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Abstract

Signal Coding Approaches for Spatial Audio and Unreliable Networks

by

Sina Zamani

This dissertation is divided into two parts. The first part is concerned with devel-

oping algorithms for the compression of emerging 3D audio format, while the second

part investigates optimization techniques for error-resilient predictive compression

systems design.

In the first part, advances in development of compression algorithms for higher or-

der ambisonics (HOA) data is presented. HOA has proven to be the method of choice

in virtual reality applications, given its capability in reproducing spatial audio and its

rendering flexibility. Recent standardization for HOA compression adopted a frame-

work wherein HOA data are decomposed into principal components that are then

encoded by standard audio coding, i.e., frequency domain quantization and entropy

coding to exploit psychoacoustic redundancy. A noted shortcoming of this approach

is the occasional mismatch in principal components across blocks, and the resulting

suboptimal transitions in the data fed to the audio coder. In this dissertation, we

propose a framework where singular value decomposition (SVD) is performed after

transformation to the frequency domain via the modified discrete cosine transform

(MDCT). This framework not only ensures smooth transition across blocks, but also

enables frequency dependent SVD for better energy compaction. Moreover, we in-

troduce a novel noise substitution technique to compensate for suppressed ambient

energy in discarded higher order ambisonics channels, which significantly enhances the

perceptual quality of the reconstructed HOA signal. In the next step, to reduce the
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burden of side information, a new encoding architecture is presented, where transform

matrices are estimated backward-adaptively. This framework allows a more frequent

usage of optimal SVD, thereby approaching the full potential of frequency domain

SVD. Also the division of HOA data into predominant and ambient components in

current schemes, is difficult to perceptually optimize and ignores spatial inter channel

masking effects. To address this issues, a new encoding framework for compression of

HOA data is presented, where a null-space basis vector extension technique enables

all compression to be performed in the SVD domain, and a jointly computed common

masking threshold accounts for effects of spatial masking across components.

The second part is concerned with developing optimization techniques for error-

resilient predictive compression systems design. Prediction is used in virtually all

compression systems and when such a compressed signal is transmitted over unre-

liable networks, packet losses can lead to significant error propagation through the

prediction loop. Despite this, the conventional design technique completely ignores

the effect of packet losses, and estimates the prediction parameters to minimize the

mean squared prediction error, and optimizes the quantizer to minimize the recon-

struction error at the encoder. While some design techniques have been proposed

to accurately estimate and minimize the end-to-end distortion (EED) at the decoder

that accounts for packet losses, they operate in a closed-loop, which introduces a

mismatch between statistics used for design and statistics used in operation, causing

a negative impact on convergence and stability of the design procedure. The first

contribution of the dissertation is this part is proposing an effective technique for

designing a compression system with a first order linear predictor, that accounts for

the instability caused by error propagation due to packet losses, and enjoys stable

statistics during design by employing open-loop iterations that on convergence mimic

closed loop operation.
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End-to-end distortion (EED) estimation, accounting for error propagation and

concealment at the decoder, has been originally developed for video coding, and en-

ables optimal rate-distortion (RD) decisions at the encoder. However, this approach

was limited to the video coders simple setting of a single tap constant coefficient tem-

poral predictor. This thesis considerably generalized the framework to account for:

i) high order prediction filters, and ii) filter adaptation to local signal statistics. We

demonstrate how this EED estimate can be leveraged, by an encoder with short and

long term linear prediction, to improve RD decisions and achieve major performance

gains. The approach is further extended to estimate EED in speech coders. The

error propagation problem is exacerbated in this case, as standard coders not only

predict the signal from past frames, but also the parameters (in the line spectral fre-

quency domain) employed for such prediction. Hence, the prediction loop propagates

errors in the reconstructed signal as well as errors in the prediction parameters. A

recursive algorithm is proposed to estimate, at the encoder, the overall EED, by the

subterfuge of parallel tracking of decoder statistics for prediction parameters and sig-

nal reconstructions, in their respective domains, which are then combined to obtain

the ultimate EED estimate.
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Chapter 1

Introduction

1.1 Spatial Audio

Creating interactive and immersive experiences is currently an area of significant

interest, with major investment in virtual and augmented reality covering all aspects

of content acquisition, storage, transmission, and display/playback. Achieving a truly

immersive experience requires new formats for multimedia content, and in particular

three-dimensional (3D) 360-degree audio, to represent information in a 3D space.

The higher order ambisonics (HOA) paradigm [1, 2, 3, 4, 5] is a surround sound

recording and reproduction technique that captures information of a 3D sound-field in

its transmission channels. The key benefit of HOA is its flexibility to enable playback

with any speaker configuration ranging from headphones to complex surround sound

systems, thus allowing for a diverse variety of approaches to create an immersive

experience.

The first order ambisonics format (also known as B-Format), originally developed

in the 70s [1], has directional information of a sound-field recorded (codified) in 4
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Introduction Chapter 1

channels, namely W,X, Y, Z as,

W (t) =
∑

i
si(t)/

√
2, X(t) =

∑
i
si(t) cos(θi) cos(φi),

Y (t) =
∑

i
si(t) sin(θi) cos(φi), Z(t) =

∑
i
si(t) sin(φi), (1.1)

where si(t) is a sound signal source coming from direction (θi , φi) where θ denotes

azimuth and φ denotes elevation. The W channel corresponds to the pressure of the

sound-field at the origin, while X, Y, Z are proportional to its gradients. Thus, unlike

the traditional multichannel audio (e.g. 5.1 or 7.1 surround), where each channel

has information corresponding to a given loudspeaker, in ambisonics, channels carry

the directional and physical information of an entire sound-field. Given a set of N

speakers, the decodified signal for speaker i located at (θi, φi) is given as,

di(t) = wiW (t) + xiX(t) + yiY (t) + ziZ(t), (1.2)

where the set of parameters (wi, xi, yi, zi) can be determined to optimally reconstruct

the sound-field for physical or psychoacoustic accuracy [3]. Clearly, the ambisonics

channels are completely independent of the loudspeaker layout chosen for decodifyng

the sound-field. An ambisonic decodifier is therefore designed for a specific speaker

layout, and an ambisonic codified sound-field can be reproduced with any loudspeaker

layout by employing an appropriate decodifier.

Despite the solid theoretical foundation, ambisonics failed to gain commercial

success at the time due to the limited size of usable listening area (the so-called

sweet spot where the sound-field is accurately reproduced) and poor localization. In

the 90s, the theory of higher order ambisonics (HOA) [2] extended the approach,

by decomposing the sound-field into higher order spherical components, resulting in

2
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Figure 1.1: Spherical harmonics up to third order

improved localization and spatial resolution, and increased size of the sweet spot.

The maximum order L at which the expansion is performed is called the HOA order.

At each order, i, of the expansion, there are 2i + 1 channels and an overall HOA of

order L has a total of (L+ 1)2 channels. In this case the sound-field is expressed as,

s(t, θ, φ) =
∑L

l=0

∑l

m=−l
Bl,m(t)Yl,m(θ, φ), (1.3)

where Bl,m correspond to HOA channels (subsuming the traditional W,X, Y, Z of first

order ambisonics) and Yl,m are the spherical harmonics (depicted in Figure 1.1 for

L = 3), which are the bases of the expansion. The codifying of the sound-field is done

by projecting the sound sources onto these basis components, and the decodifying

process reconstructs signals for arbitrarily located speakers in a manner similar to

that of first order ambisonics.

1.1.1 Compression of HOA data

In practical applications, HOA data can include as many as 64 channels and given

the enormous amount of data consumed by 3D audio, it is critical to achieve efficient

compression for networking and transmission. The recent MPEG-H 3D audio stan-

dard [6] is the state-of-the-art for compression of HOA data. The encoder utilizes

SVD to extract and encode distinct spatial audio objects, also refereed to as predom-

3



Introduction Chapter 1

inant or foreground sound components, which requires the SVD transform matrices

to be encoded and sent to decoder as side information. The residual signal, not cap-

tured by the predominant components, is encoded in the ambisonics domain after it

has been reduced in order, where the remaining ambisonic channels are called am-

bient or background components. Each foreground or background component is fed

into a separate standard audio codec where it is independently encoded. Broadcast

quality transmission and transparent quality transmission have been reported [7, 8] at

bit-rates around 300 kbps and 500 kbps, respectively. However, one central concern

with this framework, is the occasional mismatch between principal components across

blocks, that could create abrupt transitions between adjacent frames. MPEG-H 3D

employs an elaborate process of basis vector matching and interpolation to address

this issue, however the transitions across frames remain sub optimal and degrade

performance in terms of the achievable compression ratio and resulting perceptual

quality. In Chapter 2, we demonstrate that considerable gains can be obtained by

performing SVD in the frequency domain instead of on the original time sequence.

This paradigm ensures smooth transitions between frames by leveraging the modi-

fied discrete cosine transform (MDCT) built-in overlap windows. Frequency domain

SVD also enables SVD adaptation to frequency, but the increase in side information,

to specify additional basis vectors, compromises the gains. Chapter 3, overcomes

this shortcoming by introducing backward adaptive estimation of SVD basis vectors,

at no cost in side information, thereby approaching the full potential of frequency

domain SVD. Chapter 4 is motivated by these observations: i) separate coding of

SVD components ignores spatial inter channel masking effects; ii) compression in

both SVD and ambisonic domains is difficult to perceptually optimize; iii) Only few

predominant components are encoded due to the prohibitive side information cost

of specifying SVD basis vectors. A novel coding architecture is presented to over-
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comes the first two concerns by performing all compression in the SVD domain with

a masking threshold that is calculated jointly for all encoded components, thereby

accounting for cross-component masking. The third shortcoming is circumvented by

a novel method for extending a given set of SVD basis vectors at no side information

cost, by computing (at both encoder and decoder) basis vectors to span the null space

of the transmitted basis vectors

1.2 Error Resilient Predictive Compression Sys-

tem Design

Virtually all multimedia content (e.g., speech, audio, image, and video) consists

of sources with memory, often exhibiting dominant temporal correlations. A subset

of these signals is (locally) quasi-periodic and characterized by naturally occurring

repetitive patterns, for example, voiced speech, mono and polyphonic music, and

image textures. Other signals are not periodic but are nevertheless highly correlated

temporally, such as video signals. Thus, exploiting temporal correlations is a critical

component of all compression and communication systems. One central approach

to do so involves prediction, typically a combination of linear short term and/or

long term prediction filters, which are often employed in conjunction with transform,

quantization, and entropy coding. An extensive literature exists, covering such coding

techniques, including for speech [9], audio [10], image [11], and video [12] signals.

The theory underlying optimal prediction is well understood in its own right

[13, 14], where the optimality criterion is typically specified in terms of the prediction

error. Our work is motivated by the observation that, despite the importance and

prevalence of prediction in real world compression and communication systems (see,

5
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e.g., [15, 16, 17, 18]), it has largely been studied in isolation, and its design falls short

of accounting for the environment in which it is deployed, including its interaction

with and impact on other modules, resulting in considerable unrealized performance

gains. A major shortcoming of currently employed techniques is the mismatch in

the cost function used for estimation and design of prediction parameters to that

of the overall system. Most methods simply estimate parameters to minimize the

mean squared prediction error, however this does not guarantee maximal reduction

in the overall rate-distortion (RD) cost (for asymptotic RD theory see [19, 20]) of

the system, nor does it account for other important aspects, such as the exacerbated

impact of unreliable communication over networks, due to error propagation through

the prediction loop. Chapter 5 discusses an effective design technique for a first

order predictive system to account for and overcome major stumbling blocks due to

(i) the destabilizing effects of the prediction feedback loop during design, and (ii) the

effects of error propagation when operating under unreliable network conditions. The

proposed design scheme accurately estimate and minimize the end-to-end distortion

(EED) at the decoder that accounts for packet losses. Chapter 6 extends the end-

to-end distortion estimation framework to systems employing adaptive higher order

predictors by separately tracking statistics of the employed prediction parameters and

the reconstructions at the decoder. We show incorporating the estimate obtained by

the proposed approach in an RD framework to decide the number and location of

prediction resets to achieve the right balance between compression and addition of

redundancy to combat packet losses, results in significant performance improvements.

