
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Towards Interactive, Adaptive and Result-aware Big Data Analytics

Permalink
https://escholarship.org/uc/item/61k910rq

Author
Kumar, Avinash

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/61k910rq
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Towards Interactive, Adaptive and Result-aware Big Data Analytics

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Avinash Kumar

Dissertation Committee:
Professor Chen Li, Chair

Professor Michael J. Carey
Professor Sharad Mehrotra

2022

Chapter 2 © 2020 VLDB Endowment
All other materials © 2022 Avinash Kumar

DEDICATION

To my parents Durga N. Jha and Rita Jha.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES x

ACKNOWLEDGMENTS xi

VITA xii

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1

2 Amber: A Debuggable Dataflow System Based on the Actor Model 7
2.1 Introduction . 7

2.1.1 Related Work . 11
2.2 Debuggable Dataflow Engines . 13

2.2.1 Debugging Execution of Data Workflows 14
2.2.2 The Actor Model . 15

2.3 Amber System Overview . 16
2.3.1 Architecture . 16
2.3.2 Translating Operator DAG to Actor DAG 18
2.3.3 Communication between Actors . 18

2.4 Lifecycle of Job Execution . 20
2.4.1 Sending Control Messages to Actors 20
2.4.2 Expedited Processing of Control Messages 20
2.4.3 Pausing Data Processing . 22
2.4.4 Responding to Messages after Pausing 24

2.5 Conditional Breakpoints . 24
2.5.1 Semantics of Conditional Breakpoints 25
2.5.2 Evaluating Local Predicates . 25
2.5.3 Evaluating Global Predicates . 26

2.6 Fault Tolerance . 29
2.6.1 Why not the Spark Approach? . 29
2.6.2 Supporting Fault Tolerance in Amber 30

2.7 Experiments . 33

iii

2.7.1 System Implementation and Setting 33
2.7.2 Scaleup Evaluation . 35
2.7.3 Speedup Evaluation . 36
2.7.4 Time to Pause Execution . 37
2.7.5 Effect of Worker Number . 38
2.7.6 Conditional Breakpoint Evaluation 40
2.7.7 Performance Comparison with Spark 41
2.7.8 Fault Tolerance in Amber and Spark 42

2.8 Conclusions . 43

3 Reshape: Adaptive Result-Aware Skew Handling for Exploratory Analysis
on Big Data 45
3.1 Introduction . 45

3.1.1 Related work . 50
3.2 Reshape: Overview . 51

3.2.1 Skew detection . 52
3.2.2 Skew mitigation . 53

3.3 Result-aware load transfer . 54
3.3.1 Mitigation impact on user results . 54
3.3.2 Extra phase in load transfer . 58

3.4 Adaptive Skew Handling . 62
3.4.1 Load reduction from mitigation . 62
3.4.2 Impact of τ on load reduction . 63
3.4.3 Adaptive mitigation iterations . 65

3.5 Reshape on more operators . 68
3.5.1 Mutability of operator states . 68
3.5.2 Impact of mutability on state migration 69
3.5.3 Mutable-state operators: split by keys 70
3.5.4 Mutable-state operators: split by records 71

3.6 Reshape in Broader Settings . 72
3.6.1 High state-migration time . 72
3.6.2 Multiple helper workers . 74
3.6.3 Unbounded data . 76

3.7 Experiments . 76
3.7.1 Setting . 77
3.7.2 Effect on results shown to the user 79
3.7.3 Benefits of the first phase . 82
3.7.4 Effect of heavy-hitter keys . 83
3.7.5 Effect of latency of control messages 85
3.7.6 Benefit of dynamically adjusting τ 86
3.7.7 Effect of different levels of skew . 88
3.7.8 Effect of changes in input distribution 89
3.7.9 Metric-collection overhead . 91
3.7.10 Performance of Reshape on sort . 91
3.7.11 Effect of multiple helper workers . 92

iv

3.7.12 Performance of Reshape on Flink . 93
3.8 Conclusions . 94

4 Maestro: Result-aware Scheduling for Exploratory Data Analysis on Big
Data 95
4.1 Introduction . 95

4.1.1 Related work . 99
4.2 Preliminaries . 100
4.3 Overview of Maestro scheduler . 103
4.4 Building an acyclic region graph in Maestro 104

4.4.1 Regions and their dependencies . 104
4.4.2 Avoiding cycles in region graphs . 108
4.4.3 Creating an acyclic region graph . 110

4.5 Choosing a materialization option . 114
4.5.1 Enumerating the materialization choices 114
4.5.2 Result-aware materialization choice selection 120
4.5.3 First response time . 120
4.5.4 Choosing a materialization option . 121

4.6 Experiments . 125
4.6.1 Materialization choices in workflows 125
4.6.2 Effect of materialization choice on first response time 128
4.6.3 Effect of materialization choice on materialized data size 131

4.7 Conclusion . 132

5 Conclusions and Future Work 133
5.1 Conclusions . 133
5.2 Future Work . 134

Bibliography 136

v

LIST OF FIGURES

Page

1.1 Workflow to plot the total sales by year. The sale date in the marked
tuple is in a format that is not handled by the Parser operator. If the
workflow throws a parser exception and crashes, the results com-
puted from earlier tuples are lost and the computational resources
are wasted. Thus, the analyst may want to skip the problematic
tuple or modify the parsing logic at runtime. 4

2.1 A workflow to anlayze disease outbreaks from tweets and news. . . 14
2.2 Amber system architecture. 17
2.3 Translating the disease-outbreak workflow to an actor DAG. For

clarity purpose, we show an edge from a principal actor to only one of its
workers. 19

2.4 Processing of control and data messages by a worker. ‘Paused’ variable
and the queue are shared between the main thread and the data processing
(DP) thread. The ‘Paused’ shared variable is not shown in (i)-(iv) for sim-
plicity. 21

2.5 Evaluating a global conditional breakpoint “KeywordSearch opera-
tor producing 15 tuples.” Solid lines are messages from the principal actor
to workers, and dashed lines are responses from workers. 26

2.6 Fault Tolerance in Amber: logging control messages and recovery. 31
2.7 Workflows used in the experiments. 34
2.8 Scaleup of TPC-H workflows W1 and W2 35
2.9 Speedup for TPC-H workflows W1 and W2 36
2.10 Time taken to pause the execution while scaling up TPC-H workflow

W1. 1st percentile, 1st quartile, median, 3rd quartile, and 99th percentile are
shown. 37

2.11 Time taken to pause the execution while scaling up TPC-H work-
flows W2. 1

st percentile, 1st quartile, median, 3rd quartile, and 99th percentile
are shown. 37

2.12 Changing the worker number of the SentimentAnalysis operator in
workflow W3 for tweets. 39

2.13 Conditional breakpoint: running time versus principal’s waiting
threshold τ . 40

2.14 Scaleup for Amber and Spark for W1. 41

vi

2.15 Scaleup for Amber and Spark for W2. 41
2.16 Data-checkpointing overhead for Amber and Spark while executing

W2. The time for Amber with data checkpointing disabled and time for Spark
and Amber with data checkpointing enabled are shown. 43

3.1 Partitioning skew in a data science project of Covid tweet analysis. 47
3.2 Steps of skew-handling in Reshape. Skew detected in (a) and miti-

gated in (b)-(f). 51
3.3 SBR splits December tuples on both workers and shows represen-

tative bar charts. 56
3.4 Processing a key at multiple workers by SBR leads to a broken line

chart. Only December tuples have been shown for simplicity. . . . 57
3.5 An implementation of the two phases using the “SBK” and “SBR”

approach. X1 is a previous operator worker. 59
3.6 First phase helps to reflect the actual ratio of December and October

tuples early. The bar charts show the progression of results as the
workers process tuples . 61

3.7 Effect of the amount of transferred data on the load reduction. The
shaded boxes represent the input of S redirected to H in the two
phases. 63

3.8 Dependence of load reduction on the τ 64
3.9 Multiple mitigation iterations . 65
3.10 Operator state mutability and state migration. 70
3.11 Skew handling using the “split by records” approach in the sort

operator. S2 is omitted for simplicity. 72
3.12 Adapt τ by considering the state-transfer time. 73
3.13 Choosing appropriate helpers. 75
3.14 Workflows used in the experiments. The operators with skew are

the join operator on location in W1, the join operators on date id
and item id in W2, the sort operator in W3 and the join operator on
key in W4. 77

3.15 Partitioning-key distributions for the datasets. 78
3.16 Effect of the mitigation strategies on the ratio of CA to AZ tweets.

The ideal curve is a straight line at y = 0. 80
3.17 Effect of the mitigation strategies on the ratio of CA to IL tweets.

The ideal curve is a straight line at y = 0. 80
3.18 Effect of first phase on the ratio of CA to AZ tweets. 82
3.19 Effect of first phase on the ratio of CA to IL tweets. 83
3.20 Evaluating different methods of handling heavy-hitter keys in W1

using tweets. The three Flow-Join bars correspond to the initial delay
of 2, 4, and 8 seconds. 84

3.21 Effect of control message delay (W1 on tweets). 85
3.22 Benefit of dynamically adjusting τ (W1 on tweets). 87
3.23 Effect of different levels of skew (W2 on DSB data). Each candlestick

body represents the 25th to 75th percentile. 88

vii

3.24 Effect of changes in input data distribution on load sharing (W4 on
the synthetic dataset). 90

3.25 Metric-collection overhead (W2 on DSB data). 91
3.26 Effect of multiple helper workers (W1 on tweets). 92
3.27 Mitigation by Reshape on Flink (W1 on tweets) 93

4.1 A workflow where probe and build inputs may arrive at join simul-
taneously. This leads to an exception if the join operator expects
build input to be processed completely before the probe input ar-
rives. 98

4.2 Analyzing climate change awareness in tweets before, during and
after the wildfire season. The build inputs to join are shown in red.
All joins are on the zipcode column. The ML operators determine
if the tweet is about climate change. 101

4.3 Implementation of HashJoin assumed in this chapter. The HashJoin
operator is implemented as a set of workers and each worker per-
forms both build and probe phases of the operator. 103

4.4 Scheduling in Maestro . 103
4.5 Workflow to understand regions. The blocking edges are shown in

red. The HashJoin requires the build input to be processed before
the probe input arrives. 105

4.6 Regions in the workflow in Figure 4.5. 106
4.7 Regions and region graph from the running example workflow. Block-

ing input links are in red. 108
4.8 Workflow with cyclic region graph. When there is a cycle in the

region graph, there is no feasible schedule of regions. 109
4.9 Modifying workflow in Figure 4.8 to create an acyclic region graph. 110
4.10 Diagram to help explain the intuition behind lines 14 to 29 in Al-

gorithm 2. Regions are marked by dotted blue shapes. 112
4.11 Enumerating all the materialization choices. J1, J2, J3, and J4 are

HashJoin operators. D1 and D2 are replication operators. M1 and M2
are ML operators. S is scan, F is filter, and U is a union operator. 115

4.12 Understanding the formal approach to find the sub-DAG where
materialization is to be added. 117

4.13 The outline of a workflow showing regions. The sink operator in
the last region. For first response time, we consider the time to
completely execute all regions except the region containing the sink.
For the region containing the sink, the time to produce only a single
tuple is considered in the calculation of the first response time. . . 121

4.14 The outline of modified workflows showing regions when material-
ization is added to the workflow in Figure 4.11(a). When there are
more than one regions containing the sink, the first response time
includes the minimum time among those regions to produce a single
tuple. 122

viii

4.15 Example to help understand the generalization of first response time
when a materialization choice c is chosen in a region r. The region
r1c has to be fully executed, and any of the regions r2c , r

3
c , · · · has to

produce a single tuple to get the first tuple out of the sink. 124
4.16 An Alteryx workflow. 126
4.17 A RapidMiner workflow. 126
4.18 A Dataiku workflow. 126
4.19 A Texera workflow. 127
4.20 Workflows used in the experiment to analyze the effect of mate-

rialization choices on the first response time. The blue triangles
represent the materialization choices in the workflows. 129

4.21 First response time for different input data sizes in W1. 130
4.22 First response time for different input data sizes in W2. 131
4.23 Materialization size for different input sizes in W1. 131
4.24 Materialization size for different input sizes in W2. 132

ix

LIST OF TABLES

Page

3.1 Examples of physical operators based on state mutability. HB means hash-
based and RB means range-based. 69

3.2 Average load balancing ratios when Reshape is applied on sort (W3 using the
TPC-H data). 92

4.1 Analyzing the workflows from various workflow processing systems. 127

x

ACKNOWLEDGMENTS

This thesis has been possible because of the contributions of a number of people.

First and foremost, I am extremely grateful to my advisor, Professor Chen Li, for his contin-
uous support and guidance over the past several years. He has showed me how the process of
system implementation can help in identifying and formulating research ideas. An important
trait that I learnt from him is the ability to solve a big problem by breaking it down into
manageable pieces. He trained me to write papers in a clear, concise and appealing way. He
worked with me on my research tirelessly. His teachings have helped me grow and become
an independent researcher.

I would like to thank Professor Michael Carey and Professor Sharad Mehrotra for joining
my doctoral committee. Their knowledge and insightful comments have always helped me
in understanding the topics better and making my work stronger.

I would like to thank my colleagues Sadeem Alsudias and Zuozhi Wang for participating in
numerous discussions and brain-storming sessions. Their comments have always helped me
in seeing the bigger picture.

I would like to thank the members of the Texera team - Zuozhi Wang, Sadeem Alsudais,
Shengquan Ni, Yicong Huang and Xiaozhen Liu - for participating in various design and
research discussions.

I would like to thank Qiushi Bai for being a patient neighbor of mine in the lab. The small
discussions and walks helped me relax during stressful days.

I thank my friends Shubham, Shreya, Aman and Mukesh for being a patient listener and for
their moral support. The conversation with them have always uplifted my mood and filled
me with energy.

I would like to thank my parents for being a constant anchor in my life journey. Their
support and sacrifices has given me the confidence to pursue bold paths and come this far.

The second chapter is adapted from my research paper publication in VLDB 2020 titled
“Amber: A Debuggable Dataflow System Based on the Actor Model”. The third chapter
is adapted from my research paper available on Arxiv titled “Reshape: Adaptive Result-
aware Skew Handling for Exploratory Analysis on Big Data”. The co-authors listed in
these papers are Sadeem Alsudais, Zuozhi Wang, Shengquan Ni, Yicong Huang and Chen
Li. I thank the Microsoft Orleans team and Dr. Phil Bernstein for answering questions
related to Orleans and Yuran Yan for helping in evaluating Apache Spark. This work has
been supported in parts by NSF IIS-1745673 and IIS-2107150 awards and a grant from the
Google Cloud Research Credits program. I have also been supported by cloud credits from
the NSF Cloudbank program.

xi

VITA

Avinash Kumar

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, CA

Masters in Computer Science 2022
University of California, Irvine Irvine, CA

Masters in Information Technology 2015
Indian Institute of Technology, Roorkee Roorkee, Uttarakhand, India

Bachelors in Computer Science and Engineering 2015
Indian Institute of Technology, Roorkee Roorkee, Uttarakhand, India

PUBLICATIONS

Fries: Fast and Consistent Runtime Reconfiguration in
Dataflow Systems with Transactional Guarantees

2023

Proceedings of the VLDB Endowment (PVLDB)

Reshape: Adaptive Result-aware Skew Handling for Ex-
ploratory Analysis on Big Data

2022

Arxiv

Demonstration of Collaborative and Interactive
Workflow-Based Data Analytics in Texera

2022

Proceedings of the VLDB Endowment (PVLDB)

Amber: A Debuggable Dataflow System Based on the
Actor Model

2020

Proceedings of the VLDB Endowment (PVLDB)

Demonstration of Interactive Runtime Debugging of
Distributed Dataflows in Texera

2020

Proceedings of the VLDB Endowment (PVLDB)

xii

ABSTRACT OF THE DISSERTATION

Towards Interactive, Adaptive and Result-aware Big Data Analytics

By

Avinash Kumar

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Chen Li, Chair

As data volumes grow across applications, analytics of large amounts of data is becoming

increasingly important. Big data processing frameworks such as Apache Hadoop, Apache

AsterixDB, and Apache Spark have been built to meet this demand. A common objective

pursued by these traditional cluster-based big data processing frameworks is high perfor-

mance, which often means low end-to-end execution time or latency.

A typical user of these frameworks submits a job to the framework and waits for the results

for minutes, hours or even days based on the size of input data and complexity of the job.

There is often a need to interact with an executing job to check its states or modify parts

of the job. Traditional big data processing frameworks offer little insight into an executing

job. They provide simple statistics such as data size input into and processed by various

operators of a job, which may not be enough information for the user.

The widespread adoption of data analytics has led to a call to improve the traditional ways

of big data processing. There have been demands for making the analytics process more

interactive and adaptive, especially for long running jobs. A typical data analytics workflow

undergoes multiple iterations of refinement to become the final workflow that performs a

task correctly. While performing these iterations, a data analyst is more interested in seeing

the first few results quickly than the total execution time. If the results are undesirable,

xiii

the analyst can terminate the workflow without waiting for it to execute completely. This

underlines the importance of initial results in the iterative process of data wrangling and

motivates a result-aware approach to big data analytics.

This dissertation is motivated by these calls for improvement in data processing and the

experiences over the past few years while working on the Texera project, which is a collab-

orative data analytics service being developed at UC Irvine. Texera is a GUI-based service

that allows the users to drag-and-drop operators to create workflows that can be executed

on computing clusters. This dissertation mainly consists of three parts. The first part is

about the design of the Amber engine that serves as the backend data processing framework

for the Texera service. Amber supports interactivity and adaptivity during data analysis.

A key feature of Amber is the existence of fast control messages that allow the interaction

and adaptation to happen with sub-second latency. The second part is about an adaptive

and result-aware skew-handling framework called Reshape. Reshape uses fast control mes-

sages to implement iterative skew mitigation techniques for a wide variety of operators. The

mitigation techniques in Reshape have also been analyzed from the perspective of their ef-

fects on the results shown to the user. Reshape is also capable of self-tuning its threshold

parameter to lessen the technical burden on the users. The last part is about a result-aware

workflow scheduling framework called Maestro. This part talks about how to schedule a

workflow for execution on computing clusters and make result-aware decisions while doing

so. This work improves the data analytics process by bringing interactivity, adaptivity and

result-awareness into the process.

xiv

Chapter 1

Introduction

As information volumes in many applications continuously grow, analytics of large amounts

of data is becoming increasingly important. Data-processing engines have been built to sup-

port this analytics demand. One of the earliest open-source cluster-based big data-processing

frameworks is Apache Hadoop [11]. It uses the MapReduce programming model [38] to allow

developers to easily write jobs to analyze bounded (finite) input data that can automatically

be executed on large clusters. Apache Spark [13] improves on the MapReduce programming

model by introducing resilient distributed datasets (RDDs) that do not need to be written

to stable storage after every map or reduce stage of a job. This allows Spark to have better

performance than MapReduce. Apache AsterixDB [5] provides a scalable data management

system for semi-structured data along with the support for a query language similar to SQL.

Spark Streaming [13], Apache Storm [14], and Apache Flink [10] are frameworks that have

been built to support analytics over unbounded streams of data. There are also GUI-based

workflow systems such as Alteryx [6], RapidMiner [99], Knime [70], and Einblick [45] that

provide a GUI interface where the users can drag-and-drop operators and create a workflow

as a directed acyclic graph (DAG). These GUI-based frameworks lower the technical learn-

ing curve for its users and allow even non-technical users such as public health scientists to

1

perform data analytics.

A common objective pursued by traditional big data-processing frameworks, especially cluster-

based frameworks, is high performance, which often means low end-to-end execution time

or latency. A typical user of these frameworks submits a job to the framework and waits for

the results for minutes, hours, or even days based on the size of input data and complexity

of the job. The frameworks aim to compile and optimize a submitted job to reduce the

execution time or latency [20]. They may try to decide how to parallelize the analytics jobs

over a cluster of machines to achieve better performance [109]. There have also been works

that perform machine learning-based prediction to determine the resource allocation that

optimizes the execution time of workloads [101].

The widespread adoption of data analytics has led to a call to improve the traditional ways

of big data processing and introduced new requirements. For example, after starting the

execution of a long-running workflow, the analyst may want to interact with the workflow

to check the status of different operators and adapt parts of a running workflow according

to changing circumstances. She may also want the initial results to be shown quickly so that

she can identify any problems in the workflow early. Next we talk about these requirements

in detail.

Interactivity. As mentioned earlier, an analytics job may take a long time to complete.

During the execution of such a long-running analytics job, there may arise a need to interact

with the job to verify its correctness. Consider a task to collect tweets over multiple days

about blunt smoking using tobacco-based wraps. The analyst uses “blunt” as one of the

keywords to collect the tweets. After submitting the task, the analyst may want to peri-

odically interact with the workflow to review samples of tweets being collected. After the

workflow has run for a few hours, the analyst may observe that tweets related to the actress

Emily Blunt are also being collected. When this happens, the analyst may want to make

2

changes to the workflow. If such an interaction is not possible, the analyst will discover

the erroneous tweets only when the task terminates after a few days. In general, the jobs

analyzing large amounts of data are typically executed on a cluster of multiple machines.

Popular cluster-based data-processing engines such as MapReduce, Spark, and Flink provide

little feedback to users during the processing of data, leaving the analyst in the dark. They

provide simple statistics such as data size input into and processed by various operators of a

job, which may not be enough information for the analyst. This has led to the demand for

engines that support interactivity in analytics jobs [49].

Adaptivity. During the execution of an analytics workflow, there may arise a need to adapt

or modify parts of the workflow at runtime. A need for such runtime adaptation arises in

tasks that are critical and their downtime should be reduced as much as possible. Consider

a spam detection operator that needs to be constantly online in the cloud. When there

is a sudden rise in spam emails directed to a network, the developer wants to modify the

operator and set a stricter detection threshold without stopping and restarting the workflow.

Another need for runtime adaptation arises in scenarios where a runtime adaptation is needed

to preserve the already computed results of a task and avoid the wastage of computing

resources. Consider the workflow shown in Figure 1.1, containing a parser operator that

parses the date column of the tuples to find the year. After a few thousand tuples have

been processed, a tuple arrives that cannot be parsed by the operator because its date is

in a different format. In this scenario, the analyst may prefer to have the ability to ignore

this tuple and continue processing or the ability to modify the parser code to handle the

tuple. The data-processing frameworks such as MapReduce, Spark and Flink cannot support

such adaptation of workflows at runtime. In the first scenario containing the spam detection

operator, the traditional data-processing frameworks usually require a complete stop and

restart of the task. In the second scenario containing the parser operator, data-processing

frameworks such as Spark crash when faced with exceptions leading to wasted earlier results

3

and computational resources [56]. This has led to the demand for engines that support

runtime adaptivity in analytics jobs [31].

Scan Parser

Item Price Sale date
Bottle 10 10/02/2021
Pen 3 11/02/2020

Soda 3 09-03-2021

Aggregate
year, count

Vizualize

...Assuming
mm/dd/yyyy

Throws exception
at Parser operator

Figure 1.1: Workflow to plot the total sales by year. The sale date in the marked
tuple is in a format that is not handled by the Parser operator. If the workflow
throws a parser exception and crashes, the results computed from earlier tuples
are lost and the computational resources are wasted. Thus, the analyst may
want to skip the problematic tuple or modify the parsing logic at runtime.

Result Awareness. The process of data analysis, especially in GUI-based analytics sys-

tems, is highly exploratory and iterative [49, 128, 120]. Often the analyst constructs an

initial workflow and executes it to observe a few initial results. If they are not desirable, she

terminates the current execution and revises the workflow. The analyst iteratively refines

the workflow until finishing a final workflow to compute the results. While performing these

iterations, a data analyst is more interested in seeing the first few results quickly than the

total execution time. Also, it is valuable if the initial results are representative of the final

results. Since data analysts spend almost 80% of their time performing such iterations during

data wrangling [89], the data-processing frameworks need to also focus on result awareness,

rather than just the total execution time.

In this dissertation, we focus on bringing interactivity, adaptivity, and result awareness

into the data analytics process. This is motivated by the calls for improvement in the

traditional ways of data processing and the experiences over the past few years while working

on the Texera project [115], which is a service being developed at UC Irvine to support

collaborative data analytics. Texera is a GUI-based service that allows the users to drag-

4

and-drop operators to create workflows that can be executed on computing clusters. In

particular, we study three problems in this dissertation.

Designing an engine that supports interactivity and adaptivity. We discuss the

design of a data-processing engine called Amber that allows runtime interactivity and adap-

tivity while executing workflows. Amber is the backend engine of the Texera service [76].

A main feature of Amber that allows it to be interactive and adaptive is the availability

of fast control messages. We describe the implementation of these fast control messages in

Amber and explain how to use these messages for features such as pausing the execution

and changing the logic of operators with sub-second latency. We also discuss the concept

of local and global conditional breakpoints in workflows and how to detect these in Amber.

We discuss the challenges in supporting fault tolerance in Amber and present a technique to

achieve it.

Adaptive result-aware skew handling. We describe a framework called Reshape that

uses the availability of fast control messages to handle partitioning skew in operators of a

workflow during runtime and shows representative initial results. Reshape mitigates skew

iteratively during the execution. We present different approaches of skew mitigation and

analyze their impact on the results shown to the user. We also present a way to dynamically

adjust the skew detection threshold to reduce the number of iterations of mitigation. We

generalize Reshape to multiple operators such as HashJoin, Group-by, and Sort, and discuss

challenges related to state migration. The Reshape framework has been implemented on

Amber and Apache Flink.

Result-aware scheduler. We discuss the design of a result-aware scheduler called Maestro.

The scheduler takes a workflow as an input and breaks the workflow DAG into smaller sub-

DAGs called regions that can be separately scheduled. We discuss the concept of a region

graph that encapsulates the dependencies among the regions of a workflow and present an

5

algorithm to obtain the region graph from a workflow DAG. In order to be scheduled, the

region graph should not have any cycles. We show how to modify the workflow DAG to avoid

the presence of cycles in the region graph. There are different ways to modify the workflow

DAG and we present an algorithm to enumerate the various options. We then show how to

choose an option in a result-aware manner.

The rest of the dissertation is organized as follows. Chapter 2 describes the design of the

Amber engine. Chapter 3 describes the skew-handling framework Reshape. Chapter 4 de-

scribes the scheduling framework Maestro. Finally, Chapter 5 concludes this dissertation and

discusses future research directions.

6

Chapter 2

Amber: A Debuggable Dataflow

System Based on the Actor Model

2.1 Introduction

As analytics of large amounts of data becomes increasingly important, many big data engines

have been developed to support scalable analytics using computing clusters. In these systems,

a main challenge faced by developers when running an analytic task on a large dataset is

its long running time, which can take hours, days, or even weeks. Such a long-running task

often leaves the developer in the dark without providing valuable feedback about the status

of the execution [49]. What is worse is that the job can fail due to various reasons, such as

software bugs, unexpected data, or hardware issues. In the case of failure, earlier computing

resources and time are wasted, and a new job needs to be submitted from scratch.

Analysts have resorted to different techniques to identify errors in job execution. One could

first run a job on a small dataset, with the hope of producing failures, and identifying and

solving the problems. The analyst iteratively refines the workflow multiple times before

7

arriving at the final workflow that executes on the small dataset without any errors [49].

Then, the analyst runs the final workflow on a large dataset. Unfortunately, many runtime

failures occur only on a big dataset. For instance, a software bug is triggered only by some

rare, outlier data instances, which may not appear in a small dataset [62, 56]. As another

example, there can be an out-of-memory (OOM) exception that happens only when the data

volume is large.

Another method is to instrument the software to generate log records to do post-execution

analysis. This approach has several limitations. First, the developer has to add statements

at many places in order to find bugs. These statements can produce an inordinate amount

of log records to be analyzed offline, and most of them are irrelevant. Second, these log

records may not reveal all the information about the runtime behavior of the job, making

it hard to identify the errors. This situation is similar to the scenario of debugging a C

program. Instead of using printf() to produce a lot of output messages and do post-

execution analysis, many developers prefer to use a debugger such as gdb to investigate the

runtime behavior of the program during its execution.

The aforementioned shortcomings of the debugging techniques have led data analysts to seek

more powerful monitoring and debugging capabilities [90, 24, 49]. There are several recent

efforts to provide debugging capabilities to big data engines [56, 57]. As an example, BigDe-

bug [56] used a concept of simulated breakpoint during the execution of an Apache Spark

job. Once the execution arrives at the breakpoint, the user can inspect the program state.

More details about these approaches and their limitations are discussed in Section 2.1.1.

A fundamental reason for their limitations is that they are developed on engines such as

Spark that are not natively designed to support debugging capabilities, which limit their

performance and usability.

In this chapter, we consider the following question:

8

Can we develop a scalable data-processing engine that supports responsive debug-

ging?

We answer the question by developing a parallel data-processing system called Amber, which

stands for “actor-model-based debugger.” A user of the system can interact with an analytic

job during its execution. For instance, she can pause the execution, investigate the states

of operators in the job, and check statistics such as the number of processed records and

average time to process each record in an operator. Even if the execution is paused, she can

still interact with the operators in the job. The user can modify the job, e.g., by changing

the threshold in a selection predicate, a regular expression in an entity extractor operator,

or some parameters in a machine learning (ML) operator. The user can also set conditional

breakpoints, so that the execution can be paused automatically when a condition is satisfied.

Examples of conditions are incorrect input formats, occurrences of exceptions etc. In this

way, the user can skip many irrelevant iterations. After doing some investigation, she can

resume the execution to process the remaining data. To our best knowledge, Amber is the

first system with these debugging capabilities.

