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ABSTRACT OF THE DISSERTATION 

 

Theoretical Study of Electron Transfer in  

Organic Solar Cells 

 

By 

 

Randa Reslan 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2015 

Professor Daniel Neuhauser, Chair 

 

Organic solar devices can provide a cheaper alternative to the current silicon-based solar cell 

devices. The main disadvantage of organic photovoltaic is their low efficiency. Therefore 

there is a great need to better understand the mechanism of electron transfer in order to 

improve the efficiency of these devices. The main goal in my dissertation is to find a more 

accurate measure of electron transfer in these devices. I have been using theoretical methods 

to study electron transfer in fullerene derivatives, a common component of organic solar 

devices.  

One such method that we have investigated is time-dependent split (TD-Split) to study A to 

B electron transfer by a TD evaluation of the lowest energy transition from the ground state 
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of the combined (AB)- system.  

Another method that we have developed is the time-dependent ZINDO method (TD-

ZINDO) to study absorption. ZINDO is a useful theoretical tool for systems of interest due 

to its capacity to handle large systems within reasonable times. We were able to perform 

explicit time calculations with a minimal basis set. The results were then compared with 

higher order DFT and TDDFT results.  

We also used a DFT based method to calculate the charge transfer between very large 

solvated organic dimers like fullerenes from isolated dimer calculations. In this method, a 

delocalized bias is applied directly to the Fock matrix of the dimer until the extra electron is 

balanced between the two molecules in the dimers. Then the transfer rate can be calculated 

using Marcus theory. These theoretical methods differ in accuracy and speed. In my 

dissertation, I will present these different methods and compare them to each other and to 

experimental values. 
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INTRODUCTION 
 
 

There are many environmental, political, and financial reasons for the use of more renewable energy 

sources.  Solar energy in particular is available, environmentally friendly, sustainable and abundant.  

Photovoltaics (PV) are the instruments that convert solar energy into direct current electricity using 

semiconducting materials.  Inorganic photovoltaics (IPV), made from inorganic semiconductors 

such as silicon, have been studied since the 1950s and used in application since the 1960s.  On the 

other hand, organic photovoltaics (OPV) are based on organic materials which consist mainly of a 

polymer donor and a fullerene acceptor.  The most common electron acceptors in organic 

photovoltaic devices are fullerene derivatives, specifically [6,6]-phenyl-C61-butyric acid methyl ester 

(PCBM)(see Figure 0.1).  OPV devices have been getting much attention lately since they are 

inexpensive alternatives to IPV.  The efficiency of these devices has been increased in the last few 

year but it is still around 10%, almost three times less than that of the best IPVs [1-2].  

There is, therefore a great need 

to improve the efficiency of 

organic solar cells, and theory 

can be a useful tool in advancing 

that efficiency.  One major 

obstacle to such improvement is 

our general lack of 

understanding of the mechanism 

of electron transfer processes in 

!
Figure 0.1: PCBM is most common electron acceptors in 
organic photovoltaic devices 
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fullerene derivatives.  Such understanding is clearly needed in order to improve the efficiency of 

these devices. 

The main mechanism of OPV can be summarized as the following.  Upon irradiation with light, a 

photon is absorbed by the polymer producing an “exciton”.  The exciton is then separated into a 

hole and an electron.  In other words, an electron is excited from the highest occupied molecular 

orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).  Then the electron is 

transferred to the fullerene leaving a hole in the polymer.  Then the hole and the electron are 

migrated to their respective opposite electrodes and thereby generate electric current (see Figure 

0.2). 

!
There are many factors limiting the efficiency of an organic solar cell; such as insufficient photo-

absorption, low electron and hole motilities, mismatch of energy levels between donor and acceptor, 

!

!

Figure 0.2: Schematic Diagram of electron transfer process in OPV.  A photon will excite an 
electron in the donor.  The electron will transfer to the acceptor leaving a hole.  Both the 
electron and the hole will travel to the electrodes generating current. 
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and unwanted exciton recombination just to name a few [3].  Theory could, therefore be a tool to 

help us understand why some materials yield to more efficient devices than others and could be a 

predictive tool to screen materials prior to their use in actual devices. 

The main goal in the present body of work is to find a more accurate measure of electron transfer in 

OPV devices.  Since OPVs are systems of large size, there is a need to improve the computational 

description of OPV.  Static simulations have the power to study the excited states in large systems 

but at the expense of accuracy.  For example, semi-empirical quantum methods can study thousands 

of atoms and more.  However, a better way to study excited states is using time dependent methods 

which are more accurate but computationally expensive and unfeasible for large systems.   

In this dissertation, a variety of methods that we developed and used to study fullerenes are 

presented.  The methods discussed all have advantages and disadvantages, so our main purpose will 

be to find a proper balance between accuracy and speed. 

The time dependent semi-empirical methods and the other methods we use come from basic 

quantum mechanics.  The electronic property of a molecule can be calculated by solving the 

Schrodinger equation,  

!" = !", 

where ! is the Hamiltonian operator  for N electrons and M nuclei, which can be expressed as: 

! = − 1
2∇!

! − 1
2!!

∇!! −!
!

!!!

!

!!!

!!
!!"

!

!!!

!

!!!
+ ! 1

!!"

!

!!!

!

!!!
+ !!!!

!!"

!

!!!

!

!!!
. 
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Here, electrons are represented by ! and ! and nuclei are represented by A and B; r repsents the 

distance and Z the atomic charge.  The first term of H is the kinetic energy of the electrons and the 

second term the kinetics energy of the nuclei.  The third term calculates the Coulomb attraction 

between the nuclei and electrons.  The fourth term represents the repulsion between the electrons 

and the fifth the repulsion between the nuclei. 

The Schrodinger equation can be solved exactly for hydrogen and other single electron system.  As 

the systems get bigger, the solutions for the Hamiltonian rapidly become more complicated.  Many 

numerical techniques can be used to solve the Hamiltonian where each has its advantages and 

disadvantages for specific systems.   

Some of the earliest methods which attempt to solve the Schrodinger equation are   methods  which 

produce high accurate results[4].  They are manageable on small molecules.  As the system gets 

bigger, the computations become very expensive.  Hartee-Fock (HF) is an old and very common 

used ab initio method where a single-determinant approximation is used[4,5].  However ab initio 

methods are inefficient and expensive in treating large system even if the HF approximation is used 

making it limited to smaller system. 

