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 ABSTRACT OF THE DISSERTATION 

 
Deciphering the Hematopoietic Gene Regulatory Architecture 

 
By 

 
Ricardo Noel Ramirez 

 
Doctor of Philosophy in Developmental and Cell Biology 

 
 University of California, Irvine, 2016 

 
Assistant Professor Ali Mortazavi 

 
 
 

      The immune system is a complex and interactive network of diverse cell types, with a myriad 

of functional properties that are fundamental to maintaining an immunological-responsive 

balance within an organism. Thus, coordinated organization of cellular differentiation is 

established early and throughout the development of an organism, resulting in the generation of 

the interacting innate and adaptive immune systems. The temporal component is critical for 

capturing transient regulatory events during cellular differentiation. Thus, high-resolution 

analyses are necessary to derive immune regulatory dynamics. To address this, I focused my 

graduate studies on the genome-wide analysis of cellular differentiation with a primary focus on: 

(i) myeloid transcriptional and cis-regulatory modules; (ii) dynamic myeloid gene regulatory 

networks; and (iii) analysis of the expression and accessible chromatin landscape in single-cells. 

Utilizing high-resolution time-series analyses, I have identified temporal modules of cell-type 

specific cis-regulatory and transcriptional regulation during myeloid and pre-B cell 

differentiation. Such genome-wide modules were then utilized to infer novel regulatory 

interactions and generation of dynamic gene regulatory networks during myeloid differentiation. 

Secondly, both an independent and integrative analysis of single-cell chromatin maps and 
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expression patterns of pre-B cell differentiation, revealing complex relationships between the 

chromatin landscape and TF regulators in differentiating single-cells. Take together; these results 

depict the temporal dynamics mediated across the cis-regulatory landscape and transcriptional 

regulators that ultimately shape differentiating mammalian cells across the innate and adaptive 

immune systems. 
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Theme of thesis 

 The ‘instructions’, or regulatory architecture, for development in all living organisms is 

ultimately encoded in their DNA. While every cell in an organism contains the same DNA 

molecules, these ‘instructions’ are read and functionally applied in a cell autonomous manner. 

The central theme of my thesis is to decipher the DNA regulatory architecture for cells 

undergoing cell fate determination. Focusing on the hematopoietic system, for which a wealth of 

information is known, I employed next-generation sequencing and computational approaches to 

construct time-course driven gene regulatory networks. Chapter 2 of my thesis discusses the 

rapid changes in gene expression and chromatin accessibility in the differentiation of 

promyelocytic cells into macrophages, neutrophils, monocytes, and monocyte-derived 

macrophages, demonstrating that each cell-type response varies during differentiation. 

Additionally I detail the temporal transcriptional modules and chromatin accessible patterns, 

revealing several candidate regulators that are integral to cell specification during myeloid 

differentiation. I also examine the immediate immune response by LPS-stimulation and find 

relatively few immediate changes in chromatin accessibility compared to the more significant 

gene expression changes mediated by LPS stimulation. In chapter 3, I describe the power of 

integrating gene expression and leverage the deep sequencing of chromatin accessibility data to 

perform open chromatin footprinting and to build gene regulatory networks. I mapped the 

regulatory interactions for 23 dynamically expressed immune transcription factors, recovering 

both well-known interactions for key regulators such as PU.1, GFI1 and EGR, also identifying 

novel regulatory circuits not previously described in human myeloid cells. This work is currently 

under review in a peer-reviewed journal.  
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 Following the theme of deciphering transcriptional regulation in immune cells, chapter 4 

focuses on the transcriptome and chromatin dynamics during mouse pre-B cell differentiation. 

As part of my contribution to the STATegra consortium, I generated 36 DNase-seq, 324 single-

cell RNA-seq and 227 single-cell ATAC-seq datasets, totaling 587 experiments of the 787 

experimental datasets generated by STATegra. Here, I mapped the pseudo-time trajectory of 

scRNA-seq using Monocle to reveal heterogeneity and dynamic expression of transcription 

factors and signaling pathways in our pre-B model system. Secondly, I utilize regular DNase-seq 

and scATAC-seq to investigate the accessibility of differentiating pre-B cells, revealing 

dynamics in accessibility patterns for cis-regulatory elements of Igll1, Vpreb1 and Rag genes. A 

main STATegra consortium paper is currently under preparation, which will include my DNase-

seq and scRNA-seq results. A second co-first author manuscript in collaboration with Camden 

Jansen is currently under preparation that develops a computational method for integrating and 

studying time-course scRNA-seq and scATAC-seq data. 
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INTRODUCTION 

Eukaryotic development depends on the orchestrated transcriptional regulation of gene 

expression with acute spatial-temporal precision. The gene regulatory networks that control 

development and differentiation are encoded in the genome, shared by all cells in the organism 

(Peters and Davidson, 2015). However, only a subset of genes are expressed in any given cell 

type through epigenetic control of DNA accessibility at promoters and enhancers for each gene. 

Genes that are active have “open”, accessible chromatin while genes that are shut off lose that 

accessibility or are bound by repressors. This is ultimately controlled by transcription factors and 

long non-coding RNAs recruiting the chromatin remodeling at the precise genomic locations and 

times (Guttman et al., 2011). The dynamics and developmental commitment states within the cell 

rely on this remodeling of chromatin accessibility of promoter and enhancer Cis-Regulatory 

Modules (CRMs) across the genome. The identification of which CRMs have potential for 

activity in a cell is critical for understanding the complexities of gene regulatory circuits 

controlling cell fate and how development is encoded in the genome.  

 

I. From the innate to adaptive system: Cellular characterization and the use of cancer cell 

lines of the immune system 

The immune system is an integral component of all life. In vertebrates, an intricate defense 

system has evolved from invertebrates, which employ a minimalist, ‘innate-like’ program (Stuart 

and Ezekowitz, 2008). Importantly, the innate (first response) and adaptive (second response) 

immune systems allow for a layered defense with increased specificity to bacterial and viral 

pathogens. In humans, 1 microliter of blood contains roughly 4-6 million red blood cells, 4,000-

11,000 leukocytes (white blood cells), and 150,000-450,000 thrombocytes (Ganong, 2003), all of 
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which are derived from 0.7 to 1.5 self-renewing hematopoietic stem cells /108 nucleated marrow 

cells or roughly 1 in every 10,000 bone marrow cell  (Abkowitz et al., 2002; TILL and 

McCullouch, 1961). White blood cells play a primary role in protecting the body from infection. 

Remarkably, hematopoiesis generates over a million new hematopoietic cells a second 

(Sackmann, 1995) and must do so precisely to avoid both leukemia and leukopenia. Given the 

voluminous literature that exists on all aspects of immune system development, which has been 

extensively reviewed before (Amulic et al., 2012; Auffray et al., 2009; Chow et al., 2011; Varol 

et al., 2015), this brief review chapter focuses on the specific myeloid and lymphoid cells used 

during my graduate studies. 

With respect to the innate immune system, hematopoietic progenitors diverge into the 

myeloid and lymphoid lineages of the blood system. The myeloid lineages that are primarily 

responsible for initial immune responses such as the neutralizing and clearing of bacteria, are 

cells known as phagocytes (Kaufmann and Dorhoi, 2016). Phagocytes were first described as 

immune cells that neutralize bacterial pathogens and are shown to be integral in eliciting 

antimicrobial responses (Metschnikoff, 1884). Extensive study of phagocytes has provided a 

comprehensive understanding of the inflammatory signaling mediated by bacterial pathogens 

Listeria and Staphylococcus (Kaufmann and Dorhoi, 2016). The myeloid lineage phagocytes 

include neutrophil, monocyte, macrophage, mast, basophil and eosinophil cells (Chow et al., 

2011; Hume, 2006; Hume et al., 2002).  

 

II. Innate system : Neutrophils 

 Neutrophils are the most abundant phagocytes in the blood, representing 50-75% of white 

blood cells in circulation, with a half-life in circulation of 1.5 and 8 hours in mice and humans 
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respectively (Kolaczkowska and Kubes, 2013). As an initial responder in bacterial response, the 

neutrophil has been shown to be important in neutralization (Kaufmann and Dorhoi, 2016), cell-

to-cell communication (Scapini and Cassatella, 2014), and inflammatory disease (Amulic et al., 

2012). A distinct, multi-lobed polymorphonuclear body is the primary morphological 

characteristic of mature neutrophils. While it was proposed initially that neutrophils in 

circulation were predominantly homogenous, experimental evidence supports the existence of 

several neutrophil sub-types in circulation (Kolaczkowska and Kubes, 2013; Scapini et al., 

2001). Interestingly, neutrophil swarming has been shown to initiate novel repair mechanisms by 

facilitating cellular recruitment and tissue restructuring at sites of damage (Lämmermann et al., 

2013). In brief, this relatively short-lived phagocyte is a critical component of innate bacterial 

defense for stabilizing immediate responses and relaying information to all cells of the immune 

system.  

 

III. Innate system : Monocytes 

 Monocytes are phagocytic cell that directly interact with neutrophils during immune 

challenges (Scapini and Cassatella, 2014) that are characterized by a bean-shaped nucleus. 

Monocytes are conserved across all vertebrates (Ginhoux and Jung, 2014), with evidence of a 

parallel cell in fly haemolymph (Williams, 2007). Monocytes comprise of 4% and 10% of white 

blood cells in mice and humans respectively (Ginhoux and Jung, 2014) have a half-life of 20 

hours (van Furth and Cohn, 1968). Similarly to neutrophils, the concept of monocyte 

heterogeneity was first shown through the diverse expression of markers such as CD14 and 

CD16, which ultimately determine two distinct monocyte populations (Passlick et al., 1989). As 

monocytes exit the bone marrow and enter circulation, the expression of several markers (CD43, 
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CCR2, LY6C, CD14, CD16) ultimately delineate monocyte functions in either: (i) the 

recruitment towards sites of inflammation through cellular differentiation; (ii) and the patrolling 

of the endothelium and recruitment of neutrophils in circulation (Ginhoux and Jung, 2014). In 

both human and mouse studies, monocytes have been shown to differentiate into macrophages 

(Auffray et al., 2007) and dendritic cells (Randolph et al., 1999), which are important for 

replenishing these cells throughout the organism. Interestingly, in addition to differentiation and 

neutrophil recruitment, it has been shown that monocytes may also contribute to vascular 

inflammation (Yang et al., 2014) and are a major component in propagation of atherosclerotic 

plaques (Zhang et al., 2012a). Thus, monocytes are not only crucial during an immune response 

and inflammation, but are important in replenishing macrophage and dendritic cells in the blood. 

 

IV. Innate system : Macrophages 

In contrast to both monocytes and neutrophils, macrophages are unique in that they are 

both a component of the circulatory system, but are uniquely specified in tissues across the body. 

They are also unique in that they are an inherently adherent cell, unlike monocyte and 

neutrophils. While the precise origin of embryonic macrophages is still highly debated (Lavin et 

al., 2015; Varol et al., 2015), two hypothesis have been proposed. The first states that all 

embryonic macrophages are derived from embryonic erythromyeloid progenitors (EMP) in the 

yolk sac at E7.5 during development, ultimately giving rise to all macrophages in the adult. A 

second hypothesis suggests that the yolk sac-derived EMPs arise in two waves that differentially 

contribute to adult microglia and other tissue-resident macrophages that are separate from the 

circulating cells that will generate adult macrophages. Initially, an early wave of yolk sac-

derived EMPs that appear around E7.5 in the yolk sac colonizes the brain. Additional fetal 
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tissues around E9 propagate all tissue macrophages, and a secondary wave of yolk sac-derived 

EMPs that colonize and expand in the fetal liver, ultimately giving rise to fetal liver monocytes. 

These fetal monocytes differentiate into macrophages that are sustained and replenished during 

adulthood. Tissue-specific macrophages enable a robust immune response across the entire 

organism, whereby macrophage cells can react immediately to bacterial or viral response from 

the vital tissues where they reside. This in turn sustains organ homeostasis during immune 

challenges. This remarkable plasticity provides macrophages the potential to react to multiple 

stimuli. Thus, the concept of macrophage polarization and plasticity initially led to the notion 

that macrophage cells can adopt two states: (i) M1 inflammatory ; (ii) M2 reparative or 

alternatively activated (Mackaness, 1962; Nathan et al., 1983; Stein et al., 1992). While it serves 

as an attractive and long-held model, work studying many transcriptomes and epigenetic profiles 

during macrophage polarization using various stimuli have led to the identification of additional 

polarization states in macrophages (Xue et al., 2014). The observed diversity of macrophage 

polarization led to a proposal for a new macrophage nomenclature to address the deficiencies of 

the simple bipolar scheme (Murray et al., 2014). While multiple studies have compared the 

transcriptome and epigenetic profiles of macrophages across tissues and in the bone marrow in 

both populations and single-cells (Lara-Astiaso et al., 2014; Lavin et al., 2014; Paul et al., 2015; 

Xue et al., 2014), the underlying gene regulatory networks during immune responses and cellular 

differentiation still remain to be elucidated for myeloid cells. 

 

V. Adaptive system : Pre-B cells  

The adaptive immune system is the secondary response primed by the innate response 

resulting in the activation of B and T cell lineages to neutralize bacteria, viral pathogens, and 
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retain memory of immune challenges for faster future responses. The first evidence of the 

function of cells that we now refer to as B cells was initially discovered through the study of 

circulating antitoxins in immunity to diphtheria and tetanus (Behring and Kitasato, 1890), though 

it was not discovered until 1947 that plasma B cells produce antibodies (Fagraeus, 1947), which 

was later verified using immunofluorescence in 1955 (Coons, 1955).  

Similar to myeloid cells, B cells originate from hematopoietic progenitors in the bone 

marrow where they reside as pre-B cells, until differentiation events drive maturation and 

progression into secondary lymphoid organs. The pre-B cell contains a well-studied pre-BCR (B 

cell receptor) which includes the μ-heavy chain, VpreB, Igα and Igβ receptors (Cooper, 2015; 

Melchers, 2005). Pre-B differentiation requires that cells undergo light-chain rearrangement, 

subsequent loss of the pre-BCR (VpreB, Igα and Igβ receptors) and eventual development of a 

mature BCR that is capable of binding antigens (Cambier et al., 2007; Melchers, 2005). This is 

mediated in part by the RAG1 and RAG2 genes which encode enzymes that are critical for 

V(D)J recombination events (Oettinger et al., 1990; Schatz et al., 1989). Failure of proper V(D)J 

recombination events result in apoptosis of pre-B cells. While we do not yet have a complete 

understanding of pre-B cell differentiation, the focus on key transcriptional regulators and 

signaling pathways integral to pre-B cell differentiation have illuminated several components 

that influence this process (Clark et al., 2014; Ferreir ́os-Vidal et al., 2013; Johnson et al., 2008; 

Merkenschlager, 2010; Thompson et al., 2007). 

 

VI. Origin and use of immune cancer cell lines  

Human cancer-derived cell lines have been fundamental for the study of various cancer 

etiologies, useful in technology development, and for the testing of therapeutic efficacy for 
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developed anti-cancer agents. The HeLa cell line was the first human cultured cancer cell, 

derived from Henrietta Lacks in 1952 (Scherer and Syverton, 1952). The use of HeLa cells has 

contributed to the understanding of a wide range of fundamental biological mechanisms and 

more than 60,000 research publications as of 2013 (statistic from EMBL.de). One of the earliest 

uses of HeLa cells was in the development of the vaccine against the polio virus. The work on 

HeLa cells has resulted in two Nobel prizes, awarded for (i) the link between human 

papillomavirus and cervical cancer (Harald zur Hausen in 2008) and (ii) the role of telomerase in 

preventing chromosome degradation (Elizabeth Blackburn, Carol Greider, and Jack Szostak in 

2011). While the use of HeLa cells in research is now controversial, it has served as a 

fundamental resource in science (Hyman A. & Simons K, 2011; Masters, 2002). There are now 

over 3,400 cancer cell lines available at the ATCC repository and they have contributed 

invaluable insights into both the mechanisms of cancer as well as normal development. 

Compound screen studies using transplantable murine neoplasms for solid tumors were 

yielding poor success in the late 1980s. To address this issue, the National Cancer Institute (NCI) 

launched an initiative in 1990 to generate a panel of cancer cell lines called NCI-60, which was 

composed of 60 cancer cell lines representing nine different cancer types (Shoemaker, 2006) to 

standardize studies on compound efficacy. This initiative was followed with several efforts in 

generating cell lines across various cancers.  One prime example of how cancer cell lines have 

shaped the understanding of both cancer and normal biology of hematopoietic cells is in the 

study of acute myelogenous leukemia (AML). Murine erythroleukemia cells were initially 

derived and used to study AML in non-human cells (Friend et al., 1971). While murine 

erythroleukemia cells served as an important resource, the etiology of AML in rodents does not 

parallel that of the human disease. In 1975, the K562 cell line was derived from the pleural fluid 
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of a patient with chronic myeloid leukemia in blast crisis (Lozzio and Lozzio, 1975) and widely 

adopted. Shortly after, a human myelogenous leukemia cell designated HL-60 was derived from 

the blood of a woman with AML (Collins et al., 1977) and a third myeloid cell line, known as 

KG-I, was derived from the bone marrow of a man with erythroleukemia (Koeffler and Golde, 

1978). The use of these cell lines continues today with studies from the ENCODE consortium, 

whereby the use of K562 and HL-60 cells have been used extensively to catalog functional DNA 

elements genome-wide (Bernstein et al., 2012).  

The HL-60 promyelocytic cell line has been used extensively to study the properties of 

granulocyte proliferation, myeloid differentiation, and malignant function since its initial 

characterization (Gallagher et al., 1979a), including its aberrant mutations and proliferative 

capability (Collins, 1987; Harris and Ralph, 1985). One of its most powerful properties, is the 

ability to terminally differentiate upon stimulation with chemical agents into monocyte 

(Mangelsdorf et al., 1984), macrophage (Murao et al., 1983), and neutrophil (Breitman et al., 

1980) lineages. While its aberrant proliferative capacity is not comparable to any normal 

promyelocytic cell, it shares a required transcriptional program that mediates proper cellular 

commitment, that is also inherent in normal granulocyte differentiation (Collins, 1987).  

 Cell lines have served in allowing scientists’ to explore several areas of biological 

research that span from cancer to development that would otherwise be impossible, including 

large scale studies of gene expression (Eisen et al., 1998). A first study comparing diffuse large 

B-cell lymphoma across several patients developed a gene expression microarray platform 

(‘Lymphochip’) to interrogate 17,856 cDNA clones (Alizadeh et al., 2000). Importantly, this 

study detailed the great diversity of gene expression among tumors of DLBCL patients, tumor 

proliferation rate, and differentiation state of the tumor. The term ‘transcriptome’ was coined for 
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the study of transcript expression genome-wide comparing tissues and cell lines from both 

mouse and human using microarrays (Su et al., 2002). Since the advent of microarrays, several 

other functional genomic technologies have been developed using cell lines, such as ChIP-seq 

(Johnson et al., 2007a), RNA-seq (Mortazavi et al., 2008) and ChIA-PET (Fullwood et al., 

2009).  

 

VII. Key transcriptional regulators of hematopoiesis 

The control of cellular identity is encoded by groups of transcription factors that function in 

regulating downstream target genes. Within each cell of the organism, specific key transcription 

factors mediate this process efficiently and robustly.  For example, in embryonic stem cells it has 

been shown that the factors OCT4, SOX2 and NANOG predominantly function as a core 

transcriptional regulatory triad that maintains self-renewal and pluripotency (Boyer et al., 2005).  

