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Abstract

Background: Machine learning has been used for classification of physical behavior bouts 

from hip-worn accelerometers; however, this research has been limited due to the challenges of 

directly observing and coding human behavior “in the wild.” Deep learning algorithms, such as 

convolutional neural networks (CNNs), may offer better representation of data than other machine 

learning algorithms without the need for engineered features and may be better suited to dealing 

with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation 

of a CNN model on a free-living data set and compare CNN inputs and results with the commonly 

used machine learning random forest and logistic regression algorithms.

Method: Twenty-eight free-living women wore an ActiGraph GT3X+accelerometer on their right 

hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity 

labels. The authors evaluated logistic regression, random forest, and CNN models for classifying 

sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature 

engineering for this task.

Results: The CNN classifier performed best (average balanced accuracy for bout classification 

of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic 

regression and 76% for random forest), even without performing any feature engineering.

Conclusion: Using the recent advancements in deep neural networks, the authors showed that a 

CNN model can outperform other methods even without feature engineering. This has important 

implications for both the model’s ability to deal with the complexity of free-living data and its 

potential transferability to new populations.

Keywords

ActiGraph; activity classification; activPAL; feature engineering; free living

Numerous studies have shown that sedentary behavior can be deleterious to human health. 

This research has demonstrated that even for individuals with moderate levels of physical 

activity, the overall amount and the pattern of sitting has been connected to health outcomes 

such as cardiovascular disease, diabetes, and cancer mortality (Bellettiere et al., 2019; 

Chang et al., 2020; Knaeps et al., 2018). Accurately quantifying sedentary behavior is 

the foundation of studying its relationship with health. Previously, many studies assessed 

sedentary behavior with self-reported questionnaires (Patterson et al., 2018). Due to the 

ubiquity of sitting behaviors, self-reporting of sedentary time is subject to high recall bias, 

leading to unreliable or inaccurate results in younger (Atkin et al., 2012) and older adults 

(LaMonte et al., 2019).

There is increasing interest among researchers and health care providers in objective 

methods for measuring sedentary time and patterns; such measurements have been most 

commonly achieved using hip-worn accelerometers. In a review of 46 studies of sedentary 

behavior using objective measurement methods, 34 utilized a hip-worn accelerometer; 31 

out of these 34 used an ActiGraph device (Powell, Herring, Dowd, Donnelly, & Carson, 

2018). Objective measurement of an adult’s sedentary time from hip-worn accelerometers is 

most often quantified using a cut-point-based threshold of <100 counts/min that is applied to 

Nakandala et al. Page 2

J Meas Phys Behav. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the vertical axis (Migueles et al., 2017), even on triaxial accelerometers. While this approach 

has good accuracy for measuring the total amount of time spent sedentary, it misclassifies 

standing without ambulation and vehicle sitting, and is inaccurate for measuring sit-to-stand 

transitions and other sitting pattern metrics (Barreira, Zderic, Schuna, Hamilton, & Tudor

Locke, 2015; Carlson et al., 2019).

The desire for more accurate measurement of free-living behavior has led to alternate data 

processing techniques, such as machine learning (ML) algorithms. Numerous studies from 

the computer science domains have demonstrated the utility of ML methods for successful 

human activity recognition from sensor and accelerometer data (Ramasamy Ramamurthy & 

Roy, 2018). In a recent review focused specifically on ML models for predicting type, class, 

and intensity of physical/sedentary activity domains using data acquired from a single body

fixed accelerometer, 62 studies were identified as using a variety of ML models, including 

artificial neural networks (32), support vector machines (18), random forest (RF) (12), 

decision trees (11), and logistic regression (LR) (7) (Farrahi, Niemelä, Kangas, Korpelainen, 

& Jämsä, 2019). Farrahi et al. noted that most of the studies included in the review trained 

ML models on laboratory or prescribed activity data sets, leading to high accuracy levels. 

However, once algorithms are applied to free-living populations, accuracy rates fall below 

80% accuracy thresholds (Farrahi et al., 2019). Possible reasons for this include skew of 

behaviors of interest in natural settings (e.g., very few transitions or stepping behavior 

compared with sedentary time) and data exclusion from laboratory-based data sets of messy 

or nonclassifiable behaviors, which are often abundantly present in free-living data (Bastian 

et al., 2015; Sasaki et al., 2016). It is becoming increasingly apparent that in order for ML 

algorithms to become more generalizable, they will need to be trained and calibrated on 

free-living populations that can provide continuous and multiday data in order to adequately 

account for a diversity of behaviors as well as to obtain enough data to potentially balance 

class types (Keadle, Lyden, Strath, Staudenmayer, & Freedson, 2019; Kerr et al., 2018).