As a result, other quantum mechanical methods were developed to improve the efficiency and 

manage bigger systems.  The most commonly used one is Density Functional Theory (DFT)[6].  As 

the name denotes it, DFT uses functional to express the Schrodinger equation as a function of 

charge density.  Originally, the Schrodinger equation is expressed as function of position of all 

electrons (N), therefore it is a function with 3N arguments since each electron has x, y, and z 

coordinates.  DFT will turn the Schrodinger equation into a function of change density, just a 

function of a single 3 dimensional coordinate, x, y, and z.  DFT approximates the correlation and 
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exchange terms of the Hamiltonian into functionals to reduce the problem into a single density.  The 

use of exchange and correlation functionals will result of a faster and more efficient DFT in 

comparison to ab initio methods.  As the same time, DFT could be less accurate.  The accuracy of 

DFT will also depend on the size of the basis sets that are used.  The bigger basis sets will give more 

accurate results but are more computationally costly.  Therefore DFT is accurate and efficient for 

small molecules but it will become very expensive for large molecules.  Using smaller basis sets will 

result more efficient calculation, which handle bigger systems, but are less accurate. 

An approach that can handle large molecules is semi-empirical methods such as PM3 and ZINDO.  

In semi-empirical methods, some pieces of information (such as two-electron integrals) are 

approximated or omitted.  Therefore this method uses parameters that are obtained from direct 

measurements or by fitting the calculation to experimental results to correct this loss of information.  

The results of this method are fitted to experimental data or ab initio results.  Since fitting the 

interactions is done using a minimal basis set, the parameterizations are more accurate than ab initio 

methods with small basis sets.  In semi empirical methods, electron-electron interactions are 

considered but the matrix elements are parameterized.  Semi-empirical methods use the frozen core 

approximation where the nuclei with the inner-shell electrons are treated as one unit.  The frozen 

core interactions are calculated once.  Therefore the electron-electron calculations are simplified 

since they will only include the valence electrons.  These methods can handle large molecules very 

efficiently and can be more accurate than ab initio methods with smaller basis sets. 

The semi-empirical methods that are mostly used throughout this dissertation are Parametric Model 

3 (PM3) and Zerner’s Intermediate Neglect of Differential Overlap(ZINDO).  These methods like 
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any other semi-empirical method are very fast, can be used on large molecules and can be accurate 

when used on molecules that are similar to the molecules used in parameterization. 

PM3 method uses the Modified Neglect of Diatomic Orbitals method (MNDO).  In this method, 

the exchange and Coulomb integrals are considered between two different centers and the integrals 

between three or four centers are omitted.  Therefore, parameters were developed to account for the 

absence of these integrals.  The total molecular electronic energy, E is calculated as 

! = 1
2 !!"(!!" + !!")

!!
. 

P is the density function, H is the core Hamiltonian matrix, and F is the Fock matrix.  The core 

Hamiltonian is expressed as !!" .  The following equation represents terms in the diagonal of the 

Fock matrix since the electron in the same orbital in the same atom A. 

!!!! = !!!! + !!!!! !!
!

!

Here,!U is the kinetic energy of the electron and !!!!represents the attraction between an electron in 

atom A and the core of atom B.  Simply, !!" the interactions between electrons in the same atom 

but on different orbitals with the core of the other atom B, is: 

!!" = !!"!! !.
!

!

Finally, !!" describes the interaction between electron in different atoms A and B. 

!!" = !
! (!!!

! + !!!! )!!",!

where ! is the specific parameter that is associated each orbital, ! and S is the overlap matrix.  

Initially the density matrix. P is approximated as equal to the overlap matrix, S; then the Fock matrix 

is solved. The density matrix is then updated using the eighenvectors of the Fock marix. This 
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process is repeated until the electronic energy is converged or a tolerance level of density matrix 

variation is reached. 

ZINDO is an improvement of INDO to cover wider range of elements, which was developed by 

Zerner and others.  In ZINDO, only the valence electrons are treated, which is done via semi-

empirical one-body (i.e., nuclear and core) parameters ℎ!"  and two-body interaction parameters 

!!"#$ , which are fit to experimental data, 

!!" = !ℎ!" + !!"#$
!"

!!" , 

! is the density matrix in the atomic orbital basis.  Unlike Hartee-Fock and DFT, the interaction 

parameters are restricted to at most two-center.   

Time Dependent-Density Functional Theory, TD-DFT, is an improvement of DFT that is much 

more accurate for excitation states[4-5,7].  It combines DFT with the time-dependent Schrodinger 

equation.  The increase of accuracy of TD-DFT is the result of including polarization.  As a result, 

TD-DFT is very expensive and becomes more costly as the size of the system increases.  To increase 

the efficiency and accuracy, a linear response approach can be used with an efficient time evolution 

of TD-DFT.  First the ground state of the system is determined then a pulse-like perturbation is 

applied.  The system is finally evolved in time and a Fourier transform will produce the excitation 

energies.  This method is accurate and efficient for small to medium sized molecules.  As the size of 

the system is increased, this method becomes very expensive.  Similarly, linear response can be 

combined with semi-empirical method like ZINDO to make TD-ZINDO.  Initially, the ground 

state of the system is calculated then a pulse-like electric field is applied.  The density matrix is 

evolve in time yielding of a dipole moment and a Fourier transform of the dipole moment will give 
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the excitation energies.  The time-dependent response is computed using explicit time propagation 

via the von Neumann equation, 

! !!
!

!" = !! !! ! ,!! ! . 

The prime notation means matrices in the orthogonal molecular orbital (MO) basis.  The actual 

propagation was carried out using a linear-response von Neumann operator 

!" ≡ !!"!" = −! !
! !!! + !" ,!!! + !" − !! !!! ,!!!

! , 

where ! ! ≡ !! ! − !!! !is the deviation of the MO density matrix from the initial state, and ! is 

small parameter ensuring linearity.  !(!) is propagated from the dipole perturbed ground state 

!! = −![!,!!!] via a Chebyshev expansion[8-9], and the Fourier transform of the resulting time-

dependent dipole moment yields the absorption spectrum, and thus the vertical excitation energies. 

In the remaining parts of the introduction, I will introduce and summarize the body of the thesis, 

i.e., the papers published. 

In the manuscript “Direct Delocalization for Calculating Electron Transfer in Fullerenes”, the 

charge transfer between very large solvated fullerenes is calculated using isolated dimer calculations.  

This method mimics the bulk chemical environments in OPV films using solvation and electric field 

application.   

Typically Marcus theory is used to calculate the electron transfer rate in symmetric organic solar cells 

!!" =
2!
ℏ !!"

!! 4!"!! !!! exp Δ!!" + !
!

