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ABSTRACT OF THE DISSERTATION 
 
 

Molecular Switches Coordinate Dynamically Coupled  
Allosteric Networks in Protein Complexes 

 
by 

 
 

Zied Gaieb 
 

Doctor of Philosophy, Graduate Program in Bioengineering 
University of California, Riverside, August 2016 

Dr. Dimitrios Morikis, Chairperson 
 
 
 

Structure and dynamics are essential elements of protein function. Protein structure is constantly 

fluctuating and undergoing conformational transitions, which are typically captured by molecular dynamics 

(MD) simulations. Conformational state transitions in a protein involve shifts in its equilibrium 

conformations that occur either independently or as a response to external perturbations. In this work, we 

describe the effect of ligand binding and post-translational modifications (PTMs) to proteins as an external 

perturbation responsible for conformational changes in chemokine receptor 7 (CCR7) and the KU70-KU80 

protein complex, respectively. In both systems, we isolate specific side chain rearrangements that act as 

molecular switches, and mediate the allosteric communication between distant functional sites in a protein, 

as a mechanism to regulate conformational state transitions and sampling. Specifically, in CCR7, we focus 

on the role of allostery in regulating the information transduced from the ligand-binding site to the 

intracellular region of the receptor to allow discrimination in binding intracellular effectors. This 

phenomenon is known as biased activation and is critical to G protein-coupled receptor function. In our 

work, we detect a series of molecular switches in CCR7 that are coupled to various ligand-induced 

allosteric events. Although these molecular switches mediate the transitioning between different states, the 

receptor remains inactive (absence of the canonical TM6 outward movement), illustrating loose coupling 

between the extracellular ligand-binding site and the intracellular effector-binding site. This finding might 
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justify the existence of a novel hybrid model in CCR7, consisting of a “rhodopsin-like” sequential network 

of allosteric events (mediated by molecular switches) and a “β2-adrenergic-like” loose coupling between 

the extracellular and intracellular regions of the receptor. Furthermore, MD simulations of the ligand-free 

receptor highlight the importance of the ligand in coordinating the receptor’s side-chain fluctuations. We 

also focus on developing new methods to systematically detect coupled molecular switches and large 

domain motions in membrane proteins. Finally, we used MD simulations and electrostatic calculations to 

identify the role of PTMs, such as acetylation and methylation, on KU70-KU80’s dynamics. Such PTMs 

are shown to regulate conformational changes within several of KU70’s functional domains through 

acetylation-dependent alteration of the electrostatic profile of the DNA-binding and linker-SAP domains, 

and methylation-dependent molecular switching that is responsible for regulating a “pendulum-like” 

motion in linker-SAP domain. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Protein Dynamics 

The mechanics of large biological machines arise from the properties of their constituent parts, 

whether it is the mechanics of biological tissue emerging from those of the cell or the mechanics of protein 

structures emerging from the dynamics and spatial arrangements of their amino acid residues. Modeling 

and predicting such phenomenon represents a fundamental challenge in structural biology limited by our 

understanding of protein dynamics. 

Proteins are a central component of cellular function, where they participate in all processes 

through a highly diverse set of tasks. Protein diversity mainly stems from their diverse three-dimensional 

structures and amino acid compositions, where protein sizes range from hundreds to thousands of residues, 

forming up to 100,000 or so different proteins in the human body (1). Despite their diverse roles and 

structural arrangements, proteins are mainly encoded by up to 20 different amino acid residues, where 

amino acid residue chain composition determines the protein’s emergent structure and dynamics. 

Consequently, protein function arises from its dynamics as a large ensemble of conformations that can be 

grouped into different conformational states depending on biological function, free energy, and three-

dimensional arrangements (2, 3). 

Conformational state transitions in a protein involve shifts in its equilibrium conformation that 

occur, either independently or as a response to external perturbations, such as ligand binding. Additionally 

state transitions involve several protein motions that can be classified based on their timescales of 

occurrence, which range from nanoseconds to milliseconds, depending on the energy barriers separating 

both conformational states (3). Each energy barrier is composed of enthalpic and entropic contributions that 

are manifested as large domain motions and atomic fluctuations. Large domain motions orchestrate the 

protein’s transitioning between distinct states that are sampled on hundreds of nanosecond to microsecond 

or millisecond timescales and are separated by energy barriers of several RT (usually exceeding thermal 

energy, RT = 0.6 kcal/mol, where R is the gas constant). Within each state, the protein is not static, but 

instead involves thermal fluctuations of its side chains and backbone atoms, occurring on picosecond and 
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nanosecond timescales. The timescale and amplitude of protein motion orchestrate transitions between 

states and are a result of the energy barriers making up the energy landscape of the protein (3). 

Conformational state transitions emerge from coupled large domain motions and side chain 

contacts reorganization between remote regions of a protein. This phenomenon is termed allostery and it 

plays an important role in transmitting information between distant functional sites of the protein as a 

mechanism to regulate its conformational state transitions and sampling (2–4). Allosteric regulation is 

mediated by side chain rearrangements that act as molecular switches, which contribute to the entropic and 

enthalpic components of the energy barrier. Information transfer between distant sites in a protein is 

facilitated by a network of strongly or loosely coupled molecular switch rearrangements (4, 5).  

Molecular dynamics (MD) simulation is one of the many techniques used to study protein 

allostery at atomic level (3). Several recent advances in enhanced sampling methods and simulation speed 

and accuracy have allowed us to reach biologically relevant timescale that capture the transitioning of a 

protein between different states and, consequently, allow the study of allostery (3). Time scales up to 

several microseconds to millisecond are now readily accessible by MD simulations (6–8). Several studies 

have explored a number of fast folding proteins (9) and captured the transitioning of membrane proteins 

between different states (10, 11). With the current accessible time scales, entropic changes have been 

challenging to estimate due to the large conformational space sampled by proteins (12). Consequently, 

systems, where allostery is dominated by enthalpic changes, are better suited for study by MD simulations. 

In a tightly packed environment of the transmembrane (TM) domain of membrane receptors, the entropic 

changes are limited, and molecular-switch rearrangements are manifested mainly as enthalpic changes. 

 

1.2 G Protein-Coupled Receptors 

G protein-coupled receptor family comprises of more than 800 different TM receptor proteins and 

represent one of most popular drug target, accounting for 30-40% of all FDA-approved drugs (13). 

Knowledge of the structural and dynamic features is essential for gaining a deeper understanding of how 

these receptors operate and provides a framework to aid in the rational design of therapeutics that modulate 
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the cell’s signaling pathways. The conformational ensemble of the receptor comprises of distinguishable 

conformational states characterized by its seven-transmembrane helical arrangements, and is a fundamental 

component of the receptor’s selective properties in binding to intracellular (INC) effectors (14–16). To 

enable the complex function of a GPCR, bound ligands are capable of stabilizing the receptor in many 

distinct conformational states ranging from inactive to fully active, spanning G protein, arrestin, or GPCR 

kinase (GRK) biased conformations (14, 16–19). Additionally, receptor conformations are capable of 

discriminating between the different effector subtypes and arrestin binding modes (14, 20). These attributes 

emphasize the importance of the receptor’s conformational diversity and the role of the ligands in shifting 

the receptor’s equilibrium in sampling different conformational states.  

 

1.3 Activation Mechanism of b2-Adrenergic and Rhodopsin Receptors 

Ligand binding to a GPCR drives the receptor to its corresponding conformational states through 

different molecular switches and helical rearrangements (21). Crystallographic and 19F-NMR spectroscopy 

studies have identified specific TM helices involved in the INC rearrangements of the receptor. 

Specifically, upon ligand binding, TM5, TM6, and TM7 undergo large helical displacements to 

accommodate effector binding (14, 16, 22, 23). Rhodopsin and β2-adrenergic receptor are two of the most 

studied GPCRs, both experimentally and computationally (11, 24–26). β2-adrenergic receptor was shown 

to feature loose coupling between the agonist-induced motions in the binding site and the canonical 

outward motion in the intracellular interface as a result of the absence of molecular switches mediating 

such information (11). β2-adrenergic receptor was shown to favor an inactive conformation where the 

canonical outward movement of TM6 is absent unless bound to an intracellular effector. On the other hand, 

rhodopsin’s activation mechanism involves a sequential model of coupled allosteric events within its 

molecular switches, where initial small conformational changes caused by light-induced isomerization of 

11-cis-retinal into all-trans-retinal are converted to larger changes in the INC region of the receptor, and 

induce the canonical TM6 outward motion without requiring the presence of an intracellular effector (27–

29). 
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Phylogenetic tree representation of the human GPCR superfamily is based on sequence similarity 

of the TM region of the receptor, and shows rhodopsin and β2-adrenergic receptor to belong to the same 

subfamily, indicating high sequence similarity. Despite their close proximity in the phylogenetic tree, both 

receptors show different activation mechanisms (Figure 1 in (13)). This is due to their inherent biological 

function, where rhodopsin ensures the rapid and efficient detection of a photon (29), while the β2-

adrenergic receptor evolved for a more complex signaling behavior (25). In that aspect, both receptors has 

evolved to function through different ligands, intended for different biological functions (30).  

 

1.4 Biased Ligand Activated GPCRs 

Biased receptors are activated by several endogenous ligands capable of inducing ligand-specific 

signaling pathways through the same receptor. Therefore, they represent a fundamentally different function 

from rhodopsin and β2-adrenergic receptors where both receptors are either activated by a photon-induced 

isomerization or unbiased and endogenous ligand-binding, respectively. Both receptors are unbiased and 

were shown to indiscriminately activate their respective intracellular pathways in the cell (30). However, 

unlike β2-adrenergic and rhodopsin receptors, biased receptors have evolved to have a tightly regulated 

function that ensures discrimination between several intracellular effectors. Given the different activation 

mechanisms of β2-adrenergic and rhodopsin receptors, we now ask: where do receptors that function 

through biased endogenous ligands fit within these two models? And how is the information transduced 

from the ligand-binding site to the intracellular region of the receptor to allow discrimination between 

intracellular effectors? 

As a biased receptor, we examine a key regulator of the adaptive immune response in the CC 

chemokine receptor family, CC chemokine receptor 7 (CCR7) (31). Its ligands, CCL19 and CCL21, have 

distinct roles in the homing and functional compartmentalization of T cells and antigen-presenting dendritic 

cells to and within the secondary lymph nodes, as a result of their differential chemotactic behaviors (31–

33). To initiate CCR7’s cellular function, CCL19 and CCL21 have been shown to selectively induce 

distinct signaling pathways in the cell (17). While both ligands mediate their signaling through binding of 
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intracellular Gi protein and GRK6 to CCR7, only CCL19 induces CCR7 internalization and desensitization 

through receptor phosphorylation by GRK3 and recruitment of β-arrestin 2 (17, 34). This differential 

binding of CCR7 to β-arrestin 2, GRK3, and GRK6 suggests the presence of selective conformational 

states in CCR7 induced by its biased ligands, CCL19 and CCL21. Using MD simulations, we detect a 

series of molecular switches hypothesized to facilitate the receptor’s conformational transitions to ligand-

specific conformational states. With that, we hypothesize that CCR7 involves a novel activation mechanism 

that combines the “rhodopsin-like” molecular switches that induce a ligand-initiated relay of interactions 

and the “β2-adrenergic-like” loose coupling between the ligand-binding site and the intracellular region. 

 

1.5 Effect of Post-Translation Modifications on Protein Dynamics 

Post-translational modifications (PTM) are important mechanisms in cellular signaling, which can 

lead to significant changes in the dynamics of a protein. In chapter 5, we study the effect of PTM on the 

dynamics of KU70-KU80, which is the first protein recruited to initiate non-homologous end-joining 

(NHEJ) of Double-strand DNA breaks. Dysregulation of KU70-KU80 through acetylation and methylation 

of lysine residues has been shown in various cell lines to introduce mutations and error-prone NHEJ (35–

37). However, no molecular mechanism describes how such PTMs might affect the interactions of KU70-

KU80 with DNA, and its deacetylase and demethylase enzymes, SIRT1, and LSD1. In this regard, our 

objective is to bridge the knowledge-gap between PTMs on KU70 and fallible DNA repair in NHEJ. The 

project aim is to assess the structural mechanisms of acetylation and methylation on regulating KU70-

KU80 heterodimer’s dynamics. 

 

1.6 Overview 

The majority of the work described in this thesis aims to investigate the dynamics of biased 

GPCRs. We study the role of allostery in inducing large domain motions in the receptor coordinated by its 

constituent side chain motions. This information is subsequently used to develop a computational 

framework designed to characterize the dynamical behavior of membrane proteins by systematically 
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extracting biologically relevant motions. In chapter 2, we simulate microsecond dynamics of CC 

chemokine receptor 7 (CCR7) bound to its native biased ligands, CCL19 and CCL21, and detect a series of 

molecular switches that are mediated by various ligand-induced allosteric events. These molecular switches 

involve three tyrosine residues (Y1123.32, Y2556.51, and Y2887.39), three phenylalanine residues (F1163.36, 

F2085.47, and F2486.44), and a polar interaction between Q2526.48 and R2947.45 in the transmembrane domain 

of CCR7. Conformational changes within these switches, particularly hydrogen bond formation between 

Y1123.32 and Y2556.51, lead to global helical movements in the receptor’s transmembrane helices and 

contribute to the transitioning of the receptor to distinct states. Ligand-induced helical movements in the 

receptor highlight the ability of biased ligands to stabilize the receptor in different states through a dynamic 

network of allosteric events. In chapter 3, we highlight the importance of the ligand in coordinating the 

receptor’s side-chain fluctuations to drive the conformational changes responsible for state transitions in the 

receptor. Despite the similarly high side chain fluctuations in all receptor forms, only the ligand-bound 

receptors show substantial correlated conformational changes in the receptor. We conclude that the lack of 

correlation in the apo receptor is owed to the absence of a bound ligand capable of inducing conformational 

changes in the receptor’s molecular switches. In chapter 4, we focus on the methodology for detecting side 

chain interactions that act as molecular switches mediating large domain motions and vice versa. Molecular 

switches are extracted from persistent side chain interactions that undergo well-defined abrupt changes in 

distance time series using Gaussian mixture models (GMM), whereas large domain motions are detected 

using dynamic cross-correlation (DCC). This method allows for the study of allosteric regulation in 

proteins by relating different molecular switches to the larger domain motions that are essential to their 

function. This computational framework is suitable for the study of tightly packed proteins, such as 

membrane proteins, and we use the ligand bound CC chemokine receptor 7 (CCR7) as an example. Overall, 

the computational framework can be tailored to study different protein environments and dynamics.  

In chapter 5, we identify the role of acetylation and methylation on KU70’s dynamics, which 

consequently affects its binding function to different effectors, such as DNA, SIRT1, and LSD1. KU70’s 

acetylation is shown to alter the DNA binding affinity by neutralizing the charge of four lysine residues that 
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reside within the DNA-binding domain. Additionally, the electrostatic profile of the linker domain was 

altered through charge-removing acetylation of five lysine residues on the linker. The latter contributes to a 

more negatively charged linker and disrupts alternating positively and negatively charged patches. This 

linker domain connects KU70’s core and SAP domains; and both, lysine acetylation and alternating-charge 

pattern, are capable of altering the linker dynamics, which consequently can alter the SAP domain’s 

function of binding the KU70-KU80 complex and/or DNA (38). 
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CHAPTER 2: MOLECULAR MECHANISM OF BIASED LIGAND  
CONFORMATIONAL CHANGES IN CC CHEMOKINE RECEPTOR 7 

 

2.1 Introduction 

Conformational diversity in G protein-coupled receptors (GPCRs) is a fundamental component of 

the receptor’s selective properties in binding intracellular effectors, such as G protein and arrestin (1). The 

conformational ensemble of the receptor comprises of distinguishable conformational states characterized 

by its seven-transmembrane (TM) helical arrangements, critical to coordinating the receptor’s selective 

binding to intracellular (INC) effectors (1–3). To enable the complex function of a GPCR, bound ligands 

are capable of stabilizing the receptor in many distinct conformational states ranging from inactive to fully 

active, spanning G protein, arrestin, or GPCR kinase (GRK) biased conformations (1, 3–6). Additionally, 

receptor conformations are capable of discriminating between the different effector subtypes and arrestin 

binding modes (1, 7). These attributes emphasize the importance of the receptor’s conformational diversity 

and the role of the ligands in shifting the receptor’s equilibrium in sampling its different conformational 

states. 

Here, we examine a key regulator of the adaptive immune response in the CC chemokine receptor 

family, CC chemokine receptor 7 (CCR7) (8). Its ligands, CCL19 and CCL21, have distinct roles in the 

homing and functional compartmentalization of T cells and antigen-presenting dendritic cells to and within 

the secondary lymph nodes as a result of their differential chemotactic behaviors (8–10). To initiate 

CCR7’s cellular function, CCL19 and CCL21 have been shown to selectively induce distinct signaling 

pathways in the cell (8). While both ligands mediate their signaling through binding of intracellular Gi 

protein and GRK6 to CCR7, only CCL19 induces CCR7 internalization and desensitization through 

receptor phosphorylation by GRK3 and recruitment of β-arrestin 2 (4, 11). This differential binding of 

CCR7 to β-arrestin 2, GRK3, and GRK6 suggests the presence of selective conformational states in CCR7 

induced by its biased ligands, CCL19 and CCL21. 

Ligand binding to a GPCR drives the receptor to its corresponding conformational states through 

different molecular switches and helical rearrangements (12). Crystallographic and 19F-NMR spectroscopy 
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studies have identified specific TM helices involved in the INC rearrangements of the receptor. 

Specifically, upon ligand binding, TM5, TM6, and TM7 undergo large helical displacements to 

accommodate effector binding (1, 3, 13, 14). A recent study by Liu et al. shows that β2-adrenergic receptor 

explores two independent equilibrium conformations in TM6 and TM7 (1); where, ligands are capable of 

fine-tuning the relative population of equilibrium conformational states adopted by TM6 and TM7 to 

accommodate biased or unbiased binding of G protein and β-arrestin (1).  

Despite these fundamental advances in characterizing the role of TM helices in selectively binding 

INC effectors, the role of the ligands and their associated molecular mechanisms and pathways in 

stabilizing such conformations, in particular the relative positions of TM5, TM6, and TM7, remains 

unclear. Previous studies using molecular dynamics (MD) simulations have focused on the activation 

mechanism in response to unbiased agonist (15–18), to the exception of a few studies that discuss “known 

microscopic characteristics” of the biased conformational states in β2-adrenergic receptor (19). However, 

to the best of our knowledge, detailed ligand-specific structural allosteric pathways have not been fully 

characterized in any GPCR, let alone chemokine receptors. Such structural detail is essential for not only 

gaining a deeper understanding of how ligands operate in a selective manner, but also aids in the rational 

design of drugs targeting desired signaling pathways. 

In the present study, we apply conventional MD (cMD) using Anton (20) and accelerated MD 

(aMD) (21, 22) to delineate the conformational changes in CCR7 in response to its biased ligands, CCL19 

and CCL21. From all simulations, we identify various molecular switches that undergo various ligand-

specific conformational changes. Additionally, during the cMD simulation, we capture ligand-associated 

allosteric pathways, starting at the ligand-binding site, and propagating to these molecular switches. Highly 

correlated helical movements are coupled to the conformational changes occurring within the molecular 

switches and illustrate transitioning of the receptor between two distinct states. 
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2.2 Materials and Methods 

Nomenclature. Residues are represented as a one-letter amino acid code and a number 

corresponding to their order in the sequence. Additional sequence information is represented in the 

superscripts. Superscripts of ligand residues denote the ligand it belongs to; and receptor residues are 

numbered according Ballesteros–Weinstein and convey the helix number and position of each residue 

relative to the most conserved residue in the helix (23). 

System setup for molecular dynamics simulations. The structure of CCR7 and CCL19/CCL21-

bound CCR7 were modeled after the newly determined crystal structure of the chemokine receptor CXCR4 

bound to a viral chemokine antagonist vMIP-II (24) (PDB code 4RWS). The structures of the CCL19 and 

CCL21 ligands and CCR7 receptor were generated separately and were subsequently assembled into 

complexes using the vMIP-II-CXCR4 crystal structure as a template. First, the mouse sequences of CCR7, 

CCL19, and CCL21 were extracted from UniProt (25) (http://www.uniprot.org/). Alignments of receptor 

and ligand sequences with CXCR4 (PDB code 4RWS) and vMIP-II (PDB code 4RWS) respectively were 

then performed using the ClustalW2 (26, 27) server (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Sequence 

alignments revealed a percent identity of 27% between vMIP-II and CCL19 and 23% between vMIP-II and 

CCL21. Despite the low sequence identity, vMIP-II was used as a template since all chemokine ligands 

have a common structural motif with a core domain (residues 10-83) that is structurally maintained by two 

disulfide bridges and a flexible N-terminal domain (28) (ligand-NTD) (residues 1-7). The core domain has 

a canonical fold: a N-loop, followed by three antiparallel β-strands, an α-helix, and a flexible C-terminal 

domain (CTD). The three β-strands are connected by two loops: the 30s-loop, and 40s-loop. Unlike 

CCL19, the full sequence of CCL21 comprises of a long and positively charged CTD that allows binding to 

glycosaminoglycans. Given that CTD does not interact with CCR7 and not involved in receptor activation 

(8), a truncated version of CCL21 (residues 1-83) was modeled along with the full sequence of CCL19 

(residues 1-83) using Modeller9.11 (29). Both models assume a robust core forming the canonical 

chemokine motif and show low rmsd to their respective experimental structures: rmsd between CCL19 and 

CCL21 models and their respective NMR structures is 1.143 Å and 1.184 Å, respectively (28, 30). 
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Modeling of the ligands using vMIP-II was done to obtain three-dimensional structures of each ligand in 

their bound conformation to CCR7. 

Sequence alignment of CCR7 with CXCR4 (sequence extracted from PDB file 4RWS) showed a 

36% identity and 47% similarity (with 39% identity and 63% similarity for the transmembrane domain 

(TMD)). (Sequence similarities were calculated using SIAS [http://imed.med.ucm.es/Tools/sias.html], by 

taking into consideration the following physicochemical properties of aligned amino acids: aromatic (F, Y, 

W), hydrophobic (V, I, L, M, A, F, W), aliphatic (V, I, L), positively charged (R, K, H), negatively charged 

(D, E), polar (Not charged) (N, Q), or small (A, T, S)). The receptor is composed of three domains: the 

transmembrane (TMD, residues 26-305), N-terminal (CCR7-NTD, residues 1-25), and C-terminal (CTD, 

residues 306-354) domains that have different structural motifs and were therefore modeled separately. The 

CCR7-NTD is an intrinsically disordered segment of the receptor, that could not be detected in several 

crystallographic and NMR studies of many GPCRs (24, 31–34). Therefore, the CCR7-NTD was modeled 

using Modeller9.11 in a random coil conformation and was positioned away from the extracellular loops to 

avoid clashes between the CCR7-NTD and the ligand when positioning CCL19 and CCL21. In contrast, the 

CTD contains an α-helical sequence motif F(RK)xx(FL)xxx(LF) and an intrinsically disordered segment 

(32). Given the success of i-TASSER in predicting protein structure, the full CTD sequence was modeled 

using the i-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) (35, 36). The top generated 

model had a relatively low confidence score of -2 (C-score range [-5, 2]), which is due to the intrinsically 

disordered segment of the CTD. However, more importantly, the produced i-TASSER model still generated 

the canonical helical domain, known as helix 8 (residues 309-319), present in many other GPCRs such as 

CCR5 (32) (PDB code 4MBS), CXCR1 (34) (PDB code 2LNL) and β2-adrenergic receptors (14, 33, 37, 

38) (PDB codes 3P0G, 3SN6, 3NY8, 2RH1). Lastly, The TMD of CCR7 is composed of 7 TM helices 

(TM1: residues 27-61; TM2: residues 68-96; TM3: residues 102-134; TM4: residues 144-172; TM5: 

residues 194-228; TM6: residues 239-267; TM7: residues 274-303) connected by three extracellular loops 

(ECL) and three intracellular loops (ICL). Templates exhibiting more than 35% sequence homology can be 

used to generate highly reliable GPCR models (39). Therefore, with a 39% sequence identity, CXCR4 was 
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used as a template to generate a three-dimensional structure of CCR7’s TMD (residues 19-303) using 

Modeller9.11 (29).  

The modeled ligands and receptor were then used to construct the complex structures following 

the published binding mode of the CXCR4-vMIP-II crystal structure (24) (PDB code 4RWS). The ligands 

bind the receptor via a two-site mechanism where the CCR7-NTD binds the core domain of the ligand, site 

I, followed by ligand-NTD binding inside the receptor’s extracellular pocket, site II (24). For site I, various 

NMR studies of chemokine ligands with their receptor NTDs show similar interactions where the receptor-

NTD interacts with the N-loop, 40s loop, and third β-strand of the ligand (28, 30, 40, 41). Therefore, 

chemokine-binding to its receptor involves two experimentally determined structural constrains: the 

receptor-NTD and extracellular binding pocket in sites I and II respectively. Published crystallographic 

structures of chemokine-GPCR complexes (PDB 4RWS and 4XT1/3) show very similar binding modes 

(root-mean-square deviation (rmsd) of 1.3 Å) and comply with the aforementioned structural constraints 

(24, 42). In light of the new chemokine-GPCR structures, CCL19 and CCL21 were positioned using 

CXCR4-vMIP-II crystal structure (PDB code 4RWS) (24) as a template using Chimera (43). The binding 

mode complies with previously published NMR chemical shift perturbations between CCR7-NTD and its 

ligands CCL19 and CCL21 (28, 30). These chemical shift perturbation studies, carried by Love et al, 

indicate the presence of a binding interface in each ligand (N-loop, 40s loop, and third β-strand) that 

interacts with the CCR7-NTD.  

To assess the stability of the receptor terminal domains, we calculate rmsd time series of both 

domains (CCR7-NTD and CCR7-CTD) in all of our simulations (cMD and aMD for each of the two 

complexes). All rmsd plots show stabilization of both domains in all simulations (Figure A.1). 

Furthermore, contact maps between the CCR7-NTD and the ligand calculated from both aMD and Anton 

simulations reveal very close agreement with NMR data of CCL19 and CCL21 with CCR7-NTD (Figure 

A.2) (28, 30). 

In site II, both ligand-NTDs adopt different poses in the receptor-binding pocket during our 

simulations (Figure A.3). Figure A.3 displays contacts between CCR7 and its ligand-NTDs at less than 5 Å 
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and a residence time of 50% or more of the equilibrated cMD recorded frames (equilibrated time domain 

are specified in Figure 2.1 caption). CCL21 N-terminus forms a salt bridge with E1694.60, which facilitates 

the ligand’s interaction with TM4, TM5, and TM6. In addition, D2CCL21 forms a salt bridge with the second 

extracellular loop (ECL2), R185ECL2; and D6CCL21 interacts with K261.24 and R301.28. Unlike CCL21, CCL19 

forms no interactions with TM4, TM5, and TM6 and its charged residues are stabilized with the charge-

complementary residues in TM1: D4CCL19 interacts with K261.24, R301.28, K331.31, and E941.64; E6CCL19 

interacts with R185ECL2 and E181ECL2; D7CCL19 interacts with E181ECL2, and K261.24; CCL19’s N-terminus 

interacts with E941.64, D2857.36, R301.28, and K331.31.  

Our generated complex models were equilibrated in a model of a lipidic membrane patch through 

our multi-step molecular dynamics simulations protocol described below and subsequently used to initiate 

long timescale MD simulations. 

Conventional molecular dynamics simulations. Equilibration MD simulations of CCR7-CCL19 

and CCR7-CCl21, were performed using NAMD, version 2.9 (44). Initial protein structure files were 

prepared using the PSFGEN utility in VMD (45) and the CHARMM36 forcefield (46–49). All disulfide 

bonds were maintained during the simulations: two disulfide bonds in CCR7 (C24-C274 and C105-C186), 

two disulfide bonds in CCL19 (C8-C34 and C9-C50), and two in CCL21 (C8-C34 and C9-C52). The 

receptor region embedded in the membrane was determined using the Positioning of Proteins in Membrane 

(PPM) server (http://opm.phar.umich.edu/server.php) and used to position the lipid bilayer around the 

receptor (50). The palmitoyl-oleoyl-phosphatidyl-choline (POPC) bilayer was generated using the 

Membrane plugin in VMD (45) and all overlapping lipid molecules within 1 Å were removed. The lipid-

protein system was embedded into a water box using the VMD utility SOLVATE and the TIP3P model for 

the water molecules. The water box dimensions of the ligand bound receptor was 105 Å × 105 Å × 120 Å 

respectively. The system was neutralized using sodium and chloride counterions at an ionic strength of 150 

mM. The final ligand bound CCR7 systems contained ~270 lipid molecules, ~200 Na+, ~214 Cl-, and 

~35,000 water molecules, for a total of ~149,000 atoms.  
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NAMD (44) was used to equilibrate the system in a series of minimization, melting, and 

equilibration steps at 1 atm pressure and 310 K. The system was freely minimized for 1000 steps of 

conjugate gradient energy minimization. The protein, solvent, ions, and lipid heads were then fixed and the 

system was minimized for 1000 steps and simulated for 0.5 ns to allow the lipids tails to equilibrate at 1 

fs/step. The following simulation series were run at 2 fs/step. The system was simulated with protein 

restrained at 5 kcal/mol to allow the environment to relax in 1000 steps minimization and 0.5 ns simulation. 

The system was then subjected to a minimization step for 1000 steps and five equilibration stages (1 ns 

each) with all protein atoms harmonically constrained (using force constants of 5, 4, 3, 2, and 1 

kcal/mol/Å2, respectively) to their post-minimization positions, and a final unconstrained equilibration 

stage of 15 ns. 

All simulations were performed using periodic boundary conditions and particle-mesh Ewald 

electrostatics for long-range electrostatic interactions with a grid point density of 1/Å. Nonbonded van der 

Waals interactions and short-range electrostatic interactions were calculated with an interaction cutoff of 12 

Å and switching distance of 10 Å. The SHAKE algorithm was employed to fix the length of all hydrogen-

containing bonds, enabling the use of 2 fs integration time steps. Coordinates were sampled every 2 ps. 

Final output velocities, dimensions, and coordinates from equilibration NAMD simulations were 

used as input to simulate our systems on Anton (20), a special purpose supercomputer for biomolecular 

simulation designed and constructed by D. E. Shaw Research (DESRES). All Anton simulations were 

performed under the NPT ensemble using a multigrator (51) (310K using a Nosé-Hoover thermostat and an 

isotropic pressure of 1 atm using the Martyna-Tobias-Klein barostat). Multigrator with thermostat interval 

of 24 ps and barostat interval of 240 ps were used. All bond lengths to hydrogen atoms were constrained 

using the M-SHAKE. A RESPA integrator was used with a time step of 2 fs for bonded, VDW, and short-

range electrostatic interactions, and 6 fs for long-range electrostatic interactions. Long-range electrostatic 

interactions were handled with the k-space Gaussian Split Ewald (GSE) method and a 64 × 64 × 64 grid. 

Interaction parameters such as GSE parameters, and nonbonded cutoffs were determined systematically 

using Anton scripts, designed to optimize accuracy and performance. For CCL19-CCR7, σ = 3.19 Å, σs = 
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1.92 Å, Rcut = 13.76 Å, Rspread = 8.30 Å; and for CCL21-CCR7, σ = 3.17 Å, σs = 1.84 Å, Rcut = 13.67 

Å, Rspread = 7.97 Å. Initial configuration of our three systems produced root mean-squared force errors of 

no more than 0.0023 kcal/mol/Å. 

Accelerated molecular dynamics simulations. Accelerated molecular dynamics simulations 

were performed using NAMD2.9 at the dual-boost acceleration level. The dual-boost applies a boost 

potential to all dihedral angles and all atoms in the system using the input parameters: Edihed = Vdihed_avg + 

0.3*Vdihed_avg, αdihed = 0.3*Vdihed_avg/5, Etotal = Vtotal_avg + 0.2*Natoms, and αtotal = 0.2*Natoms. Natoms is the 

number of atoms in each system; and Vdihed_avg and Vtotal_avg are the average dihedral and total energies 

respectively, extracted from 45 ns equilibration cMD simulations performed as described above. 

Accelerated MD simulations were performed for 150 ns each by restarting from the 45 ns equilibration 

conventional MD simulations (21, 22). 

Analysis Protocols. System snapshots were extracted at a rate of 180 ps and 2 ps during Anton 

and aMD production simulations, respectively. All frames have been analyzed to extract different measures 

and create time series of data as shown in figures. These measures include hydrogen bond, torsion angle, 

and atomic distance calculations. Analysis of the MD trajectories was performed with in-house scripts 

using R programming language (52), Python (53), Chimera (43), the Bio3D library (54, 55), and 

TimeScapes (56).  

Hydrogen bonds were calculated with Chimera, using hydrogen bond criteria as described in ref. 

(43, 57). Backbone and side-chain torsion angles were calculated using Bio3D. Atomic distances were 

calculated between non-hydrogen side-chain atoms using TimeScapes (56) with a cutoff of 5 Å. Interacting 

residue distance time series are determined by calculating the minimum distances of the set of atomic 

distance time series of two interacting residues. Calculating side-chain contacts using the minimum-

distance interacting atoms allows for an accurate separation distance between both residues, as compared to 

using the centroid or a representative atom of the side-chain. Distance time series between Cα atoms were 

also calculated using TimeScapes (56). Distance probability distributions of time series were calculated by 

computing Gaussian kernel density estimates using R. Percent occupancy of an interaction was calculated 
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as the percentage of frames in which an interaction is within 5 Å in the MD trajectory. Pairwise cross-

correlation was calculated between all Cα distance time series using Bio3D (54, 55). Cross-correlation 

coefficient cutoff of 0.95 was used to cluster correlated Cα distance time series; and correlated time series 

that show a coupled behavior to the different measures in Figure 2.2 and Figure 2.5 are extracted as ligand-

induced global helical motions. Rmsds are calculated using Bio3D based on residue side-chains or Cα 

carbons distance time series rather than atomic coordinates. 

�-stacking interactions. Aromatic residue trimers within proteins in the protein data bank (PDB) 

have been studied extensively and found to form two distinct geometrical clusters: symmetrical and ladder 

conformations (58). To monitor the π-stacking arrangement within the tyrosine triad, we measured the 

angle formed between the Cζ carbons in each of the tyrosines, and was found to adopt an obtuse (between 

90° and 120°) and acute (around 60°) θ-angle for ladder and symmetric conformations, respectively (58). 