It was further shown that the core regulators above plus the transcription factors c-MYC and 

KLF4 were able to induce the reprogramming of fibroblasts into pluripotent stem cells (iPSC) in 

both mouse and human (Takahashi and Yamanaka, 2006; Takahashi et al., 2007). The ability to 

reprogram cell identity has revolutionized our interpretation of the ‘Waddington landscape’ 

paradigm, now emphasizing that cells exhibit dramatic plasticity during lineage commitment 

(Noble, 2015). Thus, a brief description of specific key transcriptional regulators and cis-

regulatory function will be discussed to address plasticity in the context of the hematopoietic 

system. 

 

VIII. PU.1/SPI1 transcriptional regulation 
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 A variant of the simian virus SV40 that lacked a 72 bp enhancer region revealed that a 

duplicate region containing a purine-rich sequence called the PU box (5’-GAGGAA-3’) 

(Petterson and Schaffner, 1987). This box was bound by nuclear transcription factors present 

only in lymphocytes and the binding was correlated with the growth of the SV40 variant. 

(Petterson and Schaffner, 1987). A cDNA clone for the PU.1 tissue-specific DNA binding 

protein was isolated (Klemsz et al., 1990).  PU.1 recognizes the purine-rich sequence, 5’-

GAGGAA-3’ (PU box) based on both binding site analysis and DNaseI protection assays 

(Klemz, 1999). PU.1 expression was identified in both macrophages and B cells and the factor 

was shown to function as a transcriptional activator. The amino acid sequence in the binding 

domain of PU.1 exhibits a shared homology with the ets oncogene family. PU.1 has been shown 

to be important in the regulation of multipotent fate determination in several contexts. PU.1 

directs tissue specific expression through the regulation of macrophage colony stimulating factor 

(M-CSF) (Zhang et al., 1994), functions as a key transcriptional toggle between erythroid and 

myeloid specification (Nerlov et al., 2000), and is fundamental for determining granulocyte cell 

commitment (Dahl et al., 2003). Importantly, the complete block on the specification of the 

myeloid lineage in PU.1-/- mice demonstrates the importance of PU.1 for the proper development 

of a mature hematopoietic system (Scott et al., 1994).  

PU.1 binding sites have been identified in almost all myeloid-specific promoters. In addition 

to the regulation of M-CSF and G-CSF by PU.1, the CD11b promoter has also been shown to be 

co-occupied by both PU.1 and SP1 transcription factors (Chen et al., 1993). CD11b (or 

macrophage-1 antigen; MAC-1) leukocyte integrin subunit is expressed on the surface of human 

granulocytes and monocytes/macrophages coupled with the CD18 subunit. Likewise, the CD18 
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promoter is also occupied by PU.1 (Bottinger et al., 1994), and it was shown that cells lacking 

PU.1 do not exhibit expression for CD11b/CD18 in granulocytes (Olson et al., 1995).  

Primary granule enzymes are a group of serine proteases expressed in human and mouse 

granulocytic cells. PU.1-deficient myeloid cells exhibit low expression of primary granule 

enzymes, which include myeloperoxidase (MPO), neutrophil elastase (NE), proteinase 3 (PR3) 

and lysozyme in granulocyte cells (Iwama et al., 1998). An enhancer in the second intron of the 

PR3 gene with a consensus ETS sequence was shown to be regulated by PU.1, functioning as an 

active regulatory element that mediates neutrophil elastase expression (Nuchprayoon et al., 

1999). Moreover, it was shown that PU.1 cooperates with CEBPα and c-MYB to directly 

regulate the neutrophil elastase promoter (Oelgeschläger et al., 1996). Additionally, PU.1-

deficient neutrophils do not express secondary granule components, including collagenase and 

lysozyme, limiting the ability to extinguish bacteria (Anderson et al., 1998). PU.1 has also been 

show to function as a key regulator in maintaining T helper cells (Chang et al., 2010) and a key 

developmental regulator in sustaining differentiation of T-cells in both human and mouse 

(Georgescu et al., 2008; Rothenberg et al., 2016). The ability for PU.1 to transcriptionally 

regulate its downstream targets in myeloid cells reflects the importance for maintaining a 

competent innate immune response. 

In addition to PU.1 functioning as a transcriptional activator, the first evidence supporting its 

role as a transcriptional suppressor was observed in the regulation of the major 

histocompatibility complex I-Ab gene (Borras et al., 1995). PU.1 mediated repression occurs 

through the binding of PU.1 to its consensus sequence located at the transcription start site of I-

Ab. The c-MYC promoter is a direct PU.1 target, subsequently leading to down regulation as 

measured by luciferase assays and a restricted region of PU.1 is responsible for this 
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transcriptional repression, with PU.1 also repressing the promoters of PCNA, c-FOS, and SV-40 

(Kihara-Negishi et al., 2005).  Interestingly, PU.1 has been found to directly interact with 

methyl-CpG-binding protein (MeCP) 2 via its C-terminal ets domain (Suzuki et al., 2006). 

Suzuki et al also revealed an interaction between PU.1 and DNA methyltransferase (DNMT) 3a 

and DNMT3b via the ets domain, demonstrating that PU.1 overexpression can lead to 

methylation of CpG sites in the p16 (INK4A) promoter in NIH3T3 cells. Similarly, it was 

demonstrated that MeCP2 and PU.1 occupy CpG-rich regions of the MT-1 and VIM promoters. 

Bisuflite sequencing analysis showed a significant methylation CpG sites for PU.1 bound regions 

within these promoters, also correlating with PU.1 expression levels (Imoto et al., 2010). In 

summary, the myeloid regulator PU.1 has been shown to function as both a transcriptional 

activator and repressor, controls cell fate determination in myeloid cells, and is important for 

maintaining innate responses, thus serving as a core regulator in all aspects of hematopoiesis. 

 
IX. Regulation of PU.1 expression during hematopoiesis 

As described above, the expression of PU.1 is critical for ensuring proper development of 

myeloid cells and in the propagation of several lineages within the hematopoietic system. It has 

been demonstrated that PU.1 can auto-regulate itself through binding of its own promoter (Chen 

et al., 1995). Additionally, PU.1 promoter activity can also be directed in myeloid cells by the 

binding of transcription factor CEBPα and AP1 complex (Cai et al., 2008). However, it was 

shown that the PU.1 promoter alone could not drive reporter expression, which led to further 

studies defining the cis-regulatory function and control of PU.1 (Cai et al., 2008).  

The PU.1 upstream regulatory element (URE) approximately -14 kb was initially 

described to function as a myeloid-specific enhancer, that enhanced promoter activity in myeloid 

cells (Li, 2001). Moreover, it was shown that Runx1/AML1 bind to sites within the URE, 
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regulating PU.1 expression in both embryonic and adult stages of hematopoietic development 

(Huang et al., 2008). Work from the Rothenberg lab revealed an additional novel cis-regulatory 

element (-10 kb), that amplifies PU.1 expression in myeloid cells (Zarnegar et al., 2010). Lastly, 

it was shown that CEBPα, which binds to the URE and induces activation of an enhancer -12 kb, 

potentiates a secondary autoregulatory feedback loop which elicits binding of additional PU.1 

transcription factors, such as early growth response 2 (EGR2) (Leddin et al., 2011). 

While the regulation of PU.1 has been shown to occur via transcriptional mechanisms, 

evidence of post-transcriptional regulation has also been demonstrated in myeloid cells. For 

example, noncoding antisense RNA’s were first identified as overlapping elements in the PU.1 

gene coding regions (Ebralidze et al., 2008). These antisense RNAs can functionally inhibit PU.1 

expression through modification of RNA translation in cells and are regulated via evolutionarily 

conserved cis-regulatory elements. Moreover, PU.1 is a direct target of microRNA-155 (miR-

155) in activated B cells (Vigorito et al., 2007). Evidence supporting miRNA inhibition was 

additionally shown through the ectopic expression of miR-155, resulting in the decreased protein 

levels of PU.1 (Hu et al., 2010). Thus, the regulation of PU.1 is mediated via transcriptional and 

post-transcriptional mechanisms. 

 

X. GFI1 and EGR regulation in myeloid cells 

Growth Factor Independence I (GFI1) 

Growth factor independence 1 (GFI1) was first identified as the target gene for the 

insertion locus of the Moloney murine leukemia virus in a leukemia T-cell line (Grimes et al., 

1996a). The human GFI1 gene is encoded as a 422 amino-acid transcription factor. A small 

conserved SNAG (Snail/GFI1) domain was found at the N terminus, which is also present in 
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other transcriptional repressors (Grimes et al., 1996a, 1996b). GFI is able to bind DNA but also 

recruit proteins that modify DNA or DNA-bound histones, altering the accessible chromatin 

landscape (Zhang and Reinberg, 2001). Specifically, GFI1 bound to DNA can suppress gene 

expression through the recruitment of histone demethylases and histone deacetylases via a series 

of corepressors (McGhee et al., 2003; Montoya-Durango et al., 2008). While acting 

predominantly as a repressor, it has been reported that GFI1 can also activate gene expression 

(Duan et al., 2007; Laurent et al., 2009). 

Mouse studies have shown that GFI1 is implicated in the development and function of 

hematopoietic stem cells (HSCs), B and T cells, dendritic cells, granulocytes and macrophages. 

Initially it was shown that GFI1 mediates hematopoietic stem cell quiescence and shown to be 

directly regulated by the tumor suppressor gene p53 (Liu et al., 2009; Zeng et al., 2004). 

Importantly, GFI1 has been implicated in the proper development and function of neutrophils 

and myeloid leukemia. In humans, rare mutations in GFI1 have been shown to cause severe 

congenital neutropenia (SCN) and non-immune chronic idiopathic neutropenia of adults (Person 

et al., 2003; Xia et al., 2009). Additional evidence supports an inability to produce granules in 

neutrophils when GFI1 expression is diminished (Khanna-Gupta et al., 2007). Hence, GFI1 is an 

important regulator in maintaining the normal development of circulating neutrophils. 

In myeloid cells, GFI1 is a critical factor in the regulatory networks that specifies lineage 

fate decisions between monocyte/macrophage and granulocytic development. It has been shown 

that GFI1 and PU.1 antagonize each other’s function through competitive DNA binding in 

promoters of target genes (Spooner et al., 2009) and protein-protein interactions (Dahl et al., 

2007). GFI1 has also been shown to inhibit PU.1 by direct repression of the PU.1 promoter 

(Spooner et al., 2009), whereas PU.1 can enhance the expression of transcription factors that 
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inhibit GFI1 gene expression directly (Laslo et al., 2006). While GFI1 plays an important 

developmental role in myeloid progenitor cells by controlling their proliferation and 

differentiation, GFI1 is not required for the differentiation of myeloid progenitors towards the 

monocytic lineage. Although expressed in CD14+ monocytes, GFI1 was shown to regulate genes 

required for granulocytic differentiation, suggesting that GFI1 likely represses the granulocytic 

programs in monocytes (Marteijn et al., 2007). In vitro differentiation experiments show that 

GFI1-null progenitors are incapable of developing into myeloid dendritic cells, but by default 

develop into macrophages (Rathinam et al., 2005). Additionally, mature macrophages show 

modest levels of GFI1 expression and have been shown to inhibit the production of 

proinflammatory cytokines (Sharif-Askari et al., 2010).  In conclusion, the control of 

proliferation, differentiation and survival of hematopoietic cells is mediated in part by GFI1’s 

ability to repress target genes, recruit histone modifying factors, and transcriptionally antagonize 

transcription factors like PU.1.  

 

Early Growth Response (EGR) transcription factors 

 Early Growth Response (EGR) genes constitute a family of C2H2 zinc finger 

transcription factors induced under mitogenic signals in a variety of cell types such as fibroblasts 

and granulocytes. Family members EGR 1 through 4 have function as the immediate response 

factors between cell surface receptor signaling and gene expression regulation (Decker et al., 

2003; Safford et al., 2005). In terms of structure, their zinc fingers exhibit extensive conservation 

in their respective DNA-binding domains with 90% homology, which suggests common DNA 

target sequences among the members of this family (Joseph et al., 1988).  
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 Specifically, the granulocyte gene regulatory network is finely tuned by EGR, enabling 

control of cell fate determination between lineages (Laslo et al., 2006). Moreover, the depletion 

of only one EGR factor does not impair cell specification, as other expressed EGR family 

members were able to compensate transcriptionally (Laslo et al., 2006). Interestingly, ectopic 

expression of EGR1 alone in murine myeloblastic cells leads to the up-regulation AP1 

transcriptional complex and IL-6 mediated inflammatory response (Krishnaraju et al., 1998). 

Additionally, early work in peritoneal macrophages has shown that GM-CSF promotes a 12-fold 

up-regulation of EGR1 mRNA within 30 minutes (Liu et al., 1991). This rapid induction in 

expression highlights the regulatory importance and sensitivity of the EGR-mediated response. 

Rapid up-regulation in EGR expression has also been observed in mouse bone-marrow derived 

macrophages treated with lipid A, in which EGR expression was induced dramatically within 5 

minutes of stimulation (Tong et al., 2016). While EGR is has been studied for its role in 

determining cell fate and immune responsiveness, recent evidence highlights the importance of 

EGR regulation in systemic autoimmunity (Sumitomo et al., 2013). The immediate 

responsiveness and redundancy of these transcription factors is likely to play a key role in the 

robustness of myeloid gene regulatory networks. 
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Chapter 1 : Transcriptional and chromatin landscape dynamics during human myeloid 
differentiation 
 
1.1 Abstract  

The dynamics of vertebrate development are encoded in the binding of transcription factors 

to regulatory elements of target genes in each cell. To address the transcriptional complexity of 

cellular commitment during myeloid differentiation, we collected a 5-day time-series of human 

HL-60 cells differentiating into macrophages, monocytes, monocyte-derived macrophages, and 

neutrophils to measure changes in chromatin accessibility and gene expression. We detect 69,658 

open chromatin elements, of which 8,919 are differentially accessible across 96 ATAC-seq 

datasets. We observe temporal modules of transcription factor expression and chromatin patterns 

during differentiation. We measure the greatest LPS-mediated changes in gene expression 

patterns than across the chromatin landscape. Interestingly, we find the greatest change of 

chromatin accessible elements in neutrophils than in other myeloid cell types.  Altogether, our 

results highlight and emphasize the complex chromatin and expression patterns during human 

myeloid differentiation.  

 

1.2 Introduction 

The immune system is a complex and interactive network of diverse cell types, with a myriad 

of functional properties that are fundamental to maintaining an immunological-responsive 

balance within an organism. The coordinated organization of cellular differentiation starting 

from a hematopoietic stem cell is established early and maintained throughout the development 

of an organism, resulting in the generation of the interacting innate and adaptive immune 

systems. Much is known about the vast heterogeneity of surface marker expression that exists 

throughout hematopoietic cellular differentiation and maturation, demonstrating marker and 
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cellular plasticity across the adaptive (Lee et al., 2009; Zhu and Paul, 2010) and innate immune 

systems (Auffray et al., 2009; Ginhoux and Jung, 2014; Glass and Natoli, 2015; Lawrence and 

Natoli, 2011). Due to the difficulty in differentiating primary immune cells ex vivo, recent 

studies have extracted dynamics of cellular commitment from comparisons of terminally 

differentiated primary cells (Chen et al., 2014), still limited by sorting of cell populations. 

The HL-60 promyelocytic cell line (Gallagher et al., 1979b) has been used extensively to 

study the properties of granulocyte proliferation, myeloid differentiation, and malignant function 

(Collins, 1987). HL-60 cells’ aberrant mutations in the MYC locus and their proliferative 

capability have been compared to normal cells (Harris and Ralph, 1985). Moreover, HL-60 cells 

have been extensively used over the years to catalog gene expression, chromatin elements and 

transcription factor binding in projects such as the ENCODE Project Consortium (The ENCODE 

Project Consortium, 2012). Furthermore, a considerable amount of recent single-cell genomic 

data is also available for HL-60 (Buenrostro et al., 2015; Cusanovich et al., 2015; Farlik et al., 

2015). One of this cell line’s most interesting properties is its ability to terminally differentiate 

through the induction of chemical agents into monocyte (Mangelsdorf et al., 1984), macrophage 

(Murao et al., 1983), and neutrophil (Breitman et al., 1980) lineages. While its aberrant 

proliferative capacity is not comparable to any normal promyelocytic cell, it shares a required 

transcriptional program that mediates proper cellular commitment inherent in normal granulocyte 

differentiation (Collins, 1987).  

We use the HL-60 model system to address the transcriptional complexity and the 

dynamics of cis-regulatory control in myeloid differentiation using a 5-day time-series analysis 

of genome-wide transcriptome and chromatin accessibility dynamics by probing the earliest (3 

hours) to the latest (up to 168 hours depending on the cell) stages of cellular differentiation. 
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Additionally, we measure immediate (3 hours post-stimulus) transcriptome and chromatin 

accessibility immune responses mediated by LPS stimulation in cells at various stages during 

myeloid differentiation. Collectively, our results provide a comprehensive and high-resolution 

view of the dynamic immune responses, transcriptome, and chromatin landscape during 

differentiation. 

1.3 Results 

A transcriptional time course of myeloid differentiation 

We induced the differentiation of HL-60 cells into three distinct lineages to measure the 

transcriptional and open chromatin dynamics that drive cellular commitment into macrophage, 

monocyte, and neutrophil lineages. We characterized the morphology of each lineage during 

induction of differentiation using Giemsa staining (Figure R1.1A) and also measured immune 

cell function using phagocytosis assays. We observed changes in cellular morphology as early as 

3 hours post-differentiation, with all lineages reaching terminal differentiation by 120 hours. 

Furthermore, to characterize the relationship of how HL-60 derived macrophages differ 

epigenetically from monocyte-derived macrophages, we induced the differentiation of 

monocytes to macrophages (monocyte-derived macrophage) for 48 hours and measured changes 

in chromatin accessibility, gene expression, and function (Figure R1.1B). Moreover we included 

immune effects induced by LPS-stimulation at various time-points of differentiation (Figure 

R1.1B). All measurements were done in triplicate, resulting in 96 RNA-seq and 96 ATAC-seq 

datasets. This allowed us to reproducibly measure 69,658 accessible chromatin elements across 

human myeloid differentiation. We observed genome-wide similarities of chromatin accessibility 

and gene expression for closely timed-samples (3, 6 and 12 hr ; 24 and 48 hr ; 96 and 120 hr)  in 

monocyte, neutrophil, and macrophage time-series (Figure R1.C-D, black boxes). Thus, in order 
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to compare cell stages during differentiation across all myeloid cell-types, we grouped time-

points into early (3 to 12 hrs), intermediate (12 to 48 hrs), and late (48 to 120 hrs) temporal 

stages for both chromatin accessibility and gene expression (Figure R1.1D). We used these 

pooled stages below for the purposes of calling transcription factor footprints from the ATAC-

seq data in order to build a dynamic gene regulatory network of myeloid differentiation into 

macrophages, monocytes, and neutrophils. 

 

Cell-specific trajectories during differentiation reflect the transcriptional differences 

between macrophage sub-types 

We performed a principal component analysis on the RNA-seq and ATAC-seq time-

series respectively (Figure R1.2A-B). We found that the first principal component for the RNA-

seq time-series explains the differences between each myeloid cell type (Figure R1.2A). 

Conversely, the first component for the ATAC-seq data reflects the temporal attribute of our 

differentiation system (Figure R1.2B). Additionally, the principal component analysis of our 

RNA-seq and ATAC-seq datasets for the different myeloid lineages revealed that while both 

directly derived macrophage and monocyte-derived macrophages look morphologically 

identical, they have dramatically different gene expression and open chromatin profiles. This is 

particularly striking given the profile similarity of early directly-derived macrophages (3hr) and 

late monocytes (120hr, right before differentiation into macrophages). In order to identify the 

candidate regulators that exhibit either shared or specific expression profiles between 

macrophage and monocyte-derived macrophage cells, we hierarchically clustered 901 expressed 

transcription factors in our system ( > 1 FPKM)  (Figure R1.2C). Several regulators were highly 

expressed in monocyte-derived macrophages compared to macrophages, which include the 
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nuclear orphan receptor factors (NR4A1, NR4A2, NR4A3), EGR3, FOSB, HES1 and PRDM8 

genes (Figure R1.2D). A second cluster shows comparable expression in both macrophage sub-

types for EGR1, EGR2, MAFB, POU2F2, RELB, NFKB2 and ATF3 regulators (Figure R1.2E). 