Research on the application of deep learning methods to human activity recognition is 

showing promising results in computer science domains, which may translate into improving 

the flexibility and generalizability of activity classification (Nweke, Teh, Al-Garadi, & 

Alo, 2018; Wang, Chen, Hao, Peng, & Hu, 2019). Two main types of deep models have 

been applied in activity recognition: convolutional neural networks (CNNs) (Krizhevsky, 

Sutskever, & Hinton, 2012) and long short-term memory models (Guan & Plötz, 2017). The 

hallmark feature of deep neural network models is their ability to learn relevant features 

without relying on hand-engineered features (e.g., researcher processed features, such as 

mean vector magnitude), which can take considerable data processing and development 

time, potentially introduce bias, and make the generalizability of an algorithm to new 

populations challenging. The ability to learn relevant features is particularly useful for 

accelerometer data in free-living settings (relative to laboratory settings) due to the 

variability and complexity of behavior during free-living. CNNs have been shown to excel 

at adapting to new data sets, opening up possibilities for reducing the need for ML models 

to be trained for each new cohort or context (Rokni, Nourollahi, & Ghasemzadeh, 2018; 

Saeedi, Norgaard, & Gebremedhin, 2018). These aspects of CNNs make them a good ML 

candidate for identifying physical behaviors in free-living populations as well as offering 

flexibility in transferring developed CNNs from one population to another.
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The objective of this study was to develop a modeling pipeline to evaluate a CNN model on 

a free-living data set of 28 individuals and compare CNN results with the commonly used 

ML RF and LR algorithms. We built off of previous work that developed an RF classifier for 

estimating sedentary time using several engineered features (Kerr et al., 2018), and in this 

study, we detailed considerations and steps for application of a CNN model to the same data 

set, comparing the use of engineered and raw features. Our goal was to differentiate sitting 

postures from upright postures (sitting, standing, and stepping) in raw triaxial accelerometer 

data obtained from hip-worn accelerometers during free-living for a 7-day period during 

waking hours. Ground truth activity labels were produced from a thigh-mounted activPAL 

device (PAL Technologies, Glasgow, Scotland, United Kingdom), which contains starting 

and ending events of standing, stepping, and sitting. ActivPAL has been shown to be a good 

measure of sitting time and of sit–stand transitions and has been used in previous studies for 

ground truth posture labeling (Barreira et al., 2015; Carlson et al., 2019; Kerr et al., 2018; 

Powell et al., 2018).

Methods

Data

Data for this study were collected from women (mean age = 62.7 years, SD = 7.3 

years) enrolled in a cross-sectional study of sedentary behavior and breast cancer–related 

biomarkers among breast cancer survivors. Eligible participants were women diagnosed with 

Stages I–III breast cancer within the past 5 years who had completed active treatment (e.g., 

radiation, chemotherapy) and were fluent in English. Women were excluded if they had a 

primary or recurrent invasive cancer within the last 10 years (other than nonmelanomic skin 

cancer or carcinoma of the cervix in situ), were over 85 years of age, recently had bariatric 

surgery, were taking insulin or corticosteroid medications, or were diabetic (Hartman et al., 

2018). All participants provided written informed consent, and ethical approval was obtained 

from the institutional review board of University of California, San Diego.

Data collection included two accelerometers (hip ActiGraph and thigh-worn activPAL). 

While all 30 participants had hip accelerometer data, two participants did not have thigh 

accelerometer data, and the final n for the study was 28. Participants wore an ActiGraph 

GT3X+ accelerometer device (ActiGraph LLC, Pensacola, FL) on a belt on the hip for 

7 days during waking hours for an average of 854 min/day (SD of 46.7 min). Raw 

accelerometer data were collected in a time series format recorded at a 30-Hz frequency 

on three axes. Participants also wore the activPAL triaxial accelerometer (PAL Technologies 

Ltd., Glasgow, Scotland) on the anterior aspect of the thigh over the same 7-day period. 

