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ABSTRACT OF THE DISSERTATION

On the Characterization of Convex Domains With Non-Compact
Automorphism Group

by

Kaylee Joy Hamann

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2016

Dr. Bun Wong, Chairperson

In the field of several complex variables, the Greene-Krantz Conjecture has yet to

be proven.

Conjecture 0.0.1 (Greene-Krantz Conjecture). Let D be a smoothly bounded domain in

Cn. Suppose there exists {gj} ⊂ Aut(D) such that {gj(x)} accumulates at a boundary point

p ∈ ∂D for some x ∈ D. Then ∂D is of finite type at p.

The purpose of this dissertation is to prove the following result, yielding further

evidence to the probable veracity of this conjecture.

Theorem 0.0.2. Let D be a bounded convex domain in Cn with C2 boundary. Suppose

that there is a sequence {gj} ⊂ Aut(D) such that {gj(z)} accumulates at a boundary point

some point z ∈ D. Then if p ∈ ∂D is such an orbit accumulation point, ∂D contains no

non-trivial analytic variety passing through p.
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Chapter 1

Introduction

In any category, it is natural to ask which objects are equivalent. Over the past

four decades, there has been an increase in interest in this question with regards to bounded

domainsD ⊂ Cn. In one dimension, the task of classification is already complete: due to the

Riemann Mapping Theorem, any simply connected bounded domain in the complex plane

is biholomorphic to the unit disc. It may seem plausible, then, that an analogous result

holds for bounded domains in Cn. Unfortunately, this is not the case. Thus, in order to

begin classifying all bounded domains in Cn, one must first restrict to a smaller collection of

domains, satisfying some additional property. This prompted a rise in the study bounded

domains in Cn from the perspective of the group of automorphisms. Specifically, some

began restricting their study to bounded domains in Cn with non-compact automorphism

group. In 1989, Robert Greene and Steven Krantz formulated what has become known as

the Greene-Krantz conjecture, in order to aid in the classification of such domains. Many
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have attempted to prove it over the subsequent years, but it remains unproven today. A

precise statement of the conjecture is as follows:

Conjecture 1.0.3 (Greene-Krantz Conjecture:). Let D be a smoothly bounded domain in

Cn. Suppose there exists {gj} ⊂ Aut(D) such that {gj(x)} accumulates at a boundary point

p ∈ ∂D for some x ∈ D. Then ∂D is of finite type at p.

In 2014, Lee, Thomas, and Wong proved the following result in support of the

Greene-Krantz conjecture:

Theorem 1.0.4. Let D be a smoothly bounded convex domain in Cn. Suppose that there is

a sequence {gj} ⊂ Aut(D) such that {gj(z)} accumulates non-tangentially at some boundary

point for all z ∈ D. Then there does not exist a non-trivial analytic disc on ∂D passing

through any orbit accumulation point on the boundary.

Notice that the above result has a weaker conclusion than that of the Greene-

Krantz conjecture, since finite type implies the absence of a non-trivial analytic disc, but

the reverse implication does not hold in general.

In this paper, the condition of non-tangential convergence to the boundary will

be removed in order to get one step closer to proving the Greene-Krantz Conjecture. The

removal of the non-tangential condition is possible due to work by Kang-Tae Kim, in which

it is shown that under similar hypotheses Aut(D) contains a non-compact 1-parameter

subgroup. That is, in this paper we give a proof of the following result:

Theorem 1.0.5. Let D be a bounded convex domain in Cn with C2 boundary. Suppose

that there is a sequence {gj} ⊂ Aut(D) such that {gj(z)} accumulates at a boundary point
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for some point z ∈ D. Then if p ∈ ∂D is such an orbit accumulation point, ∂D contains

no non-trivial analytic variety passing through p.

The remainder of this dissertation will proceed as follows:

In Chapter 2, a general study of bounded domains in Cn with non-compact au-

tomorphism group will be presented, as well as a discussion of the concept of finite type.

Emphasis will be placed on key examples and results that assist in the ultimate goal of

classification. The purpose of this chapter is to provide the reader with the basic definitions

that will be used throughout this dissertation, as well as a general framework from which

one can begin to understand the importance of the main result.

In Chapter 3, invariant metrics and measures, two very important tools that will

be utilized throughout the proof of the main theorem, will be introduced. A short discussion

of their important properties will follow.

The important previous results called upon in the proof of the main theorem will

be presented in Chapter 4.

The main result will be proven in Chapter 5. Visualization of complex domains

in Cn for n ≥ 2 can be difficult, therefore, in order to increase transparency, two separate

proofs will be given, one in C2 and a generalized version in Cn. The basic idea behind

both proofs is the Poincaré Theorem, which states that the ball and the polydisc are not

biholomorphic. In particular, assuming the domain D is not variety-free at a boundary

accumulation point p, the boundary ∂D will be geometrically flat along this variety. Then,

near a strongly pseudoconvex boundary point, the domain D looks like a ball, whereas,

near a flat boundary point, the domain D looks like a polydisc. The non-compactness
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of the automorphism group allows one to mediate between these two types of boundary

points, giving rise to a contradiction. The likeness to a ball and a polydisc near a strongly

pseudoconvex and flat boundary point respectively, is codified precisely by the quotient of

the Carathéodory and Kobayashi measures.
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Chapter 2

Background

2.1 Domains with non-compact automorphism group

Throughout this dissertation, a bounded domain in Cn will be denoted by D,

and the automorphism group of D will be denoted by Aut(D). Note that an element g

of Aut(D) is a biholomorphic map from D onto itself. Aut(D) is not only a group, the

operation being function composition, it is also a topological group, the topology being

given by the compact-open topology. Notice that D being a subset of Cn implies that D

is equipped with a metric, and thus the compact-open topology of Aut(D) coincides with

the topology of uniform convergence on compact sets. Furthermore, H. Cartan showed that

Aut(D) is a Lie Group. Here, the focus will be on domains whose automorphism groups are

non-compact. Before a precise definition is presented, a few other definitions are needed.
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Definition 2.1.1. Let G be a topological group and X a topological (Hausdorff) space.

G acts on X if there exists a continuous map ϕ : G × X → X, ϕ(g, x) = gx, such that

ϕ(e, x) = ex = x for all x ∈ X and ϕ(gg′, x) = ϕ(g, ϕ(g′, x)) for all g, g′ ∈ G and x ∈ X.

Definition 2.1.2. Let G and X be as in the previous definition. The orbit of x ∈ X under

the action of G is the set {ϕ(g, x) : g ∈ G} ⊂ X.

Definition 2.1.3. A map f : D → D̃, where D ⊂ Cn and D̃ ⊂ Cm, is called proper if for

any compact set K̃ ⊂ D̃, the set f−1(K̃) is compact in D.

Notice that this is equivalent to the following: for any sequence {zj} ⊂ D which

has no limit point in D, the sequence {f(zj)} has no limit point in D̃.

Definition 2.1.4. If G and X are as defined in definition 2.1.1 and are locally compact, then

the action of G on X is proper if the map G×X → X×X, defined by (g, x) 7→ (ϕ(g, x), x),

is proper.

It is known that the action of Aut(D) on D is proper, and Montel’s Theorem gives

that for every sequence of holomorphic functions {fj : D → D′}, with D,D′ ⊂ Cn and

D′ a bounded domain, there exists a subsequence {fjn} which converges to a holomorphic

function f : D → Cn. Thus if {gj} ⊂ Aut(D), there are two cases: either the limiting

holomorphic function g is in Aut(D), or it is not. In the case at hand, gj(z) −→ p ∈ ∂D as

j −→ ∞ for some z ∈ D, which shows that if g denotes limj→∞ gj , g /∈ Aut(D). The fact

that the action is proper implies g maps all of D into its boundary, that is, g(D) ⊂ ∂D.

Therefore, the orbit of any point z ∈ D is non-compact. The point p is called a boundary

accumulation point for the action of Aut(D) on D. More precisely, p ∈ ∂D is a boundary
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accumulation point for the action of Aut(D) on D if there exists a point z ∈ D and a

sequence {gj} ⊂ Aut(D) such that gj(z) −→ p as j −→ ∞.

Conversely, assume D ⊂ Cn is bounded, with p ∈ ∂D a boundary orbit accumu-

lation point. Then it can be shown that Aut(D) is non-compact:

Claim 2.1.5. If ∂D contains a boundary orbit accumulation point p, then Aut(D) is non-

compact.

Proof. Assume, by way of contradiction, that Aut(D) is compact. Then, for any sequence

{ϕj} ⊂ Aut(D), there exists a subsequence {ϕjν} ⊂ {ϕj} such that ϕjν −→ ϕ ∈ Aut(D).

Consider the sequence {gj} ⊂ Aut(D). By assumption, there exists {gjν} ⊂ {gj} such that

gjν −→ g ∈ Aut(D) as ν −→ ∞. In particular, g(q) = p ∈ D for some q ∈ D, which implies

that p ∈ D∩ ∂D, contradicting the fact that D is open. Therefore, Aut(D) is compact.

Thus, there is no loss in assuming that Aut(D) being non-compact implies at least

one orbit of the action of Aut(D) on D is non-compact.

What follows are a few examples of bounded domains with non-compact automor-

phism groups.
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Example 2.1.6. The unit disc in C.

Let ∆ := {z ∈ C : |z| < 1} be the unit disc, where |·| denotes the Euclidean norm of z in C.

Then,

Aut(∆) =

{
eiθ

z − a

1− az
: a ∈ ∆, θ ∈ [0, 2π]

}
.

To determine why Aut(∆) is non-compact, the following proposition is needed:

Proposition 2.1.7. Let D be a bounded domain in Cn with a transitive automorphism

group, i.e. let D be homogeneous. Then Aut(D) is non-compact.

Proof. Let D be a bounded domain in Cn with a transitive automorphism group. That is,

given any two points a, b ∈ D, there exists ϕ ∈ Aut(D) such that ϕ(a) = b. Let z ∈ D. By

they transitivity of Aut(D), the orbit of z is

{w ∈ D : w = ϕ(z), for some ϕ ∈ Aut(D)} = D.

Since D is open, it is not compact, hence the orbit of z is non-compact, and hence Aut(D)

is non-compact.

This proposition can now be used to show that Aut(∆) is non-compact, because

it is known that Aut(∆) is transitive. Specifically, given any two points a, b ∈ ∆, let

ϕa(z) :=
z − a

1− az
and ϕ−b :=

z + b

1 + bz
.
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Then both ϕa and ϕ−b are in Aut(∆). Furthermore, ϕ−b ◦ ϕa(a) = ϕ−b(0) = b,

which implies that Aut(∆) is transitive. Thus, but the previous proposition, Aut(∆) is

non-compact.

Example 2.1.8. The unit ball in Cn.

Let Bn := {z = (z1, z2, . . . , zn) ∈ Cn : ∥z∥ := Σ|zk|2 < 1} denote the unit ball. To write

down the elements of Aut(Bn) explicitly, recall that

U(n) := {A ∈Mn(C) : AA
t
= A

t
A = I}

is the Lie group, under matrix multiplication, of unitary matrices. Importantly, the ele-

ments of U(n) preserve the Euclidean norm, that is, they correspond to complex rotations.

Furthermore, consider the collection of maps {ϕa}, where

ϕa(z1, . . . , zn) :=

(
z1 − a

1− az1
,

√
1− |a|2z2
1− az1

, . . . ,

√
1− |a|2zn
1− az1

)
, for |a| < 1.