4!!!!
, !!" = !!|!|!! ,!!!! 
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where !!"  is the electron transfer rate, !!"  is the transfer rate integral, ! is the reorganization 

energy, Δ!!" is energy difference between the initial state “i” and the final state “j”.  The challenge is 

in defining the wave functions of the initial and the final state.  This expression is appropriate when 

the electronic states within both the acceptor and donor are well isolated.  However for large 

molecules like fullerenes, the distance between electronic states in the valence band is small, below 

0.1eV.  As a result, there is a need to sum over all initial excited states each with its own 

rearrangement energies due to the different coupling to the environment vibrational states.  In 

addition, for larger molecules one uses a single particle approximation instead of calculating the true 

electronic states. 

As a result, we use a modified Marcus formalism in calculating the total electron transfer rate as a 

sum over all the initial states: 

!!"! = 2!
ℏ !(!! − !!)

!"
!!"

!! 4!"!! !!! exp Δ!!" + !
!

4!!!!
.!! 

The Fermi Dirac occupation of the donor states is defined as 

! !! − !! = 1
1+ !! !!!!! !, 

where!!! !is defined as the energy of the donor state.  The transfer time is the inverse of the 

transfer rate, defined as : 

! = !
!!"!

!.!

Here, we calculate the transfer rates for a range of values instead of calculating over all the possible 

values due to the high computational cost. 
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In calculating the transfer rate, the charge distribution for neutral combination AB is approximated 

as not perturbed by adding an extra electron.  The difference in energy between LUMO and 

LUMO+1 for the neutral combination AB is then equal to the Marcus coupling term for identical 

dimers with delocalized orbitals.  But the Marcus coupling term HAB is in reality modified due to 

presence of an extra electron which should not be ignored.  Also, the LUMO and LUMO+1 might 

be localized on one molecule so splitting might be high but not due to transition.  In that case, a 

dimer calculation showes little transfer.  Therefore there is a need to restore symmetry to overcome 

the different-environment problem in isolating dimer calculations. 

Each monomer in noncentrosymmetric dimers experience different chemical environments, 

therefore dimers do not necessarily represent the bulk-like molecules.  The order of the frontier 

orbital; LUMO and LUMO+1, involved in the electron transfer could be misplaced.  For example, 

in isolated dimer calculation, where no delocalization potential is applied, both LUMO and 

LUMO+1 could be located on one molecule.  Therefore, a dimer calculation may show little transfer 

between the molecules. 

As a result, there is a need to correct the environment of isolated dimer to take into account the 

bulk-like environment.  To correct that, we delocalize the LUMO and LUMO+1 across two 

molecules using two different methods. 

The first method involves “solvating” the dimer with surrounding molecules.  Since the system is 

large, it is computationally expensive to solvate explicitly large molecules.  An alternative is to 

solvate the dimer with point charges.  The values of the point charges are set self-consistently to 

equal the Mulliken charges on the atoms of the dimer.  It is still difficult and costly to use point 

charges.  In a simpler method labeled by us as the “Delocalizing Field” method, we apply an electric 
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field to the system with a value chosen to delocalize the frontier orbitals.  This requires sweeping 

across a wide range of electric fields until the delocalization is achieved.  Due to the large cost of 

DFT simulations on large systems, this method is still computationally expensive since it requires 

large number of DFT calculations. 

 

Chapter I will present an even more efficient method, where we just perform single DFT calculation 

on a dimer system, then apply a bias directly to the post-self-consistent field (SCF) Fock matix until 

the extra electron is balanced between the two molecules.  Then we calculate the transfer rate using 

Marcus theory.  This method produces similar results and identical trends to the more complicated 

methods we try. 

!
Figure 0.3 shows the environment of isolated dimer does not take into account the bulk-like 
environment.  To correct that, we delocalize the LUMO and LUMO+1 across the two molecules 
using two different methods;! Solvating with Mulliken charges on the atoms of the neighboring 
dimers.  It is still difficult and costly to use point charges.  A simpler method is the Delocalizing 
Field method. 
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The manuscript entitled, “Electron transfer with TD-Split, a linear response time-dependent 

method” presents a simple method, time-dependent split (TD-Split) for ! → ! electron transfer by 

a TD evaluation of the lowest excitation energy form the ground state of the combined (!")! 

system.  As an example, the electron transfer between substituted fullerenes, primarily PCBM, was 

studied.  Fullerenes are of great potential in organic solar cells.  Although a lot of experimental 

progress has been made in the production of solar cells, any further improvement of efficiency is 

important for making them commercially successful. 

Theoretical calculations could improve the development of solar cells, since electron transport is not 

yet clearly understood.  It is not clear exactly what properties of organic molecules facilitate electron 

transport.  An immediate solution is to synthesize various fullerenes with different ligands and test 

their transport.  Many experimentalists are currently synthesizing these molecules.  The disadvantage 

of this method is that it is costly and slow.  Progress in this manner has not produced many 

candidates for commercial use beyond the initial fullerene-PCBM systems of Wudl et al but it is 

important to supplement this combinatorial by theoretical support. 

In the search of new suitable molecules for organic solar cell, TD-PM3 can be modified to calculate 

the electron transport between molecules.  As a result, this could help in determining the potential 

use of molecules prior to experimentally synthesizing them. 

Another simple method for electron transfer that doesn’t require time dependent technique is to 

apply a voltage or a bias in order to hold an electron in one of the molecule.  The bias then relaxed 

and the change in charge distribution over both molecules is examined over time.  The movement of 

the extra electron will be observed to determine the electron transfer.  The drawback of this method 

is that the release of this bias will creates a lot of energy that push the electron to the other 
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molecules resulting in erratic, rather than regular results.  As a result, it is difficult to quantify the 

rate. 

TD-Split is similar to the previous method but makes use of time-dependent calculations resulting in 

more accurate results.  This method is done using TD-PM3 to study bigger system with less time.  

This method can be done using TD-DFT as we will see in the next manuscript.   

TD-Split is a linear response formula of the generic form 

!" ! = Ψ(!) ! Ψ(!) , 

where is A is a perturbation operation and |Ψ(!)  is the perturbed ground state of the complete 

system including the extra electron delocalized over the donor and acceptor.  This formula has an 

inherent advantage in that it has a very well defined initial state and any time-dependent dynamics is 

directly related to the transport.  

In TD-Split, the initial state is the ground static density matrix associated with the whole (donor + 

acceptor) charged system.  A time-dependent excitation is then applied and the response to this 

excitation peaks at a frequency relates to the transfer 

rate, its amplitude.  This approach is inherently a linear 

response method, so the very efficient numerical tools 

developed for linear response in time-dependent 

approaches are immediately useable.   