Amber is based on the actor model [63, 3], a distributed computing paradigm that provides

concurrent units of computation called actors. The message-passing mechanism between

actors in the actor model makes it easy to support both data messages and debugging

requests, and allows low-latency control-message processing. Also after the execution of a

workflow is paused, the actor-based operators can still receive messages and respond to user

requests. More details about the actor model and the motivation behind using it for Amber

are described in Section 2.2.2.

The actor model has been around for decades and there are data-processing frameworks built

on top of it [88, 77]. A natural question is “why do we develop Amber now?”. The answer

is twofold. First, as data is getting increasingly bigger, the need for a system that supports

9

responsive debugging during big data processing is getting more important. Second, there are

more mature and widely adopted actor model implementations on clusters recently, making

it easy to develop our system without reinventing the wheel.

There are several challenges in developing Amber using the actor model. First, every actor

has a single mailbox, which is a FIFO queue storing both data messages and control messages.

(The actor model does not support priority messages natively.) Large-scale data processing

implies that data messages sent to an actor can be significantly more than its incoming control

messages. Thus, the mailbox can already have many data messages when a control message

arrives. Responsive debugging requires that control messages be processed quickly, but the

control message can only be processed after those data messages ahead of it. Second, a data

message can take an arbitrarily long time to process (e.g., in an expensive ML operator).

Real-time debugging necessitates that user requests should be taken care of in the middle of

processing a data message instead of waiting for the entire message to be processed, which

could take a long time depending on the complexity of the operator.

In this chapter, we tackle these challenges and make the following contributions. In Sec-

tion 2.2 we discuss important features related to debugging the execution of a data work-

flow, and analyze the requirements of an engine to support these features. In Section 2.3 we

present the overall architecture of Amber and study how to construct an actor workflow for

an operator workflow, how to allocate resources to actors, and how to transfer data between

actors. In Section 2.4 we describe the lifecycle of executing a workflow, discuss how control

messages are sent to the actors, how actors expedite the processing of these control messages,

and how they save and load their states during pausing and resuming, respectively. In Sec-

tion 2.5 we study how to support conditional breakpoints in Amber, and present solutions

for enforcing local conditional breakpoints (which can be checked by actors individually)

and global conditional breakpoints (checked by the actors collaboratively in a distributed

environment). In Section 2.6, we discuss challenges in supporting fault tolerance in Amber

10

and present a technique to achieve it. In Section 2.7 we present the Amber implementation

on top of the Orleans system [91], and report an experimental evaluation using real datasets

on computing clusters to show its high performance and usability.

2.1.1 Related Work

Spark-based debugging. Titian [67] is a library that enables high speed data provenance

in Spark. BigSift [57] is another provenance-based approach for finding input data respon-

sible for producing erroneous results. It redefines provenance rules to prune input records

irrelevant to given faulty output records before applying delta debugging [132]. BigDebug [56]

uses the concept of simulated breakpoint in Spark execution. A simulated breakpoint needs

to be preset before the execution starts, and cannot be added or changed during the execu-

tion. Furthermore, after reaching a simulated breakpoint, the results computed till then are

materialized, but the computation still continues. If the user makes changes to the workflow

(such as modifying a filter condition) after the simulated breakpoint, the existing execution

is cancelled, causing computing resources to be wasted. In addition, the part of the workflow

after the simulated breakpoint is executed again using the materialized intermediate results.

Amber is different since the developer can set a breakpoint or explicitly pause the execution

at any time, and the computation is truly paused.

Spark cannot support such features due to the following reason. In order for the driver (as

“controller” in Amber) to send a Pause message to an executor (as “actor” in Amber) at an

arbitrary user-specified time, the driver needs to send some state-change information to the

executor. Spark has two ways that might be possibly used to support communication from

the driver to the executor, either through a broadcast variable or using an RDD. Both are

read-only to ensure deterministic computation, which is mandatory in the method used by

Spark to support fault tolerance. Any state change requires a modification of the content of

11

a broadcast variable or an RDD, and such information cannot be sent to the executor from

the driver.

Workflow systems: Alteryx [6], Kepler [77], Knime [70], RapidMiner [99], and Apache

Taverna [83] allow users to formulate a computation workflow using a GUI interface. They

provide certain feedback to the user during data processing. These systems do not run on

a computing cluster, and do not support debugging either. Texera [114] is an open-source

GUI-based workflow system we are actively developing in the past three years, and Amber is

a suitable backend engine. Apache Airavata [80] is a scientific workflow system supporting

pausing, resuming, and monitoring. Its pause is coarse in nature since a user has to wait

for an operator to completely finish processing all its data. Apache Storm [14] supports

distributed computations over data streams, but does not support any low-level interactions

with individual operators apart from starting and stopping the operators.

Debugging in distributed systems. When debugging a program (e.g., in C, C++,

or Java) in a distributed environment, developers often use pre-execution methods such

as model-checking, running experiments on a small dataset, and post-execution methods

such as log analysis to identify bugs in a distributed system [24], and their limitations

are already discussed above. Although query-profiling tools such as Perfopticon [85] have

simplified the process of analyzing distributed query execution, their application is limited

to discovering runtime bottlenecks and problematic data imbalances. StreamTrace [18] is

another tool that helps developers construct correct queries by producing visualization that

illustrates the behavior of queries. Such pre-execution and post-execution analysis tools

cannot be used to support debugging during the execution. On the other hand, breakpoints

are an effective tool to debug the runtime behavior of a program. In prior studies, global

conditional breakpoints in a distributed system are defined as a set of primitive predicates

such as entering a procedure, which are local to individual processes (hence can be detected

independently by a process), tied together using relations (e.g., conjunction, disjunction,

12

etc.) to form a distributed global predicate [59, 51, 82, 37]. Checking the satisfaction of

a global condition given that all the primitive predicates have been detected was studied

in [59, 82, 37]. Our work is different given its focus on data-oriented conditions.

Pausing/resuming in DBMS. [32] studied how to suspend and resume a query in a

single-threaded pull-based engine. [8] studied how to resume online index rebuilding after

a system failure. These existing approaches do not allow users to inspect the internal state

after pausing.

Actor model based data processing. The use of the actor model for data processing has

been explored before. For instance, S4 [88] was a platform that aimed to provide scalable

stream processing using the map-reduce paradigm and actor model. Amber is different since

it focuses on responsive debuggability during data processing, without compromising the

scalability. Kepler [77] is a scientific workflow system using the Ptolemy II actor model

implementation [97]. It is limited to a single machine and treats a grid job as an outside

resource included in the workflow as an operator. Amber is different as it is a parallel runtime

engine natively.

2.2 Debuggable Dataflow Engines

In this section, we discuss important features related to debugging the execution of a data

workflow, and analyze the requirements of an engine to support these features. We then give

an overview of the actor model.

13

2.2.1 Debugging Execution of Data Workflows

A data workflow (dataflow for short) is a directed acyclic graph (DAG) of operators. An

operator is physical (instead of logical) since it specifies how its computation is done exactly,

such as a hash-join operator, which is different from a ripple-join operator. We consider

common relational operators as well as operators that implement user-defined functions.

When running a workflow, data from sources is passed through the operators, and the results

are produced from a final operator called Sink. For simplicity, we focus on the relational data

model, in which data is modeled as bags of tuples, and the results generalize to other data

models.

Figure 2.1 shows an example workflow to identify news articles related to disease outbreaks

using a table of news articles (timestamp, location, content, etc.) and a table of tweets

(timestamp, location, text, etc.). The KeywordSearch operator on the tweet table selects

records related to disease outbreaks such as measles and zika. The next step is to find news

articles published around the same time by joining them based on their timestamps (e.g.,

months). We then use topic modelling to classify the news articles that are indeed related

to outbreaks.

Scan1
(tweets)

Keyword
Search

Scan2
(news articles)

HashJoin

Search disease
outbreak keywords like
"measles", "zika" etc.

on month

Sink
Topic

Modelling

classification

Figure 2.1: A workflow to anlayze disease outbreaks from tweets and news.

During the execution of a workflow, we want to allow the developer to take any of the

following actions. (1) Pausing: stop the execution so that all operators no longer process

data. (2) Investigating operators: check the states of each operator, and collect statistics

about its behaviors, such as the number of processed records and processing time. (3) Setting

14

conditional breakpoints: stop the workflow once the condition of a breakpoint is satisfied, e.g.,

the number of records processed by an operator goes beyond a threshold. Breakpoints can

be set before or during the execution. (4) Modifying operators: after pausing the execution,

change the logic of an operator, e.g., by modifying the keywords in KeywordSearch. (5)

Resuming: continue the execution.

Engine requirements. A dataflow engine supporting the abovementioned debugging ca-

pabilities needs to meet the following requirements. (1) Parallelism: To support analytics

on large amounts of data, the engine needs to allow parallel computing on a cluster. As a

consequence, physically an operator can be deployed to multiple machines to run simultane-

ously. (2) Supporting various messages between operators: Developers control the execution

by sending messages to operators, which should co-exist with data transferred between op-

erators. Even if the execution is paused, each operator should still be able to respond to

requests. (3) Timely processing of control messages: Debugging requests from the develop-

ers need to take effect quickly to improve the user experience and save computing resources.

Thus control messages should be given a chance to be processed by the receiving operator

without a long delay. Since processing data tuples can be time consuming, computation in

an operator should be granulated, e.g., by dividing data into batches with a size parameter,

so that it can handle control messages in midst of processing data.

2.2.2 The Actor Model

The actor model [63, 3] is a computing paradigm that provides concurrent units of computa-

tion called “actors.” A task in this distributed paradigm is described as computation inside

actors plus communication between them via messages. Every actor has a mailbox to store

its received messages. After receiving a message, the actor performs three basic actions: (i)

sending messages to actors (including itself); (ii) creating new actors; and (iii) modifying its

15

state. There are various open source implementations of the actor model such as Akka [4],

CAF [28], Orleans [91], and ProtoActor [96], as well as large-scale applications using these

systems such as YouScan [130], Halo 5 [61], and Tapad [112]. For instance, Halo 5 is an

online video game based on Orleans that allows millions of users to play together, and each

player’s actions can be processed within milliseconds. There is a study to develop an actor-

oriented database with support of indexing [23]. These successful use cases demonstrate the

scalability of these implementations.

We use the actor model due to its several advantages. First, it is intrinsically parallel,

and many implementations support efficient computing on clusters. This strength makes

our system capable of supporting big data analytics. Second, the actor model simplifies

concurrency control by using message passing instead of distributed shared memory. Third,

the message-passing mechanism in the actor model makes it easy to support both data

computation via data messages and debugging requests via control messages. Streaming

control messages in the same pipeline as data messages leads to high scalability [78]. As

described in Section 2.4.2, we can divide the logic of operators into a sequence of smaller

actions using the actor model and thus support low-latency control-message processing.

2.3 Amber System Overview

In this section, we present the architecture of the Amber system. We discuss how it translates

an operator DAG to an actor DAG and delivers messages between actors.

2.3.1 Architecture

Figure 2.2 shows the Amber architecture. The input to the system is a data workflow, i.e.,

a DAG of physical operators. This physical operator DAG is similar to the final optimized

16

query plan in parallel DBMS [71, 54]. Based on the computational complexity of an operator,

the Resource Allocator decides the number of actors allotted to each operator. The Actor

Placement Planner decides the placement scheme of the actors across the machines of the

cluster. An operator is translated to multiple actors, and the policy of how these actors send

data to each other is managed by the Data Transfer Manager. These modules create a DAG

of actors, allocate them to the machines, and determine how actors send data. The actor

DAG is deployed to the underlying actor system, which is an implementation of the actor

model, such as Orleans or Akka. The execution of the actor DAG takes place in the actor

system, which places the actors on their respective machines, helps send messages between

them, and executes the actions of an actor when a message is received. The actor system

processes the data and returns the results to the client. The Message Delivery Manager

ensures that the communication between any two actors is reliable and follows the FIFO

semantics. More details about these modules are in Section 2.3.2.

Actor System

R
es

ou
rc

e
A

llo
ca

to
r

B
re

ak
po

in
t

M
an

ag
er

C
on

tr
ol

 S
ig

na
l

M
an

ag
er

M
es

sa
ge

D

el
iv

er
y

M
an

ag
er

D
at

a
Tr

an
sf

er

M
an

ag
er

DAG of actors

DAG of operators

A
ct

or
 P

la
ce

m
en

t
P

la
nn

er

Workflow

Figure 2.2: Amber system architecture.

During the execution, a user can send requests to the system, which are converted to con-

trol messages by the Control Signal Manager. The actor system sends control messages

to the corresponding actors, and passes the responses back to the user. The user can also

specify conditional breakpoints, which are converted by the Breakpoint Manager to a form

17

understandable by the engine.

2.3.2 Translating Operator DAG to Actor DAG

We use the example workflow of detecting disease outbreaks to show how Amber translates

the operator DAG to an actor DAG, as shown in Figure 2.3. A controller actor is the

administrator of the entire workflow, as all control messages are first conveyed to this actor,

which then routes them appropriately. The controller actor creates a principal actor for each

operator and connects these principal actors based on the operator DAG. An edge A −→ B

between two actors A and B means that actor A can send messages to B. The principal

actor for an operator creates multiple worker actors, and each of them is connected to all

the worker actors of the next operators. The worker actors conduct the data-processing

computation and respond to control messages. The principal actor manages all the tasks

within an operator, as well as collects runtime statistics, dispatches control signals, and

aggregates control responses related to its operator. Placement of workers is planned to

achieve load balancing and minimizing network communication overhead and the plan is

included in the actor DAG. The workers of an operator are distributed uniformly across all

machines. Workers do cross-machine communication only for shuffling data. Note that the

structure of the final actor DAG is similar to the final task graph in Hyracks [27, 26] with a

few differences such as existence of a principal actor and instantiation of workers as actors.

2.3.3 Communication between Actors

Message-delivery guarantees. Data between actors is sent as data messages, where each

message includes a batch of records to reduce the communication cost. Control commands

from the user are sent as control messages. These two types of messages to an actor are

queued into a single mailbox of the actor, and processed in their arrival order. Reliability

18

Scan1
Keyword
Search

HashJoin
Topic

Modelling

Scan2

Sink

Scan1
Principal

Scan2
Principal

Keyword
Search

Principal

HashJoin
Principal

Top. Mod.
Principal

Sink
Principal

Controller

= Worker Actor

Operator
DAG

Actor
DAG

Figure 2.3: Translating the disease-outbreak workflow to an actor DAG. For
clarity purpose, we show an edge from a principal actor to only one of its workers.

is needed to avoid data loss during the communication and FIFO is needed for some oper-

ators such as Sort. Thus, we made the communication channels between actors FIFO and

exactly once. We use congestion control to regulate the rate of sending messages to avoid

overwhelming a receiver actor and the network.

Data-transfer policy on an incoming edge. For each edge A −→ B from operator A to

operator B, the operator B has a data-transfer policy on this incoming edge that specifies

how A workers should send data messages to B workers. If B has multiple input edges, it has

a data-transfer policy for each of them. The data-transfer policies used in Amber are similar

to those in parallel DBMS [40, 39]. Following are a few example policies. (a) One-to-one

on the same machine: An A worker sends all its data messages to a particular B worker

on the same machine. (b) Round-Robin on the same machine: An operator A worker sends

its messages to B workers on the same machine in a round-robin order. (c) Hash-based:

Operators such as hash-based join require incoming data to be shuffled and put into specific

buckets based on their hash value. An easy way to do so is to assign specific hash buckets

to its workers.

19

2.4 Lifecycle of Job Execution

Each worker in Amber processes one data partition and forwards the results in batches to the

workers of the downstream operators. Amber supports operator pipelining. In this section,

we discuss the whole life cycle of the execution of a job, including how control messages are

sent to the actors, how actors expedite the processing of control messages, and how each

actor pauses and resumes its computation by saving and loading its states, respectively.

2.4.1 Sending Control Messages to Actors

When the user requests to pause the execution, the controller actor sends a control message

called “Pause” to the actors. The message is sent in the following way, which is also applicable

to other control messages. The controller sends a Pause message to all the principal actors,

which forward the message to their workers. Due to the random delay in message delivery,

the workers are paused in no particular order. For example, the source workers may be

paused later than the downstream workers. Consequently, the workers may still receive data

messages after being paused, and need to store them for later processing.

2.4.2 Expedited Processing of Control Messages

A critical requirement in Amber is fast processing of control messages in order to support

real-time response from the system during debugging. Worker actors process a large number

of data messages in addition to control messages. These two types of messages to a worker

actor are enqueued in the same mailbox, which is a FIFO queue as specified in the actor

model. Therefore, there could be a delay between the enqueuing of a control message and its

processing. This delay is affected mainly by two factors, the number of enqueued messages

and the computation per batch. For actor model implementations such as Akka that support

20

priority messaging, we can expedite the processing of control messages by giving them a

priority higher than data messages.

Figure 2.4: Processing of control and data messages by a worker. ‘Paused’ variable
and the queue are shared between the main thread and the data processing (DP) thread.
The ‘Paused’ shared variable is not shown in (i)-(iv) for simplicity.

For actor model implementations that do not support priority such as Orleans, Amber solves

the problem by letting each actor delegate its data processing to an external thread, called

data-processing thread or DP thread for short. This thread can be viewed as an external

resource used by actors to do computation and send messages to other actors. The main

thread shares a queue with the DP thread to pass data messages. After receiving a data

message (D1 in Figure 2.4), the main thread enqueues it in the queue. The main thread

offloads the data processing to the DP thread (steps (i) and (ii) in the figure). The DP

thread dequeues data messages from the queue and processes them. After enqueuing a data

message into the queue, the main thread is free to continue processing the next message in

the mailbox. The next data messages are also stored in the queue (messages D2 and D3 in

steps (iii) and (iv)). If the next message is a Pause message (step (v)), the main thread sets

a shared variable Paused to true (step (vi)) to notify the DP thread. The DP thread, after

seeing this new variable value, saves its states inside the worker, notifies its principal, and

exits. The worker then enters a Paused state. The details of these actions of the DP thread

will be described in Section 2.4.3 shortly.

21

While in this Paused state, the main thread can still receive messages in its mailbox and

take necessary actions. (More details are in Section 2.4.4.) A received data message is stored

in the internal queue (D4 in step (vii)) because no data processing should be done. After

receiving a control message, the main thread can act and respond accordingly (Check in

step (viii)). If the control message is a Resume request, the main thread changes the Paused

variable to false, and uses a new DP thread to resume the data processing (step (ix)). The

DP thread continues processing the data messages in the internal queue, and sends produced

data messages to the downstream worker (step (x)).

2.4.3 Pausing Data Processing

The DP thread associated with a worker actor needs to check the variable Paused to pause

its computation so that the worker can enter the Paused state. One way is to check the

variable after processing every data message, but this method has a long delay, especially

for a large batch size and expensive operators.

Amber adopts a technique based on the observation that operators use an iteration model

to process their tuples one by one and apply their computation logic on each tuple. Hence,

the DP thread can check the variable after each iteration. If the variable becomes true, the

DP thread saves necessary states of data processing in the worker actor’s internal state, then

simply exits. When a Resume message arrives, the main thread employs a new DP thread,

which loads the saved states to resume the computation. Thus, the worker actor can respond

to a Pause request quickly without introducing much overhead. The delay of checking the

shared variable is mainly decided by the time of each iteration, e.g., the time of processing

one tuple. Next we use several commonly used operators as examples to show how they are

implemented in Amber, and what state information is saved by a worker actor for pausing.

1. Tuple-at-a-time operators (e.g., selection, projection, and UDF operators): In

22

a non-blocking operator, its DP thread checks the Paused variable after processing each tuple.

When pausing, the thread needs to save the index (or offset) of the next to-be-processed tuple

in the batch, called resumption-index.

2. Sort: Sort does not output results until receiving all its input data. A way to implement

sort is using two layers of workers. The first layer sorts its data partition and the second

layer contains a single worker that merges the sorted outputs of the first-layer workers. We

use this method to show how to save and load states, and the solution works for other

distributed sort implementations as well. A first-layer worker does its local sort using an

algorithm such as InsertionSort, MergeSort, or QuickSort. For online sorting algorithms such

as InsertionSort, the DP thread saves only the resumption-index. For offline sorting algorithm

such as MergeSort, the DP thread saves the state of merge sort to resume the operation later,

such as the resumption index for each input chunk. The worker in the second layer merges

the sorted outputs of first-layer workers to produce the final sorted results. When pausing

the execution, the DP thread needs to store the resumption-index for each input batch.

3. Hash-based join. This operator consists of two phases, namely hash-building for one

input table (say table R) and probing the hash table using the tuples from the other table

(say table S). When a worker receives a Pause message, its DP thread can be in one of the

two phases. If it is in the hash-building phase, it saves its states related to building the hash

table and the resumption index for the interrupted batch of table R. If the DP thread is

in the probing phase, it saves the corresponding state and the resumption index from the

interrupted batch of table S. Note that Amber does not support spilling to disk currently.

4. GroupBy. We can implement this operator using two layers of workers. A first-layer

worker does a local GroupBy for its input tuples. After that, it forwards its local aggregations

to second-layer workers using a hash function on the GroupBy attribute. A second-layer

worker produces final aggregated results for its own groups. When pausing the execution,

23

the DP thread saves the resumption index of the interrupted batch and the current aggregate

per group.

2.4.4 Responding to Messages after Pausing

After pausing the execution, the user can investigate the states of the job. For instance, she

may want to know the number of tuples processed by each worker, or modify an operator,

such as the constant in a selection predicate. Such requests can be implemented by sending

control messages to the worker actors. Notice that even though an actor is in the Paused

state, it can still receive and respond to messages, which is very important in debugging to

support user interactions after pausing the execution (steps (vii) - (viii) in Figure 2.4). It is

a unique capability of Amber due to the adoption of the actor model. When the user wants

to resume the computation, the controller actor sends a Resume control message using the

approach described above for the Pause message. Each worker actor, after receiving Resume

message, uses a DP thread, to loads the saved states and continue the computation (steps

(ix) and (x) in the figure).

2.5 Conditional Breakpoints

The Amber system allows users to set breakpoints before and during the execution of a

workflow in order to detect bugs and data errors. In this section, we present the semantics of

conditional breakpoints, and discuss how to support two types of predicates in breakpoints.

24

2.5.1 Semantics of Conditional Breakpoints

We use an example to illustrate conditional breakpoints in Amber. Consider the workflow

back in Figure 2.1 and assume the tweets are obtained from a tab-separated text file. In

this scenario, an additional operator RegexParser is required between Scan1 and Keyword-

Search. This operator reads the file line-by-line and uses tab as a delimiter to convert it

to multiple attribute values. In this case, the data or the regex could have errors. For ex-

ample, the followerNum value (i.e., number of followers of a twitter user) should always be

a non-negative integer. Thus the user may want to do sanity checks on the output values

of this operator. To do so, she puts a breakpoint on the output of this operator with a

condition “followerNum < 0” When a tweet satisfies this condition, the system pauses the

data processing and allows the user to investigate.

Recall that an operator can have multiple inputs and outputs. A user specifies a breakpoint

on a specific output of an operator with a conditional predicate. When the predicate is

satisfied, the data processing in the entire workflow should be paused. There are two types

of predicates. A local predicate is a condition that can be satisfied by a single tuple, while a

global predicate is a condition that should be satisfied by a set of tuples processed by multiple

workers. Next we will discuss how to check these two types of predicates.

2.5.2 Evaluating Local Predicates

Since a local predicate can be evaluated by a single actor, such a conditional breakpoint can

be detected by a worker independently. An example use case of local predicate detection is

validating the schema of input data into an ML operator. For instance, the values of the

‘ratings’ column should always be from 1 to 5. Another use case is to pause the execution

in case of an exception and show the culprit tuple to the user. Example local predicates for

the workflow in Figure 2.1 are: 1) the followerNum of a tweet is negative, 2) the maximum

25

followerNum among all the tweets is above 1,000. Although the second predicate is a

predicate over all the tuples, it is still a local predicate since it can be checked by an actor

for its tuples independently. Whenever the predicate is satisfied, the worker pauses its

data processing and notifies its principal actor. Then, the principal pauses the workflow as

described in Section 2.4.1.

2.5.3 Evaluating Global Predicates

A global conditional breakpoint relies on tuples processed by multiple workers of an operator,

and cannot be detected by a single worker. The evaluation of such a predicate is done by the

principal actor. Such predicates are valuable in scenarios where a performance metric of an

operator has to be continuously monitored, e.g., the number of emails marked as spam by

a Spam-Detection operator within a time window. If this metric goes above a threshold, it

indicates some problem that requires attention. A few possible causes can be cyber attack,

input data corruption, or model degradation. It will be helpful if the system can detect such

predicates. We use two example global predicates for the workflow in Figure 2.1 to show

how to evaluate them. G1: the total number of tweets output by KeywordSearch is 15. G2:

the sum of followerNum of all tweets produced by KeywordSearch exceeds 90.

P

a5

5

5

b

c

a
5

b

c

a

b

c

a

b

c

3

1

a

2
b

c

a

b

c

a

b

c

1

1
a

b

c

1

a 1

b

c

a

b

c

1

P P P P P P P PP

= In-Progress worker = Paused workerP = Principal Actor

P

a2

2

2

b

c

1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

15 10 10 6 6 4 4 2 2 1 0

x = Remaining Target

A
llo

ca
tio

n

N
ot

ify

E
nq

ui
ry

Target 15
split equally

Worker b
reaches target
and responds

Principal waits ?

time and asks other
workers' status

Workers pause
and respond

Remaining
target 6 split

equally
and so on ... Target reached.

Breakpoint hit.

Time

Figure 2.5: Evaluating a global conditional breakpoint “KeywordSearch opera-
tor producing 15 tuples.” Solid lines are messages from the principal actor to workers,
and dashed lines are responses from workers.

26

Evaluating a global COUNT predicate G1. Suppose KeywordSearch has three workers. As

illustrated in Figure 2.5, the process of evaluating G1 consists of several steps. At time t0,

the principal actor divides the target number 15 equally among the three workers, namely

a, b, and c. Each worker, after producing a tuple, increments its counter by 1. Suppose

worker b is the first to produce 5 tuples. It pauses itself and notifies the principal actor (time

t1). The principal waits for a threshold time (τ) with a timer. If the other two workers

respond within the time limit τ (not shown in the figure), the conditional breakpoint is hit

and the principal sends a message to the controller to pause the entire workflow. Otherwise,

the principal inquires each worker that has not responded, about how many records it has

produced (time t2). The figure shows the case where both workers a and c did not respond

within τ . These two workers pause themselves, and respond with their number, say, 3 and

1 (time t3). Now the remaining target number becomes 15− 5− (3 + 1) = 6.

At time t4, as before, the principal divides the new target number 6 equally, and sends

a target number 2 to each worker to resume its data processing. This reassignment is

necessary so that all the three workers can be resumed and the operator processes data at

the maximum parallelism. Assuming worker c produces 2 tuples, it again pauses itself and

notifies the principal (time t5). The principal again waits for a threshold time after which

it asks workers a and b (time t6), who pause themselves and respond with their produced

number of tuples, say 1 and 1 (time t7). For the new remaining target of 2, the principal gives

a target of 1 to each of the first two workers a and b (time t8). Suppose worker a contacts

the principal after producing one tuple (time t9). After a while, worker b also produces

a tuple, reports the same after pausing itself (time t10) and the conditional breakpoint is

triggered. At the end, KeywordSearch has received 15 tuples and the conditional breakpoint

is hit. Notice that at time t9, when worker a contacts the principal after producing one tuple,

the principal does not enquire the other workers for their tally. The reason is that there is

only one tuple left to be computed, and reassigning this target to another worker will not

increase parallelism.

27

Before the conditional breakpoint is hit, the computation can be in one of the two states.

A normal processing state starts when the workers have been assigned their targets by the

principal and ends when one of the workers completes its target. A synchronization state

starts when a worker completes its target and ends when the principal allocates new targets

to the workers. The amount of time spent in the synchronization state depends on the

timeout threshold τ and the variance of the processing speeds of the workers.

Evaluating a global SUM predicate G2. The evaluation of the second predicate G2 follows

a similar process. The principal starts by dividing the target into three parts of 30 each.

A unique aspect of SUM is that a tuple can bring the total value closer to the target by an

arbitrary amount, unlike the COUNT example where a tuple only causes a change of 1. For

example, if the current sum of followerNum at a worker is 24, and the next tuple has a

followerNum value of 15, then the target of 30 will be “overshot” by 9. Therefore, it is

difficult to pause the execution at the exact target.

Our goal is to minimize the amount over the target. To do so, the principal actor initially

follows the same procedure as above till it gets close to the target and the overall needed value

is below a threshold. The threshold can be decided based on the distribution of followerNum

values (obtainable online). Then the principal can give the target to only one worker in order

to minimize the overshot amount. For example, say the sum of followerNum values received

by KeywordSearch till now is 80 and it needs a total of 10 more to reach the target. If it gives

the three workers a target of 3, 3, and 4, and the next tuples received by the three workers

have a followerNum value of 11, 14 and 13, respectively, the total followerNum sum will be

118, which is 28 more than the target of 90. Instead, if the principal gives the target of 10

to only one worker and keeps the other two paused, then even if that worker receives a tuple

with a followerNum value such as 14, the excess is of just 4. Thus, the system pauses closer

to the target.

28

The aforementioned methods are meant to allow the developer to pause the execution of the

workflow when a conditional breakpoint is hit. As in general debuggers, it is the developer’s

responsibility to decide what breakpoints to set and where in order to investigate the runtime

behavior of the program and find bugs. As Amber is a distributed system, the execution of

multiple actors to reach a global breakpoint could be non-deterministic.

2.6 Fault Tolerance

Fault tolerance is critical due to failures in large clusters. In traditional distributed data-

processing systems such as Spark, recovery only ensures the correctness of final computed

results. As we will see below, the presence of control messages in Amber poses new chal-

lenges for fault tolerance, because Amber additionally needs to ensure the recovery of control

messages and their resulting states. In this section we first show why the Spark approach

cannot be used, then present a solution to support fault tolerance in Amber.