Molecular mechanics studies and PDB surveys indicate a π-stacking interaction upper-limit distance of 7.5 

Å (distance between benzene ring centroids), where the energy drops below the Boltzmann temperature 

factor (58, 59). 

Sequence alignment. The mouse sequences of all CC chemokine receptors were extracted from 

UniProt (25) (http://www.uniprot.org/). Alignment of all receptors with CCR7 was then performed using 

the Clustal Omega server (60) (http://www.ebi.ac.uk/Tools/msa/clustalo/). Sequence logos are generated 

using the WebLogo3 (61, 62) (http://weblogo.berkeley.edu/logo.cgi). Mouse proteins were selected to 

enable the use of our study to generate testable hypotheses for experimental animal models. 

 

2.3 Results 

With the recent available chemokine-bound crystal structure of CXCR4 (24) (vMIP-II-bound 

CXCR4, PDB code 4RWS), we set out to study the structural mechanism of CCR7 dynamics in response to 

its native biased chemokine ligands, CCL21 and CCL19. Using the vMIP-II-CXCR4 complex, we modeled 

the CCL21 and CCL19-bound structures of CCR7 (see Methods), and using Anton, we then performed 

cMD simulations on the CCL19-CCR7 and CCL21-CCR7 structures for 7 μs each, and we simulated both 
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systems using dual-boost aMD for 150 ns each. Accelerated MD was designed as an enhanced sampling 

MD method and shown to be able to capture microsecond timescale events in various molecular systems 

(21, 63–65). Using both MD methods, we aim to identify microsecond timescale conformational changes 

within the TMD of the receptor in response to each of its native biased ligands. 

Chemokine ligands carry their function by binding to the extracellular region of the receptor 

following a two-site model (24). The core domain of the ligand interacts with the extracellular loops (ECL) 

of the receptor, ensuring specificity of the ligand to its receptor, and the N-terminal domain of the ligand 

(ligand-NTD: residues 1-7 preceding the first two conserved cysteines) interacts inside the receptor’s 

extracellular binding pocket, and carries receptor activation (28, 66, 67). This is emphasized further in our 

system by experimental truncation of the CCL19-NTD which has converted the ligand to an antagonist; 

confirming that the ligand core domain is not involved in receptor activation (67). Therefore, we delineate 

the different binding poses adopted by both ligand-NTDs in the receptor’s binding pocket (Figure A.3) and 

their effect on receptor dynamics. 

Given the physicochemical properties of the receptor binding pocket and ligand-NTD, both 

CCL21-NTD and CCL19-NTD stabilize into different binding poses (Figure A.3). The electrostatic profile 

of both ligand-NTDs displays different positions of its charged residues. CCL21 (S1DGGGQD7CC) has 

three charges distributed on either sides of the CCL21-NTD heptapeptide, with one negatively charged 

residue at position 7 (D) and two charged residues, one positive at the backbone N-terminus, and one 

negative at position 2 (D). However, CCL19 (G1ANDAED7CC) has four charged residues distributed 

uniformly along the CCL19-NTD heptapeptide, with one N-terminal positive charge, and three negatively 

charged residues at positions 4 (D), 6 (E), and 7 (D). Correspondingly on the receptor side, CCR7 displays 

two distinct electrostatic regions in its binding pocket, one formed by a salt bridge between TM3 and TM4 

(K1133.33 and E1694.60), and another formed within TM1, TM2, and TM7 (K261.24, K271.25, R301.28, E942.64, 

D2857.36) (Figure A.3C). Consequently, both ligand-NTDs stabilize in different binding pocket of the 

receptor by forming complementary electrostatic interactions (Figure A.3). CCL21’s missing middle 

negative charge, together with the flexibility of the three consecutive glycines, allows its CCL21-NTD to 
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stretch across and interact with both electrostatic patches in the receptor, while the presence of the middle 

charge, D4, anchors the CCL19-NTD to interact only with TM1, TM2, TM3, and TM7. The binding of 

each ligand-NTD in different pockets in CCR7 agrees with experimental mutagenesis data obtained by Ott 

et al. showing the differential effect of K1133.33 mutation to alanine in CCR7, where the mutation affects 

binding and activation by 3.5- and 22-fold, respectively, in response to CCL21 but shows no effect to 

CCL19 (66). 

CCL21 and CCL19 induce different conformational changes within ligand-specific 

molecular switches in CCR7. From both conventional and accelerated molecular dynamics of CCL21-

bound and CCL19-bound CCR7 complexes, we depict multiple regions in the transmembrane domain 

(TMD) of CCR7 that show distinct conformational behavior (Figure 2.1). These functionally relevant 

regions act as molecular switches in the receptor and include: the tri-tyrosine switch (Y1123.32, Y2556.51, and 

Y2887.39), the tri-phenylalanine switch (F1163.36, F2085.47, and F2486.44), and the polar bridge (Q2526.48 and 

R2947.45). Each can take on multiple conformations, and each can adopt ligand-specific conformations, 

which demonstrates the ligand’s ability to regulate the arrangements within its molecular switches.  

The multimodal distributions in Figure 2.1 illustrate the effect that each ligand has on the various 

conformational states sampled by each of the molecular switches. Within the tri-tyrosine switch, all 

simulations show the formation of π-stacking interactions (Figure 2.1C) following the loss of a hydrogen 

bond between Y1123.32 and Q2526.48. (π-stacking interactions are monitored by measuring the angle θ 

formed between the Cζ carbons in each of the tyrosines.) The bimodal distributions of the population 

density plots of angle θ indicate the presence of conformational changes that result in the formation and 

loss of π-stacking interactions (Figure 2.1C). These conformational changes result in equally distributed 

sampling of both states in the CCL21-bound simulations, while the equilibrium is shifted towards the loss 

of π-stacking interactions in the CCL19-bound simulations. Similarly, only the CCL21-bound simulations 

display hydrogen bond formation between Y1123.32 and Y2556.51 (Figure 2.1B). Probability density plots in 

Figure 2.1B show a 3-Å peak associated with hydrogen bond formation in the CCL21 and not CCL19 

simulations. Moreover, only the CCL21-bound simulations involve conformational changes within the tri-
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phenylalanine switch, where the interaction between F1163.36 and F2486.44 is lost, moving from 4 Å to 7 Å 

in the CCL21-bound but not the CCL19-bound simulations (Figure 2.1D). Lastly, Figure 2.1E displays the 

polar interaction between Q2526.48 and R2947.45 as another characteristic molecular switch. This polar 

bridge resides deeper in the TMD of the receptor and its multi-peak distributions show higher variability 

than the previous switches and a clear difference in arrangements between the CCL21-bound and CCL19-

bound simulations (Figure 2.1E). Both cMD and aMD simulations illustrate the effect of the ligand on each 

of the molecular switches. In particular, the aMD simulations provide independent reproducibility of 

conformational changes is each of the ligand-bound systems. Here, probability density plots of the aMD 

simulations in Figure A.4 show similar ligand-dependent sampling of the conformational states of each of 

the molecular switches including: hydrogen bond formation between Y1123.32 and Y2556.51 in CCL21 and 

not CCL19 (Figure A.4A), equally distributed sampling of both gain and loss of π-stacking interactions in 

the CCL21, while the equilibrium is shifted towards the latter in the CCL19 (Figure A.4B), and clear 

difference in arrangements within the polar bridge (Figure A.4D).  

The different positions of the ligand-NTDs play a critical role in initiating different allosteric 

mechanisms in the receptor by disrupting and establishing specific contacts within the binding pocket. In 

that aspect, the Anton simulations capture various allosteric events that are clearly coupled to the 

transitions between the different conformational states in the molecular switches. In contrast, even though 

the aMD simulations were able to reproduce the different conformational changes within the molecular 

switches (Figure A.4), they display uncoupled and stochastic variability within these switches that lacks the 

correlation documented in the Anton simulations (Figures 2.2 and 2.3). This is owed to the fact that the 

aMD consists of an enhanced sampling method that applies a dual-boost to the all atoms and dihedral 

angles in the system (21, 65). The energy boost might disrupt the fine-tuned transitions within the receptor 

and blur the energy gaps governing the conformational transitions observed in the Anton cMD.  
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Both ligand-bound structures are each simulated for 7 μs using cMD on the Anton supercomputer 

(20). Rmsd calculations of CCR7 display an initial increase related to the stabilization of the initial receptor 

conformations used in both simulations (Figure A.5B). Subsequently, CCL19-bound CCR7 shows a stable 

structure in the remainder of the simulation (Figure A.5B, right panel), while CCL21-bound CCR7 exhibits 

a sharp increase at 4 μs related to a large conformational transition in the receptor (Figure A.5B, left panel). 

Figure 2.1 Molecular switches in the CCR7 transmembrane domain adopt ligand-specific 
conformations. Molecular switches with multiple states in our simulations are represented in dark and 
light colors in their corresponding molecular graphics. The color code in the molecular graphics and 
population density plots is green for CCL21-bound and purple for the CCL19-bound simulations.  (A) 
Molecular graphics of CCR7 bound to CCL21 and CCL19 with the three molecular switches outlined in 
boxes. Residues involved in the switches are shown as stick models. Each highlighted region is labeled 
with a letter corresponding to panels (B)-(E).  (B) Side view of representative structures of the tri-
tyrosine switch. Side-chain distances between Y1123.32 and Y2556.51 are plotted as population densities. 
(C) Top view of representative structures of the tri-tyrosine switch in the CCL21- and CCL19-bound 
CCR7 simulations illustrating π-stacking interactions. θ is the angle formed by the Cζ atoms of the three 
tyrosines. Population densities of the θ angle are plotted. (D) Representative structures of the tri-
phenylalanine switch in the CCL21-bound and CCL19-bound CCR7 simulations. Side-chain distances 
between F1163.36 and F2486.44 are plotted as population densities. (E) Molecular graphics of the polar 
bridge. Side-chain distances between Q2526.48 and R2947.45 are plotted as population densities for the 
CCL21- and CCL19-bound CCR7 simulations. Criteria for inter-residue distances shown as population 
densities in all figures are outlined in Methods. 
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Conformational changes within the characterized molecular switches are coupled to 

different allosteric events initiated by CCL21-NTD. During the 7-μs CCL21-bound cMD simulation, we 

capture multiple conformational changes in suboptimal hydrogen bonds and van der Waals tertiary 

interactions. These types of interactions represent two of the main physical forces stabilizing membrane 

protein structures, and changes within these interactions constitute allosteric events that are critical for 

signal propagation in the receptor (31). The time series of all detected allosteric events are listed in Figure 

2.2 and clearly depict different conformational states separated at 1.9 μs, 4 μs, and 5 μs. These states 

represent the initial (0-1.9 μs), intermediate (1.9-5 μs), and final (5-7 μs) states of all depicted events. The 

intermediate state is a transitional phase where different arrangements occur at different times and is further 

divided to two intermediate substates I (1.9-4 μs) and II (4-5 μs). 

At the ligand-binding pocket, CCL21 induces the formation of a hydrogen-bonding network 

within Q6CCL21, N2666.62, Q2626.58, and N2817.32 (Figure 2.2B, and Figure A.6). The formation of the critical 

hydrogen bond between Q2626.58 and N2817.32 is synchronized to various other events in the receptor at 4 μs 

(Figure 2.2). 

The stabilization of the hydrogen bond is associated with a decrease in distance between TM6 and 

TM7 at the ligand-binding pocket, which in turn prompts an equilibrium shift in the backbone φ-torsion 

angle of P2546.50. CCR7 has multiple prolines in its TM helices forming helical kinks. The highly 

conserved P2546.50 in TM6 is part of the WxPF/Y motif and is positioned in the middle of the helix and 

considered an important dynamic component in the rearrangements of helices in receptor activation (6, 68). 

In Figure 2.2C, a gradual transition of P2546.50 φ-torsion angle from a bimodal to a unimodal distribution is 

illustrated in the population density of torsion angles at different states. The initial state has a clear bimodal 

distribution of φ-torsion angles around -70° and -45°. Then, at intermediate state I, there is an equilibrium 

shift towards an angle distribution around a torsion angle of -70°, which in turn fully stabilizes to a clear 

unimodal distribution around -75° at 4 μs. 
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Figure 2.2 During the cMD simulation, CCL21 induces a series of allosteric events that prompt 
equilibrium shifts in the discrete conformational states of CCR7’s molecular switches. (A) Molecular 
graphics of CCL21-bound CCR7 structure. Residues involved in the various allosteric events are shown 
as stick models and are outlined. Each highlighted region is labeled with a letter corresponding to panels 
(B)-(E). (B) Q2626.58, N2666.62, N2817.32, and Q6CCL21, shown as stick models, are involved in a 
hydrogen-bonding network in the ligand-binding site. The molecular graphics is a representative 
structure of the dominant conformation showing a hydrogen bond between Q2626.58 and N2817.32 (4-7 
μs). The bar plot displays the hydrogen bond distance time series between Q2626.58 and N2817.32 side-
chains. The bar plots of remaining hydrogen bonds are displayed in Figure A.6. (C) φ-torsion angle of 
P2546.50 population density (left) and time series (right) plots. The time series is broken down to four 
time segments labeled accordingly as initial, intermediate (I and II) and final states. Distributions of the 
φ-torsion angle are plotted for the following time segments: solid line (0-1.9 μs), dashed line (1.9-4 μs), 
and a dash-dot line (4-7 μs). (D) Molecular graphics showing representative structures of the dominant 
conformation in intermediate state I (1.9-4 μs) in dark green and the final state (5-7 μs) in light green. 
Residues involved in the tri-tyrosine switches and neighboring allosteric events are shown as stick 
models and labeled accordingly. Bar plots display the hydrogen bond distance time series of Y1123.32 
with Q2526.48 and Y2556.51. Time series ranges are divided as shown in panel C and indicated by the 
vertical red lines. (E) Molecular graphics showing the tri-phenylalanine switch region using the same 
conformations as in panel D. Side-chain distance population densities are plotted for different time 
segments of the simulation as shown in panel C. The atoms used to calculate the hydrogen bond 
distance are marked in panels B and D. Data for CCL19-bound cMD simulation, corresponding to 
panels B, C, D, and E are displayed in Figure A.8. 
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On the same TM6 helix, P2546.50 is flanked by two critical residues: Q2526.48 and Y2556.51. Both 

residues are capable of forming hydrogen bonds with Y1123.32 on TM3. Throughout the simulation, the 

Y1123.32 side-chain hydrogen bond transitions from Q2526.48 to Y2556.51 (Figure 2.2D). This transition 

occurs twice during the simulation (at 3.1 μs and 4 μs) and is coupled with the bimodal to unimodal 

transition observed in P2546.50 φ-torsion angle (Figure 2.2C, and 2.2D). The disruption of a hydrogen bond 

between Y1123.32 and Q2526.48 is associated with a φ-torsion angle of -75° in P2546.50. At 4 μs, we observe a 

disruption of the hydrogen bond between Y1123.32 and Q2526.48 occurring simultaneously with the proline 

φ-torsion angle adjustment followed by the second intermediate state experiencing a microsecond delay 

before the formation of a hydrogen bond between Y1123.32 and Y2556.51. 

During that delay, we detect the formation of π-stacking interactions within the tri-tyrosine switch, 

Y1123.32, Y2556.51, and Y2887.39, between 4 and 5 μs (Figure A.7A). This interaction stabilizes the 

transitional state resulting from both, the loss of the hydrogen bond between Y1123.32 and Q2526.48, and the 

adjustment of P2546.50 φ angle. In the CCL21-bound cMD simulation, a wide distribution of angles in 

intermediate state I indicates a disordered arrangement between the three tyrosines and a lack of π-stacking 

interactions (Figure A.7A). Then, these tyrosines are stabilized in intermediate state II by forming π-

stacking interactions, where Y2556.51 interacts with Y2887.39 and Y1123.32 at distances of 5.5 Å and 6 Å, 

respectively (less than the upper-limit of 7.5 Å (58, 59)). These π-stacking interactions adopt a ladder 

conformation where θ has an angle distribution around 110°. At 5 μs, π-π interactions between Y2556.51 

and Y2887.39 are maintained. However, centroid distance between Y1123.32 and Y2556.51 increase to 7.5 Å, 

indicating a loss in π-stacking (Figure 2.2D and Figure A.7A). In the final state, the tri-tyrosine π-stacking 

interactions are lost, resulting in hydrogen bond formation between Y1123.32 and Y2556.51.  

Another functionally relevant feature in CCR7 is the tri-phenylalanine switch, which resides 

within the vicinity of the tri-tyrosine switch and is composed of three phenylalanines (F1163.36, F2085.47, and 

F2486.44) in TM3, TM5, and TM6 (Figure 2.2E). At 4 μs, F1163.36 reorients its side-chain away from 

F2486.44 (increasing the distance from 4 Å to 7.5 Å) as well as F2085.47 (increasing the distance from 3.5 Å 
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to 4.5 Å). Meanwhile, we also observe changes within TM4 and TM5 where L1654.56 and G2075.45 show a 

clear change in both, distance distribution and variance after 4 μs. 

Figure 2.3 During the cMD simulation, CCL19 induces a series of allosteric events that prompt 
equilibrium shifts in the discrete conformational states of CCR7’s tri-tyrosine switch. (A) Molecular 
graphics of CCL19-bound CCR7 structure. Residues involved in the various allosteric events are shown 
as stick models and outlined. Each highlighted region is labeled with a letter corresponding to panels 
(B)-(D). (B) G1CCL19 and Y411.39 are shown as stick models as a representative structure of the dominant 
conformation displaying the hydrogen bond between G1CCL19 and Y411.39 (5.1-6.4 μs). The bar plot 
displays the hydrogen bond distance time series. The atoms used to calculate the hydrogen bond 
distance are marked top of the panel. (C) Molecular graphics showing representative structures of the 
dominant CCL19-induced conformation in state I (dark purple) and state II (light purple). The χ1-
torsion angle of Y2887.39 time series is plotted. The time series is broken down to two time segments 
labeled accordingly. (D) Molecular graphics shows a side view of the tri-tyrosine switch region using 
the same conformations as panel C. Y1123.32, Y2556.51, Y2887.39, and Q2526.48 are shown as stick models 
and labeled accordingly. Q2526.48 and Y1123.32 distance population densities are plotted for both CCL19 
states. 
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In contrast to the allosteric events observed in the CCL21-bound simulation, the CCL19-bound 

cMD simulation do not exhibit any of the events characterized in CCL21 and all torsion angles and 

interactions appear stable throughout the entirety of the simulation with the exception of the hydrogen bond 

between Y1123.32 and Q2526.48 explored below (Figure A.8). This difference in receptor behavior is a result 

of the differential binding and biased nature of both ligands. 

Conformational changes within the characterized molecular switches are coupled to 

different allosteric events initiated by CCL19-NTD. Despite the stability of CCR7’s rmsd in the CCL19-

bound cMD simulation (Figure A.5B), at 5.1 μs, we observe a brief series of side-chain rearrangements 

(Figure 2.3). Starting at the ligand-binding pocket, we observe the formation of a hydrogen bond between 

CCL19’s N-terminus and Y411.39 side-chain at 5.1 μs and again 6.9 μs. The hydrogen bond formation 

induces a series of synchronized allosteric events in the TMD of CCR7. The time series listed in Figure 2.3 

clearly depict different conformational states of CCR7’s tri-tyrosine switches (states I and II).  

The hydrogen bond formation between G1CCL19 and Y411.39 is synchronized with a change in the 

χ1-torsion angle of Y2887.39 from -70° to -170° (Figures 2.3B and 2.3C). The side-chain orientation of 

Y2887.39 allows for a reorganization of the tri-tyrosine switch (Y1123.32, Y2556.51, and Y2887.39) to form π-

stacking interactions, where Y1123.32 interacts with Y2887.39 and Y2556.51 at distances of 6 Å or less (less 

than the upper-limit distance of 7.5 Å (58, 59)). We further measure the θ-angle formed by the Cζ carbons 

of each of the three tyrosines to identify the symmetrical/ladder arrangement of π-stacking interactions 

(Lanzarotti et al. 2011) (Figure A.7B). The difference in angle between states I and II illustrates the 

transition of π-stacking interactions from symmetrical in state I (angles sampled around 60°) to ladder in 

state II (angles sampled around 140°). This transition prompts a distance increase between Y2887.39 and 

Y2556.51 to 9 Å (58, 59). The π-stacking interactions reached in response to CCL19 show similar 

arrangement to the tri-tyrosine switch in CCL21-bound cMD simulation (Figure A.7A).  

In CCL21-bound cMD simulation, intermediate state II is associated with the loss of a hydrogen 

bond between Y1123.32 and Q2526.48 and result in the formation of the tri-tyrosine ladder π-stacking 

interactions. Similarly, in our CCL19-bound cMD simulation state II, even though the hydrogen bond 
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between Y1123.32 and Q2526.48 persists (Figure A.8C), we see an equilibrium shift in the side-chain distance 

between both residues. Population density of the side-chain distance between Y1123.32 and Q2526.48 shows 

an increase in the distance sampled (population increase for a distance of more than 4 Å in Figure 2.3D), 

illustrating a weakening and loss of hydrogen bonding in a large portion of state II. The characterized 

transitions in the allosteric sites occur twice during in the simulation (at 5.1 μs and 6.9 μs), highlighting the 

coupled nature of these allosteric events (Figure 2.3). However, hydrogen bond loss between Y1123.32 and 

Q2526.48 is loosely coupled to the remaining allosteric events and only shows a slight equilibrium shift. This 

results in an even weaker coupling to the hydrogen bond formation between Y1123.32 and Y2556.51 

characterized in the CCL21-bound simulation. Indeed, the hydrogen bond between Y1123.32 and Y2556.51 is 

not formed in the CCL19-bound cMD and is briefly present during the aMD. 

Both ligands induce large conformational changes in CCR7’s helical domains. In CCL21-

bound cMD simulation, the involvement of TM2, TM3, TM4, TM5, TM6, and TM7 in global helical 

movements is synchronized with the aforementioned localized events (Figure 2.4). This coupling of local 

side-chain fluctuations and global helical motion is direct evidence of the ligand-induced mechanism 

involved in the transformation of the receptor global structure.  

Large helical motions are characterized as correlated Cα-Cα distance time series. We identify 

multiple sets of distance time series that are not only correlated at a coefficient of 0.95 (using Pearson's 

inner-product correlation calculation), but also show coupled changes with the characterized molecular 

switches at ~3.1, 4, and 5 μs (Figure 2.4). In the extracellular (EXC) region, we detect a set of correlated 

distance time series involving TM3 interacting with TM2, TM6, and TM7 (Figure 2.4A). For this set of 

distance time series, an increase in distance between TM3 and its neighboring helices (TM2, TM6, and 

TM7) is coupled to the formation and loss of hydrogen bond between Y1123.32 and Y2556.51 (Figures 2.2D 

and 2.4). 
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Figure 2.4 CCL21 induces global helical motions in CCR7 cMD simulation. (A) Global motions in the 
EXC region (upper half) of CCR7. Sets of Cα-Cα distance time series correlated at a coefficient of 0.95 
are illustrated in different colors on the molecular structure. Each set is represented by a group of edges 
and each edge connects two Cα atoms whose distance time series is within a correlated set. A top view 
and side views of the receptor illustrate the different sets of correlated distance time series and display 
the TM helices containing the residues involved in the illustrated sets. A representative distance time 
series from each of the sets is plotted with color code matching that in the molecular graphics. Time 
series are divided to the same states defined in Figure 2.2. Regions of characterized molecular switches 
(tri-tyrosine and tri-phenylalanine switches) are highlighted with dashed box. (B) Global motions in the 
INC region (lower half) of CCR7. Global motions are represented similarly to panel A. 
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We also observe changes within TM4, TM5, and TM6 where distances of TM5 interacting with 

TM4 and TM6 increase and decrease, respectively (Figure 2.4A). Both changes are coupled with the 

rearrangement observed in the tri-phenylalanine switch (Figure 2.2E). TM4 and TM5 move apart due to the 

detachment between L1654.56 and G2075.45, changing in distance distribution and variance at 4 μs (Figure 

2.2E). In contrast, TM5 and TM6 move closer together, and the distance between TM6 and TM7 decreases 

as a result of the CCL21-induced formation of the hydrogen bond between Q2626.58 and N2817.32 (Figures. 

2.2 and 2.4A).  

Concurrently, we observe larger helical motions within the INC region of TM2, TM4, TM5, TM6, 

and TM7. We show an interchange of inter-helical behavior between TM2, TM4, and TM6, where, at 4 μs, 

the distance between TM2 and TM4 is stabilized, while the distance between TM2 and TM6 undergoes 

periodic fluctuations (Figure 2.4B). More importantly, critical helices, TM5, TM6, and TM7, are involved 

in helical movements in the INC region of the receptor, where TM6 experiences a shift in its equilibrium 

position towards TM5 and away from TM7 (Figure 2.4B). As a result of the characterized rearrangements, 

the INC end of TM6 shows an increase in its distance with other neighboring helices (TM2 and TM7). We 

observe periodic fluctuations between TM6 and TM2 and an increase in the distance between TM6 and 

TM7 (Figure 2.4B).  

TM4 is involved in movements with different TM helices in the EXC and INC region of the 

receptor. As a result, we highlight the complementary role of TM4 in propagating the helical movements 

from the EXC and INC regions of CCR7. The TM4 topology in GPCRs allows it to interact with TM5 and 

TM2 in the EXC and INC regions respectively. In our CCL21-bound simulation, the separation of TM4 

and TM5 in the EXC region (Figure 2.4A) allows for tighter interactions between TM2 and TM4 in the 

INC region, where the interaction is stabilized (Figure 2.4B). This stabilization complements the increased 

fluctuations between TM2 and TM6 associated with TM6 conformational changes. 

Overall, a series of CCL21-induced molecular switches (Figures. 2.2B, 2.2C, and 2.2D) prompt 

subtle rearrangements in the movement of TM6 towards TM5 and away from TM2 and TM7, when 

compared to the larger helical motions in the EXC half of the receptor (Figure 2.4). Similarly, in the aMD 
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simulation, hydrogen bond formation between Y1123.32 and Y2556.51 induces large helical motions in the 

TMDs as characterized in the CCL21-bound cMD simulation (Figure A.9). 

On the other hand, in the CCL19-bound simulation, the lack of hydrogen bond formation between 

Y1123.32 and Y2556.51 result in minor global helical motions in CCR7 in both the cMD and aMD 

simulations. CCL19-induced molecular rearrangements show inconsequential movements of the receptor’s 

TM5, TM6, and TM7 EXC regions in cMD simulation, where these movements are synchronized with the 

localized events in state II (Figure A.10). As CCL19 transitions from states I to II, TM5 exhibits an 

outward movement away from TM6 and TM7.  

 

2.4 Discussion 

Molecular dynamic simulations have made substantial advances in the past years in describing the 

structural mechanism of GPCR activation (15–19). However, the majority of these studies focus on the 

unbiased activation of GPCRs; and the molecular basis of ligand-biased signaling remains to be elucidated. 

In this study, using Anton microsecond dynamics and accelerated MD, we aim to delineate the structural 

elements that are responsible for mediating the ligand-specific function of chemokine receptors. This 

entails the characterization of ligand-specific structural events in a biased chemokine receptor system: 

CCR7 and its endogenous ligands CCL19 and CCL21. During the MD simulations of both ligand-bound 

systems, we depict functionally relevant regions (molecular switches) in CCR7 that adopt ligand-specific 

arrangements, and, using the cMD simulations, we detail ligand-induced allosteric pathways capable of 

mediating the ligand-specific conformational changes within these molecular switches in CCR7.  

Both conventional and accelerated MD simulations capture conformational changes within the 

molecular switches in the TMD of CCR7 involving: the tri-tyrosine switch (Y1123.32, Y2556.51, and 

Y2887.39), the tri-phenylalanine switch (F1163.36, F2085.47, and F2486.44), and the polar bridge (Q2526.48 and 

R2947.45). Additionally, cMD simulations capture a clear connection between ligand-binding and 

conformational changes within the molecular switches in CCR7 through a series of allosteric events, 

following a relay of interactions. In CCL21-bound CCR7, changes in the tri-tyrosine and tri-phenylalanine 
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switches are induced through a hydrogen bond between Q2626.58 and N2817.32 and an adjustment of the φ-

torsion angle of P2546.50. On the other hand, CCL19 is capable of only disrupting the tri-tyrosine switch, 

and instead it acts through hydrogen bond formation between its N-terminus and Y411.39 and the 

reorientation of the χ1-torsion angle in Y2887.39. Allosteric events induced by the ligands form allosteric 

paths between the ligand-NTD and the molecular switches with varying degrees of coupling. Indeed, the 

tri-tyrosine switch appears to be strongly coupled to the CCL21-induced allosteric events and result in the 

hydrogen bond formation between Y1123.32 and Y2556.51, while it is loosely coupled to the CCL19-induced 

allosteric events and do not result in the hydrogen bond formation between Y1123.32 and Y2556.51. 

Within the CCL21 allosteric path, the adjustment of the P2546.50 φ-torsion angle and the loss of the 

hydrogen bond between Y1123.32 and Q2526.48 belong to the same group of strongly coupled events, and 

show synchronized conformational changes at ~3 and 4 μs (Figure 2.2). Conformational changes within 

this group are a result of an equilibrium shift at 4 μs induced by hydrogen bond formation between Q2626.58 

and N2817.32. As Y1123.32 is involved in a relay of hydrogen bonds between Q2526.48 and Y2556.51, the 

hydrogen bond formation between Y1123.32 and Y2556.51 occurs stochastically after a 1 μs delay. This 

hydrogen bond is favored through the formation of π-stacking interactions within the tri-tyrosine switch 

and hydrogen bond loss between Y1123.32 and Q2526.48. In contrast, the same hydrogen bond (Y1123.32 and 

Y2556.51) does not occur in the CCL19-bound simulations, which is due to the loose coupling of the crucial 

event of hydrogen bond loss between Y1123.32 and Q2526.48 to its CCL19-induced allosteric events. Within 

the CCL19 allosteric pathway, the detected allosteric events (hydrogen bond formation between CCL19’s 

N-terminus and Y411.39 and the reorientation of the χ1-torsion angle in Y2887.39) belong to the same group 

as highly coupled events occurring at 5.1 μs and 6.9 μs. These events are loosely coupled to the hydrogen 

bond loss between Y1123.32 and Q2526.48, whose distance only shows a slight shift in equilibrium upon side-

chain rotation in Y2887.39. 

Another characteristic molecular switch in CCR7 is the tri-phenylalanine switch. Rearrangements 

in F1163.36, F2085.47, and F2486.44 occur in the CCL21-bound and not CCL19-bound simulations. 
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The third featured molecular switch, the polar bridge, involves a polar interaction between 

Q2526.48 and R2947.45 and belongs to a cluster of conserved polar residues that reside within the TMD of the 

receptor (69). This polar-residue network accommodates a nearly continuous water-filled passage 

connecting the EXC and INC side of the receptor, where key rearrangements affect the flow of the water 

and are critical for receptor activation (69–73). Our simulations (both cMD and aMD) show a highly 

variable polar bridge involving Q2526.48 and R2947.45 (Figure 2.1E).  These residues connect TM6 and TM7 

and contribute to INC rearrangements of the TM helices and to the connectivity of the hydrogen-bonding 

network regulating the presence of water molecules within the TMD of the receptor. Our cMD simulations 

exhibit different equilibrium distances between Q2526.48 and R2947.45 side-chains in the CCL19- and 

CCL21-bound CCR7 (Figure A.11). The CCL21-bound simulation shows an increase in distance of 3 Å 

between the initial and final state of the receptor through a highly variable intermediate state, whereas the 

CCL19-bound simulation lacks any conformational changes within the polar bridge and shows a stable 

distance of 4 Å (Figure A.11). These conformational changes indicate a differing degree of coupling 

between the polar bridge and the characterized molecular switches and allosteric events when comparing 

the ligand-bound cMD simulations. 

Overall, different parts of the receptor appear to operate through loosely coupled clusters of 

interlocked allosteric events. In other words, each event (or group of events) is capable of shifting the 

equilibrium of the various functional regions of the receptor to induce various conformational changes. It is 

important to note that the degree of coupling between the different events changes in a ligand-specific 

manner; and it is this concerted coupling that allows the receptor to induce a variety of ligand-specific 

conformational states that may contribute to its biased signaling. Our simulations may not be sufficiently 

long to account for equilibrium sampling or to capture all the different allosteric pathways within the 

receptor. However, we highlight the dependence of each allosteric pathway to its ligand-NTD’s interactions 

inside the receptor-binding pocket, which provides a structural dependence to the differently coupled 

conformational changes within the switches. It may be that further sampling might result in conformational 

changes within the tri-tyrosine and tri-phenylalanine switches in the CCL19-bound simulation similar to 
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those in the CCL21-bound simulation. However, these conformational changes may still show different 

degrees of coupling due to the ligand-NTD’s conformation and interactions within the binding pocket of 

the receptor.  

Molecular switches characterized in CCR7 belong to critical TM helices involved in the relative 

helical conformations responsible for selective-binding of intracellular effectors, namely TM5, TM6, and 

TM7. Using Cα-Cα distance time series cross-correlation analysis, we detect correlated global helical 

motions in the ligand and effector binding sites that are synchronized with the aforementioned series of 

molecular switch rearrangements at the side-chain level (Figure 2.4). In both conventional and accelerated 

MD simulations, one notable allosteric event is the hydrogen bond formation between Y1123.32 and Y2556.51 

that is highly coupled to large helical motions in the EXC region of the TMD (Figures 2.2 and 2.4, and 

Figure A.9). This interaction occurs in the CCL21 simulations only, and explains the lack of correlated 

large helical motions in CCL19-bound simulations. Both local side-chain rearrangements and EXC global 

helical motions result in minor conformational changes in the INC region. These changes involve a slight 

adjustment of the position of TM6 INC region relative to the rest of its neighboring helices, where TM6 is 

adjusted for preferential interaction with TM5, and separation from TM2 and TM7. These changes are 

loosely coupled to the events in the EXC region and do not show any outward movement of TM6 that is 

indicative of receptor activation (14, 74). 