Chapter III discusses transfer probabilities using 

different functionals and exact methods. Specifically as 

!

!
Figure 0.4: Pentacene dimer 

!
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mentioned there is a great need to calculate electron transfer rates and probabilities to understand 

many devices and processes.  For example, in fullerene-based organic photovoltaic (OPVs), after 

photo-excitation of the light harvesting polymer, a charge-separated electron is first transferred to a 

nearby fullerene molecule, then subsequently shuttled to the electrode via a series of “hops” from 

one fullerene to another adjacent one.  The success of an OPV often depends entirely on how 

readily electrons can be shunted form polymer to electrode without recombination with a hole.  In 

general, this depends on the morphology of the device and the electron transfer probability between 

two fullerene molecules.  The electron transfer in these systems is a complicated process involving 

the coupling between electronic, nuclear motion and the environment.  Therefore it is difficult to 

calculate the transfer 

probabilities.  Electron 

transfer calculations on 

model systems and 

simple analogues is a 

starting point that will 

leads us to understand 

the process in more 

complicated system 

and even to a real 

system.  A lot of progress is attained in studying the electron transfer between isolated molecules.  

The electron transfer reaction !!!! → !"!  can be calculated using Marcus theory (see the 

reference) where the electronic coupling between the donor and the acceptor is assumed to be weak 

(non-adiabatic regime).  Therefore the inter-conversion between the donor and acceptor adiabatic 

!
Figure!0.5:!TD-ZINDO compared to more sophisticated TDDFT 
methods!!
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potential energy surface can be calculated semi-classically.  Although many theoretical approaches 

can be used within Marcus framework, density functional theory (DFT) has been mostly used, due 

its reasonable computational cost and its good accuracy.  The main challenge in DFT is defining the 

initial and the final states in the transfer integral J in the Marcus formalism 

! = | !!|!|!!  

In the following manuscript entitled, “Electron transfer beyond the static picture: A TDDFT/TD-

ZINDO study of a pentacene dimer”, TDDFT and TD-ZINDO used to study transfer of an extra 

electron between a pair of pentacene molecules.  A measure of the electronic transfer integral is 

computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground 

state.  With increasing dimer separation, this dynamical measurement of charge transfer is shown 

significantly larger than the commonly used static approximation (i.e., LUMO+1-LUMO of the 

neutral dimer, or HOMO-

LUMO of the charged 

dimer), up to an order of 

magnitude higher at 6 

Angstroms.  Therefore 

static approximation for 

large separation will 

drastically underestimate 

transfer probability.  These 

results offer a word of 

caution for calculations 

!
Figure 0.6: Static B3LYP splitting (dashed) and TD-B3LYP 
energies (solid) for a range of basis sets. Larger separation require a 
basis set with diffuse functions (e.g., 6-31++G and POL1) to avoid 
non-physical super-exponential falloff. 
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involving large separations, as in organic photovoltaics, where care must be taken when using static 

picture to model charge transfer. 

Chapter III presents a study of electron transfer in pentacene dimers by presenting several methods 

for calculating the electron transfer integral, including time dependent density functional (TDDFT), 

a time-dependent semi-empirical method (TD-ZINDO), and time-independent methods using both 

neutral and anionic systems.  Static calculations underestimate the transfer integral in comparison to 

time-dependent methods.  TD-ZINDO underestimates the transfer integral, but a scaling factor can 

be applied to reproduce TDDFT results.  Therefore, TD-ZINDO shows the same fall-off behavior 

as TDDFT at a fraction of cost.   

In summary, chapter III introduces a time-dependent semi-empirical method.  This method allows 

the treatment of very large molecules with reasonable efficiency and accuracy.  The time-dependent 

!
Figure 0.7: Structure of the acenes 

!
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method was implemented with the semi-empirical method Zerner's Intermediate Neglect of 

Differential Overlap, ZINDO, so it is labeled TD-ZINDO.  The TD-ZINDO method is applicable 

to spectra and also can be developed to study electron transfer between molecules. 

In the manuscriped entitled “Excited-state studies of polyacenes: A comparative picture using 

EOMCCSD, CR-EOMCCSD(T), range-separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO”, 

the low-lying excited states (La and Lb) of polyacenes from naphthalene to heptacene are studied 

using different time-dependent computational methods. 

Polyacenes consist of linearly fused benzene rings therefore they are rough prototypes for more 

complicated light harvesting system and act as fundamentally building blocks for many electronic 

devices.  Therefore, careful analysis of the excitation of these molecules serves as a crucial test for 

accuracy and predictive power of a theoretical technique.  These compounds have been studied 

extensively over last several years for many applications such as light-emitting diodes and 

photovoltaic cells, to name a few.  The electronic properties of these materials are dictated by the ! 

electrons that occupy the highest occupied and lowest occupied states.  In a single molecule, the 

lowest valence excitations have ! − !∗  character, and the two lowest valence excitations are 

commonly represented as the La (B2u symmetry) and Lb (B3u symmetry) states, respectively.  The Lb 

represents the polarization along the long axis and it is the lowest excited state in naphthalene.  The 

La represents the polarization along the short axis and it is the lowest state for acenes larger than 

anthracene.  Both states La and Lb are almost the same for anthracene. 

There have been many methods describing these excitations theoretically where DFT is the 

predominant method.  This chapter details a systematic analysis based on high-level excited-state 

calculations using equation of motion coupled cluster with singles and doubles (EOMCCSD) and 
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completely renormalized equation of motion coupled cluster with singles, doubles, and perturbative 

triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of various range-

separated exchange-correlation functional within linear-response (LR) and real-time (RT) TDDFT.  

These calculations are used to benchmark the performance of various range-separated exchange-

correlation functionals implemented within linear response and real-time TDDFT.  Then time-

dependent semi-empirical methods like TD-PM3 and TD-ZINDO were used since they are capable 

of handling very large systems.  Once these semiempirical methods are reparamatized to match the 

CR-EOMCCSD(T) results, TD-ZINDO becomes roughly as accurate as range-separated TDDFT.  

Therefore, with proper parameterization, TD-ZINDO becomes roughly as accurate as range-

separated TDDFT, at a fraction of the computational cost.  Therefore TD-ZINDO is a capable of 

modeling the excitations in large poly-aromatic hydrocarbons, where modeling with coupled cluster 

or even TDDFT for these large systems is unfeasible.  