Note that ϕa(a, 0, . . . , 0) = (0, . . . , 0) and that ϕa is an automorphism of the ball. Therefore,

Aut(Bn) is the group generated by U(n) and {ϕa}. That is, every automorphism of the

ball is a composition of elements from U(n) or {ϕa}. Again, it can be shown that Aut(Bn)

is non-compact because:

Claim 2.1.9. Aut(Bn) is transitive.

Proof. Choose a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Bn. Then there exists Φa ∈ U(n) such

that Φa(a) = (a1, 0, . . . , 0), i.e. Φa rotates the a onto the z1-axis. Choose Φ−b ∈ U(n) such
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that Φ−b(b1, 0, . . . , 0) = b, i.e. Φ−b is the inverse of Φb. let ϕa1 , ϕ−b1 be the automorphisms

of the ball as described above. Note that ϕ−b1 = (ϕb1)
−1. Then (Φ−b ◦ ϕ−b ◦ ϕa ◦ Φa)(a) =

Φ−b(ϕ−b(ϕa(Φa(a)))) = Φ−b(ϕ−b(ϕa(a1, 0, . . . , 0))) = Φ−b(ϕ−b(0)) = Φ−b(b1, 0, . . . , 0) = b.

More succinctly, (Φ−b ◦ ϕ−b ◦ ϕa ◦ Φa)(a) = b, and hence Aut(Bn) is transitive.

Therefore, by Proposition 2.1.7, Aut(Bn) is non-compact.

Example 2.1.10. The unit polydisc in Cn.

let ∆n := {z = (z1, . . . , zn) : |zk| < 1 for all 1 ≤ k ≤ n} denote the unit polydisc in Cn.

Notice that ∆n = ∆× · · · ×∆, n times. Then

Aut(∆n) =

{
ϕ(z) = ϕ(z1, . . . , zn) :=

(
eiθ1

zσ(1) − a1

1− a1zσ(1)
, . . . , eiθn

zσ(n) − an

1− anzσ(n)

)}
,

where a ∈ ∆n, 0 ≤ θk ≤ 2π, and σ ∈ Sn, where Sn is the symmetric group on n letters.

Then as usual, the fact that Aut(∆n) is non-compact is a result of the following claim.

Claim 2.1.11. Aut(∆n) is transitive.

Proof. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ ∆n. Consider the following automorphisms

of ∆n:

ϕa(z) =

(
z1 − a1
1− a1z1

, . . . ,
zn − an
1− anzn

)

and

ϕ−b(z) =

(
z1 + b1

1 + b1z1
, . . . ,

zn + bn

1 + bnzn

)
.

Then, (ϕ−b ◦ ϕa)(a) = ϕ−b(0) = b, which implies that that Aut(∆n) is transitive.

Thus it follows, that Aut(∆n) is non-compact.

10



Example 2.1.12. The ellipsoid, or “egg” domain in C2.

Let Em := {(z1, z2) ∈ C2 : |z1|2 + |z2|2m < 1} be the egg domain in C2, where m ∈ Z+.

Then,

Aut(Em) =

(z1, z2) 7→

 z1 − a

1− az1
,

(√
1− |a|2
1− az1

)1/m

z2

 : |a| < 1

 .

In this case, Aut(Em) is non-compact because Em has a boundary orbit accumu-

lation point.

Claim 2.1.13. The point (1, 0) is a boundary orbit accumulation point for the action of

Aut(Em) on Em.

Proof. Choose aj , 0 ≤ aj ≤ 1, such that as j −→ ∞, aj −→ 1. let z = (z1, z2) ∈ Em and

ϕaj ∈ Aut(Em). Then (1,0) is a boundary orbit accumulation point of the action of Aut(Em)

on Em, since ϕaj (z) −→ (1, 0) as j −→ ∞. This implies that Aut(Em) is non-compact by

Claim 2.1.5.

After examining this collection of examples, it is natural to ask if any of these

domains are biholomorphic. More generally, can the original desire for a higher-dimensional

Riemann Mapping theorem be found for the set of bounded domains with non-compact

automorphism group? As the following theorem of Poincaré demonstrates, without the

imposition of additional conditions upon the domains under consideration, no such result

holds.

Theorem 2.1.14 (Poincaré’s Theorem). The ball Bn is not biholomorphic to the polydisc

∆n for n ≥ 2.
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Because this result of Poincaré is so central to the purpose of this paper, a detailed

proof is provided below preceded by all necessary definitions and preliminary arguments.

Definition 2.1.15. For a bounded domain D, the automorphism group Aut(D) becomes a

topological group by defining a distance between two automorphisms as follows:

d(ϕ1, ϕ2) = sup
z∈D

|ϕ1(z)− ϕ2(z)|.

Then let AutId(D) denote the subgroup of all automorphisms in the connected component

of the identity. Further, given a ∈ D, let Auta(D) denote the subgroup of automorphisms

which leave a invariant.

Poincaré noticed that when observing biholomorphisms of D, the automorphisms

groups contain essential information:

Lemma 2.1.16. If D1 is biholomorphic to D2, then the respective automorphism groups

Aut(D1) and Aut(D2) are isomorphic groups. Furthermore, if there are a1 ∈ D1 and

a2 ∈ D2 for which there exists a biholomorphic map f : D1 → D2 with f(a1) = a2, then

Auta1(D1) and Auta2(D2) are isomorphic groups. In addition, AutId(D1) and AutId(D2)

are isomorphic groups, as are AutIda1(D1) and Aut
Id
a2(D2).

Proof. Let ϕ : D1 → D2 be a biholomorphic map from D1 to D2. Then

ϕ 7→ f ◦ ϕ ◦ f−1

is a group homomorphism from Aut(D1) to Aut(D2). Because the map is invertible, it is a

group isomorphism.
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Proposition 2.1.17. AutId0 (Bn) is non-abelian.

Proof. Consider the non-abelian special unitary group SU(n) of all n× n matrices A such

that AA∗ = Idn and det(A) = 1. SU(n) is a subgroup of AutId0 (Bn), because A ∈ SU(n)

defines a biholomorphism z 7→ Az on Bn which leaves 0 invariant.

Proposition 2.1.18. For every a ∈ ∆n, the group AutIda (∆n) is abelian.

The proof of Proposition 2.1.18 follows directly from the following results due to Henri

Cartan:

Proposition 2.1.19 (Cartan Uniqueness Theorem). Let D be a bounded domain in Cn

and let a ∈ D. If f ∈ Auta(D) satisfies f ′(a) = 1, then f(z) = z for all z ∈ D.

Proof. It can be assumed that a = 0 after a change of coordinates (replacing D with D−a)

if necessary. Then since D is bounded, D ⊂ ∆n(0, R) for some R > 0. Recall that every

f ∈ Aut0(D) has a Taylor expansion centered at the origin, f(z) =
∑

n anz
n. Cauchy’s

estimate gives that |an| ≤Mr−n, where r is such that ∆n(0, r) ⊂ D andM = supz∈D|f(z)|.

Then by assumption, f has a Taylor expansion

f(z) = z + fN (z) + · · ·

where fk are n-tuples of homogeneous polynomials of degree k, and where N is choses to

be the smallest possible. Then the kth iterate fk = f ◦ · · · ◦ f of f has Taylor expansion

fk(z) = z + kḟN (z)

13



which violates the about Cauchy estimate for large k unless fN = 0. But if f(z) = z in

∆n(0, r), then f(z) = z in D by the principle of analytic continuation.

Definition 2.1.20. A bounded domain D ⊂ Cn is called a circular domain if z ∈ D implies

that kθ(z) = eiθ for all z ∈ D and all θ ∈ R.

Corollary 2.1.21 (Cartan). Let D be a bounded circular domain in Cn and assume that

0 ∈ D and f ∈ Aut0(D). Then f is linear.

Proof. Assuming D is a circular domain and 0 ∈ D, one has that kθ ∈ Aut0(D). Define

g = k−θ ◦ f−1 ◦ kθ ◦ f.

Then g′(0) = k′−θ(0)◦(f−1)′(0)◦k′θ◦f ′(0) = Id, so that by the previous proposition g(z) = z.

This implies that

kθ ◦ f = f ◦ kθ.

If f = (f1, f2, . . . , fn), then fj(e
iθz) = eiθfj(z). Let fj(z) =

∑
k akz

k. Then

eiθak = ei|k|θak,

implying that ak = 0 for all |k| ≥ 1.

Corollary 2.1.22. Every f = (f1, f2, . . . , fn) ∈ Aut(∆n) has the form

fj(z) = eiθj
zp(j) − aj

1− ājzp(j)
,

where θj ∈ R, a ∈ ∆n, and p is a permutation of the multi-index j = (j1, j2, . . . , jn).
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Proof. The map fj(z) is clearly an automorphism. Denote fj by σa if θj = 0 and p = Id.

Then given f ∈ Aut(∆n), the automorphism σa ◦ f leaves 0 invariant. One can therefore

assume that f ∈ Aut0(∆n). Because f(∆n) ⊂ ∆n, we have
∑n

k=1|Akj | ≤ 1. However, by

choosing sequences z(n) = (0, . . . , 0, 1− 1
n , 0, . . . , 0) converging to the distinguished boundary

Tn of ∆n, one sees that the sequence

f(z(n)) = (1− 1

n
)(A1j , . . . , A2j)

converges to the distinguished boundary of ∆n. Therefore

|Aq(j)j | :− max
k=1,...,n

|Akj | = 1.

Then since
∑n

k=1|Akj | ≤ 1, one has that Ajk is a permutation matrix which has non-

vanishing entries of norm 1 only at entries Aq(j)j . If p is the inverse permutation of q, then

fk(z) = Ak,p(k)zp(k) with |Ak,p(k)| = 1.

Finally one can prove the famous result of Poincaré, theorem 2.1.14:

Proof. Assume by way of contradiction, that f is a biholomorphic map betweenBn(0, 1) and

∆n(0, 1). From Lemma 2.1.16 and the transitivity of Aut(∆n(0, 1)), one can conclude that

AutId0 (Bn(0, 1)) and Aut
Id
f(0)(∆n(0, 1)) are isomorphic as groups. But by Proposition 2.1.17,

AutId0 (Bn(0, 1)) is non-abelian, while Proposition 2.1.18 shows that AutIdf(0)(∆n(0, 1)) is

abelian. This is a contradiction.
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With this result in hand, a logical next question to ask might be whether or not

a classification result holds for a subset of the bounded domains in Cn with non-compact

automorphism group. In other words, if some additional constraint is placed upon the

domains under consideration, can any classification be obtained? The answer is yes. In

the following section a discussion of the notion of pseudoconvexity, together with a known

classification result, will be presented.
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2.2 Convexity, pseudoconvexity, and a

characterization theorem of the ball

Before introducing the Ball Characterization Theorem, the definitions of convexity

and pseudoconvexity will be given, along with several important properties of pseudoconvex

domains. For further in depth study, please refer to books by Steven G. Krantz [6] and

R.C. Gunning [3].

Definition 2.2.1. A bounded domain D ⊂ Cn is (geometrically) convex if D contains the

entire line segment joining any pair of its points.

