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ABSTRACT OF THE DISSERTATION

Towards Causally-Aware Machine Learning

by

Trent M. Kyono

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Mihaela van der Schaar, Chair

The popularity of machine learning in both academia and industry has experienced unparal-

leled growth. This has been driven by many factors, including the proliferation and availability

of digitized data, the recent growth of computational power available, such as graphical

processing units, and the powerful machine learning software libraries that leverage them.

The overwhelming majority of existing and current research focuses on learning correlations

between data rather than leveraging cause-effect relationships.

In parallel to the machine learning revolution, the study of cause-effect relationships,

causality has been well-studied but often overlooked in current practice. These two disciplines

are often accepted as orthogonal approaches to data modeling. This dissertation focuses on

the confluence of these two approaches in an attempt to advance current machine learning

techniques with fundamental concepts from causality. Namely, we identify several strategies

to leverage causal structure (in the form of a directed acyclic graph) to improve machine

learning performance.

Our technical contributions touch several fundamental and widespread machine learning

problems. We first present a regularization method, called CASTLE (Causal Structure

Learning), that simultaneously learns the causal graph/structure in the input layers of a

neural network, allowing for improved predictive performance on out-of-sample data. Next,

ii



using a similar method, we develop a method for missing data imputation called MIRACLE

(Missing data Imputation Refinement and Causal Learning). Similar to CASTLE, MIRACLE

simultaneously learns the underlying causal structure to improve missing data imputation by

refining its predictions in a unique “bootstrapping” manner. Next, we introduce a method,

DECAF (Debiasing Causal Fairness), that introduces causal structure into Generative

Adversarial Networks (GANs) to generate synthetic data that is fair for any downstream

model. Next, we focus on the problem of unsupervised domain adaptation (UDA), where

we leverage the invariance of causal structure to select models that best generalize to an

unlabeled target domain. Lastly, we focus on extending our model selection method to

individualized treatment effect (ITE) models, which are commonly used in the healthcare

setting.

To demonstrate the utility of our models, we evaluate their performance on a variety of

synthetic datasets, semi-synthetic datasets (for ITE models), and real-world datasets that

include publicly available UCI datasets and healthcare datasets for heart failure, COVID-19,

and prostate cancer among many others. We show that, compared to existing machine learning

models that are agnostic to causality, our causally-aware models can improve regularization,

missing data imputation, synthetic data quality, and UDA model selection.
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CHAPTER 1

Introduction

Current advances in information technology have proliferated the availability of data for

machine learning models to consume. Couple the large amounts of available data with

recent hardware advancements and distributed scalability, and machine learning models are

becoming overwhelmingly large and powerful. As a result, machine learning has infiltrated

many fields of academia and has become a key driver of many technologies in countless

industries.

Machine learning, apart from causal models, are often criticized for only learning correla-

tions in data [177]. Because of this, we consider machine learning to be causally “unaware” or

agnostic to underlying cause-effect relationships, and therefore incapable of causal reasoning

[104]. While in some cases this may be sufficient, in general, there is invaluable information

that can be leveraged from causality that can be used to make machine learning more causally

“aware” and thus improve performance.

Although causality has been studied for years [104, 129], only recently with the growing

popularity of machine learning, have causal researchers looked to inject causal notions into

existing machine learning methods. These works include [177, 78, 45, 111, 172, 176, 178,

103, 87] to name just a few. This primary objective of this work is to introduce causality

(or causal structure) – bring causal-awareness – to several well-studied areas in machine

learning, including generalization/regularization, missing data imputation, fair synthetic data

generation, and model selection for unsupervised domain adaptation.

1



1.1 Outline of the Dissertation

The rest of this dissertation is organized as follows. We first introduce a new regularization

technique for improving machine learning generalization that leverages causal structure in

Chapter 2. Next we focus on a new imputation method that simultaneously learns causal

structure for improved imputation in Chapter 3. We then shift our focus in Chapter 4 to

generating fair synthetic data using a generative neural network and causal structure. Lastly,

in Chapters 5 and 6 we present model selection methods for unsupervised domain adaptation

that leverage invariant causal graphs for predictive and treatment-effects models, respectively.

1.2 Summary of Technical Contributions

In the following sections, we present a brief summary of the technical contributions of each

of the upcoming chapters. We address several well-studied problems in machine learning,

including: regularization, missing data imputation, synthetic data fairness, and unsupervised

domain adaptation.

1.2.1 Regularization

Regularization improves generalization of supervised models to out-of-sample data. Prior

works have shown that prediction in the causal direction (effect from cause) results in lower

testing error than the anti-causal direction. However, existing regularization methods are

agnostic of causality. In Chapter 2 we introduce Causal Structure Learning (CASTLE)

regularization and propose to regularize a neural network by jointly learning the causal

relationships between variables. CASTLE learns the causal directed acyclical graph (DAG)

as an adjacency matrix embedded in the neural network’s input layers, thereby facilitating

the discovery of optimal predictors. Furthermore, CASTLE efficiently reconstructs only the

features in the causal DAG that have a causal neighbor, whereas reconstruction-based regu-

larizers suboptimally reconstruct all input features. We provide a theoretical generalization

bound for our approach and conduct experiments on a plethora of synthetic and real publicly
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available datasets demonstrating that CASTLE consistently leads to better out-of-sample

predictions as compared to other popular benchmark regularizers.

1.2.2 Missing data

Missing data is an important problem in machine learning practice. Starting from the premise

that imputation methods should preserve the causal structure of the data, in Chapter 3,

we develop a regularization scheme that encourages any baseline imputation method to be

causally consistent with the underlying data generating mechanism. Our proposal is a causally-

aware imputation algorithm (MIRACLE). MIRACLE iteratively refines the imputation of

a baseline by simultaneously modeling the missingness generating mechanism, encouraging

imputation to be consistent with the causal structure of the data. We conduct extensive

experiments on synthetic and a variety of publicly available datasets to show that MIRACLE

is able to consistently improve imputation over a variety of benchmark methods across all

three missingness scenarios: at random, completely at random, and not at random.

1.2.3 Synthetic Data Fairness

Machine learning models have been criticized for reflecting unfair biases in the training

data. Instead of solving for this by introducing fair learning algorithms directly, we focus

on generating fair synthetic data, such that any downstream learner is fair. Generating fair

synthetic data from unfair data— while remaining truthful to the underlying data-generating

process (DGP) —is non-trivial. In Chapter 4, we introduce DECAF: a GAN-based fair

synthetic data generator for tabular data. With DECAF we embed the DGP explicitly as

a structural causal model in the input layers of the generator, allowing each variable to

be reconstructed conditioned on its causal parents. This procedure enables inference-time

debiasing, where biased edges can be strategically removed for satisfying user-defined fairness

requirements. The DECAF framework is versatile and compatible with several popular

definitions of fairness. In our experiments, we show that DECAF successfully removes

undesired bias and— in contrast to existing methods —is capable of generating high-quality
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synthetic data. Furthermore, we provide theoretical guarantees on the generator’s convergence

and the fairness of downstream models.

1.2.4 Predictive Model Selection for Unsupervised Domain Adaptation

In many real-world settings, such as healthcare, machine learning models are trained and

validated on one labeled domain and tested or deployed on another where feature distributions

differ, i.e., there is covariate shift. When annotations are costly or prohibitive, an unsupervised

domain adaptation (UDA) regime can be leveraged requiring only unlabeled samples in the

target domain. Existing UDA methods are unable to factor in a model’s predictive loss based

on predictions in the target domain and therefore suboptimally leverage density ratios of only

the input covariates in each domain. In Chapter 5, we propose a model selection method for

leveraging model predictions on a target domain without labels by exploiting the domain

invariance of causal structure. We assume or learn a causal graph from the source domain,

and select models that produce predicted distributions in the target domain that have the

highest likelihood of fitting our causal graph. We thoroughly analyze our method under oracle

knowledge using synthetic data. We then show on several real-world datasets, including

several COVID-19 examples, that our method is able to improve on the state-of-the-art UDA

algorithms for model selection.

1.2.5 Treatment-effect Model Selection for Unsupervised Domain Adaptation

While a large number of causal inference models for estimating individualized treatment

effects (ITE) have been developed, selecting the best one poses a unique challenge since the

counterfactuals are never observed. The problem is challenged further in the unsupervised

domain adaptation (UDA) setting where we have access to labeled samples in the source

domain, but desire selecting an ITE model that achieves good performance on a target

domain where only unlabeled samples are available. Existing selection techniques for UDA

are designed for predictive models and are sub-optimal for causal inference because they (1)

do not account for the missing counterfactuals and (2) only examine the discriminative density
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ratios between the input covariates in the source and target domain and do not factor in the

model’s predictions in the target domain. In Chapter 6, we leverage the invariance of causal

structures across domains to introduce a novel model selection metric specifically designed

for ITE models under UDA. We propose selecting models whose predictions of the effects of

interventions satisfy invariant causal structures in the target domain. Experimentally, our

method selects ITE models that are more robust to covariate shifts on a variety of datasets,

including estimating the effect of ventilation in COVID-19 patients.
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CHAPTER 2

CASTLE: Regularization via Auxiliary Causal Graph

Discovery

2.1 Introduction

A primary concern of machine learning, and deep learning in particular, is generalization per-

formance on out-of-sample data. Over-parameterized deep networks efficiently learn complex

models and are, therefore, susceptible to overfit to training data. Common regularization

techniques to mitigate overfitting include data augmentation [166, 73], dropout [56, 157, 131],

adversarial training [82], label smoothing [51], and layer-wise strategies [18, 117, 57] to name

a few. However, these methods are agnostic of the causal relationships between variables

limiting their potential to identify optimal predictors based on graphical topology, such as

the causal parents of the target variable. An alternative approach to regularization leverages

supervised reconstruction, which has been proven theoretically and demonstrated empirically

to improve generalization performance by obligating hidden bottleneck layers to reconstruct

input features [152, 84]. However, supervised auto-encoders suboptimally reconstruct all

features, including those without causal neighbors, i.e., adjacent cause or effect nodes. Naively

reconstructing these variables does not improve regularization and representation learning for

the predictive model. In some cases, it may be harmful to generalization performance, e.g.,

reconstructing a random noise variable.

Although causality has been a topic of research for decades, only recently has cause and

effect relationships been incorporated into machine learning methodologies and research.

Recently, researchers at the confluence of machine learning and causal modeling have advanced
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causal discovery [172, 27], causal inference [134, 12], model explainability [135], domain

adaptation [178, 103, 87] and transfer learning [111] among countless others. The existing

synergy between these two disciplines has been recognized for some time [120], and recent

work suggests that causality can improve and complement machine learning regularization

[13, 114, 59]. Furthermore, many recent causal works have demonstrated and acknowledged

the optimality of predicting in the causal direction, i.e., predicting effect from cause, which

results in less test error than predicting in the anti-causal direction [111, 133, 83, 62].

Contributions. In this work, we introduce a novel regularization method called CASTLE

(CAusal STructure LEarning) regularization. CASTLE regularization uses causal graph

discovery as an auxiliary task when training a supervised model to improve the generalization

performance of the primary prediction task. Specifically, CASTLE learns the causal directed

acyclical graph (DAG) under continuous optimization as an adjacency matrix embedded in a

feed-forward neural network’s input layers. By jointly learning the causal graph, CASTLE can

surpass the benefits provided by feature selection regularizers by identifying optimal predictors,

such as the target variable’s causal parents. Additionally, CASTLE further improves upon

auto-encoder-based regularization [84] by reconstructing only the input features that have

neighbors (adjacent nodes) in the causal graph. Regularization of a predictive model to satisfy

the causal relationships among feature and target variables effectively guide the model towards

the direction of better out-of-sample generalization guarantees. We provide a theoretical

generalization bound for CASTLE and demonstrate improved performance against a variety

of benchmark methods on a plethora of real and synthetic datasets.

2.2 Related Works

We compare to the related work in the simplest supervised learning setting where we desire

learning a function from some features X to a target variable Y given some data of the

variables X and Y to improve out-of-sample generalization within the same distribution.

This is a significant departure from the branches of machine learning algorithms, such as in
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Table 2.1: Comparison of related works.

Method Feat. Sel. Struct. Learning Causal Pred. Target Sel.

Capacity-based ✓ ✗ ✗ ✗

SAE ✗ ✓ ✗ ✗

CASTLE ✓ ✓ ✓ ✓

semi-supervised learning and domain adaptation, where the regularizer is constructed with

information other than variables X and Y .

Regularization controls model complexity and mitigates overfitting. ℓ1 [145] and ℓ2 [54]

regularization are commonly used regularization approaches where the former is used when a

sparse model is preferred. For deep neural networks, dropout regularization [56, 157, 131] has

been shown to be superior in practice to ℓp regularization techniques. Other capacity-based

regularization techniques commonly used in practice include early stopping [41], parameter

sharing [41], gradient clipping [108], batch normalization [58], data augmentation [73], weight

noise [101], and MixUp [173] to name a few. Norm-based regularizers with sparsity, e.g. Lasso

[145], are used to guide feature selection for supervised models. The work of [84] on supervised

auto-encoders (SAE) theoretically and empirically shows that adding a reconstruction loss of

the input features functions as a regularizer for predictive models. However, this method

does not select which features to reconstruct and therefore suffers performance degradation

when tasked to reconstruct features that are noise or unrelated to the target variables.

Two existing works [59, 13] attempt to draw the connection between causality and

regularization. Based on an analogy between overfitting and confounding in linear models,

[59] proposed a method to determine the regularization hyperparameter in linear Ridge

or Lasso regression models by estimating the strength of confounding. [13] use causality

detectors [24, 83] to weight a sparsity regularizer, e.g. ℓ1, for performing non-linear causality

analysis and generating multivariate causal hypotheses. Neither of the works has the same
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objective as us — improving the generalization performance of supervised learning models,

nor do they overlap methodologically by using causal DAG discovery.

Causal discovery is an NP-hard problem that requires a brute-force search through a

non-convex combinatorial search space, limiting the existing algorithms to reaching global

optima for only small problems. Recent approaches have successfully accelerated these

methods by using a novel acyclicity constraint and formulating the causal discovery problem

as a continuous optimization over real matrices (avoiding combinatorial search) in the linear

[170] and nonlinear [174, 78] cases. CASTLE incorporates these recent causal discovery

approaches of [170, 174] to improve regularization for prediction problems in general.

As shown in Table 2.1, CASTLE regularization provides two additional benefits: causal

prediction and target selection. First, CASTLE identifies causal predictors (e.g., causal

parents if they exist) rather than correlated features. Furthermore, CASTLE improves upon

reconstruction regularization by only reconstructing features that have neighbors in the

underlying DAG. We refer to this advantage as “target selection”. Collectively these benefits

contribute to the improved generalization of CASTLE. Next we introduce our notation

(Section 2.3.1) and provide more details of these benefits (Section 2.3.2).

2.3 Methodology

In this section, we provide a problem formulation with causal preliminaries for CASTLE.

Then we provide a motivational discussion, regularizer methodology, and generalization theory

for CASTLE.

2.3.1 Problem Formulation

In the standard supervised learning setting, we denote the input feature variables and target

variable, by X = [X1, ..., Xd] ∈ X and Y ∈ Y , respectively, where X ⊆ Rd is a d-dimensional

feature space and Y ⊆ R is a one-dimensional target space. Let PX,Y denote the joint

distribution of the features and target. Let [N ] denote the set {1, ..., N}. We observe a
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dataset, D =
{
(Xi, Yi), i ∈ [N ]

}
, consisting of N i.i.d. samples drawn from PX,Y . The goal of

a supervised learning algorithm A is to find a predictive model, fY : X → Y , in a hypothesis

space H that can explain the association between the features and the target variable. In

the learning algorithm A, the predictive model f̂Y is trained on a finite number of samples

in D, to predict well on the out-of-sample data generated from the same distribution PX,Y .

However, overfitting, a mismatch between training and testing performance of f̂Y , can occur if

the hypothesis space H is too complex and the training data fails to represent the underlying

distribution PX,Y . This motivates the usage of regularization to reduce the hypothesis

space’s complexity H so that the learning algorithm A will only find the desired function to

explain the data. Assumptions of the underlying distribution dictate regularization choice.

For example, if we believe only a subset of features is associated with the label Y , then ℓ1

regularization [145] can be beneficial in creating sparsity for feature selection.

CASTLE regularization is based on the assumption that a causal DAG exists among the

input features and target variable. In the causal framework of [104], a causal structure of a

set of variables X is a DAG in which each vertex v ∈ V corresponds to a distinct element in

X, and each edge e ∈ E represents direct functional relationships between two neighboring

variables. Formally, we assume the variables in our dataset satisfy a nonparametric structural

equation model (NPSEM) as defined in Definition 1. The word “nonparametric” means

we do not make any assumption on the underlying functions fi in the NPSEM. In this

work, we characterize optimal learning by a predictive model as discovering the function

Y = fY (Pa(Y ), uY ) in NPSEM [104].

Definition 1. (NPSEMs) Given a DAG G = (V = [d + 1], E), the random variables

X̃ = [Y,X] satisfy a NPSEM if

Xi = fi(Pa(Xi), ui), i ∈ [d+ 1],

where Pa(i) is the parents (direct causes) of Xi in G and u[d+1] are some random noise

variables.
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Figure 2.1: Example DAG.

2.3.2 Why CASTLE regularization matters

We now present a graphical example to explain the two benefits of CASTLE mentioned in

Section 2.2, causal prediction and target selection. Consider Figure 2.1 where we are given

nine feature variables X1, ..., X9 and a target variable Y .

Causal Prediction. The target variable Y is generated by a function fY (Pa(Y ), uY )

from Definition 1 where the parents of Y are Pa(Y ) = {X2, X3}. In CASTLE regularization,

we train a predictive model f̂Y jointly with learning the DAG among X and Y . The features

that the model uses to predict Y are the causal parents of Y in the learned DAG. Such a

model is sample efficient in uncovering the true function fY (Pa(Y ), uY ) and generalizes well

on the out-of-sample data. Our theoretical analysis in Section 2.3.4 validates this advantage

when there exists a DAG structure among the variables X and Y . However, there may

exist other variables that predict Y more accurately than the causal parents Pa(Y ). For

example, if the function from Y to X8 is a one-to-one linear mapping, we can predict Y

trivially from the feature X8. In our objective function introduced later, the prediction loss

of Y will be weighted higher than the causal regularizer. Among the predictive models with

a similar prediction loss of Y , our objective function still prefers to use the model, which

minimizes the causal regularizer and uses the causal parents. However, it would favor the

easier predictor if one exists and gives a much lower prediction loss of Y . In this case, the

learned DAG may differ from the true DAG, but we reiterate that we are focused on the

problem of generalization rather than causal discovery.
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Target Selection. Consider the variables X5, X6 and X7 which share parents (X2

and X3) with Y in Figure 2.1. The functions X5 = f5(X2, u5), X6 = f6(X3, u6), and

X7 = f7(X3, u7) may have some learnable similarity (e.g. basis functions and representations)

with Y = fY (X2, X3, uY ), that we can exploit by training a shared predictive model of

Y with the auxiliary task of predicting X5, X6 and X7. From the causal graph topology,

CASTLE discovers the optimal features that should act as the auxiliary task for learning

fY . CASTLE learns the related functions jointly in a shared model, which is proven to

improve the generalization performance of predicting Y by learning shared basis functions

and representations [94].

2.3.3 CASTLE regularization

Let X̃ = Y × X denote the data space, P(X,Y ) = PX̃ the data distribution, and ∥ · ∥F the

Frobenius norm. We define random variables X̃ = [X̃1, X̃2, ..., X̃d+1] := [Y,X1, ..., Xd] ∈ X̃ .

Let X =
[
X1, ...,Xd

]
denote the N × d input data matrix, Y the N -dimensional label vector,

X̃ = [Y,X] the N × (d+ 1) matrix that contains data of all the variables in the DAG.

To facilitate exposition, we first introduce CASTLE in the linear setting. Here, the

parameters are a (d + 1) × (d + 1) adjacency matrix W with zero in the diagonal. The

objective function is given as

Ŵ ∈ min
W

1
N
∥Y − X̃W:,1∥2 + λRDAG(X̃,W) (2.1)

where W:,1 is the first column of W. We define the DAG regularization loss RDAG(X̃,W) as

RDAG(X̃,W) = LW +RW + βVW. (2.2)

where LW = 1
N
∥X̃− X̃W∥2F , RW =

(
Tr
(
eW⊙W

)
− d− 1

)2, VW is the ℓ1 norm of W, ⊙ is

the Hadamard product, and eM is the matrix exponential of M. The DAG loss RDAG(X̃,W)

is introduced in [170] for learning linear DAG by continuous optimization. Here we use it as

the regularizer for our linear regression model Y = X̃W:,1 + ϵ. From Theorem 1 in [170], we

know the graph given by W is a DAG if and only if RW = 0. The prediction Ŷ = X̃W:,1 is
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the projection of Y onto the parents of Y in the learned DAG. This increases the stability of

linear regression when issues pertaining to collinearity or multicollinearity among the input

features appear.

Continuous optimization for learning nonparametric causal DAGs has been proposed in

the prior work by [174]. In a similar manner, we also adapt CASTLE to nonlinear cases.

Suppose the predictive model for Y and the function generating each feature Xk in the causal

DAG are parameterized by an M -layer feed-forward neural network fΘ : X̃ → X̃ with ReLU

activations and layer size h. Figure 2.2 shows the network architecture of fΘ. This joint

network can be instantiated as a d+ 1 sub-network fk with shared hidden layers, where fk

is responsible for reconstructing the feature X̃k. We let Wk
1 denote the h× (d+ 1) weight

matrix in the input layer of fk, k ∈ [d + 1]. We set the k-th column of Wk
1 to zero such

that fk does not utilize X̃k in its prediction of X̃k. We let Wm, m = 2, ..,M − 1 denote the

weight matrices in the network’s shared hidden layers, and WM = [W1
M , ...,W

d+1
M ] denotes

the h× (d+1) weight matrix in the output layer. Explicitly, we define the sub-network fk as

fk(X̃) = ϕ
(
· · ·ϕ

(
ϕ
(
X̃Wk

1

)
W2

)
· · ·WM−1

)
Wk

M , (2.3)

where ϕ(·) is the ReLU activation function. The function fΘ is given as fΘ(X̃) = [f1(X̃), ..., fd+1(X̃)].

Let fΘ(X̃) denote the prediction for the N samples matrix X̃ where [fΘ(X̃)]i,k = fk(X̃i),

i ∈ [N ] and k ∈ [d+ 1]. All network parameters are collected into sets as

Θ1 = {Wk
1}d+1

k=1, Θ = Θ1 ∪ {Wm}Mk=2 (2.4)

The training objective function of fΘ is

Θ ∈ min
Θ

1
N

∥∥Y − [fΘ(X̃)]:,1
∥∥2 + λRDAG

(
X̃, fΘ

)
. (2.5)

The DAG loss RDAG
(
X̃, fΘ

)
is given as

RDAG
(
X̃, fΘ

)
= LN(fΘ) +RΘ1 + βVΘ1 . (2.6)

Because the k-th column of the input weight matrix Wk
1 is set to zero, LN(fΘ) =

1
N

∥∥X̃−
fΘ(X̃)

∥∥2
F

differs from the standard reconstruction loss in auto-encoders (e.g. SAE) by only
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Figure 2.2: Schematic of CASTLE regularization. Our goal is to have the following tasks: (1)

a prediction of a target variable Y , and (2) the discovered causal DAG for input features X

and Y .

allowing the model to reconstruct each feature and target variable from the others. In

contrast, auto-encoders reconstruct each feature using all the features including itself. VΘ1 is

the ℓ1 norm of the weight matrices Wk
1 in Θ1, and the term RΘ1 is given as,

RΘ1 = (Tr
(
eM⊙M

)
− d− 1)2, (2.7)

where M is a (d+ 1)× (d+ 1) matrix such that [M]k,j is the ℓ2-norm of the k-th row of the

matrix Wj
1. When the acyclicity loss RΘ1 is minimized, the sub-networks f1, . . . fd+1 forms

a DAG among the variables; RΘ1 obligates the sub-networks to reconstruct only the input

features that have neighbors (adjacent nodes) in the learned DAG. We note that converting

the nonlinear version of CASTLE into a linear form can be accomplished by removing all the

hidden layers and output layers and setting the dimension h of the input weight matrices to

be 1 in (2.3), i.e., fk(X̃) = X̃Wk
1 and fΘ(X̃) = [X̃W1

1, ..., X̃Wd+1
1 ] = X̃W, which is the

linear model in (2.1-2.2).

Managing computational complexity. If the number of features is large, it is com-

putationally expensive to train all the sub-networks simultaneously. We can mitigate this

by sub-sampling. At each iteration of gradient descent, we randomly sample a subset of
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features to reconstruct and only minimize the prediction loss and reconstruction loss on these

sub-sampled features. Note that we do not have a hidden confounders issue here, since Y

and the sub-sampled features are predicted by all the features except itself. The sparsity

DAG constraint on the weight matrices is unchanged at each iteration. In this case, we

keep the training complexity per iteration at a manageable level approximately around the

computational time and space complexity of training a few networks jointly. We include

experiments on CASTLE scalability with respect to input feature size in our Experimental

section.

2.3.4 Generalization bound for CASTLE regularization

In this section, we analyze theoretically why CASTLE regularization can improve the

generalization performance by introducing a generalization bound for our model in Figure

2.2. Our bound is based on the PAC-Bayesian learning theory in [85, 139, 88]. Here, we

re-interpret the DAG regularizer as a special prior or assumption on the input weight matrices

of our model and use existing PAC-Bayes theory to prove the generalization of our algorithm.

Traditionally, PAC-Bayes bounds are only applied to randomized models, such as Bayesian or

Gibbs classifiers. Here, our bound is applied to our deterministic model by using the recent

derandomization formalism from [96, 98]. We acknowledge and note that developing tighter

and non-vacuous generalization bounds for deep neural networks is still a challenging and

evolving topic in learning theory. The bounds are often stated with many constants from

different steps of the proof. For reader convenience, we provide the simplified version of our

bound in Theorem 1. We begin with a few assumptions before stating our bound.

Assumption 1. For any sample X̃ = (Y,X) ∼ PX̃ , X̃ has bounded ℓ2 norm s.t. ∥X̃∥2 ≤ B,

for some B > 0.

Assumption 2. The loss function L(fΘ) = ∥fΘ(X̃) − X̃∥2 is sub-Gaussian under the

distribution PX̃ with a variance factor s2 s.t. ∀t > 0, EPX̃

[
exp

(
t
(
L(fΘ) − LP (fΘ)

))]
≤

exp( t
2s2

2
).
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Theorem 1. Let fΘ : X̃ → X̃ be a M-layer ReLU feed-forward network with layer size h,

and each of its weight matrices has the spectral norm bounded by κ. Then, under Assumptions

1 and 2, for any δ, γ > 0, with probability 1− δ over a training set of N i.i.d samples, for

any Θ in (2.4), we have:

LP (fΘ) ≤ 4LN(fΘ) +
1
N

[
RΘ1 + C1(VΘ1 + VΘ2) + log

(
8
δ

)]
+ C3 (2.8)

where LP (fΘ) is the expected reconstruction loss of X̃ under PX̃ , LN(fΘ), VΘ1 and RΘ1 are

defined in (2.6-2.7), VΘ2 is the ℓ2 norm of the network weights in the output and shared

hidden layers, and C1 and C2 are some constants depending on γ, d, h,B, s and M .

Proof. Our proof consists of three steps: (1) We convert the existing PAC-Bayes bound for a

randomized model fΘu to a deterministic model fΘ; (2) We upper bound the KL divergence

in the PAC-Bayes bound by the capability terms (i.e. the regularizers) of our model; (3) We

discuss how to choose the constants in our bound to make our result universal.

