Thus, [LW17] provides an alternative proof of the Bonk-Kleiner theorem.

The development of uniformization results for metric spaces homeomorphic to R2 or

to the sphere would provide some insight towards the better understanding of hyperbolic

groups, whose boundary at infinity is a 2-sphere. A basic problem in geometric group theory

is finding relationships between the algebraic properties of a finitely generated group G and

the geometric properties of its Cayley graph. For each Gromov hyperbolic group there is a

natural metric space, called boundary at infinity, and denoted by ∂∞G. This metric space

is equiped with a family of visual metrics. The geometry of ∂∞G is very closely related

to the asymptotic geometry of the group G. A major conjecture by Cannon [Can94] is the

following: when ∂∞G is homeomorphic to the 2-sphere, then G admits a discrete, cocompact,

and isometric action on the hyperbolic 3-space H3. By a theorem of Sullivan [Sul81], this

conjecture is equivalent to the following conjecture:

Conjecture 1. If G is a Gromov hyperbolic group and ∂∞G is homeomorphic to the 2-sphere,

then ∂∞G, equipped with a visual metric, is quasisymmetric to the 2-sphere.

We now continue our discussion on applications of potential theory and minimization

problems to uniformization. We provide an example from the discrete world. In [Sch93],

using again an energy minimization procedure, Schramm proved the following fact. Let Ω

be a quadrilateral, and T a finite triangulation of Ω with vertex set {v}v∈I . Then there

exists a square tiling {Zv}v∈I of a rectangle R such that each vertex v corresponds to a

square Zv, and two squares Zu, Zv are in contact whenever the vertices u, v are adjacent

in the triangulation. In addition, the vertices corresponding to squares at corners of R are

at the corners of the quadrilateral Ω. In other words, triangulations of quadrilaterals can

3



be transformed to square tilings of rectangles. Of course, we are not expecting any metric

properties for the correspondence between vertices and squares, since we are not endowing

the triangulation with a metric and we are only taking into account the adjacency of vertices.

Hence, it is evident that potential theory is a precious tool that is also available in

metric spaces and can be used to solve uniformization problems. Furthermore, from the

aforementioned results we see that harmonic functions and energy minimizers interact with

quasiconformal and quasisymmetric maps in metric spaces. We now switch our discussion

to Sierpiński carpets and related uniformization problems.

A planar Sierpiński carpet S ⊂ C is a locally connected continuum with empty interior

that arises from a closed Jordan region Ω by removing countably many Jordan regions Qi,

i ∈ N, from Ω such that the closures Qi are disjoint with each other and with ∂Ω. The

local connectedness assumption can be replaced with the assumption that diam(Qi)→ 0 as

i → ∞. The sets ∂Ω and ∂Qi for i ∈ N are called the peripheral circles of the carpet S

and the Jordan regions Qi, i ∈ N, are called the peripheral disks. According to a theorem of

Whyburn [Why58] all such continua are homeomorphic to each other and, in particular, to

the standard Sierpiński carpet, which is formed by removing the middle square of side-length

1/3 from the unit square [0, 1]2 and then proceeding inductively in each of the remaining

eight squares.

The study of uniformization problems on carpets was initiated by Bonk in [Bon11],

where he proved that every Sierpiński carpet in the sphere Ĉ whose peripheral circles are

uniform quasicircles and they are also uniformly relatively separated is quasisymmetrically

equivalent to a round Sierpiński carpet, i.e., a carpet all of whose peripheral circles are

geometric circles. The method that he used does not rely on any minimization procedure,

but it uses results from complex analysis, and, in particular, Koebe’s theorem that allows

one to map conformally a finitely connected domain in the plane to a circle domain.

A partial motivation for the development of uniformization results for carpets is another

conjecture from geometric group theory, known as the Kapovich-Kleiner conjecture. The

conjecture asserts that if a Gromov hyperbolic group G has a boundary at infinity ∂∞G that
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is homeomorphic to a Sierpiński carpet, then G admits a properly discontinuous, cocompact,

and isometric action on a convex subset of the hyperbolic 3-space H3 with non-empty totally

geodesic boundary. The Kapovich-Kleiner conjecture [KK00] is equivalent to the following

uniformization problem, similar in spirit to Conjecture 1:

Conjecture 2. If G is a Gromov hyperbolic group and ∂∞G is a Sierpiński carpet, then

∂∞G can be quasisymmetrically embedded into the 2-sphere.

The main focus in this work is to prove a uniformization result for planar Sierpiński

carpets by using an energy minimization method. We believe that these methods can be

extended to some non-planar carpets and therefore provide some insight to the problem of

embedding these carpets into the plane. The canonical spaces in our setting are square

carpets, which arise naturally as the extremal spaces of a minimization problem. A square

carpet here is a planar carpet all of whose peripheral circles are squares, except for the one

that separates the rest of the carpet from ∞, which could be a rectangle. Also, the sides of

the squares and the rectangle are required to be parallel to the coordinate axes.

Under some geometric assumptions, we obtain the following main result:

Theorem 1. Let S ⊂ C be a Sierpiński carpet of measure zero. Assume that the peripheral

disks of S are uniformly fat, uniform quasiballs. Then there exists a “quasiconformal” map

(in a discrete sense) from S onto a square carpet.

The precise definitions of the geometric assumptions and of the notion of quasiconformal-

ity that we are employing are given in Chapter 3, Section 3.1; see Theorem 3.1.1. Roughly

speaking, fatness prevents outward pointing cusps in a uniform way. The quasiball assump-

tion says that in large scale the peripheral disks Qi look like balls, in the sense that for

each Qi there exist two concentric balls, one contained in Qi and one containing Qi, with

uniformly bounded ratio of radii. For example, if the peripheral disks are John domains with

uniform constants, then they satisfy the assumptions; see [SS90] for the definition of a John

domain. The uniformizing map is “quasiconformal” in the sense that it almost preserves

carpet-modulus, a discrete notion of modulus suitable for Sierpiński carpets.

5



If one strengthens the assumptions, then one obtains a quasisymmetry:

Theorem 2 (Theorem 3.1.2). Let S ⊂ C be a Sierpiński carpet of measure zero. Assume

that the peripheral circles of S are uniformly relatively separated, uniform quasicircles. Then

there exists a quasisymmetry from S onto a square carpet.

These are the same assumptions as the ones used in [Bon11], except for the measure zero

assumption, which is essential for our method. The assumption of uniform quasicircles is

necessary both in our result and in the uniformization by round carpets result of [Bon11],

because this property is preserved under quasisymmetries, and squares and circles share it.

The uniform relative separation condition prevents large peripheral circles to be too close to

each other. This is essentially the best possible condition one could hope for:

Proposition 1 (Proposition 3.1.6). A round carpet is quasisymmetrically equivalent to a

square carpet if and only if the uniform relative separation condition holds.

The map in Theorem 1 is the pair of a certain carpet-harmonic function u with its

“harmonic conjugate” v. Recall that the carpet S is equal to Ω \
⋃
i∈NQi, where Ω is a

Jordan region. We wish to view ∂Ω as a topological rectangle with sides Θ1, . . . ,Θ4 and

consider a discrete analog of the minimization problem (1.0.1). This is the problem that

will provide us with the real part u of the uniformizing map. Then, adapting the methods

of [Raj17] we construct a harmonic conjugate v of u. This is discussed in Chapter 3.

Hence, in order to proceed, we need to make sense of a Sobolev space W1,2(S) and of

carpet-harmonic functions. This is the content of Chapter 2.

Before providing a sketch of our definition of Sobolev spaces and carpet-harmonic func-

tions, we recall the definition of Sobolev spaces—also called Newtonian spaces—and har-

monic functions on metric spaces, following [Sha00] and [Sha01]. Roughly speaking, a func-

tion u : X → R lies in the Newtonian space N1,p(X) if u ∈ Lp(X), and there exists a function

g ∈ Lp(X) with the property that

|u(x)− u(y)| ≤
∫
γ

g ds

6



for almost every path γ and all points x, y ∈ γ. Here, “almost every” means that a family

of paths with p-modulus zero has to be excluded; see sections 2.3 and 2.4 for a discussion

on modulus and non-exceptional paths. The function g is called a weak upper gradient of

u. Let I(u) = infg ‖g‖p where the infimum is taken over all weak upper gradients of u. A

p-harmonic function in an open set Ω ⊂ X with boundary data f ∈ N1,p(X) is a function

that minimizes the energy functional I(u) over functions u ∈ N1,p(X) with u
∣∣
X\Ω ≡ f

∣∣
X\Ω.

As already remarked, the usual assumptions on the space X for this theory to go through is

that it is doubling and supports a Poincaré inequality.

In our setting, we follow a slightly different approach and we do not use measure and

integration in the carpet S to study Sobolev functions, but we rather put the focus on

studying the “holes” Qi of the carpet. Hence, we do not make any assumptions on the

intrinsic geometry of the carpet S, other than it has Lebesgue measure zero, but we require

that the holes Qi satisfy some uniform geometric conditions; see Section 2.2. In particular,

we do not assume that the carpet S supports a Poincaré inequality or a doubling measure.

What is special about the theory that we develop is that Sobolev funcions and harmonic

functions will acknowledge in some sense the existence of the ambient space, where the carpet

lives.

The precise definitions will be given later in Sections 2.5 and 2.6 but here we give a rough

sketch. A function u : S → R lies in the Sobolev space W1,2(S) if it satisfies a certain L2-

integrability condition and it has an upper gradient {ρ(Qi)}i∈N, which is a square-summable

sequence with the property that

|u(x)− u(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi)

for almost every path γ ⊂ Ω and points x, y ∈ γ ∩ S. We remark here that the path γ will

also travel through the ambient space Ω, and does not stay entirely in the carpet S. Here,

“almost every” means that we exclude a family of “pathological” paths of carpet modulus

equal to zero; see Section 2.3 for the definition. This is necessary, because there exist (a lot

of) paths γ that are entirely contained in the carpet S without intersecting any peripheral

disk Qi. For such paths the sum
∑

i:Qi∩γ 6=∅ ρ(Qi) would be 0, and thus a function u satisfying

7



the upper gradient inequality for all paths would be constant.

In order to define a carpet-harmonic function, one then minimizes the energy functional∑
i∈N ρ(Qi)

2 over all Sobolev functions that have given boundary data. This energy func-

tional corresponds to the classical Dirichlet energy
∫
|∇u|2 of a classical Sobolev function in

the plane.

We will develop this theory for a generalization of Sierpiński carpets called relative

Sierpiński carpets. The difference to a Sierpiński carpet is that here we will actually allow

the set Ω to be an arbitrary (connected) open set in the plane, and not necessarily a Jordan

region. So, we start with an open set Ω ⊂ C and we remove the countably many peripheral

disks Qi from Ω as in the definition of a Sierpiński carpet; see Section 2.2 for definition. This

should be regarded as a generalization of relative Schottky sets studied in [Mer12], where

all peripheral disks Qi are round disks. This generalization allows us, for example, to set

Ω = C and obtain an analog of Liouville’s theorem, that bounded carpet-harmonic functions

are constant .

Under certain assumptions on the geometry of the peripheral disks Qi (see Section 2.2)

we obtain the following results (or rather discrete versions of them) for carpet-harmonic

functions:

• Solution to the Dirichlet problem; see Section 2.6.

• Continuity, maximum principle, uniqueness of the solution to the Dirichlet problem,

comparison principle; see Section 2.7.

• Caccioppoli inequality; see Section 2.8.

• Harnack’s inequality, Liouville’s theorem, strong maximum principle; see Section 2.9.

• Local equicontinuity and compactness of harmonic functions; see Section 2.10.
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CHAPTER 2

Harmonic functions on Sierpiński carpets

2.1 Introduction

In this chapter we introduce and study notions of Sobolev spaces and harmonic functions

on Sierpiński carpets. We briefly describe here some of the applications of carpet-harmonic

functions, and then the organization of the current chapter.

In Chapter 3, carpet-harmonic functions are applied towards a uniformization result. In

particular, it is proved there that Sierpiński carpets, under the geometric assumptions de-

scribed in Section 2.2, can be uniformized by square carpets. This is done by constructing

a “harmonic conjugate” of a certain carpet-harmonic function, and modifying the methods

used in [Raj17]. The uniformizing map is not quasisymmetric, in general, but it is quasi-

conformal in a discrete sense. If the assumptions on the peripheral circles are strengthened

to uniformly relatively separated (see Remark 2.5.4 for the definition), uniform quasicircles,

then the map is actually a quasisymmetry.

Carpet-harmonic functions also seem to be useful in the study of rigidity problems for

quasisymmetric or bi-Lipschitz maps between square Sierpiński carpets. The reason is that

the real and imaginary parts of such functions are carpet-harmonic, under some conditions;

see Corollary 2.6.5. Such a rigidity problem is studied in [BM13], where it is shown that the

only quasisymmetric self-maps of the standard Sierpiński carpet are Euclidean isometries.

In Theorem 2.7.13 we use the theory of carpet-harmonic functions to show an elementary

rigidity result, which was already established in [BM13, Theorem 1.4], for mappings between

square Sierpiński carpets that preserve the sides of the unbounded peripheral disk. It would

be very interesting to find a proof of the main result in [BM13] using carpet-harmonic
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functions.

The sections of the chapter are organized as follows. In Section 2.2 we introduce our

notation and our basic assumptions on the geometry of the peripheral disks.

In Section 2.3 we discuss notions of carpet modulus that will be useful in studying path

families in Sierpiński carpets, and, in particular, in defining families of modulus zero which

contain “pathological” paths that we wish to exclude from our study. In Section 2.4 we

prove the existence of paths with certain properties that avoid the “pathological” families of

modulus zero.

In Section 2.5 we finally introduce Sobolev spaces, starting first with a preliminary notion

of a discrete Sobolev function, and then deducing the definition of a Sobolev function. We

also study several properties of these functions and give examples.

Section 2.6 discusses the solution to the Dirichlet problem on carpets. Then in Section

2.7 we establish several classical properties of harmonic functions, including the continuity,

the maximum principle, the uniqueness of the solution to the Dirichlet problem, and the

comparison principle. We also prove a discrete analog of the Caccioppoli inequality in Section

2.8.

Some more fine properties of carpet-harmonic functions are discussed Section 2.9, where

we show Harnack’s inequality, the analog of Liouville’s theorem, and the strong maximum

principle. We finish this chapter with Section 2.10, where we study equicontinuity and

convergence properties of carpet-harmonic functions.

2.2 Basic assumptions and notation

We denote R̂ = R ∪ {−∞,+∞}, and Ĉ = C ∪ {∞}. A function that attains values in R̂

is called an extended function. We use the standard open ball notation B(x, r) = {y ∈

R2 : |x − y| < r} and B(x, r) is the closed ball. If B = B(x, r) then cB = B(x, cr). Also,

A(x; r, R) denotes the annulus B(x,R) \B(x, r), for 0 < r < R. All the distances will be in

the Euclidean distance of C ' R2. A point x will denote most of the times a point of R2 and
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rarely we will use the notation (x, y) for coordinates of a point in R2, in which case x, y ∈ R.

Each case will be clear from the context.

Let Ω ⊂ C be a connected open set, and let {Qi}i∈N be a collection of (open) Jordan

regions compactly contained in Ω, with disjoint closures, such that the set S := Ω \
⋃
i∈NQi

has empty interior and is locally connected. The latter will be true if and only if for every

ball B(x, r) that is compactly contained in Ω the Jordan regions Qi with Qi ∩ B(x, r) 6= ∅

have diameters shrinking to 0. We call the pair (S,Ω) a relative Sierpiński carpet . We will

often drop Ω from the notation, and just call S a relative Sierpiński carpet. The Jordan

regions Qi are called the peripheral disks of S, and the boundaries ∂Qi are the peripheral

circles . Note here that ∂Ω∩S = ∅. The definition of a relative Sierpiński carpet is motivated

by the fact that if Ω is a Jordan region, then S is a Sierpiński carpet in the usual sense,

as defined in the Introduction. See Figure 2.3 for a Sierpiński carpet, and Figure 2.4 for a

relative Sierpiński carpet, in which Ω has two boundary components.

We will impose some further assumptions on the geometry of the peripheral disks {Qi}i∈N.

First, we assume that they are uniform quasiballs , i.e., there exists a uniform constant K0 ≥ 1

such that for each Qi there exist concentric balls

B(x, r) ⊂ Qi ⊂ B(x,R), (2.2.1)

with R/r ≤ K0.

Second, we assume that the peripheral disks are uniformly fat sets , i.e., there exists a

uniform constant K1 > 0 such that for every Qi and for every ball B(x, r) centered at some

x ∈ Qi with r < diam(Qi) we have

H2(B(x, r) ∩Qi) ≥ K1r
2, (2.2.2)

where by Hm we denote the m-dimensional Hausdorff measure, normalized so that it agrees

with the m-dimensional Lebesgue measure, whenever m ∈ N.

A Jordan curve J ⊂ R2 is a K-quasicircle for some K > 0, if for any two points x, y ∈ J

there exists an arc γ ⊂ J with endpoints x, y such that |x−y| ≤ K diam(γ). Note that if the

peripheral circles ∂Qi are uniform quasicircles (i.e., K-quasicircles with the same constant
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K), then they are both uniform quasiballs and uniformly fat sets. The first claim is proved

in [Bon11, Proposition 4.3] and the second in [Sch95, Corollary 2.3], where the notion of

a fat set appeared for the first time in the study of conformal maps. Another example of

Jordan regions being quasiballs and fat sets are John domains ; see [SS90] for the definition

and properties of John domains. We remark that the boundary of such a domain has strictly

weaker properties than those of a quasicircle.

Finally, we assume that H2(S) = 0. In the following, a relative Sierpiński carpet (S,Ω)

(which will also be denoted by S if Ω is implicitly understood) will always be assumed to

have area zero and peripheral disks that are uniform quasiballs and uniformly fat sets. These

will also be referred to as the standard assumptions . We say that a constant c > 0 depends

on the data of the carpet S, if it depends only on the quasiball and fatness constants K0 and

K1, respectively.

The notation V ⊂⊂ Ω means that V is compact and is contained in Ω. Alternatively, we

say that V is compactly contained in Ω. For a set E ⊂ R2 and δ > 0 we denote by Nδ(E)

the open δ-neighborhood of E

{x ∈ R2 : dist(x,E) < δ}.

A continuum E ⊂ R2 is a compact and connected set. A continuum E is non-trivial if it

contains at least two points. Making slight abuse of notation and for visual purposes, we

use Qi to denote the closure of Qi, instead of using Qi.

A path or curve γ is a continuous function γ : I → R2, where I ⊂ R is a bounded interval,

such that γ has a continuous extension γ : I → R2, i.e., γ has endpoints. A closed path

γ is a path with I = [0, 1] and an open path γ is a path with I = (0, 1). We will also use

the notation γ ⊂ R2 for the image of the path as a set. A subpath or subcurve of a path

γ : I → R2 is the restriction of γ to a subinterval of I. A Jordan curve is a homeomorphic

image of the unit circle S1, and a Jordan arc is homeomorphic to [0, 1].

We denote by S◦ the points of the relative Sierpiński carpet S that do not lie on any

peripheral circle ∂Qi. For an open set V ⊂ Ω define ∂∗V = S ∩ ∂V ; see Figure 2.3. For a

set V that intersects the relative Sierpiński carpet S we define the index set IV = {i ∈ N :
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Qi ∩ V 6= ∅}.

In the proofs we will denote constants by C,C ′, C ′′, . . . , where the same symbol can

denote a different constant if there is no ambiguity.

2.3 Notions of carpet modulus

The carpet modulus is a generalization of the transboundary modulus introduced by Schramm

in [Sch95]. Several properties of the carpet modulus were studied in [BM13, Section 2].

Let (S,Ω) be a relative Sierpiński carpet with the standard assumptions, and let Γ be a

family of paths in Ω.

Let us recall first the definition of conformal modulus or 2-modulus of a path family Γ in

Ω. A non-negative Borel function λ on Ω is admissible for the conformal modulus mod2(Γ)

if ∫
γ

λ ds ≥ 1

for all locally rectifiable paths γ ∈ Γ. If a path γ is not locally rectifiable, we define∫
γ
λ ds = ∞, even when λ ≡ 0. Hence, we may require that the above inequality holds

for all γ ∈ Γ. Then mod2(Γ) = inf
∫
λ2 dH2 where the infimum is taken over all admissible

functions.

A sequence of non-negative discrete weights {ρ(Qi)}i∈N is admissible for the weak (carpet)

modulus modw(Γ) if there exists a path family Γ0 ⊂ Γ with mod2(Γ0) = 0 such that

∑
i:Qi∩γ 6=∅

ρ(Qi) ≥ 1 (2.3.1)

for all γ ∈ Γ \ Γ0. Note that in the sum each peripheral disk is counted once, and we only

include the peripheral disks whose interior is intersected by γ, and not just the boundary.

Then we define modw(Γ) = inf
∑

i∈N ρ(Qi)
2 where the infimum is taken over all admissible

weights ρ.

Similarly we define the notion of strong (carpet) modulus . A sequence of non-negative
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discrete weights {ρ(Qi)}i∈N is admissible for the strong carpet modulus mods(Γ) if∑
i:Qi∩γ 6=∅

ρ(Qi) ≥ 1 (2.3.2)

for all γ ∈ Γ that satisfy H1(γ ∩S) = 0. Note that the path γ could be non-rectifiable inside

some Qi. Then mods(Γ) := inf
∑

i∈N ρ(Qi)
2 where the infimum is taken over all admissible

weights ρ.

For properties of the conformal modulus see [LV73, Section 4.2, p. 133]. It can be shown

as in the conformal case that both notions of carpet modulus satisfy monotonicity and

countable subadditivity, i.e., if Γ1 ⊂ Γ2 then mod(Γ1) ≤ mod(Γ2) and

mod

(⋃
i∈N

Γi

)
≤
∑
i∈N

mod(Γi),

where mod is either modw or mods.

The following lemma provides some insight for the relation between the two notions of

carpet modulus.

Lemma 2.3.1. For any path family Γ in Ω we have

modw(Γ) ≤ mods(Γ).

Proof. Let {ρ(Qi)}i∈N be admissible for mods(Γ), so
∑

i:Qi∩γ 6=∅ ρ(Qi) ≥ 1 for all γ ∈ Γ

with H1(γ ∩ S) = 0. Define Γ0 = {γ ∈ Γ : H1(γ ∩ S) > 0}. Then the function λ =

∞ · χS is admissible for mod2(Γ0). Since H2(S) = 0, it follows that mod2(Γ0) = 0. Hence,∑
i:Qi∩γ 6=∅ ρ(Qi) ≥ 1 for all γ ∈ Γ \ Γ0, which shows the admissibility of {ρ(Qi)}i∈N for the

weak carpet modulus modw(Γ).

A version of the next lemma can be found in [BM13, Lemma 2.2] and [Boj88].

Lemma 2.3.2. Let κ ≥ 1 and I be a countable index set. Suppose that {Bi}i∈I is a collection

of balls in R2, and ai, i ∈ I, are non-negative real numbers. Then there exists a constant

C > 0 depending only on κ such that∥∥∥∥∑
i∈I

aiχκBi

∥∥∥∥
2

≤ C

∥∥∥∥∑
i∈I

aiχBi

∥∥∥∥
2

.
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Here ‖ · ‖2 denotes the L2-norm with respect to planar Lebesgue measure. We will also

need the next lemma.

Lemma 2.3.3. For a path family Γ in Ω we have the equivalence

modw(Γ) = 0 if and only if mod2(Γ) = 0.

Before starting the proof, we require the following consequence of the fatness assumption.

Lemma 2.3.4. Let E be a compact subset of R2. Then for each ε > 0 there exist at most

finitely many peripheral disks Qi intersecting E with diameter larger than ε. Moreover, the

spherical diameters of the peripheral disks Qi converge to 0.

Proof. Note first that by an area argument no ball B(0, R) can contain infinitely many

peripheral disks Qi with diam(Qi) > ε > 0. Indeed, the fatness condition implies that

H2(Qi) ≥ K1 diam(Qi)
2.

Since the peripheral disks Qi are disjoint we have

H2(B(0, R)) ≥
∑

i:Qi⊂B(0,R)

H2(Qi) ≥ K1

∑
i:Qi⊂B(0,R)

diam(Qi)
2.

Hence, we see that only finitely many of them can satisfy diam(Qi) > ε.

If there exist infinitely many Qi intersecting E with diam(Qi) > ε then we necessarily

have Qi → ∞. In particular there exists a ball B(0, R) ⊃ E such that there are infinitely

many Qi intersecting both ∂B(0, R) and ∂B(0, 2R). The fatness assumption implies now

that for all such Qi we have

H2(Qi ∩ (B(0, 2R) \B(0, R))) ≥ CR2 ≥ Cε2

for a constant C > 0 depending only on K1; see Remark 2.3.5 below. Hence, an area

argument as before yields the conclusion.

For the final claim, suppose that there exist infinitely many peripheral disks with spherical

diameters bounded below. Then there exists a compact set E ⊂ R2 intersecting infinitely
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many of these peripheral disks. In a neighborhood of E the spherical metric is comparable

to the Euclidean metric, hence there are infinitely many peripheral disks intersecting E with

Euclidean diameters bounded below. This contradicts the previous part of the lemma.

Remark 2.3.5. In the preceding proof we used the fact that ifQi intersects two circles ∂B(x, r)

and ∂B(x,R) with 0 < r < R, then

H2(Qi ∩ (B(x,R) \B(x, r))) ≥ C(R− r)2

for a constant C > 0 depending only on K1. To see that, by the connectedness of Qi there

exists a point y ∈ Qi ∩ ∂B(x, (r +R)/2). Then B(y, (R− r)/2) ⊂ B(x,R) \B(x, r), so

H2(Qi ∩ (B(x,R) \B(x, r))) ≥ H2(Qi ∩B(y, (R− r)/2)) ≥ K1
(R− r)2

4
,

by the fatness condition (2.2.2).

Corollary 2.3.6. Let E be a compact subset of R2. Then

∑
i∈IE

diam(Qi)
2 <∞.

Recall that IE = {i ∈ N : Qi ∩ E 6= ∅}.

Proof. Let B(0, R) be a large ball that contains E. Then there are finitely many peripheral

disks intersecting B(0, R) and having diameter greater than R/2, by Lemma 2.3.4. Hence,

it suffices to show

∑
i:Qi⊂B(0,2R)

diam(Qi)
2 <∞.

Using the fatness, one can see that this sum is bounded above by a multiple of H2(B(0, 2R)),

as in the proof of Lemma 2.3.4.

Proof of Lemma 2.3.3. One direction is trivial, namely if mod2(Γ) = 0 then modw(Γ) = 0,

since the weight ρ(Qi) ≡ 0 is admissible.
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For the converse, note first that Γ cannot contain constant paths if modw(Γ) = 0. Indeed,

assume that Γ contains a constant path γ = x0 ∈ Ω, and {ρ(Qi)}i∈N is an admissible weight

for modw(Γ). Then there exists an exceptional family Γ0 ⊂ Γ with mod2(Γ0) = 0 such that∑
i:Qi∩γ 6=∅

ρ(Qi) ≥ 1

for all γ ∈ Γ \ Γ0. The constant path γ = x0 cannot lie in Γ0, otherwise we would have

mod2(Γ0) =∞ because no function would be admissible for mod2(Γ0). Hence, we must have∑
i:x0∈Qi

ρ(Qi) ≥ 1.

If x0 ∈ S, then this cannot happen since the sum is empty, so the only possibility is that

x0 ∈ Qi0 for some i ∈ N. In this case we have ρ(Qi0) ≥ 1. Hence,
∑

i∈N ρ(Qi)
2 ≥ 1, which

implies that modw(Γ) ≥ 1, a contradiction.

We now proceed to showing the implication. By the subadditivity of 2-modulus, it suffices

to show that the family Γδ of paths in Γ that have diameter bounded below by δ > 0 has

conformal modulus zero. Indeed, this will exhaust all paths of Γ, since Γ contains no constant

paths. For simplicity we denote Γδ = Γ, and note that we have modw(Γ) = 0, using the

monotonicity of modulus.

For ε > 0 let {ρ(Qi)}i∈N be a weight such that
∑

i∈N ρ(Qi)
2 < ε and∑

i:Qi∩γ 6=∅

ρ(Qi) ≥ 1

for γ ∈ Γ\Γ0, where Γ0 is a path family with mod2(Γ0) = 0. Using ε = 1/2n and summing the

corresponding weights ρ, as well as, taking the union of the exceptional families Γ0, we might

as well obtain a weight {ρ(Qi)}i∈N and an exceptional family Γ0 such that
∑

i∈N ρ(Qi)
2 <∞

and ∑
i:Qi∩γ 6=∅

ρ(Qi) =∞ (2.3.3)

for all γ ∈ Γ \ Γ0, where mod2(Γ0) = 0.

We construct an admissible function λ : C → [0,∞] for mod2(Γ) as follows. Since the

peripheral disks Qi are uniform quasiballs, there exist balls B(xi, ri) ⊂ Qi ⊂ B(xi, Ri) with
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Ri/ri ≤ K0. We define

λ =
∑
i∈N

ρ(Qi)

Ri

χB(xi,2Ri)
.

Note that if γ intersects some Qi with 4Ri < δ, then γ must exit B(xi, 2Ri), so
∫
γ
χB(xi,2Ri)

ds

≥ Ri. If γ is a bounded path, i.e., it is contained in a ball B(0, R), then there are only finitely

many peripheral disks Qi intersecting γ and satisfying 4Ri ≥ δ. This follows from Lemma

2.3.4 and the fact that diam(Qi) ≥ ri ≥ Ri/K0 from the quasiballs assumption. Thus, we

have ∑
i:Qi∩γ 6=∅

4Ri≥δ

ρ(Qi) <∞,

since it is a finite sum. This implies that∫
γ

λ ds ≥
∑

i:Qi∩γ 6=∅
4Ri<δ

ρ(Qi)

Ri

∫
γ

χB(xi,2Ri)
ds ≥

∑
i:Qi∩γ 6=∅

4Ri<δ

ρ(Qi) =∞

by (2.3.3), whenever γ ∈ Γ \ Γ0. Now, if γ ∈ Γ \ Γ0 is an unbounded path, then γ always

exits B(xi, 2Ri) whenever Qi ∩ γ 6= ∅, so in this case we also have∫
γ

λ ds =∞.

Using Lemma 2.3.2 we obtain

‖λ‖2 ≤ C

∥∥∥∥∑
i∈N

ρ(Qi)

Ri

χB(xi,Ri/K0)

∥∥∥∥
2

≤ C

∥∥∥∥∑
i∈N

ρ(Qi)

Ri

χB(xi,ri)

∥∥∥∥
2

≤ C ′

(∑
i∈N

ρ(Qi)
2

)1/2

<∞.

since the balls B(xi, ri) are disjoint. This implies that mod2(Γ \ Γ0) = 0. Thus,

mod2(Γ) ≤ mod2(Γ \ Γ0) + mod2(Γ0) = 0.

Remark 2.3.7. Observe that families of paths passing through a single point p ∈ Qi would

have conformal modulus and thus weak carpet modulus equal to zero, but this is not the

case when we use the strong modulus. Thus, the notion of strong modulus is more natural

for carpets, rather than the weak. In what follows we will study in parallel the two notions,

pointing out the differences whenever they occur.
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Finally, we recall Fuglede’s lemma in this setting:

Lemma 2.3.8. Let {ρ(Qi)}i∈N and {ρn(Qi)}i∈N for n ∈ N be non-negative weights in `2(N)

such that ρn → ρ in `2(N), i.e. ∑
i∈N

|ρn(Qi)− ρ(Qi)|2 → 0

as n→∞. Then there exists a subsequence {ρkn(Qi)}i∈N, n ∈ N, and an exceptional family

Γ0 with mods(Γ0) = 0 such that for all paths γ ⊂ Ω with γ /∈ Γ0 we have∑
i:Qi∩γ 6=∅

|ρkn(Qi)− ρ(Qi)| → 0

as n→∞.

The proof is a simple adaptation of the conformal modulus proof but we include it here

for the sake of completeness. The argument is essentially contained in the proof of [BM13,

Proposition 2.4, pp. 604–605].

Proof. Without loss of generality, we may assume that ρn ≥ 0 and ρn → 0 in `2(N). We

consider a subsequence ρkn such that∑
i∈N

ρkn(Qi)
2 <

1

2n

for all n ∈ N. By the subadditivity of strong modulus, it suffices to show that for each δ > 0

the path family

Γ0 := {γ ⊂ Ω : lim sup
n→∞

∑
i:Qi∩γ 6=∅

ρkn(Qi) > δ}

has strong modulus zero.

Let

λ :=
∞∑
n=1

ρkn

and note that ∑
i:Qi∩γ 6=∅

λ(Qi) =
∞∑
n=1

∑
i:Qi∩γ 6=∅

ρkn(Qi) =∞
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for all γ ∈ Γ0. On the other hand,∑
i∈N

λ(Qi)
2 = ‖λ(·)‖`2({Qi:i∈N}) =

∥∥∥∥ ∞∑
n=1

ρkn(·)
∥∥∥∥
`2({Qi:i∈N})

≤
∞∑
n=1

‖ρkn(·)‖`2({Qi:i∈N}) ≤
∞∑
n=1

1

2n
<∞.

Since ε · λ is admissible for mods(Γ0) for all ε > 0, it follows that mods(Γ0) = 0.

2.4 Existence of paths

In this section we will show the existence of paths that avoid given families of (weak, strong,

conformal) modulus equal to 0. These paths will therefore be “good” paths for which we

can apply, e.g., Fuglede’s lemma. We will use these good paths later to prove qualitative

estimates, such as continuity of carpet-harmonic functions.

First we recall some facts. The co-area formula and area formula in the next proposition

are contained in [Fed69, Theorem 3.2.12] and [Fed69, Theorem 3.2.3].

Proposition 2.4.1. Let T : R2 → R be an L-Lipschitz function and g be a non-negative

measurable function on R2. Then the function x 7→
∫
T−1(x)

g(y) dH1(y) is measurable, and

there is a constant C > 0 depending only on L such that:∫
R

(∫
T−1(x)

g(z) dH1(z)

)
dx ≤ C

∫
R2

g(z) dH2(z), (Co-area formula)

and ∫
R

∑
z∈T−1(x)

g(z) dx ≤ C

∫
R2

g(z) dH1(z). (Area formula)

We say that a path α joins or connects two sets E,F if α intersects both E and F . The

following proposition asserts that perturbing a curve yields several nearby curves; see [Bro72,

Theorem 3].

Proposition 2.4.2. Let α ⊂ R2 be a closed path that joins two non-trivial, disjoint continua

E,F ⊂ R2. Consider the distance function ψ(x) = dist(x, α). Then there exists δ > 0 such

that for a.e. s ∈ (0, δ) there exists a simple path αs ⊂ ψ−1(s) joining E and F .
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Using that, we show:

Lemma 2.4.3. Let α ⊂ Ω be a closed path joining two non-trivial, disjoint continua E,F ⊂⊂

Ω, and let Γ be a given family of (weak, strong, conformal) modulus zero. Then, there exists

δ > 0 such that for a.e. s ∈ (0, δ) there exists a simple path αs ⊂ ψ−1(s) that lies in Ω, joins

the continua E and F , and lies outside the family Γ. Furthermore, if A ⊂ Ω is a given set

with H1(A) = 0, then for a.e. s ∈ (0, δ) the path αs does not intersect A.

Proof. Note that if Γ has strong or weak modulus zero, then it actually has conformal

modulus zero, by Lemma 2.3.1 and Lemma 2.3.3. Hence, it suffices to assume that mod2(Γ) =

0.

For ε > 0 there exists an admissible function λ such that
∫
γ
λ ds ≥ 1 for all γ ∈ Γ, and

‖λ‖2 < ε. Consider a small δ > 0 such that Nδ(α) ⊂⊂ Ω and the conclusion of Proposition

2.4.2 is true. Let J be the set of s ∈ (0, δ) such that αs ∈ Γ, and J ′ be the set of s ∈ (0, δ)

such that
∫
ψ−1(s)

λ dH1 ≥ 1. It is clear that J ⊂ J ′, and J ′ is measurable by Proposition

2.4.1, since the function ψ is 1-Lipschitz. Thus, applying the co-area formula in Proposition

2.4.1 and the Cauchy-Schwarz inequality, we have

H1(J) ≤ H1(J ′) =

∫
J ′
dH1(s) ≤

∫
J ′

(∫
ψ−1(s)

λ dH1

)
dH1(s) ≤ C

∫
Nδ(α)

λ dH2

≤ CH2(Nδ(α))1/2‖λ‖2 < C ′ε.

Letting ε→ 0, we obtain H1(J) = 0, and this completes the proof.

Finally, we show the latter claim. Here we will use the area formula in Proposition 2.4.1.

For g(z) = χAχNδ(α) we have∫ δ

0

#{ψ−1(s) ∩ A} ds ≤ C

∫
Nδ(α)

χA dH
1 = 0.

Here, # is the counting measure. Hence, #{ψ−1(s) ∩ A} = 0 for a.e. s ∈ (0, δ), and the

conclusion for αs ⊂ ψ−1(s) follows immediately.

We also need a “boundary version” of the above lemma:
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Lemma 2.4.4. Let α ⊂ Ω be an open path with α ∩ ∂Ω 6= ∅, and let Γ be a given family

of (weak, strong, conformal) modulus zero. Assume that x ∈ α ∩ ∂Ω lies in a non-trivial

component of ∂Ω. Then, for every ε > 0 there exists a δ > 0 such that for a.e. s ∈ (0, δ)

there exists an open path αs ⊂ ψ−1(s) that lies in Ω, lands at a point xs ∈ B(x, ε)∩ ∂Ω, and

avoids the path family Γ. Furthermore, if A ⊂ Ω is a given set with H1(A) = 0, then for a.e.

s ∈ (0, δ) the path αs does not intersect A.

Proof. We only sketch the part of the proof related to the landing point of αs, since the rest

is the same as the proof of Lemma 2.4.3.

Note that for small ε > 0 there exists a connected subset E of ∂Ω that connects x to

∂B(x, ε). Hence, if we apply Lemma 2.4.2 to the path α we can obtain paths in ψ−1(s) ⊂ R2

that land at E; here F ⊂ Ω can be any continuum that intersects α. However, these paths

do not lie necessarily in Ω, so in this case we have to truncate them at the “first time” that

they meet ∂Ω. If δ > 0 is chosen sufficiently small, then for a.e. s ∈ (0, δ) these paths will

land at a point xs ∈ B(x, ε) ∩ ∂Ω.

Next, we switch to a special type of curves αs, namely circular arcs. A sequence of weights

{h(Qi)}i∈N is locally square-summable if for each x ∈ S there exists a ball B(x, r) ⊂ Ω such

that ∑
i∈IB

h(Qi)
2 <∞.

Remark 2.4.5. Let {h(Qi)}i∈N be a sequence of non-negative weights with
∑

i∈N h(Qi) <∞,

and let x ∈ S◦ ∪ ∂Ω, i.e., x does not lie on the boundary of any peripheral disk. Then∑
i∈IB(x,r)

h(Qi)→ 0

as r → 0. This is because the ball B(x, r) cannot intersect any given peripheral disk Qi for

arbitrarily small r > 0.

Remark 2.4.6. Let Γ be a path family in R2 with (weak, strong, conformal) modulus zero.

Then the family Γ0 of paths in R2 that contain a subpath lying in Γ also has (weak, strong,

conformal) modulus zero.
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Lemma 2.4.7. Let {h(Qi)}i∈N be a locally square-summable sequence. Consider a set A ⊂ Ω

with H1(A) = 0, and a path family Γ in Ω that has (weak, strong) modulus equal to zero.

(a) If x ∈ S◦ ∪ ∂Ω then for each ε > 0 we can find an arbitrarily small r > 0 such that the

circular path γr(t) = x + reit, as well as all of its subpaths, does not lie in Γ, it does

not intersect A, and

∑
i:Qi∩γr 6=∅

h(Qi) < ε.

If x ∈ ∂Qi0 for some i0 ∈ N, then the same conclusion is true, if we exclude the

peripheral disk Qi0 from the above sum.

(b) If x, y ∈ ∂Qi0, then for each ε > 0 we can find an arbitrarily small r > 0 and a path

γ0 ⊂ Qi0 that joins the circular paths γxr (t) = x+reit, γyr (t) = y+reit with the following

property: any simple path γ contained in the concatenation of the paths γ0, γ
x
r , γ

y
r does

not lie in Γ, γ does not intersect A, and

∑
i:Qi∩γ 6=∅
i 6=i0

h(Qi) < ε.

Proof. We may assume that mod2(Γ) = 0, by lemmas 2.3.1 and 2.3.3.

(a) Note that the circular path γr centered at x lies in the set ψ−1(r), where ψ(z) = |z−x|

is a 1-Lipschitz function. As in the proof of Lemma 2.4.3 one can show that there exists

δ > 0 such that for a.e. r ∈ (0, δ) the path γr avoids Γ and the set A. Remark 2.4.6 implies

that all subpaths of γr also avoid Γ. Assume that x ∈ S◦ ∪ ∂Ω and fix ε > 0. In order to

show the statement, it suffices to show that for arbitrarily small δ > 0, there exists a set

J ⊂ (δ/2, δ) of positive measure such that

∑
i:Qi∩γr 6=∅

h(Qi) < ε

for all r ∈ J . Assume that this fails, so there exists a small δ > 0 such that the reverse

inequality holds for a.e. r ∈ (δ/2, δ). Noting that the function r 7→ χQi∩γr is measurable and
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integrating over r ∈ (δ/2, δ) we obtain

εδ/2 ≤
∫ δ

δ/2

∑
i:Qi∩γr 6=∅

h(Qi) dr ≤
∑

i∈IB(x,δ)

h(Qi)

∫ δ

0

χQi∩γr dr (2.4.1)

=
∑

i∈IB(x,δ)

h(Qi)d(Qi),

where d(Qi) := H1({r ∈ [0, δ] : Qi ∩ γr 6= ∅}). The fatness of the peripheral disks implies

that there exists some uniform constant K > 0 such that d(Qi)
2 ≤ KH2(Qi ∩ B(x, δ)); see

Remark 2.3.5. Using the Cauchy-Schwarz inequality and this fact in (2.4.1) we obtain

ε2δ2/4 ≤
∑

i∈IB(x,δ)

h(Qi)
2
∑

i∈IB(x,δ)

d(Qi)
2

≤ K
∑

i∈IB(x,δ)

h(Qi)
2
∑
i∈N

H2(Qi ∩B(x, δ))

= K
∑

i∈IB(x,δ)

h(Qi)
2 · H2(B(x, δ))

= Cδ2
∑

i∈IB(x,δ)

h(Qi)
2.

Hence, if δ is sufficiently small so that
∑

i∈IB(x,δ)
h(Qi)

2 < ε2/4C (see Remark 2.4.5) we

obtain a contradiction.

In the case that x ∈ ∂Qi0 the same computations work if we exclude the index i0 from

the sums, since eventually we want to make
∑

i∈IB(x,δ)\{i0} h(Qi)
2 arbitrarily small.

(b) Arguing as in part (a) we can find a small δ > 0 such that the balls B(x, δ), B(y, δ)

are disjoint, they are contained in Ω, and there exists a set J ⊂ (δ/2, δ) of positive 1-measure

such that ∑
i:Qi∩(γxr∪γ

y
r ) 6=∅

i 6=i0

h(Qi) < ε

for all r ∈ J . We may also assume that for all r ∈ J the paths γxr , γ
y
r avoid the given set A

with H1(A) = 0.

Let γ0 ⊂⊂ Qi0 be a path that connects ∂B(x, δ/2)∩Qi0 to ∂B(y, δ/2)∩Qi0 . Consider the

function ψ(·) = dist(·, γ0). Since dist(γ0, ∂Qi0) > 0, by Proposition 2.4.2 there exists s0 > 0

24



such that for a.e. s ∈ [0, s0] there exists a path γs ⊂ ψ−1(s)∩Qi0 connecting ∂B(x, δ/2)∩Qi0

to ∂B(y, δ/2) ∩Qi0 . Then for all r ∈ J and a.e. s ∈ [0, s0] the path γs connects the circular

paths γxr and γyr . We claim that for a.e. (r, s) ∈ J × [0, s0] all simple paths contained in the

concatenation γr,s of γxr , γs, γ
y
r avoid a given path family Γ with mod2(Γ) = 0. Note here

that J × [0, s0] has positive 2-measure.

For each η > 0 we can find a function λ that is admissible for Γ with ‖λ‖2 < η. Let

T ⊂ J × [0, s0] be the set of (r, s) for which γr,s has a simple subpath lying in Γ. Using the

co-area formula in Proposition 2.4.1 we have

H2(T ) =

∫
T

1 dH2 ≤
∫
J

∫ s0

0

(∫
γxr

λ dH1 +

∫
γyr

λ dH1 +

∫
γs

λ dH1

)
dsdr

≤ C‖λ‖2 ≤ Cη.

Letting η → 0 we obtain that H2(T ) = 0, as desired. This completes the proof of part

(b).

Remark 2.4.8. The proof of part (a) shows the following stronger conclusion: there exists a

constant C > 0 such that if x ∈ S◦, then there exists some r ∈ [δ/2, δ] such that γr(t) =

x+ reit has the desired properties and

∑
i:Qi∩γr 6=∅

h(Qi) ≤ C

 ∑
i∈IB(x,δ)

h(Qi)
2

1/2

.

Remark 2.4.9. The uniform fatness of the peripheral disks Qi was crucial in the proof. In

fact, without the assumption of uniform fatness, one can construct a relative Sierpiński

carpet for which the conclusion of the lemma fails.

We also include a topological lemma:

Lemma 2.4.10. The following statements are true:

(a) For each peripheral disk Qi0, there exists a Jordan curve γ ⊂ S◦ that contains Qi0 in

its interior and lies arbitrarily close to Qi0. In particular, S◦ is dense in S.

(b) For any x, y ∈ S there exists an open path γ ⊂ S◦ that joins x, y. Moreover, for each

r > 0, if y is sufficiently close to x, the path γ can be taken so that γ ⊂ B(x, r).
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The proof is an application of Moore’s theorem [Moo25] and can be found in [Mer14, Proof

of Theorem 5.2, p. 4331], in case Ω is a Jordan region. We include a proof of this more general

statement here. We will use the following decomposition theorem, which is slightly stronger

than Moore’s theorem:

Theorem 2.4.11 (Corollary 6A, p. 56, [Dav86]). Let {Qi}i∈N be a sequence of Jordan regions

in the sphere S2 with disjoint closures and diameters converging to 0, and consider an open

set U ⊃
⋃
i∈NQi. Then there exists a continuous, surjective map f : S2 → S2 that is the

identity outside U , and it induces the decomposition of S2 into the sets {Qi}i∈N and points.

In other words, there are countably many distinct points pi, i ∈ N, such that f−1(pi) = Qi

for i ∈ N, and f is injective on S2 \
⋃
i∈NQi with f(S2 \

⋃
i∈NQi) = S2 \ {pi : i ∈ N}.

Proof of Lemma 2.4.10. By Lemma 2.3.4 the spherical diameters of the peripheral disks Qi

converge to 0. Hence, we may apply the decomposition theorem with U = Ω and obtain

the collapsing map f : S2 → S2. A given peripheral disk Qi0 is mapped to a point pi0 ∈ Ω.

Arbitrarily close to pi0 we can find round circles that avoid the countably many points that

correspond to the collapsing of the other peripheral disks. The preimages of these round

circles under f are Jordan curves γ ⊂ S2 that are contained in Ω, lie in S◦, and are contained

in small neighborhoods of Qi0 . This completes the proof of part (a). For part (b), we consider

three cases:

Case 1: Suppose first that x, y ∈ S◦. Using the decomposition theorem with U = Ω,

we obtain points x̃ = f(x) and ỹ = f(y) in Ω \ {pi : i ∈ N}. We connect x̃ and ỹ with a

path α̃ ⊂ Ω (recall that Ω is connected). By perturbing this path, we may obtain another

path, still denoted by α̃, that connects x̃ and ỹ in Ω but avoids the points {pi : i ∈ N}.

Then f−1(α̃), by injectivity, yields the desired path in S◦ that connects x and y. In fact,

if y is sufficiently close to x, the path f−1(α̃) can be taken to lie in a small neighborhood

of x. To see this, first note that if y is close to x then ỹ is close to x̃ by the continuity of

f . We can then find a path α̃ ⊂ Ω \ {pi : i ∈ N} connecting x̃ and ỹ, and lying arbitrarily

close to the line segment [x̃, ỹ]. The lift f−1(α̃), by continuity, has to be contained in a small

neighborhood of x.
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If x or y lies on a peripheral circle, then we need to modify the preceding argument to

obtain an open path γ ⊂ S◦ with endpoints x and y:

Case 2: Suppose that x ∈ ∂Qi0 and y ∈ S◦. Then in the application of the decomposition

theorem we do not collapse the peripheral disk Qi0 . We set U = Ω ∪ Qi0 and we collapse

{Qi : i ∈ N \ {i0}} to points with a map f : S2 → S2 that is the identity outside U , as in

the statement of the decomposition theorem. Then we consider an open path α̃ ⊂ Ω \ Qi0

connecting x̃ and ỹ; in order to find such a path one can assume that Qi0 is a round disk

by using a homeomorphism of S2. Now, the path α̃ can be modified to avoid the countably

many points corresponding to the collapsed peripheral disks. This modified path lifts under

f to the desired path, and as before, it can be taken to lie arbitrarily close to x, provided

that y ∈ S◦ is sufficiently close to x. This proves (b) in this case.

Case 3: Finally, suppose that x ∈ ∂Qi0 and y ∈ ∂Qi for some i0, i ∈ N. Then we can

connect the points x, y to points x′, y′ ∈ S◦ with open paths γx, γy ⊂ S◦ by Case 2. Case

1 implies that the points x′, y′ can be connected with a path γ ⊂ S◦. Concatenating γx, γ,

and γy yields an open path in S◦ that connects x and y.

It remains to show that if y is sufficiently close to x, then there exists an open path

γ ⊂ S◦ connecting x and y that lies near x. By the density of S◦ in S (from part (a)) we

may find arbitrarily close to y points z ∈ S◦. By Case 2, for each r > 0 there exists δ > 0

such that if |z − x| < δ and z ∈ S◦, then there exists an open path γ ⊂ B(x, r) ∩ S◦ that

connects x and z. We assume that |y − x| < δ/2 and y ∈ ∂Qi for some i ∈ N. Then using

the conclusion of Case 2 we consider a point z ∈ S◦ ∈ B(x, δ) close to y and an open path

γ1 ⊂ B(x, r) ∩ S◦ that connects y to z. Since z ∈ B(x, δ), there exists another open path

γ2 ⊂ B(x, r)∩S◦ connecting z to x. Concatenating γ1 and γ2 provides the desired path.

Finally, we include a technical lemma:

Lemma 2.4.12. Suppose that γ ⊂ C is a non-constant path with H1(γ ∩ S) = 0.

(a) If x ∈ γ∩S◦, then arbitrarily close to x we can find peripheral disks Qi with Qi∩γ 6= ∅.

(b) If γ is an open path that does not intersect a peripheral disk Qi0, i0 ∈ N, and x ∈
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γ ∩ ∂Qi0, then arbitrarily close to x we can find peripheral disks Qi, i 6= i0, with

Qi ∩ γ 6= ∅.

Proof. If either of the two statements failed, then there would exist a small ball B(x, ε),

not containing γ, such that all points y ∈ γ ∩ B(x, ε) lie in S. Since γ is connected and

it exits B(x, ε), there exists a continuum β ⊂ γ ∩ B(x, ε) ∩ S with diam(β) ≥ ε/2. Then

H1(γ ∩ S) ≥ diam(β) > 0, a contradiction.

2.5 Sobolev spaces on relative Sierpiński carpets

In this section we treat one of the main objects of the chapter, the Sobolev spaces on relative

Sierpiński carpets. This is the class of maps among which we would like to minimize a type

of Dirichlet energy, in order to define carpet-harmonic functions.

We will start with a preliminary version of our Sobolev functions, namely with discrete

Sobolev functions. Using them, we define a continuous analog, and, as it turns out, these are

just two sides of the same coin, since the two spaces of functions will be isomorphic. The

reason for introducing the discrete Sobolev functions is because, in practice, it is much easier

to check, as well as, limiting theorems are proved with less effort.

2.5.1 Discrete Sobolev spaces

Let f̂ : {Qi}i∈N → R be a map defined on the set of peripheral disks {Qi}i∈N. We say that

the sequence {ρ(Qi)}i∈N is a weak (strong) upper gradient for f̂ if there exists an exceptional

family Γ0 of paths in Ω with modw(Γ0) = 0 (mods(Γ0) = 0) such that for all paths γ ⊂ Ω

with γ /∈ Γ0 and all peripheral disks Qij with Qij ∩ γ 6= ∅, j = 1, 2, we have

|f̂(Qi1)− f̂(Qi2)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi). (2.5.1)

Using the upper gradients we define:

Definition 2.5.1. Let f̂ : {Qi}i∈N → R be a map defined on the set of peripheral disks

{Qi}i∈N. We say that f̂ lies in the local weak (strong) Sobolev space Ŵ1,2
w,loc(S) (Ŵ1,2

s,loc(S)) if
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there exists a weak (strong) upper gradient {ρ(Qi)}i∈N for f̂ such that for every ball B ⊂⊂ Ω

we have

∑
i∈IB

f̂(Qi)
2 diam(Qi)

2 <∞, and (2.5.2)

∑
i∈IB

ρ(Qi)
2 <∞. (2.5.3)

Furthermore, if these conditions hold for the full sums over i ∈ N, then we say that f̂ lies in

the weak (strong) Sobolev space Ŵ1,2
w (S) (Ŵ1,2

s (S)).

Remark 2.5.2. Conditions (2.5.2) and (2.5.3) can be rephrased as {f̂(Qi) diam(Qi)}i∈N and

{ρ(Qi)}i∈N are locally square-summable. Also, if, e.g., f̂(Qi) is bounded then (2.5.2) holds

since by Corollary 2.3.6 we have
∑

i∈IB diam(Qi)
2 <∞ for all B ⊂⊂ Ω.

Remark 2.5.3. This definition resembles the definition of the classical Sobolev spacesW 1,2
loc (Rn)

and W 1,2(Rn), using weak upper gradients. In fact, this definition is motivated by the New-

tonian spaces N1,p(Rn), which contain good representatives of Sobolev functions, rather than

equivalence classes of functions; see [HKS15] for background on weak upper gradients and

Newtonian spaces.