The focus of Chapter 7 is on estimating EED in speech coding and networking sys-

tems, where a combination of short term and long term prediction filters adapted to

local signal statistics are employed. The error propagation problem is exacerbated in

this case, as standard coders not only predict the signal from past frames, but also

6
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the parameters (in the line spectral frequency domain) employed for such prediction.

Hence, the prediction loop propagates errors in the reconstructed signal as well as er-

rors in the prediction parameters. A recursive algorithm to estimate, at the encoder,

the overall EED, by the subterfuge of parallel tracking of decoder statistics for pre-

diction parameters and signal reconstructions, in their respective domains, which are

then combined to obtain the ultimate EED estimate. Experimental results provide

evidence for substantial objective and subjective gains.

7
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Towards Optimal Coding and

Networking of Immersive 3D Audio
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Chapter 2

Frequency Domain Singular Value

Decomposition for Efficient Spatial

Audio Coding

2.1 Introduction

Recently, a new spatial audio coding standard, MPEG-H 3D Audio [6], has

emerged. The HOA input is decomposed into predominant sound elements and am-

bient background components, using standard singular value decomposition (SVD),

and each of these are coded separately via an AAC based coder, where quantization

and entropy coding are performed in the frequency domain to exploit psychoacoustic

redundancies. While good broadcast quality has been reported for bit-rates around

300 kbps [8], the premise of this chapter is that higher compression efficiency and

better perceptual quality can be achieved by employing SVD in the frequency do-

main. In the MPEG-H approach, there is often a mismatch of principal components

across blocks, both in terms of order of components and their respective basis vectors.
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MPEG-H employs an elaborate matching technique in combination with an overlap-

add technique to mitigate this shortcoming. However, transitions between blocks

remain suboptimal and introduce inefficiencies in the core codec and degrade the per-

ceptual quality. Our approach completely eliminates this issue as we first transform to

frequency domain via MDCT which ensures smooth transition across blocks with its

built-in overlap. Moreover, optimal SVD can now be adapted to different frequencies,

instead of a compromise decomposition for the entire spectrum. Finally, we employ

noise substitution in a novel way to compensate for ambient energy loss and further

improve perceptual quality of the rendered HOA data.

2.2 MPEG-H approach for compression of HOA

data

The MPEG HOA encoder [21] processes the input HOA data over frames of length

2L (L = 1024) with 50% overlap. Let the number of HOA channels be M = (N+1)2,

where N is the ambisonics order. For current frame f , the encoder operates on

HOA data Xf , which is an 2L ×M matrix, and performs standard singular value

decomposition (SVD),

Xf = UfΣfV
T
f , (2.1)

where Uf is an 2L× 2L unitary matrix, Σf is a 2L×M rectangular diagonal matrix

with non-zero elements on the diagonal and Vf is an M ×M unitary matrix. Each

of the N vectors in Uf (of length 2L samples) can be interpreted as representing

normalized separated audio signals that have been decoupled from any directional

information, and Σf stores the energy of these sound components. The spatial char-

acteristics are captured by individual columns of Vf , or basically the basis vectors of

10
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the SVD transform. The SVD construction ensures that predominant components,

corresponding to the largest r singular values have as basis vectors the first r columns

of Vf . Let Vf be truncated to the first r columns, and further be independently or

differentially quantized to V̂f and sent to the decoder as side information for each

frame, so as to enable it to transform back the predominant components to the am-

bisonics domain. To keep encoder and decoder in sync, the quantized V̂f is used to

generate the predominant components Ỹf (now an approximation of first r columns

of UfΣf ), as,

Ỹf = Xf V̂f (V̂
T
f V̂f )

−1
. (2.2)

Note that the inverse term is for renormalization of the quantized basis vectors (to

maintain unitarity). The next step is to code the predominant or foreground com-

ponents, each corresponding to a column of Ỹf , using separate instances of the core

audio codec. This requires concatenating components across frames. However, since

SVD arranges the basis vectors based on the singular value magnitudes, the same

foreground component might change position in Ỹ from frame to frame depending

on the magnitude of its singular value relative to others. This can result in notice-

able blocking artifacts, if blindly concatenated foreground components are fed to the

core codec, and severe discontinuities across consecutive frames can reduce the achiev-

able compression ratio and introduce significant artifacts in the HOA reconstructions.

While there are several approaches to reorder and match components with the pre-

vious frame, we employ the magnitude of correlation between column vectors of V̂f

and V̂f−1 as the criterion in an Hungarian matching algorithm [22], which we found

to be effective.

Even with matched components, simple concatenation across frames would intro-

duce noticeable artifacts as a small change in the basis vector causes some mismatch

11



Frequency Domain Singular Value Decomposition for Efficient Spatial Audio Coding Chapter 2

SVD
Foreground Signal

generation

Reordering and
Interpolation

Background Signal
generation

MDCT

MDCT

Quantization and
Entropy Coding

Quantization and
Entropy Coding

HOA data U,Σ

V

Figure 2.1: Overview of MPEG-H encoder

at the frame boundary. Hence the encoder interpolates the column vectors of V̂ be-

tween current frame and previous frame to ensure continuity over time. Specifically, a

different transform matrix is used for each sample of the current frame, whose column

vectors are obtained as,

v̄if (l) = (1− w(l))v̂if−1 + w(l)v̂if , (2.3)

where v̂if , v̂
i
f−1 are the ith matched column vectors of V̂ for current and previous

frames, v̄if (l) is ith column vector for sample l in current frame and w(l) is a window

function, which may be the triangular or Hanning window. The interpolation should

also account for the fact that the vectors might get negated from one frame to next

frame by performing a sign correction when needed.

An approximation of the HOA data, X̃f , is generated by transforming the fore-

ground components back to the ambisonics domain, which is then subtracted from

the original data to produce the ambient (or background) HOA data. The foreground

components are coded using separate instances of the core audio codec. The order

12
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of background HOA data is then reduced (from N to some t) and this lower order

HOA data are also coded using the core audio codec. An illustration of the MPEG-H

approach is shown in Figure 2.1.

2.3 Frequency Domain SVD for HOA data com-

pression

Clearly, the MPEG-H approach performs an elaborate process of matching and

interpolating transform basis vectors of consecutive frames to improve their continuity

over time and to mitigate the artifacts stemming from blockwise SVD application. We

propose to circumvent this underlying and fundamental shortcoming with a frame-

work wherein SVD is employed after transformation to frequency domain via MDCT,

which naturally achieves the required smoothness with its built-in overlap. More-

over, this framework enables the significant flexibility to make both the SVD and

the number of components to be retained, adaptive to frequency, instead of using a

compromise for the varying needs of different frequency bands.

In the proposed approach, the HOA data are processed in the encoder after seg-

menting each HOA channel into 50% overlapped frames of length 2L. The samples

of each channel are separately transformed via MDCT after windowing to obtain the

transformed data for the current frame, Sf , which is an L ×M matrix. Sf is now

divided into different frequency bands, STf = [STf1S
T
f2
... STfn ] where n is the number of

frequency bands with lengths l1, l2, ..., ln and
∑

i li = L. For each frequency band, a

different SVD is obtained, Sfi = UfiΣfiV
T
fi

, the top ri components are retained (which

may vary over bands), and the correspondingly truncated Vfi are coded to V̂fi and

sent to the decoder as side information. Similar to (2.2), predominant components

13
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for each band are obtained as Ỹfi = SfiV̂fi(V̂
T
fi
V̂fi)

−1
, and are concatenated to gen-

erate the foreground data for the entire frame, Ỹ T
f = [Ỹ T

f1
Ỹ T
f2
... Ỹ T

fn
]. Predominant

components are mapped back to ambisonics domain to provide an approximation of

HOA data in spectral domain, S̃Tf = [S̃Tf1S̃
T
f2
... S̃Tfn ], where S̃fi = ỸfiV̂

T
fi

, and S̃f is

subtracted from Sf to produce the background components. The predominant and

ambient sound components are fed to different instances of core audio codec’s quan-

tization and entropy coding modules. An illustration of the proposed approach is

shown in Figure 2.2.

2.3.1 Side Information Compression

To exploit the temporal correlations between transform matrices of consecutive

frames, the Hungarian algorithm [22] is employed to match the column vectors of

Vfi matrices of consecutive frames corresponding to ith frequency band based on

correlation coefficients. We used a scalar prediction coefficient (equal to correlation

coefficient) for each vector. We selected approximately 10,000 frames from third order

ambisonics files as training set to design a quantizer for prediction coefficients and
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prediction residuals using Generalized Lloyd Algorithm (GLA).

2.3.2 Perceptual noise substitution

Discarding higher orders of background data significantly suppresses the ambient

sound of the ultimate HOA reconstruction and degrades the perceptual quality of

the rendered data. To mitigate this issue, we introduced a novel noise substitution

technique that replaces the content of the discarded channels with noise designed to

be perceptually relevant. Specifically, for each of the 49 critical frequency groups

defined in the MPEG standard, the spectral flatness is calculated for each discarded

channel as,

Flatnessijf =
exp( 1

|Bij
f |
∑

k∈Bij
f

lnBij
f [k])

1

|Bij
f |
∑

k∈Bij
f
Bij
f [k]

, (2.4)

where Bij
f are the power spectrum coefficients for channel i and frequency group

j of the current frame background data. For each frequency group, these flatness

values are averaged over all channels, and used as a measure of how “noise-like” the

content of that frequency group is. If the average flatness is higher than a threshold,

then the average energy is calculated for that frequency group across all channels

and all its frequency bins. The decoder generates perceptual noise at the specified

energy for all channels of the frequency group. Figure 2.3 shows an illustration of

how background data is encoded, where the first order data is encoded using the core

audio codec, and for each frequency group of higher order data, the average spectral

flatness is compared to a threshold, and thus a maximum of 49 energy values are

encoded (similar to scale factors) and sent to decoder as side information.

It is important not to confuse the perceptual noise substitution technique pre-

sented in this section with the well known noise filling and Intelligent Gap Filling
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(IGF) [23, 24] tools, also available in the MPEG-H core audio codec. The proposed

noise substitution is performed in the ambisonics domain, to conceal suppressed en-

ergy in discarded ambisonics channels. In contradistinction, these MPEG-H tools

are applied to PCM signals fed to the core audio codec, i.e., when the foreground

and background components are encoded. We re-emphasize that the suppression of

ambient sound in final rendered data is due to discarding higher order channels of

the background data, and this information will not be retrieved by simple application

of available MPEG-H 3D tools to predominant and ambient components as they are

encoded by the core audio codec.
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2.4 Experimental Results

To validate the efficacy of the proposed approach we conducted objective and

subjective experiments. The experiment was on a dataset of recordings provided by

Google, which consists of 6 third order ambisonics files. As the software for MPEG-H

encoder is not yet publicly available, we implemented our own representative version

of it, as described in Section 2.2, based on the published patents [25, 26] and the

standard documentation [21] which serves as a baseline for comparison. Other than

the explicit contributions of the new approach, the competitors are identical in terms

of options enabled, etc. All side information is accounted for in the total bit-rate.