 

!  
Table 0.1. Comparison of calibated TD-ZINDO method to experimental values and DFT using POL1 
basis set with various functionals (all values in eV). TD-ZINDO with proper parameterization becomes 
roughly accurate as range-separated TDDFT, at a fraction of the computational cost making it capable of 
modeling large systems 
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Chapter 1 

Direct Delocalization for Calculating Electron  

Transfer in Fullerenes 

A method is introduced for simple calculation of charge transfer between very large solvated organic 

dimers (fullerenes here) from isolated dimer calculations.  The individual monomers in non-

centrosymmetric dimers experience different chemical environments, so that the dimers do not 

necessarily represent bulk-like molecules.  Therefore, we apply a delocalizing bias directly to the 

Fock matrix of the dimer system, and verify that this is almost as accurate as self-consistent 

solvation.  Since large molecule like fullerenes have a plethora of excited states, the initially excited 

state orbitals are thermally populated, so that the rate is obtained as a thermal average over Marcus 

thermal transfers.  

1.1 Introduction 

Organic solar cells have gained much attention lately as an inexpensive alternative to inorganic cells, 

as they are getting closer to being economically viable.1 However, little is understood about what 

fundamentally makes one type of organic solar cell more efficient than another.2-3  One main 

bottleneck in many solar cells is the extraction of free electrons, i.e., even if the electron-hole 

separation is facile the diffusion of the free electrons to the electrodes could be a limiting factor.4  

This issue is especially important in fullerene based solar cells.  In this study we therefore study 

electron transfer of several fullerene derivatives of the type most commonly used as electron 

acceptors in organic solar cells, and present a simple method for calculating the transfer rates. 



!
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!

Figure 1.1: TBP dimer.  Note the “cap” on the left 
molecule is exposed, whereas the cap on right 
molecule is solvated by the adducts of its neighbor.!

The most popular electron acceptors in organic 

photovoltaic devices (OPVs) are fullerene 

derivatives, most notably [6,6]-phenyl-C61-butyric 

acid methyl ester (PCBM).5  Due to the large size 

of fullerenes molecules, it is necessary to apply a 

computationally efficient method for the study of 

transfer rates.  In recent works we advocated a 

simple methodology for calculating the coupling 

between identical molecules in dimeric systems of fullerene derivatives.6  In spite of the fact that the 

dimers are chemically identical, when they are not placed in a centrosymmetric fashion the chemical 

environment seen by each of the individual molecules is different (e.g., see Figure 1.1).  Because of 

this, the order of the frontier orbitals involved in electron transfer (primarily the LUMO and 

LUMO+1 orbitals) could be misplaced; for example, in an isolated dimer calculation (where no 

delocalizing potential is applied),  both LUMO and LUMO+1 could be located on the same 

molecule.  In that case, a dimer calculation will show little transfer between the molecules.   

To overcome the different-environment problem in isolated dimer calculations, we delocalize the 

LUMO and LUMO+1 across the two molecules using one of two methods.  The first method 

involves “solvating” the dimer with surrounding molecules.  Because the systems are so large, it 

would be too computationally expensive to explicitly treat solvating molecules; therefore we solvate 

the dimer with point charges.  The values of the point charges are set self-consistently to equal the 

Mulliken charges on the atoms of the dimer.  Solving for the values of the point charges is relatively 

arduous, so we have also shown that the same results can be achieved by applying an electric field to 

the system to delocalize the frontier orbitals.  This method, which we label Delocalizing Field, is 



!
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much simpler in that one can sweep across a wide range of electric fields to see where the ideal 

delocalization occurs.  However, due to the cost of density functional theory (DFT) simulations on 

large molecules, the delocalizing field method, while more simple than solvation, is still 

computationally expensive because it involves a potentially large number of DFT calculations. 

We present a substantially more efficient method here.  Rather than delocalizing the frontier orbitals 

with an electric field, we perform a single DFT calculation on a dimer system (here using the B3LYP 

functional).  We then apply a bias directly to the post-self-consistent field (SCF) Fock matrix until 

the extra electron is balanced evenly between the two molecules in the dimer.  We are then able to 

calculate the transfer rate according to Marcus theory.  We show that the new method gives similar 

results and identical trends to the more complicated methods mentioned above. 

The balance of the paper is as follows.  We present a more detailed description of the methodology 

in Section II; results follow in Section III, and discussion in Section IV. 

 

1.2 Methodology  

Typically, the electron transfer rate is calculated for symmetric organic molecules from the Marcus 

theory expression,   

 
!!" =

2!
ℏ ! !!"

! 4!"!!! !!!exp! Δ!!" + !!
!

4!!!!
 

 

(1.1) 

where “i” and “j” denote the initial and final states, located on the donor and acceptor, respectively, 

J is the transfer integral, ΔEij is the energy difference between the initial and final states, and λ is the 

reorganization energy.  This expression is appropriate when the electronic states within both the 
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donor and acceptor are well-isolated; however, for large molecules such as fullerenes the distance 

between electronic states in the valence band is quite small, below 0.1 eV, so that a sum over all 

initial excited states is required; these initial states will each have its own rearrangement energies due 

to different coupling to the environment vibrational states.  Further, in large molecules one does not 

really calculate the true electronic states but instead uses a single particle (or RPA/ TDDFT) 

approximation, making the degrees of freedom of the other electrons into an effective bath (not 

necessarily linearly coupled); these can actually enhance the transfer for symmetric systems, unlike 

vibrational degrees of freedom. 

Here we therefore use a modified Marcus formalism,7 whereby we sum over all initial states to 

calculate the total electron transfer rate: 

!!"! = !2!ℏ ! !! − !!! !!"
! 4!"!!! !!!!!"# Δ!!" + !!

!

4!!!!!"
 

 

(1.2) 

where we introduced the Fermi Dirac occupation of the donor states, defined as 

! !! − !!! = ! 1
1+ !! !!!!!!  (1.3) 

and !! !is the energy of the donor state.   In practice we report the rate in terms of the transfer time, 

defined as  

! = ! 1!!"!
 

 

(1.4) 
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For the most part, Eq. (1.2) is a straightforward generalization of the Marcus formula for a single 

pair of states.  However, as stated above, each of these combinations of donor and acceptor states 

should in principle have a particular rearrangement energy.  It is computationally demanding to 

calculate the reorganization energies for all the initial states, and the whole concept of transfer 

energy becomes questionable when there many low lying states, so to simplify we calculate the 

transfer rates for a range of values.  According to MacKenzie et al,8 the rearrangement energy for 

electron transfer in C61H2, i.e.  a fullerene with the same linker group as PCBM, was calculated to be 

0.136 eV when ignoring the outer sphere contribution to the reorganization.  We therefore present 

results for which the reorganization energy was assumed to 0.1 eV and 0.15 eV.  These choices 

bracket the relevant range of values, and take into account minor differences in the individual 

couplings and in the outer sphere contribution.  While solvent effects are certainly important in 

electron transfer processes, for computational efficiency, we rely on the reorganization term in the 

Marcus theory formalism to account for these effects based on prior use of Marcus theory in 

electron transfer of large molecules (see Ref. 8, for example). 