2.6.1 Why not the Spark Approach?

Spark runs in a stage-by-stage fashion and allows checkpointing of the output of a stage.

When failure happens, Spark reruns the computation of the lost data partitions from the

last checkpoint using lineage information. This fault tolerance approach cannot be adopted

in Amber for two reasons. Firstly, the computation of each data partition in Spark is fully

independent, which allows Spark to recover only the failed partitions. In contrast, Amber has

execution dependencies among workers of an operator. For example, the principal can split

the global predicate in a breakpoint into multiple target numbers, which can be adjusted

dynamically for each worker (see Section 2.5.3). If Amber naively re-runs the computation of

failed data partitions, the assigned intermediate target values are lost, which will lead to an

29

incorrect detection of the global predicate. Secondly, a control message can alter the state

of a worker, and in case of failure, Amber needs to recover the worker to the same consistent

state. For example, suppose before a failure happens, the worker is paused when processing

the 10th record in the 1st data message, and the user has already seen the corresponding state

of the operator of this worker, such as the number of records processed so far. After recovery,

in order for the user to see the same operator state, we need to recover this worker to its

state before the failure. If we were to use the Spark fault tolerance approach, this worker

will not pause at all, since this approach only reruns the computation without considering

the control messages. One way to support fault tolerance in Amber is using the Chandy-

Lamport algorithm [33], which records all the in-transit data in a snapshot. This approach

is not efficient since it can generate a large amount of checkpointed data.

2.6.2 Supporting Fault Tolerance in Amber

Next we develop a technique to support fault tolerance in Amber based on the following

realistic assumptions. (A1) We treat the controller and the principal actors as a single unit

(called “coordinator”), which is placed on the same machine. (A2) Workers only exchange

data messages, not control messages. (A3) For each worker, both its computation logic and

response to a control message are deterministic, as assumed by many other data-processing

systems. Our fault tolerance technique consists of two parts: 1) checkpointing, and 2) logging

control messages and their arrival order relative to data messages. The approach used for

checkpointing depends on the execution model used. If a stage-by-stage execution model (or

batch execution model), like the one in Spark, is used, the data produced at the end of each

stage needs to be checkpointed. If a pipelined execution model, like the one in Flink, is used,

then the states of the workers need to be periodically checkpointed [30]. Recovery works by

restarting the computation from the last checkpoint and replaying the control messages by

injecting them in the original order relative to data messages.

30

X
(iv) Coordinator sends
control-replay logs to
the recreated worker.

(i) Worker receives
Pause message after

data message 8

(ii) DP thread observes variable
change after processing tuple

34 in data message 6

(iii) Log record is sent to
the coordinator for

logging

(v) Main thread reaches data
message 8. Waits for DP

thread to reach replay point.

(vi) Both main and DP
threads reach replay point.
Replay Pause message.

Coordinator

Pause

D6

D7

Pause

D6

D7

Tuple 34

Paused: F Paused: T

Pause

D6

D7

Tuple 34

Paused: TD9

D6

Pause;
<Main: 8>;

<DP: (6,34)>

D7 D7

Tuple 5

Pause

Paused: T

D9 D9 D9 D9

D6

Tuple 34

Worker

Coordinator Coordinator Coordinator Coordinator Coordinator

Crash
D8 D8 D8 D8 D8

Control-replay Log
Pause;

<Main: 8>;
<DP: (6,34)>

Figure 2.6: Fault Tolerance in Amber: logging control messages and recovery.

We use an example to explain this technique. Figure 2.6 illustrates the logging process of

control messages before a failure of a worker (steps (i)-(iii)). A Pause message arrives at

the worker after a data message with a sequence number 8 (step (i)). In step (ii), the main

thread sees the Pause message and saves the sequence number 8. The main thread alters its

internal state by setting the shared variable Paused to true. The DP thread observes the

variable change after processing the 34th tuple in the 6th data message and notifies the main

thread. In step (iii), the main thread sends the following log record to the coordinator:

(Pause; <Main: 8>; <DP: (6, 34)>)

The record includes the content of the control message (Pause), the sequence number (‘8’)

of the last data message of the main thread when it received this control message, and the

iteration status of the DP thread when it saw the shared-variable changed caused by this

control message. The iteration status includes the sequence number (‘6’) of the currently

processed data message and the index (‘34’) of the last processed tuple in the message. After

receiving this record, the coordinator stores it in a data structure called control-replay log

for this worker.

Suppose a machine failure happens, which causes the data partition of this worker to be lost.

During recovery, the coordinator recreates all the workers of the failed partition and sends

their control-replay log records respectively. During this period, the coordinator holds new

control messages for each recreated worker until the worker has replayed all its control-replay

31

log records. Each recreated worker reruns the computation from the last checkpoint. Since

the computation is deterministic (assumption A3), a re-run of these recreated workers leads

to the same content and sequence numbers of data messages received by each worker. Now let

us consider the recreated worker corresponding to the aforementioned worker. Steps (iv)-(vi)

in the figure show the recovery process of this worker. In step (iv), it receives its control-

replay log from the coordinator. Intuitively, the main thread and DP thread of this worker

continue processing their received data messages until both of them reach the control-replay

point as specified in the log. Specifically, after receiving a data message D, the main thread

checks the sequence number of D, denoted S(D). If S(D) < 8, the main thread processes

this message normally as before. If S(D) = 8, it processes D, then waits to synchronize with

the DP thread (step (v)). Similarly, when the DP thread processes the tuples in a message, it

handles those tuples “before” (6, 34) (i.e., tuple 34 in message 6). After processing this tuple,

it will synchronize with the main thread. After the synchronization, the control message is

replayed by the main thread as if this message were just received (step (vi)).

There can be a case where a worker failed before being able to respond to a control message

from the coordinator. For example, suppose the worker failed after step (ii) in Figure 2.6,

before it sends the log record to the coordinator. The coordinator marks the processing of

this Pause message as incomplete. During recovery, the coordinator first allows the recreated

worker to fully replay its existing control-replay log records. The coordinator then retries

sending this Pause message to the worker. Consequently, the worker can pause at a tuple

different from the one before the failure. Fault tolerance is still valid because the processing

of the Pause message was incomplete, and the user never saw its effect.

Amber’s fault tolerance approach incurs little overhead on execution because it only saves

control messages and the control-replay log, which have a much smaller size compared to

data messages. To deal with the case of coordinator failures, we can use write-ahead logging

or use backup coordinators to replicate the states of the coordinator. Notice that for an

32

operator with multiple data inputs such as Join or Union, to satisfy assumption A3, they

need to provide an ordering guarantee across their inputs, and the sequence numbers of each

input will be maintained and recorded separately. If failure happens during recovery, the

coordinator can simply restart the recovery procedure, which is idempotent.

2.7 Experiments

In this section, we present an experimental evaluation of the Amber system using real

datasets on clusters.

2.7.1 System Implementation and Setting

Data and Workflows. We used three real datasets, namely TPC-H, tweets, and New York

taxi events. For the TPC-H benchmark [116], we varied the scale factor to produce data of

different sizes. Based on the TPC-H queries 1 and 13 we constructed two workflows, shown

as W1 and W2 in Figure 2.7. Note that the Scan operators of W1 and W2, had a built-in

projection to read only the columns being used by the operators later. This improvement

was used in the experiments for both Amber and Spark. The second dataset included 100M

tweets in the US, on which we did sentiment analysis using an ML-based, computationally

expensive operator. The third dataset included New York City Yellow taxi trips (about

210 GB), and each record had information about a trip, including its pick-up and drop-off

geo-locations, times, trip distance, payment method, and fare [113].

Experiment Setting. All the experiments were conducted on Google Cloud Platform

(GCP). The data was stored in an HDFS file system on a storage cluster of 51 n1-highmem-4

machines, each with 4 vCPU’s, 26 GB memory, and 500GB standard persistent disk space

33

Figure 2.7: Workflows used in the experiments.

(HDD’s). The execution of a workflow was done on a separate processing cluster of 101 ma-

chines with the same type. The storage cluster and processing cluster were running Debian

GNU/Linux 9.9 (stretch) and Debian GNU/Linux 9.11 (stretch) operating system respec-

tively. The batch size used in data messages was 400 unless otherwise stated. Checkpointing

was disabled by default in all experiments, except the experiment concerning fault tolerance

(Section 2.7.7). Out of the 101 machines, we used one just for the controller and principal

actors of the operators, and the remaining 100 for data processing. When reporting the

number of computing machines, we only included the number of data-processing machines.

For the experiments in this chapter, we implemented Amber in C# on top of Orleans (version

2.4.2), running on the .Net core runtime (version 3.0). The operators were implemented as

discussed in Section 2.4.3, and the workers of each operator were assigned uniformly across

multiple machines. For example, if a Scan operator had 10 workers and the processing cluster

had 10 machines, then each machine had a single Scan worker.

34

2.7.2 Scaleup Evaluation

We evaluated the scaleup of Amber using the TCP-H data. We started with a dataset of

10GB processed by 1 machine (4 cores), and gradually increased both the data size in the

storage cluster and the machine number in the processing cluster linearly to 1TB processed

by 100 machines (400 cores). For both workflows W1 and W2, the early operators did most

of the work, leaving very few (less than 50) tuples for the final Sort operator. Therefore,

we allocated 2 workers for each operator on each machine, except Sort that was allocated

1 worker on each machine. The GroupBy operator had two layers (Section 2.4.3). The first

layer was allocated 2 workers on each machine and the second layer was allocated 1 worker

on each machine.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 510 20 50 60 75 100

E
x
e
c
u
tio
n

 t
im
e

 (
s
e
c
o
n
d
s
)

Number of machines

Workfow W1
Workfow W2

Figure 2.8: Scaleup of TPC-H workflows W1 and W2

Figure 2.8 shows the running time for workflow W1. For the 10GB data processed by 1

machine, the total time was around 98s. When we increased the data size and the cluster

size gradually, the time increased slightly. For the 1TB data processed by 100 machines, the

total time was around 124.3s. Figure 2.8 also shows the results for W2. For the 10GB data

processed by 1 machine, the total time was around 37.5s. When we increased the data size

and the cluster size gradually, the time increased at a faster rate than W1 because of the

intrinsic quadratic complexity of Join. It took 101.6s for 100 machines to process 1TB data.

35

2.7.3 Speedup Evaluation

To evaluate the speedup of Amber, we measured the time taken to execute workflows W1

and W2 on the 50GB data using 1 computing machine initially and gradually increased the

number of computing machines to 100.

 0

 20

 40

 60

 80

 100

14 8 10 20 40 60 80 100

S
p
e
e
d
u
p

 R
a
tio

Number of machines

Workfow W1
Workfow W2

Figure 2.9: Speedup for TPC-H workflows W1 and W2

Figure 2.9 shows the speedup for workflow W1. For the 50GB data processed by 1 machine,

the total time was around 484.5s. When we increased the number of machines gradually,

the time decreased. The time was about 10s when using 60 machines, with a speedup ratio

of 48.4. When we increased the number of machines further to 80 and then 100, the total

time taken did not decrease at the same rate. For 100 machines, the total time taken was

8s (with a speedup ratio of 60.5). This result was due to the fact that the total data to be

processed was only 50GB and the machines were not fully utilized. Figure 2.9 also shows

the results for W2. Its speedup was sub-linear due to the intrinsic quadratic complexity of

Join. Increasing the number machines from 60 to 100 yielded little performance gain due to

the increased communication cost.

36

2.7.4 Time to Pause Execution

We used Pause and Resume as examples to evaluate the time taken to process a control

message while a workflow is running on a cluster. We did the experiment with the similar

setting as the scaleup experiments. Each execution was interrupted 8 times by sending a

Pause then a Resume message, before its completion.

 0

 50

 100

 150

 200

1 2 5 10 20 50 100

T
im
e

 t
o

 P
a
u
s
e

 (
m
s
)

Number of machines

Percentiles
Median

Figure 2.10: Time taken to pause the execution while scaling up TPC-H work-
flow W1. 1

st percentile, 1st quartile, median, 3rd quartile, and 99th percentile are shown.

 0

 200

 400

 600

 800

 1000

1 2 5 10 20 50 100

T
im
e

 t
o

 P
a
u
s
e

 (
m
s
)

Number of machines

Percentiles
Median

Figure 2.11: Time taken to pause the execution while scaling up TPC-H work-
flows W2. 1

st percentile, 1st quartile, median, 3rd quartile, and 99th percentile are shown.

Figure 2.10 and Figure 2.11 show the candlestick chart with 1st percentile, 1st quartile,

median, 3rd quartile, and 99th percentile pause times for W1 and W2 respectively. All the

times were less than 1 second. The time to pause W2 was relatively more than that of

37

W1 due to the high number of data messages received by the Join operator, resulting in

more time to reach the Pause message. The time to resume each workflow was also in

milliseconds. The time to pause increased with the number of machines due to the inherent

increase in the communication cost and higher number of data messages being received by

the operators. These results show that control messages in Amber can be handled quickly

during the processing of a large amount of data. Note that time to pause depends on the

delay of checking the shared variable Pause by the DP thread, which is approximately equal

to the time required by the operator to process a single tuple. The delay in the relational

operators was in milliseconds. For complex operators that need more time to process one

tuple such as ML operators, the time to pause could be higher.

2.7.5 Effect of Worker Number

A feature of Amber is that different operators can have different numbers of workers. We

used workflow W3 on the tweet dataset to evaluate the effect of the number of workers

allocated to computationally expensive operators. It included a SentimentAnalysis operator,

which was based on the CognitiveRocket package [102] and needed about 4 seconds to process

each tuple. We used it as an example of expensive ML operators. The workflow took 100M

tweets as the input and first applied KeywordSearch and Filter operators. The number of

tweets going into the SentimentAnalysis operator was 1,578. We varied the total number

of workers allotted to the SentimentAnalysis operator and measured its effect on the total

running time. The total number of workers for all other operators was fixed at 10. The

workflow was run on a cluster of 10 machines with a batch size of 25 for data from Filter to

SentimentAnalysis operator. We used a smaller batch size because we only had 1,578 tuples

to be distributed among sentiment analysis workers.

Figure 2.12 shows the results. The running time when the operator had 10 workers was

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70
E
x
e
c
u
tio
n

 t
im
e

 (
s
e
c
o
n
d
s
)

Number of workers

Figure 2.12: Changing the worker number of the SentimentAnalysis operator
in workflow W3 for tweets.

647s. When we doubled the number of workers, the execution time reduced to 368s. The

rate of decrease declined as the number of workers was further increased. When the number

of workers was increased above 50, the execution time even started increasing, because data

got distributed among many workers which competed for CPU (total number of CPU cores

used in the experiment was 40), thus increasing the overhead of context switching. Thus,

workers took more time to finish their task.

Dynamic resource allocation. ML operators such as SentimentAnalysis can become a

bottleneck in workflows due to their slow speed of computation and extra resources needed

under peak load conditions. We implemented the technique of dynamic resource allocation

as suggested in [78] to allocate extra machines to the SentimentAnalysis operator during the

execution, and evaluated the performance gain. First, we ran W3 on a cluster of 6 machines,

with each operator having 1 worker per machine, except SentimentAnalysis that had 5

workers per machine, and the total time to run W3 was 422s. Then, we modified the setting

by adding one more machine to the cluster every minute and allocating 5 SentimentAnalysis

workers on the newly added machine. The total time to run W3 reduced to 407s. This

reduction of 15s was feasible because of Amber’s capability to add more computing resources

dynamically.

39

2.7.6 Conditional Breakpoint Evaluation

For the TPC-H workflow W1 running on 10 machines, we used 119M tuples and set a con-

ditional breakpoint on the output of the Filter operator to pause the workflow after this

operator produced 100M tuples. We varied the timeout threshold (τ) used by the principal

from 0ms to 5s, and measured the time in the normal processing state and the time in the

synchronization state, as discussed in Section 2.5.3. Figure 2.13 shows the results. The nor-

mal processing time was about 30s. The synchronization time was relatively small. When

τ was high, the total synchronization time was around 2.15s. When we decreased τ , the

synchronization time decreased. The overall time decreased with decreasing τ since we had

more data parallelism. The best setting was when τ was a few milliseconds.

 0

 10

 20

 30

 40

 50

0 10 100 200 500 1k 2k 3k 4k 5k

T
im
e

 (
s
e
c
o
n
d
s
)

τ (milliseconds)

Total time without cond. brk.
Total time with cond. brk

Total normal processing time
Total sync. time

Figure 2.13: Conditional breakpoint: running time versus principal’s waiting
threshold τ .

To evaluate the overhead of conditional breakpoints, we measured the total time needed by

Filter operator to produce 100M tuples when the input had 119M tuples and no conditional

breakpoint was set. Figure 2.13 also shows that the time taken by the Filter operator to

produce the same 100 million tuples was about 29.8s, which was close to the overall time

taken with the conditional breakpoint.

40

2.7.7 Performance Comparison with Spark

We compared the performance of Amber with Apache Spark using TPC-H W1 and W2.

Data checkpointing was disabled for Spark. The scaleup experiment settings were re-used

for Spark. Similar to Amber, we put the Spark’s driver on one dedicated machine and al-

lowed its executors to run on the other 100 machines. We used two Spark API’s, namely the

DataFrame API on top of the Spark SQL engine, and the RDD API, which is its primary

user-facing API [108]. The RDD API is a more general API that supports user-defined data

structures and transformations. The DataFrame API is a faster SQL-based API because

of many optimizations, such as binary data formats, fast serialization, and code genera-

tion [107].

 0

 20

 40

 60

 80

 100

 120

 140

25 10 20 50 60 75 100

E
x
e
c
u
tio
n

 T
im
e

 (
s
e
c
o
n
d
s
)

Number of machines

Amber
Spark (RDD)

Spark (Dataframe)

Figure 2.14: Scaleup for Amber and Spark for W1.

 0

 20

 40

 60

 80

 100

 120

 140

25 10 20 50 60 75 100

E
x
e
c
u
tio
n

 T
im
e

 (
s
e
c
o
n
d
s
)

Number of machines

Amber
Spark (RDD)

Spark (Dataframe)

Figure 2.15: Scaleup for Amber and Spark for W2.

41

Figures 2.14 and 2.15 show the results for TPC-H W1 and W2, respectively. Amber achieved

a performance comparable to Spark’s DataFrame API and even more comparable to the

RDD API for W2. The performance gain of Spark’s DataFrame API can be attributed to its

optimizations discussed earlier. However, to our surprise, Spark’s RDD API outperformed

Spark’s DataFrame API for W1. Amber performance remained quite comparable to both

the API’s for W1 too. We also compared Amber and Spark (DataFrame API) using the Taxi

workflow W4 on 10 machines. Spark took 442s, while Amber took 470s.

2.7.8 Fault Tolerance in Amber and Spark

We executed Amber in a stage-by-stage execution model (batch execution model) similar to

Spark and evaluated the overhead of supporting fault tolerance. To evaluate the overhead

of supporting fault tolerance, we turned on data checkpointing in Amber and Spark to write

checkpointed data to a remote HDFS. In Amber, a worker created a separate file for each

hash partition. In contrast, Spark consolidates its checkpoint data into HDFS block-sized

files of 128MB. With data checkpointing on, we scaled the execution of W2 on both systems

from 2 machines (20GB data) to 20 machines (200GB data) and let the workflow run to

completion. We chose W2 because it has more number of stages than W1. In order to

reduce the number of produced files, we used only 1 worker per operator per machine for

Amber. We used the DataFrame API of Spark as it was faster than the RDD API for

W2. Figure 2.16 shows the execution times. Amber’s data checkpointing initially performed

better than Spark. For a higher number of machines, Amber took more time to complete

the execution due to the quadratic increase in the number of files. For instance, for the

20-machine case, Amber produced 400 files (20 workers, each producing 20 partitions) at the

end of each stage, while Spark produced only 66 files.

We evaluated crash recovery for Amber. When running W2 on 10 machines (100GB data),

42

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 5 10 20
E
x
e
c
u
tio
n

 T
im
e

 (
s
e
c
o
n
d
s
)

Number of machines

Amber-W2-Chkpt
Spark(DataFrame)-W2-Chkpt

Amber-W2

Figure 2.16: Data-checkpointing overhead for Amber and Spark while executing
W2. The time for Amber with data checkpointing disabled and time for Spark and Amber
with data checkpointing enabled are shown.

after the Join operator ran for 5s, we simulated a crash by killing the workers of one data

partition. Amber took 176s in total (including crash and recovery) to run to completion,

which was comparable to the case where there was no failure (153s). We also evaluated

recovery of control messages in Amber. We paused the workflow after it entered the Join

stage for 10s and then simulated a crash. Amber took 6s to recreate actors, and 10s of

recomputation to recover to the same Paused state.

Summary: The experiments showed that Amber can process control messages quickly and

support conditional breakpoints with a low overhead. It achieved a high performance (both

scaleup and speedup) comparable to Spark. The capability of supporting dynamic resource

allocation during the execution achieved a better performance.

2.8 Conclusions

In this chapter we presented a system called Amber that supports powerful and responsive

debugging during the execution of a dataflow. We presented its overall system architecture

based on the actor model, studied how to translate an operator DAG to an actor DAG that

43

can run on a computing cluster. We described the whole lifecycle of the execution of a

workflow, including how control messages are sent to actors, how to expedite the processing

of these control messages, and how to pause and resume the computation of each actor. We

studied how to support conditional breakpoints, and presented solutions for enforcing local

conditional breakpoints and global conditional breakpoints. We developed a technique to

support fault tolerance in Amber, which is more challenging due to the presence of control

messages. We implemented Amber on top of Orleans, and presented an extensive experi-

mental evaluation to show its high usability and performance comparable to Spark.

44

Chapter 3

Reshape: Adaptive Result-Aware

Skew Handling for Exploratory

Analysis on Big Data

3.1 Introduction

We mentioned various existing systems for data analysis in Chapter 1. Data processing

frameworks such as Hadoop [11], Spark [13], and Flink [10] provide programming interfaces

and GUI-based workflow systems such as Alteryx [6], RapidMiner [99], Knime [70], Ein-

blick [45], and Texera [124] provide a GUI interface that are used by analysts to formulate

data processing jobs. Once the data processing job is created, it is submitted to an engine

that executes the job.

The process of data analysis, especially in GUI-based analytics systems, has two important

characteristics. 1) Highly exploratory: The process of building a workflow can be very

exploratory and iterative [49, 128, 120]. Often the user constructs an initial workflow and

45

executes it to observe a few results. If they are not desirable, she terminates the current

execution and revises the workflow. The user iteratively refines the workflow until finishing

a final workflow to compute the results. As an example, Figure 3.1 shows a workflow at

an intermediate step during the task of covid data analysis. It examines the relationship

between the number of tweets containing the keyword covid and the number of Covid cases

in 2020. The monthly details about the Covid cases are joined with tweets filtered on the

covid keyword on the month column. The result is plotted as a visualization operator

that shows a bar chart about the total count of tweets about Covid per month and a line

chart about the total Covid cases per month. The analyst may observe the visualization

and choose to continue refining the workflow to do a deeper-dive analysis for specific US

states. In the Texera system we are developing, we observe that the users refined a workflow

about 80 times on an average before reaching the final version. 2) Suitable for non-

technical users: GUI-based workflow execution systems significantly lower the technical

learning curve for its users, thus enabling non-IT domain experts to do data science projects

without writing code. Such systems also try to minimize the requirements on users to know

the technical details of workflow execution, so that the user can focus solely on the analytics

task at hand.

In exploratory data analytics, it is vital for a user to see results quickly to allow her to identify

problems in the analysis early and take corrective actions without waiting for the entire

workflow to finish executing. Pipelined execution [22, 92] is a popular workflow execution

model that can produce results quickly. In pipelined execution, an operator does not wait

for its entire input data to be produced before processing the input and sending results to

its downstream operators. For example, when the workflow in Figure 3.1 is executed using

pipelined model, the HashJoin operator starts executing and producing results as soon as

the Filter operator outputs initial results. The user can notice the initial results and make

any changes, if needed. Pipelined execution is adopted by data-processing engines such as

Flink [10], Samza [12], and Storm [14].

46

Controller
C1
C2

F1
F2

Scan

J1

J2

V1

HashJoin

Visualize

Jan, Jul

Feb, Aug
Mar, Sep

Apr, Oct

J3
J4T1

T2

Scan

Scan

Scan Filter
month

Visualization

Jan
Feb
Mar
Apr
May
Jun

Jul
Aug
Sep
Oct
Nov
Dec

3
1
2
1
5
1

13
12
16
6

15
25

J1=16

Filter

Tweets (Id, text, month, state)

Monthly covid cases (Month, case count, state, ...)

(a) Workflow DAG formulated using GUI

(b) Physical execution of workflow
(c) Percentage of tuples

per worker

Jan May DecSep

cases

tw

ee
ts

text contains "covid"

J5
J6

May, Nov
Jun, Dec

C3

T3 F3

Hash
Partition

J2=13
J3=18
J4=7

J5=20
J6=26

Figure 3.1: Partitioning skew in a data science project of Covid tweet analysis.

As data volumes in these systems increase, it is indispensable to do parallel processing, in

which data is partitioned and processed by multiple computation units in parallel. Data

partitioning, either using hash partitioning or range partitioning, often results in skew. As

an example, the HashJoin operator in Figure 3.1 receives hash partitioned inputs from the

two upstream operators. Although the hash function allots the same number of months to

each join worker, load imbalance still exists because of different numbers of tweets for those

months. It is well known that partitioning skew adversely affects the efficiency of engines as

it increases the processing time and reduces the throughput [41, 74].

The problem of partitioning skew has been extensively studied in the literature, mainly from

the perspective of increasing the end-to-end performance. However, there is little research

on the following important problem:

In exploratory data analytics, how to consider the results shown to the user when

mitigating skew?

In exploratory data analysis, it is valuable to the analyst if the initial results are represen-

47

tative of the final results because they allow her to identify issues early and make necessary

changes. Partitioning skew may lead to the production of misleading results during the

execution. Let us consider the production rate of October and December tuples from the

HashJoin operator in the running example. Assume that the HashJoin operator is the bot-

tleneck of the execution, and its workers receive input at an equal or higher rate than they

can process. Although there are more December tuples than October, their production rates

are similar because the total amounts of data received by J4 and J6 are different (details

in Section 3.3). Thus, the bar chart shows similar heights for October and December bars

till J4 completes processing, whereas the December bar is almost four times taller than the

October bar in the final result. In this chapter, we explore partitioning skew mitigation in

the setting of exploratory data analysis and analyze the effect of mitigation strategies on the

results shown to the user.

A common solution to handle partitioning skew at an operator is blocking the partitioning of

its input data till the entire input data is produced by its upstream operator [109, 41, 123, 35,

2] and then sampling the input data to create an optimal partitioning function. For example,

in Figure 3.1, the HashJoin operator waits for the Filter operator to completely finish. Then,

the output of the Filter operator is sampled to create an optimal partitioning function to send

data to the HashJoin operator. Such blocking is not allowed in pipelined execution which

makes these solutions infeasible in pipelined execution setting. Even temporarily blocking

the partitioning till a small percentage of input (e.g., 1% [100]) is collected for sampling can

result in a long delay if there is an expensive upstream operator.

A different solution applicable to the pipelined execution setting is to detect the overloaded

workers of an operator at runtime and transfer the processing of a few keys of the overloaded

worker to a more available worker. For example, J6 is detected to be overloaded at runtime

and the processing of June tuples is transferred to J4. However, this transfer has little effect

on the results shown to the user (details in Section 3.3). In order to show representative

48

initial results, the data of December has to be split between J4 and J6. Thus, these two

approaches of transferring load from J6 to J4 have different impacts on the initial results

shown to the user.

In this chapter, we analyze the effect of different skew mitigation strategies on the results

shown to the user and present a novel skew handling framework called Reshape that adap-

tively handles skew in a pipelined execution setting. Reshape monitors the workload metrics

of the workers and adapts the partitioning logic to transfer load whenever it observes a skew.

These modifications can be done multiple times as the input distribution changes [21, 72]

or if earlier modifications did not fully mitigate the skew. The command to adapt the par-

titioning logic is sent from the controller to the workers using low latency control messages

that are supported in various engines such as Flink, Chi [78], and Amber [73].

We make the following contributions. (1) Analysis of the impact of mitigation on the shown

results: We present different approaches of skew mitigation and analyze their impact on the

results shown to the user. (Section 3.3). (2) Automatic adjustment of the skew detection

threshold: We present a way to dynamically adjust the skew detection threshold to reduce

the number of iterations of mitigation to minimize the technical burden on the user (Sec-

tion 3.4). (3) Applicability to multiple operators: Since a data analysis workflow can contain

many operators that are susceptible to partitioning skew, we generalize Reshape to multiple

operators such as HashJoin, Group-by, and Sort, and discuss challenges related to state mi-

gration (Section 3.5). (4) Generalization to broader settings: We consider settings such as

high state-migration time and multiple helper workers for an overloaded worker and discuss

how Reshape can be extended in these settings (Section 3.6). (5) Experimental evaluation:

We present the implementation of Reshape on top of two big-data engines, namely Amber

and Flink, to show the generality of this approach. We report an experimental evaluation

using real and synthetic datasets on large computing clusters (Section 3.7).

49

3.1.1 Related work

There have been extensive studies about skew handling in two major execution paradigms in

big data engines – batch execution and pipelined execution. Batch-execution systems such

as MapReduce [11] and Spark [13] materialize complete input data before partitioning it

across workers. Pipelined-execution systems such as Flink [10], Storm [14] and Amber [73]

send input tuples to a receiving worker immediately after they are available. The complete

input is not known to the operator in pipelined execution, which makes skew handling more

challenging.