If mods(Γ0) = 0, then modw(Γ0) = 0 by Lemma 2.3.1. This shows that if {ρ(Qi)}i∈N is

a strong upper gradient for f̂ , then it is also a weak upper gradient for f̂ . Thus,

Ŵ1,2
s,loc(S) ⊂ Ŵ1,2

w,loc(S). (2.5.4)

Remark 2.5.4. We have not been able to show the reverse inclusion, which probably depends

on the geometry of the peripheral disks and their separation. A conjecture could be that

the two spaces agree if the peripheral circles of the carpet are uniform quasicircles and they

are uniformly relatively separated , i.e., there exists a uniform constant δ > 0 such that the

relative distance

∆(Qi, Qj) =
dist(Qi, Qj)

min{diam(Qi), diam(Qj)}

satisfies ∆(Qi, Qj) ≥ δ for all i 6= j.
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For the rest of the section we fix a function f̂ ∈ Ŵ1,2
w,loc(S) (Ŵ1,2

s,loc(S)). Our goal is to

construct a function f which is defined on “most” of the points of the carpet S and is a

“continuous” version of f̂ . Let G be the family of good paths γ in Ω with

(1) H1(γ ∩ S) = 0,

(2) the upper gradient inequality (2.5.1) is satisfied for all subpaths of γ,

(3)
∑

i:Qi∩γ′ 6=∅ ρ(Qi) <∞ for all subpaths γ′ of γ which are compactly contained in Ω,

(3*) in case
∑

i∈N ρ(Qi)
2 <∞ we require

∑
i:Qi∩γ 6=∅ ρ(Qi) <∞.

It is immediate to see that all subpaths of a path γ ∈ G also lie in G. Note that G depends

both on {f̂(Qi)}i∈N and on {ρ(Qi)}i∈N. Property (1) is crucial and will allow us to apply

Lemma 2.4.12.

Lemma 2.5.5. Suppose that f̂ ∈ Ŵ1,2
w,loc(S) (Ŵ1,2

s,loc(S)). Then the complement of G (i.e., all

curves in Ω that do not lie in G) has weak (strong) modulus equal to 0.

In other words, G contains “almost every” path γ ⊂ Ω.

Proof. By the subadditivity of modulus, it suffices to show that the family of curves for

which one of the conditions (1),(2),(3), or (3*) is violated has weak (strong) modulus equal

to 0.

We first note that H1(γ ∩ S) = 0 holds for all paths outside a family of strong carpet

modulus equal to 0, so the weak carpet modulus is also equal to 0 by Lemma 2.3.1.

Moreover, Remark 2.4.6 implies that the family of paths that have a subpath lying in a

family of weak (strong) carpet modulus equal to 0 has itself weak (strong) carpet modulus

zero. This justifies that the upper gradient inequality holds for all subpaths of paths γ that

lie outside an exceptional family of weak (strong) modulus zero.

Finally, since for any set V ⊂⊂ Ω we have
∑

i∈IV ρ(Qi)
2 < ∞ by (2.5.3), it follows

that the family of paths in Ω that have a subpath γ′, compactly contained in Ω, with
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x

γ0

Qi0

x
γ0

Qi0

Figure 2.1: A point x ∈ ∂Qi0 that is “accessible” by γ0 (left) and “non-accessible” (right).

∑
i:Qi∩γ′ 6=∅ ρ(Qi) = ∞, has strong (and thus weak) carpet modulus equal to zero. The case

(3*) has the same proof, since
∑

i∈N ρ(Qi)
2 <∞ there.

We say that a point x ∈ S is “accessible” by a curve γ0 ∈ G, if x ∈ γ0 ∩ S◦, or if there

exists an open subcurve γ of γ0 with x /∈ γ, x ∈ γ, and γ does not meet the (interior of the)

peripheral disk Qi0 whenever x ∈ ∂Qi0 ; see Figure 2.1. In the first case we set γ = γ0. By

Lemma 2.4.12, if x is “accessible” by γ0, then arbitrarily close to x we can find peripheral

disks Qi with Qi ∩ γ 6= ∅. We say that a point is “accessible” if the family of paths we are

using is implicitly understood. For a point x ∈ S that is “accessible” by γ0 we define

f(x) := lim inf
Qi→x
Qi∩γ 6=∅

f̂(Qi), (2.5.5)

where γ is a subpath of γ0 as above. Often, we will abuse terminology and we will be using

the above definition if x is “accessible” by γ, without mentioning that γ is a subpath of

γ0; see e.g. the statement of Lemma 2.5.6. Using Lemma 2.4.3 it is easy to construct non-

exceptional paths in G passing through a given continuum. In fact, it can be shown that for

each peripheral circle ∂Qi0 there is a dense set of points which are “accessible” by good paths

γ ∈ G. For “non-accessible” points x ∈ ∂Qi0 we define f(x) as lim inf f(y), as y approaches

x through “accessible” points y ∈ ∂Qi0 . For the other points of the carpet S (which must

belong to S◦) we define f(x) as lim inf f(y), as y approaches x through “accessible” points.

First we show that the map f : S → R̂ is well-defined, i.e., the definition does not depend
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on the curve γ from which the point x is “accessible”.

Lemma 2.5.6. If γ1, γ2 ∈ G are two paths from which the point x ∈ S is “accessible”, then

lim inf
Qi→x

Qi∩γ1 6=∅

f̂(Qi) = lim inf
Qi→x

Qi∩γ2 6=∅

f̂(Qi).

As remarked before, here “accessible” by γ1 means that there exists an open subpath of

γ1 that we still denote by γ1 such that x ∈ γ1 \ γ1, and γ1 does not intersect the peripheral

disk Qi0 , in case x ∈ ∂Qi0 .

Proof. We may assume that γ1, γ2 are compactly contained in Ω, otherwise we consider

subpaths of them. We fix ε > 0 and consider peripheral disks Qij very close to x such that

Qij ∩ γj 6= ∅ (recall that H1(γj ∩S) = 0 and see Lemma 2.4.12) and such that the truncated

paths γ′j ⊂ γj that join Qij to x have short ρ-length, i.e.,∑
i:Qi∩γ′j 6=∅

ρ(Qi) < ε (2.5.6)

for j = 1, 2. This can be done since γj is compactly contained in Ω and γj ∈ G which implies

that
∑

i:Qi∩γj 6=∅ ρ(Qi) <∞ for j = 1, 2.

We first assume that x ∈ S◦. Using Lemma 2.4.7(a), we can find a curve γr lying in G

with r smaller than the distance of Qij and x for j = 1, 2, such that γr avoids the sets γ′j ∩S

which have Hausdorff 1-measure zero, and∑
i:Qi∩γr 6=∅

ρ(Qi) < ε. (2.5.7)

It follows that γr has to meet some Q′ij that is intersected by γ′j, j = 1, 2, so by the triangle

inequality and the upper gradient inequality we have

|f̂(Qi1)− f̂(Qi2)| ≤ |f̂(Qi1)− f̂(Q′i1)|+ |f̂(Q′i1)− f̂(Q′i2)|+ |f̂(Q′i2)− f̂(Qi2)|

≤
∑

i:Qi∩γ′1 6=∅

ρ(Qi) +
∑

i:Qi∩γr 6=∅

ρ(Qi) +
∑

i:Qi∩γ′2 6=∅

ρ(Qi)

< 3ε

by (2.5.6) and (2.5.7). The conclusion follows in this case.
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Qi0

γ′j

Q′ij

γ′r

Figure 2.2: The crosscut defined by γr.
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In the case that x ∈ ∂Qi0 for some i0, the only modification we have to make is in the

application of Lemma 2.4.7(a), which now yields a path γr for sufficiently small r such that

∑
i:Qi∩γr 6=∅

i 6=i0

ρ(Qi) < ε.

Since the curves γ1, γ2 have x as an endpoint but they avoid Qi0 , there exists a subarc γ′r of

γr that defines a crosscut separating∞ from x in R2\Qi0 and having the following properties

(see Figure 2.2): γ′r meets peripheral disks Q′ij which are also intersected by γ′j, j = 1, 2,

γ′r ∩Qi0 = ∅ but the endpoints of γ′r lie on ∂Qi0 , and

∑
i:Qi∩γ′r 6=∅

ρ(Qi) < ε.

We direct the reader to [Pom92, Chapter 2.4] for a discussion on crosscuts. If we use this

in the place of (2.5.7), the argument in the previous paragraph yields the conclusion. Here,

we remark that γ′r is a good path lying in G, since it is a subpath of γr ∈ G; see Lemma

2.5.5.

Next, we prove that we have |f(x)| < ∞ for all points x ∈ S that lie on a peripheral

circle ∂Qi0 .

Let x, y ∈ ∂Qi0 be points that are “accessible” by γx, γy, respectively, and let Qix , Qiy ,

ix, iy 6= i0, be peripheral disks intersected by γx, γy, close to x, y, respectively. Applying

Lemma 2.4.7(b) for small ε > 0, we obtain that there exists a small r < min{dist(x,Qix),

dist(y,Qiy)} such that the concatenation γ of the circular paths γxr , γ
y
r with a path γ0 ⊂ Qi0

intersects peripheral disks Q′ix , Q
′
iy on γx, γy, respectively, and

∑
i:Qi∩γ 6=∅

ρ(Qi) =
∑

i:Qi∩γ 6=∅
i 6=i0

ρ(Qi) + ρ(Qi0) < ε+ ρ(Qi0).

We replace γ by a simple subpath of it connecting Q′ix with Q′iy , and we still denote this

subpath by γ. By Lemma 2.4.7(b) γ is a good path in G, so by the upper gradient inequality
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we have

|f̂(Qix)− f̂(Qiy)| ≤ |f̂(Qix)− f̂(Q′ix)|+ |f̂(Q′ix)− f̂(Q′iy)|+ |f̂(Q′iy)− f̂(Qiy)|

≤
∑

i:Qi∩γx 6=∅

ρ(Qi) +
∑

i:Qi∩γ 6=∅

ρ(Qi) +
∑

i:Qi∩γy 6=∅

ρ(Qi)

≤
∑

i:Qi∩γx 6=∅

ρ(Qi) + ρ(Qi0) + ε+
∑

i:Qi∩γy 6=∅

ρ(Qi).

By taking Qix , Qiy to be sufficiently close to x, y and also, by truncating γx, γy to smaller

subpaths γ′x, γ
′
y that join Qix , Qiy to x, y, respectively, we may assume that the right hand

side is smaller than 2ε+ ρ(Qi0). Thus, taking limits as Qix → x, Qiy → y, we obtain

|f(x)− f(y)| ≤ ρ(Qi0). (2.5.8)

One can use Lemma 2.4.7(a) and argue in the same way to derive that for all “accessible”

points x ∈ ∂Qi0 we have

|f(x)− f̂(Qi0)| ≤ ρ(Qi0). (2.5.9)

This shows that in fact f(x) is uniformly bounded for “accessible” points x ∈ ∂Qi0 . Since

“accessible” points are dense in ∂Qi0 , the bound in (2.5.9) also holds on “non-accessible”

points x of the peripheral circle ∂Qi0 , by the definition of f . We have proved the following:

Corollary 2.5.7. For each peripheral disk Qi the quantities

MQi(f) := sup
x∈∂Qi

f(x), mQi(f) := inf
x∈∂Qi

f(x), and

osc
Qi

(f) := MQi(f)−mQi(f)

are finite, and in particular,

osc
Qi

(f) ≤ ρ(Qi) and |MQi(f)− f̂(Qi)| ≤ ρ(Qi).

Before proceeding we define:

Definition 2.5.8. Let g : S → R̂ be an extended function. We say that {ρ(Qi)}i∈N is a

weak (strong) upper gradient for g if there exists an exceptional family Γ0 of paths in Ω with
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modw(Γ0) = 0 (mods(Γ0) = 0) such that for all paths γ ⊂ Ω with γ /∈ Γ0 and all points

x, y ∈ γ ∩ S we have g(x), g(y) 6= ±∞ and

|g(x)− g(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi).

The map f that we constructed inherits the properties of f̂ in the weak (strong) Sobolev

space definition. Namely:

Proposition 2.5.9. The sequence {oscQi(f)}i∈N is a weak (strong) upper gradient for f .

Moreover, for every ball B ⊂⊂ Ω we have

∑
i∈IB

MQi(f)2 diam(Qi)
2 <∞, and

∑
i∈IB

osc
Qi

(f)2 <∞.

Proof. Note that the latter two claims follow immediately from Corollary 2.5.7, if we observe

that diam(Qi) is bounded for i ∈ IB, where B is a ball compactly contained in Ω. The latter

is incorporated in the definition of a relative Sierpiński carpet; see Section 2.2.

For the first claim, we will show that for every γ ∈ G and points x, y ∈ γ ∩ S we have

|f(x)− f(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(f).

Fix a good path γ ∈ G that has x, y as its endpoints, and assume it is parametrized so that it

travels from x to y. If x ∈ ∂Qix , let x′ ∈ ∂Qix be the point of last exit of γ from Qix . Similarly,

consider the point y′ ∈ ∂Qiy of first entry of γ in Qiy (after x′), in the case y ∈ ∂Qiy . Observe

that x′ and y′ would be “accessible” points by γ. Since |f(x)− f(x′)| ≤ oscQix (f) ≤ ρ(Qix)

and |f(y)− f(y′)| ≤ oscQiy (f) ≤ ρ(Qiy), it suffices to prove the statement for x′, y′ and the

subpath of γ connecting them (as described), instead.

In particular, we assume that γ ∈ G is a good path that connects x, y but it does not

hit ∂Qix or ∂Qiy in case x ∈ ∂Qix or y ∈ ∂Qiy . Hence, the path γ can be used to define

both f(x) and f(y) by (2.5.5). If Qi1 , Qi2 are peripheral disks intersected by γ close to x, y,
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respectively, then by the upper gradient inequality for f̂ we have

|f̂(Qi1)− f̂(Qi2)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi).

Taking limits as Qi1 → x and Qi2 → y along γ (which also shows that f(x), f(y) 6= ±∞),

we have

|f(x)− f(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi). (2.5.10)

By our preceding remarks, this also holds if γ intersects the peripheral disks that possibly

contain x and y in their boundary. However, we would like to prove this statement with

oscQi(f) in the place of ρ(Qi). Before doing so, we need the next topological lemma that we

prove later.

Lemma 2.5.10. Let γ ⊂ Ω be a path in G, and let J ⊂ N be a finite index set. Assume that

γ has endpoints x, y ∈ S, but γ does not intersect the peripheral disks that possibly contain

x or y on their boundary. Then there exist finitely many subpaths γ1, . . . , γm of γ having

endpoints in S with the following properties:

(i) γi ∈ G for all i ∈ {1, . . . ,m},

(ii) γi intersects only peripheral disks that are intersected by γ, for all i ∈ {1, . . . ,m},

(iii) γi and γj intersect disjoint sets of peripheral disks for i 6= j,

(iv) γi does not intersect peripheral disks Qj, j ∈ J , for all i ∈ {1, . . . ,m},

(v) γ1 starts at x1 = x, γm terminates at ym = y, and in general the path γi starts at xi

and terminates at yi such that for each i ∈ {1, . . . ,m− 1} we either have

• yi = xi+1, i.e., γi and γi+1 have a common endpoint, or

• yi, xi+1 ∈ ∂Qji for some ji ∈ N, i.e., γi and γi+1 have an endpoint on some

peripheral circle ∂Qji.

The peripheral disks Qji that arise from the second case are distinct and they are all

intersected by the original curve γ.
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Note that properties (i) and (ii) hold automatically for subpaths of γ, so (iii),(iv), and

(v) are the most crucial properties.

Since γ ∈ G and it is compactly contained in Ω, we have
∑

i:Qi∩γ 6=∅ ρ(Qi) < ∞ so for

fixed ε > 0 there exists a finite index set J ⊂ N such that∑
i:Qi∩γ 6=∅
i∈N\J

ρ(Qi) < ε. (2.5.11)

We consider curves γ1, . . . , γm as in the lemma with their endpoints, as denoted in the

lemma. If the points yk, xk+1 lie on the same peripheral circle ∂Qjk , we have |f(yk) −

f(xk+1)| ≤ oscQjk (f). Otherwise, by the first alternative in (v), we have yk = xk+1, so

|f(yk) − f(xk+1)| = 0. Also, note that the curves γk lie in G (by (i)) and (2.5.10) holds for

their endpoints. Therefore,

|f(x)− f(y)| ≤
m∑
k=1

|f(yk)− f(xk)|+
m−1∑
k=1

|f(yk)− f(xk+1)|

≤
m∑
k=1

∑
i:Qi∩γk 6=∅

ρ(Qi) +
∑
jk

osc
Qjk

(f).

Using (iii) and (iv), we see that the curves γk intersect disjoint sets of peripheral disks Qj,

j /∈ J , which are all intersected by γ (property (ii)). Thus, the first term can be bounded

by the expression in (2.5.11), and hence by ε. The second term is just bounded by the full

sum of oscQi(f) over γ (since the peripheral disks Qjk are distinct and γ intersects them by

(v)), hence we obtain

|f(x)− f(y)| ≤ ε+
∑

i:Qi∩γ 6=∅

osc
Qi

(f).

Letting ε→ 0 yields the result.

Now, we move to the proof of Lemma 2.5.10.

Proof of Lemma 2.5.10. By ignoring some indices of J , we may assume that Qj ∩ γ 6= ∅ for

all j ∈ J . The idea is to consider subpaths of γ joining peripheral circles ∂Qj, j ∈ J , without

intersecting Qj, j ∈ J , and truncate them whenever they intersect some common peripheral

disk.

38



More precisely, we assume that γ is parametrized as it runs from x to y we let γ̃1 be the

subpath of γ from x = x1 until the first entry point of γ into the first peripheral disk Qi1 ,

i1 ∈ J , that γ meets, among the peripheral disks Qj, j ∈ J . We let x2 ∈ ∂Qi1 be the point

of last exit of γ from ∂Qi1 as it travels towards y. Now, we repeat the procedure with x1

replaced by x2, γ replaced by the subpath of γ from x2 to y, and J replaced by J \ {i1}.

The procedure will terminate in the m-th step if the subpath of γ from xm to y does not

intersect any peripheral disk Qj, j ∈ J \ {i1, . . . , im−1}. This will be the path γ̃m. Note that

the indices i1, . . . , im−1 are distinct.

By construction, the paths γ̃1, . . . , γ̃m do not intersect peripheral disks Qj, j ∈ J , but

they might still intersect common peripheral disks. Thus, we might need to truncate some

of them in order to obtain paths with the desired properties. We do this using the following

general claim that we prove later:

Claim. There exist closed paths γ′1, . . . , γ
′
m′ , where m′ ≤ m, such that γ′i is a subpath of

some γ̃j and the following hold:

(a) γ′1 starts at the starting point x1 = x of γ1, γ′m′ terminates at the terminating point

ym = y of γm, and

(b) for each i ∈ {1, . . . ,m′ − 1} the path γ′i starts at x′i and terminates at y′i such that we

either have

(b1) y′i = x′i+1, i.e., γ′i and γ′i+1 have a common endpoint, or

(b2) there exists ji ∈ {1, . . . ,m − 1} such that y′i = yji and x′i+1 = xji+1, i.e., γ′i and

γ′i+1 have a common endpoint with γ̃ji and γ̃ji+1, respectively.

The indices ji arising from the second case are distinct.

Moreover, the closed paths γ′i are disjoint, with the exceptions of some constant paths and

of the case (b1) in which “consecutive” paths can share only one endpoint.

Essentially, the conclusion of the claim is that we can obtain a family of disjoint (except

at their endpoints) subpaths of γ̃1, . . . , γ̃m that have the same properties as γ̃1, . . . , γ̃m.
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Note that the paths γ′i do not intersect peripheral disks Qj, j ∈ J , since they are subpaths

of paths γ̃j. Also, whenever (b2) occurs, the paths γ′i and γ′i+1 have an endpoint on some

peripheral circle ∂Qji , ji ∈ J , and the indices ji are distinct, by the construction of the curves

γ̃i. We discard the constant paths from the collection γ′i. Then, after re-enumerating, we

still have the preceding statement. It only remains to shrink the paths γ′i such that property

(iii) in the statement of Lemma 2.5.10 holds. For simplicity we denote the endpoints of the

paths γ′i by xi and yi. By replacing γ′i with a subpath, we may assume that γ′i does not

return to xi or yi twice; in other words, if we parametrize γ′i : [0, 1]→ C, then γ′i(t) 6= xi, yi

for all t ∈ (0, 1).

By the definition of a relative Sierpiński carpet, the peripheral disks staying in a compact

subset of Ω have diameters shrinking to zero. Hence, any point of γ′i that has positive distance

from a curve γ′j, j 6= i, has an open neighborhood with the property that it only intersects

finitely many peripheral disks among the peripheral disks that intersect both γ′i and γ′j.

This observation implies that if we have two paths γ′i and γ′j, j > i, that intersect some

common peripheral disks, then we can talk about the “first” such peripheral disk Qi0 that γ′i

meets as in travels from xi to yi. It is crucial here that γ′i is disjoint from γ′j, except possibly

for the endpoints yi and xj which could agree if j = i + 1 and we are in the case (a) of the

Claim; in particular, xi has positive distance from γ′j and yj has positive distance from γ′i.

Another important observation from our Claim is that for each i, each of the endpoints

of γ′i is either an endpoint of some γ̃ji , and therefore lies on the boundary of some peripheral

disk Qji that is intersected by γ, or it is a common endpoint of γ′i and γ′i+1. In the latter case,

if this endpoint does not lie in S, then it lies in some peripheral disk Qi0 that is intersected

by both curves γ′i and γ′i+1. The truncating procedure explained below ensures that the

paths γ′i are truncated suitably so that their endpoints lie in S, as required in the statement

of Lemma 2.5.10.

We now explain the algorithm that will yield the desired paths. We first test if γ′1

intersects some common peripheral disk with γ′m′ . If this is the case, then we consider the

“first” such peripheral disk Qi0 , and truncate the paths, so that the two resulting paths,
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denoted by γ1 and γ2, have an endpoint on ∂Qi0 , but otherwise intersect disjoint sets of

peripheral disks and γ1 does not intersect Qi0 . Then the statement of the lemma is proved

with m = 2. The truncation is done in such a way that the left endpoint of γ′1 is the left

endpoint of γ1 and the right endpoint of γ′m′ is the right endpoint of γ2. Note here that

subpaths of paths in G are also in G.

If the above does not occur, then we test γ′1 against γ′m−1. If they intersect some common

peripheral disk, then we truncate them as above to obtain paths γ1 and γ2. Then we test γ2

against γ′m in the same way.

If the procedure does not stop we keep testing γ′1 against all paths, up to γ′2. If the

procedure still does not stop, we set γ1 = γ′1, and we start testing γ′2 against the other paths

γ′i, i = m,m− 1, . . . , 3, etc.

To finish the proof, one has to observe that the implemented truncation does not destroy

the properties (i),(ii),(iv), and (v) in the statement of Lemma 2.5.10 with were true for the

paths γ′i. In particular, note that the peripheral disks in the second case of (v) have to be

distinct by our algorithm.

Proof of Claim. Suppose we are given closed paths γ̃1, . . . , γ̃m in the plane such that γ̃i starts

at xi and terminates at yi, with x1 = x and ym = y. The algorithm that we will use is very

similar to the one used in the preceding proof of Lemma 2.5.10.

To illustrate the algorithm we assume that m = 3. We now check whether γ̃3 intersects

γ̃1 or not. If γ̃3 intersects γ̃1, then we consider the first point y′1 ∈ γ̃3 that γ̃1 meets as it

travels from x = x1 to y1. We call γ′1 the subpath of γ̃1 from x1 to y′1 (it could be that γ′1

is a constant path if x1 ∈ γ̃3). Then, we let γ′2 be the subpath of γ̃3 from y′2 := y3 = y to

x′2 := y′1 (assuming that γ̃3 is parametrized to travel from y3 to x3). The paths γ′1 and γ′2

share an endpoint but otherwise are disjoint, and they are the desired paths. Note that the

alternative (b1) holds here.

If γ̃3 does not intersect γ̃1, then we check whether γ̃2 intersects γ̃1. If not, we set γ′1 = γ̃1

and we also test if γ̃2 intersects γ̃3. Again, if this is not the case, then all three paths are

disjoint, and thus we may set γ′i = γ̃i for i = 2, 3 and the alternative (b2) holds. If γ̃2
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does intersect γ̃3, we truncate γ̃2 and γ̃3 with the procedure we described in the previous

paragraph, to obtain paths γ′2 and γ′3. This procedure keeps the left endpoint of γ̃2 as a left

endpoint of γ′2 so the alternative (b2) holds between the paths γ′1 and γ′2. For the paths γ′2

and γ′3 we have the alternative (b1).

Now, suppose that γ̃2 intersects γ̃1. We perform the truncating procedure as before,

to obtain paths γ′1 and γ′2 that share an endpoint so the alternative (b1) holds here. The

truncating procedure keeps the right endpoint of γ̃2. Then we also need to test γ′2 against γ̃3.

If γ′2 does not intersect γ̃3, then we set γ′3 = γ̃3 and (b2) holds between γ′2 and γ′3. Finally,

if γ′2 intersects γ̃3 then we truncate them and and the alternative (b1) holds.

This completes all possible cases, to obtain the desired paths that are disjoint, with the

exceptions of some constant paths and of “consecutive” paths having a common endpoint.

Remark 2.5.11. The proof of Lemma 2.5.10 also yields the following variant of Lemma 2.5.10:

Let J ⊂ N be a finite index set and γ ⊂ Ω be an open path with endpoints x, y ∈ S

such that γ does not intersect the closures of the peripheral disks that possibly contain x or

y on their boundary. Then there exist finitely many open subpaths γ1, . . . , γm of γ having

endpoints in S with the following properties:

(iii)′ γi and γj intersect disjoint sets of closed peripheral disks for i 6= j,

(iv)′ γi does not intersect peripheral disks Qj, j ∈ J , for all i ∈ {1, . . . ,m},

(v)′ γ1 starts at x1 = x, γm terminates at ym = y, and in general the path γi starts at xi

and terminates at yi such that for each i ∈ {1, . . . ,m− 1} we either have

• yi = xi+1, i.e., γi and γi+1 have a common endpoint, or

• yi, xi+1 ∈ ∂Qji for some ji ∈ N, i.e., γi and γi+1 have an endpoint on some

peripheral circle ∂Qji .

The peripheral disks Qji
that arise from the second case are distinct and they are all

intersected by the original curve γ.
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Summarizing, in this section, we used a discrete Sobolev function f̂ to construct a function

f : S → R̂, defined on the entire carpet S, that also satisfies an upper gradient inequality.

2.5.2 Sobolev spaces

Now, we proceed with the definition of the actual Sobolev spaces we will be using. Recall

the Definition 2.5.8 of an upper gradient and also the definition of MQi from Corollary 2.5.7.

Definition 2.5.12. Let g : S → R̂ be an extended function. We say that g lies in the local

weak (strong) Sobolev space W1,2
w,loc(S) (W1,2

s,loc(S)) if for every ball B ⊂⊂ Ω we have

∑
i∈IB

MQi(g)2 diam(Qi)
2 <∞, (2.5.12)

∑
i∈IB

osc
Qi

(g)2 <∞, (2.5.13)

and {oscQi(g)}i∈N is a weak (strong) upper gradient for g. Furthermore, if the above condi-

tions hold for the full sums over i ∈ N, then we say that f lies in the weak (strong) Sobolev

space W1,2
w (S) (W1,2

s (S)).

Note that part of the definition is that |MQi(g)| < ∞ and oscQi(g) < ∞ for every

peripheral disk Qi, i ∈ N. Also, each such function g comes with a family of good paths

Gg defined as in the previous section, with the following properties: H1(γ ∩ S) = 0, the

upper gradient inequality for g holds along all subpaths of γ, and
∑

i:Qi∩γ′ 6=∅ oscQi(g) < ∞

for subpaths γ′ of γ compactly contained in Ω. Besides, in case
∑

i∈N oscQi(g)2 < ∞ we

require that
∑

i:Qi∩γ 6=∅ oscQi(γ) <∞ for all γ ∈ Gg.

Remark 2.5.13. Observe that (2.5.12) is equivalent to

∑
i∈IB

MQi(|g|)2 diam(Qi)
2 <∞

if we assume (2.5.13). This is because MQi(|g|) ≤ |MQi(g)|+ oscQi(g) and

∑
i∈IB

osc
Qi

(g)2 diam(Qi)
2 <∞.
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Remark 2.5.14. The proof of Proposition 2.5.9 shows that if there exists a locally square-

summable sequence {ρ(Qi)}i∈N that is a weak (strong) upper gradient for g, then {oscQi(g)}i∈N

is also a weak (strong) upper gradient for g.

Remark 2.5.15. As for the discrete Sobolev spaces we also have here that W1,2
s,loc(S) ⊂

W1,2
w,loc(S); see (2.5.4).

Our discussion in Section 2.5.1 shows that every function f̂ ∈ Ŵ1,2
w,loc(S) (Ŵ1,2

s,loc(S)) yields

a function f ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) in a canonical way. Conversely, for any g ∈ W1,2
w,loc(S)

(W1,2
s,loc(S)) one can construct a discrete function ĝ : {Qi}i∈N → R by setting ĝ(Qi) := MQi(g)

for i ∈ N. It is easy to check that ĝ inherits the upper gradient inequality of g. Indeed, for a

non-exceptional curve γ ∈ Gg that intersects Qi1 , Qi2 , let x ∈ ∂Qi1 be the point of last exit

of γ from Qi1 , and y ∈ ∂Qi2 be the point of first entry of γ in Qi2 . Then the subpath γ′ of

γ from x to y does not intersect Qi1 or Qi2 , so

|ĝ(Qi1)− ĝ(Qi2)| ≤ |MQi1
(g)− g(x)|+ |g(x)− g(y)|+ |g(y)−MQi2

(g)|

≤ osc
Qi1

(g) +
∑

i:Qi∩γ′ 6=∅

osc
Qi

(g) + osc
Qi2

(g)

≤
∑

i:Qi∩γ 6=∅

osc
Qi

(g).

(2.5.14)

Thus, ĝ ∈ Ŵ1,2
w,loc(S) (Ŵ1,2

s,loc(S)) with upper gradient {oscQi(g)}i∈N, and there is a corre-

sponding family of good paths Gĝ ⊃ Gg.

Remark 2.5.16. Note that equality Gĝ = Gg does not hold in general, since changing the

definition of g at one point x ∈ S◦ might destroy the upper gradient inequality of g for

curves passing through that point. It turns out that these curves have weak and strong

modulus zero. However, ĝ is not affected by this change.

A question that arises is whether we can recover g from ĝ using our previous construction

in Section 2.5.1. As a matter of fact, this is the case at least for points “accessible” by good

paths γ ∈ Gg. To prove this, let x be a point “accessible” by a good path γ, and Qi0 be

a peripheral disk with Qi0 ∩ γ 6= ∅; recall at this point Lemma 2.4.12 that allows us to

approximate x by peripheral disks intersecting γ. Consider y ∈ ∂Qi0 to be the point of first
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entry of γ in Qi0 , as γ travels from x to Qi0 , and γ′ be the subpath of γ from x to y. Then

|g(x)− ĝ(Qi0)| = |g(x)−MQi0
(g)| ≤ |g(x)− g(y)|+ |g(y)−MQi0

(g)|

≤
∑

i:Qi∩γ′ 6=∅

osc
Qi

(g) + osc
Qi0

(g).

As Qi0 → x along γ, the right hand side converges to 0. This is because
∑

i:Qi∩γ 6=∅ oscQi(g) <

∞, and the subpath γ′ of γ intersects fewer and fewer peripheral disks as Qi0 → x. Thus,

g(x) = lim inf
Qi→x
Qi∩γ 6=∅

ĝ(Qi). (2.5.15)

For “non-accessible” points of ∂Qi we do not expect this, since g could have any value there

between mQi(g) and MQi(g).

We now define a normalized version g̃ of g by using the construction in Section 2.5.1.

More precisely, we define

g̃(x) = lim inf
Qi→x
Qi∩γ 6=∅

ĝ(Qi), (2.5.16)

whenever x ∈ S is “accessible” by a path γ ∈ Gĝ, as in (2.5.5). For the other points of S

we define g̃ as in the paragraph following (2.5.5). Note that the definition of g̃ depends on

the good family Gĝ, which in turn depends on Gg. By the discussion in Section 2.5.1, we

have g̃ ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) with upper gradient {oscQi(g̃)}i∈N, and the upper gradient

inequality holds along paths of Gĝ ⊃ Gg.

The function g̃ agrees with g for all points “accessible” by paths γ ∈ Gg, as (2.5.15)

shows. We remark that by (2.5.14) {oscQi(g)}i∈N is an upper gradient of ĝ, and by Corollary

2.5.7 we obtain that for the normalized version g̃ of g we always have

osc
Qi

(g̃) ≤ osc
Qi

(g) (2.5.17)

for all i ∈ N. The intuitive explanation is that the “jumps” at “non-accessible” points

are precisely what makes a function non-normalized. Thus the process of normalization

cuts these “jumps” and reduces the oscillation of the function. We summarize the above

discussion in the following lemma:
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Lemma 2.5.17. For each function g ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) there exists a function g̃ ∈

W1,2
w,loc(S) (W1,2

s,loc(S)) such that

(i) g̃ is defined by (2.5.16), where ĝ(Qi) := MQi(g) for i ∈ N,

(ii) g̃ agrees with g on all points that are “accessible” by paths of Gg, and

(iii) oscQi(g̃) ≤ oscQi(g) for all i ∈ N.

Moreover, the upper gradient inequality of g̃ holds along paths of Gĝ ⊃ Gg.

The most important property of the normalized version g̃ of g is the following continuity

property:

Lemma 2.5.18. Let x ∈ S be a point (not necessarily “accessible”). Then there exist periph-

eral disks Qi contained in arbitrarily small neighborhoods of x such that MQi(g̃) approximates

g̃(x).

Proof. It suffices to show that we can replace ĝ(Qi) = MQi(g) in the definition (2.5.16) of g̃

by MQi(g̃). Indeed, if x is an “accessible” point by γ ∈ Gĝ, then there exist arbitrarily small

peripheral disks near x, intersecting γ, such that ĝ(Qi) approximates g̃(x), by the definition

of g̃. If x is “non-accessible” then g̃(x) is defined through approximating x by “accessible”

points, and hence we can find again small peripheral disks near x with the desired property.

Now we prove our claim. Let x be a point that is “accessible” by γ ∈ Gĝ, so

g̃(x) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(g).

We fix i ∈ N. By an application of Lemma 2.4.3, we can find a point y ∈ ∂Qi that is

“accessible” by a curve lying in Gg. By Lemma 2.5.17(ii) we have g̃(y) = g(y). Hence, using

Lemma 2.5.17(iii) we have

|MQi(g)−MQi(g̃)| ≤ |MQi(g)− g(y)|+ |g̃(y)−MQi(g̃)|

≤ osc
Qi

(g) + osc
Qi

(g̃) ≤ 2 osc
Qi

(g).

46



Since {oscQi(g)}i∈N is locally square-summable near x, and the peripheral disks Qi become

arbitrarily small as Qi → x and Qi ∩ γ 6= ∅, it follows that

lim sup
Qi→x
Qi∩γ 6=∅

|MQi(g)−MQi(g̃)| ≤ lim sup
Qi→x
Qi∩γ 6=∅

2 osc
Qi

(g) = 0.

This shows that we can indeed define

g̃(x) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(g̃).

This discussion suggests that we identify the functions g of the spaceW1,2
w,loc(S) (W1,2

s,loc(S))

that have the “same” normalized version g̃. This will be made more precise with the following

lemma:

Lemma 2.5.19. Let f, g ∈ W1,2
w,loc(S) (W1,2

s,loc(S)), each of them coming with a family of good

paths Gf and Gg, respectively. The following are equivalent:

(a) There exists a family G0 that contains almost every path in Ω (i.e., the complement

of G0 has weak (strong) modulus zero) such that f(x) = g(x) for all points x that are

“accessible” by paths γ ∈ G0.

(b) For the normalized versions f̃ and g̃ and for all i ∈ N we have

MQi(f̃) = MQi(g̃), mQi(f̃) = mQi(g̃), and osc
Qi

(f̃) = osc
Qi

(g̃).

Proof. First, we assume that there exists a family G0 such that f(x) = g(x) for all points x

“accessible” by γ ∈ G0. Then for points x “accessible” by paths in G := Gf ∩Gg ∩G0 we have

f̃(x) = f(x) = g(x) = g̃(x) by Lemma 2.5.17(ii). Note that G contains almost every path,

by the subadditivity of modulus. Fix a peripheral disk Qi0 , ε > 0, and a point x ∈ ∂Qi0

with |MQi0
(f̃)− f̃(x)| < ε; recall the definition of MQi0

(f̃). Then, consider a point x′ ∈ ∂Qi0

near x that is “accessible” by a curve γ ∈ Gf̂ , such that |f̃(x)− f̃(x′)| < ε; this can be done

by the definition of f̃ on “non-accessible” points. Now, Lemma 2.4.7(a) yields a circular arc

γr around x′ with a small r > 0 (see also Figure 2.2) such that:
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(1) γr ∩Qi0 = ∅ and γr has its endpoints on ∂Qi0 , so that γr defines a crosscut separating

x′ from ∞ in R2 \Qi0 ,

(2) γr avoids the set γ ∩ S and intersects a peripheral disk Qi1 , i1 6= i0, that is also

intersected by γ,

(3) γr ∈ G,

(4)
∑

i:Qi∩γr 6=∅ oscQi(f̃) < ε.

Let y ∈ ∂Qi0 ∩ γr a point “accessible” by γr, i.e., an endpoint of γr. Then f̃(y) = g̃(y),

because γr ∈ G. Let γ′ be the subpath of γ from Qi1 to x. Using the upper gradient

inequality of f̃ , which holds along γ′ ∈ Gf̂ and γr ∈ G ⊂ Gf ⊂ Gf̂ , we have

|f̃(x′)− f̃(y)| ≤
∑

i:Qi∩γ′ 6=∅

osc
Qi

(f̃) +
∑

i:Qi∩γr 6=∅

osc
Qi

(f̃) ≤
∑

i:Qi∩γ′ 6=∅

osc
Qi

(f̃) + ε.

If Qi1 is sufficiently close to x (and thus r > 0 is chosen to be smaller), then the last sum

can be made less than ε. Putting all the estimates together we obtain

|MQi0
(f̃)− g̃(y)| < 4ε.

This shows that MQi0
(f̃) ≤ MQi0

(g̃). Interchanging the roles of f̃ and g̃ we obtain the

equality. The equality mQi0
(f̃) = mQi0

(g̃) is proved by using the same argument.

For the converse, note that for all points x that are “accessible” by paths γ ∈ Gĝ we have

g̃(x) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(g̃),

and an analogous statement is true for f̃ ; see Lemma 2.5.18 and its proof. Hence, for all

points x “accessible” by paths γ ∈ G0 := Gf ∩ Gg ⊂ Gf̂ ∩ Gĝ we have

g̃(x) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(g̃) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(f̃) = f̃(x).

On the other hand, for such points we also have f̃(x) = f(x) and g̃(x) = g(x) by Lemma

2.5.17(ii). The conclusion follows, if one notes that the curve family G0 contains almost every

path in Ω, by the subadditivity of modulus.

48



Hence, we can identify functions f, g ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) whenever their normal-

ized versions f̃ , g̃ yield the same sequences {MQi(f̃)}i∈N, {oscQi(f̃)}i∈N. The identification

allows us to regard W1,2
w,loc(S), W1,2

s,loc(S) as subsets of a space of sequences, the (non-linear)

correspondence being

g 7→ ({MQi(g̃) diam(Qi)}i∈N, {osc
Qi

(g̃)}i∈N).

These sequences are locally square-summable in the sense of (2.5.12) and (2.5.13). If g was

originally in one of the non-local Sobolev spaces instead, then we could identify g with an

element of `2(N)× `2(N).

However, we will not use this identification in the next sections, and the Sobolev functions

that we use are not necessarily normalized, unless otherwise stated.

2.5.3 Examples

We give some examples of functions lying in the Sobolev spaces W1,2
w,loc(S) and W1,2

s,loc(S).

Example 2.5.20. Let f : Ω → R be a locally Lipschitz function, i.e., for every compact set

K ⊂ Ω there exists a constant L > 0 such that |f(x)− f(y)| ≤ L|x− y| for x, y ∈ K. Then

f
∣∣
S
∈ W1,2

s,loc(S) ⊂ W1,2
w,loc(S). In particular, this is true if f : Ω→ R is smooth.

To see this, consider a compact exhaustion {Kn}n∈N, Kn ⊂ Kn+1 of Ω, and an increasing

sequence of Lipschitz constants Ln for f
∣∣
Kn

. Define ρ(Qi) = Ln diam(Qi) where n ∈ N is

the smallest integer such that Qi ⊂ Kn. If B ⊂⊂ Ω, then f is bounded on B, thus∑
i∈IB

MQi(f)2 diam(Qi)
2 <∞,

by Corollary 2.3.6. Also, oscQi(f) ≤ ρ(Qi) by the Lipschitz condition, and if B ⊂ KN , then∑
i∈IB

ρ(Qi)
2 ≤ L2

N

∑
i∈IB

diam(Qi)
2 <∞.

Finally, let γ be a curve in Ω with H1(γ ∩ S) = 0, and x, y ∈ γ ∩ S. We wish to show

that

|f(x)− f(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi).
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If suffices to prove this for a closed subpath of γ that connects x and y, which we still denote

by γ. This will imply that {ρ(Qi)}i∈N is a strong upper gradient for f , and thus, so is

{oscQi(f)}i∈N; see Remark 2.5.14.

For fixed ε > 0 we cover the compact set γ ∩ S with finitely many balls Bj of radius rj

such that
∑

j rj < ε. Furthermore, we may assume that Bj ⊂⊂ Ω for all j. Then there are at

most finitely many peripheral disks that intersect γ and are not covered by
⋃
j Bj. Indeed,

note that the closure of each of these peripheral disks must intersect both ∂(
⋃
j Bj) and

γ ∩ S. On the other hand, ∂(
⋃
j Bj) and γ ∩ S have positive distance, hence the peripheral

disks whose closure intersects both of them have diameters bounded below. By Lemma 2.3.4

we conclude that these peripheral disks have to be finitely many.

We let Ak, k ∈ {1, . . . ,M}, be the joint collection of the balls Bj and of the finitely many

peripheral disks Qi not covered by
⋃
j Bj. In other words, for each k = 1, . . . ,M we have

Ak = Bj for some j, or Ak is one of these peripheral disks, and the sets Ak are distinct, i.e.,

we do not include a ball or a peripheral disk twice. Note that x and y lie in some balls, so

after reordering we suppose that x ∈ A1 and y ∈ AM . The union
⋃
k Ak contains the curve γ,

and thus it contains a connected chain of sets Ak, connecting x to y. We consider a minimal

sub-collection of {Ak}k that connects x and y (there are only finitely many sub-collections),

and we still denote it in the same way. Then, using the minimality, we can order the sets

Ak in such a way, that x ∈ A1, y ∈ AM , and Ak ∩ Al 6= ∅ if and only if l = k ± 1.

Now, we choose points xk+1 ∈ Ak ∩ Ak+1 for k = 1, . . . ,M − 1, and set x1 = x ∈ A1

and xM+1 = y ∈ AM . Suppose that
⋃
k Ak ⊂ KN for some N ∈ N. If Ak is a ball Bj, then

|f(xk)−f(xk+1)| ≤ 2LNrj, and if Ak is a peripheral disk Qi, then |f(xk)−f(xk+1)| ≤ ρ(Qi);

see definition of ρ(Qi). Hence,
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|f(x)− f(y)| ≤
M∑
k=1

|f(xk)− f(xk+1)|

≤ 2LN
∑
j

rj +
∑

i:Qi∩γ 6=∅

ρ(Qi)

≤ 2LNε+
∑

i:Qi∩γ 6=∅

ρ(Qi).

Letting ε→ 0 shows that {ρ(Qi)}i∈N is a strong upper gradient for f , as desired.

Example 2.5.21. Let f : Ω→ f(Ω) ⊂ C be a homeomorphism that lies in the classical space

W 1,2
loc (Ω). Then f

∣∣
S
∈ W1,2

s,loc(S) in the sense that this holds for the real and imaginary parts

of f
∣∣
S
. In particular, (locally) quasiconformal maps on Ω lie in W1,2

s,loc(S); see [AIM09] for

the definition of a quasiconformal map and basic properties.

Since f is locally bounded, for any ball B ⊂⊂ Ω we have∑
i∈IB

MQi(|f |)2 diam(Qi)
2 <∞.

We will show that ρ(Qi) := diam(f(Qi)) is also locally square-summable, and it is a strong

upper gradient for f , i.e., there exists a path family Γ0 in Ω with mods(Γ0) = 0 such that

|f(x)− f(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi)

for γ ⊂ Ω, γ /∈ Γ0, and x, y ∈ γ ∩ S. Note that this suffices by Remark 2.5.14, and it will

imply that {oscQi(Re(f))}i∈N and {oscQi(Im(f))}i∈N are strong upper gradients for Re(f)

and Im(f), respectively. Using a compact exhaustion, we see that it suffices to show this for

paths γ contained in an open set V ⊂⊂ Ω.

Let U be a neighborhood of V such that V ⊂⊂ U ⊂⊂ Ω, and U contains all peripheral

disks that intersect V . By a recent theorem of Iwaniec, Kovalev and Onninen [IKO12, The-

orem 1.2] there exist smooth homeomorphisms fn : U → fn(U) such that fn → f uniformly

on U and in W 1,2(U). For each n ∈ N the function fn is locally Lipschitz, so by Example

2.5.20 it satisfies

|fn(x)− fn(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(fn) =
∑

i:Qi∩γ 6=∅

diam(fn(Qi)) (2.5.18)
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for all γ ⊂ V with H1(γ ∩ S) = 0 and x, y ∈ γ ∩ S. We claim that {diam(fn(Qi))}i∈IV con-

verges in `2. Then its limit must be the same as the pointwise limit, namely {diam(f(Qi))}i∈IV ,

so the latter is also square-summable. Taking limits in (2.5.18) after passing to a subsequence

and applying Fuglede’s Lemma 2.3.8 we would have the desired

|f(x)− f(y)| ≤
∑

i:Qi∩γ 6=∅

diam(f(Qi))

for all paths γ ⊂ V outside an exceptional family Γ0 with mods(Γ0) = 0, and x, y ∈ γ ∩ S.

Now, we show our claim. By the quasiballs assumption, there exist balls B(xi, ri) ⊂ Qi ⊂

B(xi, Ri), i ∈ N, with Ri/ri ≤ K0. Since dist(V, ∂U) > 0, there exist only finitely many

peripheral disks Qi, i ∈ IV , such that B(xi, 2Ri) is not contained in U ; see Lemma 2.3.4. Let

J be the family of such indices. Since this is a finite set and diam(fn(Qi)) → diam(f(Qi))

all i ∈ J , it suffices to show that {diam(fn(Qi))}i∈IV \J converges to {diam(f(Qi))}i∈IV \J in

`2.

We fix i ∈ IV \ J . For each r ∈ [Ri, 2Ri] and x, y ∈ ∂Qi ⊂ B(xi, r), by the maximum

principle applied to the homeomorphisms fn and the fundamental theorem of calculus we

have

|fn(x)− fn(y)| ≤ osc
∂B(xi,r)

(fn) ≤
∫
∂B(xi,r)

|∇fn| ds,

where ∇fn = (∇Re(fn),∇ Im(fn)). Integrating over r ∈ [Ri, 2Ri] we obtain

|fn(x)− fn(y)| ≤ CRi −
∫
B(xi,2Ri)

|∇fn|

for some constant C > 0. Since x, y ∈ ∂Qi were arbitrary, we have

diam(fn(Qi)) ≤ CRi −
∫
B(xi,2Ri)

|∇fn| (2.5.19)

for all i ∈ IV \ J .

In the following, for simplicity we write f to mean fχU , and by assumption fn → f in

W 1,2(U). Using the uncentered maximal function M(g)(x) = supx∈B −
∫
B
|g| to change the
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center of balls we have∣∣∣∣Ri −
∫
B(xi,2Ri)

|∇fn| −Ri −
∫
B(xi,2Ri)

|∇f |
∣∣∣∣ ≤ Ri −

∫
B(xi,2Ri)

|∇fn −∇f |

≤ CRi −
∫
B(xi,ri)

M(|∇fn −∇f |),

where the constant C > 0 depends only on the quasiballs constant K0. Thus,

∑
i∈IV \J

∣∣∣∣Ri −
∫
B(xi,2Ri)

|∇fn| −Ri −
∫
B(xi,2Ri)

|∇f |
∣∣∣∣2

≤ C ′
∑
i∈IV \J

R2
i

(
−
∫
B(xi,ri)

M(|∇fn −∇f |)
)2

≤ C ′
∑
i∈IV \J

R2
i −
∫
B(xi,ri)

M(|∇fn −∇f |)2

≤ C ′′
∑
i∈IV \J

∫
B(xi,ri)

M(|∇fn −∇f |)2

≤ C ′′
∫
U

M(|∇fn −∇f |)2

≤ C ′′′
∫
U

|∇fn −∇f |2.

This shows that {Ri −
∫
B(xi,2Ri)

|∇fn|}i∈IV \J converges to {Ri −
∫

2B(xi,Ri)
|∇f |}i∈IV \J in `2. Since

this sequence dominates diam(fn(Qi)) by (2.5.19), it follows that {diam(fn(Qi))}i∈IV \J con-

verges in `2 as well, as claimed.

Remark 2.5.22. One could do the preceding proof directly for quasiconformal maps, by

approximating them with smooth quasiconformal maps; this is a much more elementary

result than the approximation of Sobolev homeomorphisms by smooth homeomorphisms.

However, the use of the strong result [IKO12, Theorem 1.2] proves a more general result

while the proof remains essentially the same.

Remark 2.5.23. The same proof shows that if Ω is compact and f is quasiconformal in a

neighborhood of Ω then f
∣∣
S
∈ W1,2

s (S).

Remark 2.5.24. From the above proof we see that if fn ∈ W1,2
s,loc(S) converges to f : S → R lo-

cally uniformly and for each V ⊂⊂ Ω the sequence {oscQi(fn)}i∈IV converges to {oscQi(f)}i∈IV
in `2, then f lies in W1,2

s,loc(S).

53



2.5.4 Pullback of Sobolev spaces

Here we study the invariance of Sobolev spaces under quasiconformal maps between relative

Sierpiński carpets.

Let (S,Ω), (S ′,Ω′) be two relative Sierpiński carpets and let F : Ω′ → Ω be a locally

quasiconformal homeomorphism that maps the peripheral disks Q′i of S ′ to the peripheral

disks Qi = F (Q′i) of S. We have:

Proposition 2.5.25. If g ∈ W1,2
w,loc(S), then the pullback g ◦ F lies in W1,2

w,loc(S
′).

Proof. Let g ∈ W1,2
w,loc(S), and note that MQ′i

(g ◦ F ) = MQi(g) and oscQ′i(g ◦ F ) = oscQi(g).

We only have to show that there exists a path family Γ′0 in Ω′ with weak modulus equal to

zero such that

|g ◦ F (x)− g ◦ F (y)| ≤
∑

i:Q′i∩γ 6=∅

osc
Q′i

(g ◦ F ) =
∑

i:Qi∩F (γ) 6=∅

osc
Qi

(g) (2.5.20)

whenever γ ⊂ Ω′, γ /∈ Γ′0, and x, y ∈ γ ∩ S.

By our assumption on g, there exists a path family Γ0 in Ω with modw(Γ0) = 0 such that

the upper gradient inequality for g holds along paths γ /∈ Γ0. By the equality in (2.5.20) it

suffices to show that for almost every γ in Ω′ the image F (γ) avoids the exceptional family

Γ0. Equivalently, we show that the family Γ′0 := F−1(Γ0) has weak modulus equal to zero.

Note that modw(Γ0) = 0 implies that mod2(Γ0) = 0 by Lemma 2.3.3. Since F is lo-

cally quasiconformal, so is F−1, and they preserve conformal modulus zero. Therefore,

mod2(F−1(Γ0)) = 0. Again, by Lemma 2.3.3 we have modw(Γ′0) = 0, as desired.

Corollary 2.5.26. Assume that the peripheral circles ∂Q′i, ∂Qi of S ′, S, respectively, are

uniform quasicircles and let F : S ′ → S be a local quasisymmetry. Then for any g ∈ W1,2
w,loc(S)

we have g ◦ F ∈ W1,2
w,loc(S

′).

See [Hei01, Chapters 10–11] for background on quasisymmetric maps. The proof follows

immediately from Proposition 2.5.25 and the following lemma:
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Lemma 2.5.27. Assume that the peripheral circles ∂Q′i, ∂Qi of S ′, S, respectively, are uni-

form quasicircles and let F : S ′ → S be a local quasisymmetry. Then F extends to a locally

quasiconformal map from Ω′ onto Ω.

We only provide a sketch of the proof.

Proof. The first observation is that since F is a homeomorphism it maps each peripheral

circle ∂Q′i of S ′ onto a peripheral circle ∂Qi of S; see [Bon11, Lemma 5.5] for an argument.

Then one uses the well-known Beurling-Ahlfors extension to obtain a quasiconformal exten-

sion F : Q′i → Qi inside each peripheral disk. The resulting map F : Ω′ → Ω will be locally

quasiconformal and the proof can be found in [Bon11, Section 5], where careful quantitative

estimates are also shown. In our case we do not need such careful estimates.

2.5.5 Properties of Sobolev spaces

We record here some properties of Sobolev functions:

Proposition 2.5.28. The spaces W1,2
w,loc(S) and W1,2

s,loc(S) are linear. Moreover, if u, v ∈

W1,2
w,loc(S) (W1,2

s,loc(S)), then the following functions also lie in the corresponding Sobolev space:

(a) |u|, with oscQi(|u|) ≤ oscQi(u),

(b) u ∨ v := max(u, v), with oscQi(u ∨ v) ≤ max{oscQi(u), oscQi(v)},

(c) u ∧ v := min(u, v), with oscQi(u ∧ v) ≤ max{oscQi(u), oscQi(v)},

where i ∈ N. Moreover,

(d) if u and v are locally bounded in S, then u · v lies in the corresponding Sobolev space,

with

osc
Qi

(u · v) ≤MQi(|v|) osc
Qi

(u) +MQi(|u|) osc
Qi

(v).

for all i ∈ N.
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Finally, if we set f = u ∨ v and g = u ∧ v, then we have the inequality

osc
Qi

(f)2 + osc
Qi

(g)2 ≤ osc
Qi

(u)2 + osc
Qi

(v)2 (2.5.21)

for all i ∈ N.