In all the experiments r = ri = 4, ∀i and t = 1, that is, the number of foreground

and background channels are both set to 4 for all frames, which results in a total

of 8 components being encoded with the core codec. In the proposed approach, we

divided the frequency data into 4 uniformly sized bands and a different transform is

obtained for each frequency band. While employing frequency dependent SVD always

results in better compaction of energy, this does not always translate to improved RD

performance for the fixed quantizers and entropy coders employed. We believe this

limitation can be addressed by redesigning the quantizers and entropy coders for the

new statistics. In order to obtain preliminary results we employed the “shortcut”

of providing two encoding modes per frame, of using a single frequency band (mode

mf = 0), or using 4 frequency bands (mode mf = 1), and selecting the one which

minimizes the RD cost. When the mode switches between frames, the transform

matrix (or matrices) of current frame are predicted from the best available previous

transform matrix (or matrices).
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Bit-rate reduction at various
operating points

Sequence ∼308 kbps ∼375 kbps ∼500 kbps
2src 7.83% 8.03% 8.37%

A Round -0.8% 0% 1.41%
doll intro 6.64% 6.93% 7.26%
heli fount 4.58% 5.96% 7.02%

lyon 3.98% 4.72% 3.58%
Murmur2 6.50% 8.89% 10.9%

Average 4.79% 5.75% 6.44%

Table 2.1: Proposed framework’s reduction in bit-rate

2.4.1 Objective Results

Note that perceptual distortion optimization for foreground data obtained through

SVD, especially in comparison to background data in ambisonics domain, is still an

open problem. To obtain preliminary objective results, we simply encoded both the

competing methods to minimize the bit-rates for a given maximum quantization noise

to mask ratio (MNMR) constraint for all bands of all channels. Investigation of the

true objective perceptual distortion measure and its corresponding optimization ap-

proach is part of future work. Percentage reduction in bit-rate for the proposed

method in comparison to the MPEG-H approach, obtained at different operating

points is presented in Table 2.1. Clearly, there is a consistent improvement in per-

formance for the proposed framework. Table 2.2 also presents the contribution of

foreground and background data to the total bit-rate for each file (averaged over the

three operating points) for the two encoding methods. Clearly, the improved en-

ergy compaction of the proposed approach results in significant reduction in bit-rate

required for background, while marginally increasing the foreground bit-rate.
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Foreground Background
contribution contribution

Sequence Proposed MPEG Proposed MPEG
2src 67.78% 59.52% 25.06% 37.09%

A Round 56.37% 53.12% 37.27% 44.85%
doll intro 63.93% 57.24% 26.99% 38.73%
heli fount 54.6% 51.33% 41.76% 47.29%

lyon 59.65% 55.94% 27.65% 39.34%
Murmur2 63.08% 60.53% 26.47% 37.25%

Average 60.90% 56.26% 30.87% 40.76%

Table 2.2: Contribution of foreground and background data to total bit-rate for
the two methods

Ref Anc MPEG Proposed
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Figure 2.4: MUSHRA listening test results comparing the encoding techniques

2.4.2 Subjective Results

We conducted subjective evaluations to determine the true perceptual gains using

the MUSHRA listening tests [27]. This is particularly important given the above

reservations about the ability of the objective measure to fully capture the perceptual

quality. The test items were scored on a scale of 0 (bad) to 100 (excellent) and the tests

were conducted with 8 listeners. We extracted 10s portions of each file for evaluation.

The test files includes challenging scenes with speech, music and objects moving.

A binaural renderer was deployed to convert the reconstructed HOA coefficients to

stereo signals. The binaural renderer works with HRTFs for a set of loudspeakers
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around the head. The HOA data is decoded to the positions of those loudspeakers

using Max rE [4, 5] mode-matching or L2-norm decoding techniques, and the decoded

signal at each loudspeaker is convolved with the associated HRTFs for the left and

right ear, respectively. Finally, the convolved signals for each ear are added together

to generate the stereo output. Randomly ordered 4 versions of each audio sample

(including a hidden reference, a 3.5 kHz low-pass filtered anchor, the encoded file

using the proposed method and the encoded file using the MPEG method) were

presented to the listeners. For these tests, the bit-rates (around 375 kbps) were

matched for each competing file. The subjective evaluation results, including the

mean and 95% confidence intervals, as presented in Figure 2.4 clearly demonstrates

the substantially improved quality. This margin of improvement could not have been

predicted from the moderate gains observed in objective results, clearly highlighting

the critical need for further research in developing an appropriate objective perceptual

distortion measure and corresponding optimization approach.

2.5 Concluding Remarks

This chapter presents a new framework for compression of higher order ambisonics

data by first transforming the coefficients to MDCT domain and then decomposing

into principal components. Unlike the current approaches, which suffer from subop-

timal transitions between frames, the proposed approach not only ensures smooth

transitions, it also enables frequency dependent decomposition and selection of dom-

inant components. Furthermore, a novel way of employing noise substitution is in-

troduced to enhance the perceptual quality of final reconstructions. Objective and

subjective results illustrate the effectiveness of the proposed approach with significant

performance improvements.
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Chapter 3

Spatial Audio Coding with

Backward-Adaptive Singular Value

Decomposition

3.1 Introduction

In the previous chapter, we proposed a framework for compression of HOA data,

where singular value decomposition is moved from the time to the frequency do-

main, i.e., it is performed after transformation by MDCT. This framework not only

ensures smooth transition across blocks by leveraging the MDCT built-in overlap

windows, but also enables frequency dependent SVD, instead of what is effectively

a compromise decomposition for the entire spectrum. It thus achieves better energy

compaction and hence improved compression performance. Moreover, we introduced

a novel noise substitution technique to compensate for suppressed ambient energy in

discarded HOA channels, which significantly enhanced the perceptual quality of the

reconstructed HOA signal.
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In any compression method there is an inherent tradeoff between adaptivity and

the cost it incurs in side information. While performing SVD in the frequency domain

opens the door to employing the optimal SVD for each frequency group, tailored to its

needs, this benefit comes at significant cost in side information, which might outweigh

the gains due to specialized transforms. In this chapter we introduce a novel encod-

ing architecture to circumvent the prohibitive side information cost by estimating the

SVD transforms backward-adaptively. This framework introduces considerable per-

formance gains in terms of the objective rate-distortion tradeoff, as well as significant

enhancement of perceptual quality of rendered data, especially at lower bit-rates.

3.2 Proposed Backward-Adaptive SVD for Com-

pression of HOA data

Performing SVD in frequency domain allows for frequency dependent decomposi-

tion, instead of using a compromise transform for the entire frame. This often results

in better energy compaction in predominant components, however the burden of side

information associated with sending more transforms per frame represents a major

obstacle to realizing the potential gains. As a shortcut to achieve some gains, in

previous chapter we introduced two encoding modes per frame, one uses a single fre-

quency band and the other uses multiple (4) bands. The encoder switched between

the modes per frame to minimize the rate. Here, we propose an alternative framework

to significantly improve the RD performance at the cost of minimal side information,

by estimating the transform matrices backward-adaptively, as described below.

Let R be a m × m square matrix. Then an eigenvector of R, denoted by e is

a vector that is mapped to a scaled version of itself, i.e. Re = λe, and λ is the
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corresponding eigenvalue. If R is symmetric and positive definite, then eigenvalues of

R are real and positive. We can group the eigenvalues in a m×m diagonal matrix Λ

, and the eigenvectors in a m×m matrix E, and then, it is straightforward to show

RE = EΛ or equivalently,

R = EΛE−1, (3.1)

and the above decomposition is called the eigenvalue decomposition for R.

Recall from previous chapter that in the frequency domain SVD decomposition

approach, the encoder blocks HOA data into 50% overlapped frames of length 2L.

HOA data is mapped to the frequency domain by applying MDCT separately to each

channel of Xf . The resulting L × M matrix, denoted Sf , is divided into smaller

frequency bands, i.e., STf = [STf1S
T
f2
... STfn ], where n is the number of frequency bands

with lengths l1, l2, ..., ln, where
∑

i li = L. For each band, a different SVD decompo-

sition is obtained, Sfi = UfiΣfiV
T
fi

.

If we consider the singular value decomposition for current frame data in frequency

domain, Sf = UfΣfV
T
f , a special matrix of interest is the correlation matrix denoted

as Rf = STf Sf , which can be calculated as,

Rf = STf Sf = VfΣfU
T
f UfΣfV

T
f = VfΣ

2
fV

T
f . (3.2)

If we compare (3.2) to (3.1), we see that the transform matrix for current frame, Vf

can be obtained by eigenvalue decomposition of Rf .

To minimize the cost of side information, the basis vectors for current frame can be

obtained backward-adaptively, using the correlation matrix of previous frame Rf−1.

And the the correlation matrix for current frame can be updated backward-adaptively
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Figure 3.1: Encoder architecture

at both decoder and encoder as,

Rf = w1Ŝ
T
f Ŝf +

l−1∑

j=1

wj+1Rf−j, (3.3)

where w = [w1w2...wl] is a weight vector for a “leaky” weighted sum over a window of

length l, where
∑l

j=1wj = 1, and Ŝf is the HOA reconstruction in frequency domain

of the current frame. Similarly, the correlation matrix for each frequency band, Rfi ,

can be updated as,

Rfi = w1Ŝ
T
fi
Ŝfi +

l−1∑

j=1

wj+1Rfi−j. (3.4)

Figure 3.1 and Figure 3.2 illustrate an overview of the proposed encoder. Note

that in the proposed encoding architecture, no side information is sent to decoder, as

both decoder and encoder update correlation matrices backward-adaptively. In other

words, as shown Figure 3.1, the transform matrix obtained in the current frame, using

the reconstruction of the current frame and the previous frame correlation matrix, will

be applied to the data of the next frame. Once the transform matrix is obtained, pre-

dominant and ambiant components for different frequency bands are generated similar
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Figure 3.2: Backward-adaptive transform estimator

to the framework discussed in the previous chapter. The foreground and background

components are concatenated across frequency bands and are independently coded

using different instances of the core audio codec.

3.3 Experimental Results

In this section we present the results of subjective and objective evaluations that

were conducted to compare three competing HOA data coders:

1. CMPEG: Our implementation of the MPEG standard, discussed in detail in

the previous chapter.

2. CFSVD: The architecture we discussed in the previous chapter, where the max-

imum number of frequency bands for SVD adaptation is set to 4, and two

encoding modes are provided per frame, one using a single frequency band and

the other using multiple frequency bands. This coder employs the perceptual

noise substitution technique discussed in 2.3.2.
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3. CBW: The approach proposed in this chapter. The perceptual noise substi-

tution framework is enabled for this coder as well. The number of frequency

bands were set to 8 and w = [0.1 0.9].

In all competing coders, the number of foreground and background components

were set to 4, and a total of 8 components were encoded using the core audio codec.

Note that the core audio encoders we used are standard compatible but not con-

ventional, and achieve better optimization via a trellis approach to select encoding

parameters (scale factors and Huffman codebooks), as described in [28]. The experi-

ments were conducted with 6 (third order, 16 channels) HOA files provided by Google

for UCSB research, which include speech, music, with static and moving objects.

3.3.1 Objective Results

A good distortion measure that accounts for human auditory perception for 3D au-

dio, and an effective optimization framework to find encoding parameters to minimize

such a distortion metric, are both still subjects of ongoing research. This difficulty

is further exacerbated by the fact that the predominant sound components are en-

coded in the SVD domain, while the ambient data are encoded in the ambisonics

domain, and it is not obvious how to properly account for masking effects and the

contribution of quantization noise in each coded component to the final distortion.

To obtain preliminary results, the core audio coders in all competing HOA codecs

were run to minimize the maximum quantization noise to masking ratio (MNMR)

criterion in all frequency bands for all encoded predominant and ambient channels.