These regulators are important in the pro-inflammatory function, maturation, and differentiation 

of macrophages (Aziz et al., 2009; Ginhoux and Jung, 2014; Lawrence and Natoli, 2011). 

Recently, rapid up-regulation of EGR1, EGR2 and NR4A1 was observed in mouse macrophages 

within minutes of lipid A stimulation (Tong et al., 2016), which suggests a similar role in 

function during both stimulation and differentiation of macrophages. Interestingly, we detect 

expression of MAF and TEAD2 only in the latest stages of macrophage specification (Figure 

R1.2F), reflecting the specific differences in regulator expression between macrophage and 

monocyte-derived macrophages in our system.  

 

Measuring the earliest regulatory transitions during cellular commitment 

Having identified rapid changes in cellular morphology upon differentiation in our 

Giemsa staining assays, we focused our attention on characterizing the earliest expression and 

chromatin dynamics during the first 24 hours of differentiation. We first focused on genes that 

are up-regulated as early as 3 hours. Transcriptional regulators such as the key myeloid regulator 

PU.1, the macrophage-specific factor MAFB, and members of the EGR and STAT families show 

an increase in expression after 3 hours of macrophage induction (Figure R1.5A). We found a 

higher number of genes to be up regulated in macrophages (321 genes, Figure R1.5D-E) when 

compared to neutrophils (71 genes, Figure 5F) and monocytes (64, genes Figure R1.5G) at our 

earliest 3-hour time-point. The number of differentially expressed genes at 6 hours post-

differentiation in neutrophils (146 genes, Figure R1.5B) and monocytes (306 genes, Figure 
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R1.5C) are more comparable to the number of genes up regulated after 3 hours post-macrophage 

differentiation (Figure R1.5E). Known markers, such as the monocyte markers CD14 and 

transcription factor CEBPE show increased expression in monocytes while CCR6 and B2M 

reflect an appropriate neutrophil-specific differentiation response. Thus, the macrophage 

commitment program changes the expression of a larger number of genes sooner than neutrophil 

and monocyte terminal differentiation does in our system.  

 While changes in gene expression can rapidly occur as a result of cell-signaling induced 

by stress or immune stimulus, chromatin accessibility dynamics depend on both transcription 

factor occupancy and nucleosome remodeling, which may be rate limiting. To this end, we 

analyzed accessibility dynamics of regulatory chromatin elements over the first 24 hours and 

identified a total of 893 differentially accessible chromatin regions, 112 of which lose their 

chromatin accessibility over the first 24 hours. The largest fraction of these differentially 

accessible regions occurs during macrophage specification (465 chromatin elements, Figure 

R1.5I), with a majority of chromatin elements becoming accessible by the 24-hour mark in all 

lineages. A similar enrichment of differential accessible elements 24 hours post-differentiation 

were also observed for neutrophil (152 chromatin elements, Figure R1.5J) and monocyte (276 

chromatin elements, Figure R1.5K) lineages. These numbers represent a fraction of the overall 

changes in open chromatin detected in our time course, which suggests that changes in chromatin 

accessibility are more important for controlling the middle and later parts of myeloid 

differentiation programs. 

 

Time-dependent modules of transcriptional regulation define myeloid differentiation 

programs 
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We identified 2,854 genes that were differentially expressed across our time-series and 

partitioned them into 13 clusters, which display both temporal and lineage-specific profiles 

(Figure R1.3A). We explored co-expression of genes across all clusters and report representative 

genes that are relevant to cell-specific differentiation programs (Figure R1.3B). Interestingly, we 

found that cluster 3 (324 genes, Figure R1.3B) exhibits maximal expression at 12 hours in 

macrophages and equivalent 132/144 hour time-point in monocyte-derived macrophage cells, 

while the expression profiles in neutrophils and monocytes were relatively static. This identifies 

a set of genes expressed with similar expression patterns, but with different relative magnitudes 

during the differentiation of our two macrophage sub-types, within the same time-window of 

differentiation. We also report cell-specific clusters that encompass markers of neutrophil 

(cluster 7: CFP, CLL2, S100A9), monocyte (cluster 13: CD14, GNLY), and macrophage (cluster 

6: FCRLB, MERTK) lineages (Figure R1.3B). From our analysis, we identify several clusters of 

gene expression that capture both temporal and cell-specific patterns of cellular commitment. 

 From our previous analysis, we had identified several transcriptional regulators that 

exhibited clear temporal and lineage dynamics. This prompted us to focus on transcription factor 

expression in our time-series. We partitioned 232 differentially expressed regulators into 7 

clusters (Figure R1.3C), and identified time-dependent modules of transcriptional regulator 

expression. Such modules have also been described as ‘waves’ of transcriptional regulation in a 

previous study of Th17 differentiation (Yosef et al., 2013). We identify immediate, intermediate, 

and late modules of transcription factor expression during differentiation, and assign 

transcriptional classes to each cluster and lineage respectively (Figure R1.3D-G). Regulators that 

do not exhibit a distinct transcriptional class are considered static. Transcriptional regulators in 

cluster 4 (for example MYC, MYB, MAZ) are uniformly assigned to the immediate class across 
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all lineages, as the expression of these regulators is highest in the undifferentiated state and 

gradually decreases across time (Figure R1.3C). The undifferentiated HL-60 cells have been 

shown to exhibit high-levels of amplified MYC mRNA as characterized by the presence of extra 

copies on a double-minute chromosome (Schwartsmann et al., 1987). As cells are induced to 

commit to a differentiated program, we see a down regulation of MYC and additional cell cycle 

genes, which suggests that differentiating cells are exiting from cellular division. Interestingly, 

intermediate regulators identified in cluster 6 (for example FOS, EGR, JUN) exhibit similar 

expression profiles in monocyte-derived macrophage and macrophage lineages during 

differentiation. Conversely, regulators in cluster 1 such as MAF, SOX4, and IRF2, which are in a 

late expression module, are expressed highest solely in the macrophage lineage. Our expression 

analysis found distinct time-dependent modules of transcriptional regulation that account for the 

distinct temporal role of key regulators in the differentiation program of our model of myeloid 

commitment.  

 

Assessing chromatin landscape dynamics during differentiation and enrichment of 

transcriptional regulators  

We addressed the genome-wide dynamics of chromatin accessibility using the same 

methods applied in deriving our expression results and identify 8,907 differentially accessible 

chromatin elements distributed in 13 clusters (Figure R1.4A). We observe a loss of differential 

chromatin accessibility in 2,732/8,907 (31%) chromatin elements (clusters; 7 Figure R1.4B, 9, 

11) as cells were induced to differentiate, while 6,175/8,907 (69%) sites show a gain in 

chromatin accessibility that are shared or lineage-specific during myeloid differentiation. For 

example, elements from cluster 6 (n=778) show increased chromatin accessibility in both 
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macrophage and monocyte-derived macrophages whereas cluster 5 elements (n=429) are 

primarily accessible in neutrophils (Figure R1.4A-B). Interestingly, we observe a cell-specific 

preference for chromatin element accessibility in macrophage and monocyte-derived 

macrophage cells (clusters; 2 & 6 Figure 4D). The FC receptor genes (FCRLA, FCRLB), which 

are enriched for accessibility in macrophages and monocyte-derived macrophages, exhibit shared 

and cell-specific preferences for chromatin element accessibility. Importantly, the similarity in 

accessibility between macrophage and monocyte-derived macrophage cells shows a clear 

demarcation from the chromatin landscape of both differentiated monocytes and neutrophils. 

Lastly, we detect a subset (cluster 8, n=275) of shared chromatin elements that are accessible in 

all terminally differentiated cells across the time-series (Figure R1.4D).  

We performed a de novo motif analysis on each accessible element across all 13 clusters 

to identify the transcriptional regulators enriched in our differentially accessible chromatin 

elements. We identified 21 transcription factor motifs de novo (significant; q-value < 0.05, 

highly significant; q-value < 5.0 x 10-4) enriched in our chromatin clusters (Figure R1.4C). 

Motifs for MYC and E2F1 were enriched in chromatin clusters 7 and 11, which exhibit a 

decrease in accessibility during myeloid differentiation. Since MYC and E2F1 were identified in 

clusters assigned to the immediate transcriptional class in our expression analysis (Figure 

R1.3C), it is likely that a depletion of MYC and E2F1 occupancy occurs at these elements during 

cellular commitment. Additionally, we observe the PU.1 motif in 12 of 13 chromatin clusters, 

EGR (11 of 13), STAT (4 of 13), and IRF (8 of 13), among many other transcription factor 

binding site motif enrichments. Here, an initial analysis of transcription factor motif enrichment 

in our chromatin accessible clusters, combined with gene expression information provide a series 

of potential candidates to further understanding immune cell regulation. 
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Transcriptome and chromatin dynamics in response to LPS stimulation 

 We also measured immediate changes in the transcriptome and chromatin landscape of 

our differentiated cells after 3 hours in response to LPS treatment for macrophage (48 and 120 

hours), neutrophil (120 hours), monocyte (120 hours) and monocyte-derived macrophage (168 

hours) cells. We found 25 genes commonly up-regulated in monocyte, macrophage and 

neutrophil cells during LPS treatment (Figure R1.6D) including CXCL2, IL23A, CD44, and IL8, 

which have been shown previously to elicit an LPS-response in the immune system (De Filippo 

et al., 2013; Fujishima et al., 1993; Gee et al., 2002; Ohno et al., 1997; Sheikh et al., 2011). Gene 

ontology analysis demonstrates significant term enrichment for immune response (p-value < 

1x10-7) and programmed cell death (p-value 5x10-3). We measured differential expression of 48 

and 120 hours macrophages under LPS treatment, observing up-regulation of 115 and 210 genes 

respectively (Figure R1.6A, R1.7A-B) such as known LPS-responsive genes IL8, SOD2, TLR2, 

as well as transcriptional regulators such as MAFB and FOSL1. We then compared the 

differentiation states of macrophages at 48 and 120 hours treated with LPS. We find that the 

majority of the up-regulated genes during this comparison are markers of cellular maturation in 

macrophages (CD68, CSF1, FCGRT), with few up-regulated genes during LPS stimulation 

(Figure R1.7B). Based on the assumption that the timing of cellular differentiation for monocyte-

derived macrophage cells (168 hours) and macrophages (48 hours) are equivalent, we sought to 

address the similarity of expression profiles based on the cell-state and LPS response. While 

LPS-responsive genes (SOD2, PTGS2, IL8) showed no change differential change in expression 

during stimulation, several up-regulated genes demonstrate changes in expression for markers 

defining cellular identity (Figure R1.S2C; CSF1: macrophage, CD14: monocyte). We 
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furthermore found 80 genes that are up-regulated in monocytes treated with LPS (Figure R1.7C), 

while we detect 687 genes differentially expressed in neutrophils (Figure R1.6B). Interestingly, 

our analysis identifies the differential expression of IL6 in neutrophils after LPS treatment, 

which has been widely debated (Bazzoni et al., 1991; Cicco et al., 1990; Palma et al., 1992; 

Zimmermann et al., 2015), while PU.1 expression is unchanged. Our results demonstrate gene 

expression dynamics mediated by LPS treatment that are shared and cell-specific during cellular 

differentiation.  

 We measured the effects of LPS treatment on the chromatin landscape in each myeloid 

lineage. We found a total 352 chromatin elements that are differentially accessible in our time-

series after 3 hours of LPS treatment. A considerable fraction of differentially accessible 

chromatin elements are dynamic specifically in neutrophils (266/352, 75%), while only minor 

changes in the chromatin landscape are significant in macrophages (19/352, 5%), monocytes 

(6/352, ~2%) and monocyte-derived macrophages (32/352, 9%) (Figure R1.6F). We also identify 

a subset of elements that are shared in neutrophils and monocyte-derived macrophages that 

become accessible upon LPS treatment (31/352, ~9%). Because neutrophils demonstrate a 

significant change in the chromatin landscape during LPS treatment, we performed an analysis to 

integrate gene expression and chromatin accessibility profiles (Experimental methods and Figure 

R1.6E). We identified three clusters with dynamic profiles of chromatin accessibility during 

neutrophil differentiation (Figure R1.6G). Each differentially accessible chromatin element was 

associated to the nearest gene TSS (Experimental methods). We identified several LPS-mediated 

gene-element associations in neutrophil cells (Figure R1.6G). We show two examples upon LPS 

treatment in neutrophils; positively correlated expression and chromatin dynamics (Figure 

R1.S2H; NFKBIA), dynamic gene expression with a static chromatin landscape (Figure 
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R1.S2H’, SOD2), and unchanged accessibility and gene expression patterns (Figure R1.7D, 

S100A9). Our analysis of LPS-treated myeloid cells demonstrates that a measured gene 

expression response occurs quite rapidly, while the reorganization of the chromatin landscape is 

both cell-specific and time-sensitive.  

 

1.4 Discussion 

We used the transcriptome and open chromatin changes in differentiating HL-60 

promyelocytes to map the gene regulatory networks of human myeloid differentiation into 

macrophages, monocytes, and neutrophils. Our time-series of gene expression allowed us to 

carefully define temporal profiles of expression in connection with the timing of myeloid cell 

differentiation. Interestingly, we found greater changes in gene expression earlier (~3 hours) 

during macrophage differentiation than in monocytes and neutrophils. Immediately up-regulated 

genes include key transcriptional regulators such as PU.1, MAFB, and EGR that are known to 

drive macrophage maturation and differentiation. We observed greater cell-specific changes in 

expression of neutrophil and monocyte genes 6 hours post-differentiation. Conversely, while we 

detect substantial changes in gene expression early (3-6 hours) during differentiation, we find 

relatively few differential changes in the chromatin landscape until 24 hours post-differentiation 

in all three lineages. Instead, the majority of changes observed across the accessible chromatin 

landscape occurred during the middle to late temporal stages of differentiation.  Our analysis of 

the most immediate transcriptome and accessible chromatin dynamics highlights that the earliest 

changes in gene expression are independent of chromatin remodeling, while intermediate and 

late changes in gene expression are likely dependent on chromatin organization, enzymatic 

histone modifications, and the exact levels of transcription factors during cell differentiation.   
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Previously, blood monocytes were believed to predominantly give rise to all resident 

macrophages in adult tissues (van Furth and Cohn, 1968). Recent evidence now challenges this 

paradigm and offers insight about macrophage differentiation in the context of both tissue 

maintenance and development (Ginhoux and Jung, 2014). While monocytes contribute most to 

the tissue macrophage compartments during inflammation and in the steady state, adult tissue 

macrophages are additionally derived from embryonic precursors before birth (Ginhoux and 

Jung, 2014). We leveraged our human myeloid system to study and biologically simulate the 

derivation of macrophages in the context of adult specification and embryonic development; a 

monocyte-derived macrophage and an HL-60 derived macrophage. Our analysis identified 

clusters of genes and chromatin elements shared between monocyte-derived macrophages and 

macrophages (Figure R1.3, R1.4, R1.6), demonstrating similarities in regulatory components that 

are distinct from monocytes and neutrophils. However, our PCA analysis demonstrates that the 

cell trajectories measured during differentiation are quite distinct for the two macrophage 

subtypes with respect to the transcriptome and chromatin landscape, even though both 

differentiation events were triggered by the same stimulus (PMA), resulting in subtype-specific 

expression for key transcriptional regulators (Figure R1.2). Furthermore, an analysis comparing 

LPS-mediated gene expression changes for equivalent time-points of macrophage (48 hours) and 

monocyte-derived macrophages (168 hours) showed that most of the differentially expressed 

genes were mediators of macrophage or monocyte specification. While the monocyte-derived 

macrophage cells exhibit phagocytosis functionality and cellular morphology consistent with 

macrophages (Figure R1.1), it is still possible that these cells may not have matured fully or 

reached a terminally differentiated state, as they still show expression for CD14. While the time 
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required for differentiation of adult macrophages is not precisely known, our analysis provides a 

temporal paradigm of the earliest events specified during macrophage differentiation. 

The induction of LPS on each myeloid cell type ultimately revealed greater changes in gene 

expression than across the chromatin landscape. Interestingly, we observed the greatest change in 

chromatin accessibility for neutrophils 3-hours post LPS stimulation. Our analysis of coordinated 

changes in expression with changes of accessibility of nearest regulatory elements revealed 

several LPS responsive regulatory elements specified in neutrophils. The structure of neutrophil 

nuclei as segmented lobes offers an interesting paradigm in understanding how the chromatin 

landscape is organized in such a complex and convoluted nuclear assembly.   
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1.5 Figures 

Figure R1.1 A dynamic model of human myeloid differentiation using HL-60s 

 

(A) HL-60 directed differentiation of neutrophil, monocyte and macrophages show cell 

intermediates at varying time-points using Giemsa staining. Intermediate progenitors were 

characterized based on morphology during the course of differentiation and categorized as: (I) 

immature macrophage, (II) macrophage < 20µm, (III) macrophage > 20µm, (IV) myelocyte, (V) 

banded neutrophil, (VI) segmented neutrophil, (VII) monoblast, (VIII) promonocyte, (IX) 

monocyte. Scale indicates 20µm. (B) Schematic outline of study design. Colored cell identifier 

denotes myeloid cell-types. (C) Temporal staging of time-points for each cell-type was based on 

the clustering of RNA-seq and ATAC-seq data. (D) Genome-wide clustering reveals inherent 
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structure of the transcriptome and chromatin landscape during myeloid differentiation (Pearson 

correlation). Black boxes mark samples grouped as temporal stages. Grey boxes indicate LPS 

induced time-points. 
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Figure R1.2 Distinct cells during myeloid differentiation 

(A and B) Principal component analysis of RNA-seq and ATAC-seq time-series. Time-points 

were connected serially to illustrate cell-specific trajectories. Cell-types are labeled with distinct 

colored points. (C) Heatmap of 902 expressed transcription factors during macrophage, 

monocyte, and monocyte-derived macrophage differentiation. Each column represents the 

expression for a time-point, whereas each row represents a transcription factor. RNA-seq data is 

row-mean normalized and row clustered using Euclidean distance. (D) Representative cluster of 

transcription factors showing the highest expression in monocyte-derived macrophages. (E) 

cluster of transcription factors that demonstrate similar expression patterns between macrophage 
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and monocyte-derived macrophage time-points. (F) representative cluster of transcription factors 

expressed specifically in macrophage cells. 
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Figure R1.3 Temporal modules of transcriptional regulator expression 

 

(A) Heatmap of 2,854 differentially expressed genes during myeloid differentiation (α=0.05, 

FDR < 1%, p-val < 0.01). 13 expression clusters were derived using k-means and denoted by 

both color and number for all differentially expressed genes. FPKM values log transformed and 

row-mean normalized for all genes. (B) Gene expression profiles for clusters (3, 6, 7, and 13). 

Mean expression and standard deviation (error bars) are plotted across all biological replicates 

and for all genes in each corresponding cluster. Cluster size (n) and representative genes (rg) are 

denoted. (C) Heatmap of 232 differentially expressed transcriptional regulators (α=0.05, FDR < 

1%, p-val < 0.01). Seven regulator clusters were derived using k-means (C1-C7). Representative 
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regulators from each cluster are shown respectively. FPKM values are log transformed and row-

mean normalized for all regulators. (D) Schematic of transcriptional regulator classification. 