Proof. To prove that the spaces are linear, we note that if u, v are Sobolev functions and

a, b ∈ R, then oscQi(au+bv) ≤ |a| oscQi(u)+|b| oscQi(v), which shows that the upper gradient

inequalities of u and v yield an upper gradient inequality for au + bv. The summability

conditions (2.5.12) and (2.5.13) in the definition of a Sobolev function are trivial.

Part (a) follows from the triangle inequality ||u(x)|− |u(y)|| ≤ |u(x)−u(y)|, which shows

that |u| inherits its upper gradient inequality from u.

To show (b) note that u ∨ v = (u+ v + |u− v|)/2. Using the linearity of Sobolev spaces

and part (a) we obtain that u ∨ v also lies in the Sobolev space. To show the inequality, we

only need to observe that

MQi(u ∨ v) = max{MQi(u),MQi(v)} and

mQi(u ∨ v) ≥ max{mQi(u),mQi(v)}.
(2.5.22)

Part (c) is proved in the exact same way, if one notes that

MQi(u ∧ v) ≤ min{MQi(u),MQi(v)} and

mQi(u ∧ v) = min{mQi(u),mQi(v)}.
(2.5.23)

For part (d) we note that the oscillation inequality is a straightforward computation.

This, together with the local boundedness of u and v show immediately the summability

conditions (2.5.12) and (2.5.13); see also Corollary 2.3.6. We only have to show the upper

gradient inequality. Suppose that γ ⊂⊂ Ω is a path that is good for both u and v, and

connects x, y ∈ S. Since γ ⊂⊂ Ω, there exists M > 0 such that |u| ≤M , |v| ≤M on γ ∩ S.

Then

|u(x)v(x)− u(y)v(y)| ≤M |u(x)− u(y)|+M |v(x)− v(y)|

≤M
∑

i:Qi∩γ 6=∅

(osc
Qi

(u) + osc
Qi

(v)).
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Figure 2.3: An open set V (pink) intersecting a round carpet S, and the set ∂∗V that

corresponds to V . Here, Ω has one boundary component, the largest circle. Also, S is an

actual Sierpiński carpet, as defined in the Introduction.

Since this also holds for subpaths of γ, the proof of Proposition 2.5.9 shows that

|u(x)v(x)− u(y)v(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(u · v),

as desired; see also Remark 2.5.14.

To show inequality (2.5.21) we fix i ∈ N, and for simplicity drop Qi from the notations

oscQi ,MQi ,mQi . We now split into cases, and by symmetry we only have to check two cases.

If M(u) ≥M(v) and m(u) ≥ m(v), then by (2.5.22) and (2.5.23) we have

osc(f)2 + osc(g)2 ≤ (M(u)−m(u))2 + (M(v)−m(v))2 = osc(u)2 + osc(v)2.

If M(u) ≥M(v) and m(u) ≤ m(v), then using again (2.5.22) and (2.5.23) we obtain

osc(f)2 + osc(g)2 ≤ (M(u)−m(v))2 + (M(v)−m(u))2

= osc(u)2 + osc(v)2 − 2(M(u)−M(v))(m(v)−m(u)).

The last term in the above expression is non-negative by assumption, thus the expression is

bounded by osc(u)2 + osc(v)2, as claimed.

Next, we include a lemma that allows us to “patch” together Sobolev functions. For an

open set V ⊂ Ω recall that ∂∗V = ∂V ∩ S; see Figure 2.3.
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Lemma 2.5.29. Let V ⊂ Ω be an open set such that ∂∗V 6= ∅. Let φ, ψ ∈ W1,2
w,loc(S)

(W1,2
s,loc(S)) such that φ = ψ on ∂∗V . Then h := φχS∩V + ψχS\V ∈ W

1,2
w,loc(S) (W1,2

s,loc(S)).

Moreover, oscQi(h) = oscQi(φ) for ∂Qi ⊂ V , oscQi(h) = oscQi(ψ) for ∂Qi ⊂ Ω \ V , and

oscQi(h) ≤ oscQi(φ) + oscQi(ψ) otherwise.

Proof. We first show the oscillation relations. The first two are trivial and for the last one

we note that if ∂Qi 6⊂ V and ∂Qi 6⊂ Ω \ V , then there exists a point x ∈ ∂Qi ∩ ∂V ⊂ ∂∗V ,

so φ(x) = ψ(x). Let z, w ∈ ∂Qi be arbitrary. If h(z) = φ(z) and h(w) = ψ(w) then

|h(z)− h(w)| ≤ |h(z)− h(x)|+ |h(x)− h(w)|

= |φ(z)− φ(x)|+ |ψ(x)− ψ(w)|

≤ osc
Qi

(φ) + osc
Qi

(ψ).

The above inequality also holds trivially in case h(z) = φ(z) and h(w) = φ(w), or h(z) = ψ(z)

and h(w) = ψ(w). This proves the claim.

The summability condition (2.5.3) follows immediately from the oscillation relations, and

the summability condition (2.5.2) follows from the fact that MQi(|h|) ≤MQi(|φ|)+MQi(|ψ|);

see Remark 2.5.13. It remains to show the upper gradient inequality. By Remark 2.5.14,

it suffices to prove that there exists a locally square-summable sequence {ρ(Qi)}i∈N, which

is a weak (strong) upper gradient for h. This will imply that {oscQi(h)}i∈N has the same

property.

Let γ be a path that is good for both φ and ψ and joins x, y ∈ γ ∩ S. We wish to prove

that

|h(x)− h(y)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi)

for points x, y ∈ γ ∩S, where ρ(Qi) is to be chosen. This will imply that the upper gradient

inequality holds along the family of paths which are good for both φ and ψ, and thus for

almost every path by the subadditivity of modulus.
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If the endpoints x, y of γ lie in S ∩ V , then we have

|h(x)− h(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(φ),

and if x, y ∈ S \ V , then

|h(x)− h(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(ψ).

Now, suppose that x ∈ S∩V and y ∈ S \V , but the path γ does not intersect ∂∗V . This

implies that γ intersects some peripheral disk Qi0 with ∂Qi0 ∩ ∂V 6= ∅. Indeed, consider the

set

Ṽ = V ∪

( ⋃
i:∂Qi⊂V

Qi

)
,

which has the properties that Ṽ ∩S = V ∩S, and ∂∗Ṽ = ∂∗V . Note that γ intersects ∂Ṽ at a

point z, since it has to exit Ṽ . Furthermore, z cannot lie in S because γ∩∂∗V = γ∩∂∗Ṽ = ∅,

but it has to lie in some peripheral disk Qi0 . We assume that z is the first point of ∂Ṽ that

γ hits as it travels from x to y. Let x0 ∈ ∂Qi0 ∩ γ be the first entry point of γ in ∂Qi0 , and

note that necessarily x0 ∈ Ṽ ∩ S = V ∩ S. Since ∂Qi0 6⊂ V (otherwise z ∈ Ṽ ), we have

∂Qi0 ∩ ∂V 6= ∅, so we fix a point w ∈ ∂Qi0 ∩ ∂V ⊂ ∂∗V . We now have

|h(x)− h(y)| = |φ(x)− ψ(y)|

≤ |φ(x)− φ(x0)|+ |φ(x0)− φ(w)|

+ |ψ(w)− ψ(x0)|+ |ψ(x0)− ψ(y)|

≤ 2

 ∑
i:Qi∩γ 6=∅

osc
Qi

(φ) +
∑

i:Qi∩γ 6=∅

osc
Qi

(ψ)

 ,

where we used that φ(w) = ψ(w) by the assumption that φ = ψ on ∂∗V .

Finally, we assume that x ∈ S ∩ V and y ∈ S \ V and there exists a point z ∈ γ ∩ ∂∗V .

Here we have the estimate

|h(x)− h(y)| ≤ |h(x)− h(z)|+ |h(z)− h(y)|

= |φ(x)− φ(z)|+ |ψ(z)− ψ(y)|

≤
∑

i:Qi∩γ 6=∅

osc
Qi

(φ) +
∑

i:Qi∩γ 6=∅

osc
Qi

(ψ).
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Summarizing, we may choose ρ(Qi) = 2(oscQi(φ) + oscQi(ψ)) for i ∈ N. This is clearly

locally square-summable, since {oscQi(φ)}i∈N and {oscQi(ψ)}i∈N are.

Remark 2.5.30. It is very crucial in the preceding statement that φ = ψ on ∂∗V , and we do

not merely have φ(x) = ψ(x) for “accessible” points x ∈ ∂∗V . Indeed, one can construct

square Sierpiński carpets for which the conclusion fails, if we use φ = 0 and ψ = 1, and the

“interface” ∂∗V = ∂V ∩ S is too small to be “seen” by carpet modulus; this is to say, that

the curves passing through ∂∗V have weak (strong) carpet modulus equal to 0. See also the

next lemma.

For technical reasons, we also need the following modification of the previous lemma:

Lemma 2.5.31. Let V ⊂ Ω be an open set. Let φ, ψ ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) and suppose

that there exists a path family G in Ω that contains almost every path, such that φ(x) = ψ(x)

for all points x ∈ S that are “accessible” by paths of G. Then h := φχS∩V + ψχS\V ∈

W1,2
w,loc(S) (W1,2

s,loc(S)).

Moreover, oscQi(h) = oscQi(φ) for ∂Qi ⊂ V , oscQi(h) = oscQi(ψ) for ∂Qi ⊂ Ω \ V , and

oscQi(h) ≤ oscQi(φ) + oscQi(ψ) otherwise.

The statement that G contains almost every path is equivalent to saying that its com-

plement has weak (strong) modulus equal to zero. By Lemma 2.5.19, the assumption of

the lemma is equivalent to saying that φ and ψ have the same normalized version. The

conclusion is essentially that no matter how one modifies a function within its equivalence

class, it still remains in the Sobolev space.

Proof. The proof is elementary so we skip some steps. Consider the curve family G0 which

contains all curves that are good for both φ and ψ, and are contained in G.

For a fixed i ∈ N consider points z, w ∈ ∂Qi. Using Lemma 2.4.3, we may find a path

γ ∈ G and a point x ∈ ∂Qi that is “accessible” from γ. Therefore, φ(x) = ψ(x). Now, if

h(z) = φ(z) and h(w) = ψ(w), we have

|h(z)− h(w)| ≤ |φ(z)− φ(x)|+ |ψ(x)− ψ(w)| ≤ osc
Qi

(φ) + osc
Qi

(ψ).
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This shows one of the claimed oscillation inequalities. The other cases are trivial.

For the upper gradient inequality, let γ ∈ G be a curve and x, y ∈ γ ∩ S. If x and y are

“accessible” by γ, then by assumption φ(x) = ψ(x) = h(x) and φ(y) = ψ(y) = h(y), hence

|h(x)− h(y)| = |φ(x)− φ(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(φ).

If x ∈ ∂Qix is “non-accessible” then we may consider the last exit point of γ from Qix as it

travels from x to y, in order to obtain an additional contribution oscQix (h) ≤ oscQix (φ) +

oscQix (ψ) in the above sum. The same comment applies if y is “non-accessible”. Thus, in

all cases

|h(x)− h(y)| ≤
∑

i:Qi∩γ 6=∅

(osc
Qi

(φ) + osc
Qi

(ψ)).

This shows that ρ(Qi) := oscQi(φ)+oscQi(ψ) is an upper gradient of h. Using Remark 2.5.14

we derive the desired conclusion.

Finally, we need a special instance of Lemma 2.5.29:

Corollary 2.5.32. Let V ⊂ Ω be an open set such that ∂∗V 6= ∅. Let ψ ∈ W1,2
w,loc(S)

(W1,2
s,loc(S)) and M ∈ R be such that ψ ≤ M on ∂∗V . Then h := (ψ ∧M)χS∩V + ψχS\V ∈

W1,2
w,loc(S) (W1,2

s,loc(S)). Moreover, oscQi(h) ≤ oscQi(ψ) for all i ∈ N.

Proof. The function φ := ψ ∧ M lies in W1,2
w,loc(S) (W1,2

s,loc(S)) by Lemma 2.5.28(c), with

oscQi(φ) ≤ oscQi(ψ). Since φ = ψ on ∂∗V , it follows that h ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) by

Lemma 2.5.29. It remains to show the oscillation inequality.

We fix i ∈ N. If ∂Qi is contained in V or in S \ V , then there is nothing to show, since

oscQi(φ) ≤ oscQi(ψ). Hence, we assume that ∂Qi intersects ∂V , i.e., ∅ 6= ∂Qi ∩ ∂V ⊂ ∂∗V .

Using the assumption that ψ ≤M on ∂∗V , we see that mQi(ψ) ≤M . If ψ
∣∣
∂Qi∩V

≤M , then

there is nothing to show, since h = ψ on ∂Qi. Suppose that there exists z ∈ ∂Qi ∩ V such

that ψ(z) > M . Then

mQi(ψ) ≤M < MQi(ψ).

This implies that oscQi(h) ≤ oscQi(ψ), as desired.
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2.6 Carpet-harmonic functions

Throughout the section we fix a relative Sierpiński carpet (S,Ω) with the standard assump-

tions.

2.6.1 Definition of carpet-harmonic functions

Let V ⊂ Ω be an open set, and f ∈ W1,2
w,loc(S) (W1,2

s,loc(S)). Define the (Dirichlet) energy

functional by

DV (f) =
∑
i∈IV

osc
Qi

(f)2 ∈ [0,∞].

Using the energy functional we define the notion of a weak (strong) carpet-harmonic function.

Definition 2.6.1. A function u ∈ W1,2
w,loc(S) (W1,2

s,loc(S)) is weak (strong) carpet-harmonic if

for every open set V ⊂⊂ Ω and each ζ ∈ W1,2
w (S) (W1,2

s (S)) with ζ
∣∣
S\V ≡ 0 we have

DV (u) ≤ DV (u+ ζ).

In other words, u minimizes the energy functional DV over Sobolev functions with the same

boundary values as u.

The functions u, ζ in the above definition are not assumed to be normalized, in the

sense of the discussion in Section 2.5.2. Later we will see that the normalized version of a

carpet-harmonic function has to be continuous; see Theorem 2.7.4.

Example 2.6.2. Let (S,Ω) be a relative Sierpiński carpet such that all peripheral disks Qi

are squares with sides parallel to the coordinate axes; see Figure 2.4. Then the coordinate

functions u(x, y) = x and v(x, y) = y are both weak and strong carpet-harmonic.

Since u, v are Lipschitz, Example 2.5.20 implies that they both lie inW1,2
s,loc(S) ⊂ W1,2

w,loc(S).

Let V ⊂⊂ Ω be an open set and consider the open set V ′ = V ∪
⋃
i∈IV Qi ⊃ V . This

set contains all the peripheral disks that it intersects and it is also compactly contained in

Ω. Moreover, V ′ satisfies IV ′ = IV , and thus DV ′ ≡ DV . We will show that DV (v) ≤ DV (g)

for all g ∈ W1,2
w (S) ⊃ W1,2

s (S) with g = v outside V ′. This suffices for harmonicity. Indeed,
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if g ∈ W1,2
w (S) is arbitrary with g = v outside V , then g = v outside V ′ ⊃ V , so DV (v) ≤

DV (g), which shows harmonicity.

From now on, we denote V ′ by V and we will use the property that it contains the

peripheral disks that it intersects. Let g ∈ W1,2
w (S) with g = v outside V . Note that for a.e.

x ∈ R the vertical line γx passing through x (or rather its subpaths that lie in Ω) is a good

path for g, by an argument very similar to the proof of Lemma 2.4.3. We fix x such that γx

is good and γx ∩ V 6= ∅. The intersection is an open subset of a line, so it can be written

as an (at most) countable union of disjoint open intervals Jj = {x} × (aj, bj), j ∈ N. The

points (x, aj), (x, bj) must lie in ∂V , and therefore, they lie in ∂V ∩ S, by the assumption

on V . By the fact that we have g(x, y) = v(x, y) = y for (x, y) /∈ V , and the upper gradient

inequality we obtain

bj − aj = |g(x, bj)− g(x, aj)| ≤
∑

i:Qi∩Jj 6=∅

osc
Qi

(g).

Summing over all j and noting that a square Qi cannot intersect two distinct sets Jj, we

have

H1(γx ∩ V ) ≤
∑

i:Qi∩γx 6=∅
i∈IV

osc
Qi

(g).

Integrating over x and using Fubini’s theorem in both sides, we have

H2(V ) ≤
∑
i∈IV

osc
Qi

(g)

∫
Qi∩γx 6=∅

dx =
∑
i∈IV

osc
Qi

(g)`(Qi),

where `(Qi) is the sidelength of Qi. Now, using the Cauchy-Schwarz inequality and the fact

that H2(V ) =
∑

i∈IV `(Qi)
2 (because H2(S) = 0), we see that

∑
i∈IV

`(Qi)
2 ≤

∑
i∈IV

osc
Qi

(g)2.

On the other hand, it is easy to see that

DV (v) =
∑
i∈IV

osc
Qi

(v)2 =
∑
i∈IV

`(Qi)
2,

so indeed v has the minimal energy. The computation for u(x, y) = x is analogous.
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Figure 2.4: A square relative Sierpiński carpet (S,Ω). Here Ω has two boundary components,

the curves that are not squares.

As we saw in Proposition 2.5.25, locally quasiconformal maps preserve Sobolev spaces.

Therefore, they must also preserve carpet-harmonic functions:

Proposition 2.6.3. Let (S,Ω), (S ′,Ω′) be relative Sierpiński carpets, and assume that

F : Ω′ → Ω is a locally quasiconformal map that maps the peripheral disks Q′i of S ′ to the

peripheral disks Qi = F (Q′i) of S. If u : S → R̂ is weak carpet-harmonic, then u◦F : S ′ → R̂

is also weak carpet-harmonic.

Proof. Let u : S → R̂ be a weak carpet-harmonic function. Fix an open set V ′ ⊂⊂ Ω′ and

a function ζ ′ ∈ W1,2
w (S ′) such that ζ ′

∣∣
S′\V ′ ≡ 0. Then V := F (V ′) is compactly contained

in Ω, and ζ := ζ ′ ◦ F−1 ∈ W1,2
w (S) with ζ

∣∣
S\V ≡ 0, by Proposition 2.5.25. Thus, by the

correspondence of the peripheral disks and the harmonicity of u we have

DV ′(u ◦ F + ζ ′) = DV (u ◦ F ◦ F−1 + ζ ′ ◦ F−1)

= DV (u+ ζ) ≥ DV (u) = DV ′(u ◦ F ).

This shows that u ◦ F is weak carpet-harmonic, as desired.
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Corollary 2.6.4. Let (S,Ω), (S ′,Ω′) be relative Sierpiński carpets, and F : S ′ → S be a

local quasisymmetry. Furthermore, we assume that the peripheral circles of S and S ′ are

uniform quasicircles. If u : S → R̂ is weak carpet-harmonic, then u ◦F : S ′ → R̂ is also weak

carpet-harmonic.

The proof follows immediately from the extension Lemma 2.5.27 and Proposition 2.6.3.

An interesting corollary of this discussion that relates carpet-harmonic functions to rigid-

ity problems on square carpets is the following:

Corollary 2.6.5. Let (S,Ω), (S ′,Ω′) be relative Sierpiński carpets, and F : S ′ → S be a

local quasisymmetry. We assume that the peripheral circles of S ′ are uniform quasicirlces

and that the peripheral circles of S are squares with sides parallel to the coordinate axes.

Then the coordinates u, v of the map F := (u, v) are weak carpet-harmonic.

Proof. By Example 2.6.2 the x,y-coordinate functions on S are weak carpet-harmonic. Corol-

lary 2.6.4 implies that the pullbacks u, v of the coordinates are weak carpet-harmonic.

2.6.2 Solution to the Dirichlet problem

Let (S,Ω) be a relative Sierpiński carpet such that ∂Ω consists of finitely many, non-trivial,

and disjoint Jordan curves (recall that these are homeomorphic images of S1). We fix a

function f ∈ W1,2
w (S) (W1,2

s (S)). Then we can define the boundary values of f on points

x ∈ ∂Ω that are “accessible” by a good path γ, using an analog of Lemma 2.5.6. Namely,

we consider a good open path γ ⊂ Ω such that γ ∩ ∂Ω 6= ∅, and for x ∈ γ ∩ ∂Ω we define

f(x) = lim inf
Qi→x
Qi∩γ 6=∅

MQi(f).

By a variant of Lemma 2.5.6 this definition does not depend on the path γ with x ∈ γ.

For the “non-accessible” points x ∈ ∂Ω we define f(x) = lim infy→x f(y) where y ∈ ∂Ω is

“accessible”. Note that every point x ∈ ∂Ω is the landing point of a (not necessarily good)

path γ ⊂ Ω, by our assumptions on ∂Ω. Perturbing γ as in Lemma 2.4.4 we obtain a point

y near x that is “accessible” by a good path. Hence, there is a dense set of points in ∂Ω
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which are “accessible” by good paths, and this implies that the boundary values of f are

well-defined on all of ∂Ω.

We say that a function u ∈ W1,2
w (S) (W1,2

s (S)) has boundary values equal to f if there

exists a path family G0 in Ω, whose complement has weak (strong) modulus zero, such that

u(x) = f(x) for all points x ∈ ∂Ω that are “accessible” by paths γ ∈ G0.

Theorem 2.6.6. Suppose that Ω is bounded and let f ∈ W1,2
w (S) (W1,2

s (S)) be a function

with bounded boundary values, i.e., there exists M > 0 such that |f(x)| ≤M for all x ∈ ∂Ω.

Then there exists a unique function u ∈ W1,2
w (S) (W1,2

s (S)) that minimizes DΩ(g) over all

g ∈ W1,2
w (S) (W1,2

s (S)) with boundary values equal to f . The function u is weak (strong)

carpet-harmonic.

Proof. The uniqueness part will be postponed until we have established several properties of

carpet-harmonic functions; see Theorem 2.7.6. For the existence part, one has to minimize

DΩ(g) over all g ∈ W1,2
w (S) (W1,2

s (S)) with boundary values equal to f . We call such

functions g admissible (for the Dirichlet problem). It is easy to show that if g minimizes

DΩ(g) then it is carpet-harmonic. Indeed, for every ζ ∈ W1,2
w (S) (W1,2

s (S)) that vanishes

outside an open set V ⊂⊂ Ω we have

DΩ(g) ≤ DΩ(g + ζ).

Note that oscQi(g + ζ) = oscQi(g) for i /∈ IV . Canceling the common terms we obtain

DV (g) ≤ DV (g + ζ), so g is carpet-harmonic.

Define D := inf DΩ(g) where the infimum is taken over all admissible functions, and

is finite since f is admissible. Let gn ∈ W1,2
w (S) (W1,2

s (S)) be a minimizing sequence of

admissible functions, i.e., DΩ(gn) → D as n → ∞. Note that Gn := (gn ∧M) ∨ (−M) is

still a Sobolev function with DΩ(Gn) ≤ DΩ(gn), by Proposition 2.5.28(b),(c), since M is a

constant function. Thus, by replacing gn with Gn, we may assume that |gn| ≤M .

Now, we have a minimizing sequence gn that satisfies |MQi(gn)| ≤ M for all i ∈ N. In

particular, the sequences {MQi(gn) diam(Qi)}i∈N, {oscQi(gn)}i∈N are uniformly bounded in
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`2(N). Here, it is crucial that MQi(gn) diam(Qi) ≤M diam(Qi), and that∑
i∈N

diam(Qi)
2 <∞

by the boundedness of Ω and the quasiballs assumption (or by Corollary 2.3.6).

By passing to subsequences we may assume that for each i ∈ N we have MQi(gn)→MQi

and oscQi(gn)→ ρ(Qi) for some real numbers MQi , ρ(Qi). By Fatou’s lemma we have∑
i∈N

ρ(Qi)
2 ≤ lim inf

n→∞

∑
i∈N

osc
Qi

(gn)2 = D. (2.6.1)

If we show that ρ(Qi) corresponds to the oscillation of an admissible function g, then this

will be the desired minimizer.

Applying the Banach-Alaoglu theorem, we may assume that {MQi(gn) diam(Qi)}i∈N and

{oscQi(gn)}i∈N converge weakly in `2(N) to {MQi diam(Qi)}i∈N and {ρ(Qi)}i∈N, respectively.

Since `2(N)× `2(N) is reflexive, by Mazur’s lemma (see e.g. [Yos80, Theorem 2, p. 120]) we

have that there exist convex combinations

Mn
Qi

:=
n∑
j=1

λnjMQi(gj), ρn(Qi) :=
n∑
j=1

λnj osc
Qi

(gj)

such that the sequences {Mn
Qi

diam(Qi)}i∈N and {ρn(Qi)}i∈N converge strongly in `2(N) to

{MQi diam(Qi)}i∈N and {ρ(Qi)}i∈N, respectively.

We now show that {MQi}i∈N defines a discrete Sobolev function in the sense of Definition

2.5.1 with upper gradient {ρ(Qi)}i∈N. Consider G to be the family of curves that are good

curves for the functions gn, n ∈ N, and f , and also the boundary values of gn along paths

γ ∈ G are equal to f for n ∈ N. Moreover, we assume that the paths of G are non-exceptional

for Fuglede’s Lemma 2.3.8, applied to a subsequence of {ρn(Qi)}i∈N, which we still denote

in the same way. For peripheral disks Qi1 , Qi2 that intersect a curve γ ∈ G we have

|Mn
Qi1
−Mn

Qi2
| ≤

n∑
j=1

λnj |MQi1
(gj)−MQi2

(gj)|

≤
n∑
j=1

λnj
∑

i:Qi∩γ 6=∅

osc
Qi

(gj)

=
∑

i:Qi∩γ 6=∅

ρn(Qi).

(2.6.2)
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Taking limits we obtain

|MQi1
−MQi2

| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi).

Hence, {MQi}i∈N is indeed a discrete Sobolev function with upper gradient {ρ(Qi)}i∈N.

By the discussion in Section 2.5.1, the discrete Sobolev function {MQi}i∈N yields a Sobolev

function g with upper gradient {oscQi(g)}i∈N that satisfies oscQi(g) ≤ ρ(Qi) for all i ∈ N;

see Corollary 2.5.7. Combining this with (2.6.1), we see that DΩ(g) ≤ D. If we prove that

g is admissible for the Dirichlet problem, then we will have

DΩ(g) =
∑
i∈N

osc
Qi

(g)2 =
∑
i∈N

ρ(Qi)
2 = D,

and in particular oscQi(g) = ρ(Qi) for all i ∈ N.

It remains to show that g is admissible for the Dirichlet problem. For this, it suffices to

show that there exists a path family G0 that contains almost every path, such that for all

points x ∈ ∂Ω which are “accessible” by paths in G0 we have g(x) = f(x). Let G0 be the

path family that contains all paths γ ∈ G for which∑
i:Qi∩γ 6=∅

ρ(Qi) <∞.

Note that the complement of G0 has weak (strong) modulus zero. If x ∈ ∂Ω is “accessible”

by a path γ ∈ G0, and Qi1 , Qi2 intersect γ, by (2.6.2) we have

|Mn
Qi1
−Mn

Qi2
| ≤

∑
i:Qi∩γ 6=∅

ρn(Qi).

As we let Qi2 → x, the quantity Mn
Qi2

=
∑n

j=1 λ
n
jMQi2

(gj) converges to f(x), because each

term MQi2
(gj) does so (recall that γ is non-exceptional for each gj, and they are admissible).

Hence, we have

|Mn
Qi1
− f(x)| ≤

∑
i:Qi∩γ 6=∅

ρn(Qi).

Now we let n→∞, and using Fuglede’s Lemma 2.3.8 we obtain

|MQi1
− f(x)| ≤

∑
i:Qi∩γ 6=∅

ρ(Qi).
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We claim that MQi1
→ g(x) as Qi1 → x and Qi1 ∩ γ 6= ∅. We assume this for the moment,

and we have

|g(x)− f(x)| ≤
∑

i:Qi∩γ 6=∅

ρ(Qi).

This is also true for all subpaths of γ landing at x, so if we shrink γ to x, we obtain

g(x) = f(x), as desired.

To prove our claim, we note that, by the definition of boundary values, g(x) can be

approximated by MQi1
(g) = supx∈∂Qi1 (g), as Qi1 → x and Qi1 ∩ γ 6= ∅. On the other hand,

by the last inequality in Corollary 2.5.7, we have

|MQi1
(g)−MQi1

| ≤ ρ(Qi1).

Since ρ is square-summable, as Qi1 → x we have ρ(Qi1)→ 0. Hence, our claim is proved.

Remark 2.6.7. By the discussion in Section 2.5.2, there exists a normalized version g̃ of the

solution g to the Dirichlet problem. For the normalized version we have oscQi(g̃) ≤ oscQi(g)

for all i ∈ N by Lemma 2.5.17(iii). Hence, DΩ(g̃) ≤ DΩ(g). If g̃ has boundary values equal

to f , then we will have that g̃ is admissible, hence DΩ(g̃) = DΩ(g), and g̃ is also a solution

to the Dirichlet problem.

However, g̃ agrees with g at all points which are “accessible” by paths γ ∈ Gg by Lemma

2.5.17(ii). This also holds for “accessible” boundary points. Hence, indeed g̃ has boundary

values equal to f .

2.7 Properties of harmonic functions

To simplify the treatment, we drop the terminology weak/strong for the Sobolev functions

and carpet-harmonic functions. We also drop the subscripts w, s for the Sobolev spaces, so

e.g., the non-local Sobolev space will be denoted by W1,2(S). First we record a lemma that

allows us to switch to the normalized version (see Section 2.5.2) of a harmonic function:

Lemma 2.7.1. Let u : S → R̂ be a carpet-harmonic function. Then its normalized version

ũ is also carpet-harmonic.

69



Proof. It suffices to prove that for each open set V ⊂⊂ Ω and each function ζ ∈ W1,2(S)

with ζ
∣∣
S\V ≡ 0 we have DV (ũ) ≤ DV (ũ + ζ). We fix such a function ζ. Recall that

oscQi(ũ) ≤ oscQi(u) for all i ∈ N, by Lemma 2.5.17(iii). Hence, DV (ũ) ≤ DV (u). On

the other hand, by Lemma 2.5.17(ii) we have ũ(x) = u(x) for all points x ∈ S that are

“accessible” by a curve family that contains almost every curve. Hence, by Lemma 2.5.31

and linearity, for each open set W ⊂ Ω the function η := (ũ−u)χS∩W + ζ lies in the Sobolev

space W1,2(S).

First, assume that ∂Qi ⊂ V whenever i ∈ IV . We set W = V and consider the function

η as above. Then u+ η = ũ+ ζ on ∂Qi ⊂ V for i ∈ IV . Since η vanishes outside V , by the

harmonicity of u we have

DV (u) ≤ DV (u+ η) = DV (ũ+ ζ).

Summarizing, DV (ũ) ≤ DV (ũ+ ζ), as desired.

Now, we treat the general case. We fix ε > 0 and for each i ∈ IV we consider a number

δi = δi(ε) ∈ (0, ε) such that the open δi-neighborhood of Qi intersects only peripheral disks

having smaller diameter than that of Qi; recall from Lemma 2.3.4 that the diameters of the

peripheral disks shrink to 0 in compact subsets of R2. We denote by Wε the union of V with

all these neighborhoods and η is defined as before with W = Wε. Note that Wε contains

∂Qi, whenever i ∈ IV . Therefore, as η vanishes outside Wε ⊃ V , we have

DV (u) ≤ DWε(u) ≤ DWε(u+ η) = DWε(ũχS∩Wε
+ uχS\Wε

+ ζ)

= DV (ũ+ ζ) +
∑

i∈IWε\IV

osc
Qi

(ũχS∩Wε
+ uχS\Wε

)2

≤ DV (ũ+ ζ) +
∑

i∈IWε\IV

(osc
Qi

(ũ) + osc
Qi

(u))2,

where we used the oscillation inequalities from Lemma 2.5.31. Since the last sum is finite, it

will converge to 0 and we will have the desired conclusion, provided that the set IWε shrinks

to IV as ε→ 0.

We argue by contradiction, assuming that there exists i0 /∈ IV that lies in IWε infinitely

often as ε → 0, say along a sequence εn → 0. For each n ∈ N, there exists i(n) ∈ IV such
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that Qi0 intersects the δi(n)(εn)-neighborhood of Qi(n). Note that the set {i(n) : n ∈ N}

cannot be finite, since δi(n)(εn) → 0 as n → ∞, and Qi0 has positive distance from each

individual peripheral disk. Therefore, the set {i(n) : n ∈ N} is infinite, and by passing to a

subsequence we may assume that the indices i(n) are distinct. However, δi(n)(εn) was chosen

so that the δi(n)(εn)-neighborhood of Qi(n) intersects only smaller peripheral disks than Qi(n).

Since diam(Qi(n)) → 0 (by Lemma 2.3.4 since they all stay near Qi0), it follows that Qi0

cannot intersect these neighborhoods for large n. This is a contradiction.

Recall also by Remark 2.6.7 that the normalized version of the solution to the Dirichlet

problem (Theorem 2.6.6) has the same boundary values as the original solution. In what

follows, we will always be using normalized versions of carpet-harmonic functions. In par-

ticular, by Lemma 2.5.18 we may assume that for any x ∈ S the value of u(x) can be

approximated by MQi(u) where Qi is a peripheral disk close to x.

2.7.1 Continuity and maximum principle

Lemma 2.7.2. Let u : S → R̂ be a normalized Sobolev function, and V ⊂ Ω a connected

open set.

(a) If oscQi(u) = 0 for all i ∈ IV , then u is constant on S ∩ V .

(b) If oscQi(u) = 0 for all Qi ⊂ V , then u is a constant on S∩W , where W is a component

of V \
⋃
i∈I∂V Qi.

Proof. (a) Note that u is constant on (the boundary of) any given peripheral disk that

intersects V . Thus we may assume that V does not intersect only one peripheral disk. Let

i1, i2 ∈ IV be distinct. Since V is path connected, by Lemma 2.4.3 we can find a non-

exceptional path γ ⊂ V joining Qi1 , Qi2 such that the upper gradient inequality holds along

γ. If x ∈ ∂Qi1 ∩ γ and y ∈ ∂Qi2 ∩ γ then

|u(x)− u(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(u) = 0.
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Thus u is equal to the same constant c on all peripheral circles ∂Qi, i ∈ IV . If x ∈ S ∩ V is

arbitrary, then u(x) can be approximated by MQi(u), where Qi ∩ V 6= ∅, thus u(x) = c also

here.

(b) The set V \
⋃
i∈I∂V Qi is open. We fix a component W of this set and observe that if

Qi ∩W 6= ∅ then Qi ⊂ W ; see the remark below. This implies that IW = {i ∈ N : Qi ⊂ W}.

Thus the conclusion follows immediately by an application of part (a) of the lemma.

Remark 2.7.3. (a) Each component W of V \
⋃
i∈I∂V Qi has the property that it contains

all peripheral disks that it intersects. Moreover, if S ∩W 6= ∅ and ∂∗V 6= ∅, then we have

S ∩W ∩ ∂∗V 6= ∅.

For the first claim, note that E :=
⋃
i∈I∂V Qi contains all the peripheral disks that it

intersects. This implies that if Qi ∩ W 6= ∅, then we necessarily have Qi ∩ E = ∅ and

Qi ∩ ∂V = ∅. Hence, Qi ⊂ V \ E and Qi ⊂ W by the connectedness of Qi.

For the second claim, by Lemma 2.4.10, there exists an open path γ ⊂ S◦ connecting a

point x of S ∩W to a point outside V , for example to a point of ∂∗V . Let y ∈ γ ∩ ∂V be

the first point of ∂V that γ meets, assuming that it is parametrized to start at x. We claim

that y ∈ S ∩W . We consider the (smallest) open subpath of γ that connects x to y, and we

still denote it by γ. Then γ ⊂ V , and also γ ∩
⋃
i∈I∂V Qi = ∅. Indeed, if z ∈ γ ⊂ S◦ is a limit

point of
⋃
i∈I∂V Qi, then there exists a sequence of Qi, i ∈ I∂V , with diameters shrinking to 0

and with Qi → z. This would imply that z ∈ ∂V , a contradiction. Hence, γ ⊂ V \
⋃
i∈I∂V Qi,

and in fact γ ⊂ S ∩W , which shows that y ∈ γ ⊂ S ∩W .

(b) The assumption ∂∗V 6= ∅ in the previous statement holds always, unless V ⊃ S or

C \ V ⊃ S. Indeed, if V is an open set and S \ V 6= ∅, S ∩ V 6= ∅, then we can connect a

point of S ∩ V to a point of S \ V with an open path in S◦, by Lemma 2.4.10. This path

necessarily hits ∂V ∩ S = ∂∗V .

Theorem 2.7.4. Let u : S → R̂ be a carpet-harmonic function. Then u is continuous.

Proof. Let x ∈ S◦. If oscQi(u) = 0 for all Qi contained in a ball B(x, r) then there exists

r′ < r such that oscQi(u) = 0 for all Qi intersecting the ball B(x, r′). This follows from
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Lemma 2.3.4 and the fact that no peripheral disk can intersect a ball B(x, r′) for arbitrarily

small r′ > 0. Applying the previous lemma, we conclude that u is constant in B(x, r′) ∩ S,

so it is trivially continuous.

We assume that arbitrarily close to x there exists some Qi with oscQi(u) > 0. Consider

a circular arc γr as in Lemma 2.4.7(a) with
∑

i:Qi∩γr 6=∅ oscQi(u) < ε and B(x, r) ⊂ Ω. Also,

let y ∈ B(x, r) ∩ S. Since u is normalized, there exist peripheral disks Qix , Qiy ⊂ B(x, r)

such that |u(x) − MQix
(u)| < ε and |u(y) − MQiy

(u)| < ε, so it suffices to show that

|MQix
(u)−MQiy

(u)| is small.

Since γr is non-exceptional, the upper gradient inequality implies that the number M :=

supz∈∂∗B(x,r) u(z) = supz∈S∩γr u(z) is finite. We claim that MQk(u) ≤M , for all Qk ⊂ B(x, r).

Consider the function h := u ·χS\B(x,r) +u∧M ·χS∩B(x,r). By Corollary 2.5.32, it follows that

h is a Sobolev function and oscQi(h) ≤ oscQi(u) for all i ∈ N. Therefore, for the Dirichlet

energy we have DB(x,r)(h) ≤ DB(x,r)(u).

Assume now that there exists some Qk ⊂ B(x, r) with MQk(u) > M . If oscQk(u) > 0,

then it is easy to see that oscQk(h) < oscQk(u), which implies that DB(x,r)(h) < DB(x,r)(u),

a contradiction to harmonicity. If oscQk(u) = 0, then consider a good path γ ⊂ B(x, r),

given by Lemma 2.4.3, that joins Qk to some Ql ⊂ B(x, r) with oscQl(u) > 0. Using the

upper gradient inequality one can then find a peripheral disk Qm ⊂ B(x, r) that intersects

γ, such that oscQm(u) > 0 and MQm(u) is arbitrarily close to MQk(u), so, in particular,

MQm(u) > M . By the previous case we obtain a contradiction.

With a similar argument, one shows that infz∈∂∗B(x,r) u(z) ≤MQk(u) for all Qk ⊂ B(x, r).

Therefore by the upper gradient inequality we have

|MQix
(u)−MQiy

(u)| ≤ sup
z∈∂∗B(x,r)

u(z)− inf
z∈∂∗B(x,r)

u(z)

≤
∑

i:Qi∩γr 6=∅

osc
Qi

(u) < ε,

as desired.

Now, we treat the case x ∈ ∂Qi0 for some i0 ∈ N. Consider a small ball B(x, r) with

∂B(x, r) ∩ Qi0 6= ∅. If oscQi(u) = 0 for all Qi contained in B := B(x, r), then from Lemma
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2.7.4(b) for the component W of B(x, r) \
⋃
i∈I∂B Qi that contains x in its boundary we have

that u
∣∣
S∩W is a constant c. In fact ∂Qi0 ∩ ∂W contains a non-trivial arc α that contains x

in its interior. Since u is normalized, Lemma 2.5.18 implies that the value of u(y) for y ∈ α

is approximated by MQi(u) = c, where Qi ⊂ W . This shows that u ≡ c in a neighborhood

of x, and thus, u is continuous at x.

Now, we assume that arbitrarily close to x there exists some Qi, i 6= i0, with oscQi(u) > 0.

For a small ε > 0 we apply again Lemma 2.4.7(a) to obtain a circular arc γr around x such

that

∑
i:Qi∩γr 6=∅

i 6=i0

osc
Qi

(u) < ε.

As in the proof of Lemma 2.5.6 (see also Figure 2.2), there exists a (closed) subarc γ′r of γr

with endpoints on ∂Qi0 such that γ′r ∩ Qi0 = ∅ and γ′r defines a crosscut that separates x

from ∞ in R2 \ Qi0 . We consider an arc β ⊂ Qi0 whose endpoints are the endpoints of γ′r,

but otherwise it is contained in Qi0 . Then β ∪ γ′r bounds a Jordan region V that contains x

in its interior.

With a similar variational argument as in the case x ∈ S◦ we will show that for each

Qk ⊂ V we have

inf
z∈S∩γ′r

u(z) ≤MQk(u) ≤ sup
z∈S∩γ′r

u(z).

Then continuity will follow as before, because
∑

i:Qi∩γ′r 6=∅
osc(Qi) < ε.

We sketch the proof of the right inequality. Let M := supz∈S∩γ′r u(z) (which is finite

by the upper gradient inequality for the good path γ′r), and consider the function h =

u · χS\V + u ∧M · χS∩V . By Corollary 2.5.32 the function h is a Sobolev function which

agrees with u outside V and oscQi(h) ≤ oscQi(u) for all i ∈ N. Now, if there exists Qk ⊂ V

with MQk(u) > M we derive a contradiction as in the previous case.

The continuity implies, in particular, that |u(x)| <∞ for every x ∈ S.
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Theorem 2.7.5 (Maximum principle). Let u : S → R be a carpet-harmonic function and

V ⊂⊂ Ω be an open set. Then

sup
x∈S∩V

u(x) = sup
x∈∂∗V

u(x) and inf
x∈S∩V

u(x) = inf
x∈∂∗V

u(x).

Note that if S ∩ V 6= ∅, then ∂∗V 6= ∅. This is because V ⊂⊂ Ω; recall Remark 2.7.3(b).

Hence, all quantities above are defined, or they are simultaneously vacant. Moreover, by the

continuity of u all quantities are finite.

Proof. We clearly have supx∈S∩V u(x) ≥ supx∈∂∗V u(x) =: M because S ∩ V ⊃ ∂∗V .

Assume that there exists x ∈ S ∩ V such that u(x) > M . Since S◦ is dense in S

(this follows e.g. by Lemma 2.4.10) and u is continuous, we may assume that there exists

x ∈ S◦ ∩ V such that u(x) > M . Note that x cannot lie in
⋃
i∈I∂V Qi since all peripheral

disks contained in a small neighborhood of x have to lie in V . Let W be the component

of V \
⋃
i∈I∂V Qi that contains x. By Remark 2.7.3(a), we have S ∩W ∩ ∂∗V 6= ∅ and W

contains all peripheral disks that it intersects.

If oscQi(u) = 0 for all Qi ⊂ W , then u is constant in S ∩W by Lemma 2.7.2(a) and by

continuity it is also constant and equal to u(x) on S ∩W . This contradicts the fact that

S ∩W ∩ ∂∗V 6= ∅, and that u ≤M on ∂∗V .

Hence, there exists some Qi ⊂ W with oscQi(u) > 0. Arbitrarily close to x we can find

a peripheral disk Qix with MQix
(u) > M . Arguing as in the proof of Theorem 2.7.4, we can

derive that there exists some Qi0 ⊂ W with MQi0
(u) > M and oscQi0 (u) > 0. Consider the

variation h = u ·χS\V + u ∧M ·χS∩V and note that u ≤M on ∂∗V . By Corollary 2.5.32 h

is a Sobolev function with oscQi(h) ≤ oscQi(u) for all i ∈ N. However oscQi0 (h) < oscQi0 (u)

which contradicts the minimizing property of u.

The claim for the infimum follows by looking at −u.

2.7.2 Uniqueness and comparison principle

Here, we first recover the uniqueness part in Theorem 2.6.6, and then a comparison principle

for solutions to the Dirichlet problem. The standing assumption here is that the set Ω has
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boundary ∂Ω that consists of finitely many, non-trivial, and disjoint Jordan curves, so that

we can define boundary values of Sobolev functions.

Theorem 2.7.6 (Uniqueness). Let u, v : S → R be solutions to the Dirichlet problem given

by Theorem 2.6.6 with boundary values equal to f on ∂Ω. Then u = v on S.

Proof. Since both u, v are solutions to the Dirichlet problem, it follows that D := DΩ(u) =

DΩ(v). Recall that a function g is admissible for the Dirichlet problem if g ∈ W1,2(S) and

g has boundary values equal to f .

For s ∈ [0, 1] the function (1−s)u+sv is admissible, thus by the subadditivity of oscQi(·)

(see e.g. the proof of Proposition 2.5.28) and the Cauchy-Schwarz inequality we have

D ≤ DΩ((1− s)u+ sv)

≤ (1− s)2DΩ(u) + 2s(1− s)
∑
i∈N

osc
Qi

(u) osc
Qi

(v) + s2DΩ(v)

≤ (1− s)2D + 2s(1− s)D1/2D1/2 + s2D

= D.

Since we have equality, it follows that oscQi(u) = oscQi(v) for all i ∈ N.

Consider the function g = u ∨ v which is a Sobolev function with oscQi(g) ≤ oscQi(u),

by Proposition 2.5.28(b). Also, g(x) = f(x) for all “accessible” points x ∈ ∂Ω, thus g is

admissible for the Dirichlet problem with boundary data f . It follows that

D ≤ DΩ(g) =
∑
i∈N

osc
Qi

(g)2 ≤
∑
i∈N

osc
Qi

(u)2 = D.

This implies that oscQi(g) = oscQi(u) for all i ∈ N, and g is also carpet-harmonic on Ω, since

it minimizes the Dirichlet energy.

We assume that there exists x0 ∈ Ω such that u(x0) < v(x0). Then u(x0) < g(x0), and

there exists a level Λ ∈ R such that u(x0) < Λ < g(x0). We define the function

h =


g, g ≤ Λ

Λ, u < Λ < g

u, u ≥ Λ.
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It is immediate to see that h = (u ∨ Λ) ∧ g. Proposition 2.5.28(b),(c) shows that h is a

Sobolev function with oscQi(h) ≤ oscQi(u) = oscQi(g) for all i ∈ N. It is also clear that h

is admissible for the Dirichlet problem on Ω with boundary data equal to f . It thus follows

that h is also carpet-harmonic and in fact oscQi(h) = oscQi(u) for all i ∈ N.

If the closure of {u < Λ < g} relative to S is the entire carpet S, then h ≡ Λ is constant

and oscQi(h) = oscQi(u) = oscQi(v) = 0. Lemma 2.7.2(a) implies that u, v are constants,

but then they cannot have the same boundary values, unless u ≡ v. This contradicts the

assumption that u(x0) < v(x0). Hence, we assume that there exists a point of S that does

not lie in {u < Λ < g}.

We will show that there exists a peripheral disk Qi0 ⊂ Z := {u < Λ < g} with oscQi0 (u) >

0. However, h is constant in S∩Z, thus oscQi0 (h) = 0, which is again a contradiction, because

oscQi0 (h) = oscQi0 (u).

To prove our claim, note first that by the continuity of the carpet-harmonic functions

u, g the set Z is the intersection of an open set V in the plane with S, and Z is non-empty,

since it contains x0. Since S \ V = S \ Z 6= ∅ and S ∩ V 6= ∅, we have ∂∗V 6= ∅; see Remark

2.7.3(b). Let W be the component of V \
⋃
i∈I∂V Qi that contains x0. Then S ∩W ∩∂∗V 6= ∅,

by Remark 2.7.3(a). If oscQi(u) = 0 for all Qi ⊂ W , then u is constant in S ∩W by Lemma

2.7.2(a) and by continuity it is also constant on S ∩W ∩ ∂∗V . In particular, there exists a

point z0 ∈ ∂∗V ⊂ ∂V with u(z0) = u(x0) < Λ and g(z0) > Λ. Since these inequalities hold

in a neighborhood of z0 we obtain a contradiction.

Theorem 2.7.7 (Comparison principle). Assume that u, v : S → R are solutions to the

Dirichlet problem in Ω with boundary data α, β, respectively. We assume that α(x) ≥ β(x)

for points x ∈ ∂Ω that are “accessible” by paths γ ∈ G0, where G0 is a path family that

contains almost every path. Then u ≥ v in S.

Proof. Assume that the conclusion fails, so there exists x0 ∈ S with u(x0) < v(x0). Let

f = u∨v which is a Sobolev function with boundary values α on ∂Ω. Thus, f is admissible for

the Dirichlet problem on Ω with boundary values α, so DΩ(u) ≤ DΩ(f). By the uniqueness
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of solutions to the Dirichlet problem in Theorem 2.7.6, it follows that

DΩ(u) < DΩ(f). (2.7.1)

Similarly, consider g := u ∧ v which is admissible for the Dirichlet problem on Ω with

boundary values β. As before, this implies that DΩ(v) < DΩ(g). Adding this to (2.7.1), we

obtain ∑
i∈N

(osc
Qi

(u)2 + osc
Qi

(v)2) <
∑
i∈N

(osc
Qi

(f)2 + osc
Qi

(g)2).

This, however, contradicts (2.5.21) in Proposition 2.5.28.

2.7.3 Continuous boundary data

In this section we continue the treatment of the Dirichlet problem, proving that the solutions

are continuous up to the boundary, if the boundary data is continuous. Here we assume,

as usual, that the boundary ∂Ω consists of finitely many, non-trivial, and disjoint Jordan

curves.

Theorem 2.7.8. Assume that u : S → R is the solution to the Dirichlet problem in Ω with

continuous boundary data f : ∂Ω→ R. Then u can be extended continuously to ∂Ω.

Proof. The proof is very similar to the proof of Theorem 2.7.4, and uses, in some sense, a

maximum principle near the boundary.

Recall that there exists a path family G0 that contains almost every path, such that for

all x ∈ ∂Ω that are “accessible” by paths γ ∈ G0 we have u(x) = f(x). Furthermore, the fact

that the boundary ∂Ω consists of finitely many Jordan curves implies that every x ∈ ∂Ω is

the landing point of a path γ ⊂ Ω (not necessarily in G0). Perturbing γ as in Lemma 2.4.4

we obtain a point y ∈ ∂Ω near x that is “accessible” by a path γ0 ∈ G. Hence, u(y) = f(y)

and this actually holds for a dense set of points in ∂Ω.

We fix a point x0 ∈ ∂Ω and we wish to show that u can extended at x0 by u(x0) = f(x0),

so that u
∣∣
S∪{x0}

is continuous. If this is true for each x0 ∈ ∂Ω, then u will be continuous in

S ∪ ∂Ω by the continuity of f , as desired.
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If oscQi(u) = 0 for all Qi contained in a neighborhood of x0, then by Lemma 2.7.2(b) u is

a constant c near x0. In particular, there exists an arc α ⊂ ∂Ω with x0 lying in the interior

of α such that u(y) = f(y) = c for a dense set of points y ∈ α. This implies that f(x0) = c

by continuity, and hence we may define u(x0) = c = f(x0).

Now, suppose that arbitrarily close to x0 we can find Qi with oscQi(u) > 0. Consider a

ball B(x0, r), where r > 0 is so small that B(x0, r) intersects only one boundary component

of ∂Ω. The boundary ∂B(x0, r) defines a crosscut γ′r ⊂ ∂B(x0, r), which bounds a region

W ⊂ Ω, together with a subarc α of ∂Ω, such that x0 ∈ ∂W ; see Figure 2.2. We fix ε > 0

and take an even smaller r so that

sup
y∈α

f(y)− inf
y∈α

f(y) < ε (2.7.2)

and
∑

i:Qi∩γ′r 6=∅
oscQi(u) < ε, where the path γ′r ⊂ γr = ∂B(x0, r) is non-exceptional, as in

Lemma 2.4.7(a). We wish to show that

|f(x0)− u(z)| ≤ 2ε (2.7.3)

for all z ∈ S∩W . This will show that u can be continuously extended at x0 by u(x0) = f(x0).

Let M := supy∈α f(y) and m := infy∈α f(y). We claim that

m− ε ≤MQk(u) ≤M + ε

for all Qk ⊂ W . This will imply that |f(x0) −MQk(u)| < 2ε by (2.7.2), and thus |f(x0) −

u(z)| ≤ 2ε for all z ∈ S ∩W , as desired; here we used the continuity of u and the fact that

near z we can find arbitrarily small peripheral disks, and thus peripheral disks Qk ⊂ W .

Observe that on the arc γ′r by the upper gradient inequality we have |u(x) − u(y)| ≤∑
i:Qi∩γ′r

oscQi(u) < ε. Since γ′r is non-exceptional, we have u(y) = f(y) for the endpoints of

γ′r. Hence

m− ε ≤ u(x) ≤M + ε

for all x ∈ S ∩ γ′r = ∂∗W . Consider the function h = u ·χS\W + u∧ (M + ε) ·χS∩W which is

a Sobolev function by Corollary 2.5.32 with oscQi(h) ≤ oscQi(u) for all i ∈ N. Note that h is
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also admissible for the Dirichlet problem with boundary data f . If there exists some Qk ⊂ W

with MQk(u) > M + ε, then we can find actually some Qk ⊂ W with MQk(u) > M + ε and

oscQk(u) > 0; see proof of Theorem 2.7.4. Then oscQk(h) < oscQk(u) which contradicts the

minimizing property of u. The inequality m − ε ≤ MQk(u) for all k ∈ N is shown in the

same way.

So far we have treated the existence, uniqueness, and the comparison principle for so-

lutions to the Dirichlet problem. A natural question that arises is whether every carpet-

harmonic function can be realized at least locally as a solution to a Dirichlet problem, so

that we can apply these principles. It turns out that this is the case.

Proposition 2.7.9. Let u : S → R be a carpet-harmonic function, and V ⊂⊂ Ω be an open

set with the properties:

(1) ∂V consists of finitely many, non-trivial, and disjoint Jordan curves, and

(2) if V ∩Qi 6= ∅ then Qi ⊂ V . This, in particular, implies that ∂V ⊂ S, and (S ∩ V, V )

is a relative Sierpiński carpet.

Then u agrees inside S∩V with the solution to the Dirichlet problem in S∩V with boundary

values on ∂V equal to u.

Proof. Let v : S ∩ V → R be the solution to the Dirichlet problem with boundary values

equal to u, given by Theorem 2.6.6. Since u is continuous, by Theorem 2.7.8 we have that

v has a continuous extension to S ∩ V that agrees with u on ∂V .