All convex domains are domains of holomorphy, unfortunately, convexity is not

preserved under holomorphic mappings. For example, the unit disc ∆ ⊂ C is convex, but its

image under the mapping z 7→ (4 + z)4 is not. Thus some less rigid geometric condition is

required to characterize bounded domains, preferably a biholomorphically invariant version

of convexity.

Definition 2.2.2. Let D ⊂ Cn be a bounded domain with a C2 boundary (i.e. the defining

funcrtion ρ for the boundary is C2). Then ∂D is pseudoconvex at p if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k ≥ 0 for all w ∈ T 1,0

p (∂D),

where

T 1,0
p (∂D) :=

w ∈ Cn :

n∑
j=1

∂ρ

∂zj
(p)wj = 0

 .
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T 1,0
p is called the complex tangent space to the boundary, ∂D, at the point p. If

the inequality above is strict, then p is called a strongly pseudoconvex point. That is, a

point p ∈ ∂D is a point of pseudoconvexity (resp. strong pseudoconvexity) if the complex

Hessian (also known as the Levi form) is positive semi-definite (resp. positive definite) at

p on the complex tangent space. If every point p ∈ ∂D is a point of pseudoconvexity (resp.

strong pseudoconvexity), then the domain D is said to be pseudoconvex (resp. strongly

pseudoconvex ). For the sake of simplicity, let Tp(∂D) := T 1,0
p (∂D) for the remainder of this

dissertation.

What follows are a few important properties of pseudoconvex domains.

(1) Pseudoconvexity is independent of the choice of defining function.

Proof. Let ρ and ρ̃ be two defining functions of ∂D in a neighborhood U of p, for p ∈ ∂D.

Then there exists a C1 function h defined in U such that ρ̃ = hρ, where h(z) > 0 for all

z ∈ U . Hence,

∂2ρ̃

∂zj∂z̄k
(p) =

∂2(ρh)

∂zj∂z̄k
(p) =

∂

∂zj

(
∂(ρh)

∂z̄k
(p)

)
=

∂

∂zj

(
∂ρ

∂z̄k
(p) · h(p) + ρ(p) · ∂h

∂z̄k

)
=

∂2ρ

∂zj∂z̄k
(p) · h(p) + ∂ρ

∂z̄k
(p) · ∂h

∂zj
(p) +

∂ρ

∂zj
(p) · ∂h

∂z̄k
(p) + ρ(p) · ∂2h

∂zj∂z̄k
(p)

=
∂2ρ

∂zj∂z̄k
(p) · h(p) + ∂ρ

∂z̄k
(p) · ∂h

∂zj
(p) +

∂ρ

∂zj
(p) · ∂h

∂z̄k
(p),

where the last equality follows from the fact that ρ(p) = 0. Therefore,
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n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(p)wjw̄k = h(p)

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k

+

n∑
j,k=1

(
∂ρ

∂z̄k
(p) · ∂h

∂zj
(p) +

∂ρ

∂zj
(p) · ∂h

∂z̄k
(p)

)
wjw̄k

= h(p)

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k

+ 2Re

n∑
j,k=1

(
∂ρ

∂zj
(p) · ∂h

∂z̄k
(p)wj z̄k

)

= h(p)
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k if w ∈ Tp(∂D).

Therefore, since h(p) > 0, p ∈ ∂D is a pseudoconvex point with respect to ρ if and only if

it is a pseudoconvex point with respect to ρ̃. Therefore, the pseudoconvexity of a boundary

point is irrespective of the choice of defining function.

(2) Pseudoconvexity is preserved under biholomorphic mappings.

Proof. Let Φ : D → Cn be biholomorphic onto its image, and let D′ denote the image

Φ(D). Further, assume that Φ is biholomorphic in a neighborhood of p ∈ ∂D. Then

Φ(z) = Φ(z1, . . . , zn) = (Φ1(z1), . . . ,Φn(zn)) = (z′1, . . . , z
′
n). Let ρ : U → R be a local

defining function for ∂D, for U an open set. Then ρ̃ := ρ ◦ Φ−1 is a local defining function

for ∂D′. Choose p ∈ ∂D and w ∈ Tp(∂D). Then Φ(p) ∈ ∂D′ and w′ ∈ TΦ(p)(∂D
′), where

w′ =


w′
1

...

w′
n

 =


∂Φ1
∂z1

(p) . . . ∂Φ1
∂zn

(p)

...
...

∂Φn
∂z1

(p) . . . ∂Φn
∂zn

(p)




w1

...

wn

 =


∑ ∂Φ1

∂zj
(p)wj

...∑ ∂Φn
∂zj

(p)wj

 .
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Now, since ρ̃ := ρ ◦ Φ−1, one can see that ρ = ρ̃ ◦ Φ, implying that

∂2ρ

∂zj∂z̄k
(p) =

∂2(ρ̃ ◦ Φ)
∂zj∂z̄k

(p) =
∂

∂zj

(
∂(ρ̃ ◦ Φ)
∂z̄k

(p)

)
=

n∑
l,m=1

∂2ρ̃

∂z′m∂z̄
′
l

(Φ(p)) · ∂Φm
∂zj

(p) · ∂Φ̄l
∂z̄k

(p)

by the chain rule. Hence,

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k =

n∑
j,k=1

 n∑
l,m=1

∂2ρ̃

∂z′m∂z̄
′
l

(Φ(p)) · ∂Φm
∂zj

(p) · ∂Φ̄l
∂z̄k

(p)

wjw̄k

=

n∑
l,m=1

 n∑
j,k=1

∂2ρ̃

∂z′m∂z̄
′
l

(Φ(p)) · ∂Φm
∂zj

(p)wj ·
∂Φ̄l
∂z̄k

(p)w̄k


=

n∑
l,m=1

∂2ρ̃

∂z′m∂z̄
′
l

(Φ(p))w′
mw̄

′
l ,

which implies that the Levi form is preserved under biholomorphic mappings. In other

words, pseudoconvexity is preserved under biholomorphism.

(3) If p ∈ ∂D is a strongly pseudoconvex point, then there exists a neighborhood U con-

taining p such that for all q ∈ ∂D ∩ U , q is strongly pseudoconvex.

To prove this result, a technical lemma (that can be found in Chapter 3 of [6]) is

needed.

Lemma 2.2.3. If D is strongly pseudoconvex, then D has a defining function ρ̃ such that

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(p)wjw̄k ≥ C|w|2

for all p ∈ ∂D and w ∈ Cn, where C > 0.
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Using this lemma, we can now prove property (3).

Proof. By Lemma 2.2.3, there exists a defining function ρ̃ for D such that

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(p)wjw̄k ≥ C|w|2

for all w ∈ Cn. In particular,

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(p)wjw̄k > 0

for all w ̸= 0, w ∈ Cn. Since ρ̃ is C2, the function

q
Φ−−→

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(q)wjw̄k

is continuous in a neighborhood U of p, which implies that for all q ∈ U ∩ ∂D,

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(q)wjw̄k > 0

for all w ̸= 0, w ∈ Cn by the continuity of Φ. This implies that q ∈ U ∩ ∂D is strongly

pseudoconvex, completing the proof.

Notice that the analogous result for pseudoconvex boundary points is false (see

the examples below for details).
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(4) Every domain in C with a C2 boundary is vacuously pseudoconvex.

Proof. Let D be a domain in C with C2 boundary. That is, the defining function ρ is C2.

Then for all p ∈ ∂D,

∇ρ(p) = dρ

dz
(p) ̸= 0,

which implies that w ∈ Tp(∂D) if and only if w = 0. This implies that Tp(∂D) = {0},

giving that D is pseudoconvex, since the condition for pseudoconvexity in one dimension,

d2ρ

dzdz̄
(p)ww̄ ≥ 0,

is always satisfied.

To better illustrate this important notion of pseudoconvexity, a few examples are

presented below. For clarity and in order to keep calculations simple, only domains in C2

are considered.

Example 2.2.4. The unit ball B2.

Recall that B2 = {z = (z1, z2) ∈ C2 : ρ(z) := |z1|2 + |z2|2 − 1 < 0}. The complex Hessian

for ρ is the matrix

(
∂2ρ

∂zj∂z̄k

)
=


1 0

0 1

 ,
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which implies that
2∑

j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k = |w1|2 + |w2|2 > 0

for all w ∈ C2, w ̸= 0. Since this is true for every p ∈ ∂D, the unit ball B2 is pseudoconvex.

Example 2.2.5. The ellipsoid, or “egg” domain Em.

Recall that Em := {z = (z1, z2) ∈ C2 : ρ(z) := |z1|2 + |z2|2m− 1 < 0}. The complex Hessian

for ρ is the matrix

(
∂2ρ

∂zj∂z̄k

)
=


1 0

0 m2zm−1
2 z̄m−1

2

 ,

which implies that for any p ∈ ∂D,

2∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k =

(
w̄1 w̄2

)

1 0

0 m2zm−1
2 z̄m−1

2




w1

w2


= |w1|2 +m2|p2|2m−2|w2|2,

which is greater than 0 only if |p2|2m−2 ̸= 0. That is, any point p = (p1, p2) ∈ ∂D is

a point of strong pseudoconvexity if p2 ̸= 0. Therefore, points of pseudoconvexity are of

the form (eiθ, 0), for the complex Hessian is positive semi-definite at these points (take

w = (w1, w2) ∈ C2, w1 = 0).
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One can now return to the question of classification, for adding the restriction of

strong pseudoconvexity to the set of bounded domains yields the following important result

proved originally by Bun Wong [12]. J.P. Rosay later described a local version of this result

(see [9]) using the same method introduced in [12].

Theorem 2.2.6. Let D be a strongly pseudoconvex bounded domain with smooth boundary

in Cn with non-compact automorphism group. Then D is biholomorphic to the unit ball Bn.

Consider also the following local version of the above theorem due to Bun Wong:

Theorem 2.2.7. Let D ⊂ Cn be any bounded domain with a strongly pseudoconvex bound-

ary point p ∈ ∂D. Suppose further that there exist K ⋐ D, {zj} ∈ K, and {gj} ∈ Aut(D)

such that {gj(zj)} −→ p. Then D is biholomorphic to the unit ball Bn ⊂ Cn.

Given these results, the problem of classifying smoothly bounded strongly pseudo-

convex domains with non-compact automorphism group is complete. What happens, then,

if the hypothesis of strong pseudoconvexity is relaxed to pseudoconvexity? Can one obtain

any classification in this case? Once again, the answer is yes only after the addition of

further conditions upon the domain. This classification is illustrated by the following result

(see [1]):

Theorem 2.2.8. Let D be a smoothly bounded pseudoconvex domain in Cn+1 of finite type

with non-compact automorphism group such that the Levi form of ∂D has no more than one

zero eigenvalue at any point. Then D is biholomorphic to the ellipsoid Em ⊂ Cn+1, where
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Em = {(w, z1, z2, . . . , zn) ∈ Cn+1 : |w|2 + |z1|2m + |z2|2 + · · ·+ |zn|2 < 1}

for some integer m ≥ 1.

This result classifies all smoothly bounded pseudoconvex domains of finite type.