Event files were output from activPAL software (version 7.2.32; PAL Technologies) as a 

time series with starting and ending times of sitting, standing, and stepping bouts. GT3X+ 

and activPAL data were time-stamp matched to create one output file at the resolution of 

30 Hz for each user. The lower resolution activPAL data were repeated to match the higher 

resolution GT3X+ data, resulting in 9,239,038 s of concomitant activPAL and ActiGraph 

data across all participants and days. Periods of nonwear time greater than 60 s were 

identified using the Choi algorithm applied to the ActiGraph data (Choi, Ward, Schnelle, 
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& Buchowski, 2012). Nonwear time was then removed from the combined (activPAL and 

ActiGraph) output file.

Exploratory Analysis—ActivPAL Data

Exploratory data analysis of the activPAL data was conducted prior to setting up ML models 

in order to assist with modeling decisions. Time distributions of the three activity types 

(sitting, standing, and stepping) were evaluated in aggregate (across participants and days) 

and distribution (Figure 1). Figure 1a shows a large skew between the three activity types. 

Sitting accounted for an average of 57% of total activity time, while stepping accounted for 

13%. Box plots of the activity types (Figure 1b) showed large variations in the bout times of 

the activities. The median bout times were more than 2 min for sitting, 14 s for standing, and 

7 s for stepping. Furthermore, 18% of stepping bouts and 16% of standing bouts were less 

than 3 s long. Figure 1 illustrates a cohort that did significantly more sitting than standing or 

stepping, often for longer periods that did not involve many transitions between sitting and 

standing.

Further data exploration was conducted by visualizing the raw accelerometer data. Figure 

2 demonstrates eight random 5-s time windows of accelerometer instances for the three 

activPAL activity classes. Overall, variation in the accelerometer data was low for sitting and 

standing and high for stepping activity, as expected. However, outliers in these patterns were 

apparent, such as the fifth example of sitting, which has high variation and is unlikely to be 

a true sitting instance. Similarly, the second example of standing exhibits no variation and 

is unlikely to be a standing instance. These examples of discrepancies between the GT3X+ 

data and activPAL activity labels demonstrate the unique challenge for classifying activities 

in free-living compared with the laboratory data commonly used in the literature.

The exploratory data analysis provided information for decision points in the remaining 

analysis, which had to account for: (a) the highly skewed nature of the data toward sitting 

time, (b) high variation among bout times of different activities in which sitting occurred for 

longer periods than stepping or standing, (c) unreliability of very small bout times, and (d) 

the need for a filtering procedure to remove highly unlikely activPAL labels.

Prediction Time Window

The time window was used to extract windowed input from the time series data for feature 

engineering and to be fed into the ML algorithm. In the literature, different temporal window 

(or input context) sizes have been used, ranging from 1 to 60 s (Farrahi et al., 2019). In 

selecting a time window size, we considered activity bout times in the data set (which were 

small for stepping and standing bouts) and confidence in activPAL labels for very small 

bout times. More than 80% of activity bouts in the data set had bout times greater than 3 s; 

therefore, we selected a sliding window of 3 s (3 × 30 = 90 data points) as our input context, 

which also served to reduce noise from bouts smaller than 3 s. The sliding window approach 

was applied to a continuous stream of input data, called segments, in order to extract the 

input contexts. Within these segments, the sliding window may map into regions in which 

the activPAL ground truth label is not the same; in other words, the window is entering into 

a transition with another label. Because the sliding window is small, we filtered out these 
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border cases and considered only the time windows for which the ground truth label was 

consistent in the window. In total, 3.4% of the total data set was removed in filtering border 

cases.

Filtering

Filtering consisted of two steps: gravity removal and unlikely label removal. Participants 

were not instructed on which way (up or down) to wear the accelerometer, resulting in 

discrepancies in the orientation of the accelerometer between participants. Separating out the 

gravity component from the accelerometer signal helped to determine the orientation of the 

accelerometer device, which could be different for the same person for different moments 

and between different people. Gravity filtering was performed by applying a low-pass filter 

on the time series data as shown in the following algorithm, as notated using pseudo code. 