Consider the function ζ := (v − u) · χS∩V + 0 · χS\V . This is a Sobolev function on S,

but we cannot apply Lemma 2.5.29 directly, since v is not defined on all of S. The fact that

ζ is a Sobolev function on S follows from the following lemma that we prove right after:

Lemma 2.7.10. Let V ⊂⊂ Ω be an open set as above, with ∂V ⊂ S and S ∩ V being a

relative Sierpiński carpet. Consider functions φ, ψ : S → R such that φ
∣∣
S∩V ∈ W

1,2(S ∩ V ),

ψ ∈ W1,2
loc (S), and φ = ψ on ∂V . Then ζ := φ · χS∩V + ψ · χS\V lies in W1,2

loc (S).
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In our case we set ψ ≡ 0 and φ = (v − u) · χS∩V , which is continuous on S. The

harmonicity of u implies that

DV (u) ≤ DV (u+ ζ) = DV (v).

However, v is a minimizer for the Dirichlet energy in V , and this implies that DV (u) = DV (v).

The uniqueness in Theorem 2.7.6 concludes that u = v on S ∩ V .

Proof of Lemma 2.7.10. Consider the families of good paths Gφ,Gψ for φ, ψ, respectively.

Note that the paths of Gφ are contained in V . Let Γ0 be the paths of Gψ that have a subpath

in V which is not contained in Gφ. Then one can show that Γ0 has weak (strong) modulus

equal to zero with respect to the carpet S; see also Remark 2.4.6. We define G to be the

family of paths in Gψ that do not lie in Γ0, and we shall show ζ has an upper gradient and

the upper gradient inequality holds along these paths.

Let x, y ∈ γ ∩ S and γ ∈ G be a path that connects them. If x, y /∈ V , then

|ζ(x)− ζ(y)| = |ψ(x)− ψ(y)| ≤
∑

i:Qi∩γ 6=∅

osc
Qi

(ψ).

If x ∈ V and y /∈ V , then γ ∩ ∂V 6= ∅ and we can consider the point z of first entry of γ in

∂V , as it travels from x to y. The point z is “accessible” by γ, so by the definition of the

boundary values of φ we have

φ(z) = lim inf
Qi→z

Qi∩γ 6=∅,i∈IV

MQi(φ).

The upper gradient inequality therefore holds up to the boundary ∂V and we have

|φ(x)− φ(z)| ≤
∑

i:Qi∩γ 6=∅
i∈IV

osc
Qi

(φ).

Therefore,

|ζ(x)− ζ(y)| ≤ |φ(x)− φ(z)|+ |ψ(z)− ψ(y)|

≤
∑

i:Qi∩γ 6=∅

(osc
Qi

(φ)χIV (i) + osc
Qi

(ψ)).
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The case x, y ∈ V is treated similarly by considering also the point w of first entry of γ in

∂V , as it travels from y towards x, thus obtaining the bound

|ζ(x)− ζ(y)| ≤
∑

i:Qi∩γ 6=∅

(2 osc
Qi

(φ)χIV (i) + osc
Qi

(ψ)).

This shows that {2 oscQi(φ)χIV (i) + oscQi(ψ)}i∈N is an upper gradient of ζ, as desired; recall

Remark 2.5.14.

2.7.4 A free boundary problem

In this section we mention some results on a different type of a boundary problem, in which

boundary data is only present on part of the boundary. The proofs are almost identical to

the case of the Dirichlet problem so we omit them. These results are used in Chapter 3 to

prove a uniformization result for planar Sierpiński carpets.

Let Ω ⊂ C be a quadrilateral, i.e., a Jordan region with four marked “sides” on ∂Ω.

Assume that the sides are closed and they are marked by Θ1,Θ2,Θ3,Θ4, in a counter-

clockwise fashion, where Θ1,Θ3 are opposite sides. Consider a relative Sierpiński carpet

(S,Ω). In fact, in this case S is an actual Sierpiński carpet, as defined in the Introduction.

We consider functions g ∈ W1,2(S) with boundary data g = 0 on Θ1 and g = 1 on Θ3. Such

functions are called admissible (for the free boundary problem).

Theorem 2.7.11. There exists a unique carpet-harmonic function u : S → R that minimizes

the Dirichlet energy DΩ(g) over all admissible functions g ∈ W1,2(S). The function u is has

a continuous extension to ∂Ω (and thus to S), with u = 0 on Θ1 and u = 1 on Θ3.

Of course, if the class of admissible functions is the weak Sobolev class then u is weak

carpet-harmonic, and if the class of admissible functions is the strong Sobolev class, then u

is strong carpet-harmonic.

Since there is no boundary data on the interior of the arcs Θ2,Θ4, these arcs can be

treated - in the proofs - as subarcs of peripheral disks, and, in particular, as subsets of the

carpet S. If V ⊂ C \ (Θ1 ∪Θ3) is an open set we can define

∂•V := ∂V ∩ S.
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This will be the “boundary”, on which the extremal values of the carpet-harmonic function

u are attained. Thus, the maximum principle reads as:

Theorem 2.7.12. If u : S → R is the solution to the free boundary problem, then for any

open set V ⊂ C \ (Θ1 ∪Θ3) we have

sup
x∈S∩V

u(x) = sup
x∈∂•V

u(x) and inf
x∈S∩V

u(x) = inf
x∈∂•V

u(x).

This is a stronger maximum principle than the one in Theorem 2.7.5. It says that the

extremal values of u on S ∩ V can be attained at the part of the boundary of V ∩ Ω that is

disjoint from the interiors of the “free” arcs Θ2 and Θ4. However, this boundary could still

intersect Θ1 and Θ3, where extremal values can be attained, and this is the reason that we

look at sets V ⊂ C \ (Θ1 ∪Θ3). See also the maximum principle as stated in [Raj17, Lemma

4.6].

As an application, one can show a rigidity-type result for square Sierpiński carpets, which

was established in [BM13, Theorem 1.4]:

Theorem 2.7.13. Let Ω = (0, 1) × (0, A), Ω′ = (0, 1) × (0, A′), and consider relative

Sierpiński carpets (S,Ω),(S ′Ω′) such that all peripheral disks of S, S ′ are squares with sides

parallel to the coordinate axes, and the Hausdorff 2-measure of S and S ′ is 0. If f : S → S ′

is a quasisymmetry that preserves the sides of Ω,Ω′ (i.e., f({0}× [0, A]) = {0}× [0, A′] etc.)

then A = A′, S = S ′, and f is the identity.

We remark that our proof here is simpler than the proof in [BM13], and relies on the

uniqueness of Theorem 2.7.11; see also Theorem 2.7.6. In [BM13], the authors have to follow

several steps, showing first that each square Qi and its image Q′i have the same sidelength,

then that Qi = Q′i, and finally that f is the identity. They pursue these steps using the

absolute continuity of f and modulus arguments. In our approach, these arguments seem to

be incorporated in the properties of Sobolev spaces and in the uniqueness of the minimizer

in Theorem 2.7.11, which is a powerful statement.

Proof. Let u be the solution to the free boundary problem on (S,Ω) with u = 0 on Θ1 :=

{0} × [0, A] and u = 1 on Θ3 := {1} × [0, A]. For y ∈ [0, A] consider the segment γy =
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[0, 1] × {y} that is parallel to the x-axis. As in the proof of Lemma 2.4.3, one can see that

for a.e. y ∈ [0, A] the path γy is a good path for u, thus by the upper gradient inequality

1 = |u(0, y)− u(0, 1)| ≤
∑

i:Qi∩γy 6=∅

osc
Qi

(u).

Integrating over y ∈ [0, A] and applying the Cauchy-Schwarz inequality we obtain

A ≤
∑
i∈N

osc
Qi

(u)`(Qi) ≤

(∑
i∈N

osc
Qi

(u)2

)1/2(∑
i∈N

`(Qi)
2

)1/2

.

The latter sum is the area of Ω, which is A, hence we obtain A ≤ DΩ(u). On the other

hand, the function g(x, y) = x is admissible for the free boundary problem, and it is easy

to see that A = DΩ(g). Since u is a minimizer it follows that DΩ(g) = DΩ(u) and by the

uniqueness in Theorem 2.7.11 we have u(x, y) = g(x, y) = x for all (x, y) ∈ S.

If f : S → S ′ is a quasisymmetry, then it extends to a quasiconformal homeomorphism

f = (u0, v0) : Ω → Ω′ (using R2 coordinates), by the extension results proved in [Bon11,

Section 5], and in fact, it extends to a global quasiconformal map on Ĉ. Example 2.5.21 and

Remark 2.5.23 show that f restricts to a function in W1,2
s (S). Since f preserves the sides

of Ω, it follows that u0 = 0 on Θ1 and u0 = 1 on Θ3. Hence, u0 is admissible for the free

boundary problem in Ω, and thus A = DΩ(u) ≤ DΩ(u0). Note that oscQi(u0) = `(Q′i), where

Q′i = f(Qi). Hence

DΩ(u0) =
∑
i∈N

`(Q′i)
2 = H2(Ω′) = A′.

It follows that

A = DΩ(u) ≤ DΩ(u0) = A′.

The same argument applied to f−1 and the free boundary problem in Ω′ yields A′ ≤ A.

Thus DΩ(u) = DΩ(u0) = A = A′. The uniqueness in Theorem 2.7.11 shows that u(x, y) =

u0(x, y) = x.

The same argument applied to the dual free boundary problem v = 0 on Θ2 := [0, 1]×{0}

and v = A on Θ4 := [0, 1]× {A} yields v0(x, y) = y.
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2.8 The Caccioppoli inequality

In this section, and also in the next, we assume that (S,Ω) is an arbitrary relative Sierpiński

carpet (with the standard assumptions). We still drop the terminology weak/strong, and

carpet-harmonic functions are always assumed to be normalized, as in Section 2.7. It will

be convenient to call test function a function ζ ∈ W1,2(S) that vanishes outside an open set

V ⊂⊂ Ω.

Theorem 2.8.1 (Caccioppoli inequality). Let ζ : S → R be a non-negative test function,

and u : S → R be a carpet-harmonic function. Then

∑
i∈N

MQi(ζ)2 osc
Qi

(u)2 ≤ C
∑
i∈N

osc
Qi

(ζ)2MQi(|u|)2,

where C > 0 is some universal constant.

Proof. We can assume that ζ is bounded. Indeed, if ζ is unbounded, then for M ∈ R the

function ζ ∧M is a bounded Sobolev function. Moreover, we have oscQi(ζ ∧M) ≤ oscQi(ζ)

by Proposition 2.5.28(c) and MQi(ζ∧M)→MQi(ζ) as M →∞, which show that the desired

inequality holds for ζ if it holds for ζ ∧M .

By assumption, ζ = 0 outside a set V ⊂⊂ Ω. For ε > 0 consider η := εζ2 and h := u−ηu.

The function η is a Sobolev function by Lemma 2.5.28(d), and so is ηu, by the same lemma

and the local boundedness of the carpet-harmonic function u. Therefore, h is a Sobolev

function that is equal to u outside V . It follows that DV (u) ≤ DV (h), by harmonicity. Now,

we will estimate oscQi(h).

We recall the computational rule from Lemma 2.5.28(d), which is similar to the product

rule for derivatives: for all i ∈ N and all functions f1, f2 : S → R we have

osc
Qi

(f1f2) ≤MQi(|f2|) osc
Qi

(f1) +MQi(|f1|) osc
Qi

(f2). (2.8.1)

Using this rule, for fixed i ∈ N we have

osc
Qi

(h) = osc
Qi

(u(1− η)) ≤MQi(|1− η|) osc
Qi

(u) +MQi(|u|) osc
Qi

(1− η).
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Since ζ is bounded, for small ε > 0 we have mQi(η) ≤MQi(η) < 1 for all i ∈ N. This implies

that MQi(|1− η|) = 1−mQi(η). Also, we trivially have oscQi(1− η) = oscQi(η). Therefore,

for all sufficiently small ε > 0 and for all i ∈ N

osc
Qi

(h) ≤ (1−mQi(η)) osc
Qi

(u) +MQi(|u|) osc
Qi

(η).

Combining this with the inequality DV (u) ≤ DV (h) we obtain

∑
i∈IV

osc
Qi

(u)2 ≤
∑
i∈IV

[
(1−mQi(εζ

2))2 osc
Qi

(u)2 +MQi(|u|)2 osc
Qi

(εζ2)2

+ 2(1−mQi(εζ
2)) osc

Qi
(u)MQi(|u|) osc

Qi
(εζ2)

]
.

Noting that mQi(εζ
2) = εmQi(ζ

2), oscQi(εζ
2) = ε oscQi(ζ

2), and doing cancellations yields

0 ≤
∑
i∈IV

[
(−2εmQi(ζ

2) + ε2mQi(ζ
2)2) osc

Qi
(u)2 + ε2MQi(|u|)2 osc

Qi
(ζ2)2

2ε(1− εmQi(ζ
2)) osc

Qi
(u)MQi(|u|) osc

Qi
(ζ2)

]
.

Dividing by ε > 0 and letting ε→ 0 we obtain

∑
i∈IV

mQi(ζ
2) osc

Qi
(u)2 ≤

∑
i∈IV

osc
Qi

(u)MQi(|u|) osc
Qi

(ζ2). (2.8.2)

Now, we use the inequalities

osc
Qi

(ζ2) ≤ 2MQi(ζ) osc
Qi

(ζ) and

mQi(ζ
2) = MQi(ζ

2)− osc
Qi

(ζ2) ≥MQi(ζ)2 − 2MQi(ζ) osc
Qi

(ζ),

where the first one follows from the computational rule (2.8.1). Together with (2.8.2) they

imply that

∑
i∈IV

MQi(ζ)2 osc
Qi

(u)2 − 2
∑
i∈IV

MQi(ζ) osc
Qi

(ζ) osc
Qi

(u)2

≤ 2
∑
i∈IV

osc
Qi

(u)MQi(|u|)MQi(ζ) osc
Qi

(ζ).
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In the second term of the left hand side we first use the inequality oscQi(u) ≤ 2MQi(|u|),

and then apply the Cauchy-Schwarz inequality:

∑
i∈IV

MQi(ζ)2 osc
Qi

(u)2 ≤ 6
∑
i∈IV

osc
Qi

(u)MQi(|u|)MQi(ζ) osc
Qi

(ζ)

≤ 6

(∑
i∈IV

MQi(ζ)2 osc
Qi

(u)2

)1/2

·

(∑
i∈IV

osc
Qi

(ζ)2MQi(|u|)2

)1/2

.

Hence

∑
i∈IV

MQi(ζ)2 osc
Qi

(u)2 ≤ 36
∑
i∈IV

osc
Qi

(ζ)2MQi(|u|)2.

Since ζ = 0 outside V , we can in fact write the summations over i ∈ N, and this completes

the proof.

We now record an application of the Caccioppoli inequality towards the proof of a weak

version of Liouville’s theorem:

Theorem 2.8.2. Let (S,C) be a relative Sierpiński carpet, and u : S → R a carpet-harmonic

function such that |u| is bounded. Then u is constant.

Proof. Assume that |u| ≤M . We fix a ball B(0, R0) and we wish to construct a test function

ζ such that 0 ≤ ζ ≤ 1, ζ = 1 on B(0, R0), but DC(ζ) is arbitrarily small, not depending on

R0. Then by the Caccioppoli inequality we will have

∑
i∈IB(0,R0)

osc
Qi

(u)2 ≤
∑
i∈N

MQi(ζ)2 osc
Qi

(u)2 ≤ C
∑
i∈N

osc
Qi

(ζ)2MQi(|u|)2 ≤ CM2DC(ζ).

Since DC(ζ) can be arbitrarily small, it follows that
∑

i:Qi∩B(0,R0)6=∅ oscQi(u)2 = 0, and thus

oscQi(u) = 0 for all Qi that intersect B(0, R0). Since R0 is arbitrary we have oscQi(u) = 0

for all i ∈ N. Thus, u is constant by Lemma 2.7.2(a), as desired.

Now, we construct the test function ζ with the desired properties. Essentially, ζ will be

a discrete version of the logarithm. We fix a large integer N which will correspond to the

number of annuli around 0 that we will construct, and ζ will drop by 1/N on each annulus.

Define ζ = 1 on B(0, R0), and consider r1 := R0, R1 := 2r1. In the annulus A1 := A(0; r1, R1)
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define ζ to be a radial function of constant slope 1
Nr1

, so on the outer boundary of A1 the

function ζ has value 1 − 1/N . Then consider r2 > R1 sufficiently large and R2 := 2r2, so

that no peripheral disk intersects both A1 and A2 := A(0; r2, R2); recall Lemma 2.3.4. In the

“transition” annulus A(0;R1, r2) we define ζ to be constant, equal to 1− 1/N , and on A2 we

let ζ be a radial function with slope 1
Nr2

. The last annulus will be AN = A(0; rN , RN) and

the value of ζ will be 0 on the outer boundary of AN . We extend ζ to be 0 outside B(0, RN).

Note that ζ is locally Lipschitz, so its restriction to the carpet S is a Sobolev function, by

Example 2.5.20.

We now compute the Dirichlet energy of ζ. Let dj(Qi) := H1({s ∈ [rj, Rj] : γs∩Qi 6= ∅})

where γs is the circle of radius s around 0. Since the peripheral disks Qi are fat, there exists

a constant K > 0 such that dj(Qi)
2 ≤ KH2(Qi∩Aj); see Remark 2.3.5. Also, if Qi∩Aj 6= ∅,

then oscQi(ζ) ≤ dj(Qi)
1
Nrj

. By construction, each peripheral disk Qi can only intersect one

annulus Aj, and if a peripheral disk Qi does not intersect any annulus Aj, then ζ is constant

on Qi, so oscQi(ζ) = 0. Thus

DC(ζ) =
∑
i∈N

osc
Qi

(ζ)2 =
N∑
j=1

∑
i:Qi∩Aj 6=∅

osc
Qi

(ζ)2

≤ 1

N2

N∑
j=1

1

r2
j

∑
i:Qi∩Aj 6=∅

dj(Qi)
2

≤ K

N2

N∑
j=1

1

r2
j

∑
i:Qi∩Aj 6=∅

H2(Qi ∩ Aj)

≤ K

N2

N∑
j=1

1

r2
j

H2(Aj)

=
πK

N2

N∑
j=1

R2
j − r2

j

r2
j

=
πK

N2

N∑
j=1

3r2
j

r2
j

=
3πK

N
,

which can be made arbitrarily small if N is large.

Remark 2.8.3. Liouville’s theorem justifies that we do not define carpet-harmonic functions

on relative carpets in the whole sphere Ĉ, i.e., Ω = Ĉ, as the carpets studied in [Bon11],
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because by continuity the carpet-harmonic functions would then be bounded and thus con-

stant.

The non-linearity of the theory does not allow us to apply the Caccioppoli inequality of

Theorem 2.8.1 to linear combinations of harmonic functions. We record another version of

the Caccioppoli inequality for differences of harmonic functions. This will be very useful in

establishing convergence properties of harmonic functions in Section 2.10.

Theorem 2.8.4. Let ζ : S → R be a non-negative continuous test function, and u, v : S → R

be carpet-harmonic functions. Then

∑
i∈N

mQi(ζ)(osc
Qi

(u)− osc
Qi

(v))2 ≤ C
∑
i∈N

osc
Qi

(ζ)(osc
Qi

(u) + osc
Qi

(v))MQi(|u− v|),

where C > 0 is some universal constant.

Proof. Suppose that η : S → R is a continuous function and oscQi(u+εη) = u(xε)+εη(xε)−

u(yε) − εη(yε) for some ε ∈ R and points xε, yε ∈ ∂Qi. Then as ε → 0, the points xε, yε

subconverge to points x, y, respectively, with oscQi(u) = u(x) − u(y). Here we used the

continuity of u and the boundedness of η on ∂Qi.

If η is a continuous test function supported in V ⊂⊂ Ω, we have DV (u) ≤ DV (u + εη),

which implies

∑
i∈IV

osc
Qi

(u)2 ≤
∑
i∈IV

(u(xi,ε) + εη(xi,ε)− u(yi,ε)− εη(yi,ε))
2

≤
∑
i∈IV

osc
Qi

(u)2 + 2ε
∑
i∈IV

(u(xi,ε)− u(yi,ε))(η(xi,ε)− η(yi,ε)) +O(ε2),

for some points xi,ε, yi,ε ∈ ∂Qi. As ε→ 0, this yields

∑
i∈IV

osc
Qi

(u)(η(xi)− η(yi)) = 0, (2.8.3)

where xi, yi are sublimits of xi,ε, yi,ε, respectively, and oscQi(u) = u(xi)− u(yi).
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We use η = ζ · (u− v) in (2.8.3), where ζ is supported in V ⊂⊂ Ω, and we obtain

0 =
∑
i∈IV

osc
Qi

(u)(ζ(xi)(u(xi)− v(xi))− ζ(yi)(u(yi)− v(yi)))

=
∑
i∈IV

osc
Qi

(u) ·
(
ζ(xi)(u(xi)− u(yi))− ζ(xi)(v(xi)− v(yi))

+ (ζ(xi)− ζ(yi))(u(yi)− v(yi))

)
.

Since oscQi(u) = u(xi)− u(yi), oscQi(v) ≥ v(xi)− v(yi), and ζ ≥ 0, we have∑
i∈IV

ζ(xi)(osc
Qi

(u)2 − osc
Qi

(u) osc
Qi

(v)) ≤
∑
i∈IV

osc
Qi

(ζ) osc
Qi

(u)MQi(|u− v|).

Interchanging the roles of u and v, we obtain points x′i ∈ ∂Qi such that∑
i∈IV

ζ(x′i)(osc
Qi

(v)2 − osc
Qi

(u) osc
Qi

(v)) ≤
∑
i∈IV

osc
Qi

(ζ) osc
Qi

(v)MQi(|u− v|).

Adding the two inequalities, we have∑
i∈IV

ζ(xi)(osc
Qi

(u)− osc
Qi

(v))2 ≤
∑
i∈IV

osc
Qi

(ζ)(osc
Qi

(u) + osc
Qi

(v))MQi(|u− v|)

+
∑
i∈IV

(ζ(xi)− ζ(x′i))(osc
Qi

(v)2 − osc
Qi

(u) osc
Qi

(v)).

The conclusion follows, upon observing that ζ(xi) ≥ mQi(ζ), |ζ(xi)− ζ(x′i)| ≤ oscQi(ζ), and

| osc
Qi

(u)− osc
Qi

(v)| ≤ osc
Qi

(u− v) = MQi(u− v)−mQi(u− v) ≤ 2MQi(|u− v|).

2.9 Harnack’s inequality and consequences

2.9.1 Harnack’s inequality

In this section the main theorem is:

Theorem 2.9.1 (Harnack’s inequality). There exists a constant H > 1 such that: if u : S →

R is a non-negative carpet-harmonic function, then

sup
z∈S∩B0

u(z) ≤ H inf
z∈S∩B0

u(z)
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for all balls B0 ⊂ Ω with the property that there exists a ball B1 ⊂ Ω such that⋃
i:Qi∩coB0 6=∅

Qi ⊂ B1 ⊂ c1B1 ⊂⊂ Ω,

where c0, c1 > 1 are constants. The constant H depends only on the data of the carpet S and

on c0, c1. The choice of the latter two constants can be arbitrary.

The assumption in the theorem asserts that the peripheral disks that meet c0B0 are

essentially “safely” contained in Ω, away from the boundary.

Our treatment of Harnack’s inequality is inspired by [Gra80], where Harnack’s inequality

is proved for W 1,n-minimizers of certain variational integrals in Rn. The method used there

is a purely variational argument, which does not rely on a differential equation or a repre-

sentation formula for minimizers, and this allows us to apply it in our discrete setting. The

proof will be done in several steps. First we show:

Proposition 2.9.2. Let u : S → R be a positive carpet-harmonic function. Then for any

non-negative test function ζ : S → R we have∑
i∈N

mQi(ζ)2 oscQi(u)2

MQi(u)mQi(u)
≤ CDΩ(ζ),

where C > 0 is a universal constant, not depending on u, ζ, S.

Note that by continuity u is bounded below away from 0 on each individual peripheral

circle ∂Qi, and this shows that MQi(u) ≥ mQi(u) > 0. Hence, all quantities above make

sense.

Proof. As in the proof of Theorem 2.8.1, we may assume that ζ is bounded. Replacing u with

u+ δ for a small δ > 0, and noting that oscQi(u+ δ) = oscQi(u), MQi(u+ δ) = MQi(u) + δ,

mQi(u + δ) = mQi(u) + δ, we see that it suffices to prove the statement assuming that

u ≥ δ > 0.

Fix a bounded test function ζ, supported in S ∩ V , where V ⊂⊂ Ω. For a small ε > 0

consider the variation h = u+ εζ2/u. We remark that u−1 is a Sobolev function, since

|u(x)−1 − u(y)−1| ≤ |u(x)− u(y)|/δ2,
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so u−1 inherits its upper gradient inequality from u. Moreover, ζ2 and ζ2u−1 are Sobolev

functions by Lemma 2.5.28(d). Hence, h is a Sobolev function.

Observe that the function x 7→ x + εy2/x is increasing as long as x2 > εy2. Since ζ is

bounded and u ≥ δ, it follows that for sufficiently small ε > 0 we have

MQi(h) ≤MQi(u) + ε
MQi(ζ

2)

MQi(u)
, and

mQi(h) ≥ mQi(u) + ε
mQi(ζ

2)

mQi(u)

for all i ∈ N. Hence,

osc
Qi

(h) ≤ osc
Qi

(u) + ε

(
MQi(ζ

2)

MQi(u)
− mQi(ζ

2)

mQi(u)

)
=

(
1− ε mQi(ζ

2)

MQi(u)mQi(u)

)
osc
Qi

(u) + ε
MQi(ζ) +mQi(ζ)

MQi(u)
osc
Qi

(ζ),

where we used the equalities oscQi(ζ) = MQi(ζ)−mQi(ζ) and oscQi(ζ
2) = oscQi(ζ)·(MQi(ζ)+

mQi(ζ)).

Since u is carpet-harmonic, and h is equal to u outside V we have DV (u) ≤ DV (h).

Working as in the proof of Theorem 2.8.1, and letting ε→ 0, we obtain

∑
i∈IV

mQi(ζ
2) oscQi(u)2

MQi(u)mQi(u)
≤
∑
i∈IV

osc
Qi

(u)
MQi(ζ) +mQi(ζ)

MQi(u)
osc
Qi

(ζ).

Writing MQi(ζ) = mQi(ζ) + oscQi(ζ) and applying the Cauchy-Schwarz inequality we obtain

∑
i∈IV

mQi(ζ
2) oscQi(u)2

MQi(u)mQi(u)
≤
∑
i∈IV

oscQi(u)

MQi(u)
(2mQi(ζ) + osc

Qi
(ζ)) osc

Qi
(ζ)

≤ 2

(∑
i∈IV

mQi(ζ)2 oscQi(u)2

MQi(u)2

)1/2

DV (ζ)1/2

+
∑
i∈IV

oscQi(u)

MQi(u)
osc
Qi

(ζ)2.

Noting that MQi(u)2 ≥MQi(u)mQi(u), oscQi(u) = MQi(u)−mQi(u) ≤MQi(u), and defining

A =
∑

i∈IV
mQi (ζ)

2 oscQi (u)2

MQi
(u)mQi (u)

, we have

A ≤ 2A1/2DV (ζ)1/2 +DV (ζ).
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If A ≤ DV (ζ), then there is nothing to show. Otherwise, we have DV (ζ)1/2 ≤ A1/2, hence

A ≤ 2A1/2DV (ζ)1/2 + A1/2DV (ζ)1/2,

which implies that

A ≤ 9DV (ζ)

and this concludes the proof.

This proposition already has a strong Liouville theorem as a corollary:

Corollary 2.9.3 (Liouville’s Theorem). Let (S,C) be a relative Sierpiński carpet, and

u : S → R a carpet-harmonic function that is bounded above or below. Then u is constant.

Proof. We first reduce the statement to the case that u > 0. If u is bounded above, then

we can replace it with the carpet-harmonic function 1 + supz∈S u(z) − u, and showing that

this is constant will imply that u is constant. Similarly, if u is bounded below, then we use

1 + u− infz∈S u(z). Hence, from now on we assume that u > 0.

We fix a ball B(0, R0) and consider a test function ζ such that 0 ≤ ζ ≤ 1, ζ = 1 on

S ∩ B(0, R0), and DC(ζ) < ε where ε > 0 can be arbitrarily small. Such a function is

constructed in the proof of Theorem 2.8.2. Then for all Qi ⊂ B(0, R0) we have mQi(ζ) = 1.

Hence, Proposition 2.9.2 yields∑
i:Qi⊂B(0,R0)

oscQi(u)2

MQi(u)mQi(u)
≤ CDC(ζ) < Cε.

Letting ε → 0 we obtain oscQi(u) = 0 for all Qi ⊂ B(0, R0). Since R0 was arbitrary, it

follows that oscQi(u) = 0 for all i ∈ N, thus u is constant by Lemma 2.7.2(a).

We continue our preparation for the proof of Harnack’s inequality. From Proposition

2.9.2 we derive the next lemma:

Lemma 2.9.4. Let u : S → R be a positive carpet-harmonic function. Consider a ball

B1 ⊂ c1B1 ⊂⊂ Ω for some c1 > 1. Then∑
i:Qi⊂B1

oscQi(u)2

MQi(u)mQi(u)
≤ C,
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where the constant C > 0 depends only on the data of the carpet S and on c1, but not on

u,B1.

Proof. We apply Proposition 2.9.2 to a test function ζ defined as follows. We set ζ = 1 on

B1, ζ = 0 outside c1B1, and ζ is radial with slope 1
(c1−1)r

on the annulus A1 := c1B1 \ B1,

where r is the radius of B1. Then ζ is Lipschitz so by Example 2.5.20 it restricts to a

Sobolev function. We only have to show that DΩ(ζ) is bounded by a constant depending

only on c1 and the data of S. Our computation is very similar to the proof of Theorem

2.8.2. We introduce the notation d(Qi) = H1({s ∈ [r, c1r] : γs ∩ Qi 6= ∅}) and note that

d(Qi)
2 ≤ KH2(Qi ∩ c1B1) for i ∈ N by the fatness condition and Remark 2.3.5. Then

DΩ(ζ) =
∑
i∈IA1

osc
Qi

(ζ)2 ≤ 1

(c1 − 1)2r2

∑
i∈IA1

d(Qi)
2

≤ K

(c1 − 1)2r2
H2(c1B1) =

Kc2
1π

(c1 − 1)2
,

as claimed. Note that this constant blows up as c1 → 1.

Next we prove a version of Gehring’s oscillation lemma (see e.g. [AIM09, Lemma 3.5.1,

p. 65]). A function v : S → R is said to be monotone if it satisfies the maximum and

minimum principles as in the statement of Theorem 2.7.5.

Lemma 2.9.5. Let v : S → R be a continuous monotone function on the relative Sierpiński

carpet (S,Ω), lying in the Sobolev spaceW1,2
loc (S). Consider a ball B0 ⊂ Ω with B0 ⊂ c0B0 ⊂⊂

Ω, where c0 > 1. Then

sup
z∈S∩B0

v(z)− inf
z∈S∩B0

v(z) ≤ C

 ∑
i∈Ic0B0

osc
Qi

(v)2

1/2

,

where the constant C > 0 depends only on the data of the carpet S and on c0, but not on

v,B0.

Proof. For any x, y ∈ S ∩B0, by monotonicity we have

v(x)− v(y) ≤ sup
z∈∂∗(sB0)

v(z)− inf
z∈∂∗(sB0)

v(z) (2.9.1)
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for all s ∈ [1, c0]. For a.e. s ∈ [1, c0] the upper gradient inequality for v yields

sup
z∈∂∗(sB0)

v(z)− inf
z∈∂∗(sB0)

v(z) ≤
∑

i:Qi∩∂(sB0) 6=∅

osc
Qi

(v). (2.9.2)

Here we used the fact that the circular path ∂(sB0) is non-exceptional for a.e. s ∈ [1, c0],

which follows from the proof of Lemma 2.4.3. If we write B0 = B(x0, r), then (2.9.1) and

(2.9.2) imply that

sup
z∈S∩B0

v(z)− inf
z∈S∩B0

v(z) ≤
∑

i:Qi∩∂B(x0,s)6=∅

osc
Qi

(v)

for a.e. s ∈ [r, c0r]. We now integrate over s ∈ [r, c0r] so we obtain

r(c0 − 1)

(
sup

z∈S∩B0

v(z)− inf
z∈S∩B0

v(z)

)
≤
∫ c0r

r

∑
i:Qi∩∂B(x0,s)6=∅

osc
Qi

(v) ds

=
∑
i∈N

osc
Qi

(v)

∫ c0r

r

χQi∩∂B(x0,s)
ds

≤
∑

i:Qi∩c0B0 6=∅

osc
Qi

(v)d(Qi),

where d(Qi) = H1({s ∈ [r, c0r] : γs ∩ Qi 6= ∅}) and γs is a circular path around x0 with

radius s. As usual, by the fatness of the peripheral disks (see Remark 2.3.5) there exists

a uniform constant K such that d(Qi)
2 ≤ KH2(Qi ∩ c0B0) for all i ∈ N. Now, applying

Cauchy-Schwarz we obtain

sup
z∈S∩B0

v(z)− inf
z∈S∩B0

v(z) ≤ 1

r(c0 − 1)

 ∑
i∈Ic0B0

osc
Qi

(v)2

1/2 ∑
i∈Ic0B0

d(Qi)
2

1/2

≤ 1

r(c0 − 1)

 ∑
i∈Ic0B0

osc
Qi

(v)2

1/2

(KH2(c0B0))1/2

≤ K1/2π1/2c0

c0 − 1

 ∑
i∈Ic0B0

osc
Qi

(v)2

1/2

.

This completes the proof.

Finally we proceed with the proof of Harnack’s inequality.
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Proof of Theorem 2.9.1. Replacing u with u + δ for a small δ > 0 and noting that the

conclusion of the theorem persists if we let δ → 0, we may assume that u ≥ δ > 0.

The function v := log u is a continuous monotone function, since u has these properties

and log is an increasing function. Also, v lies in the Sobolev space W1,2
loc (S), since

|v| ≤ max{|u|, | log δ|}, and

|v(x)− v(y)| =
∣∣∣∣log

u(x)

u(y)

∣∣∣∣ ≤ |u(x)− u(y)|/δ.

The latter inequality shows that v inherits its upper gradient inequality from u. In fact, we

have

osc
Qi

(v) = osc
Qi

(log u) ≤ oscQi(u)

MQi(u)1/2mQi(u)1/2
, (2.9.3)

as one can see from the elementary inequality log(a/b) ≤ a−b
(ab)1/2

for a ≥ b > 0.

Now, applying Lemma 2.9.5, and then (2.9.3) and Lemma 2.9.4 one has

sup
z∈S∩B0

v(z)− inf
z∈S∩B0

v(z) ≤ C

 ∑
i∈Ic0B0

osc
Qi

(v)2

1/2

≤ C

( ∑
i:Qi⊂B1

osc
Qi

(v)2

)1/2

≤ C

( ∑
i:Qi⊂B1

oscQi(u)2

MQi(u)mQi(u)

)1/2

≤ C ′.

Here we used the assumption that⋃
i∈Ic0B0

Qi ⊂ B1 ⊂ c1B1 ⊂⊂ Ω.

Therefore

log

(
supz∈S∩B0

u(z)

infz∈S∩B0 u(z)

)
= sup

z∈S∩B0

v(z)− inf
z∈S∩B0

v(z) ≤ C ′,

thus

sup
z∈S∩B0

u(z) ≤ eC
′

inf
z∈S∩B0

u(z).

The constant eC
′

depends only on the data of the carpet S and on c0, c1.
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We record an application of the oscillation Lemma 2.9.5.

Corollary 2.9.6. Let (S,C) be a relative Sierpiński carpet, and u : S → R a carpet-harmonic

function with finite energy, i.e., DC(u) <∞. Then u is constant.

Proof. By Lemma 2.9.5, for any ball B0 ⊂ C we have

sup
z∈S∩B0

u(z)− inf
z∈S∩B0

u(z) ≤ C

 ∑
i∈I2B0

osc
Qi

(u)2

1/2

≤ CDC(u)1/2.

The ball B0 is arbitrary, so it follows that u is bounded, and therefore it is constant by

Liouville’s Theorem 2.9.3.

2.9.2 Strong maximum principle

Using Harnack’s inequality we prove a strong maximum principle:

Theorem 2.9.7. Let u : S → R be a carpet-harmonic function. Assume that u attains a

maximum or a minimum at a point x0 ∈ S. Then u is constant.

Proof. Using −u instead of u if necessary, we assume that x0 is a point of maximum. First

assume that x0 ∈ S◦, i.e., x0 does not lie on any peripheral circle. Let v := u(x0)−u which is

a non-negative carpet-harmonic function. Then using Lemma 2.3.4 one can find small balls

B0, B1 centered at x0 such that

⋃
i:Qi∩2B0 6=∅

Qi ⊂ B1 ⊂ 2B1 ⊂⊂ Ω.

Applying Harnack’s inequality inside B0 we obtain

sup
z∈S∩B0

v(z) ≤ C min
z∈S∩B0

v(z) = 0.

Thus, u(z) = u(x0) for z ∈ S ∩B0.

Now, if y0 ∈ S◦ is arbitrary, then by Lemma 2.4.10 one can find a path γ ⊂ S◦ that

connects y0 to x0. For each point y ∈ γ there exists a small ball By ⊂ Ω where Harnack’s

inequality can be applied. By compactness, there are finitely many balls Byi , i = 1, . . . , N ,
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that cover the path γ and form a Harnack-chain: Byi intersects Byi+1
and Harnack’s inequal-

ity can be applied to each ball Byi . The argument in the previous paragraph yields that u

is constant on each ball, thus u(y0) = u(x0). Since S◦ is dense in S, by continuity it follows

that u is constant.

Now, we treat the case that x0 ∈ ∂Qi0 for some i0 ∈ N. Then by Lemma 2.4.10

there exists Jordan curve γ ⊂ S◦ “surrounding” a Jordan region V containing Qi0 . By

the maximum principle (Theorem 2.7.5), there exists a point x′0 ∈ γ = ∂∗V such that

u(x′0) = supz∈S∩V u(z) = u(x0). Since x′0 ∈ S◦, it follows that u is constant by the previous

case.

2.10 Equicontinuity and convergence

Finally, we establish the local equicontinuity of carpet-harmonic functions and ensure that

limits of harmonic functions are harmonic. In all statements the underlying relative Sierpiński

carpet is (S,Ω).

Theorem 2.10.1. Let V ⊂⊂ U ⊂⊂ Ω be open sets and M > 0 be a constant. For each

ε > 0 there exists δ > 0 such that if u is a carpet-harmonic function with DU(u) ≤M , then

for all points x, y ∈ S∩V with |x−y| < δ we have |u(x)−u(y)| < ε. The value of δ depends

only on the carpet S and on ε,M , but not on u.

Usually, equicontinuity for minimizers in potential theory follows from the local Hölder

continuity of the energy minimizers. However, in our setting we were not able to establish

the Hölder continuity, mainly due to the lack of self-similarity of the carpets.

Proof. By compactness, it suffices to show that for each ε > 0, each point x0 ∈ S ∩ V has a

neighborhood V0 such that for all z, w ∈ S ∩ V0 we have |u(z)− u(w)| < ε, whenever u is a

carpet-harmonic function with DU(u) ≤ M . The proof is based on the arguments we used

in Theorem 2.8.2 and Lemma 2.9.5.

Suppose first that x0 ∈ S◦, and let N ∈ N be a large number to be chosen. For each

k ∈ {1, . . . , N} consider an annulus Ak := A(x0; rk, 2rk) ⊂⊂ U such that the annuli are
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nested, all of them surrounding B(x0, rN), and they intersect disjoint sets of peripheral

disks. Let V0 = B(x0, rN) and note that for z, w ∈ S ∩ V0 and k ∈ {1, . . . , N} we have

|u(z)− u(w)|2 ≤ C
∑
i∈IAk

osc
Qi

(u)2

by the computations in the proof of Lemma 2.9.5, where C > 0 depends only on the data.

Summing over k, we obtain

N |u(z)− u(w)|2 ≤ C
∑
i∈IU

osc
Qi

(u)2 = CDU(u) ≤ CM.

Hence, |u(z) − u(w)| ≤ C ′
√
M/
√
N , which can be made smaller than ε, if N is sufficiently

large, independent of u.

If x0 ∈ ∂Qi0 for some i0 ∈ N, we have to modify the argument as usual. We consider

again the annuli Ak, all of which intersect Qi0 , but otherwise they intersect disjoint sets

of peripheral disks. We set V0 to be the component of B(x0, rN) \ Qi0 containing x0 in its

boundary. This component is bounded by a subarc γ of ∂B(x0, rN), which defines a crosscut

separating x0 from∞ in R2 \Qi0 . The arc γ has its endpoints on ∂Qi0 . We consider an open

Jordan arc α ⊂ Qi0 , having the same endpoints as γ. Then γ ∪ α bounds a Jordan region

V1 ⊃ V0.

For z, w ∈ S ∩ V1 the maximum principle in Theorem 2.7.5 and the upper gradient

inequality yield

|u(z)− u(w)| ≤
∑

i:Qi∩∂B(x0,srk)
i 6=i0

osc
Qi

(u)

for all k ∈ {1, . . . , N} and a.e. s ∈ (1, 2). Using this in the proof of Lemma 2.9.5 we obtain

the exact same inequality as in the conclusion, without the term corresponding to i = i0.

Now, the proof continues as in the case x0 ∈ S.

Theorem 2.10.2. Suppose that un, n ∈ N, is a sequence of carpet-harmonic functions

converging locally uniformly to a function u : S → R. Then u is carpet-harmonic.

Proof. We fix an open set V ⊂⊂ Ω. Then un converges uniformly to u in V , so in particular,

un is uniformly bounded in V . By the Caccioppoli inequality in Theorem 2.8.1 we obtain
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that DV (un) is uniformly bounded in n ∈ N. The Caccioppoli inequality “for differences” in

Theorem 2.8.4 implies that
∑

i∈IV (oscQi(un)− oscQi(um))2 is uniformly small for sufficiently

large n and m. This shows that the tails of the sum

DV (un) =
∑
i∈IV

osc
Qi

(un)2

are small, uniformly in n. Note that by the uniform convergence we have oscQi(un) →

oscQi(u) for each i ∈ N. These imply that {oscQi(un)}i∈V converges to {oscQi(u)}i∈IV in `2.

Hence, u lies in W1,2
loc (S); recall Remark 2.5.24.

Moreover, DV (un + ζ)→ DV (u+ ζ) for each test function ζ ∈ W1,2(S) vanishing outside

V . Indeed, it is straightforward from uniform convergence to see that oscQi(un + ζ) →

oscQi(u+ζ) for each i ∈ N. Moreover, using the inequality oscQi(un+ζ) ≤ oscQi(un)+oscQi(ζ)

(see the proof of Proposition 2.5.28) and the convergence of {oscQi(un)}i∈V in `2 one sees

that the tails of the sum

∑
i∈IV

osc
Qi

(un + ζ)2

are small, uniformly in n.

Finally, the above imply that the inequality DV (un) ≤ DV (un + ζ) from harmonicity

passes to the limit, to yield DV (u) ≤ DV (u + ζ). This shows that u is carpet-harmonic, as

desired.

Corollary 2.10.3. Let un, n ∈ N, be a sequence of carpet-harmonic functions that are locally

uniformly bounded. Then there exists a subsequence of un that converges locally uniformly

to a carpet-harmonic function u : S → R.

Proof. By the Caccioppoli inequality in Theorem 2.8.1, it follows that DV (un) is uniformly

bounded in n, for each V ⊂⊂ Ω. Theorem 2.10.1 implies that {un}n∈N is a locally equicon-

tinuous family. Since the functions un are locally uniformly bounded, by the Arzelà-Ascoli

theorem we conclude that they subconverge locally uniformly to a function u : S → R. This

function has to be carpet-harmonic by Theorem 2.10.2.
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CHAPTER 3

Uniformization of Sierpiński carpets by square carpets

3.1 Introduction

In this chapter we prove a uniformization result for planar Sierpiński carpets by square

Sierpiński carpets, by minimizing some kind of energy. For the convenience of the reader,

we include here some definitions, some of which are also given in Chapter 2. We will also

point out, whenever necessary, any discrepancies in the notation between the two chapters.

However, for the most part, this chapter is independent of Chapter 2 and we will only use

certain results from there that we quote again here.

Before proceeding to the results, we mention some important discrepancies in the notation

between the two chapters that the reader should be aware of:

1. A Sierpiński carpet is denoted here by S = Ω\
⋃
i∈NQi, in contrast to Chapter 2, where

the letter S was used to denote a relative Sierpiński carpet S = Ω \
⋃
i∈NQi.

2. ∂∗ has slightly different meaning; compare its definition in Section 2.2 to the remarks

after Theorem 3.4.5.

3. Carpet modulus here is going to be a variant of the strong carpet modulus defined in

Section 2.3. Here, we also include the unbounded peripheral disk in the sums, whenever

we have a path family in C and not necessarily in Ω.

4. We will define a notion of modulus called weak carpet modulus, which is slightly different

than the weak carpet modulus defined in Section 2.3.
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3.1.1 Results

In what follows, all the distances are in the Euclidean metric of C.

A planar Sierpiński carpet S ⊂ C is constructed by removing from a Jordan region

Ω ⊂ C a countable collection {Qi}i∈N of open Jordan regions, compactly contained in Ω,

with disjoint closures, such that diam(Qi) → 0 as i → ∞ and such that S := Ω \
⋃
i∈NQi

has empty interior. The condition diam(Qi) → 0 is equivalent to saying that S is locally

connected. According to a fundamental result of Whyburn [Why58] all Sierpiński carpets are

homeomorphic to each other. We remark that S is a closed set here, in contrast to Chapter

2, where S ⊂ Ω; if we used the notation of Chapter 2, our carpet here would correspond to

S.

The Jordan regions Qi, i ∈ N, are called the (inner) peripheral disks of the carpet S,

and Q0 := C \ Ω is the outer peripheral disk . The Jordan curves ∂Qi, i ∈ N ∪ {0}, are the

peripheral circles of the carpet. Again, we distinguish between the inner peripheral circles

∂Qi, i ∈ N, and the outer peripheral circle ∂Q0. A square Sierpiński carpet is a Sierpiński

carpet for which Ω is a rectangle and all peripheral disks Qi, i ∈ N, are squares such that

the sides of ∂Qi, i ∈ N ∪ {0}, are parallel to the coordinate axes of R2.

We say that the peripheral disks Qi are uniform quasiballs , if there exists a constant

K0 ≥ 1 such that for each Qi, i ∈ N, there exist concentric balls

B(x, r) ⊂ Qi ⊂ B(x,R), (3.1.1)

with R/r ≤ K0. In this case, we also say that the peripheral disks are K0-quasiballs. We say

that the peripheral disks are uniformly fat sets if there exists a constant K1 > 0 such that

for every Qi, i ∈ N, and for every ball B(x, r) centered at some x ∈ Qi with r < diam(Qi)

we have

H2(B(x, r) ∩Qi) ≥ K1r
2, (3.1.2)

where by Hn we denote the n-dimensional Hausdorff measure, normalized so that it agrees

with the n-dimensional Lebesgue measure, whenever n ∈ N. In this case, the peripheral
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disks are K1-fat sets. A Jordan curve J ⊂ C is a K2-quasicircle for some K2 > 0, if for any

two points x, y ∈ J there exists an arc γ ⊂ J with endpoints x, y such that

|x− y| ≤ K2 diam(γ). (3.1.3)

Note that if the peripheral circles ∂Qi are uniform quasicircles (i.e., K2-quasicircles with the

same constant K2), then they are both uniform quasiballs and uniformly fat sets, quantita-

tively. The first claim is proved in [Bon11, Proposition 4.3] and the second in [Sch95, Corol-

lary 2.3], where the notion of a fat set appeared for the first time in the study of conformal

maps. It is clear that for a square carpet the inner peripheral circles, also called peripheral

squares, are uniform quasicircles.

In order to describe our main result we need to introduce a notion of quasiconformality,

suitable for the carpet setting. For this purpose, we introduce carpet modulus with respect

to the carpet S. Let Γ be a family of paths in C. A sequence of non-negative numbers

{λ(Qi)}i∈N∪{0} is admissible for the carpet modulus mod(Γ) if∑
i:Qi∩γ 6=∅

λ(Qi) ≥ 1 (3.1.4)

for all γ ∈ Γ with H1(γ ∩ S) = 0. Then mod(Γ) := infλ
∑

i∈N∪{0} λ(Qi)
2 where the infimum

is taken over all admissible weights λ. Because of technical difficulties we also consider a

very similar notion of modulus denoted by mod(Γ), which is called weak carpet modulus ;

see Definition 3.9.1. The notation mod(Γ) and mod(Γ) does not incorporate the underlying

carpet S, but this will be implicitly understood. We now state one of the main results.

Theorem 3.1.1. Let S ⊂ Ω be a planar Sierpiński carpet of area zero whose peripheral

disks {Qi}i∈N are uniform quasiballs and uniformly fat sets, and whose outer peripheral

circle is ∂Q0 = ∂Ω. Then there exists D > 0 and a homeomorphism f : C → C such that

f(Ω) = [0, 1]× [0, D], and R := f(S) ⊂ [0, 1]× [0, D] is a square Sierpiński carpet with inner

peripheral squares {Si}i∈N and outer peripheral circle ∂S0 := ∂([0, 1]× [0, D]). Furthermore,

for any disjoint, non-trivial continua E,F ⊂ S and for the family Γ of paths in C that join

them we have

mod(Γ) ≤ mod(f(Γ)) and mod(f(Γ)) ≤ mod(Γ).
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Figure 3.1: Illustration of the uniformizing map in Theorem 3.1.1.

This map is highly non-unique, as will be clear from the construction, since by making

some choices one can obtain such maps onto different square carpets. The modulus inequal-

ities in the conclusion say that f is a “quasiconformal” map in a discrete sense, and in

the sense of the so-called geometric definition of quasiconformality, which is also employed

in [Raj17].

If the geometric assumptions on the peripheral disks Qi of S are strengthened, then we

obtain a stronger version of the previous theorem with improved regularity for the map f . In

particular, we consider the following geometric condition: we say that the peripheral circles

{∂Qi}i∈N∪{0} of the carpet S are uniformly relatively separated , if there exists a constant

K3 > 0 such that

∆(∂Qi, ∂Qj) :=
dist(∂Qi, ∂Qj)

min{diam(∂Qi), diam(∂Qj)}
≥ K3 (3.1.5)

for all distinct i, j ∈ N∪{0}. In this case, we say that the peripheral circles are K3-relatively

separated. We now have an improvement of the previous theorem:

Theorem 3.1.2. Let S be a Sierpiński carpet of area zero with peripheral circles {∂Qi}i∈N∪{0}

that are K2-quasicircles and K3-relatively separated. Then there exists an η-quasisymmetric

map f from S onto a square Sierpiński carpet R such that the distortion function η depends

only on K2 and K3. Furthermore, the map f maps the outer peripheral circle of S onto the

outer peripheral circle of R.

This theorem, together with extension results from [Bon11, Section 5] yield immediately:

Corollary 3.1.3. Let S be a Sierpiński carpet of area zero with peripheral circles {∂Qi}i∈N∪{0}

that are K2-quasicircles and K3-relatively separated. Then there exists a K-quasiconformal
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map f : Ĉ→ Ĉ such that R := f(S) is a square Sierpiński carpet, where K depends only on

K2 and K3.

Theorem 3.1.2 and its corollary should be compared to the result of Bonk:

Theorem 3.1.4 (Corollary 1.2, [Bon11]). Let S be a Sierpiński carpet of area zero whose

peripheral circles {∂Qi}i∈N∪{0} are K2-quasicircles and they are K3-relatively separated. Then

S can be mapped to a round Sierpiński carpet T ⊂ C with peripheral circles {∂Ci}i∈N∪{0} by

an η-quasisymmetric homeomorphism f : S → T that maps the outer peripheral circle ∂Q0

of S to the outer peripheral circle ∂C0 of T . The distortion function η depends only on K2

and K3, and the map f is unique up to post-composition with Möbius transformations.

Here a round Sierpiński carpet is a Sierpiński carpet all of whose peripheral circles are

round circles.

In our theorem, as already remarked, we do not have such a strong uniqueness statement.

Nevertheless, we can obtain a uniqueness result.

Proposition 3.1.5. Assume that f is an orientation-preserving quasisymmetry from a

Sierpiński carpet S of measure zero onto a square Sierpiński carpet R that maps the outer

peripheral circle of S to the outer peripheral circle of R, which is a rectangle ∂([0, 1]× [0, D]).

Let Θ1 = f−1({0} × [0, D]) and Θ3 = f−1({1} × [0, D]) be the preimages of the two vertical

sides of ∂([0, 1] × [0, D]). Assume also that g is another orientation-preserving quasisym-

metry from S onto some other square carpet R′, whose outer peripheral circle is a rectangle

∂([0, 1]× [0, D′]). If g maps Θ1 onto {0}× [0, D′] and Θ3 onto {1}× [0, D′], then g = f and

R′ = R.

The proof of this proposition follows from [BM13, Theorem 1.4], or from Theorem 2.7.13

in Chapter 2 using the theory of carpet-harmonic functions.

Partial motivation for the current work was the desire to understand necessary conditions

for the geometry of the peripheral disks of a carpet in order to obtain a quasisymmetric

uniformization result. If one aims to obtain a uniformization result by round or square

105



carpets, then a necessary assumption is that one of uniform quasicircles, since this quality is

preserved under quasisymmetries, and both circles and squares share it. Hence, the question

is whether the condition of uniform relative separation can be relaxed. However, the next

result implies that the condition is optimal in some sense.

Proposition 3.1.6. A square Sierpiński carpet R of area zero is quasisymmetrically equiva-

lent to a round Sierpiński carpet T if and only if its peripheral circles are uniformly relatively

separated. Conversely, a round Sierpiński carpet T of area zero is quasisymmetrically equiva-

lent to a square Sierpiński carpet R if and only if its peripheral circles are uniformly relatively

separated.

Here, S ⊂ C is quasisymmetrically equivalent to T ⊂ C if there exists a quasisymmetry

f : S → T .

Bonk’s uniformizing map in Theorem 3.1.4 is constructed as a limit of conformal maps of

finitely connected domains onto finitely connected circle domains, using Koebe’s uniformiza-

tion theorem. The first finitely connected domains converge in some sense to the carpet S

and the latter finitely connected circle domains converge to a round carpet. Then, modu-

lus estimates are used to study the properties of the limiting map, and show that it is a

quasisymmetry.