Transcriptional classes are denoted as immediate (blue), intermediate (pink), late (Purple) and 

static (Gray). (E, F and G) Transcriptional profiles for each cluster based on classification for 

macrophage, neutrophil and monocyte cells respectively. Mean FPKM expression is shown for 

each cluster.  
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Figure R1.4 Temporal modules of differential chromatin accessibility 

 

(A) Heatmap of 8,919 differential accessible chromatin elements during myeloid differentiation 

(α=0.05, FDR < 1%, p-val < 0.01). 13 expression clusters were derived using k-means and 

denoted by both color and number for all chromatin elements. 10xRPM (Reads Per Million) 

values are log transformed and row-mean normalized. (B) Heatmaps showing ATAC-seq read 

density of chromatin elements from three clusters (5,6, and 7). Mean ATAC-seq read density 

was derived using temporal stages (e:Early, m: Middle, l: Late). ATAC-seq signal is shown for a 

window of +/-1.5 kb from the chromatin element center and ranked from strongest to weakest for 

all comparisons. Cluster size (n) is denoted. (C) Heatmap of de novo motif transcription factor 

enrichment. Rows indicate cluster of chromatin elements mined for motifs, while columns 

indicate transcription factor motif of interest. Transcription factor motifs were hierarchically 
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clustered based on significance using a Euclidean distance. Non-significant motifs are 

represented as white boxes. Motif significance is shown for a q-val < 0.05 and q-val < 5x10-4 

denoted by light or dark green boxes respectively. (D) Examples of chromatin element clusters 

specified during differentiation. Browser tracks of ATAC-seq data for all cell-types are 

normalized by read density. Chromatin elements from two differing cluster profiles reflect the 

complex regulatory diversity (left browser panel) during myeloid differentiation. Cell-specific 

chromatin accessibility is strongly enriched in neutrophils (middle panel), while temporal 

changes in chromatin element accessibility can be observed across all cell-types (last panel). 

Colored boxes identify with chromatin cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41	
	

Figure R1.5 Characterizing immediate changes in expression and chromatin accessibility 

 

(A) Differential gene expression changes between undifferentiated HL-60 and 3 hour 

macrophages (321 genes), FDR < 1%, p-value < 0.01. (B and C) Differential gene expression of 

undifferentiated HL-60 and 6 hour neutrophils (146 genes) and monocytes (306 genes), FDR < 

1%, p-val < 0.01.Representative genes are denoted by color. 

(D and E) Schematic of immediate changes in gene expression. Branch lengths in diagrams 

represent the number of differentially expressed genes up regulated for each cell-type at 3 and 6 

hours post-differentiation.  (F) Differential gene expression changes between undifferentiated 

HL-60 and 3 hour neutrophil (71 genes), FDR < 1%, p-value < 0.01.(G) Differential gene 
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expression changes between undifferentiated HL-60 and 3 hour monocyte (64 genes), FDR < 

1%, p-value < 0.01. (H) Differential gene expression changes between undifferentiated HL-60 

and 6 hour macrophage (603 genes), FDR < 1%, p-value < 0.01. (I, J and K) Differential 

chromatin accessibility of early (0-24 hours) macrophage (n=465 chromatin elements), 

neutrophil (n=152 chromatin elements), and monocyte (n=276 chromatin elements) 

differentiation (p-val < 0.05). Chromatin accessibility dynamics are observed across several 

time-points and denoted respectively. 
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Figure R1.6 Immediate effects of LPS-stimulation are dynamic across the transcriptome 

and chromatin landscape during myeloid differentiation 

 

(A and B) Differential gene expression changes between 120-hour macrophages/neutrophils and 

120-hour macrophages+LPS (210 genes)/neutrophils+LPS (687 genes), FDR < 1%, p-value < 0.01. 

Representative genes are colored and labeled for identification. FPKM values were log 

transformed. (C) Differential gene expression changes between 48-hour macrophages+LPS (911 

genes) and monocyte-derived macrophages+LPS (878 genes), reflecting a majority cell-specific 

expression changes relative to LPS-mediated differences (FDR < 1%, p-value < 0.01). FPKM 

values were log transformed and n.s denotes not significant. (D) Diagram of LPS-mediated genes 
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up regulated and shared across all LPS treated time-points. Gene ontology analysis shows 

significant enrichment in terms for 16/25 genes. Red hexagon denotes enrichment in 

inflammatory and defense response (Benjamini < 1x10-7). Green triangle denotes enrichment in 

programmed cell death (Benjamini < 5x10-3). (E) Schematic design for integrative analysis of 

LPS-mediated changes in gene expression and chromatin accessibility. See experimental 

methods. (F) Cell-specific changes in differential chromatin accessibility across all myeloid cell-

types, FDR < 1%, p-value < 0.01 (n=352 chromatin elements). Cluster size is denoted as (n) and 

colored boxes reflect cell-specific or combinatorial representation. (G) Heatmap of 237 

differentially accessible LPS-mediated chromatin elements in neutrophils. Three chromatin 

clusters were derived using k-means. 10xRPM (Reads Per Million) values are log transformed 

and row-mean normalized for all data. Differential chromatin elements were associated to 

nearest genes (schematic, E) and shown with approximate chromatin element distance to gene 

TSS. Cluster size (n) is denoted. (H and H’) Examples of LPS-mediated changes in chromatin 

accessibility and gene expression in neutrophils. Browser tracks of ATAC-seq data for 

neutrophils are normalized by read density. RNA-seq FPKM values are indicated for each gene 

and treatment. Colored boxes denote chromatin accessibility as static or dynamic. The change in 

gene expression and chromatin accessibility are well correlated for gene NFKBIA during LPS 

stimulation (top panel). Significant change in gene expression is observed for SOD2 without a 

significant change in promoter accessibility (bottom panel). 
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Figure R1.7 LPS-mediated gene and open chromatin changes 

(A) Differential gene expression changes between 48-hour macrophages and 48-hour 

macrophages+LPS (115 genes), FDR < 1%, p-value < 0.01. (B) Differential gene expression 

changes between 48-hour macrophages+LPS(27 genes) and 120-hour macrophages+LPS (60 genes), 

FDR < 1%, p-value < 0.01. (C) Differential gene expression changes between 120-hour 

monocytes and 120-hour monocytes+LPS (80 genes), FDR < 1%, p-value < 0.01. Representative 

genes are colored and labeled for identification. FPKM values were log transformed. (D) UCSC 

browser screenshot for S100A9 showing no change in gene expression and chromatin 

accessibility during LPS stimulation. ATAC-seq data for neutrophils are normalized by read 

density. RNA-seq FPKM values are indicated for each gene and treatment. 
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Figure R1.8 ATAC-seq data quality and peak calling strategies 

 

(A) Sequencing strategy for 96 ATAC-seq libraries. Deep sequencing was performed on samples 

with best efficiency measurement (fraction of mapped reads in peaks/ total mapped reads). (B) 

Histogram of ATAC-seq library efficiencies. Calculated mean is 32%, median is 31%. (C) 

Pipeline for removing blacklist regions and generating consolidated peak list. (D) Distribution of 

ATAC-seq peaks that overlap promoter and non-promoter elements genome-wide. (E) 

Histogram of ATAC-seq peak lengths for consolidated peaks (n=69,658).  

 

 

 

96 ATAC-seq libraries!
Mean= 32!

Median= 31!

Sequence all 96 ATAC-seq 
libraries!

Select 2/3 from each time point 
based on best Efficiency!

Re-sequencing to a depth of 
~25M informative reads!

Consolidated set of ATAC-seq peaks!
(Across all conditions)!

Final set of consolidated set of !
69,658 open chromatin regions!

Filter through ENCODE blacklist, !
ChrM, partial chromosomes!

69,658 open chromatin CRMs!

Non-promoter!
Promoter!

0!

50!

100!

Percentage!

25!

75!

Mean ~500bp!

A 

B 

C 

D E 



47	
	

1.6 Methods 

Experimental design 

 HL-60 cells (ATCC) were grown in Modified Dulbecco's Medium in a final 

concentration of 20% FBS with penicillin antibiotics (1%). Cells were routinely cultured at a 

density of 1x106 cells/ml. Differentiation of HL-60 cells into macrophage (Murao et al., 1983), 

monocytes (Mangelsdorf et al., 1984), and neutrophils (Breitman et al., 1980) was performed as 

previously described. Additionally, monocytes (120 hours post-differentiation) were stimulated 

with PMA to induce differentiation into monocyte-derived macrophages. LPS stimulation at 48, 

120, and 168 hours for specific cell-types was induced at a final concentration of 100ng/ml for 

~3h, immediately followed by expression and chromatin analysis. Cells were induced to 

differentiate from three biological HL-60 cell culture growths over the course of 5-7 days. For 

each time-point, differentiating cells were collected for both RNA-seq (~2-3 million cells) and 

ATAC-seq (~50,000 cells) from the same treated cells. All biological replicates were collected 

for the same time-point simultaneously and libraries were generated from each single biological 

replicate were processed together for both RNA-seq and ATAC-seq measurements. We assayed 

a total of 13 cell-specific time-points upon myeloid differentiation. This resulted in the 

generation of 96 ATAC-seq and 96 RNA-seq datasets. 

Morphological and functional characterization of myeloid cells 

 Cell morphology was profiled during myeloid differentiation using an optimized Giemsa 

staining procedure. Cells were imaged using the Zeiss Observer at 40X magnification. To test for 

cell phagocytosis, HL-60 and differentiated cells were tested with the Cayman Phagocytosis 

Assay kit (IgG FITC) at various time-points of differentiation. Phagocytosis was tracked through 
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interval imaging (5-10 seconds) for a total of 30-60 minutes using the EVOS FL. Videos were 

compiled from images and assessed for active cell phagocytosis and movement. 

Tandem gene expression and chromatin profiling  

 Approximately ~2 million HL-60 and differentiated cells were collected for RNA-seq 

and 50,000 cells were harvested for ATAC-seq for each replicate of each time point. Briefly, 

cells were assessed for cell viability, counted, and washed with PBS.  RNA-seq was performed 

as previously described (Mortazavi et al., 2008). ATAC-seq was performed as previously 

described (Buenrostro et al., 2013)with the addition of a DNA size selection step after library 

generation to enrich for accessible chromatin ranging from 100-400bp. RNA-seq libraries were 

sequenced as single-end 86bp and ATAC-seq libraries as paired-end 43bp reads on the Nextseq 

500 Illumina platform. Approximately 1 billion RNA-seq and 2 billion ATAC-seq reads were 

generated. 

Gene expression analysis of myeloid differentiation 

 RNA-seq reads were mapped to the hg38 reference genome using STAR (Dobin et al., 

2013) aligner and mapped to Gencode version 20 gene annotations using Cufflinks (Trapnell et 

al., 2010). Batch effects due to the generation of libraries were considered and corrected for 

using Combat (Johnson et al., 2007b).  Batch-corrected data was normalized using TMM 

function in EdgeR (Robinson et al., 2010). maSigPro (Nueda et al., 2014) allows for a two-step 

regression modeling strategy, which was used in identifying gene expression dynamics across 

differentiation of all lineages. An alpha of 0.05 for multiple hypothesis testing and a false 

discovery control of 1% were used, in both gene and transcription factor analysis. A k-cluster of 

13 was selected based on previous analysis using hierarchical clustering and k-means clustering 

on the entire dataset. Gene ontology enrichments were determined for each cluster using DAVID 
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(Huang et al., 2007). Gene expression heatmaps were generated using Tree View 3.0 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and using R software. 

PCA analysis was performed using R. 

ATAC-seq data processing and analysis 

 ATAC-seq reads were mapped to the hg38 reference genome using bowtie (Langmead et 

al., 2009). HOMER was used to call open chromatin regions across all replicates. A dual 

selection strategy was employed for calling open chromatin regions using HOMER. Briefly, 

HOMER was run on a size setting to enrich for ‘narrow’ regions (120-150bp) then sequentially 

run on size selecting ‘broad’ regions (500bp) at an FDR 1%. ‘Narrow’ and ‘broad’ regions were 

then merged into a single bed file for each replicate. This allowed for an enrichment of diverse 

accessible chromatin elements. A region identified in all three biological replicates was then 

considered as a biologically reproducible specific open chromatin region. A master set of open 

chromatin regions was generated by consolidation of all peaks identified across all time-points. 

ENCODE ‘blacklist’ regions and open chromatin regions mapping to ChrM were discarded from 

our analysis. ATAC-seq data quality was measured using a sample efficiency measurement: 

fraction of uniquely mapped reads in peaks divided by all uniquely mapping reads. The mean 

efficiency for all ATAC-seq data was 32%, ranging from 25%-65% for all samples.  Read 

coverage was estimated for each open chromatin region and normalized by sample size and 

efficiency to detect changes in open chromatin dynamics across all time-points.  Data was then 

corrected for batch effects using Combat and normalized using the TMM function in EdgeR. 

maSigPro was used to identify open chromatin dynamics across the time-series (alpha=0.05, 

FDR=1%). Chromatin heatmaps were generated using Deeptools software (Ramírez et al., 2014). 

PCA analysis was performed with ATAC-seq counts using R functions. 
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Transcription factor motif enrichment 

 Chromatin clusters were mined for de novo motifs using EXTREME (Quang and Xie, 

2014). Chromatin elements were converted to fasta format using a masked hg38 genome 

reference. Fasta dinucleotide shuffling was performed on masked data (fasta-dinucleotide-

shuffle.py) and k-mer search (GappedKmerSearch.py). PWM’s were generated 

(Consensus2PWM.py) and used to identify motifs de novo (EXTREME.py). Motifs similarities 

were quantified using TOMTOM (Gupta et al., 2007) and recovered based on significant q-

values. 

LPS-stimulation analysis 

 Corresponding time-points that included LPS stimulation were analyzed for both 

differential chromatin and gene expression comparisons. EdgeR was used to call differentially 

expressed and accessible chromatin elements with an FDR <1%, p-value < 0.05 and fold change 

> 1.5. Hierarchical clustering was performed using Euclidean distance on neutrophil chromatin 

elements. Association of LPS-specific accessible chromatin elements to LPS-specific identified 

genes was performed using GREAT (McLean et al., 2010). Gene-element associations were then 

filtered to a distance of 3kb from element to TSS.  
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Chapter 2 : Dynamic gene regulatory networks of human myeloid differentiation 

2.1 Abstract 

 Hematopoiesis requires the coordinated regulation of several transcription factors that 

define the regulatory circuits driving cellular specification. Here we focus on the transcriptional 

and chromatin landscape of human myeloid differentiation using a 5-day time-series of 

promyelocyte differentiation into macrophage, neutrophil, monocyte, and monocyte-derived 

macrophages to derive dynamic gene regulatory networks. We identify temporal modules of 

transcriptional regulator expression and integrate with open chromatin footprinting to build 

dynamic gene regulatory networks of 23 key immune transcription factors. We find from our 

gene regulatory networks that immune transcription factors like PU.1 only regulate a subset of 

their targets at a specified time, via a cell-dependent manner during differentiation. Interestingly, 

we derive subnetworks of immune regulatory interactions for transcription factors EGR and 

GFI1, revealing that their complex regulatory circuits are configured in a cell-dependent manner. 

Additionally, we observe diverse VDR cis-regulatory architecture in macrophages and 

monocytes, which are differentially specified by key regulators during cellular differentiation. 

Altogether, our simple model reveals the underlying complexity of regulatory circuits, 

transcriptional dynamics, and cell intrinsic programs required for human cells of the myeloid 

branch. 
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2.2 Introduction  

Vertebrate developmental commitments are implemented within cells through 

remodeling of chromatin accessibility of promoter and enhancer cis-regulatory modules (CRMs) 

across the genome to allow for transcription factor binding. The identification of CRMs is 

critical to understanding the complexities of gene regulatory circuits within the genome in a 

variety of organisms (Hardison and Taylor, 2012; Peters and Davidson, 2015; Wray, 2007). A 

powerful application of open chromatin assays such as ATAC-seq and DNase-seq is the 

derivation of transcription factor footprints. DNaseI footprinting has been used to identify 

transcription factor occupancy (Hesselberth et al., 2009; Neph et al., 2012a) and to derive 

transcriptional networks in many biological contexts (Neph et al., 2012b; Stergachis et al., 2014; 

Sullivan et al., 2014). Recently, ATAC-seq was also applied to characterizing transcription factor 

regulation in the mammalian brain (Mo et al., 2015) and identifying variation in primary T cells 

(Qu et al., 2015). There has been relatively less work in incorporating open chromatin directly in 

a dynamic gene regulatory network (GRN). Sullivan et al. characterized the light/dark time-

specific dynamics through the generation of chromatin interaction networks in A. thaliana 

(Sullivan et al., 2014). Yet all GRNs are by their very nature dynamic and should ideally capture 

the many steps of differentiation that have been described in well-defined systems such as T-cell 

development (Zhang et al., 2012b). 

Several studies have looked at genome-wide chromatin accessibility dynamics in myeloid 

cells such as tissue macrophage populations (Lavin et al., 2014), profiling of terminally 

differentiated immune cells (Lara-Astiaso et al., 2014),  chromatin dynamics of macrophages and 

monocytes (Gosselin et al., 2014; Saeed et al., 2014), immune-responsive late enhancers in 

macrophages upon stimulation (Ostuni et al., 2013), and immediate responses to lipid A 
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stimulation in mouse macrophages (Tong et al., 2016). Another study measured the chromatin 

accessibility landscape of neutrophil populations (Wong et al., 1999). While studies have 

investigated gene networks in several immune cell-types (Clark et al., 2014; Georgescu et al., 

2008; Spooner et al., 2009; Yosef et al., 2013; Zhang et al., 2012b), dynamic gene regulatory 

networks during myeloid differentiation have not been previously described. Studies have 

focused on changes in histone modifications and transcription factor binding by comparing 

terminally differentiated cells, but a comprehensive view of how chromatin elements gain or lose 

accessibility throughout myeloid differentiation has not been published and would by default not 

capture any intermediate stages for which appropriate markers have not yet been identified. An 

unbiased and appropriately controlled model system is needed to probe changes in gene 

expression and the chromatin landscape for the purpose of mapping the regulatory networks that 

act during myeloid differentiation. 

We use the HL-60 model system to address the transcriptional complexity and the 

dynamics of cis-regulatory control in myeloid differentiation using a 5-day time-series analysis 

of genome-wide transcriptome and chromatin accessibility dynamics by probing the earliest (3 

hours) to the latest (up to 168 hours depending on the cell) stages of cellular differentiation. We 

use gene expression to select dynamic regulators and chromatin footprinting in our 192 datasets 

to generate draft gene regulatory networks of macrophage, monocyte and neutrophil 

differentiation. We identify both previously described transcription factor interactions as well as 

novel immune regulatory circuits. Collectively, our results provide a comprehensive and high-

resolution view of the dynamic transcriptome, chromatin landscape, and complex immune gene 

regulatory network driving human myeloid differentiation. 
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2.3 Results 

Building myeloid gene regulatory networks using chromatin footprinting data 

Based on the transcription factor modules and de novo motif analysis of our differentiated 

myeloid cells, we had observed several key immune regulators to display distinct cell and 

temporal patterns of expression. We focused our analysis on 23 transcriptional regulators which 

displayed dynamic expression patterns and whose DNA motifs were significantly enriched 

across myeloid differentiation. Gene expression differences for the 23 regulators seemed to vary 

across early, intermediate, and late stages of differentiation (Figures R2.1-4). For example, the 

regulator MAF was expressed in the later stages of the promyelocyte derived macrophages 

(Figure R2.2), whereas GFI1 expression was most differential in neutrophils (Figure R2.3). 