The identified molecular switches are consistent with experimentally reported key conformational 

changes during the activation of several receptors. Residues at positions 5.50, 3.40, and 6.44 form the “P-I-

F” motif and experience discrete conformational states, indicative of active and inactive conformations (17, 

75–77). However, in the M2 receptor, activation involves the breaking of the interaction between F1955.47 

and V1995.51 with an unchanged P-I-F motif (15, 77). These studies illustrate that residues involved in the 

various side-chain rearrangements are not consistent across receptors. However, these alterations occur 

within the same vicinity. Similarly, in CCR7, even though the P-I-F motif remains unchanged, 

phenylalanine residues, F2486.44 and F2085.47, are part of CCR7’s tri-phenylalanine switch, where F1163.36 

flips its side-chain away from F2486.44 and F2085.47 (Figure 2.2E). Another key molecular change involves 
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W6.48 (part of WxPF/Y motif) in several GPCRs (15, 78). This residue is mutated to Q2526.48 in CCR7 and 

was shown to participate in key hydrogen bonding and polar interactions with Y1123.32 and R2947.45 in TM3 

and TM7, respectively. Additionally, P2546.50 and Y2556.51, which are also part of the WxPF/Y motif, 

participate in signal propagation in CCR7 (68). Our simulations illustrate the presence of several allosteric 

events that are in line with previously determined molecular switches in the literature.  

Additionally, sequence alignment of this family of receptors (Figure 2.5) shows high conservation 

of the residues involved in the observed molecular switches, which emphasizes their importance in the 

ligand mediated signal propagation in the receptor. In the tri-tyrosine switch, both Y2556.51 and Y1123.32 

(involved in large helical motions) are conserved in the CC chemokine family. However, the third tyrosine, 

Y2887.39, is mutated to E7.39 in all other receptors. The presence of a negatively charged residue at that 

Figure 2.5 Multiple sequence alignment of residues in CC chemokine receptor family and CXCR4 
displays conserved motifs within the characterized switches. Percent identities of each chemokine 
receptor to CCR7 are reported between parentheses. The transmembrane helical domains are colored in 
blue in CCR7’s sequence and CCR7’s residue numbers are displayed above the alignment. Residues 
involved in the characterized switches are highlighted in different colors: red (W902.60 and tri-tyrosine 
switch: Y1123.32, Y2556.51, and Y2887.39), orange (polar bridge: Q2526.48 and R2947.45), purple (P2546.50), 
and green (L1654.56, G2075.45 and tri-phenylalanine switch: F1163.36, F2085.47, and F2486.44). The 
sequences are truncated for clarity and the full sequence alignment is displayed in Figure A.12. 
 

!
!
                80        90    95 110       120 160       170 200       210!
CCR7          ...DILFLLILPFWAYSE-A...GIYKLSFFSGM...MLALFLSIPEL...QVAQMVFGFLV...!
CCR8    (30%) ...DLLFVLSIPFQTHNL-L...GLYYIGFFSSM...LAAVTATIPLM...HFEINALGLLL...!
CCR4    (36%) ...DLLFVLSLPFWGYYA-A...WMYLVGFYSGI...SVAVFASLPGL...SLEINVLGLLI...!
CCR2    (34%) ...DLLFLLTLPFWAHYA-A...GLYHIGYFGGI...VVAVFASLPGI...TIMRNILSLIL...!
CCR5    (34%) ...DLLFLLTLPFWAHYA-A...GLYHIGYFGGI...AVAVFASLPEI...TLKMVILSLIL...!
CCR1    (34%) ...DLVFLFTLPFWIDYKLK...GFYYLGLYSEI...ALAILASMPAL...ALKLNLLGLIL...!
CCR3    (34%) ...DLLFLFTVPFWIHYVLW...GFYYLALYSEI...GLAGLAALPEF...ALRMNIFGLAL...!
CCR10   (36%) ...DLLLALTLPFAAAGA-L...GLYSASFHAGF...LLSLFLALPAL...AVAQVVLGFAL...!
CCX-CKR (37%) ...DLLLLITLPFWAVNA-V...ALYTVNFVSGM...MAAILLSIPQL...QMLEIGIGFVV...!
CCR6    (40%) ...DILFVLTLPFWAVTHAT...GTYAVNFNCGM...FISIIISSPTF...MGLELFFGFFT...!
CCR9    (42%) ...DLLFLATLPFWAIAA-A...SMYKMNFYSCV...VMAAVLCTPEI...LILKVTLGFFL...!
CXCR4   (34%) ...DLLFVITLPFWAVDA-V...VIYTVNLYSSV...IPALLLTIPDF...QFQHIMVGLIL...!

               245  250       260 285  290       300    !
CCR7          ...VVFIVFQLPYNGVVLA...VTYSLASVRCCVNPFLYAF!
CCR8          ...IVSLLFWVPFNVALFL...VTEVISFTHCCVNPVIYAF!
CCR4          ...VLFLGFWTPYNVVLFL...ATETLAFIHCCLNPVIYFF!
CCR2          ...IVYFLFWTPYNIVLFL...VTETLGMTHCCINPVIYAF!
CCR5          ...IVYFLFWTPYNIVLLL...ATETLGMTHCCLNPVIYAF!
CCR1          ...LLFFLLWTPYNLSVFV...VTEVIAYTHCCVNPIIYVF!
CCR3          ...IVFFIFWTPYNLVLLF...VTEVIAYTHCCINPVIYAF!
CCR10         ...VAFVVLQLPYSLALLL...VTGGLTLVRCSLNPVLYAF!
CCX-CKR       ...VVFIVTQLPYNVVKFC...VTESIALFHSCLNPILYVF!
CCR6          ...LVFLACQIPHNMVLLV...VAEVLAFLHCCLNPVLYAF!
CCR9          ...TVFIMSQFPYNSILVV...VTQTIAFFHSCLNPVLYVF!
CXCR4         ...LAFFACWLPYYIGISI...ITEALAFFHCCLNPILYAF!
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position would disrupt the differential binding poses between CCL19 and CCL21. Therefore, Y2887.39 is a 

critical residue unique to CCR7 in inducing its ligands’ differential binding. Markedly, this residue is 

involved in CCL19’s allosteric events and not CCL21’s. Polar residues at positions Q2526.48 and R2947.45 in 

CCR7 are mutated to tryptophan and histidine, respectively, in other CC chemokine receptors. Despite 

these mutations, important hydrogen bonding capability (tryptophan indole group) and the presence of a 

positive charge (histidine), that are critical to the characterized allosteric events, are conserved. Lastly, the 

tri-phenylalanine switch is conserved throughout all CC chemokine receptors with few conserved 

mutations of leucine to alanine or phenylalanine to leucine (with the exception of CCR2 and CCR5). 

Additional across species alignment (mouse, human, and bovine) illustrates the conservation of all 

molecular switch residues in CCR7 and ligand-NTD domains of CCL19 and CCL21 with the exception of 

less conserved mutations from G6 to A6 in CCL21 and A2 to T2 in CCL19 (data not shown).  

The absence of the outward motion of the INC region of TM6 indicates that the receptor remains 

inactive during our simulations despite the manifestation of conformational changes within the molecular 

switches and large helical motions in the EXC region of the receptor. We postulate that the characterized 

networks of allosteric events fine-tune CCR7’s molecular switches to drive the receptor to different bound 

states that show ligand-specific behavior. Similar networks of coupled allosteric events have been 

characterized previously as a sequential model of activation in rhodopsin, where initial small 

conformational changes induced by the ligands are converted to larger changes in the EXC regions of the 

receptor and induce the canonical TM6 outward motion (74, 79, 80). However, despite the presence of a 

sequential model of conformational changes in CCR7, our simulations show loose allosteric coupling 

between the EXC and the INC regions. This loose coupling between the agonist-binding site and the 

intracellular interface has been shown to be responsible for the complex signaling behavior observed for β2-

adrenergic receptor (18). These differences in activation mechanism between rhodopsin and β2-adrenergic 

receptors are a result of their inherent biological function, where rhodopsin ensures the rapid and efficient 

detection of a photon (80), while the β2-adrenergic receptor evolved for a more complex signaling function 

(18). In that aspect, unlike CCR7, β2-adrenergic receptor evolved to function through unbiased small 
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molecules hormones (81), whereas CCR7 functions through biased peptidic chemokine ligands. This 

finding might justify the existence of a hybrid model in CCR7, consisting of a “rhodopsin-like” sequential 

network of allosteric events and the “β2-adrenergic-like” loose coupling between the EXC and INC regions 

of the receptor. We speculate that the ability of the biased chemokine ligands to regulate the molecular 

switches ensures efficient transitioning of the receptor to ligand-associated states to carry a ligand-specific 

function, while the loose coupling between the ligand-binding and INC sites maintains the receptor’s ability 

to carry out its complex signaling. This presents a hypothesis on how biased ligands may modulate the 

conformation of the receptor, and further experimental validation is required. Ideally, high-resolution 

structures of the ligand-bound receptors would depict ligand-stabilized conformations of the receptor’s 

molecular switches. 

Knowledge of the structural and dynamic features of CCR7 provides a framework to aid in the 

rational design of therapeutics to modulate cell migration or receptor silencing. Here, we identify ligand-

dependent conformations in CCR7 that provide the structural detail necessary to rationally design 

functionally selective drugs. Targeting CCR7 may provide the needed regulation of acute and chronic 

inflammatory responses involved in many autoimmune diseases and assist in the development of cancer 

therapies, as CCR7 has been shown to be involved in solid tumors metastasis to the lymph nodes (8, 82–

85). 
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CHAPTER 3: COMPARISON OF FREE AND LIGAND-BOUND CONFORMATIONAL 
TRANSITIONS OF CC CHEMOKINE 7 (CCR7), USING MOLECULAR DYNAMICS SIMULATIONS 
 

3.1 Introduction 

Chemokine receptors are G protein-coupled receptors (GPCRs) that regulate the activity of 

leukocyte migration and their positioning within lymphoid organs and peripheral tissues to initiate an 

antigen-specific T cell immune response, stimulate wound healing, and regulate inflammatory responses 

(1–3). Regulating cell migration in the innate and adaptive immune response constitutes the central role of 

these receptors, making them susceptible to disease progression and thus, they are involved in many 

physiopathological disorders. For instance, chemokine receptors, CXCR4 and CCR5, constitute the main 

point of entry for human immunodeficiency virus type 1 infectivity (4); and CCR2 is involved in many 

autoimmune diseases where uncontrolled inflammatory responses exacerbate tissue damage and can lead to 

diseases such as multiple sclerosis, and rheumatoid arthritis (2). Additionally, cancer cells have the ability 

to subvert the chemokine system to contribute to the immunological tolerance and metastasis of cancer (5). 

Hence, chemokine receptors are validated therapeutic targets, against which, two drugs were approved by 

the US FDA and multiple drugs are ongoing Phase II trials (2).  

Despite the modest success in drug discovery, designing small drug inhibitors targeting chemokine 

receptors remains challenging due to the promiscuity of the ligand-receptor interactions where several 

ligands share common receptors and vice versa (6). Given the interdependence between ligands and 

receptors, complete inhibition of the receptor will be detrimental to the patient due to undesirable side 

effects. Additionally, the size of the endogenous ligands can also be problematic when designing small 

molecule inhibitors that would compete with the large chemokine ligand at the orthosteric site. To address 

these challenges, allosteric modulators have been the key driver towards potent and selective inhibitors. 

Allosteric modulators bind at sites away from the orthosteric site, avoiding competitive binding with the 

orthosteric ligand. They are also able to fine-tune specific downstream signaling pathways, minimizing side 

effects resulting from complete inhibition of the receptor (2). 
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Allosteric modulators provide the opportunity to initiate the design of therapeutic drugs that target 

chemokine receptor deemed non-viable targets due to their vital role in many physiological processes. In 

particular, CC chemokine receptor 7 (CCR7) has a key role in orchestrating the adaptive immune response, 

where its ligands, CCL19 and CCL21, have distinct roles in the homing and functional 

compartmentalization of T cells and antigen-presenting dendritic cells to the secondary lymph nodes (7–9). 

Due to its critical involvement in the adaptive immune response, CCR7 has been excluded as a viable drug 

design target in the fear of altering the adaptive anti-tumor response even though CCR7 has been studied 

extensively and found to be the primary axis responsible for facilitating cellular migration of both cancer 

and host’s immune cells. CCR7- and CCL21-expressing cancer cells were shown to promote tumor cell 

homing to the lymph nodes in gastric carcinoma, colorectal carcinoma, and breast cancer (7, 10) and induce 

lymphangiogenesis and lymph remodeling in breast cancer  (5, 11). Furthermore, even though CCL21 is 

able to promote the migration of leukocytes to the tumor’s microenvironment where immune cells induce 

antitumor immunity based on the tumor’s antigen profile, many tumors are able to drive local 

immunological tolerance by manipulating CCL21-induced immune response (12). CCL21 was shown to 

mimic a lymphoid-like stroma that can recruit T regulatory cells and promote the differentiation of naïve T 

cells to active T regulatory cells to suppress effector functions in the developing tolerogenic tumor (12). 

Given the critical role of CCR7 in cancer cell metastasis and immunological tolerance, allosteric 

modulators can aim to fine-tune CCR7’s biased signaling to suppress the undesired immune tolerance 

(activity and function of T regulatory cells) and promote an antitumor immune response. 

To initiate CCR7’s cellular function, CCL19 and CCL21 have been shown to selectively induce 

distinct signaling pathways in the cell (7). CCR7’s diverse role could be modulated using allosteric drugs as 

to inhibit the immunological tolerance of the tumor environment and minimize any of the tumor’s meddling 

with the adaptive immune response. Selective alteration of the receptor’s physiological function is possible 

by disrupting the binding affinity or efficacy of its endogenous ligands using small molecule allosteric 

modulators. These modulators can induce slight modifications to the equilibrium state of the receptor that 

may profoundly alter its function by shifting the equilibrium state towards a more biased state of the 
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receptor associated with a signaling pathway of interest. This requires deep understanding of the mechanics 

behind ligand binding and activation to fully exploit the potential of allosterically modulating the biased 

function of the receptor. 

Structural insight into chemokine receptor dynamics remained limited due to the lack of available 

chemokine-bound receptor structures. However, recently determined crystal structures of vMIP-II-bound 

CXCR4 and CX3CL1-bound US28 (13, 14) have opened the door for dynamical studies of chemokine 

receptors bound to their endogenous chemokine ligands. Molecular dynamics (MD) simulations allow us to 

study the structural dynamics of CCR7 and characterize its behavior in its ligand-free (apo) and chemokine-

bound forms. Our study demonstrates the importance of ligand-binding in coordinating the structural 

heterogeneity of the receptor. Despite the relatively high fluctuations in both apo and ligand-bound 

receptor, only ligand-bound CCR7 induces highly correlated motions within the receptor, while the apo 

receptor remains uncorrelated. A residue critical to initiating correlated conformational changes in the 

receptor, Y1123.32, was observed to be in a different conformation in the apo receptor when compared to its 

bound counterparts. Understanding the structural behavior of the receptor in its different forms is important 

to isolate the structural features and receptor states that are critical to its function. These features could be 

targeted in the design of allosteric modulators to induce specific functional receptor states associated with a 

cellular signaling pathway of interest. 

 

3.2 Materials and Methods 

Nomenclature. Residues are stated as a one-letter amino acid code and a number corresponding to 

their order in the sequence. Additional sequence information is presented in the superscripts. Superscripts 

of receptor residues are numbered according to Ballesteros–Weinstein scheme and convey the helix number 

and position of each residue relative to the most conserved residue in the helix: N521.50 for TM 1, E802.50 for 

TM 2, R1303.50 for TM 3, W1594.50 for TM 4, P2115.50 for TM 5, P2546.50 for TM 6, and R2947.50 for TM 7 

(15). 
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System setup and molecular dynamics simulations. The apo receptor was modeled after the 

newly determined crystal structure of the chemokine receptor CXCR4 bound to a viral chemokine 

antagonist vMIP-II (PDB code 4RWS) following the procedure described in Chapter 2 (13). MD 

simulations of the generated model were performed following the protocol described in Chapter 2 using the 

Anton supercomputer (16). 

Analysis protocols. Analysis of the MD trajectories was performed with in-house scripts using R 

programming language (17), Python (18), Chimera (19), and the Bio3D library (20, 21). In order to isolate 

the constituent motions of a system, we analyze the trajectory for correlated motions. We generate a DCC 

map for each of our CCR7 systems: (i) apo CCR7, (ii) CCL19-bound CCR7, and (iii) CCL21-bound CCR7. 

Analysis scripts to calculate DCC were developed using R and the Bio3d library (17, 20, 21). The 

fluctuations for each residue side chain are quantified using the maximum rmsf of all side chain atom’s 

caluclated rmsfs. Rmsfs are calculated using Bio3d (20, 21). Atomic distances were calculated between 

non-hydrogen side-chain polar atoms of Y1123.32, Y2556.51, Q2526.48. Interacting residue distance time series 

are determined by calculating the minimum distances of the set of atomic distance time series of two 

interacting residues using python (18). 

Figure 3.1 Molecular graphics of CCL19-bound (purple), CCL21-bound (green), and apo (orange) 
forms of CCR7 side view (A) and top view (B). 
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3.3 Results 

Free and ligand-bound molecular dynamics simulations produce differences in their 

dynamic cross-correlation maps. On the basis of the recently solved structure of the chemokine-bound 

CXCR4 (13) (PDB code 4RWS), we modeled the complex structures of CCR7 in its ligand-free (apo, this 

work) and bound (CCL21 and CCL19) forms (Figure 3.1, see Chapter 2). Using the Anton supercomputer, 

we then performed seven μs MD simulations of the three structures of CCR7. Our study focuses on the 

transmembrane (TM) domain of the receptor to delineate the conformational states of the receptor and the 

role of the ligand in inducing the receptor’s conformational changes. Previously, our group characterized 

molecular switches in CCR7, mediated by CCL19 and CCL21, and isolated different equilibrium states of 

the receptor in the ligand-bound simulations: a transitional state where the receptor experiences coordinated 

changes in its molecular switches and transmembrane helices, and an equilibrated state, where the receptor 

is stable and shows no changes in its molecular switches and TM helices (see Chapter 2). Hydrogen bond 

formation within the tri-tyrosine switch (Y1123.32, Y2556.51, and Y2887.39), in particular between Y1123.32 

and Y2556.51, only occurs in the CCL21-bound CCR7 simulation and leads to global helical movements in 

the receptor’s transmembrane helices that contribute to the transitioning of the receptor to distinct states.  

Figure 3.2 Dynamic cross-correlation map for CCL19-bound (A, lower triangle), CCL21-bound (B, 
lower triangle), and apo forms of CCR7 (upper triangles) calculated from the transitional states of the 
ligand-bound simulations (5.1-7 µs for CCL19, 1.9-5 µs for CCL21) and the full simulation of the apo 
receptor. The green bars denote the seven TM domains of CCR7. Areas of high correlation (> 0.5) are 
indicated with white arrows. 
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To evaluate the receptor’s behavior and conformational changes in its free and bound forms, we 

compare the transitional states of both ligand-bound and apo receptor simulations through dynamic cross-

correlation (DCC). DCC assesses the correlation of the receptor’s backbone (Ca atoms) dynamics to detect 

large domain motions of the TM helices. DCC calculations are confined to the transitional state in order to 

assess the correlation of the receptor motions mediated by the ligand in the bound compared to the apo 

receptor simulations. 

All three receptor forms exhibit different dynamical behaviors of their TM domains. The 

correlation maps of the free, CCL19-bound, and CCL21-bound simulations display different correlated 

protein motions (Figure 3.2). CCL21-bound simulation (Figure 3.2B, lower triangle) shows significantly 

more correlated motions when compared to the apo (Figure 3.2, upper triangles) and CCL19-bound 

simulations (Figure 3.2A, lower triangle), while the CCL19-bound simulation shows higher correlation 

than the apo receptor. 

CCL19-bound CCR7 shows correlations between extracellular loop 2 (ECL2) and the extracellular 

(EXC) regions of TM3, TM5, and TM6. Additionally, correlated helical movements are manifested within 

helical domains TM6 and the EXC region of TM5, identified from the protrusions of high correlation 

coefficient on the DCC map diagonal in the CCL19-bound simulation side (Figure 3.2A, lower triangle) 

that are absent in the apo simulation (Figure 3.2A, upper triangle).  

The cross-correlation map in Figure 3.2B exhibits a large number of correlated regions in the 

CCL21 DCC map (Figure 3.2B, lower triangle) compared to the apo map (Figure 3.2B, upper triangle). In 

CCL21-bound simulation, the EXC region of TM3 is correlated with the EXC regions of TM4 and TM6; 

and the INC region of TM3 is correlated with the INC region of TM5 and TM6.  Additional correlations 

are present between the EXC regions of TM5 and TM6, between TM6 and TM7, and within the Ca making 

up TM5 and TM6.  

It is also worth noting that the absence of correlation within TM1 and TM2 agrees with previously 

published work where both helices are shown to not be involved in the receptor’s conformational changes 

(22). 
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CCR7 in its apo and bound forms displays differences in residue fluctuations. Protein 

function relies heavily on its dynamics and thermal fluctuations to mediate its concerted helical motions 

detected through DCC. Fast fluctuations at the picosecond and nanosecond timescales are essential to drive 

changes within CCR7’s side chain interactions and drive the receptor to distinct states transitioning at the 

microseconds timescales and slower (23). To explain the differences in correlated helical motions between 

the receptor forms, we measure its fluctuations using the root-mean square fluctuation (rmsf) method to 

quantify the thermal fluctuations of each of residue, including backbone and side chain. According to rmsf 

calculations of our three simulations (apo, CCL19-bound, and CCL21-bound), CCR7 have similar 

fluctuation pattern, and exhibits its highest fluctuations at the loop domains, owed to the lack of secondary 

structure in the INC and EXC loops, and lowest at the TM domains, which are rich in secondary structure 

(Figure 3.3).  

Despite the similarity in rmsf between the three receptor forms, Figure 3.3 shows differences in 
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Figure 3.3 Rmsf of CCR7 in its CCL19-bound (purple), CCL21-bound (green), and apo (orange) forms 
calculated using the same states as in Figure 3.2. The blue horizontal bars at the bottom denote the 
seven TM domains of CCR7. Bars colored corresponding to the receptor colors indicate segments of 
high rmsf described in text. 
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fluctuations for each of the TM domains in the receptor. Fluctuations in the CCL19-bound receptor are 

relatively high in the EXC regions of TM3, TM5, and TM6, when compared to the CCL21-bound and apo 

receptors. CCL21-bound simulation shows relatively higher fluctuations in the majority of its TM domains: 

TM3 (EXC region), TM4, TM5, TM6, and TM7 (EXC region). High fluctuations in the ligand-bound 

simulations are expected due to the conformational changes characterized above in the DCC maps. In 

contrast, despite the absence of the ligand in the apo receptor, some domains still exhibit relatively high 

fluctuations in TM4 (INC region), TM5 (EXC region), and TM6 (INC region), when compared to the 

bound receptor forms. 

The apo and bound forms of CCR7 induce different conformations in previously 

characterized molecular switches. To better understand receptor behavior, we look into the 

conformational states of previously determined molecular switches (see Chapter 2). We have previously 

demonstrated that ligand-induced coordinated fluctuations within specific residue interactions, in particular 

hydrogen bond formation between Y1123.32 and Y2556.51, induce global helical changes (see Chapter 2). 

Thus, the conformational states of the molecular switches could explain the lack of correlated 

conformational changes in the apo receptor.  

The correlation observed in the DCC map of the CCL21-bound simulation is a result of hydrogen 

bond formation between Y1123.32 and Y2556.51 (Figure 3.2B). Conformational changes in the CCL21-bound 

receptor involve the majority of helical domains of CCR7 (TM3, TM4, TM5, TM6, and TM7) and 

constitute the largest conformational change seen in all receptor forms. Such conformational changes do 

not occur in the CCL19-bound and apo receptor due to the lack of hydrogen bond formation between 

Y1123.32 and Y2556.51. Even though the hydrogen bond does not occur in the CCL19-bound receptor, the 

receptor still undergoes minor large helical changes portrayed in the DCC map (Figure 3.2A). These 

motions are localized to only a few helices (EXC regions of TM3, TM5, and TM6) and were previously 

shown to be associated with allosteric events occurring during the simulation such as: hydrogen bond 

formation between CCL19’s N-terminus and Y411.39 and the reorientation of the χ1-torsion angle in Y2887.39 

(see Chapter 2). 
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Correlated conformational changes arise from the dynamics of the receptor’s side chain 

rearrangements. In this work, the apo receptor shows very little correlation in its DCC map (Figure 3.2).  

Consequently, we show that previously determined triggers of large conformational changes in the ligand-

bound forms of the receptor remain unformed in the apo receptor (Figure 3.4). Specifically, hydrogen bond 

formation between Y1123.32 and Y2556.51, which is a critical component of CCR7’s dynamics in the 

CCL21-bound simulation, is non-existing in the apo receptor (Figure 3.4). Y1123.32 is hydrogen bonded to 

Q2526.48 in the ligand-bound receptors before it transitions to form a hydrogen bond with Y2556.51 (see 

Chapter 2). In contrast, Y1123.32 in the apo receptor points away from the TMD of CCR7 and towards the 

ligand binding pocket (Figure 3.4). This orientation would otherwise be sterically hindered in the ligand-

bound receptor due to the presence of the ligand N-terminal domain (residues 1-7 preceding the first two 

conserved cysteines) in the ligand binding pocket. 

Figure 3.4 Comparison of Y1123.32 interactions between CCL19-bound (purple), CCL21-bound (green), 
and apo (orange) forms of CCR7. (A) Molecular graphics of CCR7 top view illustrating the tri-tyrosine 
switch. (B) Molecular graphics of CCR7 side view illustrating Y1123.32, Q2526.48, Y2556.51. (C) Polar 
interaction distance time series between Y1123.32 and Q2526.48 and Y2556.51. Time series are labeled 
accordingly above each panel. Polar interaction distances are calculated as the minimum distance 
between side chain polar head group atoms. 
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3.4 Discussion 

In this study, we highlight the importance of the ligand in coordinating the receptor’s side-chain 

fluctuations to drive the conformational changes responsible for state transitions in the receptor. Despite the 

similar side chain fluctuation pattern in all receptor forms, only the ligand-bound receptors show substantial 

correlated conformational changes in the receptor. We conclude that the lack of correlation in the apo 

receptor is owed to the absence of a bound ligand capable of inducing conformational changes in the 

receptor’s molecular switches. We have previously illustrated the role of the conformational changes in the 

molecular switches to coordinate the large helical motions in CCR7 (see Chapter 2). To that matter, apo 

CCR7 shows no changes in its molecular switches in the full 7-microsecond simulation, highlighting the 

importance of the ligand in transmitting information to the molecular switches and mediate the 

transitioning of the receptor between its different states to carry its function. 

Root-mean square fluctuations and dynamic cross-correlation allow us to quantify receptor 

fluctuations and their correlations, respectively. As we contrast the apo and ligand-bound receptor 

simulations, we observe that each of the three receptor forms exhibit domains of higher fluctuations when 

compared to the remaining two simulations. However, only the ligand-bound simulations show high 

correlations associated with such domains. Correlation within the receptor in each of the CCR7 systems is 

assessed in the DCC maps. The EXC region of TM3, TM5, and TM6 of the CCL19-bound receptor were 

found to be correlated alluding to the coordination and directionality of these helical motions. Similarly, 

domains of high fluctuations in the CCL21-bound receptor are highly correlated in the DCC map. 

Correlated motions in the CCL19 and CCL21-bound simulations coincide with the higher fluctuation 

regions calculated by rmsf. In contrast, the apo receptor contains region of higher fluctuations when 

compared to the bound-receptors, however, these domains show low correlation, which indicate the critical 

role of the ligand in coordinating the receptor’s helical motions. 

The role of the ligand in coordinating the fluctuations within the TM domain is dependent on the 

orthosteric and allosteric changes induced by the ligand as it positions itself within the EXC region of the 
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receptor. All three receptor simulations started from the same conformation of CCR7 to assess the role of 

the ligand or its absence on the receptor. Despite starting from the same conformation, both apo and bound 

receptors show different degrees of fluctuations, correlated motions, and orientation of Y1123.32, a critical 

residue shown to induce large helical motions in CCR7. These differences originate from the ligands and 

prompt an induced fit in the receptor that predisposes it to the various changes in its molecular switches. 

Receptor plasticity plays a critical role in accommodating each ligand, which in turn induces specific 

orthosteric and allosteric changes capable of carrying specific receptor function. It is, then, critical to 

characterize the different receptor states in the EXC region of the receptor in order to initiate efforts in the 

rational design of therapeutic targets capable of modulating receptor function. 
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CHAPTER 4: DETECTION OF MOLECULAR SWITCHES MEDIATING DOMAIN MOTIONS IN 
MOLECULAR DYNAMICS SIMULATIONS OF MEMBRANE PROTEINS 

 

4.1 Introduction  

Protein function is encoded into its dynamics as a large ensemble of conformations that can be 

grouped to different conformational states depending on protein function, free energy, and three-

dimensional arrangement (1, 2). All accessible conformational states can be sampled by the protein 

regardless of any outside perturbation (ligand-binding, amino acid mutation, post translational 

modification, or environmental changes such as pH, ionic strength, temperature, etc.) (3). Conformational 

states are accessed at different equilibrium sampling probabilities depending on their energies, where, a 

ligand-free protein may still briefly sample its intermediate or active states despite favoring its inactive 

state (1). On the other hand, external perturbations, such as ligand-binding, result in an equilibrium shift 

where the protein favors its active state.  

Allosteric function plays an important role in transmitting information between distant functional 

sites of the protein as a mechanism to regulate its transitions and sampling of conformational states upon 

external perturbation (1, 2, 4). To understand such a mechanism, we must ask how do the mechanics of 

protein structures emerge from the rearrangement of their constituent parts, specifically, side chain 

interactions within structured regions of proteins. 

Molecular dynamics (MD) simulation is one of the many techniques used to study protein 

dynamics at atomic level (2). Several recent advances in enhanced sampling methods, simulation speed, 

and accuracy have allowed us to reach biologically relevant timescale that capture the transitioning of a 

protein between different states; and consequently, allow the study of allostery (2). In protein dynamics, 

large domain motions are sampled on the hundreds of nanosecond to microsecond timescales, which are 

now readily accessible by MD simulations (5–7). Accordingly, several studies have explored the folding 

mechanism of a number of fast folding proteins (8) and captured the transitioning of proteins between 

different states (9, 10). Protein MD simulations involve two major types of motions: large domain and side 

chain conformational changes. These motions constitute the dynamical components that facilitate the 
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transmission of signals between distant sites in a protein in order to regulate its sampling of different states 

(1, 2). 

Many MD analysis tools have been developed to systematically extract biologically relevant 

information encoded in large domain and local side chain motions of a protein. Widely used methods 

involve the detection of large domain conformational changes using principal component analysis (PCA) 

and dynamic cross correlation (DCC) applied to the three-dimensional coordinates of simulated proteins 

(11–13). Both methods focus on dominant protein motions and neglect the complex detail of the more 

intricate local motions at the side chain level, sampled by the protein to mediate its allosteric 

communication and state transitioning. 

Other methods mainly revolve around detection of abrupt changes in spatiotemporal data 

comprising of inter-atomic distances or three-dimensional coordinate time series (14–16). The most recent 

method, SIMPLE, is designed to favor the detection of collective change points, depending on a sensitivity 

parameter (16). Despite the advances in event detection made possible by SIMPLE, this method still comes 

short in detecting functional molecular switches. Depending on the sensitivity parameter used, such 

motions can either be obscured by the large number of detected change-points when using a low sensitivity 

parameter, or omitted when using a high sensitivity parameter. Molecular switch detection in protein 

dynamics presents a challenging problem for the following reasons. First, functional molecular switches are 

subtle and manifest themselves as a single inter-residue interaction rearrangement that can be obscured by 

the several fluctuating inter-residue interactions. Change-point detection methods, such as SIMPLE, 

identifies all side chains rearrangements; however, several of which may not be functional. Second, 

molecular switches involve the more sporadic movement of amino acid residue side chains and could 

involve time delays and weak coupling to the larger domain movements of the protein. To overcome these 

challenges, our work focuses on extracting these molecular switches from all detected side chain 

rearrangements by assessing their correlation to the larger domain motions in the protein.   

In this work, we reduce the protein dynamics to its constitutive dynamical components by 

screening for large domain motions and side chain rearrangements. We detect molecular switches using 
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Gaussian Mixture Models (GMM) and domain motions using DCC. Molecular switches and domain 

motions are then related through a DCC-based network and compartmentalized into different communities 

with similar dynamics. This is an efficient method to relate the local side chain motions (molecular 

switches) to the global domain motions of the protein. The different network communities comprise of side 

chain distance time series that are correlated (or anti-correlated) to the large domain motions of the protein. 

These dynamical components provide an understanding of how side chain rearrangements mediate the 

global motions of the protein, which eventually facilitate its transitioning between different protein 

functional states. 

 

4.2 Materials and Methods 

We introduce an approach to delineate the structural mechanism of allosteric regulation in protein 

dynamics (Figure 4.1). Our computational framework is designed to systematically extract side chain 

rearrangements mediating large domain motions from a protein’s MD simulation trajectory. This is done by 

reducing the overall behavior of the protein to a set of coupled dynamical components, composed of side 

chain and backbone rearrangements.  

Side chain rearrangements are often localized to a single inter-residue side chain interaction, 

which could be obscured by larger domain motions when extracted from a large MD data set of inter-

atomic distance time series. Therefore, both dynamical components, side chain (Figure 4.1A) and backbone 

dynamics (Figure 4.1B), are extracted separately using different methods: GMMs and DCC, respectively. 

Given the dynamic nature of proteins, only a tiny fraction of the protein’s side chain dynamics is 

considered to behave as molecular switches that contribute to regulating the global protein dynamics. 