In our approach, we construct an “extremal” map from the carpet to a square carpet

by working directly on the carpet, without employing a limiting argument based on finitely

connected domains. This has the advantage that we can control the necessary assumptions on

the peripheral circles at each step of the construction. Although we impose the assumptions

of uniformly fat, uniform quasiballs for the peripheral disks {Qi}i∈N, one can actually obtain

Theorem 3.1.1 even if no assumptions at all are imposed on finitely many peripheral circles.

To simplify the treatment we do not pursue this here, but we support our claim by remarking

that no assumptions are imposed on the outer peripheral circle ∂Q0, in the statement of

Theorem 3.1.1.
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3.1.2 Organization of the chapter

In Section 3.2 we introduce some notation, and in Section 3.3 we discuss preliminaries on

quasisymmetric maps, quasiconformal maps, modulus, and exceptional families of paths.

The latter will be used extensively throughout the chapter.

The proof of the Main Theorem 3.1.1 will be given in Sections 3.4–3.9. First, in Section

3.4 we introduce the real part u of the uniformizing map f . To obtain the map u we use the

theory of carpet-harmonic functions, developed in Chapter 2. In fact, u will be a solution

to a certain boundary value problem. In Section 3.5 we study the geometry of the level sets

of the function u. The maximum principle is used in combination with an upper gradient

inequality to deduce that almost every level set of u is the intersection of a curve with the

carpet S, and in fact this intersection has Hausdorff 1-measure zero. The latter is the most

technical result of the section.

By “integrating” the “gradient” of u along each level set, we define the conjugate function

v of u in Section 3.6. The proof of continuity and regularity properties of v occupies the

section. In Section 3.7 we define the uniformizing function f := (u, v) that maps the carpet

S into a rectangle [0, 1] × [0, D] and the peripheral circles into squares. We prove that

the squares are disjoint and “fill up” the entire rectangle [0, 1] × [0, D]. In Section 3.8 the

injectivity of f is established and one of the main lemmas in the section is to show that f

cannot “squeeze” a continuum E ⊂ S to a single point. Finally, in Section 3.9 we prove

regularity properties for f and f−1 and, in particular, the properties claimed in the Main

Theorem 3.1.1.

Theorem 3.1.2 is proved in Section 3.11 with the aid of Loewner-type estimates for

carpet modulus that are quoted in Section 3.10 and were proved (in some other form) by

Bonk in [Bon11]. Proposition 3.1.6 is proved in Section 3.12. Finally, in Section 3.13 we

construct a “test function” that will be used frequently in variational arguments against the

carpet-harmonic function u.
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3.2 Notation and terminology

We denote R̂ = R∪{−∞,+∞}, Ĉ = C∪{∞}. A function that attains values in R̂ is called

an extended function. We use the standard open ball notation B(x, r) = {y ∈ C : |x−y| < r}

and B(x, r) is the closed ball. If B = B(x, r) then cB = B(x, cr). Also, A(x; r, R) denotes

the annulus B(x,R) \ B(x, r), for 0 < r < R. All the distances will be in the Euclidean

distance of C ' R2. A point x will denote most of the times a point of R2 and rarely we will

use the notation (x, y) for coordinates of a point in R2, in which case x, y ∈ R. Each case

will be clear from the context.

The notation V ⊂⊂ Ω means that V is compact and is contained in Ω. For a set K ⊂ C

and ε > 0 we use the notation

Nε(K) = {x ∈ C : dist(x,K) < ε}

for the open ε-neighborhood of K. The symbols V , int(V ), and ∂V denote the closure,

interior and boundary, respectively, of a set V with respect to the planar topology. If the

reference space is a different set U , then we will write instead the closure of V rel. U , or use

subscript notation intU(V ) etc.

A path or curve γ is a continuous function γ : I → C, where I is a bounded interval such

that γ has a continuous extension γ : I → C, i.e., γ has endpoints. An open path γ is a path

with I = (0, 1). We will also use the notation γ ⊂ C for the image of the path as a set. A

subpath of a path γ : I → C is the restriction of γ to a subinterval of I. A path γ joins two

sets E,F ⊂ C if γ ∩E 6= ∅ and γ ∩ F 6= ∅. More generally, a connected set α ⊂ C joins two

sets E,F ⊂ C if α ∩ E 6= ∅ and α ∩ F 6= ∅. A Jordan curve is a homeomorphic image of

the unit circle S1, and a Jordan arc is a homeomorphic image of [0, 1]. Jordan curves and

Jordan arcs are simple curves, i.e., they have no self-intersections.

We denote by S◦ the points of the Sierpiński carpet S that do not lie on any peripheral

circle ∂Qi or on ∂Ω. For a set V that intersects a Sierpiński carpet S with (inner) peripheral

disks {Qi}i∈N define IV = {i ∈ N : Qi ∩ V 6= ∅}.

In the proofs we will denote constants by C,C ′, C ′′, . . . , where the same symbol might
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denote a different constant if there is no ambiguity. For visual purposes, the closure of a set

U1 is denoted by U1, instead of U1.

3.3 Preliminaries

3.3.1 Quasisymmetric and quasiconformal maps

A homeomorphism f : X → Y between two metric spaces (X, dX) and (Y, dY ) is an η-

quasisymmetry if there exists an increasing homeomorphism η : (0,∞) → (0,∞) such that

for all triples of distinct points x, y, z ∈ X we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

The homeomorphism η is also called the distortion function associated to the quasisymmetry

f . If X = Y = C, then it is immediate to see that the quasisymmetric property of f : C→ C

and the distortion function η are not affected by compositions with Möbius transformations

of C (i.e., homotheties). A Jordan curve J ⊂ C is a quasicircle in the sense of (3.1.3) if and

only if there exists a quasisymmetry f : S1 → J . The quasicircle constant and the distortion

function of f are related quantitatively. See [Hei01, Chapters 10–11] for background on

quasisymmetric maps.

Let U, V ⊂ C be open sets. An orientation-preserving homeomorphism f : U → V is is

K-quasiconformal for some K > 0 if f ∈ W 1,2
loc (U) and

‖Df(z)‖2 ≤ KJf (z)

for a.e. z ∈ U . An orientation-preserving homeomorphism f : Ĉ → Ĉ is K-quasiconformal

if f is K-quasiconformal in local coordinates as a map between planar open sets, using

the standard conformal charts of Ĉ. We direct the reader to [AIM09, Section 3] for more

background.
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3.3.2 Modulus

We recall the definition of conformal modulus or 2-modulus . Let Γ be a path family in C. A

non-negative Borel function λ : C→ R is admissible for the conformal modulus mod2(Γ) if∫
γ

λ ds ≥ 1

for all locally rectifiable paths γ ∈ Γ. If a path γ is not locally rectifiable, we define∫
γ
λ ds = ∞, even when λ ≡ 0. Hence, we may require the above inequality for all γ ∈ Γ.

Then mod2(Γ) := infλ
∫
λ2 dH2, where the infimum is taken over all admissible functions λ.

Let us mention a connection between conformal modulus and the carpet modulus defined

in the introduction. Let S ⊂ Ω be a carpet with (inner) peripheral disks {Qi}i∈N and outer

peripheral disk Q0 = C \Ω. Suppose that H2(S) = 0 and the peripheral disks are uniformly

fat, uniform quasiballs. Consider a family Γ of paths contained in C.

Lemma 3.3.1. If mod(Γ) = 0 then mod2(Γ) = 0.

For the proof see Lemma 2.3.1 and Lemma 2.3.3.

If a property (A) holds for all paths γ in C lying outside an exceptional family of 2-

modulus zero, we say that (A) holds for mod2-a.e. γ. Furthermore, if a property (A) holds

for mod2-a.e. path, then mod2-a.e. path has the property that all of its subpaths also share

property (A). Equivalently, the family of paths having a subpath for which property (A)

fails has 2-modulus zero. The reason is that the family of admissible functions for this curve

family contains the admissible functions for the family of curves for which property (A) fails;

see also [V71, Theorem 6.4]. The same statement is true for the carpet modulus.

A version of the next lemma can be found in [BM13, Lemma 2.2] and [Boj88].

Lemma 3.3.2. Let κ ≥ 1 and I be a countable index set. Suppose that {Bi}i∈I is a collection

of balls in the plane C, and ai, i ∈ I, are non-negative real numbers. Then there exists a

constant C > 0 depending only on κ such that∥∥∥∥∑
i∈I

aiχκBi

∥∥∥∥
2

≤ C

∥∥∥∥∑
i∈I

aiχBi

∥∥∥∥
2

.

Here ‖ · ‖2 denotes the L2-norm with respect to planar Lebesgue measure.
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3.3.3 Existence of paths

Here we mention some results that provide us with paths that avoid exceptional path families.

These paths will be very useful in the proof of injectivity of the uniformizing function f in

Section 3.8, and also in the proof of the regularity of f−1 in Section 3.9. A proof of the next

proposition can be found in [Bro72, Theorem 3].

Proposition 3.3.3. Let β ⊂ C be a path that joins two non-trivial continua E,F ⊂ C.

Consider the distance function ψ(x) = dist(x, β). Then there exists δ > 0 such that for a.e.

s ∈ (0, δ) there exists a simple path βs ⊂ ψ−1(s) joining E and F .

For the next lemma we assume that the carpet S and Ω are as in the assumptions

of Theorem 3.1.1, so in particular, the peripheral disks of S are uniformly fat, uniform

quasiballs.

Lemma 3.3.4. Suppose β ⊂ Ω is a path joining two non-trivial continua E,F ⊂ Ω. Con-

sider the distance function ψ(x) = dist(x, β) and let Γ be a given family in Ω of carpet

modulus or conformal modulus equal to zero. Then, there exists δ > 0 such that for a.e.

s ∈ (0, δ) there exists a simple open path βs ⊂ ψ−1(s) that lies in Ω, joins the continua E

and F , and lies outside the family Γ.

For a proof see Lemma 2.4.3 and Lemma 2.4.4. We also include some topological facts.

Lemma 3.3.5 (Lemma 2.4.10). Let S ⊂ C be a Sierpiński carpet.

(a) For any x, y ∈ S there exists an open path γ ⊂ S◦ that joins x and y. Moreover, for

each r > 0, if y is sufficiently close to x, the path γ can be taken so that γ ⊂ B(x, r).

(b) For any two peripheral disks there exists a Jordan curve γ ⊂ S◦ that separates them.

Moreover, γ can be taken to be arbitrarily close to one of them.

In other words, the conclusion of the first part is that x, y ∈ γ, but γ does not intersect

any peripheral circle ∂Qi, i ∈ N ∪ {0}. As a corollary of the second part of the lemma, we

obtain:
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Corollary 3.3.6. Let S ⊂ C be a Sierpiński carpet and γ ⊂ C be a path that connects two

distinct peripheral disks of S. Then γ has to intersect S◦.

We finish the section with a technical lemma:

Lemma 3.3.7. Let S ⊂ C be a Sierpiński carpet and γ ⊂ C be a non-constant path with

H1(γ ∩ S) = 0.

(a) If x ∈ γ∩S◦, then arbitrarily close to x we can find peripheral disks Qi with Qi∩γ 6= ∅.

(b) If γ is an open path that does not intersect a peripheral disk Qi0, i0 ∈ N ∪ {0}, and

x ∈ γ ∩ ∂Qi0, then arbitrarily close to x we can find peripheral disks Qi, i 6= i0, with

Qi ∩ γ 6= ∅.

The proof is the same as the proof of Lemma 2.4.12, which contains the analogous

statement for relative Sierpiński carpets.

3.4 The function u

From this section until Section 3.9 the standing assumptions are that we are given a carpet

S ⊂ Ω of area zero with peripheral disks {Qi}i∈N that are uniformly fat, uniform quasiballs,

and with outer peripheral circle ∂Q0 = ∂Ω. This is precisely the setup in Chapter 2, where

the theory of carpet-harmonic functions is developed. We will use this theory in order to

define the real part u of the uniformizing function f .

3.4.1 Background on carpet-harmonic functions

Here we include some definitions and background on carpet-harmonic functions. More details

can be found in Chapter 2.

Definition 3.4.1. Let g : S ∩ Ω → R̂ be an extended function. We say that the sequence

of non-negative weights {λ(Qi)}i∈N is an upper gradient for g if there exists an exceptional

family Γ0 of paths in Ω with mod(Γ0) = 0 such that for all paths γ ⊂ Ω with γ /∈ Γ0 and
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x, y ∈ γ ∩ S we have g(x), g(y) 6= ±∞ and

|g(x)− g(y)| ≤
∑

i:Qi∩γ 6=∅

λ(Qi).

Note that this definition differs from the classical definition of upper gradients in metric

spaces, treated, for example, in [HKS15]. Here, the presence of ambient space is important,

since “most” of the paths do not lie in the carpet S, but meet infinitely many peripheral disks

Qi. We also remark that our notation here differs slightly from Definition 2.5.12, where a

relative carpet S does not contain ∂Ω, and functions are defined on S. Since here S contains

∂Ω, we write S ∩ Ω here as the domain of g.

For a function g : S ∩ Ω→ R̂ and a peripheral disk Qi, i ∈ N, we define

MQi(g) := sup
x∈∂Qi

g(x),

mQi(g) := inf
x∈∂Qi

g(x), and

osc
Qi

(g) := MQi(g)−mQi(g)

whenever the latter makes sense. Note here that we do not define the above quantities for

the outer peripheral circle ∂Q0 = ∂Ω, which is regarded as the “boundary” of the carpet.

Definition 3.4.2. Let g : S ∩ Ω → R̂ be an extended function. We say that g lies in the

Sobolev space W1,2
loc (S) if for every ball B ⊂⊂ Ω we have∑

i∈IB

MQi(g)2 diam(Qi)
2 <∞, (3.4.1)

∑
i∈IB

osc
Qi

(g)2 <∞, (3.4.2)

and {oscQi(g)}i∈N is an upper gradient for g. If the the above conditions hold for the full

sums over i ∈ N then we say that g lies in the Sobolev space W1,2(S).

Recall here that IB = {i ∈ N : Qi ∩ B 6= ∅}. Part of the definition is that oscQi(g) is

defined for all i ∈ N, and in particular MQi(g),mQi(g) are finite. The spaceW1,2(S) contains

Lipschitz functions on S, and also coordinate functions of restrictions on S of quasiconformal

maps g : C→ C; see Section 2.5.3.
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For a set V ⊂ Ω and g ∈ W1,2
loc (S) define the Dirichlet energy functional

DV (g) =
∑
i∈IV

osc
Qi

(g)2 ∈ [0,∞].

We remark here that the outer peripheral disk Q0 is never used in Dirichlet energy calcula-

tions, and the summations are always over subsets of {Qi}i∈N. If V = Ω we will often omit

the subscript and write D(g) instead of DΩ(g).

Definition 3.4.3. A function u ∈ W1,2
loc (S) is carpet-harmonic if for every open set V ⊂⊂ Ω

and every ζ ∈ W1,2(S) that is supported on V we have

DV (u) ≤ DV (u+ ζ).

For each g ∈ W1,2(S) there exists a family of good paths G in Ω that contains almost

every path (i.e., the paths of Ω that do not lie in G have carpet modulus equal to zero) with

the following properties

(1) H1(γ ∩ S) = 0,

(2)
∑

i:Qi∩γ 6=∅ oscQi(g) <∞, and

(3) the upper gradient inequality as in Definition 3.4.1 holds along every subpath of γ.

A point x ∈ S is “accessible” by a path γ0 ∈ G if there exists an open subpath γ of γ0 with

x ∈ γ and γ does not meet the peripheral disk Qi0 whenever x ∈ ∂Qi0 , i0 ∈ N; see Figure

2.1. Note that x can lie on ∂Ω. See Section 2.5.1 for a more detailed discussion on good

paths and “accessible” points.

Finally we require a lemma that allows the “gluing” of Sobolev functions and will be

useful for variational arguments; see Proposition 2.5.28 and Lemma 2.5.29 for the proof.

Lemma 3.4.4. If φ, ψ ∈ W1,2(S) and a, b ∈ R, then the following functions also lie in the

Sobolev space W1,2(S):

(a) aφ+ bψ, with oscQi(aφ+ bψ) ≤ |a| oscQi(φ) + |b| oscQi(ψ),
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(b) |φ|, with oscQi(|φ|) ≤ oscQi(φ),

(c) φ ∨ ψ := max(φ, ψ), with oscQi(φ ∨ ψ) ≤ max{oscQi(φ), oscQi(ψ)},

(d) φ ∧ ψ := min(φ, ψ), with oscQi(φ ∧ ψ) ≤ max{oscQi(φ), oscQi(ψ)}, and

(e) φ · ψ, provided that φ and ψ are bounded.

Furthermore, if V ⊂ Ω is an open set with S ∩Ω∩ ∂V 6= ∅, and φ = ψ on S ∩Ω∩ ∂V , then

φχS∩V + ψχS\V ∈ W1,2(S).

3.4.2 The free boundary problem

We mark four points on ∂Ω that determine a quadrilateral, i.e., a homeomorphic image of a

rectangle, with closed sides Θ1, . . . ,Θ4, enumerated in a counter-clockwise fashion. Here Θ1

and Θ3 are opposite sides.

Consider a function g ∈ W1,2(S). Recall from Definition 3.4.2 that g is only defined in

S∩Ω and not in ∂Ω. However, one can always define boundary values of g on ∂Ω; see Section

2.6.2 for more details. In this chapter, all functions g ∈ W1,2(S) that we are going to use

will actually be continuous up to ∂Ω, so their boundary values are unambiguously defined

and we do not need to resort to the theory of Chapter 2. If g(x) = 0 for all points x ∈ Θ1

and also g(x) = 1 for all points x ∈ Θ3, we say that g is admissible (for the free boundary

problem).

Theorem 3.4.5 (Theorem 2.7.11). There exists a unique carpet-harmonic function u : S →

R that minimizes the Dirichlet energy DΩ(g) over all admissible functions g ∈ W1,2(S). The

function u is continuous up to the boundary ∂Ω and has boundary values u = 0 on Θ1 and

u = 1 on Θ3.

For an open set V ⊂ C \ (Θ1 ∪Θ3) define

∂∗V := ∂V ∩ S.
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The open arcs Θ2,Θ4 ⊂ ∂Ω are not considered as boundary arcs for the free boundary

problem since there is no boundary data present on them. With this in mind, we now state

the maximum principle for the minimizer u:

Theorem 3.4.6 (Theorem 2.7.12). Let V be an open set with V ⊂ C \ (Θ1 ∪Θ3). Then

sup
x∈S∩V

u(x) = sup
x∈∂∗V

u(x) and inf
x∈S∩V

u(x) = inf
x∈∂∗V

u(x).

The standard maximum principle would state that the extremal values of u on an open

set V are attained on ∂V . Our stronger statement states that the extremal values could be

attained at the part of ∂V that is disjoint from the interiors of the “free” arcs Θ2 and Θ4.

However, extremal values could still be attained at Θ1 or Θ3, and this is the reason that we

look at sets V ⊂ C \ (Θ1 ∪Θ3).

Next, we consider a variant of Lemma 2.9.5, whose proof follows immediately from an

application of the upper gradient inequality, together with the maximum principle.

Lemma 3.4.7. Consider a ball B(x, r) ⊂ Ω, with B(x, cr) ⊂ Ω for some c > 1. Then for

a.e. s ∈ [1, c] we have

diam(u(B(x, r) ∩ S)) ≤ diam(u(B(x, sr) ∩ S)) ≤
∑

i:Qi∩∂B(x,sr) 6=∅

osc
Qi

(u).

The function u will be the real part of the uniformizing function f . It will be very

convenient to have a continuous extension of u to Ω that satisfies the maximum principle:

Proposition 3.4.8. There exists a continuous extension ũ : Ω→ R of u such that for every

open set V ⊂ C \ (Θ1 ∪Θ3) we have

sup
x∈V ∩Ω

ũ(x) = sup
x∈∂V ∩Ω

ũ(x) and inf
x∈V ∩Ω

ũ(x) = inf
x∈∂V ∩Ω

ũ(x).

In fact, ũ can be taken to be harmonic in the classical sense inside each peripheral disk Qi,

i ∈ N.

Proof. For each peripheral disk Qi, i ∈ N, we consider the Poisson extension ũ : Qi → R of

u. This is obtained by mapping conformally the Jordan region Qi to the unit disk D and
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taking the Poisson extension there. The function ũ is harmonic in Qi and continuous up to

the boundary ∂Qi. Furthermore,

diam(ũ(Qi)) = diam(ũ(∂Qi)) = osc
Qi

(u), (3.4.3)

where the latter is defined after Definition 3.4.1.

To show that the extension ũ : Ω → R is continuous, we argue by contradiction and

suppose that there exists a sequence {xn}n∈N ⊂ Ω with xn → x ∈ Ω, but |ũ(xn)− ũ(x)| ≥ ε

for some ε > 0 and all n ∈ N. If xn ∈ S for infinitely many n, then we obtain a contradiction,

by the continuity of u in S. If xn lies in some peripheral disk Qi0 for infinitely many n then

we also get a contradiction, by the continuity of ũ on Qi0 . We, thus, assume that xn ∈ Qin

where Qin are distinct peripheral disks, so we necessarily have x ∈ S. Let yn ∈ ∂Qin . By

the local connectedness of S we have diam(Qin)→ 0, thus yn → x and u(yn)→ u(x). Since∑
i∈N oscQi(u)2 <∞ it follows that oscQin (u)→ 0. Combining these with (3.4.3) we obtain

ε ≤ |ũ(xn)− ũ(x)| ≤ |ũ(xn)− ũ(yn)|+ |u(yn)− u(x)| ≤ osc
Qin

(u) + |u(yn)− u(x)|

Letting n→∞ yields, again, a contradiction.

Finally, we check the maximum principle. Trivially, we have

sup
x∈V ∩Ω

ũ(x) ≥ sup
x∈∂V ∩Ω

ũ(x) =: M,

so it suffices to show the reverse inequality. If there exists z ∈ V ∩ Ω with ũ(z) > M , then

we claim that there actually exists w ∈ S ∩ V with u(w) = ũ(w) > M . We assume this for

the moment. Since ∂V ∩ Ω ⊃ ∂∗V , we have

sup
x∈S∩V

u(x) ≥ u(w) > M = sup
x∈∂V ∩Ω

ũ(x) ≥ sup
x∈∂∗V

ũ(x) = sup
x∈∂∗V

u(x),

which contradicts the maximum principle in Theorem 3.4.6. The statement for the infimum

is proved similarly.

We now prove our claim. If z ∈ S then we set w = z and there is nothing to show, so

we assume that z ∈ Qi0 for some i0 ∈ N. The maximum principle of the harmonic function

ũ
∣∣
Qi0

implies that there exists

w ∈ ∂(Qi0 ∩ V ) ⊂ (∂Qi0 ∩ V ) ∪ ∂V ⊂ (S ∩ V ) ∪ ∂V
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with ũ(w) > M ; here it is crucial that Qi0 and V are open sets. However, we cannot have

w ∈ ∂V , since ũ(w) > M = supx∈∂V ∩Ω ũ(x). It follows that w ∈ S ∩ V , as desired.

3.5 The level sets of u

We study the level sets of u and of its extension ũ. One of our goals is to show that for a.e.

t ∈ [0, 1] the level set ũ−1(t) is a simple curve that joins Θ2 to Θ4. Using these curves we

will define the “conjugate” function v of u in the next section.

For 0 ≤ s < t ≤ 1 define

As,t = ũ−1((s, t))

and for 0 ≤ t ≤ 1 define αt = ũ−1(t). For these level sets we have:

Proposition 3.5.1. For all 0 ≤ s < t ≤ 1 the sets αt and As,t are connected, simply

connected and they join the sides Θ2 and Θ4 of the quadrilateral Ω. Furthermore, the inter-

sections of αt, As,t with Θ2,Θ4 are all connected. Finally, αt does not separate the plane and

As,t does not separate the plane if αt and αs have empty interior.

This is proved in the same way as [Raj17, Lemma 6.3], but we include a sketch of it here

for the sake of completeness.

Proof. We prove the statement for the set A := As,t, which is rel. open in Ω. The claims for

αt are proved very similarly, observing also that αt =
⋂
h>0At−h,t+h for 0 < t < 1.

We first show that each component V of A is simply connected. If there exists a simple

loop γ ⊂ V that is not null-homotopic in V , then γ bounds a region W that is not contained

in A. However, ∂W ∩Ω = γ is contained in A, so we have s < ũ(x) < t for all x ∈ ∂W ∩Ω.

The maximum principle in Theorem 3.4.8 implies that this also holds in W , a contradiction.

Let V be a component of A. Then V has to intersect at least one of the sides Θ2 and

Θ4. Indeed, if this was not the case, then on the connected set ∂V ⊂ Ω we would either

have ũ ≡ s or ũ ≡ t. The maximum principle in Theorem 3.4.8 implies that ũ is a constant
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on V , equal to either s or t, but this clearly contradicts the fact that V ⊂ A = ũ−1((s, t)).

Without loss of generality we assume that V ∩Θ2 6= ∅.

The intersection V ∩ Θ2 must be a connected set. Indeed, if this failed, then we would

be able to find a simple arc γ ⊂ V that connects two distinct components of V ∩Θ2. Since

ũ ∈ (s, t) on γ, it follows again by the maximum principle that the same is true in the region

bounded by γ and Θ2. This is a contradiction. Note that here the maximum principle is

applied to an open set W ⊂ C \ (Θ1 ∪ Θ3) bounded by the concatenation of γ with an arc

β ⊂ C \ Ω that connects the endpoints of γ.

Our next claim is that V intersects Θ4. We argue by contradiction, so suppose that the

boundary of V rel. Ω consists of a single component Y . On Y we must have ũ ≡ s or ũ ≡ t

and only one of them is possible by the connectedness of Y . In either case, ũ would have to

be constant in V by the maximum principle, and this is a contradiction as in the previous

paragraph.

Suppose now there exist two distinct components V1, V2 ⊂ A. Since both of them separate

the sides Θ1 and Θ3, there exists some x ∈ Ω \ A “between” V1 and V3, i.e., A separates x

from both Θ1 and Θ3. The maximum principle applied to the region containing x, bounded

by parts of the boundaries of V1 and V3, is again contradicted.

For our final claim, suppose that C \ A has a bounded component V . Note that V is

simply connected by the connectedness of A, and hence the boundary ∂V of V is connected.

The set ∂V cannot contain an arc of ∂Ω. Indeed, otherwise we would be able to connect

V with the unbounded component of C \ A outside A, a contradiction. Hence, ∂V ∩ ∂Ω

is a totally disconnected set, and each point of ∂V ∩ ∂Ω can be approximated by points in

∂V ∩ Ω. On each component of ∂V \ ∂Ω ⊂ ∂A ∩ Ω we necessarily have ũ ≡ s or ũ ≡ t.

By continuity it follows that on each point of ∂V ∩ ∂Ω the function ũ has the value s or t.

Since ∂V is connected, we have ũ ≡ s or ũ ≡ t on ∂V . The maximum principle implies that

V ⊂ αs or V ⊂ αt, but this contradicts the assumption that the level sets αs and αt have

empty interior.

Next, we show:
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Theorem 3.5.2. For a.e. t ∈ (0, 1) we have∑
i:Qi∩αt 6=∅

osc
Qi

(u) = D(u) =
∑
i∈N

osc
Qi

(u)2.

The proof will follow from Propositions 3.5.3 and 3.5.5 below.

Proposition 3.5.3. For a.e. t ∈ (0, 1) we have∑
i:Qi∩αt 6=∅

osc
Qi

(u) ≥ D(u).

Proof. Let t ∈ (0, 1) be a value that is not the maximum or minimum value of u on any

∂Qi, i ∈ N. There are countably many such values that we exclude. Then Qi ∩ αt±h 6= ∅ for

all small h > 0, whenever Qi ∩ αt 6= ∅. Indeed, if x ∈ Qi ∩ αt, and ũ is non-constant in Qi,

then by harmonicity ũ must attain, near x, values larger than t and smaller than t. We fix

a small h > 0 and define Fh to be the family of indices i ∈ N such that Qi ∩ αt+h 6= ∅ and

Qi∩αt−h 6= ∅. Note that Fh is contained in {i ∈ N : Qi∩αt 6= ∅} by the connectedness of Qi

and the continuity of u. In fact, by our previous remark, Fh increases to {i ∈ N : Qi∩αt 6= ∅}

as h→ 0. Hence, we have ∑
i∈Fh

osc
Qi

(u)→
∑

i:Qi∩αt 6=∅

osc
Qi

(u) (3.5.1)

as h→ 0. Also, define Nh = {i ∈ N : Qi ∩ At−h,t+h 6= ∅} \ Fh.

Now, consider the function

g(x) =


0, u(x) ≤ t− h

u(x)−(t−h)
2h

, t− h < u(x) < t+ h

1, u(x) ≥ t+ h.

The function g lies in the Sobolev space W1,2(S) as follows from Lemma 3.4.4, and further-

more we have

osc
Qi

(g)


= 1, i ∈ Fh

≤ oscQi(u)/2h, i ∈ Nh

= 0, i /∈ Fh ∪Nh.
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Since g = 0 on Θ1 and g = 1 on Θ3, the function g is admissible for the free boundary

problem.

Hence, for all s ∈ [0, 1] the function (1− s)u+ sg is also admissible for the free boundary

problem, so D(u) ≤ D((1− s)u+ sg) by the harmonicity of u. Lemma 3.4.4(a) implies that

D(u) ≤
∑
i∈N

((1− s) osc
Qi

(u) + s osc
Qi

(g))2

= (1− s)2D(u) + 2(1− s)s
∑
i∈N

osc
Qi

(u) osc
Qi

(g) + s2D(g).

This simplifies to

D(u) ≤ (1− s)
∑
i∈N

osc
Qi

(u) osc
Qi

(g) +
s

2
(D(u) +D(g)).

Letting s→ 0, we obtain

D(u) ≤
∑
i∈N

osc
Qi

(u) osc
Qi

(g), (3.5.2)

thus,

D(u) ≤
∑
i∈Fh

osc
Qi

(u) +
1

2h

∑
i∈Nh

osc
Qi

(u)2. (3.5.3)

By (3.5.1), it suffices to prove that 1
2h

∑
i∈Nh oscQi(u)2 → 0 as h→ 0, for a.e. t ∈ [0, 1]. This

will follow from the next lemma.

Lemma 3.5.4. Let {h(Qi)}i∈N be a sequence of non-negative numbers that is summable, i.e.,∑
i∈N h(Qi) < ∞. For each i ∈ N consider points pi, qi ∈ ∂Qi such that u(pi) = mQi(u) =

min∂Qi u and u(qi) = MQi(u) = max∂Qi u. Define a measure µ on C by

µ =
∑
i∈N

h(Qi)(δpi + δqi),

where δx is a Dirac mass at x. Then for the pushforward measure λ := u∗µ on R we have

lim
h→0

λ((t− h, t+ h))

2h
= lim

h→0

1

2h

∑
i∈N

h(Qi)(χpi∈At−h,t+h + χqi∈At−h,t+h) = 0

for a.e. t ∈ [0, 1].
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The proof of the lemma is an immediate consequence of the fact that the measure λ has

no absolutely continuous part; see [Fol99, Theorem 3.22, p. 99]. We now explain how to use

the lemma in order to derive that the term 1
2h

∑
i∈Nh oscQi(u)2 in (3.5.3) converges to 0 as

h→ 0, for a.e. t ∈ [0, 1].

We first refine our choice of t ∈ (0, 1) such that the conclusion of Lemma 3.5.4 is true

for h(Qi) := oscQi(u)2. Recall that initially we only excluded countably many values of

t. If i ∈ Nh then we have u(pi) ∈ (t − 2h, t + 2h) or u(qi) ∈ (t − 2h, t + 2h). To see

this first note that ∂Qi ∩ At−h,t+h 6= ∅ in this case by the connectedness of At−h,t+h from

Proposition 3.5.1. Thus MQi(u) = u(qi) ≥ t − h. Since i /∈ Fh, without loss of generality

assume that Qi ∩ αt+h = ∅. By continuity, the maximum of u on ∂Qi cannot exceed t + h,

so u(qi) ∈ [t− h, t + h] ⊂ (t− 2h, t + 2h). Therefore,
∑

i∈Nh oscQi(u)2 ≤ λ((t− 2h, t + 2h))

and this completes the proof.

Proposition 3.5.5. For a.e. t ∈ (0, 1) we have∑
i:Qi∩αt 6=∅

osc
Qi

(u) ≤ D(u).

Proof. Again we choose a t ∈ (0, 1) that is not a maximum or minimum value of u on any

∂Qi, i ∈ N.

We fix δ, h > 0 and we define a Sobolev function g ∈ W1,2(S) with g = 0 on Θ1 and

g = 1 + δ(1− 2h) on Θ3 as follows:

g(x) =


(1 + δ)u(x), u(x) ≤ t− h

u(x) + c1, t− h < u(x) < t+ h

(1 + δ)u(x) + c2, u(x) ≥ t+ h

where the constants c1, c2 are chosen so that g is continuous. It easy to see that c1 = δ(t−h)

and c2 = −2δh. Note that g can be written as

g = [((1 + δ)u) ∧ (u+ c1)] ∨ ((1 + δ)u+ c2), (3.5.4)

which shows that g ∈ W1,2(S), according to Lemma 3.4.4. Consider the index sets Fh =

{i ∈ N : Qi ∩ αt+h 6= ∅ and Qi ∩ αt−h 6= ∅} and Nh = {i ∈ N : Qi 6⊂ At−h,t+h} \ Fh. Observe
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that

osc
Qi

(g)


≤ (1 + δ) oscQi(u)− 2δh, i ∈ Fh

≤ (1 + δ) oscQi(u), i ∈ Nh

= oscQi(u), i /∈ Fh ∪Nh.

Indeed, for the first inequality note that for i ∈ Fh, the maximum of g on ∂Qi has to be

attained at a point x with u(x) ≥ t + h, and the minimum is attained at a point y with

u(y) ≤ t− h. Hence, g(x)− g(y) = (1 + δ)(u(x)− u(y))− 2δh ≤ (1 + δ) oscQi(u)− 2δh. The

second inequality holds for all i ∈ N and is a crude estimate, based on (3.5.4) and Lemma

3.4.4; here it is crucial that δ > 0 so that oscQi(u) ≤ (1 + δ) oscQi(u). The third equality is

immediate, since t− h ≤ u ≤ t+ h and thus g = u+ c1 on ∂Qi, whenever i /∈ Fh ∪Nh.

The function g/(1 + δ(1− 2h)) is admissible for the free boundary problem, and testing

the minimizing property of u against g/(1 + δ(1 − 2h)) as in the proof of Proposition 3.5.3

(see (3.5.2)) we obtain

D(u) ≤ 1

1 + δ(1− 2h)

∑
i∈N

osc
Qi

(u) osc
Qi

(g).

This implies that

D(u) ≤ 1

1 + δ(1− 2h)

(
(1 + δ)

∑
i∈Fh

osc
Qi

(u)2 − 2δh
∑
i∈Fh

osc
Qi

(u)

+ (1 + δ)
∑
i∈Nh

osc
Qi

(u)2 +
∑

i/∈Fh∪Nh

osc
Qi

(u)2

)
.

Manipulating the expression yields∑
i∈Fh

osc
Qi

(u) +
1

2h

∑
i/∈Fh∪Nh

osc
Qi

(u)2 ≤ D(u). (3.5.5)

By the choice of t we have ∑
i∈Fh

osc
Qi

(u)→
∑

i:Qi∩αt 6=∅

osc
Qi

(u)

as h→ 0. Moreover, if i /∈ Fh ∪Nh, then Qi ⊂ At−2h,t+2h, so∑
i/∈Fh∪Nh

osc
Qi

(u)2 ≤ λ((t− 2h, t+ 2h)),

123



where λ is as in Lemma 3.5.4 and h(Qi) := oscQi(u)2. By the lemma, it follows that

1

2h

∑
i/∈Fh∪Nh

osc
Qi

(u)2 → 0

as h→ 0 for a.e. t ∈ [0, 1]. This, together with (3.5.5) yields the conclusion.

Another important topological property of the level sets of u is the following:

Lemma 3.5.6. For a.e. t ∈ [0, 1] and for all i ∈ N the intersection u−1(t)∩ ∂Qi contains at

most two points. Furthermore, for a.e. t ∈ [0, 1] the intersection u−1(t)∩∂Ω contains exactly

two points, one in Θ2 and one in Θ4.

Proof. The proof is based on the following elementary lemma, which is the 1-dimensional

version of Sard’s theorem:

Lemma 3.5.7. Let f : R→ R be an arbitrary function. Then the set of local maximum and

local minimum values of f is at most countable.

We will use the lemma now and provide a proof right afterwards.

Note that ∂Ω, ∂Qi ' R/Z. We consider a level t ∈ (0, 1) that is not a local maximum or

local minimum value of u on ∂Ω and on any peripheral circle ∂Qi, i ∈ N. This implies that

for each point x ∈ u−1(t) ∩ ∂Qi there exist, arbitrarily close to x, points x+, x− ∈ ∂Qi with

u(x+) > t and u(x−) < t.

By Proposition 3.5.1, u−1(t) intersects Θ2 at a connected set. Since t is not a local

maximum or local minimum value of u on ∂Ω, it follows that u−1(t) ∩Θ2 cannot be an arc,

so it has to be a point. Similarly, u−1(t) ∩ Θ4 is a singleton. Furthermore, with the same

reasoning, for each i ∈ N the intersection u−1(t)∩∂Qi is a totally disconnected set. Let ∂Qi,

i ∈ N, be an arbitrary peripheral circle, intersected by u−1(t). We now split the proof in two

parts.

Step 1: There exist continua C2, C4 ⊂ ũ−1(t) that connect Θ2,Θ4 to ∂Qi, respectively,

with C2∩∂Qi = {x2} and C4∩∂Qi = {x4} for some points x2, x4 ∈ ∂Qi. We provide details

on how to obtain these continua.
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Let C2 ⊂ ũ−1(t) be a minimal continuum that connects ∂Qi to Θ2, and C4 ⊂ ũ−1(t) be a

minimal continuum that connects ∂Qi to Θ4. Here, a continuum C joining two sets E and

F is minimal if any compact proper subset of C is either disconnected or it does not connect

E and F . The existence of the continua C2 and C4 follows from Zorn’s lemma, because

the intersection of a chain of continua connecting two compact sets is again a continuum

connecting these compact sets; see [Wil70, Theorem 28.2] and the proof of [Wil70, Theorem

28.4]. We next show that C2 intersects ∂Qi at a single point x2 and C4 intersects ∂Qi at a

single point x4.

First note that C2∩Qi = ∅. Otherwise, C2\Qi has to be disconnected by the minimality of

C2, so there exists a compact component W of C2 \Qi that intersects Θ2. By the minimality

of C2, W cannot intersect ∂Qi, so it has a positive distance from it. The component W is the

intersection of all rel. clopen subsets of C2 \ Qi that contain it; see [Bur79, Corollary 1.34]

or [Rem98, p. 304]. Let U ⊃ W be such a clopen set, very close to W , so that U ∩ ∂Qi = ∅.

Then C2 = U ∪ (C2 \ U), where U and C2 \ U are non-empty and rel. closed in C2. This

contradicts the connectedness of C2, and completes the proof that C2 ∩Qi = ∅.

Now, assume that C2 ∩ ∂Qi contains two points, x and y. We connect these points by

a simple path γ ⊂ Qi. Then, we claim that Ω \ (C2 ∪ γ) has a component V ⊂ Ω such

that ∂V ⊂ C2 ∪ γ, and such that V contains an arc β ⊂ ∂Qi between x and y. Assume the

claim for the moment. On ∂∗V = ∂V ∩ S we have u ≡ t, so by the maximum principle in

Theorem 3.4.6 we obtain that u ≡ t on V ∩S. However, this implies that u ≡ t on β and this

contradicts the fact that u−1(t)∩∂Qi is totally disconnected. Thus, indeed C2∩∂Qi ⊂ u−1(t)

contains precisely one point, x2. The same is true for C4 ∩ ∂Qi = {x4}.

Now we prove the claim. Note that γ separates Qi in two open “pieces” Ai, i = 1, 2.

Each of these two pieces lies in a component Vi, i = 1, 2, of Ω \ (C2 ∪ γ), respectively. Note

that Θ1,Θ3 are disjoint from C2 ∪ γ, since C2 ⊂ ũ−1(t) and t 6= 0, 1. Hence, Θ1 and Θ3 lie in

components of Ω\(C2∪γ). We claim that one of the components V1 and V2, say V1, contains

neither Θ1 nor Θ3. This will be the desired component V with the claimed properties in the

previous paragraph. In particular, the arc β is an arc contained in ∂A1 ∩ ∂Qi.
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To prove our latter claim, we first observe that the components of the set Ω \ (C2 ∪ γ),

which is rel. open in Ω, are pathwise connected and rel. open in Ω. This is because Ω

is a Jordan region and thus it is locally pathwise connected; see [Wil70, Theorem 27.5

and Theorem 27.9]. The components V1 and V2 that contain A1 and A2, respectively, are

necessarily distinct. Otherwise, there is a path in Ω \ (C2 ∪ γ) that connects a point a1 ∈ A1

to a point a2 ∈ A2. Concatenating this path with a path inside Qi that connects a1 to a2

would provide a loop in Ω\C2 that separates C2, a contradiction to the connectedness of C2;

for the construction of that loop it is crucial that C2∩Qi = ∅. Suppose now that V1 contains

Θ1 and V2 contains Θ3. Then we can similarly construct path from Θ1 to Θ3 passing through

Qi that disconnects C2, a contradiction.

Step 2: The points x2 and x4 are the only points lying in u−1(t) ∩ ∂Qi.

Now, we show that there can be no third point in u−1(t) ∩ ∂Qi. In case x2 6= x4, we join

the points x2, x4 with an arc inside Qi and we obtain a continuum C that separates Θ1 and

Θ3, and intersects ∂Qi in two points. If x2 = x4 we just let C = C2 ∪ C4. The set Ω \ C

has at least two components, one containing Θ1 and one containing Θ3. If V is one of the

components of Ω\C, then we have u ≡ t on ∂∗V , which implies that u ≥ t or u ≤ t on V ∩S

by the maximum principle in Theorem 3.4.6.

Assume that there exists another point x ∈ ∂Qi ∩ u−1(t), x 6= x2, x4. The point x lies on

an open arc β ⊂ ∂Qi with endpoints x2, x4. This arc lies in one of the components of Ω \C,

so assume it lies in a component V on which u ≤ t. However, by the choice of t, arbitrarily

close to x we can find a point x+ ∈ β with u(x+) > t, a contradiction.

Proof of Lemma 3.5.7. The set of local maximum values of f : R→ R is the set

E = {y ∈ R : there exist x ∈ R and ε > 0 such that

y = f(x) and f(z) ≤ y for all |z − x| < ε}.

We will show that this set is at most countable. The claim for the local minimum values
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follows by looking at −f . Note that E =
⋃∞
n=1En, where

En = {y ∈ R : there exists x ∈ R such that

y = f(x) and f(z) ≤ y for all |z − x| < 1/n}.

Hence, it suffices to show that En is at most countable for each n ∈ N. For each y ∈ En

there exists x ∈ R such that f(x) = y, and there exists an interval I = (x − 1/n, x + 1/n)

such that f(z) ≤ y for all z ∈ I. If y1, y2 ∈ En are distinct with y1 = f(x1), y2 = f(x2),

and I1, I2 are the corresponding intervals, then 1
2
I1 := (x1 − 1/2n, x1 + 1/2n) and 1

2
I2 :=

(x2−1/2n, x2 +1/2n) are necessarily disjoint intervals. This implies that En is in one-to-one

correspondence with a family of disjoint open subintervals of R, and hence En is at most

countable.

The next corollary is immediate:

Corollary 3.5.8. For each peripheral disk Qi, i ∈ N, and for a.e. t ∈ [mQi ,MQi ] the

intersection u−1(t) ∩ ∂Qi contains precisely two points.

Proof. Assume thatmQi(u) < MQi(u) (i.e., oscQi(u) 6= 0), and choose a t ∈ (mQi(u),MQi(u))

so that the conclusion of Lemma 3.5.6 is true. Consider two points pi, qi ∈ ∂Qi such that

u(pi) = mQi(u) and u(qi) = MQi(u). Applying the intermediate value theorem on each of

the two arcs between the points pi, qi, it follows that u−1(t) ∩ ∂Qi contains at least two

points.

Remark 3.5.9. It is clear from the proof of Lemma 3.5.6 that we only need to exclude at

most countably many t ∈ [mQi(u),MQi(u)] for the conclusion of Corollary 3.5.8.

We continue with an absolute continuity lemma. This is the most technical part of the

section. We first observe the following consequence of the fatness of the peripheral disks:

Remark 3.5.10. If a peripheral disk Qi, i ∈ N, intersects two circles ∂B(x, r) and ∂B(x,R)

with 0 < r < R, then

H2(Qi ∩ (B(x,R) \B(x, r))) ≥ C(R− r)2,
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where C > 0 is a constant depending only on the fatness constant of condition (3.1.2). To

see this, by the connectedness of Qi there exists a point y ∈ Qi ∩ ∂B(x, (r + R)/2). Then

B(y, (R− r)/2) ⊂ B(x,R) \B(x, r), so

H2(Qi ∩ (B(x,R) \B(x, r))) ≥ H2(Qi ∩B(y, (R− r)/2)) ≥ K1
(R− r)2

4
,

by the fatness condition (3.1.2).

Lemma 3.5.11. For a.e. t ∈ [0, 1] we have H1(u−1(t)) = 0.

The proof is very technical so we provide first a rough sketch of the argument. For a

fixed ε > 0 we will find an effective cover (up to a small set) of S =
⋃
t∈[0,1] u

−1(t) by balls

Bj of radius rj < ε. Then for each t the quantity H1
ε(u
−1(t)) is bounded by

∑
2rj, where

the sum is over the balls intersecting u−1(t). We wish to show that H1
ε(u
−1(t)) converges to

0 as ε→ 0 for a.e. t ∈ [0, 1]. One way of proving this is by integrating
∑

2rj over t ∈ [0, 1],

and showing that the integral converges to 0.

Upon integrating, one obtains an expression of the form∑
j

rj diam(u(Bj ∩ S)),

so we wish to find good bounds for diam(u(Bj ∩ S)). Thus, we produce bounds using the

upper gradient inequality, in combination with the maximum principle (see Lemma 3.4.7):

diam(u(Bj ∩ S)) ≤
∑

i:Qi∩∂Bj 6=∅

osc
Qi

(u).

This is where technicalities arise, because the right hand side is not a good enough bound

for all balls Bj.

The bound turns out to be good, in case the ball Bj intersects only “small” peripheral

disks Qi of diameter . rj, or in case the “large” peripheral disks that are possibly intersected

by Bj do not have serious contribution to the upper gradient inequality and can be essentially

ignored:

diam(u(Bj ∩ S)) .
∑

i:Qi∩∂Bj 6=∅
Qi “small”

osc
Qi

(u).
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We call “good” the balls Bj satisfying the above.

However, there is a “bad” subcollection of the balls Bj for which the above estimate fails.

Namely, these are the balls that intersect some relatively large peripheral disk Qi, but the

latter also has a serious contribution to the upper gradient inequality and cannot be ignored.

We amend this by essentially discarding these “bad” balls Bj from our effective cover of the

set
⋃
t∈[0,1] u

−1(t), and then replacing each of them (in the cover) with a corresponding “large”

peripheral disk Qi (after enlarging it slightly so that we still obtain a cover).

Then, H1
ε(u
−1(t)) is bounded by

∑
2rj +

∑
diam(Qi),

where the first sum is over the “good” balls intersecting u−1(t) and the second sum is over

the “large” peripheral disks Qi corresponding to “bad” balls that intersect u−1(t). One now

integrates over t ∈ [0, 1] as before, and treats separately the terms corresponding to the

“good” and “bad” balls. We proceed with the details.

Proof. By Lemma 3.5.6, for a.e. t ∈ (0, 1) the level set u−1(t) intersects ∂Ω and ∂Qi in at

most two points, for all i ∈ N. Hence, it suffices to show that for a.e. t ∈ (0, 1) the set

u−1(t) ∩ S◦ has H1-measure equal to zero. Recall that S◦ contains the points of the carpet

not lying on any peripheral circle.

For a fixed ε > 0 consider the finite set E = {i ∈ N : diam(Qi) > ε}. We cover

Ω \
⋃
i∈E Qi by balls Bj of radius rj < ε such that 2Bj ⊂ Ω \

⋃
i∈E Qi and such that 1

5
Bj are

disjoint. The existence of this collection of balls is justified by a basic covering lemma; see

e.g. [Hei01, Theorem 1.2].

Let J be the family of indices j such that for each s ∈ [1, 2] we have

diam(u(sBj ∩ S)) ≥ k osc
Qi

(u) (3.5.6)

for all peripheral disks Qi with diam(Qi) > 8rj that intersect ∂(sBj), where k ≥ 1 is a

constant to be determined. It follows from Remark 3.5.10 that for each j ∈ J there can be

at most N0 such peripheral disks Qi, where N0 depends only on the fatness constant. Indeed,
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each such Qi must intersect both ∂(2Bj) and ∂(4Bj), so it follows that

H2(Qi ∩ 4Bj) ≥ H2(Qi ∩ (4Bj \ 2Bj)) ≥ Cr2
j

for a uniform constant C > 0, depending only on the fatness constant. Comparing the area

of 4Bj with H2(Qi ∩ 4Bj) we arrive at the conclusion.

We fix a ball Bj, j ∈ J , and peripheral disks Qi1 , . . . , QiN as above, where N ≤ N0. These

are the peripheral disks with diameter bigger than 8rj, each of which intersects ∂(sBj) for

some s ∈ [1, 2] and satisfies (3.5.6). Our goal is to show that there exists a uniform constant

C > 0, such that for a.e. s ∈ (1, 2) we have

diam(u(sBj ∩ S)) ≤ C
∑

i:Qi∩∂(sBj) 6=∅
i 6=i1,...,iN

osc
Qi

(u), (3.5.7)

provided that we choose k suitably, depending only on the data. In other words, the con-

tribution of oscQi1 (u), . . . , oscQiN (u) in the upper gradient inequality is negligible. We fix

s ∈ (1, 2) such that the conclusion of Lemma 3.4.7 holds, i.e.,

diam(u(sBj ∩ S)) ≤
∑

i:Qi∩∂(sBj) 6=∅

osc
Qi

(u).

If none of Qi1 , . . . , QiN intersects ∂(sBj), then (3.5.7) follows immediately, so we assume that

this is not the case. After reordering, suppose that Qi1 , . . . , QiM , M ≤ N , are the peripheral

disks intersecting ∂(sBj), among Qi1 , . . . , QiN . We have

diam(u(sBj ∩ S)) ≤
∑

i:Qi∩∂(sBj)6=∅
i 6=i1,...,iM

osc
Qi

(u) +
M∑
l=1

osc
Qil

(u)

≤
∑

i:Qi∩∂(sBj)6=∅
i 6=i1,...,iM

osc
Qi

(u) +
M

k
diam(u(sBj ∩ S)).

We consider k := 2N0 ≥ 2N ≥ 2M . Then

diam(u(sBj ∩ S)) ≤ 2
∑

i:Qi∩∂(sBj)6=∅
i 6=i1,...,iM

osc
Qi

(u)

and this completes the proof of (3.5.7).
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If we write Bj = B(xj, rj), then (3.5.7) implies that

diam(u(Bj ∩ S)) ≤ diam(u(sBj ∩ S)) ≤ C
∑

i:Qi∩∂B(xj ,s)6=∅
i 6=i1,...,iN

osc
Qi

(u)

for a.e. s ∈ (rj, 2rj). Integrating over s ∈ (rj, 2rj) and applying Fubini’s theorem yields

rj diam(u(Bj ∩ S)) ≤ C
∑

i:Qi∩2Bj 6=∅
i 6=i1,...,iN

osc
Qi

(u)

∫ 2rj

rj

χQi∩∂B(xj ,s)
ds

≤ C
∑

i:Qi∩2Bj 6=∅
i 6=i1,...,iN

osc
Qi

(u) diam(Qi).

We note that if Qi ∩ 2Bj 6= ∅ and i 6= i1, . . . , iN , then diam(Qi) ≤ 8rj (by the definition of

i1, . . . , iN), so Qi ⊂ 11Bj. Therefore,

rj diam(u(Bj ∩ S)) ≤ C
∑

i:Qi⊂11Bj

osc
Qi

(u) diam(Qi). (3.5.8)

For each j ∈ J now consider the smallest interval Ij containing u(Bj ∩ S), and define

gε(t) =
∑

j∈J 2rjχIj(t), t ∈ [0, 1].

On the other hand, for each j /∈ J there exists s = sj ∈ [1, 2] and there exists a peripheral

disk Qi that intersects ∂(sBj) with diam(Qi) > 8rj, but diam(u(sBj∩S)) < k oscQi(u). Note

that some Qi might correspond to multiple balls Bj, j /∈ J . Consider the family {Qi}i∈I of

all peripheral disks that correspond to balls Bj, j /∈ J , and let for each i ∈ I

Q̃i := Qi ∪
⋃
{sjBj : Qi ∩ ∂(sjBj) 6= ∅, diam(Qi) > 8rj,

and diam(u(sjBj ∩ S)) < k osc
Qi

(u)}.

It is easy to see that for every η > 0 there exist sj1Bj1 , sj2Bj2 ⊂ Q̃i such that

diam(u(Q̃i ∩ S)) ≤ diam(u(∂Qi)) + diam(u(sj1Bj1 ∩ S)) + diam(u(sj2Bj2 ∩ S)) + η

≤ osc
Qi

(u) + 2k osc
Qi

(u) + η.

Hence,

diam(u(Q̃i ∩ S)) ≤ C osc
Qi

(u) (3.5.9)
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for all i ∈ I, where C = 1+2k and depends only on the data. Also, observe that diam(Q̃i) <

2 diam(Qi), since diam(Qi) > 8rj whenever sjBj ⊂ Q̃i and sj ≤ 2. For each i ∈ I consider

the smallest interval Ii that contains u(Q̃i ∩ S), and define bε(t) =
∑

i∈I 2 diam(Qi)χIi(t),

t ∈ [0, 1]. We remark that I ∩ E = ∅ since the balls sjBj ⊂ 2Bj do not intersect peripheral

disks Qi, i ∈ E.