This raises the question: What is finite type? A discussion of the concept of finite type in

two dimensions follows in the proceeding section.
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2.3 Concept of finite type

The concept of finite type encapsulates the geometry of a boundary point. Think,

for example, about the ball B in Cn, and consider a point q ∈ ∂B. Since the boundary of the

ball has positive curvature, and a complex line is flat, it is straight forward to see that any

complex line tangent to ∂B at q passes through only one boundary point, namely q. More

precisely, no complex line (equivalently, no affine analytic disc) can have geometric order of

contact with ∂B at q greater than two because the differential geometric structures disagree

at the level of second derivatives. When looking for a biholomorphically invariant version

of this idea, we turn to the notion of a strongly pseudoconvex boundary point. That is, no

analytic disc can osculate to better than first order tangency to a strongly pseudoconvex

boundary point.

Because the concept of finite type is more complicated in dimension higher than

two, the following discussion will be restricted to C2 in order to sustain comprehensibility,

and will follow the discussion outlined in [6].

Definition 2.3.1. Let D := {z : ρ(z) < 0} be a smoothly bounded domain in C2, and let

q ∈ ∂D. Then the analytic disc ϕ : ∆ → C2 is called a non-singular disc tangent to ∂D at

q if ϕ(0) = q, ϕ′(0) ̸= 0, and (ρ ◦ ϕ)′(0) = 0.

Definition 2.3.2. Let D := {z : ρ(z) < 0} be a smoothly bounded domain with q ∈ ∂D.

Then ∂D is of finite (geometric) type m at q if the following condition holds: There exists

a non-singular disc ϕ tangent to ∂D at q such that

|ρ ◦ ϕ(ζ)|
|ζ|m

≤ C
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as |ζ| → 0, but there does not exists a non-singular disc ψ tangent to ∂D at q such that

|ρ ◦ ψ(ζ)|
|ζ|m+1

≤ C

as |ζ| → 0, where C is some constant. Here we call q a point of finite type.

In short, the type of a boundary point measures the maximum order of contact of

an analytic disc with said point. Before going through a few explicit examples to illustrate

the notion of type, we present a few important properties:

Property (1) The definition of type is independent of the choice of defining function.

Proof. Let D ⊂ C2 be smooth, with defining function ρ. Let p ∈ ∂D and ρ̃ be a second

defining function for D. Then there exists a function h, non-vanishing in a neighborhood

of ∂D, such that ρ̃ = hρ, and hence ρ = 1
h ρ̃. Thus, for any non-singular analytic disc ϕ

tangent to ∂D at p,

|ρ(ϕ(ζ))| =
∣∣∣∣( ρ̃h

)
(ϕ(ζ))

∣∣∣∣ = ∣∣∣∣ ρ̃(ϕ(ζ))h(ϕ(ζ))

∣∣∣∣ .
Let p ∈ ∂D be a point of finite type m with respect to ρ. That is, suppose there

exists a non-singular disc ϕ tangent to ∂D at p such that for small |ζ|,

|ρ ◦ ϕ(ζ))| ≤ C|ζ|m.

Then for small |ζ| one sees that

∣∣∣∣ ρ̃(ϕ(ζ))h(ϕ(ζ))

∣∣∣∣ ≤ C|ζ|m,

27



i.e.

|ρ̃(ϕ(ζ))| ≤ C|h(ϕ(ζ))||ζ|m ≤ CM |ζ|m

for small |ζ|, where

M := sup
small |ζ|

|h(ϕ(ζ))|.

Thus for small |ζ|,

|ρ̃(ϕ(ζ))| ≤ C1|ζ|m.

Now suppose there exists a non-singular analytic disc ψ tangent to ∂D at p such

that |ρ̃(ψ(ζ))| ≤ C|ζ|m+1 for small |ζ|. Then,

|ρ(ψ(ζ))| ≤ |ρ̃(ψ(ζ))|
|h(ψ(ζ))|

≤ C|ζ|m+1

|h(ψ(ζ))|
≤ C

M
|ζ|m+1,

where

M := inf
small |ζ|

|h(ψ(ζ))|.

Therefore,

|ρ(ψ(ζ))| ≤ C1|ζ|m+1

28



for small |ζ|. This contradicts the fact that p is a point of finite type m with respect to ρ.

Therefore, p is a point of finite type m with respect to ρ̃, which completes the proof.

Property (2) The condition of finite type is preserved under biholomorphism.

The remainder of this section will be dedicated to examples of specific domains,

in order to help provide intuition as to the concept of finite type.

Example 2.3.3. The unit ball B2 = {z ∈ C2 : ρ(z) = |z1|2 + |z2|2 < 1} = {z ∈ C2 : ρ(z) =

|z1|2 + |z2|2 − 1 < 0}.

Consider the boundary point p = (1, 0). Is p a point of finite type? Observe that

∇ρ =


z̄1

z̄2

 =⇒ ∇ρ(p) =


1

0

 ,

which imples that any curve tangent to ∂D2 at p must be of the form

ϕ(ζ) = (1 +O(ζ2), ζ +O(ζ2)),

after a re-parameterization (look at the Taylor expansion).

Consider the disc ϕ(ζ) = (1, ζ). It has order of contact 2 with the boundary of B2

at p because

ρ(ϕ(ζ)) = ρ(1, ζ) = |ζ|2.
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So what is the maximum order of contact when ϕ is of the form ϕ(ζ) = (1 +

O(ζ2), ζ +O(ζ2))? Observe the following computation:

ρ(ϕ(ζ)) = |1 +O(ζ2)|2 + |ζ +O(ζ2)|2 − 1

= |1 +O(ζ2)|2 + |ζ|2 · |1 +O(ζ)|2 − 1

≤ C|ζ|2

for small |ζ|, since

|1 +O(ζ2)|2 −→ 1 as |ζ| −→ 0

and

|1 +O(ζ)|2 −→ 1 as |ζ| −→ 0.

Therefore, p = (1, 0) ∈ ∂B2 is a point of finite type 2. In general, it can be shown that a

strongly pseudoconvex boundary point is always of type 2.

Example 2.3.4. The ellipsoid Em = {z ∈ C2 : ρ(z) = |z1|2 + |z2|2m − 1 < 0}.

Consider the boundary point p = (1, 0). In order to calculate the type at p, notice

that

∇ρ =


z̄1

mzm−1
2 z̄m−1

2

 =⇒ ∇ρ(p) =


1

0

 ,
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which implies that , after a re-parameterization, a non-singular analytic disc ϕ that intersects

∂Em at p is of the form

ϕ(ζ) = (1 +O(ζ2), ζ +O(ζ2)).

What is the maximum order of contact of such a curve with the boundary? First,

consider the simple case wherein ϕ(ζ) = (1, ζ). This curve has order of contact 2m at the

boundary point p, because

ρ(ϕ(ζ)) = |ζ|2m.

One must now ask, can the order of contact improve? For an arbitrary curve ϕ as

described above,

ρ(ϕ(ζ)) = |1 +O(ζ2)|2 + |ζ +O(ζ2)|2m − 1

= |1 +O(ζ2)|2 + |ζ|2m · |1 +O(ζ)|2m − 1

≤ C|ζ|2m

for small |ζ|, since

|1 +O(ζ2)|2 −→ 1 as |ζ| −→ 0

and

|1 +O(ζ)|2m −→ 1 as |ζ| −→ 0.

Therefore, the maximum order of contact of any non-singular analytic disc tangent

to ∂Em at p = (1, 0) is 2m, which implies that p is a point of finite type 2m. Turn now to

a few examples of domains with infinite type boundary points:
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Example 2.3.5. The domain E∞ = {z ∈ C2 : ρ(z) = |z1|2 + 2e−1/|z2|2 − 1 < 0}.

Consider the point p = (1, 0) ∈ ∂E∞. Then

∇ρ =


z̄1

2e−1/|z2|
2

z22 z̄2

 =⇒ ∇ρ(p) =


1

0

 .

And regarding the curve ϕ(ζ) = (1, ζ) which is tangent to ∂E∞ at p, one sees that

ρ(ϕ(ζ)) = 2e−1/|ζ|2 ,

which implies that

|ρ(ϕ(ζ))|
|ζ|m

=
2e−1/|ζ|2

|ζ|m
−→ 0 as ζ −→ 0

by l’Hôpital’s rule, since

dk

dζk
(2e−1/|ζ|2)

∣∣∣∣
ζ=0

= 0 ∀k ∈ Z+.

Since this is true for any m ∈ Z+,

|ρ(ϕ(ζ))| ≤ C|ζ|m

as |ζ| −→ 0 for all m ∈ Z+, implying that p = (1, 0) is a point of infinite type.
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Example 2.3.6. The unit polydisc ∆2 = {z ∈ C2 : |zj | < 1, j = 1, 2}.

Let p = (1, 0) ∈ ∂∆2. In a neighborhood U of p, let ρ(z) = |z1| − 1 be a local

defining function for the boundary defined inside U ∩ ∂∆2. Then

∇ρ =


z̄1

0

 =⇒ ∇ρ(p) =


1

0



and hence the non-singular analytic disc ϕ(ζ) = (1, ζ) is tangent to ∂∆2 at p. Thus

ρ(ϕ(ζ)) = ρ(1, ζ) = |1| − 1 = 0 ∀ζ ∈ ∆2,

which implies that

|ρ(ϕ(ζ))| ≤ C|ζ|m

as |ζ| −→ 0 for all m ∈ Z+. Therefore, p = (1, 0) ∈ ∂∆2 is a point of infinite type.

As these examples illustrate, the greater the type at a boundary point, the flatter

the boundary is in a neighborhood of that point. In particular, if there is an analytic variety

in the boundary of some domain D ⊂ Cn passing through a boundary point p, then p is a

point of infinite type.
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Chapter 3

Invariant Metrics and Measures

3.1 Invariant metrics

Let H(A,B) be the set of holomorphic mappings from A to B and let ∆ be the

unit disc in C. The Kobayashi and Carathéodory metrics are defined as follows:

Definition 3.1.1. The Kobayashi and Carathéodory metrics on D ⊂ Cn at x ∈ D in the

direction ξ ∈ Cn, denoted FDK (x, ξ) and FDC (x, ξ), respectively, are defined by

FDK (x, ξ) = inf

{
1

α
: ∃ϕ ∈ H(∆, D) such that ϕ(0) = x, ϕ′(0) = αξ

}

FDC (x, ξ) = sup


∣∣∣∣∣∣
n∑
j=1

∂f(x)

∂zj
ξj

∣∣∣∣∣∣ : ∃ f ∈ H(D,∆) such that f(x) = 0

 .

34



If z, w ∈ D, then the Kobayashi and Carathéodory pseudo-distances on D between z and w,

denoted dDK(z, w) and dDC (z, w) respectively, are given by

dDK(z, w) = inf
γ

∫ 1

0
FDK (γ(t), γ′(t))dt, and

dDC (z, w) = sup
f
ρ(f(z), f(w))

where γ : [0, 1] → D is a piecewise C1 curve connecting z and w, and where ρ(p, q) is the

Poincaré distance on ∆ between p, q ∈ ∆. The supremum in the Carathéodory pseudo-

distance is taken over all holomorphic mappings f : D → ∆.

The Kobayashi and Carathéodory metrics satisfy the following important non-

increasing property under holomorphism.