The computationally non-trivial aspect of the calculation is the transfer integral.  Formally, the flux-

operator has the form: 

! = ![!,!] 

 
(1.5) 

where we introduced the Fock operator and the left-theta operator (identity on the left-fragment 

space, zero on the right); the tilde symbol on the matrices indicates that they refer to an orthogonal 

basis. 
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In practice, the calculations are performed by first generating the Fock and overlap matrices, F and S 

in a non-orthogonal basis using DFT, which has been shown to give good accuracy within the 

Marcus framework.9-14 The NWChem software package was used for calculations.15  The matrices 

were calculated using the B3LYP functional and STO-3G basis set for neutral and anionic systems.  

Results for both neutral and anionic system were similar (i.e., the choice of which Fock operator was 

used is immaterial in this basis set), and in the results section we use the neutral systems and anionic 

systems in PCBM, which are in good agreement, and the neutral systems for the other molecules.    

The Fock matrix and theta operator are then converted to a local orthogonal basis: 

! = !!
!
!!!!

!
! 

! = !!
!
!!!!

!
! 

 

(1.6) 

and the theta operator determines whether the orbital of interest is on the left or the right molecule: 

!!" = ! ! !!"! !  

 
(1.7) 

where  

! ! = ! 1!!"!! ∊ !!"#$! !"#"$ !"#$%&'(0!!"ℎ!"#$%!  

 

(1.8) 

We then self-consistently calculate the chemical potential of the neutral and charged species, !! and 

!!!, such that the following conditions are met: 
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2!" ! ! − !!! = ! ! !! − !!! = !
!!

!!!
 

2!" ! ! − !!!! = ! + 1 

 

(9) 

where N is the number of electrons in the neutral system, !! is the number of orbitals and f 

is now a Fermi-Dirac operator 

! ! − !!! = ! 1
1+ !! !!!!

 

 

(1.10) 

The factor 2 in Eq. (1.9) above is due to spin. 

We then apply a local bias w to the Fock matrix, 

!! → !! + !! 

 
(1.11) 

such that the extra electron is delocalized evenly between the two fragments.  This is essentially the 

same as applying an external electric field on the system; however, as mentioned, there is significant 

time saving since the DFT calculation is only done once, post SCF convergence.   

To calculate the transfer integral, we convert the theta operator into the molecular orbital 

basis, 

!! = !! !!! 

 

(1.12) 
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where V is the eigenvector matrix of the orthogonal-basis Fock matrix, !.  The transfer 

integral becomes: 

!!" = !! − !! !!!"!  

 

(1.13) 

The transfer integral is then used to calculate the extended Marcus-theory rate, Eq. (1.2), summing 

over all initial states. 

 
 

1.3 Results 

We have studied several molecules, as follows: PCBM (Fig. 2), penta-(p-t-butylC6H4)-1-hydro-C60 

(denoted TBP) (Fig. 1.1), and pentamethyl-monohydro-C60 (denoted C60Me5H) (Fig. 3).  PCBM is 

the most commonly used fullerene in organic solar cells, and consists of a phenyl group and butyric 

acid methyl ester group attached to the fullerene ball via a methano-linker.  Here, we study three 

dimer orientations of PCBM, each derived from a crystal structure.  TBP and C61Me5H are penta-

substituted fullerenes, with tert-butyl phenyl and methyl adducts, respectively; each has an additional 

hydrogen atom bonded to the fullerene ball to compensate for the breaking of a double bond.  The 

!

Figure 1.2: The three PCBM orientations studied in this paper, denoted in the results section PCBM-1, PCBM-2, 
and PCBM-3. 
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!

Figure!1.3:!C60Me5H!dimer.!

allure of these molecules from a device fabrication perspective is that they tend to self-assemble into 

columns, which could enhance optimal phase separation in bulk heterojunction solar cells.  

We present data for the extended Marcus theory formalism, 

that is, summation over all initial states (labeled as “multiple-

state transfer time”, as well as the traditional Marcus theory 

formalism, which typically only considers the coupling 

between the lowest states (LUMOs) on the left and right, 

which in our language amounts to including only the i,j = LUMO, LUMO+1  (and vice versa) in the 

sum in Eq. (1.2).   

TABLE 1.1 Results of transfer times with the present formalism. Note the “cap” on the left molecule is exposed, 
whereas the cap on right molecule is solvated by the adducts of its neighbor. 

Reorganization energy: λ = 0.1 eV λ = 0.15 eV 

Dimer: Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

PCBM-1 335 531 527 950 

PCBM-2 322 1710 478 3060 

PCBM-3 147 170 251 305 

TBP 140000 773000 220000 1370000 

C60Me5H 24200 33800 43200 60500 

 

The results for the transfer time, !, with the present formalism for the alignment potential !!(i.e. 

satisfying Eq.(1.9)) are shown in Table 1.1.  Note that in the table we refer to “Multiple-state transfer 

time”, and to “LUMO-transfer time”; these refer to the inverse of the rates in Eqs. (1.2) and (1.1), 

respectively. 
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!

Figure 1.4: Frontier orbitals of PCBM.  The LUMO is 
shown on the left, and LUMO+1 on the right. 

Table 1.2 presents the electron transfer times for PCBM where we calculated the Fock using several 

methods: neutral system with B3LYP functional, neutral system with PBE functional, and anionic 

system with PBE functional (we ignore the anionic system with B3LYP functional as B3LYP has 

been shown to give inadequate results for charged systems).  The data shows similar results for the 

three methods, and in the interest of computational time, have shown results for neutral systems 

throughout.  

Several things in particular stand out about the data.  First, we demonstrate that for all the molecules 

presented a two-level Marcus formula is insufficient to fully capture the electron transfer behavior.   

 

TABLE 1.2 Comparison of transfer times with neutral and anionic systems in PCBM. 

Reorganization energy: λ = 0.1 eV λ = 0.15 eV 

Method Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

B3LYP neutral 335 531 527 950 

PBE neutal 370 747 595 1300 

PBE anionic 433 1100 680 2000 

 

This is because for very large molecules such as fullerene derivatives, the excited states are 

sufficiently low that they can be thermally excited.  