For each t ∈ [0, 1] the set u−1(t) ∩ S◦ is covered by the balls Bj, j ∈ J , and the sets Q̃i,

i ∈ I. Since rj < ε for j ∈ J and diam(Qi) < ε for i ∈ I, we have

H1
ε(u
−1(t) ∩ S◦) ≤ gε(t) + bε(t).

It suffices to show that gε(t) → 0 and bε(t) → 0 for a.e. t ∈ [0, 1], along some sequence of

ε→ 0.

Note first that by (3.5.9) we have∫ 1

0

bε(t) dt = 2
∑
i∈I

diam(Qi) diam(u(Q̃i ∩ S))

≤ 2C
∑
i∈N\E

diam(Qi) osc
Qi

(u)

≤ 2C

∑
i∈N\E

diam(Qi)
2

1/2∑
i∈N\E

osc
Qi

(u)2

1/2

.

The first sum is finite by the quasiballs assumption (3.1.1), and the second is also finite since

u ∈ W1,2(S). As ε → 0, the set E increases to N, hence the sums converge to zero. This

shows that bε → 0 in L1. In particular bε(t)→ 0 a.e., along a subsequence.

Finally, we show the same conclusion for gε(t). By (3.5.8) we have∫ 1

0

gε(t) dt =
∑
j∈J

2rj diam(u(Bj ∩ S)) ≤ 2C
∑
j∈J

∑
i:Qi⊂11Bj

osc
Qi

(u) diam(Qi). (3.5.10)

We define h(x) =
∑

i∈N(oscQi(u)/ diam(Qi)) ·χQi(x). By the quasiballs assumption we have

diam(Qi)
2 ' H2(Qi) for all i ∈ N, hence the right hand side in (3.5.10) can be bounded up

to a constant by ∑
j∈J

∫
11Bj

h(x) dH2(x).
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IfMh denotes the uncentered Hardy-Littlewood maximal function of h, the above is bounded,

up to a constant by

∑
j∈J

∫
1
5
Bj

Mh(x) dH2(x) =

∫
⋃
j∈J

1
5
Bj

Mh(x) dH2(x)

≤
∫

Ω\
⋃
i∈E Qi

Mh(x) dH2(x),

where we used the fact that the balls 1
5
Bj are disjoint. We wish to show that the latter

converges to 0 as ε→ 0. Then, we will indeed have
∫ 1

0
gε(t) dt→ 0 as ε→ 0, as desired.

SinceH2(S) = 0, it follows thatH2(Ω\
⋃
i∈E Qi)→ 0 as ε→ 0. Note now that h ∈ L2(Ω),

with ∫
Ω

h2(x)dH2(x) '
∑
i∈N

osc
Qi

(u)2 = D(u) <∞.

By the L2-maximal inequality we have Mh ∈ L2(Ω) ⊂ L1(Ω), and this implies that∫
Ω\

⋃
i∈E Qi

Mh(x) dH2(x)→ 0

as ε→ 0.

Remark 3.5.12. The fatness of the peripheral disks was crucial in the preceding argument,

and it would be interesting if one could relax the assumption of fatness to e.g. a Hölder

domain (see [SS90] for definition) assumption on the peripheral disks.

Next, we wish to show that for a.e. t ∈ [0, 1] the level set αt = ũ−1(t) is a simple curve

that joins Θ2 and Θ4. We include a topological lemma.

Lemma 3.5.13. Let C ⊂ R2 be a locally connected continuum with the following property:

it is a minimal continuum that connects two distinct points a, b ∈ R2. Then C can be

parametrized by a simple curve γ.

The minimality of C is equivalent to saying that any compact proper subset of C is either

disconnected, or it does not contain one of the points a, b.
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Proof. It is a well-known fact that a connected, locally connected compact metric space (also

known as a Peano space) is arcwise connected, i.e., any two points in the space can be joined

by a homeomorphic image of the unit interval; see [Wil70, Theorem 31.2, p. 219]. In our

case, there exists a homeomorphic copy γ ⊂ C of the unit interval that connects a and b.

The minimality of C implies that C = γ.

Next, we show that for a.e. t ∈ (0, 1) the level set αt = ũ−1(t) satisfies the assumptions

of the previous lemma.

Lemma 3.5.14. For a.e. t ∈ (0, 1) the level set αt is a simple curve that connects Θ2 to Θ4.

Moreover, if αt ∩ Qi 6= ∅ for some i ∈ N, then αt ∩ Qi is precisely an arc with two distinct

endpoints on ∂Qi.

Proof. By Lemma 3.5.1, for each t ∈ (0, 1) the level set αt is simply connected and connects

Θ2 to Θ4. We choose a t ∈ (0, 1) that is not a local maximum or local minimum value of u

on ∂Ω or on any peripheral circle ∂Qi, i ∈ N. Note that this implies that ũ is non-constant

in Qi whenever αt ∩ Qi 6= ∅. There are countably many such values t that we exclude; see

proof of Lemma 3.5.6. Restricting our choice even further, we assume that t is not a critical

value of ũ on any Qi, i ∈ N; a non-constant planar harmonic function has at most countably

many critical values. Finally, suppose that we also have H1(u−1(t)) = 0, which holds for a.e.

t ∈ (0, 1) by Lemma 3.5.11.

Using an argument similar the proof of Lemma 3.5.6 we show that αt is a minimal

continuum connecting Θ2 to Θ4. Consider a minimal continuum C ⊂ αt joining Θ2 and Θ4.

The maximum principle from Theorem 3.4.8 implies that on each of the components of Ω\C

we have ũ ≥ t or ũ ≤ t. If C 6= αt then there exists a point x ∈ αt \ C, lying in the interior

(rel. Ω) of one of these components. If x ∈ Qi for some i ∈ N or x ∈ ∂Ω, by the choice of t,

arbitrarily close to x we can find points x+, x− ∈ Ω with ũ(x+) > t and ũ(x−) < t. This is

a contradiction.

If x ∈ S◦, then we claim that arbitrarily close to x there exists a point y ∈ αt ∩ Qi \ C

for some i ∈ N. In this case we are led to a contradiction by the previous paragraph.
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Now we prove our claim; see also Lemma 3.3.7. If it failed, then there would exist a small

ball B(x, ε) such that all points y ∈ αt ∩ B(x, ε) lie in S◦. Since αt is connected and it

exits B(x, ε), there exists a continuum β ⊂ αt ∩ B(x, ε) ∩ S◦ with diam(β) ≥ ε/2. Then

H1(u−1(t)) = H1(αt ∩ S) ≥ diam(β) > 0, a contradiction to the choice of t.

Next, we show that αt is locally connected. We will use the following lemma that we

prove later:

Lemma 3.5.15. Suppose that a compact connected metric space X is not locally connected.

Then there exists an open set U with infinitely many connected components having diameters

bounded below.

Assume that αt is not locally connected. Then there exists an open set U and ε > 0

such that U ∩ αt contains infinitely many components Cn, n ∈ N, of diameter at least ε. By

passing to a subsequence, we may assume that the continua Cn converge to a continuum C

in the Hausdorff sense, with diam(C) ≥ ε. By the continuity of ũ, it follows that C ⊂ αt.

We claim that C ⊂ S, so C ⊂ u−1(t). Assuming the claim, we obtain a contradiction, since

ε ≤ H1(C) ≤ H1(u−1(t)) = 0.

If C ∩ Qi 6= ∅, then by shrinking C and Cn we may assume that C,Cn ⊂⊂ Qi for all

n ∈ N. By our choice, t is not a critical value of ũ on Qi. Finding a local harmonic conjugate

ṽ, we see that the pair G := (ũ, ṽ) yields a conformal map on a neighborhood of C. Thus for

infinitely many n ∈ N the continua Cn have large diameter and lie on the preimage under

G of a vertical line segment. This contradicts, e.g., the rectifiability of the preimage of this

segment.

Our last assertion in the lemma follows from the fact that αt is a simple curve and the

maximum principle in Theorem 3.4.6. Indeed, by Corollary 3.5.8, for a.e. t ∈ [mQi(u),MQi(u)]

the intersection αt ∩ ∂Qi contains precisely two points x, y. If αt ∩Qi = ∅ then αt connects

x, y “externally”, and there exists a region V ⊂ Ω bounded by αt and an arc inside Qi joining

x, y. However, by the maximum principle u has to be constant in V ∩ S. Then V ∩ S ⊂ αt,

which contradicts the fact that αt is a simple curve. Therefore, αt ∩Qi 6= ∅, and since αt is

a simple curve, the conclusion follows.
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Proof of Lemma 3.5.15. We will use the fact that a space X is locally connected if and only

if each component of each open set is open; see [Wil70, Theorem 27.9].

Suppose that X is not locally connected. Then there exists an open set U and a com-

ponent C0 of U that is not open. This implies that there exists a point x ∈ C0 and ε > 0

such that for each δ < ε we have B(x, δ) ⊂ B(x, ε) ⊂ U and B(x, δ) intersects a component

Cδ of U , distinct from C0. We claim that the component Cδ has to meet ∂B(x, ε), and

in particular diam(Cδ) ≥ ε − δ. Repeating the argument for a sequence of δ → 0 yields

eventually distinct components Cδ and leads to the conclusion.

Now we prove our claim. Suppose for the sake of contradiction that Cδ does not intersect

∂B(x, ε). Then Cδ is compact, because it is closed in U (as a component of U) and all of

its limit points (in X) are contained in B(x, ε) ⊂ U . Since X is a continuum, there exists

a continuum K ⊂ X that connects Cδ to ∂B(x, ε) with K ⊂ B(x, ε); see also the proof of

Lemma 3.5.6. In particular, K ∪ Cδ is a connected subset of U , which contradicts the fact

that Cδ is a component of U .

3.6 The conjugate function v

In order to define the conjugate function v : S → R we introduce some notation. For i ∈ N

let ρ(Qi) := oscQi(u) and for a path γ ⊂ Ω define

`ρ(γ) =
∑

i:Qi∩γ 6=∅

ρ(Qi).

We would like to emphasize that we have not defined oscQ0(u) (where Q0 = C \Ω), and also

terms corresponding to i = 0 are not included in the summations, as above. We will first

define a coarse version v̂ of the conjugate function which is only defined on the set {Qi}i∈N

of peripheral disks, and then we will define the conjugate function v by taking limits of v̂.

Let T be the family of t ∈ (0, 1) for which the conclusions of Theorem 3.5.2, Lemma

3.5.6, Corollary 3.5.8, Lemma 3.5.11 and Lemma 3.5.14 hold. Furthermore, we assume that

Lemma 3.5.4 can be applied for the sequence h(Qi) = ρ(Qi)
2. Finally, we assume that each

t ∈ T is not a local extremal value of u on ∂Ω or on any peripheral circle ∂Qi, i ∈ N. This,
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in particular, implies that ρ(Qi) > 0 whenever αt ∩Qi 6= ∅, since otherwise u is constant on

∂Qi. It also implies that if αt intersects Qi, i ∈ N, then for all sufficiently small h > 0 the

level set αt±h intersects Qi.

If ρ(Qi) > 0, then for t ∈ T ∩ [mQi(u),MQi(u)] the path αt = ũ−1(t) intersects ∂Qi at

two points. We parametrize αt : [0, 1]→ Ω so that αt(0) ∈ Θ2 and αt(1) ∈ Θ4. We consider

an open subpath αit of αt, terminated at the first entry point of αt in ∂Qi. This is to say

that αit starts at Θ2 and terminates at ∂Qi, while αit ∩ ∂Qi = ∅. We then define

v̂(Qi) = inf{`ρ(αit) : t ∈ T ∩ [mQi(u),MQi(u)]}.

Note that we define v̂(Qi) whenever ρ(Qi) > 0. By Theorem 3.5.2 we have 0 ≤ v̂(Qi) ≤ D(u)

for all i ∈ N. In fact, the infimum is not needed:

Lemma 3.6.1. Fix a peripheral disk Qi0, i0 ∈ N. If s, t ∈ T ∩ [mQi0
(u),MQi0

(u)], then

`ρ(α
i0
s ) = `ρ(α

i0
t ). In particular, we have v̂(Qi0) = `ρ(α

i0
s ).

Proof. Suppose that s 6= t. For simplicity, denote γs = αi0s and define γ̃t to be the smallest

open subpath of αt that connects ∂Qi0 to Θ4. By Lemma 3.5.14 the curves αi0t and γ̃t meet

disjoint sets of peripheral disks. Thus, by Theorem 3.5.2

`ρ(α
i0
t ) + ρ(Qi0) + `ρ(γ̃t) = `ρ(αt) = D(u). (3.6.1)

For small h > 0 so that s±h ∈ T , each of the disjoint curves αs+h, αs−h intersects ∂Qi0 at

two points. The strip As−h,s+h is a (closed) Jordan region bounded by the curves αs−h, αs+h,

and subarcs of Θ2 and Θ4; see Proposition 3.5.1 and Lemma 3.5.14. Also, this Jordan region

contains αs ⊃ γs. Since ∂Qi0 meets both boundary curves αs−h and αs+h, it follows that

As−h,s+h \ Qi0 has two components, which are (closed) Jordan regions, one intersecting Θ2

and one intersecting Θ4. Let Ωs,h ⊂ As−h,s+h \Qi0 be the (closed) Jordan region intersecting

Θ2, so γs ⊂ Ωs,h. In a completely analogous way we define a closed Jordan region Ω̃t,h that

intersects Θ4 and contains γ̃t. Here, we first need to refine our choice of h > 0 so that we

also have t± h ∈ T . Finally, since s 6= t, if h > 0 is chosen to be sufficiently small, we may

have that the strips As−h,s+h and At−h,t+h are disjoint, and hence, so are the regions Ωs,h

and Ω̃t,h.
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Following the notation in the proof of Theorem 3.5.3, we define Fs,h to be the family of

indices i ∈ N\{i0} such that Qi∩αs−h 6= ∅, Qi∩αs+h 6= ∅, and Qi∩γs 6= ∅. In an analogous

way we define Ft,h that corresponds to γ̃t. Then as h→ 0 we have

∑
i∈Fs,h

ρ(Qi)→
∑

i:Qi∩γs 6=∅

ρ(Qi) and
∑
i∈Ft,h

ρ(Qi)→
∑

i:Qi∩γ̃t 6=∅

ρ(Qi). (3.6.2)

Also, we define Nh = {i ∈ N : Qi ∩ (As−h,s+h ∪ At−h,t+h) 6= ∅} \ (Fs,h ∪ Ft,h ∪ {i0}).

The set Ω\(Ωs,h∪Ω̃t,h∪Qi0) has precisely a component V1 containing Θ1 and a component

V3 containing Θ3. Now, consider the function

g(x) =



0, x ∈ V1 ∩ S

u(x)−(s−h)
2h

, x ∈ Ωs,h ∩ S

u(x)−(t−h)
2h

, x ∈ Ω̃t,h ∩ S

1, x ∈ V3 ∩ S.

Using Lemma 3.4.4, one can show that g ∈ W1,2(S). We provide some details. Let Us =

u(x)−(s−h)
2h

∨ 0, and consider a bump function φs : C→ [0, 1] that is identically equal to 1 on

Ωs,h, and vanishes on Ω̃t,h. Similarly consider Ut and φt, which is a bump function equal to

1 on Ω̃t,h but vanishes on Ωs,h. Then Usφs + Utφt lies in W1,2(S). We now have

g(x) =


Us(x)φs(x) + Ut(x)φ(x), x ∈ S \ V3

1, x ∈ V3 ∩ S.

On ∂V3 ∩ S the two alternatives agree, so by Lemma 3.4.4 we conclude that g ∈ W1,2(S).

Also, we have

osc
Qi

(g)


= 1, i ∈ Fs,h ∪ Ft,h ∪ {i0}

≤ ρ(Qi)/2h, i ∈ Nh

= 0, i /∈ Fs,h ∪ Ft,h ∪ {i0} ∪Nh.

We only need to justify the middle inequality. If Qi, i ∈ Nh, intersects only one of Ωs,h, Ω̃t,h,

then it is clear by the definition of g. If Qi intersects both Ωs,h and Ω̃t,h then Qi has to
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meet either V1 or V3. Suppose that it meets V1. Then the minimum of g on ∂Qi is 0, and

the maximum is attained at a point of Ωs,h or Ω̃t,h. Suppose that the maximum is attained

at a point of Ωs,h. It follows that both the minimum and the maximum of g on ∂Qi are

attained in Ωs,h, and the definition of g implies that the oscillation is bounded by ρ(Qi)/2h,

as desired. The other cases yield the same conclusion.

Since every convex combination of u and g is admissible for the free boundary problem,

it follows that

D(u) ≤
∑
i∈N

ρ(Qi) osc
Qi

(g).

See also the proof of Proposition 3.5.3 and (3.5.2). Thus,

D(u) ≤
∑
i∈Fs,h

ρ(Qi) +
∑
i∈Ft,h

ρ(Qi) + ρ(Qi0) +
1

2h

∑
i∈Nh

ρ(Qi)
2.

Letting h→ 0 and using (3.6.2), together with Lemma 3.5.4, we obtain

D(u) ≤ `ρ(γs) + `ρ(γ̃t) + ρ(Qi0) = `ρ(α
i0
s ) + `ρ(γ̃t) + ρ(Qi0).

By (3.6.1) we obtain `ρ(α
i0
t ) ≤ `ρ(α

i0
s ). The roles of s, t is symmetric, so the conclusion

follows.

If a point x ∈ S has arbitrarily small neighborhoods that contain some Qi with ρ(Qi) > 0,

then we define

v(x) = lim inf
Qi→x,x/∈Qi

v̂(Qi), (3.6.3)

where in the limit we are only using peripheral disks for which ρ(Qi) > 0, since for the other

peripheral disks v̂ is not defined. Observe that 0 ≤ v(x) ≤ D(u) < ∞. If x ∈ αt ∩ S for

some t ∈ T , then we can approximate x by peripheral disks Qi that intersect αt; this follows

from Lemma 3.3.7 because H1(αt∩S) = 0 by Lemma 3.5.11. All these peripheral disks have

ρ(Qi) > 0 and thus v(x) can be defined by the preceding formula.

If v(x0) cannot be defined, this means that there exists a neighborhood of x0 that contains

only peripheral disks with ρ(Qi) = 0; note that x0 could lie on some peripheral circle ∂Qi0
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with ρ(Qi0) > 0. The continuity of u and the upper gradient inequality imply that u is

constant in this neighborhood (see Lemma 2.7.2), and in particular it takes some value t0,

where t0 /∈ T . We define U := intΩ(αt0) (i.e., the interior of αt0 rel. Ω) and observe that if x0

does not lie on a peripheral circle ∂Qi0 with ρ(Qi0) > 0, then x0 ∈ U . In particular, this is

true if x0 ∈ S◦. If x0 lies on some peripheral circle with ρ(Qi0) > 0, then x0 ∈ V , where V is

a component of U . The set V is rel. open in Ω (see Theorem [Wil70, Theorem 27.9]) and if it

intersects a peripheral disk Qi, then ρ(Qi) = 0 and Qi ⊂ V . Indeed, if V ∩Qi 6= ∅ then the

(classical) harmonic function ũ
∣∣
Qi

is constant, equal to t0, since it is constant on an open set.

Another observation is that V is pathwise connected. This is because it is a component of

the open subset U of Ω, and Ω is locally pathwise connected; see [Wil70, Theorem 27.5 and

Theorem 27.9]. In fact, V ∩ Ω is pathwise connected, because any path in V that connects

two points of V ∩ Ω is homotopic to a path in V ∩ Ω that connects the same points.

The following lemma allows us to define v on all of S.

Lemma 3.6.2. Let V be a component of intΩ(αt0) for some t0 /∈ T . Then the function v

has the same value on the points x ∈ ∂ΩV ∩ S for which the formula (3.6.3) is applicable,

and there exists at least one such point.

Here ∂ΩV is the boundary of V rel. Ω. Hence, the lemma allows us to define v to be

constant on V ∩ S.

For this proof and other proofs in this section we will use repeatedly Lemma 3.13.1 from

Section 3.13.

Proof. We will split the proof in four cases. We give details in the proof of Case 0 below,

and for the rest of the cases we will describe the variational argument that has to be used,

skipping some of the details.

Case 0: V contains only one peripheral disk Qi0 , hence V = Qi0 . The latter implication

holds since V is rel. open in Ω and if it contained points outside Qi0 it would also contain

other peripheral disks. By the discussion preceding the statement of the lemma, it follows

that on every point of ∂Qi0 the formula (3.6.3) is applicable. Also, ũ ≡ t0 on Qi0 , thus

140



ρ(Qi0) = 0. By a variational argument we now show that v is constant on ∂Qi0 . Let

a, b ∈ ∂Qi0 be arbitrary points, and assume there exists ε > 0 such that v(b) − v(a) ≥ 10ε.

Using Lemma 3.13.1, for every η > 0 we can find a test function ζ ∈ W1,2(S) that vanishes

on ∂Ω with 0 ≤ ζ ≤ 1, such that ζ ≡ 1 on small disjoint balls B(a, r) ∪B(b, r) ⊂ Ω, and

D(ζ)− osc
Qi0

(ζ)2 < η. (3.6.4)

Using (3.6.3), we can find peripheral disks Qia ⊂ B(a, r) and Qib ⊂ B(b, r) with ρ(Qia) > 0,

ρ(Qib) > 0 and

v̂(Qib)− v̂(Qia) > 9ε. (3.6.5)

By Lemma 3.6.1, we can consider s, t ∈ T , s 6= t, such that for the smallest open subpaths

γs, γt of αs, αt, respectively, that connect Θ2 to Qia , Qib , respectively, we have

v̂(Qia) = `ρ(γs) and v̂(Qib) = `ρ(γt). (3.6.6)

We also denote by γ̃t the smallest open subpath of αt that connects Qib to Θ4. By Theorem

3.5.2 we have

`ρ(γt) + `ρ(γ̃t) ≤ `ρ(αt) = D(u).

Thus, by (3.6.6)

v̂(Qia)− v̂(Qib) ≥ `ρ(γs) + `ρ(γ̃t)−D(u)

We claim that

`ρ(γs) + `ρ(γ̃t) ≥ D(u)− ε. (3.6.7)

This, together with the previous inequality, contradicts (3.6.5).

We now focus on proving (3.6.7). As in the proof of Lemma 3.6.1, we can consider a small

h > 0 and disjoint closed Jordan regions Ωs,h containing γs and Ω̃t,h containing γ̃t such that

Ωs,h connects Qia to Θ2 and Ω̃t,h connects Qib to Θ4; see Figure 3.2. Define Fs,h to be the set

of indices i ∈ N such that Qi∩γs 6= ∅, Qi∩αs−h 6= ∅, and Qi∩αs+h 6= ∅. Define similarly Ft,h

that corresponds to Ω̃t,h, and set Nh = {i ∈ N : Qi∩ (As−h,s+h∪At−h,t+h) 6= ∅}\ (Fs,h∪Ft,h).
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Θ2

Qi0Qia

γs
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Qia

Ωs,h

b

Qib

γ̃t

Qib

b

Ω̃t,h

Figure 3.2: The curves γs and γ̃t, and the corresponding Jordan regions Ωs,h and Ω̃t,h.
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Now, we define carefully an admissible function that lies in W1,2(S). Let φs : Ω → [0, 1]

be a smooth function that is equal to 1 on Ωs,h but vanishes outside Ωs,2h ∪ Qia (choose a

smaller h > 0 if necessary so that the Jordan region Ωs,2h still connects Θ2 to Qi0). Similarly,

define φt to be 1 on Ω̃t,h, and 0 outside Ω̃t,2h ∪Qib . Then define

Us(x) =


u(x)−(s−h)

h
∨ 0, u(x) < s

s+h−u(x)
h

∨ 0, u(x) ≥ s

=

(
1− |u(x)− s|

h

)
∨ 0 (3.6.8)

for x ∈ S, and similarly define Ut(x) where s is replaced by t in the previous definition.

These functions are supported on the sets {s− h < u < s+ h} = As−h,s+h ∩ S and {t− h <

u < t + h} = At−h,t+h ∩ S, respectively. Also, they lie in the Sobolev space W1,2(S) by

Lemma 3.4.4. We consider their truncation Usφs + Utφt, and then take (Usφs + Utφt) ∨ ζ.

This function again lies in W1,2(S), but it vanishes on Θ1 and Θ3, so it is not yet admissible

for the free boundary problem. To turn it into an admissible function, we would like to set

it equal to 1 near Θ3.

Consider the union of the following paths: γs that joins Θ2 to Qia , a line segment in

B(a, r) connecting the endpoint of γs to a, an arc inside Qi0 connecting a to b, a line

segment in B(b, r) connecting b to the endpoint of γ̃t, and γ̃t, where the latter connects Θ4

to Qib . This union separates Θ1 from Θ3, so it contains a simple path γ that connects Θ2 to

Θ4 and separates Θ1 from Θ3 (see e.g. the proof of Lemma 3.5.13). Let W be the component

of Ω \ γ that contains Θ3. We define

g(x) =


(Us(x)φs(x) + Ut(x)φt(x)) ∨ ζ(x), x ∈ S \W

1, x ∈ W ∩ S.

On γ ∩ S the function g is equal to 1 and the two alternatives agree, so by Lemma 3.4.4 we

conclude that g ∈ W1,2(S) and g is admissible. Furthermore, by construction and Lemma

3.4.4 we have

osc
Qi

(g) ≤ osc
Qi

(ζ) +


1, i ∈ Fs,h ∪ Ft,h ∪ {i0}

ρ(Qi)/2h, i ∈ Nh

0, i /∈ Fs,h ∪ Ft,h ∪ {i0} ∪Nh.
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τ
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Figure 3.3: Case 1 (left) and Case 2b (right).

Testing the minimizing property of u against g, as usual (see the proof of Proposition 3.5.3

and (3.5.2)), we obtain

D(u) ≤
∑
i∈N

ρ(Qi) osc
Qi

(g)

≤
∑
i∈N

ρ(Qi) osc
Qi

(ζ) +
∑
i∈Fs,h

ρ(Qi) +
∑
i∈Ft,h

ρ(Qi) + ρ(Qi0) +
1

2h

∑
i∈Nh

ρ(Qi)
2.

Letting h→ 0 and using Lemma 3.5.4 we obtain

D(u) ≤
∑

i∈N\{i0}

ρ(Qi) osc
Qi

(ζ) + `ρ(γs) + `ρ(γ̃t) + ρ(Qi0)

≤ D(u)1/2(D(ζ)− osc
Qi0

(ζ)2)1/2 + `ρ(γs) + `ρ(γ̃t) + ρ(Qi0)

≤ D(u)1/2η1/2 + `ρ(γs) + `ρ(γ̃t) + ρ(Qi0),

(3.6.9)

where we used (3.6.4). Note that ρ(Qi0) = 0. If η is chosen to be sufficiently small, depending

on ε, then (3.6.7) is satisfied and our claim is proved. We have completed the proof of Case

0.

Now, we analyze the remaining cases. If V contains more than one peripheral disk, then

it also contains a point x0 ∈ S◦, as one can see by connecting two peripheral disks of V with

a path inside V (recall that V is pathwise connected by the discussion preceding Lemma

3.6.2) and then applying Corollary 3.3.6. Using Lemma 3.3.5, we can find a path β ⊂ S◦
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that connects x0 to one of Θ1 or Θ3 that is not intersected by V ⊂ αt0 (recall that Θ1 ⊂ α0

and Θ3 ⊂ α1). Then β has to exit V , so it meets ∂ΩV ∩ S◦ at a point a. Since a ∈ S◦,

it follows that v(a) is defined by (3.6.3). Indeed, by the discussion preceding Lemma 3.6.2,

if a ∈ S◦ and v(a) cannot be defined by (3.6.3), then we necessarily have a ∈ intΩ(αt0) so

a /∈ ∂ΩV . We claim that for any point b ∈ ∂ΩV ∩ S for which definition (3.6.3) applies we

have v(b) = v(a).

Case 1: b ∈ S◦; see Figure 3.3. We keep the same notation as in Case 0. Since a, b ∈ S◦,

by Lemma 3.13.1, for every η > 0 we can find a test function ζ that vanishes on ∂Ω with

0 ≤ ζ ≤ 1, such that ζ ≡ 1 on disjoint balls B(a, r), B(b, r) ⊂ Ω and D(ζ) < η. We choose

Qia ⊂ B(a, r) and Qib ⊂ B(b, r) as before, and heading for a contradiction, we wish to show

again (3.6.7) using a variational argument.

Consider, as in Case 0 the functions Us, Ut, φs, φt with exactly the same definition, and the

function (Usφs+Utφt)∨ ζ (we choose a sufficiently small h > 0 so that this function vanishes

on Θ1 and Θ3). Also, consider the union of the following paths: γs that joins Θ2 to Qia , a

line segment in B(a, r) connecting the endpoint of γs to a point a1 ∈ V ∩ B(a, r), a simple

path τ inside the pathwise connected open set V ∩Ω joining a1 to a point b1 ∈ V ∩B(b, r), a

line segment in B(b, r) joining b1 to the endpoint of γ̃t, and γ̃t. This union contains a simple

path γ that separates Θ1 from Θ3. However, the function (Usφs+Utφt)∨ζ need not be equal

to 1 on γ ∩ τ ∩ S. We amend this as follows.

Let δ > 0 be so small that Nδ(τ) ⊂⊂ V ∩ Ω. Consider the Lipschitz function ψ(x) =

max{1−δ−1 dist(x, τ), 0} on Ω. Since ψ ≡ 1 on τ , it follows that the function (Usφs+Utφt)∨

ζ ∨ ψ is equal to 1 on γ ∩ S. Let W be the component of Ω \ γ containing Θ3, and define

g(x) =


(Us(x)φs(x) + Ut(x)φt(x)) ∨ ζ(x) ∨ ψ(x), x ∈ S \W

1, x ∈ W ∩ S.

This function lies in W1,2(S) by Lemma 3.4.4 and it is admissible. By construction, using
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notation from Case 0 we have

osc
Qi

(g) ≤ osc
Qi

(ζ) +



1, i ∈ Fs,h ∪ Ft,h

ρ(Qi)/2h, i ∈ Nh

0, i /∈ Fs,h ∪ Ft,h ∪Nh ∪ IV

δ−1diam(Qi), i ∈ IV .

Recall that IV = {i ∈ N : Qi ∩ V 6= ∅} and that Qi ⊂ V whenever Qi ∩ V 6= ∅; see remarks

before Lemma 3.6.2. Testing the minimizing property of u against g we obtain

D(u) ≤
∑
i∈N

ρ(Qi) osc
Qi

(g)

≤
∑
i∈N

ρ(Qi) osc
Qi

(ζ) +
∑
i∈Fs,h

ρ(Qi) +
∑
i∈Ft,h

ρ(Qi)

+
1

2h

∑
i∈Nh

ρ(Qi)
2 +

∑
i:Qi⊂V

δ−1ρ(Qi) diam(Qi).

(3.6.10)

Note that ρ(Qi) = 0 for all Qi ⊂ V , so the last term vanishes identically. By letting h → 0

and choosing a sufficiently small η > 0, we again arrive at (3.6.7) and this completes the

proof.

Case 2: b ∈ ∂Qi0 for some i0 ∈ N. Since b ∈ ∂Qi0 (as in Case 0), the difficulty is that

for the test function ζ (equal to 1 near b) we have oscQi0 (ζ) = 1. Thus, in the variational

argument the term
∑

i∈N ρ(Qi) oscQi(ζ) is not small, unless ρ(Qi0) = 0, which was true in

Case 0. We assume here that ρ(Qi0) > 0, since otherwise the argument is similar, but

simpler. Then Qi0 ∩ V = ∅, by the remarks before the statement of Lemma 3.6.2.

As in the other cases, we assume v(b) − v(a) ≥ 10ε and consider a test function ζ ∈

W1,2(S) that vanishes on ∂Ω with ζ ≡ 1 on B(a, r) ∪ B(b, r), and D(ζ) − oscQi0 (ζ)2 < η.

Furthermore, by the definition (3.6.3), we may take Qia ⊂ B(a, r) and Qib ⊂ B(b, r) such

that v̂(Qia) − v̂(Qib) > 9ε, and consider as in Case 0 the open paths γs and γ̃t. Again, we

are aiming for (3.6.7). We now split into two sub-cases:

Case 2a: γ̃t ∩Qi0 6= ∅. In this case, we use exactly the same function g ∈ W1,2(S) that

we used in Case 1, with the observation that i0 ∈ Ft,h, and oscQi0 (g) ≤ 1. Hence, (for all
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sufficiently small h > 0) we obtain the inequality (3.6.10) with the first sum replaced by a

sum over i ∈ N \ {i0}, because the term i = i0 is included in the third sum. The fact that∑
i∈N\{i0} ρ(Qi) oscQi(ζ) can be made arbitrarily small, leads to the conclusion.

Case 2b: γ̃t ∩ Qi0 = ∅; see Figure 3.3. In this case, we may assume that γs ∩ Qi0 = ∅

too, since otherwise we are essentially reduced to the previous case, where the summation

index i = i0 is included in the second sum appearing in (3.6.10).

We construct a path γ that separates Θ1 from Θ3 and does not intersect Qi0 . Consider

the union of the following continua: γs, a line segment in B(a, r) joining the endpoint of γs

to a point a1 ∈ V ∩B(a, r), a simple path τ ⊂ V connecting a1 to a point b1 ∈ V ∩B(b, r), a

simple path γb in B(b, r)\Qi0 connecting b1 to the endpoint of γ̃t, and γ̃t. For the existence of

γb note that if Qib is sufficiently close to b then it has to lie in the component of B(b, r) \Qi0

that contains b in its boundary; here one uses the local connectedness property of the Jordan

curve ∂Qi0 . Now we let γ be a simple path contained in this union, and separating Θ1 from

Θ3. Since Qi0 ∩ V = ∅, it follows that τ ∩Qi0 = ∅. To ensure that γ ∩Qi0 = ∅, one only has

to take a possibly smaller ball B(a, r), so that the line segment we considered there does not

meet Qi0 ; recall that a ∈ S◦.

Let W be the component of Ω \ γ that contains Θ3, and by construction Qi0 ⊂ W or

Qi0 ⊂ Ω \W . If Qi0 ⊂ W , then we consider the variation g as in Case 1, which is admissible

for a sufficiently small h > 0. Since g = 1 on ∂Qi0 , we have oscQi0 (g) = 0. Hence, we may

have (3.6.10) with the first sum replaced by
∑

i∈N\{i0} ρ(Qi) oscQi(ζ) and this completes the

proof.

Assume now that Qi0 ⊂ Ω \W . Consider the function g0 := (Usφs + Utφt) ∨ ζ ∨ ψ as in

Case 1, and define g1 = 1 on S \W , and g1 = g0 on S ∩W . Then g2 := 1− g1 is admissible

and satisfies oscQi0 (g2) = 0, which yields the result.

Case 3: b ∈ ∂Ω. The complication here is that our test function ζ does not vanish

at ∂Ω. It turns out though that we can always construct an admissible function using the

procedure in the Case 2b, as we explain below.

We consider a path γ as before that separates Θ1 and Θ3 such that γ contains a simple
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path τ ⊂ V as in Case 2. The function g0 := (Usφs +Utφt)∨ ζ ∨ψ is equal to 1 on γ∩S. Let

W be the component of Ω \ γ that contains Θ3. If g0 = 1 on points of Θ3, then g0 = 0 on

Θ1 (by choosing a sufficiently small h > 0 and a ζ with small support), so we can set g = 1

on S ∩W and g = g0 on S \W . If g0 = 1 on points of Θ1 then we “flip” the function g. We

set g1 = 1 on S \W and g1 = g0 on S ∩W . Then g2 := 1− g1.

The energy D(ζ) can be made arbitrarily small because b ∈ ∂Ω (recall Lemma 3.13.1),

so
∑

i∈N ρ(Qi) oscQi(ζ) can be made arbitrarily small in (3.6.10). In either case, running the

variational argument with the admissible function g or g2 will yield the conclusion.

Now we can define v on all of S as follows. Let x ∈ S. From the analysis preceding the

statement of Lemma 3.6.2 we see that either v(x) can be defined by the formula (3.6.3), or

x ∈ V ∩ S, where V is a component of U := intΩ(αt0) for some t0 /∈ T . In the latter case,

we define v(x) to be the constant value of v on the points of ∂ΩV ∩ S for which (3.6.3) is

applicable; there exists at least one such point by Lemma 3.6.2.

Following a similar argument to the proof of Lemma 3.6.2, we show that v is continuous

on S.

Lemma 3.6.3. The function v : S → R is continuous.

Proof. The proof uses essentially the same variational arguments as in the proof of Lemma

3.6.2, so we skip most of the details. We will also use the same notation as in Lemma 3.6.2.

This time we do not need to use the function ψ, and we only need to consider a test function

ζ that is supported in one small ball around the point that we wish to show continuity,

rather than having two disjoint balls (so the variational arguments here are simpler). By the

definition of v we only need to prove continuity for points x0 such that v(x0) is defined by

(3.6.3). Indeed, if x0 cannot be defined by (3.6.3), then x0 has a neighborhood in S where

v is constant. This is because this neighborhood is contained in V , where V is a component

of some set U = intΩ(αt0) for a level t0 /∈ T ; see also the comments before the statement of

Lemma 3.6.2.

For η > 0 consider a function ζ ∈ W1,2(S) supported around x0, with D(ζ) < η and ζ ≡ 1

148



in B(x0, r). If continuity at x0 fails, then there exists ε > 0 and a point y0 ∈ B(x0, r) ∩ S

arbitrarily close to x0 such that, say, v(y0)−v(x0) > 10ε. We claim that there exist peripheral

disks Qia , Qib ⊂ B(x0, r) arbitrarily close to x0 such that ρ(Qia), ρ(Qib) > 0 and

v̂(Qib)− v̂(Qia) > 9ε. (3.6.11)

Note that by the definition (3.6.3) there exists a peripheral disk Qia arbitrarily close to

x0 with ρ(Qia) > 0 and |v(x0) − v̂(Qia)| < ε/2. If v(y0) can be defined by (3.6.3), then

we can find a peripheral disk Qib arbitrarily close to y0 (and thus close to x0) such that

|v(y0) − v̂(Qib)| < ε/2. We now easily obtain (3.6.11). If y0 cannot be defined by (3.6.3),

then y0 ∈ V , where V is a component of U := intΩ(αt0) for some t0 /∈ T . Note that

x0 /∈ V , otherwise we would have v(x0) = v(y0) by Lemma 3.6.2. If y0 is sufficiently close

to x0, then by Lemma 3.3.5(a) we may consider a path γ ⊂ B(x, r) ∩ S◦ that connects

x0 and y0. Parametrizing γ as it runs from x0 to y0, we consider its first entry point z0

in ∂ΩV ∩ S◦. Then we necessarily have that v(y0) = v(z0) and v(z0) can be defined by

(3.6.3); see comments before Lemma 3.6.2. Thus, there exists a small Qib near z0 such that

|v(z0) − v̂(Qib)| < ε/2. If y0 is very close to x0 then γ 3 z0 is also very close to x0 (by

Lemma 3.3.5) and thus Qib is close to x0. Now (3.6.11) follows from the above and from the

assumption that v(z0)− v(x0) = v(y0)− v(x0) > 10ε.

By Lemma 3.6.1 we consider s, t ∈ T such that v̂(Qia) = `ρ(γs) and v̂(Qib) = `ρ(γt) where

γs and γt are the smallest open subpaths of αs, αt that connect Θ2 to Qia , Qib , respectively.

Also, denote by γ̃t the smallest open subpath of αt that connects Qib to Θ4. Arguing as in the

beginning of the proof of Lemma 3.6.2, it suffices to show (3.6.7) to obtain a contradiction.

We will split again in cases, and sketch the variational argument that has to be used. Recall

that will use the notation from the proof of Lemma 3.6.2.

Case 1: x0 ∈ S◦. We consider the function g0 := (Usφs + Utφt) ∨ ζ, and a simple path

γ that separates Θ1 from Θ3, such that g0 = 1 on γ ∩ S. Let W be the component of Ω \ γ

that contains Θ3. We define g = 1 on S ∩W and g = g0 on S \W . This yields an admissible

function, as long as h > 0 is sufficiently small so that g0 vanishes on Θ1. Then by testing

the minimizing property of u against g we obtain the conclusion.
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Case 2: x0 ∈ ∂Qi0 for some i0 ∈ N.

Case 2a: At least one of the sets γs, γ̃t meets Qi0 . This is treated similarly to Case 2a

in Lemma 3.6.2. The observation is that we have either i0 ∈ Fs,h or i0 ∈ Ft,h.

Case 2b: None of γs, γ̃t meets Qi0 . This is similar to the Case 2b in Lemma 3.6.2,

since we can construct a simple path γ that separates Θ1 from Θ3 so that the function

g0 = (Usφs + Utφt) ∨ ζ is equal to 1 on γ ∩ S and vanishes on Θ1 and Θ3.

Case 3: x0 ∈ ∂Ω. We consider a path γ as before such that g0 = 1 on γ ∩ S, and let W

be the component of Ω \ γ that contains Θ3. If g0 = 1 on points of Θ3, then g0 = 0 on Θ1

(by choosing a ζ with small support), so we can set g = 1 on S ∩W and g = g0 on S \W .

If g0 = 1 on points of Θ1 then we “flip” the function g. We set g1 = 1 on S \W and g1 = g0

on S ∩W . Then g2 := 1 − g1. In either case, running the variational argument with the

admissible function g or g2 will yield the conclusion.

Remark 3.6.4. A conclusion of the proof is that

v(x) = lim
Qi→x,x/∈Qi

v̂(Qi) (3.6.12)

whenever x can be approximated by Qi with ρ(Qi) > 0. If Qi ⊂ intΩ(αt0), where t0 /∈ T , by

Lemma 3.6.2 we can define v̂(Qi) to be equal to the constant value of v on ∂ΩV ∩ S, where

V is a component of intΩ(αt0). Thus, (3.6.12) can be used to define v at all points x ∈ S.

In the proofs of Lemma 3.6.2 and Lemma 3.6.3 we were always heading towards proving

(3.6.7). We see that the following general statement holds (using the notation of the proof

of Lemma 3.6.2):

Lemma 3.6.5. (a) Let x ∈ S and ε > 0. Then there exists a small r > 0 such that the

following hold. Suppose that Qia , Qib are peripheral disks contained in B(x, r) with

ρ(Qia) > 0, ρ(Qib) > 0. Moreover, let γs ⊂ αs be a path that connects Θ2 to Qia and

γ̃t ⊂ αt be a path that connects Θ4 to Qib, where s, t ∈ T . Then

`ρ(γs) + `ρ(γ̃t) ≥ D(u)− ε.

In the particular case that x ∈ Θ2, we obtain the stronger conclusion `ρ(γ̃t) ≥ D(u)− ε

and in case x ∈ Θ4 we have `ρ(γs) ≥ D(u)− ε.
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(b) Let ε > 0, i0 ∈ N, and x, y ∈ ∂Qi0. Then there exists a small r > 0 such that the

following hold. Suppose that Qia ⊂ B(x, r), Qib ⊂ B(y, r) with ρ(Qia) > 0, ρ(Qib) > 0.

Moreover, let γs ⊂ αs be a path that connects Θ2 to Qia and γ̃t ⊂ αt be a path that

connects Θ4 to Qib, where s, t ∈ T . Then

`ρ(γs) + ρ(Qi0) + `ρ(γ̃t) ≥ D(u)− ε.

Proof. Part (b) is proved with a slight modification of the proof of Case 0 in Lemma 3.6.2;

see (3.6.9) and Figure 2.1. The first claim in part (a) of the lemma follows essentially from

the arguments in the proof of Lemma 3.6.3. We will only justify the latter claim in (a) for

x ∈ Θ2, since the case x ∈ Θ4 is analogous. The notation that we use is the same as in the

proof of Lemma 3.6.2. Suppose that x ∈ Θ2 and consider a test function ζ ∈ W1,2(S) with

ζ ≡ 1 in a small ball B(x, r) and with small Dirichlet energy D(ζ). This is provided as usual

by Lemma 3.13.1. Consider the function g0 := (Utφt) ∨ ζ. There exists a simple path γ ⊂ Ω

that separates Θ1 and Θ3 with g0 = 1 on γ ∩ S. We let W be the component of Ω \ γ that

contains Θ3. If g0 = 1 on points of Θ3, then g0 = 0 on Θ1 (by choosing a ζ with a sufficiently

small support), so we can set g = 1 on S ∩W and g = g0 on S \W . If g0 = 1 on points

of Θ1 then we “flip” the function g. We set g1 = 1 on S \W and g1 = g0 on S ∩W . Then

g2 := 1− g1. In either case, running the standard variational argument with the admissible

function g or g2 will yield the conclusion.

Lemma 3.6.6. We have v ≡ 0 on Θ2 and v ≡ D(u) on Θ4. Furthermore, for each i ∈ N

we have oscQi(v) = oscQi(u) = ρ(Qi). In fact,

diam(v(∂Qi ∩ αt)) = osc
∂Qi∩αt

(v) = ρ(Qi)

for all t ∈ T with Qi ∩ αt 6= ∅.

Recall here that oscQi(v) := sup∂Qi(v)− inf∂Qi(v).

Proof. If a ∈ Θ2 ∩ αt for t ∈ T , then ρ(Qi) > 0 whenever Qi ∩ αt 6= ∅. By Lemma 3.3.7(b)

we can find Qi → a with Qi ∩ αt 6= ∅. Using (3.6.12) and Lemma 3.6.1 we obtain

v(a) = lim
Qi→a,Qi∩αt 6=∅

v̂(Qi) = lim
Qi→a,Qi∩αt 6=∅

∑
j:Qj∩αit 6=∅

ρ(Qj). (3.6.13)
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This limit is equal to zero, because the sum
∑

j:Qj∩αt 6=∅ ρ(Qj) is convergent and {j : Qj∩αit 6=

∅} “converges” to the emptyset as Qi → a, Qi ∩ αt 6= ∅; recall that αt is a path. Hence,

v(a) = 0 in this case. If t /∈ T and a ∈ Θ2 ∩ αt, by Lemma 3.6.2, it suffices to show that

v(a) = 0 whenever a can be approximated by Qi with ρ(Qi) > 0. If v(a) = 10ε > 0 then

we can find a small ball B(a, r) and a peripheral disk Qia ⊂ B(a, r) with ρ(Qia) > 0 and

v̂(Qia) > 9ε. Let γt, γ̃t ⊂ αt for t ∈ T be paths as in the proof of Lemma 3.6.2 that connect

Qia to Θ2,Θ4, respectively. We have

v̂(Qia) + ρ(Qia) + `ρ(γ̃t) = `ρ(γt) + ρ(Qia) + `ρ(γ̃t) = D(u),

which implies that v̂(Qia) ≤ D(u)− `ρ(γ̃t). However, by Lemma 3.6.5(a) we have

`ρ(γ̃t) ≥ D(u)− ε

and this leads to a contradiction.

Now, if a ∈ Θ4 ∩ αt for t ∈ T , again (3.6.12) and Lemma 3.6.1 we have

v(a) = lim
Qi→a,Qi∩αt 6=∅

v̂(Qi) = lim
Qi→a,Qi∩αt 6=∅

∑
j:Qj∩αit 6=∅

ρ(Qj) = D(u),

where the last equality follows from Theorem 3.5.2. If t /∈ T and a ∈ Θ4 ∩ αt then an

application of Lemma 3.6.5(a) proves that v(a) = D(u) as before.

Next, if ρ(Qi0) = 0 then Qi0 ⊂ αt for some t /∈ T and Lemma 3.6.2 implies that v is

constant on ∂Qi0 , so oscQi0 (u) = oscQi0 (v) = 0. We assume that ρ(Qi0) > 0. If ∂Qi0 ∩αt 6= ∅

for some t ∈ T , then ∂Qi0 ∩ αt contains precisely two points: x2, which is the entry point of

αt into Qi0 , and x4, which is the exit point, as αt travels from Θ2 to Θ4. Using (3.6.12) and

Lemma 3.6.1 as in (3.6.13), it is easy to see that v(x2) = v̂(Qi0) and v(x4) = v̂(Qi0)+ρ(Qi0).

This shows the last part of the lemma.

Now, if a ∈ ∂Qi0 ∩ αt0 for some t0 /∈ T then we need to show that v̂(Qi0) ≤ v(a) ≤

v̂(Qi0) + ρ(Qi0). This will complete the proof of the statement that oscQi0 (v) = ρ(Qi0).

Assume that v(a) < v̂(Qi0)− 10ε for some ε > 0, and without loss of generality assume that

v(a) is defined as in (3.6.3), thanks to Lemma 3.6.2. Then we can find some Qia ⊂ B(a, r)

(where r > 0 is arbitrarily small) with ρ(Qia) > 0 such that v̂(Qia) < v̂(Qi0)− 9ε. Consider
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the smallest open path γs ⊂ αs that connects Θ2 to Qia for some s ∈ T , so v̂(Qia) = `ρ(γs).

Also, consider the smallest open path γ̃t ⊂ αt that connects Qi0 to Θ4, for some t ∈ T (this

exists because ρ(Qi0) > 0). In particular, v̂(Qi0)+ρ(Qi0)+ `ρ(γ̃t) = D(u). The path γ̃t lands

at a point y ∈ ∂Qi0 , and we can find peripheral disks Qib intersecting γ̃t and lying arbitrarily

close to y, by Lemma 3.3.7(b). Then by Lemma 3.6.5(b) we have

`ρ(γs) + ρ(Qi0) + `ρ(γ̃t) ≥ D(u)− ε

and this contradicts as usual the assumption v̂(Qia) < v̂(Qi0)− 9ε.

Let us record a corollary:

Corollary 3.6.7. If t ∈ T , then v is strictly increasing on S ∩ αt, in the sense that if

x, y ∈ S ∩ αt and αt hits x before hitting y as it travels from Θ2 to Θ4, then v(x) < v(y).

Proof. Observe that ρ(Qi) > 0 for all Qi ∩ αt 6= ∅, and that “between” any two points

x, y ∈ S ∩ αt there exists some peripheral disk Qi with Qi ∩ αt 6= ∅. To make this more

precise, denote by [x, y] the arc of αt from x to y. Then H1([x, y]∩S) = 0 by Lemma 3.5.11,

so there exists a peripheral disk Qi with Qi∩ [x, y] 6= ∅; see also Lemma 3.3.7. Using Remark

3.6.4 and taking limits along peripheral disks that intersect αt we obtain

v(x) ≤ v̂(Qi) ≤ v(y)− ρ(Qi) < v(y).

The function v also satisfies a version of an upper gradient inequality. Recall that u

satisfies the upper gradient inequality in Definition 3.4.1, where we exclude a family of

curves Γ0 with mod(Γ0) = 0, i.e., vanishing carpet modulus.

Lemma 3.6.8. There exists a family of paths Γ0 with mod2(Γ0) = 0 such that for every path

γ ⊂ Ω with γ /∈ Γ0 and for every open subpath β of γ we have

|v(a)− v(b)| ≤
∑

i:Qi∩β 6=∅

ρ(Qi). (3.6.14)

for all a, b ∈ β ∩ S.
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We remark that in the sum we are using peripheral disks whose closure intersects β, in

contrast to Definition 3.4.1. Also, here we are excluding a path family of conformal modulus

zero, instead of carpet modulus. This is only a technicality and does not affect the ideas

used in the proof.

Proof. Consider a path γ ⊂ Ω with H1(γ ∩ S) = 0. This holds for mod2-a.e. γ ⊂ Ω because

H2(S) = 0. Let β be an open subpath of γ and assume that a, b are its endpoints. We wish

to show that

|v(a)− v(b)| ≤
∑

i:Qi∩β 6=∅

ρ(Qi). (3.6.15)

Recall that ρ(Qi) = oscQi(v) by Lemma 3.6.6. We suppose that

∑
i:Qi∩β 6=∅

ρ(Qi) <∞,

otherwise the statement is trivial. The statement is also trivial if a and b lie on the same

peripheral circle ∂Qi and β intersects Qi, so we assume that this is not the case. If a ∈ ∂Qia

for some ia ∈ N, let a′ ∈ ∂Qia be the last exit point of β from ∂Qia , assuming that it is

parametrized to run from a to b. Similarly, consider the point b′ ∈ ∂Qib of first entry of β

in ∂Qib , in case b ∈ ∂Qib . Note that |v(a)− v(a′)| ≤ oscQia (v) and |v(b)− v(b′)| ≤ oscQib (v),

so it suffices to prove the statement for the open subpath of β that connects a′ and b′. This

subpath has the property that it does not intersect the peripheral disks that possibly contain

a and b on their boundary. For simplicity we denote a′ by a, b′ by b and the subpath by β.

By Lemma 3.3.7 we can find arbitrarily close to a peripheral disks Qi with Qi ∩ β 6= ∅.

Using now Lemma 3.3.5(b), one can see that arbitrarily close to a there exist points a′ ∈

β ∩S◦. Similarly, arbitrarily close to b there exist points b′ ∈ β ∩S◦. By the continuity of v,

it suffices to prove the statement for a′, b′ and the subpath of β that connects them instead.

Summarizing, we have reduced the statement to points a, b ∈ S◦ and a subpath β of γ that

connects them. We will prove that using a variational argument, very similar to the one used

in Lemma 3.6.2. Since the technical details are similar and we only wish to demonstrate the

new idea in this proof we assume that the points a, b can be both approximated by peripheral
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disks Qi with ρ(Qi) > 0, which corresponds to Case 1 in the proof of Lemma 3.6.2. (If this

is not the case, and e.g. a lies in a component V of intΩ(αt0) for some t0 /∈ T , then one can

use a “bridge” τ ⊂ V , to connect a to a point on ∂ΩV ∩ S that can be approximated by Qi

with ρ(Qi) > 0. Such a bridge τ was also employed in Case 1 in the proof of Lemma 3.6.2.)

Let ` denote the sum in the right hand side of (3.6.15). If the conclusion fails, then there

exists ε > 0 such that, say, v(b) − v(a) ≥ 10ε + `. Using Lemma 3.13.1, for a small η > 0

consider a function ζ ∈ W1,2(S) that vanishes on ∂Ω with 0 ≤ ζ ≤ 1, such that ζ ≡ 1 on

small disjoint balls B(a, r) ∪ B(b, r) ⊂ Ω, and D(ζ) < η. Then we can find peripheral disks

Qia ⊂ B(a, r), Qib ⊂ B(b, r) with ρ(Qia), ρ(Qib) > 0 such that

v̂(Qib)− v̂(Qia) > 9ε+ `. (3.6.16)

Consider s, t ∈ T such that for the smallest open subpaths of γs, γt of αs, αt that connect

Θ2 to Qia , Qib , respectively, we have v̂(Qia) = `ρ(γs) and v̂(Qib) = `ρ(γt); see Lemma 3.6.1.