Therefore, extracted side chain rearrangements (Figure 4.1A) are further reduced by extracting those that 

are coupled to the large domain motions (Figure 4.1B). All dynamical components are projected into a 

DCC-based network and categorized into different communities, where large domain motions and side 

chain dynamics within the same community show correlated time series (Figure 4.1C). 
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Figure 4.1 Schematic of our computational framework to detect molecular switches mediating large 
domain motions in proteins. (A) Van der Waals and polar interactions that sample a maximum distance 
of 5 Å during the simulation are used to calculate distance time series from the MD simulation 3-
dimentional data. The minimum distance between all side chain or polar atoms are used to extract inter-
residue side chain distance time series. Probability density of each time series are fitted to a GMM to 
extract side chain interactions that undergo rearrangements during the simulation. (B) Ca-Ca 
interactions that sample a maximum distance of 15 Å during the simulation are used to calculate the Ca-
Ca distance time series. A DCC matrix of all pairwise Ca-Ca distance time series are clustered and 
clusters with a minimum coefficient of 0.95 are extracted as large domain motions of the protein. (C) 
Side chain rearrangements (blue nodes) and large domain motions (green nodes) of the protein are 
considered dynamical components of the protein and are inputted into a DCC-based network to relate 
both components. Network connections are based on the correlation coefficients of pairwise dynamical 
components which are calculated as the average DCC coefficient of the pairwise time series belonging 
to each component. 
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Detection of side chain contact rearrangements from MD simulations. Extracting all side 

chain rearrangements from MD simulations involves the identification of side chain interactions that 

experience abrupt changes in their distance time series. Abrupt changes in the inter-residue interactions 

indicate that these interactions are capable of switching between substates. We extract such inter-residue 

interactions by fitting a GMM to the probability density of each interaction distance timeline. GMMs are 

weighted sums of Gaussian densities and are used here as a parametric model of the probability density 

function of inter-residue time series (Gaussian densities are implemented in scikit-learn, a machine learning 

package in python) (17). Stable non-varying interactions show a unimodal distribution (Figure 4.2A), and 

multi-substate interactions show multi-modal distributions (Figure 4.2B). The optimal number of Gaussians 

was efficiently determined using the Bayesian information criterion using scikit-learn (17). GMM 

parameters are estimated using the iterative expectation-maximization algorithm, where the number of 

Gaussians is predetermined. This section of the computational framework is designed to extract all 

interactions that show contact formation and breakage at any point during the simulations, as such contacts 

can be deemed critical in mediating the larger domain motions. GMMs are fitted to all distance time series 

representing van-der-Waals (vdw) and polar interaction (listed below) distances between interacting side 

chain residues. Interacting residues used to calculate the distance time series are determined as the residues 

that came into contact (a distance of at least 5 Å between all non-hydrogen side chain atoms) at any point 

during the simulation.  To ensure complete formation and deformation of the side chain contacts, we 

calculate the inter-residue side chain distance time series using the minimum distance between all non-

hydrogen side chain atoms of each of the amino acids. Similarly, polar interactions are also calculated 

using the minimum distance between all non-hydrogen polar head group atoms of interacting polar amino 

acids (atoms Cz, Ne, Nh1, or Nh2 for R; atoms Cg, Od1, or Nd2 for N; atoms Cg, Od1, or Od2 for D; atom Sg for 

C; atoms Cd, Oe1, or Ne2 for Q; atoms Cd, Oe1, or Oe2 for E; atoms CG, Nd1, Ce1, Ne2, or Cd2 for H; atom Nz 

for K; atom Og for S; atom Og1 for T; atom Ne1 for W; atom Oh for Y). All distance time series are fit with a 

GMM to identify the number of substates that each interaction is sampling. 
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Distance time series with unimodal GMMs are considered to be stable during the simulations, 

contributing to the structural stability (robustness) of the protein. On the other hand, multi-modal GMMs 

are amongst the dynamical components of the protein and contribute to the protein’s conformational 

transitions between different functional states. 

Detection of large domain motions through DCCM. Large domain motions in proteins involve 

the collective motion of backbone atoms and aid in the transitioning of the protein between different 

functional states. This part of the computational framework entails the detection of these motions as a 

collection of highly correlated inter-Ca distance time series. 

All alpha carbon interactions within 15 Å at any point of the simulation are extracted, and all 

distance time series representing theses interactions are calculated. Pairwise dynamic cross-correlation of 

all distance time series are clustered based on their correlation coefficient and clusters with at least 0.95 

correlation coefficient are extracted (Figure 4.3A, B). Each cluster is a set of time series that are localized 

to different protein sectors that exhibit different dynamical behaviors (Figure 4.3C). 

Figure 4.2 Examples of side chain distance probability densities fitted using GMM. (A) Side chain 
distance probability densities fitted by unimodal distributions show a stable inter-residue interaction 
through the majority of the simulation. (B) Side chain distance probability densities fitted by 
multimodal distributions represent inter-residue interactions that undergo rearrangements during the 
simulation. 
 

A

B

2 3 4 5 6 7 8 9
0

0.4

0.8

1.2

2
4

6
8

0 5000 10000 15000 20000 25000 30000

4 5 6 70

0.4

0.8

1.2

1.6

0 5000 10000 15000 20000 25000 30000

4
5

6
7

Frames

Frames

D
is

ta
nc

e 
(Å

)
D

is
ta

nc
e 

(Å
)

Pr
ob

ab
ili

ty
 D

en
si

ty
Pr

ob
ab

ili
ty

 D
en

si
ty

Distance (Å)

Distance (Å)



 
 
 

 
 

65 

The use of distance time series (rather than XYZ coordinates) presents various advantages in 

molecular dynamics simulation analysis. Apart from reducing the dimensionality of the data time series 

used (from three-dimensional XYZ coordinates to one-dimensional distance time series), the translation 

and rotation of the protein during the MD simulations can be ignored and therefore structure 

superimposition can be omitted. These improvements allow us to accentuate the changes in the global 

structure of the protein and attenuate the effects of atomic fluctuations seen in the XYZ coordinates. Thus, 

clusters with high DCC coefficient better portray the large domain dynamical behavior of the protein. 

Network of the protein’s dynamical components. The dynamical components of the protein are 

classified into different communities, using igraph (18). We create a DCC-based network comprised of the 

dynamical components of the protein (Figure 4.4), extracted in the previous sections and described in 

Figures 4.2 and 4.3. In the network of Figure 4.4, the blue and green nodes represent side chain and 

Figure 4.3 DCC heat map of pairwise Ca-Ca distance time series are clustered using hierarchical 
clustering. (A) The clustering dendrogram is reported above the DCC heat map. The DCC coefficient is 
used as the distance calculated between two clusters and shown as the y-axis of the dendrogram. Each 
color of the dendrogram represents a different cluster of time series that are correlated at a cutoff DCC 
coefficient of 0.95. (B) An illustration of the time series within the highlighted cluster in (A). (C) An 
example of molecular graphics demonstrating the interacting residues involved in the large domain 
motions illustrated in the highlighted cluster in (A). Each connection involves two Ca whose distance 
time series is within the highlighted cluster in (A).  
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backbone interactions, respectively; and edges connect correlated components with a minimum correlation 

or maximum anti-correlation coefficients of 0.75 or -0.75 respectively. The correlation coefficient cutoff is 

defined by the user and can be adjusted to account for the faster behavior of side chain rearrangements 

(picosecond and nanosecond time scales) compared to the slower motions of larger protein domains 

Figure 4.4 DCC-based network illustration of the protein’s dynamical components. (A) Correlation 
coefficients of pairwise dynamical components are calculated as the average DCC coefficient of the 
pairwise time series belonging to each component as illustrated on a sample DCC heat map. Average 
correlation are calculated between pairwise large domain motions (components x and y), between 
pairwise side chain rearrangement time series (component z) and across both components. An average 
DCC coefficient matrix is generated for all dynamical components. (B) The network is built from a 
subset of the time series extracted from the MD simulation of CCL21-bound CCR7. The network is 
composed of two communities that are centered around large domain motions labeled as component 1 
and component 2. Network nodes represent the dynamical components extracted from the subset time 
series data and are colored blue for side chain rearrangements and green for large domain motions. The 
size of each node is proportional to the number of time series the node represents. Edges connecting the 
dynamical components are based on the average pairwise DCC coefficient of the time series involved in 
each of the components. Edges are drawn between dynamical components of a minimum coefficient of 
0.75. Ca-Ca distance. (C) Time series that comprise each of components 1 and 2 are projected into the 
molecular graphics of CCR7 and labeled accordingly. Components 1 and 2 represent large domain 
motions in a protein and are constituted of several highly correlated Ca-Ca distance time series. A 
sample time series from each of the large domain motion components is shown in green. Blue time 
series are side chain time series for each of the blue nodes within each of the communities centered 
around components 1 and 2. All time series show coupled abrupt changes within each of the large 
domain movements components highlighted in grey. The network was built using Gephi (19). 
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(microsecond and millisecond time scales). While rearrangement in side chain interaction are manifested as 

abrupt changes in the distance time series, the larger domain motion experience more incremental changes 

that span hundreds of nanoseconds. The size of each node is proportional to the number of distance time 

series each node represents, where large domain dynamical components involve a large number of time 

series, while side chain rearrangements are characterized by one distance time series. 

Correlation coefficients of pairwise dynamical components are calculated as the average DCC 

coefficient of the pairwise time series belonging to each component (Figure 4.4A). An average DCC 

coefficient matrix is generated for all the pairwise dynamical components. The produced matrix is 

projected into a network where components are connected based on a DCC coefficient cutoff (Figure 4.4B). 

Network communities are detected based on edge betweenness, where each community is composed of side 

chain and backbone dynamics that are correlated to each other. The extracted communities represent the 

large domain motions and the molecular switches that mediate the protein dynamics (Figure 4.4C).  

Network community visualization using molecular graphics visualization tools. MD 

simulations provide an unsurmountable amount of dynamical information due to the high fluctuating and 

complex nature of protein dynamics. Here, the extracted communities, using igraph, were revealed to be 

useful in reducing the protein to its functional dynamical behavior. Each community is composed of 

molecular switches and large domain motions that are correlated. These communities can be outputted into 

a protein data bank file format to visualize the residues that make up the dynamical components of the 

community. The time series belonging to the dynamical components are outputted as an edge connecting 

two representative atoms of the time series’ corresponding residues (Figure 4.3C). 

 

4.3 Application to Molecular Dynamics Simulation Data 

We apply our computational framework to previously published MD trajectories where we 

analyzed the simulations to understand the mechanism by which a ligand, CCL21 in our test case here, 

transmits information in CC chemokine receptor 7 (CCR7) (see Chapter 2). We have determined key 

conformational changes that act as molecular switches and facilitate the transitioning of the receptor 
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between its different states by inducing large helical motions of its transmembrane domain (TMD). The 

simulation data of CCR7 was originally analyzed through manual and visual inspection of a large set of 

distance time series and generic summary measurement such as root mean square deviation (RMSD), 

principal component analysis (PCA), and comparison of the inter-residue mean distances between different 

time segments. Such non-systematic measures are very labor intensive and may not provide a complete 

analysis due to the overwhelming amount of the data outputted by the MD simulations. Nonetheless, we 

were able to detect a series of molecular switches that are mediated by various ligand-induced allosteric 

events. These molecular switches involve three tyrosine residues (Y1123.32, Y2556.51, and Y2887.39), three 

phenylalanine residues (F1163.36, F2085.47, and F2486.44), and a polar interaction between Q2526.48 and 

R2947.45 in the TMD of CCR7 (see chapter 2). Molecular events within these switches are coupled with 

global helical movements in the receptor’s TM helices and contribute to the transitioning of the receptor to 

distinct states.  

Using a distance cutoff of 5 Å, a total of ~1200 inter-residue side chain distance time series were 

imported and fit to a GMM in order to systematically extract all multi-modal distance probability densities. 

The selected contacts reduced our data set to ~600 time series. However, the majority of these contacts 

comprise independent side chain rearrangements that do not contribute to the protein’s major helical 

motions, and only a small fraction of these multi-modal contacts are considered to act as molecular 

switches in our previous analysis (see Chapter 2). The second part of our computational framework focuses 

on extracting the receptor’s large domain motions using inter-residue Ca distance time series with a cutoff 

of 15 Å. A pairwise DCC matrix was generated for ~6000 distance time series, and then clustered at a DCC 

coefficient cutoff of 0.95. The high DCC cutoff generated clusters with highly correlated distance time 

series that involve structurally adjacent amino acids. This part of the computational framework generated 

~1000 clusters which included multiple clusters of more than a hundred time series. After calculating all 

pairwise average DCC coefficients between all dynamical components and projecting our data onto a DCC-

based network, all dynamical components were then reduced to a few communities with very similar 

dynamical behaviors, from which we have extracted coupled side chain and large domain motions.  
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Using our computational framework, we were able to systematically extract correlated molecular 

switches and large helical motions (Figure 4.5). In each of the network communities, the different nodes 

represent the large domain motions (large nodes) and the side chain rearrangements (small nodes) extracted 

Figure 4.5 A DCC-based network of the full CCL21-bound CCR7 MD simulation dataset. Network 
communities are colored differently and dynamical components representing large domain motions are 
projected into a molecular graphics in which connections are colored according to the community they 
belong to. Previously determined molecular switches (F116-Q252, Y112-Q252, Y112-Y255) are 
labeled accordingly in the network (see Chapter 2). 
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from the MD simulation. Each of the five main communities is composed of a few nodes that represent the 

large domain movement of the receptor and several nodes that represent side chain rearrangements. Within 

the detected side chain rearrangements, Figure 4.5 illustrates the presence of previously determined 

molecular switches: F116-F248, Y112-Y255, and Y112-Q252. These molecular switches belong to 

different communities centered around large helical motions of the receptor, which demonstrates their 

coupling to different large dynamical components of the receptor. Our systematic approach has also 

identified new dynamical components of CCR7 that were overlooked in our previous manual and visual 

analysis (see Chapter 2). Specifically, large domain motions involving extracellular and intracellular 

domains of the receptor were extracted from the network and were found to either belong to independent 

communities (cyan, blue, and red communities in Figure 4.5) or coupled to other large helical movements 

in the TMD (green community in Figure 4.5). 

 

4.4 Concluding Remarks 

This computational framework focuses on linking the different dynamical components of a protein 

in order to extract side chain rearrangements that are coupled to global conformational changes. This is 

done through the detection of side chain contacts with multi-modal probability density function and large 

domain motions as clusters of highly correlated inter-residue Ca distance time series. Community detection 

in a DCC-based network of all extracted components correlate the side chain contacts to the large domain 

motions in order to pinpoint the different molecular switches that are coupled to the large domain motions 

detected in the protein dynamics. 

As a proof of concept, this method was used to systematically detect the molecular switches 

responsible of mediating the large helical motions in CCR7 previously extracted (see Chapter 2). 

Ultimately, our computational framework reduces the overall behavior of the protein to a set of coupled 

dynamical components, composed of side chain and backbone rearrangements. This method provides a 

manageable dataset that is easily visualized in three-dimensional molecular graphics for visual analysis.  

Gephi Ref: (19) 
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CHAPTER 5: LYSINE ACETYLATION AND METHYLATION REGULATE KU70 FUNCTIONS 
 

5.1 Introduction 

Double-strand breaks (DSB) in DNA are one of the most dangerous forms of DNA break due to 

the intrinsic difficulty of its repair and its susceptibility to hazardous DNA errors (1, 2). DSBs can be 

repaired by two distinct repair mechanisms: homologous recombination (HR) and non-homologous end-

joining (NHEJ). Both mechanisms are relatively accurate. However, the lack of a homologous template in 

NHEJ makes it error-prone and more susceptible to small sequence deletions (2, 3). Accumulating evidence 

links unrepaired or improperly repaired DNA DSBs to chromosomal translocation and abnormalities that 

lead to carcinogenic effects and health problems (2, 4).  

High levels of recombination defects have been attributed to KU deficiency in vitro and in vivo, 

thus making KU70-KU80 heterodimer a critical complex in stable and accurate NHEJ (3). KU70-KU80 is 

the first protein recruited to the site of DNA break and deletion of either one of these KU proteins leads to 

impairment of DNA double strand break repair and sensitivity to radiation (5, 6). 

Post-translational modifications (PTMs) are critical for proper DNA damage repair and have been 

widely studied in the context of NHEJ (7–9). Multiple KU70 (de)acetylation instances have been shown to 

regulate the NHEJ repair mechanism (7, 10–13). In chronic myeloid leukemia (CML) and prostate cancer 

cells, KU70 deacetylation promotes the cell’s ability to repair DNA DSBs and its survival (7, 10, 11, 13, 

14). Furthermore, KU70 deacetylation promotes acquisition of resistant BCR-ABL (CML oncoprotein) 

mutations in CML cells in association with its ability to stimulate aberrant NHEJ activity (11). However, in 

neuroblastoma cells, KU70 acetylation increases DNA repair activity when subject to ionizing radiation 

(12). Despite the paradoxical role of (de)acetylation in the three cell types, there is a clear role of 

acetylation in regulating proper DNA damage repair.  

Our collaborators at the City of Hope, Dr. WenYong Chen’s lab, have recently explored another 

form of PTMs on KU70, methylation, following a recent proteomic study that has identified lysine 

methylation on KU70 and several other DNA repair factors (15), but had not located specific methylation 

sites. Dr. Chen’s lab has found that a lysine-specific demethylase 1 (LSD1) competes with SIRT1 for 
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KU70-binding and to regulate DNA repair and mutation acquisition in cancer cells, where LSD1 

demethylates KU70 at three lysine residues (K9, K74 and K510) (WenYong Chen, unpublished data).  

Mutations of these lysines disrupt KU70 interaction with SIRT1, formation of KU70-KU80 heterodimer, 

and KU70’s function in introducing genetic mutations (WenYong Chen, unpublished data).  

Dysregulation of KU70-KU80 through acetylation and methylation of lysine residues has been 

shown in various cell lines to introduce DNA mutations through an error-prone NHEJ. However, no 

molecular mechanism describes how such PTMs might affect DNA-repair. Our objective is to assess the 

effects of acetylation and methylation on the interactions of KU70-KU80 with DNA, and its deacetylase 

and demethylase enzymes, SIRT1, and LSD1. Acetylation and methylation of KU70 are believed to alter 

the heterodimer’s function through its dynamics by inducing various conformational changes in the protein 

(16–19). Molecular dynamics (MD) simulations of the heterodimer in its different PTM states and in the 

absence or presence of DNA suggest that methylation and acetylation of specific lysine sites produces 

electrostatic and long-range intra-molecular structural alterations within KU70 that may account for its 

functional changes.  Our study sheds novel insight into the molecular mechanism governing the acquisition 

of genetic mutations and cancer drug resistance. 

 

5.2 Materials and Methods 

Construction of the KU70-KU80-DNA model. The crystal structure of KU70-KU80-DNA was 

obtained from the Protein Data Bank (PDB) using the PDB code 1JEY (3).  The crystal structure of the 

complex was determined as KU70-KU80-DNA trimer without the KU70 N-terminal random coil (NRC: 

amino acids 1-33) or the linker-SAP domain (amino acids 535-609), therefore the missing coordinates were 

constructed. The SAP domain (amino acids 561-609) was obtained from the crystal structure of the DNA-

free KU70-KU80 complex with PDB code 1JEQ (3). The missing NRC and the linker between the KU70 

core and SAP domain were added using Modeller9.11 (20).  Alignment of the KU70 sequences from 

www.uniprot.com and from the PDB file 1JEY was performed using the ClustalW2 server (21). 

Modeller9.11 was used to generate the structure from the alignment. Then, the SAP domain, extracted from 
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1jey, was attached to the rest of the modeled protein. The DNA three-way junction, used to force KU70-

KU80 towards a single DNA binding mode for crystallographic purposes, was truncated to a 14-bp DNA 

duplex. Methyl groups were added using Chimera (22), by replacing hydrogen atoms of the side chain 

amine of K9, K74 and K510. K9 and K74 are dimethylated and K510 is monomethylated. All of the three 

lysines were computationally methylated or nonmethylated simultaneously. Acetyl groups were also added 

using Chimera to eight experimentally identified acetylated KU70 residues: K282, K317, K331, K338, 

K539, K542, K544, K553, and K556. All of these eight lysines were computationally acetylated or 

nonacetylated simultaneously. Four structures of KU70-KU80 were generated under nonmethylated and 

methylated conditions for a total of eight different structures. The four structures are the following 

complexes: KU70-KU80, KU70-KU80-DNA, acetylated state of KU70-KU80, and acetylated state of 

KU70-KU80-DNA.  

Analysis of�Electrostatic Similarities of Proteins (AESOP)�framework. To delineate the role 

of charged residues in binding, calculations were performed using integrated Analysis of Electrostatic 

Similarities Of Proteins (AESOP) framework (23–27). The coordinates of the complex were obtained from 

the constructed KU70-KU80-DNA model. The calculations involved systematic mutation of the side chains 

of charged ionizable residues (Arg, Asp, His, Glu, and Lys) into alanine, one at a time, thus generating a 

family of mutant proteins.  The program PDB2PQR was used to add atomic radii and partial charges to the 

atomic coordinate file using the CHARMM forcefield (28, 29). The electrostatic potentials were calculated 

by numerically solving the linearized Poisson-Boltzmann equation with the program Adaptive Poisson-

Boltzmann Solver (APBS) (30). The molecular (dielectric boundary) and ion accessibility surfaces were 

determined using spherical probes and radii set to 1.4 and 2.0 Å respectively. The APBS calculations were 

performed on a grid resolution of ~1 Å for both 0 and 150 mM ionic strength. The dielectric coefficients for 

the protein interior and solvent for each complex were set to 20 and 78.54, respectively. Two electrostatic 

potential calculations were performed with different counter ion concentrations of 0 mM and 150 mM.  
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Pairwise similarities were calculated according to the electrostatic similarity distance (ESD) 

equation (1). 

!"# = %
&

'( ),+,, -'. ),+,,
/01 '( ),+,, ,'. ),+,,),+,,        (1) 

In Eq. (1), φA and φB refer to electrostatic potential at grid point (i, j, k) in proteins A and B, respectively, 

and N represents the total number of grid points at which electrostatic potential has been calculated. An 

ESD value of 0 denotes identical electrostatic potentials. As the ESD value increases, the dissimilarity in 

electrostatic potential increases (25, 27). The resulting complexes were hierarchically clustered in a 

dendrogram depending on their ESD value, using the linkage method. 

Free energies of association were calculated based on the Coulombic potential and solvation 

energies of the complex. As described by equation (2), the solvation energies are calculated using a 

thermodynamic cycle in order to remove self-energies and grid artifacts described previously (24, 27, 31). 

Coulombic potentials are then calculated using nongrid-based Coulomb module in APBS and incorporated 

with the solvation energies to extract the free energies of association (equation (3)). 

∆∆3456789)5: = ∆3;<456789)5: − ∆3;456789)5: − ∆3<456789)5:     (2) 

∆38445>)89)5: = ∆3>5?65@A)> + ∆∆3456789)5:      (3) 

In these equations, AB refers to the protein complex KU70-KU80-DNA, A refers to free KU70-KU80, and 

B refers to free DNA. The electrostatic free energies of the mutants are represented relative to the parent 

protein as described in Eq. (4). 

∆3A):C):D = ∆3@?98:98445>)89)5: − ∆3E8FG:98445>)89)5:      (4) 

Molecular dynamics simulations. MD simulations were performed in triplicate for the 

aforementioned eight complexes, for a total of 24 independently ran simulations. Two 20-ns trajectories 

and one 15-ns trajectory were generated for each of KU70-KU80 and acetylated state of KU70-KU80-

DNA, while 15-ns trajectories were generated in all triplicate simulations for KU70-KU80-DNA and 

acetylated state of KU70-KU80. MD simulations were performed using NAMD, version 2.9 (32). Initial 

protein structure files were prepared using the PSFGEN utility in VMD (33) and the CHARMM27 

forcefield (34) with CMAP terms (29). The forcefield parameters for methylated lysine (35) were kindly 
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provided by Dr. Annick Dejaegere of the Institut de Génétique et de Biologie Moléculaire et Cellulaire, 

Strasbourg, France. The protein complex was embedded into a water box using the VMD utility SOLVATE 

and the TIP3P model for the water molecules. The water box dimensions were 142 Å × 150 Å × 149 Å. 

The system was neutralized using sodium and chloride counterions at an ionic strength of 150 mM. NAMD 

was used to minimize the system using 2000 steps of conjugate gradient energy minimization, followed by 

an MD production run for 15 or 20 ns at 1 atm pressure and 310 K. All production run simulations were 

performed using periodic boundary conditions and particle-mesh Ewald electrostatics for long-range 

electrostatic interactions with a grid point density of 1/Å. Nonbonded van der Waals interactions and short-

range electrostatic interactions were calculated with an interaction cutoff of 12 Å and switching distance of 

10 Å. The SHAKE algorithm was employed to fix the length of all hydrogen-containing bonds, enabling 

the use of 2 fs integration time steps. Coordinates were sampled every 2 ps to generate a total of 7500 or 

10000 snapshots for each trajectory.  

Molecular dynamics simulation analysis. Analysis of the MD trajectories was performed with 

in-house scripts using R programming language (36), Chimera (22), and the Bio3D library (37). Hydrogen 

bonds were calculated with Chimera, using hydrogen bond criteria as described (22, 38). Charge-charge 

interactions were calculated using a cutoff value of 5 Å between the central atoms of the amino acid 

charged chemical groups (Nζ for K, Cζ for R, Cγ for D, Cδ for E, or any of the following atoms: Cγ, Nδ1, Cε1, 

Nε2, and Cδ2 for H). Hydrogen bonds and charge-charge interactions were used to generate contact map 

occupancies. The occupancies are calculated as percentages of the presence of each interaction within the 

MD trajectory (percent of MD snapshots in which the interaction is present). Contact maps were generated 

for each of the 12 simulated complexes. To evaluate the structural perturbations introduced by methylation, 

manifested as loss or gain of hydrogen bonding or charge-charge interactions, the difference in occupancies 

between nonmethylated and methylated maps was calculated. Since simulations were performed in 

triplicate, difference contact maps were calculated for all six pairwise combination differences between 

nonmethylated and methylated contact maps. The generated difference contact maps were compiled into 

one map, by taking the maximum difference from all six combination differences. This protocol was used 



 
 
 

 
 

78 

to generate maximum difference contact maps for KU70-KU80 and KU70-KU80-DNA complexes. The 

effects of methylation may involve structural perturbations of multiple residues surrounding the 

methylation site, including relay effects on residues that are not directly in hydrogen bonding or charge-

charge interaction contact with the methylation site. As an example, in the case of a hydrogen bond donor 

surrounded by four hydrogen bond acceptors, loss or gain of a hydrogen bond may take place with any of 

the four available hydrogen bond acceptors depending on the trajectory (compensatory effects for loss/gain 

may also be operative). The utility of the contact maps is to capture all residues affected by methylation and 

their different structural response on methylation among the various simulations. 

Principal component analysis of molecular dynamics trajectories. Refined structural 

superposition and principal component analysis (PCA) was performed using Bio3D (39) to discern 

collective and global motions during an MD simulation from small-scale fluctuations and irrelevant noise. 

PCA was used to compare different MD trajectories of KU70-KU80 complexes in their methylated and 

nonmethylated states to gain insight into conformational differences associated with methylation. PCA 

reduces the dimensionality of a system by projecting the data on principal components, and is based on the 

covariance matrix. Each element of the matrix is calculated using the equation (5). 

H)+ = 	 J) − J+ × J+ − J+         (5) 

where ri … r3N denotes the Cartesian coordinates of the Cα atoms. The eigenvectors and eigenvalues are 

then extracted from the covariance matrix representing a set of orthogonal vectors with the highest variance 

in atomic coordinates. The principal components, PC1 and PC2, were chosen to be the two eigenvectors 

with the largest eigenvalues. The eigenvalues represent the percentage of the mean-square fluctuations 

along the direction of the eigenvector. Projecting data on principal components of highest eigenvalues is a 

way of compressing the data to a few most relevant components, and thus reducing the dimensionality of 

the system. 
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5.3 Results  

The KU70-KU80 heterodimer (Figure 5.1) is comprised of multiple functional subdomains that 

are involved in DNA binding and the orchestration of downstream effectors to trigger DNA repair (7, 12, 

13, 40). Each KU monomer can be divided into three main subdomains: N-terminal random coil (NRC), 

core, and C-terminal subdomains (Figure 5.1). The core comprises of KU-binding domains that intertwine 

to form a ring-like structure and allow the DNA to cradle inside. The C-terminal domains of both 

monomers contain a flexible linker region and a α-helical region (3, 17, 41, 42). In KU70 monomer, the α-

helical region is known as the SAP domain and was shown to bind the KU70-KU80 core and DNA 

independently (3, 43). 

KU70 contains several acetylation and methylation sites that are believed to regulate its function 

through its dynamics which, consequently, affects the DNA repair process (16–19). Nine lysine residues 

Figure 5.1 Modeled structure of the KU70 (magenta)-KU80 (cyan)-DNA (yellow) complex. The KU70 
methylation sites are shown as sphere models in blue. The acetylation sites are also shown as sphere 
models in orange. 
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have been identified as targets of (de)acetylation in vivo. Five of these residues (K539, K542, K544, K533, 

and K556) lie in the linker domain of KU70, while the remaining four (K282, K317, K331, and K338) are 

in the DNA binding region of the core domain (7, 10, 12, 40). Furthermore, our collaborators have 

identified several methylated lysine residues located on the KU70 core and NRC domain: K9, K74 and 

K510 (WenYong Chen, unpublished data). Here, we study the conformational changes and energetic 

contributions induced by all acetylated and methylated�residues in the formation of the trimeric KU70-

KU80-DNA complex, to delineate the role of the aforementioned PTMs in the stability of the complex and 

DNA repair. 

Molecular analysis of the interaction between KU70’s acetylation sites, and DNA. Given the 

high and negatively charged nature of the DNA, we focus on the role of electrostatics to assess the 

physicochemical basis of KU70’s acetylated residues, and DNA interactions. Calculations are performed 

using our lab’s AESOP framework to delineate the contribution of each charged residues in complex 

formation (25, 27). We systematically mutate positively charged residues in KU70 to alanine one at a time, 

mimicking the side chain charge-removal acetylation; and calculate electrostatic potential similarities and 

free energies of association with DNA (Figure 5.2). Two of the acetylated lysines (K282, K338) were 

shown to significantly diminish KU70-KU80’s binding affinity to DNA when mutated to alanine due to 

their direct interaction with DNA (Figure 5.1). However, the remaining two acetylated lysines in the KU70 

core domain (K317, K331), even though part of the DNA binding domain, do not significantly affect DNA 

binding to KU70-KU80. These results are in-line with experimentally determined binding affinities, where 

constitutive acetylation of K317 and K331 had no significant effect on DNA binding (10).  

Five additional acetylation sites reside in the KU70 linker domain connecting the core and SAP 

domains (Figure 5.1). Electrostatic potential calculations of KU70’s C-terminal tail demonstrate the 

presence of alternating regions of positively-charged patches, where the acetylation lysines reside, and 

negatively-charged patches (Figure 5.2C). In its charge-removing acetylated state, the linker domain loses 

its alternating patches and becomes predominantly negatively charged (Figure 5.2D). Preliminary short MD 

simulation of KU70’s C-terminal domain (linker and SAP) has shown conformational fluctuations of the 
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linker, attributed to the alternating positively and negatively charged patches. The observed formation and 

breakage of salt-bridges between the adjacent positive and negative amino acids illustrate the linker’s 

conformational behavior, where the charge-removing acetylation of lysine residues present in the linker 

Figure 5.2 Electrostatic contribution of KU70’s acetylation sites. (A) Top, Electrostatic clustering for 
KU70-KU80 mutants (x-axis). Bottom, binding energy results of KU70-KU80 and DNA complexes. 
The order of the horizontal axis is identical to top panel. Acetylated sites are indicated with purple and 
cyan arrows for mutations with significant and not significant effect on DNA binding. Mutated residues 
are positively charged residues in KU70. (B) Electrostatic potential projected onto the surface of KU70-
KU80 complex. Molecular surfaces are colored based on electrostatic potential values, with a gradient 
from -1 kBT/e (red) to +1 kBT/e (blue). (C) Electrostatic potential projected onto the surface of linker-
SAP domain of KU70. Molecular surfaces are colored based on electrostatic potential values, with a 
gradient from -1 kBT/e (red) to +1 kBT/e (blue). The linker-SAP domain electrostatic potentials are 
rotated about the horizontal axis (black line) by 180 degrees in the top and middle panel. A ribbon 
representation illustrating the acetylation sites is shown in the bottom panel. (D) Similar electrostatic 
representation as in (C) with linker-SAP domain in its acetylated state. 
 



 
 
 

 
 

82 

would result in the breaking of the salt-bridges and altering the linker’s dynamical behavior that coordinate 

its function. Furthermore, the electrostatic potential surface of the SAP domain illustrates two oppositely 

charged surfaces on either side of the domain. 

Both KU70 domains include several lysine residues susceptible to acetylation that directly or 

indirectly affect DNA binding. Acetylated residues in the DNA-binding domain neutralize the charged 

lysine residue, which are shown to affect binding to the DNA. Additionally, acetylation in the linker 

domain will alter the electrostatic profile and dynamical behavior of such domain which will in turn affect 

the SAP function in binding to the KU70-KU80 complex or the DNA (3). 

Impact of lysine methylation on KU70 structure in its acetylated and nonacetylated states in 

the presence or absence of DNA. To gain structural insight into the roles of lysine methylation, we 

employed comparative computational modeling of KU70 with: K9, K74 and K510 in their methylated and 

nonmethylated states, K282, K317, K331, K338, K539, K542, K544, K533, and K556 in their acetylated 

and nonacetylated states, and in the presence or absence of DNA. We used the structure of the hybrid 

crystallographic and modeled KU70-KU80-DNA complex, described in Materials and Methods. The 

structure of the complex and topology of the methylated/acetylated lysines is shown in Figure 5.1. This 

structure includes KU70’s core domain, N-terminal random coil (NRC), linker-SAP domain, and a 14-bp 

DNA duplex, and was used as the starting point for MD. We evaluated the effect of KU70 methylation by 

performing a series of MD simulations of KU70-KU80 in its different PTM conditions and with the 

presence or absence of DNA as listed in Figure 5.4C. Overall, the MD simulations showed a rather robust 

KU70-KU80 core, with the exception of the microenvironment of K74 (Figure 5.3A) and the significant 

flexibility of the long random coils of the NRC and the linker (Figure B.1).  Among the three methylated 

lysines, K9 is part of the highly flexible NRC and the data did not detect any consistent differences between 

the nonmethylated and methylated states of the complex. On the other hand, K74 and K510 are part of the 

core domain and both lysines may induce local and long-range conformational changes in the KU70-KU80 

complex upon methylation. 
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Figure 5.3 Effect of K74 lysine methylation on its microenvironment. (A) Molecular graphics 
representation of the K74 (cyan) microenvironment. The illustrated residues show more than 30% 
differences in all hydrogen bond and charge-charge interaction occupancy contact maps. For clarity, 
only amino acid side chains are shown, even though the calculations included both backbone and side 
chain hydrogen bonds. Residues (other than K74) are colored according to their charge properties: 
orange, negative; light blue, positive; and green, the rest. In addition, oxygen and nitrogen atoms are 
colored in red and blue, respectively. Asterisks denote KU80 residues. (B, C) Hydrogen bond and 
charge-charge (Coulombic) interaction occupancy changes in the vicinity of K74 between methylated 
and nonmethylated states of the complex in the MD simulations in its nonacetylated state. 
Methylated/nonmethylated lysines are K9, K74, and K510. The vicinity of K74 includes residues within 
8 Å from the Nζ-atom of K74 in the modeled KU70-KU80-DNA structure. Hydrogen bonds (left 
column) and charge-charge interactions (right column) were calculated between the residues selected in 
the vicinity of K74 for KU70-KU80 (B) and KU70-KU80-DNA (C) complexes. All possible hydrogen 
bonds between selected residues were calculated with Chimera. The cutoff value for a charge-charge 
interaction was 5 Å between the central heavy atoms of the amino acid charged chemical groups, and 
includes both favorable interactions between opposite charges (salt bridges) and unfavorable 
interactions between like charges. Occupancies were calculated as percentage of MD trajectory frames 
in which the interaction is present. By calculating the difference of occupancies between triplicate 
simulations of methylated and nonmethylated states of the KU70-KU80, the maximum observed change 
was extracted and compiled in one contact map (see Methods for more detailed explanation).  The color 
code represents occupancy differences in the range of 0-100%, as indicated in the legend. Contacts 
maps pertaining to the acetylated states of the simulations are shown in Figure B.2. 
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K74 is located in a packed environment and its methylation introduced reorganization of the local 

microenvironment (Figure 5.1, and 5.3A). The differences between the nonmethylated and methylated 

lysines can be rationalized by the physicochemical properties of its side chain. The methyl groups replace 

terminal amine hydrogens, and unlike the case of acetylation, the amines retain their positive charge. 