Step 1. We let Θ̃u denote the Θ in which we perturb each parameter by a random

perturbation u drawn from some Gaussian distribution. We collect all the random perturbation

into one vector u, and u ∼ N(0, σ2I). We let QΘu denote the distribution of Θu, and PΘu

denote our prior on Θu. For LN(fΘu), we have

Eu

[
LN(fΘu)

]
= Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i) + fΘ(X̃i)− X̃i

∥∥2]

= Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2]+ 1

N

N∑
i=1

∥∥fΘ(X̃i)− X̃i

∥∥2
+ Eu

[
2

N

N∑
i=1

(
fΘu(X̃i)− fΘ(X̃i)

)(
fΘ(X̃i)− X̃i

)]

≤ Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2]+ 1

N

N∑
i=1

∥∥fΘ(X̃i)− X̃i

∥∥2
+ Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2]+ 1

N

N∑
i=1

∥fΘ(X̃i)− X̃i

∥∥2
≤2γ + 2LN(fΘ)

(2.9)
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Similarly, we have

LP (fΘ) = EPEu

[∥∥fΘ(X̃)− fΘu(X̃) + fΘu(X̃)− X̃
∥∥2]

≤ 2γ + 2Eu

[
LP (fΘu)

] (2.10)

where we let γ be a constant such that maxX̃∈X Eu

[
∥fΘu(X̃) − fΘ(X̃)∥2

]
≤ γ. It is the

upper bound for the maximum expected change of the network output when the weights are

perturbed, thereby the network’s sharpness as defined in [70].

Using the Corollary 4 in [42] and Lemma 1 in [96], we have the following PAC Bayes bound

for the randomized model fΘu . Given a prior distribution PΘu over the set of predictors that

is independent of the training data, the PAC-Bayes theorem states that with probability

at least 1− δ, over N i.i.d training samples, the expected error of fΘu can be bounded as

follows,

Eu

[
LP (fΘu)

]
≤ Eu

[
LN(fΘu)

]
+ 1

N

[
2KL(QΘu∥PΘu) + log(8

δ
)
]
+ 1

2
s2 (2.11)

If we upper bound Eu

[
LP (fΘu)

]
in (2.10) by (2.11), we have

LP (fΘ) ≤ 2γ + 2Eu

[
LN(fΘu)

]
+ 2

N

[
2KL(QΘu∥PΘu) + log(8

δ
)
]
+ s2

≤ 4LN(fΘ) +
2
N

[
2KL(QΘu∥PΘu) + log(8

δ
)
]
+ C2

(2.12)

where the last inequality is achieved by (2.9), and C2 = s2 + 6γ.

Step 2. For convenience, we restate the parameter set Θ in (2.4) here,

Θ1 = {Wk
1}d+1

k=1, Θ = Θ1 ∪ {Wm}Mk=2

Now we write the distribution QΘu and PΘu explicitly. Without loss of generality, we assume

QΘu and PΘu have the same standard deviation σ2. First, QΘu is given as QΘu = Q
(1)
Θu
Q

(2)
Θu
,

where Q(1)
Θu

= N(zΘu,1 ; zΘ1 , 1), and

Q
(2)
Θu

=
d+1∏
k=1

N(Wk
u,1;W

k
1 , σ

2I)
M∏

m=2

N(Wu,m;Wm, σ
2I).

And PΘ is given as PΘu = P
(1)
Θu
P

(2)
Θu
, where P (1)

Θu
= N(zΘu,1 ; d+ 1, 1), and

P
(2)
Θu

=
d+1∏
k=1

N(Wk
u,1;0, σ

2I)
M∏

m=2

N(Wu,m;0, σ
2I).
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The variable zΘu,1 is given as,

zΘu,1 = Tr
(
eMu⊙Mu

)
where Mu is a (d+ 1)× (d+ 1) matrix such that [Mu]k,j is the ℓ2-norm of the k-th row of

the matrix Wj
u,1. The variable zΘ1 is defined in the same way as zΘu,1 but on the parameters

without perturbations. Here, we use Gaussian distributions for z’s for simplicity in our

deterministic model. Formally, in Bayesian inference, we may consider using truncated

normal or exponential priors for z’s since we know zΘu,1 = Tr(I)+Tr(Mu⊙Mu)+ · · · ≥ d+1

using the power series of matrix exponential and the fact that each element of Mu is

non-negative. Now we upper bound the KL divergence as follows,

KL(QΘu∥PΘu) =

∫
Q

(1)
Θu
Q

(2)
Θu

log
(

Q
(1)
Θu

Q
(2)
Θu

P
(1)
Θu

P
(2)
Θu

)
dΘu

=

∫
Q

(1)
Θu
Q

(2)
Θu

log
(

Q
(1)
Θu

P
(1)
Θu

)
dΘu +

∫
Q

(1)
Θu
Q

(2)
Θu

log
(

Q
(2)
Θu

P
(2)
Θu

)
dΘu

≤
∫
Q

(1)
Θu

log
(

Q
(1)
Θu

P
(1)
Θu

)
dΘu +

∫
Q

(2)
Θu

log
(

Q
(2)
Θu

P
(2)
Θu

)
dΘu

= 1
2

[
zΘ1 − (d+ 1)

]2
+ 1

2σ2

( d+1∑
k=1

∥Wk
1∥2F +

M∑
m=2

∥Wm∥2F
)

≤ 1
2
Rθ1 +

1
2σ2 (VΘ1 + VΘ2)

(2.13)

where the last inequality is achieved using the fact that the Euclidean norm of any vector

is bounded by its ℓ1-norm. Let C1 =
1
σ2 . Bounding the KL divergence in (2.12) with (2.13)

gives that

LP (fΘ) ≤ 4LN(fΘ) +
2
N

[
Rθ1 + C1(VΘ1 + VΘ2) + log(8

δ
)
]
+ C2 (2.14)

Step 3. Recall that γ is the upper bound for maxX̃∈X Eu

[
∥fΘu(X̃) − fΘ(X̃)∥2

]
, the

expected maximum change of the network output when the weights are perturbed by

u ∼ N(0, σ2I). We now derive the constant γ based on σ2, the input upper bound B in

Assumption 1. Our network uses ReLU activation functions in the hidden layers. The ReLU

function ϕ(·) is 1-Lipschitz. This proof is similar to Lemma 2 in [96]. Let ∥ · ∥2 denote the
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spectral norm. We define ∆M−1
k as the output difference in the last hidden layer:

∆M−1
k =

∥∥ϕ( · · ·ϕ(ϕ(X̃[Wk
1 +Uk

1]
)
[W2 +U2]

)
· · · [WM−1 +UM−1]

)
− ϕ
(
· · ·ϕ

(
ϕ
(
X̃Wk

1

)
W2

)
· · ·WM−1

)∥∥
We have

∆M
k =

(
[fΘ(X̃)]k − [fΘu(X̃)]k

)2
= ∆M−1

k

[
∥WM∥2 + ∥UM∥2

]
+ ∥X̃∥∥UM∥2∥Wk

1∥2
M−1∏
m=2

∥Wm∥2

≤ (1 + 1
M
)∥WM∥2∆M−1

k + ∥UM∥2
∥WM∥2∥X̃∥∥W

k
1∥2

M∏
m=2

∥Wm∥2

≤ (1 + 1
M
)∥WM∥2

(
(1 + 1

M
)∥WM−1∥2∆M−2

k + ∥UM−1∥2
∥WM−1∥2

∥X̃∥∥Wk
1∥2

M−1∏
m=2

∥Wm∥2
)

+ ∥UM∥2
∥WM∥2∥X̃∥∥W

k
1∥2

M∏
m=2

∥Wm∥2

≤ (1 + 1
M
)2∆M−2

k

M∏
m=M−1

∥Wm∥2 +
1∑

m=0

(1 + 1
M
)m ∥UM−m∥2

∥WM−m∥2∥X̃∥∥W
k
1∥2

M∏
m=2

∥Wm∥2

≤ (1 + 1
M
)M∥X̃ − X̃∥Fk + (1 + 1

M
)M−1 ∥Uk

1∥2
∥Wk

1∥2
∥X̃∥Fk

+
M−2∑
m=0

(1 + 1
M
)m ∥UM−m∥2

∥WM−m∥2∥X̃∥Fk

≤ eBFk

(
∥Uk

1∥2
∥Wk

1∥2
+

M∑
m=2

∥Um∥2
∥Wm∥2

)

where Fk = ∥Wk
1∥2
∏M

m=2 ∥Wm∥2, the last inequality is achieved by (1+ 1
m
)M ≤ e for m ≤M ,

and ∥X̃∥ ≤ B in Assumption 1. Then Eu

[
∥fΘu(X̃)− fΘ(X̃)∥2

]
is given as

d+1∑
k=1

Eu

[
∆M

k

]
≤ σreB

d+1∑
k=1

Fk

(
∥Wk

1∥−1
2 +

M∑
m=2

∥Wm∥−1
2

)

≤σreB
d+1∑
k=1

(
M∏

m=2

∥Wm∥2 +
M∑

m=2

Fk

∥Wm∥2

)
≤σreB(d+ 1)MκM−1

where r =
[
2 log(2eh)

]1/2, and the first inequality is achieved bounding the spectral norm

of the random matrices U’s using random matrix theory (See Section 4.4 in [147]). Hence,
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setting σ = (reB(d+ 1)MκM−1)−1γ, then we have

max
X̃∈X

Eu

[
∥fΘu(X̃)− fΘ(X̃)∥2

]
< γ.

Given any ReLU network satisfying the Assumptions 1 and 2 and with bounded spectral

norm on its weights, we can upper bound its expected loss using the network sharpness,

measured by some perturbations on the network parameters.

The statistical properties of the reconstruction loss in learning linear DAGs, e.g. LW =

1
N
∥X̃−WX̃∥2F , have been well studied in the literature: the loss minimizer provably recovers

a true DAG with high probability on finite-samples, and hence is consistent for both Gaussian

SEM [77] and non-Gaussian SEM [1, 150]. Note also that the regularizer RW or RΘ1 are not

a part of the results in [77, 1, 150]. However, the works of [170, 174] empirically show that

using RW or RΘ1 on top of the reconstruction loss leads to more efficient and more accurate

DAG learning than existing approaches. Our theoretical result on the reconstruction loss

explains the benefit of RW or RΘ1 for the generalization performance of predicting Y . This

provides theoretical support for our CASTLE regularizer in supervised learning. However,

the objectives of DAG discovery, e.g., identifying the Markov Blanket of Y , is beyond the

scope of our analysis.

The bound in (2.8) justifies RΘ1 in general, including linear or nonlinear cases, if the

underlying distribution PX̃ is factorized according to some causal DAG. We note that the

expected loss LP (fΘ) is upper bounded by the empirical loss LN(fΘ), VΘ1 , VΘ1 and RΘ1

which measures how close (via acyclicity constraint) the model is to a DAG. From (2.8) it is

obvious that not minimizing RΘ1 is an acceptable strategy asymptotically or in the large

samples limit (large N) because RΘ1/N becomes negligible. This aligns with the consistency

theory in [77, 1, 150] for linear models. However for small N , a preferred strategy is to train a

model fΘ by minimizing LN (fΘ) and RΘ1 jointly. This would be trivial because the samples

are generated under the DAG structure in PX̃ . Minimizing RΘ1 can decrease the upper

bound of LP (fΘ) in (2.8), improve the generalization performance of fΘ, as well as facilitate

the convergence of fΘ to the true model.
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If PX̃ does not correspond to any causal DAG, such as image data, then there will be

a trade-off between minimizing RΘ1 and LN(fΘ). In this case, RΘ1 becomes harder to

minimize, and generalization may not benefit from adding CASTLE. However, this is a rare

case since causal structure exists in most datasets inherently. Our experiments demonstrate

that CASTLE regularization outperforms popular regularizers on a variety of datasets in the

next section.

2.4 Experiments

In this section, we empirically evaluate CASTLE as a regularization method for improving

generalization performance. We present our benchmark methods and training architecture,

followed by our synthetic and publicly available data results.

Benchmarks. We benchmark CASTLE against common regularizers that include: early

stopping (Baseline) [41], L1 [145], L2 [54], dropout [56] with drop rate of 20% and 50%

denoted as DO(0.2) and DO(0.5) respectively, SAE [84], batch normalization (BN) [58], data

augmentation or input noise (IN) [73], and MixUp (MU) [173], in no particular order. For

each regularizer with tunable hyperparameters we performed a standard grid search. For the

weight decay regularizers L1 and L2 we searched for λℓp ∈ {0.1, 0.01, 0.001}, and for input

noise we use a Gaussian noise with mean of 0 and standard deviation σ ∈ {0.1, 0.01, 0.01}. L1

and L2 were applied at every dense layer. BN and DO were applied after every dense layer

and active only during training. Because each regularization method converges at different

rates, we use early stopping on a validation set to terminate each benchmark training, which

we refer to as our Baseline.

Network architecture and training. We implemented CASTLE in Tensorflow. Our

proposed architecture is comprised of d+1 sub-networks with shared hidden layers, as shown

in Figure 2.2. In the linear case, VW is the ℓ1 norm of W. In the nonlinear case, VΘ1 is the

ℓ1 norm of the input weight matrices Wk
1 , k ∈ [d+ 1]. To make a clear comparison with L2
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regularization, we exclude the capacity term VΘ2 from CASTLE, although it is a part of

our generalization bound in (2.8). Since we predict the target variable as our primary task,

we benchmark CASTLE against this common network architecture. Specifically, we use a

network with two hidden layers of d + 1 neurons with ReLU activation. Each benchmark

method is initialized and seeded identically with the same random weights. For dataset

preprocessing, all continuous variables are standardized with a mean of 0 and a variance of

1. Each model is trained using the Adam optimizer with a learning rate of 0.001 for up to

a maximum of 200 epochs. An early stopping regime halts training with a patience of 30

epochs.

2.5 Synthetic details

In this section, we cover details regarding our synthetic data generation process and ex-

periments. We first provide an overview of our data generation, and then we will cover a

supplementary linear example.

2.5.1 Synthetic data generating process

Here we describe our synthetic data generation process in detail. We enumerated all nodes in

G randomly. We generated random DAG instantiations with a randomly sampled branching

factor up to the number of nodes in the DAG for our synthetic DAG generation. Edges were

randomly added to the graph until either the branching factor was met or no more edges can

be added without violating graphical acyclicity. We provide pseudocode for our synthetic

DGP in Algorithm 1. For each random DAG in our experiment we randomly chose a σ

between 0.3 and 1, and we set µ = 0 and w = 1.

For our experiments in the main paper, we use the following settings. In the linear case,

each variable is equal to the sum of its parents plus noise. For the nonlinear case, each

variable is equal to the sum of the sigmoid function of each parent plus noise.
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Algorithm 1 Synthetic Data Generating Process (DGP)
Input: A Graphical structure G, a mean µ, standard deviation σ, edge weights w, a

dataset size n.

Output: A dataset according to G with n samples.

Function: gen_data(G, µ, σ, w, n):

e← edges of G

Gsorted ← topological_graph_sort(G)

ret← empty list

for node ∈ G do

Append to ret[node] a list of Gaussian (µ and σ) randomly sampled list of size n.

end for

for node ∈ Gsorted do

for par ∈ {parents(node)} do

ret[node] += ret[par] ∗ w(par, node), where w(par, node) is the edge weight from par

to node. Note that a non-linear function can be applied to ret[par] to convert this

into a non-linear data generator.

end for

end for

return ret.
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2.5.2 Regularization on Synthetic Data

Table 2.2: Experiments on nonlinear synthetic data of size n generated according to Fig. 2.1

in terms of MSE (± standard deviation)

Regularizer n = 500 n = 1000 n = 5000

Baseline 0.83± 0.03 0.80± 0.04 0.73± 0.02

L1 0.81± 0.05 0.79± 0.03 0.71± 0.02

L2 0.81± 0.05 0.77± 0.02 0.71± 0.01

DO(0.2) 0.80± 0.04 0.79± 0.01 0.70± 0.02

DO(0.5) 0.79± 0.02 0.78± 0.04 0.70± 0.02

SAE 0.79± 0.03 0.77± 0.04 0.69± 0.02

BN 0.81± 0.04 0.79± 0.03 0.72± 0.02

IN 0.82± 0.05 0.78± 0.04 0.71± 0.02

MU 0.79± 0.05 0.78± 0.04 0.72± 0.08

CASTLE 0.77± 0.02 0.75± 0.04 0.68± 0.02

Given a DAG G, we generate functional relationships between each variable and its

respective parent(s) with additive Gaussian noise applied to each variable with a mean of 0

and variance of 1. In the linear case, each variable is equal to the sum of its parents plus

noise. For the nonlinear case, each variable is equal to the sum of the sigmoid of its parents

plus noise. Consider Table 2.2, using our nonlinear DGP we generated 1000 test samples

according to the DAG in Figure 2.1. We then used 10-fold cross-validation to train and

validate each benchmark on varying training sets of size n. Each model was evaluated on the

test set from weights saved at the lowest validation error. Table 2.2 shows that CASTLE

improves over all experimental benchmarks.

Dissecting CASTLE. In the synthetic environment, we know the causal relationships with

certainty. We analyze three aspects of CASTLE regularization using synthetic data. Because

we are comparing across randomly simulated DAGs with differing functional relationships,
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Figure 2.3: Experiments on synthetic data. The y-axis is the average rank (± standard

deviation) of each regularizer on the test set over each synthetic DAG. We show the average

rank as we increase the number of features or vertex cardinality |G| (left), increase the

dataset size normalized by the vertex cardinality |G| (center), and as we increase the number

of noise (neighborless) variables (right).

the magnitude of regression testing error will vary between runs. We examine the model

performance in terms of each model’s average rank over each fold to normalize this. If we

have r regularizers, the best and worst possible rank is one and r, respectively (i.e., the higher

the rank the better). We used 10-fold cross-validation to terminate model training and tested

each model on a held-out test set of 1000 samples.

First, we examine the impact of increasing the feature size or DAG vertex cardinality

|G|. We do this by randomly generating a DAG of size |G| ∈ {10, 50, 100, 150} with 50|G|
training samples. We repeat this ten times for each DAG cardinality. On the left-hand side

of Fig. 2.3, CASTLE has the highest rank of all benchmarks and does not degrade with

increasing |G|. Second, we analyze the impact of increasing dataset size. We randomly

generate DAGs of size |G| ∈ {10, 50, 100, 150}, which we use to create datasets of α|G|
samples, where α ∈ {20, 50, 100, 150, 200}. We repeat this ten times for each dataset size. In

the middle plot of Figure 2.3, we see that CASTLE has superior performance for all dataset

sizes, and as expected, all benchmark methods (except for SAE) start to converge about the

average rank at large data sizes (α = 200). Third, we analyze our method’s sensitivity to

noise variables, i.e., variables disconnected to the target variable in G. We randomly generate
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DAGs of size |G| = 50 to create datasets with 50|G| samples. We randomly add v ∈ {20i}5i=0

noise variables normally distributed with 0 mean and unit variance. We repeat this process

for ten different DAG instantiations. The results on the right-hand side of Figure 2.3 show

that our method is not sensitive to the existence of disconnected noise variables, whereas

SAE performance degrades with the increase of uncorrelated input features. This highlights

the benefit of target selection based on the DAG topology.
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(a) Regression
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(b) Classification

Figure 2.4: Comparison of CASTLE against benchmark regularization methods in terms or

average rank across each fold (10-fold cross-validation) for regression (a) and classification

(b) tasks. For clarity, we have sorted the datasets by average rank of CASTLE in decreasing

order. In comparison to the other benchmarks, CASTLE maintains stable performance across

datasets. Higher rank is better.

2.5.3 Weight characterization

In this subsection, we provide a characterization of the input weights that are learned during

the CASTLE regularization. We performed synthetic experiments using the same setup

for generating Figure 2.3. We investigated two different scenarios. In the first scenario,

we randomly generated DAGs where the target must have causal parents. We examine

the average weight value of the learned DAG adjacency matrix in comparison to the truth

adjacency matrix for the parents, children, spouses, and siblings of the target variable. The
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Table 2.3: Complete table of benchmark regularizers on regression in terms of test MSE (±
standard deviation) for experiments on real datasets using 10-fold cross-validation. Bold

denotes lowest test MSE. For readability we split the table into two.

D Baseline L1 L2 Dropout 0.2 Dropout 0.5

BH 0.141± 0.023 0.137± 0.025 0.131± 0.014 0.168± 0.032 0.389± 0.106

WQ 0.747± 0.038 0.747± 0.043 0.746± 0.039 0.738± 0.029 0.850± 0.068

FB 0.758± 1.017 0.663± 0.796 1.341± 1.069 0.429± 0.449 0.597± 0.313

BC 0.359± 0.061 0.342± 0.037 0.370± 0.142 0.334± 0.030 0.434± 0.080

SP 0.416± 0.108 0.421± 0.181 0.550± 0.291 0.285± 0.042 0.482± 0.128

CM 0.536± 0.103 0.574± 0.125 0.527± 0.060 0.327± 0.025 0.519± 0.064

D SAE Batch Norm Input Noise MixUp CASTLE

BH 0.148± 0.027 0.139± 0.021 0.137± 0.018 0.194± 0.064 0.123± 0.016

WQ 0.727± 0.030 0.723± 0.039 0.771± 0.036 0.712± 0.018 0.708± 0.030

FB 0.372± 0.168 0.705± 0.396 0.609± 0.511 0.385± 0.208 0.246± 0.153

BC 0.322± 0.021 0.325± 0.024 0.319± 0.022 0.322± 0.030 0.318± 0.036

SP 0.228± 0.022 0.318± 0.062 0.389± 0.095 0.267± 0.072 0.200± 0.020

CM 0.387± 0.034 0.470± 0.047 0.495± 0.081 0.376± 0.030 0.326± 0.031

results are shown in Figure 2.5. As expected, the results show that when causal parents

exist, CASTLE prefers to predict in the causal direction, rather than the anti-causal direction

(from children).
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Figure 2.5: Weight values on synthetic data when true causal structure is known. Our method

favors using the parents of the target when available.

As a secondary experiment, we ran the same sets of experiments, except for DAGs without

parents of the target variable. Results are shown in Figure 2.6. The results show that when

parents are not available that CASTLE finds the children as predictors rather than spouses.

Note that in this experiment, there will be no siblings of the target variable, since the target

variable has no parents.

Lastly, CASTLE does not reconstruct features that do not have causal neighbors in the

discovered DAG. To highlight this, in our noise variable experiment, we show the average

weighting of the input layers. In the right-most figures of Figure 2.5 and Figure 2.6, it is

evident that the weighting is much lower (near zero) for the noise variables in comparison to

the other variables in the DAG. This highlights the advantages of CASTLE over SAE, which

naively reconstructs all variables.
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Figure 2.6: Weight values on synthetic data when true causal structure is known. This

simulation was run with target variables not having any causal parents (and therefore no

siblings as well). Our method favors using the children rather than spouses of the target.

2.5.4 Sensitivity analysis and hyperparameter optimization
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Figure 2.7: Sensitivity analysis on λ.

Before we present further results, we first provide a sensitivity analysis on λ from (2.5).

We use our synthetic DGP to synthesize a random DAG with between 10 and 150 nodes. We
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generated 2000 test samples and a training set with between 1000 and 5000 samples. We

repeated this 50 times. Using 10-fold cross-validation we show a sensitivity analysis over

λ ∈ {0.01, 0.1, 1, 10, 100} in Figure 2.7 in terms of average rank. We compare using average

rank since each experimental run (random DAG) will vary significantly in the magnitude

of errors. Based on these results, for all of our experiments in this paper we use λ = 1, i.e.,

log(λ) = 0. After fixing λ, our model has only one hyperparameter β to tune. For β in (2.6),

we performed a standard grid search for the hyperparameter β ∈ {0.001, 0.01, 0.1, 1}.
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Figure 2.8: CASTLE scalability analysis

2.5.5 Scalability analysis

We perform an analysis of the scalability of CASTLE. Using our synthetic DAG and dataset

generator, we synthesized datasets of 1000 samples. We used the same experimental setup

used for the synthetic experiments. We present the computational timing results for CASTLE

as we increase the number of input features on inference and training time in Figure 2.8. We

see that the time to train 1000 samples grows exponentially with the feature size; however, the

inference time remains linear as expected. Inference time on 1000 samples with 400 features

30



takes approximately 2 seconds, while training time takes nearly 70 seconds. Computational

time scales linearly with increasing the number of input samples. Experiments were conducted

on an Ubuntu 18.04 OS using 6 Intel i7-6850K CPUs.

2.5.6 Regularization on Real Data

We perform regression and classification experiments on a spectrum of publicly available

datasets from [31] including Boston Housing (BH), Wine Quality (WQ), Facebook Metrics

(FB), Bioconcentration (BC), Student Performance (SP), Community (CM), Contracep-

tion Choice (CC), Pima Diabetes (PD), Las Vegas Ratings (LV), Statlog Heart (SH), and

Retinopathy (RP). For each dataset, we randomly reserve 20% of the samples for a testing

set. We perform 10-fold cross-validation on the remaining 80%. As the results show in

Table 2.3, CASTLE provides improved regularization across all datasets for both regression

and classification tasks. Additionally, CASTLE consistently ranks as the top regularizer, with

no definitive benchmark method coming in as a consensus runner-up. This emphasizes the

stability of CASTLE as a reliable regularizer.

2.5.7 Dataset details

In Table 2.4, we provide details of the real world datasets used in this paper. We demonstrated

improved performance by CASTLE across a diverse collection of datasets in terms of sample

and feature size.

2.5.8 CASTLE ablation study

We provide an ablation study on CASTLE to understand the sources of gain of our method-

ology. Here we execute this experiment on our real datasets used in the main manuscript.

We show the results of our ablation on our CASTLE regularizer to highlight our sources of

gain in Table 2.5.
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Table 2.4: Real-world dataset details.

Dataset Sample size Feature size

Boston Housing (BH) 506 14

Wine Quality (WQ) 4894 12

Facebook Metrics (FB) 500 19

Bioconcentration (BC) 779 14

Student Performance (SP) 649 33

Community and Crime (CM) 1994 128

Contraceptive Choice (CC) 1472 9

Pima Diabetes (PD) 768 9

Las Vegas Ratings (LV) 504 20

Statlog Heart (SH) 270 13

Retinopathy (RP) 1151 20

Medical Expenditure Panel Survey (ME) 15786 139

Meta-analysis Global Group in Chronic (MG) 40367 33
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Table 2.5: Ablation study of CASTLE on real datasets to highlight sources of gain.

Dataset LN(fΘ) + VΘ1 RΘ1 + VΘ1 LN(fΘ) +RΘ1 LN(fΘ) +RΘ1 + VΘ1

Regression (MSE)

BH 0.162± 0.018 0.226± 0.158 0.174± 0.025 0.123± 0.016

WQ 0.711± 0.035 0.753± 0.013 0.713± 0.019 0.708± 0.030

FB 0.265± 0.045 0.327± 0.088 0.451± 0.032 0.246± 0.150

BC 0.362± 0.040 0.416± 0.009 0.373± 0.016 0.318± 0.036

SP 0.338± 0.181 0.212± 0.018 0.572± 0.340 0.200± 0.020

CM 0.347± 0.016 0.334± 0.007 0.478± 0.078 0.326± 0.031

Classification (AUROC)

CC 0.778± 0.006 0.780± 0.008 0.768± 0.011 0.787± 0.007

PD 0.795± 0.012 0.792± 0.012 0.766± 0.012 0.817± 0.004

BC 0.712± 0.018 0.722± 0.008 0.712± 0.020 0.731± 0.010

LV 0.562± 0.033 0.586± 0.023 0.566± 0.027 0.595± 0.032

SH 0.895± 0.006 0.889± 0.011 0.890± 0.010 0.929± 0.007

RP 0.801± 0.012 0.802± 0.014 0.791± 0.012 0.814± 0.014
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2.6 Conclusion

We have introduced CASTLE regularization, a novel regularization method that jointly

learns the causal graph to improve generalization performance in comparison to existing

capacity-based and reconstruction-based regularization methods. We used existing PAC-

Bayes theory to provide a theoretical generalization bound for CASTLE. We have shown

experimentally that CASTLE is insensitive to increasing feature dimensionality, dataset size,

and uncorrelated noise variables. Furthermore, we have shown that CASTLE regularization

improves performance on a plethora of real datasets and, in the worst case, never degrades

performance. We hope that CASTLE will play a role as a general-purpose regularizer that

can be leveraged by the entire machine learning community.