The algorithm took in an input accelerometer window acc ∈ Rn*3, where n is the number 

of time steps in the window. For a 3-s input window, n is equal to 90 (30 × 3). Removing 

the gravity components transforms all axial acceleration components to the same scale and 

amplifies the local changes in the signal. Figure 3 shows examples of sitting, standing, and 

stepping activities before and after removing the gravity components from the accelerometer 

signal.

Algorithm:

Remove Gravity Component

1: procedure RemoveGravity(acc)

2:  α = .9

3:  temp ←ZEROS(acc.shape)

4:  temp[0, :] = (1 −α) * acc[0, :]

5:  for k ← 2 to acc.shape[0] do

6:   temp[k, :]←α× temp[k − 1, :] + (1 −α) * acc[k, :]

7:  gravity ←MEAN(temp, axis = 0)

8:  for k ← 1 to acc.shape[0] do

9:   acc[k, :]←acc[k, :] – gravity

10:  return acc, gravity

The second step in filtering removed unlikely activPAL labels for sitting, standing, and 

stepping, in line with the previously discussed visual inspection (e.g., Figure 2, Window 

5 for sitting and Window 2 for standing). Wrong labels incorporate more noise into the 

ML models and hinder their learning and generalization capabilities. Therefore, we removed 

likely false labels using a simple heuristic. If a person is standing or stepping, the chances of 

the SD of their total acceleration v = x2 + y2 + z2  being close to zero is very low. Input 

time windows with labels corresponding to standing or stepping activities with an SD≤ 10−4 

were removed.
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Feature Engineering

Increased discriminative power, reduction of noise, and removal of gravity can be 

achieved from feature engineering and extraction of triaxial accelerometer data. Removal 

of gravity helps to account for orientation mismatches between devices and acts as a data 

standardization step. In this study, we employed a feature engineering procedure for each 

3-s window utilizing our group’s previously developed and well-documented procedures, 

resulting in a total of 41 feature vectors (Ellis, Godbole, et al., 2014; Ellis, Kerr, et 

al., 2014; Kerr et al., 2016). Engineered features were divided into two main groups: 

time-domain features and frequency-domain features. Time-domain features included mean, 

SD, and percentiles, and frequency-domain features included entropy and power of certain 

frequencies, which were obtained by performing fast Fourier transform over the temporal 

window. All engineered features are listed and described in Supplementary Table 1 

(available online). Engineered features were standardized into a (−1, 1) scale.

ML Models

Three model sets were run (LR, RF, and CNN) for the purpose of classifying sitting, 

standing, and stepping activities. For all models, a train–validation–test split of 60–20–20 

percentages was used. The split was based on individual users (16 users were selected 

as training data and six users each were selected as validation and test data) rather than 

sampling from the data pool of all users in order to allow for generalization to unseen users 

in the future. Models were trained to predict ground truth (activPAL) labels in independent 

3-s intervals, thus ignoring the ordered time sequence and potential dependency across time 

intervals.

Hyperparameters are model-specific configurations that cannot be directly learned from the 

data, while parameters can be learned from the data. Hyperparameters are manually tuned 

until the model with the best prediction accuracy is found. The training data set is used to 

estimate the parameters of a model for pre-specified hyperparameters, a validation set is 

used to find the best hyperparameters among the set of all hyperparameters used, and the 

test set is used to estimate the accuracy of the final model and hyperparameter selected. 

For tuning the hyperparameters in the models, the validation data set was used. Balanced 

accuracy rate (BAR) was chosen to be the performance metric for the study due to the 

significant activity class skew in the data set. BAR is the proportional average of accuracy 

in each category or class. Accuracy is the proportion of correctly classified instances out 

of the total. BAR is preferred over regular accuracy if the data are imbalanced. Results 

report BARs for training, validation, and test data sets for all the hyperparameters evaluated, 

and the test accuracy corresponding to the model that had the best validation accuracy was 

selected as the final accuracy metric for comparison. Classification reports were generated 

for the best model with precision, recall, and leave-one-out validation results. Precision 

is the proportion of correctly classified instances out of the predicted instances for each 

respective class. Recall is the proportion of correctly classified instances out of the actual 

or ground truth instances for each respective class. Leave-one-out cross-validation accuracy 

is estimated by training the model on all participants except one; the data of the participant 

who is left out are used as a test set. This process is repeated for all participants and 
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the average accuracy of all the left-out participants is the leave-one-out cross-validation 

accuracy.