Therefore, the side chain loses hydrogen bonding capabilities for each replaced hydrogen. Additional steric 

and hydrophobic effects are also operative because of the bulkier and hydrophobic methyl groups 

compared to hydrogens. Thus, we evaluated percent occupancy contact maps for hydrogen bonds and 

charge-charge interactions throughout the MD trajectories (Figure 5.3B, 5.3C, and Figure B.2). The 

microenvironment of K74 reveals 40% or more difference in occupancies of hydrogen bonds between K74 

and at least two of the four nearby residues with hydrogen bonding capabilities (D79, D81, E250, and 

T251) (Figure 5.3B, 5.3C, and Figure B.2). The K74 microenvironment also reveals 40% or more 

difference in occupancies of favorable or unfavorable Coulombic interactions (defined as a distance < 5 Å 

between oppositely charged groups) between K74 and six nearby charged residues (D36, D79, E250, R252, 

and R254 of KU70, and R431 of KU80). Rearrangements around K74 propagate to nearby E250, which 

showed behavior similar to K74 in hydrogen bonding (with S73, V246, R247, T251, and R252 of KU70, 

and R431, R433 of KU80) and charge-charge interactions (with D79, D81, R247, and R252 of KU70 and 

R431 of KU80), with occupancy differences of 40% or more (Figure 5.3B, 5.3C, and Figure B2). Such 

local structural rearrangements may participate in the initiation of long-range motions that bring the protein 

to altered conformational and functional states as further detailed below. 
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Figure 5.4 Effect of KU70 lysine methylation on the intra-molecular “pendulum.” (A) Superposition of 
representative MD structures of the KU70-KU80-DNA complexes in their methylated and 
nonmethylated (transparent model) states, focusing on the helical hinge domain, linker, and SAP 
domain. The formed clamp is shown in the nonmethylated complex (transparent), whereas the broken 
clamp is shown in the methylated complex.  (B) Zoom-in illustrating the relative topology of K510 and 
the clamp residues in characteristic MD structures of methylated (left, broken clamp) and 
nonmethylated (right, formed clamp) states. (C) Intra-molecular salt bridge occupancies between the 
clamp residues E527 (KU70) and R250/R260 (KU80) from MD trajectories of methylated, 
nonmethylated, acetylated, and nonacetylated states. Occupancies were calculated from triplicate 
simulations of the complexes shown in the left column. 
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The KU70 C-terminal SAP domain also has a robust structure, but because it is attached to the 

linker it demonstrates significant mobility (Figure B.1).  The last helical domain of the KU70 core (a 

helical hinge domain, residues 511-529), the linker (residues 530-560), and SAP domain (residues 561-

609) resemble the pivot, string, and weight of a pendulum, respectively (Figure 5.4A). Monomethylation of 

K510 results in loss of one hydrogen atom (and the associated hydrogen-bonding capability of the lost 

methyl), while retaining the positive charge. Analysis of hydrogen bonding and charge-charge interaction 

occupancies in MD trajectories displayed no significant differences in the local moiety of methylated and 

nonmethylated K510, mainly because of the non-packed and highly solvated environment. However, with 

detailed analysis of the MD trajectories, we identified a bifurcated salt bridge between E537 (KU70) and 

R250 and R260 (KU80), located within the linker domain (Figure 5.4A, and 5.4B). These salt bridge 

interactions are persistent throughout our triplicate runs of the MD simulations with nonmethylated 

K74/K510, and absent in the MD simulations with methylated K74/K510 regardless of the acetylation state 

of KU70 or the presence of the DNA.  Figure 5.4C shows high salt bridge occupancies of 93%, 58%, and 

98% in KU70-KU80 with nonmethylated lysines, in contrast to low salt bridge occupancies of 16%, 0%, 

and 25% when lysines are methylated. The E537 (KU70)-R250/R260 (KU80) salt bridge acts as a clamp 

that restrains the pendulum motion and controls the mobility, and perhaps the function, of the linker-SAP 

domain. The clamp is similarly present in the KU70-KU80-DNA MD simulation and acetylated forms of 

the KU70-KU80 complex (Figure 5.4C). Therefore, it may be argued that methylation acts as a trigger that 

mediates the motion and function of the “structural pendulum”.   
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Figure 5.5 Principal component analysis of the helical hinge motion (K510-E537). Comparison of 
conformational sampling of the helical hinge domain (residues 510 to 537) using the first two principal 
components (PC1, PC2) in the following structures with methylated (black) and nonmethylated (red) 
states: (A) nonacetylated KU70-KU80, (B) nonacetylated KU70-KU80-DNA, (C) acetylated KU70-
KU80, (D) acetylated KU70-KU80-DNA.  Each panel illustrates comparison of the triplicate 
simulations. 
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We hypothesized that K74 and K510 may facilitate a long-range pendulum-like motion initiating 

at the helical hinge domain and propagating to the linker-SAP domain, when releasing the E537 (KU70)-

R250/R260 (KU80) clamp upon methylation. We used principal component analysis (PCA) to characterize 

the motion responsible for propagating the methylation effect from K74 and/or K510 to the clamp residues 

located at the beginning of the linker, through the helical hinge domain (37, 39). PCA of the helical hinge 

domain minimizes the noise of local fluctuations at the atomic level and intensifies the global motions of 

such domains. Our analysis illustrates distinct conformational changes when comparing the methylated and 

nonmethylated structure simulations, evidenced by examination of the first two principal components 

(Figure 5.5). The first two principal components account for about 70% of the motion showing that the 

helical hinge domain undergoes distinct global motions in the methylated compared to the nonmethylated 

structures. PCA of all of our simulations shows that methylation of KU70 consistently induces different 

global motions of the helical hinge region regardless of its acetylation state and the presence or absence of 

the DNA (Figure 5.5). 

 

5.4 Discussion  

Three lysine residues, K9, K74, and K510, were identified by our collaborators, to undergo mono- 

and di-methylation in the NRC and core domains of KU70. Additional nine lysine residues were previously 

shown to be acetylated (7, 10, 12, 40). In this study, we identify the role of acetylation and methylation on 

KU70’s dynamics, which consequently affects its binding function to its different binding partners, such as 

DNA, SIRT1, and LSD1. KU70’s acetylation is shown to alter the DNA binding affinity by neutralizing the 

charge of four lysine residues that reside within the DNA-binding domain. Charge-removing acetylation of 

the remaining five lysine residues alters the electrostatic profile of the linker domain. Charge-removal 

contributes to a more negatively charged linker and disrupts the alternating positively and negatively 

charged patches in the linker, which will alter the linker’s dynamics and the SAP domain’s function of 

binding the KU70-KU80 complex or DNA (3). 
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Accordingly, we have also shown the effect of methylation on the local and global structures of 

KU70 protein using MD simulations. We propose that alterations in the local environment of methylated 

lysines propagate through correlated motions, inducing distal conformational changes in the KU70 linker-

SAP domain. We have identified the E537 (KU70)-R250/R260 (KU80) salt bridge that acts as a clamp and 

is responsible for restricting the “pendulum-like” conformational space spanned by the linker-SAP domain. 

The linker domain starts with a multi-proline loop, PPDYNPE, ending with the clamp residue, E537. The 

presence of the rigid proline residues restricts the motion of this loop, and with the formation of the clamp 

in the nonmethylated structures the loop is locked as part of the helical hinge domain. Thus, the motion of 

the linker is further restricted in the presence of the clamp. Lysine methylation triggers long-range motions 

that are coupled to releasing the clamp and increasing the mobility (and available conformational space) of 

the linker-SAP domain. Crystal structures of nonmethylated KU70-KU80 (PDB code: 1JEQ) include the 

formation of the clamp in the absence of the DNA, which is associated with binding of the SAP domain to 

the KU70-KU80 core, while lost in the presence of DNA (3). This result confirms the role of the clamp in 

mediating the linker-SAP domain “pendulum” motion, hypothesized to affect its function (3). 

The functional consequences of the conformational switch triggered by lysine methylation and 

acetylation in the DNA-binding and linker-SAP domains may be to facilitate interaction or inhibition of the 

KU70-KU80 complex moving along DNA to facilitate repair. This may be possible through regulating the 

DNA-binding affinity of the DNA-binding domain through acetylation; and increasing the motional 

amplitudes of the helical hinge domain and linker-SAP domain structure, known to bind DNA (3), upon 

rupture of the E537 (KU70)-R250/R260 (KU80) salt bridge. The linker-SAP domain dynamics is also 

altered through acetylation, neutralizing positively charged linker lysines, contributing to a more negatively 

charged linker and thus, further altering the linker-SAP domain dynamics.  

Interplay between KU70 methylation and acetylation may be present, and regulated through 

different acetylation and methylation enzymes. Using lentiviral shRNA to knockdown LSD1 and SIRT1, 

our collaborators at City of Hope, Dr. WenYong Chen and colleagues, have identified that lysine 

deacetylase SIRT1 and demethylase LSD1 competitively bind to KU70 in response to chemotherapeutic 
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agents and DNA damage, and consequently affect a cell’s ability to repair broken DNA and acquire genetic 

mutations. Both SIRT1 and LSD1 strongly bind to the KU70 core domain, providing a molecular basis for 

such competition. Both effectors were shown to be regulated by KU70’s NRC, linker, and SAP domains. 

Co-immunoprecipitation assays with KU70 domain truncations were used to determine the role of KU70’s 

domains in regulating LSD1 and SIRT1 interactions. The SAP domain is a strong repressor motif for LSD1 

interaction, while the NRC is a positive regulatory domain. On the other hand, the NRC is a strong 

repressor for SIRT1, the linker-SAP domain is a positive regulator for SIRT1 interaction and antagonized 

the repression from the NRC (WenYong Chen, data not shown). Given the role of the SAP domain in 

binding the KU70-KU80 core in addition to binding the DNA, the SAP domain and LSD1 may 

competitively bind to the KU70-KU80 core domain. Thus, since LSD1 and SIRT1 competitively bind 

KU70-KU80, the presence of the SAP domain will favor SIRT1 binding to KU70-KU80 by repressing 

LSD1 binding. 

All three methylation sites, K9, K74 and K510, were mutated experimentally to arginines by our 

collaborators to mimic constitutive lysine nonmethylation. Co-immunoprecipitation of KU70’s mutants 

demonstrate that arginine mutations did not affect KU70’s interaction with LSD1 (lysine demethylase) but 

reduced its interaction with SIRT1 (lysine deacetylase) (WenYong Chen, data not shown). These results 

suggest the role of K9, K74, and K510 methylation in modulated the linker-SAP domain function in order 

to mediate SIRT1’s interaction with KU70. The clamp residues may work as a molecular switch that 

regulates the SAP domain’s interaction with KU70-KU80 which would mediate SIRT1 and LSD1 

interaction with KU70 in order to regulate its acetylation and methylation state. Additional neutralizing and 

charge-reversing mutations of lysine residues on the SAP domain (Figure B.3), suggested by our 

electrostatic calculation to minimize the positively charged side of the SAP domain (K575, K595, and 

K596 to E or Q), reduced SIRT1 interaction but increased LSD1 interaction with KU70, while mutating the 

negatively charged side (E561, E583, D609 to K) increased SIRT1 interaction with KU70. This further 

demonstrates the role of the SAP domain in regulating interaction of LSD1 and SIRT1 with KU70. These 

mutations simulate the above SAP-truncation experiments by increasing LSD1 interaction. 
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Our results, along with those of our collaborators, shed novel insight into the role of methylation 

and acetylation in mediating KU70’s interactions with LSD1 and SIRT1, which act as a feedback loop, 

regulating the methylation and acetylation levels in KU70. The acetylation and methylation pattern are 

hypothesized to act as a bar code determining KU70’s functional domains’ dynamics. This suggests that 

lysine methylation and acetylation may have a broader role in modulating DNA repair machineries for 

genome maintenance and cancer drug resistance.  
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APPENDIX A: SUPPORTING MATERIAL FOR CHAPTER 2 

A.1 Discussion of Previous Mutagenesis Data 

Experimental mutagenesis data obtained by Ott et al. present the differential effect of Q2035.42 

mutation to alanine, where the mutation impaired activation by 20 and 40 fold in response to CCL19 and 

CCL21 respectively. Even though Q2035.42 is not involved in the characterized molecular switches, the 

mutagenesis data complies with our findings where Q2035.42 is part of the residues carrying the global 

helical motion between TM4 and TM5 critical to the propagation of helical motions in the receptor (1). 

Additionally, tri-tyrosine residue Y1123.32 mutation has shown a slight difference in activation measured by 

GTP-γS binding assays, in response to CCL19 and CCL21 (Figure 6 in (1)). This difference deemed 

insignificant by Ott et al. challenges the importance of Y1123.32 supported by our findings (1). However, the 

fact that Y1123.32 is involved in non-specific hydrogen bonding with Q2526.48 and Y2556.51 to stabilize both 

inactive and active conformations of the tri-tyrosine switch is compatible with the experimental observation 

that hydrogen bonding and the π-π interaction-abolishing mutation (Y1123.32 to alanine) had nullifying 

effects on the activation rate of CCR7. Another mutation carried by Ott et al. shows that N2817.32 mutation 

to alanine decrease the ability of CCL19 and CCL21 to activate CCR7 (1). Changes due to N2817.32 

mutation are minor (3.8 and 5.5 fold for CCL19 and CCL21 respectively) because neighboring hydrogen-

bonding residues in the ligand compensates for the loss of hydrogen bonds carried by N2817.32 in our 

simulations. The depicted mechanism and molecular switches provide a rationale behind previously 

published mutagenesis data and insight for future mutation that take advantage of the biased nature of 

CCL19 and CCL21. 
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A.2 Supplementary Figures 

 

Figure A.1 Root mean square deviation (rmsd) of CCR7-NTD (A-D) and CCR7-CTD (E-H) calculated in 
both CCL19-bound (purple) and CCL21-bound (green) cMD (left column) and aMD (right column) 
simulations. Rmsds are calculated using Bio3D based on atomic coordinates. 
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Figure A.2 Contact maps between CCR7-NTD and each of its ligands are in close agreement with 
published NMR data. Shown are the maps of color-coded percent occupancies of inter-residue contacts 
between CCR7-NTD and each of its ligands CCL19 (A: cMD simulation, B: aMD simulation) and CCL21 
(C: cMD simulation, D: aMD simulation). Ligand and CCR7-NTD residues are indicated on the x- and y-
axis, respectively. Published NMR chemical shift perturbations for each of the ligand’s interaction with 
CCR7-NTD are reported as a bar plot above each contact map versus the ligand’s residue numbering on the 
x-axis (2, 3). Residues with significant changes in chemical shifts are colored in magenta for CCL19 (A, B) 
and green and blue for CCL21 (C, D). Green indicates significant chemical shift perturbations (above 1.0 
ppm), while blue indicates perturbations whose signal broadened beyond detection. 
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Figure A.3 CCL19 and CCL21 adopt different conformations in CCR7’s binding pocket. Polar and non-
polar interactions involved between CCL21 (green, panel A) and CCL19 (purple, panel B) N-terminal 
domains (ligand-NTD heptapeptides) and CCR7. CCL21 and CCL19 are shown in green and purple tubular 
rendering, respectively, and CCR7 is shown in ribbon rendering. Ligand-NTD residues are labeled with a 
one-letter amino acid code and sequence number, and are colored in green for CCL21 and purple for 
CCL19. Residues in contact with the ligand-NTDs are labeled, and are colored according to the TM and 
extracellular loop domain they belong to, with the same color code in both panels (A, B). Electrostatic 
patches in CCR7 (panel C) guide the ligand-NTD interactions within the binding pocket of the receptor. 
CCL19 interacts with TM7, TM1, TM2, TM3, and ECL2; while CCL21 interacts with all seven TM 
helices. Residues depicted are within 5 Å of the ligand-NTD with at least 50% occupancy in the 
equilibrated segment of the cMD simulations (the equilibrated segments are from 3 to 7 μs, and from 4.6 to 
7 μs for CCL21 and CCL19, respectively, according to ligand rmsd time series in Figure A.5). Residues are 
marked with asterisks because they form important contact, despite the fact that their occupancies are 
below 50%. *K1133.33, *E1694.60, and *Q2005.39 have 45%, 46%, and 27% occupancies respectively and 
form important interaction in stabilizing CCL21’s pose. **Y411.39 has 18% occupancy within the 
equilibrated segment and is part of the CCL19-induced allosteric events (Figure 2.3). (C) CCR7’s binding 
pocket contains two separate electrostatic interaction patches. The molecular graphic illustrates all charged 
residues within CCR7’s binding pocket as stick models. One patch is formed between TM3 and TM4 
(CCL21 contacts), and another is formed between TM1, TM2, and TM7 (CCL19 contacts). 
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Figure A.4 Molecular switches in the CCR7 transmembrane domain adopt ligand-specific conformations 
within aMD simulations. All four panels, A, B, C, and D, show the same measures as in panels B, C, D, 
and E of Figure 2.1, respectively. These measures are calculated using the CCL19-bound (purple) and 
CCL21-bound (green) aMD simulations. 

 
Figure A.5 Root mean square deviation (rmsd) calculated in both CCL19-bound (purple) and CCL21-
bound (green) cMD simulations to assess the ligand-NTD stability and the receptor fluctuations. (A) Rmsd 
is calculated using intermolecular side-chain interactions between ligand-NTD and receptor within 5 Å. (B) 
Rmsd is calculated using intramolecular Cα-Cα interactions of the helical domain of CCR7 within 15 Å. 
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Figure A.6 CCL21 prompts a hydrogen bond network within TM6 and TM7 in cMD simulation. The 
molecular graphics is a representative structure of the dominant conformation showing a hydrogen bond 
between Q2626.58 and N2817.32 (4-7 μs). The hydrogen-bonding network comprises of Q2626.58, N2666.62, 
N2817.32, and Q6CCL21. Bar plots display the hydrogen bond distance time series between N2817.32 side-chain 
and Q6CCL21 backbone and between N2666.62 and Q6CCL21 side-chains. The atoms used to calculate the 
hydrogen bond distance are marked in the panel. 
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Figure A.7 π-stacking interactions in the tri-tyrosine switch. Molecular graphics represents a structure of 
the dominant conformation showing π-stacking interactions in the tri-tyrosine switch for CCL21-bound (A) 
and CCL19-bound (B) in cMD simulations. Y1123.32, Y2556.51, Y2887.39 are shown as stick models and are 
labeled accordingly. θ is the angle formed by the Cζ atoms of the three tyrosines. Distributions of the θ 
angle are plotted for the states indicated in the legend. 
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Figure A.8 Molecular switches characterized in CCL21-bound cMD simulation remain stable in the 
CCL19-bound cMD simulation. All four panels show the same measures as in panels B, C, D, and E of 
Figure 2.2. These measures are calculated using the CCL19-bound cMD simulation. 
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Figure A.9 During the aMD simulation, CCL21 induces global motions in CCR7 that show a decrease (A) 
and increase (B) in helical distances synchronized with the formation of hydrogen bond between Y1123.32 
and Y2556.51. Side, top and bottom views of the receptor display the TM helices involved in the illustrated 
sets. Cross-correlation coefficient cutoff of 0.95 was used to cluster correlated Cα distance time series; and 
correlated time series that show a decrease (A) and increase (B) in helical distances that is coupled the 
formation of hydrogen bond between Y1123.32 and Y2556.51 were further grouped together. A representative 
distance time series from each of the sets is plotted with color code matching that in molecular graphics. 
The bar plot displays the hydrogen bond distance time series between Y1123.32 and Y2556.51 side-chains. 
The atoms used to calculate the hydrogen bond distance are marked in the panel. 
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Figure A.10 During the cMD simulation, CCL19 binding promotes global helical motions in CCR7’s EXC 
TM domains. Molecular graphics represents global helical motions in CCR7 as described in Figure 2.4. A 
representative distance time series from the set of correlated Cα-Cα distances is plotted with color-coding 
matching that in molecular graphics.  
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Figure A.11 CCL19 and CCL21 binding results in different arrangements in a polar interaction between 
TM6 and TM7 in cMD simulations. (A) Molecular graphics of CCR7 depicts polar residues involved in the 
characterized switches as stick models and labeled accordingly. (B) Side-chain distance between Q2526.48 
and R2947.45 time series in CCL21 (green) and CCL19 (purple). The time series is broken down following 
the states in Figure 2.4 for CCL19 and Figure 2.2 for CCL21, and is labeled accordingly. Distributions of 
the distances are plotted for the following states in CCL21: solid line (initial state), dashed line 
(intermediate states I and II), and a dash-dot line (final state); and in CCL19: solid line (state I), dashed line 
(state II). 
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Figure A.12 Multiple sequence alignment of residues in CC chemokine receptor family and CXCR4 
displays conserved motifs within the characterized switches. Percent identities of each chemokine receptor 
to CCR7 are reported between parentheses. The transmembrane helical domains are colored in blue in 
CCR7’s sequence and CCR7’s residue numbers are displayed above the alignment. Sequence logos are 
generated using the WebLogo3 (http://weblogo.berkeley.edu/logo.cgi). Residues involved in the 
characterized switches are highlighted in different colors: red (W902.60 and tri-tyrosine switch: Y1123.32, 
Y2556.51, and Y2887.39), orange (Q2526.48 and R2947.45), purple (P2546.50), and green (L1654.56, G2075.45 and 
tri-phenylalanine switch: F1163.36, F2085.47, and F2486.44). 
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APEENDIX B: SUPPORTING DATA FOR CHAPTER 5 
 

B.1 Supplementary Figures 
 
 

 
Figure B.1 Backbone representation of KU70 MD trajectories. Snapshots, corresponding to 1-ns intervals, 
from the MD of nonmethylated (left column) and methylated (right column) KU70-KU80 complex. 
Snapshots are superimposed on the initially modeled structure using Cα-atoms of the core of KU70-KU80 
complex (excluding the NRC and the linker-SAP domains). The methylation (blue) and clamp residues 
(E537 {red}, R250/R260 {green}) are shown as stick models and are labeled accordingly. The panels 
represent the different triplicate runs. 
 



 
 
 

 
 

110 

 
Figure B.2 Hydrogen bond (left column) and charge-charge (Coulombic) (right column) interaction 
occupancy changes in the vicinity of K74 between methylated and nonmethylated states of the complex in 
the MD simulations in its acetylated state. Occupancies are calculated as indicated in Figure 5.3B, and 
5.3C. 

 
 
Figure B.3 Electrostatic potential of linker-SAP domain of KU70 illustrating the SAP domain positively-
charged side (A) and negatively-charged side (B). Molecular isopotential contours are colored based on 
electrostatic potential values, -1 kBT/e in red and +1 kBT/e in blue. Electrostatic potentials are shown for 
the parent and alanine mutated linker-SAP domain as annotated on the figure.  
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APPENDIX C: ALGX BINDS ALGINATE THROUGH FINE-TUNED INTRA- 
AND INTER-MOLECULAR INTERACTIONS IN THE C-TERMINAL 

CARBOHYDRATE-BINDING MODULE 
 

C.1 Introduction 

Pseudomonas aeruginosa is the primary infection in patients with cystic fibrosis (CF) (1–3). 

Reprogramming of cell circuitry due to a mutation in the mucA gene converts P. aeruginosa into a fatal 

hyper alginate-producing strain (4). Such mutations have strong tendencies to occur in CF lungs, producing 

a thick mucus in the lungs, which, consequently, causes respiratory failure (5–7). Alginate is an 

exopolysaccharide consisting of acetylated mannuronic and guluronic acid with acetylation only occurring 

at the mannuronic acid residues (8). AlgX is a critical protein in alginate acetylation, although it’s catalytic 

activity is not required for alginate biosynthesis (9, 10). Uronic acid polymers produced by an algX-deleted 

mutant, are primarily dimers and trimers (11), that are degraded in periplasm by AlgL, an alginate lyase 

(12). The crystal structure of AlgX revealed a protein that contains an N-terminal SGNH hydrolase-like 

domain and a C-terminal carbohydrate-binding module (CBM) (10), where, the mechanism and role of 

AlgX CBM binding to alginate have yet to be fully described. 

In this study, we computationally assess the contribution of specific amino acid residues in 

alginate-binding by AlgX. Utilizing in silico docking and intra-molecular bond calculation studies, we 

identified the region and highlighted the inter- and intra-molecular interaction network in the CBM of AlgX 

responsible for alginate binding. Using alanine mutations, our collaborators in professor Neal Schiller’s lab 

examined the in vitro and in vivo importance of our computationally-predicted amino acid residues in AlgX 

for alginate binding, biosynthesis, and alginate acetylation. 

 

C.2 Materials and Methods 

Structure modeling. The three-dimensional coordinates of the crystallographic structure of AlgX 

were obtained from the Protein Data Bank (PDB) using the PDB code 4KNC (10). AlgX was crystallized 

as a dimer with both molecules missing some residues due to the quality of electron density in the region. 

The missing residues from the protein are Glu-447 and Asp-250:Ser-251. We obtained the full protein 
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sequence from UniProt (13) and aligned it to the sequence with missing residues obtained from the PDB, 

excluding the N-terminal and C-terminal loops that are not relevant for our study, using ClustalW2 (14). 

The alignment was used to generate a structure of AlgX with the missing residues using Modeller (15). 

Modeller has been shown to be very effective for short loops (16). The two missing segments, consisting of 

one and two amino acids, are located in solvent-exposed flexible loops, for which dynamic interconversion 

of multiple local conformations is expected; the conformations of the modeled three amino acids are 

representative within a locally optimized microenvironment. Overall, Modeller produced a structure with 

optimized side chain conformations, compared to the crystal structure. 

Crystal structures of UA polysaccharides, MMM, ΔMMM, and ΔMMGM, were extracted from 

PDB structures 2PYH, 1HV6, and 1Y3P, respectively (17–19). These structures were used as starting 

structures to generate different polysaccharide combinations of mannuronic (M) and guluronic (G) acid in 

the presence or absence of reducing ends (Δ). Polysaccharide combinations were generated using Chimera. 

Autodock Vina v1.1 (20) was used to dock our constructed alginate polymers into the carbohydrate-binding 

module of AlgX. We prepared the ligands to dock using AutoDockTools (21) by adding polar hydrogens to 

both the ligand and receptor, setting all single bonds of the ligand as rotatable, and saving both files as 

pdbqt files. The search space was reduced to the C-terminal carbohydrate-binding module of AlgX within a 

grid box of 27.5 x 41.75 x 34.3 Å.  

After preparing the ligands and receptor and defining the binding site grid box, we used Autodock 

Vina to generate 20 models for each ligand at an exhaustiveness of 100 with a series of optimization tests 

provided by the Autodock Vina protocol. Models docked within the pinch point (10), see below, of the 

CBM were selected for further analysis. Resulting receptor-ligand bound complexes were analyzed using 

computational scripts to determine the percent occupancies of AlgX residues involved in alginate binding. 

The scripts were written in R (22) using the Bio3D v2.0 package and UCSF Chimera v1.8.1 (23). The 

occupancies represent the percentage of complexes that harbor a specific interaction between a residue in 

AlgX and a saccharide subunit in the docked ligand, from the complexes generated with Autodock Vina 

v1.1 with ligands bound at the pinch point. The complexes were examined to determine the presence of 
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hydrogen bonds and salt bridges. Hydrogen bonds were extracted using the Chimera software and salt 

bridges were calculated using a cutoff value of 5 Å between the charged functional groups (23). Intra-

molecular interactions were also calculated using a cutoff value of 8 Å to generate a network of ionic 

interactions illustrated in Figure C.2A. 

Molecular dynamic (MD) simulations. MD simulations of AlgX were performed using NAMD, 

version 2.9 (24). Initial protein structure files were prepared using the PSFGEN utility in VMD (25) and the 

CHARMM27 forcefield (26) with CMAP terms (27). The protein complex was embedded into a water box 

using the VMD utility SOLVATE and the TIP3P model for the water molecules. The water box dimensions 

were 96 Å × 80 Å × 81 Å. The system was neutralized using sodium and chloride counterions at an ionic 

strength of 150 mM. NAMD (24) was used to minimize the system using 1000 steps of conjugate gradient 

energy minimization, followed by an MD production run for 10 ns at 1 atm pressure and 310 K. All 

production run simulations were performed using periodic boundary conditions and particle-mesh Ewald 

electrostatics for long-range electrostatic interactions with a grid point density of 1/Å. Nonbonded van der 

Waals interactions and short-range electrostatic interactions were calculated with an interaction cutoff of 12 

Å and switching distance of 10 Å. The SHAKE algorithm was employed to fix the length of all hydrogen-

containing bonds, enabling the use of 2 fs integration time steps. Coordinates were sampled every 2 ps. 

 

C.3 Results 

In silico docking of alginate polymers to the carbohydrate-binding module. The crystal 

structure revealed that AlgX is a two-domain protein containing an N-terminal SGNH hydrolase-like 

domain and a C-terminal carbohydrate-binding module (CBM) (10). In the study conducted by Riley et al. 

AlgX CBM domain (10) was superimposed with CBM29-2 (PDB code 1GWK) in complex with a 

mannohexose ligand, indicating a set of four conserved amino acid residues (R364, T398, W400, and 

R406) dubbed the substrate recognition pinch point (SRPP). Given the differences in the architectural 

makeup of the alginate polymer compared to the mannohexose ligand, mainly by the presence of guluronic 

acid residues and acetylation in alginate, we sought to refine the conformational binding motif of AlgX and 
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to provide additional insight into direct and indirect contributions from other amino acid residues. We 

docked a variety of alginate polymers using in silico modeling (Figure C.1A) to the CBM and calculated 

the interaction occupancies to provide the statistical significance of the interactions between specific AlgX 

amino acid residues and the alginate polymers (Figure C.1B). K396, R406, and K410 have calculated inter-

molecular hydrogen-bonding percent occupancies of 77%, 61%, and 73%, respectively. R364, W400, T398 

have a relatively low hydrogen-bonding occupancies of 16%, 9% and 25%, respectively. Salt bridge 

calculations demonstrated that R364, R406 and K410 have occupancies of 49%, 55% and 54% 

respectively, while K396 has the highest salt bridge occupancy of 71%. Our in silico data suggested that in 

addition to the previously proposed R364 and R406 of the putative SRPP, K396 and K410 are shown to be 

Figure C.1 In silico docking of alginate ligands to AlgX carbohydrate binding module (CBM). (A) 
Variations of uronic acid polysaccharides composed of mannuronic (M) and guluronic (G) acids 
generated for the docking studies, some contain reduced ends (∆). (B) Inter-molecular interaction 
occupancies of docked alginate ligands to AlgX CBM domain. NA (not applicable). (C) Molecular 
model of the CBM (in ribbon representation) with the amino acids examined for contributions to 
polysaccharide binding in complex with a representative uronic acid (UA) polysaccharide 
(MGMMGM). 
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significant contributors of inter-molecular interactions with the docked alginate polymers. Given our 

docking observations, we hypothesized that K396 and K410 also directly interact with the alginate polymer 

important for directing the polymer along the face of the CBM towards the hydrolase domain as previously 

mentioned by Riley et al. (10). 

Conversely, T398 and W400 are not capable of forming salt bridges as they lack the anionic 

carboxylate or cationic amino functional groups. Thus, we have also calculated the aliphatic contribution of 

W400 and T398 to be 38% and 0% (28). Although T398 demonstrates some hydrogen-bonding and 

aliphatic contributions, and those of W400 may be negligible (Figure C.2B), T398 and W400 also 

contribute in inter- and intra-molecular interactions, the latter being important for the stability of the 

carbohydrate binding site. Intra-molecular analysis of the CBM revealed a polar environment with an 

elaborate network of salt bridges and hydrogen bonds, shown in Figure C.2A and Figure C.2B. The 

Figure C.2 Intra-molecular interaction network of the CBM. (A) Intra-molecular interaction network of 
charged residues in the CBM (in ribbon representation as a watermark). Red and blue boxes denote 
negatively and positively charged residues respectively. The black and dark blue lines are interactions 
between charged group heavy atoms of the residue side chains within 8 Å. The solid lines are 
interactions within 5.5 Å and the dashed lines are interactions between 5.5 Å and 8 Å. The thicker lines 
denote communities of charged interactions. The purple boxes denote non-charged residues. (B) 
Molecular model of the CBM (in ribbon representation) with the amino acids forming the polar cage 
around W400 shown in stick representation and labeled with residue letter code and number. The amino 
acid side chains shown are within 5 Å from W400. 
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analysis of the network suggests two communities of strong Coulombic interactions (within 5.5Å) in the 

alginate-binding site. T398 is situated within the two Coulombic communities, stabilizing the environment. 