Interestingly, we observed dramatic and dynamic kinetics in expression for EGR transcription 

factors (Figures R2.1-4).  

We leveraged our ATAC-seq datasets by merging biological replicates and time-points 

based on temporal staging to achieve ≥ 200 million reads for chromatin footprinting analysis. We 

identified an average of 85k footprints per time-point, resulting in more than 1.02 million 

chromatin footprints across our time-series. To infer transcriptional interactions using chromatin 

footprints, we generated a gene regulatory network of footprints in the promoter and proximal 

enhancers of key differentially regulated transcription factors (Experimental methods), allowing 

us to identify temporal and cell-specific regulatory dynamics during cellular differentiation 

(Figure R2.5A). Our strategy captured well-known myeloid regulators such as PU.1, EGR, GFI1, 

and CEBPα among others. A ‘genome-view’ (Peters and Davidson, 2015) of all identified 

interactions derived from our networks, consisting of 23 regulators with 158 interactions is 

illustrated as a circuit diagram (Figure R2.5B). One key difference between our draft GRNs and 
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classical, perturbation-based GRNs is that our footprinting alone does not allow us to assign 

activating or repressing activity to footprints. We evaluated the precision of our networks in 

identifying PU.1 interactions with published HL-60 PU.1 ChIP-seq data. Approximately ~90% 

of our PU.1 derived footprints are supported by PU.1 ChIP-seq data in undifferentiated HL-60 

cells (Figure R2.6A-B). Furthermore, all five PU.1 edges in our HL-60 gene regulatory network 

were also supported by PU.1 ChIP-seq data. We show gene regulatory networks for macrophage, 

monocyte, neutrophil, and monocyte-derived stages of differentiation for all 23 transcriptional 

regulators (R2.7-11). Several other linkages in our GRNs were previously identified in myeloid 

cells (Figure R2.12), which suggest that our networks capture known regulatory interactions 

along with many new candidate interactions.  

 Having observed time-dependent modules of expression for many transcriptional 

regulators, we investigated the changes in our draft, footprinting-based GRNs during early, 

intermediate, and late time points of differentiation in macrophage, neutrophil, monocyte, and 

monocyte-derived macrophage differentiation based on the grouping of time-points into temporal 

stages. One example out of many dynamics in our footprinting GRN is the behavior of the 

vitamin D receptor (VDR) gene regulatory elements. VDR has been shown to elicit and 

modulate immune responses in several cell types including macrophage and monocyte cell-types 

(Aranow, 2011; Baeke et al., 2010; Mora et al., 2008). We observed several dynamic regulatory 

inputs at the VDR promoter element in both monocyte and macrophage gene regulatory 

networks. Interestingly, we detect early regulation of VDR by MYC, CEBPα, PPARG, and PU.1 

during monocyte differentiation, followed by a subsequent loss of CEBPα and MYC regulation 

in the intermediate time-points and maintained regulation for both PU.1 and PPARG in the late 

stages of differentiation (R2.13B). This dramatically contrasts the level of regulatory control 
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during macrophage differentiation, whereby the VDR promoter is regulated in the late stages of 

macrophage differentiation, occupied by PU.1, STAT, NFE2, MAF, MAFB, STAT and JUND 

regulators (Figure R2.13A). We also observe cell-specific expression patterns for the immune 

regulators MAF and MAFB, which are important for monocyte and macrophage differentiation 

and self-renewal (Aziz et al., 2009; Kelly et al., 2000). While it has been shown that the VDR 

promoter contains potential binding sites for regulators JUND (AP-1), PU.1, and MYC (Jehan 

and DeLuca, 1997), our analysis recovers these previously known potential regulatory 

interactions but also emphasizes the dynamic and cell-specific regulation of VDR during both 

monocyte and macrophage differentiation. Interestingly, a gain in regulatory inputs at the VDR 

promoter correlates with its general increase in gene expression during late macrophage 

specification (Figure R2.13B,D), while the expression of VDR in monocytes is sustained 

throughout the time-series, suggesting cell-specific regulatory control.  

 

Myeloid cell specification network analysis  

The PU.1 locus has been extensively characterized for transcription factor regulatory 

interactions in the context of hematopoietic development (Hoogenkamp et al., 2007; Leddin et 

al., 2011). To study the PU.1 regulatory interactions recovered in our myeloid time courses, we 

generated PU.1-specific subnetworks. A total of 23 interactions were observed, of which 11 

imply targeted regulation of PU.1 and 12 suggest PU.1-mediated interactions (Figure R2.14B). 

As a key regulator of myeloid cells, we observe a general trend for increased expression of PU.1 

across our time-series, but with observably different kinetics between each cell-type (Figure 

R2.14A). It has been previously shown that RUNX1 specifically regulates both the upstream 

regulatory elements (Huang et al., 2008) and promoter of PU.1 (Koh et al., 2013) in myeloid 

cells. Our PU.1 network recovers RUNX1 regulatory interactions for undifferentiated cells, but 
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also for differentiated macrophage, monocyte, monocyte-derived macrophage and neutrophil 

subnetworks (Figures R2.14C-G). Similarly, CEBPα has also been shown to regulate PU.1 

through regulation of its promoter and upstream regulatory elements in hematopoietic cells 

(Kummalue and Friedman, 2003; Yeamans et al., 2007). We observe CEBPα regulating PU.1 

specifically in differentiated macrophage and neutrophil cells (Figures R2.14D,G). Our 

subnetworks also illustrate the PU.1 auto-regulatory feedback loop, maintaining a constant 

transcriptional burst of expression across differentiation.  Interestingly, our networks also 

identify PU.1 occupancy at several additional regulators such as MAFB, EGR, STAT, and VDR. 

Our chromatin analysis identifies likely candidates regulated by PU.1 during granulopoiesis. 

 Because PU.1 acts as potent regulator of myeloid fate specification, we focused on PU.1-

specific regulation of EGR family members in terminally differentiated cells. Neutrophil and 

macrophage cell fate specification is mediated through concerted regulation of PU.1, EGR (1,2), 

GFI1, and CEBPα (Laslo et al., 2006). Our PU.1 subnetwork identifies regulation of PU.1 of 

EGR family members during macrophage and neutrophil differentiation (Figures R2.14D,G). To 

this end, we generated both EGR (Figure R2.15) and GFI1 (Figure R2.6) subnetworks to 

illustrate their regulatory interactions in myeloid cells. EGR regulators can directly repress GFI1 

promoter activity in NIH3T3 cells in luciferase assays (Laslo et al., 2006), and our EGR 

subnetwork captures this regulatory interaction using footprinting. We also identify EGR-

specific regulation of lineage and temporal mediated regulators such as MAFB, which is 

specified during macrophage commitment, and JUND, which is specified in both monocyte and 

macrophage differentiation (Figure R2.15D,E). Our analysis emphasizes the dynamic expression 

patterns for each differentially expressed EGR (1,2,3) member during myeloid differentiation 

(Figure R2.15G). We observe the most dramatic change (~10-100 fold) in EGR expression in 
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macrophage cells 3 hours post-differentiation. Interestingly, the monocyte-derived macrophage 

cells also display the same sharp and dramatic increase in EGR expression. We identify auto-

regulatory feedback interactions for each EGR members across the different cell-types (Figure 

R2.15C-F), a likely explanation for dramatic and sustained EGR expression during 

differentiation. While the role of EGRs in specifying neutrophil and macrophage fates has been 

previously described (Laslo et al., 2006, 2008), our analysis provides additional novel chromatin 

interactions of EGR regulation during myeloid differentiation.       

Similarly, the transcriptional repressor GFI1 has been previously shown to function as an 

integral regulator in multi-lineage blood cell development through the regulation of gene 

expression (Van der Meer et al., 2010; Möröy and Khandanpour, 2011). We identify dynamic 

changes in both the temporal expression (Figure R2.6C) and GFI1 occupancy for several 

transcription factors in our gene regulatory networks (Figure SD-H). GFI1 can promote 

neutrophil differentiation by antagonizing PU.1 and EGR activity via direct protein-protein 

interactions (Dahl et al., 2007) and through direct transcriptional repression (Kubosaki et al., 

2009; Laslo et al., 2006; Spooner et al., 2009). Our analysis identifies this well-studied 

regulation of PU.1 by GFI1 in our HL-60 and neutrophil networks (Figures R2.6D,E). We 

recover the GFI1 auto-regulatory feedback loop in our neutrophil network (Figure R2.6E), which 

has been studied in previous work on GFI1 auto-regulation (Yücel et al., 2004), as well as novel 

GFI1 regulatory interactions for STAT6 and MAFB in neutrophil and monocyte cell-types 

(Figures R2.6F,G). Our network analysis recovers many previously identified regulatory 

interactions fundamental in hematopoietic cells, in addition to many new candidate interactions. 

It also demonstrates the power of chromatin networks in uncovering the dynamic regulatory 

circuitry specified during cellular differentiation. 
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2.4 Discussion 

We derived clusters of differentially expressed transcription factors as well as chromatin 

accessible elements genome-wide and analyzed the difference in expression of several 

transcriptional regulators and their corresponding motif enrichment across the chromatin 

clusters. We built a myeloid differentiation gene regulatory network using open chromatin 

footprinting using methods previously used to study transcriptional regulatory interactions in 

several biological contexts (Neph et al., 2012b; Sullivan et al., 2014). In our case, we integrated 

transcription factor expression and chromatin footprints from ATAC-seq to build gene regulatory 

networks of myeloid differentiation. Our networks include 23 differentially expressed regulators 

interconnected through 158 footprints. We recovered regulatory interactions that were derived 

experimentally from previous studies in hematopoietic cells, thus demonstrating the accuracy in 

our analysis framework. For example, our analysis recovered the PU.1 and GFI1 auto-regulatory 

feedback loops, which have been implicated in the controlled expression of both transcription 

factors in hematopoietic cells (Chen et al., 1995; Okuno et al., 2005; Yücel et al., 2004). 

Interestingly, we detect PU.1 footprints in distinctly different target genes in each lineage, 

despite PU.1 expression increasing to similar end-levels across all cell types in our time-series. 

These lineage-specific differences could come from a combination of regulation of chromatin 

opening at these target genes by other TFs or simply from combinatorial interactions with co-

factors. In contrast to PU.1, the expression of GFI showed highest expression in terminally 

differentiated neutrophils, was present at lower levels in macrophage and monocytes, and was 

not significantly detected in monocyte-derived macrophages. Unlike PU.1, the subnetworks for 

GFI1 mirror our observations from its expression profile in that the regulatory interactions in 

neutrophils were unique, were common between macrophage and monocytes, and absent in 
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monocyte-derived macrophage cells. Thus, network analysis highlights the complexity of the 

PU.1 subnetwork compared to other TFs such as GFI1.  

 We observed disparate EGR expression between differing cell-types and amongst the 

EGR family members across differentiation. Our EGR subnetwork analysis revealed a complex 

series of regulatory interactions for each EGR member that were distinct to each lineage. Earlier 

investigations have demonstrated that while expression of the EGR factors is lineage specific, 

EGR1/2 regulators can transcriptionally compensate for one another (Laslo et al., 2006). 

Interestingly, auto-regulatory feedback loops at different EGR family members were prominent 

features that were detected and for each lineage, likely driving and/or tightly regulating their own 

expression. While we cannot specify which EGR member is directly interacting in our network 

due to the similarity of their DNA-binding motifs, we rely on the expression for each member as 

an indication of the most likely candidate, and thus specify inferred interactions from all 

EGR1/2/3 members in our networks. Interestingly, the cooperative regulatory interactions 

detected for the EGR regulators were highly complex. For example, EGR1 was regulated by 

E2F1/8, MYC, EGR, and PPARG in macrophages, while in neutrophils EGR1 was regulated by 

PU.1, E2F1/8, CEBPα, EGR, and PPARG. Strikingly, 4 out of 5 and 4 out of 6 regulatory 

interactions were shared upstream of EGR1 between macrophage and neutrophil cells, 

respectively. Our network analysis of the EGR sub-circuitry expands on the current knowledge 

of known regulatory linkages and elucidates the novel interactions encoded in the gene 

regulatory networks of myeloid cells. 

 Our experimental data and analysis present the first example of gene regulatory networks 

built using footprinting during human myeloid differentiation. Our networks encompass early, 

intermediate, and late stages of differentiation. While we observed many interesting changes in 
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footprint-based regulatory interactions during differentiation, we focused on the regulatory 

control of VDR, because of its relatively understudied role in macrophages, monocytes, and the 

innate immune system. While HL-60 cells require the stimulus of 1,25-dihydroxyvitamin D3 to 

differentiate into monocytes in our system, HL-60-derived macrophage cells do not. We 

observed VDR up-regulation in late macrophages, but observed a sustained expression of VDR 

throughout monocyte differentiation. Strikingly, the VDR sub-circuits we identified in 

macrophage and monocyte cells revealed a dramatic difference in their respective regulatory 

circuitry. While the interactions for VDR in monocytes were sustained primarily by PU.1 and 

PPARG throughout, we observed a dramatic increase in footprints for several transcription 

factors in the late stages of macrophage differentiation. Several studies have found interactions 

between PPARG and VDR exist in the context of melanoma (Sertznig et al., 2009), the innate 

immune system, and across several immunopathologies (Kiss et al., 2013), but their protein-

DNA interactions have not been extensively characterized during cellular differentiation. Our 

results demonstrate that PPARG and PU.1-mediated interactions account for the observed stable 

expression of VDR during monocyte differentiation, while the combinatorial regulatory 

interactions from several transcription factors presumably drive the late up-regulation in VDR 

expression observed in maturing macrophages. Thus, the dynamics of gene regulatory circuits 

we identify within different immune cells illustrate different strategies for controlling the 

regulation of VDR in a cell-specific manner. Interestingly, the deletion of VDR specifically in 

macrophage cells leads to both atherosclerosis and insulin resistance in mice (Oh et al., 2015), 

which suggests that VDR plays an important role in controlling the inflammatory properties of 

macrophages and many other immune cell types (Wöbke et al., 2014).  
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In summary, our results highlight the complex immune regulatory circuitry of human 

neutrophil, monocyte, and macrophage differentiation. We demonstrate the power of combined 

time course open chromatin and gene expression analysis, allowing us to construct dynamic draft 

gene regulatory networks that recover both previously established as well as novel interactions in 

human myeloid cells. These networks will serve in furthering the understanding of 

transcriptional regulation in the context of cellular differentiation and etiology of human 

immunopathologies. 

 

2.5 Limitations on chromatin footprinting analysis 

Genomic footprinting offers the ability to derive protein-DNA interactions from genome-

wide open chromatin assays to understand regulatory interactions across several biological 

systems (Mo et al., 2015; Neph et al., 2012b; Qu et al., 2015; Stergachis et al., 2014; Sullivan et 

al., 2014). While genomic footprinting offers the great potential to infer regulatory interactions, 

several technical considerations and challenges should be addressed when applying this method. 

A detailed description of both the prospects and challeneges of genomic footprinting are 

discussed in the following perspectives (Sung et al., 2016; Viestra and Stamatoyannopoulos, 

2016), we will focus on key issues our study has addressed. An important aspect of genomic 

footprinting is sequencing depth of biological samples. The sequencing depth of samples have 

been important when analyzing assays such as ChIP-seq and RNA-seq (Pepke et al., 2009) and 

open chromatin assays such as DNase-seq (Thurman et al., 2012). It has been shown that 

increasing the sequencing depth allows for higher-resolution and recovery of TF footprints when 

performing genomic footprinting (Viestra and Stamatoyannopoulos, 2016). To address this issue, 

we maintained a sequencing depth of 200 million reads for all time-points in which we derived 
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genomic footprints. While increasing the number of reads in our study could potentially recover 

additional information, our novel draft gene regulatory networks highlight the most sensitive 

regulatory interactions detected during myeloid differentiation.  

Several computational methods for both de novo footprint detection and transcription 

factor recognition sequence occupancy have been developed to identify genomic footprints from 

open chromatin data (Viestra and Stamatoyannopoulos, 2016). Our strategy was to employ a 

two-step footprinting analysis that first used the Wellington (Piper et al., 2013) algorithm, which 

optimizes a windowing strategy incorporating the DNA strand information, and scores a 

cleavage rate using flanking windows of a potential footprint. The de novo derived footprints 

were then processed through an unsupervised approach CENTIPEDE (Pique-Regi et al., 2011), 

that classifies and models cleavage profiles simultaneously. This allowed us to derive the 

genomic footprints of 23 transcriptional regulators that showed significant and dynamic gene 

expression profiles, have a well-described role in immune regulation, and contain a DNA 

binding motif. In summary, a detailed and carefully curated analysis of genomic foorptining is 

critical for inferring both meaningful and informative regulatory networks across biological 

systems. 
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2.6 Figures 

Figure R2.1 Ranking of transcriptional regulators during Monocyte differentiation 

 

 

(A,B,C) Fold change in expression of 23 transcription factors comparing undifferentiated with 

early, early with intermediate, and intermediate with late. Fold change of 2 is indicated by 

horizontal dashed line. (D) Heatmap of regulator expression alphabetically listed. Log2 

transform of FPKM +1.  
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Figure R2.2 Ranking of transcriptional regulators during Macrophage differentiation 

 

(A,B,C) Fold change in expression of 23 transcription factors comparing undifferentiated with 

early, early with intermediate, and intermediate with late. Fold change of 2 is indicated by 

horizontal dashed line. (D) Heatmap of regulator expression alphabetically listed. Log2 

transform of FPKM +1.  
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Figure R2.3 Ranking of transcriptional regulators during Neutrophil differentiation 

 

(A,B,C) Fold change in expression of 23 transcription factors comparing undifferentiated with 

early, early with intermediate, and intermediate with late. Fold change of 2 is indicated by 

horizontal dashed line. (D) Heatmap of regulator expression alphabetically listed. Log2 

transform of FPKM +1.  
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Figure R2.4 Ranking of transcriptional regulators during Monocyte-derived Macrophage 

differentiation 

 

(A,B) Fold change in expression of 23 transcription factors comparing undifferentiated with 

early, early with intermediate, and intermediate with late. Fold change of 2 is indicated by 

horizontal dashed line. (C) Heatmap of regulator expression alphabetically listed. Log2 

transform of FPKM +1.  
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Figure R2.5 Human myeloid gene regulatory network architecture 

 

(A) Overall schematic design for constructing gene regulatory circuits. An interaction rule was 

defined whereby an edge was drawn when a transcriptional regulator footprint (TF A) was 

identified within a +/-15kb window of another transcriptional regulator TSS (TF C and TF D). 

Colored edges indicate that a regulatory interaction was observed for the respective time-point. 