34



CHAPTER 3

MIRACLE: Causally-Aware Imputation via Learning

Missing Data Mechanisms

3.1 Introduction

Missing data is an unavoidable byproduct of collecting data in most practical domains.

In medicine, for example, doctors may choose to omit what they deem to be irrelevant

information (e.g., some patients may be asked to get comprehensive blood tests while others

don’t), data may be explicitly omitted by the patient (e.g., avoiding questions on smoking

status precisely because of their smoking habit) or simply misrecorded in electronic health

systems (see e.g., [15, 60, 140]).

Imputation algorithms can be used to estimate missing values based on data that was

recorded, but their correctness depends on the type of missingness. For instance, expanding

on the example above, younger patients may also be more likely to omit their smoking status.

As illustrated in Figure 3.1, the challenge is that implicitly conditioning inference on observed

data introduces a spurious path of correlation between age and the prevalence of smoking

that wouldn’t exist with complete data.

Missing data creates a shift between the available missing data distribution and the

target complete data distribution. It is a shift that may be explicitly modeled as missingness

indicators in an underlying causal model (i.e., a missingness graph as proposed by Mohan

et al. [95]) as shown in Figure 3.1. The learning problem is one of extrapolation, learning

with access to a missing data distribution for prediction and inference on the complete data

distribution – that is, generated from a model where all missingness indicators have been
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Figure 3.1: Missingness may introduce spurious dependencies.

intervened on (interventions interpreted in the sense of Pearl [104]) thus graphically removing

the dependence between missingness and its causes, and any spurious correlations among its

ancestors.

With this causal interpretation, imputation of missing data on a given variable Y from

other observed variables X is formulated as a problem of robust optimization,

minimize
θ∈Θ

sup
P∈P

E(X,Y )∼P

[
(fθ(X)− Y )2

]
, (3.1)

simultaneously optimizing over the set of distributions P arising from interventions on

missingness indicators. Causal solutions – i.e. imputation using functions of causal parents

of each missing variable in the underlying causal graph – are a closely-related version of this

problem with an uncertainty set Q defined as any distribution arising from interventions on

observed variables and variable indicators (see e.g. sections 3.2 and 3.3 in [89]),

sup
P∈P

E(X,Y )∼P

[
(fθ(X)− Y )2

]
≤ sup

P∈Q
E(X,Y )∼P

[
(fθ(X)− Y )2

]
, (3.2)

since P ⊂ Q. Our premise is that causal solutions, i.e. minimizing the right-hand-side of

(3.2), are expected to correct for spurious correlations introduced by distribution shift due to

missing data and preserve the dependencies of the complete data for downstream analysis.

3.1.1 Contributions

In this paper, we propose to impute while preserving the causal structure of the data. Missing

values in a given variable are replaced with their conditional expectation given the realization
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Figure 3.2: MIRACLE refines baseline imputation by simultaneously learning an m-graph

using a bootstrap imputation loop that serves to incrementally regularize predictions with a

learned causal graph. We plot average testing error and estimated causal graph as a function

of training epochs on a synthetic data experiment described in Section 3.4. The true causal

structure (as an adjacency matrix) and imputation improvements for each missing value

separately (each missing value with a corresponding dot) is shown in the right-most panel.

of its causal parents instead of the more common conditional expectation given all other

observed variables, which absorbs spurious correlations.

We propose a novel imputation method called Missing data Imputation Refinement

And Causal LEarning (MIRACLE). MIRACLE is a general framework for imputation that

operates on any baseline (existing) imputation method. A visual description is given in

Figure 3.2: given some initial imputation from a baseline method, MIRACLE refines its

imputations iteratively by learning a missingness graph (m-graph) [95] and regularizing the

imputation function such that it is consistent with the causal graph generating the data,

substantially improving performance. In experiments, we apply MIRACLE to improve six

popular imputation methods as baselines. We present detailed simulations to demonstrate

on synthetic and a variety of publicly available datasets from the UCI Machine Learning

Repository [31] that MIRACLE can improve imputation in almost every scenario and never

degrades performance across all imputation methods.
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3.1.2 Related work

The literature on imputation is large and varied. Still, most imputation algorithms work

with the prior assumption that the missing data mechanism is ignorable, in the sense

that imputation does not require explicitly modeling the distribution of missing values for

imputation [128]. Accordingly, classical imputation methods impute using a joint distribution

over the incomplete data that is either explicit or implicitly defined through a set of conditional

distributions. For example, explicit joint modeling methods include generative methods based

on Generative Adversarial Networks [162, 168, 7], matrix completion methods [91], and

parametric models for the joint distribution of the data. Missing values are then imputed by

drawing from their predictive distribution. The conditional modeling approach [149] consists

of specifying one model for each variable and iteratively imputing using estimated conditional

distributions. Examples of discriminative methods are random forests [121], autoencoders

[43, 50, 90], graph neural networks [167], distribution matching via optimal transport [92],

and multiple imputation using chained equations [16].

In a different line of research, Mohan et al., in a series of papers, see e.g. [95, 93], explicitly

considered missing data within the underlying causal mechanisms of the data. Subsequently,

a range of related problems has been studied, including identifiability of distributions and

causal effects in the presence of missing data, see e.g. [19, 138, 97], testable implications

relating to the causal structure using missing data [93], and causal discovery in the presence

of missing data [47, 148]. Our focus, in contrast, is algorithmic in nature. We aim to develop

an algorithm that improves imputation quality by leveraging causal insights represented as

an estimated missingness graph learned from data.

3.2 Background

The basic semantic framework of our analysis rests on structural causal models (SCMs) (see

e.g. Chapter 7 in [104] for more details) explicitly introducing missingness indicators and

their functional relationship with other variables, using in part the notation of [95]. We define
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an SCMM as a tuple (X,R,U ,F , P ) where X is a vector of d endogenous variables and U

is a vector of exogenous variables.1 R is the vector of missingness indicators that represent

the status of missingness of the endogenous variables X. Precisely, Rj is responsible for the

value of a proxy variable Zj of Xj, i.e., the observed version of Xj. For example, Zj is equal

to Xj if the corresponding record is observed (Rj = 1), otherwise Zj is missing (Rj = 0). F is

a set of functions where each fX , fR ∈ F decide the values of an endogenous variable X and a

missingness indicator variable R, respectively. The function fX takes two separate arguments

as parts of X (except X itself) and U , termed as PaX and UX . That is, X ← fX(PaX , UX)

and R← fR(PaR, UR).

The randomness in SCMs comes from the exogenous distribution PU (u) where the exoge-

nous variables in U are generated independently and are mutually independent. Naturally,

through the functions in F , the SCMM induces a joint distribution PX(x) over the endoge-

nous variables X, called the endogenous distribution. An intervention on some arbitrary

random variables V in X and R, denoted by do(v), is an operation which sets the value

of V to be v, regardless of how they are ordinarily determined. For an SCM M, let Mv

denote a submodel of M induced by intervention do(v). The interventional distribution

PX(x|do(v)) induced by do(v) is defined as the distribution over X in the submodel Mv,

namely, PX,Mv(x) = PX(x|do(v)).

Each SCM in the context of missingness is associated with a m-graph G (e.g., Fig. 1a),

which is a directed acyclic graph (DAG) where nodes represent endogenous variables X and

missingness indicators R, and arrows represent the arguments PaX and PaR of each function

fX and fR respectively. By convention, exogenous variables U are often not shown explicitly

in the graph.

Assumption 3 (Missingness indicators are not causes). No missingness indicator in R can

be the cause of the endogenous variables X, i.e., the arguments of the functions generating

X.

1Essentially, X is the ground-truth features; U is the random noise in the data generating process.
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Assumption 4 (Causal sufficiency). Exogeneous variables U are mutually independent, i.e.,

all common parents of the endogenous variables are included in X.

Assumption 5 (No self-masking missingness). Self-masking missingness refers to missingness

in a variable that is caused by itself. In the m-graph this is depicted by an edge from Xj to

Rj (as shown in Figure 3.3 (d)). We assume that there is no such edges in the m-graph.

Assumption 6 (Observed root nodes). The endogenous variables Xj such that PaXj
= ∅

(i.e., the root nodes) in the m-graph are always observed (Rj = 1 with probability 1).

We make the four assumptions above throughout the following sections. Assumption 3

and 4 are employed in most related works using m-graphs (see e.g. [93, 95]). Assumption 3

is valid, for example, if R is generated in the data collection process after the variable

values are assigned. Consequently, under this assumption, if two endogenous variables of

interest X1 and X2 are not d-separated by some variable X3, they are not d-separated by X3

together with their missingness indicators R1 and R2. We denote an independent relation in

a data distribution by “ |= " and d-separation in a m-graph by “ |= d". We assume the data

distribution is faithful to a m-graph, meaning that the two independencies are equivalent.

As shown in Figure 3.3, data is missing completely at random (MCAR) if X |= dR holds in

the m-graph, missing at random (MAR) if for any endogenous variable Xj, Rj |= dXj |X−j

holds, and missing not at random (MNAR) otherwise, as stated in [95]. If Assumption 5 is

violated, we are unable to learn the missingness for self-masked variables. Assumption 6 is

necessary for imputing all the missing variables from their causal parents. These assumptions

are imperative for MIRACLE to provide improved imputations by leveraging the causal

structure of the underlying data generating process. In our experiments (Section 3.4), we

apply MIRACLE to real-world datasets where these assumptions are not guaranteed.

3.2.1 Why is imputation prone to bias?

The reason for considering the causal structure of the underlying system is that when learning

an imputation model from observed data, implicitly conditioning on some missingness

40



(a) A MCAR graph. (b) A MAR graph. (c) A MNAR graph. (d) Self-masking

missingness.

Figure 3.3: Example graphs. X = (X1, X2, X3) are endogenous variables and R =

(R1, R2, R3) are missing data indicators. Red shaded variables are not always observed

while white shaded variables are always observed.

indicators in R induces spurious dependencies that would not otherwise exist. For example,

in a graph X1 → R3 ← X2, conditioning on R3 = 1 induces a dependence between X1 and

X2. In general, the distributions PX(x|R = r) and PX(x|do(r)) differ unless missingness

occurs completely at random, and motivates an interpretation of the problem as domain

generalization, training on data from one distribution ultimately to be applied on data from

a different distribution that, in our case, arises from missing data (i.e., interventions on

missingness indicators). This shift is not addressed in the imputation methods that only use

the feature correlations.

3.3 MIRACLE

In this section, we propose to correct for the shift in distribution due to missing data by

searching for causal solutions and explicitly refining imputation methods using a penalty on

the induced causal structure. In practice, we have n i.i.d. realizations of the observed version

of X ∈ Rd, concatenated as a incomplete data matrix X ∈ Rn×d, together with missingness

indicators concatenated in a matrix R ∈ {0, 1}n×d. We use here the same bold uppercase

notation for sets of variables and matrices of observations but their meaning should be clear

from the context. Our goal is to impute the unobserved values in X using each variable’s
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causal parents. We define the imputed data X̃ ∈ Rn×d,

X̃ = R⊙X+ (1−R)⊙ X̂

where ⊙ is the element-wise product of matrices and X̂ is an estimate of the complete data

matrix.

3.3.1 Network architecture

In this section, we describe our approach for estimating X̂. Let dS ≤ d be the number of

partially observed features, i.e., missing for at least one realization. S is the set of missing

features indices. The imputation network is defined as a function f : Rd → Rd × [0, 1]dS that

takes an initially imputed dataset X̃(0) (using an existing baseline imputation method), and

returns two quantities:

1. A refined imputation X̂.

2. An estimation of the probabilities of features Xij being missing, i = 1..., n and j ∈ S .

A depiction of the network architecture and optimization algorithm is shown in Figure

3.4. The architecture is constructed with respect to the assumptions shown in Section 3.2.

Our model f is decomposed into two sub-networks, f = (f (imp), f (miss)), responsible for

imputing the unobserved data and estimate the probabilities of missingness, respectively. The

imputation network has d components, f (imp) = (f
(imp)
1 , . . . , f

(imp)
d ), one for each variable, and

the missingness network has dS components, f (miss) = (f
(miss)
1 , . . . , f

(miss)
dS

). Each component,

for both networks, has separate input and output layers but shared hidden layers (of size h).

Let W(imp)
1,j and W

(miss)
1,j denote the h× d weight matrix (we omit biases for clarity) in the

input layer of f (imp)
j and f (miss)

j respectively. The j-th column of W(imp)
1,j and W

(miss)
1,j is set

to 0. Let Wm ∈ Rh×h, for m = 2, . . . ,M − 1, denote the weight matrix of each hidden layer

and let W
(imp)
M,j and W

(miss)
M,j , be the 1 × h dimensional output layers of each sub-network.

The imputation network prediction is given by,

f
(imp)
j (x) := W

(imp)
M,j ϕ(· · ·ϕ(W2ϕ(W

(imp)
1,j x))),
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Figure 3.4: Network and optimization diagram for MIRACLE.

for j = 1, . . . , d. And similarly, the missingness network prediction is given by,

f
(miss)
j (x) := σ

(
W

(miss)
M,j ϕ(· · ·ϕ(W2ϕ(W

(miss)
1,j x)))

)
,

for j = 1, . . . , dS, where ϕ(·) is the ELU activation function and σ is the sigmoid function.

Our network is optimized with respect to three objectives. First, to accurately predict missing

values, second, to faithfully encode the causal relationships given by the underlying m-graph,

and third to satisfy a moment constraint of the missing data mechanism on the imputed

values.

3.3.2 Reconstruction loss

The first objective is to train f to correctly reconstruct each feature from the observed data

using a reconstruction loss,

L1 =
1

n

(
n∑

i=1

∥∥xi ⊙ ri − f (imp)(x̃
(0)
i )⊙ ri

∥∥2 + n∑
i=1

CrossEntropy
[
r̃i, f

(miss)(x̃
(0)
i )
])
,

where xi and x̃
(0)
i are the realized and imputed feature vector of the i-th instance, r̃i are

the dS components of ri that are missing for at least one instance. The first loss term is

for reconstructing the observed features, and the second loss term is for estimating the

probabilities of missingness.
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3.3.3 Causal regularizer

The second objective is to ensure that the dependencies defined by f correspond to a DAG

over the features X and the missing indicators RS, which enforces that the learned functional

dependencies recover a DAG in the equivalence class of causal graphs over the observed data.

Enforcing the acyclicity of the dependencies induced by a continuous function f is originally

proposed in [170, 174]. Define a binary adjacency matrix B ∈ {0, 1}(d+dS)×(d+dS); [B]k,j = 0

(i.e., the l2-norm of the k-th column of the matrix W
(imp)
1,j or W(miss)

1,j is 0) is a realistic and

sufficient condition for achieving ∂kfj = 0. The adjacency matrix B of the graph induced by

the learned f is acyclic if and only if,

R1 =
1
2
h2(B) + h(B), (3.3)

is equal to zero, where h(B) := Tr(exp{B⊙B})−(d+dS) and exp(·) is the matrix exponential.

Remark 1. Existing imputation methods based on feature correlations essentially assume

an undirected (non-causal) graph between the features. Further, acyclicity is a realistic and

practical assumption to make on the static datasets collected by human experts. In nature,

most data distributions generate their features in some order. In a directed graph, a cycle

means a path starts and ends at the same node. This is unlikely to happen in the data

generating process if not considering variables over time, i.e., time-series data. By enforcing

acyclicity, MIRACLE only uses the causal parents for imputation, which is less biased by

spurious dependencies that only exist in the observed data.

3.3.4 Moment regularizer

The third objective leverages a set of moment constraints in the missingness pattern to

improve imputation. Assume ξj = P
(
Rj = 1 | PaRj

)
)
∈ (δ, 1 − δ), for some δ > 0. The

following derivation holds for MAR or MCAR missingness patterns only. It holds that,

E
{
RjXj

ξj

}
= E

{
E
[
RjXj

ξj

∣∣ Xj,PaRj

]}
= E

{
Xj

ξj
E
[
Rj | Xj,PaRj

]}
= E {Xj} , (3.4)
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where the third equality follows from the MAR assumption (Rj ⊥⊥ Xj | X−j). Under the

MCAR assumption, this derivation holds trivially since in that case Rj ⊥⊥ Xj.

We can use the missingness and imputation networks to enforce the above equality

algorithmically, ensuring the left hand side equals the right hand side in the empirical version

of (3.4) as follows,

R2 =

dS∑
j=1

[τ̂j,SIPW − τ̂j,mean]
2 =

dS∑
j=1

( n∑
i=1

eijrij

)−1 n∑
i=1

eijrijxij −
1

n

n∑
i=1

f
(imp)
S[j] (x̃

(0)
i )

2

,

where eij = 1/f
(miss)
j (x̃

(0)
i ), and S[j] is the j-th element of S, i.e., the index of the j-th missing

feature. Minimizing R2 forces the two estimators of E {Xj} to match, the stabilized inverse

propensity score weighting (SIPW) estimator τ̂j,SIPW [118] using the missingness network

f
(miss)
j (in eij) and the mean estimator τ̂j,mean using the imputation network f (imp)

S[j] .

Remark 2. We hypothesize this mechanism can improve performance for two reasons.

First, the missing data mechanism P (Rj = 1 | PaRj
) can be a simpler function that takes

less samples to learn than the function that generates the feature j, E
[
Xj|PaXj

]
. Then the

SIPW estimator based on f
(miss)
j will converge to the true mean faster than the estimator

based on f (imp)
S[j] . Second, in R2, the mean estimator using f (imp)

S[j] is based on all the samples;

f
(imp)
S[j] is trained to produce predictions on the samples with missing feature j for the sake

of matching the SIPW estimator. By contrast, without the regularizer R2, f
(imp)
S[j] is solely

trained on the samples with observed feature j, and its performance may fail to generalize to

data with missing feature j.

3.3.5 Bootstrap Imputation

Discovering a causal graph requires complete data. However, this is not the case for missing

data problems. Because of this, we require that MIRACLE be seeded by another imputation

method. Imputed values are iteratively refined by MIRACLE, hence “bootstrapping”, to

potentially converge to a new imputation that minimizes MIRACLE’s objective (including
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causal and moment regularizers). MIRACLE’s objective for optimization is,

L = L1 + β1R1 + β2R2, (3.5)

where β1 and β2 are hyperparameters that define the strength of regularization. We iteratively

update the baseline matrix X̃(0) with a new imputed matrix X̃ given by MIRACLE every

ten epochs in training. With increasing epochs, stochastic optimization minimizes the loss

for the imputed matrices that respect the causal and moment regularization. In theory, this

is analogous to supervised training a denoising autoencoder (DAE) [153, 23, 107], but differs

only by the fact that “noise” comes from prior or previous imputations. In training DAE,

the input samples are corrupted by independent noise with each epoch, yet convergence is

still guaranteed [4]. In our experiments, we demonstrate that bootstrap imputation indeed

converges on multiple datasets and baseline methods.

3.4 Experiments

In this section, we validate the performance of MIRACLE using both synthetic and a variety

of real-world datasets.

1. In the first set of experiments, we quantitatively analyze MIRACLE on synthetic data

generated from a known causal structure.

2. In the second set of experiments, we quantitatively evaluate the imputation performance

of MIRACLE using various publicly available UCI datasets [31].

General set-up. We conduct each experiment five times under random instantiations

of missingness. We report the RMSE along with standard deviation across each of the five

experiments. Unless otherwise specified, missingness is applied at a rate of 30% per feature.

For MCAR, this is applied uniformly across all features. For MAR, we randomly select 30%

of the features to have missingness caused by another disjoint and randomly chosen set of

features. Similarly, we randomly select 30% of features to be MNAR. We induce MAR and

MNAR missingness using the methods outlined in [162].
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(a) MAR
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(b) MNAR

Figure 3.5: Experiments on MAR (left) and MNAR (right) synthetic data in terms of RMSE

over varying dataset sizes (top), missingness rates (middle), and feature sizes (bottom).

Note that we show the average error over a variety of DAG instantiations and target variables,

thus the magnitude and standard deviation of errors vary significantly between runs.

We use an 80-20 train-test split. We performed a hyperparameter sweep (log-based) for

β1 and β2 with ranges between 1e-3 and 100. By default we have β1 and β2 set to 0.1 and 1,

respectively.

Evaluating imputation. For each subsection below, we present three model evaluations

in terms of missingness imputation performance, label prediction performance of a prediction

algorithm trained on imputed data and the congeniality of imputation models.

• Missingness imputation performance is evaluated with the root mean squared

error comparing the imputed missing values with their actual unobserved values.

• Label prediction performance of an imputation model is its ability to improve the

post-imputation prediction. By post-imputation, we refer to using the imputed data to
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perform a downstream prediction task. To be fair to all benchmark methods, we use

the same model (support vector regression) in all cases.

• The congeniality of an imputation model is its ability to impute values that respect

the feature-label relationship post imputation. Specifically, we compare, support vector

parameters, w, learned from the complete dataset with the parameters ŵ, learned from

the imputed dataset. We report root mean square error (||w− ŵ||2)1/2 for each method.

Lower values imply better congeniality [162].

Baseline imputation methods. We apply MIRACLE imputation over a variety of six

commonly used imputation baseline methods: (1) mean imputation using the feature-wise

mean, (2) a deep generative adversarial network for imputation using GAIN [162] (3) k-nearest

neighbors (KNN) [143] using the Euclidean distance as a distance metric of each missing

sample to observed samples, (4) a tree-based algorithm using MissForest (MF) [121], (5)

a deep neural distribution matching method based on optimal transport (OT) [92], and

(6) Multivariate Imputation by Chained Equations (MICE) [16]. For each of the baseline

imputation methods with tunable hyperparameters, we used the published values. We

implement MIRACLE using the tensorflow2 library.

We used the following network architecture for MIRACLE. Our proposed architecture

consists of d sub-networks with shared hidden layers, as shown in Figure 3.4. Each network

is constructed with two hidden layers of d neurons with ELU activation. Each benchmark

method is initialized and seeded identically with the same random weights. For dataset

preprocessing, all continuous variables are standardized with a mean of 0 and a variance of 1.

We train each model using the Adam optimizer with a learning rate of 0.0005 for up to a

maximum of 300 epochs.

2Source code at https://github.com/vanderschaarlab/MIRACLE.
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3.4.1 Generating missingness.

The following explains how we constructed synthetic datasets that satisfy MCAR, MAR and

MNAR patterns of missingness. We apply a modification to the missingness generation from

[162].

• MCAR. Missing completely at random was introduced by randomly removing 30% of

the observations in each feature.

• MAR. We sequentially define the probability that the i-th component of the n-th

sample is observed conditional on the missingness and values (if observed) of the

previous i− 1 components to be,

Pm(i) =
pm(i) ·N · exp(∑j<iwjmj(n)xj(n) + bj(1−mj(n)))∑N

l=1 exp(
∑

j<iwjmj(l)xj(l) + bj(1−mj(l)))
(3.6)

where pm(i) corresponds to the average missing rate of the i-th feature, and wj, bj are

sampled from U(0, 1) (but are only sampled once for the entire dataset).

• MNAR. Missing not at random was introduced by defining the probability of the i-th

component of the n-th sample to be observed by,

Pm(i) =
pm(i) ·N · exp(−wixi(n))∑N

l=1 exp(−wixi(l))
(3.7)

with the same notation as above. Here, the missingness of a data point is directly

dependent on its value (with dependence determined by the weight wi, sampled from

U(0, 1)).

3.4.2 Synthetic data

In this subsection, we evaluate MIRACLE on synthetic data. In doing so, we can control

aspects of the underlying data generating process and possess oracle knowledge of the DAG

structure.
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3.4.3 Synthetic data generation

In each synthetic experiment, we generated a p-dimensional random graph G from a

Erdös–Rényi random graph model with p edges on average. Given G, we assigned uni-

formly random edge weights to obtain a weighted adjacency matrix W ∈ Rp×p. Given W , we

sampled X = WX + E repeatedly from a Gaussian noise model for E ∈ Rp (each dimension

sampled independently) to generate independent observations from this system.

3.4.4 Data generating process.

We generate random Erdos-Renyi graphs with functional relationships from parent to children

nodes. At each node, we add Gaussian noise with mean 0 and variance 1.

3.4.5 Synthetic results.

In Figure 3.5, we show experiments of MIRACLE on synthetic MAR data in terms of RMSE.

Our experiments show that MIRACLE is able to significantly improve imputation over each

of the baseline imputation methods. Figure 3.5 shows MIRACLE improves performance over

each baseline method across various dataset sizes, missingness ratios, and feature sizes

(DAG sizes).

Note that the error bars are large for some of the plots with predictive error and congeniality.

This is because the y-axis of these plots are min-max normalized between 0 and 1, so the

high variance (large error bars) shows that the improvement by MIRACLE may be minimal

for the mentioned datasets. Additionally, this could be caused by the fact that the missing

features aren’t predictive of a target variable, i.e., better imputation does not necessarily lead

to any performance gain for the predicting the target variable.

3.4.6 MCAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of

MIRACLE in terms of RMSE, predictive error, and congeniality in Figure 3.6 for each of our
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baseline methods with MCAR.
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(a) Performance in terms of RMSE.
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(b) Performance in terms of prediction RMSE.
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(c) MCAR congeniality (in terms of RMSE).

Figure 3.6: Experiments on MCAR synthetic data as a function of dataset sizes (top),

missingness rates (middle), and feature sizes (bottom) of each subfigure: (a) RMSE, (b)

machine learning predictive error of a random variable, and (c) congeniality.

51



3.4.7 MAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of

MIRACLE in terms of RMSE, predictive error, and congeniality in Figure 3.7 for each of our

baseline methods with MAR.

3.4.8 MNAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of

MIRACLE in terms of RMSE, predictive error, and congeniality in Figure 3.8 for each of our

baseline methods with MNAR.

3.4.9 Experiments on real data

In Figure 3.9 we show experiments of MIRACLE on real data. We perform experiments

on several UCI datasets used in [162, 167, 92]: Autism, Life expectancy, Energy, Abalone,

Protein Structure, Communities and Crime, Yeast, Mammographic Masses, Wine Quality,

and Facebook Metrics. In Figure 3.9, the improvements of MIRACLE are minimal for

MCAR (except for mean imputation). This agrees with our discussion in Section 3.2.1,

because the baseline imputations are not biased in the MCAR setting where X |= dR holds

in the m-graph. Conversely for the MAR and MNAR settings, as expected, we observe

MIRACLE has an significant improvement on some of the datasets, such as Abalone, Autism,

Energy and Protein Structure. As discussed in Section 3.2, MIRACLE can improve the

baseline imputation under Assumptions 3-6, which may not hold in these real-world datasets.

Nevertheless, we observe that MIRACLE never degrades performance relative to its baseline

imputation on any dataset. Furthermore, no baseline imputer is optimal across the datasets.

In almost all cases, applying MIRACLE to any baseline results in the lowest error.

Prediction error and congeniality. We include additional plots for the real data experi-

ments for prediction error and congeniality in Figures 3.11 and 3.12, respectively.
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(a) Performance in terms of RMSE.
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(b) Performance in terms of prediction RMSE.
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(c) Congeniality (in terms of RMSE).