Therefore, many levels can be thermally 

populated and can contribute to electron transfer. 

We also note that for all relative orientations of 

PCBM, shown in Fig. 1.2, electron transfer rates 
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are very high.  Due to the spherical symmetry of the LUMO and LUMO+1 orbitals about the 

fullerene units in PCBM (shown in Fig. 1.4), the molecule conducts well in a variety of directions, 

and the rate of transfer is primarily a function of separation between these units.  The variation in 

transfer times and the importance of summing over all initial states is primarily a result of the energy 

difference between the higher order state and the LUMO.  For example, only a minor improvement 

in transfer time is seen in the third PCBM dimer; in this system, the LUMO+1 and LUMO+2 

orbitals are 0.04 eV and 0.12 eV above the LUMO, respectively.  Therefore, the standard Marcus 

transfer handles this system quite well.  Alternatively, in the second PCBM dimer, the LUMO+1 and 

LUMO+2 are 0.07 eV and 0.10 eV above the LUMO.  This energy difference results in a much 

more substantial contribution from the LUMO+2. 

 
TABLE 1.3 Results for the variety of methods for TBP 

Reorganization energy: λ = 0.1 eV λ = 0.15 eV 

Dimer: Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

Mutliple-state transfer 
time (fs) 

LUMOs transfer time 
(fs) 

Solvated TBP 84000 3500000 141000 6220000 

Electric Field Delocalization 128000 1120000 208000 1980000 

Direct Delocalization 140000 773000 2200000 1370000 

 

 

The results for the variety of methods for TBP is shown in Table 1.3.  Comparing the three methods, 

we note that the total solvation method gives transfer rates about 40% faster than the electric field 

delocalization and direct delocalization, which give very similar results.  This is a result of several 

things.  First, the addition of solvating molecules causes the frontier orbitals to have a much greater 
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overlap, i.e.,  the LUMO,LUMO+1 matrix element of the theta operator in the molecular orbital 

basis is much larger.  Second, in the solvation method, the higher order frontier orbitals are closer to 

the LUMO than in the electric field and direct delocalization methods.  For example, in direct 

delocalization, the LUMO+1 and the LUMO+2 are 5.94 x 10-4 eV and 3.06 x 10-2 eV above the 

LUMO, respectively; whereas when solvated, these orbitals are 5.10 x 10-4 eV and 2.57 x 10-2 eV 

above the LUMO.  Additionally, excited states higher than the LUMO+2 play only a minor role in 

electron transfer, as the energy gap above the LUMO prevents significant population.  We also note 

that the transfer times are also more greatly enhanced when one compares the multiple-state method 

to the LUMOs method.  This is due to the higher level orbitals being closer to the LUMO.  While 

the results presented for the several methods for calculating transfer times in TBP vary, we would 

argue that the solvation method provides the most accurate treatment of the system.  The presence 

of point charges around the dimer, while not explicit treatment of neighboring molecules, most 

thoroughly mimics the bulk environment of the system.  Nonetheless, the direct delocalization 

method provides a qualitative picture for comparing possible performance device of a number of 

molecules.  

We also investigated the solvent effects of using the polarizable continuum model to solvate a TBP 

dimer, using the COSMO method in NWChem.  We find that similar to calculations on an isolated 

dimer, the excited state orbitals are localized on a single fragment, and therefore no electron transfer 

is observed. We believe that this unphysical, and that the polarizable continuum model does not 

sufficiently capture the electronic behavior of the system.  To compare the transfer rates of such a 

system, we applied the direct delocalization method, and find that the multiple-state transfer times 

are 133000 fs and 210000 fs for reorganization energies of 0.1 eV and 0.15 eV, respestively.  This is 

in good agreement with our direct delocalization times of the unsolvated dimer. 
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1.4 Conclusions 

We present a simple method to efficiently calculate electron transfer rates between molecular dimers.  

The method handles vastly asymmetric-placed dimers, where each individual molecule sees a 

different chemical environment.  Additionally, the method is useful in molecules for which higher 

excited states interact with the frontier orbitals of the system.  The proposed method is also highly 

efficient, as it does not require additional DFT calculations. 

Of the molecules studied, PCBM and TBP have been fabricated to make OPV devices.  According 

to experiment, PCBM makes significantly more efficient devices than TBP, 5-6% power conversion 

efficiency (PCE) versus 1.5% for TBP.  While our study does not take into account the 

morphological behavior of these molecules, it gives a good basis for the types of molecules that 

would make efficient devices.  We mention in the Results section, for example, the spherical 

symmetry of the LUMOs about the fullerene cage provides multidirectional pathways for electron 

transfer. 

 The work presented indicates several important factors relevant in the design of fullerenes 

for the use of organic solar cells.  First, the methano-substituted motif, as in PCBM, conducts 

electrons well due to the spherical symmetry of the frontier orbitals.  Additionally, substitutional 

motifs that retain this spherical symmetry about the fullerene unit would also make for high transfer 

rates.  We should note, however, that this would not necessarily lead to a top performing cell as the 

energetics would still need to match those of the electron donor.  Nonetheless, the particular motif 

seems highly efficient. 
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Chapter 2 

Electron Transfer with TD-Split, a Linear Response Time-

Dependent Method 

We present a simple method, time-dependent split (TD-Split) for A ! B electron transfer by a TD 

evaluation of the lowest excitation energy from the ground state of the combined (AB)− system.  As 

an example, we study transfer between substituted fullerenes, primarily PCBM.  Electron transfer in 

such fullerene systems is important as it is often the bottleneck in organic solar cells.  The TD-Split 

method is described in detail, including numerical linearization which reduces the number of 

required iterations, and comparison to other possible approaches.  We also compare to other 

molecules such as C60Me5H, and find similar trends as experiment.   

 

 2.1 Introduction 

Electron transport is an established problem which continues to attract significant attention 

as it is both seemingly simple and physically and technologically important.  In fact many of the 

challenges associated with devices such as photovoltaic devices  are due to electron transport[1], 

making theoretical guidance desirable.  An example is transport between fullerenes, which is a 

bottleneck in several fullerene-polymer solar energy architectures. 