Lemma 3.1.2. Let D ⊂ Cn and D̂ ⊂ Cm, and suppose there exists a holomorphism between

them Ψ : D → D̂. Then for and p ∈ D and ξ ∈ Cn,

FDK (p, ξ) ≥ F D̂K (Ψ(p),Ψ∗(p)ξ)

and

FDC (p, ξ) ≥ F D̂C (Ψ(p),Ψ∗(p)ξ)

Proof. Beginning with the Kobayashi case, let ϕ ∈ Hol(∆, D) such that ϕ(0) = p and

ϕ′(0) = αξ. Then consider Ψ ◦ ϕ ∈ Hol(∆, D̂). (Ψ ◦ ϕ)(0) = Ψ(p) and (Ψ ◦ ϕ)′(0) =
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Ψ∗(ϕ(0))ϕ
′(0) = Ψ∗(p)αξ = αΨ∗(p)ξ. Thus

F D̂K (Ψ(p),Ψ∗(p)ξ) ≤
1

α
.

Now taking the infimum over all possible ϕ yields

FDK (p, ξ) ≥ F D̂K (Ψ(p),Ψ∗(p)ξ).

For the Carathéodory case, let ϕ ∈ Hol(D̂,∆) such that ϕ(Ψ(p)) = 0. Then

consider ϕ ◦ Ψ ∈ Hol(D,∆). (ϕ ◦ Ψ)(p) = ϕ(Ψ(p)) = 0, hence FDC (p, ξ) ≥ |(ϕ ◦ Ψ)∗(p)ξ| =

|ϕ∗(Ψ(p))(Ψ∗(p)ξ)|. So taking the supremum over all possible ϕ yields

FDC (p, ξ) ≥ F D̂C (Ψ(p),Ψ∗(p)ξ).

Both metrics and distances above satisfy the non-increasing property under holo-

morphism. That is, given D ⊂ Cn and D̂ ⊂ Cm, a holomorphism between them Ψ : D → D̂,

and p, q ∈ D, ξ ∈ Cn, the following inequalities hold:

FD(p, ξ) ≥ F D̂(Ψ(p),Ψ∗(p)ξ)

dD(p, q) ≥ dD̂(Ψ(p),Ψ(q)).
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Thus both the Kobayashi and Carathéodory metrics and distances are invariant under

biholomorphism.
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3.2 Invariant measures

The definitions of the Kobayashi and Carathéodory metrics can now be extended

to define the respective measures. Let Bk represent the complex k-dimensional unit ball

and let ∆k denote the complex k-dimensional unit polydisc.

Definition 3.2.1. Let D ⊂ Cn be a domain, p ∈ D, and ξ1, ξ2, . . . ξn ∈ TC
p D be linearly

independent vectors on the complex tangent space to D at p for 1 ≤ m ≤ n. One can find an

(m,m) volume for M on D such that M(ξ1, . . . , ξm, ξ̄1, . . . , ξ̄m) = 1. Let U = Bm−j×∆j for

0 ≤ j ≤ m, and let µm =
∏m
j=1

(
i
2dzj ∧ dz̄j

)
. We define the Kobayashi and Carathéodory

m-measures with respect to U as follows:

KD
U (p; ξ1, . . . , ξm) = inf

{
1

α
: ∃Φ ∈ H(U,D) such that Φ(0) = p and

Φ∗(0)M = αµm, for some α > 0

}
, and

CDU (p; ξ1, . . . , ξm) = sup

{
β : ∃Φ ∈ H(D,U) such that Φ(p) = 0 and

Φ∗(p)µm = βM, for some β > 0

}
.

Both the Kobayashi and the Carathéodory measures satisfy the non-increasing

property under holomorphic mappins. That is,

Proposition 3.2.2. Let D1 ⊂ Cn and D2 ⊂ Cn′
be domains, and let U = Bm−j × ∆j,

for 0 ≤ j ≤ m and m ≤ min{n, n′}. Let p ∈ D1, and for j = 1, . . . ,m, let ξj ∈ TC
p D1 be

38



linearly independent. If ϕ ∈ H(D1, D2) is such that ϕ(p)ξj’s are linearly independent, then

KD1
U (p; ξ1, . . . , ξm) ≥ KD2

U (ϕ(p);ϕ∗(p)ξ1, . . . , ϕ∗(p)ξm), and

CD1
U (p; ξ1, . . . , ξm) ≥ CD2

U (ϕ(p);ϕ∗(p)ξ1, . . . , ϕ∗(p)ξm).

Proof. Let M be an (m,m) volume form on D1 such that M(ξ1, . . . , ξm, ξ̄1, . . . , ξ̄m) = 1.

And let Φ : U → D1 be a holomorphic mapping such that Φ(0) = p and Φ∗(0)M = αµm.

Consider h = ϕ ◦ Φ : U → D2. Let M ′ be an (m,m) volume form on D2 such that

ϕ∗(p)M ′ =M . Then h(0) = ϕ(p) and

h ∗ (0)M ′ = Φ∗(0)(ϕ∗(p)M ′) = Φ∗(0)(M) = αµm.

Hence 1/α ≥ KD2
U (ϕ(p),M) and inf 1/α ≥ KD2

U (ϕ(p),M). The second inequality follows

similarly.

The following remarks are important well known results that will prove useful in

the proof of the main theorem.

Remark 3.2.3. Let D ⊂ Cn, p ∈ D, and ξ1, . . . ξm ∈ TC
p D where 1 ≤ m ≤ n, be linearly

independent vectors. If U = Bm−j ×∆j, for 0 ≤ j ≤ m, then

CDU (p; ξ1, . . . , ξm)

KD
U (p; ξ1, . . . , ξm)

≤ 1.
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Remark 3.2.4. Let D ⊂ Cn, p ∈ D, and ξ1, . . . ξm ∈ TC
p D where 1 ≤ m ≤ n, be linearly

independent vectors. Let U = Bm−j ×∆j. We have

CDU (p; ξ1, . . . , ξm)

KD
U (p; ξ1, . . . , ξm)

= 1

if and only if D is biholomorphic to U .

Remark 3.2.5. Let D ⊂ Cn be a smoothly bounded convex domain and let p ∈ ∂D be a

strongly pseudoconvex boundary point. Let V be a neighborhood of p. Then we have

KD
U (z; ξ1, . . . , ξm)

KD∩V
U (z; ξ1, . . . , ξm)

−→ 1,
CDU (z; ξ1, . . . , ξm)

CD∩V
U (z; ξ1, . . . , ξm)

−→ 1, as z −→ p.

Remark 3.2.6. Let D be a smoothly bounded convex domain. The domain D near a strongly

pseudoconvex boundary point can be approximated by ellipsoids which are biholomorphic to

balls. Since Bm and Bm−j ×∆j, for j ≥ 1, are not biholomorphic and since the Kobayashi

and Carathéodory measures are localizable near a strongly pseudoconvex boundary point by

Remark 3.2.5, we have

CDU (z; ξ1, . . . , ξm)

KD
U (z; ξ1, . . . , ξm)

< L < 1, U = Bm−j ×∆j , j ≥ 1

CDU (z; ξ1, . . . , ξm)

KD
U (z; ξ1, . . . , ξm)

−→ 1, U = Bm.
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Chapter 4

Automorphism Groups and

Analytic Varieties

4.1 Automorphism groups of D ⊂ Cn

In order to remove the condition of non-tangential convergence, we rely on the

following 2004 result of Kang-Tae Kim (see [4]), which is a modification of work by Sidney

Frankel (see [2]). For completeness, the idea of the proof is reproduced below.

Theorem 4.1.1. If a bounded convex domain D ⊂ Cn possesses a non-compact automor-

phism orbit accumulating at a boundary point with sphere contact inside, then the automor-

phism group contains a non-compact 1-parameter subgroup.

41



The condition of sphere contact inside simply means that one can draw a ball

of radius ϵ > 0 tangent to the boundary accumulation point, which lies completely inside

D. Notice that this condition is satisfied given that the boundary is C1 smooth. The

following summary of the proof of Theorem 4.1.1 begins with the construction of a version

of Pinchuk’s scaling process (see [8]).

Centering and stretching sequence: Let D be our convex domain in Cn, and assume

we have a sequence Q = {pj ∈ Ω : j = 1, 2, 3, . . . } that converges to a point q ∈ ∂D.

Then we can define a sequence of centering maps, {ψj}, as follows. For a fixed j , choose a

boundary point qj ∈ ∂D such that

∥pj − qj∥ = min
x∈∂D

∥pj − x∥.

Note that such qj is not necessarily uniquely determined, but the choice of qj determines

a unique supporting real hyperplane to D at qj . Next choose a unitary transformation

Tj : Cn → Cn such that the complex affine transformation ψj : Cn → Cn defined by

ψj(z) = Tj(z − qj), satisfies the relation

ψj(D) ⊂ {(z1, . . . , zn) ∈ Cn : Im(zn) > 0},

for all z ∈ Cn. Here the supporting hyperplane to ψj(D) is defined by the equation

Im(zn) = 0.
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After “centering” the sequence Q, we introduce a change of coordinates and scaling

factors. Fixing j and pj ∈ Q, consider the complex orthogonal complement V
(j)
n−1 ⊂ Cn of

the line joining the origin and the point ψj(pj), and the “projected slice”

D
(j)
n−1 = {z ∈ Vn−1 : z + ψj(pj) ∈ ψj(D)}.

When V
(j)
n−1 is equipped with the Hermitian inner product inherited from Cn, D(j)

n−1 is a

domain in V
(j)
n−1 containing the origin. Choose a point from ∂D

(j)
n−1 that is closest to the

origin, denote it by x
(j)
n−1. Notice that such a point is not necessarily unique. Next, let V

(j)
n−2

denote the complex orthogonal complement in V
(j)
n−1 of the vector x

(j)
n−1, and let

D
(j)
n−2 = D

(j)
n−1 ∩ V

(j)
n−1.

Again, we pick a (not necessarily unique) point x
(j)
n−2 ∈ ∂D

(j)
n−2 that is closest to the origin.

Continue this process until it is no longer possible to proceed. Then we obtain mutually

orthogonal vectors x
(j)
1 , . . . x

(j)
n−1. Adjoin to this sequence the vector x

(j)
n = ψj(pj). Then

the set of vectors {e(j)l } given by

e
(j)
l =

x
(j)
l

∥x(j)l ∥
, (l = 1, 2, . . . , n)

form an orthonormal basis for Cn. Now consider, for each j, the complex linear mapping

Λj : Cn → Cn defined by

Λj(e
(j)
l ) = λ

(j)
l e

(j)
l , (l = 1, 2, . . . , n)
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where λ
(j)
l is defined as λ

(j)
l = (∥x(j)l ∥)−1 for l = 1, 2, . . . , n. Finally, we compose the complex

affine linear maps, resulting in a Pinchuck stretching sequence {σj} defined as follows:

σj = Λj ◦ ψj : Cn → Cn , (j = 1, 2, . . . ).

Each σj is a “stretching” followed by the “centering” of the sequence Q.

Scaling the automorphism orbits: Choose Q to be the particular sequence in Theorem

1.0.4 That is, let Q = {pj} = {gj(x)}, where x ∈ D and gj ∈ Aut(D). Then, considering

the scaling sequence

ωj(z) = σj ◦ gj(z)

which is the “normalization” of Pinchuck’s stretching sequence by the non-compact auto-

morphisn sequence gj , we can capitalize on the following convergence theorems.

Lemma 4.1.2. The scaling sequence ωj : D → Cn (j = 1, 2, . . . ) introduced above has

the following convergence property: every subsequence of {ωj} admits a subsequence that

converges uniformly on compact sets to a biholomorphic embedding, say ω̂ of D into Cn.