Analysis of a 10-ns explicit-solvent molecular dynamics trajectory of the modeled AlgX structure revealed 

that T398 has the capacity to form polar/hydrogen bonds and non-polar intra-molecular contacts within 4 Å 

in the CBM, through its hydroxyl and methyl groups, respectively. Specifically, the hydroxyl and methyl 

groups of T398 are within 4 Å from polar or aliphatic groups, respectively, of the R364, W400, R406, E442 

side chains (with more than 65% occupancies), stabilizing the CBM. Unlike T398, W400 is a bulky and 

hydrophobic tryptophan residue. Along with its inter-molecular contribution in aliphatic interactions to 

alginate binding, W400 is situated in a destabilizing polar cage environment formed by S440, E442, T398, 

R406, and R405 (Figure C.2B). Such a stressed environment might be associated with the functional 

dissociation of alginate. 

 

C.4 Discussion 

AlgX is a required component for alginate biosynthesis and its absence resulted in the loss of the 

mucoid phenotype due to the production of small Uronic acid polymers degraded by AlgL (11, 12). Here 

we elucidate the mechanism and role of AlgX CBM binding to alginate. Our in silico studies demonstrate 

that R364, K396, R406, K410, T398, and W400 are essential for alginate binding. These residues are 

further examined by our collaborators through site-specific alanine mutational studies. 

Previously published work demonstrated the presence of a set of residues in the CBM of AlgX 

that could accommodate a single hexamannose polysaccharide (10). These residues form the (SRPP) and 

are composed of two basic (R364 and R406), an aromatic (W400), and a polar (T398) amino acid residues. 

Architecturally, the alginate polymer differs from the hexamannose polysaccharide, which is primarily a 

linear polymer. This is primarily due to the epimerization of mannuronic acid at C-5 position, by AlgG, 

into guluronic acid that causes a sharp bend in the alginate polymer (Figure C.1A) (29). To accommodate 

for this structural difference, we used various combinations of UA ligands composed of mannuronic and 

guluronic monomers as substrates for our docking studies. From our in silico modeling, we demonstrated 
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that many of the amino acid residues that were proposed by Riley et al. (10) in the SRPP have high 

occupancies of hydrogen bonds and salt bridges with the docked alginate polymers, with the exception of 

T398 and W400 that were found to have low hydrogen bond occupancies. 

Intra-molecular analysis of the CBM shows that W400 is situated in an unfavorable polar cage 

environment (Figure C.2B). We consider the presence of the bulky and hydrophobic tryptophan residue to 

be critical for providing steric hindrance in alginate binding. Although this steric hindrance contributes to 

reduction of binding affinity experimentally (28), it may be necessary to maintain a fine balance between 

association and dissociation in order to promote the alginate-shuttling mechanism of AlgX. Therefore, upon 

W400 mutation, this hindrance is eliminated and binding affinity is increased. In addition to W400, E444 

and E447 show aliphatic interaction occupancies of 62% and 55%. These negatively charged residues form 

unfavorable interactions with the negatively charged carbohydrates, thus contributing to the driving force to 

pull alginate across the periplasm. 

Experimental mutation of T398A resulted in a significant reduction in alginate binding (28). 

Given that T398 was shown to not interact with the alginate polymer, it is likely that T398 acts as a 

stabilizing factor between the two communities of strong Coulombic interactions (Figure C.2A) through 

polar and non-polar interactions, involving its side chain hydroxyl group and methyl group, respectively. 

The polar character of the hydroxyl group of T398 is a stabilizing factor for the surrounding strong 

Coulombic interactions, whereas the non-polar interactions from T398’s methyl group stabilize the 

aliphatic groups of nearby side chains (including those of Arg, Lys, and Glu residues). Therefore, T398 

may have an indirect role in binding by maintaining the integrity of the Coulombic network within the 

carbohydrate binding site. It is likely that mutation of T398 abolishes binding through a relay effect, 

because of the disruption of the Coulombic network, owed to the loss of the branched polar-methyl side 

chain moiety. Hence, T398 and W400 may play a concerted balancing role, with T398 stabilizing the local 

environment, and effectively stabilizing the Coulombic network that is important for binding, whereas 

W400 disfavors binding. Hence, disruption of these fine-tuned intra- and inter-molecular interactions, 

which are important for the alginate-shuttling mechanism, consequently affects alginate production.  
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In this work, we have demonstrated that AlgX binds alginate through a fine-tuned intra- and inter- 

molecular interactions network. In addition to the previously proposed R364 and R406 of the putative 

SRPP, we highlight the significance of K396 and K410 in contributing to the inter-molecular interactions 

with the docked alginate polymers. Furthermore, although T398 and W400 were found to form minimal 

inter-molecular interaction with alginate, they stabilize several intra-molecular interactions in the CBM and 

provide a balancing role responsible for the alginate-shuttling mechanism in alginate production. 

  



 
 
 

 
 

119 

C.5 References 

1.  Cheng, S.H., R.J. Gregory, J. Marshall, S. Paul, D.W. Souza, G.A. White, C.R. O’Riordan, and A.E. 
Smith. 1990. Defective intracellular transport and processing of CFTR is the molecular basis of most 
cystic fibrosis. Cell. 63: 827–834. 

2.  Gibson, R.L., J.L. Burns, and B.W. Ramsey. 2003. Pathophysiology and Management of Pulmonary 
Infections in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 168: 918–951. 

3.  Pier, G.B. 1985. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: 
current status of the host-bacterium interaction. J. Infect. Dis. 151: 575–580. 

4.  DeVries, C.A., and D.E. Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producing 
Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative 
alternate sigma factor, and shows evidence for autoregulation. J. Bacteriol. 176: 6677–6687. 

5.  Kerem, B., J.M. Rommens, J.A. Buchanan, D. Markiewicz, T.K. Cox, A. Chakravarti, M. Buchwald, 
and L.C. Tsui. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science. 245: 1073–
1080. 

6.  Riordan, J.R., J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, 
N. Plavsic, J.L. Chou, and E. Al. 1989. Identification of the cystic fibrosis gene: cloning and 
characterization of complementary DNA. Science. 245: 1066–1073. 

7.  Rommens, J.M., M.C. Iannuzzi, B.S. Kerem, M.L. Drumm, G. Melmer, M. Dean, R. Rozmahel, J.L. 
Cole, D. Kennedy, N. Hidaka, M. Zsiga, M. Buchwald, J.R. Riordan, L.C. Tsui, and F.S. Collins. 
1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 245. 

8.  Rehm, B.H.A., and S. Valla. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. 
Biotechnol. 48: 281–288. 

9.  Baker, P., T. Ricer, P.J. Moynihan, E.N. Kitova, M.T.C. Walvoort, D.J. Little, J.C. Whitney, K. 
Dawson, J.T. Weadge, H. Robinson, D.E. Ohman, J.D.C. Codée, J.S. Klassen, A.J. Clarke, and P.L. 
Howell. 2014. P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology 
but Separate and Distinct Roles in Alginate Acetylation. PLOS Pathog. 10: e1004334. 

10.  Riley, L.M., J.T. Weadge, P. Baker, H. Robinson, J.D.C. Codée, P.A. Tipton, D.E. Ohman, and P.L. 
Howell. 2013. Structural and Functional Characterization of Pseudomonas aeruginosa AlgX ROLE 
OF AlgX IN ALGINATE ACETYLATION. J. Biol. Chem. 288: 22299–22314. 

11.  Robles-Price, A., T.Y. Wong, H. Sletta, S. Valla, and N.L. Schiller. 2004. AlgX Is a Periplasmic 
Protein Required for Alginate Biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 186: 7369–
7377. 

12.  Monday, S.R., and N.L. Schiller. 1996. Alginate synthesis in Pseudomonas aeruginosa: the role of 
AlgL (alginate lyase) and AlgX. J. Bacteriol. 178: 625–632. 

13.  Consortium, T.U. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43: D204–D212. 

14.  Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. 
Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. 
Clustal W and Clustal X version 2.0. Bioinformatics. 23: 2947–2948. 



 
 
 

 
 

120 

15.  Webb, B., and A. Sali. 2014. Comparative protein structure modeling using Modeller. Curr. Protoc. 
Bioinforma. : 5–6. 

16.  Jamroz, M., and A. Kolinski. 2010. Modeling of loops in proteins: a multi-method approach. BMC 
Struct. Biol. 10: 5. 

17.  Rozeboom, H.J., T.M. Bjerkan, K.H. Kalk, H. Ertesvåg, S. Holtan, F.L. Aachmann, S. Valla, and 
B.W. Dijkstra. 2008. Structural and Mutational Characterization of the Catalytic A-module of the 
Mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J. Biol. Chem. 283: 23819–23828. 

18.  Yoon, H.-J., W. Hashimoto, O. Miyake, K. Murata, and B. Mikami. 2001. Crystal structure of 
alginate lyase A1-III complexed with trisaccharide product at 2.0 Å resolution1. J. Mol. Biol. 307: 9–
16. 

19.  Momma, K., Y. Mishima, W. Hashimoto, B. Mikami, and K. Murata. 2005. Direct Evidence for 
Sphingomonas sp. A1 Periplasmic Proteins as Macromolecule-Binding Proteins Associated with the 
ABC Transporter: Molecular Insights into Alginate Transport in the Periplasm,. Biochemistry 
(Mosc.). 44: 5053–5064. 

20.  Trott, O., and A.J. Olson. 2010. AutoDock Vina: Improving the speed and accuracy of docking with 
a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455–461. 

21.  Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson. 
2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. 
Comput. Chem. 30: 2785–2791. 

22.  Grant, B.J., A.P.C. Rodrigues, K.M. ElSawy, J.A. McCammon, and L.S.D. Caves. 2006. Bio3d: an R 
package for the comparative analysis of protein structures. Bioinformatics. 22: 2695–2696. 

23.  Pettersen, E.F., T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. 
Ferrin. 2004. UCSF Chimera-A visualization system for exploratory research and analysis. J. 
Comput. Chem. 25: 1605–1612. 

24.  Phillips, J.C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. 
Kalé, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26: 
1781–1802. 

25.  Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 
14: 33–38. 

26.  MacKerell, A.D., D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. 
Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. 
Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. 
Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. All-Atom 
Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins †. J. Phys. Chem. B. 
102: 3586–3616. 

27.  Mackerell, A.D., M. Feig, and C.L. Brooks. 2004. Extending the treatment of backbone energetics in 
protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein 
conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25: 1400–1415. 



 
 
 

 
 

121 

28.  Do, D.C. 2014. The Role of Bacterial Biofilms in Chronic Infections. UC Riverside: Biomedical 
Sciences. Retrieved from: http://escholarship.org/uc/item/30k1t548. 

29.  Jain, S., M.J. Franklin, H. Ertesvåg, S. Valla, and D.E. Ohman. 2003. The dual roles of AlgG in C-5-
epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol. Microbiol. 47: 
1123–1133. 

 

  



 
 
 

 
 

122 

APPENDIX D: ROLES OF APPBP1 AND UBA3 IN NEDD8 ACTIVATION 

 

D.1 Introduction 

Ubiquitin and Ubiquitin-like proteins (Ubls) are small regulatory proteins that are conjugated to 

various target proteins through a conserved but distinct enzymatic cascade (1). In general, this process 

requires three types of enzymes: activating enzymes E1s, conjugation enzymes E2s, and ligases E3s (2). In 

this study, we focus on a specific Ubl, NEDD8, which is part of the NEDDylation enzymatic cascade and 

whose activating enzyme E1 is the heterodimer protein APPBP1-UBA3 (3). We aim to characterize the 

molecular interactions between the subunits of E1 heterodimer and its function for NEDD8 activation. 

Ultimately, the goal of this study is to use computation to guide experimental mutagenesis studies in order 

to assess the molecular mechanism behind NEDD8 activation. We isolated three charged residues (E43A, 

D331A, and K506A) that are deemed important in the interaction between APPBP1 and UBA3 that our 

collaborators, professor Jiayu Liao’s lab, validated experimentally. Aided with our analysis using the 

AESOP (Analysis of Electrostatic Similarities Of Proteins) computational framework, our collaborators 

were able to systematically dissected the kinetics, reaction intermediates, and non-covalent molecular 

interactions during NEDD8 activation. The residues produced were pivotal in assessing the role of APPBP1 

as a scaffolding protein. 

 

D.2 Materials and Methods 

Computational alanine scan and electrostatic analysis. Calculations were performed using the 

computational framework AESOP (see Chapter 5 for method details) to delineate the role of charged amino 

acids in binding (4–8). This approach is useful for understanding the mechanism of protein-protein 

interactions, by performing computational alanine scans as a means of perturbation to quantitatively assess 

the impact of each mutation on the stability of the protein complex. The approach provides insight on the 

role of electrostatics in the formation of complexes between highly charged proteins, or proteins with 

localized charged patches. As the net charge of APPBP1, UBA3, and NEDD8 is -18, -9, and 0, 
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respectively, we sought to elucidate the effects of charged amino acids on the stability of the APPBP1-

UBA3-NEDD8 complex and pairwise complexes APPBP1-UBA3, UBA3-NEDD8, and APPBP1-NEDD8, 

in order to understand the mechanism of the specific protein-protein interactions. 

The coordinates of the APPBP1-UBA3-NEDD8 complex were obtained from the Protein Data 

Bank (PDB code: 1R4N) (9). The program PDB2PQR (10) was used to add atomic radii and partial charges 

to the atomic coordinate file using the PARSE force field (11) for electrostatic potential calculations with 
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Figure D.1 (A) Thermodynamic cycle for calculation of electrostatic free energy of association and 
solvation. The top process models the reference state (dielectric coefficient of 20 for both proteins in 
interior and exterior and no counter ions), and the bottom process models the solvated state with 
dielectric coefficient of 20 for protein interior, 78.54 for protein exterior, and 150 mM concentration of 
counter ions. The three vertical processes show solvation of each free protein and complex. The iso-
potential contours for A, B, and AB are shown as iso-potential contours in panels (B) and (C). (B) The 
iso-potential contours for APPBP1, UBA3, and APPBP1-UBA3 illustrated are the spatial distribution of 
electrostatic potential. Blue and red surfaces represent iso-values of ±1kBT/e, respectively, where kB is 
the Boltzmann constant, T is temperature, and e is the unit charge of an electron. (C) The iso-potential 
contours for NEDD8, UBA3, and NEDD8-UBA3.  
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the Adaptive Poisson-Boltzmann Solver (APBS) (12), or the stand-alone program COULOMB supplied by 

APBS. 

The molecular (dielectric boundary) and ion accessibility surfaces were determined using 

spherical probes and radii set to 1.4 and 2.0 Å, respectively. The APBS calculations were performed on a 

grid consisting of 225 ´ 225 ´ 225 grid points with grid dimensions of 204 Å × 202 Å × 154 Å. For the 

clustering analysis and the calculation of electrostatic potentials in solution (bottom horizontal process in 

the thermodynamic cycle of Figure D.1) the dielectric coefficients for the solvent and protein were set to 

78.54 and 20, respectively (5), and ionic strength was set to 150 mM. For the calculation of electrostatic 

potentials in the reference state (top horizontal process in the thermodynamic cycle of Figure D.1) the 

dielectric coefficient was set to 20 for both solvent and protein (5), and the ionic strength was set to 0 mM.  

 

D.3 Results 

The APPBP1-UBA3 heterodimer functions as E1 and catalyzes an adenylation reaction to produce 

an adenylated NEDD8 intermediate with ATP at its C-terminal glycine. In the E1-NEDD8-ATP crystal 

structure, both APPBP1 and UBA3 interact with NEDD8 (9). 

The interaction of APPBP1 with UBA3 is not required for NEDD8 activation, but 

contributes to its rapid activation. As part of the study, our collaborators demonstrated that APPBP1 

itself and the interaction of APPBP1 with NEDD8/ATP are not requited for NEDD8 rapid activation (13). 

However, APPB1 interaction with UBA3 may still play a role in the activation of NEDD8.  Therefore, we 

examine the significance of the E1 heterodimer (interaction between APPBP1 and UBA3) interaction for 

NEDD8 activation.  

To assess, whether this interaction was important, we performed a computational mutagenesis 

study to identify key amino acids for the formation of the APPBP1-UBA3 complex. Given that APPBP1 

and UBA3 are highly charged, we focused on the effects of electrostatic potentials in association. We 

performed a systematic computational alanine scan analysis, in which we replaced every ionizable amino 

acid, one at a time, by alanine, followed by calculation and clustering of electrostatic potentials, as well as 
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the calculation of electrostatic free energies of association, using the AESOP computational framework. 

Figure D.2 shows the results of the AESOP analysis, which allowed us to select APPBP1 mutants that were 

predicted to perturb the APPBP1-UBA3 interface, and to assess the effect of the APPBP1-UBA3 complex 
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Figure D.2 Non-covalent interactions between APPBP1 and UBA3 are critical for NEDD8 activation 
and conjugation. Alanine scan electrostatic clustering and free energies of association of APPBP1 and 
NEDD8. Clustering dendrogram of the alanine scan mutants of APPBP1 using the average weighted 
difference ESD and the average linkage method. Free energies of mutants are ordered according to 
average weighted difference clustering (4-8). 
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on the activation of NEDD8. We selected mutations E43A, D331A, and K506A from three distinct 

dendrogram clusters with the most significant effects on loss of binding (Figure D.2), to construct single, 

double, and triple mutation combinations for experimental testing. Consistent with the computational 

analysis, all four APPBP1 mutants exhibited decreased interactions with UBA3, as illustrated by the 

quantitative FRET assay conducted by our collaborators (13). As expected by our AESOP analysis, 

APPBP1 triple mutant (D331A/E43A/K506A) showed the biggest reduction in affinity for UBA3. 

 

D.4 Discussion  

Our study provides a systematic and detailed investigation of the contribution of charged residues 

to complex formation between APPBP1 and UBA3.  We isolate three charged residues that are deemed 

important in the interaction between APPBP1 and UBA3. These predictions were verified experimentally 

by our collaborators and showed reduced binding between APPBP1 and UBA3 upon alanine mutation. 

Additional enzymatic reaction kinetics studies were performed to evaluate the role of these residues and 

heterodimer formation on NEDD8 activation (13). Four mutant sets of APPBP1, D331A, E43A/D331A, 

D331A/K506A, and E43A/D331A/K506A, were generated by our collaborators and examined for NEDD8 

activation. The single mutant, D331A, slowed the initial NEDD8 activation, but it was not able to 

completely abolish NEDD8 activation and conjugation. The double mutants, D331A/K506A and 

E43A/D331A, resulted in reduced kinetics and/or partial activation of NEDD8. Interestingly, the triple 

mutant, D331A/E43A/K506A, almost fully constrained NEDD8 activation to a great extent as compared to 

the NEDD8 activation in the absence of APPBP1 but presence of UBA3. The stronger impact of the triple 

mutations rather than the deletion APPBP1, led us to speculate that the D331A/E43A/K506A mutant may 

serve as a dominant negative mutant. The three mutations are located at the interface of APPBP1 and 

UBA3, and may introduce local destabilization effects. We speculate that the D331A/E43A/K506A mutant 

may serve as a dominant negative mutant that can no longer interact with UBA3 and instead competes for 

NEDD8 binding with UBA3, thus limiting UBA3-NEDD8 interaction and catalytic reaction. This implies 

that APPBP1 functions mainly as a scaffold protein to enhance molecular interactions and facilitate the 
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catalytic reaction. Our studies provide mechanistic insights into the complex formation between APPBP1 

and UBA3 and the role of the heterodimer in NEED8 activation. 
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APPENDIX E: THE ROLE OF ZINC AND CALCIUM IONS 
IN MMP-14 AND TIMP-2 ASSOCIATION 

 

E.1 Introduction 

Matrix metalloproteinases (MMPs) are a family of Zinc dependent endopeptidases that play a key 

role in tissue remodeling (embryogenesis, growth, and wound healing) and migration of cells through the 

body. These enzymes are also involved in a number of diseases, such as arthritis, fibrosis, and tumor 

invasion (1). All MMPs illustrate the same catalytic domain sequence motif (HEXXHXXGXXHX) which 

contains the zinc ion coordination site. The catalytic zinc is coordinated by three histidine residues and a 

catalytic glutamate. Additionally, a second zinc and two calcium ions, found in MMPs, are catalytically 

inactive but structurally important (2). The catalytic site is regulated by a cysteine switch mechanism 

involved in MMP inhibition (3). The interaction of the thiol group and the N-terminal α-amino nitrogen 

with the catalytic zinc inactivates the MMP activity by stabilizing the positively charged catalytic site (4).  

The role of MMP14 in tumor angiogenesis makes it one of the most crucial MMPs in both, 

Figure E.1 Activation mechanism of Pro-MMP2.  
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development and invasion of tumors (5, 6). It has been shown that MMP14 contributes to the invasion of 

human gliomas and angiogenesis by regulating the activation of MMP2 and B (7). TIMP-2, MMP14’s 

natural inhibitor, also plays an important role in antitumoral and antiangiogenic effects. It is involved in the 

regulation of matrix metalloproteinases and growth promoting activity. It was shown that overexpression of 

TIMP-2 was associated with a down-regulation of vascular endothelial growth factor (VEGF) expression 

and blood supply in the induced tumors (8). 

The MMP14-TIMP2 complex is known to be involved in pro-MMP2 (progelatinase A) activation, 

acting as a receptor (Figure E.1). TIMP2’s N-terminal domain binds to the catalytic domain of MMP14, 

which in turn exposes TIMP2’s C-terminal domain to bind to pro-MMP2. As pro-MMP2 is attached to the 

complex, the cleavage of the prodomain is potentiated by active MMP14 at adjacent sites (6, 9). 

Overexpression of TIMP2 will induce the formation of additional MMP14-TIMP2 complexes which will 

increase the rate of activation of MMP2 until the activation is inhibited when TIMP2 is bound to all free 

MMP14s. The TIMP2 intervention in pro-MMP2 activation suggests that TIMP2 contributes concentrating 

and colocalizing pro-MMP2 by the active MMP14 proteins (9).  

Discovery of MMP-14 inhibitors will play an important role for cancer treatment. A novel peptide 

(peptide G), capable to selectively inhibit the activity of MMP-14, has been reported (5). The development 

of MMP inhibitors, specifically antiproteolytic peptides, may have anticancer properties. Many inhibitors 

reaching phase I and II clinical trials have been unsuccessful because of their non-selective nature (5). 

Investigating the specificity of TIMP will enable the designing of selective inhibitors for therapeutic use 

(1). 

A crystal structure of the MMP14-TIMP2 complex has been determined (10). In this paper we 

investigate the physicochemical basis of MMP14-TIMP2 interaction. Given the high and oppositely net 

charge of MMP14 and TIMP2, we focus on the role of electrostatics in binding specifically we analyze the 

role of ions in stabilizing the complex.  
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E.2 Materials and Methods 

Calculations were performed using integrated Analysis of Electrostatic Similarities of Proteins 

(AESOP) framework to delineate the role of ions in binding (11). The coordinates of the complex were 

obtained from the Protein Data Bank (PDB code: 1BQQ). The calculations involved systematic removal of 

zinc and calcium ions, using 1, 2, 3, and 4 ions combinations.  The program PDB2PQR was used to add 

atomic radii and partial charges to the atomic coordinate file using the CHARMM forcefield (12). The 

different combinations of ions of the complex consisted on having different combinations of the ions in the 

complex. These involve 16 complexes illustrated in Table E.1.  

Complex Name Ions Number Ionsa 
1 Native 4 Zn289;Zn290;Ca288;Ca291 
2 Zn1Ca1Ca2 3 Zn289;Ca288;Ca291 
3 Zn1Zn2Ca2 3 Zn289;Zn290;Ca291 
4 Zn1Zn2Ca1 3 Zn289;Zn290;Ca288 
5 Zn2Ca1Ca2 3 Zn290;Ca288;Ca291 
6 Zn1Zn2 2 Zn289;Zn290 
7 Zn1Ca2 2 Zn289;Ca291 
8 Zn2Ca2 2 Zn290;Ca291 
9 Zn2Ca1 2 Zn290;Ca288 

10 Ca1Ca2 2 Ca288;Ca291 
11 Zn1Ca1 2 Zn289;Ca288 
12 Ca1 1 Ca288 
13 Ca2 1 Ca291 
14 Zn1 1 Zn289 
15 Zn2 1 Zn290 
16 MMP14 0 No ions 

The electrostatic potentials were calculated by numerically solving the linearized Poisson-

Boltzmann equation with the program Adaptive Poisson-Boltzmann Solver (APBS) (13). The molecular 

(dielectric boundary) and ion accessibility surfaces were determined using spherical probes and radii set to 

1.4 and 2.0 Å respectively. The APBS calculations were performed on a grid containing 129 x 129 x 129 

grid points with grid dimensions of 130 Å x 122 Å x 132 Å for both 0 and 150 mM ionic strength. The 

Table E.1 The 16 MMP14 complexes showing the different combinations of ions used. a The number 
corresponds to the ion number in the coordinate file. 
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dielectric coefficient for the solvent and protein interior for each complex were set to 2 and 78.54, 

respectively. Two electrostatic potential calculations were performed with different counter ion 

concentrations of 0 mM and 150 mM.  

Pairwise similarities were calculated ccording to the following electrostatic similarity distance 

(ESD) equation, 

!"# = %
&

'( ),+,, -'. ),+,,
/01 '( ),+,, ,'. ),+,,),+,,       (1) 

In Eq. (1), L; and L< refer to electrostatic potential at grid point (i, j, k) in proteins A and B, respectively, 

and N represents the total number of grid points at which electrostatic potential has been calculated. A 16 x 

16 pairwise comparison of the distance matrix was generated. An ESD value of 0 denotes identical 

electrostatic potentials. As the ESD value increases, the dissimilarity in electrostatic potential increases 

(11). 

The resulting complexes were clustered in a dendrogram depending on their ESD value. Free energies 

of association were calculated according to the thermodynamic cycle illustrated in figure E.2 (11). To 

Figure E.2 Thermodynamic cycle for calculation of electrostatic free energy of association and 
solvation. The isopotential contours illustrated are the spatial distribution of electrostatic potential. Blue 
and red surfaces represent isovalues of ±1.5,MNG , respectively, where OM is the Boltzmann constant, T is 
temperature, and e is the unit charge of an electron. The proteins A, B, and AB in the figure are 
MMP14, TIMP2, and MMP14-TIMP2 complex respectively. The top process models the reference state 
(dielectric coefficient of 20 for both proteins in interior and exterior and no counter ions) and the 
bottom process models the association step in a solvated state with dielectric coefficient of 20 for 
protein interior, 78.54 for protein exterior, and with or without counter ions. Three vertical processes 
show solvation of each free protein and the complex. 
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incorporate the effects of both the association and solvation, ∆∆3456789)5: is calculated according to the 

following equation. 

∆3456? − ∆3FGP = ∆3;<456789)5: − ∆3;456789)5: − ∆3<456789)5: = ∆∆3456789)5:   (2) 

In these equations, AB refers to the protein complex MMP14-TIMP2, A refers to free MMP14, and B 

refers to the free inhibitor TIMP2. 

 

E.3 Results and Discussion 

We performed an electrostatic exploration of the MMP14-TIMP2 complex. Our aim was to 

determine the contribution of the MMP14 ions in binding with TIMP2. The sequence HELGHALGLEHS 

surrounding Zn289 contains three histidine residues coordinating the catalytic zinc ion and one glutamate 

residue, all of which are critical for catalysis (2). As shown in Table E.2 and Figure E.3, the three histidine 

residue distances to the catalytic zinc (zinc289) range from 1.8 to 2.4 Å and the glutamate distance is 4.8 Å 

Figure E.3 Structure of MMP-14 TIMP-2 complex illustrating Zinc (blue) and Calcium ions (green). 
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away from the ion. The N-terminal α-amino nitrogen of the cysteine amino acid in TIMP2 also interacts 

with the catalytic ion at a distance of 2.9 Å (Table E.2). The structural zinc (Zn290) is tetracoordinated to 

three histidines and one aspartic acid in MMP14. Surrounding the structural zinc ion are three histidine 

amino acids at distances ranging from 1.8 to 2.6 Å and one aspartic acid at 2.9 Å. Two other calcium ions 

also contribute structurally to MMP14. The first calcium ion (Ca288) is coordinated by two aspartic acids 

4.5 and 5.7 Å away from the ion and a tyrosine 7.2 Å away. The second calcium ion (Ca291) is coordinated 

by two aspartic acids 3.4 and 4 Å away and two glutamic acids 3.7 and 8.9 Å away. 

Ions amino acid Distance (Å) 
Ca288 ASP212 4.5 

 ASP176 5.7 

 TYR203 7.2 
Ca291 ASP216 3.4 

 GLU219 3.7 

 ASP193 4.0 

 GLU195 8.9 
Zn289 HIS249 1.8 

 HIS243 2.2 

 HIS239 2.4 

 GLU240 4.8 

 CYS1001 N-term(TIMP2)a 2.9 
Zn290 HIS186 1.8 

 HIS201 2.2 

 HIS214 2.6 

 ASP188 2.9 

Using the PROPKA server, the apparent pKa values of the ionizable amino acids were calculated 

and compared to the apparent pKa of the ionizable residues in the complex without zinc and calcium ions 

(14-17). As illustrated in Table E.3, the apparent pKas of the amino acids coordinating the catalytic zinc ion 

were lower compared to pKa values in the complex without ions. This suggests the unfavorable coulombic 

interaction of the basic amino acids and the favorable coulombic interactions of the acidic amino acid with 

Table E.2 The different ion distances to ionizable amino acids in vicinity with a cutoff distance of 9 Å. 
The amino acid number corresponds to the amino acid number in the PDB file code 1BQQ. a Zn298 
interacts with TIMP2 CYS1001 N-terminus. 
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the zinc ion. Thus, the residues coordinating the catalytic zinc (Zn289) exits in stressed environment 

suggesting its catalytic capacity (18). Zn 289 is stabilized by the acidic amino acid GLU240. When the 

Zn289 is introduced to the molecule, the hisitidine pKas drop unusually low because of the unfavorable 

coulombic interactions with the catalytic zinc. The coordinating histidines have unusually low pKa values to 

assure neutrality at functional (physiological) pH (Table E.3). 

 

We performed an electrostatic clustering of the different MMP14 proteins and free energy 

calculations of the complexes. Figure E.4 shows that the MMP14 proteins with an equal number of ions are 

clustered together and have equal binding free energies when bound to TIMP2. The figure illustrates the 

change of binding free energy of the complexes as the number of ions in the complexes varies. The native 

complex, with all ions, has the highest ∆∆Gsolvation suggesting loss of binding compared to the other 

complexes with lower number of ions. As the number of ions decreases, the ∆∆Gsolvation decreases 

suggesting gain of binding. The gain and loss of binding can also be demonstrated by calculating the 

protein’s net charge, which agrees with the results illustrated by the free energy calculations. The MMP14 

native protein has a net charge of -7; as the number of ions in the protein decreases, the net charge 

decreases as well which results to a gain of binding to TIMP2 because of its positive net charge of +3. This 

shows that the presence of ions reduces the binding of MMP14 to TIMP2. As the number of ions in the 

MMP14 decreases, the free energy of binding decreases as well; illustrating a gain of binding. In fact, as 

the number of ions decreases the overall charge of MMP14 decreases making it more negatively charged 

which results in a gain of binding with the positively charged TIMP2. The ions create a less favorable 

environment for TIMP2 to bind. The significance of this finding is still unknown and will be the subject of 

future investigation. 

 pKa w/ ions pKa w/o Zn289 Model pKa (PROPKA) 

GLU 240 1.9 4.5 4.5 
HIS 239 -1.3 2.9 6.5 
HIS 243 -5 -0.8 6.5 
HIS 249 -2.9 2.4 6.5 

Table E.3 pKa values of the residues coordinating the catalytic ion (Zn289) in the MMP14-TIMP2 
complex with ions and without the catalytic zinc.  
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 Regardless of the number of ions present in MMP14 (Figure E.4A), the electrostatic potentials 

with the same number of ions are clustered together and their corresponding complexes have similar 

∆∆Gsolvation. This suggests non-specific ion contribution in binding regardless of the ion’s distance to the 

interface.  