If γ̃t denotes the smallest open subpath of αt that connects Θ4 to Qib we have

v̂(Qia)− v̂(Qib) ≥ `ρ(γs) + `ρ(γ̃t)−D(u)

by Theorem 3.5.2. Hence, in order to obtain a contradiction to (3.6.16), it suffices to prove

`ρ(γs) + `ρ(γ̃t) ≥ D(u)− ε− `. (3.6.17)

We will construct an admissible function g with the same procedure and notation as in

Case 1 of Lemma 3.6.2. Recall the definition of Us and Ut in (3.6.8). Moreover, φs is a bump

function supported in a neighborhood of a strip Ωs,h ⊂ As−h,s+h that connects Θ2 to Qia , and

φt is a bump function supported in a neighborhood of a strip Ω̃t,h ⊂ At−h,t+h that connects

Θ4 to Qib . Also, for small δ > 0 consider the function ψ(x) := max{1 − δ−1 dist(x, β), 0}.

Now, we define

g0 = (Usφs + Utφt) ∨ ζ ∨ ψ

on S. As before, we can find a simple path on which we have g0 ≡ 1 such that it separates

Θ1 from Θ3. If W is the component that contains Θ3, we define g = 1 on S ∩W and g = g0

on S \W .
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Recall the definitions of the index sets Fs,h, Ft,h and Nh. We have

osc
Qi

(g) ≤ osc
Qi

(ζ) + osc
Qi

(ψ) +


1, i ∈ Fs,h ∪ Ft,h

ρ(Qi)/2h, i ∈ Nh

0, i /∈ Fs,h ∪ Ft,h ∪Nh.

Since ψ is (1/δ)−Lipschitz, we have

osc
Qi

(ψ) ≤ min{δ−1 diam(Qi ∩Nδ(β)), 1}. (3.6.18)

Testing the minimizing property of u against g (see also (3.5.2)) we obtain

D(u) ≤
∑
i∈N

ρ(Qi) osc
Qi

(g)

≤
∑
i∈N

ρ(Qi) osc
Qi

(ζ) +
∑

i∈Fs,h∪Ft,h

ρ(Qi) +
1

2h

∑
i∈Nh

ρ(Qi)
2

+
∑

i:Qi∩Nδ(β)6=∅

ρ(Qi) osc
Qi

(ψ)

Letting h→ 0 and choosing a small η so that
∑

i∈N ρ(Qi) oscQi(ζ) < ε we obtain

D(u) ≤ ε+ `ρ(γs) + `ρ(γ̃t) +
∑

i:Qi∩Nδ(β)6=∅

ρ(Qi) osc
Qi

(ψ).

To prove our claim in (3.6.17), it suffices to show that the limit of the latter term as δ → 0

stays below `. Note that we can split this term as∑
i:Qi∩β 6=∅

ρ(Qi) osc
Qi

(ψ) +
∑

i:Qi∩β=∅
Qi∩Nδ(β)6=∅

ρ(Qi) osc
Qi

(ψ).

Using (3.6.18) we see that the first term is already bounded by `, so it suffices to show that

the second term converges to 0 as δ → 0. Define Dδ(β) to be the family of indices i ∈ N

such that diam(Qi) ≥ δ, Qi ∩ Nδ(β) 6= ∅, and Qi ∩ β = ∅. Observe that if Qi ∩ Nδ(β) 6= ∅

and diam(Qi) < δ, then Qi ⊂ N2δ(β). Hence, using (3.6.18) it suffices to show that

1

δ

∑
i:Qi⊂N2δ(β)

ρ(Qi) diam(Qi)→ 0 and
∑

i∈Dδ(β)

ρ(Qi)→ 0

as δ → 0. This will follow from the next general lemma.
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Lemma 3.6.9. Let {λ(Qi)}i∈N be a sequence in `2(N). Then there exists an exceptional path

family Γ in Ω with mod2(Γ) = 0 such that for all non-constant paths γ ⊂ Ω with endpoints

in S◦ and γ /∈ Γ we have

1

δ

∑
i:Qi⊂Nδ(γ)

λ(Qi) diam(Qi)→ 0 and
∑

i∈Dδ(γ)

λ(Qi)→ 0

as δ → 0.

Since the family of paths γ that have a subpath β for which the conclusion of the lemma

fails also has conformal modulus zero, this completes the proof of the upper gradient in-

equality.

Proof of Lemma 3.6.9. By the subadditivity of modulus, we can treat each of the claims

separately. Fix a curve γ with H1(γ ∩ S) = 0. The latter holds for mod2-a.e. γ ⊂ Ω.

We can cover Nδ(γ) by balls Bj,δ of radius 2δ centered at γ such that 1
20
Bj,δ are disjoint.

To do this, one can cover γ by balls of radius δ/10 and extract a disjoint subcollection {Bl}l

such that the balls 5Bl still cover γ; see for instance [Hei01, Theorem 1.2]. We now define

{Bj,δ}j to be the collection of balls {20Bl}l, each of which has radius 2δ. Then any point

x ∈ Nδ(γ) is δ-far from γ and thus δ + δ/2-far from the center of a ball 5Bl (of radius δ/2),

which is equal to 1
4
Bj,δ for some j. It follows that x ∈ Bj,δ.

Next, consider the subfamily {B′j,δ}j of the balls {Bj,δ}j that are not entirely contained in

any peripheral disk. We note that {B′j,δ}j covers
⋃
i:Qi⊂Nδ(γ) Qi and γ ∩ S. In fact, as δ → 0

along a sequence one can construct covers {B′j,δ}j as above such that
⋃
j B
′
j,δ is decreasing.

Furthermore, as δ → 0 we have that

γ ∩ (
⋃
j

B′j,δ)→ γ ∩ S. (3.6.19)

Indeed, if this failed, then there would exist i0 ∈ N and some x ∈ Qi0 ∩ γ which belongs

to
⋃
j B
′
j,δ infinitely often as δ → 0. This contradicts the construction of the cover {B′j,δ},

since dist(x, ∂Qi0) > 0, and a ball B′j,δ that contains x would be entirely contained in Qi0

for small δ, so it would have been discarded during the construction.
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Now consider the function Λ(x) =
∑

i∈N
λ(Qi)

diam(Qi)
χQi(x), and observe that by the quasiballs

assumption (3.1.1) there exists a constant C > 0 such that

1

C

∫
Qi

Λ(x) dH2(x) ≤ λ(Qi) diam(Qi) ≤ C

∫
Qi

Λ(x) dH2(x) (3.6.20)

for all i ∈ N. Using the properties of the cover {B′j,δ}j and the uncentered maximal function

MΛ we have:∑
i:Qi⊂Nδ(γ)

λ(Qi) diam(Qi) ≤ C

∫
⋃
i:Qi⊂Nδ(γ)

Qi

Λ(x) dH2(x) ≤ C

∫
⋃
j B
′
j,δ

Λ(x) dH2(x)

≤ C
∑
j

∫
B′j,δ

Λ(x) dH2(x) ≤ C ′δ
∑
j

δ inf
x∈ 1

20
B′j,δ

MΛ(x)

≤ C ′′δ
∑
j

∫
γ∩( 1

20
B′j,δ)

MΛ(x) dH1(x)

= C ′′δ

∫
γ∩(

⋃
j

1
20
B′j,δ)

MΛ(x) dH1(x)

≤ C ′′δ

∫
γ∩(

⋃
j B
′
j,δ)

MΛ(x) dH1(x).

The first part of the lemma will follow, if we show that∫
γ∩(

⋃
j B
′
j,δ)

MΛ(x) dH1(x)→ 0 (3.6.21)

as δ → 0 for mod2-a.e. curve γ. First observe that MΛ ∈ L2(Ω) since Λ ∈ L2(Ω) by (3.6.20).

Hence,
∫
γ
MΛ(x) dH1(x) <∞ for mod2-a.e. γ ⊂ Ω. By construction, γ ∩ (

⋃
j B
′
j,δ) decreases

to γ ∩S with H1(γ ∩S) = 0. The dominated convergence theorem now immediately implies

(3.6.21).

Now, we show the second part of the lemma. Recall that Dδ(γ) contains all indices

i ∈ N for which diam(Qi) ≥ δ, Qi ∩ Nδ(γ) 6= ∅, and Qi ∩ γ = ∅. We wish to show that the

family of paths for which the conclusion fails has conformal modulus equal to zero. We first

remark that this family contains no constant paths, by assumption. By the subadditivity of

conformal modulus it suffices to show that for every d > 0, ε0 > 0 the family Γ of paths γ,

having endpoints in S◦, with diam(γ) ≥ d and

lim sup
δ→0

∑
i∈Dδ(γ)

λ(Qi) ≥ ε0,
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has conformal modulus zero. Let {λ0(Qi)}i∈N be a finitely supported sequence with λ0(Qi) =

λ(Qi) or λ0(Qi) = 0, for each i ∈ N. Then∑
i∈Dδ(γ)

λ0(Qi)→ 0

as δ → 0, since Qi ∩ γ = ∅ and thus dist(Qi, γ) > 0 for all i ∈ Dδ(γ). Here, it is crucial that

γ has endpoints in S◦, and the preceding statement would fail if γ was an open path and

one of its endpoints was on a peripheral circle. Consequently, if γ ∈ Γ, then

lim sup
δ→0

∑
i∈Dδ(γ)

h(Qi) ≥ ε0, (3.6.22)

where h(Qi) := λ(Qi)− λ0(Qi).

We will construct an admissible function h̃ for mod2(Γ) with arbitrarily small mass.

By the summability assumption on λ, for each η > 0 we can find λ0 as above such that∑
i∈N h(Qi)

2 < η. For each i ∈ N consider balls B(xi, ri) ⊂ Qi ⊂ B(xi, Ri) as in the

quasiballs assumption (3.1.1) with Ri = diam(Qi). We define

h̃ = c0

∑
i∈N

h(Qi)

Ri

χB(xi,4Ri)

where c0 is a constant to be determined, independent of η. Note that by Lemma 3.3.2 and

the fact that the balls B(xi, Ri/K0) ⊂ B(xi, ri) are disjoint we have∫
h̃(x)2 dH2(x) ≤ Cc2

0

∑
i∈N

h(Qi)
2

R2
i

R2
i ≤ Cc2

0η.

Since this can be made arbitrarily small, it remains to show that h̃ is admissible for Γ.

Fix a curve γ ∈ Γ, so (3.6.22) holds. Observe that maxi∈Dδ(γ) diam(Qi) → 0 as δ → 0,

by the definition of Dδ(γ) and the fact that there are only finitely many peripheral disks

with “large” diameter. Now, let δ be sufficiently small, so that 8 maxi∈Dδ(γ) diam(Qi) <

d ≤ diam(γ) and
∑

i∈Dδ(γ) h(Qi) > ε0/2. If i ∈ Dδ(γ) then Ri = diam(Qi) ≥ δ and

Qi∩Nδ(γ) 6= ∅, thus B(xi, 2Ri) meets γ. By the choice of δ, γ has to exit B(xi, 4Ri). Hence,

H1(γ ∩B(xi, 4Ri)) ≥ 2Ri, which implies that∫
γ

h̃(x) dH1(x) ≥ c0

∑
i∈Dδ(γ)

h(Qi)

Ri

H1(γ ∩B(xi, 4Ri)) ≥ c0ε0.

We choose c0 = 1/ε0 and this completes the proof.
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Remark 3.6.10. It is clear from the proof that this general lemma holds for carpets S of area

zero for which the peripheral disks are uniform quasiballs; the fatness assumption was not

used here.

Remark 3.6.11. If the function v satisfied the same upper gradient inequality as u (see

Definition 3.4.1) then x 7→ v(x)/D(u) would be admissible for the free boundary problem

with respect to Θ2 and Θ4. One then could show that v/D(u) is carpet-harmonic and

thus v is carpet-harmonic. We believe that the form of the upper gradient inequality of v

depends on the geometry of the peripheral disks and their separation, and without any extra

assumptions the harmonicity of v is far from being clear.

3.7 Definition of f

Let D := D(u) =
∑

i∈N ρ(Qi)
2, and consider the continuous function

f := (u, v) : S → [0, 1]× [0, D].

The fact that the range of f is [0, 1]×[0, D] is justified by Lemma 3.6.6. The same lemma also

implies that f(∂Ω) = ∂([0, 1] × [0, D]) = ∂S0, where S0 := C \ [0, 1] × [0, D]. If ρ(Qi) = 0,

then u and v are constant on ∂Qi, so f(∂Qi) is a singe point, denoted by Si or ∂Si. If

ρ(Qi) > 0, again by Lemma 3.6.6 we have

f(∂Qi) ⊂ [mQi(u),MQi(u)]× [mQi(v),MQi(v)] =: Si, (3.7.1)

where MQi(u) −mQi(u) = MQi(v) −mQi(v) = ρ(Qi). Thus, the image of ∂Qi is contained

in a square of sidelength ρ(Qi). We define Si to be the open square (mQi(u),MQi(u)) ×

(mQi(v),MQi(v)) = int(Si), or the empty set in case ρ(Qi) = 0. If ρ(Qi) > 0, then we will

call Si a non-degenerate square. We claim that these squares have disjoint interiors:

Lemma 3.7.1. The (open) squares Si, i ∈ N, are disjoint. Furthermore, for each i ∈ N we

have Si ∩ f(S) = ∅, and f(∂Qi) ⊂ ∂Si.

Proof. Assume that ρ(Qi), ρ(Qj) > 0 for some i, j ∈ N, i 6= j, and that Si ∩ Sj 6= ∅. Since

the x-coordinates of the squares intersect at an interval of positive length, there exists some
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t ∈ T such that Qi ∩αt 6= ∅ and Qj ∩αt 6= ∅. Assume that the path αt meets ordered points

x1, x2 ∈ ∂Qi and then y1, y2 ∈ ∂Qj as it travels from Θ2 to Θ4. This can be justified using

the properties of αt from Lemma 3.5.14. By Lemma 3.6.6 and Corollary 3.6.7 we have

v(x1) + ρ(Qi) = v(x2) < v(y1) = v(y2)− ρ(Qj).

This clearly contradicts the assumption that Si ∩ Sj 6= ∅.

For our second claim, assume that there exists some x ∈ S with f(x) ∈ Si0 for some

i0 ∈ N. If x ∈ αt for some t ∈ T , then x can be approximated by peripheral disks Qi

with ρ(Qi) > 0; see Lemma 3.3.7 and recall that all peripheral disks intersecting αt satisfy

ρ(Qi) > 0. By the continuity of f the diameter diam(Si) is arbitrarily small as Qi → x, so

Si ⊂ Si0 . This contradicts the first part of the lemma.

If x ∈ αt for some t /∈ T then there exists a point y ∈ αt such that v(x) = v(y) and y can

be approximated by Qi with ρ(Qi) > 0; see Lemma 3.6.2 and the discussion that precedes

it. Thus f(x) = f(y) = (t, v(y)), and the previous case applies to yield a contradiction.

The final claim follows from (3.7.1) and the previous parts of the lemma.

In fact, we have the following:

Corollary 3.7.2. For each i ∈ N ∪ {0} we have f(∂Qi) = ∂Si. Moreover,

f(S) = [0, 1]× [0, D] \
⋃
i∈N

Si =: R, H2(R) = 0,

and the intersection of a non-degenerate square Si, i ∈ N, with ∂S0 = ∂([0, 1] × [0, D]) or

with another non-degenerate square Sj, j ∈ N, j 6= i, is either the empty set or a singleton.

Proof. By the preceding lemma we know that f(∂Qi) ⊂ ∂Si for each i ∈ N. Consider a

continuous extension f̃ : Ω → [0, 1] × [0, D] such that f̃(Qi) ⊂ Si, whenever Si is a non-

degenerate square. One way to find such an extension is to consider a Poisson extension ṽ

of v in each peripheral disk as in Lemma 3.4.8. Then ṽ(Qi) ⊂ (mQi(v),MQi(v)), and also

ũ(Qi) ⊂ (mQi(u),MQi(u)), by the maximum principle. Hence, if we define f̃ := (ũ, ṽ) we
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have the desired property f̃(Qi) ⊂ Si whenever Si is non-degenerate. Combining this with

Lemma 3.7.1, we see that for each non-degenerate Si we have

f̃(Ω \Qi) ⊂ [0, 1]× [0, D] \ Si. (3.7.2)

First we show that f(∂Ω) = f(∂Q0) = ∂S0. Recall that u ≡ 0 on Θ1 and u ≡ 1 on Θ3, so

these sets are mapped into the left and right vertical sides of the rectangle ∂S0, respectively;

see Theorem 3.4.5. Also, by Lemma 3.6.6, v ≡ 0 on Θ2 and v ≡ D on Θ4, so these sets

are mapped to the bottom and top sides of ∂S0, respectively. By continuity, we must have

f(∂Q0) = ∂S0.

Proposition 3.5.1 shows that the functions f
∣∣
Θ2
, f
∣∣
Θ4

are “increasing” from 0 to 1 if

Θ2,Θ4 are parametrized as arcs from Θ1 to Θ3. Thus, f̃
∣∣
∂Ω

winds once around every point

of (0, 1) × (0, D). By homotopy, using (3.7.2), we see that f̃
∣∣
∂Qi

winds once around every

point of int(Si). Thus f̃(∂Qi) = ∂Si, and f̃(Qi) = Si; see [RR55, Chapter II].

Note that the area of [0, 1] × [0, D] is equal to D =
∑

i∈N ρ(Qi)
2, which is the sum of

the areas of the squares Si. By Lemma 3.7.1, the squares have disjoint interiors, so in some

sense they “tile” [0, 1] × [0, D], and this already shows that H2(R) = 0. Furthermore, we

obtain that the boundaries ∂Si = f(∂Qi) are dense in [0, 1]× [0, D] \
⋃
i∈N Si. Since the sets

∂Qi, i ∈ N, are also dense in the carpet S and f is continuous, we obtain f(S) = R.

For the last claim, assume that two squares Si, Sj, i 6= j, share part of a vertical side, i.e.,

there exists a non-degenerate vertical line segment τ := {t}×[s1, s2] ⊂ Si∩Sj. Let s ∈ (s1, s2)

and consider, by surjectivity, a point x ∈ ∂Qi such that f(x) = (t, s) ∈ τ . We claim that x

cannot be approximated by Qk, k 6= i, with ρ(Qk) > 0. Indeed, if this was the case, then

f(∂Qk) = ∂Sk would be non-degenerate distinct squares that approximate the point f(x)

by continuity. Obviously, this cannot happen since f(x) ∈ τ , and Si, Sk have to be disjoint

by Lemma 3.7.1. Hence, ρ(Qk) = 0 for all Qk contained in a neighborhood of x. The upper

gradient inequality of u along with continuity imply that u is constant in a neighborhood

of x; see Lemma 2.7.2 for a proof. By Lemma 3.6.2 and the definition v we conclude that

v is also constant in a neighborhood of x; see also the comments before Lemma 3.6.2. In

particular, f is constant in some arc of ∂Qi containing x. However, there are countably
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many such subarcs of ∂Qi, and uncountably many preimages f−1((t, s)), s ∈ (s1, s2). This

is a contradiction. The same argument applies if Si, Sj share a horizontal segment or if

Si ∩ ∂S0 6= ∅.

Combining the upper gradient inequalities of u and v we obtain:

Proposition 3.7.3. There exists a family of paths Γ0 with mod2(Γ0) = 0 such that for every

path γ ⊂ Ω with γ /∈ Γ0 and for every open subpath β of γ we have

|f(x)− f(y)| ≤
√

2
∑

i:Qi∩β 6=∅

ρ(Qi) =
∑

i:Qi∩β 6=∅

diam(Si)

for all x, y ∈ β ∩ S.

Observe that the paths β are contained in Ω, so Q0 ∩ β = ∅, and we never include the

term diam(S0) = diam(C \ (0, 1)× (0, D)) =∞ in the above summations.

Proof. This type of upper gradient inequality holds for the function v by Lemma 3.6.8, so

we only have to argue for u. Recall that u ∈ W1,2(S) so it satisfies the upper gradient

inequality in Definition 3.4.1 with an exceptional family Γ0 that has carpet modulus equal

to 0. Lemma 3.3.1 now implies that mod2(Γ0) = 0. To complete the proof, note that the

sum over {i : Qi ∩ β 6= ∅} is larger than the sum over {i : Qi ∩ β 6= ∅} (which was used in

Definition 3.4.1).

The upper gradient inequality has the next important corollary.

Corollary 3.7.4. There exists an exceptional family of paths Γ0 with mod2(Γ0) = 0 such

that the following holds:

For every open path γ ⊂ Ω, γ /∈ Γ0 with endpoints x, y ∈ S, and every Lipschitz map

π : R2 → R we have

|π(f(x))− π(f(y))| ≤ H1

( ⋃
i:Qi∩γ 6=∅

π(Si)

)
≤

∑
i:Qi∩γ 6=∅

H1(π(Si)).
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Remark 3.7.5. The corollary does not imply that for almost every γ we haveH1(f(γ∩S)) = 0;

cf. Lemma 3.9.2. To interpret its meaning, let γ be a non-exceptional path joining x and y,

and π be the orthogonal projection to the line passing through f(x), f(y). Then the corollary

says that the projection of the squares intersected by f(γ) “covers” the entire distance from

f(x) to f(y).

Remark 3.7.6. If {λ(Qi)}i∈N is a sequence in `2(N), it can be proved that the family of paths

Γ in C satisfying

∑
i:Qi∩γ 6=∅

λ(Qi) =∞

has 2-modulus zero. If we were using Qi instead of Qi under the summation, then this would

follow immediately from Lemma 3.3.1. The proof in our case is in fact exactly the same as

the proof of Lemma 3.3.1; see the proof of Lemma 2.3.3.

Proof. Let γ ⊂ Ω be a path such that the upper gradient inequality of Proposition 3.7.3

holds for all open subpaths β of γ and such that
∑

i:Qi∩γ 6=∅
ρ(Qi) <∞. The latter holds for

all curves outside a family conformal modulus zero, by the preceding remark.

If x ∈ ∂Qix for some ix ∈ N, then we let x′ ∈ ∂Qix be the point of last exit of γ from Qix ,

and we similarly consider the point y′ ∈ ∂Qiy of first entry of γ into Qiy (after x′), in case

y ∈ ∂Qiy . Since the differences |π(f(x)) − π(f(x′))| and |π(f(y)) − π(f(y′))| are controlled

by H1(π(Six)) and H1(π(Siy)), respectively, it suffices to prove the statement with x and y

replaced by x′ and y′, respectively, and with γ replaced by its open subpath connecting x′

and y′.

Hence, from now on we assume that γ is an open path with endpoints x, y and we suppose

that γ does not intersect the (closed) peripheral disks that possibly contain x and y in their

boundary. Fix ε > 0 and consider a finite index set J ⊂ N such that

∑
i:Qi∩γ 6=∅

i/∈J

ρ(Qi) < ε. (3.7.3)

Assume γ is parametrized as it runs from x to y. Using the reformulation of Lemma 2.5.10 in
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Remark 2.5.11, we may obtain finitely many open subpaths γ1, . . . , γm of γ with the following

properties:

(1) the upper gradient inequality of f holds along each path γk, k = 1, . . . ,m,

(2) the paths γk intersect disjoint sets of peripheral disks Qi, i ∈ N \ J , and

(3) the path γ1 starts at x1 = x, the path γm terminates at ym = y, and in general the

path γk has endpoints xk, yk ∈ S such that for 1 ≤ k ≤ m− 1 we either have

• yk = xk+1, or

• yk, xk+1 ∈ ∂Qjk for some jk ∈ N. The peripheral disks Qjk
are distinct and they

are intersected by γ.

We denote by I ⊂ {1, . . . ,m} the set of indices k for which the second alternative

holds.

The assumption that γ does not intersect the (closed) peripheral disks possibly containing

x and y in their boundary is essential, otherwise property (2) could fail.

For each Sjk , k ∈ I, the image π(Sjk) ⊂ R is an interval. Thus,
⋃
k∈I π(Sjk) is a

union of finitely many intervals that contain the points π(f(yk)) and π(f(xk+1)), k ∈ I,

in their closure. Without loss of generality, assume that π(f(x)) ≤ π(f(y)). The interval

[π(f(x)), π(f(y))] is covered by the union of the set
⋃
k∈I π(Sjk) together with the closed

intervals between π(f(xk)) and π(f(yk)), k = 1, . . . ,m. If L is the Lipschitz constant of π,

then we have

|π(f(x))− π(f(y))| ≤ H1

(⋃
k∈I

π(Sjk)

)
+

m∑
k=1

|π(f(xk))− π(f(yk))|

≤ H1

( ⋃
i:Qi∩γ 6=∅

π(Si)

)
+ L

m∑
k=1

|f(xk)− f(yk)|

≤ H1

( ⋃
i:Qi∩γ 6=∅

π(Si)

)
+ L

m∑
k=1

∑
i:Qi∩γk 6=∅

√
2ρ(Qi)
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Since the paths γk intersect disjoint sets of peripheral disks Qi, i ∈ N \ J , the latter term is

bounded by

√
2L

∑
i:Qi∩γ 6=∅

i/∈J

ρ(Qi) <
√

2Lε,

where we used (3.7.3). Letting ε→ 0 finishes the proof.

3.8 Injectivity of f

We will prove that f is injective in two steps. First we show that f : S → R is a light map,

i.e., the preimage of every point z ∈ R contains no non-trivial continua. Then we show that

the preimage of every point z ∈ R is actually a single point.

From now on, f will denote the continuous extension f̃ : Ω → [0, 1] × [0, D], as in the

proof of Corollary 3.7.2, which has the property that f̃(Qi) = Si whenever Si, i ∈ N, is a

non-degenerate square. Also, recall that the coordinates ũ and ṽ of f are harmonic in the

classical sense inside each Qi, i ∈ N, and that αt = ũ−1(t), t ∈ [0, 1].

Lemma 3.8.1. For every z ∈ R the set f−1(z) contains no non-trivial continua.

The proof will follow from a modulus-type argument. Essentially, the carpet modulus of

a family of curves passing through the point z is zero; however, this would not be the case for

the curves passing through f−1(z) if the latter contains a continuum. We will use the upper

gradient inequality for f in Proposition 3.7.3 and its corollary to compare the modulus in

the image and the preimage. In some sense, the map f preserves carpet modulus, and this

prevents a curve family of positive modulus from being mapped to a curve family of modulus

zero.

Proof. Assume that there exists a non-trivial continuum E ⊂ f−1(z) for some z ∈ R. Note

that the preimage f−1(z) cannot intersect both Θ1 and Θ3, so let F be one of the two sets

with E ∩ F = ∅. We consider a small R > 0 such that f−1(B(z, R)) ∩ F = ∅. Such an

R exists because of the following general fact: If g : X → Y is a continuous map between
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metric spaces X, Y and X is compact, then for each z ∈ Y and ε > 0 there exists R > 0

such that g−1(B(z,R)) ⊂ Nε(g
−1(z)).

By the structure of R (see Corollary 3.7.2), the point z, among other possibilities, might

lie on a square ∂Si1 , i1 ∈ N, or it could be the common vertex of two intersecting squares

∂Si1 , ∂Si2 , i1, i2 ∈ N. We construct closed annuli Aj centered at z in the following way.

Let A1 = A(z; r1, R1) = B(z, R1) \ B(z, r1), where R1 = R and r1 = R1/2. Let R2 < r1

be so small that no square Si (except possibly for Si1 , Si2) intersects both A1 and A2 :=

A(z; r2, R2), where r2 = R2/2. This can be achieved because the squares near z are arbitrarily

small, with the possible exception of Si1 and Si2 . We proceed inductively to obtain annuli

A1, . . . , AN , for some fixed large N ; cf. proof of Lemma 3.13.1. We then replace each Aj

with Aj ∩ ([0, 1]× [0, D]).

For Qi ∩ f−1(Aj) 6= ∅ (equiv. Si ∩ Aj 6= ∅) we set λ(Qi) = 1
Nrj

dj(Si), where dj(Si) :=

H1({r ∈ [rj, Rj] : Si ∩ B(z, r) 6= ∅}). In other words, dj(Si) is the the “radial” diameter of

the intersection Si ∩ Aj. If Si ∩ Aj = ∅ we set λ(Qi) = 0. Note that there exists a constant

C > 0 such that

dj(Si)
2 ≤ CH2(Si ∩ Aj) (3.8.1)

for all i ∈ N and j = 1, . . . , N . This is true because, for example, the squares are uniformly

fat sets; see also Remark 3.5.10.

We now wish to construct a Lipschitz family of non-exceptional open paths in Ω that

connects E to F , but avoids the peripheral disk Qi1 in case z ∈ ∂Si1 , or avoids the peripheral

disks Qi1 and Qi2 in case z ∈ ∂Si1 ∩ ∂Si2 . Here non-exceptional means that the paths, as

well as their subpaths, avoid a given path family of 2-modulus zero. In particular, require

that for all open subpaths of these non-exceptional paths the conclusion of Corollary 3.7.4

holds.

If none of the aforementioned two scenarios occur (i.e., z ∈ ∂Si1 or z /∈ ∂Si1 ∩∂Si2), then

we consider an open path τ joining E to F . We can make now direct use of Lemma 3.3.4

to obtain a small δ > 0 and non-exceptional paths βs, s ∈ (0, δ), that connect E to F . If

z ∈ ∂Si1 (i.e., we are in the first of the two scenarios), then we split into two cases. In case
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E \ ∂Qi1 6= ∅, we consider a point x ∈ E \ ∂Qi1 and connect it to F with a path τ ⊂ Ω \Qi1 .

Then for a small δ > 0 the perturbations βs given by Lemma 3.3.4 do not intersect Qi1 and

have the desired properties. In case E ⊂ ∂Qi1 , E has to contain an arc; we choose x to be

an “interior” point of this arc. We connect E 3 x to F with an open path τ ⊂ Ω \ Qi1 ;

the latter region is just a topological annulus. Lemma 3.3.4 yields non-exceptional paths βs,

s ∈ (0, δ), but this time the paths are not necessarily disjoint from Qi1 . To amend this, we

consider a possibly smaller δ > 0 and open subpaths of βs that we still denote by βs, which

connect E to F without entering Qi1 . Finally, one has to treat the case z ∈ ∂Si1 ∩ ∂Si2 , but

this is done exactly as the case z ∈ ∂Si1 .

For the moment, we fix a path βs and we consider subpaths of βs as follows. Assume βs

is parametrized as it runs from F to E. Let γj be the open subpath from the point of last

entry of βs into f−1(Aj) until the point of first entry into f−1(B(z, rj)), j = 1, . . . , N . Then

γj intersects only peripheral disks meeting f−1(Aj). Hence, by construction of the annuli

Aj, the paths γj for distinct indices j intersect disjoint sets of peripheral disks.

Let π : R2 → R be the “projection” w = z + reiθ 7→ r, so dj(Si) = H1(π(Si)). If the

endpoints of γj lie in S, then by Corollary 3.7.4 we have:

∑
i:Qi∩γj 6=∅

λ(Qi) =
1

Nrj

∑
i:Qi∩γj 6=∅

dj(Si) ≥
1

Nrj
rj =

1

N
. (3.8.2)

If this is not the case, then γj enters or exits f−1(Aj) through some peripheral disks Qk, Ql.

Applying Corollary 3.7.4 to a subpath of γj that has its endpoints on S, and considering the

contribution of dj(Qk), dj(Ql) we also obtain (3.8.2) in this case.

From now on, to fix our notation, we assume that the exceptional squares Si1 , Si2 that

wish to exclude actually exist (if not, then one just has to ignore the indices i1, i2 in what

follows). Summing in (3.8.2) over j we obtain

1 ≤
∑

i:Qi∩βs 6=∅
i 6=i1,i2

λ(Qi) ≤
∑

i:Qi∩ψ−1(s)6=∅
i 6=i1,i2

λ(Qi).

Here ψ is as in Lemma 3.3.4. Observe that for all i ∈ N the functions s 7→ χQi∩ψ−1(s) are

upper semi-continuous, thus measurable. We integrate over s ∈ (0, δ) and we obtain using
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Fubini’s theorem:

δ ≤
N∑
j=1

1

Nrj

∑
i:Si∩Aj 6=∅
i 6=i1,i2

dj(Si)

∫ δ

0

χQi∩ψ−1(s) ds.

The fact that ψ is 1-Lipschitz yields

δ ≤
N∑
j=1

1

Nrj

∑
i:Si∩Aj 6=∅
i 6=i1,i2

dj(Si) diam(Qi). (3.8.3)

If we interchange the sums and apply the Cauchy-Schwarz inequality in the right hand side

we have:

1

N

∑
i∈N\{i1,i2}

diam(Qi)
∑

j:Si∩Aj 6=∅

dj(Si)

rj

≤ 1

N

(∑
i∈N

diam(Qi)
2

)1/2
 ∑
i∈N\{i1,i2}

 ∑
j:Si∩Aj 6=∅

dj(Si)

rj

21/2

.

Observe that the first sum is a finite constant C1/2 by the quasiballs assumption (3.1.1). In

the second sum, note that each Si, i 6= i1, i2, intersects only one annulus Aj so the inner sum

actually is a sum over a single term. Combining these observations with (3.8.3), we have

δ2N2 ≤ C
∑

i∈N\{i1,i2}

 ∑
j:Si∩Aj 6=∅

dj(Si)
2

r2
j

 = C
N∑
j=1

1

r2
j

∑
i:Si∩Aj 6=∅
i 6=i1,i2

dj(Si)
2.

By (3.8.1), dj(Si)
2 ≤ CH2(Si ∩ Aj). Also,

∑
i:Si∩Aj 6=∅

H2(Si ∩ Aj) ≤ H2(Aj) = π · (R2
j − r2

j ) = 3πr2
j .

Hence,

δ2N2 ≤ 3πC
N∑
j=1

1

r2
j

r2
j = 3πCN.

This is a contradiction as N →∞.

We have the following strong conclusion:
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Corollary 3.8.2. For all i ∈ N we have ρ(Qi) = oscQi(u) = oscQi(v) 6= 0. In particular, no

peripheral circle ∂Qi is mapped under f to a point, and all squares Si are non-degenerate.

Remark 3.8.3. The non-vanishing of the “gradient” of a non-constant carpet-harmonic func-

tion is not clear in general. The difficulty in obtaining such a result in non-linear potential

theory is also reflected by the fact that in dimension n ≥ 3 it is not known whether the

gradient of a non-constant p-harmonic function can vanish on an open set.

Remark 3.8.4. In [Sch93] Schramm shows that finite triangulations of quadrilaterals can be

transformed to square tilings of rectangles by a similar method. However, non-degeneracies

cannot be avoided in his case, namely a vertex of the triangulation might correspond to a

degenerate square under the correspondence. It is quite a surprise that, if one regards the

carpet as an “infinite triangulation”, these degeneracies disappear.

Corollary 3.8.5. For each t ∈ [0, 1] the level set αt = ũ−1(t) has empty interior.

Proof. Suppose that αt has non-empty interior for some t ∈ [0, 1]. Then for some peripheral

disk Qi, i ∈ N, the intersection Qi ∩ αt contains an open set. Since ũ is harmonic in Qi (in

the classical sense), it follows that ũ is constant in Qi, and thus ρ(Qi) = 0. This contradicts

Corollary 3.8.2.

Recall that if a level set αt, t ∈ T , intersects a peripheral circle ∂Qi, then it intersects it

in precisely two points. Using Lemma 3.8.1 we obtain a better description of the level sets

αt also for t /∈ T .

Lemma 3.8.6. Fix i ∈ N. For t ∈ {mQi(u),MQi(u)} the level set αt intersects ∂Qi in a

connected set, i.e., in an arc. Let β1 be the arc corresponding to t = mQi(u) and β3 be the

arc corresponding to t = MQi(u). For all t ∈ (mQi(u),MQi(u)) the level set αt intersects

∂Qi in exactly two points, each of which is located on one of the two complementary arcs of

β1 and β3 in ∂Qi.

Furthermore, Θ1 = α0 ∩ ∂Ω and Θ3 = α1 ∩ ∂Ω. Finally, for all t ∈ (0, 1) the intersection

αt ∩ ∂Ω contains two points, one on Θ2 and one on Θ4.
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Proof. Since oscQi(u) > 0 by Corollary 3.8.2, it follows that mQi(u) < MQi(u). Suppose

that for t = mQi(u) the set αt∩∂Qi has at least two components E1, E2 ⊂ ∂Qi. The sets E1

and E2 are closed arcs or points, they are disjoint, and ∂Qi \ (E1 ∪E2) has two components

F1, F2 ⊂ ∂Qi, which are open arcs. The function u is non-constant near the endpoints of

Fj, on which it has the value t for j = 1, 2. In fact for j = 1, 2 we can find disjoint arcs

Ij,k ⊂ Fj, k = 1, 2, on which u is non-constant and attains the value t at one of the endpoints

of Ij,k, k = 1, 2. By continuity, it follows that
⋂
j,k=1,2 u(Ij,k) contains an interval of the form

(t, t + ε) for some ε > 0. The intermediate value theorem implies that we can find some

t′ ∈ T ∩ (t, t+ ε) such that αt′ ∩ Ij,k 6= ∅ for j, k = 1, 2. Hence, αt′ ∩ ∂Qi contains more than

two points and this contradicts Corollary 3.5.8.

Let β1 ⊂ ∂Qi be the closed arc that is the unique preimage in ∂Qi under f of the

left vertical side of ∂Si. The same conclusion holds for t = MQi(u), and we consider the

corresponding closed arc β3.

Let β2, β4 ⊂ ∂Qi be the complementary closed arcs of the two extremal arcs, numbered

in a counter-clockwise fashion, exactly as we numbered the sides of ∂Ω. Since f(∂Qi) = ∂Si

(by Corollary 3.7.2), the images of β2 and β4 are the bottom and top sides of ∂Si; here it is

not necessary that β2 is mapped to the bottom side and β4 is mapped to the top side, but

it could be the other way around. It follows that v is constant on each of the arcs β2, β4.

By an application of the intermediate value theorem followed by the use of Corollary

3.5.8, one sees that for all t ∈ (mQi(u),MQi(u)) the intersection αt ∩ ∂Qi must have two

components, one in β2, and one in β4. Since u and v are constant on each component, these

components must be singletons by Lemma 3.8.1.

The set α0∩∂Ω contains Θ1 and is contained in ∂Ω. If there exists a point x ∈ α0∩Θ2\Θ1,

then there has to be an entire arc E ⊂ α0∩Θ2. Otherwise, by the intermediate value theorem,

there would exist level sets αt, t ∈ T , that intersect Θ2 in at least two points, a contradiction

to Lemma 3.5.6. However, v is constant equal to 0 on E by Lemma 3.6.6, which implies

that the continuum E is mapped to a point under f . This contradicts Lemma 3.8.1. The

same argument applies with Θ4 in the place of Θ2 and yields that Θ1 = α0 ∩ ∂Ω. Similarly,
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Θ3 = α1 ∩ ∂Ω.

Finally, we already know from Proposition 3.5.1 that for all t ∈ (0, 1) the intersection

αt ∩ ∂Ω has two components, one on Θ2 and one on Θ4. Again, by Lemma 3.8.1 these

components have to be singletons.

An immediate corollary is the following. We use notation from the proof of the preceding

lemma.

Corollary 3.8.7. For each peripheral disk Qi, i ∈ N, the arcs β2 and β4 are mapped in-

jectively onto the bottom and top sides of ∂Si, respectively. Furthermore, Θ2 and Θ4 are

mapped injectively onto the bottom and top sides of [0, 1]× [0, D], respectively.

Proof. Recall that the winding number of f
∣∣
∂Ω

around every point of (0, 1) × (0, D) is +1

(see proof of Corollary 3.7.2). Moreover, we have

f(Ω \Qi) = [0, 1]× [0, D] \ Si,

by Corollary 3.7.2 and the fact that f(Qj) = Sj for all j ∈ N; see the comments before

Lemma 3.8.1. It follows by homotopy that the winding number of f
∣∣
∂Qi

around each point

of Si is +1. Hence, the arcs β2 and β4 of ∂Qi must be mapped onto the bottom and top

sides of ∂Si, respectively.

Regarding the injectivity claim, note that f is injective when restricted to the “interior”

of the arc β2, since for each t ∈ (mQi(u),MQi(u)) the level set αt intersects this arc at one

point, by the previous lemma. By continuity, the endpoint β1∩β2 (strictly speaking, β1∩β2

is a singleton set containing one point) of β2 has to be mapped to the bottom left corner

of the square Si, and the endpoint β3 ∩ β2 of β2 has to be mapped to the bottom right

corner of Si. This shows injectivity on all of β2. Similarly, one shows the other claims about

injectivity, based on the preceding lemma.

We have completed our preparation to show the injectivity of f .

Lemma 3.8.8. The map f : S → R is injective.
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The proof of this lemma is slightly technical, so we first provide a sketch of the argument.

Note that f is already injective, when restricted to level sets S ∩ αt for t ∈ T , by Corollary

3.6.7. In fact, v is “increasing” in some sense in these level sets. Thus, the only possibility

is that injectivity fails at some level set αt0 ∩ S for t0 /∈ T . Suppose that z = (t0, s0) ∈ R

has two preimages x, y ∈ S ∩ αt0 . Then we show that for t ∈ T near t0 there exist points

ax = (t, sx), ay = (t, sy) ∈ S ∩ αt near x, y, respectively. Using the fact that v is increasing

on αt, we show that there exists a path γ ⊂ S connecting ax, ay that is mapped into a small

neighborhood of z under f . In the limit, as ax → x and ay → y one obtains a continuum

E ⊂ S that connects x and y and is mapped to z. This will contradict Lemma 3.8.1.

Proof. If t ∈ T , then v is “increasing” on αt ∩ S, in the sense of Corollary 3.6.7. Hence, f

is injective on the set U :=
⋃
t∈T (αt ∩ S).

Assume z = (t0, s0) ∈ R and t0 /∈ T . Note that every point x ∈ f−1(z) can be approx-

imated by Qi with ρ(Qi) > 0; see Corollary 3.8.2. Since ρ(Qi) > 0, it follows that there

exist levels t ∈ T with αt ∩ ∂Qi 6= ∅. Hence every point x ∈ f−1(z) can be approximated by

points a ∈ U , and so U is dense in S. We will split in two cases. The ideas are similar but

the technical details are slightly different. We recommend that the reader focus on Case 1,

at a first reading of the proof.

Case 1: Assume first that z = (0, s0) or (1, s0) or z lies in an open vertical side of some

square ∂Si0 , i0 ∈ N. In any case, either every preimage x ∈ f−1(z) can be only approximated

by points a ∈ U with u(a) < t0, or every preimage can be only approximated by points a ∈ U

with u(a) > t0. Indeed, this is clear if z lies in a vertical side of [0, 1]× [0, D] (i.e., t0 = 0 or

t0 = 1), so suppose that z = (t0, s0) lies in the open left vertical side of a square Si0 , and x

is a preimage of z. If an ∈ U is a sequence converging to x, then f(an) ∈ S converges to z

by continuity. Since an ∈ U and t0 /∈ T , we necessarily have u(an) 6= t0 for each n ∈ N, and

f(an) cannot lie on the vertical line passing through z. Since z lies in the interior of the left

vertical side of Si0 and f(an) /∈ Si0 for all n ∈ N, it follows that f(an) lies on the “left” of

the vertical line u = t0 for all sufficiently large n. Therefore, u(an) < t0 for all sufficiently

large n, as desired.
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Suppose in what follows that every preimage of z can be only approximated by points

a ∈ U with u(a) < t0, and consider a preimage x ∈ f−1(z). Consider a small ball B(x, δ)

such that S ∩B(x, δ) contains points a ∈ U , all of which satisfy u(a) < t0. Fix such a point

with u(a) = t < t0. The level sets αt, αt0 define a simply connected region At,t0 that contains

all level sets αt′ for t′ ∈ (t, t0), by Proposition 3.5.1. Since B(x, δ) meets both αt and αt0 ,

it follows that αt′ meets B(x, δ) for every t′ ∈ (t, t0). The level sets αt′ cannot meet ∂Qi0 ,

in case x ∈ ∂Qi0 and z ∈ ∂Si0 ; this is because f(∂Qi0) = ∂Si0 . This implies that αt′ either

does not meet peripheral disks near x or it meets arbitrarily small peripheral disks near x.

Thus, for all t < t0 sufficiently close to t0 we have that the intersection S ∩ B(x, δ) ∩ αt is

non-empty.

Suppose now that there exist two points x, y ∈ f−1(z), and consider a small δ > 0 such

that αt intersects both sets S ∩ B(x, δ), S ∩ B(y, δ) for some t < t0, t ∈ T , sufficiently close

to t0. Let ax ∈ S ∩B(x, δ)∩αt and ay ∈ S ∩B(y, δ)∩αt. By the continuity of f , the images

f(ax) = (t, sx), f(ay) = (t, sy) will lie in a small ball B(z, ε). Without loss of generality

sx < sy. Consider the path γ ⊂ αt that connects ax to ay. The function v is increasing on

αt by Corollary 3.6.7, hence f(γ ∩ S) ⊂ {t} × [sx, sy] ⊂ B(z, ε). We alter the path γ as

follows. Whenever γ ∩ Qi 6= ∅ we replace this intersection with an arc β ⊂ ∂Qi joining the

two points of γ ∩ ∂Qi. We call the resulting path γ̃ and note that γ̃ ⊂ S. We claim that

f(γ̃) ⊂ B(z, 3ε). To see this, note that the image arcs f(β) are contained in squares ∂Si

by Corollary 3.7.2, and the top and bottom sides of these squares intersect the ball B(z, ε),

namely at the endpoints of β which were also points of γ. Our claim is proved.

Finally, observe that as δ → 0 the path γ̃ subconverges to a non-trivial continuum E ⊂ S

containing x and y. Then the images f(γ̃) converge to the point z, so by continuity f(E) = z.

This contradicts Lemma 3.8.1.

Case 2: Assume that z = (t0, s0) does not lie on an open vertical side of any square

∂Si, i ∈ N, or on a vertical side of the rectangle [0, 1] × [0, D] (so 0 < t0 < 1). We claim

that there exists a “distinguished” preimage x of z that can be approximated by points

a, b ∈ [0, 1]× [0, D] with ũ(a) < t0 and ũ(b) > t0.
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To prove that, we will show that there exists a continuum C ⊂ αt0 connecting Θ2 and

Θ4 such that every point x ∈ C can be approximated by points a, b with ũ(a) < t0 and

ũ(b) > t0. The function ṽ is continuous on C and attains all values between 0 and D. Hence,

there exists some x ∈ C with ṽ(x) = s0. In fact, x ∈ C ∩ S ∩ f−1(z), because f(Qi) = Si for

all i ∈ N; see comments before Lemma 3.8.1.

The existence of C will be justified with the following lemma about planar topology,

which reflects the unicoherence of the plane:

Lemma 3.8.9 (Theorem 5.28a, p. 65, [Wil63]). If A,B are planar continua neither of which

separates the plane, then A∪B does not separate the plane if and only if A∩B is a continuum.

Let V1 = ũ−1((0, t0)) = A0,t0 and V3 = ũ−1((t0, 1)) = At0,1. Since all level sets αt have

empty interior by Corollary 3.8.5, Proposition 3.5.1 implies that the closures V 1, V 3 are

continua that do not separate the plane. Moreover, V 1 ∪ V 3 = Ω so V 1 ∪ V 3 does not

separate the plane. Indeed, a point w ∈ Ω \ V 1 ∪ V 3 would necessarily satisfy u(w) = t0

and would have a rel. open neighborhood W in Ω \ V 1 ∪ V 3. This would imply that αt0 has

non-empty interior, a contradiction. By Lemma 3.8.9 we conclude that V 1 ∩ V 3 ⊂ αt0 is a

continuum. Moreover, this continuum has to connect αt0 ∩ Θ2 to the point αt0 ∩ Θ4. This

is because αt0 ∩ Θ2, αt0 ∩ Θ4 are singletons by Lemma 3.8.6, and they lie in V 1 ∩ V 3 since

their complement in Θ2,Θ4, respectively, consists of two arcs, one contained in V1 and one

in V3. Summarizing, C := V 1 ∩ V 3 is the desired continuum connecting Θ2 to Θ4.

Our next claim is that for every small ball B(x, δ), where x ∈ C is a preimage of z, the

set S ∩ B(x, δ) ∩ αt is non-empty for all t < t0 sufficiently close to t0, and for all t > t0

sufficiently close to t0; this will be the crucial property that we need for the “distinguished”

preimage x of z. To prove this, we consider three cases: x ∈ S◦, x ∈ ∂Qi for some i ∈ N,

and x ∈ ∂Ω.

First, assume that x ∈ S◦. We fix a small ball B(x, δ) and a point a ∈ B(x, δ) with

ũ(a) = t < t0; such a point exists by the properties of x ∈ C. The level sets αt, αt0 define a

simply connected region At,t0 , and all level sets αt′ for t′ between t and t0 lie in this region

and have to intersect B(x, δ); see Proposition 3.5.1. If x ∈ S◦ then S ∩ B(x, δ) ∩ αt′ 6= ∅,
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since the peripheral disks that might be intersected by sets α′t for t′ ∈ (t, t0) are arbitrarily

small; see also Case 1. The same holds for level sets αt, t > t0, sufficiently close to t0.

We now prove the claim in case x ∈ ∂Qi0 for some i0 ∈ N. Recall by Corollary 3.8.7

that ∂Qi0 is partitioned into four arcs β1, . . . , β4, such that β2, β4 are mapped injectively

onto the top an bottom sides of ∂Si0 , respectively, and β1, β3 are mapped injectively onto

the left and right sides of ∂Qi, respectively, by the Case 1. In particular, f
∣∣
∂Qi

is injective

and f
∣∣−1

∂Qi
is defined and is continuous on ∂Si. The only possibility here is that x ∈ β2 ∪ β4

(recall the assumption of Case 2). If x is an interior point of one of the arcs β2, β4, then

∂Qi0 ∩ S ∩ B(x, δ) ∩ αt 6= ∅ for all t near t0 by the continuity of f
∣∣−1

∂Qi
. If x is a “corner”

point lying, e.g., on β2 ∩ β1 then we can approximate x by points a ∈ β2 thus satisfying

u(a) > t0, and we can approximate x by points b ∈ β1 with u(b) = t0. In the latter case, f(b)

is contained in the left open vertical side of ∂Si0 . Arguing as in Case 1, for a small δ′ > 0

we have S ∩ B(b, δ′) ∩ αt 6= ∅ for all t < t0 sufficiently close to t0. If b is sufficiently close to

x then B(b, δ′) ⊂ B(x, δ), so S ∩B(x, δ) ∩ αt 6= ∅, as desired.

Finally, if x ∈ ∂Ω, then it has to lie in the interior of the arcs Θ2 or Θ4. The map f is

injective on these arcs by Corollary 3.8.7. Hence it is easy to see that S ∩ B(x, δ) ∩ αt 6= ∅

for all t near t0, and in fact the intersection contains points of Θ2 or Θ4.

The preimage x is the “distinguished” preimage of z that is “accessible” from both sides

u < t0 and u > t0. Now, assume that there exists another preimage y ∈ f−1(z). Since U

is dense in S, there exist near y points a ∈ αt ∩ S, t ∈ T , with u(a) < t0 or u(a) > t0.

Without loss of generality, we assume that arbitrarily close to y we can find such points with

u(a) = t < t0. Then for a small δ > 0 the intersection S∩B(y, δ)∩αt is non-empty for t < t0,

t ∈ T , arbitrarily close to t0. Now, we argue exactly as in the last part of Case 1. Consider

a level set αt, t ∈ T , that intersects both sets S ∩ B(x, δ) and S ∩ B(y, δ) and let γ ⊂ αt

be a subpath that connects the balls B(x, δ), B(y, δ). The image f(γ ∩ S) is contained in a

small ball B(z, ε). We modify the path γ to obtain a path γ̃ ⊂ S that connects the balls

B(x, δ), B(y, δ), and such that f(γ̃) lies in a slightly larger ball B(z, 3ε). As δ → 0 the path

γ̃ subconverges to a continuum in S that connects x and y. The images f(γ̃) converge to z,

so Lemma 3.8.1 is again contradicted.
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Remark 3.8.10. Since f
∣∣
∂Qi

is a homeomorphism and ũ, ṽ are harmonic on Qi, we can use the

Radó–Kneser–Choquet theorem [Dur04, p. 29] to conclude that f̃
∣∣
Qi

is a homeomorphism

onto Si. Thus, f : Ω→ [0, 1]× [0, D] is a homeomorphism. Furthermore, the set R = f(S) is

a Sierpiński carpet, as defined in the Introduction, withH2(R) = 0 and the basic assumptions

of quasiballs (3.1.1) and fatness (3.1.2) are trivially satisfied for the peripheral disks of R,

which are squares.

In fact, the harmonicity of the extension inside each Qi is not needed anymore, so one

could consider arbitrary homeomorphic extensions f̃ : Qi → Si given, for example, by the

Schönflies theorem. Recall that Q0 = C\Ω and S0 = C\ [0, 1]× [0, D]. We also extend f
∣∣
∂Q0

to a homeomorphism from Q0 onto S0. Pasting together these homeomorphisms we obtain

a homeomorphic extension f̃ : C→ C of f ; see e.g. [Bon11, Lemma 5.5].

3.9 Regularity of f and f−1

In this section we prove the main result, Theorem 3.1.1, which will follow from Proposition

3.9.4 and Proposition 3.9.5. We consider an (arbitrary) homeomorphic extension of f : S →

R to a map f : C → C, as in Remark 3.8.10. As discussed in this remark, the set R is a

Sierpiński carpet, as defined in the Introduction.

Recall that by Proposition 3.7.3 we have the upper gradient inequality

|f(x)− f(y)| ≤
√

2
∑

i:Qi∩β 6=∅

ρ(Qi) =
∑

i:Qi∩β 6=∅

diam(Si) (3.9.1)

for points x, y ∈ β∩S and all open paths β, which are subpaths of paths γ ⊂ Ω lying outside

an exceptional family of 2-modulus zero. We will use this to show that f preserves, in some

sense, carpet modulus. In fact, for technical reasons, we will introduce a slightly different

notion of carpet modulus here, which was also used in the statement of Theorem 3.1.1:

Definition 3.9.1. Let Γ be a family of paths in C. A sequence of non-negative numbers

{λ(Qi)}i∈N∪{0} is admissible for the weak carpet modulus mod(Γ) if there exists an exceptional

177



path family Γ0 with mod2(Γ0) = 0 such that for all γ ∈ Γ \ Γ0 we have

∑
i:Qi∩γ 6=∅

λ(Qi) ≥ 1.

We define mod(Γ) = infλ
∑

i∈N∪{0} λ(Qi)
2 where the infimum is taken over all admissible

weights λ.