Figure 3.7: Experiments on MAR synthetic data as a function of dataset sizes (top),

missingness rates (middle), and feature sizes (bottom) of each subfigure: (a) RMSE, (b)

machine learning predictive error of a random variable, and (c) congeniality.
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(a) Performance in terms of RMSE.
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(b) Performance in terms of prediction RMSE.
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Figure 3.8: Experiments on MNAR synthetic data as a function of dataset sizes (top),

missingness rates (middle), and feature sizes (bottom) of each subfigure: (a) RMSE, (b)

machine learning predictive error of a random variable, and (c) congeniality.
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Figure 3.9: MIRACLE on real data. MIRACLE improves all baselines across MCAR

(top), MAR (middle), and MNAR (bottom). In the worst-case, MIRACLE never harms

performance.

Additional convergence plots. We include additional convergence plots on real datasets

in Figure 3.10. We use the same experimental setup used in Figure 3.15 in Section 3.4. We

observe that MIRACLE is able to converge regardless of baseline imputation used.

3.4.10 Understanding missingness location

An important consideration is how well does predicting with the causal parents work when

down-selecting features. Consider missingness in X5 in the DAG in Figure 3.14. The first

column with the causal parents Pa(X5) mean that only the parents of features were used for

imputation. X9 represents a variable that is not causally linked to anything.

Using our synthetic data generating process, we synthesized a dataset according to

Figure 3.14. The goal here was to impute the missing values in X5, using each variable in

Figure 3.14 to induce the missingness. Each of the missingness causes is categorized as MAR,

except for X5, which is MNAR (since missingness caused by itself), and for X9, which is
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(d) Life expectancy
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Figure 3.10: Convergence plots for real datasets.

MCAR, since it is an external noise variable. The results provide several interesting findings.

1. Using MissForest as a baseline imputer, the results in Table 3.1 show that MIRACLE

performs as well as Pa(X5), and has better performance than the baseline imputer.
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Figure 3.11: MIRACLE on real datasets in terms of predictive error. MIRACLE improves

over all baselines across all types of missingness: MCAR (top), MAR (middle), and MNAR

(bottom).
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Figure 3.12: MIRACLE on real datasets in terms of congeniality. MIRACLE improves over

all baselines across all types of missingness: MCAR (top), MAR (middle), and MNAR

(bottom).
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Figure 3.13: MIRACLE scalability analysis

Moreover, the two right-most columns of Table 3.1 give the average estimated functional

dependence of X5 (our target for prediction) and its parents and non-parents. We see

that MIRACLE recovers true parents consistently.

2. We see that using causal parents (Pa(X5) and MIRACLE) for missingness caused by

itself, X5‡, and a noise variable, X9†, leads to the least amount of improvement.

3. We see that MIRACLE has the most gain when the missingness is caused by a causal

parent (X2 or X3).

4. Interestingly, for this example, we observe comparable performance when using the

Markov blanket features versus all features in our baseline algorithm (MissForest). This

suggests that the Markov blanket features are likely used for imputation by the baseline

method.

3.4.11 Computational Complexity

Pseudocode for MIRACLE is provided in Algorithm 2. We perform an analysis of the

MIRACLE scalability. Using our synthetic data generation, we created datasets of 1000

samples. Using our the synthetic experimental setup presented in the main paper, we present

the computational timing results for MIRACLE as we increase the number of input features
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Figure 3.14: A sample DAG. X5 is the incomplete variable in red. The Markov Blanket

MB(X5) is shown in blue, and the causal parents Pa(X5) are shown with dashed borders. X9

represents a variable that is not causally linked to anything.

Algorithm 2 Train MIRACLE
Input: An incomplete dataset X with missing values, a missing indicator matrix R (with

1 indicating observed), an imputed matrix X̃(0) by some baseline method,

Output: Imputed dataset X̃∗ with no missing values.

Initialization: Imputation network f , G = ∅ with maximum size MG for saving imputed

matrices over epochs

repeat

Train f for one epoch by optimizing the objective function L = L1 + β1R1 + β2R2 with

X̃(0) as input.

if G is full then

Remove the first element from G
end if

X̃← f(X̃(0)), G ← G ∪ {X̃}
X̃(0) ← average all the elements of G.

until MIRACLE converges (i.e., change of X(0) is small)

return X̃∗ ← X̃(0)
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Table 3.1: Understanding the location of missingness. We predict X5 when its missingness is

caused by each variable in the DAG. ‡ and † represent MNAR and MCAR, respectively. All

other causes are MAR. The two right-most columns show the learned edge weights into X5

for the parental and non-parental variables.

X5 imputed error (RMSE) X5 edge weights (no threshold)

Cause Pa(X5) MB(X5) Baseline MIRACLE Pa non-Pa

X1 0.11 ± .06 0.15 ±.03 0.27 ± .05 0.12 ± .07 0.44 ± 0.14 0.02 ± 0.01

X2 0.98 ± .08 1.34 ± .05 1.31 ± .06 0.49 ± .06 0.64 ± 0.09 0.01 ± 0.01

X3 1.20 ± .04 1.49 ±.04 1.45 ± .09 0.50 ± .06 0.62 ± 0.13 0.02 ± 0.01

X4 0.69 ± .05 1.20 ±.07 1.23 ± .05 1.04 ± .05 0.29 ± 0.11 0.13 ± 0.05

X5‡ 1.51 ± .03 1.75 ±.08 1.76 ± .06 1.59 ± .07 0.37 ± 0.18 0.03 ± 0.02

X6 0.13 ± .08 0.17 ±.04 0.18 ± .07 0.14 ± .05 0.34 ± 0.15 0.05 ± 0.02

X7 1.04 ± .05 1.47 ±.04 1.47 ± .06 1.01 ± .06 0.39 ± 0.05 0.04 ± 0.01

X8 0.21 ± .04 0.28 ±.05 0.23 ± .03 0.20 ± .03 0.46 ± 0.10 0.02 ± 0.01

X9† 0.15 ± .03 0.18 ±.04 0.17 ± .07 0.14 ± .05 0.31 ± 0.15 0.02 ± 0.01
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on inference and training time in Figure 3.13. Computational time scales linearly with

increasing the number of input samples. As expected, we observe that the time to train 1000

samples grows exponentially with the feature size; however, the inference time remains linear.

Inference time on 1000 samples with 400 features takes approximately 1.1 seconds, while

training time takes nearly 85 seconds. Experiments were conducted on an Ubuntu 18.04 OS

using 6 Intel i7-6850K CPUs.

3.4.12 Ablation study

We provide an ablation study on our MIRACLE loss function in Eq. 3.5 to understand the

sources of gain of MIRACLE. Here we execute this experiment on our real datasets using

the same experimental details highlighted in the main manuscript. We show the results of

our ablation on MIRACLE using MissForest as baseline imputation with MAR missingness

to highlight our sources of gain in Table 3.2. Here, we observe that MIRACLE (rightmost

column) has the most gain over all datasets. Additionally, we observe that L1 +R1 +R2 has

the most gain when MIRACLE has the most performance improvement over the baseline

(see Fig. 3.15 in the manuscript).

3.4.13 Causal discovery and imputation performance

In our experiments, we observe a positive correlation between the quality of learned DAGs

(and causal parents) with imputation performance. Consider the left-most plot in Figure 3.15

using OT as a baseline imputer under MAR on our real data sets. Here, we do not have

oracle knowledge but assume that the sparseness of the learned DAG implies a coherent

DAG. We observe that MIRACLE has the most performance gain when fewer causal parents

are identified for the missing variable in the learned DAGs. When MIRACLE is less able to

isolate causal parents for prediction, the learned DAGs contains many spurious edges, and

MIRACLE only has marginal improvements over the baseline imputer. We note that the

gain of MIRACLE is not reproducible via feature selection methods, which are still prone to

the spurious correlations in the observed data, as discussed in Section 3.2.1.
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Table 3.2: Ablation study of MIRACLE on real datasets to highlight sources of gain.

Dataset R1 +R2 L1 +R2 L1 +R1 L1 +R1 +R2

abalone 0.321 ± 0.108 0.521 ± 0.199 0.312 ± 0.082 0.222 ± 0.062

autism 0.093 ± 0.005 0.094 ± 0.004 0.091 ± 0.004 0.073 ± 0.004

energy 0.106 ± 0.011 0.147 ± 0.077 0.132 ± 0.050 0.065 ± 0.061

protein 0.134 ± 0.016 0.129 ± 0.008 0.119 ± 0.010 0.080 ± 0.008

life expectancy 0.239 ± 0.007 0.223 ± 0.019 0.216 ± 0.014 0.208 ± 0.015

community 0.490 ± 0.015 0.516 ± 0.020 0.479 ± 0.023 0.463 ± 0.010

yeast 0.984 ± 0.013 0.984 ± 0.006 0.988 ± 0.004 0.950 ± 0.014

mammo masses 1.105 ± 0.010 1.150 ± 0.009 1.103 ± 0.013 1.040 ± 0.013

wine quality 0.797 ± 0.004 0.745 ± 0.013 0.724 ± 0.008 0.722 ± 0.003

facebook 1.056 ± 0.005 1.032 ± 0.044 1.034 ± 0.056 0.983 ± 0.002

3.4.14 MIRACLE Convergence

In this subsection, we investigate two dimensions of MIRACLE refinement: (1) baseline

imputation quality and (2) sample or instance-wise refinement. Regarding baseline imputation

quality, we are interested in understanding the impact of MIRACLE refinement on various

baseline imputers that may have disparate performances. In the middle plot of Figure 3.15,

we show MIRACLE applied to various baseline imputers on the Abalone dataset. Similar

plots for other datasets can be found in Figure 3.10. We observe that even though mean

imputation starts off with the worst error, after refinement by MIRACLE, we see that

all methods converge to similar RMSEs. For the second experiment, we investigate the

sample-wise improvement of MIRACLE on the abalone dataset using MissForest as a baseline

imputer. On the right-most plot of Figure 3.15, we observe that a vast majority of the

samples are improved by MIRACLE. Note that every point below the diagonal is considered

an improvement on an instance over the baseline imputation method. We can see MIRACLE
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Figure 3.15: (Left) Analysis of MIRACLE w.r.t. causal parents on real data. MIRACLE has

the most gain when we have identified a sparse set of causal parents. When many features

are identified as causal parents, imputation performance degrades. (Mid) Convergence of

MIRACLE across various baseline imputers. On the abalone dataset, we show that MIRACLE

converges to consistent RMSE regardless of baseline imputation. (Right) Sample-wise RMSE

for MIRACLE across various epochs. MIRACLE is applied to refine MissForest imputations,

demonstrating that error is reduced in a sample-wise basis. Note: anything below the diagonal,

is an improvement over the baseline imputations.

improves the imputation almost universally except for the instances with small errors in the

baseline imputation; on these instances, MIRACLE does not inflate their errors by a large

margin. Furthermore, we observe that MIRACLE iteratively improves imputation as training

progresses (over each epoch) by the observation that the slope of each line decreases with

each epoch.

3.5 Discussion

In conclusion, motivated by the minimax optimization problem (3.1) arising from interventions

on missingness indicators in the m-graph that encode the conditional independencies in the

data distribution, we proposed MIRACLE, an iterative framework to refine any baseline

missing data imputation to use the causal parents embodied in the estimated m-graphs.
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MIRACLE learns the causal m-graph as an adjacency matrix embedded in its input layers.

We proposed a two-part regularizer based on the causal graph and a moment regularizer

based on the missing variable indicators. We demonstrated that MIRACLE significantly

improved the imputations of six baseline imputation methods over a variety of synthetic

and real datasets. MIRACLE never hurts performance in the worst-case, and we envision

MIRACLE becoming a de facto standard in refining missing data imputation.

There are several limitations we would like to identify as paths for future work. First,

any violation of the assumptions in Section 3.2 may adversely impact the performance of

MIRACLE in practice. Second, causal discovery under missing data is an ongoing research

area, and therefore MIRACLE may be discovering DAGs with bias introduced from the

baseline methods. However, in experiments, MIRACLE still performs well even if it starts

with mean imputation. We expect MIRACLE to improve as causal discovery methods under

missingness improve. Third, in its current form, MIRACLE is not extensible to scenarios

where causality may not be applicable, such as computer vision. Fourth, because of the causal

discovery regularizer and network architecture, MIRACLE may have difficulty scaling to very

high dimensional data. Lastly, a more general and detailed discussion is needed between our

work and the merits of causality and robustness.
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CHAPTER 4

DECAF: Generating Fair Synthetic Data Using

Causally-Aware Generative Networks

4.1 Introduction

Generative models are optimized to approximate the original data distribution as closely as

possible. Most research focuses on three objectives [9]: fidelity, diversity, and privacy. The

first and second are concerned with how closely synthetic samples resemble real data and how

much of the real data’s distribution is covered by the new distribution, respectively. The third

objective aims to avoid simply reproducing samples from the original data, which is important

if the data contains privacy-sensitive information [158, 161]. We explore a much-less studied

concept: synthetic data fairness.

4.1.1 Motivation.

Deployed machine learning models have been shown to reflect the bias of the data on which

they are trained [142, 30, 80, 35, 65]. This has not only unfairly damaged the discriminated

individuals but also society’s trust in machine learning as a whole. A large body of work has

explored ways of detecting bias and creating fair predictors [66, 37, 181, 55, 69, 71, 171], while

other authors propose debiasing the data itself [66, 37, 181, 26]. This work’s aim is related

to the work of [160]: to generate fair synthetic data based on unfair data. Being able to

generate fair data is important because end-users creating models based on publicly available

data might be unaware they are inadvertently including bias or insufficiently knowledgeable

to remove it from their model. Furthermore, by debiasing the data prior to public release,
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one can guarantee any downstream model satisfies desired fairness requirements by assigning

the responsibility of debiasing to the data generating entities.

Goal. From a biased dataset X , we are interested in learning a model G, that is able

to generate an equivalent synthetic unbiased dataset X ′ with minimal loss of data utility.

Furthermore, a downstream model trained on the synthetic data needs to make not only

unbiased predictions on the synthetic data, but also on real-life datasets (as formalized in

Section 4.4.2).

4.1.2 Solution.

We approach fairness from a causal standpoint because it provides an intuitive perspective

on different definitions of fairness and discrimination [181, 69, 71, 100, 171]. We introduce

DEbiasing CAusal Fairness (DECAF), a generative adversarial network (GAN) that leverages

causal structure for synthesizing data. Specifically, DECAF is comprised of d generators (one

for each variable) that learn the causal conditionals observed in the data. At inference-time,

variables are synthesized topologically starting from the root nodes in the causal graph then

synthesized sequentially, terminating at the leave nodes. Because of this, DECAF can remove

bias at inference-time through targeted (biased) edge removal. As a result, various datasets

can be created for desired (or evolving) definitions of fairness.

4.1.3 Contributions.

We propose a framework of using causal knowledge for fair synthetic data generation. We make

three main contributions: i) DECAF, a causal GAN-based model for generating synthetic

data, ii) a flexible causal approach for modifying this model such that it can generate fair

data, and iii) guarantees that downstream models trained on the synthetic data will also

give fair predictions in other settings. Experimentally, we show how DECAF is compatible

with several fairness/discrimination definitions used in literature while still maintaining high

downstream utility of generated data.
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Table 4.1: Overview of related work for synthetic data. We organize related work according

to our key areas of interest: (1) Allows post-hoc distribution changes, (2) provides fairness,

(3) supports causal notion of fairness, (4) allows inference-time fairness, (5) requires minimal

assumptions. We highlight the key contribution, and identify non-neural approaches with “†”.

Model Reference (1) (2) (3) (4) (5) Goal

VAE [75] ✗ ✗ ✗ ✗ ✓ Realistic synth. data.

GANs [46, 40, 161, 158] ✗ ✗ ✗ ✗ ✓ Realistic synth. data.

PSE-DD/DR† [181] ✓ ✓ ✓ ✗ ✗ Discover/Remove bias.

OPPDP† [26] ✗ ✓ ✗ ✗ ✗ Remove bias.

DI† [37] ✗ ✓ ✗ ✗ ✗ Discover/Remove bias.

LFR [180] ✗ ✓ ✗ ✗ ✓ Learn fair representation.

FairGAN [160] ✗ ✓ ✗ ✗ ✓ Realistic and fair synth. data.

CFGAN [159] ✗ ✓ ✓ ✗ ✓ Realistic and fair synth. data.

DECAF (ours) ✓ ✓ ✓ ✓ ✓ Realistic and fair synth.-data.

4.2 Related Works

Here we focus on the related work concerned with data generation, in contrast to fairness

definitions for which we provide a detailed overview in Section 4.4 and Section 4.7. As an

overview of how data generation methods relate to one another, we refer to Table 4.1 which

presents all relevant related methods.

Non-parametric generative modeling. The standard models for synthetic data

generation are either based on VAEs [75] or GANs [46, 40, 161, 158]. While these models are

well known for their highly realistic synthetic data, they are unable to alter the synthetic

data distribution to encourage fairness (except for [160], discussed below). Furthermore,

these methods have no causal notion, which prohibits targeted interventions for synthesizing

fair data (Section 4.4). We explicitly leave out CausalGAN [72] and CausalVAE [164], which
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appear similar by incorporating causality-derived ideas but are different in both method and

aim (i.e., image generation).

Fair data generation. In the bottom section of Table 2.1, we present methods that,

in some way, alter the training data of classifiers to adhere to a notion of fairness [181, 26,

160, 159, 37, 180]. While these methods have proven successful, they lack some important

features. For example, none of the related methods allow for post-hoc changes of the

synthetic data distribution. This is an important feature, as each situation requires a different

perspective on fairness and thus requires a flexible framework for selecting protected variables.

Additionally, only [181, 160] allow a causal perspective on fairness, despite causal notions

underlying multiple interpretations of what should be considered fair [69]. Furthermore, only

[160, 159, 180] offer a flexible framework, while the others are limited to binary [181, 37]

or discrete [26] settings. Most importantly, to the best of our knowledge, we are the only

method that regards fairness in the context of downstream model fairness—i.e. a model

trained on our data should be fair when rolled out in practice. In essence, from Table 2.1

we learn that DECAF is the only method that combines all key areas of interest. At last,

we would like to mention [25], who aim to generate data that resembles a small unbiased

reference dataset, by leveraging a large but biased dataset. This is very different to our aim,

as we are interested in the downstream model’s fairness and explicit notions of fairness.

4.3 Preliminaries

Let X ∈ X ⊆ Rd denote a random variable with distribution PX(X), with protected attributes

A ∈ A ⊂ X and target variable Y ∈ Y ⊂ X , let Ŷ denote a prediction of Y . Let the data

be given by D = {x(k)}Nk=1, where each x(k) ∈ D is a realization of X. We assume the

data generating process can be represented by a directed acyclic graph (DAG)—such that

the generation of features can be written as a structural equation model (SEM) [104]—and

that this DAG is causally sufficient. Let Xi denote the ith feature in X with causal parents
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Pa(Xi) ⊂ {Xj : j ̸= i}, the SEM is given by:

Xi = fi(Pa(Xi), Zi),∀i (4.1)

where {Zi}di=1 are independent random noise variables, that is Pa(Zi) = ∅, ∀i. Note that

each fi is a deterministic function that places all randomness of the conditional P (Xi|Pa(Xi))

in the respective noise variable, Zi.

4.4 Fairness of Synthetic Data

Algorithmic fairness is a popular topic (e.g., see [22, 69]), but fair synthetic data has been

much less explored. This section highlights how the underlying graphs of the synthetic and

downstream data determine whether a model trained on the synthetic data will be fair in

practice. We start with the two most popular definitions of fairness, relating to the legal

concepts of direct and indirect discrimination. We also explore conditional fairness [76],

which is a generalization of the two. In Section 4.7 we discuss how the ideas in this section

transfer to other independence-based definitions [17]. Throughout this section, we separate

Y from X by defining X̄ = X\Y , and we will write X ← X̄ for ease of notation.

4.4.1 Algorithmic fairness

The first definition is called Fairness Through Unawareness (e.g. [44]).

Definition 2. (Fairness Through Unawareness (FTU): algorithm). A predictor f : X 7→ Ŷ

is fair iff protected attributes A are not explicitly used by f to predict Ŷ .

This definition prohibits disparate treatment [22, 179], and is related to the legal concept

of direct discrimination, i.e., two equally qualified people deserve the same job opportunity

independent of their race, gender, beliefs, among others.

Though FTU fairness is commonly used, it might result in indirect discrimination:

covariates that influence the prediction Ŷ might not be identically distributed across different
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groups a, a′, which means an algorithm might have disparate impact on a protected group

[37]. The second definition of fairness, demographic parity [179], does not allow this:

Definition 3. (Demographic Parity (DP): algorithm) A predictor Ŷ is fair iff A |= Ŷ , i.e.

∀a, a′ : P (Ŷ |A = a) = P (Ŷ |A = a′).

Evidently, DP puts stringent constraints on the algorithm, whereas FTU might be too

lenient. The third definition we include is based on the work of [76], related to unresolved

discrimination [71]. The idea is that we do not allow indirect discrimination unless it runs

through explanatory factors R ⊂ X. For example, in Simpson’s paradox [132] there seems to

be a bias between gender and college admissions, but this is only due to women applying to

more competitive courses. In this case, one would want to regard fairness conditioned on the

choice of study [71]. Let us define this as conditional fairness :

Definition 4. (Conditional Fairness (CF): algorithm) A predictor Ŷ is fair iff A |= Ŷ |R, i.e.

∀r, a, a′ : P (Ŷ |R = r, A = a) = P (Ŷ |R = r, A = a′).

CF generalizes FTU and DP Note that conditional fairness is a generalization of FTU

and DP, by setting R = X\A and R = ∅, respectively. In Section 4.7 we elaborate on the

connection between these, and more, definitions.

4.4.2 Synthetic data fairness

Algorithmic definitions can be extended to distributional fairness for synthetic data. Let

P (X), P ′(X) be probability distributions with protected attributes A ⊂ X and labels Y ⊂ X.

Let I(A, Y ) be a definition of algorithmic fairness (e.g., FTU). Note, that under CF, I(A, Y )

is a function of R as well. We propose (I(A, Y ), P )-fairness of distribution P ′(X):

Definition 5. (Distributional fairness) A probability distribution P ′(X) is (I(A, Y ), P )-fair,

iff the optimal predictor Ŷ = f ∗(X) of Y trained on P ′(X) satisfies I(A, Y ) when evaluated

on P (X).

In other words, when we train a predictor on (I(A, Y ), P )-fair distribution P ′(X), we can

only reach maximum performance if our model is fair. Note the explicit reference to P (X),
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the distribution on which fairness is evaluated, which does not need to coincide with P ′(X).

This is a small but relevant detail. For example, when training a model on data D′ ∼ P ′(X)

it could seem like the model is fair when we evaluate it on a hold-out set of the data (e.g., if

we simply remove the protected attribute from the data). However, when we use the model

for real-world predictions of data D ∼ P (X), disparate impact is possibly observed due to a

distributional shift.

By extension, we define synthetic data as (I(A, Y ), P )-fair, iff it is sampled from an

(I(A, Y ), P )-fair distribution. Defining synthetic data as fair w.r.t. an optimal predictor is

especially useful when we want to publish a dataset and do not trust end-users to consider

anything but performance.1

Choosing P(X). The setting P (X) = P ′(X) corresponds to data being fair with respect

to itself. For synthetic data generation, this setting is uninteresting as any dataset can be

made fair by randomly sampling or removing A; if A is random, the prediction should not

directly or indirectly depend on it. This ignores, however, that a downstream user might use

the trained model on a real-world dataset in which other variables B are correlated with A,

and thus their model (which is trained to use B for predicting Y ) will be biased. Of specific

interest is the setting where P (X) corresponds to the original data distribution PX(X) that

contains unfairness. In this scenario, we construct P ′(X) by learning PX(X) and removing

the unfair characteristics. The data from P ′(X) can be published online, and models trained

on this data can be deployed fairly in real-life scenarios where data follows PX(X). Unless

otherwise stated, henceforth, we assume P (X) = PX(X).

4.4.3 Graphical perspective

As reflected in the widely accepted terms direct versus indirect discrimination, it is natural to

define distributional fairness from a causal standpoint. Let G ′ and G respectively denote the

graphs underlying P ′(X) (the synthetic data distribution which we can control) and P (X)

1Finding the optimal predictor is possible if we assume the downstream user employs any universal function
approximator (e.g., MLP) and the amount of synthetic data is sufficiently large.
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Figure 4.1: Edge removal for fairness. FTU: ✗ ; DP: ✗✗✗ ; CF when R = C: ✗✗ ; CF when

B ∈ R: ✗ .

(the evaluation distribution that we cannot control). Let ∂GY denote the Markov boundary

of Y in graph G. We focus on the conditional fairness definition because it subsumes the

definition of DP and FTU (Section 4.4.1). Let R ⊂ X be the set of explanatory features.

Proposition 1. (CF: graphical condition) If for all B ∈ ∂G′Y , A |= GB|R,2 then distribution

P ′(X) is CF fair w.r.t P (X) given explanatory factors R.

Proof. Without loss of generality, let us assume the label is binary.3 The optimal predictor

f ∗(X) = P (Y |X) = P (Y |∂G′Y ). Thus, if ∂G′Y is d-separated from A in G given R, prediction

Ŷ = f ∗(X) is independent of A given R and CF holds.

Corollary 1. (CF debiasing) Any distribution P ′(X) with graph G ′ can be made CF fair

w.r.t. P (X) and explanatory features R by removing from G ′ edges Ẽ = {(B → Y ) and

(Y → B) : ∀B ∈ ∂G′Y with B ̸ |= GA|R}.

Proof. First note Ẽ is the necessary and sufficient set of edges to remove for (∀B ∈ ∂G′Y ,

A |= GB|R) to be true, subsequently the result follows from Proposition 1.

For FTU (i.e. R = X\A) and DP (i.e. R = ∅), this corollary simplifies to:

2Where |= G denotes d-separation in G. Here we define A |= GB|R to be true for all B ∈ R.

3If Y is continuous the same result holds, though the “optimal” predictor will depend on the statistic of
interest, e.g. mode, mean, median or the entire distribution f(X,Y ) ≈ P (Y |X).
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Corollary 2. (FTU debiasing) Any distribution P ′(X) with graph G ′ can be made FTU fair

w.r.t. any distribution P (X) by removing, if present, i) the edge between A and Y and ii) the

edge A→ C or Y → C for all shared children C.

Corollary 3. (DP debiasing) Any distribution P ′(X) with graph G ′ can be made DP fair

w.r.t. P (X) by removing, if present, the edge between B and Y for any B ∈ ∂G′Y with

B ̸ |= GA.

Figure 4.1 shows how the different fairness definitions lead to different sets of edges to be

removed.

Faithfulness. Usually one assumes distributions are faithful w.r.t. their respective graphs,

in which case the if-statement in Proposition 1 become equivalence statements: fairness is

only possible when the graphical conditions hold.

Theorem 2. If P (X) and P ′(X) are faithful with respect to their respective graphs G and

G ′, then Proposition 1 becomes an equivalence statement and Corollaries 1, 2 and 3 describe

the necessary and sufficient sets of edges to remove for achieving CF, FTU and DP fairness,

respectively.

Proof. Faithfulness implies A |= P (X)B|R =⇒ A |= GB|R, e.g. [106]. Thus, if ∃B ∈ ∂G′Y for

which A ̸ |= GB|R, then A ̸ |= B|R. Because B ∈ ∂G′Y and P ′(X) is faithful to G ′, Ŷ = f ∗(X)

depends on B, and thus Ŷ ̸ |= A|R: CF does not hold.

Other definitions. Some authors define similar fairness measures in terms of directed paths

(cf. d-separation) [181, 71, 100], which is a milder requirement as it allows correlation via

non-causal paths. In Section 4.7 we highlight the graphical conditions for these definitions.