The fact that complexes with the same number of ions cluster together and have similar ∆∆Gsolvation 

suggests that all ions contribute similarly to binding regardless of whether they are structurally or 

catalytically significant.  In agreement with our data, TIMP2 is an inhibitor that regulates the catalytic 

mechanism of MMP14. Interpretation of the data of Figure E.4 suggests that upon binding of TIMP2 to 

MMP14 the catalytic zinc assumes a structural stability role, as the rest of the ions. This means that upon 

Figure E.4 (A) Electrostatic Clustering for MMP14 proteins. The dendrogram was labeled according to 
table 1. (B) Free energy results of MMP14-TIMP2 complexes. The order of the horizontal axis is 
identical to panel A. The boxes indicate complexes with the same number of ions. Net charge of each 
complex is shown.  
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inhibition of MMP14 by TIMP2, the coordinating “catalytic” zinc loses its catalytic function and all ions 

become equally important by disarming the catalytic capacity of the catalytic zinc.  
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APPENDIX F: INPUT FILES FOR SIMULATIONS AND SCRIPTS  
FOR DATA ANALYSIS 

 
F.1 Side Chain Distance Time Series Calculation 

import MDAnalysis 
import MDAnalysis.analysis.distances 
import numpy 
 
cutoff = 5 
start_frame=0 
resID_difference = 3  ## means 4 or more 
PDB = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL19_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl19.pdb" 
DCD = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL19_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl19_7ms_wrapped_unwrapped.dcd" 
 
u = MDAnalysis.Universe(PDB,DCD) 
 
 
## get the contacts and make timeseries out of 
selectionarg_sidechain_vdw_head = "((resname ALA and name CB) or \ 
(resname ARG and (name CZ or name NE or name NH1 or name NH2)) or \ 
(resname ASN and (name CG or name OD1 or name ND2)) or \ 
(resname ASP and (name CG or name OD1 or name OD2)) or \ 
(resname CYS and name SG) or \ 
(resname GLN and (name CD or name OE1 or name NE2)) or \ 
(resname GLU and (name CD or name OE1 or name OE2)) or \ 
(resname GLY and name CA) or \ 
(resname HIS and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSE and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSD and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSP and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname ILE and (name CG1 or name CG2 or name CD)) or \ 
(resname LEU and (name CG or name CD1 or name CD2)) or \ 
(resname LYS and name NZ) or \ 
(resname MET and (name SD or name CE)) or \ 
(resname PHE and (name CG or name CD1 or name CE1 or name CZ or name CE2 or name CD2)) or 
\ 
(resname PRO and name CG) or \ 
(resname SER and name OG) or \ 
(resname THR and (name CB or name CG2 or name OG1)) or \ 
(resname TRP and (name CE2 or name CD2 or name CE3 or name CZ3 or name CH2 or name CZ2)) 
or \ 
(resname TYR and name OH) or \ 
(resname VAL and (name CB or name CG1 or name CG2)))" 
 
 
selectionarg_sidechain_polar = "((resname ARG and (name CZ or name NE or name NH1 or name 
NH2)) or \ 
(resname ASN and (name CG or name OD1 or name ND2)) or \ 
(resname ASP and (name CG or name OD1 or name OD2)) or \ 
(resname CYS and name SG) or \ 
(resname GLN and (name CD or name OE1 or name NE2)) or \ 
(resname GLU and (name CD or name OE1 or name OE2)) or \ 
(resname HIS and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
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(resname HSE and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSD and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSP and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname LYS and name NZ) or \ 
(resname SER and name OG) or \ 
(resname THR and name OG1) or \ 
(resname TRP and name NE1) or \ 
(resname TYR and name OH))" 
 
selectionarg_sidechain_ele = "((resname ARG and (name CZ or name NE or name NH1 or name 
NH2)) or \ 
(resname ASP and (name CG or name OD1 or name OD2)) or \ 
(resname GLU and (name CD or name OE1 or name OE2)) or \ 
(resname HIS and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSE and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSD and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSP and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname LYS and name NZ))" 
 
selectionarg_sidechain_aromatic = "((resname HIS and (name CG or name ND1 or name CE1 or 
name NE2 or name CD2)) or \ 
(resname HSE and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSD and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname HSP and (name CG or name ND1 or name CE1 or name NE2 or name CD2)) or \ 
(resname PHE and (name CG or name CD1 or name CE1 or name CZ or name CE2 or name CD2)) or 
\ 
(resname TRP and (name CG or name CD1 or name NE1 or name CE2 or name CD2 or name CE3 or 
name CZ3 or name CH2 or name CZ2)) or \ 
(resname TYR and (name CG or name CD1 or name CE1 or name CZ or name CE2 or name CD2)))" 
 
selectionarg_sidechain = "not backbone" 
 
selection_calpha = "name CA" 
 
selectionarg = selectionarg_sidechain_polar 
 
selectionarg1 = selectionarg + " and segid B and resid 26:304 and not name H*" 
selectionarg2 = selectionarg + " and segid B and resid 26:304 and not name H*" 
selection1 = u.select_atoms(selectionarg1) 
selection2 = u.select_atoms(selectionarg2) 
dmin = 
MDAnalysis.analysis.distances.distance_array(selection1.get_positions(),selection2.get_po
sitions()) #selection1 rows selection2 col 
loading = 0 
print "> 0 percent of", u.trajectory.n_frames, "frames processed" 
for ts in u.trajectory[start_frame:u.trajectory.n_frames]: 
    d = 
MDAnalysis.analysis.distances.distance_array(selection1.get_positions(),selection2.get_po
sitions()) #selection1 rows selection2 col 
    dmin = numpy.minimum(dmin, d) 
    if (((ts.frame*100)/u.trajectory.n_frames)%10 == 0) & 
(((ts.frame*100)/u.trajectory.n_frames) != loading): 
        print ">", (ts.frame*100)/u.trajectory.n_frames, "percent of", 
u.trajectory.n_frames, "frames processed" 
    loading = ((ts.frame*100)/u.trajectory.n_frames) 
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if selectionarg1==selectionarg2: 
    dmin = numpy.triu(dmin) 
 
index = numpy.where((dmin < cutoff) & (dmin > 0)) #row1 is rows (selection1) row2 is cols 
(selection2) 
 
 
#''' 
## Forming an array with contact names: resid1 resnum1 atmname1 chain1 resid2 resnum2 
atmname2 chain2 
contact1 = 
numpy.vstack((selection1[index[0]].resnames,selection1[index[0]].resids,selection1[index[
0]].names,selection1[index[0]].segids)) 
contact2 = 
numpy.vstack((selection2[index[1]].resnames,selection2[index[1]].resids,selection2[index[
1]].names,selection2[index[1]].segids)) 
## create a contact log to write to file by creating two column with the following string 
"resid1-resnum1-chain1" 
contactsatomlog1 = [a + b + c + d + e + f + g for a, b, c, d, e, f, g in zip( 
map(str,contact1[0]), ["-"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[2]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[3]))] #pasting the three rows with a seperation of "-" 
contactsatomlog2 = [a + b + c + d + e + f + g for a, b, c, d, e, f, g in zip( 
map(str,contact2[0]), ["-"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[2]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[3]))] #pasting the three rows with a seperation of "-" 
contactsatomlog = numpy.vstack((contactsatomlog1,contactsatomlog2)) 
 
#''' 
 
## Forming an array with contact names: resid1 resnum1 chain1 resid2 resnum2 chain2 
contact1 = 
numpy.vstack((selection1[index[0]].resnames,selection1[index[0]].resids,selection1[index[
0]].segids)) 
contact2 = 
numpy.vstack((selection2[index[1]].resnames,selection2[index[1]].resids,selection2[index[
1]].segids)) 
contacts = numpy.vstack((contact1,contact2)) 
## create a contact log to write to file by creating two column with the following string 
"resid1-resnum1-chain1" 
contactslog1 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact1[0]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[2]))] #pasting the three rows with a seperation of "-" 
contactslog2 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact2[0]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[2]))] #pasting the three rows with a seperation of "-" 
contactslog = numpy.vstack((contactslog1,contactslog2)) 
 
 
## Removing self-interacting residue contacts eg: GLN 1 B interacting with GLN 1 B; 
(these contacts exists cause we do not discriminate between two atoms within the same 
residue interacting) 
#indkeep_tmp = numpy.where((contactslog[0]==contactslog[1])==False)[0] 
indkeep = 
numpy.where(numpy.absolute(numpy.subtract(contacts[1,:].astype(numpy.float),contacts[4,:]
.astype(numpy.float)))>resID_difference)[0] 
contacts = contacts[:,indkeep] 
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contactslog = contactslog[:,indkeep] 
contactsatomlog =contactsatomlog[:,indkeep] 
 
## Calculating Distance time series for each contact 
## Readjusting the selection using the variables 'index' and 'indkeep' 
selection11 = selection1[index[0]][indkeep] ## this selection includes repeats cause the 
array of contact repeats atoms and residues (since one atoms can have multiple contacts) 
selection22 = selection2[index[1]][indkeep] ## this selection includes repeats cause the 
array of contact repeats atoms and residues (since one atoms can have multiple contacts) 
 
distmatrix = [] 
loading = 0 
print "> 0 percent of", u.trajectory.n_frames, "frames processed" 
for ts in u.trajectory[start_frame:u.trajectory.n_frames]: 
    d = MDAnalysis.analysis.distances.dist(selection11,selection22) #selection1 rows 
selection2 col 
    distmatrix.append(numpy.round(d[2,:],3)) 
    if (((ts.frame*100)/u.trajectory.n_frames)%10 == 0) & 
(((ts.frame*100)/u.trajectory.n_frames) != loading): 
        print ">", (ts.frame*100)/u.trajectory.n_frames, "percent of", 
u.trajectory.n_frames, "frames processed" 
    loading = ((ts.frame*100)/u.trajectory.n_frames) 
 
 
distmatrix = numpy.transpose(numpy.asarray(distmatrix)) #rounding the matrix to save 
memory 
numpy.savetxt(fname='distance_matrix_intra_chainB_allFrames_resIDdiff_3_polar_ccl19.txt',
X=distmatrix,fmt='%.3f',delimiter=",") 
residuecontactsatomlog = numpy.asarray([a + b + c  for a, b, c in zip( 
map(str,contactsatomlog[0]), ["::"]*numpy.shape(contactsatomlog[0])[0], 
map(str,contactsatomlog[1]))]) 
residuecontactsatomlog = residuecontactsatomlog.reshape((1,len(residuecontactsatomlog))) 
numpy.savetxt(fname='distance_matrix_intra_chainB_allFrames_resIDdiff_3_polar_ccl19.log',
X=residuecontactsatomlog,fmt='%s',delimiter=",") 
 
 
## Finding the distmatrix per residue partners (minimum inter-atom distance of all atoms 
per residue partners) 
 
## Removing repeated contacts from contacts only (not contactslog) => to have only unique 
residue-residue contacts 
residuecontactslog = [a + b + c  for a, b, c in zip( map(str,contactslog[0]), 
["::"]*numpy.shape(contactslog[0])[0], map(str,contactslog[1]))] 
unsort = numpy.unique(residuecontactslog,return_index=True)[1] 
residuecontactslog = [residuecontactslog[i] for i in sorted(unsort)] 
residuecontactslog = numpy.asarray([i.split('::') for i in residuecontactslog]) ## here 
the contacts are switched to be organized in rows (unlike contactslog and contacts 
variables) 
contact1 = numpy.transpose([i.split('-') for i in residuecontactslog[:,0]]) ## now 
they are switched to be organized in columns 
contact2 = numpy.transpose([i.split('-') for i in residuecontactslog[:,1]]) 
contacts = numpy.vstack((contact1,contact2)) 
 
 
# this line is based on contactslog; this variable have been used cause it followed the 
selection variable Readjusted using the variables 'index' and 'indkeep' 
indicesmin = numpy.unique([a + b + c  for a, b, c in zip( map(str,contactslog[0]), 
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["::"]*numpy.shape(contactslog[0])[0], map(str,contactslog[1]))],return_inverse=True)[1] 
unsort = numpy.unique(indicesmin,return_index=True)[1] 
distmatrixmin = [] 
loading = 0 
counter=0 
print "> 0 percent of", len(indicesmin[numpy.sort(unsort)]), "frames processed" 
for ii in indicesmin[numpy.sort(unsort)]: 
    counter+=1 
    ind = numpy.where(indicesmin == ii)[0] 
    distmatrixtmp = distmatrix[ind,:] 
    distmatrixmin.append(distmatrixtmp.min(axis=0)) 
    if (((counter*100)/len(indicesmin[numpy.sort(unsort)]))%10 == 0) & 
(((counter*100)/len(indicesmin[numpy.sort(unsort)])) != loading): 
        print ">", (counter*100)/len(indicesmin[numpy.sort(unsort)]), "percent of", 
len(indicesmin[numpy.sort(unsort)]), "contacts processed" 
    loading=((counter*100)/len(indicesmin[numpy.sort(unsort)])) 
    print ii 
 
distmatrixmin = numpy.asarray(distmatrixmin) 
 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_allFrames_resIDdiff_3_polar_ccl19.t
xt',X=distmatrixmin,fmt='%.3f',delimiter=",") 
 
contactslog1 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact1[0]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[2]))] #pasting the three rows with a seperation of "-" 
contactslog2 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact2[0]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[2]))] #pasting the three rows with a seperation of "-" 
contactslog = numpy.vstack((contactslog1,contactslog2)) 
 
residuecontactsatomlog = numpy.asarray([a + b + c + d  for a, b, c, d in zip( 
map(str,contactslog[0]), ["::"]*numpy.shape(contactslog[0])[0], map(str,contactslog[1]), 
["_sidechain"]*numpy.shape(contactslog[0])[0])]) 
residuecontactsatomlog = residuecontactsatomlog.reshape((1,len(residuecontactsatomlog))) 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_allFrames_resIDdiff_3_polar_ccl19.l
og',X=residuecontactsatomlog,fmt='%s',delimiter=",") 
 
 
 
 
## 

F.2 Backbone Distance Time Series Calculation 

import MDAnalysis 
import MDAnalysis.analysis.distances 
import numpy 
 
cutoff = 15 
start_frame=11000 
resID_difference = 3  ## means 4 or more 
PDB = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL21_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl21.pdb" 
DCD = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL21_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl21_7ms_wrapped_unwrapped.dcd" 
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u = MDAnalysis.Universe(PDB,DCD) 
 
 
##  get the contacts and make timeseries out of 
selectionarg1 = "name CA and segid B and resid 26:304 and not name H*" 
selectionarg2 = "name CA and segid B and resid 26:304 and not name H*" 
selection1 = u.select_atoms(selectionarg1) 
selection2 = u.select_atoms(selectionarg2) 
dmin = 
MDAnalysis.analysis.distances.distance_array(selection1.get_positions(),selection2.get_po
sitions()) #selection1 rows selection2 col 
loading = 0 
print "> 0 percent of", u.trajectory.n_frames, "frames processed" 
for ts in u.trajectory[start_frame:u.trajectory.n_frames]: 
    d = 
MDAnalysis.analysis.distances.distance_array(selection1.get_positions(),selection2.get_po
sitions()) #selection1 rows selection2 col 
    dmin = numpy.minimum(dmin, d) 
    if (((ts.frame*100)/u.trajectory.n_frames)%10 == 0) & 
(((ts.frame*100)/u.trajectory.n_frames) != loading): 
        print ">", (ts.frame*100)/u.trajectory.n_frames, "percent of", 
u.trajectory.n_frames, "frames processed" 
    loading = ((ts.frame*100)/u.trajectory.n_frames) 
 
 
if selectionarg1==selectionarg2: 
    dmin = numpy.triu(dmin) 
 
index = numpy.where((dmin < cutoff) & (dmin > 0)) #row1 is rows (selection1) row2 is cols 
(selection2) 
 
#''' 
## Forming an array with contact names: resid1 resnum1 atmname1 chain1 resid2 resnum2 
atmname2 chain2 
contact1 = 
numpy.vstack((selection1[index[0]].resnames,selection1[index[0]].resids,selection1[index[
0]].names,selection1[index[0]].segids)) 
contact2 = 
numpy.vstack((selection2[index[1]].resnames,selection2[index[1]].resids,selection2[index[
1]].names,selection2[index[1]].segids)) 
## create a contact log to write to file by creating two column with the following string 
"resid1-resnum1-chain1" 
contactsatomlog1 = [a + b + c + d + e + f + g for a, b, c, d, e, f, g in zip( 
map(str,contact1[0]), ["-"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[2]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[3]))] #pasting the three rows with a seperation of "-" 
contactsatomlog2 = [a + b + c + d + e + f + g for a, b, c, d, e, f, g in zip( 
map(str,contact2[0]), ["-"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[2]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[3]))] #pasting the three rows with a seperation of "-" 
contactsatomlog = numpy.vstack((contactsatomlog1,contactsatomlog2)) 
 
#''' 
 
## Forming an array with contact names: resid1 resnum1 chain1 resid2 resnum2 chain2 
contact1 = 
numpy.vstack((selection1[index[0]].resnames,selection1[index[0]].resids,selection1[index[
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0]].segids)) 
contact2 = 
numpy.vstack((selection2[index[1]].resnames,selection2[index[1]].resids,selection2[index[
1]].segids)) 
contacts = numpy.vstack((contact1,contact2)) 
## create a contact log to write to file by creating two column with the following string 
"resid1-resnum1-chain1" 
contactslog1 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact1[0]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[2]))] #pasting the three rows with a seperation of "-" 
contactslog2 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact2[0]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[2]))] #pasting the three rows with a seperation of "-" 
contactslog = numpy.vstack((contactslog1,contactslog2)) 
 
 
## Removing self-interacting residue contacts eg: GLN 1 B interacting with GLN 1 B; 
(these contacts exists cause we do not discriminate between two atoms within the same 
residue interacting) 
#indkeep_tmp = numpy.where((contactslog[0]==contactslog[1])==False)[0] 
indkeep = 
numpy.where(numpy.absolute(numpy.subtract(contacts[1,:].astype(numpy.float),contacts[4,:]
.astype(numpy.float)))>resID_difference)[0] 
contacts = contacts[:,indkeep] 
contactslog = contactslog[:,indkeep] 
contactsatomlog =contactsatomlog[:,indkeep] 
 
## Calculating Distance time series for each contact 
## Readjusting the selection using the variables 'index' and 'indkeep' 
selection11 = selection1[index[0]][indkeep] ## this selection includes repeats cause the 
array of contact repeats atoms and residues (since one atoms can have multiple contacts) 
selection22 = selection2[index[1]][indkeep] ## this selection includes repeats cause the 
array of contact repeats atoms and residues (since one atoms can have multiple contacts) 
 
distmatrix = [] 
loading = 0 
print "> 0 percent of", u.trajectory.n_frames, "frames processed" 
for ts in u.trajectory[start_frame:u.trajectory.n_frames]: 
    d = MDAnalysis.analysis.distances.dist(selection11,selection22) #selection1 rows 
selection2 col 
    distmatrix.append(numpy.round(d[2,:],3)) 
    if (((ts.frame*100)/u.trajectory.n_frames)%10 == 0) & 
(((ts.frame*100)/u.trajectory.n_frames) != loading): 
        print ">", (ts.frame*100)/u.trajectory.n_frames, "percent of", 
u.trajectory.n_frames, "frames processed" 
    loading = ((ts.frame*100)/u.trajectory.n_frames) 
 
 
distmatrix = numpy.transpose(numpy.asarray(distmatrix)) #rounding the matrix to save 
memory 
numpy.savetxt(fname='distance_matrix_intra_chainB_eq_resIDdiff_3.txt',X=distmatrix,fmt='%
.3f',delimiter=",") 
residuecontactsatomlog = numpy.asarray([a + b + c  for a, b, c in zip( 
map(str,contactsatomlog[0]), ["::"]*numpy.shape(contactsatomlog[0])[0], 
map(str,contactsatomlog[1]))]) 
residuecontactsatomlog = residuecontactsatomlog.reshape((1,len(residuecontactsatomlog))) 
numpy.savetxt(fname='distance_matrix_intra_chainB_eq_resIDdiff_3.log',X=residuecontactsat
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omlog,fmt='%s',delimiter=",") 
 
 
## Finding the distmatrix per residue partners (minimum inter-atom distance of all atoms 
per residue partners) 
 
## Removing repeated contacts from contacts only (not contactslog) => to have only unique 
residue-residue contacts 
residuecontactslog = [a + b + c  for a, b, c in zip( map(str,contactslog[0]), 
["::"]*numpy.shape(contactslog[0])[0], map(str,contactslog[1]))] 
unsort = numpy.unique(residuecontactslog,return_index=True)[1] 
residuecontactslog = [residuecontactslog[i] for i in sorted(unsort)] 
residuecontactslog = numpy.asarray([i.split('::') for i in residuecontactslog]) ## here 
the contacts are switched to be organized in rows (unlike contactslog and contacts 
variables) 
contact1 = numpy.transpose([i.split('-') for i in residuecontactslog[:,0]]) ## now 
they are switched to be organized in columns 
contact2 = numpy.transpose([i.split('-') for i in residuecontactslog[:,1]]) 
contacts = numpy.vstack((contact1,contact2)) 
 
 
# this line is based on contactslog; this variable have been used cause it followed the 
selection variable Readjusted using the variables 'index' and 'indkeep' 
indicesmin = numpy.unique([a + b + c  for a, b, c in zip( map(str,contactslog[0]), 
["::"]*numpy.shape(contactslog[0])[0], map(str,contactslog[1]))],return_inverse=True)[1] 
unsort = numpy.unique(indicesmin,return_index=True)[1] 
distmatrixmin = [] 
loading = 0 
counter=0 
print "> 0 percent of", len(indicesmin[numpy.sort(unsort)]), "frames processed" 
for ii in indicesmin[numpy.sort(unsort)]: 
    counter+=1 
    ind = numpy.where(indicesmin == ii)[0] 
    distmatrixtmp = distmatrix[ind,:] 
    distmatrixmin.append(distmatrixtmp.min(axis=0)) 
    if (((counter*100)/len(indicesmin[numpy.sort(unsort)]))%10 == 0) & 
(((counter*100)/len(indicesmin[numpy.sort(unsort)])) != loading): 
        print ">", (counter*100)/len(indicesmin[numpy.sort(unsort)]), "percent of", 
len(indicesmin[numpy.sort(unsort)]), "contacts processed" 
    loading=((counter*100)/len(indicesmin[numpy.sort(unsort)])) 
    print ii 
 
distmatrixmin = numpy.asarray(distmatrixmin) 
 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3.txt',X=distmatrixmin
,fmt='%.3f',delimiter=",") 
 
contactslog1 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact1[0]), ["-
"]*numpy.shape(contact1[0])[0], map(str,contact1[1]), ["-"]*numpy.shape(contact1[0])[0], 
map(str,contact1[2]))] #pasting the three rows with a seperation of "-" 
contactslog2 = [a + b + c + d + e for a, b, c, d, e in zip( map(str,contact2[0]), ["-
"]*numpy.shape(contact2[0])[0], map(str,contact2[1]), ["-"]*numpy.shape(contact2[0])[0], 
map(str,contact2[2]))] #pasting the three rows with a seperation of "-" 
contactslog = numpy.vstack((contactslog1,contactslog2)) 
 
residuecontactsatomlog = numpy.asarray([a + b + c  for a, b, c in zip( 
map(str,contactslog[0]), ["::"]*numpy.shape(contactslog[0])[0], 
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map(str,contactslog[1]))]) 
residuecontactsatomlog = residuecontactsatomlog.reshape((1,len(residuecontactsatomlog))) 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3.log',X=residuecontac
tsatomlog,fmt='%s',delimiter=",") 
 
 
 
 
## 

F.3 Detection of Side Chain Contact Rearrangements from MD Simulations 

## Fitting gaussian distributions to the distance time series 
 
def multipeak_gaussfit(oneDdata,num_bins = 500,outdir='.',filename='namewithoutext'): 
    import matplotlib 
    matplotlib.use('Agg') 
    import matplotlib.pyplot as plt 
    import matplotlib.mlab as mlab 
    from scipy import optimize 
    from scipy import signal 
    from peakutils import peak 
    from scipy import ndimage 
 
    if not os.path.exists(outdir): 
        os.makedirs(outdir) 
 
 
    num_bins=500 
    y_real, bins, patches = plt.hist(oneDdata, num_bins, normed=1, facecolor='green') 
    plt.close() 
 
    ##Peak detection using simple method after smoothing the curve (CWT from scipy was 
not appropriate) 
    #window_size=num_bins/100 
    window_size=num_bins/50 
    y_real_filtered = ndimage.filters.gaussian_filter(y_real, window_size) 
    #window_size, poly_order = (num_bins/10)+1, 3 
    #y_real_filtered = signal.savgol_filter(y_real, window_size, poly_order) 
    nbre_peaks = len(peak.indexes(y_real_filtered,thres=0.05,min_dist=0)) 
    #peaks = (diff(sign(diff(y_real_filtered))) < 0).nonzero()[0] +1 
 
 
    #Performing BIG score per Gaussian Mixture Model 
    from sklearn import mixture 
    test = oneDdata.reshape((len(oneDdata),1)) 
 
    n_components_range = range(1, nbre_peaks+4) 
    #cv_types = ['spherical', 'tied', 'diag', 'full'] 
    cv_types = ['diag'] 
    lowest_bic = numpy.infty 
    bic = [] 
    for cv_type in cv_types: 
        for n_components in n_components_range: 
            # Fit a mixture of Gaussians with EM 
            gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) 
            gmm.fit(test) 
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            bic.append(gmm.bic(test)) 
            if bic[-1] < lowest_bic: 
                lowest_bic = bic[-1] 
                best_gmm = gmm 
                best_n_components = n_components 
    clf = best_gmm 
    clf.fit(test) 
 
 
    y_est1 = clf.weights_[0] * mlab.normpdf(bins, clf.means_[0], 
numpy.sqrt(clf.covars_[0])) 
 
    filename1 = 
filename+'_nbrePeaks_'+str(best_n_components)+'_weight_sum_GMM_minBIC.png' 
    savepath = os.path.join(outdir, filename1) 
    plt.plot(bins[1:501], y_real, label = 'Real Data') 
    plt.plot(bins, y_est1, 'g.', label = 'Fitted') 
    if best_n_components > 1: 
        for i in range(best_n_components)[1:best_n_components+1]: 
            y_est_tmp = clf.weights_[i] * mlab.normpdf(bins, clf.means_[i], 
numpy.sqrt(clf.covars_[i])) 
            y_est1 += clf.weights_[i] * mlab.normpdf(bins, clf.means_[i], 
numpy.sqrt(clf.covars_[i])) 
            plt.plot(bins, y_est_tmp, 'g.', label = 'Fitted') 
    plt.plot(bins, y_est1, 'g.', label = 'Fitted') 
    plt.xlabel('Smarts') 
    plt.ylabel('Probability Density') 
    plt.title('Histogram of contact ...') 
    plt.savefig(savepath) 
    plt.close() 
 
 
    #Overlapping probability of two normal distribution with scipy 
    #Organizing the distribution in a matrix (should I use weights or not?) 
    from scipy import stats 
    n_components = clf.n_components 
 
    def solve(wgth1,wgth2,m1,m2,std1,std2): 
        a = 1/(2*std1**2) - 1/(2*std2**2) 
        b = m2/(std2**2) - m1/(std1**2) 
        c = m1**2 /(2*std1**2) - m2**2 / (2*std2**2) - 
numpy.log((std2*wgth1)/(std1*wgth2)) 
        return numpy.roots([a,b,c]) 
 
    overlapping_propabilities = numpy.zeros(shape=(n_components,n_components)) 
    for ii in range(n_components): 
        for jj in range(ii,n_components): 
            if ii == jj: 
                continue 
            m1, m2 = clf.means_[ii][0], clf.means_[jj][0] 
            std1, std2 = numpy.sqrt(clf.covars_[ii])[0], numpy.sqrt(clf.covars_[jj])[0] 
            wgth1 , wgth2 = clf.weights_[ii], clf.weights_[jj] 
            max1, max2 = numpy.max(wgth1 * mlab.normpdf(bins, m1, std1)), numpy.max(wgth2 
* mlab.normpdf(bins, m2, std2)) 
            intersect = numpy.unique(solve(wgth1,wgth2,m1,m2,std1,std2)) 
            r = intersect[numpy.logical_and((intersect>numpy.min(bins)), 
(intersect<numpy.max(bins)))] 
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            if any(isinstance(t, complex) for t in r): 
                overlapping_propabilities[ii,jj] = 100 
                continue 
            if len(r)==1: 
                area = stats.norm.cdf(r,m2,std2) + (1.-stats.norm.cdf(r,m1,std1)) 
                if m1 > m2: 
                    area = stats.norm.cdf(r,m1,std1) + (1.-stats.norm.cdf(r,m2,std2)) 
            else: 
                if len(r)==2: 
                    area = stats.norm.cdf(r[0],m2,std2) + (1-
stats.norm.cdf(r[1],m2,std2)) + stats.norm.cdf(r[1],m1,std1) - 
stats.norm.cdf(r[0],m1,std1) 
                    if max1 > max2: 
                        area = stats.norm.cdf(r[0],m1,std1) + (1-
stats.norm.cdf(r[1],m1,std1)) + stats.norm.cdf(r[1],m2,std2) - 
stats.norm.cdf(r[0],m2,std2) 
                else: 
                    print(len(r)) 
            overlapping_propabilities[ii,jj] = area*100 
 
    ## write the percentages to a file and choose percentage cutoff to combine Gaussians 
    overlap_area = 50 
    inds_orig = numpy.asarray(numpy.where(overlapping_propabilities>overlap_area)) 
    inds = numpy.asarray(numpy.where(overlapping_propabilities>overlap_area)) 
 
    ''' 
    double check the areas calculated 
    ''' 
 
    groups = [] 
 
    for i in range(inds.shape[1]): 
        groups_tmp = [inds[0,0],inds[1,0]] 
        inds = numpy.delete(inds,(0), axis=1) 
        counter = 0 
        inds_groups = [] 
        inds_groups_prev = [0] 
        while not len(inds_groups_prev)==len(inds_groups): 
            inds_groups_prev = inds_groups[:] 
            for ii in range(len(groups_tmp)): 
                if (groups_tmp[ii] in inds[0]): 
                    inds_tmp = numpy.where(inds[0]==groups_tmp[ii])[0].tolist() 
                    inds_groups.extend(inds_tmp) 
                if (groups_tmp[ii] in inds[1]): 
                    inds_tmp = numpy.where(inds[1]==groups_tmp[ii])[0].tolist() 
                    inds_groups.extend(inds_tmp) 
            inds_groups = numpy.unique(inds_groups).tolist() 
            for ii in range(len(inds_groups)): 
                groups_tmp.extend(inds[:,inds_groups[ii]].tolist()) 
            groups_tmp = numpy.unique(groups_tmp).tolist() 
            counter =+1 
        groups.append(groups_tmp[:]) 
        if not (len(inds_groups)==inds.shape[1]): 
            inds = numpy.delete(inds,(inds_groups), axis=1) 
        else: 
            if ((len(inds_groups)+1)==inds.shape[1]): 
                groups.append([inds[0,0],inds[1,0]]) 
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                break 
            else: 
                break 
 
 
 
    #combine gaussians with a common area of more than 50% 
 
    gaussians_reduced = numpy.unique(numpy.hstack(inds_orig)) 
    n_components_reduced = n_components - len(gaussians_reduced) + len(groups) 
    distribution_params = numpy.zeros(shape=(n_components_reduced,3)) 
    jj=0 
    for ii in range(n_components): 
        if not (ii in gaussians_reduced): 
            distribution_params[jj,0] = clf.weights_[ii] 
            distribution_params[jj,1] = clf.means_[ii] 
            distribution_params[jj,2] = numpy.sqrt(clf.covars_[ii])[0] 
            jj = jj + 1 
        else: 
            continue 
 
    for ii in range(len(groups)): 
        weights_tmp = 0 
        means_tmp = 0 
        covars_tmp = 0 
        for zz in range(len(groups[ii])): 
            weights_tmp = weights_tmp + clf.weights_[groups[ii][zz]] 
            means_tmp = means_tmp + (clf.weights_[groups[ii][zz]] / 
numpy.sum(clf.weights_[groups[ii][:]])) * clf.means_[groups[ii][zz]] 
            covars_tmp = covars_tmp + (clf.weights_[groups[ii][zz]] / 
numpy.sum(clf.weights_[groups[ii][:]])) * clf.covars_[groups[ii][zz]] 
        distribution_params[jj,0] = weights_tmp 
        distribution_params[jj,1] = means_tmp 
        distribution_params[jj,2] = numpy.sqrt(covars_tmp)[0] 
        jj = jj + 1 
 
 
 
    y_est1 = distribution_params[0,0] * mlab.normpdf(bins, distribution_params[0,1], 
distribution_params[0,2]) 
 
    filename1 = 
filename+'_nbrePeaks_'+str(n_components_reduced)+'_weight_sum_GMM_minBIC_reduced.png' 
    savepath = os.path.join(outdir, filename1) 
    plt.plot(bins[1:501], y_real, color='0.75', label = 'Real Data') 
    plt.plot(bins, y_est1, 'b.', label = 'Fitted1') 
    if n_components_reduced > 1: 
        for i in range(n_components_reduced)[1:n_components_reduced+1]: 
            y_est_tmp = distribution_params[i,0] * mlab.normpdf(bins, 
distribution_params[i,1], distribution_params[i,2]) 
            y_est1 += distribution_params[i,0] * mlab.normpdf(bins, 
distribution_params[i,1], distribution_params[i,2]) 
            plt.plot(bins, y_est_tmp, 'b.', label = 'Fitted1') 
    #plt.plot(bins, y_est1, 'b.', label = 'Fitted1') 
    #plt.legend() 
    plt.xlabel('Distances') 
    plt.ylabel('Probability Density') 
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    #plt.title('Histogram of contact ...') 
    plt.savefig(savepath) 
    plt.close() 
 
    ## Return all weights, means, and stdvs (17 Feb 16) 
    ## RUN WITH 1 STDEV 
    params = [] 
    for ii in range(distribution_params.shape[0]): 
        params.append([distribution_params[ii,0], distribution_params[ii,1], 
distribution_params[ii,2]]) 
        dist_frames = numpy.where((oneDdata < 
distribution_params[ii,1]+1*distribution_params[ii,2]) & (oneDdata > 
distribution_params[ii,1]-1*distribution_params[ii,2]))[0] 
        params[ii].append(dist_frames) 
 
 
    return params,n_components_reduced 
 
 
    #Performing Dirichlet Process Gaussian Mixture Model (Explore more another time) 
    from sklearn import mixture 
    test = oneDdata.reshape((len(oneDdata),1)) 
 
    nbre_peaks = nbre_peaks + 3 
    clf = mixture.DPGMM(n_components=nbre_peaks, alpha=100., n_iter=100) 
    clf.fit(test) 
    Y_ = clf.predict(test) 
 
    y_est1 = numpy.zeros(num_bins+1).reshape(1,num_bins+1) 
    if numpy.any(Y_ == 0): 
        y_est1 += clf.weights_[0] * mlab.normpdf(bins, clf.means_[0], 
numpy.sqrt(clf._get_covars()[0])) 
 
    filename1 = filename+'_nbrePeaks_'+str(len(numpy.unique(Y_)))+'_weight_sum_DPGMM.png' 
    savepath = os.path.join(outdir, filename1) 
    plt.plot(bins[1:501], y_real, label = 'Real Data') 
    plt.plot(bins, y_est1[0,:], 'g.', label = 'Fitted') 
    if nbre_peaks > 1: 
        for i in range(nbre_peaks)[1:nbre_peaks+1]: 
            if not numpy.any(Y_ == i): 
                continue 
            y_est_tmp = clf.weights_[i] * mlab.normpdf(bins, clf.means_[i], 
numpy.sqrt(clf._get_covars()[i])) 
            y_est1 += clf.weights_[i] * mlab.normpdf(bins, clf.means_[i], 
numpy.sqrt(clf._get_covars()[i])) 
            plt.plot(bins, y_est_tmp[0,:], 'g.', label = 'Fitted') 
    plt.plot(bins, y_est1[0,:], 'g.', label = 'Fitted') 
    plt.legend() 
    plt.xlabel('Smarts') 
    plt.ylabel('Probability Density') 
    plt.title('Histogram of contact ...') 
    plt.savefig(savepath) 
    plt.close() 
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## 
## Fitting gaussian distributions to the distance time series 
import os 
import numpy 
 
from numpy import genfromtxt 
#from numpy import * 
#from scipy.stats import norm 
 
 
data = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/side-
chain/1_contacts/distance_matrix_min_intra_chainB_eq_resIDdiff_3_polar.txt",delimiter = 
",") 
dataLog = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/side-
chain/1_contacts/distance_matrix_min_intra_chainB_eq_resIDdiff_3_polar.log",dtype='S',del
imiter = ",") 
 
start_frame = 0 
timeseries_parameters = [] 
inds = [] 
n_distributions = [] 
for i in range(data.shape[0]): 
    print(i) 
    data_eg = data[i,start_frame:data.shape[1]] 
    if numpy.min(data_eg) > 5: 
        continue 
    contact_name = dataLog[i] 
    params,n_distributions_tmp = multipeak_gaussfit(oneDdata=data_eg, num_bins = 500, 
outdir='./contact_polar_distribution_figures_eq_resIDdiff_cutoff50_eq_1stdev', 
filename=str(i)+'_'+contact_name) 
    timeseries_parameters.append(params) 
    inds.extend([i]) 
    n_distributions.append(n_distributions_tmp) 
 
numpy.savetxt(fname='contact_sidechain_distribution_parameters_eq_resIDdiff_cutoff50_fram
es_1stdev.log',X=dataLog[inds],fmt='%s',delimiter=",") 
 