Skew handling in batch execution. A static technique is to sample and obtain the

distribution of complete input data and use it to partition data in a way that avoids

skew [109, 41, 123, 35, 2]. Adaptive skew-handling techniques adapt their decisions to chang-

ing runtime conditions and mitigate skew in multiple iterations. For instance, SkewTune [74]

and Hurricane [25] handle skew adaptively. That is, upon detecting skew, SkewTune stops

the executing workers, re-partitions the materialized input, and starts new workers to process

the partitions. Hurricane clones overburdened workers and uses a special storage that allows

fine-grained data access to the original and cloned workers in parallel. Hurricane can split

the processing of a key over multiple workers and thus has a fine load-transfer granularity.

SkewTune cannot split the processing of a key.

Static skew handling in pipelined execution. Flow-Join [100] avoids skew in a HashJoin

operator. It samples the first 1% of input data of the operator to decide the overloaded keys

and does a broadcast join for the overloaded keys. Since it makes the decision based on an

initial portion of the input, it cannot handle skew if the input distribution changes multiple

times during the execution. Partial key grouping (PKG) [86, 87] uses multiple pre-defined

partitioning functions. It results in multiple candidate workers sharing the processing of the

same key. Since the partitioning logic is static, a worker may process multiple skewed keys,

50

which makes it more burdened than other workers. PKG cannot be used to handle skew in

operators such as Sort and Median.

Adaptive skew handling in pipelined execution. Flux [103] divides the input into

many pre-defined mini-partitions that can be transferred between workers to mitigate skew.

Thus, the load-transfer granularity is fixed and pre-determined. Also, it cannot split the

load of a single overloaded key to multiple workers. Another adaptive technique minimizes

the input load on workers that compute theta joins by dynamically changing the replication

factor for data partitions [46]. This approach uses random partitioning schemes such as

round-robin and hence is not prone to partitioning skew. Reshape handles skew adaptively

over multiple iterations. It determines the keys to be transferred dynamically and allows an

overloaded key to be split over multiple workers for mitigation.

3.2 Reshape: Overview

We use Figure 3.2 to give an overview of Reshape.

S

H

X1

X2

Previous
Operator

Skewed
Operator

Is
Is

IH

Controller Metrics

S

H

X1

X2

Is
Is

IH
IH

Controller Notify

S

H

X1

X2

Is
Is

IH
IH

Controller

Statep

S

H

X1

X2

Is
Is

IH
IH

Controller Done

S

H

X1

X2

Is
Is

IH

IH

ControllerChange
Data flow

S

H

X1

X2

Is
Is

p,IH
p,IH

Controller

IH

(a) Controller collects
metrics and detects skew

(b) Controller notifies S to use
H as helper worker

(c) Skewed worker
transfers state

(d) Skewed worker tells
controller that it is done

(e) Controller changes
partitioning logic

(f) Part of skewed worker's input
directed to helper worker

Figure 3.2: Steps of skew-handling in Reshape. Skew detected in (a) and miti-
gated in (b)-(f).

51

3.2.1 Skew detection

During the execution of an operator, the controller periodically collects workload metrics

from the workers of the operator to detect skew (Figure 3.2(a)). There are different metrics

that can represent the workload on a worker such as CPU usage, memory usage and un-

processed data queue size [25, 48]. Skew handling in Reshape is independent of the choice

of workload metric, and we choose unprocessed queue size as a metric in this chapter. We

choose this metric because the results seen by the analyst depend on the future results pro-

duced by a worker, which in turn depend on the content of its unprocessed data queue. We

refer to a computationally overburdened worker as a skewed worker and workers that share

the load as its helper workers.

Skew test. Given two workers of the same operator, say C and L, the controller performs a

skew test to determine whether C is a helper candidate for L. The skew test uses the following

inequalities to check if L is computationally burdened and the workload gap between L and

C is big enough:

ϕL ≥ η, (3.1)

ϕL − ϕC ≥ τ, (3.2)

where η and τ are threshold parameters and ϕw is the workload on a worker w.

Helper workers selection. The skew tests may yield multiple helper candidates for L. For

simplicity, we assume till Section 3.5 that one helper worker is assigned per skewed worker.

In Section 3.6, we generalize the discussions by considering multiple helpers per skewed

worker. The controller chooses the helper candidate with the lowest workload that has not

52

been assigned to any other overloaded worker as the helper of L. In our discussions forward,

we use S and H to refer to a skewed worker and its chosen helper worker respectively.

3.2.2 Skew mitigation

Suppose the skewed worker S and its helper H have been handling input partitions IS and

IH , respectively (Figure 3.2(a)). Reshape transfers a fraction of the future input of S to H

to reduce the load on S. Here future input refers to the data input that is supposed to be

received by a worker but has not yet been sent by the previous operator. The controller

notifies S about the part p of partition IS that will be shared with H to reduce the load of

S (Figure 3.2(b)). The downstream results shown to the user have a role to play in deciding

p, which will be discussed in Section 3.3. Worker S sends to H its state information Statep

corresponding to the partition p (Figure 3.2(c)). Details about state-migration strategies

are in Section 3.5. We assume the state migration time to be small till Section 3.5. In

Section 3.6, we consider the general case where the state-migration time can be significant.

Worker H saves the state information and sends an ack message to S, which then notifies

the controller (Figure 3.2(d)). The controller changes the partitioning logic at the previous

operator (Figure 3.2(e,f)).

Fault Tolerance. The Reshape framework supports the fault tolerance mechanism of the

Flink engine [30] that checkpoints the states of the workers periodically. During checkpoint-

ing, a checkpoint marker is propagated downstream from the source operators. When an

operator receives the marker from all its upstream operators, it takes a checkpoint which

saves the current states of the workers of the operator. Every checkpoint has the informa-

tion about the current partitioning logic at the workers. If checkpointing occurs during state

migration, then the skewed worker additionally forwards the checkpoint marker to each of

its helper workers. A helper worker needs to wait for the checkpoint marker from its corre-

53

sponding skewed worker. Since the skewed workers and the helper workers are two disjoint

sets of workers, there is no cyclic dependency in marker propagation and the checkpointing

process successfully terminates. During recovery, the workers restore their states from the

most recent checkpoint and then continue the execution.

3.3 Result-aware load transfer

After helper workers are selected for the skewed workers, the load needs to be transferred

from the skewed workers to the corresponding helper workers. In this section, we assume that

the state information in the workers is fixed (immutable) and the fixed state belonging to a

partition has already been transferred from the skewed worker to the helper worker before

the load of that partition is transferred. More details about the state-migration process

will be discussed in Section 3.5. In Section 3.3.1, we consider the different approaches of

load transfer between workers and analyze their impact on the results shown to the user.

Unlike other skew handling approaches that focus on evenly dividing the future incoming

load among the workers, Reshape has an extra phase of load transfer at the beginning that

removes the existing load imbalance between the workers. In Section 3.3.2, we discuss these

two phases of load transfer and the significance of the first phase.

3.3.1 Mitigation impact on user results

There are broadly two approaches to transfer the load from a skewed worker to its helper

worker. We use the probe input of the HashJoin operator in Figure 3.1 (from the Filter

operator) as an example to explain the concepts in this section. It is assumed that the build

phase of the join has finished. Suppose Reshape detects J6 and J5 as the skewed workers

in the running example and J4 and J2 are their corresponding helpers, respectively. The

54

load-transfer approaches are implemented by changing the partitioning logic at the Filter

operator and affects the future tuples going into the HashJoin operator.

1. Split by keys (SBK). In this approach, the keys in the partition of the skewed worker are

split into two disjoint sets, say p1 and p2. The future tuples belonging to p2 are redirected

to the helper worker, while tuples belonging to p1 continue to be sent to the skewed worker.

For example, the partition of the skewed worker J6 is divided into p1 = {December} and p2

= {June}, and the future June tuples are sent to J4, while December tuples continue to go

to J6.

2. Split by records (SBR). In this approach, the records of the keys in the partition of

the skewed worker are split between the skewed and the helper worker. The ratio of the

split decides the amount of load transferred to the helper worker. For example, if the Filter

operator needs to redirect 9
26

of the input J6 to J4, then it redirects 9 tuples out of every 26

tuples in J6’s partition to J4.

Impact of the two approaches on user results. The two load transfer approaches have

their own advantages and limitations. For example, SBK incurs an extra overhead compared

to SBR because SBK requires the workers to store the distribution of workload per key. On

the other hand, SBR may require transfer of a larger state size compared to SBK, if all the

keys of a skewed worker are shared with the helper. There are existing works in literature

that address these concerns [81, 100, 129, 55, 84, 65]. In the remainder of this subsection,

we compare these two approaches from the perspective of their effects on the results shown

to the user.

a) Representative initial results. As discussed before, it is valuable to the user if the

initial results are representative of the final results. Partitioning skew may lead to the

production of misleading results during the execution as shown next. Let us consider the

bar chart visualization for October and December in the running example. The total count of

55

December tweets, according to Figure 3.1(c), is about four times that of October tweets, i.e.,

the December bar is about four times longer than the October bar in the final visualization.

Assume that the join operator is the bottleneck of the execution, and its workers receive input

at an equal or higher rate than what they can process. Also assume that the processing speeds

of the workers of HashJoin are the same, say t per second. J4 produces 6
7
∗ t October tuples

and J6 produces 25
26
∗ t December tuples per second in the unmitigated case (Figure 3.3(a)).

The rate of production of October and December tuples are similar because the total amount

of data received by J4 and J6 are different. The bar chart shows similar heights for October

and December bars in the unmitigated case till J4 completes its processing.

J4

J6

J4

J6 Oct Dec

(b) Split by key (c) Split by records

AprOct DecJun

Oct Dec

J4

J6

(a) No mitigation
(Input queue) Monthly count

Oct Dec

Figure 3.3: SBR splits December tuples on both workers and shows represen-
tative bar charts.

When SBK is used to mitigate the skew, the processing of June tuples is transferred to J4

(Figure 3.3(b)). However, this transfer has little effect on the results shown to the user. The

production rates of October and December after the transfer are 6
8
∗ t and t respectively.

That is, the heights of the December and October bars are still about the same, which is

not representative of the final results.

SBR has more flexibility for transferring load than SBK because SBR can split the tuples

of a key over multiple workers. It leads to more representative initial results than SBK as

shown next. The processing of December and June tuples can be split between J6 and J4.

For simplicity of calculation, we assume that only December tuples are shared with J4. Since

December tuples are now processed by two workers instead of one, the speed of production

of these tuples increases. In order to make the future workloads of J4 and J6 similar, SBR

redirects 9
26

of the input of J6 to J4, which increases the total percentage load on J4 to 16

56

and decreases that on J6 to 17. This is implemented by redirecting 9 December tuples out

of every 26 tuples in J6’s partition to J4. The production rates of October tuples after the

transfer is 6
16
∗ t. The December tuples are produced by J4 and J6. The production rate of

December by J4 is 9
16
∗ t and by J6 is 16

17
∗ t, which results in a total of approximately 24

16
∗ t.

Thus, using SBR leads to a more representative production ratio of December to October

tuples of about 24 : 6, which is similar to the actual ratio of 25 : 6.

J2

J4

Dec
(1-31)

J2

J4

(a) Previous operator sending
December tuples to one worker

(b) Previous operator sending
December tuples to two workers

1 10 20 31 1 10 20 31

Dec
(1-31)

Dec
(20-31)

(Input queue) Date Date

Dec De
c

Dec

Figure 3.4: Processing a key at multiple workers by SBR leads to a broken line
chart. Only December tuples have been shown for simplicity.

b) Preserving order of tuples. If the tuples of a key being input into an operator are

in a particular order and they need to be processed in that order, then SBK is the suitable

approach because it enforces a processing order by restricting the processing of the tuples

of a key to a single worker at a time. If the processing of a key needs to be transferred

to another worker, the migration can be synchronized using techniques such as pause and

resume [15, 29, 103] or markers [46] (details in Section 3.5) so that the tuples are processed in

order. In contrast, SBR distributes the tuples of a key over multiple workers to be processed

simultaneously, which may cause them to be processed out of order. Consider the following

example where an out-of-order processing of the tuples of a key is not desirable. Let us

slightly modify the visualization operator in the running example to plot a line chart that

shows daily count of covid related tweets. The daily count for each month is plotted as a

separate line in the line chart. Figure 3.4 shows the plot for December in the line chart.

Applications may want to show such plots as a continuous line with no breaks, starting from

day 1 and extending towards increasing dates as execution progresses, for user experience

57

purposes [1]. In order to achieve this, the tuples of a month input into the HashJoin operator

are sorted in the increasing order of date. It is expected that HashJoin produces tuples sorted

by date, which can be consumed by the visualization operator to create a continuous plot.

SBK assures that the December key is processed by only one worker at a time. Thus, it

preserves the order of December tuples in the output sent to the visualization operator

(Figure 3.4(a)). When SBR is used, the December tuples are split between J4 and J2. In the

example shown in Figure 3.4(b), the Filter operator starts partitioning December tuples by

SBR when the tuples around the 20th of December are being produced by the Filter operator.

Consequently, J2 starts receiving the tuples from the date of the 20th December and above.

As J2 and J4 concurrently process data, the visualization operator receives the tuples out of

order, resulting in broken line chart plots as shown in the figure.

In conclusion, SBR allows more flexibility and enables the production of representative initial

results than SBK, but SBR does not preserve the order of tuples. Thus, SBR can be chosen

unless there exists a downstream operator that imposes some requirement over the input

order of the tuples. Such operators can be found at the workflow compilation stage. The

operators before such an operator in the workflow can adopt SBK.

3.3.2 Extra phase in load transfer

The goal of skew mitigation is to use one of the two approaches to transfer the load from the

skewed worker to the helper worker in such a way that both workers have a similar workload

for the rest of the execution. The skew handling works in literature usually have a single

phase of load transfer that focuses on splitting the incoming input such that the workers

receive similar load in future. Reshape has an extra phase of load transfer at the beginning

that removes the existing load imbalance between the workers. We first give an overview of

the two phases in Reshape, and explain the significance of the first phase.

58

First Phase. After the detection of skew (Figure 3.5(a)), the controller starts the first

phase of load transfer. The first phase lets the helper “catch up” quickly with the skewed

worker. One implementation of the partitioning logic in the first phase at the Filter operator

is that it sends all future tuples of J6 to J4 (Figure 3.5(b)). Note that J6 will continue to

process the data in its queue. An alternative implementation is to send only a portion of

J6’s partition, such as the December data, to J4. This alternative reduces the amount of

state transfer, but it will take longer time for J4 to catch up with J6.

 J4

 J6

X1

 J4

 J6

X1

 J4

 J6
X1

Apr, Oct
Jun

Dec

(c1) Phase 2 (split
by key) : June
tuples sent to J4

(a) Skew Detected.
(b) Phase 1: all input
of J6 redirected to J4.

 J4

 J6

X1

(c2) Phase 2 (split by
records): J6 shares
all months with J4

AprOct DecJun

Apr, Oct

Jun, Dec

Build state

Input
queue

Jun, Dec

Apr, Oct

Jun, Dec

Apr, Oct

Figure 3.5: An implementation of the two phases using the “SBK” and “SBR”
approach. X1 is a previous operator worker.

Second Phase. Once the queue sizes of the two workers become similar, the controller

starts the second phase. Its goal is to modify the partitioning logic at the Filter operator

to redirect part of the future input of J6 in such a way that both the workers receive a

comparable workload. In order to do this, first the incoming workload of the workers needs

to be estimated. A sample of workloads needs to be collected to estimate the future workload

of the workers [98, 35, 129, 55] using a prediction function ψ. Reshape can use the sample

from the recent history collected during the current execution [69, 105]. If historical data is

available, it can complement the recent data and improve the prediction accuracy [53, 94].

To simplify the discussion of the second phase, we make the following assumptions:

• The two workers receive data at constant rates.

59

• We have a perfect estimator to accurately predict the incoming data workload on the

workers.

In Section 3.4 we will relax these two assumptions. In Figure 3.1(c), the original load ratio

of J6 to J4 is 26 : 7. SBK cannot handle the skew between J6 and J4. The approach transfers

the June month to J4 (Figure 3.5(c1)), which does not mitigate the skew. However, SBR can

redirect 9
26

of the input of J6 to J4, which mitigates the skew by increasing the percentage

load on J4 to 16 and decreasing the percentage load on J6 to 17. An example where SBK

can mitigate the skew is the case of skew between the skewed worker J5 and its helper J2.

SBK can transfer the processing of May to J2, which brings the two workers to a similar

workload. Specifically, the percentage load on J2 increases to 18 and that on J5 decreases to

15.

It should be noted that two phases do not mean that the state transfer has to be done

twice necessarily. There are implementations where the state transfer during the first phase

is enough and the second phase does not require another state transfer. If the keys whose

workloads are being transferred from the skewed worker to the helper worker in the second

phase are the same as the keys whose workloads were transferred in the first phase, then

there is no need to transfer state in the second phase. For example, in SBR, the state of all

keys are sent to J4 in the first phase, and there is no state migration needed for the second

phase. In other words, if the workload of a key that was not transferred to the helper in the

first phase, is being transferred to the helper in the second phase, then its state needs to be

transferred.

Significance of the first phase. Reshape has an extra phase for two reasons. First, it

gives some immediate respite to the skewed worker and avoids imminent risks of the skewed

worker going out of computing resources, invoking back-pressure [17] etc. Second, it may

allow the user to see the representative results earlier compared to the case where there is

60

only one phase. Figure 3.6 illustrates this idea. For simplicity of calculation, we assume

that J4 processes October and J6 processes December only. Notice that December tuples

are almost four times the tuples of October (Figure 3.1(c)). Suppose the HashJoin operator

receives 2 October and 8 December tuples every second and the skew is detected when the

unprocessed queue sizes of J4 and J6 are 10 and 40, respectively. Figure 3.6(a) shows the

case where there exists a first phase. Suppose the first phase redirects all December tuples

to J4. In 3 seconds, J4 receives 24 December and 6 October tuples and catches up with the

queue of J6. After this, the second phase starts and redirects 3 out of every 8 December

tuples to J4. Assuming the workers process tuples at similar rates, the bar charts show the

October and December tuples count shown to the user as the workers process more data.

When the workers have processed 10 tuples each, the bar chart shows 10 tuples for both

months. After that the effect of first phase starts. When both workers have processed 40

tuples each, the bar chart shows 16 tuples for October and 64 tuples for December, which is

representative of the ratio of October to December tuples in the input data. Figure 3.6(b)

shows the case where there is no first phase. After detection of skew, the second phase

starts and redirects 3 out of every 8 December tuples to J4. In this case, even after both

the workers have processed 40 tuples each, the bar chart shows 22 tuples for October and

58 tuples for December. The ratio gradually moves towards the actual ratio of 1 : 4 between

October to December tuples.

J4
J6

10

40

624

30

10
Oct Dec

16
Oct Dec

64
1028

Oct Dec

112

(a) With first phase

J4
J6

10

40

10
Oct Dec

10

(b) Without first phase

time

1218

30

22
Oct Dec

58

1218

30

34

Oct Dec

88

time

1218

Figure 3.6: First phase helps to reflect the actual ratio of December and October
tuples early. The bar charts show the progression of results as the workers
process tuples

61

3.4 Adaptive Skew Handling

In the previous section, we assumed that data arrives at constant rates to the workers

and the second phase has a perfect estimator. In this section, we study the case when

these assumptions are not true. In particular, variable patterns in incoming data rates

and an imperfect estimator can result in erroneous workload predictions. Consequently,

the second phase may not be able to keep the workload of the skewed and helper workers

at a similar level. Thus, the controller may start another iteration of mitigation. Since,

each iteration may incur an overhead, such as state transfer, we should try to make better

workload predictions so that the number of iterations is reduced. We show that the workflow

prediction accuracy depends on the skew detection threshold τ (Sections 3.4.1 and 3.4.2).

In order to reduce the technical burden on the user to fix an appropriate τ , we develop a

method to adaptively adjust τ to make better workload predictions (Section 3.4.3).

3.4.1 Load reduction from mitigation

We measure the load reduction (LR) from mitigation as the difference in the maximum input

size received by a skewed worker and its helper without and with mitigation. Formally, let S

and H represent the skewed worker and the helper worker, respectively. The load reduction

is defined as:

LR = [max(σS, σH)]unmitigated − [max(σS, σH)]mitigated , (3.3)

where σw is the size of the total input received by a worker w during the entire execution.

In Figure 3.7, D represents the difference in the total input sizes of S and H in the unmit-

igated case. When mitigation is done, due to workload estimation errors, the second phase

may not be able to redirect the precise amount of data to keep the workloads of S and H at a

62

similar level. In Figure 3.7(a), less than D
2
tuples of S are redirected to H. Thus, S receives

more total input than H and the load reduction is less than D
2
. Similarly, in Figure 3.7(b),

more than D
2
tuples of S are redirected to H. As a result, the load reduction is again less

than D
2
. The ideal mitigation, shown in Figure 3.7(c), makes the total input of the two

workers equal so that they finish around the same time. In particular, D
2
tuples of S are sent

to H, which is the maximum load reduction (LRmax) that can be achieved.

(c) Ideal transfer

 D

=
S
H

 D

<
S
H

<

 D

>
S
H

<
(a) Insufficient transfer (b) Excess transfer

First phase Second phase

Figure 3.7: Effect of the amount of transferred data on the load reduction. The
shaded boxes represent the input of S redirected to H in the two phases.

3.4.2 Impact of τ on load reduction

In this subsection, we discuss how the load reduction is affected by the value of τ at which

the mitigation starts. Assume that the operator can have only one iteration of mitigation

consisting of two phases. If the second phase uses a perfect estimator and the incoming data

rates are constant, as assumed in Section 3.3, then the maximum load reduction of D
2
can

be achieved. That is:

LR1 + LR2 =
D

2
, (3.4)

where LR1 and LR2 are the load reduction resulting from the first phase and second phase,

respectively.

In general, the workloads estimations have errors [34, 98, 35, 129, 55]. These errors can

cause the second phase to redirect less or more than the ideal amount of S tuples (Fig-

63

ure 3.7(a,b)). In other words, the load reduction from the second phase depends on the

accuracy of workload estimation. The workload estimation accuracy depends on τ as shown

next. If τ increases, then it takes a longer time for the workload difference of S and H

to reach τ , resulting in a higher sample size. Suppose the estimation accuracy increases as

the sample size increases. Then a higher τ means that the system makes a more accurate

workload estimation. Thus, the total load reduction can be computed as the following:

LR = LR1 + (1− f(τ))LR2, (3.5)

where f(τ) is a function representing the error in the estimation of the future workloads. As

τ increases, f(τ) decreases.

The above analysis shows that a higher τ results in a higher load reduction. However, setting

τ to an arbitrarily high value means that the system waits a long time before starting the

mitigation. Consequently, there may not be enough future input left to mitigate the skew

completely. Thus the value of τ should be chosen properly to achieve a balance between a

high estimation accuracy and waiting so long that the opportunity to mitigate skew is lost.

This is a classic exploration-exploitation dilemma [16].

S

H

Lo
ad

-re
du

ct
io

n

(a) Load-reduction vs
(b) Status when workload difference
between S and H reaches

Figure 3.8: Dependence of load reduction on the τ .

Figure 3.8(a) shows the relationship between τ and load reduction. A small τ results in

a small load reduction because of a high estimation error. As τ increases, f(τ) decreases

and load reduction increases. The load reduction cannot exceed LRmax = D
2
. As τ further

increases, the future input of S is not enough to mitigate the skew completely. Thus, load

64

reduction starts to decrease. Figure 3.8(b) shows the time when S has D
2
future tuples left.

The difference in the workloads of the workers at this time is denoted by τh.

3.4.3 Adaptive mitigation iterations

When the workloads of S and H diverge due to workload estimation errors, the controller

may start another mitigation iteration. Section 3.4.3.1 discusses how multiple iterations

of mitigation are performed. In the previous subsection, we saw that τ should be chosen

appropriately to maintain a balance between workload estimation accuracy and a long delay

in the start of mitigation. Section 3.4.3.2 shows how to autotune τ adaptively to make better

workload estimations, rather than asking the user to supply an appropriate value of τ .

3.4.3.1 Multiple iterations of mitigation

Figure 3.9 shows an example timeline of two successive iterations of mitigation. The first

iteration starts at t1 when the difference of the workloads of S and H exceeds τ . Their

workloads are brought to a similar level at t2. Then, the second phase starts. Due to

workload estimation errors, the second phase redirects less than the ideal amount of tuples.

Thus, the workload of S gradually becomes greater than H. At t3, their workload difference

exceeds τ and the second iteration starts.

S
H

Start

t0 t1

Begin
1st phase

S
H

t2

Begin
2nd phase

S
H

t3

Begin
1st phase

S
H

t4

Begin
2nd phase

S
H

t5

Begin
1st phase

Iteration I Iteration II
Sampling I Sampling II

Figure 3.9: Multiple mitigation iterations

A question is how to decide the time interval from which the sample is used to do predic-

65

tion [127, 42]. Figure 3.9 shows an example that uses the sample collected since the last time

when S and H had a similar load. Specifically, at t2, the second phase of the first iteration

uses the sample collected since t0. The second phase of the second iteration uses the sample

collected since t2.

3.4.3.2 Dynamically adjusting τ

A low value of τ causes high errors in workload estimation due to a small sample size, which

in turn results in more mitigation iterations. On the other hand, a high τ may start the

mitigation too late when there are not enough future tuples to mitigate the skew. Rather

than using a fixed user-provided value of τ , which may be too low or too high, we adaptively

adjust τ ’s value during execution to make better workload predictions, reduce the number

of iterations, and achieve higher load reduction.

In Section 3.3, we introduced an estimation function ψ that uses a workload sample to

estimate future workloads. Let ε denote the standard error of estimation [95], which is a

measure of predicted error in workload estimation. For example, the standard error for

mean-model [111, 95] estimator is ε = d
√

1 + 1
n
, where d is the sample standard deviation

and n is the sample size. As mentioned in Section 3.4.2, ε decreases as τ increases. We

want ε to be in a user-defined range [εl, εu], where εl and εu are the lower and upper limits,

respectively. In particular, when ε > εu, we assume the error is too high and will lead

to a low load reduction. Similarly, when ε < εl, the error is low enough to make a good

estimation.

The controller keeps track of ε and adaptively adjusts τ in order to move ε towards the [εl, εu]

range. Algorithm 1 describes the process of adjusting τ . For a worker w, let ϕw represent the

current workload and ϕ̂w represent the workload predicted by ψ. The controller periodically

collects the current workload metrics from the workers (line 1) and adds them to the existing

66

sample (line 2). The function ψ uses the workload sample to predict future workloads and

outputs ε in the prediction (line 3). Once ε is obtained, τ can be adjusted.

Algorithm 1: Dynamic τ adjustment by the controller.

Input: [εl, εu]← Standard error acceptable range
Input: W: collected workloads sample
Input: τ : current threshold
Output: Adjusted threshold

1 ϕS, ϕH ← Collect current workloads of S and H
2 Add ⟨ϕS, ϕH⟩ to W

3 ϕ̂S, ϕ̂H , ε← Estimate future workloads of S and H using ψ

4 // adjust threshold

5 if ϕS − ϕH >= τ and ε > εu then
// Higher sample size needed to lower ε

6 return increase-threshold(τ)

7 else if ϕS − ϕH < τ and ε < εl then
// ε has become quite low

8 return decrease-threshold(τ)

9 else
10 return τ

Increasing τ . The need to increase τ arises when the workers S and H pass the skew-test

(Section 3.2.1), but ε > εu. This means that a higher sample size is needed to lower ε. At

this point, the mitigation is started and an increased τ is chosen for the next iteration to

achieve a smaller ε. The threshold τ should be cautiously increased so as to not set it to a

very high value (Section 3.4.2).

Decreasing τ . Now consider the case where S and H do not pass the skew-test because

their workload difference is less than τ , but ε < εl. This means that ε is low and the sample

size is big enough to yield a good accuracy. If we wait for the workload difference to reach τ ,

there may not be enough data left to mitigate the skew. Thus, τ is decreased to the current

workload difference (ϕS − ϕH) and mitigation starts right away, thus yielding a higher load

reduction.

67

3.5 Reshape on more operators

Till now we used the running example of skew in the probe input of HashJoin. A data

analysis workflow can contain many operators that are susceptible to partitioning skew such

as sort and group by. In this section, we generalize Reshape to a broader set of operators.

Specifically, we formalize the concept of “operator state mutability” in Section 3.5.1. In

Section 3.5.2, we discuss the impact of state mutability on state migration. In Sections 3.5.3

and 3.5.4, we use the load-transfer approaches described in Section 3.3 to handle skew in

mutable-state operators. We discuss a state migration challenge when using the “split by

records” approach and explain how to handle it.

3.5.1 Mutability of operator states

In this subsection, we define two types of operator states, namely immutable state and

mutable state. When an operator receives input partitioned by keys, the state information

of keys is stored in the operator as keyed states [29]. Each keyed state is a mapping of type

scope→ val,

where scope is a single key or a set or range of keys, and val is information associated with

the scope. For example, in HashJoin, each join key is a scope, and the list of build tuples

with the key is the corresponding val. Similarly, in a hash-based implementation of group-by,

each individual group is a scope, and the aggregated value for the group is the corresponding

val. In a range-partitioned sort operator, a range of keys is a scope, and the sorted list of

tuples in the range is the corresponding val. In the rest of this section, for simplicity, we use

the term “state” to refer to “keyed state.”

An input tuple uses the state associated with the scope of the key of the tuple. If the val of

68

this scope cannot change, we say the state is immutable; otherwise, it is called mutable. For

example, the processing of a probe tuple in HashJoin does not modify the list of build tuples

for its key. Such operators whose states are immutable are called immutable-state operators.