4.5 Method: DECAF

The primary design goal of DECAF is to generate fair synthetic data from unfair data. We

separate DECAF into two stages. The training stage learns the causal conditionals that are
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Figure 4.2: Architecture of DECAF. Training phase— Each component in X̂ is generated

sequentially as a function (where the function is that component’s generator Gi) of the

component’s parents. Parental knowledge is provided by the DAG governing the data.

Inference phase— As the component-wise generation of the generator network is independent

of the DAG governing the data, we can easily replace (or intervene on) the DAG governing

parental information. The resulting synthetic data (right) will be governed by the intervened

DAG. FTU is achieved by removing edges marked: ✗; DP: ✗✗✗; e.g. CF when R = C: ✗✗.

observed in the data through a causally-informed GAN. At the generation (inference) stage,

we intervene on the learned conditionals via Corollaries 1-3, in such a way that the generator

creates fair data. We assume the underlying DGP’s graph G is known; otherwise, G needs to

be approximated first using any causal discovery method, see Section 4.8.

4.5.1 Training

Overview. This stage strives to learn the causal mechanisms {fi(Pa(Xi), Zi)}. Each structural

equation fi (Eq. 4.1) is modelled by a separate generator Gi : R|Pa(Xi)|+1 → R. We achieve

this by employing a conditional GAN framework with a causal generator. This process is

illustrated in Figure 4.2 and detailed below.

Features are generated sequentially following the topological ordering of the underlying

causal DAG: first root nodes are generated, then their children (from generated causal
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parents), etc. Variable X̂i is modelled by the associated generator Gi:

X̂i = Gi(P̂a(Xi), Zi) ∀i, (4.2)

where P̂a(Xi) denotes the generated causal parents of Xi (for root nodes the empty set), and

each Zi is independently sampled from P (Z) (e.g. standard Gaussian). We denote the full

sequential generator by G(Z) = [G1(Z1), ..., Gd(·, Zd)].

Subsequently, the synthetic sample x̂ is passed to a discriminator D : Rd → R, which

is trained to distinguish the generated samples from original samples. A typical minimax

objective is employed for creating generated samples that confuse the discriminator most:

max
{Gi}di=1

min
D

E[logD(G(Z)) + log(1−D(X)], (4.3)

with X sampled from the original data. We optimize the discriminator and generator

iteratively and add a regularization loss to both networks. Network parameters are updated

using gradient descent.

If we assume PX(X) is compatible with graph G, we can show that the sequential generator

has the same theoretical convergence guarantees as standard GANs [46]:

Theorem 3. (Convergence guarantee) Assuming the following three conditions hold:

(i) data generating distribution PX is Markov compatible with a known DAG G;

(ii) generator G and discriminator D have enough capacity; and

(iii) in every training step the discriminator is trained to optimality given fixed G, and G is

subsequently updated as to maximize the discriminator loss (Eq. 4.3);

then generator distribution PG converges to true data distribution PX

Proof. See Section 4.6

Condition (i), compatibility with G, is a weaker assumption than assuming perfect causal

knowledge. For example, suppose the Markov equivalence class of the true underlying DAG
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has been determined through causal discovery. In that case, any graph G in the equivalence

class is compatible with the data and can thus be used for synthetic data generation. However,

we note that debiasing can require the correct directionality for some definitions of fairness,

see Discussion.

Remark. The causal GAN we propose, DECAF, is simple and extendable to other

generative methods, e.g., VAEs. Furthermore, from the post-processing theorem [34] it

follows that DECAF can be directly used for generating private synthetic data by replacing

the standard discriminator by a differentially private discriminator [158, 64].

4.5.2 Inference-time Debiasing

The training phase yields conditional generators {Gi}di=1, which can be sequentially applied

to generate data with the same output distribution as the original data (proof in Section 4.6).

The causal model allows us to go one step further: when the original data has characteristics

that we do not want to propagate to the synthetic data (e.g., gender bias), individual

generators can be modified to remove these characteristics. Given the generator’s graph

G = (X,E), fairness is achieved by removing edges such that the fairness criteria are met,

see Section 4.4. Let Ẽ ∈ E be the set of edges to remove for satisfying the required fairness

definition. For CF, FTU and DP,4 the sets Ẽ are given by Corollaries 1, 2 and 3, respectively.

Removing an edge constitutes to what we call a “surrogate” do-operation [104] on the

conditional distribution. For example, suppose we only want to remove (i→ j). For a given

sample, Xi is generated normally (Eq. 4.2), but Xj is generated using the modified:

X̂
do(Xi)=x̃ij

j = Gj(..., Xi = x̃ij), (4.4)

where Xi = x̃ij is the surrogate parent assignment. Value X̂do(Xi)
j can be interpreted as the

counterfactual value of X̂j, had Xi been equal to x̃ij (see also [171]).

4Just like in Corollaries 1 and 3, we assume the downstream evaluation distribution is the same as the
biased training data distribution: a predictor trained on the synthetic debiased data, is required to give fair
predictions in real-life settings with distribution PX(X).
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Choosing the value of surrogate variable x̃ij requires background knowledge of the task

and bias at hand. For example, surrogate variable x̃ij can be sampled independently from

a distribution for each synthetic sample (e.g., the marginal P (Xi)), be set to a fixed value

for all samples in the synthetic data (e.g., if Xi: gender, always set x̃ij = male when

generating feature Xj: job opportunity) or be chosen as to maximize/minimize some feature

(e.g. x̃ij = argmaxx X̂
do(Xi)=x
j ). We emphasize that we do not set Xi = x̃ij in the synthetic

sample; Xi = x̃ij is only used for substitution of the removed dependence. We provide more

details in Section 4.10.

More generally, we create surrogate variables for all edges we remove, {x̃ij : (i→ j) ∈ Ẽ}.
Each sample is sequentially generated by Eq. 4.4, with a surrogate variable for each removed

incoming edge.

Remark. Multiple datasets can be created based on different definitions of fairness and/or

different downstream prediction targets. Because debiasing happens at inference-time, this

does not require retraining the model.

4.6 Convergence guarantees DECAF GAN

Assuming the correct underlying data generating DAG is known, well-known theoretical

results for GANs transfer to DECAF. We highlight the main results. The typical GAN

minimax objective (Eq. 3 paper) is optimized by iteratively updating the discriminator and

generator, with respective losses:

LD(X̂,X) = logD(X̂) + log(1−D(X)) (4.5)

LG(X̂) = − logD(X̂) (4.6)

First, we reiterate the following theorem from [46]. Let PG and PX denote generator and

original data distributions, respectively.

Theorem 4. Given fixed optimal discriminator D∗, the global minimum of the generator loss

(Eq. 4.6) is achieved if and only if PG = PX .
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Proof. Noting that we have made no changes to the GAN discriminator, we refer to Theorem

1 of [46].

Theorem 5. (Convergence guarantee) Assuming the following three conditions hold:

(i) data generating distribution PX is Markov compatible with a known DAG G = (V,E);

(ii) generator G and discriminator D have enough capacity; and

(iii) in every training step the discriminator is trained to optimality given fixed G, and G is

subsequently updated as to maximise the discriminator loss (Eq. 3 paper);

then generator distribution PG converges to true data distribution PX

Proof. This is the direct result of the construction of generator G and follows a similar

argument as Proposition 2 of [46]. Note that by the definition of compatibility of PX and

G = (V,E), we can write:

PX(X) =
∏
Xi∈V

P (Xi|{Xj : (Xj → Xi) ∈ E})

Given each Gi (see Eq. 2 paper) has enough capacity, G can thus express the full distribution

PX(X). By convexity of the loss functions and the existence of a unique global optimum

(Theorem 4), gradient descent is theoretically guaranteed to converge, PG → PX [46].

Note that for condition (i) of Theorem 5 to be valid, we do not require that graph G
equals the true underlying DAG of the data generating distribution PX ; PG is only required

to disentangle into the causal factors implied by G. This is highly beneficial, as it enables

generation of perfect synthetic data without perfect causal knowledge. For example, if the

Markov equivalence class of the true underlying DAG has been determined through causal

discovery, any graph G in the equivalence class satisfies condition (i) of Theorem 5.

Remarks The convergence guarantees do not necessarily hold in practice. First, finite

data means there there is no guarantee the algorithm converges to the true underlying data

distribution instead of, for example, the observed empirical data distribution. Second, in
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practice each generator Gi will have limited capacity and P (Xi|Pa(Xi)) might not lie in its

support. On a more positive note, these limitations are not specific for DECAF and generally

GANs have done well in the past. Additionally, our method is directly extendable to the

more stable WGAN-GP [40] and other generative models.

4.7 Compatibility different fairness definitions

Related definitions In the paper we have discussed FTU, DP and CF, which are independence-

based definitions and do not take directionality explicitly into account when defining fairness.

Some authors use similar definitions, but instead of looking at (conditional) independencies

of A and Y , they consider (blocked) directed paths from protected attribute A to Y . These

definitions are compatible with DECAF, but mean less edges need to be removed. See Table

4.2 and Figure 4.3. [181] define direct and indirect discrimination, as the “directed path”

equivalents of FTU and DP;5 respectively, there is no edge A→ Y and there is no directed

path A to Y . [171] disentangle the total effect of A on Y into direct, indirect and spurious

relations. This leads to the same definition for direct discrimination as [181], but a different

definition of indirect discrimination as it does allow for direct influence of A on Y . A very

similar definition, coined counterfactual fairness, is proposed by [69]. [71] introduce unresolved

discrimination (UD) as the path-equivalent version of conditional fairness. They define proxy

discrimination as well, which can be considered the dual of UD [71].

Incompatible definitions Some definitions are not compatible with fair synthetic data

generation because they rely on the final prediction, e.g. equality of opportunity [55] and

calibration (e.g. see [17]). As a consequence, DECAF cannot be used for these. Furthermore,

we note that all our fairness definitions are binary: a distribution is fair or unfair. In practice

some level of unfairness might be tolerated. For example, the US Supreme Court’s 80% rule

[8] essentially states that a prediction has disparate impact if for disadvantaged group A = 1

and positive outcome Ŷ = 1, P (Ŷ=1|A=1)

P (Ŷ=1|A=0)
< 0.8 [37]. Some authors (e.g. [37]) have explored

5Note: the legal definitions of direct and indirect discrimination are in fact defined as FTU and DP.
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this continuous definition, but because it requires quantification of path-specific effects work

is limited by a linearity assumption. Extending this to nonlinear path-specific effects is an

interesting direction for future work, with great relevance for real-life applications.

Table 4.2: Different definitions of fairness that are compatible with DECAF and which edges

need removal when evaluation distribution P (X) = PX(X). The first three definitions are

non-causal, the others only prohibit causal paths. A, Y, P,R denote respectively the protected

attribute, label, proxy variables and explanatory variables. Let πA→Y denote a directed path

from A to Y that ends with B → Y for some B.

Definition Edges to remove

Demographic Parity (DP) [179] B ↔ Y : ∀B ∈ BlG′(Y ) with A ̸ |= B
Conditional Fairness (CF) B ↔ Y : ∀B ∈ BlG′(Y ) with A ̸ |= B|R
Fairness through Unawareness (FTU) A↔ Y and (A→ C or Y → C : ∀C with A→ C ← Y )

No Indirect Discrim. (¬ ID) [181] B → Y if there exists πA→Y

No Proxy Discrim. (¬PD) [71] B → Y if there exists πA→Y that is blocked by P

No Unresolved Discrim. (¬UD) [71] B → Y if there exists πA→Y that is not blocked by R

No Direct Discrim. (¬ DD) [181, 171] A→ Y

4.8 Experiments

In this section, we validate the performance of DECAF for synthesizing bias-free data based

on two datasets: i) real data with existing bias and ii) real data with synthetically injected

bias. The aim of the former is to show that we can remove real, existing bias. The latter

experiment provides a ground-truth unbiased target distribution, which means we can evaluate

the quality of the synthetic dataset with respect to this ground truth. For example, when

historically biased data is first debiased, a model trained on the synthetic data will likely

create better predictions in contemporary, unbiased/less-biased settings than benchmarks

that do not debias first.
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Figure 4.3: (Left) Typical strictness of different definitions. Note that the strictness of CF,

¬ UD and ¬PD depends on the choice of explanatory variables/proxies. (Right) Example

showing different definitions and required edge removals. ¬ DD: ✗; FTU: ✗✗; ¬ ID: ✗✗; DP:

✗ ✗ ✗ ✗ . Note that for FTU, A→ X1 could have been removed instead of Y → X1.

In both experiments, the ground-truth DAG is unknown. We use causal discovery to

uncover the underlying DAG and show empirically that the performance is still good.

Benchmarks. We compare DECAF against the following benchmark generative methods:

a GAN, a Wasserstein GAN with gradient penalty (WGAN-GP) [40] and FairGAN [160].

FairGAN is the only benchmark designed to generate synthetic fair data,6 whereas GAN

and WGAN-GP only aim to match the original data’s distribution, regardless of inherent

underlying bias. For these benchmarks, fair data can be generated by naively removing the

protected variable – we refer to these methods with the PR (protected removal) suffix and

provide more experimental results and insight into PR in Section 4.9. We benchmark DECAF

debiasing in four ways: i) with no inference-time debiasing (DECAF-ND), ii) under FTU

(DECAF-FTU), iii) under CF (DECAF-CF) and iv) under DP fairness (DECAF-DP). We

provide DECAF7.

Evaluation criteria. We evaluate DECAF using the following metrics:

• Data quality is assessed using metrics of precision and recall [123, 68, 38]. Additionally,

6The works of [181, 26] are not applicable here, as these methods are constrained to discrete data.

7PyTorch Lightning source code at https://github.com/vanderschaarlab/DECAF.
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we evaluate all methods in terms of AUROC of predicting the target variable using a

downstream classifier (MLP in these experiments) trained on synthetic data.

• FTU is measured by calculating the difference between the predictions of a downstream

classifier for setting A to 1 and 0, respectively, such that |PA=0(Ŷ |X)− PA=1(Ŷ |X)|,
while keeping all other features the same. This difference measures the direct influence

of A on the prediction.

• DP is measured in terms of the Total Variation [171]: the difference between the

predictions of a downstream classifier in terms of positive to negative ratio between the

different classes of protected variable A, i.e., |P (Ŷ |A = 0)− P (Ŷ |A = 1)|.

4.8.1 Implementation details.

We instantiate the generator of DECAF with d sub-networks with shared hidden layers. Both

the generator and discriminator are constructed having 2 hidden layers with 2d neurons

and initialized with random uniform weights. Each benchmark is initialized with the same

random weights and published hyperparameters. For preprocessing, all continuous variables

are standardized. We use the Adam optimizer with a learning rate of 0.001 for up to 50

epochs. We update the generator once for every 10 discriminator updates. We implement

DECAF using PyTorch Lightning8.

Computational hardware. All models were trained on an Ubuntu 18.04 OS with 64GB

of RAM (Intel Core i7-6850K CPU @ 3.60GHz) and 2 NVidia 1080 Ti GPUs.

Scalability Due to the sequential feature generation, DECAF’s run time scales linearly

with the number of variables. In practice—for the larger Communities and Crime dataset—

this comes down to an average training time of just about 35s per epoch when run on a

machine with hexacore Intel i7-6850K CPU. Practical improvements can be made to speed

this up further: when the graph is sparse one can parallelize calculations and often one can

8Source code is available at https://github.com/vanderschaarlab/DECAF
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cluster (some) variables and model clusters together using a single generator network.

Generating discrete variables In both datasets the only non-binary discrete variable

is the protected attribute, which for simplicity we have binarised (discriminated vs non-

discriminated). All variables are generated in the same way, but binary variables are rounded

off after generation.

Table 4.3: Overview datasets

Credit Census Communities

Number of features 15 10 128

- Continuous 3 4 120

- Discrete 12 6 8

Target type Binary Binary Binary

Number of samples 379 32,561 1994

Number of discovered edges 40 22 1288

4.8.2 Debiasing Census Data

In this experiment, we are given a biased dataset D ∼ P (X) and wish to create a synthetic

(and debiased) dataset D′, with which a downstream classifier can be trained and subsequently

be rolled out in a setting with distribution P (X). We experiment on the Adult dataset

[31], with known bias between gender and income [37, 181]. The Adult dataset contains

over 65,000 samples and has 11 attributes, such as age, education, gender, income, among

others. Following [181], we treat gender as the protected variable and use income as the

binary target variable representing whether a person earns over $50K or not. For DAG G, we

use the graph discovered and presented by [181].

DECAF supports both FTU and DP debiasing, i.e. respectively direct and indirect

discrimination removal. We use the DAG from [37, 181] as shown in Figure 4.4. FTU is
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Table 4.4: Bias removal experiment on the Adult dataset [31].

Data Quality Fairness

Method Precision↑ Recall↑ AUROC↑ FTU↓ DP↓

Original data D 0.920± 0.006 0.936± 0.008 0.807± 0.004 0.116± 0.028 0.180± 0.010

GAN 0.607± 0.080 0.439± 0.037 0.567± 0.132 0.023± 0.010 0.089± 0.008

WGAN-GP 0.683± 0.015 0.914± 0.005 0.798± 0.009 0.120± 0.014 0.189± 0.024

FairGAN 0.681± 0.023 0.814± 0.079 0.766± 0.029 0.009± 0.002 0.097± 0.018

DECAF-ND 0.780± 0.023 0.920± 0.045 0.781± 0.007 0.152± 0.013 0.198± 0.013

DECAF-FTU 0.763± 0.033 0.925± 0.040 0.765± 0.010 0.004± 0.004 0.054± 0.005

DECAF-CF 0.743± 0.022 0.875± 0.038 0.769± 0.004 0.003± 0.006 0.039± 0.011

DECAF-DP 0.781± 0.018 0.881± 0.050 0.672± 0.014 0.001± 0.002 0.001± 0.001

achieved by removing the directed edge between between sex and income (see Corollary

3), DP is achieved by removing9 all incoming edges into the target variable that have the

protected variable as an ancestor (Corollary 2)- these include edges between the target variable

income and each of occupation, hours_per_week, occupation, workclass, education,

relationship, marital_status, and sex. DP fairness is overly strict, so to satisfy CF

fairness, we allow the variables occupation, hours_per_week, workclass, and education

while removing the edges from sex, marital_status, and relationship.

We generate synthetic data from the ground truth dataset using each benchmark generator.

We randomly hold out a sample of 2000 samples as a test set. We train an MLP using default

scikit-learn hyperparameters on the generated dataset to use as our downstream classifier.

We use a hidden layer with 100 neurons and ReLU activation functions. For the output layer

we use a softmax activation and binary cross entropy loss. We use Adam as the optimizer

with a learning rate of 0.001.

We repeat this experiment 10 times for each benchmark method and report the average

in Table 4.4. As shown, DECAF-ND (no debiasing) performs amongst the best methods in

9Specifically, we focus on the scenario of P (X) being the original biased data distribution; we want a
model trained on synthetic data D ∼ P ′(X) to be DP-fair when evaluated on P (X), see remark Section 4.2.
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Figure 4.4: Adult dataset DAG from [37, 181]. The target variable is in green, the protected

attribute in purple, and the allowed CF variables in blue. FTU is achieved by removing: ✗;

DP: ✗ ✗ ✗ ; CF: ✗ ✗ . In this particular instance, we follow [160], and remove gender

discrimination. However, our method generalizes to removing the highly problematic variable

race to income.

terms of data utility. Because the data utility in this experiment is measured with respect

to the original (biased) dataset, we see that the methods DECAF-FTU, DECAF-CF, and

DECAF-DP score lower than DECAF-ND because these methods distort the distribution –

with DECAF-DP distorting the label’s conditional distribution most and thus scoring worst

in terms of AUROC. Note also that a downstream user who is only focused on performance

would choose the synthetic data from WGAN-GP or DECAF-ND, which are also the most

biased methods. Thus, we see that there is a trade-off between fairness and data utility when

the evaluation distribution P (X) is the original biased data.

4.8.3 Fair Credit Approval

In this experiment, direct bias, which was not previously present, is synthetically injected

into a dataset D resulting in a biased dataset D̃. We show how DECAF can remove the

injected bias, resulting in dataset D′ that can be used to train a downstream classifier. This

is a relevant scenario if the training data D̃ does not follow real-world distribution P (X),

85



but instead a biased distribution P̃ (X) (due to, e.g., historical bias). In this case, we want

downstream models trained on synthetic data D′ to perform well on the real-world data D
instead of D̃. We show that DECAF is successful at removing the bias and how this results

in higher data utility than benchmarks methods trained on D̃.

We use the Credit Approval dataset from [31], with graph G as discovered by the causal

discovery algorithm FGES [112] using Tetrad [48]. We inject direct bias by decreasing the

probability that a sample will have their credit approved based on the chosen A.10 The

credit_approval for this population was synthetically denied (set to 0) with some bias

probability β, adding a directed edge between label and protected attribute.

In Figure 4.6, we show the results of running our experiment 10 times over various bias

probabilities β. We benchmark against FairGAN, as it is the only benchmark designed for

synthetic debiased data. Note that in this case, the causal DAG has only one indirect biased

edge between the protected variable (see Figure 4.5), and thus DECAF-DP and DECAF-CF

remove the same edges and are the same for this experiment. The plots show that DECAF-

FTU and DECAF-DP have similar performance to FairGAN in terms of debiasing; however,

all of the DECAF-* methods have significantly better data quality metrics: precision, recall,

and AUROC. DECAF-DP is one of the best performers across all 5 of the evaluation metrics

and has better DP performance under higher bias. As expected, DECAF-ND (no debiasing)

has the same data quality performance in terms of precision and recall as DECAF-FTU and

DECAF-DP and has diminishing performance in terms of downstream AUROC, FTU, and

DP as bias strength increases.

In Table 4.5, we show the results of running this experiment 10 times over our biased

dataset. Note that our method was able to generate synthetic examples that had the highest

AUROC (demonstrating FTU fairness). Table 4.5 shows that our method can perform

debiasing without performance hits to the synthetic data metrics – i.e., there are no significant

difference (outside of a standard deviation) between the top methods.

10We let A equal (anonymized) ethnicity [2, 3, 33, 81], with randomly chosen A = 4 as the disadvantaged
population.
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Figure 4.5: Credit Approval DAG discovered using FGES [112] and Tetrad [48]. The target

variable is in green, the protected attribute in purple, and the allowed CF variables in blue.

FTU is achieved by removing: ✗; DP: ✗✗✗; CF: ✗✗. Also, note that in this case CF fairness

and DP fairness are the same.

4.9 Protected variable removal

A trivial method for satisfying FTU fairness, is to remove the protected attribute from

downstream learners. We first provide a motivating example explaining why this is sub-

optimal. We then follow this with an experiment on the Adult dataset.

4.9.1 Example

Defining fairness is task and data dependent. For example, let us assume two datasets

are generated by the graphical models in Figure 4.7. Data generated by the top graph is

considered fair: Education affects past experience (Resume), which together affect future

job prospects (Job). The bottom graph is a historical example of unfairness: even if there

would be no bias between Loan and Race, redlining (i.e. the practice of refusing a loan

to people living in certain areas) would discriminate indirectly based on race [2, 3, 33, 81].

Human knowledge is thus essential for defining fairness correctly, and making sure (e.g.,
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Figure 4.6: Plot of precision (a), recall (b), AUROC (c), FTU (d), and DP (e) over bias

strength β. FairGAN performs similarly in terms of DP and FTU, but DECAF-FTU and

DECAF-DP have significantly better data quality as well as down stream prediction capability

(AUROC).

Figure 4.7: Human knowledge is essential for defining fairness.
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Table 4.5: Bias removal experiment on Credit Approval dataset. Here we train an MLP

on the listed dataset, and report the testing AUROC for credit approval prediction on the

ground truth (GT) dataset for the biased population. Methods denoted *-PR represent

modifications to the dataset by dropping the protected variable (PR). Note that there the

FTU is zero for *-PR methods since the protected variable, P, has been removed.

Data Quality Fairness

Method Precision↑ Recall↑ AUROC↑ DP↓ FTU↓

GAN 0.921± 0.036 0.335± 0.029 0.743± 0.047 0.405± 0.077 0.194± 0.058

WGAN 0.970± 0.007 0.804± 0.057 0.698± 0.009 0.520± 0.036 0.461± 0.029

ADSGAN 0.963± 0.009 0.841± 0.052 0.708± 0.009 0.506± 0.013 0.429± 0.059

GAN-PR 0.794± 0.117 0.368± 0.080 0.727± 0.047 0.203± 0.196 0.0± 0.0

WGAN-PR 0.941± 0.004 0.880± 0.017 0.814± 0.019 0.406± 0.022 0.0± 0.0

ADSGAN-PR 0.945± 0.008 0.880± 0.019 0.827± 0.008 0.413± 0.029 0.0± 0.0

FairGAN 0.951± 0.012 0.663± 0.046 0.680± 0.008 0.510± 0.075 0.474± 0.054

DECAF 0.954± 0.012 0.601± 0.015 0.713± 0.045 0.511± 0.130 0.432± 0.127

DECAF-FTU 0.936± 0.017 0.901± 0.034 0.877± 0.009 0.099± 0.065 0.014± 0.012

DECAF-DP 0.940± 0.007 0.922± 0.024 0.875± 0.010 0.011± 0.029 0.015± 0.017

historical) bias is not propagated by the models we deploy. This example also shows why

simply removing or not measuring a sensitive attribute does not suffice: not only does this

ignore indirect bias, but hiding the protected attribute leads to an (additional) correlation

between Postcode and Loan due to confounding. A smart debiasing method is required that

can distinguish fair from unfair relations.

4.9.2 Experiment

As explained in the previous example, simply removing the protected attribute is a naive and

sub-optimal solution to FTU fairness due to confounding. Let us test this experimentally. We

use the same experimental setup described in Section 6 for the Adult dataset, but we include
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additional metrics for protected attribute removal. We denote protected attribute removal by

the *-PR suffix. In Table 4.6, we observe that naively removing the protected attribute only

ensures FTU fairness, as shown by: GAN-PR, WGAN-GP-PR, and DECAF-PR. Furthermore,

we observe that synthetic data quality diminishes as well for WGAN-GP-PR and DECAF-PR

across precision, recall, and AUROC. For GAN-PR we see a slight improvement in data

quality over GAN, however this improvement is very minimal in comparison to DECAF.

Table 4.6: Full table of bias removal experiment on Adult dataset [31] including protected

removal (PR) metrics. For methods *-PR, we remove the protected attribute from the dataset

before synthesizing data. ‡Note that the FTU values for the *-PR values will be zero since

they are removed from the data generation method.

Data Quality Fairness

Method Precision↑ Recall↑ AUROC↑ FTU↓ DP↓

Original data D 0.920± 0.006 0.936± 0.008 0.807± 0.004 0.116± 0.028 0.180± 0.010

GAN 0.607± 0.080 0.439± 0.037 0.567± 0.132 0.023± 0.010 0.089± 0.008

WGAN-GP 0.683± 0.015 0.914± 0.005 0.798± 0.009 0.120± 0.014 0.189± 0.024

FairGAN 0.681± 0.023 0.814± 0.079 0.766± 0.029 0.009± 0.002 0.097± 0.018

GAN-PR 0.632± 0.077 0.509± 0.110 0.612± 0.106 ‡0.0± 0.0 0.120± 0.012

WGAN-GP-PR 0.640± 0.019 0.848± 0.028 0.739± 0.034 ‡0.0± 0.0 0.078± 0.014

DECAF-PR 0.717± 0.021 0.839± 0.033 0.769± 0.020 ‡0.0± 0.0 0.044± 0.013

DECAF-ND 0.780± 0.023 0.920± 0.045 0.781± 0.007 0.152± 0.013 0.198± 0.013

DECAF-FTU 0.763± 0.033 0.925± 0.040 0.765± 0.010 0.004± 0.004 0.054± 0.005

DECAF-CF 0.743± 0.022 0.875± 0.038 0.769± 0.004 0.003± 0.006 0.039± 0.011

DECAF-DP 0.781± 0.018 0.881± 0.050 0.672± 0.014 0.001± 0.002 0.001± 0.001

4.10 Surrogate variables

Debiasing in DECAF relies on removing edges from a trained model. As highlighted in

Section 5.2, we need surrogate variables with which to replace the removed edges (Eq. 4
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paper). In this section, we compare two surrogate variable mechanisms. The aim is show

i) that debiasing is successful independent of the choice of surrogate variables, and ii) how

prior knowledge helps in choosing surrogate variable mechanism, which leads to better data

quality.