Our baseline model utilized an LR model, which was run using the scikit-learn (version 

0.20.0) ML library in Python (version 2.7; Python Software Foundation, Fredericksburg, 

VA). Because the problem was a multiclass classification problem, we used multinomial 

logistic loss as the loss function. We used L2 regularization and tuned the model parameters 

using a validation data set. When feeding in raw data, triaxial accelerometer data in the 

3-s window were flattened to produce a one-dimensional (1D) feature vector, which did not 

preserve the time series information. Flattening can be thought of as representing a matrix in 

row major order. The LR model was run on raw data (with and without removing the gravity 

component) and using engineered features.

The second model was an RF model, which was also run using scikit-learn. RF models 

are classifiers with high representational power compared with simpler linear models like 

LR. Thus, they have more learning and generalization capability. However, if not properly 

regularized, they tend to overfit for the training data due to their high representational power. 

The RF model used in this study had 100 trees and was regularized by setting the maximum 

depth of the trees, which we tuned by using a validation data set. The RF model was run 

on raw triaxial accelerometer data (with and without removing the gravity component) and 

using engineered features.

The third model was a CNN model. CNNs are a specialized form of neural network that 

excel at exploiting the spatial locality of information among features, such as relationships 

between neigh-boring pixels in images. Therefore, they have yielded near-human accuracy 

on benchmark image classification tasks, such as ImageNet (Krizhevsky et al., 2012). This 

same notion of locality of information can also be applied to the time domain, with temporal 

patterns resembling pixel variations. The dimensionality in this application is reduced from 

a two-dimensional (2D) spread of pixels to a 1D spread of time series values. Thus, such 

CNNs are also called 1D CNNs.

We trained a 1D CNN on raw accelerometer data as well as gravity component–removed 

accelerometer data. The CNN model had 6 layers, including convolution, pooling, dropout 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014), fully-connected, and 

softmax layers. The architecture of the CNN model is detailed in Supplementary Table 2 

(available online). For dropout layers, a keep probability of .5 was used, and cross entropy 

loss was deployed as the loss function for training. To account for the significant class 

skew present in the data, we modified the cross entropy loss by multiplying it with values 

proportional to the class frequencies per the following equation, where Il(.) is the indicator 

function, and αl is a value proportional to the class frequencies of label l.

Loss = ∑
x ∈ X, y ∈ Y

∑
l ∈ Labels

αl × ll(y, l) × log[P (l = y ∣ x)]

The CNN model was trained on the complete data set using back propagation and the 

Adam optimizer for 15 iterations (Kingma & Ba, 2015). The learning rate was tuned using 
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a validation data set. Furthermore, we drew on recent work on wide and deep networks, 

which combined learning from deep neural networks and structured or engineered features, 

to generate a modified version of our CNN model called Wide-CNN (Cheng et al., 2016). 

Wide-CNN essentially augments the CNN model by concatenating the flattened Pooling5 

features with the previously described hand-engineered features and adds two more fully 

connected layers. The architecture of the wide-CNN model is shown in Supplementary 

Figure 1 (available online). This model was trained like the original CNN model, and 

the learning rate was tuned using a validation data set. The final wide-CNN model 

and test dataset are available through the Github repository github.com/ADALabUCSD/

DeepPostures.

Experimental Setup

All experiments were run in a single node machine on CloudLab, a free and flexible cloud 

for research. The machine had two Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz, 192 

GB RAM (Intel, Santa Clara, CA), and one Nvidia P100GPU (Nvidia, Santa Clara, CA). For 

training the LR and RF models, we used scikit-learn (version 0.20.0), and for training the 

CNN models, we used TensorFlow (version 1.9.0; Google, Mountain View, CA) with GPU 

support. Training of the RF model and feature engineering steps were parallelized to use all 

available cores in the machine. Runtimes for each experiment were as follows: LR model 

on raw features, 65 s; LR model on engineered features, 255 s; RF model on raw features, 

292 s; RF model on engineeredfeatures,202s;CNNmodelonrawfeatures,1,035s;CNN model 

on engineered features, 1,224 s; and feature engineering, 420 s.

Results

Ground Truth Activity Measures

On average, over the 7 days of wear time, participants engaged in 452.9 min of sitting 

per day, 231.7 min of standing, and 93.5 min of stepping. Participants wore devices for an 

average of 778.1 min per day.