Furthermore, notice that

ω̂j(x) = (1, 0, . . . , 0) for j = 1, 2, . . .

Let B(0;R) represent the open ball in Cn with radius R centered at the origin, and let

τ : Cn → Cn be the map given by τ(z1, . . . , zn) = (z1 − 1, 0, . . . , 0)
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Then the following result, usually called the local Hausdorff set-convergence reveals how

ωj(D) tends to ω̂(D) as j tends to ∞. For a proof, refer to Kim-Krantz [5].

Lemma 4.1.3. Let R > 0 be arbitrarily given. Then, for every ϵ > 0 there exists N > 0

such that for every j > N we have

(1− ϵ)[(τ ◦ ωj(D)) ∩B(0;R)] ⊂ (τ ◦ ω̂(D)) ∩B(0;R) ⊂ (1 + ϵ)[(τ ◦ ωj(D)) ∩B(0;R)].

Boundary of scaled limit domains: In this section, we show that the local Hausdorff

set limit of the sequence σj(D) contains a real line in its boundary. First, recall that the

Banach selection theorem implies the existence of a subsequence of σj(D) that converges

to a convex, not necessarily bounded domain in Cn, in the sense of local Hausdorff set

convergence.

Let us momentarily forget the automorphism sequences here, and simply consider

a point sequence Q = {pj : j = 1, 2, . . . } ⊂ D that converges to a boundary point q ∈ ∂D.

Then, as we did previously during the construction of the Pinchuck stretching sequences,

choose a boundary point qj ∈ ∂D that closest to pj for each j = 1, 2, . . . . Now consider the

sets

Σj = {z ∈ D : z − qj = λ(pj − qj) for some λ ∈ C}

which we call the j-th principal slice of D. Then focusing on the sequence σj(Σj), let us

restrict to the closed ball B̄(0;R), for arbitrary R > 0, and consider the usual Hausdorff

limit of the sequence σj(Σj) ∩ B̄(0;R). If q is a smooth boundary point in the sense that
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there is sphere contact from inside D, then this Hausdorff limit coincides with the set

{(z1, 0, . . . , 0) ∈ Cn : Re(z1) ≥ 0} ∩ B̄(0;R).

And since R > 0 is arbitrary, we can conclude: if q ∈ ∂D is a smooth boundary point in the

sense that it admits sphere contact from inside D, then the local Hausdorff limit domain,

say D̂, of the sequence σj(D) has a real one-dimensional straight line in its boundary.

Proof of Theorem 4.1: Let gj ∈ Aut(D) and x ∈ D be such that gj(x) converges to

q ∈ ∂D, where q admits sphere contact from inside D. Then using the arguments of the

previous section, consider the sequence Q = {gj(x)} for j = 1, 2, . . . . Since each gj is an

automorphism of D, we have gj(D) = D for all j. Thus

ωj(D) = σj ◦ gj(D) = σj(D)

where ωj is the scaling sequence introduced above. Therefore, the scaled limit domain

ω̂(D) = D̂ as described above. In particular, ω̂(D) has a real one-dimensional straight line,

say l, in its boundary.

Recall that the convex hull of a straight line and a point away from the line is a

parallel strip. Due to the convexity of D and this fact, it becomes clear that every point of

the domain D̂ admits a line contained in D through that point, which is in fact a parallel

translation of l. Let v ∈ Cn be a direction vector of l. Then the map

ft(z) = z + tv
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defines an automorphism of ω̂(D) = D̂ for every t ∈ R. Finally, since D is biholomorphic

to ω̂(D), this shows that Aut(D) admits a non-compact 1-parameter subgroup.

□
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4.2 Characterization of the bidisc by its automorphism group

The well-known 1995 result of Bun Wong [14] uses the automorphism group of

domains under specific restrictions to show biholomorphism to the bidisc, ∆2. We restate

the theorem here:

Theorem 4.2.1. Let D be a bounded domain in C2. Suppose there exists a noncompact

sequence gj ⊂ Aut(D) such that,

1. W = {(limj→∞ gj)(D)} is a complex variety of positive dimension contained in ∂D

2. W is contained in an open subset U ⊂ ∂D such that the boundary of U is C1, and

there is an open set N ⊂ C2 such that N ∩ ∂D = U and N ∩D is convex.

3. There exists a point x ∈ D such that {gj(x)} converges to p ∈ W ⊂ ∂D non-

tangentially.

Then D is biholomorphic to ∆2.

The full proof can be found in [14], and the proof of the main theorem (Theorem

1.0.5) in section 5.1 will follow the same basic outline (see parts (A), (B), and (C)). A few

relevant lemmas are listed below, as they will be invoked in the proof of the main theorem.

Lemma 4.2.2. (see Theorem E in [12]) Let D be a bounded domain in Cn. Suppose there

exists a point x ∈ D such that |ME
D (x)| = |MC

D (x)|, where ME and MC are defined with

respect to the unit polydisc ∆n ⊂ Cn, then D is biholomorphic to the polydisc, ∆n. If ME
D

and MC
D are defined with respect to the unit ball Bn ⊂ Cn and the condition of the lemma

is satisfied with respect to these measures, then D is biholomorphic to the unit ball.
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HereME
D (x) is the differential Eisenman-Kobayashi measure on D, (an (n, n)-form

on D) and recall that it is given by

ME
D (z) = |ME

D (z)|
n∏
j=1

(
i

2
dzj ∧ dz̄j

)

where |ME
D | is a local function on D defined by

|ME
D | = inf{|det f ′(0)|−2 : f : ∆n → D, a holomorphism with f(0) = z}

and MC
D (x) is the differential Carathéodory measure on D, (an (n, n)-form on D) given by

MC
D (z) = |MC

D (z)|
n∏
j=1

(
i

2
dzj ∧ dz̄j

)

where |MC
D | is a local function on D defined by

|MC
D | = sup{|det f ′(z)|2 : f : D → ∆n, a holomorphism with f(z) = 0}.

From these definitions, we obtain the following facts:

Lemma 4.2.3. The following are true:

1. |ME
D | ≥ |MC

D |

2. Given a holomorphism between two complex manifolds f : D1 → D2, we have

f∗(ME
D2

) ≤ME
D1
, and
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f∗(MC
D2

) ≤MC
D1

Consequently, both of these measures are preserved under biholomorphism.

3. Let D̃ be the universal cover of D and let π : D̃ → D be the covering projection. Then

ME
D̃

= π∗(ME
D ). Consequently, for all z ∈ D2 ⊂ D1, we have |MC

D1
(z)| ≤ |MC

D2
(z)|

and |ME
D1

(z)| ≤ |ME
D2

(z)|.

For proofs and thorough explanations of the above lemmas and definitions, please

refer to [6] pages 429-462.

Lemma 4.2.4. Let V ⋐ C2 be a bounded convex domain. Let z0 be a regular point for

some complex variety W contained in the boundary ∂V . Then W is completely contained

in a complex line H, which is the complex linear subspace of a supporting real hyperplane

∂V at z0.

Proof. Let H be a complex line tangential to W at z0. Since V is convex, one can choose

a hyperplane L of real dimension three such that L is supporting ∂V at z0. Moreover, L

contains H as a complex linear subspace. It is now possible to choose a complex coordinate

system (z1, z2) with origin at z0 such that

1. L = {(z1, z2) : Re(z2) = x2 = 0}, where z2 = x2 + iy2, and

2. V is completely contained in the half space defined by {(z1, z2) : Re(z2) = x2 < 0}.

Then considering the holomorphic function z2 restricted to W , namely z2/W , one can see

that x2/W = re(z2/W ). That is, x2/W attains a maximum at an interior point z0 ∈ W .
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This implies that x+2/W ≡ 0 on W by the maximum modulus principle. However, seeing

as x2/W is the real past of the holomorphic function z2/W on W , the imaginary part

y2/W ≡ 0 as well. Thus W ⊂ H ⊂ L.

From these two lemmas it becomes clear that g(D) = limj→∞ gj(D) can be

considered as an open subset in a complex line H. Now let Ω be the upper half plane

{z : Im(z) > 0}, and supposing p to be the origin of the z-plane, let Γθp denote the cone

in Ω with vertex at p, whose angle between the imaginary axis and its edges is θ, where

0 ≤ θ < π
2 . Then in the following lemma, assume that z = (0, y) is a point in Γθp on the

y-axis.

Lemma 4.2.5. The distance, with respect to dKΩ , from a point z to the boundary of the cone

Γθp, is given by dKΩ (z, ∂Γθp) = 2 ln(tan θ + sec θ).

For proof of this lemma, which is elementary, please refer to Theorem 5.1 in [13].
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4.3 Analytic variety in the boundary is a ball

The purpose of this section is to show that an analytic variety of dimensionm in the

boundary of D must me biholomorphic to a complex m-ball. The idea is summarized in the

following propositions, the first of which illustrates that the boundary of D is geometrically

flat along any analytic disc. The last, and most important, proposition is an improvement

upon Proposition 5 found in [7].

It may first be helpful to examine what is meant by geometrically flat. Let ρ be a

defining function for D. Then we can define the gradient normal of ρ by

n =
∇ρ
|∇ρ|

The boundary, ∂D, is called geometrically flat along an analytic variety if the gradient

normals to the boundary are all parallel along the analytic variety.

Proposition 4.3.1. Let D ⋐ Cn be a bounded convex domain. If ϕ : ∆ → ∂D is a

holomorphic mapping, then ∂D is geometrically flat along ϕ(∆).

Proof. Let D = {ρ < 0} and p = ϕ(0) ∈ ∂D. Let H = {Re(h) = 0} be the real tangent

plane to ∂D at p, where h is a linear holomorphic function. Since D is convex, one sees

that D̄ ⊂ {Re(h) ≤ 0}. Consider f(ζ) = h ◦ ϕ(ζ). Then f is a holomorphic function on ∆

and satisfies Re(f(ζ)) ≤ 0 for all ζ ∈ ∆, and Re(f(0)) = 0. By the maximum principle for

harmonic functions, Re(f(ζ)) = 0 for all ζ ∈ ∆. Therefore f ≡ 0 on ∆ and hence h ≡ 0 on

ϕ(∆).
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Definition 4.3.2. Let H ⊂ Cn, and q ∈ H. Define the maximal chain of analytic discs on

H through q, denoted ∆H
q , as follows:

∆H
q = {x ∈ H : there exists a finite chain of analytic discs joining z and q},

that is, there exist holomorphic maps ϕ1, ϕ2, . . . , ϕk : ∆ → Cn such that ϕj(∆) ⊂ H for

1 ≤ j ≤ k, and there exist zi ∈ H and ai, bi ∈ ∆ for a ≤ i ≤ k such that ϕj(aj) = zj−1 and

ϕj(bj) = zj, where z0 = q and zk = z. We say that ∆H
q is trivial if ∆H

q = {q}.

Proposition 4.3.1 above implies that if D ⋐ Cn is a smoothly bounded convex

domain, then ∂D is geometrically flat along ∆∂D
p for all p ∈ ∂D. Furthermore, as described

in Theorem 1 of [7], if D ⋐ Cn is a smoothly bounded convex domain, then ∆∂D
p is linearly

convex for all p ∈ ∂D. That is, if z, w ∈ ∆∂D
p , then t · z + (1− t)w ∈ ∆∂D

p for all t ∈ [0, 1].