Mechanisms Let X̃ij denote the surrogate variable used for the removed edge (i→ j),

i.e. the surrogate variable that replaces the influence of Xi on Xj. Here, we compare two

surrogate mechanisms for this setting:

1. X̃ij ∼ P (Xi), i.e. we sample from the parent’s marginal distribution,

2. X̃ij = x̃ij, where x̃ij is a fixed value.

Mechanism 1 is straightforward and most applicable when one does not know anything

about the bias of a particular edge. By sampling from the marginal, each sample might use a

different value of X̃ij when generating feature Xj , which means the diversity of the generated

Xj is retained better compared to mechanism 2. Mechanism 1 for all experiments in Section

6.

On the other hand, mechanism 2 is more suitable when we know explicitly that there is

bias for some values of Xi, e.g. if Xi is the protected attribute we might know there is a

group A = 0 that is being discriminated. In this case, sampling X̃ij from the marginal of

A is not desired: even though this means we remove direct bias from A to Y , it still means

we disadvantage some individuals randomly, i.e. every time we sample x̃ij = 0. We can

employ the second mechanism instead, i.e. set x̃ij = 1 for all individuals. This corresponds

to treating everyone like they are from the advantaged group.

We repeat the experiment from Section 6.2, in which we insert direct bias from A to

Y by denying loans for a disadvantaged group A = 0 with probability β. Our aim is to

remove the direct bias from A to Y and we evaluate the synthetic data quality and bias

with respect to the original, unbiased dataset. As we will see, in this setting mechanism 2

is more appropriate: we want to treat everyone from group A = 0 like they are from group

A = 1, thereby removing the bias we inserted. Meanwhile, we do not want to change the way
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we generate data for the advantaged group. More specifically, even though it would not be

considered discrimination against a protected group, randomly denying loans to individuals

of any group should still be considered unfair.

In Figure 4.8 we plot the quality metrics and FTU for three generation methods: DECAF-

ND (no debiasing), DECAF-FTU1 (DECAF-FTU with surrogate mechanism 1) and DECAF-

FTU2 (DECAF-FTU with mechanism 2). We plot three columns; on the left we plot

the metrics for all generated data, in the middle we plot the metrics as computed on the

discriminated group and on the right for the non-discriminated group.

As we can see in the FTU plots (bottom), both debiasing mechanisms are equally valid

for removing the injected bias from A to Y . However, the precision metric tells a different

story. Mechanism 1 disadvantages individuals randomly whenever it samples x̃ij = 0, but

this is not in line with what we want the data to be like (no disadvantage like this at all). As

a result, we see that the quality of both the discriminated group goes down. The same result

can be observed in the recall and AUROC plot, though the overlapping error bars prohibit

strong conclusions.

In a nutshell, these results indicate that for different mechanisms for surrogate variables,

data fairness is guaranteed. However, knowledge about the origins of the bias can help

increase the data utility.

4.11 DAG Sensitivity

In this section, we investigate DECAF under imperfect knowledge. Here, we are curious

to understand what happens when our causal knowledge has: 1) has missing edges, 2)

has spurious edges, i.e., edges that we assumed falsely, and 3) edges that are reversed in

directionality.

We perform this experiment on the credit approval dataset [31], with the known DAG used

in the manuscript. Using an identical experimental setup as described in Section 6.2 and a bias

of β = 0.8, we run our experiment 10 times each under random DAG perturbations. Starting
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with the baseline DAG used in our credit approval experiment, we perform a sensitivity

analysis to the following DAG perturbations:

• Edge removal is done by randomly edges from the baseline DAG.

• Edge addition is done by randomly adding edges that are constrained by the following

two criteria: 1) it does not create any cycles, and 2) it does not create any new indirect

bias measures. For the second condition, we ensure this by asserting that an edge is not

added between the protected attribute ethnicity and an ancestor of approved. We

do this to ensure that the indirect bias is held consistent across each DAG instantiation

and experimental run.

• Edge reversal is done by randomly reversing edges in the baseline DAG while preserving

acyclicity.

Results for this experiment are shown in Figure 4.9. As expected, we see that edge

removal degrades synthetic data quality (precision, recall, and AUROC) as the number of

edges removed increases; this is not the case for adding and reversing edges – where stable

synthetic data quality is preserved. In terms of debiasing, we see that DECAF-FTU and

DECAF-ND is still able to debias consistently across all DAG perturbations.

4.12 Discussion

We have proposed DECAF, a causally-aware GAN that generates fair synthetic data. DE-

CAF’s sequential generation provides a natural way of removing these edges, with the

advantage that the conditional generation of other features is left unaltered. We demon-

strated on real datasets that the DECAF framework is both versatile and compatible with

several popular definitions of fairness. Lastly, we provided theoretical guarantees on the

generator’s convergence and fairness of downstream models. We next discuss limitations as

well as applications and opportunities for future work.

Definitions. DECAF achieves fairness by removing edges between features, as we have
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shown for the popular FTU and DP definitions. Other independence-based [17] fairness

definitions can be achieved by DECAF too, as we show in Section 4.7. Just like related

debiasing works [37, 26, 181, 160], DECAF is not compatible with fairness definitions based

on separation or sufficiency [17], as these definitions depend on the downstream model more

explicitly (e.g. Equality of Opportunity [55]).

Incorrect DAG specification. Our method relies on the provision of causal structure

in the form of a DAG for i) deciding the sequential order of feature generation and ii) deciding

which edges to remove to achieve fairness. This graph need not be known a priori and can be

discovered instead. If discovered, the DAG needs not equal the true DAG for many definitions

of fairness, including FTU and DP, but only some (in)dependence statements are required

to be correct (see Proposition 1). This is shown in the Experiments, where the DAG was

discovered with the PC algorithm [129] and TETRAD [48]. Furthermore, in Section 4.6 we

prove that the causal generator converges to the right distribution for any graph that is

Markov compatible with the data. We reiterate, however, that knowing (part of) the true

graph is still helpful because i) it often leads to simpler functions {fi}di=1 to approximate,11

and ii) some causal fairness definitions do require correct directionality—see Section 4.7.

Causal sufficiency. We have focused on just one type of graph: causally-sufficient

directed graphs. Extending this to undirected or mixed graphs is possible as long as the

generation order reflects a valid factorization of the observed distribution. This includes

settings with hidden confounders. We note that for some definitions of bias, e.g., counterfactual

bias, directionality is essential and hidden confounders would need to be corrected for (which

is not generally possible).

Time-series. We have focused on the tabular domain. The method can be extended

to other domains with causal interaction between features, e.g., time-series. Application

to image data is non-trivial, partly because, in this instance, the protected attribute (e.g.,

skin color) does not correspond to a single observed feature. DECAF might be extended to

11Specifically, this is the case if modeling the causal direction is simpler than modeling the anti-causal
direction. For many classes of models this is true when algorithmic independence holds, see [106].
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this setting in the future by first constructing a graph in a disentangled latent space (e.g.,

[72, 164]).

Social implications. Fairness is task and context-dependent, requiring careful public

debate. With that being said, DECAF empowers data issuers to take responsibility for

downstream model fairness. We hope that this progresses the ubiquity of fairness in machine

learning.
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Figure 4.8: Plot of precision, recall, AUROC, and FTU over various bias strengths for (a)

both populations (discriminated and non-discriminated), (b) discriminated population, and

(c) non-discriminated population.
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Figure 4.9: Plot of precision, recall, AUROC, FTU, and DP over (a) edge removal, (b) edge

addition, and (c) edge reversal on the credit approval dataset.
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CHAPTER 5

Exploiting Causal Structure for Robust Model Selection in

Unsupervised Domain Adaptation

5.1 Introduction

There are a growing number of healthcare practitioners seeking means of leveraging machine

learning in practice. However, a critical impediment to this arises when deploying a model on

a testing domain with covariate distributions that differ from the training distribution, i.e.,

there is covariate shift [130]. Prior works have shown predicting under covariate shift may

lead to unexpected behavior in the target domain [102]. This is further exacerbated by the

fact that it is often the case that labels do not exist in the target domain, and transfer learning

methods, such as unsupervised domain adaptation (UDA), must be performed. For example,

in our experimental section, we demonstrate how during a global pandemic (COVID-19), we

can transfer models from regions already afflicted by the outbreak to benefit other regions

that are in the early stages of spread and still have time to respond appropriately.

There exist a number of approaches for UDA that include deep neural networks [141],

generative models [122], adversarial learning [49, 144], distribution matching [86] and similarity

learning [105] among others. Despite a large number of available models or approaches, there

exist very few methods for UDA model selection, where the goal is to select the models

that generalize best to target domains. These methods include [79] and [169], which base

their model selection on domain risk estimates that leverage weighted discrepancies between

the density ratios calculated from the input covariates in the target and source domains.

Regardless, these methods base their estimates of target domain risk on only model predictions
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in the source domain, assuming that the extrapolated behavior for each model will be identical

in the target domain.

In contrast to these methods, in this paper, we introduce a method that calculates a score

based on model predictions on the target domain without labels. To enable this, we exploit the

notion that causality is a property of the physical world, and therefore the true causal graph

representing the underlying data generating process (DGP) is invariant across domains. This

assumption of strong generalizability for domain adaptation has been exploited by many,

including [20, 178, 103, 87, 111] to name a few. Our method exploits graphical structure that

can either be discovered from observational data via causal discovery algorithms [52] or may

be known ahead of time through other more traditional means, such as experimentation and

randomized trials [129, 104].

■ Contributions. Our primary contribution is to provide a new selection criterion that

leverages causal knowledge, in the form of a causal graph, to improve model selection for

UDA. The main idea is to select models whose predictions from a set of variables least violate

the known causal relationships captured in the structure of the causal graph representing

the underlying DGP. In doing so, our method diverges from existing UDA approaches and is

uniquely able to leverage predictions on the target domain in the absence of labels. We propose

a proof-of-concept implementation of our approach and show that our method can identify

and select the models that better generalize to test domains where covariate distributions

differ. We provide a thorough analysis of our data on oracle causal structure using synthetic

data. We demonstrate on several real-world healthcare domain transfer problems, including

COVID-19, that our selection method outperforms the state-of-the-art.

5.2 Related Works

5.2.1 UDA Model Selection

There exists a plethora of research addressing domain adaptation, a sub-task in the field

of transfer learning. For a general overview, we refer to [110]. Our work focuses only on
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Table 5.1: Related UDA selection methods. Target Domain is checked if method expoloits

model predictions in the target domain.

Method Domain adaptation Unsup. Selection Leverages Causality Target Domain

Source Risk ✗ ✓ ✗ ✗

TrCV [175] ✓ ✗ ✗ ✗

IWCV [79] ✓ ✓ ✗ ✗

DEV [169] ✓ ✓ ✗ ✗

Proposed ✓ ✓ ✓ ✓

Table 5.2: Overview of related causal domain transfer methods. General ML is checked if

the method applies to general machine learning (rather than just SCMs). Partial DAGs is

checked if the method applies to methods with partial graphs (incomplete causal DAGs).

Intervention agnostic is checked when the method is agnostic to the intervention/perturbation

location in the DAG. Non-linear is checked if the method does not make any assumptions on

linearity of underlying functional connections. Model selection is checked when the method

can be used for model selection.

Method General ML Partial DAGs Interv. Agnostic Non-linear Model Selection

[20] ✗ ✗ ✗ ✓ ✗

[176] ✓ ✗ ✗ ✓ ✗

[111] ✓ ✓ ✗ ✗ ✗

[87] ✓ ✓ ✓ ✗ ✗

CAM ✓ ✓ ✓ ✓ ✓
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UDA methods. [49] used a measure of source (training) risk; however, source risk is a poor

estimator of target risk when target domains differ significantly in terms of covariate shift

[169]. [175] proposed Transfer Cross-Validation (TrCV) by considering both marginal and

conditional distributions in target domains but is a supervised method that requires labeled

data in the test domains. [79] used an algorithm called Importance-Weighted Cross-Validation

(IWCV), first proposed by [136], to select hyperparameters and models for domain adaptation

under covariate shift. Deep Embedded Validation (DEV) was later proposed by [169] as a

model selection method for UDA that provided an unbiased estimation of the target risk

with bounded variance. DEV built on IWCV by learning the target distribution density

ratio using neural networks. These methods do not leverage the predictions of the candidate

model on the unlabeled target domain. Leveraging just a few model predictions in the target

domain can significantly improve transfer performance, as shown by semi-supervised works,

such as [137] and [146]. We provide a summary of related works in Table 5.1. We propose a

metric that calculates a score based on model predictions on a target domain in the absence

of labels by exploiting the domain invariance of causality.

5.2.2 Causality for Domain Adaptation

Structural causal models (SCM) have been applied to domain invariance or adaptation by

leveraging the invariance of the causal graph that describes the underlying DGP and has

origins as early as [129] or perhaps even earlier. [20] provides a theory for identifiability

under transportability, assuming that a causal graph and the intervention targets are known.

[178, 176] assume perfect interventions with known targets and expand the methods to more

than SCMs. [87] and [111] attempt to identify some subset of covariates that will lead to

the most domain transferable predictions. However, [87] points out that such an invariant

set may not exist, or their algorithm may not converge on such a set. In this work, we are

not interested in feature selection, building causal models, or causal discovery; instead, we

propose a method for selecting the model that will result in the lowest error in the test domain.

Table 5.2 provides an overview of related causal domain transfer methods that attempt to
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leverage causality for domain transfer and strong generalizability. This table highlights the

differences in approaches and the beneficial coverage of our proposed method. To the best of

our knowledge, our method is the first causal-based method for model selection.

5.3 Causal Preliminaries

We base our notation on the framework of [104]. A causal structure of a set of variables V is

a directed acyclic graph (DAG) in which each vertex corresponds to a distinct element in V ,

and each link represents direct functional relationships between the corresponding variables.

An SCM is a pair ⟨G,ΘG⟩ consisting of a causal structure, G, and a set of parameters ΘG

compatible with G. The parameters, ΘG, assign a function vi = πi(pai, ui) to each vi ∈ V ,

where pai represents the parents (direct causes) of vi in G and where each ui is some i.i.d

disturbance according to P (ui).

Our primary assumption, which we will refer to as causal invariance, is:

Assumption 7 (Causal invariance). Let G be a causal DAG representing variables V , E be

a set of environments or domains, P (V, e) be the corresponding distribution on V in e, and

I(P (V, e)) denote the set of all conditional independence relationships embodied in P (V, e)

for a domain e ∈ E, then ∀ei, ej ∈ E, I(P (V, ei)) = I(P (V, ej)).

Assumption 7 states that the the conditional independence relationships between variables

and therefore DAG structure are invariant across domains. Similar assumptions have been

made in other works [87, 111, 103, 120, 39]. We assume that the causal model M and the

graph G satisfy the Markov and faithfulness conditions [104], meaning that any conditional

independencies in the joint distribution of P (V ) are indicated by d-separation in G and

vice-versa. In this work, we do not assume that the domain shift is attributed to interventional

mechanisms but rather due to deviations in noise terms.
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5.4 Exploiting Causality for Model Selection

In this section, we formalize our problem of model selection for UDA, present limitations

of existing UDA methods, introduce definitions and theory for causal model selection, and

detail our proposed methodology.

5.4.1 UDA Model Selection

In this section, we formalize the UDA model selection problem. Let E be a set of environments

or domains, where e ∈ E is a binary variable that has the value of 0 and 1 when from the

source or target domain, respectively. We are particularly interested in predicting a target

variable Y (with realization y) from a random variable of input features X (with realization

x), which take their values in a label space Y and feature space X , respectively. The source

training domain may differ from the target test domain, such that P (X, e = 0) ̸= P (X, e = 1),

but we assume that covariate shift holds, such that P (Y | X, e = 0) = P (Y | X, e = 1) [14].

Given a finite set of candidate machine learning modelsM : X → Y that use input features

X to predict a target label Y , the goal in UDA model selection is to find the model m̃ having

the smallest expected test error in the target test domain (e = 1) given by

m̃ = argmin
m∈M

Ex∼P (x,e=1)ℓ(m(x), y), (5.1)

where ℓ(·, ·) is the desired testing loss function. Note that our goal here is not to down-select

features as done in [87, 111], and we train our models using all features X.

In UDA access to the target labels, Y are not available in the target domain, and only

the features X are known ahead of time. Therefore, training each m ∈M using supervised

learning leverages only labeled samples from the source training domain. Specifically, the

source training dataset is defined as Dsrc = {(xsrc
i , ysrci )}nsrc

i=1 , where nsrc is the number of

source samples. Dsrc can be further partitioned into a training and validation dataset Dtrain =

{(xtrain
i , ytraini )}ntrain

i=1 and Dval = {(xval
i , yvali )}nval

i=1 , respectively, where Dtrain ∩ Dval = ∅. The

target testing set is Dtest = {xtest
i }n

test

i=1 , where ntest is the number of test samples. For clarity,

throughout this paper we denote Ŷ as m(X), and our target domain is always Dtest.
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Figure 5.1: Schematic for calculating CAM c. We compare the fitness of D′
test to the invariant

causal DAG structure. D′
test is generated by augmenting Dtest by using m(Xtest) in place of

Y (which does not exist in the target domain). Black arrows show the existing pathways for

estimating target risk [169, 79, 136], which are unable to leverage target domain predictions.

We use the causal graph to restrict our model selection. Blue arrows denote pathways unique

to CAM.

5.4.2 Leveraging Predictions on the Target Domain

In this section, consider the proposed schematic in Fig. 5.1. We present the limitations of

existing UDA methods (IWCV and DEV), which do not factor in the predictions of m(X) on

the target domain Dtest. IWCV and DEV are similar methods for approximating the target

risk of m, and use the same underlying density function ρ. The density ratio or importance

weighting is described by [169] as ρm(X) = p(e=1|X)
p(e=0|X)

nsrc

ntest , where the first term p(e=1|X)
p(e=0|X)

can be

estimated by a discriminative model trained to determine the domain (source or target) of a

sample. Both methods for model selection are variants based on the same underlying metric

function ψ = 1
nsrc

∑nsrc

i=1 ρm(x
src
i )ℓ(m(xsrc

i ), ysrci ), which does not factor in any predictions of

m in the target domain. If we had access to labeled samples in Dtest, we could accurately
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calculate the target risk as 1
ntest

∑ntest

i=1 ℓ(m(xtest
i ), ytesti ). However, this is not the case in UDA,

and we use the predictions of m(X) as a proxy for variable Y when comparing fitness to

graphical structure in the target domain.

5.4.3 Causal Assurance Metric

In this section, we discuss our metric for UDA model selection. Based on our assumption of

causal invariance, we provide a theorem of causal preservation as follows:

Theorem 6 (Causal preservation). Let P (X, Y, e = 0) be a source distribution with causal

graph structure G. If m ∈M is a perfect discriminative model, such that Y = m(X), then

IG(G) = I(P (X,m(X), e = 1)), (5.2)

where IG(G) and I(P (X,m(X), e = 1)) returns all the conditional independence relationships

in G and P (X,m(X), e = 1), respectively.

Proof. By the Markov and faithfullness assumptions, the conditional independencies in G

are the same in P , such that

IG(G) = I(P (X, Y, e = 0)). (5.3)

Since the goal of a perfect discriminative model m is to model a conditional distribution

P (Y |X), so that Y = m(X), it follows that

I(P (X, Y, e = 0)) = I(P (X,m(X), e = 0)). (5.4)

By our assumption of causal invariance from Assumption 1, we have

I(P (X,m(X), e = 0)) = I(P (X,m(X), e = 1)), (5.5)

such that we obtain

IG(G) = I(P (X,m(X), e = 1)). (5.6)
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Theorem 6 allows us to replace Y by m(X) in the target domain. The intuition behind

Theorem 1 is based on the simple notion that a machine learning model should ideally issue

predictions in any domain that preserve the conditional independencies of the true underlying

causal structure.

Theorem 6 provides an equality that allows bridging the domain gap, such that the

conditional independencies in the source domain, IG(G), equal the conditional independencies

of X and m(X) in the target domain, without the need for any labels Y . In other words,

Theorem 6 implies that we desire selecting models that allow us to replace Y with m(X) in

the target domain and the conditional independencies IG(G) remain unchanged. We will

later show experimentally that our method also works using subgraphs.

We can constrain our formalization in Eq. 5.1 with Theorem 6 to present an improved

causal-based model selection objective in the following definition of causal assurance:

Definition 6 (Causal assurance). Given an invariant DAG structure G for the variables X

and Y , a finite set of modelsM, and data from a source domain (e = 0) and a target domain

(e = 1). We say that a machine learning model m̂ ∈M is causally assured if and only if:

m̂ =argmin
m∈M

Ex∼P (x,e=1)ℓ(m(x), y)

s.t. IG(G) =I(P (X,m(X), e = 1)).
(5.7)

By the Markov and faithfulness assumptions, the constraint presented in Eq. 5.7 can

be rewritten as IG(G) = IG(P (X,m(X), e = 1)). Since IG(G) is held constant, by As-

sumption 9, the only term that changes is IG(P (X,m(X), e = 1)). Therefore, our con-

straint can be approximated by a metric of likelihood (DAG fitness) of G to the dataset

D′
test = {(xtest

i ,m(xtest
i ))}ntest

i=1 , which embodies the graphical conditional independence re-

lationships of IG(P (X,m(X), e = 1)). We denote this DAG fitness function as f(D′
test, G).

Note that we construct D′
test from Dtest simply by using m(xtest

i ) as a proxy for Y , which

does not exist in Dtest. We calculate f using a graphical fitness metric used in score-based

causal discovery, which we detail in the next subsection.
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By the Lagrangian method, we can rewrite Eq. 5.7 as a loss function as follows:

L = Ex∼P (x,e=1)ℓ(m(x), y) + λf(D′
test, G). (5.8)

The first term in the loss Ex∼P (x,e=1)ℓ(m(x), y) is the target risk and is approximated by

a validation measure, such as source risk or target risk estimates, which we denote as the

function h(m,Dval,Dtest).

From Eq. 5.8 we provide a metric of causal assurance c in the following definition:

Definition 7 (Causal assurance metric (CAM)). Let m be a trained model, Dval be a labeled

validation set from the source domain, Dtest be an unlabeled test dataset, and G be an invariant

causal DAG for the variables X and Y . We define CAM as a function c, which is defined as:

c(m,Dval,Dtest, G) = h(m,Dval,Dtest) + λf(D′
test, G), (5.9)

where f is a scoring function that measures the fitness of G to the dataset D′
test, and h is a

function that returns the validation risk.

Term h can be either source risk, such as MSE or accuracy (if doing classification), or can

be an approximation of target risk from methods such as IWCV or DEV, hence the inclusion

of Dtest. For metrics that we wish to maximize, such as accuracy, subtract h instead. We

present a schematic for calculating our CAM in Fig. 5.1. Note that the blue arrows denote

connections that are unique to our approach and highlight that CAM is the only method

to use the predictions on the test dataset, m(xtest
i ), in calculating its score. We provide

pseudocode summarizing our methodology in Algorithm 3.

5.4.4 Appraising Causal Knowledge

The tuning factor λ controls the weighting between our casual assurance term and machine

learning model performance. In this work, we define λ in terms of the uncertainty or

probability that we know the true DAG G. Intuitively, we have defined λ = |α|
|α|+|β| , where α is

the directed set of edges accepted to be true (by either randomized trials or causal discovery),
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and β is the set of undirected edges whose causal directionality cannot be determined (by

either causal discovery or experimentation). For notation, |α| is referring to the cardinality

of α. λ will have a value of 1 when we know the orientations of all edges in the graph (β = ∅)
and will converge to 0 as the number of edges in β increases. Therefore if we do not know

any edges in our graph (α = ∅) our CAM in Eq. 5.9 will be equal to the score determined

by h only. When calculating c, we min-max normalize f and h between 0 and 1 over all

candidate models.

5.4.5 Model Scoring and Selection

In score-based causal discovery, the Bayesian Information Criterion (BIC) is a common score

that is used to discover the completed partially directed acyclic graph (CPDAG), representing

all DAGs in the Markov equivalence class (MEC), from observational data. Under the Markov

and faithfullness assumptions, every conditional independence in the MEC of G is also in D.

The BIC is defined as:

BIC(G | D) = −LL(G | D) +
(
log2 n

2

)
||G||, (5.10)

where n is the data set size, LL(G|D) is the log-likelihood of G given D, and ||G|| is the

dimensionality of G. For our function f in Eq. 5.9, we use the BIC score. However, since n

and ||G|| are held constant in our proposed method our function f = −LL(G|D). To find the

LL(G|D) we use the following decomposition: LL(G | D) = −n∑vipai
HD(vi | pai), where

pai are the parent nodes of vi in G, and H is the conditional entropy function which is given

by [29] for discrete variables and by [115] for continuous or mixed variables. Note that when

using causal discovery in our method and their are multiple candidate DAGs in the MEC,

any can be chosen for use in our metric. That is because we are holding the DAG constant

and changing the data (via m(X) in place of Y ), such that all DAGs in the MEC will have

the same statistical score by definition [29, 104].

The causal DAG of the variables in D is often never wholly known ahead of time. In most

practical cases, only a few of the causal relationships may be known a priori. If it were the
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Algorithm 3 Select model with lowest CAM
1: Input: A labeled source dataset Dsrc with set of input features X and target label Y , a

set of untrained modelsM, an unlabeled target dataset Dtest containing only features X,

and optional prior causal DAG Gp.

2: Output: The most causally assured model m̂ ∈M.

3: Function: SelectModel(M,Dsrc,Dtest, [Gp])

4: Divide Dsrc into two disjoint sets Dtrain and Dval for model training and validation,

respectively.

5: Train each model m ∈ M on Dtrain until performance of m on Dval converges (stops

improving).

6: if Gp is completely known then

7: G← Gp.

8: else if Gp is partially known then

9: G← causal discovery on Dsrc constrained by Gp.

10: else

11: G← causal discovery on Dsrc.

12: end if

13: for m ∈M do

14: Generate dataset D′
test from Dtest by concatenating with m(X).

15: Calculate the causal assurance term f(D′
test, G) by a graphical fitness metric, such as

BIC.

16: Calculate the validation error h(m,Dval,Dtest, G).

17: end for

18: return m̂ ∈M with lowest c(m,Dval,Dtest, G)

case that all causal edges were known ahead of time (with certainty), then causal methods,

such as a causal Bayesian network [104], could be used. However, we emphasize that the goal

of this work is model selection and not model development.

Algorithm 3 scales linearly with the number of models inM. Because our CAM selection
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algorithm requires one external loop overM, our method scales linearly with the number of

models inM. The overall computational complexity of calculating CAM is O(|M|×T (G,D)),
where |M| is the number of candidate models and T (G,D) is the computational complexity

of calculating dataset D to DAG G fitness. Since we use the LL as our graph fitness score,

this requires calculating the conditional entropy of each node given its predecessors. This has

a worst-case computational complexity of O(|G|2), since the asymptotic maximum number

of connections in a graph is |G|(|G|−1)
2

, where |G| is the number of nodes in G.