Percentage reduction in bit-rate for the CBW codec and CFSVD in comparison to the

MPEG approach, obtained at different operating points, are presented in Table 3.2

and Table 3.1. It is clear that the proposed architecture consistently outperforms
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Bit-rate reduction of CFSVD over CMPEG
at various operating points

Sequence ∼175 kbps ∼240 kbps ∼375 kbps
2src conv office 7.05 % 7.66 % 8.26%

A Round Around-SpotMics 3.32 % 4.31 % 6.43 %
glass lab nr 6.42 % 7.07 % 7.93 %

helicopter fountain 1.70 % 3.81 % 6.41 %
lyon 5.34 % 6.33 % 6.70 %

Murmur2 3.19 % 5.80 % 9.58 %

Average 4.50 % 5.83 % 7.56 %

Table 3.1: Bit rate reduction of the previous chapter approach, CFSVD, over CMPEG

Bit-rate reduction of CBW over CMPEG
at various operating points

Sequence ∼175 kbps ∼240 kbps ∼375 kbps
2src conv office 11.67 % 13.16 % 13.35 %

A Round Around-SpotMics 13.92 % 14.31 % 16.45 %
glass lab nr 21.94 % 21.93 % 22.75 %

helicopter fountain 3.57 % 4.97 % 11.71 %
lyon 27.04 % 26.97 % 26.87 %

Murmur2 11.30 % 14.87 % 16.38 %

Average 14.91 % 16.04 % 17.92%

Table 3.2: Bit rate reduction of the proposed approach in this chapter, CBW, over
CMPEG

both CFSVD and CMPEG. In particular it achieves bit rate reduction of 16.3% on

average, over CMPEG, which represents a major improvement over the reduction of

5.96% on average, over CMPEG offered by our previous approach CFSVD, where side

information stood in the way of full exploitation of frequency-domain SVD. These re-

sults provide strong evidence for the benefits of backward-adaptive estimation of SVD

basis vectors.
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Figure 3.3: MUSHRA listening test results comparing the encoding techniques

3.3.2 Subjective Results

To measure the true perceptual audio quality gains we conducted MUSHRA lis-

tening tests [27]. The first 10 seconds of each file were selected for evaluation. The

HOA data were converted to stereo signals using a binaural renderer. Ten listeners

participated in the test and scored the listening files on a scale of 0 (bad) to 100

(excellent) based on the audio quality. Listeners were provided with 5 randomly or-

dered different versions of each binaurally rendered HOA file: the hidden reference

(ref), a 3.5 kHz low passed anchor (anc), and files encoded with CMPEG, CFSVD

and CBW. The bit-rates for competing files were matched at around 120 Kbps. The

subjective evaluation results, including the mean and 95% confidence intervals, are

depicted in Figure 3.3. The test provides a measure of subjective improvement and

clearly indicates the substantially improved reconstruction quality achieved by the

proposed architecture relative to both CFSVD and CMPEG.
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3.4 Concluding Remarks

In this chapter we proposed a new encoding architecture for the compression

of HOA data, where transform matrices are estimated backward-adaptively. This

framework minimizes the side information cost, and thus allows a more frequent

usage of optimal SVD that is adapted to the frequency group, instead of settling for

a compromise transform for the entire frame. Considerable performance gains were

demonstrated by both objective and subjective evaluations.
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Chapter 4

Spatial Audio Coding Without

Recourse to Background Signal

Compression

4.1 Introduction

Several stumbling blocks stand in the way of optimal spatial audio coding. Psy-

choacoustic models and distortion measures that can accurately account for human

perception of 3D audio, and an effective optimization framework to find the encod-

ing parameters that minimize such a distortion metric, are both elusive and subjects

of ongoing research. Moreover, existing approaches only encode a few predominant

components, mainly due to the prohibitive cost in side information. Consequently, a

significant portion of the main HOA data energy and directional information leaks

back to the ambient data, and MPEG-H 3D reverts to encoding the first order back-

ground data to recapture some of this signal.

The difficulty of optimizing the encoding parameters is further exacerbated by the
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fact that the predominant sound components are encoded in the SVD domain, while

the ambient data are encoded in the ambisonics domain, and it is not obvious how to

properly account for masking effects and the contribution of quantization noise in each

coded component to the final distortion. As a result, existing techniques default to the

straightforward, though quite sub-optimal, route of encoding the predominant and

ambient components independently. The main shortcomings of such approaches are

that they completely neglect inter channel masking effects and fall short of realizing

the full potential of SVD to decompose the HOA data into sound components thus

eliminating spatial redundancies.

As a first “coarse” approach to achieve a proof of concept and demonstrate the

potential benefits of circumventing the above shortcomings, this chapter proposes a

novel encoding architecture where only predominant components are encoded. The

premise is that the capability of SVD to extract and decorrelate distinct spatial audio

objects, should be fully exploited and, moreover, the setting allows for better handling

of perceptual masking effects. To show the potential gains from accounting for inter-

channel masking effects, a first crude approach is proposed where the energy in a given

frequency band, averaged across predominant components, is used to calculate the

common quantization noise to masking threshold ratio for all encoded channels. The

proposed framework, where all compression is performed in the SVD domain, offers

increased adaptivity compared to existing techniques, as it encodes more predominant

components. To reduce the prohibitive burden of side information, we propose a new

paradigm that extend the set of predominant basis vectors with an approximate

complementary set, at no side information cost.
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4.2 Proposed Encoding Architecture

Compression often involves an inherent tradeoff between the benefits of adaptivity

and its cost in side information. MPEG-H 3D’s conversion of ambisonics data to

the SVD domain opens the door to effective adaptation to spatial configurations.

But, in practice, such adaptivity is severely restricted to very few predominant SVD

components (typically 4), due to the prohibitive cost in side information to update

the SVD basis vectors. In order to compensate for this limitation, MPEG-H 3D

employs an ad hoc “fix”, which consists of mapping the residual of the foreground

procedure back to the HOA domain for background re-encoding to capture some

of the loss. We propose to instead overhaul the framework such that it maximizes

adaptivity by performing all compression in the SVD domain, but at no additional

cost in side information. The subterfuge is to add basis vectors that span the null

space of the predominant SVD components specified to the decoder. These additional

basis vectors can be computed by encoder and decoder without side information.

Specifically, consider the set of r orthogonal vectors in the truncated version of the

transform matrix for frame f and frequency band i, denoted by Vfi,SV D. The goal is to

find other vectors orthogonal to this set, i.e. g ∈ RM such that gTVfi,SV D = 0. In other

words, we seek vectors spanning the null space of Vfi,SV D. A trivial example in 3D is

illustrated in Figure 4.1 where a principal vector (blue) is sent to decoder, which allows

two additional vectors spanning the null space to be computed. The original data is

projected along these vectors and the p vectors corresponding to highest energy signal

components are selected to extend the set of predominant vectors obtained by SVD

and are placed in a matrix denoted by Vfi,Null. The only additional side information

is an index specifying which p of the basis vectors were selected. Thus the effective

transform matrix is obtained by concatenating Vfi,SV D and Vfi,Null as Vfi = [Vfi,SV DVfi,Null].
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Predominant components now can be obtained using Vfi similar to Chapter 2.

Figure 4.1: A simple 3D example: the blue vector is sent to decoder, and 2 com-
plementary vectors spanning the null space are computed.

Without a good distortion measure that explicitly accounts for perceptual arti-

facts caused by 3D audio coding, current approaches encode all predominant and

ambient sound components independently, thus neglecting inter-channel dependen-

cies and masking effects. Leveraging the above framework where all compression is

performed in the SVD domain, we propose a first “crude” framework to provide ini-

tial but strong evidence for the potential gains due to accounting for inter-channel

masking effects. Specifically, we jointly calculate masking thresholds for all channels.

Let us consider the simple psychoacoustic model with a fixed signal-to-mask ratio,

similar to the MPEG reference software. If we denote the energy of the ith critical

band by ei , then then masking threshold for that critical band can be obtained as,

wi =





ciei ei > thr

0 otherwise,

(4.1)
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Figure 4.2: Overview of the proposed encoder

Where ci is a pre-defined constant and thr is a global threshold value. Unlike current

approaches, we propose to use a common masking threshold for all encoded chan-

nels, calculated from the average energy of all components, in a given band. Note

that while we employ a simple psychoacoustic model with a fixed signal-to-mask ra-

tio, the underlying approach based on the average energy can be extended to more

sophisticated models in a straightforward manner. Next, quantization and entropy

coding is performed for each predominant component using the common masking

threshhold. Finally, there is no background signal compression, and the residual of

the predominant components is converted back to the ambisonics domain, but only

for the purpose of perceptual noise substitution as described in Chapter 2. Figure 4.2

depicts an overview of the proposed encoder.
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4.3 Experimental Results

We conducted objective and subjective tests to validate the effectiveness of the

proposed approach. The following codecs are compared in our experiments:

• CMPEG: Our implementation of the MPEG-H codec as described in Chapter

2.

• FSVD: Our frequency domain SVD framework described in Chapter 2.

• PROP: The approach proposed here and described in 4.2.

In CMPEG and FSVD the number of foreground and background components

were set to 4 each, while PROP uses 4 predominant components from SVD and 4

additional components obtained by the proposed null-space technique. Thus in all

competing coders a total of 8 components were encoded using the core audio codec.

Two coding modes are available per frame in FSVD and PROP, one with a single band

and the other with 4 frequency bands, where mode switching is performed to minimize

rate. The test database consisted of eight third-order (16 ambisonics channels) HOA

files provided by Google for UCSB research, with diverse type of audio including

speech, music, singing with stationary and moving sound sources. The coders were

run to minimize the maximum quantization noise to masking ratio (MNMR) criterion

in all frequency bands for all encoded sound components. The coders can adjust the

value of MNMR to match a given bit-rate. For both objective and subjective listening

tests, HOA data were converted to stereo signals using a binaural renderer.

4.3.1 Objective Results

For preliminary evaluation, we used the average quantization noise-to-mask ratio

(ANMR) of final binaural reconstructions, averaged over all frames, as the distortion

35



Spatial Audio Coding Without Recourse to Background Signal Compression Chapter 4

150 200 250 300 350 400

Bitrate(Kbps)

-2

-1

0

1

2

3

4

5

6
A

N
M

R
(d

B
)

CMPEG

FSVD

PROP

Figure 4.3: Average distortion versus bit-rate of the competing coders, evaluated
and averaged over the dataset

metric to compare the competing codecs. For a meaningful comparison in this setting,

perceptual noise substitution was disabled in FSVD and PROP. The performance of

the three coders is compared in Figure 4.3, where average distortion is plotted versus

bit-rate. Distortion at a given bit-rate has been averaged over the test files, and the

bit-rate range was selected to cover a wide range of reconstruction quality. It is clear

that the proposed approach provides consistent coding gains, up to 4.3dB and 3.7dB

over CMPEG, and FSVD, respectively.
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Figure 4.4: MUSHRA listening test results

4.3.2 Subjective Results

A MUSHRA [27] listening test was conducted to evaluate the perceptual gains

of the proposed codec over competing methods. Ten seconds of each of the eight

audio sequences were converted to stereo audio files using the binaular renderer. The

following 5 versions of each of the audio items were presented in a random order

to 9 listeners: the hidden reference (ref), a 3.5 kHz low passed anchor (anc), and

files encoded with CMPEG, FSVD and PROP. The subjects were asked to rate each

file on a scale of 0 (bad) to 100 (excellent) based on audio quality. The bit-rates

were matched at about 200 Kbps. The averaged scores over all audio items and the

95% confidence intervals are depicted in Figure 4.4, where the proposed scheme is

demonstrated to outperform its competitors.

4.4 Concluding Remarks

A new encoding framework for compression of HOA data is presented, where a

null-space basis vector extension technique enables all compression to be performed in

the SVD domain, and a jointly computed common masking threshold accounts for ef-
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fects of spatial masking across components. Significant gains over existing approaches

demonstrate the effectiveness of the proposed framework.
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Chapter 5

Asymptotic Closed-Loop Design of

Error Resilient Predictive

Compression Systems

5.1 Introduction

Linear prediction is widely used in speech coding, speech synthesis, speech recogni-

tion, audio coding, and video coding. In compression systems, the prediction module

plays an important role in exploiting temporal and spatial redundancies. However,

when such a compressed data is transmitted over unreliable networks, errors intro-

duced due to the inevitable packet losses, propagate through the prediction loop,

causing substantial, and sometimes catastrophic, deterioration of the received signal.

Despite this, conventional compression system design completely ignores the effect of

channel loss, and chooses the prediction parameters to minimize the mean squared

prediction error, and optimizes the quantizer to minimize the reconstruction error at

the encoder. This problem can be alleviated by optimizing the system for the overall
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end-to-end distortion (EED) observed at the decoder, which accounts for the effect

of packet loss. An optimal recursive technique to estimate EED at the encoder was

proposed in [29], and utilizing this distortion to optimally select the parameters for

motion compensated prediction in video coding was proposed in [30]. However, de-

signing optimal predictors and quantizers, while accounting for EED is a challenging

task, as we need to work with a stable training set that accurately represents the true

signal statistics. The open-loop (OL) and closed-loop (CL) approaches were proposed

in [31] for predictive vector quantization and have been widely used since then. The

OL approach uses the original data as the prediction reference during design, but

since the decoder does not have access to the original data, the parameters designed

are not suitable for the statistics seen at the decoder. The CL approach attempts

to alleviates the problem of this mismatch by designing the parameters using recon-

structed data obtained in a closed-loop system as the prediction reference. However,

using these parameters in a closed-loop system generates new prediction and recon-

struction, which implies they differ from the data the parameters were designed for.