Notice that if D is a smoothly bounded convex domain in Cn, and if there is a

sequence {gj} ⊂ Aut(D) such that gj(z) −→ p ∈ ∂D for some z ∈ D where ∆∂D
p is non-

trivial, then there exists a non-constant holomorphic surjective mapping g : D → ∆∂D
p such

that gj −→ g after taking a subsequence if necessary.

One can prove that ∆∂D
p is a convex open set in the m-dimensional complex

subspace of Tp(∂D), where m = dimC∆
∂D
p . All of the necessary arguments can be found in

[7] except for the following modification of Proposition 4 (from [7]) in which the condition

of non-tangential approach is actually not needed. To be complete and precise, a proof of

the following amelioration of Proposition 4 is provided.
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Proposition 4.3.3. let D ⋐ Cn be a smoothly bounded convex domain. Suppose {ϕj} ⊂

Aut(D) accumulates at a boundary point p ∈ ∂D for some point q ∈ D, that is, {ϕj(q)} −→

p ∈ ∆∂D
p ⊂ ∂D. Then ϕ = limϕj, passing through a subsequence if necessary, is a surjective

holomorphic map from D onto ∆∂D
p .

Proof. If ∆∂D
p consists of only one point, then there is nothing to prove. Suppose then, that

z ∈ ∆∂D
p , z ̸= p. One can assume that both z and p are interior points of ∆∂D

p , otherwise one

can use the maximum principle argument in Corollary 4 of [7] to eliminate the possibility

that p or z may be boundary points. Let S be a relatively compact holomorphic disc in

∆∂D
p containing p and z. Denote by {pj = ϕj(q)} the sequence in D converging to p.

For sufficiently large j, one can translate S into D such that its image Sj contains pj and

dist(zj , z) −→ 0 as j −→ ∞, where the distance is the Euclidean distance and zj is the

image of z in Sj via this translation. It then follows from the distance decreasing property

of the Kobayashi metric that dKD(pj , zj) ≤ c = dKS (p, z) where c is a constant independent

of j. Since the Kobayashi metric is invariant under biholomorphism, ϕ−1
j (zj) ∈ {x ∈ D :

dKD(q, x) ≤ c}, which is a compact set in D due to the fact that dKD is a complete metric

when D is a bounded convex open set. Therefore {ϕ−1
j (zj)} converges, passing through a

subsequence if necessary, to a point z̃ ∈ D. It is elementary to see that ϕ(z̃) = z. This

completes the proof.

Given this surjective holomorphic mapping, there exists a sequence of points

{qj} ⊂ D such that {qj} −→ q ∈ ∂D and that {g(qj)} ⊂ ∆∂D
p converge to a point in

∆∂D
p for some strongly pseudoconvex boundary point q ∈ ∂D.
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The preceding discussion implies the following result, which is an improvement

upon Proposition 5 in [7].

Proposition 4.3.4. Let D ⋐ Cn be a smoothly bounded convex domain. Suppose ∆∂D
p is

not trivial for some p ∈ ∂D. If there exists {gj} ⊂ Aut(D) such that gj(z) → ∆∂D
p for all

z ∈ D, then ∆∂D
p is biholomorphic to a complex m-ball, where m is the complex dimension

of ∆∂D
p .

Proof. Let q ∈ D be arbitrarily close to a strongly pseudoconvex boundary point, and let

limj→∞ gj(q) = g(q) = p ∈ ∆∂D
p . For simplicity, let qj = gj(q) and let V = ∆∂D

p .

Let ξ1, . . . , ξm be m linearly independent complex tangent vectors to V at p. It

can be assumed that V lies in the z2 . . . zm+1 plane, where Re(z1) is the outward normal

direction. Let p ∈ V ′ ⋐ V be a relatively compact open subset, then for large enough j,

V ′ can be moved inside D using the parallel translation that sends p to qj . Let V ′
j be the

image of V ′ under this translation.

Then, defining the Carathéodory and Kobayashi measures with respect to the

complex unit m-ball (i.e., let U of definition 3.2.1 be Bm), one sees that

CDU (q; (g−1
j )∗(qj)ξl)

KD
U (q; (g−1)∗(p)ξl)

≤
C
V ′
j

U (qj ; ξl)

KD
U (q; (g−1)∗(p)ξl)

≤
CV

′
U (p; ξl)

KV
U (p; ξl)

,

where ξl represents the set of m-vectors ξ1, . . . , ξm. Note that (g−1)∗ξl should be interpreted

as the pre-image vector of ξl, which is well-defined since the rank of g is m along ∆∂D
p .

Then as j → ∞, let V ′ → V . Then, because q was chosen to be close to a strongly

pseudoconvex boundary point, the left hand side of the above inequality approaches 1.
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Meanwhile, the right hand side is always less than or equal to 1. Therefore,

CVU (p; ξl)

KV
U (p; ξl)

= 1

and hence V is biholomorphic to a complex m-dimensional ball.
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Chapter 5

Proof of Main Theorem

5.1 In C2

In proving Theorem 1.0.5, we use the arguments discussed previously, and begin

with a proof of the simplified result in C2:

Theorem 5.1.1. Let D be a bounded convex domain in C2 with C2 boundary. Suppose

that there is a sequence {gj} ⊂ Aut(D) such that {gj(x)} accumulates at a boundary point

for some point x ∈ D. Then if p ∈ ∂D is such an orbit accumulation point, ∂D contains

no non-trivial analytic variety passing through p.

Proof. Let D be a bounded convex domain in C2 with C2 boundary, and let {gj} ⊂ Aut(D)

be a sequence of automorphisms such that {gj(x)} converges to a point p ∈ ∂D for a point

x ∈ D. Suppose, by way of contradiction, that there exists a non-trivial analytic variety W

in ∂D at p.
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Notice that the sequence {gj} ⊂ Aut(D) is noncompact, and hence g(D) =

limj→∞ gj(D) ⊂ ∂D. Then since D is bounded and convex, conditions (1) and (2) of

Theorem 4.2.1 are satisfied. That is, g(D) = W is contained in an open subset U ⊂ ∂D

such that U has C1 boundary and there is an open set N ⊂ C2 such that N ∩D is convex

and N ∩ ∂D = U .

(A) Open product set around the flat boundary

Consider the product domain M given by M = Ω × g(D), where Ω denotes the

upper half plane {z : Im(z) > 0} and g(D) is a connected bounded open set in H as

described in 4.2.4. And consider the subdomain of M , Vθ = Γθp × g(D), where Γθp is a cone

inside Ω with vertex at the boundary accumulation point p. By 4.2.4, g(D) is flat, and

hence one can view M as a subdomain in C2 such that:

• M lies in the same half space as D (the one created by dividing space along the

supporting hyperplane L described in 4.2.4).

• ∂M ∩ ∂D contains g(D).

• The upper half plane Ω is perpendicular to g(D).

Lemma 5.1.2. For D, {gi}, and Vθ as above, if K is a compact subset inside D, then there

is an angle 0 < θ0 <
π
2 such that gj(K) ⊂ Vθ, for any θ ≥ θ0, if j is sufficiently large.

Proof. Since gj converges to g on compact sets, we see that gj(K) ⊂M for sufficiently large

j. Thus π2(gj(K)) is a compact subset of g(D) for sufficiently large j. Here π2 :M → g(D)

is the projection of M = Ω × g(D) onto its second component. Furthermore, we observe

the following:
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1. In the above theorem, we assume there is a point x ∈ D such that {gj(x)} converges

to p ∈ ∂D, but we do not assume non-tangential convergence, that is, convergence

within a cone. If convergence is indeed non-tangential, then since gj(x) is contained

in M for large j, we see that {π1(gj(x))} converges to p on the upper half plane Ω

within a cone Γψp , for an angle 0 < ψ < π
2 , where π1 : M → Ω is the projection of

M = Ω× g(D) onto its first component.

If, however, convergences is tangential, one can make adjustments to the sequence

{gj(x)} ⊂ D as in the following discussion:

Notice that the hypotheses of Lemma 4.1.1 are satisfied by the hypotheses of this

theorem (C1 boundary is sufficient for sphere contact inside), and hence Aut(D)

contains a 1-parameter subgroup. As detailed in section 4.1, automorphisms of this

1-parameter subgroup are defined by ft(z) = z + tv for each t ∈ R. That is, ft moves

points in D along a path of real one dimension, whose direction under the Pinchuk

scaling sequence is parallel to the line contained in the boundary. For each fixed j,

let Tj = {ft(gj(x)) : t ∈ R} denote the path of gj(x) under the map ft for all t.

Then, since M has real dimension three and is perpendicular to g(D), one sees that

M ∩ Tj ̸= ∅. let fj(gj(x)) denote one such point in the intersection. Then, since the

composition of automorphisms ft and gj is again an automorphism, we can replace

our original sequence {gj(x)} with the translated sequence {fj(gj(x))} which is now

contained in M for large j. Then as above, {π1(fj(gj(x)))} converges to p on the

upper half plane Ω within a cone Γψp , for an angle 0 < ψ < π
2 .

59



2. Let y ∈ K be a point such that d = dKD(x, y) = sup{dKD(x,w) : w ∈ K}. Con-

sider an increasing sequence of relatively compact open subsets {Di}, where Di ⋐

Di+1 and
∪∞
i=1Di = D. We can assume D1 contains both x and K. For fixed i,

gj(Di) ⊂ M for sufficiently large j, thus the composition π1 ◦ gj : Di → Ω is a well-

defined holomorphism. The distance decreasing property gives that di = dKDi
(x, y) ≥

dKΩ (π1(gj(x)), π1(gj(y))) for large j, then letting i → ∞, we see (by a normal family

argument) that limi→∞ di = d. Combining the above arguments we conclude that

dKΩ (π1(gj(x)), π1(gj(y))) ≤ d+ ϵ for sufficiently large j, where ϵ is a positive constant.

Combining Lemma 4.2.5 and the result from observation 1 that π1(gj(p)) lies inside a cone

Γψp , we see that {π1(gj(y))} also lies inside a cone Γθp for sufficiently large j and sufficiently

large θ, 0 < ψ ≤ θ < π
2 . Therefore {π1(gj(K))} must lie inside Γθp for large j, completing

the proof that gj(K) ⊂ Vθ for sufficiently large j.

(B) Existence of an open set around the flat boundary whose universal

covering is biholomorphic to a bidisc

Let K be a compact subset of D, and consider the subdomain of M given by

VK = ΓθKrK ×HK , where HK , θK , and rK are described as follows:

HK : As gj → g on compacta, there is a relatively compact open subset HK ⋐ g(D) such

that π2(gj(K)) ⊂ HK for large j.

rK and θK : Since a neighborhood of the boundary of D containing g(D) is assumed to be

C1 and convex, one can choose 0 < θK < π
2 big enough and rK > 0 small enough

such that the cone ΓθKrK ⊂ Ω, with vertex at p, angle θK , and radius rK , satisfies the
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properties in the following lemma (Lemma 5.1.3). To be precise,

ΓθKrK =

{
z = x+ iy ∈ Ω : tan−1

(∣∣∣∣xy
∣∣∣∣) < θK , 0 < θK <

π

2
,
√
x2 + y2 < rK

}
.