5.5 Experiments

Experiments were performed on both synthetic and real-world datasets. For the synthetic

data experiments, the true causal graph was first established and used as the underlying

DGP to generate each dataset. Conversely, the correct causal graph was not fully known

for the real-world datasets, and causal discovery was used to recover the causal graph. We

implemented our method using Tensorflow1.

5.5.1 Evaluation Details

The following describes our experimental settings used for both synthetic and real-world data.

5.5.1.1 Benchmark methods

We compare our CAM to three benchmark UDA selection methods: validation source risk

(validation MSE), IWCV [79], and DEV [169]. For each method, we use their published

hyperparameters. For IWCV, since the target density ratio may not be known ahead of time,

we use a discriminative neural network to learn the density ratio as part of the DEV method

provided by [169]. Although our method applies to machine learning models in general, our

focus is on neural networks.

1Source code will be made available upon acceptance.
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Figure 5.2: T-10 MSE (± standard error) of UDA methods over various DAG cardinalities

(left), target dataset sizes (middle) and average degree of G (right). CAM-* denotes CAM

used with each * as function h in Eq. 5.9 (e.g. CAM-DEV uses DEV for h). Using CAM

significantly improves over each benchmark as shown in the difference between the solid and

dashed lines.

5.5.1.2 Evaluation metrics

We evaluate our models based on the following performance metrics. For each of our

experiments, we evaluated and ranked models according to their performance on our validation

set by each method. The first metric we propose examines the top 10% of models selected by

candidate methods on the validation set to show the generalization improvement in terms

of test error. We refer to the average test error of the top 10% of selected models by each

method as T-10 error. The second metric we propose examines the ability to rank the

entire set of trained models (rather than selecting the top 10%) by candidate methods in

terms of test performance. Here, we use a list inversion count (IC), which measures the

number of element-wise inversions required for sorting a list. IC can be thought of as a

metric of how sorted or ranked a list is, where a perfectly sorted list has an IC of 0. The

asymptotic maximum number of inversions for a list of n elements is n(n− 1)/2, which we

use to normalize our reported IC metric. Note that there are differences in the two metrics,

where T-10 highlights the top-end “best" selection performance and IC examines the entire

list of candidate models.
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5.5.1.3 Network architecture and training pool

To generate a diverse set of candidate models to choose from, we draw networks from the

following pool of MLPs. Each MLP can have anywhere between 2 and 4 layers, with each

layer having between d and 2d hidden neurons, where d is the number of input features.

Furthermore, each layer uses ReLU activation and is followed by a dropout layer with a

droprate randomly selected from {0%, 20%, 40%, 60%}. Training batch sizes are also varied

and randomly chosen from {32, 64, 128}. Each network is trained with the Adam optimizer

using a learning rate of 0.001 until validation error stops improving.

5.5.1.4 Discovered causal graphs

For each of the real datasets we made no prior assumptions on the underlying causal graph

and used causal discovery to identify the causal graph. Specifically, we used the fast greedy

equivalence search (FGES) [112] algorithm on the entire dataset using the Tetrad software

package. Only the directed edges that were output in the CPDAG by FGES were considered

as known edges in the causal graphs, which are shown in Fig. 2.

Tetrad allows prior knowledge to be specified in terms of required edges that must exist,

forbidden edges that will never exist, and temporal restrictions (variables that must precede

other variables). For an example output, see Fig. 5.5, where the green vertices represent the

prediction target. Solid bordered and dashed bordered vertices represent continuous and

discrete variables, respectively. Solid edges represent the known causal connections, and

dashed edges represent discovered edges. The Tetrad software package automatically handles

mixed connections, i.e., edges between discrete and continuous variables.

5.5.2 Synthetic Experiments

Using synthetic data, we can evaluate our method under oracle conditions when the complete

causal graph is known. For each of the simulations, we generated a random Erdos-Renyi

random DAG, G, with |G| vertices and between |G| and |G|(|G|−1)
2

edges (the maximum
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number of edges in a DAG) between them. Using the structure of G we synthesized two

datasets Dsrc and Dtest with functional relationships between variables with directed edges

between them in G and applied Gaussian noise to each. Dsrc was generated by sampling 5000

data points with a Gaussian noise having a mean of 0 and variance of 1 and was randomly

partitioned into a model training and validation sets of 80% and 20%, respectively. The

validation set was used to terminate model training. During model selection and calculation

of our CAM, we used only the unlabeled input x values from Dtest to select models, and only

used the y values for evaluation of model generalization performance. The input features

of Dsrc were min-max normalized between 0 and 1, and the min and max values for each

feature were saved for scaling Dtest accordingly.

[111] shows that for predictive models, when the location of the interventional perturbation

is not known, the invariant set of predictors is the causal parents of the target variable.

This stems from the fact that an intervention of a child node will not propagate in the

anti-causal direction to its parents [120]. Because we make no assumption to the location of

any perturbation in G, throughout the remainder of this manuscript, assume that the outgoing

edges of the target Vi have been removed in G (rendering Vi conditionally independent of

any child) when calculating our causal assurance metric.

We enumerated all nodes in G randomly. To prevent the magnitude of the leaf nodes from

becoming overwhelmingly large relative to the root nodes, each node was instantiated as a

function of its parents’ values that were either added or subtracted for even or odd enumerated

parents, respectively. We provide pseudocode for our synthetic DGP in Algorithm 4. We

also specify in Algorithm 4 how perturbations can be applied to nodes p with mean µp and

standard deviation σp. Note that perturbations are used for shifting noise variables at test

time.

For each synthesized DAG G, we randomly selected a target variable from G connected to

at least one other variable in G. We then trained 50 random deep neural networks from our

pool of candidate networks on our training set to predict our target variable. We evaluated

and ranked each of the 50 models using each method and repeated this for 50 different DAG
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Algorithm 4 Synthetic Data Generation (DGP)
1: Input: An Erdos-Renyi graphical structure G, a mean µ, standard deviation σ, edge

weights w, a dataset size n, a list of perturbation nodes p, a perturbation mean µp and a

perturbation standard deviation σp.

2: Output: A dataset according to G with n samples and perturbation applied at nodes p.

3: Function: gen_data(G, µ, σ, w, n, µp, σp):

4: e← edges of G

5: Gsorted ← topological_graph_sort(G)

6: ret← empty list

7: for node ∈ G do

8: if node ∈ p then

9: Append to ret[node] a list of Gaussian (µp and σp) randomly sampled list of size n.

10: else

11: Append to ret[node] a list of Gaussian (µ and σ) randomly sampled list of size n.

12: end if

13: end for

14: for node ∈ Gsorted do

15: for par ∈ {parents(node)} do

16: if is_even(par) then

17: ret[node] += ret[par] ∗ w(par, node), where w(par, node) is the edge weight from

par to node.

18: else

19: ret[node] −= ret[par] ∗ w(par, node), where w(par, node) is the edge weight from

par to node.

20: end if

21: end for

22: end for

23: return ret.
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instantiations each.

Because our prior knowledge about the underlying causal graph is perfect, we set λ = 1

for calculating our CAM in Eq. 5.9. Unless specified, we performed experiments on default

test sets of 2000 samples and DAGs having nodes between 10 and 100 vertices. We created

our test datasets Dtest with at least one of the variables in G randomly perturbed with a

mean of 1 and a variance of 2 (rather than mean of 0 and variance of 1 as used in Dsrc for

training, validation, and selection). The noise terms in all of the remaining variables are

unchanged in Dsrc.

We perform three experiments to investigate various sensitivities of CAM. Furthermore,

we use each benchmark (MSE, IWCV, or DEV) as our function h when calculating our

CAM to demonstrate how CAM can be used in conjunction with these target risk estimators.

Fig. 5.2 shows that IWCV and DEV provide a noticeable improvement over MSE. However,

CAM provides a larger improvement in terms of T-10 error over each benchmark across all

vertex cardinalities, target dataset sizes, and DAG degrees. This is shown by the improvement

of the solid lines over the dashed lines in Fig. 5.2. Also, we observe that as the target data

size increases, CAM provides more consistent selection results.

In Fig. 5.3, we show a sensitivity analysis of our method on synthetic data. We use the

same experimental setup used in the synthetic experiments from the main paper on a random

DAG instantiation. Here we see that there is a linear relationship between λ and performance

in terms of T-10 error.

5.5.3 Erroneous or Incomplete DAGs

In this experiment, we investigate the performance trade-off under two practical conditions. In

the first hypothetical scenario, we investigate the sensitivity of CAM to incomplete knowledge,

where we know only a subgraph perfectly. In the second hypothetical situation, we investigate

the sensitivity of our method to “imposter” DAGs, where we know a portion of the causal

graph correctly, but there is some number of edges that are spurious or reversed. We used our

same synthetic experimental setup, except we mutilate our DAGs to form either subgraphs
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Figure 5.3: Sensitivity analysis of λ on synthetic data.
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Figure 5.4: Performance of CAM on subgraph and imposter experiment: ∆T-10 error is

the difference of the T-10 error of G and G using our CAM metric versus the percentage of

graphical distance (in terms of total edges). Note that G is the oracle causal graph and is

held static across the x-axis.

or “imposters”. We set λ to 1 since we are assuming the graph is truth (even though it is

incorrect). We use DEV as our validation risk metric and show our results in Fig. 5.4, which
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shows the ∆T-10 error, i.e., the difference in T-10 error of the subgraph or imposter graph G

and G, versus the percentage graph difference (between G and G). The graphical difference

is calculated in terms of the percentage of edges that are mutated or removed. Fig. 5.4 shows

the correlation between the correctness of the causal graph and the relative model selection

improvement. This correlation testifies to the validity of our approach. Furthermore, Fig. 5.4

suggests that we should be conservative in adding edges to our causal knowledge and favor

using a subgraph over a false “imposter" DAG that may have erroneously added or flipped

edges.
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Figure 5.5: Left: In the UK, COVID-19 pandemic hit urban areas before spreading to rural

areas, which motivates us to transfer a model learned from the urban to the rural population.

Middle: Feature subset showing there exists a significant covariate shift between urban and

rural populations with the urban population younger and with fewer preexisting conditions.

Right: Discovered COVID-19 DAG for all covariates. Dashed and solid lines represent

discrete or continuous variables respectively.

5.5.4 Responding to COVID-19

In this section, we demonstrate improved model selection for covariate shift using our CAM

on several real-world healthcare prediction problems. The primary problem we focus on is

centered around COVID-19 where we predict two types of ventilation, patient mortality, and

the number of ICU beds using a real-world COVID-19 dataset.

The COVID-19 pandemic has resulted in significant mortality and has challenged health-

care systems worldwide. At the peak of the COVID-19 outbreak, many countries, unfortu-
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Table 5.3: Top 10% model selection test performance (in terms of T-10 AUROC with standard

error) on real data experiments. CAM represents our algorithm used with each DEV as our

function h in Eq. 5.9. Bold denotes best-performing methods. Note that all of our proposed

CAM results in higher testing AUROC on target domains.

Dataset h:AUROC IWCV DEV CAM

COVID-19 Invasive Vent. (UK Urban → UK Rural) 0.629± 0.011 0.633± 0.015 0.641± 0.012 0.662± 0.014

COVID-19 Non-Invasive Vent. (UK Urban → UK Rural) 0.791± 0.008 0.795± 0.006 0.798± 0.010 0.811± 0.007

COVID-19 Mortality (UK Urban → UK Rural) 0.582± 0.023 0.588± 0.029 0.589± 0.032 0.602± 0.021

COVID-19 ICU Beds (UK Urban → UK Rural) 0.718± 0.010 0.724± 0.013 0.725± 0.012 0.743± 0.012

Prostate Cancer Mortality (UK Biobank → US SEER) 0.612± 0.029 0.627± 0.013 0.627± 0.025 0.638± 0.018

MAGGIC Chronic heart failure (Europe → *) 0.720± 0.005 0.732± 0.010 0.733± 0.011 0.748± 0.009

nately, experienced a shortage of life-saving equipment such as ventilators and ICU beds.

Considering data from the UK outbreak, we observed that the pandemic hit the urban area

first before spreading to the rural areas (Fig. 5.5). This implies that we could potentially

transfer models trained on the urban population to benefit the rural areas immediately if we

reacted promptly. However, there is a significant domain shift as the rural population are

older and have more comorbidities. Furthermore, there may be no labeled samples available

at the time of model deployment in rural areas.

5.5.4.1 COVID-19 patient statistics across geographical locations

We acquired de-identified COVID-19 Hospitalization in England Surveillance System (CHESS)

data from Public Health England (PHE). The data contains 7,714 hospital admission,

including 3,092 ICU admissions from 94 NHS trusts across England. The dataset features

comprehensive information on patients’ general health condition, COVID-19 specific risk

factors (e.g., comorbidities), basic demographic information (age, sex, etc.), whether they

were admitted to the ICU, what treatment (e.g., ventilation) they received, and their outcome

by April 20th, 2020 (609 deaths and 384 discharges). We split the data set into a source

dataset containing 2,552 patients from urban areas (mostly Greater London area) and a target
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Figure 5.6: Age distribution for urban and rural patients. The median age of rural patients

is five years older than urban.

dataset of the remaining 5,162 rural patients. The characteristics of the two populations are

summarized in Fig. 5.5.

Figure 5.6 shows the histogram of the age distribution for urban and rural patients. It is

clear from the plot that the rural population is older, and therefore at higher risk of COVID-

19. Table 5.4 presents statistics about the prevalence of preexisting medical conditions, the

treatments received, and the final outcomes for patients in urban and rural areas. We can

see that rural patients tend to have more preexisting conditions such as chronic heart disease

and hypertension. The higher prevalence of comorbid conditions complicates the treatment

for this population.

5.5.4.2 COVID-19 UK (urban) → UK (rural)

We first performed causal discovery using the FGES algorithm on the patients from the urban

area. The discovered graph (Fig. 5.5) agrees well with the literature [156, 99]. We selected

50 random models from our pool of candidate models and used the same training regime

as in the synthetic experiments along with the discovered COVID-19 causal DAG shown in
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Table 5.4: Comparison of key features of urban and rural COVID-19 patients in the data set.

Urban Rural

Perc. Count Perc. Count

Sex at Birth 65% 1446 62% 3388

Chronic Respiratory 4% 81 6% 310

Obesity 5% 121 4% 225

Chronic Heart 4% 80 8% 444

Hypertension 13% 285 15% 798

Asthma 4% 92 6% 326

Diabetes 9% 197 11% 589

Chronic Renal 2% 45 3% 175

Noninvasive Ventilation 7% 160 6% 342

Invasive Ventilation 21% 456 16% 879

Death 18% 402 19% 1014

Discharge 12% 276 21% 1164
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Fig. 5.5 as our invariant DAG. We evaluated the best model selected by each model selection

method based on the T-10 AUROC on each task in Table 5.3. We see that CAM identified

the models that resulted in higher AUROC in the UK’s rural areas without access to labeled

data.

5.5.5 Results on Real Healthcare Data

We provide additional illustrative results for predicting prostate cancer in the US Surveillance,

Epidemiology, and End Results (SEER) [28] dataset for models trained on UK Biobank

[127] data. We also apply our method to predict chronic heart failure across a collection

of 30 independent studies using the Meta-Analysis Global Group in Chronic Heart Failure

(MAGGIC) [154] datasets.

5.5.5.1 Prostate cancer

In this case, we are interested in deploying a machine learning model for prostate cancer but

have access to only labeled data in the UK Biobank [127] dataset, which has approximately

10,000 patients. We would like to deploy our models in the United States, where we have

access to many samples of patient features. For this target domain, we use the SEER [28]

dataset, which has over 100,000 samples. Our objective is to predict patient mortality, given

the patient features.

5.5.5.2 MAGGIC dataset

This MAGGIC dataset [154] is a collection of 30 studies; it is comprised of 46,817 patients

collected across various locations to study the survival time after heart failure. Each patient

may have one or more comorbidities such as myocardial infarction or angina, which are

documented in this dataset along with patient attributes such as gender or age. We assumed

as prior knowledge that the patient attributes such as gender, age, and ethnicity, could not

be a descendant (effect) of any of the other observed variables. We also assumed for prior

121



knowledge that the last observation was the survival time, which could not be an ancestor

(cause) of any of the other observed variables.

We use the same experimental set-up detailed for the prior experiments. Table 5.3 shows

that our CAM can reliably select the models that result in improved performance in terms of

T-10 AUROC for both prediction problems. For the MAGGIC experiment, we trained on

the European population and report the average testing error applied to the remaining 29

other studies.

Table 5.5: Top 10% model selection test performance (in terms of T-10 MSE (top) and

inversion count (bottom) with standard error) on real data experiments. CAM-* represents

our algorithm used with each * as our function h in Eq. 5 (e.g. CAM-DEV uses DEV as our

algorithm for calculating function h). Bold denotes best performing models. Note that all of

our methods CAM-* have lower testing MSE on target domains and inversion counts than *

methods across all datasets (shown on RHS).

Dataset MSE IWCV DEV CAM-MSE CAM-IWCV CAM-DEV

Pima Diab. 0.577 ± 0.084 0.350 ± 0.041 0.344 ± 0.053 0.499 ± 0.064 0.301 ± 0.034 0.293± 0.032

Stud. Exams 0.424 ± 0.054 0.333 ± 0.032 0.319 ± 0.031 0.350 ± 0.042 0.248 ± 0.039 0.246± 0.013

Powerlift 0.325 ± 0.056 0.301 ± 0.080 0.300 ± 0.050 0.205 ± 0.021 0.182 ± 0.025 0.176± 0.053

Bike Share 0.105 ± 0.003 0.081 ± 0.016 0.080 ± 0.086 0.021 ± 0.004 0.018 ± 0.016 0.012± 0.004

PIMA 0.614 ± 0.044 0.472 ± 0.036 0.482 ± 0.025 0.504 ± 0.044 0.432 ± 0.034 0.414± 0.030

Student Exams 0.523 ± 0.034 0.491 ± 0.038 0.501 ± 0.033 0.424 ± 0.032 0.402 ± 0.041 0.392± 0.032

Power Lifting 0.284 ± 0.063 0.398 ± 0.073 0.437 ± 0.080 0.202 ± 0.062 0.219 ± 0.044 0.193± 0.073

Bike Sharing 0.347 ± 0.019 0.249 ± 0.023 0.201 ± 0.009 0.301 ± 0.035 0.242 ± 0.021 0.134± 0.017

5.5.6 Results on Public Datasets

In practice, often times the complete underlying causal DAG is unknown, and we must rely

on DAG recovery via causal discovery. In this experiment, we explore using incomplete prior

knowledge on four publicly available datasets and a medical dataset. The publicly available
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datasets include the Pima Indian Diabetes Database [31], Student Performance in Exams

[67], Open Powerlifting [109], and Bike Sharing in Washington D.C. [36] datasets. The Bike

Sharing dataset was used in prior causal works by [114].

For each dataset, we used either prior knowledge or a causal discovery algorithm to

determine the full causal graph. If the complete causal graph was not known ahead of

time, we discovered the remaining causal connections from the data using the Fast Greedy

Equivalence Search (FGES) algorithm by [112] on the entire source dataset using the Tetrad

software package [48].

For each of the datasets, we create target test sets in either of two ways: 1) randomly

choosing a continuous variable and randomly holding-out either 20% of the lowest or greatest

samples for that variable such that these end-point values were never seen during any phase

other than testing, or 2) by randomly choosing a discrete variable and holding out one of the

labels for the test set (e.g., training on only females and testing on males).

We randomly split the source training set into an 80% training and 20% validation split,

the latter of which is used for calculating our CAM score. For each dataset, we identically

trained 50 random deep learning models from our pool of candidate architectures on our

training set. We then evaluated and ranked each of the 50 models by their performance on

our selection set, by each candidate method, and repeated this 100 times for each dataset.

Results in terms of T-10 MSE and inversion count are presented in Table 5.5, showing that

using CAM, we were able to select the most performant models across each dataset.

5.5.7 Going Beyond Existing Feature Selection Algorithms

In this subsection, we demonstrate how CAM can be used on a subraph to improve state-

of-the-art causal domain adaptation algorithms. We use the invariant feature selection

methods presented in [87], which is a more generalized approach than [111]. We used the

same experimental setup mentioned in the previous subsection, but instead of using all of the

input features, we use the input features identified by [87] that will result in the most domain

transferable predictions. We will refer to this feature selection approach as CIFS (for causally
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Figure 5.7: Performance improvement of CIFS (causal invariant feature selection [87]) using

CAM. (a) T-10 error. (b) Inversion count.

invariant feature selection). Again, we used our synthetic experimental setup, except we

apply there CIFS method to select the most invariant causal features to use as input features.

We apply our selection method to 100 trained CIFS models. We use DEV as our baseline

risk estimate on the reduced feature space (by CIFS). Fig. 5.7 shows that our method is able

to improve model selection in terms of both inversion count and T-10 error model selection.

5.6 Conclusion

We have presented a model selection method that considers a candidate model’s predictions

on an unlabeled test domain by leveraging the invariance of causal graphs to improve UDA. To

the best of our knowledge, this is the first such method for UDA to explicitly leverage model

predictions in the target domain. We have demonstrated improved performance over the

state-of-the-art on synthetic data with oracle knowledge and real data using causal discovery.

For future work, we would like to integrate our methodology into a differentiable loss that can

be used during model training. Although we frame our method in a healthcare setting, we

envision our algorithm being leveraged by any party interested in deploying machine learning

models across domains.
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CHAPTER 6

Selecting Treatment Effects Models for Domain

Adaptation Using Causal Knowledge

6.1 Introduction

Causal inference models for estimating individualized treatment effects (ITE) are designed to

provide actionable intelligence as part of decision support systems and, when deployed on

mission-critical domains, such as healthcare, require safety and robustness above all [134, 10].

In healthcare, it is often the case that the observational data used to train an ITE model may

come from a setting where the distribution of patient features is different from the one in the

deployment (target) environment, for example, when transferring models across hospitals

or countries. Because of this, it is imperative to select ITE models that are robust to these

covariate shifts across disparate patient populations. In this paper, we address the problem

of ITE model selection in the unsupervised domain adaptation (UDA) setting where we have

access to the response to treatments for patients on a source domain, and we desire to select

ITE models that can reliably estimate treatment effects on a target domain containing only

unlabeled data, i.e., patient features.

UDA has been successfully studied in the predictive setting to transfer knowledge from

existing labeled data in the source domain to unlabeled target data [49, 144]. In this context,

several model selection scores have been proposed to select predictive models that are most

robust to the covariate shifts between domains [136, 169]. These methods approximate the

performance of a model on the target domain (target risk) by weighting the performance on

the validation set (source risk) with known (or estimated) density ratios.
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However, ITE model selection for UDA differs significantly in comparison to selecting pre-

dictive models for UDA [126]. Notably, we can only approximate the estimated counterfactual

error [12], since we only observe the factual outcome for the received treatment and cannot

observe the counterfactual outcomes under other treatment options [129]. Consequently,

existing methods for selecting predictive models for UDA that compute a weighted sum of

the validation error as a proxy of the target risk [169] is suboptimal for selecting ITE models,

as their validation error in itself is only an approximation of the model’s ability to estimate

counterfactual outcomes on the source domain.
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Figure 6.1: Method overview. We propose selecting ITE model whose predictions of the

treatment effects on the target domain satisfy the causal relationships in the interventional

causal graph GT .

To better approximate target risk, we propose to leverage the invariance of causal graphs

across domains and select ITE models whose predictions of the treatment effects also satisfy

known or discovered causal relationships. It is well-known that causality is a property of the
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physical world, and therefore the physical (functional) relationships between variables remain

invariant across domains [120, 21, 111, 87]. As shown in Figure 6.1, we assume the existence

of an underlying causal graph that describes the generating process of the observational data.

We represent the selection bias present in the source observational datasets by arrows between

the features {X1, X2}, and treatment T . In the target domain, we only have access to the

patient features, and we want to estimate the patient outcome (Y ) under different settings

of the treatment (intervention). When performing such interventions, the causal structure

remains unchanged except for the arrows into the treatment node, which are removed.

6.1.1 Contributions

To the best of our knowledge, we present the first UDA selection method specifically tailored

for machine learning models that estimate ITE. Our ITE model selection score uniquely

leverages the estimated patient outcomes under different treatment settings on the target

domain by incorporating a measurement of how well these outcomes satisfy the causal

relationships in the interventional causal graph GT . This measure, which we refer to as causal

risk, is computed using a log-likelihood function quantifying the model predictions’ fitness

to the underlying causal graph. We provide a theoretical justification for using the causal

risk, and we show that our proposed ITE model selection metric for UDA prefers models

whose predictions satisfy the conditional independence relationships in GT and are thus more

robust to changes in the distribution of the patient features. We also show experimentally

that adding the causal risk to existing state-of-the-art model selection scores for UDA results

in selecting ITE models with improved performance on the target domain. We provide an

illustrative example of model selection for several real-world datasets for UDA, including

ventilator assignment for COVID-19.
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6.2 Related Works

6.2.1 ITE models.

Recently, a large number of machine learning methods for estimating heterogeneous ITE

from observational data have been developed, leveraging ideas from representation learning

[63, 134, 165], adversarial training, [163], causal random forests [155] and Gaussian processes

[10, 11]. Nevertheless, no single model will achieve the best performance on all types of

observational data [32] and even for the same model, different hyperparameter settings or

training iterations will yield different performance.

6.2.2 ITE model selection.

Evaluating ITE models’ performance is challenging since counterfactual data is unavailable,

and consequently, the true causal effects cannot be computed. Several heuristics for estimat-

ing model performance have been used in practice [124, 151]. Factual model selection only

computes the error of the ITE model in estimating the factual patient outcomes. Alterna-

tively, inverse propensity weighted (IPTW) selection uses the estimated propensity score to

weigh each sample’s factual error and thus obtain an unbiased estimate [151]. [10] propose

using influence functions to approximate ITE models’ error in predicting both factual and

counterfactual outcomes. Influence function (IF) based validation currently represents the

state-of-the-art method in selecting ITE models. However, existing ITE selection methods

are not designed to select models robust to distributional changes in the patient populations,

i.e., for domain adaptation.

6.2.3 UDA model selection.

UDA is a special case of domain adaptation, where we have access to unlabeled samples from

the test or target domain. Several methods for selecting predictive models for UDA have been

proposed [110]. Here we focus on the ones that can be adapted for the ITE setting. The first
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unsupervised model selection method was proposed by [79], who used Importance-Weighted

Cross-Validation (IWCV) [136] to select hyperparameters and models for covariate shift.

IWCV requires that the importance weights (or density ratio) be provided or known ahead

of time, which is not always feasible in practice. Later, Deep Embedded Validation (DEV),

proposed by [169], was built on IWCV by using a discriminative neural network to learn the

target distribution density ratio to provide an unbiased estimation of the target risk with

bounded variance. However, these proposed methods do not consider model predictions on

the target domain and are agnostic of causal structure.

6.2.4 Causal structure for domain adaptation.

Recently, [74] proposed Causal Assurance (CA) as a domain adaptation selection method for

predictive models that leverages prior knowledge in the form of a causal graph. Because their

work is centered around predictive models, it is suboptimal for ITE models, where the edges

into the treatment (or intervention) will capture the selection bias of the observational data.

Furthermore, their method does not allow for examining the target domain predictions, which

is a key novelty of this work. We leverage do-calculus [104] to manipulate the underlying

directed acyclical graph (DAG) into an interventional DAG that more appropriately fits

the ITE regime. More recently, researchers have focused on leveraging the causal structure

for predictive models by identifying subsets of variables that serve as invariant conditionals

[111, 87].