On the other hand, an input tuple to sort is added to the sorted list associated with its scope

(range of keys), thus it modifies the state. Such operators that have a mutable state are

called mutable-state operators.

Notice that the execution of an operator can have more than one phase. For instance,

a HashJoin operator has two phases, namely the build phase and the probe phase. The

concept of mutability is with respect to a specific phase of the operator. In HashJoin, the

states in the build phase are mutable, while the states in the probe phase are immutable.

Reshape is applicable to a specific phase, and its state migration depends on the mutability of

the phase. Table 3.1 shows a few examples of immutable-state and mutable-state operators.

Immutable-state
operator

HashJoin (Probe phase), HB Set Difference (Probe phase), HB Set
Intersection (Probe phase)

Mutable-state
operator

HashJoin (Build phase), HB Group-by, RB Sort, HB Set Differ-
ence (Build phase), HB Set Intersection (Build phase), HB Set Union

Table 3.1: Examples of physical operators based on state mutability. HB means hash-based
and RB means range-based.

3.5.2 Impact of mutability on state migration

Figure 3.10 shows how to handle state migration for operators when using the two load-

transfer approaches discussed in Section 3.3.

The state-migration process for immutable-state operators, as shown in branch (a) in Fig-

ure 3.10, involves replicating the skewed worker’s states at the helper, followed by a change

in the partitioning logic. Thus, the tuples redirected from the skewed worker to the helper

can use the state of their scope at the latter. In contrast, the state-migration process is more

challenging for mutable-state operators (branch (b)) because it is difficult to synchronize

69

Operator

Immutable-state
operators

Mutable-state
operators

Split by keys

Split by records

Split by keys

Split by records(a)

(b)
(b1)

(b2)

Replicate states and
change partitioning
logic

Synchronize using
existing migration
strategies
Merge scattered state

Figure 3.10: Operator state mutability and state migration.

the state transfer and change of partitioning logic for a mutable state [78]. State-migration

strategies that focus on such synchronization exist in the literature and will be briefly dis-

cussed in Section 3.5.3. As we show in Section 3.5.4, such a synchronization is not always

possible. Next, we discuss how to do state migration when using the two load-transfer

approaches in mutable-state operators.

3.5.3 Mutable-state operators: split by keys

The SBK approach offloads the processing of certain keys in the skewed worker partition to

the helper. Consider a group-by operator that receives covid related tweets and aggregates

the count of tweets per month. The skewed worker offloads the processing of a month (say,

June) to the helper. There needs to be a synchronization between state transfer and change

of partitioning logic so that the redirected June tuples arriving at the helper use the state

formed from all June tuples received till then. In the case of group-by, this state is the count

of all June tuples received by the operator. Existing work on state-migration strategies

focuses on this synchronization. A simple way to do this synchronization is to pause the

execution, migrate the state, and then resume the execution [15, 29, 103]. A drawback of

this approach is that pausing multiple times for each iteration may be a significant overhead.

Another strategy is to use markers [46]. The workers of the previous operator emit markers

when they change the partitioning logic. When the markers from all the previous workers

are received by the skewed and helper workers, the state can be safely migrated. Thus, skew

70

handling in mutable-state operators using the “split by keys” approach can be safely done

by using one of these state-migration strategies (branch (b1) in Figure 3.10).

3.5.4 Mutable-state operators: split by records

In this subsection, we use the SBR approach in mutable-state operators (branch (b2) in

Figure 3.10). We show that the synchronization between state transfer and change of par-

titioning logic is not possible when using this approach and discuss its effects. Consider a

sort operator with three workers, namely S1, S2, and S3, which receive range-partitioned

inputs. The ranges assigned to the three workers are [0, 10], [11, 20], and [21,∞]. As shown

in Figure 3.11(a), S1 is skewed and S3 is its helper. The controller asks the previous op-

erator to change its partitioning logic and send the tuples in [0, 10] to both S1 and S3

(Figures 3.11(b,c)). The synchronization of state migration and change of partitioning logic

by the aforementioned state-migration strategies relies on an assumption that, at any given

time, the partitioning logic sends tuples of a particular scope to a single worker only. When

the tuples of [0, 10] are sent to both S1 and S3, this assumption is no longer valid. Worker

S3 saves the tuples from the range [0, 10] in a separate sorted list (Figure 3.11(d)). Such a

scenario where the val of a scope is split between workers is referred to as a scattered state.

This scattered state needs to be merged before outputting the results to the next operator.

Now we explain a way to resolve the scattered state problem. When a worker of the previous

operator finishes sending all its data, it notifies the sort workers by sending an END marker

(Figure 3.11(d)). When S3 receives ENDmarkers from all the previous workers, it transfers its

tuples in the range [0, 10] to the correct destination of those tuples, i.e., S1 (Figure 3.11(e,f)),

thus merging the scattered states for the [0, 10] range.

We specify sufficient conditions for a mutable-state operator to be able to resolve the scat-

tered state issue. The above approach of merging the scattered parts is suited for blocking

71

2, 6, 6, 7,
8, 8, 8, 10S1

[0,10]

[21,]
21, 24, 26S3

[0,10]
[0,10]

[21,]
P1

8

Controller
2, 6, 6, 7,
8, 8, 8, 10S1

[0,10]

[21,]
21, 24, 26S3

[0,10]
[0,10]

[21,]
P1

ControllerChange
data flow

5

2, 5, 6, 6,
7, 8, 8, 8,
10

S1
[0,10]

[21,]
21, 24, 26S3

[0,10]
[0,10]

[21,]

P1

Controller

6, 8END

6

2, 5, 6, 6,
7, 8, 8, 8,
10

S1
[0,10]

[21,]
21, 24, 26S3

[0,10]

[0,10]
[21,]

P1

Controller

6, 8

2, 5, 6, 6,
6, 7, 8, 8,
8, 8, 10

S1
[0,10]

[21,]
21, 24, 26S3

[0,10]

[0,10]
[21,]

P1

Controller

2, 6, 6, 7,
8, 8, 8, 10S1

[0,10]

[21,]
21, 24, 26S3

[0,10]

[21,]
P1

Controller Skew notification

(a) S1 is skewed and S3 is its
helper.

(b) Range [0,10] is shared
with S3.

(c) More Tuples come in.

(d) END marker comes in. (e) Split state transferred. (f) Split state merged.

Figure 3.11: Skew handling using the “split by records” approach in the sort
operator. S2 is omitted for simplicity.

operators such as group-by and sort, which produce output only after processing all the

input data. Thus, the above approach can be used by mutable-state operators if they can

1) combine the scattered parts of the state to create the final state, and 2) block outputting

the results till the scattered parts of the state have been combined.

3.6 Reshape in Broader Settings

Our discussion about Reshape so far is based on several assumptions in Section 3.2 for

simplification. Next we relax these assumptions.

3.6.1 High state-migration time

The state-migration time is assumed to be small till now. In this subsection, we study the

case where this time could be significant.

Precondition for skew mitigation. In the discussion in Section 3.2, state migration is

72

started immediately after skew detection. If the time to migrate state is more than the

time left in the execution, the state migration is futile. Thus, the controller checks if the

estimated state-migration time is less than the estimated time left in the execution and only

then proceeds with state migration. The state-migration time can be estimated based on

factors such as state-size and serialization cost [131, 44]. The time left in the execution can

be estimated by monitoring the input data remaining to be processed and the processing

speed [74] or by using the historical data [58].

Dynamic adaptation of τ . Suppose the adapted value of τ output by Algorithm 1 to

be used in the next iteration is τn. The discussion in Section 3.4.3.2 assumes that the load

transfer begins when the workload difference is around τn. This is possible only when the

state-migration time is small. When the time is significant, the load transfer will start when

the workload difference becomes considerably greater than τn. In order to start the load

transfer at τn (as assumed by Section 3.4.3.2), the skew has to be detected earlier. Thus,

we adjust the skew detection threshold to τ ′n, which is less than τn, such that the state

migration starts when the workload difference is τ ′n and ends when the workload difference

is τn (Figure 3.12).

Lo
ad

-re
du

ct
io

n

State Transfer

S

H

(a) Load reduction at is
achieved if skew is detected at .

(b) Relationship
between and

Received before
skew detection
Received during
state migration

Figure 3.12: Adapt τ by considering the state-transfer time.

Formally, suppose t is the number of tuples processed by the operator per unit time, M is

the estimated state-migration time, and f̂S and f̂H are the predicted workload percentages

73

of S and H, respectively. The estimated difference in the tuples received by S and H during

the state migration is (f̂S− f̂H)∗ t∗M . Therefore, given τn, the value of τ
′
n can be calculated

as follows:

τ ′n = τn − (f̂S − f̂H) ∗ t ∗M.

3.6.2 Multiple helper workers

Till now we have assumed a single helper per skewer worker. Next, we extend Reshape to

the case of multiple helpers.

Load reduction. The load reduction definition (Section 3.4.1) can be extended for S and

its helpers h1, . . . , hn as follows:

LR = max
w∈{S,h1,h2,...,hn}

(σw)− max
w∈{S,h1,h2,...,hn}

(σ′
w).

In the equation, σw and σ′
w are the sizes of the total input received by worker w during the

entire execution in the unmitigated case and mitigated case, respectively. Suppose T is the

total number of tuples received by the operator and fw is the actual workload percentage

of a worker w. In the unmitigated case, S receives the maximum total input among S and

its helpers, which is fS ∗ T tuples. In the ideal mitigation case, S and its helpers have the

same workload, which is the average of the workloads that they would have received in the

unmitigated case. As discussed in Section 3.4.1, the ideal mitigation results in maximum

load reduction denoted as:

LRmax =
(
fS −

∑
w∈{S,h1,h2,...,hn} fw

n+ 1

)
∗ T.

Choosing appropriate helpers. We examine the trade-off between the load reduction

74

and the state-migration overhead to determine an appropriate set of helpers for S. Let

h1, . . . , hc be c helper candidates for S in the increasing order of their workloads. From

the definition above, increasing the number of helpers results in a higher LRmax, provided

the average workload percentage reduces. However, increasing the number of helpers may

result in higher state-migration time since more data needs to be transferred. Suppose L is

the number of future tuples to be processed by the operator at the time of skew detection.

The estimated number of future tuples left to be processed by S after state migration is

F = (L −M ∗ t) ∗ f̂S. Increasing the number of helpers may increase the state-migration

time (M) and thus decrease F , which means that there are fewer future tuples of S to do

load transfer. Thus, given a set of helpers, the highest possible load reduction after state

migration is χ = min(LRmax, F). As we add more helpers, χ initially increases and then

starts decreasing. The set of helpers chosen right before χ starts decreasing are appropriate.

Figure 3.13 illustrates an example. Let W be the set of helper workers, which is initially

empty. After adding h1 to W , we have LRmax < F , thus χ = LRmax. Then, we add h2 to

W , which decreases F , and χ = F . Then, we add h3 to W , which decreases F further and

causes χ to start decreasing. Hence, the final set of helpers for S is {h1, h2}.

LRmax

h1 h1,h2

LR
m

ax

F

h1,h2,h3

LR
m

ax

F LR
m

ax

FS
h1

Load transfer
starts F

(a) Relationship between
LRmax and F with one helper

(b) Adding more helpers
changes LRmax, F, and .

Figure 3.13: Choosing appropriate helpers.

75

3.6.3 Unbounded data

The input has been assumed to be bounded till now. Next, we discuss a few considerations

when the input is unbounded.

Load reduction and impact of τ . In Section 3.4.1, the load reduction was calculated

based on the total input received by the workers. For the unbounded case, the load reduction

can be calculated based on the input received by the workers in a fixed period of time. The

impact of τ on the load reduction holds for unbounded case too. A small value of τ results

in high errors in workload estimation, which leads to a small load reduction. A large value

of τ that takes too long to reach is not preferred in the unbounded case either. If a large

τ delays mitigation, it can lead to back pressure, loss of throughput, and even crashing of

data-processing pipelines. The latency of processing can increase, causing adverse effects on

time-sensitive applications such as image classification in surveillance [66].

Merging scattered states. For bounded data, the scattered states in mutable-state op-

erators were merged after the operator processed all the input. For unbounded data, the

scattered states can be merged when the operator has to output results, e.g., when a water-

mark is received [19].

3.7 Experiments

In this section, we present an experimental evaluation of Reshape using real and synthetic

data sets on clusters.

76

aggregate sink

source

source

sink
source

source filter

source filter sort sink

Workflow W1 (Tweets)

Workflow W4 (Synthetic data)Workflow W3 (TPC-H data)
keytotalpriceorderstatus = 'F'table: orders

table: slang words

table: tweets contains "love", "happy" etc.

location

table: synthetic

table: synthetic

source
table: sales

filter
shipmode <= 10

source
table: date_dim

date_id

source
table: item

item_id
project

year, customer_id,
item_category

filter

year = 2001

source
table: customer

customer_id
group-by

item_category

sink

Workflow W2 (DSB data)

filter
birth_month
>= 6

Figure 3.14: Workflows used in the experiments. The operators with skew are
the join operator on location in W1, the join operators on date id and item id in
W2, the sort operator in W3 and the join operator on key in W4.

3.7.1 Setting

Datasets and workflows. We used four datasets in the experiments. The first one included

180M tweets in the US between 2015 and 2021 collected from Twitter. The second dataset

was generated using the DSB benchmark [43], which is an enhanced version of TPC-DS

containing more skewed attributes, to produce record sets of different sizes ranging from

100GB to 200GB by varying the scaling factor. The third dataset was generated using the

TPC-H benchmark [117] to produce record sets ranging from 50GB to 200GB. The fourth

dataset was generated to simulate a changing key distribution during the execution. It

included a synthetic table of 80M tuples and another table of 4, 200 tuples, and each table

had two numerical attributes representing keys and values.

We constructed workflows of varying complexities as shown in Figure 3.14. Workflow W1

analyzed tweets by joining them with a table of the top slang words from the location of

the tweet. This workflow is used for social media analysis to find how often people use

local slang in their tweets. The tweets were filtered on certain keywords to get tweets of

a particular category. Workflow W2 was constructed based on TPC-DS query 18, and it

calculated the total count per item category for the web sales in the year 2001 by customers

whose birth month >= 6. Workflow W3 read the Orders table from the TPC-H dataset

and filtered it on the orderstatus attribute before sorting the tuples on the totalprice

attribute. Workflow W4 joined the two synthetic tables on the key attribute. Figure 3.15

77

10

20

30

0 10 20 30 40 50#
 t
u
p
le
s
(X
1
0
6
)

Location IDs

(a) Tweet data.

1

2

3

4

100K 300K 500K
TotalPrice

(b) TPC-H data.

1

8

64

0 10 20 30 40
Keys

(c) Synthetic data.

1

3

5

1K 2K

#
 t
u
p
le
s
(X
1
0
4
)

Date_id (+2451K)

(d) DSB sales data (date col-
umn).

5

10

5K 10K 15K
Item_id

(e) DSB sales data (item col-
umn).

1
2
3

2 4 6 8
Customer_id (X104)

(f) DSB sales data (customer
column).

Figure 3.15: Partitioning-key distributions for the datasets.

shows the distribution of the datasets that may cause skew in the workflows. Figure 3.15a

shows the frequency of tweets, used in W1, based on the location attribute. Figure 3.15b

shows the distribution of the Orders table on its totalprice attribute, used in W3, for a

100GB TPC-H dataset. Figure 3.15c shows the distribution of the larger synthetic table in

W4 on the key attribute. Figures 3.15d-3.15f show the distribution of the three attributes of

the sales table in W2 used in the three join operations for a 1GB dataset.

Reshape implementation. We implemented Reshape on top of two open source engines,

namely Amber [73] and Apache Flink (release 1.13). In Amber, we used its native API to

implement the control messages used in Reshape. Unless otherwise stated, we set both τ and

η to 100. We used the mean model [111] to predict the workload of workers. In Flink, we used

the busyTimeMsPerSecond metric of each task, which is the time ratio for a task to be busy,

to determine the load on a task. We leveraged the mailbox of tasks (workers) to enable the

control messages to change partitioning logic. The control messages are sent to the mailbox

of a task, and these messages are processed with a higher priority than data messages in a

different channel. Using these control messages, we implemented the two phases of the SBR

78

load transfer approach on Flink as discussed in Section 3.3.

Baselines. For comparison purposes, we also implemented Flow-Join [100] and Flux [103] on

Amber with a few adaptations. For Flow-Join, we used a fixed time duration at the start to

find the overloaded keys. The workload on a worker was measured by its input queue size.

For Flow-Join, after skew is detected, the tuples of the overloaded keys are shared with the

helper worker in a round-robin manner. For Flux, after skew is detected, the processing of an

appropriate set of keys is transferred from the skewed worker to its helper. For both Reshape

and the baselines, one helper worker was assigned per skewed worker, unless otherwise stated.

Also, unless otherwise stated, Flux used a 2 second initial duration to detect overloaded keys.

To be fair, when running Reshape, we also had an initial delay of 2 seconds to start gathering

metrics and subsequent skew handling by Reshape.

All experiments were conducted on the Google Cloud Platform (GCP). The data was stored

in an HDFS file system on a GCP dataproc storage cluster of 6 e2-highmem-4 machines,

each with 4 vCPU’s, 32 GB memory, and a 500GB HDD. The workflow execution was on

a separate processing cluster of e2-highmem-4 machines with a 100GB HDD, running the

Ubuntu 18.04.5 LTS operating system. In all the experiments, one machine was used to only

run the controller. We only report the number of data-processing machines. The number of

workers per operator was equal to the total number of cores in the data-processing machines

and the workers were equally distributed among the machines.

3.7.2 Effect on results shown to the user

We evaluated the effect of skew and the different mitigation strategies on the results shown

to the user. We ran the experiment on 48 cores (12 machines). California (location 6)

produced the highest number of tweets (26M) in the tweet dataset. Arizona (location 4) and

Illinois (location 17) produced 3.8M and 6.5M tweets, respectively. In the unmitigated case,

79

the tuples of California (CA), Arizona (AZ), and Illinois (IL) were processed by workers 6,

4, and 17, respectively. We performed two sets of experiments, in which we mitigated the

load on worker 6 processing CA tweets by using different helper workers. In the first set of

experiments, we used worker 4 as the helper and monitored the ratio of CA to AZ tweets

processed by the join operator. In the second set, we used worker 17 as the helper and

monitored the ratio of CA to IL tweets processed by the join operator. The line charts in

Figure 3.16 and 3.17 show the absolute difference of the observed ratio from the actual ratio

as execution progressed. In the tweet dataset, the actual ratio of CA to AZ tweets was 6.85

and CA to IL tweets was 4.05.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200 250 300 350 400

| A
c
tu
a
l
ra
tio

 -
 O
b
s
e
rv
e
d

 r
a
tio

 |

Time (s)

Flux
No mitigation

Flow-Join
Reshape

Figure 3.16: Effect of the mitigation strategies on the ratio of CA to AZ tweets.
The ideal curve is a straight line at y = 0.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400
Time (s)

Flux
No mitigation

Flow-Join
Reshape

Figure 3.17: Effect of the mitigation strategies on the ratio of CA to IL tweets.
The ideal curve is a straight line at y = 0.

80

No mitigation: When there was no mitigation, the CA, AZ, and IL tweets were processed

at a similar rate as explained in Section 3.3.1. The observed ratio remained close to 1 till

worker 4 was about to finish processing AZ tweets in Figure 3.16 and worker 17 was about to

finish IL tweets in Figure 3.17. The observed ratio started to increase (absolute difference of

observed ratio with actual ratio started to decrease) after that because worker 6 continued

to process CA tweets. The actual ratio was observed near the end of execution (about 416

seconds) in the unmitigated case.

Flux: It used the SBK load-transfer approach. It had the limitation of not being able to

split the processing of a single key over multiple workers. The skewed worker 6, apart from

CA, was also processing the tweets from West Virginia. The processing of the tweets from

West Virginia (about 600K) was moved to the helper worker by Flux. However, this did not

affect the observed ratio of tweets much.

Flow-Join: It used the SBR approach. The execution finished earlier because the approach

mitigated the skew in worker 6. Flow-Join had two drawbacks. First, it did not perform

mitigation iteratively. It changed its partitioning logic only once based on the heavy hitters

detected initially. Second, it did not consider the loads on the helper and the skewed worker

while deciding the portion of the skewed worker’s load to be transferred to the helper. It

always transferred 50% of the load of the skewed worker to the helper. The observed ratio

of tweets started increasing once skew mitigation started. It reached the actual ratio 198

seconds in Figure 3.16 and around 120 seconds in Figure 3.17. Due to the aforementioned

drawbacks, the observed ratio of tweets continued to increase even after reaching the actual

ratio because the skewed worker continued to transfer 50% of its load to the helper. The

observed ratio continued to increase till it reached about 8.3 in Figure 3.16 (absolute differ-

ence = 1.5) and 6.2 in Figure 3.17 (absolute difference = 2.1). At this point, the execution

was near its end and the ratio started to decrease to the actual final ratio.

81

Reshape: It used the SBR approach and could split the processing of the CA key with

a helper worker. Reshape had the advantage of iteratively adapting its partitioning logic

and considered the current loads on the helper and the skewed worker while deciding the

portion of load to be transferred in the second phase (Section 3.3.2). Thus, Reshape kept

the workload of the skewed worker and the helper at similar levels. In Figure 3.16 and

3.17, after the observed ratio reaches the actual ratio at about 120 seconds and 130 seconds,

respectively, Reshape kept the observed ratio near the actual ratio.

3.7.3 Benefits of the first phase

We evaluated the benefits of the first phase in Reshape as discussed in Section 3.3.2. We

followed a similar setting as in the experiment in Section 3.7.2 to monitor the ratio of

processed tweets. There were two mitigation strategies used in this experiment. The first

one was normal Reshape, with the two phases of load transfer. In the second strategy, we

disabled the first phase in Reshape and just did load transfer using the second phase. The

results are plotted in Figure 3.18 and 3.19.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200 250 300 350 400

| A
c
tu
a
l
ra
tio

 -
 O
b
s
e
rv
e
d

 r
a
tio

 |

Time (s)

No mitigation
Reshape w/o first phase

Reshape

Figure 3.18: Effect of first phase on the ratio of CA to AZ tweets.

The first phase quickly removed the existing imbalance of load between the skewed and

the helper worker when skew was detected. When the first phase was present, Reshape

reached the actual ratio around 120 and 130 seconds in Figures 3.18 and 3.19, respectively.

82

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400
Time (s)

No mitigation
Reshape w/o first phase

Reshape

Figure 3.19: Effect of first phase on the ratio of CA to IL tweets.

When the first phase was disabled, Reshape reached the actual ratio around 288 and 310

seconds in Figures 3.18 and 3.19, respectively. Thus, the first phase allowed Reshape to show

representative results earlier. Both strategies showed more representative results than the

unmitigated case.

3.7.4 Effect of heavy-hitter keys

California (location 6) produced the highest number of tweets (26M) and was a heavy-hitter

key in the tweet dataset. We present the results for the mitigation of the skewed worker that

processed the California key.

Load balancing ratio. The load balancing ratio at a moment during the execution is

calculated by obtaining the total counts of tuples allotted to the skewed worker and its

helper till that moment, and dividing the smaller value by the larger value. We periodically

recorded multiple load balancing ratios during an execution and calculated their average to

get the average load balancing ratio for an execution. A higher ratio is better because it

represents a more balanced workload between the skewed worker and its helper.

The average load balancing ratio for the skewed worker that processed the California key

and its helpers is plotted in Figure 3.20. A higher ratio is better because it represents a

83

more balanced workload between the skewed worker and its helper worker. We ran the

experiments on three settings by varying the number of cores up to 56 (on 14 machines),

which was the total number of distinct locations.

0

0.2

0.4

0.6

0.8

1

40 48 56

A
v
g
.
lo
a
d

 b
a
la
n
c
in
g

 r
a
tio

Number of workers

Flux
Flow-Join-8s
Flow-Join-4s

Flow-Join-2s
Reshape

Figure 3.20: Evaluating different methods of handling heavy-hitter keys in W1

using tweets. The three Flow-Join bars correspond to the initial delay of 2, 4, and
8 seconds.

Flux: It had the limitation of not being able to split the processing of a single key over

multiple workers. Thus, the skewed worker processed the entire California input. The skewed

worker was also processing another key with only a few hundred thousand tuples, which was

moved to the helper when skew was detected. Flux had a low average load balancing ratio

of about 0.06.

Flow-Join: Its main drawback was the inability to do mitigation iteratively. It changed its

partitioning logic once based on the heavy-hitters detected initially. The longer it spent to

detect heavy-hitters with a higher confidence, the less was the amount of future tuples left

to be mitigated for finite datasets. We varied the initial duration used by Flow-Join to detect

heavy-hitters from 2 seconds to 8 seconds. When the initial time spent was 2 seconds, the

average load balancing ratio was about 0.85 and the final counts of tuples processed by the

skewed and helper workers were approximately 14M and 12M, respectively. On the other

hand, when the duration was 8 seconds, the ratio was about 0.6 and the final counts were

approximately 17M and 9M, respectively. Flow-Join was able to reduce the execution time

84

of W1 on 48 cores from 416 seconds to 302 seconds, when the initial detection duration was

2 seconds.

Reshape: It split the processing of the California key with a helper worker. Reshape had the

advantage of iteratively changing its partitioning logic according to input distribution using

fast control messages. Thus, the skewed and helper workers ended up processing almost

similar amounts of data and the average load balancing ratio was about 0.92. The execution

time was reduced by 27%. In particular, Reshape was able to reduce the execution time from

416 seconds to 302 seconds, by mitigating the skew in W1 running on 48 cores.

3.7.5 Effect of latency of control messages

To evaluate the effect of the latency of control messages on skew handling by Reshape, we

purposely added a delay between the time a worker receives a control message and the time

it processes the message. Figure 3.21 shows the result of varying the simulated delay from

0 second (i.e., the message is processed immediately) to 15 seconds on the mitigation of W1

on 48 cores. The figure shows the average load balancing ratio for the two pairs of skewed

and helper workers processing the locations of California (location 6) and Texas (location

48), which had the highest counts of tweets.

0
0.2
0.4
0.6
0.8
1

0 5 10 15A
v
g
.
lo
a
d

 b
a
l.
ra
tio

Control message delay (s)

(a) California data.

0
0.2
0.4
0.6
0.8
1

0 5 10 15A
v
g
.
lo
a
d

 b
a
l.
ra
tio

Control message delay (s)

(b) Texas data.

Figure 3.21: Effect of control message delay (W1 on tweets).

85

Impact on responsiveness of mitigation: As the control message delivery became slower,

the delay between the controller sending a message and the resulting change in partitioning

logic increased. Consider the example where the controller detected a workload difference

of 350 between the skewed worker and the helper worker and sent a message to start the

first phase. In the case of no delay in control message delivery, the helper worker reached a

similar workload as the skewed worker within 10 seconds. In case of a delayed delivery, the

workload difference continued to increase and got larger than 350 before the first phase was

started. For example, when there was a 5-second delay, the workload difference was at 300

after 10 seconds of sending the message.

Impact on load balancing. The latency in control messages affected the load sharing

between skewed and helper workers. In the case of no delay, the two workers had almost

similar loads and the average load balancing ratio was about 0.94 as shown in Figures 3.21a

and 3.21b. As the delay increased, the framework was slow to react to the skew between

workers, which resulted in imbalanced load-sharing. In the case of a 15-second delay, the

average load balancing ratio reduced to about 0.45. Thus, low-latency control messages

facilitated load balancing between a skewed worker and its helper.

3.7.6 Benefit of dynamically adjusting τ

We evaluated the effect of the dynamic adjustment of τ on skew mitigation inW1 by Reshape

on 48 cores. We chose different values of τ ranging from 10 to 2, 000, and did experiments for

two settings. In the first setting, τ was fixed for the entire execution. In the second setting,

τ was dynamically adjusted during the execution. The mean model estimated the workload

of a worker as its expected number of tuples in the next 2, 000 tuples and the preferred

range of standard error (Section 3.4.3.2) was set to 98 to 110 tuples. We allowed up to three

adjustments during an execution. Whenever τ had to be increased, it was increased by a

86

fixed value of 50. We calculated the average load balancing ratios for the workers processing

the California and Texas keys and divided them by the total number of mitigation iterations

during the execution. This resulted in the metric of average load balancing per iteration,

shown in Figure 3.22. A higher value of this metric is better because it represents a more

balanced workload of skewed and helper workers in fewer iterations.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

10 50 100 500 1000 1500 1800 2000A
v
g
.
lo
a
d

 b
a
la
n
c
in
g

 p
e
r
ite
ra
tio
n

Threshold τ

Fixed τ
Dynamic τ

Figure 3.22: Benefit of dynamically adjusting τ (W1 on tweets).

Let us first consider the cases where τ was dynamically adjusted to an increased value.

Setting τ to a small value of 10 resulted in a large number of iterations, i.e, 41, in the fixed

τ setting. In the dynamic τ setting, the controller observed that the standard error at the

beginning of the second phase was greater than 110 and increased τ . Consequently, the

number of iterations decreased to 14, which resulted in a substantial increase in the metric

of average load balancing per iteration. For the cases of τ = 50 and 100 in the fixed setting,

the average load balancing per iteration increased with τ because the number of iterations

decreased. The dynamic setting slightly decreased the iteration count in these cases.

Now let us consider the case where τ remained unchanged or decreased as a result of dynamic

adjustment. When τ = 500, the standard error was in the range [98, 110]. Thus, the dynamic

adjustment did not change τ . When τ = 1000 in the fixed setting, the mitigation started

late and the workload of skewed and helper workers were not balanced. The mitigation was

delayed even more for τ = 1500 and 1800 in the fixed setting and the mitigation did not

87

happen for τ = 2000. In the dynamic setting for the cases of τ = 1000, 1500, 1800, and 2000,

the controller observed that the standard error went below 98 when the workload difference

was about 700. Thus, the controller reduced τ to 700. The advantage of dynamically reducing

τ was that it automatically started mitigation at an appropriate τ , even if the initial τ was

very high.