Recall at this point that Q0 = C \ Ω, and we do include λ(Q0) in the above sums,

whenever Q0 ∩ γ 6= ∅, in contrast to the previous sections, in which all paths were “living”

in Ω.

First we show a preliminary lemma, in the same spirit as Corollary 3.7.4.

Lemma 3.9.2. There exists a path family Γ1 in C with mod2(Γ1) = 0 such that for every

path γ ⊂ C, γ /∈ Γ1, the following holds:

For any two points x, y ∈ γ, there exists an open path γ̃ ⊂ C joining x and y, such that

{i ∈ N ∪ {0} : Qi ∩ γ̃ 6= ∅} ⊂ {i ∈ N ∪ {0} : Qi ∩ γ 6= ∅} and H1(f(γ̃ ∩ S)) = 0.

The curve γ̃ is not necessarily a subcurve of γ, but it intersects no more (closed) peripheral

disks than γ does.

Remark 3.9.3. An important ingredient in the proof will be the following. Although the

upper gradient inequality (3.9.1) holds - a priori - only for subpaths of paths γ contained

in Ω, lying outside an exceptional family Γ0 with mod2(Γ0), it turns out that this can be

extended to paths in C. Namely, the family of paths in C that have a subpath γ ⊂ Ω

for which the upper gradient inequality fails, has 2-modulus zero. This implies that (3.9.1)

holds for all open subpaths β ⊂ Ω of paths γ ⊂ C, lying outside an exceptional family Γ0 of

2-modulus zero.

Proof. Let γ ⊂ C be a path such that:

(1) (3.9.1) holds along all of its subpaths that are contained in Ω,

(2) H1(γ ∩ S) = 0, and
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(3)
√

2
∑

i:Qi∩γ 6=∅
i∈N\{0}

ρ(Qi) =
∑

i:Si∩f(γ)6=∅
i∈N\{0}

diam(Si) <∞.

This is true for paths outside an exceptional family Γ1 with mod2(Γ1) = 0. Indeed, (1) holds

for mod2-a.e. path by the preceding remark, and (2) holds for mod2-a.e. path since H2(S) =

0. The third statement also holds for all paths outside a family of conformal modulus

zero by Remark 3.7.6. By the subadditivity of conformal modulus, all three conditions are

simultaneously met by all paths outside a family of conformal modulus zero, as desired.

Let x, y ∈ γ. Note that if x, y lie on the same peripheral disk Qi0 , i0 ∈ N ∪ {0}, and γ

intersects Qi0 , then there is nothing to show, since we can just connect x, y with an open

path γ̃ ⊂ Qi0 , and this will trivially have the desired properties. Hence, we may assume that

this is not the case. By replacing γ with an open subpath we may suppose that x, y are the

endpoints of γ. Assume that γ is parametrized as it runs from x to y. If x ∈ Qix for some

ix ∈ N ∪ {0} and Qix ∩ γ 6= ∅ then we can replace x with the last exit point x0 ∈ ∂Qix of γ

from Qix , and obtain similarly a point y0 ∈ ∂Qiy , which is the first entry point of γ (after

x0) in Qiy , in case y ∈ ∂Qiy for some iy ∈ N ∪ {0} (cf. the discussion on “accessible” points

following Definition 3.4.3). If we can find a path γ̃ joining x0, y0 with the desired properties,

then we can concatenate it with arcs inside Qix , Qiy , and these do not contribute to the

Hausdorff 1-measure of f(γ̃ ∩ S), so the conclusion holds for the concatenation. Hence, we

assume that x, y ∈ γ ∩ S and γ does not intersect the closures of the peripheral disks that

possibly contain x, y in their boundary.

Another reduction we can make is that we can assume that γ ⊂ Ω. Indeed, by the

previous paragraph we may assume that none of x, y lies in Q0 and that γ does not intersect

Q0 in case x ∈ ∂Q0 or y ∈ ∂Q0. If γ hits Q0 (thus x, y ∈ Ω), we let x0 be the first entry

point of γ in Q0, and y0 be the last exit point from Q0. We consider the open subpaths

γx ⊂ Ω from x to x0 and γy ⊂ Ω from y to y0. If the statement of the lemma is true for γx

and γy, then there exist paths γ̃x, γ̃y joining x to x0, y to y0, respectively, such that they do

not intersect more closed peripheral disks than γ does, and such that their image has length

zero in the carpet R. Concatenating γ̃x, γ̃y with a path inside Q0 that joins x0 to y0 provides

179



the desired path γ̃.

Assuming now that γ ⊂ Ω and γ does not intersect the closed peripheral disks possibly

containing x, y in their boundaries, we will construct the path γ̃ through some iteration

procedure. We fix ε > 0, and a finite index set J1 ⊂ N such that

∑
i:Qi∩γ 6=∅
i∈N\J1

diam(Si) < ε. (3.9.2)

Using the reformulation of Lemma 2.5.10 in Remark 2.5.11, we may obtain open subpaths

γ1, . . . , γm ⊂ Ω of γ that intersect disjoint sets of peripheral disks Qi, i /∈ J1, such that

the upper gradient inequality of f holds along each of them and they have the following

property: the path γ1 starts at x1 = x, the path γm terminates at ym = y and in general the

path γk has endpoints xk, yk ∈ S such that for 1 ≤ k ≤ m− 1 we either have

• yk = xk+1, or

• yk, xk+1 ∈ ∂Qjk for some jk ∈ N. The peripheral disks Qjk
are distinct and they are

intersected by γ.

We denote by I ⊂ {1, . . . ,m} the set of indices k for which the second alternative holds.

By shrinking the open paths γk (or even discarding some of them), we may further assume

that they do not intersect the peripheral disks that possibly contain their endpoints in their

boundary. See also the proof of Corollary 3.7.4.

For each k ∈ I we consider a line segment f(αk) inside Sjk = f(Qjk) that connects

the endpoints of f(γk) and f(γk+1). Concatenating all the paths f(αk), f(γk) we obtain a

path f(β1) that connects f(x) to f(y) and intersects fewer peripheral disks than f(γ). We

estimate H1(f(β1 ∩ S)) as follows: for each k ∈ {1, . . . ,m} the image f(γk ∩ S) can be

covered by a ball Bk of radius rk :=
∑

i:Qi∩γk 6=∅
diam(Si), because by the upper gradient

inequality (3.9.1) we have

sup
z,w∈γk∩S

|f(z)− f(w)| ≤
∑

i:Qi∩γk 6=∅

diam(Si).
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By construction, γ1, . . . , γm intersect disjoint sets of peripheral disks. SinceH1(f(αk∩S)) = 0

for all k (as αk ∩ S contains at most two points) we have

H1(f(β1 ∩ S)) ≤ 2
m∑
k=1

rk ≤ 2
m∑
k=1

∑
i:Qi∩γk 6=∅

diam(Si) < 2ε

by (3.9.2). Here it is crucial that the paths γk intersect disjoint sets of peripheral disks.

Now, we iterate this procedure with ε replaced by ε/2. We consider a finite index set

J2 ⊃ J1 such that ∑
i:Qi∩γ 6=∅
i∈N\J2

diam(Si) < ε/2

and we modify each of the paths γ1, . . . , γm from the first step, according to the previous

procedure. The paths αk from the first step remain unchanged, but new arcs αl ⊂ Ql will

be added from the second step, such that Ql ∩ γk 6= ∅ for some k ∈ {1, . . . ,m}, and thus

diam(f(αl)) ≤ diam(Sl) ≤
∑

i:Qi∩γk 6=∅

diam(Si) = rk.

This implies that f(αl) ⊂ Sl ⊂ 2Bk. Hence, the new path f(β2) that we obtain as a result

of concatenations connects f(x) to f(y) and stays close to the path f(β1). In fact, we can

achieve that f(β2 ∩ S) is covered by balls Bl of radius rl, such that 2Bl is contained in one

of the balls 2Bk, and

H1(f(β2 ∩ S)) ≤ 2
∑
l

rl ≤ ε.

This can be achieved by noting that f(β2 ∩ S) ⊂ f(β1 ∩ S) ⊂
⋃
k Bk, and choosing an even

larger set J2 ⊃ J1, so that

rl ≤
∑

i:Qi∩γ 6=∅
i∈N\J2

diam(Si) < min
k∈{1,...,m}

rk/2.

In the n-th step we have a path f(βn) connecting f(x), f(y) such that the set f(βn ∩ S)

admits a cover by balls {2Bn
l }l that is decreasing in n, and whose radii sum does not exceed

ε/2n−3. Moreover, by construction, if f(βn) ∩ Si 6= ∅ for a square i ∈ N, then f(βm) ∩ Si is

a fixed line segment for all m ≥ n.
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The curves f(βn) subconverge to a continuum f(β) in the Hausdorff sense that connects

f(x) to f(y). The set f(β ∩ S) is covered by {2Bn
l }l for all n and thus H1(f(β ∩ S)) = 0.

The set β can only intersect peripheral disks that can be approximated by points intersected

by the paths βn, and thus by the path γ. Hence, β cannot intersect more peripheral disks

than γ does.

We claim that f(β) is locally connected, and thus it contains a path connecting f(x), f(y);

see the proof of Lemma 3.5.13. The argument is similar to the proof of Lemma 3.5.14. If f(β)

is not locally connected, there exists an open set U and ε > 0 such that U ∩ f(β) contains

infinitely many components Cn, n ∈ N, of diameter at least ε. By passing to a subsequence,

we may assume that the continua Cn subconverge in the Hausdorff sense to a continuum

C ⊂ f(β) with diam(C) ≥ ε. We claim that C ⊂ R, hence H1(C) ≤ H1(f(β ∩ S)) = 0,

which is a contradiction.

If C ∩ Si0 6= ∅ for some i0 ∈ N, then by shrinking C and Cn we may assume that

C,Cn ⊂⊂ Si0 for all n ∈ N. In particular, f(β) has infinite length inside Si0 . However, by

the construction of the paths f(βn), the intersection f(β) ∩ Si0 is either empty or it is one

line segment. This is a contradiction.

Using the lemma we show:

Proposition 3.9.4. Let Γ be a family of paths in C joining two continua E,F ⊂ S, but

avoiding finitely many peripheral disks Qi, i ∈ I0, where I0 is a finite (possibly empty) subset

of N ∪ {0}. We have

mod(Γ) ≤ mod(f(Γ))

Here, of course, the left hand side is weak carpet modulus with respect to the carpet S,

and the right hand side is carpet modulus with respect to the carpet R.

Proof. Consider a weight {λ′(Si)}i∈N∪{0} that is admissible for mod(f(Γ)), i.e.,

∑
i:Si∩γ′ 6=∅

λ′(Si) ≥ 1 (3.9.3)
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for every path γ′ = f(γ) ∈ f(Γ) with H1(γ′ ∩ R) = 0. Define λ(Qi) := λ′(Si), i ∈ N ∪ {0},

and let Γ0 = {γ ∈ Γ :
∑

i:Qi∩γ 6=∅
λ(Qi) < 1}. We wish to show that mod2(Γ0) = 0. If this is

the case, then {λ(Qi)}i∈N is clearly admissible for mod(Γ), thus

mod(Γ) ≤
∑

i∈N∪{0}

λ(Qi)
2 =

∑
i∈N∪{0}

λ′(Si)
2.

Infimizing over λ we obtain the desired mod(Γ) ≤ mod(f(Γ)).

Now we show our claim. If γ ∈ Γ0 \ Γ1, where Γ1 is as in Lemma 3.9.2, then there exists

a path γ̃ given by the lemma that connects points x ∈ E and y ∈ F . The path γ̃ intersects

fewer peripheral disks than γ, so∑
i:Si∩f(γ̃)6=∅

λ′(Si) =
∑

i:Qi∩γ̃ 6=∅

λ(Qi) ≤
∑

i:Qi∩γ 6=∅

λ(Qi) < 1.

Also, H1(f(γ̃ ∩S)) = H1(f(γ̃)∩R) = 0, γ̃ still joins the continua E,F , and avoids
⋃
i∈I0 Qi,

so γ̃ ∈ Γ. This contradicts (3.9.3), hence Γ0 \ Γ1 = ∅, and Γ0 ⊂ Γ1. We thus have

mod2(Γ0) ≤ mod2(Γ1) = 0.

We also wish to show an analog of Proposition 3.9.4 for g := f−1:

Proposition 3.9.5. Let Γ be the family of paths in C joining two continua E,F ⊂ R, but

avoiding finitely many squares Si, i ∈ I0, where I0 is a finite (possibly empty) subset of

N ∪ {0}. We have

mod(Γ) ≤ mod(g(Γ)).

The proof of Proposition 3.9.4 applies without change, if we can establish an analog of

Lemma 3.9.2 for g. In the proof of the latter we only used the fact that f is a homeomorphism,

together with (3.9.1). Hence, in order to obtain Proposition 3.9.5, it suffices to show that

|g(x)− g(y)| ≤
∑

i:Si∩γ 6=∅

diam(Qi) (3.9.4)

for all paths γ ⊂ (0, 1)× (0, D) outside an exceptional family of 2-modulus zero, and points

x, y ∈ γ ∩ R. We will show this in Lemma 3.9.8 after we have established two auxiliary

results.
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Recall the notation βs ⊂ ψ−1(s) ∩ ((0, 1) × (0, D)), s ∈ (0, δ), for the perturbations of

a given path β connecting two non-trivial continua E,F ⊂ [0, 1] × [0, D], as in Proposition

3.3.4. Here ψ(x) = dist(x, β).

Lemma 3.9.6. Fix a path β as above. For a.e. s ∈ (0, δ) we have

H1(g(ψ−1(s) ∩R)) = 0.

We postpone the proof for the moment. Using this we have a preliminary version of

(3.9.4):

Lemma 3.9.7. For a.e. s ∈ (0, δ) and x, y ∈ βs ∩R we have

|g(x)− g(y)| ≤
∑

i:Si∩βs 6=∅

diam(Qi).

Proof. Consider s ∈ (0, δ) such that the conclusion of Lemma 3.9.6 holds. Without loss of

generality, we assume that
∑

i:Si∩βs 6=∅ diam(Qi) < ∞. Let ε > 0 and consider a cover of

g(βs ∩R) ⊂ g(ψ−1(s)∩R) by finitely many small balls Bj of radius rj such that
∑

j rj < ε.

The union of
⋃
j Bj and

⋃
i:Si∩βs 6=∅Qi covers g(βs) so we can find a finite subcover. Traveling

along this subcover from g(x) to g(y) (as a finite chain) we obtain

|g(x)− g(y)| ≤
∑
j

2rj +
∑

i:Si∩βs 6=∅

diam(Qi) ≤ 2ε+
∑

i:Si∩βs 6=∅

diam(Qi).

The conclusion follows.

Finally, we have:

Lemma 3.9.8. There exists an exceptional family of paths Γ0 with mod2(Γ0) = 0 such that

for every path γ ⊂ (0, 1)× (0, D) with γ /∈ Γ0 and every open subpath β of γ we have

|g(x)− g(y)| ≤
∑

i:Si∩β 6=∅

diam(Qi) (3.9.5)

for all points x, y ∈ β ∩R.
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Proof. Note that Lemma 3.6.9 is also valid for the carpet R, since it satisfies the basic

assumptions (3.1.1) and (3.1.2) and has area zero (see Corollary 3.7.2). We fix a non-

exceptional path γ ⊂ (0, 1) × (0, D) so that the conclusions of Lemma 3.6.9 hold for all

subpaths β of γ having endpoints in R◦, and H1(γ ∩R) = 0.

By continuity and the usual reduction to “accessible” points, it suffices to prove the main

claim (3.9.5) for a subpath β of γ and its endpoints x, y, with the further assumption that they

lie in R◦ (i.e. they do not lie on any square or on the boundary rectangle); see the comments

in the beginning of the proof of Lemma 3.6.8. Consider two non-trivial disjoint continua

E,F ⊂ R◦ such that x ∈ E and y ∈ F ; the existence of such continua is implied by Lemma

3.3.5. Let ψ(x) = dist(x, β) and consider the perturbations βs ⊂ ψ−1(s) of β that connect

points xs ∈ E to ys ∈ F , s ∈ (0, δ). If δ is sufficiently small, then ψ−1(s) ⊂ (0, 1) × (0, D)

for all s ∈ (0, δ).

For fixed ε > 0 we choose an even smaller δ > 0 so that xs and ys are close to x and y,

respectively, and

|g(x)− g(y)| ≤ |g(xs)− g(ys)|+ ε

≤
∑

i:Si∩ψ−1(s)6=∅

diam(Qi) + ε

for a.e. s ∈ (0, δ), by the continuity of g and Lemma 3.9.7. The right hand side is a measurable

function of s. Thus, averaging over s ∈ (0, δ) and using Fubini’s theorem we obtain

|g(x)− g(y)| ≤ 1

δ

∑
i∈N

diam(Qi)

∫ δ

0

χSi∩ψ−1(s) ds+ ε

≤ 1

δ

∑
i∈N

diam(Qi)H1({s ∈ (0, δ) : Si ∩Ns(β) 6= ∅}) + ε

≤
∑

i:Si∩β 6=∅

diam(Qi) +
1

δ

∑
i:Si∩β=∅

Si∩Nδ(β)6=∅

diam(Qi) ·min{diam(Si), δ}+ ε.

It suffices to show that the second sum converges to 0 as δ → 0. Note that we can bound it

by

1

δ

∑
i:Si⊂N2δ(β)

diam(Qi) diam(Si) +
∑

i∈Dδ(β)

diam(Qi),
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where Dδ(β) is the family of indices i ∈ N such that diam(Si) ≥ δ, Si ∩ Nδ(β) 6= ∅, and

Si ∩ β = ∅. We are exactly in the setting of Lemma 3.6.9, so the conclusion follows.

It remains to prove the very first Lemma 3.9.6. We assume that we have a path β

connecting two continua E,F ⊂ [0, 1]× [0, D], and its perturbations βs ⊂ ψ−1(s) ∩ ((0, 1)×

(0, D)), s ∈ (0, δ). We split the proof in two parts:

Lemma 3.9.9. For a.e. s ∈ (0, δ) the intersection ψ−1(s)∩∂Si contains finitely many points,

for all i ∈ N ∪ {0}.

Lemma 3.9.10. For a.e. s ∈ (0, δ) we have

H1(g(ψ−1(s) ∩R◦)) = H1(g(ψ−1(s)) ∩ S◦) = 0.

Remark 3.9.11. One easily recognizes the connection to the proof of Lemma 3.5.11, where we

first proved that for a.e. t the level set u−1(t) intersects the peripheral circles ∂Qi in finitely

many points (in fact in at most two points), and then treated separately the set u−1(t)∩S◦.

In fact, Lemma 3.5.11 is a particular case of what we are about to show.

Proof of Lemma 3.9.9. The proof is based on the fact that A := ∂Si has finite Hausdorff

1-measure for all i ∈ N ∪ {0}. Let J ⊂ (0, δ) be the set of s for which ψ−1(s) ∩ A contains

at least N points, where N ∈ N is fixed. We will show that for the outer 1-measure m∗1(J)

we have

m∗1(J) ≤ 1

N
H1(A). (3.9.6)

Hence, the set of s ∈ (0, δ) for which ψ−1(s) ∩ A contains infinitely many points has outer

measure that is also bounded by 1
N
H1(A), for all N ∈ N. If we let N → ∞ the conclusion

will follow.

For n ∈ N define Jn ⊂ J to be the set of s ∈ (0, δ) for which the intersection ψ−1(s) ∩A

contains N points whose mutual distance is at least 1/n; recall that N is fixed. It is easy

to see that J =
⋃
n∈N Jn and Jn ⊂ Jn+1, thus m∗1(J) = limn→∞m

∗
1(Jn); see [Bog07, Prop.

1.5.12, p. 23]. It suffices to show (3.9.6) for Jn in the place of J .
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Recall that ψ(x) = dist(x, β) for the given path β. For fixed n ∈ N we cover A by finitely

many open sets {Ui}i with diam(Ui) < 1/n. If s ∈ Jn then ψ−1(s) meets at least N distinct

sets Ui. For all t near s with t ≤ s, the set ψ−1(t) also intersects at least N distinct sets

Ui. Indeed, note that for each point x ∈ ψ−1(s) and for every small ball B(x, r) there exists

t0 < s such that ψ−1(t) ∩ B(x, r) 6= ∅ for all t0 ≤ t ≤ s. To see the latter, let [x, y] denote

the line segment from x to its closest point y ∈ β, so |x − y| = s. Arbitrarily close to x we

can find points z ∈ [x, y], with z ∈ ψ−1(t0) for some t0 < s. Then by the intermediate value

theorem applied to ψ on the segment [z, x] the claim follows.

Define Ws to be a non-trivial closed interval of the form [t0, s] ⊂ (0, δ), such that ψ−1(t)

intersects at least N distinct sets Ui for all t ∈ Ws. Also, let W =
⋃
s∈JnWs ⊃ Jn, and

Vi := ψ(Ui). Then

∑
i

χVi(t) ≥ N

for all t ∈ W . The set W is measurable as it is a union of non-trivial closed intervals; this

is easy to see in one dimension, but a similar statement is true in Rn [BK99, Theorem 1.1].

Hence, we have

Nm∗1(Jn) ≤ Nm1(W ) = N

∫
χW (t) dt ≤

∫ ∑
i

χVi(t) dt

=
∑
i

m1(Vi) ≤
∑
i

diam(ψ(Ui)) ≤
∑
i

diam(Ui)

since ψ is 1-Lipschitz. The cover {Ui} of A was arbitrary, so taking the infimum over all

covers completes the proof.

An ingredient for the proof of Lemma 3.9.10 is the following monotonicity property of f ;

cf. Lemma 3.4.7.

Lemma 3.9.12. Let x ∈ S, r > 0, and c > 1 such that B(x, r) ⊂ B(x, cr) ⊂ Ω. We have

diam(f(B(x, r) ∩ S)) ≤ diam(f(B(x, sr) ∩ S)) ≤
∑

i:Qi∩∂B(x,sr)6=∅

diam(Si) (3.9.7)

for a.e. s ∈ [1, c].
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Proof. The map f is a homeomorphism so it has the monotonicity property that for any set

U ⊂⊂ C we have

sup
z,w∈U

|f(z)− f(w)| = sup
z,w∈∂U

|f(z)− f(w)|.

Thus, for each s ∈ (1, c) we have

diam(f(B(x, r) ∩ S)) ≤ diam(f(B(x, sr) ∩ S))

≤ diam(f(B(x, sr))) = |f(z)− f(w)|

for some points z, w ∈ ∂B(x, sr). Suppose first that z, w ∈ S. Since for a.e. s ∈ [1, c] the path

∂B(x, sr) is non-exceptional for 2-modulus (this follows, for example, from a modification of

Lemma 3.3.4), by the upper gradient inequality (3.9.1) we obtain

|f(z)− f(w)| ≤
∑

i:Qi∩∂B(x,sr)6=∅

diam(Si).

If z lies in a peripheral disk Qiz with Qiz ∩ ∂B(x, sr) 6= ∅, then we let z′ be the last exit

point of the path ∂B(x, sr) from Qiz as it travels from z to w. Similarly, we consider

a point w′, in case w lies in a peripheral disk Qiw . Observe now that |f(z) − f(z′)| ≤

diam(Siz), |f(w) − f(w′)| ≤ diam(Siw), and the open subpath of ∂B(x, sr) from z′ to w′

does not intersect Qiz , Qiw . The upper gradient inequality applied to this subpath yields the

result.

Proof of Lemma 3.9.10. The proof is very similar to the proof of Lemma 3.5.11 so we omit

most of the details.

For a fixed ε > 0 we consider the set Eε = {i ∈ N : diam(Qi) > ε}. We cover Ω\
⋃
i∈Eε Qi

by balls Bj of radius rj < ε such that 2Bj ⊂ Ω \
⋃
i∈Eε Qi, and such that 1

5
Bj are disjoint.

Let J be the family of indices j such that for each s ∈ [1, 2] we have

diam(f(sBj ∩ S)) ≥ k diam(Si)

for all peripheral disks Qi with diam(Qi) > 8rj that intersect ∂(sBj). The constant k ≥ 1

can be chosen exactly as in the proof of Lemma 3.5.11. Using (3.9.7) for Bj and integrating
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over s ∈ [1, 2] one obtains

rj diam(f(Bj ∩ S)) ≤ C
∑

i:Qi⊂11Bj

diam(Si) diam(Qi) (3.9.8)

for all j ∈ J , where C > 0 is a uniform constant depending only on the data of the carpet

S (cf. (3.5.8)). For each j ∈ J consider the smallest interval Ij that contains ψ(f(Bj ∩ S))

and define gε(t) =
∑

j∈J 2rjχIj(t), t ∈ (0, δ).

For j /∈ J there exists s = sj ∈ [1, 2] and there exists a peripheral disk Qi that intersects

∂(sBj) with diam(Qi) > 8rj, but diam(f(sBj ∩ S)) < k diam(Si). Let {Qi}i∈I denote the

family of such peripheral disks. Some Qi, i ∈ I, might intersect multiple balls Bj, j /∈ J .

We define

Q̃i := Qi ∪
⋃
{sjBj : Qi ∩ ∂(sjBj) 6= ∅, diam(Qi) > 8rj,

and diam(f(sjBj ∩ S)) < k osc
Qi

(u)},

and note that

diam(f(Q̃i ∩ S)) ≤ C diam(Si) (3.9.9)

for all i ∈ I, where C > 0 depends only on the data. Furthermore, diam(Q̃i) < 2 diam(Qi)

since diam(Qi) > 8rj whenever sjBj ⊂ Q̃i. Now, let Ii be the smallest interval containing

ψ(f(Q̃i ∩ S)) and define bε(t) =
∑

i∈I 2 diam(Qi)χIi(t), t ∈ (0, δ).

Observe that for each t ∈ (0, δ) the set g(ψ−1(s) ∩R◦) is covered by the balls Bj, j ∈ J ,

and the sets Q̃i, i ∈ I. Since rj < ε for j ∈ J and diam(Qi) < ε for i ∈ I, we have

H1
ε(g(ψ−1(s) ∩R◦)) ≤ gε(s) + bε(s).

It suffices to show that gε(s)→ 0 and bε(s)→ 0 for a.e. s ∈ (0, δ), along a sequence of ε→ 0.

The function ψ is 1-Lipschitz, so we have

diam(Ij) = diam(ψ(f(Bj ∩ S))) ≤ diam(f(Bj ∩ S)) and

diam(Ii) = diam(ψ(f(Q̃i ∩ S))) ≤ diam(f(Q̃i ∩ S))

for all j ∈ J and i ∈ I. These can be estimated above by (3.9.8) and (3.9.9), respectively.

The proof continues exactly as in Lemma 3.5.11 by estimating
∫ δ

0
bε(s) ds and

∫ δ
0
gε(s) ds

and showing that they converge to 0 as ε→ 0.
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3.10 Carpet modulus estimates

In this section we state some modulus estimates, which were proved in [Bon11, Section 8].

The statements there involve some bounds for the transboundary modulus, which is a notion

of modulus “between” the classical conformal modulus and the carpet modulus that we are

employing in this chapter. Thus, the proofs can be applied with minor changes and we

restrict ourselves to mentioning the results.

We first recall some definitions from the introduction. Consider a Sierpiński carpet S ⊂ Ω

with its peripheral circles {∂Qi}i∈N∪{0}, where ∂Q0 = ∂Ω. We say that the peripheral circles

of the carpet S are K2-quasicircles for some constant K2 > 0 if ∂Qi is a K2-quasicircle for

all i ∈ N ∪ {0}. This is to say for any two points x, y ∈ ∂Qi there exists an arc γ ⊂ ∂Qi

connecting x and y with diam(γ) ≤ K3|x − y|. Furthermore, the peripheral circles of the

carpet S are K3-relatively separated for a constant K3 > 0 if

∆(∂Qi, ∂Qj) :=
dist(∂Qi, ∂Qj)

min{diam(∂Qi), diam(∂Qj)}
≥ K3

for all i, j ∈ N ∪ {0} with i 6= j. Recall that if the peripheral circles of S are uniform quasi-

circles then the inner peripheral disks Qi, i ∈ N, are uniformly fat and uniform quasiballs.

In the following two propositions the common assumption is that we have a Sierpiński

carpet S contained in a Jordan region Ω such that ∂Q0 = ∂Ω ⊂ S is the outer peripheral

circle and {Qi}i∈N are the inner peripheral disks.

Proposition 3.10.1 (Prop. 8.1, [Bon11]). Assume that the peripheral circles {∂Qi}i∈N∪{0} of

S are K2-quasicircles and they are K3-relatively separated, and fix an integer N ∈ N. Then

there exists a non-increasing function φ : (0,∞)→ (0,∞) that can be chosen only depending

on K2, K3, and N with the following property: if E and F are arbitrary disjoint continua in

S, and I0 ⊂ N ∪ {0} is a finite index set with #I0 = N , then the family of curves Γ in C

joining the continua E and F , but avoiding the finitely many peripheral disks Qi, i ∈ I0, has

carpet modulus satisfying

mod(Γ) ≥ φ(∆(E,F )).

The same conclusion is true if we use instead the weak carpet modulus mod(Γ).
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Proposition 3.10.2 (Prop. 8.4, [Bon11]). Assume that the peripheral circles {∂Qi}i∈N∪{0}

of S are K2-quasicircles and they are K3-relatively separated. Then there exists a non-

increasing function φ : (0,∞) → (0,∞) that can be chosen only depending on K2 and K3

with the following property: if E and F are disjoint continua in S, then the family of curves

Γ in C joining the continua E and F has carpet modulus satisfying

mod(Γ) ≤ φ(∆(E,F )).

The same conclusion is true if we use instead the weak carpet modulus mod(Γ).

A square Sierpiński carpet is by definition a Sierpiński carpet R whose inner peripheral

disks {Si}i∈N are squares, and the outer peripheral circle ∂S0 is a rectangle, where S0 is the

unbounded component of C \ R.

Proposition 3.10.3 (Prop. 8.7, [Bon11]). Let R ⊂ [0, 1]×[0, D] be a square Sierpiński carpet

with inner peripheral squares {Si}i∈N and outer peripheral rectangle ∂S0 := ∂([0, 1]× [0, D]).

There exists a number N = N(D) ∈ N and a non-increasing function ψ : (0,∞) → (0,∞)

with

lim
t→∞

ψ(t) = 0

that can be chosen only depending on D and satisfies the following: if E and F are arbitrary

continua in R with ∆(E,F ) ≥ 12, then there exists a set I0 ⊂ N ∪ {0} with #I0 ≤ N such

that the family of curves Γ in C joining the continua E and F , but avoiding the finitely many

peripheral disks Si, i ∈ I0, has carpet modulus satisfying

mod(Γ) ≤ ψ(∆(E,F )).

Moreover, if D ∈ [D1, D2] ⊂ (0,∞), the number N and the function ψ can be chosen to

depend only on D1, D2.

As a last remark, (weak) carpet modulus of a path family Γ is always considered with

respect to a given carpet, although this is not explicitly manifested in the notation mod(Γ).

It will be clear from the context what the reference carpet each time is, when we use these

estimates in the next section.
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3.11 Quasisymmetric uniformization

In this section we prove Theorem 3.1.2, which we restate for the convenience of the reader.

Theorem 3.11.1. Let S be a Sierpiński carpet of area zero with peripheral circles {∂Qi}i∈N∪{0}

that are K2-quasicircles and K3-relatively separated. Then there exists an η-quasisymmetric

map f from S onto a square Sierpiński carpet R such that the distortion function η depends

only on K2 and K3.

Before proceeding to the proof we include some lemmas.

Lemma 3.11.2. Let a, b > 0, and (X, dX) and (Y, dY ) be metric spaces. Suppose that

x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y are points such that

dX(xi, xj) ≥ a and dY (yi, yj) ≥ b for i, j = 1, 2, 3, i 6= j.

Then for all x ∈ X and y ∈ Y there exists an index l ∈ {1, 2, 3} such that dX(x, xl) ≥ a/2

and dY (y, yl) ≥ b/2.

Proof. At most one of the points xi can lie in the ball B(x, a/2), so there are at least two

points, say x1, x2 that have distance at least a/2 to x. At most one of the points y1, y2 can

lie in B(y, b/2), so one of them, say y1, has to lie outside the ball B(y, b/2). Then the desired

statement holds for l = 1.

Lemma 3.11.3. Let R ⊂ [0, 1] × [0, D] be a square Sierpiński carpet such that ∂([0, 1] ×

[0, D]) ⊂ R is the outer peripheral circle. Then there exists a constant C(D) > 0 such that

the following two conditions are satisfied:

(1) For all x, y ∈ R there exists a path γ ⊂ R connecting x and y with diam(γ) ≤ 2|x−y|.

(2) If a ∈ R, 0 < r ≤ C(D), and x, y ∈ R \ B(a, r), then there exists a continuum E

connecting x and y with E ⊂ R \B(a, r/2).

In fact, one can take C(D) = min{1, D}.
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Proof. Let Si, i ∈ N, denote the inner (open) peripheral squares of R, and ∂S0 := ∂([0, 1]×

[0, D]). For the first statement note that for any two points x, y lying on a square ∂Si there

exists an arc γ ⊂ ∂Si connecting x, y with length at most 2|x − y|. Now, if x, y ∈ R are

arbitrary, we connect them with a line segment [x, y], and then replace each of the segments

[xi, yi] := [x, y]∩Si with an arc γi ⊂ ∂Si that connects xi, yi and has length at most 2|xi−yi|.

The resulting path γ ⊂ R connects x, y and has length at most 2|x− y|.

For the second claim, let C(D) = min{1, D}, so a ball B(a, r/2) with r ≤ C(D) cannot

intersect two opposite sides of the rectangle ∂S0. If x ∈ R \ B(a, r), then we connect x to

∂S0 with a line segment γx parallel to one of the coordinate axes that does not intersect

B(a, r). We replace each of the arcs γx ∩ Si, i ∈ N, with an arc in ∂Si that has the same

endpoints and does not intersect B(a, r). To see the existence of such an arc, note that if

both of the arcs of ∂Si with the same endpoints as γx ∩ Si intersected B(a, r), then B(a, r)

would also intersect γx ∩ Si, by convexity. This is a contradiction.

We still call the resulting path γx. We do the same for a point y ∈ R\B(a, r) and obtain

a path γy. Then one has to concatenate γx and γy with a path in ∂S0 that does not intersect

B(a, r/2). If ∂S0 \ B(a, r/2) has only one component then this can be clearly done. The

other case is that ∂S0\B(a, r/2) has two components E and F , and thus B(a, r/2) intersects

two neighboring sides of ∂S0. The distance of a to these two sides is at most r/2, so B(a, r)

contains one of the components E,F , say it contains F . This now implies that the endpoints

γx ∩ ∂S0, γy ∩ ∂S0 have to lie on E and can therefore be connected with a subarc of E.

Now we proceed to the proof of the main result. The candidate for the quasisymmetric

map f : S → R is the map that we constructed in the previous sections. The principle that

we will use is that a “quasiconformal” map (in our case a map that preserves modulus)

between a Loewner space and a space that is linearly locally connected (this is essentially

implied by Lemma 3.11.3) is quasisymmetric; see [Hei01, Chapter 11] for background. Cer-

tain complications arise since we do not know in advance that the peripheral squares of R

are uniformly relatively separated, and we bypass this by employing Proposition 3.10.3.

Proof of Theorem 3.11.1. We apply the considerations from Section 3.4 to Section 3.9. So
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we obtain a homeomorphism f from S onto a square carpet R ⊂ [0, 1] × [0, D], with outer

peripheral disk S0 = C \ [0, 1] × [0, D]. This homeomorphism maps ∂Ω to ∂S0 and has the

regularity as in Section 3.9: it satisfies the conclusions of Propositions 3.9.4 and 3.9.5; see

also the formulation of Theorem 3.1.1.

We split the proof into two parts. The first part is to show that if we choose the sides

Θ1,Θ3 ⊂ ∂Ω suitably, then the height D of the rectangle [0, 1] × [0, D] that contains the

square carpet R is bounded above and below (away from 0), depending only on K2 and K3.

Recall from Section 3.4.2 that the choice of Θ1 and Θ3 specifies uniquely the function u, and

thus it specifies the uniformizing function f = (u, v) and the height D of the rectangle that

contains the carpet R = f(S). The second step is to prove that the map f : S → R that

satisfies the conclusions of Proposition 3.9.4 and Proposition 3.9.5 is a quasisymmetry.

For the first step, note that ∂Q0 = ∂Ω is a K2-quasicircle, so it is the quasisymmetric

image of the unit circle. It follows that we can choose two disjoint arcs Θ1,Θ3 ⊂ ∂Ω with

endpoints ai, i = 1, . . . , 4, such that

min
i 6=j

i,j=1,...,4

|ai − aj| ≥ C0 diam(∂Ω) = C0 diam(S), (3.11.1)

where C0 > 0 is a constant depending only on K2. Using this, and again that ∂Q0 is a

quasicircle, one can see that
1

C ′
≤ ∆(Θ1,Θ3) ≤ C ′

for some constant C ′ > 0 depending only on K2. Hence, if Γ denotes the family of paths in

Ω that connect Θ1 and Θ3 (this family avoids Q0), by Proposition 3.10.1 and Proposition

3.10.2 we have

mod(Γ) ≤ C ′′ and mod(Γ) ≥ C ′′′ (3.11.2)

for constants C ′′, C ′′′ > 0 depending only on K2 and K3. The family f(Γ) is the path

family in (0, 1)× (0, D) that connects {0} × [0, D] to {1} × [0, D]. Combining (3.11.2) with

Proposition 3.9.5 and Proposition 3.9.4 we obtain

mod(f(Γ)) ≤ C ′′ and mod(f(Γ)) ≥ C ′′′,
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where here (weak) carpet modulus is with respect to the carpet R. Finally, both of the

above moduli are equal to D, so the conclusion of the first step follows. To see this, consider

the discrete weight λ(Si) := `(Si), i ∈ N, where `(Si) is the sidelength of the square Si, and

λ(S0) := 0. It is immediate that {λ(Si)}i∈N∪{0} is admissible for f(Γ) with respect to both

notions of modulus, since for any path γ ∈ Γ with H1(γ ∩R) = 0 we have∑
i:Qi∩γ 6=∅

λ(Qi) ≥ 1.

Thus, mod(f(Γ)) and mod(f(Γ)) are both bounded above by∑
i∈N

`(Si)
2 = H2([0, 1]× [0, D]) = D.

Conversely, if λ(Si) is an arbitrary weight that is admissible for mod(f(Γ)) , then we may

assume that λ(S0) = 0, since the path family f(Γ) does not hit S0. Moreover, for the paths

γt(r) = (r, t), r ∈ (0, 1), and for a.e. t ∈ [0, 1] we have

1 ≤
∑

i:Si∩γt 6=∅

λ(Si).

This is because the paths γt(r) are non-exceptional for a.e. t ∈ [0, 1]; see Lemma 3.3.4 and

its proof in Lemma 2.4.3.

Integrating over t ∈ [0, 1] and applying Fubini’s theorem yields

1 ≤
∑
i∈N

λ(Si)

∫ 1

0

χSi∩γt dt ≤
∑
i∈N

λ(Si)`(Si) ≤

(∑
i∈N

λ(Si)
2

)1/2(∑
i∈N

`(Si)
2

)1/2

=

(∑
i∈N

λ(Si)
2

)1/2

H2([0, 1]× [0, D])1/2.

Hence
∑

i∈N λ(Si)
2 ≥ D, which shows that mod(f(Γ)) ≥ D. The same computation proves

the claim for mod(f(Γ)). Summarizing, under our choice of Θ1 and Θ3, the height D of the

rectangle (0, 1)× (0, D) is bounded above and below, depending only on K2 and K3.

Now we move to the second step of the main proof. We remark that among the constants

that we introduced in the first step only the constant C0 is used again, and all other constants

here are new constants. For simplicity we rescale S so that diam(S) = 1. This does not
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affect the constants K2, K3, or the quasisymmetry distortion function. We show that the

map f : S → R is a weak quasisymmetry, i.e., there exists a constant H > 0 depending only

on K2, K3 such that for any three points x, y, z ∈ S with |x− y| ≤ |x− z| we have that the

images x′ = f(x), y′ = f(y), z′ = f(z) satisfy

|x′ − y′| ≤ H|x′ − z′|.

By a well-known criterion this implies that f is an η-quasisymmetry, where η depends only

on K2, K3; see [Hei01, Theorem 10.19].

We argue by contradiction, assuming that there exist points x, y, z ∈ S with |x − y| ≤

|x−z|, but |x′−y′| > H|x′−z′| for some large H > 0. Then the points x, y, z are distinct. By

Lemma 3.11.3(1), there exists a continuum E ′ ⊂ R with diam(E ′) ≤ 2|x′ − z′|, connecting

x′, z′.

Recall that the mutual distance of the endpoints ai, i = 1, . . . , 4, of Θ1 and Θ3 is at least

δ := min
i 6=j

i,j=1,...,4

|ai − aj| ≥ C0

by (3.11.1). Their images a′i, i = 1, . . . , 4, are the vertices of the rectangle ∂S0 = ∂([0, 1] ×

[0, D]). So their mutual distance is bounded below by δ′ = min{1, D}. By Lemma 3.11.2,

there exists an index i = 1, . . . , 4 such that for u = ai and u′ = a′i we have

|u− y| ≥ δ/2 and |u′ − x′| ≥ δ′/2.

Since |x′ − y′| ≤ 2 max{1, D}, it follows that

|u′ − x′| ≥ δ′

2
≥ 1

4

min{1, D}
max{1, D}

|x′ − y′| = 1

4
min{D, 1/D}|x′ − y′| =: C1(D)|x′ − y′|.

Hence, u′ /∈ B(x′, r), where r := C1(D)|x′ − y′|. The fact that C1(D) < 1 implies that we

also have y′ /∈ B(x′, r). By Lemma 3.11.3(2), we can find a continuum F ′ ⊂ R \ B(x′, r/2),

connecting u′ and y′. We have

dist(E ′, F ′) ≥ r

2
− diam(E ′) ≥ C1(D)

2
|x′ − y′| − 2|x′ − z′|

≥
(
H
C1(D)

2
− 2

)
|x′ − z′|

≥ HC1(D)

4
|x′ − z′|
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for H ≥ 8
C1(D)

. Also,

min{diam(E ′), diam(F ′)} ≤ diam(E ′) ≤ 2|x′ − z′|.

Therefore,

∆(E ′, F ′) =
dist(E ′, F ′)

min{diam(E ′), diam(F ′)}
≥ HC1(D)

8
≥ H · C ′,

where the constant C ′ > 0 depends only on the lower and upper bounds of D, and thus only

on K2 and K3, by the first step of the proof.

Now we choose an even larger H so that HC ′ ≥ 12 and apply Proposition 3.10.3. There

exists an index set I0 ⊂ N ∪ {0} with I0 ≤ N such that the family Γ′ of curves joining E ′

and F ′ in C but avoiding the peripheral disks Si, i ∈ I0, satisfies

mod(Γ′) ≤ ψ(∆(E ′, F ′)) ≤ ψ(HC ′). (3.11.3)

The number N ∈ N and the function ψ depend only on D and thus, only on K2 and K3.

Define E := f−1(E ′) and F := f−1(F ′). Then E and F are disjoint continua in S

containing the sets {x, z} and {y, u}, respectively. We have

diam(F ) ≥ |y − u| ≥ δ

2
≥ δ

2
diam(E) ≥ C0

2
diam(E),

since diam(E) ≤ diam(S) = 1. Also,

dist(E,F ) ≤ |x− y| ≤ |x− z| ≤ diam(E)

≤ max

{
1,

2

C0

}
·min{diam(E), diam(F )}.

Therefore,

∆(E,F ) ≤ max

{
1,

2

C0

}
=: C ′′,

where the latter is a uniform constant. The path family Γ := f−1(Γ′) connects the continua

E and F in C but avoids the finitely many peripheral disks Qi, i ∈ I0. Since #I0 is uniformly

bounded, depending only on K2 and K3, by Proposition 3.10.1 we have

mod(Γ) ≥ φ(∆(E,F )) ≥ φ(C ′′). (3.11.4)
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Combining (3.11.4) and (3.11.3) with the modulus inequality for f in Proposition 3.9.4 we

obtain

φ(C ′′) ≤ mod(Γ) ≤ mod(f(Γ)) = mod(Γ′) ≤ ψ(HC ′).

Since limt→∞ ψ(t) = 0, if H is sufficiently large depending only on K2 and K3, we obtain a

contradiction.

3.12 Equivalence of square and round carpets

In this section we prove Proposition 3.1.6.

Proof of Proposition 3.1.6. We denote the peripheral circles of a square carpet R by ∂Si,

i ∈ N ∪ {0}, and the ones corresponding to the round carpet T by ∂Ci, i ∈ N ∪ {0}.

If the peripheral circles of a square carpet R are uniformly relatively separated, then

by Bonk’s result in Theorem 3.1.4, R is quasisymmetrically equivalent to a round carpet

T . Conversely if the peripheral circles of a round carpet T are uniformly relatively sepa-

rated, then our main result Theorem 3.1.2 implies that T is quasisymmetrically equivalent

to a square carpet. We remark here that the property of uniform relative separation is a

quasisymmetric invariant.

Now, assume that we are given a quasisymmetry F from a square carpet R onto a round

carpet T , but the peripheral circles ∂Si, i ∈ N ∪ {0}, of R are not uniformly relatively

separated. This implies that there exists a sequence of pairs Wn, Zn of rectangles (i.e.,

Wn = ∂Si and Zn = ∂Sj for some i, j ∈ N∪{0}) such that ∆(Wn, Zn)→ 0 as n→∞. Note

that the quasisymmetry F maps each peripheral circle of R onto a peripheral circle of T .

We split in two cases.

Case 1: Wn and Zn “tend” to share a large segment of a side. More precisely, consider

the largest parallel line segments αn ⊂ Wn and βn ⊂ Zn so that one of them is either a

horizontal or vertical translation of the other, dn := dist(Wn, Zn) = dist(αn, βn), and `n is

the length of αn and βn. If such segments do not exist, then we set αn ∈ Wn and βn ∈ Zn
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to be the nearest vertices of the two rectangles; here we set `n = 0. We assume in this case

that limn→∞ dn/`n = 0.

Consider a K-quasiconformal extension of F on Ĉ, as in [Bon11, Section 5]. Let gn

be a Euclidean similarity that maps U := {0} × [0, 1] onto βn. Also, let hn be a Möbius

transformation that maps the disk bounded by the circle F (Zn) onto D such that fn := hn◦F◦

gn satisfies fn(0) = 1, fn(1) = −1, and fn(1/2) = i or fn(1/2) = −i so that f is orientation-

preserving. Note that fn : Ĉ → Ĉ is K-quasiconformal. By passing to a subsequence, we

assume that fn converges uniformly in the spherical metric of Ĉ to a K-quasiconformal map

f : Ĉ→ Ĉ; see [LV73, Theorem 5.1, p. 73] for compactness of quasiconformal maps.

Since gn is a scaling by `n, it follows that the Euclidean distance of U = g−1
n (βn) and

Vn := g−1
n (αn) is dn/`n, and in fact Vn is a vertical line segment of length 1. In what follows,

we will use Hausdorff convergence with respect to the spherical metric of Ĉ, and the fact that

the Hausdorff convergence is compatible with the uniform convergence of fn; for instance, Vn

converges to U in the Hausdorff sense, and thus fn(Vn) converges to f(U) in the Hausdorff

sense. Observe that any Hausdorff limit of the rectangles g−1
n (Zn) ∪ g−1

n (Wn) ⊂ Ĉ is not a

circle in Ĉ. On the other hand, fn(Vn) is an arc of a circle, so its Hausdorff limit will be an

arc of a circle C ⊂ Ĉ. The circle C is distinct from ∂D and they bound disjoint regions; this

is justified because f is a homeomorphism and the Hausdorff limits of g−1
n (Zn) ∪ g−1

n (Wn)

are not just a single circle. Thus, C ∩ ∂D can contain at most one point. On the other

hand, f(U) = limn→∞ fn(U) = limn→∞ fn(Vn) ⊂ C ∩ ∂D, which a contradiction, since f is a

homeomorphism and cannot map U to a point.

Case 2: Wn and Zn “tend” to share a corner. Using the notation of Case 1, we assume

that there exists a constant c > 0 such that dn/`n ≥ c for infinitely many n. We allow

the possibility dn/`n = ∞, which occurs whenever αn and βn are vertices and `n = 0. The

assumption that ∆(Wn, Zn) → 0 implies that in this case neither Wn nor Zn can be the

outer peripheral rectangle ∂S0, so they are both squares, for sufficiently large n. By passing

to a subsequence we assume that the above hold for all n ∈ N. Also, assume that Zn is

smaller than Wn, so if mn denotes the sidelength of Zn, then dn/mn → 0 as n→∞ by our

assumption on the separation of Zn and Wn. Note that we also have `n/mn → 0 as n→∞.
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Again, we consider a quasiconformal extension F : Ĉ → Ĉ. We precompose F with a

Euclidean similarity gn that maps the unit square U = ∂([0, 1]× [0, 1]) onto the square Zn,

and postcompose with a Möbius transformation hn that maps the disk bounded by the circle

F (Zn) onto D, with suitable normalizations. After passing to a subsequence we may assume

that fn := hn ◦ F ◦ gn converges uniformly in the spherical metric to a K-quasiconformal

map f : Ĉ→ Ĉ.

Note that the Euclidean distance of U = g−1
n (Zn) and Vn := g−1

n (Wn) is dn/mn, the

square Vn is larger than U , and the segments g−1(αn) and g−1(βn) have length `n/mn, which

converges to 0. After passing to a subsequence, it follows that a Hausdorff limit (in Ĉ) of Vn

contains two perpendicular segments of Euclidean length at least 1 that meet at a corner x

of U , but otherwise disjoint from U . Also, observe that all the arcs that lie in the union of

these two segments with ∂U are quasiarcs.

On the other hand, the image fn(Vn) converges to a circle C ⊂ Ĉ that meets ∂D at one

point x′ = f(x). It is easy to see that there exist arbitrarily small arcs in C ∪ ∂D passing

through x′ that are not quasiarcs. This leads to a contradiction, since the quasiconformal

map f : Ĉ→ Ĉ is a quasisymmetry and thus must map quasiarcs to quasiarcs.

As a final remark, if we are given a quasisymmetry F between a square carpet R and a

round carpet T , but the peripheral circles ∂Ci, i ∈ N∪{0}, of T are not uniformly relatively

separated, then the peripheral circles ∂Si, i ∈ N∪{0}, of R are also not uniformly relatively

separated, so we are reduced to the previous analysis.

3.13 A test function

Here we include a Lemma that is often used in variational arguments in Section 3.6. The

assumptions here are that we have a carpet S ⊂ Ω of area zero with outer peripheral circle

∂Q0 = ∂Ω and inner peripheral disks {Qi}i∈N that are uniformly fat, uniform quasiballs.

Lemma 3.13.1. For each x ∈ S, r > 0, and ε > 0 there exists a function ζ ∈ W1,2(S),

supported in B(x, r)∩S, with 0 ≤ ζ ≤ 1 and ζ ≡ 1 in some smaller ball B(x, r′)∩S, r′ < r,
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such that:

(a) If x ∈ S◦ ∪ ∂Ω then

D(ζ) =
∑
i∈N

osc
Qi

(ζ)2 < ε.

(b) If x ∈ ∂Qi0 for some i0 ∈ N then

D(ζ)− osc
Qi0

(ζ)2 =
∑

i∈N\{i0}

osc
Qi

(ζ)2 < ε.

Proof. The function ζ will be a discrete version of the logarithm. In fact we will construct a

Lipschitz function ζ defined on all of R2, and thus it will lie in W1,2(S); see comments after

Definition 3.4.2 and also Example 2.5.20.

We fix a large integer N which will correspond to the number of annuli around x that

we will construct, and ζ will increase by 1/N on each annulus. We set ζ = 0 outside B(x, r)

and define R1 := r and r1 := R1/2. In the annulus A1 := A(x; r1, R1) define ζ to be a radial

function of constant slope 1
Nr1

, so on the inner boundary of A1 the function ζ has value

1
N

. Then consider R2 < r1 sufficiently small, and r2 := R2/2, so that no peripheral disk

intersects both annuli A1 and A2 := A(x; r2, R2), except possibly for Qi0 , in case x ∈ ∂Qi0 ;

this is possible since the diameters of the peripheral disks converge to 0. In the “transition”

annulus A(x;R2, r1) we define ζ to be constant, equal to 1
N

, and on A2 we let ζ be a radial

function of slope 1
Nr2

. We continue constructing annuli Aj = A(x; rj, Rj), j = 1, . . . , N ,

and defining the function ζ in the same way. The last annulus will be AN := A(x; rN , RN)

and the value of ζ will be 1 in the inner boundary of AN . We extend ζ to be 1 in the ball

B(x, rN).

We now compute the Dirichlet energy D(ζ) of ζ. Assume that x ∈ ∂Qi0 , i0 ∈ N, since

otherwise the details are almost the same, but simpler. For i ∈ N and j ∈ {1, . . . , N},

let dj(Qi) := H1({s ∈ [rj, Rj] : γs ∩ Qi 6= ∅}), where γs is the circle of radius s around

x. Since the peripheral disks Qi, i ∈ N, are fat, there exists a constant C > 0 such that

dj(Qi)
2 ≤ CH2(Qi ∩ Aj), for all i ∈ N and j ∈ {1, . . . , N}; see Remark 3.5.10. Also, if

Qi ∩ Aj 6= ∅, i 6= i0, then oscQi(ζ) ≤ dj(Qi)
1
Nrj

. By construction, each peripheral disk Qi,

201



i 6= i0, can only intersect one annulus Aj, and if a peripheral disk Qi does not intersect any

annulus Aj, then ζ is constant on Qi, so oscQi(ζ) = 0. Combining these observations, we

have

∑
i∈N\{i0}

osc
Qi

(ζ)2 =
N∑
j=1

∑
i:Qi∩Aj 6=∅
i∈N\{i0}

osc
Qi

(ζ)2 ≤ 1

N2

N∑
j=1

1

r2
j

∑
i:Qi∩Aj 6=∅
i∈N\{i0}

dj(Qi)
2

≤ C

N2

N∑
j=1

1

r2
j

∑
i:Qi∩Aj 6=∅
i∈N\{i0}

H2(Qi ∩ Aj)

≤ C

N2

N∑
j=1

1

r2
j

H2(Aj) =
πC

N2

N∑
j=1

4r2
j − r2

j

r2
j

=
3πC

N
.

Making N sufficiently large we can achieve that 3πC
N

< ε, as desired.
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