Logistic Regression and RF Models

Results for the LR model are displayed in Table 1. Both the LR and RF models 

were evaluated with raw features, raw features after removing the gravity component, 

and engineered features. For tuning the L2 regularization factor, four different values 

were evaluated (0.1, 0.2, 1, and 10). The model with engineered features significantly 

outperformed the raw feature and gravity-removed feature models, with the highest BAR 

value at 0.76 for the L2 regularization value of 1. Results for the RF model are shown in 

Table 2. The tree depth was evaluated for four different values (20, 40, 60, and 80). For the 

RR model, BAR values across the three models were more similar than for the LR model, 

with all reaching values in the 0.7 range. The highest BAR (0.79) was achieved by the 

engineered features model with a tree depth of 20.

CNN Model

Results for the CNN and wide-CNN models are displayed in Table 3. The CNN model was 

evaluated with raw features and raw features with gravity removed, while the wide-CNN 
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combed raw features with engineered features. Four learning rate values were evaluated 

for all models (0.01, 0.001, 0.0001, and 0.00001). All CNN models performed well, with 

most achieving BAR values higher than 0.8. The best performing model was the CNN 

with gravity removed features at a learning rate of 0.0001, with a BAR result of 0.84. 

Classification statistics were calculated for the CNN with gravity removed features, because 

it was the best performing model. Precision values for the three activities (sitting, standing, 

and stepping) were 0.93, 0.78, and 0.72, respectively, with an average precision value of 

0.81. Recall values were 0.92, 0.74, and 0.86, respectively, with an average recall value 

of 0.84. F1-Scores (harmonic mean of precision and recall) were 0.93, 0.76, and 0.78, 

respectively, with an average of 0.82. Finally, accuracy values were 0.92, 0.74, and 0.85, 

respectively, with an average value of 0.84. Confusion matrix results for prediction events 

(3-s windows) (Table 4) showed that sitting was misclassified as standing 15.7% of the time 

and as stepping at a rate of 3.1%. Standing was misclassified as sitting 6.7% of the time and 

as stepping at a rate of 31.0%. Stepping was misclassified as sitting 0.2% of the time and 

as standing at a rate of 4.6%. Leave-one-out cross-validation accuracy was performed on the 

CNN with gravity removed features model for each individual using a fixed learning rate of 

0.0001. The maximum BAR was 0.93, the minimum was 0.67, and the average was 0.84.

Discussion

The results provide several insights into the task of identifying activities from accelerometer 

data using different types of ML models. The LR model on raw accelerometer features 

performed poorly, yielding a BAR of 0.47, which was marginally better than a trivial 

random baseline classifier accuracy of 0.33. Even removing the gravity component from 

the accelerometer data did not improve the prediction accuracy. However, when engineered 

features were introduced, the accuracy was boosted to 0.76, demonstrating the benefit of 

performing feature engineering. From these results, we can conclude that raw accelerometer 

features are not easily linearly separable, and the transformation performed by feature 

engineering makes the features more linearly separable. Results in Table 1 show that the 

accuracy of the LR model was not sensitive to the L2 regularization parameter. The training 

and test accuracies were also comparable, indicating that there was not much overfitting. It 

is also important to note that out of all the models, the LR is the most interpretable. Analysis 

of the corresponding coefficients of the learned model showed that the highest contributing 

feature for identifying sitting and stepping activities was the power of the 1 Hz frequency 

in the frequency domain. For standing, the highest contributing feature was the SD of the 

vector magnitude of the triaxial acceleration. For the RF models, the top three features were 

roll, pitch, and mean of vector magnitude of the triaxial acceleration.

Unlike the LR model, the RF model performed well even with the raw accelerometer 

features, yielding a balanced accuracy of 0.73. Removing the gravity component increased 

the accuracy by 3%, and using engineered features improved the accuracy up to 0.79. The 

relative better performance of the RF over the LR model can be attributed to the high 

representational power of the model. However, Table 2 shows how the RF model overfits 

to the training data, resulting in perfect classification for some tree depths. Regularization 

of the model by limiting the tree depth is important for improving generalization capability. 
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However, the test accuracy dropped with regularization, suggesting that more labeled data 

would be needed to mitigate this overfitting.