3.7.7 Effect of different levels of skew

We evaluated the load balancing achieved by Reshape for different levels of skew. We used

W2 for this purpose. The data distributions in Figures 3.15d-3.15e show that the join on

item id was highly skewed and the join on date id was moderately skewed. We evaluated the

load balancing achieved for these two join operators. We scaled the data size from 100GB

to 200GB. Meanwhile, we scaled the number of cores from 40 to 80 and did the experiments

in each configuration.

0

0.2

0.4

0.6

0.8

1

40 60 80

A
v
g
.
lo
a
d

 b
a
la
n
c
in
g

 r
a
tio

Number of workers

Join on item_id (High skew)
Join on date_id (Moderate skew)

Figure 3.23: Effect of different levels of skew (W2 on DSB data). Each candlestick
body represents the 25th to 75th percentile.

Figure 3.23 shows the candlestick charts of the average load balancing ratios for the top five

skewed workers from each of the two joins. For the highly skewed join on item id, the skew

was detected early, and there was enough time to transfer the load of the skewed workers

to the helper workers. The 25th and 75th percentiles of the average load balancing ratios

88

remained above 0.6 for all the configurations. The median of the ratios was more than 0.77.

This result shows that Reshape was able to mitigate the skew and maintain comparable

workloads on the skewed and helper workers when both the input and processing power

were scaled up. The join on date id had only a moderate skew, which resulted in a delayed

detection of a few of its skewed workers. Due to the delayed detection, there were fewer

future tuples of skewed workers to be transferred to the helpers. Thus the ratios for the join

on date id were lower than that for the join on item id. The performance of Reshape was

also shown by the reduction in the execution time. Specifically, in the case of 40 cores, the

mitigation reduced the execution time of W2 from 267 seconds to 243 seconds. In the case

of 80 cores, the mitigation reduced the time from 335 seconds to 269 seconds.

3.7.8 Effect of changes in input distribution

We evaluated how load sharing was affected when the input distribution changed during the

execution. We used the synthetic dataset and workflow W4 running on 40 cores. Both tables

in the dataset had 42 keys. The first table contained 4, 200 tuples uniformally distributed

across the keys. The second table contained 80M tuples and was produced by the source

operator at runtime. We fixed worker 0 and worker 10 as the skewed and helper worker,

respectively. We altered the load on key 0 and 10, which were processed by worker 0 and

10 respectively. Specifically, for the first 20M tuples, 80% was allotted to the key 0 and the

rest 20% was uniformally distributed among the remaining keys. For the next 60M tuples,

60% was allotted to the key 0, 20% to key 10, and the rest was uniformally distributed.

Figure 3.24 shows the ratio of the workloads of the helper worker 10 to the skewed worker 0

as time progressed. We used τ = 2, 000 to clearly show the effects of changing distributions.

Flux. The skewed worker was processing keys 0 and 40. Flux had the limitation of not being

able to split the processing of a single key over multiple workers. Upon detecting skew, Flux

89

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

 0 50 100 150 200 250 300

A
B

C

X
Perfect sharing

H
e
lp
e
r
to

 s
k
e
w
e
d

 l
o
a
d

 r
a
tio

Time (s)

Flow-Join
Reshape

Flux

Figure 3.24: Effect of changes in input data distribution on load sharing (W4 on
the synthetic dataset).

can only move the key with smaller load (key 40) to the helper. Thus, the workload ratio of

helper to skewed worker remained close to 0.

Flow-Join: We used a 2-second initial duration to detect the overloaded keys. Flow-Join

identified key 0 as overloaded and started to transfer half of its future tuples to the helper.

Thus, the workload of the helper began to rise. At 80 seconds (point X), the input distribution

changed. Since Flow-Join cannot do mitigation iteratively, half of the tuples of key 0 continued

to be sent to the helper. The helper worker started receiving 50% (= 60% ∗ 0.5 + 20%) and

the skewed worker started receiving 30% (= 60% ∗ 0.5) of the input. Thus, the load on the

helper rose and became more than the skewed worker.

Reshape: It started the first phase to let the helper worker quickly catch up with the skewed

worker. Thus, the load of the helper sharply increased initially. After that the second phase

started and the workload ratio got closer to 1. At 80 seconds (point B), the input distribution

changed. At point (point C), Reshape started another iteration of mitigation and adjusted

the partitioning logic according to the new input distribution. As a result, the ratio of the

workloads of the workers remained close to 1.

90

3.7.9 Metric-collection overhead

We evaluated the metric-collection overhead of Reshape on the workflow W2. We scaled the

data size from 100GB to 200GB. Meanwhile, we scaled the number of cores from 40 (on

10 machines) to 80 (on 20 machines) and did the experiments in each configuration. We

disabled skew mitigation and executed W2 with and without metric collection to record the

metric-collection overhead. As shown in Figure 3.25, the overhead was around 1-2% for all

the configurations.

 0
 50

 100
 150
 200
 250
 300
 350
 400

40 60 80

E
x
e
c
u
tio
n

 T
im
e

 (
s
)

Number of workers

With metric collection
Without metric collection

Figure 3.25: Metric-collection overhead (W2 on DSB data).

3.7.10 Performance of Reshape on sort

To evaluate its generality to other operators, we implemented Reshape for the sort operator.

We used the workflow W3 for this experiment. The Orders table was range-partitioned

on its totalPrice attribute. Table 3.2 lists the various percentile values of the average

load balancing ratio for the skewed workers that received more than 3.5M tuples in the

unmitigated case (Figure 3.15b). We scaled the data size and number of cores simultaneously

from 50GB on 20 cores to 200GB on 80 cores, and did the experiment in each configuration.

As the number of cores increased, the 25th and 75th percentiles of the average load balancing

ratios remained close to 0.9. This result shows that the skewed and helper workers had

91

workers P1 P25 P50 P75 P99

20 0.90 0.92 0.93 0.935 0.95

40 0.84 0.87 0.89 0.90 0.91

60 0.83 0.85 0.90 0.91 0.92

80 0.83 0.84 0.86 0.87 0.90

Table 3.2: Average load balancing ratios when Reshape is applied on sort (W3 using the
TPC-H data).

balanced workloads when both the input and processing power were scaled up. The consistent

performance of Reshape was also shown by about 20% reduction in the execution time.

Specifically, in the case of 20 cores, the time reduced from 789 seconds to 643 seconds. In

the case of 80 cores, the time reduced from 809 seconds to 667 seconds.

3.7.11 Effect of multiple helper workers

We evaluated the load reduction achieved when multiple helper workers are assigned to a

skewed worker. The experiment was done on W1 running on 48 cores. The most skewed

worker among the 48 workers received about 27M tuples in the unmitigated case. We allotted

different numbers of helpers to the skewed worker and calculated the load reduction. We

set the build hash-table in each worker to have 10, 000 keys, so that the state size became

significant and the state-migration time was noticeable.

 0

 5

 10

 15

 20

1 2 4 8 16 24

L
o
a
d

 r
e
d
u
c
tio
n

(M
ill
io
n
)

Number of helpers

Figure 3.26: Effect of multiple helper workers (W1 on tweets).

The results are plotted in Figure 3.26. When a single helper was used, the state migration

92

happened in 17 seconds. The skewed worker transferred about half of its total workload to

the helper, resulting in a load reduction of 13M tuples. When 2 helpers were used, the skewed

worker transferred about two thirds of its tuples to the two helpers (about 9M each). With

more helpers, the state-migration time also increased. For 8 helpers, the state-migration

time was about 26 seconds. Thus, there were fewer future tuples left, which resulted in a

small increase in the load reduction. For 16 helpers, the state-migration time became 32

seconds and the load reduction decreased to 19.7M. For 24 helpers, the state-migration time

was 39 seconds and the load reduction decreased to 19M.

3.7.12 Performance of Reshape on Flink

We implemented Reshape on Apache Flink and executed W1 on 40, 48, and 56 cores. A

worker was classified as skewed if its busyTimeMsPerSecond metric was greater than 80%.

Figure 3.27 shows the average load balancing ratio for the workers processing the California

and Texas tweets. The ratio was about 0.9, which means that the skewed and helper workers

had similar workloads throughout the execution. For the 48-core case, the final counts

of tuples processed by the skewed and helper workers for California were 13M and 14M,

respectively. The final counts of tuples processed by the two workers for Texas on 48 cores

were 10M each. The execution time decreased as a result of the mitigation. For example,

for the 48-core case, the execution time decreased from 407 seconds to 320 seconds.

0

0.2

0.4

0.6

0.8

1

40 48 56A
v
g
.
lo
a
d

 b
a
l.
ra
tio

Number of workers

(a) California data.

0

0.2

0.4

0.6

0.8

1

40 48 56A
v
g
.
lo
a
d

 b
a
l.
ra
tio

Number of workers

(b) Texas data.

Figure 3.27: Mitigation by Reshape on Flink (W1 on tweets)

93

3.8 Conclusions

In this chapter, we presented a framework called Reshape that adaptively handles partitioning

skew in the exploratory data analysis setting. We presented different approaches for load

transfer and analyzed their impact on the results shown to the user. We presented an analysis

about the effect of the skew-detection threshold on mitigation and used it to adaptively adjust

the threshold. We generalized Reshape to multiple operators and broader execution settings.

We implemented Reshape on top of two big data engines and presented the results of an

experimental evaluation.

94

Chapter 4

Maestro: Result-aware Scheduling for

Exploratory Data Analysis on Big

Data

4.1 Introduction

Big data processing systems have become quite popular in the last two decades. We have

mentioned various examples of such systems in the previous chapters. We also discussed

that these systems accept workflows broadly through two interfaces - programming APIs

and GUIs. The input workflow is compiled and executed by the engine.

The task to execute an input workflow to completion is performed by a scheduler. Scheduling

a workflow involves decisions such as how to execute the various operators in the workflow

and the resources to execute them on. A scheduler analyzes a workflow and comes up with

an order to execute the operators. It also decides how many resources (such as CPU cores

and memory) will be needed to execute these operators. Frameworks such as LSched [101]

95

and Decima [79] can help the scheduler decide the appropriate amount of resources to be

assigned. Once the resource needs are determined, the scheduler may need to apply for a lease

of the resources on shared clusters. Cluster managers such as YARN [121] and Borg [122]

have been developed to provide such leases.

The division of a workflow into multiple parts, each containing one or more operators, for

scheduling depends on the type of execution. In batch-based execution adopted by systems

such as Apache Hadoop [11] and Apache Spark [13], the workflow is broken down at data-

shuffle boundaries [110] into a sequence of map and reduce phases. All the tasks of a phase

should finish before the next phase starts. There are some optimizations to allow the reduce

phase to partially overlap with the map phase using a slow-start configuration [60]. On

the other hand, in pipelined execution adopted by systems such as Apache Flink [10] and

Hyracks [27], the workflow is broken down at blocking links into a sequence of pipelined

regions [50]. Blocking links are edges in a workflow DAG whose destination operator does

not produce any output till it processes all the input data on that edge. Examples of blocking

links are the build input of a two-phase HashJoin operator and the input to GroupBy operator.

We discussed the benefits of pipelined execution in exploratory data analysis in Chapter 3.

Pipelined execution allows the results to be produced quickly because an operator does

not wait for its entire input data to be produced before processing the input and sending

results to its downstream operators. For example, when a workflow containing a two-phase

HashJoin operator is executed in a pipelined mode, the HashJoin operator starts executing

and producing results as soon as the upstream operator producing probe input outputs initial

results. In contrast, when the workflow is executed in a batch mode, the HashJoin operator

waits for the entire probe input to be produced before joining the two inputs. Note that

in both the execution models, the HashJoin operator does not produce any output while

processing the build input. In this chapter, we consider the pipelined execution setting to

enable the users to see results quickly.

96

The problem of scheduling has been extensively studied in the literature, mainly from the

perspective of increasing the end-to-end performance [93, 7, 36]. However, there is little

research on the following important problem:

In exploratory data analytics, how to consider the timing of results shown to the

user when scheduling a workflow?

A few works are related to this problem. A work ranks the partitions of input data in the or-

der of their likelihood to produce results and higher ranked partitions are processed first [47].

Other works focus on a particular operator such as join and customize the implementation

of the operator so that it produces results quicker [119, 75].

In this chapter, we take a different perspective. Considering a workflow DAG as an input

in a pipelined execution setting, we explore how to divide the workflow into smaller parts

that can be separately scheduled and how to schedule the different parts so that results are

shown to the user quickly.

A simple way to divide a workflow into parts for scheduling is based on the blocking links

as discussed above. However, there may exist operators that expect the input data to arrive

on their input links in a particular order and cause exceptions if that expectation is not

met. For example, a two-phase HashJoin operator requires the complete input to arrive on

its build input link before input data arrives on its probe input link. To cater to such a

join operator, the part of the workflow producing build input should execute completely

before the part of the workflow producing probe input executes. However, in many cases,

the build and probe input are produced by the same part of the workflow. Figure 4.1 shows

such a workflow. Consider the execution of this workflow in the pipelined mode. When

the Scan operator starts producing data, both Filter1 and Filter2 process data and output

the results to HashJoin simultaneously, which causes an exception. Engines typically take a

heuristic-based approach to handle such workflows. For example, Apache AsterixDB [9] adds

97

materialization at an output of the operator that replicates the data, i.e., materialization

is added on the link between the Scan and the Filter2 operators. However, it can be seen

in the figure that materialization can also be added to the link between the Filter2 and the

HashJoin operator. In this chapter, we identify the different places where materialization can

be added in the workflow and examine their effect on the results shown to the user.

Scan

(eid, ename,
dept, mid)

HashJoin
mid = eid

Filter1
dept is not null

Filter2
dept = accounting

Sink

Figure 4.1: A workflow where probe and build inputs may arrive at join simul-
taneously. This leads to an exception if the join operator expects build input to
be processed completely before the probe input arrives.

In this chapter, we present a novel result-aware scheduling framework called Maestro that

analyzes a workflow DAG to create regions in a result-aware manner that are executed in a

pipelined execution setting. We make the following contributions. (1) Dividing the workflow

into regions and creating a region graph: We present a technique to divide a workflow into

regions and an algorithm to create a region graph that encapsulates the dependencies among

the regions of a workflow (Section 4.4). (2) Enumeration of materialization choices: When

there is a need for materialization, there may be multiple places in the workflow where

the materialization can take place. We present an algorithm to enumerate all the options of

materialization. (3) Result-aware materialization choice: We perform an analysis to compare

the different choices of materialization from the perspective of result awareness.

98

4.1.1 Related work

Cluster resource managers. When a cluster is shared by different applications, the appli-

cations need to interact with the resource managers to execute their tasks. Apache Hadoop

YARN [121] is a resource manager that publishes APIs that can be used by applications to

send resource requests (e.g., CPU cores, memory) and receive resource leases to execute their

tasks. Once the lease has been obtained the application takes care of placing the tasks to be

executed on those resources. YARN allocates resources based on different policies such as

FIFO, FAIR, and capacity-based scheduling. Mesos [64] works in a fashion similar to YARN

where it offers resources to application level schedulers. Borg [122] is a resource manager

that accepts job requests and, unlike YARN and Mesos, also manages placing the tasks of

a job on different machines. In contrast, Maestro focuses on the scheduling of a particu-

lar workflow and can contact the cluster resource managers to ask for the computational

resources needed for execution.

Early result production. Symmetric hash join [125, 118] aims towards early production

of join results by keeping hash tables for both inputs in its state. When a tuple arrives from

one input, it is used to probe the hash table of the other input. Early hash join [75] is a

join algorithm that allows early production of results without much overhead on the total

execution time. It runs in two phases where the first phase focuses on quickly producing

results and the second phase focuses on reducing the execution time. Another way to produce

data early is to rank the partitions of input data in the order of their likelihood to produce

results and process the higher ranked partitions first [47]. In contrast, Maestro focuses on

the execution of a workflow as a whole and is not specific to a particular operator. The

techniques in [75, 47] can complement Maestro to get even better results.

Workflow schedulers. The schedulers in Apache Hadoop and Apache Spark divide the

workflow into a sequence of stages [110]. Each stage has a predefined parallelism that is equal

99

to the number of tasks in that stage. Tasks are allocated to the computation nodes when the

nodes become available [106]. The scheduler in Apache Flink and Hyracks divides a workflow

into a sequence of pipelined regions based on blocking links [50]. The pipelined regions,

similar to stages, have predefined parallelism. In systems such as Apache Storm [14], the

traffic of data during the execution of the workflow can be monitored to change the placement

of operators and improve performance. R-Storm [93] is a scheduler for Apache Storm that

requires each task of a workflow to provide its resource needs and allocates them accordingly.

If a task receives data from another task in the workflow, then it tries to put them on the

same node. A-scheduler [36] is a scheduler for Spark Streaming that follows a scheduling

policy that does FIFO scheduling for dependent tasks in a workflow and FAIR scheduling

for independent tasks. LSched [101] and Decima [79] are query schedulers that use machine

learning to predict how to schedule individual queries so as to reduce the overall execution

time of the workload. Davos [104] uses a publish-subscribe pattern between operators for

data transmission and schedules operators one at a time depending on which operator has

pending input. It uses a priority-based scheduling strategy to execute the operator in a

workflow that has its input ready and is nearest to the output. Maestro is different from

the Davos scheduler because Davos assumes a publish-subscribe based execution, whereas

Maestro assumes a pipelined-based execution. Most workflow schedulers focus on improving

the performance of a workflow, i.e., reducing the total execution time. In contrast, Maestro

approaches the scheduling problem from the perspective of result timing awareness.

4.2 Preliminaries

In this section, we introduce a running example and a few preliminary concepts that we refer

to throughout this chapter.

Running Example. Figure 4.2(a) shows a workflow, which will serve as our running

100

example, where the user wants to analyze the effect of wildfires on people’s perception of

climate change. The user wants to analyze the text in the tweets from before, during, and

after the wildfire season. The historical information about the count of past fires in various

zipcodes is read by Scan1 operator. The zipcodes with no history of wildfires are filtered out.

The resulting historical information is joined with the tweets on the zipcode attribute. The

join is a two-phase HashJoin operator, where the historical information is the build input

and the tweet data is the probe input. The output of the join operator is input into an ML

operator that classifies the tweet text as being related to climate change or not. The result

is plotted as stacked bar charts where the x axis is the income range of zipcode and the

y axis is the proportion of tweets related and unrelated to climate change. For the tweets

collected during the wildfire season, only those that have the word “fire” are input into the

join operator. The tweets during the wildfire season are also plotted on a scatterplot operator

to show their spatial distribution.

Scan2
Historical Information
(zipcode, income-range,
past fires,)

Before-wildfire tweets
(text, zipcode, userid)

HashJoin1 ML1 Bar Chart1

Scan1

Scan4
HashJoin3 ML3 Bar Chart3

Filter1
past fires > 0

After-wildfire tweets

Scan3

During-wildfire
tweets

HashJoin2 ML2 Bar Chart2

Filter2
text contains "fire"

Scatterplot

...

...

...

Figure 4.2: Analyzing climate change awareness in tweets before, during and
after the wildfire season. The build inputs to join are shown in red. All joins
are on the zipcode column. The ML operators determine if the tweet is about
climate change.

As discussed in Chapter 2, each operator physically corresponds to a set of workers that

process input data and send output data to the workers of the downstream operators. There

is a centralized controller that oversees the execution of the workflow. Next we define a few

101

preliminary terms and concepts that will be used in this chapter.

Definition 4.1 (Result operators). We use the term result operators to refer to operators

that produce tabular or visual results. These operators do not have any output links.

In Figure 4.2, the bar chart and the scatterplot operators are result operators.

Definition 4.2 (Blocking and pipelined links). We call a link between two operators as

blocking if the destination operator does not produce any output till it processes all the input

data on that link. We call a link as pipelined if the destination operator starts producing

output before it has processed all the input data on that link.

For example, the build input link to a two-phase HashJoin is a blocking link because the

entire build input is needed to create a complete build hash table and no output is produced

by the operator before that. The probe input link to a two-phase HashJoin is a pipelined link

because the operator may start producing output before it has processed the entire probe

input. Sort and GroupBy operators are examples of operators that have just a single blocking

input and no pipelined inputs.

Implementation of a HashJoin operator. In this chapter, we assume the specific imple-

mentation of the HashJoin in Amber. The HashJoin operator is implemented as a collection of

workers and each worker performs both build and probe phases of the operator. For example,

in Figure 4.3, J1 and J2 process the build input from B1 and B2 in the build phase and the

probe input from P1 and P2 in the probe phase. Although this chapter uses HashJoin in

most of its examples, the results can be generalized to other operators that expect certain

inputs to be processed before other inputs. For example, the ideas in this chapter can also

be used to schedule an ML operator that takes two models as two inputs before processing

the test data that arrives on a third input.

102

HashJoin
Build Scan

Probe Scan

J1

J2

B1

B2

P1

P2

Build Scan

Probe Scan

HashJoin

(a) Logical workflow (b) Physical workflow

Figure 4.3: Implementation of HashJoin assumed in this chapter. The HashJoin
operator is implemented as a set of workers and each worker performs both build
and probe phases of the operator.

4.3 Overview of Maestro scheduler

A workflow DAG input into the engine needs to be scheduled for execution by the scheduler.

This section gives a high level overview of the working of the Maestro scheduler. The Maestro

scheduler is a module inside the controller of the workflow as shown in Figure 4.4.

Controller

Region GraphWorkflow Region
Builder

Deploy

Event

User

Scheduler
Policy

Cluster

Figure 4.4: Scheduling in Maestro

The user submits a workflow to the data processing engine through an interface. The region

builder compiles the workflow DAG to create a region graph. A region is a sub-DAG of

the workflow and the region graph is a graph capturing the order in which the regions of a

workflow should be executed. We discuss the concepts of region and region graph in detail in

Section 4.4. The region graph is passed to the scheduler. The scheduler executes the regions

according to the configured scheduling policy.

The scheduler receives certain events from the user or the workers executing the operators.

103

Upon the receipt of an event, the scheduler makes scheduling decisions based on the policy.

For example, when the user sends a command to start the workflow, the scheduler receives

an event to begin the execution of the workflow. During the execution of a workflow, the

scheduler receives various events about the execution status of the regions. An example of an

event received during execution is the completion of a worker of an operator. The scheduler

uses these events to decide on the scheduling of other regions.

4.4 Building an acyclic region graph in Maestro

In this section, we describe how an input workflow is scheduled in Maestro. First, we define

the concepts of region, dependencies between regions, and region graph (Section 4.4.1).

In order to schedule a region graph, it should be acyclic. We show that in certain cases

workflows may produce a cyclic region graph that cannot be scheduled. We also discuss

the solutions to modify such workflows so that the region graph of the modified workflow is

acyclic (Section 4.4.2). Lastly, we discuss the algorithm that takes in a workflow DAG and

produces an acyclic region graph (Section 4.4.3).

4.4.1 Regions and their dependencies

Maestro divides a workflow DAG into sub-DAGs called “regions”, each of which can be

separately scheduled. We define the concepts of source operators, regions, dependencies

between regions, region graph and other related terms below.

Definition 4.3 (Source operator). Source operators are the operators in a workflow that

have no pipelined input links. In other words, the operator should have either no input links

at all or only blocking input links.

104

The operators with no inputs are the scan operators that produce data in the workflow.

Examples of operators with only blocking inputs are GroupBy and Sort. We use the concept

of source operators to define regions as we will see soon.

Let us consider the following example. Figure 4.5 shows a workflow to create a scatterplot

of the selling price (sp) and the cost price (cp) of items belonging to different categories and

compare the profit margins for the items. The probe input (Scan2) containing the selling

prices of items is joined with the build input (Scan1) containing the cost price of the items on

the item attribute and the output is projected to have the item, category, and sp attributes.

The output from Scan1 and Project are merged in the Merge operator, which adds an extra

column specifying if the tuple is from Scan1 or Project. The merged data is visualized on a

scatter plot.

Scan1 HashJoin
(item, cat, cp)

Scan2
(item, sp)

item Merge
Project

(item, cat, sp) Viz

Figure 4.5: Workflow to understand regions. The blocking edges are shown in
red. The HashJoin requires the build input to be processed before the probe input
arrives.

A way to schedule the workflow without causing any exception is to first send a start message

to the Scan1 operator. The data from Scan1 goes into HashJoin as the build input and also to

the Merge operator that processes it and passes the output to the Viz operator. After Scan1

has produced data completely and the data has been processed by the HashJoin operator, a

start message is sent to the Scan2 operator that provides the probe input to HashJoin. The

output of HashJoin then goes to the Viz operator through the Project and Merge operators.

Thus, we define a region as the following.

Definition 4.4 (Region). A region is a sub-DAG of the workflow that starts at a source

operator and contains all the operators reachable from the source operator using only pipelined

105

edges.

The regions for the workflow in Figure 4.5 are shown in Figure 4.6(a). Figure 4.6(b) shows

the region graph for the workflow. We will discuss the concept of a region graph soon.

When a Scan operator in the workflow shown in the figure receives a command from the

controller to start producing tuples, its output tuples propagate to all the operators that are

reachable from the Scan operator by pipelined links, and these reachable operators execute

simultaneously with the Scan operator.

Scan1 HashJoin
(item, cat, cp)

Scan2
(item, sp)

item Merge
Project

(item, cat, sp) Viz

r2
r1

r1 r2

(b) Region graph(a) Workflow with regions marked

Figure 4.6: Regions in the workflow in Figure 4.5.

Note that the HashJoin operator in the Figure 4.6 is active when region r1 is executing so that

it can receive and process the output of Scan1. Systems such as Hyracks include HashJoin

in both r1 and r2 [27]. In this chapter, we do not consider HashJoin to be a part of r1 for

the purpose of simplicity of explanation. This way of representing regions is also adopted

by systems such as Flink where operators do not belong to the region of their upstream

operators producing blocking input [50].

Definition 4.5 (Execution of a region). The execution of a region refers to the deployment

of the operators of the region on the cluster and the subsequent processing of input data by

the operators.

A region is executed by the controller by sending a start message to its source operators. If

a region has not been executed yet, it is called an unscheduled region.

106

Definition 4.6 (Completion of a link and region). A link between operators is said to be

completed if all the data on the link has been received by the destination operator. A region

is said to be completed if all its operators have processed all their input data and produced

all their output data.

Definition 4.7 (Dependency between regions). A region Y is said to be dependent on

another region X if there exists at least one blocking link l from an operator in X to an

operator in Y and all the data on l should be completely received before the operators in Y

start executing.

In Figure 4.6(a), regions r2 depends on r1 because r1 produces the build input for the

HashJoin operator in the regions r2.

Definition 4.8 (Ready region). Let a region r depend on a set of regions represented by D.

The region r is said to be ready when all the regions in D have completed and all blocking

links to r from the regions in D have also completed. When a region is ready, it can be

executed.

When a region has to be scheduled, all the regions that it depends on should have already

completed. Thus, the scheduler has to follow an order when executing the regions of a

workflow. This order is captured in the region graph for a workflow, which we define below.

Definition 4.9 (Region graph). The region graph for a workflow is a graph with the regions

of the workflow as its vertices and the dependencies between the regions as its edges. An edge

from a region X to a region Y in the region graph means that Y is dependent on X.

The region graph for the workflow in Figure 4.6(a) is shown in Figure 4.6(b). We also show

the regions in the workflow in Figure 4.2 and the corresponding region graph in Figure 4.7.

107

r1

r2

r3

r4

(a) Regions in the running example workflow (b) Region graph

Scan2
Before-wildfire tweets
(text, zipcode, userid)

HashJoin1 ML1 Bar Chart1

Scan1

Scan4
HashJoin3 ML3 Bar Chart3

Filter1
past fires > 0

After-wildfire tweets

Scan3

During-wildfire
tweets

HashJoin2 ML2 Bar Chart2

Filter2
text contains "fire"

Scatterplot

...

...

...

r2

r3

r4

Historical Information
(zipcode, income-range,
past fires,)

r1

Figure 4.7: Regions and region graph from the running example workflow.
Blocking input links are in red.

4.4.2 Avoiding cycles in region graphs

The regions must be scheduled in a topological order based on the region graph, in order to

ensure that a region is executed only when all the regions it depends on have been executed.

In order to obtain a topological order, the region graph should not have any cycles, i.e., it

should be a DAG. As we show soon, a workflow may yield a region graph with cycles. Such

a workflow has to be modified in a way that the modified workflow yields an acyclic region

graph. Next we show an example of a workflow that yields a cyclic region graph. We also

discuss ways to modify the workflow so that the modified workflow has an acyclic region

graph.

Example workflow with cyclic region graph. Let us see an example of a workflow

that yields a cyclic region graph. Figure 4.8 shows a workflow DAG and its corresponding

region graph. The workflow tries to find a new department for the employees in the machine

learning department and their managers. It visualizes the count of employees and managers

by the new departments they have been allotted to. There is only one region in the workflow

whose source is the Scan operator. The HashJoin expects to first completely receive and

process its build input from Filter1. Then, it expects to receive the probe input from Filter2.

108

Since both Filter1 and Filter2 belong to the same region r1, the region graph has a cycle, as

shown in the figure. Such a cyclic region graph cannot be scheduled.

Scan

(eid, ename,
loc, dept, mid)

Filter1
dept is not null

HashJoin

Filter2
dept = ML

Viz

r1

(a) Workflow (b) Region graph

mid = eid
ML1

infer new dept
Duplicate

Figure 4.8: Workflow with cyclic region graph. When there is a cycle in the
region graph, there is no feasible schedule of regions.