This mismatch in statistics between design and operation grows over time as the

data is fed through the prediction loop in the coder, leading to instability in both

estimation of prediction parameters, and design of quantizers, especially at lower bit

rates. Note that this error propagation encountered during the design phase due to

statistics mismatch, differs from the error propagation due to packet losses.

In this chapter we propose to address the challenging problem of tackling these two

types of error propagation, by designing the system iteratively, wherein an estimated

EED is minimized at each iteration to account for packet losses, and the prediction

reference from the previous iteration is employed in an open-loop way to ensure statis-

tics used for design and operation are matched. Once the parameters being designed

converge, the prediction reference in the current iteration will match the reference
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Figure 5.1: A predictive compression system

from the previous iteration, thus mimicking closed-loop operation. Hence, we call

this the asymptotic closed-loop (ACL) approach, which is similar to the approach

in [32, 33], wherein system design without accounting for packet losses is proposed.

We specifically describe a framework for rate versus EED optimization of a compres-

sion system employing a first order linear predictor. We also propose a new encoder

architecture, in which the prediction at encoder is based on the expected decoder re-

constructions. Experimental results substantiate the utility of the proposed approach

with significant performance improvements over existing design techniques.

5.2 Problem Setup

Figure 5.1 illustrates a predictive compression system, wherein input signal sam-

ples, xn, 0 ≤ n < N , are coded by the encoder to generate a bitstream, which is

transmitted through a channel to the decoder, where it is decoded to generate the

reconstructed samples. The encoder uses its previous reconstructed samples, x̂e,n to

generate predicted samples, x̃e,n and the prediction error, en = xn − x̃e,n. This is

quantized to generate ên, and sent over the channel. When the decoder receives ên, it
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adds it to its predicted sample, x̃d,n to generate its reconstructed samples, x̂d,n. Note

that the reconstructed samples at the encoder, x̂e,n, and the decoder, x̂d,n, will differ

when the channel is unreliable and packets carrying ên are lost. This uncertainty re-

sults in x̂d,n being a random variable to the encoder. The problem at hand is to design

optimal quantizers and predictors (PE, QE and PD) to minimize the expected EED

at the decoder to account for packet losses. For the mean squared error distortion

metric, expected EED at the decoder is,

E{D} =
N−1∑

n=0

E{(xn − x̂d,n)2}

=
N−1∑

n=0

x2n − 2xnE{x̂d,n}+ E{(x̂d,n)2}. (5.1)

Clearly, to estimate this distortion, first and second moments of the decoder recon-

structions should be accurately estimated at the encoder.

5.3 Background

5.3.1 End to End distortion estimation and prediction

A recursive technique to optimally estimate the expected EED at the encoder in

the presence of packet losses via the first and second moments of the decoder recon-

structions was proposed in [29] for video coders. The recursive algorithm optimally es-

timates the decoder reconstructions’ first moment, E{x̂jd,n}, and the second moment,

E{(x̂jd,n)
2}, for every pixel j in frame n. These moments are then used to estimate

EED at the encoder using (5.1) to optimally switch between inter-frame prediction

and intra-frame prediction, to control the error propagation through frames. In [30],

a new prediction scheme is employed in conjunction with optimal EED estimation.

43



Asymptotic Closed-Loop Design of Error Resilient Predictive Compression Systems Chapter 5

Conventional motion compensated prediction employs the encoder reconstructions for

prediction, i.e., x̃je,n = x̂j+ve,n−1, where v is the optimal motion vector that minimizes

the prediction error. Instead in [30], the prediction is based on expected decoder

reconstructions, i.e., x̃je,n = E{x̂j+vd,n−1}, where v is the optimal motion vector that

minimizes the EED of (5.1). This setup plays an important role in limiting error

propagation during decoder operation by appropriately selecting motion vectors to

predict from reference blocks that are less likely to be corrupted by error propagation.

5.3.2 Closed-Loop versus Asymptotic Closed-Loop Design

In closed-loop iterative design [34], the coder operates in closed-loop at each iter-

ation to generate prediction errors and reconstructed samples that are used to design

the updated quantizer and the updated predictor, respectively. At iteration i − 1,

given a quantizer, Q(i−1), and a predictor, P (i−1), a training set of prediction errors,

T (i) : {e(i)n }Nn=1, for iteration i is generated as,

e(i)n = xn − P (i−1)(x̂(i)n−1), (5.2)

where,

x̂(i)n = P (i−1)(x̂(i)n−1) +Q(i−1)(xn − P (i−1)(x̂(i)n−1)). (5.3)

These two equations are calculated sequentially for all values n. Then given T (i), we

design a new quantizer, Q(i). Using Q(i), a new set of reconstructed samples, x̂′
(i)

n , is

generated as per (5.3) and based on this, we design a new predictor, P (i). These steps

are repeated until convergence. Figure 5.2 illustrates this closed-loop iterative design.

The major issue with this approach is that when the updated parameters are employed

in closed-loop at an iteration, new prediction errors are generated, which differ from
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Figure 5.2: Closed-loop training approach

the errors the quantizer was designed for, and this implies different reconstructions are

generated, which differ from the reference reconstructions the predictor was designed

for. This mismatch in statistics between design and operation builds up over time as

the data is fed through the prediction loop in the coder, leading to instability in the

iterative design of both the predictor and the quantizer, especially at lower bit rates.

The ACL design technique proposed in [32, 33], tackles this statistics mismatch

issue by designing the predictor and the quantizer in an open-loop fashion, while ulti-

mately optimizing the system for closed-loop operation. Specifically, the prediction is

based on reconstructions of previous iteration, i.e.,the prediction errors are generated

as,

e(i)n = xn − P (i−1)(x̂(i−1)n−1 ). (5.4)

Given the new prediction errors, we design a new quantizer, Q(i). This Q(i) is now
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Figure 5.3: Asymptotic closed-loop training approach

employed to generate the reconstructed samples of next iteration as,

x̂(i)n = P (i−1)(x̂(i−1)n−1 ) +Q(i)(xn − P (i−1)(x̂(i−1)n−1 )), (5.5)

again using the reconstructions of previous iteration for prediction. Given these new

reconstructions, we design a new predictor, P (i). Note that the equations (5.4) and

(5.5) are executed independently for each sample of the sequence in an open-loop

way. The main steps of this technique are depicted in Figure 5.3. The open-loop

format ensures the predictor and quantizer employ exactly the same reconstructed

data and prediction error used for their design, eliminating the statistical mismatch

issue seen in closed-loop design. On convergence, the predictor and the quantizer

do not change, which implies, x̂
(i)
n−1 = x̂

(i−1)
n−1 , i.e., predicting from previous iteration

reconstructions is the same as predicting from the current iteration reconstructions,

which is effectively closed-loop operation.
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5.4 Proposed Approach

We propose a framework to design a first order predictor and a quantizer to

minimize the EED in (5.1). We first develop the EED estimation algorithm, then

we propose an encoder architecture in which predictions are based on the expected

reconstructions at the decoder and finally we propose the ACL design approach that

accounts for packet loss to improve coding efficiency and design stability.

5.4.1 Expected Decoder Distortion and Reconstructions

We assume for simplicity of presentation that each packet contains one sample (or

alternatively that interleaving is used). The packet (or sample) loss rate is denoted

as p. The prediction model employed at the decoder is a simple first order linear

predictor,

x̃d,n = αx̂d,n−1, (5.6)

where α is the prediction coefficient that needs to be estimated. The quantized

prediction error, ên, transmitted over the channel, may or may not be received by the

decoder. If the current packet is received (with probability 1 − p), the decoder uses

it to generate the reconstructed sample as,

x̂d,n = x̃d,n + ên. (5.7)

When the packet is lost, a simple concealment of setting residue to zero is employed,

which gives the reconstructed sample as,

x̂d,n = x̃d,n. (5.8)
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Thus the first and second moment of the decoder reconstructed samples, required to

estimate EED given in (5.1), are calculated recursively at the encoder as,

E{x̂d,n}=(1−p)E{ên + αx̂d,n−1}+ pE{αx̂d,n−1}

=(1−p)ên + αE{x̂d,n−1} (5.9)

E{(x̂d,n)2}=(1−p)E{(ên + αx̂d,n−1)
2}+ pE{(αx̂d,n−1)2}

=(1−p)(ê2n + 2αênE{x̂d,n−1}) + α2E{(x̂d,n−1)2}

(5.10)

5.4.2 Prediction Based on the Expected Decoder Reconstruc-

tions

Packet losses cause the reconstructions at the encoder and the decoder to differ.

Thus to close the gap between prediction at the encoder and the decoder, we employ

the expected decoder reconstructions for prediction at the encoder, i.e.,

x̃e,n = αE{x̂d,n−1}. (5.11)

The prediction error, en = xn − x̃e,n, is then quantized to generate, ên. The overall

proposed architecture is shown in Figure 5.4.

We design the prediction coefficient α to minimize the EED, by solving for α

in the equation given by setting the partial derivative of EED with respect to α to

0. The EED in (5.1) is dependent on α through equations (7.11) and (5.10). The
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Figure 5.4: Architecture of the proposed coder

equation to be solved is,

∂E{D}
∂α

=
N−1∑

n=0

−2xnE{x̂d,n−1}+

N−1∑

n=0

2(1− p)ênE{x̂d,n−1}+ 2αE{(x̂d,n−1)2}

= 0, (5.12)

which gives us the solution as,

α =

N−1∑
n=0

E{x̂d,n−1}(xn − (1− p)ên)

N−1∑
n=0

E{(x̂d,n−1)2}
. (5.13)

Note that although ên is dependent on α, we assume that the modifications in α across

our design iterations are small enough to not change the quantization intervals.

5.4.3 Asymptotic Closed-Loop Design

We employ the ACL approach for a stable system design by eliminating the sta-

tistical mismatch issue of closed-loop design. This is achieved by operating in an
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open-loop way, wherein we employ previous iteration’s first and second moments of

the decoder reconstructions, to estimate current iteration’s moments and prediction.

Given a set of decoder reconstructions’ first moments, E{x̂d}(i−1), and second mo-

ments, E{(x̂d)2}
(i−1)

, of iteration i − 1, the predictor and quantizer are iteratively

designed in an inner loop. In a subiteration s of the inner loop, given a set of quan-

tized prediction errors, ê
(i,s−1)
n , the optimal prediction coefficient is estimated as,

α(i,s) =

N−1∑
n=0

E{x̂d,n−1}(i−1)(xn − (1− p)ê(i,s−1)n )

N−1∑
n=0

E{(x̂d,n−1)2}
(i−1)

. (5.14)

The new prediction errors are now generated in an open-loop fashion as,

e(i,s)n = xn − α(i,s)E{x̂d,n−1}(i−1). (5.15)

An optimal quantizer, Q(i,s), is now designed for this set of new prediction errors,

which is used to generate a new set of quantized prediction errors, ê
(i,s)
n = Q(i,s)(e

(i,s)
n ).

These subiterations are repeated until convergence to obtain current subiterations’

final quantizer, Q(i), final prediction coefficient, α(i), and final set of quantized pre-

diction errors, e
(i)
n . The first and second moments of the decoder reconstructions are

now updated in the outer loop in an open-loop way as,

E{x̂d,n}(i) = (1− p)ê(i)n + α(i)E{x̂d,n−1}(i−1) (5.16)

E{(x̂d,n)2}(i) = (1− p)((ê(i)n )2 + 2α(i)ê(i)n E{x̂d,n−1}(i−1)) +

(α(i))2E{(x̂d,n−1)2}
(i−1)

. (5.17)
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These moments are now used in the next iterations inner loop to update the predictor

and quantizer. Iterations are repeated until convergence. Note that although the

entire design is in open-loop, on convergence it emulates closed-loop operation. This

is achieved as on convergence the quantizer and predictor do not change, i.e., Q(i) =

Q(i−1) and α(i) = α(i−1), which implies E{x̂d,n}(i) = E{x̂d,n}(i−1), thus employing

previous iteration’s moments is the same as estimating current iteration’s moments

recursively and employing them for prediction in a closed-loop way.