The CNN model outperformed the other two models even without using engineered 

features (raw accelerometer BAR = 0.83, raw accelerometer without gravity component 

BAR = 0.84). Augmenting the CNN model with engineered features using the wide-CNN 

architecture did not improve the accuracy. This could be because the CNN model already 

learned 19 relevant features automatically and including engineered features did not provide 

new information. Table 3 shows that the CNN models were sensitive to the learning rate 

parameter.

For training 15 iterations, a learning rate of 10−3 yielded the best accuracy for the CNN 

model with raw features and wide-CNN. A learning rate of 10−4 yielded the best accuracy 

for the CNN model with raw features without gravity. Learning rates that were too low or 

too high resulted in suboptimal final accuracies, showing the importance of hyperparameter 

tuning when training complex neural network ML models. Confusion matrix results showed 

that the CNN gravity removed model performed well for identifying sitting/stepping 

activities but moderately for identifying sitting activities. Precision, recall, and F1-score 

for sitting were high; however, standing and stepping activities had relatively low precision. 

Standing also had a low recall, while stepping had a better recall value. The model struggled 

most with identifying standing activities, which can be partially explained by Figure 2, 

in which standing raw accelerometer data at times looks like sitting and other times like 

stepping.

Because the sample size was small in this data set, it was computationally feasible to further 

evaluate the generalization capability of the CNN model by performing leave-one-out cross 

validation. The results for balanced test accuracies showed that most participants performed 

well, with an average BAR of 0.84. All participants performed over 0.75, except for one 

participant who had a BAR value of 0.67. However, note that the training accuracy was only 

at 0.86, unlike the RF. This suggests that amplifying the representation power of the CNN 

by making it deeper and larger could be beneficial, under the caveat that it may lead to more 

overfitting unless there is enough labeled data. We leave such exploration to future work.

Conclusions

This study evaluated the effectiveness of several ML methods, including CNNs, for the task 

of identifying activity classes from hip-worn accelerometer data in a free-living sample of 

28 women. We employed the thigh-worn activPAL to specify the true labels, which has 

been shown to be similar to gold standard observations in previous studies (Steeves et al., 

2015). However, hip or wrist accelerometry is still the most often utilized form of activity 

measurement in research studies. There is a need to improve not only accuracy/precision 

of activity classification from hip-worn accelerometer data but also the generalizability of 

generated models to other populations and contexts (Farrahi et al., 2019). Using the recent 

advancements in deep neural networks, we showed that a CNN model can outperform other 

methods, and, furthermore, it can do this without any feature engineering. The ability of 

these models to significantly reduce data processing time because of their ability to learn 
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features from the data itself is a key advantage of CNNs over previously utilized machine 

learned models. Furthermore, these models have been shown to be highly generalizable to 

new populations (Rokni et al., 2018).

Ensuring accurate classification of free-living data with minimal feature engineering 

through researcher engagement can allow for larger data sets to be analyzed, with better 

quantification of dose–response relationships between behaviors and health. An important 

next step in this research will be to independently validate the developed CNN model in a 

different population in order to test its generalizability. Another avenue of future research 

will be to apply combined CNN and long short-term memory models, which explicitly 

model the sequence information of the data. Previous research has shown that machine 

learning models have difficulty in identifying activity transitions, particularly in free-living 

data (Kerr et al., 2018). The application of a combined unstructured and structured ML 

model may be able to derive improvements for classification of activity transitions.

Limitations of the study include the small sample size. A larger sample will be especially 

important for assessing ML approaches in identifying transitions (such as sit to stand), 

because there tend to be much fewer occurrences of transitional behaviors in free-living 

populations compared with sitting, standing, and moving. Another limitation was a lack 

of sufficiently rich temporal features in the engineered data, which may contain useful 

information for predicting what behavior is most likely to be next within a sequence. In 

future studies, we will explore the utility of time as a feature in the models by combining 

CNN and long short-term memory models, which explicitly model longer-term temporal 

information in the data. A significant limitation of the current study was the exclusion of 

transitions. Algorithms for identifying behaviors in free-living populations must include 

identification of transitions from one behavior to another. Future development of the CNN 

model will focus on transition periods in order to allow for application in large free-living 

cohort studies.