Dashed grey edges indicate regulatory interactions observed at other time-points or cell-types 

respectively. Colored grey gene arrows indicate no mRNA detected at a given time-point. (B) A 

comprehensive ‘genome-view’ gene regulatory network snapshot of 23 transcriptional regulators 

and 158 inferred regulatory interactions were generated from ATAC-seq footprinting 

(Experimental methods). The ‘genome-view’ network representation shows all inferred 
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interactions during human myeloid differentiation. Each TF regulator is assigned a unique color 

identifier to track changes in regulatory interactions during differentiation. 
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Figure R2.6	GFI1 gene regulatory subnetwork 

 

(A) Distribution of undifferentiated HL-60 PU.1 footprints identified by ATAC-seq that are also 

detected by PU.1 ChIP-seq. 4,838 (~89%) of PU.1 ATAC-seq footprints are also detected by 

PU.1 ChIP-seq. (B) Heatmaps of ATAC-seq read density is shown for undifferentiated HL-60 

inferred PU.1 ATAC-seq footprints (Left; n=5436), PU.1 ATAC-seq footprints with an 

overlapping ChIP-seq PU.1 peak (Center; n=4,838), and PU.1 ChIP-seq read density for ChIP-

seq PU.1 peaks with no ATAC-seq footprint detected (Right Blue heatmap; n=16,333). 10xRPM 

(Reads Per Million) values are log transformed and row-mean normalized for ATAC-seq and 

ChIP-seq data. ATAC-seq and ChIP-seq signal is shown for a window of +/-2 kb from the 

footprint center and ranked from strongest to weakest for all comparisons. (C) GFI1 expression 
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demonstrates a cell-specific pattern during myeloid differentiation. Maximal expression is 

observed in neutrophils, with minimal to no expression detected in monocyte-derived 

macrophages. Mean FPKM values for each time-series are shown. (D-H) GFI1 sub-circuits are 

shown for (D) undifferentiated HL-60, (E) neutrophil, (F) macrophage, (G) monocyte, and (H) 

monocyte-derived macrophages. The GFI1-MAFB interaction and GFI1 auto-regulatory 

feedback loop is specific to neutrophil cells. Colored edges indicate that a regulatory interaction 

was observed for the respective time-point. Dashed grey edges indicate regulatory interactions 

observed at other time-points or cell-types respectively. Colored grey gene arrows indicate no 

mRNA detected at a given time-point. 
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Figure R2.7	HL-60 genome-view network 

 

(A) Genome-view network representation of 23 regulators for HL-60 cells. Colored edges 

indicate that a regulatory interaction was observed for the respective time-point. Dashed grey 

edges indicate regulatory interactions observed at other time-points or cell-types respectively. 

Colored grey gene arrows indicate no mRNA detected at a given time-point. 
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Figure R2.8	Macrophage genome-view networks 

 

(A-C) Genome-view network representation of 23 regulators of early (A), intermediate (B) and 

late (C) stages of macrophage differentiation. Colored edges indicate that a regulatory interaction 

was observed for the respective time-point. Dashed grey edges indicate regulatory interactions 

observed at other time-points or cell-types respectively. Colored grey gene arrows indicate no 

mRNA detected at a given time-point. 
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Figure R2.9	Monocyte genome-view networks 

 

(A-C) Genome-view network representation of 23 regulators of early (A), intermediate (B) and 

late (C) stages of monocyte differentiation. Colored edges indicate that a regulatory interaction 

was observed for the respective time-point. Dashed grey edges indicate regulatory interactions 

observed at other time-points or cell-types respectively. Colored grey gene arrows indicate no 

mRNA detected at a given time-point. 
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Figure R2.10	Neutrophil genome-view networks 

 

(A-C) Genome-view network representation of 23 regulators of early (A), intermediate (B) and 

late (C) stages of neutrophil differentiation. Colored edges indicate that a regulatory interaction 

was observed for the respective time-point. Dashed grey edges indicate regulatory interactions 

observed at other time-points or cell-types respectively. Colored grey gene arrows indicate no 

mRNA detected at a given time-point. 
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Figure R2.11	Monocyte-derived macrophage genome-view networks 

 

 

(A-B) Genome-view network representation of 23 regulators of early (A) and late (B) stages of 

monocyte-derived macrophage differentiation. Colored edges indicate that a regulatory 

interaction was observed for the respective time-point. Dashed grey edges indicate regulatory 

interactions observed at other time-points or cell-types respectively. Colored grey gene arrows 

indicate no mRNA detected at a given time-point. 
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Figure R2.12	Previously validated hematopoietic regulatory interactions 

(A) Genome-view of myeloid regulatory network interactions in differentiating HL-60 cells. 

Regulatory interactions are indicated by numbers and associated citations.  
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Figure R2.13	Cell-specific cis-regulation of VDR during myeloid differentiation 

(A and B) Temporal gene regulatory sub-circuits of VDR regulation in macrophage (top panel) 

and monocyte (bottom panel) cell-types demonstrate the dramatic differences in regulatory 

interactions during cellular differentiation. Early is denoted as 3-12 hours, intermediate as 24-48 

hours, and late as 96-120 hours of differentiation (Experimental methods). Colored edges 

indicate that a regulatory interaction was observed for the respective time-point. Dashed grey 

edges indicate regulatory interactions observed at other time-points or other cell-types, 

respectively. Colored grey gene arrows indicate no mRNA detected at a given time-point. (A’	

and B’) Gene expression for regulators MAFB, MAF, PPARG, and VDR during macrophage 
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(top panel) and monocyte (bottom) differentiation, respectively. Mean FPKM values for each 

regulator are shown.	
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Figure R2.14	PU.1–regulated targets change in differentiated human myeloid cell types 

(A) PU.1 gene expression during myeloid differentiation generally increases across all cell-types. 

The mean FPKM values for each time-series are shown. (B) Genome-view of the PU.1 sub-

circuitry in myeloid cells. We inferred 12 PU.1-mediated regulatory interactions and 11 that 

regulate PU.1. (C-G) PU.1 sub-circuits of (C) HL-60, (D) 96-120 hour macrophage, (E) 96-120 

hour monocyte, 144-168 hour monocyte-derived macrophage, and 120-hour neutrophil cells. 

Colored edges indicate that a regulatory interaction was observed for the respective time-point. 

Dashed grey edges indicate regulatory interactions observed at other time-points or cell-types 

respectively. Colored grey gene arrows indicate no mRNA detected at a given time-point. 
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Figure R2.15	EGR gene regulatory subnetworks 

(A) Genome-view of the EGR transcription factor sub-circuitry in differentiated myeloid cells. 

EGR motifs are generally indistinguishable between protein family members, thus regulatory 

interactions are inferred from all three EGR factors (EGR1, EGR2, EGR3). (B-F) Sub-circuits of 

EGR regulation for (B) undifferentiated HL-60, (C) monocyte-derived macrophage, (D) 

monocyte, (E) macrophage, and (F) neutrophil. Our network analysis infers regulatory 

interactions specific to both myeloid cells and EGR members. Colored edges indicate that a 

regulatory interaction was observed for the respective time-point. Dashed grey edges indicate 

regulatory interactions observed at other time-points or cell-types respectively. Colored grey 

gene arrows indicate no mRNA detected at a given time-point. (G) Dynamic kinetics of EGR1 
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(top), EGR2 (middle), EGR3 (bottom) gene expression profiles during myeloid differentiation. 

We observe a rapid change in EGR expression in macrophage cells with a general increase in 

expression across all cells. Mean FPKM values for each time-series are shown. Colored dash 

lines indicate the summed expression of all EGR members for each respective time-point and 

cell-type. 
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2.7 Methods 

Chromatin footprinting and construction of myeloid gene regulatory networks  

ATAC-seq data partitioned by early, intermediate and late stages were merged to achieve ≥ 200 

million reads for footprinting analysis. Reads were also shifted as previously described in our 

subsequent analysis (Buenrostro et al., 2013). Chromatin footprints were determined using the 

Wellington algorithm (Piper et al., 2013) with the following parameters (-fp 6,31,1 -sh 7,36,4 -

fdrlimit -2), restricting our analysis to footprints with an of FDR 1%. We then scanned chromatin 

footprints for motifs using FIMO (Grant et al., 2011; Neph et al., 2012b) to identify transcription 

factor motifs identified from the most recent JASPAR database (Mathelier et al., 2014). Lastly, 

we determined the quality of identified TF-footprints using Centipede (Pique-Regi et al., 2011) 

and compiled a final set of factor-specific footprints. To build myeloid gene regulatory networks, 

we focused on a subset of transcriptional regulators that were differentially expressed in our 

time-series. This allowed us to investigate networks of transcription factors that were 

demonstrated temporal and cell-specific expression dynamics. We employed a similar approach 

in constructing networks as shown in previous studies (Mo et al., 2015; Neph et al., 2012b; 

Sullivan et al., 2014). We padded the TSS for each transcription factor in using a +/-15kb 

window for identifying regulatory interactions that would include promoter and enhancer 

interactions. Directed edges were drawn from the first gene node to another gene node when a 

TF-motif potentially bound by the first gene was identified within a 15 kb distance of the second 

gene’s TSS. Networks were generated for undifferentiated, early, intermediate, and late grouped 

time-points across all cell-types. Edges not identified for a corresponding time-point were drawn 

and colored as grey dashed lines. All networks were generated using Biotapestry software 

(Longabaugh et al., 2005, 2009). 
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Chapter 3: Genome-wide transcriptome and chromatin survey during pre-B cell 

differentiation 

3.1 Abstract  

The international STATegra consortium used several ‘omic’ platforms to profile the the 

transition from the B-cell progenitor and self-renewal pre-B(I) cell state to the growth arrested 

and differentiated pre-B(II) cell state that is mediated Ikaros (Ikzf1) upregulation. Specifically, 

the consortium used the pre-B cell line, B3 with a tamoxifen inducible version of Ikaros. We use 

DNase-seq to identify changes in the open chromatin landscape during this differentiation 

process in a 24-hour time course. We observe two general trends in changes of chromatin 

accessibility that ultimately define lymphocyte activation and cell cycle arrest programs. A 

pseudo-time trajectory during pre-B cell differentiation using single-cell RNA-seq reveals the 

underlying heterogeneity of cellular differentiation in our system. Additionally, we survey the 

chromatin landscape and measure the accessibility of single-cells before and after differentiation 

using single-cell ATAC-seq. We observe agreement in chromatin accessibility changes between 

time-points when averaging signal from all single-cells at a given time point while also showing 

the existence of distinct subgroups within each population. Overall our analysis reveals the 

complexity of even “single-step” developmental decisions at the single-cell level. 
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3.2 Introduction 

The development of B cells is a complex multistage process whereby self-renewing 

hematopoietic stem cells are guided towards a terminal cell fate associated with the successful 

expression of a functional B cell receptor. The developmental stages of B-cell progenitors are 

characterized by known transition states that facilitate somatic rearrangement of the working B-

cell receptor. One critical cell transition state involves the differentiation of a pre-B cell to a 

mature B cells. This involves changes in genes that define the B-cell receptor. The pre-B cell 

receptor includes the μ-heavy chain, VpreB, Igα and Igβ receptors (Cooper, 2015; Melchers, 

2005). Additionally, pre-B cellular differentiation requires that cells undergo light-chain 

rearrangement, subsequent loss of the pre-BCR (VpreB, Igα and Igβ receptors) and eventual 

development of a mature BCR that is capable of binding antigens (Cambier et al., 2007; 

Melchers, 2005). Failure of proper V(D)J recombination events result in apoptosis of pre-B cells. 

Importantly, the proliferative state of cycling pre-B cells is dependent on both pre-BCR and IL-7 

signaling (Clark et al., 2014; Ochiai et al., 2012; Rickert, 2013). IL-7R mediated-signaling limits 

the ability of cells to enter cell cycle arrest and transition from a cycling to resting state in pre-B 

cells. A fine-tuning of signaling and transcriptional control is critical for maintaining proper pre-

B cell development.  

 A screen for transcriptional regulators that control T cell fate commitment isolated cDNA 

for the transcription factor Ikaros (Ikzf1) (Georgopoulos et al., 1992). Ikaros is considered one of 

the master hematopoietic regulators of myeloid and lymphoid development (Dovat, 2011). Ikaros 

null mice lack proper development of B cells, peripheral lymph nodes, natural killer cells and 

fetal T cells (Georgopoulos, 2002; Georgopoulos et al., 1994). Additional work demonstrates 

that loss of Ikaros activity promotes transformation of pre-B cells into a malignant state (Joshi et 
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al., 2014). Ikaros binds to DNA through its N-terminal domain comprising of four C2H2 zinc 

fingers (F1 to F4) (John and Ward, 2011). The C-terminal zinc-finger domain, allows for 

heterodimerization and multimerization with various protein partners (Bottardi et al., 2013). 

Ikaros can bind to its consensus DNA sequence (5’-TGGGAA/T-3’) at both proximal and distal 

to gene regulatory elements, thereby contributing to the assembly of multiprotein complexes that 

can either repress or activate gene expression (Merkenschlager, 2010; Sabbattini et al., 2001; 

Yoshida et al., 2010).   

 Ikaros is primarily associated with the NuRD complex in all hematopoietic cells 

(Sridharan and Smale, 2007). The NuRD complex includes histone deacetylases HDAC1 and 

HADAC2, which are frequently referred to as transcriptional repressors (Bottardi et al., 2015). 

However, the NuRD complex can also be recruited to transcriptionally active genes targeted by 

Ikaros (Bottardi et al., 2014; Zhang et al., 2011). Furthermore, because NuRD interacts with 

complexes such as polycomb repressive complex 2 (PRC2) (Ross et al., 2012), direct chromatin 

re-organization may be mediated through interaction with Ikaros. In hematopoietic progenitors as 

well as in erythroid and lymphoid cells, Ikaros has been shown to interact with the hematopoietic 

GATA factors (GATA1, GATA2, and GATA3) (Ross et al., 2012). GATA factors are zinc-

finger proteins capable of promoting both transcription activation and repression (Bresnick et al., 

2010; Ko and Engel, 1993). Ikaros facilitates GATA1 binding to its DNA consensus sequence in 

vitro and to chromatin regulatory regions with both GATA1 and cofactor Friend of GATA1 

(FOG1) in regulating long-range interactions at the human β-globin locus (Keys et al., 2008). 

Therefore Ikaros likely functions as a key regulator in defining cell identity in hematopoietic 

cells through the control of chromatin organization via recruitment of transcriptional regulators 

and co factors that include the NuRD complex. 
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The STATegra consortium is a European FP7 funded project that aims to develop 

statistical methods and software for the integration of Next Generation Sequencing and Omics 

data such as Transcriptomics, Proteomics, and Metabolomics. STATegra selected the mouse B3 

cell line differentiation system as a model for the transition of cells from the pre-B(I) stage to the 

pre-B(II) stage in order to test the power of their novel statistical methods. B3 differentiation 

models the transition of self-renewing pre-B cells to a differentiated state in which cells have 

undergone growth arrest, which is accomplished by the induction of an Ikaros construct (Ikaros-

ERt2) in these cells (Ferreir ́ os-Vidal et al., 2013). This model system is not only relevant in the 

context of basic B cell biology, but has clinical interest. Ikaros mutations or deletions result in 

acute lympoblastic leukemias (Dovat, 2011).  STATegra’s goals are to develop new integrative 

methods using different analysis strategies, thus leveraging the expertise of the different partners 

in the consortium. Using ikaros-inducible B3 cells, I investigated the chromatin accessible 

landscape and transcriptome in differentiating pre-B cells. To this end, I generated 36 DNase-seq 

datasets for both control and Ikaros time-points, 324 single-cell RNA-seq and 227 single-cell 

ATAC-seq datasets to understand the regulation in differentiating pre-B cells. 
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3.3 Results 
 
Genome-wide changes in DNaseI Hypersensitive elements during Ikzf1 induction 
  

A description of all 787 datasets generated and collected by the STATegra consortium is 

detailed in Figure R3.1 for 0, 2, 6, 12, 18, and 24-hour time-points and experimental procedures. 

Briefly, data was generated in biological triplicates from both control and Ikzf1-induced time-

series for all experimental methods with the exception of single-cell RNA-seq and single-cell 

ATAC-seq. Induction of the Ikaros-ERt2 vector in pre-B cells is accomplished by treating cells 

with tamoxifen over the course of 24 hours. We performed DNase-seq to measure changes in 

open chromatin accessibility across pre-B cell differentiation in Ikzf1-induced and control time-

series (Figure R3.2A). We initially optimized DNaseI concentrations in differentiating cells 

using qPCR for both positive and negative control targets to reduce over-digestion of native 

DNA. Initially, we surveyed genomic targets in genes with functions such as metabolism, cell 

cycle, lymphocyte biology, and transcription factors previously known to have accessible 

promoter elements in pre-B cells (Figures R3.2B-D). We observe changes in DNaseI 

accessibility for various targets during pre-B cell differentiation that we expected to occur in 

Ikzf1-induced cells. Libraries with optimal DNaseI signal to noise ratio as compared to control 

samples were selected for sequencing. To measure changes in accessibility genome-wide from 

our DNase-seq data, we performed an analysis comparing Hotspot (John et al., 2011) and 

HOMER (Heinz et al., 2010) peak callers (Figure R3.3A). We observed that a higher number of 

DHS peaks were estimated using Hotspot, but upon further inspection found that these DHS 

were often ‘noisy’ peaks. In contrast, peaks called by HOMER demonstrate a more accurate 

method for calling DHS from our data compared to Hotspot (Figure R3.3B). We employed a 

two-step peak calling strategy to capture narrow (<150bp) and broad (>150bp) DHS peaks using 
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HOMER, allowing us to capture diverse DHS from our differentiation time-series (Figure 

R3.3C).  

 To understand the changes in accessibility during pre-B cell differentiation, we generated 

a consolidated list of DHS reproducibly detected across biological replicates in our time-series. 

In total we identified 52,788 consensus DHS in our time-series (Figure R3.4A). DNase-seq 

datasets were both normalized and batch corrected for all subsequent analysis (Experimental 

methods). Principal component analysis of Ikzf1-induced time-points shows a high variance 

(82.9%) in the first principal component for our time-series, which corresponds to the 

progression of the Ikzf1 time-series from 0 to 24 hours upon induction (Figure R3.4B). To 

investigate the dynamics of DHS during Ikzf1 induction, we performed hierarchical clustering on 

the 7018 strongest DHS peaks. We identify two distinct profiles in chromatin accessibility in our 

time-series. 3,587 DHS elements show a loss in chromatin accessibility during pre-B cell 

differentiation. Moreover, gene ontology (GO) analysis of genes closest to the 3,587 DHS peaks 

shows enrichment in cell cycle, B-cell differentiation, and cell activation terms (Figure R3.4C). 

Interestingly, 3,431 DHS elements show an increase in DNaseI accessibility, with GO term 

enrichment for lymphocyte differentiation, immune response and B-cell differentiation. 

Additionally, DNaseI footprints were also derived for all DHS data using HOMER consolidated 

peaks (Figure R3.5). These results highlight that cis-regulatory elements undergo changes in 

DNaseI accessibility and that dynamic DHS changes mediate cell cycle control and lymphocyte 

activation during Ikzf1 induction. 

Single-cell RNA-seq analysis of pre-B cell differentiation  

To understand the dynamic changes in gene expression during Ikzf1 induction in B3 cells, 

we performed 8 single-cell experiments using the C1 system from Fluidigm (Experimental 
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methods). Pre-B cells were captured and visualized to estimate cell size and single-cell capture 

efficiencies across all time-points (Figure R3.6A). In total we analyzed 324 single-cell RNA-seq 

(scRNA-seq) libraries during the first 24 hours of pre-B differentiation (Figure R3.6B). The 

distribution of mapped reads for our scRNA-seq experiments range from 450,000 to 2.8 million 

mapped reads with a mean of 1.25 million mapped reads (Figure R3.7A). Additionally, we 

observed between 2000 and 6000 genes detected (> 1 FPKM, median=4,500) per single-cell 

across all data (Figure R3.7B) and find that only 375 genes are expressed in all 324 single-cells 

(Figure R3.7C). Lastly, we observe a strong correlation between individual single-cells (r=0.88, 

Figure R3.8A) and between pooled single-cell for each Fluidigm C1 run where a second 

experiment was performed for 18 and 24 hours time-points (r=0.96, 0.98, Figures R3.8B-C).  