5.5 Experimental Results

To validate our proposed method, we evaluated it for a compression system with

first order linear prediction and an entropy constrained scalar quantizer. The Gen-

eralized Lloyd Algorithm (GLA) was used to design the entropy constrained scalar

quantizer. We used the 6 speech files available in the EBU SQAM database [35] as

our dataset, as linear prediction is commonly employed in speech coding. However,

note that the proposed approach is applicable to predictive compression of any signal

with temporal correlations. The first half of the speech files were used as training set

(resulting in more 2 million samples) and the second half as test data. The prediction

coefficient was initialized to zero. We evaluated the following three different design

techniques:

1. The closed-loop design procedure discussed in Section 5.3.2, which completely

ignores the packet losses (referred as CL).

2. The ACL algorithm discussed in [33], which also ignores the packet losses and

can be obtained by setting p = 0 in the update formulas of Section 5.4.3 (referred

as ACL).
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Figure 5.5: Average decoder distortion (in dB) of CL, ACL and the proposed
ACL-ER design approaches, for a first order predictive coder with entropy con-
strained scalar quantizer, at various bit rates for various packet loss rates

3. Our proposed method (referred as ACL-ER).

The system performance is evaluated by plotting the decoder reconstruction er-

ror’s signal to noise ratio (RSNR) averaged over ten different loss patterns versus

average bitrate, as shown in Figure 5.5 for different packet loss rates. Clearly, the

proposed approach consistently outperforms both ACL and CL under all testing sce-

narios, with gains of up to 7 dB over CL and gains of up to 2.5 dB over ACL. The

proposed approach provides higher performance improvements as the packet loss rate

increases, since accounting for error propagation due to packet losses becomes crit-

ical in these cases. Compared to ACL, our method provides larger gains at higher

bitrates, as ACL relies more on the high quality previous reconstructions for predic-

tion, unaware of the fact that these reconstructions at the decoder will be corrupted

as a result of error propagation due to packet losses. These results substantiate the

significant utility of the proposed approach.

5.6 Concluding Remarks

In this chapter we proposed an effective and robust design technique for a pre-

dictive compression system. We account for the presence of an unreliable channel by
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designing the system to optimize the EED at the decoder. We then eliminate the sta-

tistical mismatch issue suffered by conventional closed-loop approaches, by employing

a stable iterative design approach that operates in an open-loop way and on conver-

gence mimics closed-loop operation. By carefully designing the system parameters,

error propagation at the decoder is effectively contained. Significant performance

improvements seen in experimental evaluation results demonstrate the utility of the

proposed approach. Future research directions include, extending the proposed de-

sign technique to higher order predictors, and employing a powerful optimization

technique for design of the entropy constrained scalar quantizer to account for packet

losses.
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Chapter 6

Recursive End-To-End Distortion

Estimation for Error-Resilient

Adaptive Predictive Compression

Systems

6.1 Introduction

As discussed in previous chapter, robustness to packet loss is a crucial requirement,

especially in the case of predictive coding, where the prediction loop propagates errors

and causes substantial, and sometimes catastrophic, deterioration of the received sig-

nal. The problem of packet loss is mitigated by adding redundancy in the bitstream to

recover from errors, e.g., by resetting prediction [36] at appropriate intervals to stop

propagation of error, or employing error correcting codes [37] to protect critical infor-

mation. In such scenarios, the overall performance of coders depends on optimizing

the trade-off between compression and redundancy for error resilience. A formal illus-
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E DChannel
X Z Ẑ X̂

Figure 6.1: A general compression and communication system

tration of the problem setup is shown in Figure 6.1. Encoder E compresses source X

to Z, while accounting for channel or network unreliability. The Decoder D receives

Ẑ and decodes the reconstructed source X̂ . The overall problem is formally posed as

optimizing encoder parameters and decisions to minimize the end-to-end distortion

(EED), which accounts for quantization, packet loss, error propagation and conceal-

ment at the decoder, given the prescribed bit rate. Clearly, effective EED estimation

at the encoder is critical to solving this problem.

In [29] the recursive optimal per-pixel estimate (ROPE) of EED for video coders

was proposed, wherein EED is estimated at the encoder via tracking the first and

second moments of the reconstructed signal at the decoder, which are recursively

updated. ROPE was demonstrably optimal for the video coding setting it addressed,

and its superior accuracy yielded significant performance gains over earlier heuristic

methods. Nevertheless, ROPE was derived for a rather simple setting, which limits its

applicability to more general settings. Specifically, ROPE was derived for a predictor

with single tap for every pixel in a video frame (pointing to a motion-compensated

position in the previous frame), but many coders employ a combination of short term

and long term prediction filters, which lead to complex dependencies across consecu-

tive samples. Moreover, ROPE assumes a fixed temporal prediction coefficient, which

is obviously not affected by packet loss, while many compression techniques use time
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varying prediction parameters adapted to the local statistics. When a packet gen-

erated by an adaptive predictive coder is lost, information necessary to determine

the prediction parameters is lost as well. Thus recursively estimating the EED while

accounting for this uncertainty entails considerable challenges. Some techniques were

previously proposed in [38, 39] to extend ROPE for handling cross correlation terms

that arise due to basic interpolation filters, by employing certain approximations rel-

evant to the context of video coding, but they do not account for adaptive prediction

parameters. Note that a somewhat related problem setup exists in networked control

systems (NCS) [40, 41], wherein observations or innovations from sensors are trans-

mitted over unreliable networks and the receiver performs state estimation to make

controller decisions. These systems only account for channel unreliability for state es-

timation at the receiver, which is equivalent to packet loss concealment in networked

compression systems. Instead we propose tackling the problem of accounting for the

network reliability at the encoder.

In this chapter we substantially generalize the ROPE framework to estimate EED

at the encoder for a compression system which employs a higher order predictor with

adaptive prediction parameters. We specifically derive a recursive procedure to es-

timate EED by separately tracking statistics of both prediction parameters and the

reconstructed signal at the decoder, which are then effectively combined to estimate

the overall EED. The accuracy and efficacy of the estimation is shown via simulation

results which substantiate that incorporating such information in making RD opti-

mal decisions of prediction resets at the encoder can achieve significant performance

gains.
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6.2 Proposed End-to-end Distortion Estimation

In this section we describe EED estimation for a compression system employing a

higher order predictor with adaptive prediction parameters by simultaneously track-

ing statistics for relevant decoder quantities, namely, prediction parameters and the

reconstructed signal. First we explain the general estimation algorithm, then we de-

scribe extension for a compression system using a cascade of short term and long term

predictor, and finally we describe how EED is employed to optimize RD decisions at

the encoder.

6.2.1 General EED Estimation Framework

Recall from previous chapter that in order to estimate distortion at the decoder,

first and second moments of the decoder reconstructions should be accurately esti-

mated at the encoder. Here we illustrate how the decoder reconstructions’ moments

can be estimated for an adaptive predictive system employing higher order predictors.

The common approach for adapting to local statistics is to divide the input signal

into frames and employ different prediction parameters for each frame. Let xf [n] and

x̂fe [n] denote the original and encoder reconstruction value of sample n in frame f ,

respectively. The predicted samples of frame f using a higher order predictor are

given by,

x̃fe [n] =
P∑

i=1

γfe [i]x̂fe [n− i], (6.1)

where P is the prediction order and γfe [i] is the ith prediction coefficient used for

samples in frame f . Given the predicted samples, the quantized prediction error,

êf [n], is generated as in 5.2, and is transmitted along with the prediction parameters,

γγγfe = [γfe [1], . . . , γfe [P ]], in a single packet over the channel. Due to lossy nature of

57



Recursive End-To-End Distortion Estimation for Error-Resilient Adaptive Predictive
Compression Systems Chapter 6

the channel the packet may either be received by the decoder, or lost. For simplicity

of presentation (and without loss of generality) let us model the channel loss with

a Bernoulli model, where each packet is lost independently of other packets, with

probability p, called packet lost rate (PLR). Upon receiving the packet, the decoder

adds the quantized error, êf [n], to its predicted sample, x̃fd [n], and generates its

reconstructed sample, x̂fd [n]. The predicted samples at the decoder are given by,

x̃fd [n] =
P∑

i=1

γfd [i]x̂fd [n− i], (6.2)

where γfd [i] is the ith prediction coefficient employed in frame f at the decoder. If a

packet is lost, concealment is done by assuming the quantized prediction error was

zero and copying the prediction parameters from the previous reconstructed frame,

γγγfd = [γf−1d [1], . . . , γf−1d [P ]]. Recall that because of packet loss, the predicted sam-

ples, reconstructions, and prediction parameters employed (x̃fd [n], x̂fd [n], and γγγfd , re-

spectively) at the decoder differ from corresponding quantities at the encoder, and

must be viewed as random variables by the encoder.

Let fR denote the event that the packet containing information of frame f is

received and let fL denote the event that it is lost. Then the first moment of the

reconstructed sample at the decoder can be expressed as,

E{x̂fd [n]} = (1− p)E{x̂fd [n]|fR}+ pE{x̂fd [n]|fL}, (6.3)
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where,

E{x̂fd [n]|fR} = E{(êf [n] +
P∑

i=1

γfe [i]x̂fd [n− i])|fR}

= êf [n] +
P∑

i=1

γfe [i]E{x̂fd [n− i]|fR} (6.4)

E{x̂fd [n]|fL} = E{
P∑

i=1

γf−1d [i]x̂fd [n− i])|fL}. (6.5)

Note that in (7.13), both γf−1d [i] and x̂fd [n − i] are random variables. If we further

assume them to be uncorrelated, we can approximate the first moment for event fL

as,

E{x̂fd [n]|fL} ≈
P∑

i=1

E{γf−1d [i]}E{x̂fd [n− i]|fL}. (6.6)

Note that while one may object from a source coding perspective that a source and

its prediction parameters would normally be correlated, but it is important to keep

in mind that the only uncertainty of the encoder (and hence the only source of ran-

domness) about the reconstructed samples and the prediction parameters is due to

unreliability of the channel. The validity of this assumption is verified in the experi-

mental results. Based on the concealment strategy adopted, the first moment for the

prediction parameter vector employed at the decoder is also estimated recursively as,

E{γγγfd} = (1− p)γγγfe + pE{γγγf−1d }. (6.7)

Substituting (7.12) and (7.15) in (7.11) we obtain a recursive estimate for the first
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moment of reconstructed samples at the decoder. Similarly, for the second moment,

E{(x̂fd [n])
2} = (1− p)E{(x̂fd [n])

2|fR}+ pE{(x̂fd [n])
2|fL}, (6.8)

where,

E{(x̂fd [n])
2|fR} = E{(x̂fd [n](êf [n] +

P∑

i=1

γfe [i]x̂fd [n− i]))|fR}

= êf [n]E{x̂fd [n]|fR}+
P∑

i=1

γfe [i]E{x̂fd [n]x̂fd [n− i]|fR} (6.9)

E{(x̂fd [n])
2|fL} = E{(x̂fd [n](

P∑

i=1

γf−1d [i]x̂fd [n− i]))|fL}

≈
P∑

i=1

E{γf−1d [i]}E{x̂fd [n]x̂fd [n− i]|fL} (6.10)

The correlation terms in (7.17) and (7.18) can be calculated from the past correlation

terms as,

E{x̂fd [n]x̂fd [n− i]|fR} = E{(x̂fd [n− i](êf [n] +
P∑

j=1

γfe [j]x̂fd [n− j]))|fR}

= êf [n]E{x̂fd [n−i]|fR}+
P∑

j=1

γfe [j]E{x̂fd [n−i]x̂fd [n−j]|fR}

(6.11)
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Figure 6.2: Decoder section of a speech coder with cascade of predictors

E{x̂fd [n]x̂fd [n−i]|fL}=E{(x̂fd [n−i](
P∑

j=1

γf−1d [j]x̂fd [n−j]))|fL}

≈
P∑

j=1

E{γf−1d [j]}E{x̂fd [n−i]x̂fd [n−j]|fL}

(6.12)

Overall, equations (7.17) to (7.22) are employed to recursively estimate the second

moment of reconstructed samples at the decoder. Given the first and second moments,

EED is estimated using (5.1).