Modifying the workflow to get an acylic region graph. In order to enforce the

requirement of the probe input of HashJoin arriving after the build input, the two inputs

need to be produced by different regions. The region producing the build input will need

to be scheduled first, followed by the region producing the probe input. There are different

ways to modify the workflow so that the probe input for HashJoin arrives from a different

region than the build input. One way is to remove the Duplicate operator and replicate

the operators Scan1 and ML1 to supply the data to Filter2 as shown in Figure 4.9(a). This

creates two regions r1 and r2, and r2 has a dependency on r1. This way incurs the overhead

of repeated computation. For example, in Figure 4.9(a), the input data is processed by the

same ML operator twice.

Another way to create a new region is to introduce materialization. Materialization is in-

troduced on a link by adding a materialization writer and a materialization reader operator

to the link. The materialization writer writes all the data produced by the source operator

of the link to a memory or disk. The materialization reader reads the data from the storage

and outputs it to the destination operator of the link. In Figure 4.9(b), materialization

writer and reader operators have been put between the operators Filter2 and HashJoin. The

introduction of materialization also creates two regions r1 and r2, where r2 is dependent on

r1. The Scan operator is the source of r1 and the materialization reader operator (MR) is

109

Scan Filter1 HashJoin

Filter2

VizML1

Scan ML1

(a) Replicating operators

Scan Filter1 HashJoin

Filter2

VizDuplicate

MW

MR

(b) Introducing materialization

ra rb r1 r2

ra rbRegion graph r1 r2Region graph

ML1

Figure 4.9: Modifying workflow in Figure 4.8 to create an acyclic region graph.

the source of r2. We focus on the case where computational resources are more expensive

than storage. We will follow the materialization way to modify the workflow DAG in case

of cyclic region graphs.

4.4.3 Creating an acyclic region graph

In Section 4.4.2, we saw the problem of cyclic region graphs and discussed ways to modify

the workflow to yield an acyclic region graph. In this section, we discuss an algorithm

(Algorithm 2) that takes a workflow DAG W as input and yields an acyclic region graph G.

If needed, the algorithm may modify the workflow DAG W by introducing materialization

operators to yield the acyclic region graph. We use the workflow in Figure 4.8(a) to explain

the various steps of the algorithm.

Let S be the set of all the source operators in the workflow (line 1). For the workflow in

Figure 4.8(a), there is only one source, which is the Scan operator. The region graph G

is initially empty (line 2). The set of regions R is also initially empty (line 3). Let O be

a topologically ordered sequence of operators in W (line 4). A topological order for the

operators in the workflow in the figure is
[
Scan, ML1, Duplicate, Filter1, Filter2, HashJoin,

Viz
]
. The operators in O are sequentially considered and the following is done for each of

110

Algorithm 2: Acyclic region graph creation.

Input: W ← A workflow DAG
Output: G: A region graph

1 S ← Set of source operators W
2 Initialize G to an empty graph
3 Initialize R to an empty set of regions
4 O ← A topological order of the operators in W
5 foreach operator o in O do
6 so ← set of sources in S from which o is reachable using pipelined links
7 foreach source s in so do
8 if not(there exists a region in R with s as the source) then
9 Add a new region r in R with s as the source

10 Add a vertex in G corresponding to r

11 end
12 Add operator o to the region in R that has s as source

13 end
14 if blocking input link b exists to o then
15 u← Upstream operator of link b
16 while true do
17 SRu ← Set of regions that u belongs to
18 SRo ← Set of regions that o belongs to
19 if (∃ru in SRu and ∃ro in SRo such that adding edge ru → ro causes a

cycle in G) then
20 call Add-Materialization(W , R, G, ru, ro, o)

// This subroutine is discussed in Algorithm 3. It adds

materialization to region ro. The materialization

affects the structure of region ro and possible other

regions too. This subroutine updates R and G.
21 end
22 else
23 foreach ru ∈ SRu do
24 foreach ro ∈ SRo do
25 Add edge ru → ro to G
26 end

27 end
28 break

29 end

30 end

31 end

32 end
33 return G

111

u o

ru

ro Materialization

rx

u o

ru

ro1

rx1

ry

rn
MW

MR

(a) Original workflow that would have caused a cyclic dependency
among regions. A place where materialization can happen is also shown.

(b) Modified workflow after introducing materialization.

ry

Figure 4.10: Diagram to help explain the intuition behind lines 14 to 29 in
Algorithm 2. Regions are marked by dotted blue shapes.

them. Let the current operator in the sequence be o. Let so be the set of sources from which

o is reachable using pipelined edges (line 6). For each source s in so, we check if the region

corresponding to the source s is present in R. If it is not present, we add a region r that

has s as the source in R (line 9). We also add a vertex representing r in G (line 10). In the

example workflow, the Scan operator is considered first. Since the region that has Scan as

the source is not present in R and G, it is added to both. We denote this region as r1 in our

example. The next operators in the order are ML1, Duplicate, Filter1, and Filter2 and they

are considered one by one. All these operators only have one source from which they are

reachable (Scan) and the region corresponding to that source (r1) is already in R and G.

Operators such as HashJoin have one blocking input link. On the other hand, a machine-

learning operator that accepts two models on blocking inputs before processing test tuples

using the models has two blocking input links. For simplicity, in the algorithm, we assume

that the operator has at most one blocking input link. Let the blocking input link (if it

112

exists) be b. We denote the set of regions that the upstream operator (say, u) of b belongs

to as SRu (line 17). We denote the set of regions that the operator o belongs to as SRo

(line 18). Figure 4.10 shows a case where u belongs to two regions (ru and ry) and o belongs

to two regions (ro and rx). An edge needs to be added from each region in SRu to each

region in SRo. If one of these edges causes a cycle in G, a subroutine is called to add

materialization (lines 19 to 28). The details of this subroutine are presented in the next

section. This subroutine adds materialization and modifies R and G to reflect the newly

created regions and edges due to materialization. Note that the set of regions SRu and SRo

may change after materialization, as we will show soon using Figure 4.10. The Algorithm 2

again computes the sets of regions SRu and SRo and tries to add edges between each pair

of regions in these sets. This process continues till edges have been added from each region

in SRu to each region in SRo without causing cycles.

In Figure 4.10(a), adding an edge from the region ru to region ro causes a cycle. Thus, we

need to add materialization to ro. A materialization option is shown in the figure. This

materialization breaks the region ro and rx as shown in Figure 4.10(b) and creates a new

region rn with the materialization reader as the source. Thus, the set SRo changes from {ro,

rx} (before materialization) to {rn} (after materialization). Edges ru → rn and ry → rn are

added to the region graph.

In our example workflow in Figure 4.8(a), when the HashJoin operator is considered, the

regions of Filter1 and HashJoin are both r1. Since adding an edge from r1 to r1 will cause

a self-loop, materialization is added on the link between Filter2 and HashJoin. The added

materialization reader becomes the source of the region r2. The HashJoin operator is now

in the region r2. In this case, SRu = {r1} and SRo = {r2}. An edge is then added from r1

to r2. Once we have gone through all the operators in the topological order, the graph G is

returned.

Note that Algorithm 2 also works for operators that only have one input link which is

113

blocking. Examples of such operators are GroupBy and Sort. For such an operator (say o),

the algorithm adds an edge from the region containing the upstream operator of o to the

region containing o.

4.5 Choosing a materialization option

The Algorithm 2 in Section 4.4 may add materialization to the input workflow in order to

produce an acyclic region graph. In this section, we enumerate the different options where

the materialization operators can be placed in the workflow (Section 4.5.1) and discuss how

it affects result awareness (Section 4.5.2).

4.5.1 Enumerating the materialization choices

In Figure 4.9(b), the materialization operators were placed between the Filter2 and the

HashJoin operators. However, another choice is to place them between the ML1 and Filter2

operators. Both choices create two regions and result in the same region graph as shown in

Figure 4.9(b). In general, there can be multiple choices where materialization operators can

be placed in a workflow. We are going to describe the process to enumerate all those choices.

We first give an intuitive explanation of how to enumerate the different materialization

choices by giving an example. Then, we give a formal approach for enumerating the choices.

Intuition. Figure 4.11(a) shows the outline of a workflow with its regions marked. The

corresponding region graph containing a cycle is shown in Figure 4.11(b). The problem

exists at the operator J4 that receives its probe input from the region r2 before the build

input arrives from the region r4. In order to solve this problem, we use materialization to

modify the workflow DAG in such a way that the probe input to J4 can be delayed. The

114

r1 r2 r3 r4

J1

S

J2 J3D1 F

D2

(b) Region graph for the
original workflow in (a)(a) Workflow

D1

D2
M1

M2
U

J4

(e) All materialization options

1

2 3

4

5
6

r1 r21 r3 r4

(f) Region graphs for the materialization options in (e)

r22Options 1 and 6

r1 r21 r3 r4

r22

Options 2, 3, 4
and 5 r23

UM2

M1
J4

r1 r2 r3 r4

J1

S

J2 J3D1 F

D2
UM2

M1
J4

r1 r21 r3 r4

MW MR

r22

(c) Regions after adding materialization on one of the links.
Materialization breaks the region r2 into two parts - r21 and r22

r1 r21 r3 r4 r22

(d) Region graph for the
modified workflow in (c)

Figure 4.11: Enumerating all the materialization choices. J1, J2, J3, and J4 are
HashJoin operators. D1 and D2 are replication operators. M1 and M2 are ML
operators. S is scan, F is filter, and U is a union operator.

115

materialization should split the region r2 into two parts, thereby “cutting off” the flow of

data from r2 into the probe input of J4. This is similar to the network flow problem where

one needs to determine the cut edges in the graph that make a target vertex unreachable

from the source vertices [52]. In our case, the target vertex is the operator whose probe input

has to be cut off (J4) and the cut edges are the links where data has to be materialized.

Figure 4.11(c) shows materialization added to the link between U and J4. It cuts off the probe

input to J4 and divides the region r2 into two parts r12 and r22 as shown in Figure 4.11(d).

A key consideration while adding the materialization is that the materialization should cut

off the probe input to J4 from r2, but the build input to J2 (in r3) should still come from r2.

If this does not happen and the build input to J2 is produced by the newly created region,

then there still will be a cycle in the region graph. Thus, we need to identify the sub-DAG

of the workflow where the materialization can happen such that it cuts off the probe input

to J4 from r2 but does not impact the build input to J2 from r2. This sub-DAG for the

workflow in Figure 4.11(a) is shown in Figure 4.11(e). The figure also shows 6 different sets

of cuts, each of which disconnects D1 and J4. These cuts form the 6 materialization choices.

Each cut includes a set of edges where the data has to be materialized. The choices 1 and

6 consist of one edge only, which means that they require a single materialization writer

and reader operators. When one of these two options is chosen, the region r2 is broken into

r12 and r22. The single materialization reader becomes the source of the region r22 and the

resulting region graph is shown in Figure 4.11(f). The choices 2, 3, 4, and 5 consist of two

edges each, which means that they require two materialization writer and reader operators,

one pair on each edge. When one of these four options is chosen, the region r2 is broken

into three regions r12, r
2
2 and r32. The two materialization readers become the source of the

regions r22 and r32, and the resulting region graph is shown in Figure 4.11(f).

Formal approach. We present an algorithm to describe how materialization is added to the

workflow DAG in the line 20 of Algorithm 2. Consider that W , R, and G are the workflow

116

DAG, set of regions and the region graph, respectively, before that line and O is the operator

that is responsible for an edge from a region ru to ro that would result in a cycle in the region

graph G. Algorithm 3 adds materialization to W to obtain a modified workflow DAG W ′

and prevents the creation of a cycle in G. Figure 4.12(a) shows an example outline of the

workflow W with region ro and ru marked. Let rm be the region after ro in the cycle created

by O in the region graph of W (line 1). The operators in the region rm receives blocking

input from the operators in ro. As explained above, the materialization should cut off the

input to O from ro but not impact the blocking input to rm from ro.

ro rm ru

O

So

rprior

(a) Outline of a workflow with a cycle in its region graph

rprior ro rm
Region
graph

ru

Gm Go

rz

rz

ro1 rm ru

O

So

rprior

(b) Outline of a workflow after materialization.

rprior ro1 rm
Region
graph

ru

rz

rz

MW1

MW2 MR1

MR2

rn1

rn2

rn1

rn2

Materialization

P P

Figure 4.12: Understanding the formal approach to find the sub-DAG where
materialization is to be added.

Let So be the source of the region ro (line 2). Let the sub-DAG that supplies pipelined

input to O from So be called Go (line 3), as shown in the figure. Let the sub-DAG that

supplies blocking input from So to rm be called Gm (line 4), as shown in the figure. Let

Gf = Go−Gm. On a high level, the graph Gf is the part of ro that produces pipelined input

for O, but does not produce the blocking input for rm. The input to Gf comes from a set

of operators in Gm that are represented by P in the figure. Considering the sub-DAG Gf ,

we need to identify all possible cut-edges sets [52] that make the operator O unreachable

from the operators in P . Each element of the set is a materialization choice and contains

a collection of edges where materialization can be added. We choose one materialization

117

Algorithm 3: Adding materialization to a workflow.

Input: W,R,G ← Workflow DAG, set of regions and region graph before line 20 in
Algorithm 2

Input: O ← Current operator at line 20 in Algorithm 2 due to which Algorithm 2
needs to add an edge from a region ru to a region ro, that results in a cycle
in G

Output: W ′, R′, G ′: Modified workflow DAG, set of regions and region graph after
adding materialization to W

1 rm ← The region that is after ro in the cycle in G
2 So ← The source of ro
3 Go ← The sub-DAG supplying the pipelined input from So to O
4 Gm ← The sub-DAG supplying the blocking input from So to the operators in

region rm
5 Gf ← Go −Gm // The sub-DAG where materialization can be done without

affecting input to rm
6 P ← The set of operators in Gm that supply the pipelined input to O
7 E ← A cut-edge set in Gf that makes O unreachable from all operators in P
8 Modify W by adding materialization operators to all the edges in E
9 SRb ← The set of regions that will be broken due to materialization

10 For each region in SRb, remove it from R and the corresponding vertex from G
11 SSb ← The set of sources of the regions in SRb

12 SSm ← The set of materialization readers introduced
13 foreach source s ∈ SSb ∪ SSm do
14 Add a region r to R representing the region that has s as the source and

containing all the operators reachable from s using pipelined edges
15 Add a vertex to G representing the region r

16 end
17 foreach materialization reader t in SSm do
18 Add an edge in G from ru to the region that has t as the source

19 end
20 SRw ← the new regions that have the sources of the regions in SRb as their sources
21 SRr ← the new regions that have the materialization readers as their sources
22 foreach region r in SRw do
23 Add edges from r to the regions in SRr that read a materialization output of r

24 end
25 call Add-edges-to-new-regions-in-region-graph(SRw, SRr, G, W)
26 return modified W , R, and G

118

option and apply it to W (line 8).

Let us assume that the option shown in Figure 4.12(a) is chosen for materialization and

use it for further discussion. Let the set of regions affected by the materialization be SRb.

In the figure, ro is the only region affected by materialization. The vertices and regions

corresponding to these regions are removed from G and R, respectively (line 10) because

materialization breaks these regions into multiple smaller regions. Then, we begin the process

of adding the new regions to G and R. For the source of each region in SRb, we add a new

region to G and R, that contains all the operators reachable from the source using pipelined

edges (lines 13-16). These are the regions that contain the materialization writer operators

and the set of these regions is denoted by SRw. In the figure, SRw only contains r1o. Similarly,

for each materialization reader introduced, we add a corresponding region to R and G. We

also add an edge in G from ru to the newly added regions with materialization readers as the

sources (lines 17-19). In the figure, two materialization readers are introduced that create

two new regions, namely r1n and r2n. These regions now contain the operator O that receives

the blocking input from ru. Thus, edges are added from ru to the two new regions in the

region graph. Let SRr be the set of new regions that have the materialization readers as the

sources. Next, we iterate through each region (say rw) in SRw and add an edge from rw to

the regions in SRr that consume the materialized output of rw (lines 22-24). In the figure,

this leads to an edge from r1o to r1n and r2n.

When we removed the regions in SRb from G, we also removed the corresponding edges of

those regions. Thus, the edges from the regions in SRw and SRr to the other regions in

G have to be found and added (line 26). For example, in the figure, the region ro used to

produce the blocking input to the region rz. After materialization, the regions r1n and r2n

produce the blocking input to rz. Thus, the edges r1n → rz and r2n → rz need to be added

to G. The computation of these edges can be done from scratch by iterating over all the

operators in the workflow processed till now according to the topological sequence. Another

119

way is to compute these edges incremental by remembering the edges to the regions in SRb

before materialization and adjusting only those edges. At the end, the modified W , R, and

G are returned.

4.5.2 Result-aware materialization choice selection

We saw how to enumerate different materialization choices in Section 4.5.1. In this section,

we discuss how to consider result awareness while choosing a materialization option. We

assume that there is a single cycle in the region graph and there is a single result operator

in the workflow. We first define first response time, which is used as a metric for result

awareness in this chapter. Then, we discuss how to choose a materialization option that

gives a good first response time.

4.5.3 First response time

In exploratory analysis, the users want to quickly observe some initial output from the result

operators. This allows the users to find issues in the analysis early without waiting for the

entire workflow to finish executing [104]. Consider the following scenario. In the running

example, when r3 runs, the user may observe that the scatterplot operator contains many

tweets related to other types of fires different from wildfire. Since the goal of the analysis

is to determine whether wildfires lead to climate change awareness, the user may decide to

add more keywords to the Filter2 operator to make the tweets more relevant to wildfire.

Considering a workflow with a single result operator, we define the first response time as

follows. It is the time required from the start of execution of a workflow to the time when

the result operator has produced a specific number of tuples (say, d). We denote the first

response time by τ(d), where d is the number of tuples that the result operators should

120

produce. For simplicity, we consider d = 1 in this chapter.

ra rb rx

Sink

rc

Figure 4.13: The outline of a workflow showing regions. The sink operator in the
last region. For first response time, we consider the time to completely execute
all regions except the region containing the sink. For the region containing the
sink, the time to produce only a single tuple is considered in the calculation of
the first response time.

First response time for a sequence of regions. Let ra → rb → rc → · · · → rx be a

sequence of regions (e.g., a topological order of regions from an acyclic region graph), where

the result operator is present in rx (Figure 4.13). Assume each region in the sequence is

completed before the next region begins execution. Let t(ri) represent the time to execute a

region ri completely and t(ri(1)) represent the time to produce a single tuple from the result

operator in ri. Then, the first response time for the sequence of regions is,

τ(1) = t(ra) + t(rb) + t(rc) + · · ·+ t(rx(1)).

4.5.4 Choosing a materialization option

We now use the above description of first response time to discuss how to choose a ma-

terialization option. The goal is to choose an option that would reduce the first response

time.

Explanation using example. Let us consider the example region graph with a cycle shown

in Figure 4.11. When materialization options 1 or 6 are chosen, two new regions r12 and r22

are created out of r2, and r
2
2 has the result operator (Figure 4.14(a)). In this case, the first

121

J1

S

J2 J3D1 F

D2
UM2

M1
J4

r1 r21 r3 r4

MW MR

r22

J1

S

J2 J3D1 F

D2

U

M2

M1
J4

r1 r21 r3 r4

MW1

MW2 MR1

MR2

r22

r23

(a) Regions when materialization option 6 is chosen.

(b) Regions when materialization option 5 is chosen.

r1 r21 r3 r4 r22Region graph

r1 r21 r3 r4

r22

r23
Region graph

Figure 4.14: The outline of modified workflows showing regions when material-
ization is added to the workflow in Figure 4.11(a). When there are more than
one regions containing the sink, the first response time includes the minimum
time among those regions to produce a single tuple.

122

response time is:

τ(1) = t(r1) + t(r12) + t(r3) + t(r4) + t(r22(1)).

Note that the structure of r12 and r22 depend on which option is chosen. Thus, t(r12) and

t(r22(1)) depend on which option is chosen. The time for the execution of other regions is not

affected by the materialization choice. When materialization options 2, 3, 4 or 5 are chosen,

three new regions r12, r
2
2 and r32 are created out of r2, and both r22 and r32 have the result

operators (Figure 4.14(b)). In this case, the first response time is:

τ(1) = t(r1) + t(r12) + t(r3) + t(r4) +min(t(r22(1)), t(r
3
2(1))).

Note again that the materialization option affects the structure of r12, r
2
2 and r32 and con-

sequently the times t(r12), t(r
2
2(1)) and t(r32(1)). The execution times of other regions are

unaffected.

Query time estimation can be done to estimate τ(1) resulting from a materialization option.

For a region r, t(r) can be predicted by estimating the total query execution time [58, 126]

for the query represented by the operator DAG in r. Similarly, t(r)(1) can be predicted by

estimating the time to get the first few results [68]. We choose the materialization option

among the 6 choices that has the least predicted τ(1).

Generalization. In general, a materialization choice c breaks a region r into two sets of

regions: 1) a single region r1c that has the source of r as its source and 2) a set of regions

{r2c , r3c , · · · } that have the materialization readers as their sources. Let τc(1) be the first

response time when the option c is chosen. There are two cases to be considered when defining

τc(1), depending on whether the result operator was in region r before materialization or

not. If the result operator was in region r, then the result operator will be part of all the

regions in {r2c , r3c , · · · }. Thus, these regions need to execute only partially for the first tuple

to be produced from the result operator. On the other hand, if the result operator was not in

123

r

Materialization
Option c

MW

MW

MW

rc1

MR

MR

MR

rc2

rc3

rc4

(a) A region r where materialization needs to be added is
shown with a materialization option as an example

(b) Region r is split into multiple regions after
materialization is added.

Sink

Sink

Figure 4.15: Example to help understand the generalization of first response
time when a materialization choice c is chosen in a region r. The region r1c has
to be fully executed, and any of the regions r2c , r

3
c , · · · has to produce a single

tuple to get the first tuple out of the sink.

124

r, then it will not be in any of the newly created regions. Thus, all the newly created regions

will have to execute completely before the region with the result operator starts executing.

Thus, we define τc(1) as the following:

τc(1) =

T + t(r1c) +min(t(r2c (1)), t(r

3
c (1)), · · ·), result operator ∈ r

T + t(r1c) + t(r2c) + t(r3c) + · · · , result operator /∈ r,

where T is a constant that denotes the time spent on regions other than r, which are

not affected by materialization. The chosen materialization option is the one that has the

smallest estimated τc(1).

4.6 Experiments

We performed experiments to show the presence of materialization choices in real workflows.

We also performed experiments to showcase the effect of materialization choice on the first

response time and the size of materialized data.

4.6.1 Materialization choices in workflows

We analyzed 21 workflows to see if they needed any materialization. For the workflows

that needed materialization, we also evaluated the number of materialization choices. We

did the analysis on publicly available workflows from three commercial workflow-based data

processing systems, namely Alteryx, RapidMiner, and Dataiku, as well as workflows in our

Texera system. Sample workflows from the systems are shown in Figures 4.16, 4.17, 4.18,

and 4.19. For each workflow, we collected results about the need for materialization and the

number of materialization choices. The results are shown in Table 4.1.

125

Figure 4.16: An Alteryx workflow.

Figure 4.17: A RapidMiner workflow.

Figure 4.18: A Dataiku workflow.

126

Figure 4.19: A Texera workflow.

System # of operators
Materialization

needed?
of materialization

choices

Alteryx

9 Y 3
10 Y 3
14 Y 4
19 Y 1
26 Y 12
34 Y 1
102 Y 1

RapidMiner

5 N 0
9 Y 3
10 Y 2
10 Y 3
13 Y 2
19 Y 4

Dataiku
31 Y 4
32 Y 1
45 N 0

Texera

8 Y 1
8 Y 1
9 N 0
10 N 0
30 Y 3

Table 4.1: Analyzing the workflows from various workflow processing systems.

127

We found a number of workflows from various systems that needed materialization. Upon

examination, many of these workflows offered more than one materialization choice. The

highest number of choices was found in an Alteryx workflow that offered 12 choices. The

analysis shows that there are many publicly available workflows that need materialization.

4.6.2 Effect of materialization choice on first response time

We took two workflows of similar structure and showed the effect of materialization choice

on the first response time of the workflows.

Data and workflows. We used two workflows as shown in the Figure 4.20. Each workflow

used two different sets of tweets as input datasets. Workflow W1 used 5 datasets ranging

from 0.3K tweets to 0.7K tweets. Workflow W2 used 5 datasets ranging from 1.6K tweets to

7.6K tweets. The datasets used were small because both the workflows contained expensive

machine-learning based operators that took considerable time to process each tweet. Work-

flow W1 processes the tweets using two machine-learning based operators that add labels to

the tweets specifying whether the text of a tweet is related to climate change and whether the

text suggests action to be taken regarding climate change. The outputs of the two operators

are then joined on the id column to create a single tuple containing both labels for a tweet.

Workflow W2 finds the tweets related to the opioid tramadol. These tweets are then joined

with their reply-tweets using the in-reply-to-id attribute. Each tuple output of the HashJoin

operator contains a tweet about tramadol and one of its reply tweets. The sentiment label of

the reply-tweet is also present that has been added by the Sentiment Analysis operator. The

output of HashJoin is plotted on a spatial graph with edges between a tweet and its reply.

The reply-tweet location is colored according to its sentiment.

Experimental Setting. The experiments were carried out on GCP on a single n2-highcpu-

32 machine containing 32 CPU cores, 32 GB RAM and 100 GB HDD disk running Ubuntu

128

Scan ML1 HashJoin

ML2

Sink
(id, text) Tweet suggests

taking action

Tweet relates wildfire
to climate change

id = id
1 2

W1

Scan Sentiment
Analysis

(id, text, lat, lon,
in-reply-to-id) text

HashJoin

Regex
text contains

'[Tt]ram+adol?s?'

id = in-reply-to-id
SinkW2

1 2

Figure 4.20: Workflows used in the experiment to analyze the effect of mate-
rialization choices on the first response time. The blue triangles represent the
materialization choices in the workflows.

18.04.5 LTS. All the operators were given 2 workers except the machine-learning based UDF

operators in W1 which were given 4 workers because they were expensive.

Materialization choices of W1. The workflowW1 had two materialization choices shown

in the Figure 4.20. The first response times for the two choices for various input data sizes

are shown in Figure 4.21. The first-response time when choice 1 was used for the 0.3K

tweets dataset was 203 seconds. The first-response time when choice 2 was used for the

0.3K tweets dataset was 592 seconds. The first response times gradually increased as the

input data size increased. For the 0.7K tweets dataset, the first response times for the

choices 1 and 2 were 390 seconds and 1260 seconds, respectively. The figure shows that

the choice 1 was consistently better than choice 2. The reason is that when choice 2 was

used, the two expensive machine-learning based operators belonged to the same region and

executed simultaneously. This led to competition between them for resources and slowed

down computation.

Materialization choices of W2. The workflow W2 also had two materialization choices.

129

 0

 200

 400

 600

 800

 1000

 1200

0.3K 0.4K 0.5K 0.6K 0.7K

F
ir
s
t
re
s
p
o
n
s
e

 t
im
e

 (
s
)

input tweets

Choice 1
Choice 2

Figure 4.21: First response time for different input data sizes in W1.

The first response times for the two choices for various input data sizes are shown in Fig-

ure 4.22. The selectivity of the Regex operator was low because only a few tweets contained

tramadol. The first-response time when choice 1 was used for the 1.6K tweets dataset was

180 seconds. The first-response time when choice 2 was used for the 1.6K tweets dataset was

167 seconds. The first response times gradually increased as the input data size increased.

For the 7.6K tweets dataset, the first response times for the choices 1 and 2 were 805 and 767

seconds, respectively. The figure shows that the choice 2 was consistently better than choice

1. The reason for the difference in first-response time is explained next. When choice 1 was

used, the Regex operator belonged to a region that started execution after the sentiment

analysis processed the entire data. Since the Regex operator had low selectivity, it produced

the first output after a considerable time. When choice 2 was used, Regex and Sentiment

Analysis operators belonged to the same region and data was processed by the Regex operator

alongside Sentiment Analysis without adding much overhead. When the next region began

execution, the first tuple was immediately output from HashJoin.

Thus, we got lower first-response time when using choice 1 for W1 and choice 2 for W2.

This experiment shows that the materialization choices do play a role in the first-response

time.

130

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1.6K 3.1K 4.6K 6.1K 7.6K

F
ir
s
t
re
s
p
o
n
s
e

 t
im
e

 (
s
)

input tweets

Choice 1
Choice 2

Figure 4.22: First response time for different input data sizes in W2.

4.6.3 Effect of materialization choice on materialized data size

We took the two workflows from the previous experiment and performed experiments to

compare the materialized data size for the various materialization options. The experiment

setting was the same as the previous experiment.

 0

 200

 400

 600

 800

 1000

0.3K 0.4K 0.5K 0.6K 0.7K

#
 t
u
p
le
s
 m
a
te
ri
a
liz
e
d

input tweets

Choice 1
Choice 2

Figure 4.23: Materialization size for different input sizes in W1.

The materialization sizes for the two choices in W1 for various input data sizes are shown

in Figure 4.23. In the case of W1, the ML2 operator produced a single tuple for every input

tuple. Thus, both choices 1 and 2 resulted in the same materialization size consisting of all

input tuples. In the case of W2 (Figure 4.24), the Regex operator was very selective. Thus,

the choice 2 materialized few tuples, whereas the choice 1 materialized all the tuples coming

out of Scan.

131

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

1.6K 3.1K 4.6K 6.1K 7.6K

#
 t
u
p
le
s
 m
a
te
ri
a
liz
e
d

input tweets

Choice 1
Choice 2

Figure 4.24: Materialization size for different input sizes in W2.

A good heuristic while choosing the materialization choices can be to add materialization

after operators that filter out data so that the size of materialized data is reduced.