Based on our findings in this free-living population, CNN models are a possible tool for 

dealing with the complexity of free-living data; however, future work focused on transitions 

is needed. Work in the computer science domain and even public health has relied to a large 

extent on laboratory or activity prescribed data sets. While these data offer clean examples 

of activities with messier transitions often removed, they may provide overly optimistic 

accuracy values for algorithms that then fall in accuracy statistics when applied to free-living 

data (Farrahi et al., 2019). This study provides compelling results for the ability of CNNs to 

adapt to free-living data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 —. 
(a) Mean time and (b) box plot distribution of bout time durations for the three activities 

(horizontal line in box is median level) aggregated across participants and days.
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Figure 2 —. 
Visualization of a random sample of GT3X+ 5-s windows in activPAL classified sitting, 

standing, and stepping bouts.
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Figure 3 —. 
Accelerometer data in 5-s windows for the postures sitting (left), standing (middle), and 

stepping (right) in original format (top row) and after removing the gravity component 

(bottom row).
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Table 1.

Logistic Regression model results. All accuracy measures are balanced accuracies (BAR).

Raw Features Raw Features w/o Gravity Engineered Features

L2 
Reg

Train 
Acc.

Valid 
Acc.

Test 
Acc.

L2 
Reg

Train 
Acc.

Valid 
Acc.

Test Acc. L2 
Reg

Train 
Acc.

Valid 
Acc.

Test 
Acc.

10 0.4651 0.4249 0.4689 10 0.4670 0.4251 0.4699 10 0.7481 0.7313 0.7543

1 0.4654 0.4243 0.4692 1 0.4669 0.4251 0.4699 1 0.7485 0.7318 0.7550

0.2 0.4657 0.4245 0.4692 0.2 0.4669 0.4251 0.4699 0.2 0.7485 0.7317 0.7549

0.1 0.4656 0.4245 0.4699 0.1 0.4669 0.4251 0.4699 0.1 0.7483 0.7317 0.7548
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Table 2.

Random Forest model results. All accuracy measures are balanced accuracies (BAR).

Raw Features Raw Features w/o Gravity Engineered Features

Tree 
Depth

Train 
Acc.

Valid 
Acc.

Test 
Acc.

Tree 
Depth

Train 
Acc.

Valid 
Acc.

Test 
Acc.

Tree 
Depth

Train 
Acc.

Valid 
Acc.

Test 
Acc.

20 0.8035 0.7052 0.6941 20 0.8706 0.7442 0.7325 20 0.9220 0.7921 0.7856

40 0.9613 0.7462 0.7309 40 0.9991 0.7715 0.7615 40 0.9998 0.7895 0.7830

60 0.9959 0.7475 0.7342 60 0.9998 0.7713 0.7606 60 1.0000 0.7896 0.7822

80 0.9991 0.7472 0.7337 80 0.9999 0.7710 0.7607 80 1.0000 0.7895 0.7824

J Meas Phys Behav. Author manuscript; available in PMC 2021 August 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nakandala et al. Page 21

Table 3.

Convolutional Neural Network (CNN) and Wide-CNN model results. All accuracy measures are balanced 

accuracies (BAR).

CNN - Raw Features CNN - Raw Features w/o Gravity Wide-CNN - Raw w/o Gravity + Engineered 
Features

Learn 
Rate

Train 
Acc.

Valid 
Acc.

Test 
Acc.

Learn 
Rate

Train 
Acc.

Valid 
Acc.

Test 
Acc.

Learn 
Rate

Train 
Acc.

Valid 
Acc.

Test Acc.

10−2 0.7952 0.7390 0.7516 10−2 0.7912 0.7376 0.7539 10−2 0.7907 0.7814 0.7898

10−3 0.8677 0.8411 0.8336 10−3 0.8690 0.8425 0.8355 10−3 0.8638 0.8245 0.8256

10−4 0.8638 0.8401 0.8141 10−4 0.8686 0.8495 0.8406 10−4 0.8765 0.8235 0.8350

10−5 0.8365 0.7963 0.8042 10−5 0.8385 0.8262 0.8262 10−5 0.8499 0.8215 0.8082
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Table 4.

Confusion matrix of actual and predicted activities (per 3-second window) corresponding to the best CNN 

model trained on raw features w/o gravity.

Predicted Activity

Sitting Standing Stepping

Actual Activity

Sitting 339223 26617 1881

Standing 24722 125625 19109

Stepping 858 7878 52824
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