To identify distinct gene expression profiles in our time-series, we first performed a 

weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath, 2008). We 

identified 19 expression modules enriched across our single-cell data (Figure R3.9A). We 

observed significant enrichment for genes in module 1 (ME1, red box), which contains the 

regulator Foxp1, Cd40, and Wnt4 ligand. A second module was also identified, which included 

the key regulators Ikzf1, Ebf1, and Myc (ME0, orange box). The eigengene profiles for modules 

0 and 1 across our time-series show correlated genes that both increase and decrease during 

differentiation (Figure R3.9B). Furthermore, we observe cellular heterogeneity within these 

modules during pre-B cell differentiation, as we note that not all 24-hour pre-B cells are fully 

differentiated. While the analysis provides distinct modules of expression in our time-series, we 

found it difficult to interpret the heterogeneity of cells undergoing differentiation in our time-

series from this analysis alone since WGCNA does not explicitly take the time course into 

account.  
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In order to understand the dynamics of our single-cells time course, we employed 

Monocle (Trapnell et al., 2014) to both recover differentially expressed genes and map the 

pseudo-temporal ordering of our 324 single-cells (Experimental methods). Monocle is designed 

to accommodate individual cells that are ahead or behind in differentiation compared to their 

“expected” position in the time course and it reorders these cells in a pseudo-temporal ordering. 

We identified 2,611 differentially expressed genes (FDR < 0.01) across our time-series. We 

pseudo-ordered 324 single-cells based on 2,611 differentially expressed genes to identify an 

unbiased pre-B cell trajectory (Figure R3.10A). As expected, we observed heterogeneity in cells 

differentiating from 0 to 24 hours in our time-series using the pseudo-temporal ordering that 

revealed that some cells collected at later time points looked like less-differentiated cells from 

earlier time points. The ordering of 324 single-cells robustly and accurately displays the 

expression of the pre-B cell receptor Igll1 in single-cells during differentiation (Figures R3.10B-

C). Additionally, we observe interesting single-cell expression kinetics for the pre-B cell receptor 

gene Vpreb1, regulator Myc, metabolic enzyme Hk2, and Rag (1/2) genes (Figures R3.11-3.12). 

Here, we leverage the pseudo-temporal ordering of 324 single-cells, where we observe cellular 

heterogeneity and dynamic gene expression during pre-B cell commitment.  

 We evaluated the differences in gene expression by comparing regular RNA-seq 

generated by STATegra consortium collaborators at the Karolinska Institute and scRNA-seq 

measurements during Ikzf1 induction. Briefly, differential expression was performed on regular 

RNA-seq using limma and maSigPro (Nueda et al., 2014). Differential expression from regular 

and scRNA-seq for the Ikzf1 time-courses were compared (Figure R3.13A). We found that 1,509 

genes were differentially expressed in regular and single-cell measurements during pre-B cell 

differentiation (Figure R3.13B). We performed a correlation analysis of regular and single-cell 
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measurements using 1,509 differentially expressed genes and observe technical differences 

between regular and single-cell measurements (Figure R3.13C). We find stronger correlations 

between neighboring time-points (0/2 hour, 18/24 hour) during Ikzf1 induction, both preserved in 

the regular and scRNA-seq data. Furthermore, we performed a hierarchical clustering on 1,509 

differentially expressed genes for both regular and scRNA-seq data and observe two distinct 

profiles. 1,187 differentially expressed genes show a down regulation (red), whereas 322 genes 

show an up regulation (green) during pre-B cell differentiation in both bulk and single-cell data 

(Figure R3.13D). Moreover, gene ontology analysis of the shared 1,509 differentially expressed 

genes show a significant enrichment for lymphocyte activation (p-value < 1.2x10-5), cell cycle 

(p-value < 5x10-5), and metabolic process (p-value <5.6x10-39) terms (Figure R3.13E). Our 

analysis combines regular and scRNA-seq time-course data to identify key biological pathways 

and transcriptional regulators that drive and maintain the transition states of pre-B cells. 

 We had identified enrichment of transcription factors from our analysis of differentially 

expressed genes between regular and scRNA-seq. We identified 266 transcription factors to be 

differentially expressed from our regular RNA-seq data. Using the single-cell data, we 

determined the frequency and proportion of transcription factor (266 TFs) expression in all 324 

single-cells (Figure R3.14A). We find that 105 transcription factors are expressed (>1 FPKM) in 

less than 50 cells, while 161 are expressed in more than 50 cells. We also observe Ikzf1 to be the 

only transcription factor expressed in all single-cells of our time-series. From our single-cell 

data, we find that 52 of 266 transcription factors are differentially expressed by our pseudo-

temporal analysis and 38 of 52 transcription factors are differentially expressed in both regular 

and scRNA-seq. A heatmap of all 52 transcription factors shows the diverse expression across all 

324 single-cells (Figure R3.14B). We find transcription factors Foxo1/3, Foxp1, and Irf8 to be 
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differentially regulated in our time-series. Additionally, immune responsive regulators like Rel, 

Nfia and Nfe2l1 show differential expression in both regular and scRNA-seq. Overall our 

analysis highlights transcription factors that exhibit differential expression supported by regular 

and scRNA-seq during Ikzf1 induction. 

Technical analysis of single-cell chromatin accessibility during differentiation 

Our time-series analysis of the scRNA-seq revealed cellular heterogeneity and 

differential expression of transcriptional regulators in our Ikzf1 inducible time-series. 

Additionally, from our initial DNase-seq analysis, we observed that most changes in chromatin 

accessibility occurred between 0 and 24 hours in our time-series. To measure changes in the 

chromatin accessible landscape of single-cells induced with Ikzf1, we performed 4 single-cell 

ATAC-seq (Buenrostro et al., 2015) Fluidigm C1 experiments, focusing on the 0 and 24 hour 

time-points. We generated of 227 single-cell ATAC-seq (scATAC-seq) profiles (Figure R3.15A) 

after data processing (Experimental methods). We observe good concordance of open chromatin 

signal between our bulk DNase-seq (~25 million cells), bulk ATAC-seq (50,000 cells) and 

scATAC-seq (average of 95 cells) profiles (Figures R3.15B). scATAC-seq libraries from 

individual C1 runs were first analyzed to ensure proper reproducibility between experiments. We 

considered successful library criteria to include more than 5,000 unique mapped fragments and 

observed that between 0 hour and 24 hour C1 experiments the mean library size was similar 

across all single-cells (Figures R3.16A-G). Additionally, we observe significant correlation 

between C1 experiments for 0 and 24-hour time-points (Figures R3.17A-B). These results 

highlight the reproducibility and robustness between scATAC-seq experiments using the 

Fluidigm C1 system.  
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 Having observed that pre-B receptor genes Igll1 and Vpreb1 were down regulated in both 

regular and scRNA-seq data, we investigated the chromatin accessibility of these two genes in 

differentiating single-cells. We observe a general agreement in the signal intensity from DNase-

seq, regular ATAC-seq and averaged single-cell ATAC-seq profiles for 0 hour pre-B cells 

(Figure R3.18A). Interestingly, we observe a great diversity in single-cell accessibility for Igll1, 

Vpreb1, Top3b promoters and the upstream enhancer of Igll1 (Figure R3.18B). We highlight 

possible clusters of single-cells based on combinatorial accessibility of these elements (colored 

boxes). We observe that 24-hour cells show less accessibility for Igll1 and Vpreb1 promoter 

elements in DNase-seq, regular ATAC-seq and averaged single-cell ATAC-seq profiles (Figure 

R3.18C). This result is as expected, as 24 hour induced cells should no longer express pre-B cell 

receptors as they enter a resting state. Moreover, our 24-hour scATAC-seq data show that very 

few cells are accessible for pre BCR promoters (Figure R3.18D). This result is also consistent 

with our scRNA-seq observations, where few cells at 24 hours still express pre BCR genes, 

reflecting the heterogeneity of cellular differentiation in our B3 model system.  

 We performed an analysis to assess the technical characteristics and limitations of our 

scATAC-seq. We utilized the peaks called in the DNase-seq for our subsequent technical 

analysis. We estimate an average of 3,483 sites/cell are accessible, with a mean of 4 cells/site 

and median of 2 cells/site (Figure R3.19A). Moreover, we observe that only ~5,000 sites are 

accessible in 10% of all cells (n=4.8/48), with only 100 sites accessible in 50% of cells 

(n=24/48) (Figure R3.19B). We evaluated the extent of ATAC-seq signal from these 5,000 

accessible sites in both regular ATAC-seq and single-cell ATAC-seq. We observe similar signal 

for sites ranked in regular and averaged single-cells (Figure R3.19C). We mapped chromatin 

accessibility in three single-cells with differing mapping rates and efficiencies (fragments in 
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peaks/ mapped fragments). Although we observe that the library for single-cell A1 has 4x lower 

mapped fragments and 3x less fragments in sites in comparison to library A5, the relative 

efficiency is slightly higher (1.7%) between the two cells (Figure R3.19C). This result shows that 

the number of mapped fragments for a given sample may not be the most accurate measure for 

assessing data quality of highly sparse scATAC-seq data.  

 We initially observed that few cells by 24-hours post-induction, were expressing Rag1/2 

from our scRNA-seq analysis. Similarly, we observe increased chromatin accessibility of 

promoter and upstream regulatory elements of the Rag1/2 genes in bulk and scATAC-seq for 24-

hour single-cells (Figure R3.20A-B). To identify patterns of accessibility we analyzed the top 

6,000 accessible elements and performed hierarchical clustering. We observe distinct profiles in 

chromatin accessibility from our scATAC-seq profiles. Moreover, regulatory elements for Igll1 

and Vpreb1 show maximal accessibility in 0-hour cells (Figures R3.21A-B). Overall our 

technical analysis of scATAC-seq provides high-resolution dynamics of chromatin accessibility 

that are supported by scRNA-seq during pre-B cell differentiation. 

 

3.4 Discussion 

 The aims of the STATegra consortium are to develop methods for integrating multi-

omics data to understand the process of B cell development. Here, we leverage a model of pre-B 

cell differentiation to study regulatory changes in DNaseI hypersensitivity from pooled samples 

and single-cell profiles of gene expression and chromatin accessibility. From our DNaseI and 

scATAC-seq analysis we find two distinct profiles that detail a loss and gain in accessibility over 

24-hours of differentiation. These profiles were enriched for terms in B-cell activation, 

lymphocyte differentiation, and cell cycle.  
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Additionally, our analysis of single-cell gene expression using monocle provided a 

strategy for mapping cellular differentiation trajectories using an unbiased pseudo-time. 

Although we observed considerable cellular heterogeneity in our model system, we show an 

enrichment of genes and pathways that are consistent in both regular and scRNA-seq analysis. 

We observe previously reported changes in gene expression for pre BCR genes during pre-B cell 

differentiation (Clark et al., 2014; Ferreir ́ os-Vidal et al., 2013). In addition to changes in 

lymphocyte specific gene expression, we observe changes in metabolic enzymes. While it has 

been shown that transcriptional and metabolic processes are necessary for pre-B cell 

differentiation (Zouali, 2014), we observe these changes in differentiating single-cells. We also 

observed single-cell dynamic profiles of transcriptional regulators which further emphasize the 

role of Foxo and Foxp transcription factors during pre-B cell commitment (Ferreir ́ os-Vidal et 

al., 2013). 

The ability to profile chromatin accessibility in single-cells has shown to be a powerful 

application for studying cell-to-cell differences (Buenrostro et al., 2015). To this date, no studies 

have described the changes in chromatin accessibility in single-cells using a time-series 

approach. We leverage our B cell model system to analyze both regular and single-cell 

chromatin accessibility measurements during differentiation. Unlike scRNA-seq were several 

molecules of RNA can be recovered and quantified, scATAC-seq is constrained by the amount 

of DNA material in a single-cell. In short, scATAC-seq measurements are quantified to near 

binary site estimates. Thus, scATAC-seq is limited to surveying a small subset of all open 

chromatin elements in a single-cell genome-wide (Maurano and Stamatoyannopoulos, 2015; Pott 

and Lieb, 2015). Despite this technical issue, we observed distinct profiles in chromatin 

accessibility in cells of 0 and 24 hours-post differentiation, supported by both DNaseI and 
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regular ATAC-seq measurements. Moreover, we observe sub-population like chromatin 

accessibility for regulatory elements in single-cells (Figure R3.18). Although we cannot confirm 

that these observations reveal true cell sub-populations based on single-cell accessibility alone, 

this offers a potential application for understanding cis-regulatory element use across single-

cells. Further studies employing droplet based technologies (Klein et al., 2015; Macosko et al., 

2015) for scATAC and scDNase-seq (Jin et al., 2015) will allow for profiling thousands of cells 

in parallel and provide robust detection of the cis-regulatory landscape dynamics across many 

biological systems. 
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3.5 Figures 

Figure R3.1 STATegra multi-omic time-course of pre-B cell differentiation 

 

(A) STATegra consortium multi-omics experimental data collection during pre-B cell 

differentiation. Genomic assays are shown with number of biological replicates for each 

condition. In total 787 datasets are integrated and used to study pre-B cell differentiation from 

many genomic assays, of which 587 were generated at UCI.  
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Figure R3.2 DNaseI qPCR enrichment optimization and analysis 

(A) DNase-seq experimental pipeline for both Ikzf1-induced and control time-series. (B) DNaseI 

qPCR fold enrichment for Ikzf1 time-series for accessible (Spi1, Ebf1) and inaccessible 

promoters (Myod). (C) DNaseI qPCR fold enrichment of control and Ikaros data for promoters of 

several genes previously shown to change in gene expression (Ferreir ́os-Vidal et al., 2013) 

during Ikzf1 induction.  
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Figure R3.3 DNase-seq peak calling strategy 

 

(A) DNase-seq peak calling strategy comparing HOMER and Hotspot. (B) UCSC browser shot 

of HOMER and Hotspot peaks. DNase-seq bigWig track is shown in black. Noisy DHS peaks 

called by Hotspot are shown. Zoomed-in view of Rras promoter showing more precise peak 

calling by HOMER. (C) Distribution of HOMER DHS peak size (bp) after merging narrow and 

broad peaks (n=52,788). 
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Figure R3.4 DNaseI hypersensitivity dynamics of Ikzf1-induction during pre-B cell 

differentiation. 

(A) DNase-seq data processing and analysis pipeline. (B) Principal component analysis of Ikzf1 

time-series. We observe that PC1 corresponds to the time-series after Ikaros induction. (C) 

Hierarchical clustering of top DNaseI hypersensitive sites (7,018). Two distinct clusters of DHS 

loss (top) and gain (bottom) in accessibility reflect specific GO term enrichments.  
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Figure R3.5 DNaseI footprinting estimates for Ikaros time-series 

(A) Tables for number of DNaseI footprints in control and Ikaros time-courses. P-values < -10 

and -20 are shown. (B) Distribution of DNaseI footprint lengths are shown for control and Ikaros 

0 hour, Ikaros 24 hour (p-value < -10) and Ikaros 24 hour (p-value <-20) 
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Figure R3.6 Fluidigm C1 integrated fluidic circuits and single-cell capture estimates 

(A) Fluidigm IFC microfluidic chip designed for capturing of up to 96 single-cells. Capture site 

shown with an Ikaros-induced B3 cell captured. B3 cell size is estimated between 5 and 10 

microns. (B) Distribution of cell libraries sequenced and libraries used for downstream analysis 

(n=324). 
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Figure R3.7 scRNA-seq gene statistics 

 

(A) Distribution of number of mapped reads for scRNA-seq libraries (n=324). Mean and median 

are 1.25 million mapped reads. (B) Distribution of the number of genes expressed in a single-cell 

(> 1 FPKM). Mean and median are 4,500 genes per single-cell. (C) Distribution for number of 

genes expressed in respective single-cell libraries.  
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Figure R3.8 Single-cell RNA-seq reproducibility 

 (A) Single-cell correlation for two 0h Ikaros single-cell libraries. Correlation coefficient is 0.88 

for these two libraries. (B-C) Correlation for 18 and 24 hour Ikaros C1 experimental runs. 

Correlation coefficient is 0.98 and 0.96 respectively for 18 and 24 hours data. 
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Figure R3.9 Weighted gene co-expression network analysis of pre-B differentiation  

(A) Correlation matrix for all eigengene modules identified with WGCNA. Red indicates strong 

eigengene expression. Genes are highlighted from modules 0 and 1. (B) Fraction of Ikzf1 cells 

that are enriched in modules 1 (top) and 0 (bottom) during pre-B cell differentiation. 
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Figure R3.10 Pseudo-temporal ordering of gene expression in pre-B cell differentiation 

(A) Pseudo-temporal ordering of 324 single-cells using independent component analysis using 

Monocle. A minimum spanning tree was derived from differentially expressed genes and is 

shown as a black line for the trajectory of the Ikzf1 time-series. Single-cells corresponding to 

time-points are colored. (B-C) Igll1 expression kinetics are consistent for both pseudo-temporal 

ordering and non-ordering of single-cells. 

 

 

 

 

Component 2  !

C
om

po
ne

nt
 1

  !

 0h      2h      6h     12h    18h     24h!

Igll1 expression during time course!

0h! 2h! 6h! 12h! 18h! 24h!

2,611 differentially expressed genes (FDR < 1%)!

Igll1 pseudo-time course expression !

Pseudo-time course !

Ex
pr

es
si

on
!A!

!
B!
!

C!
!



108	
	

Figure R3.11 Dynamic expression of key genes in differentiating pre-B single-cells 

(A) Pseudo-temporal gene expression profiles for Ikzf1, Myc, Ebf1, Hk2, Rag2, and Vpreb1.  
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Figure R3.12 Dynamic gene expression of pseudo-temporal ordered cells compared to 

specific genes 

 

(A) Pseudo-temporal ordering of 324 single-cells using independent component analysis. A 

minimum spanning tree was derived from differentially expressed genes and is shown as a black 

line for the trajectory of the Ikzf1 time-series. Size of circle (single-cell) indicates relative level 

of expression for Ikzf1, Igll1, Hk2, Rag1/2, and Ccnd2. Single-cells corresponding to time-points 

are colored. 
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Figure R3.13 Regular and single-cell RNA-seq comparative analysis 

 

(A) Schematic of regular and scRNA-seq comparative analysis. (B) Venn diagram of shared 

differentially expressed genes (1,509) from determined by both regular and single cell RNA-seq. 

(C) Pearson coefficients between bulk and scRNA-seq. Single-cell data was averaged by time-

points. (D) Heatmap of 1,509 differentially expressed genes by regular and scRNA-seq. 1,187 

genes show down regulation, while 322 genes show up regulation during Ikzf1 induction. (E) 

Gene ontology analysis of differentially expressed genes (1,509). Representative genes for each 

enriched term are shown. 
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Figure R3.14 Robust transcription factor expression in regular and scRNA-seq 

(A) Distibution of single-cells expressing a differentially expressed transcription factor (n=266). 

161 TFs are expressed in at least 50 of 324 single-cells. (B) Heatmap of 52 TFs differentially 

expressed in single-cells. Asterisk (*) indicates genes that are differential in both regular and 

scRNA-seq (n=38). 
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Figure R3.15 Profiling the accessible chromatin landscape in single-cells 

 

(A) scATAC-seq experimental design. 0 and 24 hour Ikzf1 cells are profiled using the C1 

Fluidigm. 227/270 single-cells passed data quality threshold for downstream analysis. (B-C) 

UCSC genome browser view of the Ikzf1 loci for bulk DNaseI (red), ATAC-seq (grey), and 

scATAC (black, n=95) chromatin accessibility. Single-cells for the 0 hour time-point were 

averaged. 
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Figure R3.16 Mapped fragment distribution between Fluidigm C1 experiments 

(A-C) Distribution for the number of mapped fragments per 0 hour single-cell in C1 experiment 

1 (A), C1 experiment 2 (B) or combined (C). (D-F) Distribution for the number of mapped 

fragments per 24 hour single-cell in C1 experiment 1 (D), C1 experiment 2 (E) or combined (F). 

(G) Distribution for the number of mapped fragments for all single-cell ATAC-seq libraries 

(n=227). 