Lemma 5.1.3. Assuming all assumptions of the main theorem (Theorem 1.0.5), suppose

K is a compact subset in D. Then:

1. gj(K) ⊂ VK for sufficiently large j.

2. VK is holomorphically covered by a bidisc.

3. VK ⊂ D.

Proof. (1) and (3) follow directly from the above discussion. (2) follows from the fact that

both ΓθKrK and HK are covered holomorphically by the unit disc.

(C) Domain biholomorphic to the bidisc

Recall that by lemma 4.2.2, if |ME
D (x)| = |MC

D (x)|, for one point x ∈ D, then D

is biholomorphic to the bidisc, ∆2.

Let N be as in the aforementioned satisfied condition (2) of lemma 4.2.1. Since

N ∩ D is a convex open set, one can consider a increasing sequence of relatively compact

open subsets {Nk}∞k=1 inside N ∩ D such that Nk ⋐ Nk+1 and
∪∞
k=1Nk = N ∩ D. Then

the satisfied condition (1) of lemma 4.2.1 yields that g(D) ⊂ N ∩ ∂D. Now one can choose

a subsequence {gk} ⊂ {gj} such that
∪∞
k=1Dk = D and Dk ⋐ Dk+1, where Dk = g−1

k (Nk).

Observe that each Dk is simply connected since each Dk is biholomorphic to a convex open

set.
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As outlined in part (B) above, for a compact subset K ⊂ D, there is an open set

Vk around the flat boundary containing the accumulation point p, whose universal covering

is biholomorphic to a bidisc. Going forward, consider the compact subset K = Dk and

denote the corresponding VK by V . Then for sufficiently large j, gj(Dk) ⊂ V . And since

Dk is cimply connected, there is a holomorphic lifting map fj : Dk → Ṽ of gj : Dk → V

satisfying the commutative diagram:

Ṽ

fj ↗ ↓π

Dk
gj−→ V ⊂ D

Here Ṽ represents the universal cover of V , and π is the covering projection. Let

xj = gj(x) and let yj = fj(x), then π(yj) = xj .

Since fj(Dk) ⊂ Ṽ , we can use the measure decreasing property of holomorphic

maps, Lemma 4.2.3 part (2), to obtain

|MC
Dk

(x)| ≥ |det(dfj(x))| · |MC
Ṽ
(yj)|. (5.1)

Then considering the inclusion map V ↪→ D as a holomorphic map and again

applying Lemma 4.2.3 part (2), we get

|ME
D (xj)| ≤ |ME

V (xj)|. (5.2)
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The differential Eisenman-Kobayashi measure is preserved under covering projec-

tions by Lemma 4.2.3 part (3), and hence

|ME
Ṽ
(yj)| = |det(dπ(yj))| · |ME

V (xj)|. (5.3)

Finally, it follows once again by the measure preserving property of biholomorphic

maps, Lemma 4.2.3 part (2), that

|ME
D (x)| = |det(dgj(x))| · |ME

D (xj)|. (5.4)

We now combine the above four (in)equalities (5.1, 5.2, 5.3, and 5.4) and cancel all

determinants of Jacobian matrices as an application of the chain rule to the map gj = π◦fj .

This results in the following inequality:

|MC
Dk

(x)|
|ME

D (x)|
≥

|MC
Ṽ
(yj)|

|ME
Ṽ
(yj)|

. (5.5)

Then letting k → ∞, it is clear that |MC
Dk

(x)| → |MC
D (x)|, and hence

1 ≥
|MC

D (x)|
|ME

D (x)|
≥

|MC
Ṽ
(yj)|

|ME
Ṽ
(yj)|

= 1

where the last equality comes from the fact that Ṽ is biholomorphic to ∆2. There-

fore, |ME
D (x)| = |MC

D (x)| and hence D is biholomorphic to ∆2.

63



(D) Domain is biholomorphic to the unit ball in C2

Since D is biholomorphic to the bidisc ∆2, and because the bidisc is homogeneous,

one can bring any point to a point arbitrarily close to a strongly pseudoconvex boundary

point by a biholomorphism, if such a point exists.

Notice that the assumption that D is a bounded domain with C2 boundary implies

the existence of a strongly pseudoconvex point in ∂D. It follows from Theorem 2.2.7 that

D is biholomorphic to the unit ball B2 ⊂ C2.

However, by Poincaré’s Theorem (refer to Theorem 2.1.14), one knows that there

exists no biholomorphism between the bidisc ∆2 and the unit ball B2 in C2. Therefore,

we have a contradiction, and must conclude that there exists no analytic variety W in the

boundary of D passing through the point p.
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5.2 In Cn

Generalizing the above result to dimension n ≥ 3 requires a bit more care, and

the proof illustrates a generalization of Poincaré’s theorem 2.1.14.

Theorem 5.2.1. Let D be a bounded convex domain in Cn with C2 boundary. Suppose

that there is a sequence {gj} ⊂ Aut(D) such that {gj(z)} accumulates at a boundary point

for some point z ∈ D. If p ∈ ∂D is such an orbit accumulation point, then ∂D contains no

non-trivial analytic variety at p.

Proof. Let D be a bounded convex domain in Cn with C2 boundary, and let {gj} ⊂ Aut(D)

be a sequence of automorphisms such that {gj(z)} converges to some boundary point for

all z ∈ D. Let g denote limj→∞ gj , and let p be an orbit accumulation point of gj , and

suppose, by way of contradiction, that g(D) ⊂ ∂D contains a non-trivial analytic variety

at p. Then g(D) is contained in ∆∂D
p , and for simplicity, let S denote ∆∂D

p .

Let m denote the complex dimension of S, and let the Re z1 direction be the

outward normal direction along S, with S lying on the complex z2z3 · · · zm+1 plane. Then

notice that dimCS = m ≥ 1, and S has codimension n−m. For each s ∈ S, let Ns denote

the set of all real lines simultaneously perpendicular to both S and Im(z1) at s. Then

dimRNs = 2n − 2m − 1 for all s ∈ S. Further, let Ñ denote the collection of all such Ns.

That is, let

Ñ =
∪
s∈S

Ns.

Then Ñ is a (2n− 2m− 1)-bundle over S and dimRÑ = 2n− 1.
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Choose a point q ∈ D close to a strongly pseudoconvex boundary point, whose

existence is guaranteed due to the fact that the boundary ofD is C2 smooth. Then gj(q) → p

for some p ∈ S.

Due to the aforementioned result of K.-T. Kim (theorem 4.1.1), there exists a

1-parameter subgroup of Aut(D), say {Tt}t∈R. Just as illustrated in the C2 case above, the

automorphisms of this 1-parameter subgroup can be used to translate each gj(q) into Ñ .

More specifically, for each gj , one can choose a Tj ∈ {Tt}t∈R such that (Tj ◦ gj)(q) ∈ Ñ . For

simplicity, let qj denote (Tj ◦ gj)(q). Then for j large enough, each qj sits on Ns for some

s ∈ S.

Let Γϵ,r be a wedge domain in C with radius less than r, defined by

Γϵ,r =

{
z ∈ C :

π

2
+ ϵ < arg z <

3π

2
− ϵ, |z| < r

}
.

Let S′ ⋐ S be a relatively compact open set biholomorphic to the unit ball in Cn such that

S′ contains p. Consider the product domain Arϵ = Γϵ,r×S′ ⊂ D. Let p = 0, qj = (Tj ◦gj)(q),

and q̃j be the projection of qj onto the z1z2 · · · zm+1 plane. That is, if qj = (a1, . . . , an),

then q̃j = (a1, a2, . . . , am+1, 0, . . . , 0). Then q̃j → p.

Consider the holomorphic mapping fj : Cn → Cn defined by fj(z) = (h1(z), . . . , hn(z))

for 1 ≤ k ≤ n, where

hk(z1, z2, . . . , zn) =


zk, if k = 1, . . . ,m+ 1

ak·a1
|a1|2 z1, if k = m+ 2, . . . , n.
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Note that when fj is restricted to S, fj is the identity mapping and fj(q̃j) = qj .

Then one can find ϵ > 0 and r > 0 such that fj(A
r
ϵ) ⊂ D given j large enough.

Now define the Kobayashi and Carathéodory metrics with respect to U = ∆×Bm,

let ξj be the unit vector in the zj direction, and let Dk be the exhaustion of D, that is,

Dk ↗ D. Then

CDk
U (q; (g̃−1

j ◦ fj)∗(q̃j)ξl)
KD
U (q; (g̃−1

j ◦ fj)∗(q̃j)ξl)
≥
C
g̃j(Dk)
U (qj ; (fj)∗(q̃j)ξl)

KD
U (qj ; (fj)∗(q̃j)ξl)

≥
C
Aϵ,r

U (q̃j ; ξl)

K
Aϵ,r

U (q̃j ; ξl)

where g̃j = Tj ◦gj and ξl represents the set of m+1 vectors ξ1, . . . , ξm+1. Note that the first

(m + 1) × (m + 1) complex Jacobian of fj is the identity and hence (fj)∗ξl is well-defined

for l = 1, . . . ,m + 1. The second inequality is a result of the measure decreasing property

while using the inclusion map of Aϵ,r into D for the Kobayashi measure, and using the

projection mapping of Cn onto the z1z2 · · · zm+1 plane for the Carathéodory measure. For j

and k large enough, one can assume that the projection of g̃j(Dk) lies inside Aϵ,r for some ϵ

and r. Note that the Jacobian matrix of the projection is the identity along the z1 · · · zm+1

direction, and hence ξ1, . . . , ξm+1 all remain unchanged.

Observe that as j, k → ∞, the left hand side of the above inequality approaches

a constant strictly less than 1. However, the right hand side is always equal to one, and

one can exhaust S by S′ so that the above argument works for all k and large j, where S

is biholomorphic to a ball by proposition 4.3.4. This yields a contradiction, as desired.
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Chapter 6

Conclusions

This result supports the veracity of the Greene-Krantz conjecture and illustrates

a useful generalization of Poincaré’s Theorem which states that Bn is not biholomorphic to

the polydisc ∆n for n ≥ 2, by showing that Bm+1 is not biholomorphic to Bm ×∆.

Work in this area is far from complete. While the result of this dissertation

advances one step closer to the Greene-Krantz conjecture, the hypothesis is significantly

stronger, and the conclusion weaker. In order to continue advancing towards the full con-

jecture, the author is interested in pursuing the following problem, restricted to smoothly

bounded convex domains:

Problem 6.0.2. Let D be a smoothly bounded convex domain in Cn. Suppose there exists

{gj} ⊂ Aut(D) such that {gj(x)} accumulates at a boundary point p ∈ ∂D for some x ∈ D.

Then ∂D is of finite type at p.
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The author believes that the lack of analytic variety passing through p, as proved

in this dissertation, can be extended to reach the desired conclusion of Greene and Krantz,

that of finite type, in the case of smoothly bounded convex domains.

Furthermore, it is believed by the author, that the use of the 1-parameter sub

group of Aut(D), as described by K.-T. Kim in [4], is not necessary to the proof of the

main result of this dissertation. While the use of the 1-parameter subgroup gives intuitive

geometric insight into the crux of the proof, perhaps a different method of proof might

give further useful insights. It would be of interest, therefore, to pursue an alternate proof,

without the use of this 1-parameter subgroup.

And finally, it is the obvious goal of the author to prove the Greene-Krantz con-

jecture itself.
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