 
#saving parameters to a file 
my_file = 
open("contact_sidechain_distribution_parameters_eq_resIDdiff_cutoff50_frames_1stdev.txt", 
"w") 
for i in range(len(timeseries_parameters)): 
    for j in range(len(timeseries_parameters[i])): 
        if not (j == 0): 
            my_file.write(",") 
        my_file.write( "{:10.4f}".format(timeseries_parameters[i][j][0]) + "," + 
"{:10.4f}".format(timeseries_parameters[i][j][1]) + "," + 
"{:10.4f}".format(timeseries_parameters[i][j][2]) + "," + "-
".join(map(str,timeseries_parameters[i][j][3]))) 
    my_file.write( "\n") 
 
my_file.close() 
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#extract the multimodal distributions as time series and log file 
inds_multimodel = numpy.where(numpy.asarray(n_distributions)>1)[0] 
 
 
 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3_sidechain_multimodal
.txt',X=data[inds,:][inds_multimodel,:],fmt='%.3f',delimiter=",") 
residuelog = 
numpy.asarray(dataLog[inds][inds_multimodel]).reshape((1,len(dataLog[inds][inds_multimode
l]))) 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3_sidechain_multimodal
.log',X=residuelog,fmt='%s',delimiter=",") 
## 
residuelog = 
numpy.asarray(dataLog[inds][inds_multimodel]).reshape((1,len(dataLog[inds][inds_multimode
l]))) 
 
 
 
## Mapping into the PDB of each group 
 
# Reading PDB 
import MDAnalysis 
 
PDB = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL21_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl21.pdb" 
 
#Residues are ordered in alphabetic order following the charmm forcefield topology file 
selectionarg1 = "((resname ALA and name CB) or \ 
(resname ARG and name CZ) or \ 
(resname ASP and name CG) or \ 
(resname ASN and name CG) or \ 
(resname CYS and name SG) or \ 
(resname GLN and name CD) or \ 
(resname GLU and name CD) or \ 
(resname GLY and name CA) or \ 
(resname HIS and name CG) or \ 
(resname HSE and name CG) or \ 
(resname HSD and name CG) or \ 
(resname HSP and name CG) or \ 
(resname ILE and name CG1) or \ 
(resname LEU and name CG) or \ 
(resname LYS and name NZ) or \ 
(resname MET and name SD) or \ 
(resname PHE and name CG) or \ 
(resname PRO and name CG) or \ 
(resname SER and name OG) or \ 
(resname THR and name CB) or \ 
(resname TRP and name CE2) or \ 
(resname TYR and name CG) or \ 
(resname VAL and name CB))" 
 
#selection1 = u.select_atoms(selectionarg1) 
 
dist_parameters_array = numpy.asarray(residuelog) 
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outdirS = './' 
outdir = 
'contact_sidechain_distribution_figures_eq_resIDdiff_cutoff50_eq_1stdev_multimodalPDB' 
outdirgroup = os.path.join(outdirS, outdir) 
if not os.path.exists(outdirgroup): 
    os.makedirs(outdirgroup) 
edges = numpy.asarray([jj.split("_")[0] for jj in dist_parameters_array[0]]) 
edges = numpy.asarray([jj.split("::") for jj in edges]) 
filename = '~molecular-switches_edges'+'.pdb' 
savepath = os.path.join(outdirgroup, filename) 
pdb = MDAnalysis.Writer(savepath, multiframe=True) 
for j in range(edges.shape[0]): 
    u = MDAnalysis.Universe(PDB) 
    resnum1 = edges[j][0].split("-")[1] 
    chain1 = edges[j][0].split("-")[2] 
    resnum2 = edges[j][1].split("-")[1] 
    chain2 = edges[j][1].split("-")[2] 
    selection = selectionarg1 + " and ((resid " + resnum1 + " and segid " + chain1 + ") 
or (resid " + resnum2 + " and segid " + chain2 + "))" 
    protein = u.select_atoms(selection) 
    if (abs(int(resnum1) - int(resnum2))==1): 
        protein.set_resids((int(resnum1),(int(resnum2) + 1))) 
    protein.set_names(("CA","CA")) 
    pdb.write(protein) 
pdb.close() 
 
 
 
 
# 

F.4 Detection of Large Domain Motions Through DCCM 

##efficient reading of large files 
import numpy as np 
 
def generate_text_file(length=1e6, ncols=20): 
    data = np.random.random((length, ncols)) 
    np.savetxt('large_text_file.csv', data, delimiter=',') 
 
def iter_loadtxt(filename, delimiter=',', skiprows=0, dtype=float): 
    def iter_func(): 
        with open(filename, 'r') as infile: 
            for _ in range(skiprows): 
                next(infile) 
            for line in infile: 
                line = line.rstrip().split(delimiter) 
                for item in line: 
                    yield dtype(item) 
        iter_loadtxt.rowlength = len(line) 
 
    data = np.fromiter(iter_func(), dtype=dtype) 
    data = data.reshape((-1, iter_loadtxt.rowlength)) 
    return data 
 
#generate_text_file() 
#data = iter_loadtxt('large_text_file.csv') 



 156 

 
 
 
 
## DCCM and Clustering 
import os 
import numpy 
 
from numpy import genfromtxt 
#from numpy import * 
#from scipy.stats import norm 
 
 
 
data_org = [numpy.array(map(float, line.split(","))) for line in 
open('/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1apr16/c
-alpha/1_contacts/distance_matrix_min_intra_chainB_eq_resIDdiff_3.txt')] 
data_org = numpy.asarray(data_org) 
#data_org = 
numpy.loadtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions
_1apr16/c-alpha/1_contacts/distance_matrix_min_intra_chainB_eq_resIDdiff_3.txt",delimiter 
= ",") 
dataLog = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/c-
alpha/1_contacts/distance_matrix_min_intra_chainB_eq_resIDdiff_3.log",dtype='S',delimiter 
= ",") 
 
 
 
 
#hierarchical clustering and dendogram 
import matplotlib 
matplotlib.use('Agg') 
from matplotlib import pyplot as plt 
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster, cut_tree 
from scipy.spatial.distance import pdist 
 
## unecassary ==> remove when cleaning the code 
data = data_org 
#corrmatrix = numpy.corrcoef(data) 
#numpy.fill_diagonal(corrmatrix, 0) 
 
Z = linkage(data, 'single', 'correlation') 
 
cutoff = 0.95 
##group the data into clusters 
##cutoff is at a correlation of 0.95 
groups = fcluster(Z,t=1-cutoff,criterion='distance') 
timeseries_number_cluster = numpy.unique(groups,return_counts=True) 
corr_indices_groups = [] 
for group in timeseries_number_cluster[0][numpy.where(timeseries_number_cluster[1]>1)]: 
    corr_indices_groups.extend(numpy.where(groups==group)) 
 
outdirS = './groups_'+str(cutoff) 
if not os.path.exists(outdirS): 
    os.makedirs(outdirS) 
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for i in range(len(corr_indices_groups)): 
    outdir = 'group_'+str(i) 
    outdirgroup = os.path.join(outdirS, outdir) 
    if not os.path.exists(outdirgroup): 
        os.makedirs(outdirgroup) 
    for j in range(len(corr_indices_groups[i])): 
        ## plotting the contact timeseries for each group 
        filename = dataLog[corr_indices_groups[i][j]]+'_distr_'+str(j)+'.png' 
        savepath = os.path.join(outdirgroup, filename) 
        plt.figure(figsize=(40,12)) 
        plt.plot(data[corr_indices_groups[i][j],:], color= 'orange', 
marker='o',markersize=3,markeredgecolor='none',ls='') 
        plt.rc("font",size=32) 
        plt.savefig(savepath,dpi=100) 
        plt.close() 
    filename = '~group_'+str(i)+'_DCCM'+'.png' 
    savepath = os.path.join(outdirgroup, filename) 
    colors = [(matplotlib.cm.jet(ii)) for ii in xrange(1,256)] 
    new_map = matplotlib.colors.LinearSegmentedColormap.from_list('new_map', colors, 
N=256) 
    plt.figure(figsize=(30,25)) 
    plt.pcolor(numpy.corrcoef(data[corr_indices_groups[i],:]), cmap=new_map, vmin=0, 
vmax=1) 
    plt.colorbar() 
    plt.savefig(savepath) 
    plt.close() 
 
cutoff = 0.95 
##group the data into clusters 
##cutoff is at a correlation of 0.95 
groups = fcluster(Z,t=1-cutoff,criterion='distance') 
timeseries_number_cluster = numpy.unique(groups,return_counts=True) 
corr_indices = [] 
for group in timeseries_number_cluster[0][numpy.where(timeseries_number_cluster[1]>1)]: 
    corr_indices.extend(numpy.where(groups==group)[0]) 
 
 
##Recalculating the dendogram with only the groups of interest 
Z_G = linkage(data[corr_indices,:], 'single', 'correlation') 
 
corrmatrix_G = numpy.corrcoef(data[corr_indices,:]) 
numpy.fill_diagonal(corrmatrix_G, 0) 
#corrmatrix_G = corrmatrix[numpy.ix_(list(corr_indices),list(corr_indices))] 
 
''' 
#Calculating the number of groups for a series of cutoffs 
group_numbers=[] 
for cutoff in numpy.arange(0,1,0.05): 
    group_numbers.append(len(numpy.unique(fcluster(Z,t=cutoff,criterion='distance')))) 
''' 
 
#writing the correlated groups to file 
numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3_DCCM_0.95.txt',X=dat
a[corr_indices,:],fmt='%.3f',delimiter=",") 
residuelog = numpy.asarray(dataLog[corr_indices]).reshape((1,len(dataLog[corr_indices]))) 
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numpy.savetxt(fname='distance_matrix_min_intra_chainB_eq_resIDdiff_3_DCCM_0.95.log',X=res
iduelog,fmt='%s',delimiter=",") 
 
 
#plotting the correlation matrix 
colors = [(matplotlib.cm.jet(i)) for i in xrange(1,256)] 
new_map = matplotlib.colors.LinearSegmentedColormap.from_list('new_map', colors, N=256) 
plt.figure(figsize=(30,25)) 
plt.pcolor(corrmatrix_G, cmap=new_map, vmin=-1, vmax=1) 
plt.colorbar() 
plt.savefig("DCCM_Groups"+str(cutoff)+".png",dpi=100) 
plt.close() 
 
 
 
#import sys 
#sys.setrecursionlimit(10000) 
#dendrogram 
plt.figure(figsize=(25,10)) 
plt.title('Hierarchical Clustering Dendrogram') 
plt.xlabel('sample index') 
plt.ylabel('distance') 
dend = dendrogram(Z_G, color_threshold = 0.05) 
plt.savefig("figure00_G.png") 
plt.close() 
 
 
 
##plotting clustering alongside the corr matrix 
import pylab 
fig = pylab.figure(figsize=(100,100)) 
ax1 = fig.add_axes([0.09,0.1,0.2,0.6]) 
Z1 = dendrogram(Z_G, orientation='right', color_threshold = 0.05) 
ax1.set_xticks([]) 
ax1.set_yticks([]) 
 
ax2 = fig.add_axes([0.3,0.71,0.6,0.2]) 
Z2 = dendrogram(Z_G, color_threshold = 0.05) 
ax1.set_xticks([]) 
ax1.set_yticks([]) 
 
axmatrix = fig.add_axes([0.3,0.1,0.6,0.6]) 
idx1 = Z1['leaves'] 
idx2 = Z2['leaves'] 
corrmatrix_G_tmp = corrmatrix_G[idx1,:] 
corrmatrix_G_tmp = corrmatrix_G_tmp[:,idx2] 
colors = [(matplotlib.cm.jet(i)) for i in xrange(1,256)] 
new_map = matplotlib.colors.LinearSegmentedColormap.from_list('new_map', colors, N=256) 
im = axmatrix.matshow(corrmatrix_G_tmp, aspect='auto', origin='lower', cmap=new_map, 
vmin=-1, vmax=1) 
axmatrix.set_xticks([]) 
axmatrix.set_yticks([]) 
 
axcolor = fig.add_axes([0.91,0.1,0.02,0.6]) 
pylab.colorbar(im, cax=axcolor) 
fig.savefig("Dendogram_DCCM_Groups"+str(cutoff)+".png",dpi=200) 
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## Mapping into the PDB of each group 
 
# Reading PDB 
import MDAnalysis 
 
PDB = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL21_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl21.pdb" 
 
#Residues are ordered in alphabetic order following the charmm forcefield topology file 
 
selectionarg1 = "((resname ALA and name CA) or \ 
(resname ARG and name CA) or \ 
(resname ASP and name CA) or \ 
(resname ASN and name CA) or \ 
(resname CYS and name CA) or \ 
(resname GLN and name CA) or \ 
(resname GLU and name CA) or \ 
(resname GLY and name CA) or \ 
(resname HIS and name CA) or \ 
(resname HSE and name CA) or \ 
(resname HSD and name CA) or \ 
(resname HSP and name CA) or \ 
(resname ILE and name CA) or \ 
(resname LEU and name CA) or \ 
(resname LYS and name CA) or \ 
(resname MET and name CA) or \ 
(resname PHE and name CA) or \ 
(resname PRO and name CA) or \ 
(resname SER and name CA) or \ 
(resname THR and name CA) or \ 
(resname TRP and name CA) or \ 
(resname TYR and name CA) or \ 
(resname VAL and name CA))" 
 
#selection1 = u.select_atoms(selectionarg1) 
 
dist_parameters_array = numpy.asarray(dataLog) 
 
for i in range(len(corr_indices_groups)): 
    outdir = 'group_'+str(i) 
    outdirgroup = os.path.join(outdirS, outdir) 
    if not os.path.exists(outdirgroup): 
        os.makedirs(outdirgroup) 
    edges = numpy.asarray([jj.split("::") for jj in 
dist_parameters_array[corr_indices_groups[i]]]) 
    filename = '~group_'+str(i)+'_edges'+'.pdb' 
    savepath = os.path.join(outdirgroup, filename) 
    pdb = MDAnalysis.Writer(savepath, multiframe=True) 
    for j in range(edges.shape[0]): 
        u = MDAnalysis.Universe(PDB) 
        resnum1 = edges[j][0].split("-")[1] 
        chain1 = edges[j][0].split("-")[2] 
        resnum2 = edges[j][1].split("-")[1] 
        chain2 = edges[j][1].split("-")[2] 
        selection = selectionarg1 + " and ((resid " + resnum1 + " and segid " + chain1 + 
") or (resid " + resnum2 + " and segid " + chain2 + "))" 
        protein = u.select_atoms(selection) 
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        if (abs(int(resnum1) - int(resnum2))==1): 
            protein.set_resids((int(resnum1),(int(resnum2) + 1))) 
        protein.set_names(("CA","CA")) 
        pdb.write(protein) 
    pdb.close() 
 
 
 
 
## 

F.5 Network of the Protein’s Dynamical Components 

## DCCM and Clustering 
import os 
import numpy 
 
from numpy import genfromtxt 
#from numpy import * 
#from scipy.stats import norm 
 
 
 
data_sidechain = [numpy.array(map(float, line.split(","))) for line in 
open('/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1apr16/s
ide-
chain/2_contacts_distributions/distance_matrix_min_intra_chainB_eq_resIDdiff_3_sidechain_
multimodal.txt')] 
data_sidechain = numpy.asarray(data_sidechain) 
dataLog_sidechain = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/side-
chain/2_contacts_distributions/distance_matrix_min_intra_chainB_eq_resIDdiff_3_sidechain_
multimodal.log",dtype='S',delimiter = ",") 
 
data_polar = [numpy.array(map(float, line.split(","))) for line in 
open('/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1apr16/s
ide-
chain/2_contacts_distributions/distance_matrix_min_intra_chainB_eq_resIDdiff_3_polar_mult
imodal.txt')] 
data_polar = numpy.asarray(data_polar) 
dataLog_polar = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/side-
chain/2_contacts_distributions/distance_matrix_min_intra_chainB_eq_resIDdiff_3_polar_mult
imodal.log",dtype='S',delimiter = ",") 
 
data_calpha = [numpy.array(map(float, line.split(","))) for line in 
open('/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1apr16/c
-alpha/2_contacts_DCCM/distance_matrix_min_intra_chainB_eq_resIDdiff_3_DCCM_0.95.txt')] 
data_calpha = numpy.asarray(data_calpha) 
dataLog_calpha = 
genfromtxt("/home/ziedgaieb/Documents/python_scripts_development/contact_distributions_1a
pr16/c-
alpha/2_contacts_DCCM/distance_matrix_min_intra_chainB_eq_resIDdiff_3_DCCM_0.95.log",dtyp
e='S',delimiter = ",") 
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data = numpy.vstack((data_sidechain,data_polar,data_calpha)) 
dataLog = numpy.hstack((dataLog_sidechain,dataLog_polar,dataLog_calpha)) 
 
data_sidechain_polar = numpy.vstack((data_sidechain,data_polar)) 
dataLog_sidechain_polar = numpy.hstack((dataLog_sidechain,dataLog_polar)) 
 
#hierarchical clustering and dendogram 
import matplotlib 
matplotlib.use('Agg') 
from matplotlib import pyplot as plt 
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster, cut_tree 
from scipy.spatial.distance import pdist 
 
## unecassary ==> remove when cleaning the code 
#data = data_org 
#corrmatrix = numpy.corrcoef(data) 
#numpy.fill_diagonal(corrmatrix, 0) 
 
 
Z = linkage(data_calpha, 'single', 'correlation') 
 
 
 
cutoff = 0.95 
##group the data into clusters 
##cutoff is at a correlation of 0.95 
groups = fcluster(Z,t=1-cutoff,criterion='distance') 
timeseries_number_cluster = numpy.unique(groups,return_counts=True) 
corr_indices_groups = [] 
for group in timeseries_number_cluster[0][numpy.where(timeseries_number_cluster[1]>1)]: 
    corr_indices_groups.extend(numpy.where(groups==group)) 
 
 
groupdataLog = [a + b  for a, b in zip(["group_"]*len(corr_indices_groups), 
map(str,range(len(corr_indices_groups))))] 
group_capacity = [] 
dcc_weights = numpy.zeros((len(corr_indices_groups),len(dataLog_sidechain_polar))) 
counter = 0 
for i in range(len(corr_indices_groups)): 
    group_capacity.append(len(corr_indices_groups[i])) 
    for j in range(len(dataLog_sidechain_polar)): 
        if (counter%5000 == 0): 
            print ">", counter, "out of", 
str(len(corr_indices_groups)*len(dataLog_sidechain_polar)), "contacts processed" 
        counter += 1 
        ccc = 
numpy.corrcoef(data_calpha[corr_indices_groups[i],:],data_sidechain_polar[j,:]) 
        ccc_average = 
numpy.average(ccc[len(corr_indices_groups[i]),0:len(corr_indices_groups[i])]) 
        dcc_weights[i,j] = ccc_average 
 
 
dcc_weights_groups = numpy.zeros((len(corr_indices_groups),len(corr_indices_groups))) 
counter = 0 
for i in range(len(corr_indices_groups)): 
    for j in range(i,len(corr_indices_groups)): 
        if (counter%5000 == 0): 
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            print ">", counter, "out of", 
str(len(corr_indices_groups)*len(corr_indices_groups)), "contacts processed" 
        counter += 1 
        ccc = numpy.corrcoef(data_calpha[corr_indices_groups[i],:]) 
        ccc_average = numpy.average(numpy.tril(ccc,-1)) 
        dcc_weights_groups[i,j] = ccc_average 
        dcc_weights_groups[j,i] = ccc_average 
 
dcc_weights_switches = numpy.corrcoef(data_sidechain_polar) 
numpy.fill_diagonal(dcc_weights_switches, 0) 
 
 
 
 
## generate matrices to input to Gephi 
## matrix of node1 node2 edgeWeight 
## matrix with nodes nodeWeight 
cutoff = 0.75 
network = numpy.asarray(['node1','node2','weight']) 
counter = 0 
for i in range(dcc_weights.shape[0]): 
    for j in range(dcc_weights.shape[1]): 
        if (counter%5000 == 0): 
            print ">", counter, "out of", str(dcc_weights.shape[0]*dcc_weights.shape[1]), 
"contacts processed" 
        counter += 1 
        if abs(dcc_weights[i,j]) < cutoff: 
            continue 
        network = 
numpy.vstack((network,[groupdataLog[i],dataLog_sidechain_polar[j],abs(dcc_weights[i,j])])
) 
#       network = numpy.vstack((network,[groupdataLog[i],dataLog_sidechain_polar[j],-
numpy.log(abs(dcc_weights[i,j]))])) 
 
 
counter = 0 
for i in range(dcc_weights_groups.shape[0]): 
    for j in range(i+1,dcc_weights_groups.shape[1]): 
        if (counter%5000 == 0): 
            print ">", counter, "out of", 
str(dcc_weights_groups.shape[0]*dcc_weights_groups.shape[1]), "contacts processed" 
        counter += 1 
        if abs(dcc_weights_groups[i,j]) < cutoff: 
            continue 
        network = 
numpy.vstack((network,[groupdataLog[i],groupdataLog[j],abs(dcc_weights_groups[i,j])])) 
#       network = numpy.vstack((network,[groupdataLog[i],groupdataLog[j],-
numpy.log(abs(dcc_weights_groups[i,j]))])) 
 
 
 
counter = 0 
for i in range(dcc_weights_switches.shape[0]): 
    for j in range(i+1,dcc_weights_switches.shape[1]): 
        if (counter%5000 == 0): 
            print ">", counter, "out of", 
str(dcc_weights_switches.shape[0]*dcc_weights_switches.shape[1]/2), "contacts processed" 



 163 

        counter += 1 
        if abs(dcc_weights_switches[i,j]) < cutoff or abs(dcc_weights_switches[i,j]) == 
1: 
            continue 
        network = 
numpy.vstack((network,[dataLog_sidechain_polar[i],dataLog_sidechain_polar[j],abs(dcc_weig
hts_switches[i,j])])) 
#       network = 
numpy.vstack((network,[dataLog_sidechain_polar[i],dataLog_sidechain_polar[j],-
numpy.log(abs(dcc_weights_switches[i,j]))])) 
 
network = numpy.delete(network,(0),axis=0) 
## network matrix created with node1 node2 edge_weight 
 
## generate the number of contact in each node 
nodes = numpy.asarray(['node','size']) 
for i in range(len(groupdataLog)): 
    nodes = numpy.vstack((nodes,[groupdataLog[i],group_capacity[i]])) 
 
for i in range(len(dataLog_sidechain_polar)): 
    nodes = numpy.vstack((nodes,[dataLog_sidechain_polar[i],1])) 
 
nodes = numpy.delete(nodes,(0),axis=0) 
## nodes matrix created with node nbre_contacts 
 
vertices = [] 
edges = network[:,0:2].tolist() 
for line in edges: 
    vertices.extend(line) 
 
 
vertices = numpy.unique(numpy.asarray(vertices)) 
 
import igraph 
G = igraph.Graph() 
G.add_vertices(vertices) 
G.add_edges(edges) 
#option2: this option works on weight only and not any other edge attribute 
#once the graph is weighted (as done in the next line), we can weight the edges as done 
below 
G.es['weight'] = 1 
for i in range(len(edges)): 
    line = edges[i] 
    G[line[0],line[1]] = network[i,2] 
 
 
#G.vs['nbre_contacts'] = 1 
#for i in range(len(vertices)): 
#    G.vs[i]['nbre_contacts'] = nodes[numpy.where(nodes[:,0]==G.vs[i]['name'])[0],1][0] 
 
for i, v in enumerate(G.vs): 
    v['nbre_contacts'] = str(nodes[numpy.where(nodes[:,0]==G.vs[i]['name'])[0],1][0]) 
 
##Writing Network into file 
G.write(f="0_fullnetwork_nbreNodes_"+str(len(G.vs['name']))+".graphml",format="graphml") 
# 
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network_remaining = network 
nodes_remaining = nodes 
 
 
node_communities =  numpy.asarray(['node','community']) 
membership_max_previous = -1 
counter = 1 
while counter <7: 
    print(str(counter)) 
    vertices = [] 
    edges = network_remaining[:,0:2].tolist() 
    for line in edges: 
        vertices.extend(line) 
    # 
    vertices = numpy.unique(numpy.asarray(vertices)) 
    # 
    import igraph 
    G = igraph.Graph() 
    G.add_vertices(vertices) 
    G.add_edges(edges) 
    #option2: this option works on weight only and not any other edge attribute 
    #once the graph is weighted (as done in the next line), we can weight the edges as 
done below 
    G.es['weight'] = 1 
    for i in range(len(edges)): 
        line = edges[i] 
        G[line[0],line[1]] = network_remaining[i,2] 
    # 
    #G.vs['nbre_contacts'] = 1 
    #for i in range(len(vertices)): 
    #    G.vs[i]['nbre_contacts'] = 
nodes[numpy.where(nodes[:,0]==G.vs[i]['name'])[0],1][0] 
    # 
    for i, v in enumerate(G.vs): 
        v['nbre_contacts'] = 
str(nodes_remaining[numpy.where(nodes_remaining[:,0]==G.vs[i]['name'])[0],1][0]) 
    ##extracting the largest fully connected network from the full network 
    G_subnetwork = G.clusters().giant() 
    ##Community Mapping 
    #calculate dendrogram 
    #communities = G_subnetwork.community_optimal_modularity()  ===> this crashed my 
large network 
    #communities = G_subnetwork.community_optimal_modularity() 
    communities = G_subnetwork.community_edge_betweenness(directed=False) 
    #convert it into a flat clustering ===> doesn't work unless the network is fully 
connected 
    clusters = communities.as_clustering() 
    #get the membership vector 
    membership = clusters.membership 
    #Add the numer of communities from the previous network, So community membership dont 
overlap with previous subnetwork 
    membership = [x+(membership_max_previous + 1) for x in membership] 
    G_subnetwork.vs['membership'] = membership 
    membership_max_previous = numpy.max(membership) 
    node_communities = 
numpy.vstack((node_communities,numpy.column_stack((G_subnetwork.vs['name'], 
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membership)))) 
    # 
    ##Writing Network into file 
    
G_subnetwork.write(f=str(counter)+"_subnetwork_nbreNodes_"+str(len(G_subnetwork.vs['name'
]))+".graphml",format="graphml") 
    # 
    ##Removing all the nodes used in the G_subnetwork from the network matrix 
    for i in range(len(G_subnetwork.vs['name'])): 
        indices = [] 
        node = G_subnetwork.vs['name'][i] 
        indices.extend(numpy.where(node==network_remaining[:,0])[0]) 
        indices.extend(numpy.where(node==network_remaining[:,1])[0]) 
        network_remaining = numpy.delete(network_remaining,(indices),axis=0) 
    # 
    ##Removing all the nodes used in the G_subnetwork from the nodes matrix 
    for i in range(len(G_subnetwork.vs['name'])): 
        indices = [] 
        node = G_subnetwork.vs['name'][i] 
        indices.extend(numpy.where(node==nodes_remaining[:,0])[0]) 
        indices.extend(numpy.where(node==nodes_remaining[:,1])[0]) 
        nodes_remaining = numpy.delete(nodes_remaining,(indices),axis=0) 
    # 
    counter += 1 
 
 
 
 
 
 
 
## Outputting each community to a folder with: PDB file mapping of each node; Time series 
of each node 
## Using the following variables: node_communities and corr_indices_groups (each index i 
contains a list of indices of timeseries belonging to group_i) 
## and dataLog_calpha 
membership = numpy.unique(node_communities[1:,1].astype(numpy.integer)) 
outdirSS = 'Network_communities_green_blue' 
if not os.path.exists(outdirSS): 
    os.makedirs(outdirSS) 
 
 
 
#ii=membership[0] 
for ii in membership: 
    community = 
node_communities[numpy.where(node_communities[:,1].astype(numpy.integer)==ii)[0],:] 
    outdirS = 'community_'+str(ii) 
    outdirS = os.path.join(outdirSS, outdirS) 
    if not os.path.exists(outdirS): 
        os.makedirs(outdirS) 
 
    ## Breaking the community to switches and groups 
    groups_ind = numpy.where(['group' in x for x in community[:,0]])[0] 
    community_groups = community[groups_ind,:] 
    community_switches = numpy.delete(community,(groups_ind),axis=0) 
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    ## Mapping into the PDB of each group 
    # Reading PDB 
    import MDAnalysis 
    PDB = "/home/ziedgaieb/Documents/python_scripts_development/CCR7_CCL21_charged-N-
term_Xray_110-110-130_analysis/ccr7_ccl21.pdb" 
    #Residues are ordered in alphabetic order following the charmm forcefield topology 
file 
    selectionarg1 = "(name CA)" 
 
    dist_parameters_array = numpy.asarray(dataLog_calpha) 
 
    for i in range(community_groups.shape[0]): 
        outdirgroup = outdirS 
        group_number = community_groups[i,0].split("_")[1] 
        edges = numpy.asarray([jj.split("::") for jj in 
dist_parameters_array[corr_indices_groups[int(group_number)]]]) 
        filename = '~group_'+str(group_number)+'_edges'+'.pdb' 
        savepath = os.path.join(outdirgroup, filename) 
        pdb = MDAnalysis.Writer(savepath, multiframe=True) 
        for j in range(edges.shape[0]): 
            u = MDAnalysis.Universe(PDB) 
            resnum1 = edges[j][0].split("-")[1] 
            chain1 = edges[j][0].split("-")[2] 
            resnum2 = edges[j][1].split("-")[1] 
            chain2 = edges[j][1].split("-")[2] 
            selection = selectionarg1 + " and ((resid " + resnum1 + " and segid " + 
chain1 + ") or (resid " + resnum2 + " and segid " + chain2 + "))" 
            protein = u.select_atoms(selection) 
            if (abs(int(resnum1) - int(resnum2))==1): 
                protein.set_resids((int(resnum1),(int(resnum2) + 1))) 
            protein.set_names(("CA","CA")) 
            pdb.write(protein) 
        pdb.close() 
        ## Outputting timeseries plot 
        import matplotlib 
        matplotlib.use('Agg') 
        from matplotlib import pyplot as plt 
        outdir = community_groups[i,0] 
        outdirgroup = os.path.join(outdirS, outdir) 
        if not os.path.exists(outdirgroup): 
            os.makedirs(outdirgroup) 
        for j in range(len(corr_indices_groups[int(group_number)])): 
            ## plotting the contact timeseries for each group 
            dataLog_ind = corr_indices_groups[int(group_number)][j] 
            filename = dataLog_calpha[dataLog_ind]+'_timeseries.png' 
            savepath = os.path.join(outdirgroup, filename) 
            plt.figure(figsize=(40,12)) 
            plt.plot(data_calpha[dataLog_ind,:], "g.") 
            plt.rc("font",size=32) 
            plt.savefig(savepath,dpi=100) 
            plt.close() 
 
    ## PDB mapping of molecular switches 
    #outdir = "molecular_switches" 
    #outdirgroup = os.path.join(outdirS, outdir) 
    #if not os.path.exists(outdirgroup): 
    #    os.makedirs(outdirgroup) 
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    selectionarg1 = "((resname ALA and name CB) or \ 
    (resname ARG and name CZ) or \ 
    (resname ASP and name CG) or \ 
    (resname ASN and name CG) or \ 
    (resname CYS and name SG) or \ 
    (resname GLN and name CD) or \ 
    (resname GLU and name CD) or \ 
    (resname GLY and name CA) or \ 
    (resname HIS and name CG) or \ 
    (resname HSE and name CG) or \ 
    (resname HSD and name CG) or \ 
    (resname HSP and name CG) or \ 
    (resname ILE and name CG1) or \ 
    (resname LEU and name CG) or \ 
    (resname LYS and name NZ) or \ 
    (resname MET and name SD) or \ 
    (resname PHE and name CG) or \ 
    (resname PRO and name CG) or \ 
    (resname SER and name OG) or \ 
    (resname THR and name CB) or \ 
    (resname TRP and name CE2) or \ 
    (resname TYR and name CG) or \ 
    (resname VAL and name CB))" 
 
    community_switches_tmp = [jj.split("_")[0] for jj in community_switches[:,0]] 
    edges = numpy.asarray([jj.split("::") for jj in community_switches_tmp]) 
    filename = '~community_switches_edges'+'.pdb' 
    outdirgroup = outdirS 
    savepath = os.path.join(outdirgroup, filename) 
    pdb = MDAnalysis.Writer(savepath, multiframe=True) 
    for j in range(edges.shape[0]): 
        u = MDAnalysis.Universe(PDB) 
        resnum1 = edges[j][0].split("-")[1] 
        chain1 = edges[j][0].split("-")[2] 
        resnum2 = edges[j][1].split("-")[1] 
        chain2 = edges[j][1].split("-")[2] 
        selection = selectionarg1 + " and ((resid " + resnum1 + " and segid " + chain1 + 
") or (resid " + resnum2 + " and segid " + chain2 + "))" 
        protein = u.select_atoms(selection) 
        if (abs(int(resnum1) - int(resnum2))==1): 
            protein.set_resids((int(resnum1),(int(resnum2) + 1))) 
        protein.set_names(("CA","CA")) 
        pdb.write(protein) 
    pdb.close() 
 
    ## Outputting timeseries plot 
    import matplotlib 
    matplotlib.use('Agg') 
    from matplotlib import pyplot as plt 
    outdir = "molecular_switches" 
    outdirgroup = os.path.join(outdirS, outdir) 
    if not os.path.exists(outdirgroup): 
        os.makedirs(outdirgroup) 
    for j in range(len(community_switches[:,0])): 
        ## plotting the contact timeseries for each group 
        dataLog_ind = numpy.where(dataLog_sidechain_polar==community_switches[j,0])[0][0] 
        filename = str(dataLog_sidechain_polar[dataLog_ind])+'_timeseries.png' 
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        savepath = os.path.join(outdirgroup, filename) 
        plt.figure(figsize=(40,12)) 
        plt.plot(data_sidechain_polar[dataLog_ind,:], "b.") 
        plt.rc("font",size=32) 
        plt.savefig(savepath,dpi=100) 
        plt.close() 
## 
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