6.3 Preliminaries

6.3.1 Individualized treatment effects and model selection for UDA

Consider a training dataset Dsrc = {(xsrci , tsrci , ysrci )}Nsrc
i=1 consisting of Nsrc independent

realizations, one for each individual i, of the random variables (X,T, Y ) drawn from the

source joint distribution pµ(X,T, Y ). Let pµ(X) be the marginal distribution of X. Assume

that we also have access to a test dataset Dtgt = {xtgti }
Ntgt

i=1 from the target domain, consisting
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of Ntgt independent realizations of X drawn from the target distribution pπ(X), where

pµ(X) ̸= pπ(X). Let the random variable X ∈ X represent the context (e.g. patient features)

and let T ∈ T describe the intervention (treatment) assigned to the patient. Without loss of

generality, consider the case when the treatment is binary, such that T = {0, 1}. However,

note that our model selection method is also applicable for any number of treatments. We use

the potential outcomes framework [119] to describe the result of performing an intervention

t ∈ T as the potential outcome Y (t) ∈ Y. Let Y (1) represent the potential outcome under

treatment and Y (0) the potential outcome under control. Note that for each individual, we

can only observe one of potential outcomes Y (0) or Y (1). We assume that the potential

outcomes have a stationary distribution pµ(Y (t) | X) = pπ(Y (t) | X) given the context X;

this represents the covariate shift assumption in domain adaptation [130].

Observational data can be used to estimate E[Y | X = x, T = t] through regression.

Assumption 1 describes the causal identification conditions [116], such that the potential

outcomes are the same as the conditional expectation: E[Y (t) | X = x] = E[Y | X = x, T = t].

Assumption 8 (Consistency, Ignorability and Overlap). For any individual (unit) i, receiving

treatment ti, we observe Yi = Y (ti). Moreover, {Y (0), Y (1)} and the data generating process

p(X,T, Y ) satisfy strong ignorability Y (0), Y (1) ⊥⊥ T | X and overlap ∀x : P (T | X = x) > 0.

The ignorability assumption, also known as the no hidden confounders (unconfoundness)

assumptions, means that we observe all variables X that causally affect the assignment of the

intervention and the outcome. Under unconfoundness, X blocks all backdoor paths between

Y and A [104].

Under Assumption 1, the conditional expectation of the potential outcomes can also be

written as the interventional distribution obtained by applying the do−operator under the

causal framework of [104]: E[Y (t) | X = x] = E[Y | X = x, do(T = t)]. This equivalence will

enable us to reason about causal graphs and interventions on causal graphs in the context of

selecting ITE methods for estimating potential outcomes.
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6.3.1.1 Evaluating ITE models.

Methods for estimating ITE learn predictors f : X × T → Y such that f(x, t) approximates

E[Y | X = x, T = t] = E[Y (t) | X = x] = E[Y | X = x, do(T = t)]. The goal is to estimate

the ITE, also known as the conditional average treatment effect (CATE):

τ(x) = E[Y (1) | X = x]− E[Y (0) | X = x] (6.1)

= E[Y | X = x, do(T = 1)]− E[Y | X = x, do(T = 0)]. (6.2)

The CATE is essential for individualized decision making as it guides treatment assignment

policies. A trained ITE predictor f(x, t) approximates CATE as: τ̂(x) = f(x, 1)− f(x, 0).
Commonly used to assess ITE models is the precision of estimating heterogeneous effects

(PEHE) [53]:

PEHE = Ex∼p(x)[(τ(x)− τ̂(x))2], (6.3)

which quantifies a model’s estimate of the heterogeneous treatment effects for patients in a

population.

6.3.1.2 UDA model selection.

Given a set F = {f1, . . . fm} of candidate ITE models trained on the source domain Dsrc, our

aim is to select the model that achieves the lowest target risk, that is the lowest PEHE on

the target domain Dtgt. Thus, ITE model selection for UDA involves finding:

f̂ = argmin
f∈F

Ex∼pπ(x)[(τ(x)− τ̂(x))2] = argmin
f∈F

Ex∼pπ(x)[(τ(x)− (f(x, 1)− f(x, 0)))2]. (6.4)

For this purpose, we propose using the invariance of causal graphs across domains to select

ITE predictors that are robust to distributional shifts in the marginal distribution of X.

6.3.2 Causal graphs framework

In this work, we use the semantic framework of causal graphs [104] to reason about causality

in the context of model selection. We assume that the unknown data generating process in
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the source domain can be described by the causal directed acyclic graph (DAG) G, which

contains the relationships between the variables V = (X,T, Y ) consisting of the patient

features X, treatment T , and outcome Y . We operate under the Markov and faithfulness

conditions [113, 104], meaning that any conditional independencies in the joint distribution

of pµ(X,T, Y ) are indicated by d-separation in G and vice-versa.

In this framework, an intervention on the treatment variable T ∈ V is denoted through

the do-operation do(T = t) and induces the interventional DAG GT , where the edges into

T are removed. The interventional DAG GT corresponds to the interventional distribution

pµ(X, Y | do(T = t)) [104]. The only node on which we perform interventions in the target

domain is the treatment node. Consequently, this node will have the edges into it removed,

while the remainder of the DAG is unchanged. We assume that the causal graph is invariant

across domains [120, 39, 87] which we formalize for interventions as follows:

Assumption 9 (Causal invariance). Let V = (X,T, Y ) be a set of variables consisting of

patient features X, treatment T , and outcome Y . Let ∆ be a set of domains, pδ(X, Y |
do(T = t)) be the corresponding interventional distribution on V in domain δ ∈ ∆, and

I(pδ(V )) denote the set of all conditional independence relationships embodied in pδ(V ), then

∀δi, δj ∈ ∆, I(pδi(X, Y | do(T = t))) = I(pδj(X, Y | do(T = t))). (6.5)

6.4 ITE Model Selection for UDA

Let F = {f1, f2, . . . fm} be a set of candidate ITE models trained on the data from the

source domain Dsrc. Our aim is to select the model f ∈ F that achieves the lowest PEHE

on the target domain Dtgt, as described in Equation 6.4. Let G be a causal graph, either

known or discovered, that describes the causal relationships between the variables in X, the

treatment T and the outcome Y . Let GT be the interventional causal graph of G that has

edges removed into the treatment variable T .
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6.4.1 Prior causal knowledge and graph discovery.

The invariant graph G can be arrived at in two primary ways. The first would be through

experimental means, such as randomized trials, which does not scale to a large number

of covariates due to financial or ethical impediments. The second would be through the

causal discovery of DAG structure from observational data (for a listing of current algorithms

we refer to [52]), which is more feasible in practice. Under the assumption of no hidden

confounding variables, score-based causal discovery algorithms output a completed partially

directed acyclical graph (CPDAG) representing the Markov equivalence class (MEC) of

graphs, i.e., those graphs which are statistically indistinguishable given the observational

data and therefore share the same conditional independencies. Provided a CPDAG, it is

up to an expert (or further experiments) to orient any undirected edges of the CPDAG to

convert it into the DAG [104]. This step is the most error-prone, and we show in our real

data experiments how a subgraph (using only the known edges) can still improve model

selection performance.

6.4.2 Improving target risk estimation.

For the trained ITE model f , let ŷ(0) = f(x, 0) and let ŷ(1) = f(x, 1) be the predicted

potential outcomes for x ∼ pπ(x). We develop a selection method that prefers models whose

predictions on the target domain preserve the conditional independence relationships between

X,T and Y in the interventional DAG GT with edges removed into the treatment variable T .

We first propose a Theorem, which we later exploit for model selection.

Theorem 7. Let pµ(X,T, Y ) be a source distribution with corresponding DAG G. If Y =

f(X,T ), i.e., f is an optimal ITE model, then

IG(GT ) = I(pπ(X, f(X, t) | do(T = t))), (6.6)

where pπ(X, f(X, t) | do(T = t)) is the interventional distribution for the target domain

and IG(GT ) and I(pπ(X, f(X, t) | do(T = t))) returns all the conditional independence

relationships in GT and pπ(X, f(X, t) | do(T = t)), respectively.
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Proof. In the source domain, by the Markov and faithfullness assumptions the conditional

independencies in G are the same in pµ(X,T, Y ), such that

IG(G) = I(pµ(X,T, Y )). (6.7)

To estimate the potential outcomes Y (t), we apply the do-operator to obtain the interventional

DAG GT and interventional distribution pµ(X, Y | do(T = t)), such that:

IG(GT ) = I(pµ(X, Y | do(T = t))). (6.8)

Since we assume Y = f(X,T ) we obtain:

IG(GT ) = I(pµ(X, f(X, t) | do(T = t))). (6.9)

By Assumption 7, we know that the conditional independence relationships in the interven-

tional distribution are the same in any environment, so that

I(pµ(X, f(X, t) | do(T = t))) = I(pπ(X, f(X, t) | do(T = t))), (6.10)

such that we obtain:

IG(GT ) = I(pπ(X, f(X, t) | do(T = t))). (6.11)

Theorem 7 provides an equality relating the predictions of f in the target domain to

the interventional DAG GT . Therefore we desire the set of independence relationships in

GT to equal I(pπ(X, f(X, t) | do(T = t))). In our case, we do not have access to the true

interventional distribution pπ(X, f(X, t) | do(T = t)), but we can approximate it from

the dataset obtained by augmenting the unlabeled target dataset Dtgt with the model’s

predictions of the potential outcomes: D̂tgt = {(xtgti , 0, ŷtgti (0)), (xtgti , 1, ŷtgti (1))}Ntgt

i=1 , where

ŷtgti (t) = f(xtgti , t), for xtgti ∈ Dtgt. We propose to improve the formalization in Eq. 6.4 by

adding a constraint on preserving the conditional independencies of GT as follows:

argmin
f∈F

RT (f) s.t. E[NCI(GT , D̂tgt)] = 0, (6.12)
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where RT (f) is a function that approximates the target risk for a model f , NCI(GT , D̂tgt) is

the number of conditional independence relationships in the graph GT that are not satisfied

by the test dataset augmented with the model’s predictions of the potential outcomes D̂tgt.
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Figure 6.2: ICMS is unique in that it calculates a causal risk (green) using predictions on

target data. Purple arrows denote pathways unique to ICMS.

6.4.3 Interventional causal model selection.

Consider the schematic in Figure 6.2. We propose an interventional causal model selection

(ICMS) score that takes into account the model’s risk on the source domain, but also the

fitness to the interventional causal graph GT on the target domain according to Eq. 6.4. A

score that satisfies this is provided by the Lagrangian method:

L = RT (f) + λE[NCI(GT , D̂tgt)]. (6.13)

The first term RT (f) is equivalent to the expected test PEHE which at selection time can

be approximated by the validation risk (either source or target risk), which we represent as

vr(f,Dv,Dtgt). In some cases the second term E[NCI(GT , D̂tgt)] may never equal 0, because

of this we approximate it by using a causal fitness score that measures the likelihood of a

DAG given some data on the test dataset, which we rewrite as cr(f,Dtgt, GT ). Consider

partitioning the source dataset Dsrc = {(xsrci , tsrci , ysrci )}Nsrc
i=1 into a training dataset Dtr and a
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validation dataset Dv such that Dsrc = Dtr ∪ Dv. From Eq. 6.13 we define our ICMS score r

as follows:

Definition 8 (ICMS score). Let f be an ITE predictor trained on Dtr. Let Dtgt = {(xtgti )}Ntgt

i=1

be test dataset and let GT be the interventional causal graph. We define the following selection

score:

r(f,Dv,Dtgt, GT ) = vr(f,Dv,Dtgt) + λcr(f,Dtgt, GT ) (6.14)

where vr measures the validation risk on the validation set Dv and cr is a scoring function,

which we call causal risk, that measures the fitness of the interventional causal graph GT to the

dataset D̂tgt = {(xtgti , 0, ŷtgti (0)), (xtgti , 1, ŷtgti (1))}Ntgt

i=1 , where ŷtgti (t) = f(xtgti , t), for xtgti ∈ Dtgt.

The validation risk vr(f,Dv,Dtgt) can either be (1) source risk where we use existing

model selection scores for ITE [12, 151], or (2) an approximation of target risk using the

preexisting methods of IWCV or DEV [136, 169]. We describe in the following section how

to compute the causal risk cr(f,Dtgt, GT ). λ is a tuning factor between our causal risk term

and validation risk vr. We currently set λ = 1 for our experiments, but ideally, λ would be

proportional to our certainty in our causal graph.

6.4.4 Assessing causal graph fitness.

The causal risk term cr(f,Dtgt, GT ) as part of our ICMS score requires assessing the fitness of

the dataset D̂tgt to the invariant causal knowledge in GT . Some options include noteworthy

maximum-likelihood algorithms such as the Akaike Information Criterion (AIC) [6] and

Bayesian Information Criterion (BIC) [125]. Both the BIC and AIC are penalized versions of

the log-likelihood function of a DAG given data, e.g., LL(GT | D̂tgt). In score based causal

discovery, the DAG that best fits the data will maximize the LL(GT | D̂tgt) subject to some

model complexity penalty constraints. In this work, we are not searching between candidate

causal graphs and only care about maximizing our DAG to dataset fitness. Thus, we use

the negative log-likelihood of G given D̂tgt, i.e. −LL(GT | D̂tgt), for our causal risk term

cr. The −LL(GT | D̂tgt) has a smaller value when G is closer to modeling the probability

136



distribution in D̂tgt, i.e the predicted potential outcomes satisfy the conditional independence

relationships in G.

6.4.5 Pseudocode for ICMS

To clarify our methodology further we have provided pseudocode in Algorithms 5 and 6.

Algorithm 5 calculates the ICMS score (from Eq. 6.14) from a given model. The values for

cr and vr are min-max normalized between 0 and 1 across all models. Algorithm 6 returns

a ranked list of models by ICMS score from a set of ITE models F . It takes optional prior

knowledge in the form of a causal graph or known connections.

Algorithm 5 Calculate ICMS
Input: ITE model f ; source validation dataset Dv; unlabeled target test set Dtgt =

{xtgti }
Ntgt

i=1 ; interventional DAG GT ; scale factor λ.

Output: ICMS score: r(f,Dv,Dtgt, GT )

Function: ICMS(f,Dv,Dtgt, GT , λ):

ŷtgti (t)← f(xtgti , t), for xtgti ∈ Dtgt

D̂tgt ← {(xtgti , 0, ŷtgti (0)), (xtgti , 1, ŷtgti (1))}Ntgt

i=1

cr ← Measure of D̂tgt to DAG GT fitness.

vr ← Validation risk of f on Dv and Dtgt.

return cr + λvr (from Eq. 6.14).

6.4.6 Limitations of UDA selection methods for predictive models

In the ideal scenario, we would be able to leverage labeled samples in the target domain to

estimate the target risk of a machine learning model. We can express the target risk Rtgt in

terms of the testing loss as follows:

Rtgt =
1

Ntgt

∑
((Y tgt(1)− Y tgt(0))− (f(xtgt, 1)− f(xtgt, 0))2 (6.15)

However, in general, we do not have access to the treatment responses for patients in the

target set and, even if we did, we can only observe the factual outcome. Moreover, existing
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Algorithm 6 ICMS Selection

Input: Source dataset Dsrc = {(xsrci , tsrci , ysrci )}Nsrc
i=1 split into a training set Dtr and

validation set Dv; set of ITE models F trained Dtr; unlabeled test set Dtgt; optional prior

knowledge in the form of a DAG Gπ, scale factor λ.

Output: A list F ′ of models in F ranked by ICMS score.

Function: ICMS_sel(F ,Dtr,Dv,Dtgt, λ,Gπ = ∅):
Gd ← causal discovery on Dtr

G← assumed invariant DAG from Gπ or Gd

GT ← interventional DAG of G (remove edges into T )

F ′ ← Sort F by ICMS(f,Dv,Dtgt, GT , λ) ascending

return F ′.

model selection methods for UDA for predictive models only consider predictions on the

source domain and do not take into account the predictions of the candidate model in the

target domain. Specifically, DEV and IWCV calculate a density ratio or importance weight

between the source and target domain as follows:

wf (x) =
p(d = 1|x)
p(d = 0|x)

N tgt

N src
, (6.16)

where d designates dataset domain (source is 0, target is 1), and p(d=1|x)
p(d=0|x) can be estimated by

a discriminative model to distinguish source from target samples [169]. Both calculate their

score as a function of ∆ as follows:

∆ =
1

Nv

Nv∑
i=1

wf (x
v
i )l(y

v
i , f(x

v
i , 0), f(x

v
i , 1)) (6.17)

where l(·, ·, ·) is a validation loss, such as influence-function based validation [12]. Note that

the functions l and w are only defined in terms of validation features xvi from the source

dataset. Such selection scores can be used to compute the validation score vr(f,Dv,Dtgt)

part of the ICMS score.

However, our ICMS score also computes the likelihood of the interventional causal graph

given the predictions of the model in the target domain as a proxy for the risk in the target
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domain. By adding the causal risk, we the improve the estimation of target risk. Additionally,

we specifically make use of the estimated potential outcomes on the test set f(xtgt, 0) and

f(xtgt, 1) to calculate our selection score as shown in Eq. 6.14. Fig. 6.2 depicts how we use

the predictions of the target data to calculate our ICMS score.

6.5 Experiments

We evaluate methods by the test performance in terms of PEHE of the top 10% of models in

the list return by the model selection benchmarks. We will refer to this as the PEHE-10 test

error.

6.5.1 Benchmark ITE models.

We show how the ICMS score improves model selection for state-of-the-art ITE methods

based on neural networks: GANITE [163], CFRNet [61], TARNet [61], SITE [165] and

Gaussian processes: CMGP [10] and NSGP [11]. These ITE methods use different techniques

for estimating ITE and currently achieve the best performance on standard benchmark

observational datasets [12]. We iterate over each model multiple times and compare against

various DAGs and held-out test sets. Having various DAG structures results in varying

magnitudes of test error. Therefore, without changing the ranking of the models, we min-max

normalize our test error between 0 and 1 for each DAG, such that equal weight is given to

each experimental run, and a relative comparison across benchmark ITE models can be made.

6.5.2 Benchmark methods.

We benchmark our proposed ITE model selection score ICMS against each of the following

UDA selection methods developed for predictive models: IWCV [79] and DEV [169]. To

approximate the source risk, i.e., the error of ITE methods in predicting potential outcomes

on the source domain (validation set Dv), we use the following standard ITE scores: MSE on

the factual outcomes, inverse propensity weighted factual error (IPTW) [151] and influence
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functions (IF) [12]. Note that each score (MSE, IPTW, etc.) can be used to estimate the

target risk in the UDA selection methods: IWCV, DEV, or ICMS. Specifically, we benchmark

our method in conjunction with each combination of ITE model errors {MSE, IPTW, IF}

with validation risk {∅, IWCV, DEV}. We include experiments with ∅, to demonstrate using

source risk as an estimation of validation risk.

6.5.3 Synthetic UDA model selection

6.5.3.1 Data generation.

In this section, we evaluate our method in comparison to related selection methods on

synthetic data. For each of the simulations, we generated a random DAG, G, with n vertices

and up to n(n− 1)/2 edges (the asymptotic maximum number of edges in a DAG) between

them. We construct our datasets with functional relationships between variables with directed

edges between them in G and applied Gaussian noise (0 mean and 1 variance) to each. Using

the structure of G, we synthesized 2000 samples for our observational source dataset Dsrc.

We randomly split Dsrc into a training set Dtr and validation set Dv with 80% and 20% of

the samples, respectively. To generate the testing dataset Dtgt, we use G to generate 1000

samples where half of the dataset receives treatment, and the other half does not. For Dtgt,

we randomly shift the mean between 1 and 10 of an ancestor of Y in G, whereas in Dsrc

a mean of 0 is used. It is important to note that the actual outcome or response is never

seen when selecting our models. Furthermore, the training dataset Dsrc is observational and

contains selection bias into the treatment node, whereas the synthetic test set Dtgt does not,

since it was generated by intervention at the treatment node. Our algorithm has only access

to the covariates X in Dtgt.

6.5.3.2 Improved selection for all ITE models.

Table 6.1 shows results of ICMS on synthetic data over the benchmark ITE models. Here,

we evaluate three different types of selection baseline methods: MSE, IPTW, and IF. We
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then compare each baseline selection method with UDA methods: IWCV, DEV, and ICMS

(proposed). We repeated the experiment over 50 different DAGs with 30 candidate models for

each model architecture. Each of the candidate algorithms was trained using their published

settings and hyperparameters. In Table 6.1, we see that our proposed method (ICMS)

improves on each baseline selection method by having a lower testing error in terms of

PEHE-10 over all treatment models.

6.5.4 Application to the COVID-19 Response

ICMS facilitates and improves model transfer across domains with disparate distributions, i.e.,

time, geographical location, etc., which we will demonstrate in this section for COVID-19. The

COVID-19 pandemic challenged healthcare systems worldwide. At the peak of the outbreak,

many countries experienced a shortage of life-saving equipment, such as ventilators and ICU

beds. Considering data from the UK outbreak, the pandemic hit the urban population before

spreading to the rural areas (Figure 5.5). This implies that if we reacted in a timely manner,

we could transfer models trained on the urban population to the rural population. However,

there is a significant domain shift as the rural population is older and has more preexisting

conditions. Furthermore, at the time of model deployment in rural areas, there may be no

labeled samples available.

6.5.4.1 Dataset

We obtained de-identified COVID-19 Hospitalization in England Surveillance System (CHESS)

data from Public Health England (PHE) for the period from 8th February (data collection start)

to 14th April 2020, which contains 7,714 hospital admission, including 3,092 ICU admissions

from 94 NHS trusts across England. The data set features comprehensive information on

patients’ general health condition, COVID-19 specific risk factors (e.g., comorbidities), basic

demographic information (age, sex, etc.), and tracks the entire patient treatment journey:

hospitalization time, ICU admission, what treatment (e.g., ventilation) they received, and

their outcome by April 20th, 2020 (609 deaths and 384 discharges). We split the data set
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into a source dataset containing 2,552 patients from urban areas (mostly Greater London

area) and a target dataset of the remaining 5,162 rural patients. The characteristics of the

two populations are summarized in Figure 5.5.

6.5.4.2 COVID-19 Ventilation UK (urban) → UK (rural)

Using the urban dataset, we performed causal discovery on the relationships between the

patient covariates, treatment, and outcome. The discovered graph (Figure 5.5) agree well with

the literature [156, 99]. To be able to evaluate the ITE methods on how well they estimate

all counterfactual outcomes, we created a semi-synthetic version of the dataset with outcomes

simulated according to the causal graph. Our training observational dataset consists of the

patient features, ventilator assignment (treatment) for the COVID-19 patients in the urban

area, and the synthetic outcome generated based on the causal graph.
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Figure 6.3: Performance of model selection methods in terms of the additional number of

patients with improved outcomes compared to selecting models based on the factual error on

the source domain.

For each benchmark ITE model, we used 30 different hyperparameter settings and trained

the various models to estimate the effect of ventilator use on the patient risk of mortality. We

used the same training regime as in the synthetic experiments and the discovered COVID-19

causal DAG (using FGES) shown in Figure 5.5. We evaluated the best ITE model selected

by each model selection method in a ventilator assignment task. Using each selected ITE
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model, we assigned 2000 ventilators to the rural area patients that would have the highest

estimated benefit (individualized treatment effect) from receiving the ventilator. Using the

known synthetic outcomes for each patient, we then computed how many patients would have

improved outcomes using each selected ITE model for assigning ventilators. By considering

selection based on the factual outcome (MSE) on the source dataset as a baseline, in Figure 6.3,

we computed the additional number of patients with improved outcomes by using ICMS on

top of existing UDA methods when selecting GANITE models with different settings of the

hyperparameters. We see that ICMS (in blue) identified the GANITE models that resulted

in better patient outcomes in the UK’s rural areas without access to labeled data.

6.5.4.3 Additional experiments:

On the TWINS dataset [5], we show how our method improves UDA model selection even

with partial knowledge of the causal graph (i.e., using only a known subgraph for computing

the ICMS score). Note also that in the Twins dataset, we have access to real patient outcomes.

6.6 Conclusion

We provide a novel ITE model selection method for UDA that uniquely leverages the

predictions of candidate models on a target domain by preserving invariant causal relationships.

To the best of our knowledge, we have provided the first model selection method for ITE

models specifically for UDA. We provide a theoretical justification for using ICMS and have

shown on a variety of synthetic, semi-synthetic, and real data that our method can improve

on existing state-of-the-art UDA methods.
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Table 6.1: PEHE-10 performance (with standard error) using ICMS on top of existing UDA

methods. ■+ ICMS means that the ■ was used in conjunction with ICMS. For example,

DEV(⋆)+ICMS represents DEV(⋆) selection used as the validation risk vr in the ICMS. The

⋆ indicates the method used to approximate the validation error on the source dataset. Our

method (in bold) improves over each selection method over all models and source risk scores

(Src.).

Selection Method GANITE CFR TAR SITE CMGP NSGP

MSE 0.395 (0.051) 0.363 (0.042) 0.391 (0.050) 0.157 (0.035) 0.131 (0.046) 0.282 (0.049)

MSE+ICMS 0.222 (0.049) 0.212 (0.036) 0.264 (0.034) 0.126 (0.027) 0.120 (0.050) 0.210 (0.047)

IWCV(MSE) 0.348 (0.046) 0.393 (0.044) 0.364 (0.052) 0.185 (0.033) 0.201 (0.041) 0.209 (0.040)

IWCV(MSE)+ICMS 0.212 (0.043) 0.220 (0.051) 0.256 (0.039) 0.149 (0.033) 0.183 (0.055) 0.172 (0.043)

DEV(MSE) 0.398 (0.056) 0.414 (0.042) 0.427 (0.049) 0.198 (0.038) 0.239 (0.058) 0.183 (0.048)

DEV(MSE)+ICMS 0.224 (0.042) 0.210 (0.039) 0.269 (0.035) 0.120 (0.040) 0.160 (0.047) 0.160 (0.042)

IPTW 0.381 (0.049) 0.355 (0.046) 0.394 (0.052) 0.357 (0.045) 0.182 (0.046) 0.292 (0.045)

IPTW+ICMS 0.220 (0.049) 0.217 (0.039) 0.272 (0.032) 0.228 (0.031) 0.140 (0.050) 0.207 (0.047)

IWCV(IPTW) 0.269 (0.055) 0.518 (0.049) 0.433 (0.038) 0.416 (0.053) 0.417 (0.043) 0.475 (0.053)

IWCV(IPTW)+ICMS 0.053 (0.028) 0.121 (0.034) 0.119 (0.035) 0.207 (0.039) 0.304 (0.059) 0.328 (0.058)

DEV(IPTW) 0.302 (0.072) 0.472 (0.056) 0.414 (0.049) 0.400 (0.057) 0.441 (0.071) 0.493 (0.086)

DEV(IPTW)+ICMS 0.087 (0.035) 0.194 (0.052) 0.120 (0.027) 0.220 (0.031) 0.282 (0.041) 0.355 (0.050)

IF 0.222 (0.041) 0.255 (0.050) 0.250 (0.046) 0.321 (0.059) 0.392 (0.051) 0.376 (0.057)

IF+ICMS 0.127 (0.039) 0.166 (0.042) 0.190 (0.044) 0.215 (0.056) 0.212 (0.053) 0.250 (0.054)

IWCV(IF) 0.180 (0.059) 0.364 (0.051) 0.286 (0.041) 0.293 (0.043) 0.415 (0.048) 0.437 (0.057)

IWCV(IF)+ICMS 0.058 (0.018) 0.104 (0.025) 0.108 (0.033) 0.173 (0.028) 0.292 (0.062) 0.331 (0.051)

DEV(IF) 0.193 (0.058) 0.415 (0.045) 0.292 (0.046) 0.214 (0.038) 0.490 (0.043) 0.544 (0.053)

DEV(IF)+ICMS 0.069 (0.026) 0.191 (0.048) 0.107 (0.029) 0.147 (0.025) 0.229 (0.054) 0.364 (0.056)
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