 

 

 

 

0hR1 n=49, >5k

picard mapped reads log2 mean=15.3

Fr
eq
ue
nc
y

13 14 15 16 17 18 19

0
1

2
3

4
5

0hR1.R2 n=96, >5k

picard mapped reads log2 mean=15

Fr
eq
ue
nc
y

13 14 15 16 17 18 19

0
2

4
6

8

0hR2 n=47, >5k

picard mapped reads log2 mean=15

Fr
eq
ue
nc
y

14.0 15.0 16.0

0
1

2
3

4
5

24hR1.R2 n=133, >5k

picard mapped reads log2 mean=16.07

Fr
eq
ue
nc
y

12 14 16 18 20

0
1

2
3

4
5

6

0hR1.R2.24hR1.R2 n=229, >5k

picard mapped reads log2 mean=15.69

Fr
eq
ue
nc
y

12 14 16 18 20

0
2

4
6

8
10

12
14

24hR2

picard mapped reads log2 mean=16.3

Fr
eq
ue
nc
y

14 15 16 17 18 19 20

0
1

2
3

4
5

n=73, >5k!

24hR1 n=60

picard mapped reads log2 mean=15.7

Fr
eq
ue
nc
y

12 14 16 18 20

0
1

2
3

4

 , >5k !
A   !

B   !

C   !

D   !

E   !

F   !

G   !

Log2 (mapped fragments) !

mean=15.3!

Log2 (mapped fragments) !

mean=15!

Log2 (mapped fragments) !

mean=15!

Log2 (mapped fragments) !

mean=16.07!

Log2 (mapped fragments) !

mean=16.3!

Log2 (mapped fragments) !

mean=15.7!

Log2 (mapped fragments) !

mean=15.79!

n=227, >5k!



114	
	

Figure R3.17 Mapped fragment reproducibility between Fluidigm C1 experiments 

(A-B) Correlation plots of 0 hour C1 Fluidigm experiments (A, R=0.96) and 24 hour C1 

Fluidigm experiments (B, R=0.94). 
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Figure R3.18 Heterogeneous chromatin accessibility in pre-B single-cells 

 

A) UCSC genome browser view of the Igll1 locus for regular DNaseI (red), ATAC-seq (grey), 

and scATAC (black, n=95 single-cells) chromatin accessibility. Single-cells for the 0 hour time-

point were averaged. (B) 95 single-cell chromatin profiles (0 hour) for the respective locus. (C) 

UCSC genome browser view of the Igll1 locus for bulk DNaseI (red), ATAC-seq (grey), and 

scATAC (black, n=132 single-cells) chromatin accessibility. Single-cells for the 24-hour time-

point were averaged. (D) 132 single-cell chromatin profiles (24 hour) for the respective locus. 
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Figure R3.19 Technical characteristics of scATAC-seq libraries 

(A) Distribution for the number of accessible sites per single-cell (n=48, mean 3,483 sites/cell). 

On average we observe 4 single-cells per site, median 2 cells per site. (B) Plot of accessible sites 

in a given single-cell (n=48). 100 sites are accessible in 50% of cells (n=24). 5,000 sites are 

supported in 10% of all single-cells (n=5 cells). (C) Chromatin accessible heatmaps (5,000 sites) 

for regular (50,000 cells), pooled single-cells (n=48) and three individual single-cell libraries. 

Mapped fragment estimates, fragments in accessible sites, and efficiencies are shown for each 

single-cell library.  
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Figure R3.20 Dynamic cis-regulatory landscape of Rag1/2 during pre-B differentiation 

(A-B)  UCSC genome browser view of the Rag1 (A) and Rag2 (B) loci for regular 0h/24h 

DNaseI (red), 0h/24h ATAC-seq (grey), and 0h/24h scATAC (black, n=95 and n=132) 

chromatin accessibility. Single-cells for the 0 and 24 hour time-points were averaged. Promoters 

(black) and upstream regulatory elements (red) are boxed respectively. 
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Figure R3.21 Single-cell cis-regulatory landscape during pre-B differentiation 

 

(A) Heatmap 6,000 chromatin elements for 0 and 24 hour scATAC-seq data. C1 experimental 

replicates are indicated for both time-points.  
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3.6 Methods 

DNase-seq 

DNase-seq was performed on ~20-25 million cells with 3 biological replicates for each 

time-points (0-24 hours) and conditions (Ikaros-inducible and control). Briefly, cells were 

harvested and washed with cold 1X PBS, prior to nuclei lysis. Lysing conditions were optimized 

to ensure >90% recovery of intact nuclei. DNaseI concentrations were titrated on Ikaros-

inducible and control cells using qPCR against known positive DNaseI hypersensitive promoters 

(Ap2a1, Ikzf1, Igll1) and negative inaccessible hypersensitive promoters (Myog, Myod) in our 

biological system, thereby reducing excessive digestion of DNA. Enrichment of DNaseI 

hypersensitive fragments (0-500bp) was performed using a low-melt gel size selection protocol 

and built into libraries, which were sequenced as 43bp paired-end NextSeq 500 Illumina reads at 

a minimum depth of 20 million reads per each biological replicate. For DNaseI footprinting 

analysis, libraries were further sequenced and merged to achieve a minimum of 200 million 

mapped reads.  

 

DNase-seq mapping, peak and footprint calling 

DNase-seq reads were trimmed to 36bp and paired-end mapped to the mm10 reference 

genome using Bowtie (Langmead et al., 2009) with options: -v 2 -k 1 -m 1 --best –strata. DNase-

seq peaks were called for each replicate using the HOMER findPeaks function. We employed a 

specific peak-calling strategy to capture several features of our DNaseI hypersensitive sites. Our 

strategy was to include both ‘narrow’ and ‘broad’ DHS peaks in our analysis. This captured a 

comprehensive set of sites with a wide DHS dynamic range. Initially, we used HOMER to 

determine narrow DHS peaks using a default size parameter (120-150bp) with a minimum peak 
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distance of 50bp between DHS and an FDR of 1%. We then included a second round of peak 

calling, restricting to a peak size of 500bp with a minimum peak distance of 50bp between DHS 

peaks and an FDR of 1%. We then merged the two peak sets for each replicate. We required a 

minimum 1bp overlap of peaks across all three biological replicates for each time-point 

respectively and generated a consensus DHS peak list across all time-points.  

 

DNase-seq quantification & normalization 

The consensus DHS peaks (53,624) were filtered to remove peaks on the mitochondrial 

DNA, chromosome fragments, and mouse ENCODE blacklist regions. Counts were estimated 

for each consensus DHS using the Bedtools coverageBed function (Quinlan and Hall, 2010). 

Additionally, no DHS were considered with less than 10 reads (~1 RPM) in all time-points. We 

used 52,788 consensus DHS peaks in our biological system for all subsequent analysis. Counts 

were estimated for each DHS regions on each dataset and normalized using loess and TMM. 

ARSyn was used to batch correct data and converted to RPKM values. Consensus DHS peaks 

were subsequently scanned for chromatin footprints using the Wellington algorithm with the 

following parameters (Piper et al., 2013).  

 

Single-cell RNA-seq 

Single cells were isolated on the Fluidigm C1 System using the smallest IFC (5-10 um) 

based on the estimated size of B3 cells. Briefly, cells were collected for each time-point at a 

concentration of 400 cells/μl in a total of 50 μl. To optimize cell capture rates on the C1, 

buoyancy estimates were optimized prior to each run. Our C1 single-cell capture efficiency was 

~75-90% across 8 C1 runs. Each individual C1 capture site was visually inspected to ensure 
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single-cell capture and cell viability. After visualization, the IFC was loaded with Clontech 

SMARTer kit lysis, RT, and PCR amplification reagents. After harvesting, cDNA was 

normalized across all libraries from 0.1-0.3 ng/μl and libraries were constructed using Illumina’s 

Nextera XT library prep kit per Fluidigm’s protocol. Constructed libraries were multiplexed and 

purified using AMPure beads. The final multiplexed single-cell libraries were analyzed on an 

Agilent 2100 Bioanalyzer for fragment distribution and quantified using Kapa Biosystem’s 

universal library quantification kit. The pooled libraries were normalized to 2 nM and sequenced 

as 75bp paired-end dual indexed reads using Illumina’s NextSeq 500 system at a depth of ~1.0-

2.0 million reads per cell. Each Ikaros time-point was performed once, with the exception of 18 

and 24 hour time-points, in which two C1 runs were required in order to achieve approximately 

~50 single-cells per each time-point. 

 

Single-cell RNA-seq mapping, quantification, and pseudo-time analysis 

A total of 560 single-cell RNA-seq libraries were mapped with Tophat (Trapnell et al., 

2009) to the mouse Ensembl gene annotations and mm10 reference genome. Single-cell libraries 

with a mapping rate less than 50% and less than 450,000 mapped reads were excluded from any 

downstream analysis, resulting in 324 single-cells for all subsequent analysis. Cufflinks 

(Trapnell et al., 2010) version 2.2.1 was used to quantify expression from single-cell libraries 

using Cuffquant. Gene expression measurements for each single-cell library were merged and 

normalized into a single data matrix using Cuffnorm. Monocle (Trapnell et al., 2014) was used to 

determine the pseudo-time trajectory of Ikaros-induced cells across our time-series. See 

supplemental code Monocle parameters.  

 



122	
	

ATAC-seq 

 ATAC-seq was performed as previously described (Buenrostro et al., 2013) with the 

addition of a DNA size selection step after library generation to enrich for accessible chromatin 

ranging from 100-400bp. ATAC-seq libraries were sequenced as paired-end 43bp reads on the 

Nextseq 500 Illumina platform. Approximately 20-25 million ATAC-seq reads were generated 

per library. 

 
ATAC-seq and scATAC-seq data processing 
 

Single-cell libraries were mapped with Bowtie (Langmead et al., 2009) to the mm10 

reference genome using the parameters -S -p 2 --trim3 10 -X 2000. Duplicate fragments were 

removed using Picard (http://picard.sourceforge.net) as previously performed (Buenrostro et al., 

2015). We only analyzed single-cell libraries with more than 5000 fragments after mapping and 

duplication removal. Bulk ATAC-seq replicates were mapped to the mm10 reference genome 

using the parameters -S --trim3 10 -p 32 -m 3 -k 1 -v 2 --best -X 2000. Peak calling was 

performed on bulk replicates using HOMER with the command findPeaks <tags> -o <output> -

localSize 50000 -size 150 -minDist 50 –fragLength 0. The intersection of peaks in three 

biological replicates were retained. A consolidated list of peaks was generated from the union of 

peaks from 0 and 24 hour time-points. Fragment counts for single-cell and bulk samples were 

estimated from the consolidated peak and compiled into a single experiment data matrix.  
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Chapter 4: Discussion and perspective 

 One of the most complete gene regulatory networks constructed to date describes the first 

6-30 hours of sea urchin development (http://sugp.caltech.edu/endomes/). While these networks 

were primarily constructed using gene expression information, each linkage was systematically 

validated using perturbation-based experiments. The arduous task of perturbing each gene and 

measuring its individual effect on the entire gene network, has provided a deep and mechanistic 

understanding of sea urchin development (Howard and Davidson, 2004; Longabaugh et al., 

2005; Peters and Davidson, 2015). This approach systematically validates a regulatory role for 

each linkage defined. These linkages can then be evaluated to assess their importance for 

maintaining the gene regulatory circuitry. Perturbation experiments were critical to constructing 

the sea urchin gene regulatory network, and similar approaches are also necessary to validating 

mammalian GRNs, which is complicated by the multiplicity of paralogs that would need to be 

analyzed. A clear next step would be the siRNA-mediated perturbation experiments for several 

key regulators during HL-60 differentiation to validate the importance of several regulatory 

linkages identified in our myeloid-derived networks. The information from these gene 

knockdown experiments would feed back into refining our gene regulatory networks. We foresee 

a long program of iterative dissection using perturbation-based experiments to validate the key 

linkages in our dynamic myeloid gene regulatory circuits that would allow us to move beyond 

the “draft” designation to a “validated” state similar to the sea urchin GRN.  

 The ability to study individual single-cells has revealed the complex biological nature of 

cellular heterogeneity often lost in pooled data at both the transcriptional and epigenetic level 

(Elowitz et al., 2002; Lacramioara Bintu, 2016). Moreover, functional applications utilizing 

single-cell technologies have expanded the current view of the dynamic hematopoietic system 
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through identification of sub-populations of granulocytic progenitors and  diverse transcriptional 

programs (Lara-Astiaso et al., 2014; Paul et al., 2015). Using single-cell RNA-seq, we mapped 

the pseudo-temporal trajectory of 324 differentiating pre-B cells as part of the STATegra project. 

Our analysis revealed the dynamic gene expression profiles and heterogeneous behavior of our 

pre-B model system over the first 24 hours of Ikzf1 induction. Additionally, we observed 

significant enrichment for signaling pathways and key transcriptional regulators that show time-

specific expression dynamics in single-cells. To gain insight into the cis-regulatory landscape of 

differentiating pre-B single-cells, we performed single-cell ATAC-seq (Buenrostro et al., 2015) 

on 0 and 24 hour Ikzf1 induced cells. This analysis of 227 single-cell chromatin profiles was 

challenging due to the sparse nature of scATAC-seq data. We observed predominant changes in 

accessibility for elements of Igll1, Vpreb1 and Rag1/2 genes, which correlated with the changes 

in single-cell gene expression. Interestingly, we observed heterogeneity for site accessibility in 

single-cells. It is possible that this observed heterogeneity for site accessibility is a result of 

technical or biological variation. From our technical analysis we observed that only about 100  

sites were accessible in more than 50% of cells analyzed and show that only 5,000 sites we 

accessible in 10% of the cells in our scATAC-seq datasets. Because single-cell accessibility 

estimates are near binary, increasing the number of single-cells analyzed will allow for a more 

reliable assessment of whether the observation of variations in single sites accessibility is due to 

technical or true biological difference between subsets of single-cells.   

 Conrad Waddington’s ‘epigenetic landscape’ concept initially described the genetic 

robustness of a developing organism (Waddington, 1957). The ‘epigenetic landscape’ is now 

generally applied to explain the cellular commitment decisions and reprogramming potential of  

individual cells (Ladewig et al., 2013; Nicol-Benoit et al., 2013). While the power of cellular 



125	
	

reprogramming using induced pluripotent cells (iPSC) (Takahashi and Yamanaka, 2006; 

Takahashi et al., 2007) has transformed the biomedical field in developing novel applications 

and therapeutics for the study of human disease (Soldner and Jaenisch, 2012a, 2012b), much of 

the transcriptional control that mediates this process is still under investigation. Less understood 

is the concept of cellular transdifferentiation. This phenomenon was first described in the 

observation of cuticle producing cells transdifferentiating into salt-secreting cells in silk moths 

undergoing morphogenesis (Selman and Kafatos, 1974). Moreover, the first observation of 

transdifferentiation in mammalian cells was described for conversion of mouse embryonic 

fibroblast into myoblasts following induced expression of the transcriptional regulator MyoD 

alone (Davis et al., 1987). Additionally, Th17 transdifferentiation into T regulatory cells and pre-

B cell transdifferentiation into macrophages has also been described (Gagliani et al., 2015; Van 

Oevelen et al., 2015). Because HL-60 cells can be terminally differentiated into macrophage, 

monocyte and neutrophil cells, it would be interesting to explore the transdifferentiation potential 

of these myeloid progenitors into non-myeloid cells. We could use CRISPR dCas9-VP64 

(Maeder et al., 2013) and several guide RNAs targeting the activation of the MYOD promoter to 

see whether HL-60 cells induced into myoblasts. Robust and rationale reprogramming of one cell 

state into a completely different cell state is a proof of principle that we understand the key 

regulatory mechanisms controlling the identity of the starting and ending cell states. 

 The ability to generate high-throughput single-cell measurements for several biochemical 

assays has become a powerful tool for studying complex biological systems. There is therefore a 

growing need for new computational approaches and tools for analyzing single-cell results from 

multiple assays. Existing computational approaches include self-organizing maps (SOM), 

pseudo-temporal ordering, diffusion mapping and dimensionality reduction have all been used 
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for analyzing single-cell RNA-seq data (Haghverdi et al., 2015; Kim et al., 2015; Satija et al., 

2015; Setty et al., 2016; Trapnell et al., 2014).  However, the development and implementation 

of these approaches for integrating multiple genomic platforms remains unresolved for single-

cell analysis.  

 Self-organizing maps (SOM) are an artificial neural network that are trained using 

unsupervised learning to reduce high-dimensional data into a low-dimensional representation . 

The representation of the SOM can be viewed as a two-dimensional map, in which each node is 

weighted and has the same dimension as the average of input data vectors associated with that 

node. Moreover, the position of the node within the two-dimensional map represents similarity 

between data represented in each node. Previously, SOMs have been used to analyze large-scale 

datasets comparing multiple cell types with ChIP-seq and DNase-seq data both independently 

and in some cases integratively (ENCODE Consortium Project., 2012; Mortazavi et al., 2013; 

Sheffield et al., 2013; Thurman et al., 2012; Yue et al., 2014). For example, Mortazavi et al. used 

self-organizing maps to identify candidate cell-type-specific enhancers from multiple ENCODE 

cell types. A single-cell experiment is capable of producing up to thousands of single-cell data 

sets (Klein et al., 2015; Macosko et al., 2015) at once, which can be computationally challenging 

to analyze. SOMs have also been used to study the dynamics of cellular reprogramming in 

single-cells using scRNA-seq, which revealed that the dynamic activation of lncRNAs occurs 

during cellular reprogramming and that activated lncRNAs are also capable of repressing 

lineage-specific genes (Kim et al, 2015). Additionally, the SOM analysis revealed dynamic 

single-cell profiles that highlight the heterogeneity and transition of each cell during 

reprogramming (Kim et al., 2015). The application of SOMs to the STATegra scRNA-seq and 

scATAC-seq time-course data should allow us to view the dynamic transition of gene expression 
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and chromatin accessibility in single-cells during pre-B cell differentiation. If we could fuse 

those SOMs and incorporate dynamic scRNA-seq and scATAC-seq data, we could mine the 

relationships between the different subsets present in our one-datatype single-cell data in a way 

that is currently impossible to do from pooled data.  

 Longer term, the ability to reconstruct gene regulatory networks accurately from high-

throughput functional genomics methods such as RNA-seq and ATAC-seq in the course of cell 

differentiation or embryonic development will be key to understanding how development is 

encoded in the genome. Even now with the ability to perform single-cell genomic assays that 

measure gene expression, chromatin accessibility, methylation state, and chromatin architecture 

in single-cells, utilizing this information in a dynamic system remains a challenge. Future studies 

of human myeloid differentiation in a time-specific manner in single-cells should reveal the 

underlying transcriptional circuits of a single-cell. While a time-series of differentiating cells 

would offer much insight, this would only provide temporal snapshots of individual cell profiles 

since individual captured cells can no longer be traced and profiled at subsequent time points. 

The ability to probe biochemical measurements from a single-cell without its destruction would 

reveal the individual dynamic circuits of any respective cell, which is currently being done in a 

low throughput manner using live imaging. Additionally, few technologies have begun to profile 

multiple biochemical assays that include the DNA methylation state, gene expression profiles, 

and genome sequence from the same individual cell (Angermueller et al., 2016; Hou et al., 2016; 

Macaulay et al., 2015). Expanding on the notion of simultaneous profiling, measuring chromatin 

accessibility and gene expression would yield a powerful approach for linking the cis-regulatory 

landscape and corresponding expression profile of a single-cell. As the technologies to probe the 

nature of single-cells become central, so does the requirement for proper analytical methods to 
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analyze ever more complicated datasets. In summary, approaches that integrate multiple genomic 

assays and incorporate single-cell data into gene regulatory network reconstruction will be 

critical to gain further insights into the biological logic of development. 
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