6.2.2 EED Estimation for Cascaded Predictors

In many real-world predictive coders, higher order predictors are implemented as

a combination of multiple predictors. For example, speech coders [9] employ a cascade

of a short term prediction filter (known as the linear predictive coding (LPC) filter)

and a long term prediction (LTP) filter. Figure 6.2 illustrates the decoder section of

an example speech coder. The decoder processes the received quantized prediction

error, êf [n], through the LTP synthesis filter to reconstruct the excitation signal,
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r̂fd [n], as,

r̂fd [n] =

P1−1∑

i=0

βfd [i]r̂fd [n− T fd − i] + êf [n], (6.13)

where βfd [i] is the ith LTP filter coefficient, T fd is the lag parameter, and P1 is the

number of LTP filter taps. The LPC synthesis filter uses the reconstructed excitation

signal to generate the reconstructed samples as,

x̂fd [n] =

P2∑

j=1

αfd [j]x̂fd [n− j] + r̂fd [n], (6.14)

where αfd [i] is the jth LPC prediction coefficient and P2 is the LPC filter order. We can

easily combine (7.7) and (7.8) to form a single prediction filter, x̂fd [n] = êf [n] + x̃fd [n],

where,

x̃fd [n] =

P2∑

j=1

αfd [j]x̂fd [n− j] +

P1−1∑

i=0

βfd [i](x̂fd [n− T fd − i]−

P2∑

j=1

αfd [j]x̂fd [n− T fd − i− j]). (6.15)

Clearly, (7.9) is similar to (6.2), wherein P and γfd [i] of (6.2) can be written in terms

of P1, P2, β
f
d [i], αfd [j], and T fd of (7.9). Thus, as would be expected, the estimation

framework proposed in Section 6.2.1 is applicable to coders with cascaded predictors.

6.2.3 Employing Estimated EED for Encoder Decisions

A common approach to combat error propagation through the prediction loop is

to introduce prediction resets [42] at the encoder to halt dependency on past frames.

While these resets stop the error propagation due to packet losses, they come at the
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cost of increased rate, so optimizing the number and location of resets plays a crucial

role in achieving the right balance between compression efficiency and robustness to

packet losses. Conventional methods use random resets at a rate equal to the PLR to

stop error propagation. Instead, we leverage the proposed EED estimate as computed

by the encoder to directly minimize the EED for the prescribed bit rate all within

the encoder RD optimization framework. This results in optimal selection of location

and number of resets. Specifically to encode frame f , we choose the mode (reset or

no reset) to minimize the rate-distortion cost function,

Jf = Df + λRf , (6.16)

where Rf is the rate needed, Df is the estimated EED, and Lagrange multiplier λ

controls the RD operating point.

6.3 Results

To validate the accuracy and efficacy of our proposed method we employed it in a

coder with cascade of predictors similar to 6.2.2. We used the 6 speech files available

in the EBU SQAM database [35] as our dataset. We set P1 = 5 and P2 = 12, while

operating with frames of 20ms sampled at 16 kHz. We estimated the LPC and LTP

parameters in an open-loop for each frame and used them to generate the open-loop

prediction error. We then designed a fixed rate 4-bits scalar quantizer for the entire

prediction error sequence. Finally, we employed the prediction parameters and the

designed quantizer in a closed-loop system to generate the quantized prediction error

that is sent to the decoder along with all the parameters every frame at a fixed rate.

In Figure 6.3 we plot the actual SNR experienced at the decoder (averaged over
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Figure 6.3: Comparison of average SNR experienced at the decoder (red) and
estimated SNR (blue) for a the speech file English Male with a PLR of 5 %

200 different loss patterns) and the estimated SNR obtained at the encoder by our

proposed framework, for 200 frames of the speech file English Male, operating at 5%

PLR. It is clearly evident that our estimate is fairly accurate in tracking the actual

SNR experienced at the decoder.

We then compared our proposed strategy for deciding resets to that of using

random resets at a rate equal to PLR. Since we employ fixed rate quantizers in our

experimental setup, the cost used to decide resets, as explained in Section 6.2.3,

simplifies to only the EED estimate. We limited the evaluation to 8 seconds of each

speech file for time efficient evaluation. In Table 6.1 and Table 6.2 we compare SNR

experienced at the decoder (averaged over 50 loss patterns) for the two competing

prediction reset strategies at 5% and 10% PLR, respectively. For the random reset

strategy, we additionally tried 10 different reset patterns, thus obtaining the final

SNR as an average over 500 simulations. Clearly, the proposed approach consistently

outperforms the random reset scheme under all testing scenarios, with gains of up to

7.8 dB, and an average gain of 2.9 dB and 4.6 dB for 5% and 10% PLR, respectively.
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Sequence
Average SNR in dB

Random Resets
Average SNR in dB
Proposed Approach

English Female 9.72 11.87
English Male 8.99 12.57

French Female 8.78 11.89
French Male 9.7 12.62

German Female 4.64 7.68
German Male 8.81 11.61

Average 8.44 11.37

Table 6.1: Comparison of average SNR experienced at the decoder for random
reset and proposed reset strategies at PLR = 5%

Sequence
Average SNR in dB

Random Resets
Average SNR in dB
Proposed Approach

English Female 5.38 8.52
English Male 5.87 8.38

French Female -1.21 6.72
French Male 5.31 8.48

German Female -5.46 1.79
German Male 5.01 8.89

Average 2.48 7.13

Table 6.2: Comparison of average SNR experienced at the decoder for random
reset and proposed reset strategies at PLR = 10%

6.4 Concluding Remarks

This chapter proposed an effective technique to estimate EED in an adaptive

predictive compression system. Specifically, we proposed to account for the effect

of packet losses on distortion at the decoder by separately tracking statistics of the

employed prediction parameters and the reconstructions at the decoder. We then

demonstrated incorporating the estimate obtained by the proposed approach in an

RD framework to decide the number and location of prediction resets to achieve the

right balance between compression and addition of redundancy to combat packet

losses. Significant performance improvements seen in experimental evaluation results
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demonstrate the utility of the proposed approach.
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Chapter 7

Recursive Estimation of

End-To-End Distortion in Speech

Coders

7.1 Introduction

In the previous chapter, we extended the ROPE framework to a more general

setting, where higher order predictors adapted to local signal statistics are employed

in the coder. Specifically we effectively estimated the EED for a compression sys-

tem which uses a combination of short term and long term prediction filters with

frame-wise varying parameters by simultaneously tracking the decoder statistics of

the reconstructed signal and the prediction parameters.

Implementing this framework in real speech coders, introduces further challenges,

as speech coders often employ prediction and interpolation of short term filter param-

eters in line spectral frequency (LSF) [43] domain, while these parameters are later

used in LPC domain to generate reconstructions. As a result, when packets are lost,
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Figure 7.1: Encoder section of a speech coder with cascade of predictors

prediction of filter parameters causes error propagation in prediction parameters and

subsequently in reconstructed signal. In this chapter, we propose a recursive algo-

rithm to estimate the overall distortion at the decoder, to account for packet losses

and error concealment by separately tracking the statistics of the prediction parame-

ters and reconstructions at the decoder in their respective domains, and fusing them

together for the final EED estimate. The proposed approach is incorporated within

the G723.1 [44] speech coder and EED estimating formulations are derived specifically

for the codec’s concealment and packetization schemes. The accuracy of estimation is

illustrated via simulations, and evaluation results also demonstrate how incorporating

this estimate in making RD decisions at encoder can lead to considerable performance

improvements under unreliable channel conditions.

7.2 Background: Speech Coding

Virtually all modern speech coders [9] exploit linear prediction [15, 45] to remove

temporal correlations naturally present in speech signals. First a short term pre-

diction filter (known as the linear predictive coding (LPC) filter), which models the

human vocal tract, decorrelates speech samples that are close by, and then a long
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term prediction (LTP) filter removes additional redundancies due to periodicity of

voiced parts of speech. In this section we provide an overview of speech coding in

general and whenever necessary we discuss G723.1 coder specifications. Figure 7.1

illustrates an overview of the encoder section of an example speech coder where a

cascade of a short term and long term predictor is used. To adapt to local signal

statistics, the input speech signal is first divided into frames, which are further di-

vided into smaller subframes, and different prediction parameters are estimated for

each subframe. G723.1 coder operates on speech signal sampled at 8 kHz with frames

of 240 samples and four subframes of 60 samples. Let xfs [n] denote the original value

of sample n in frame f and subframe s (where 0 ≤ s < 4 for G723.1). LPC Analysis

on the input signal (often done in an open-loop fashion) creates different sets of LPC

coefficients for each subframe, which are denoted by αααfse = [αfse [1], . . . , αfse [P1]] ,

where P1 is LPC filter order. The quantization of these coefficients is usually done

in the line spectral frequency (LSF) domain, as the quantization of LSF parameters

proved to be less sensitive to quantization noise and interpolation [46]. Any LPC

filter, A(z), can be split into a symmetric part P (z) and an anti-symmetric part Q(z)

such that,

A(z) = 1−
∑P1

i=1
α[i]z−i =

1

2
(P (z) +Q(z)), (7.1)

with

P (z) = A(z) + z−(P1+1)A(z−1), (7.2)

Q(z) = A(z)− z−(P1+1)A(z−1). (7.3)

The roots of the polynomials P (z) and Q(z) are called the LSFs, and all of these

roots lie on the unit circle. P (z) and Q(z) can be reconstructed from a set of LSF
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values, kkk, as

P (z) = (1 + z−1)
∑P1

2
−1

n=0
(1−2cos(πk[2n])z−1 + z−2), (7.4)

Q(z) = (1− z−1)
∑P1

2
−1

n=0
(1−2cos(πk[2n+ 1])z−1 + z−2). (7.5)

The LPC coefficients of current frame are converted to a set of LSF coefficients

(denoted as kkkfse ), and usually differentially coded. In G723.1, the quantized LSFs

from previous frame’s last subframe, is used to predict the LSFs of the current frame’s

last subframe and the LSF prediction error, k̄kk
f

e , generated as,

k̄kk
f

e = (kkkf3e − c1)− c2(k̂kk
(f−1)3
e − c1), (7.6)

is quantized and sent to decoder, where c1 and c2 are constants. The LSF values

for other subframes are determined by linearly interpolating between the known LSF

values of last subframes. These reconstructed LSF parameters, k̂kk
fs

e , are converted to

LPC domain to obtain reconstructed LPC parameters, α̂ααfse . These coefficients are

used to filter the input signal and generate the LPC residual, which is the input to

the LTP analysis filter.