4.7 Conclusion

In this chapter, we presented a scheduling framework called Maestro. We showed how it

divides a workflow into regions that can be separately scheduled. We described an algorithm

to create a region graph that encapsulates the region dependencies. We showed that the

the region graph can only be scheduled when it is acyclic and discussed examples where

the region graph has cycles. We discussed how to use materialization to create an acyclic

region graph from a cyclic region graph. We showed how to enumerate various choices

for materialization. We introduced first response time as a metric of result awareness and

discussed how the materialization choices differ from the perspective of result awareness. We

presented experiments that showed the presence of materialization choices in real workflows

and showcased the effect of materialization choice on the first-response time and materialized

data size.

132

Chapter 5

Conclusions and Future Work

In this section, we present the conclusions of the three works presented in this thesis and

motivate the future work.

5.1 Conclusions

In this thesis, we presented three works that make data analytics more interactive, adaptive,

and result aware.

In Chapter 2, we presented a system called Amber that supports powerful and responsive

debugging during the execution of a dataflow. It serves as the backend engine for the Texera

service being developed at UC Irvine. We presented its overall system architecture based on

the actor model and described the whole lifecycle of the execution of a workflow, including

how control messages are sent to actors, how to expedite the processing of these control

messages, and how to pause and resume the computation of each actor. We studied how

to support conditional breakpoints, and presented solutions for enforcing local conditional

breakpoints and global conditional breakpoints. We developed a technique to support fault

133

tolerance in Amber, which is challenging due to the presence of control messages. We im-

plemented Amber on top of Orleans, and presented an extensive experimental evaluation to

show its high usability and performance comparable to Spark.

In Chapter 3, we presented a framework called Reshape that adaptively handles partitioning

skew in the exploratory data analysis setting. We presented different approaches for load

transfer and analyzed their impact on the results shown to the user. We presented an analysis

about the effect of the skew-detection threshold on mitigation and used it to adaptively

adjust the threshold. We generalized Reshape to other operators such as HashJoin, Sort, and

GroupBy, and broader execution settings. We implemented Reshape on top of two big data

engines - Amber and Flink - and presented an experimental evaluation.

In Chapter 4, we presented a scheduling framework calledMaestro. We showed how it divides

a workflow into regions that can be separately scheduled. We described an algorithm to create

a region graph that are based on the region dependencies. Since the region graph can only

be scheduled when it is acyclic, we need to avoid cycles in the region graph. We discussed

how to use materialization to create an acyclic region graph. We showed how to enumerate

various choices for materialization. We introduced first response time as a metric of result

awareness and discussed how the materialization choices differ from the perspective of result

awareness. We presented experiments that showed the presence of materialization choices in

real workflows and showcased the effect of materialization choice on the first-response time

and materialized data size.

5.2 Future Work

Amber. The determination of number of workers per operator and the worker placement

in Amber is static. This can be improved to allow adaptation in the number of workers and

134

their placement depending on the complexity of the operators and the data traffic pattern

among machines. The global breakpoint detection in Amber is not deterministic, in the sense

that two executions may result in different numbers of tuples being processed by the workers

before the breakpoint is hit. It would be interesting to devise a technique which leads to

deterministic breakpoint detection and analyze the overhead of this technique on the total

processing time.

Reshape. The current framework of Reshape focuses on skew handling among the workers of

an operator. There can be multiple skewed operators in a workflow. It would be interesting

to see how Reshape can be extended to consider the skew in multiple operators and make

global decisions. It would also be interesting to extend Reshape so that a single worker can

serve as the helper for multiple skewed workers. Another future work is using both split

by key and split by records among the workers of an operator, i.e., load transfer for a few

keys happens using split by key and for other keys using split by records. The chapter does

not consider the existence of windows on the input data. When extending Reshape to work

on infinite streams, it is important to consider how the existence of windows will affect the

decision of Reshape.

Maestro. The current definition of first-response time inMaestro and the process of choosing

a materialization option assumes a single sink. These concepts have to be extended to

the case of multiple sinks. The algorithm to run an exhaustive search over the multiple

materialization choices may be expensive. We need a way, maybe using heuristics, to prune

the search space.

135

Bibliography

[1] Cloudberry - Big Data Visualization. http://cloudberry.ics.uci.edu/, 2018.

[2] A. S. Abdelhamid, A. R. Mahmood, A. Daghistani, and W. G. Aref. Prompt: Dynamic
data-partitioning for distributed micro-batch stream processing systems. In D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of the
2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, pages 2455–2469. ACM,
2020.

[3] G. A. Agha. Actors: A model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst Of Tech Cambridge Artificial Intelligence Lab,
1985.

[4] Akka Website, https://akka.io/.

[5] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen,
and T. Westmann. Asterixdb: A scalable, open source BDMS. CoRR, abs/1407.0454,
2014.

[6] Alteryx Website, https://www.alteryx.com/.

[7] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive online scheduling in storm. In
S. Chakravarthy, S. D. Urban, P. R. Pietzuch, and E. A. Rundensteiner, editors, The
7th ACM International Conference on Distributed Event-Based Systems, DEBS ’13,
Arlington, TX, USA - June 29 - July 03, 2013, pages 207–218. ACM, 2013.

[8] P. Antonopoulos, H. Kodavalla, A. Tran, N. Upreti, C. Shah, and M. Sztajno. Resum-
able online index rebuild in SQL server. PVLDB, 10(12):1742–1753, 2017.

[9] Apache AsterixDB, http://asterixdb.apache.org.

[10] Apache Flink http://flink.apache.org.

[11] Apache Hadoop MapReduce, https://hadoop.apache.org/docs/stable/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html.

136

http://cloudberry.ics.uci.edu/
https://akka.io/
https://www.alteryx.com/

[12] Apache samza. http://samza.apache.org/.

[13] Apache Spark http://spark.apache.org.

[14] Apache Storm, http://storm.apache.org/.

[15] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative API for real-time applications in
apache spark. In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 601–613. ACM, 2018.

[16] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., 47(2-3):235–256, 2002.

[17] Handling Backpressure https://medium.com/@jayphelps/backpressure-explained-the-
flow-of-data-through-software-2350b3e77ce7.

[18] L. Battle, D. Fisher, R. DeLine, M. Barnett, B. Chandramouli, and J. Goldstein.
Making sense of temporal queries with interactive visualization. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA,
May 7-12, 2016, pages 5433–5443, 2016.

[19] E. Begoli, T. Akidau, S. Chernyak, F. Hueske, K. Knight, K. Knowles, D. Mills, and
D. Sotolongo. Watermarks in stream processing systems: Semantics and comparative
analysis of apache flink and google cloud dataflow. Proc. VLDB Endow., 14(12):3135–
3147, 2021.

[20] A. Behm, S. Palkar, U. Agarwal, T. Armstrong, D. Cashman, A. Dave, T. Green-
stein, S. Hovsepian, R. Johnson, A. S. Krishnan, P. Leventis, A. Luszczak, P. Menon,
M. Mokhtar, G. Pang, S. Paranjpye, G. Rahn, B. Samwel, T. van Bussel, H. V. Hovell,
M. Xue, R. Xin, and M. Zaharia. Photon: A fast query engine for lakehouse systems.
In Z. Ives, A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International Con-
ference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages
2326–2339. ACM, 2022.

[21] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. A. Grossman, and O. Frieder. Hourly
analysis of a very large topically categorized web query log. In M. Sanderson,
K. Järvelin, J. Allan, and P. Bruza, editors, SIGIR 2004: Proceedings of the 27th
Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, Sheffield, UK, July 25-29, 2004, pages 321–328. ACM, 2004.

[22] A. Benoit, Ü. V. Çatalyürek, Y. Robert, and E. Saule. A survey of pipelined workflow
scheduling: Models and algorithms. ACM Comput. Surv., 45(4):50:1–50:36, 2013.

[23] P. A. Bernstein, M. Dashti, T. Kiefer, and D. Maier. Indexing in an actor-oriented
database. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems Re-
search, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

137

http://samza.apache.org/
http://storm.apache.org/

[24] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. Debugging distributed systems.
Commun. ACM, 59(8):32–37, 2016.

[25] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. Rock you
like a hurricane: taming skew in large scale analytics. In R. Oliveira, P. Felber, and
Y. C. Hu, editors, Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018, pages 20:1–20:15. ACM, 2018.

[26] V. R. Borkar. An Efficient Foundation for Big Data Processing on Modern Clusters.
PhD thesis, University of California, Irvine, USA, 2016.

[27] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible
and extensible foundation for data-intensive computing. In International Conference
on Data Engineering, pages 1151–1162, 2011.

[28] CAF Website, https://actor-framework.org/.

[29] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas. State man-
agement in apache flink®: Consistent stateful distributed stream processing. Proc.
VLDB Endow., 10(12):1718–1729, 2017.

[30] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. CoRR, abs/1506.08603, 2015.

[31] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos. Beyond analytics: The
evolution of stream processing systems. In D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, pages 2651–2658. ACM, 2020.

[32] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query suspend and resume. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Beijing, China, June 12-14, 2007, pages 557–568, 2007.

[33] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[34] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random sampling for histogram
construction: How much is enough? In L. M. Haas and A. Tiwary, editors, SIGMOD
1998, Proceedings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA, pages 436–447. ACM Press, 1998.

[35] Q. Chen, J. Yao, and Z. Xiao. LIBRA: lightweight data skew mitigation in mapreduce.
IEEE Trans. Parallel Distributed Syst., 26(9):2520–2533, 2015.

[36] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. S. Milojicic. Adaptive scheduling
of parallel jobs in spark streaming. In 2017 IEEE Conference on Computer Com-
munications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, pages 1–9. IEEE,
2017.

138

https://actor-framework.org/

[37] D. Dao, J. Albrecht, C. Killian, and A. Vahdat. Live debugging of distributed systems.
In International Conference on Compiler Construction, pages 94–108. Springer, 2009.

[38] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI, pages 137–150, 2004.

[39] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and
R. Rasmussen. The Gamma database machine project. IEEE Trans. Knowl. Data
Eng., 2(1):44–62, 1990.

[40] D. J. DeWitt and J. Gray. Parallel database systems: The future of high performance
database systems. Commun. ACM, 35(6):85–98, 1992.

[41] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew
handling in parallel joins. In L. Yuan, editor, 18th International Conference on Very
Large Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings, pages 27–40.
Morgan Kaufmann, 1992.

[42] S. Di, D. Kondo, and W. Cirne. Host load prediction in a google compute cloud with
a bayesian model. In J. K. Hollingsworth, editor, SC Conference on High Performance
Computing Networking, Storage and Analysis, SC ’12, Salt Lake City, UT, USA -
November 11 - 15, 2012, page 21. IEEE/ACM, 2012.

[43] B. Ding, S. Chaudhuri, J. Gehrke, and V. R. Narasayya. DSB: A decision support
benchmark for workload-driven and traditional database systems. Proc. VLDB En-
dow., 14(13):3376–3388, 2021.

[44] J. Ding, T. Z. J. Fu, R. T. B. Ma, M. Winslett, Y. Yang, Z. Zhang, and
H. Chao. Optimal operator state migration for elastic data stream processing. CoRR,
abs/1501.03619, 2015.

[45] Einblick, https://www.einblick.ai.

[46] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and adaptive online
joins. Proc. VLDB Endow., 7(6):441–452, 2014.

[47] P. Eng, B. C. Ooi, H. S. Sim, and K. Tan. Preference-driven query processing. In
U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors, Proceedings of the 19th
International Conference on Data Engineering, March 5-8, 2003, Bangalore, India,
pages 671–673. IEEE Computer Society, 2003.

[48] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. R. Pietzuch. Integrating
scale out and fault tolerance in stream processing using operator state management. In
K. A. Ross, D. Srivastava, and D. Papadias, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 725–736. ACM, 2013.

[49] D. Fisher, R. DeLine, M. Czerwinski, and S. M. Drucker. Interactions with big data
analytics. Interactions, 19(3):50–59, 2012.

139

https://www.einblick.ai

[50] Apache flink pipelined region scheduling. https://flink.apache.org/2020/12/15/
pipelined-region-sheduling.html.

[51] J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In 10th International
Conference on Distributed Computing Systems (ICDCS 1990), May 28 - June 1, 1990,
Paris, France, pages 134–141, 1990.

[52] D. R. Fulkerson and L. R. Ford. Flows in networks. Princeton University Press
Princeton, 1962.

[53] P. Garraghan, X. Ouyang, P. Townend, and J. Xu. Timely long tail identification
through agent based monitoring and analytics. In IEEE 18th International Symposium
on Real-Time Distributed Computing, ISORC 2015, Auckland, New Zealand, 13-17
April, 2015, pages 19–26. IEEE Computer Society, 2015.

[54] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25(2):73–170, 1993.

[55] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in mapreduce based
on scalable cardinality estimates. In A. Kementsietsidis and M. A. V. Salles, editors,
IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington,
DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 522–533. IEEE Computer So-
ciety, 2012.

[56] M. A. Gulzar, M. Interlandi, T. Condie, and M. Kim. Debugging big data analytics
in spark with BigDebug. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pages 1627–1630, 2017.

[57] M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim. Automated
debugging in data-intensive scalable computing. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017,
pages 520–534, 2017.

[58] C. Gupta, A. Mehta, and U. Dayal. PQR: predicting query execution times for au-
tonomous workload management. In J. Strassner, S. A. Dobson, J. A. B. Fortes, and
K. K. Goswami, editors, 2008 International Conference on Autonomic Computing,
ICAC 2008, June 2-6, 2008, Chicago, Illinois, USA, pages 13–22. IEEE Computer
Society, 2008.

[59] D. Haban and W. Weigel. Global events and global breakpoints in distributed systems.
In [1988] Proceedings of the Twenty-First Annual Hawaii International Conference on
System Sciences. Volume II: Software track, volume 2, pages 166–175. IEEE, 1988.

[60] Apache hadoop mapreduce configuration parameters. https://hadoop.apache.

org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/

mapred-default.xml.

140

https://flink.apache.org/2020/12/15/pipelined-region-sheduling.html
https://flink.apache.org/2020/12/15/pipelined-region-sheduling.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

[61] Halo Website, https://www.halowaypoint.com/en-us.

[62] C. Herath, F. Liu, S. Marru, L. Gunathilake, M. Sosonkina, J. P. Vary, P. Maris, and
M. E. Pierce. Web service andworkflow abstractions to large scale nuclear physics
calculations. In 2012 IEEE Ninth International Conference on Services Computing,
Honolulu, HI, USA, June 24-29, 2012, pages 703–710, 2012.

[63] C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular ACTOR formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. Standford, CA, USA, August 20-23, 1973, pages 235–245, 1973.

[64] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In D. G. Andersen and S. Ratnasamy, editors, Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011. USENIX Association, 2011.

[65] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris, and T. Roscoe.
Megaphone: Latency-conscious state migration for distributed streaming dataflows.
Proc. VLDB Endow., 12(9):1002–1015, 2019.

[66] K. Hsieh, G. Ananthanarayanan, P. Bod́ık, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu. Focus: Querying large video datasets with low latency
and low cost. In A. C. Arpaci-Dusseau and G. Voelker, editors, 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018, pages 269–286. USENIX Association, 2018.

[67] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. D. Millstein,
and T. Condie. Titian: Data provenance support in spark. PVLDB, 9(3):216–227,
2015.

[68] R. J. B. Jr. and D. P. Miranker. Processing queries for first few answers. In CIKM
’96, Proceedings of the Fifth International Conference on Information and Knowledge
Management, November 12 - 16, 1996, Rockville, Maryland, USA, pages 45–52. ACM,
1996.

[69] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey. Empirical evaluation of workload
forecasting techniques for predictive cloud resource scaling. In 9th IEEE International
Conference on Cloud Computing, CLOUD 2016, San Francisco, CA, USA, June 27 -
July 2, 2016, pages 1–10. IEEE Computer Society, 2016.

[70] Knime Website, https://www.knime.com/.

[71] D. Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422–469, 2000.

[72] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais. Understanding temporal
query dynamics. In I. King, W. Nejdl, and H. Li, editors, Proceedings of the Forth

141

https://www.halowaypoint.com/en-us
https://www.knime.com/

International Conference on Web Search and Web Data Mining, WSDM 2011, Hong
Kong, China, February 9-12, 2011, pages 167–176. ACM, 2011.

[73] A. Kumar, Z. Wang, S. Ni, and C. Li. Amber: A debuggable dataflow system based
on the actor model. Proc. VLDB Endow., 13(5):740–753, 2020.

[74] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. Skewtune: mitigating skew in
mapreduce applications. In K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and
A. Fuxman, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages
25–36. ACM, 2012.

[75] R. Lawrence. Early hash join: A configurable algorithm for the efficient and early
production of join results. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten,
P. Larson, and B. C. Ooi, editors, Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages
841–852. ACM, 2005.

[76] X. Liu, Z. Wang, S. Ni, S. Alsudais, Y. Huang, A. Kumar, and C. Li. Demonstration
of collaborative and interactive workflow-based data analytics in texera. Proc. VLDB
Endow., 15(12):3738–3741, 2022.

[77] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao. Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, 18(10):1039–1065, 2006.

[78] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman, P. Costa, T. Kim,
S. Muthukrishnan, V. Kuppa, S. Dhulipalla, and S. Rao. Chi: A scalable and pro-
grammable control plane for distributed stream processing systems. Proc. VLDB En-
dow., 11(10):1303–1316, 2018.

[79] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh. Learning
scheduling algorithms for data processing clusters. In J. Wu and W. Hall, editors,
Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM
2019, Beijing, China, August 19-23, 2019, pages 270–288. ACM, 2019.

[80] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. E. Pierce, C. Mattmann,
R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler, A. Slominski, A. Douma, S. Per-
era, and S. Weerawarana. Apache airavata: a framework for distributed applications
and computational workflows. In Proceedings of the 2011 ACM SC Workshop on Gate-
way Computing Environments, GCE 2011, Seattle, WA, USA, November 18, 2011,
pages 21–28, 2011.

[81] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of frequent and top-
k elements in data streams. In T. Eiter and L. Libkin, editors, Database Theory - ICDT
2005, 10th International Conference, Edinburgh, UK, January 5-7, 2005, Proceedings,
volume 3363 of Lecture Notes in Computer Science, pages 398–412. Springer, 2005.

142

[82] B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Pro-
ceedings of the 8th International Conference on Distributed Computing Systems, San
Jose, California, USA, June 13-17, 1988, pages 316–323, 1988.

[83] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams,
T. Oinn, and C. Goble. Taverna, reloaded. In International conference on scientific
and statistical database management, pages 471–481. Springer, 2010.

[84] B. D. Monte, S. Zeuch, T. Rabl, and V. Markl. Rhino: Efficient management of
very large distributed state for stream processing engines. In D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020 In-
ternational Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, pages 2471–2486. ACM, 2020.

[85] D. Moritz, D. Halperin, B. Howe, and J. Heer. Perfopticon: Visual query analysis for
distributed databases. Comput. Graph. Forum, 34(3):71–80, 2015.

[86] M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano, N. Kourtellis, and M. Serafini.
The power of both choices: Practical load balancing for distributed stream processing
engines. In J. Gehrke, W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman, editors,
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015, pages 137–148. IEEE Computer Society, 2015.

[87] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini. When two choices
are not enough: Balancing at scale in distributed stream processing. In 32nd IEEE
International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pages 589–600. IEEE Computer Society, 2016.

[88] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: distributed stream computing
platform. In ICDMW 2010, The 10th IEEE International Conference on Data Mining
Workshops, Sydney, Australia, 13 December 2010, pages 170–177, 2010.

[89] For big-data scientists, ’janitor work’ is key hurdle to in-
sights. https://www.nytimes.com/2014/08/18/technology/

for-big-data-scientists-hurdle-to-insights-is-janitor-work.html.

[90] C. Olston and B. Reed. Inspector gadget: a framework for custom monitoring and
debugging of distributed dataflows. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 1221–1224, 2011.

[91] Orleans Website, https://dotnet.github.io/orleans/.

[92] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, 4th Edition.
Springer, 2020.

[93] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. H. Campbell. R-storm: Resource-
aware scheduling in storm. In R. Lea, S. Gopalakrishnan, E. Tilevich, A. L. Murphy,

143

https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://dotnet.github.io/orleans/

and M. Blackstock, editors, Proceedings of the 16th Annual Middleware Conference,
Vancouver, BC, Canada, December 07 - 11, 2015, pages 149–161. ACM, 2015.

[94] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco, and A. Ailamaki. Same queries,
different data: Can we predict runtime performance? In A. Kementsietsidis and
M. A. V. Salles, editors, Workshops Proceedings of the IEEE 28th International Con-
ference on Data Engineering, ICDE 2012, Arlington, VA, USA, April 1-5, 2012, pages
275–280. IEEE Computer Society, 2012.

[95] Prediction interval, https://otexts.com/fpp2/prediction-intervals.html.

[96] ProtoActor Website, http://proto.actor.

[97] Ptolemy II Website, https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.
htm.

[98] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing reducer skew in mapreduce
workloads using progressive sampling. In M. J. Carey and S. Hand, editors, ACM
Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17,
2012, page 16. ACM, 2012.

[99] RapidMiner Website, https://rapidminer.com/.

[100] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann. Flow-join: Adaptive skew
handling for distributed joins over high-speed networks. In 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016,
pages 1194–1205. IEEE Computer Society, 2016.

[101] I. Sabek, T. S. Ukyab, and T. Kraska. Lsched: A workload-aware learned query sched-
uler for analytical database systems. In Z. Ives, A. Bonifati, and A. E. Abbadi, editors,
SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, pages 1228–1242. ACM, 2022.

[102] Sentiment Analysis operator for .Net, https://github.com/arafattehsin/

CognitiveRocket/tree/master/CognitiveLibrary/SentimentAnalyzer.

[103] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An
adaptive partitioning operator for continuous query systems. In U. Dayal, K. Ra-
mamritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International
Conference on Data Engineering, March 5-8, 2003, Bangalore, India, pages 25–36.
IEEE Computer Society, 2003.

[104] Z. Shang, E. Zgraggen, B. Buratti, P. Eichmann, N. Karimeddiny, C. Meyer, W. Run-
nels, and T. Kraska. Davos: A system for interactive data-driven decision making.
Proc. VLDB Endow., 14(12):2893–2905, 2021.

[105] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In J. S. Chase and A. E. Abbadi, editors, ACM Symposium
on Cloud Computing in conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal,
October 26-28, 2011, page 5. ACM, 2011.

144

https://otexts.com/fpp2/prediction-intervals.html
http://proto.actor
https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://rapidminer.com/
https://github.com/arafattehsin/CognitiveRocket/tree/master/CognitiveLibrary/SentimentAnalyzer
https://github.com/arafattehsin/CognitiveRocket/tree/master/CognitiveLibrary/SentimentAnalyzer

[106] Apache spark job scheduling. https://spark.apache.org/docs/latest/

job-scheduling.html.

[107] Spark DataFrame API optimizations in Projet Tungsten, https://databricks.com/
blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.

html.

[108] Differences between Spark RDD API and Dataframe API, https://databricks.com/
blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.

html.

[109] Adaptive Query Execution in Spark. https://spark.apache.org/docs/latest/sql-performance-tuning.html#adaptive-query-execution.

[110] Spark docs Stage explanation, https://spark.apache.org/docs/1.2.2/api/java/
org/apache/spark/scheduler/Stage.html.

[111] Statistical forecasting, https://people.duke.edu/~rnau/411home.htm.

[112] Tapad Website, https://www.tapad.com.

[113] NYC TLC Trip Record Data, https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page.

[114] Texera Website, https://github.com/Texera/texera.

[115] Texera. Texera Website. https://github.com/Texera/texera/, 2021.

[116] TPC-H Website, http://www.tpc.org/tpch/.

[117] TPC-H Website, http://www.tpc.org/tpch/.

[118] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined join operator.
IEEE Data Eng. Bull., 23(2):27–33, 2000.

[119] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling for improving interactive
query performance. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamo-
hanarao, and R. T. Snodgrass, editors, VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages
501–510. Morgan Kaufmann, 2001.

[120] M. Vartak, H. Subramanyam, W. Lee, S. Viswanathan, S. Husnoo, S. Madden,
and M. Zaharia. Modeldb: a system for machine learning model management. In
HILDA@SIGMOD’16.

[121] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache hadoop YARN: yet another resource nego-
tiator. In G. M. Lohman, editor, ACM Symposium on Cloud Computing, SOCC ’13,
Santa Clara, CA, USA, October 1-3, 2013, pages 5:1–5:16. ACM, 2013.

145

https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://spark.apache.org/docs/1.2.2/api/java/org/apache/spark/scheduler/Stage.html
https://spark.apache.org/docs/1.2.2/api/java/org/apache/spark/scheduler/Stage.html
https://people.duke.edu/~rnau/411home.htm
https://www.tapad.com
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/Texera/texera
https://github.com/Texera/texera/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

[122] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-
scale cluster management at google with borg. In L. Réveillère, T. Harris, and M. Her-
lihy, editors, Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24, 2015, pages 18:1–18:17. ACM, 2015.

[123] A. Vitorovic, M. Elseidy, and C. Koch. Load balancing and skew resilience for paral-
lel joins. In 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, pages 313–324. IEEE Computer Society, 2016.

[124] Z. Wang, A. Kumar, S. Ni, and C. Li. Demonstration of interactive runtime debugging
of distributed dataflows in texera. Proc. VLDB Endow., 13(12):2953–2956, 2020.

[125] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a parallel main-
memory environment. In Proceedings of the First International Conference on Parallel
and Distributed Information Systems (PDIS 1991), Fontainebleu Hilton Resort, Miami
Beach, Florida, USA, December 4-6, 1991, pages 68–77. IEEE Computer Society, 1991.

[126] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting
query execution time: Are optimizer cost models really unusable? In C. S. Jensen,
C. M. Jermaine, and X. Zhou, editors, 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1081–1092.
IEEE Computer Society, 2013.

[127] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using virtual machines
for cloud computing environment. IEEE Trans. Parallel Distributed Syst., 24(6):1107–
1117, 2013.

[128] Z. Xu, G. T. Kakkar, J. Arulraj, and U. Ramachandran. EVA: A symbolic approach to
accelerating exploratory video analytics with materialized views. In Z. Ives, A. Bonifati,
and A. E. Abbadi, editors, SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 602–616. ACM, 2022.

[129] W. Yan, Y. Xue, and B. A. Malin. Scalable and robust key group size estimation for
reducer load balancing in mapreduce. In X. Hu, T. Y. Lin, V. V. Raghavan, B. W.
Wah, R. Baeza-Yates, G. C. Fox, C. Shahabi, M. Smith, Q. Yang, R. Ghani, W. Fan,
R. Lempel, and R. Nambiar, editors, Proceedings of the 2013 IEEE International Con-
ference on Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages 156–162. IEEE
Computer Society, 2013.

[130] YouScan Website, https://youscan.io/en/.

[131] D. Yun, W. Liu, C. Q. Wu, N. S. V. Rao, and R. Kettimuthu. Performance prediction
of big data transfer through experimental analysis and machine learning. In 2020 IFIP
Networking Conference, Networking 2020, Paris, France, June 22-26, 2020, pages 181–
189. IEEE, 2020.

[132] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002.

146

https://youscan.io/en/

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Amber: A Debuggable Dataflow System Based on the Actor Model
	Introduction
	Related Work

	Debuggable Dataflow Engines
	Debugging Execution of Data Workflows
	The Actor Model

	Amber System Overview
	Architecture
	Translating Operator DAG to Actor DAG
	Communication between Actors

	Lifecycle of Job Execution
	Sending Control Messages to Actors
	Expedited Processing of Control Messages
	Pausing Data Processing
	Responding to Messages after Pausing

	Conditional Breakpoints
	Semantics of Conditional Breakpoints
	Evaluating Local Predicates
	Evaluating Global Predicates

	Fault Tolerance
	Why not the Spark Approach?
	Supporting Fault Tolerance in Amber

	Experiments
	System Implementation and Setting
	Scaleup Evaluation
	Speedup Evaluation
	Time to Pause Execution
	Effect of Worker Number
	Conditional Breakpoint Evaluation
	Performance Comparison with Spark
	Fault Tolerance in Amber and Spark

	Conclusions

	Reshape: Adaptive Result-Aware Skew Handling for Exploratory Analysis on Big Data
	Introduction
	Related work

	Reshape: Overview
	Skew detection
	Skew mitigation

	Result-aware load transfer
	Mitigation impact on user results
	Extra phase in load transfer

	Adaptive Skew Handling
	Load reduction from mitigation
	Impact of on load reduction
	Adaptive mitigation iterations

	Reshape on more operators
	Mutability of operator states
	Impact of mutability on state migration
	Mutable-state operators: split by keys
	Mutable-state operators: split by records

	Reshape in Broader Settings
	High state-migration time
	Multiple helper workers
	Unbounded data

	Experiments
	Setting
	Effect on results shown to the user
	Benefits of the first phase
	Effect of heavy-hitter keys
	Effect of latency of control messages
	Benefit of dynamically adjusting
	Effect of different levels of skew
	Effect of changes in input distribution
	Metric-collection overhead
	Performance of Reshape on sort
	Effect of multiple helper workers
	Performance of Reshape on Flink

	Conclusions

	Maestro: Result-aware Scheduling for Exploratory Data Analysis on Big Data
	Introduction
	Related work

	Preliminaries
	Overview of Maestro scheduler
	Building an acyclic region graph in Maestro
	Regions and their dependencies
	Avoiding cycles in region graphs
	Creating an acyclic region graph

	Choosing a materialization option
	Enumerating the materialization choices
	Result-aware materialization choice selection
	First response time
	Choosing a materialization option

	Experiments
	Materialization choices in workflows
	Effect of materialization choice on first response time
	Effect of materialization choice on materialized data size

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