Different sets of LTP coefficients and lags, denoted by βββfse and T fse , respectively,

are estimated for each subframe to minimize the LTP residual signal energy. The

coefficients are quantized and used along with the lags to filter the LPC residual and

generate the LTP residual signal, efs [n]. The LTP residual signal is then quantized

(via a fixed codebook in G723.1) and transmitted to the decoder along with quantized

LSF residuals, LTP lags and coefficients, in a single packet over channel. It is worth

emphasizing here that the EED framework is concerned with estimating the distortion

at the decoder, and hence, is completely independent of encoder parameter selection.
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Figure 7.2: Decoder section of a speech coder with cascade of predictors

7.3 Proposed Approach to Estimate EED

Figure 7.2 shows the decoder section of the speech codec. As the channel is lossy,

each packet may or may not be received by the decoder. Based on the concealment

method employed, decoder generates its own version of the quantized LTP residue,

prediction parameters, and reconstructed samples, which might differ from the corre-

sponding quantities at the encoder, and hence, must be viewed as random variables

by the encoder. Let fR denote the event that the packet containing information of

frame f is received. In this case, previously reconstructed LPC residual is used with

the received quantized LTP residue, êfs [n], in the LTP synthesis filter to generate

newly reconstructed LPC residual,

r̂fsd [n]|fR =
∑KU

i=KL

β̂fse [i]r̂
g(ν)
d [n− T fse − i] + êfs [n], (7.7)

where, β̂fse [i] is the ith LTP filter coefficient, KL and KU are lower and upper limits

of LTP filter (KL = −2 and KU = 2 in G.723.1), T fse is the lag parameter, and g(ν) is

a function that determines subframe index in the previous frame, depending on a set

of parameters, ν = [n, T fse , i]. The LPC synthesis filter uses the reconstructed LPC
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residual to generate the reconstructed samples as,

x̂fsd [n]|fR =
∑P1

j=1
α̂fsd [j]x̂fsd [n− j] + r̂fsd [n]|fR, (7.8)

where α̂fd [j] is the decoder reconstructed jth LPC coefficient and P1 is the LPC filter

order. We can easily combine (7.7) and (7.8) to form a single synthesis filter,

x̂fsd [n]|fR = êfs [n] +
∑P1

j=1
α̂fsd [j]x̂fsd [n− j]+

∑KU

i=KL

β̂fse [i]
(
x̂
g(ν)
d [n− T fse − i]−

∑P1

j=1
α̂
g(ν)
d [j]x̂

g(ν)
d [n− T fse − i− j]

)

= êfs [n] +
∑P

i=1
γfsd [i]x̂

h(ν)
d [n− i], (7.9)

where h(·) provides the index of the previous subframe to be used, P is the required

number of previously reconstructed samples, and γγγfsd can be constructed from β̂ββ
f

e , α̂αα
f
d

and α̂ααd of previous subframes. Note that even if the frame is received, uncertainty in

previously reconstructed LSF parameters carries over to the LSF parameters of the

current frame through prediction, making the overall filter coefficients, γγγfsd , a random

variable to the encoder (in contrast to the formulation in previous chapter). When

a frame is lost, LSF prediction residue is assumed to be zero and LSF parameters of

current frame are extrapolated from previously reconstructed parameters, resulting

in a different set of overall filter coefficients, ζζζfsd . The LTP residual is also assumed

to be zero and the current frame is reconstructed as prediction from previously re-

constructed samples, i.e.,

x̂fsd [n]|fL =
∑P

i=1
ζfsd [i]x̂

h(ν)
d [n− i]. (7.10)
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In G723.1 during concealment, LTP filters are also assumed to be 1-tap with constant

1 coefficient, which is equivalent to using LPC residual that is a pitch repeated version

of past LPC residual.

For simplicity of presentation (and without loss of generality), let us model the

channel loss with a Bernoulli model, where each packet is lost independent of other

packets, with probability p (which is also the packet lost rate (PLR)). Then the first

moment of the reconstructed sample at the decoder can be expressed as,

E{x̂fsd [n]} = (1− p)E{x̂fsd [n]|fR}+ pE{x̂fsd [n]|fL}, (7.11)

where,

E{x̂fsd [n]|fR}=E{(êfs [n]+
∑P

i=1
γfsd [i]x̂

h(ν)
d [n− i])|fR},

=êfs [n] +
∑P

i=1
E{γfsd [i]x̂

h(ν)
d [n− i]|fR}, (7.12)

E{x̂fsd [n]|fL}=E{
∑P

i=1
ζfsd [i]x̂

h(ν)
d [n− i])|fL}. (7.13)

Note that in (7.12) and (7.13), γfsd [i], ζfsd [i], and x̂
h(ν)
d [n− i] are all random variables.

If we further assume them to be uncorrelated, we can approximate the first moments

as,

E{x̂fsd [n]|fR}≈ êfs [n]+
∑P

i=1
E{γfsd [i]}E{x̂h(ν)d [n−i]|fR}, (7.14)

E{x̂fsd [n]|fL}≈
∑P

i=1
E{ζfsd [i]}E{x̂h(ν)d [n−i]|fL}. (7.15)

While a source and its prediction parameters would normally be correlated from a

source coding perspective, in our framework the only source of randomness is due to
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unreliability of the channel. Hence our assumption of otherwise is reasonable, and

is validated by accurate EED estimation results in experiments. Substituting (7.14)

and (7.15) in (7.11) gives the recursive formulation to estimate the first moment of

reconstructed samples at the decoder. Similarly, for the second moment,

E{(x̂fsd [n])
2}=(1−p)E{(x̂fsd [n])

2|fR}+ pE{(x̂fsd [n])
2|fL}, (7.16)

If we denote E{x̂d[n]x̂d[n − i]} by Rn(i) then, E{(x̂fsd [n])
2|fR} is Rn(0)|fR, and

E{(x̂fsd [n])
2|fL} is Rn(0)|fL. Now

Rn(0)|fR=E{(x̂fsd [n](êfs [n] +
∑P

i=1
γfsd [i]x̂

h(ν)
d [n−i]))|fR}

≈ êfs [n]E{x̂fsd [n]|fR}+

∑P

i=1
E{γfsd [i]}E{x̂fsd [n]x̂

h(ν)
d [n− i]|fR}, (7.17)

Rn(0)|fL=E{(x̂fsd [n](
∑P

i=1
ζfsd [i]x̂

h(ν)
d [n− i]))|fL}

≈
∑P

i=1
E{ζfsd [i]}E{x̂fsd [n]x̂

h(ν)
d [n− i]|fL}. (7.18)

The correlation terms in (7.17) and (7.18), E{x̂fsd [n]x̂
h(ν)
d [n−i]|fR} and E{x̂fsd [n]x̂

h(ν)
d [n−

i]|fL}, can be expressed as Rn(i)|fR and Rn(i)|fL, respectively. These can be calcu-
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lated from the past correlation terms as,

Rn(i)|fR=E{(x̂h(ν)d [n−i](êfs [n] +

∑P

j=1
γfsd [j]x̂

h(ν)
d [n−j]))|fR}

≈êfs [n]E{x̂h(ν)d [n−i]|fR}+

∑P

j=1
E{γfsd [j]}E{x̂h(ν)d [n−i]x̂h(ν)d [n−j]|fR}, (7.19)

Rn(i)|fL=E{(x̂h(ν)d [n−i](
∑P

j=1
ζfsd [j]x̂

h(ν)
d [n−j]))|fL}

≈
∑P

j=1
E{ζfsd [j]}E{x̂h(ν)d [n−i]x̂h(ν)d [n−j]|fL}. (7.20)

If E{γγγfsd } and E{ζζζfsd } are known, equations (7.17) to (7.20) can be employed to

recursively estimate the second moment of reconstructed samples at the decoder.

Given the first and second moments, EED is estimated using (5.1).

7.3.1 Prediction Parameters Statistics

During concealment, LSF parameters are obtained for the current frame by setting

the LSF prediction residue to zero and extrapolating LSF values from previous frame.

In G723.1, it is given as,

k̂kk
f3

d = c3(k̂kk
(f−1)3
d − c1) + c1, (7.21)

where c3 is a constant. From (7.6) and (7.21) the first moment of LSF parameters

for current frame can be recursively updated from the first moment of the previous

frame as,

E{k̂kkf3d } = (1− p)(k̄kkf3e + c2E{k̂kk
(f−1)3
d } − c1c2 + c1) +

p(c3E{k̂kk
(f−1)3
d } − c1c3 + c1). (7.22)
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However, we need moments for LPC coefficients to estimate EED. To obtain them

we assume that the transformation from LSF to LPC domain (denoted by f(·)) can

be approximated to be locally linear, then the moments are given as,

E{αααfd} = E{f{kkkfd}} ≈ f{E{kkkfd}}. (7.23)

Given these moments of LPC coefficients and the received LTP filter parameters, β̂ββ
fs

e

and T fse , the E{γγγfsd } can be calculated. For E{ζζζfsd } however, even the LTP parame-

ters are random variables, as during concealment, we assume LTP filter parameters,

βββf , T f , are copied from previously reconstructed frame, but there is uncertainty about

having received the previous frame due to packet loss. Hence, the best the encoder

can do is to employ their expected values in previous frame while calculating E{ζζζfsd }.

Since the lag needs to be an integer, we employ the rounded version of the expected

value in previous frame. Note that our LTP lag concealment approach of copying

from previous frame is a small deviation from G723.1’s approach, which refines the

previous frame’s lag in a small neighborhood around its original value, but this has

minimal impact on final quality. The first moment of T fd is updated as,

E{T fd } = (1− p)T fe + pE{T f−1d }. (7.24)

In G723.1, there is no need to track expected moment of, βββf , as during concealment

LTP filter is assumed to be 1-tap with constant 1 coefficient. However, if needed it

can be tracked similar to lags in (7.24). With estimates of E{γγγfsd } and E{ζζζfsd }, we

have all the information to estimate EED.
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7.3.2 Optimizing coding mode selection

Packet loss resilience can be improved by resetting prediction in selected frames

at the encoder [42]. A reset makes coding of current data independent of previously

coded data, thus it can stop error propagation in the prediction loop when packets are

lost. But introducing a reset is associated with either degradation of quality at a fixed

rate, or increased rate for fixed quality. This represents a trade-off between removing

redundancy for compression, and adding redundancy for error-resilience. Previously

proposed reset approaches superficially treat this trade-off and select its location to

be random or periodic at a rate equal to the PLR. Instead, we propose to incorporate

the EED estimate computed by our algorithm in an RD optimization framework at

the encoder, to optimally select the number and location of resets. Specifically for

each frame we select the coding mode at the encoder to minimize the estimated RD

cost at the decoder, Jf = Df +λRf , where Df is the expected EED, Rf is the bit rate

and λ is the Lagrange multiplier. As G723.1 is a very low rate codec, we quantize and

send as side information the history for the LTP filter, the LPC filter and the LSF

prediction, while resetting a frame to maintain a reasonable quality of reconstruction.

In this setting, the λ of the RD cost controls the amount of redundancy added for

error resilience.

7.4 Experimental Results

We used the 6 speech files available in the EBU SQAM database [35] to conduct

our experiments. We implemented the proposed EED estimation and coding mode

selection framework in the G723.1 implementation (operating at 6.3 kbps in the mul-

tipulse mode) available online [47]. For simplicity of presentation, we have disabled

the perceptual filters (formant perceptual weighting and harmonic noise weighting
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Figure 7.3: Comparison of average MSE (in dB) experienced at the decoder (red)
and estimated MSE (black) for a the speech file English Male with a PLR of 5 %

filter), i.e., we estimate and optimize end-to-end mean squared error (MSE). We plan

to incorporate perceptual filters in our EED estimation framework in future work

(as they are linear filters too), with which we can estimate and optimize for end-to-

end perceptual distortion criteria. In Figure 7.3 the actual MSE in dB experienced

at the decoder per frame (averaged across 200 realizations of loss patterns) is com-

pared against the estimate obtained by our algorithm, for 280 frames of the speech

file English Male at PLR = 5% with additional redundancy of 0.85 kbps. The re-

sults clearly demonstrate our framework’s capability to quite accurately estimate the

overall decoder distortion.

Next we compare the performance of our EED based coding mode (reset vs no

reset) selecting algorithm and the conventional random resetting technique. System

performance is measured via average SNR at the decoder over 200 different packet

loss patterns. For random resetting strategy, 10 different reset pattern were tested

(thus the averaging was effectively over 2000 different realizations). Simulation results

for PLR at 5% and 10% is provided in Figure 7.4 and Figure 7.5, respectively where

we have also plotted the base G723.1 performance as a reference. Our algorithm
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Figure 7.4: Comparison of average SNR experienced at the decoder for random
reset versus the proposed reset strategy at PLR = 5%

outperforms the competition in all testing scenarios, and provides an average gain of

1.78 dB and 1.95 dB for 5% and 10% PLR, respectively.

7.5 Concluding Remarks

This chapter discusses a framework to estimate EED in speech coders. The ex-

pected moments of reconstructed samples and prediction parameters at the decoder,

are independently tracked in their respective domains, and then fused to obtain the

EED estimate. The accuracy of estimation is illustrated via simulations, and the

utility of incorporating the estimate in RD optimization framework at the encoder is

demonstrated with significant performance improvements.
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