 For small molecules, the treatment of electron transport of the generic form (A−)+B 

→A+(B−)  is, at least in principle, well established.  Two potential surfaces are constructed as 

functions of molecular coordinates, representing the reactants and products.  Transition occurs 

essentially at the transition state where both potentials are equal. 
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 For larger systems such an approach is more challenging, primarily since it is difficult to 

establish potential surfaces.  Static DFT (Density Functional Theory), can be used but it is often not 

accurate for electronically excited states.  TD-DFT, Time Dependent-Density Functional Theory, is 

generally more appropriate for excitations, so it is tempting to use it also for transport.[2-6] 

 Both TD-DFT and DFT present other challenges, primarily in determining what is the 

proper initial and final state.  Specifically, the fundamental electronic structure overlap integral in the 

Marcus formalism is the transfer integral:  

 
2

A BJ Hφ φ=  (2.1) 

which refers to the left and right (initial and final) states, and H is the coupling Hamiltonian.  The 

fundamental challenge is to properly define such initial and final states.  It is possible to use an 

isolating potential to define these states[3].  However, unless the system is extremely large, the 

localization of the charge on one side influences the charge distribution on the other side, thereby 

influencing the transport; i.e., once the localization constraint is removed, then even when the 

charge is not yet transported from reactant to product (A to B in our example), there will be 

significant charge relaxation in both reactant and product and therefore apparent dynamics which is 

not due to the actual electron transfer, but has to do with the removal of the localization constraint. 

 In this paper we therefore present a different approach, which is inherently linear-

response[7, 8] in form.  The linear response nature of the method is numerically useful, as discussed 

later.  We label the method TD-Split. 

TD-Split is based on a response formula of the generic form: 

 ( ) ( ) ( )A t t A tδ ≡ Ψ Ψ
,
 (2.2) 
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where ( )tΨ  is a perturbed ground state of the complete system (i.e., with the electron delocalized 

over the donor and the acceptor); A is a perturbation operator as defined below.  This formula has 

the inherent advantage that it has a very well defined initial state and any time-dependent dynamics 

is directly associated with the transport. 

 Physically, in the TD-Split approach, the initial state is the ground static density matrix 

associated with the whole (donor+acceptor) charged system.  A time-dependent excitation is then 

applied; the response to this excitation peaks at a frequency which together with its amplitude 

determines the electron transfer rate.  This approach is therefore inherently a linear response 

method, so that practically the very efficient numerical tools developed for linear response in time-

dependent approaches are immediately useable. 

 The fundamental attraction in using the simple transport formula based on a symmetric case 

rather than a localized approach is apparent if we qualitatively view the system as a single electron 

being transported while the others act as a background.  In this way of viewing the system, the initial 

state can be viewed as an electron transition-state, i.e., all the electrons arrange themselves so that 

one electron delocalizes as much as possible over the whole system. 

 The approach presented here is simplest to understand and to apply in a case where there is 

an isolated single pair of conducting molecular orbitals (i.e., with significant amplitude on the 

acceptor and donor).  This case is very common in many practical applications, such as transport 

(hopping) between fullerenes or other symmetric or quasi-symmetric molecules.  The method is 

however quite general to apply and will be useful in other circumstances, as explained below.  For 

other time-dependent approaches in this context, see references [9-11]. 
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 The linear-response simulations use here a semi-empirical approach, TD-PM3 (Time 

Dependent-Parametric Model 3) [12]. An attractive feature of TD-PM3 is that as in TD-HF (Time-

Dependent Hartree Fock), TD-PM3 has no self-energy in explicit open shell treatment, and reduced 

self-energy in a closed shell treatment.  TD-PM3 is very efficient, both in scaling and in the use of a 

minimal basis set, and allows the treatment of realistic large organic systems.  The methodology is 

general and applicable to other methods, primarily TD-DFT, which we plan to pursue in future 

work. 

 Several methods for extracting the information are discussed.  In addition to direct time-

dependent simulations, we discuss time-dependent linear response using Chebyshev propagation.  

Within the latter method, significant savings result when we use Filter-Diagonalization, which is a 

method for extracting frequency-resolved information from a short-time section of the results (or, in 

the Chebyshev case, from few iterations).  The need for the method is especially acute in weakly 

coupled homogenous systems, because  the splitting can be small so that a direct propagation or 

iterative methods would require long propagation times (as the propagation time is, in most 

methods, proportional to the inverse of the splitting).  We show that with Filter-Diagonalization, 

few iterative steps (few thousands at most) are required. 

 The main example used here is a dimer of PCBM molecules.  PCBM ([6,6]-phenyl-C61-

butyric acidmethyl ester) has been the primary fullerene acceptor in organic solar cells for more than 

a decade; a dimer of PCBM molecules has a fairly large coupling of the LUMO levels of each 

PCBM. In addition to the PCBM dimer, we also investigated another example, transport within a 

C60Me5H dimer. 
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 In the remainder of the paper we discuss the propagation approaches (Section 2.2), discuss 

the numerical techniques used for the presented method (Section 2.3), and show sample results 

(Section 2.4) on PCBM and C60Me5H.  Conclusions follow in Section 2.5. 

2.2 Theory 

2.2.1 Simplified Treatment 

One approach for electronic transport is to apply a voltage or a bias in order to hold an 

electron or a portion of it in one of the molecules[13].  The bias is then relaxed and the change in 

charge distribution over both molecules is examined over time.  This method will be referred to as 

release of bias. 

 Another method is derived from a simpler one-body problem where a single electron is 

transferred from a left molecule (donor) to a right molecule (acceptor). In a localized basis (left and 

right) the Hamiltonian governing this simple system is: 

 
L

R

H
ε η

η ε
# $

= % &
' ( , (2.3) 

where εL is essentially equivalent to the energy of the LUMO in the left molecule ( Lφ ) and εR is 

associated with energy of the LUMO in the right molecule ( Rφ ). 

The eigenvalues of the Hamiltonian are denoted as λ+ and λ-, associated with the symmetric 

and antisymmetric orbitals.  The symmetric (+) and antisymmetric (-) eigenstates of the combined 

system can be described as combinations of Lφ and Rφ  as follows: 

 L R

L R

a b
b a

ψ φ φ

ψ φ φ
+

−

= +

= −
 (2.4) 
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which are normalized so a2+b2=1, and equivalently: 

 
.

L

R

a b
b a

φ ψ ψ

φ ψ ψ
+ −

+ −

= −

= +
 (2.5) 

The coefficients a and b indicate how localized the transport is.  If a and b are the same, then the 

molecular orbitals are very delocalized; but if a=1 and b=0, then there is no delocalization and there 

will be very little transport.  As long as εL and εR are different by less than the coupling strength, a 

and b will be reasonably large.  In that case, good electron transport is determined through having a 

large coupling strength.  For degenerate initial states, the coupling is determined from η: 

 
2γ λ λ η+ −= − =

     (2.6)  

The splitting can be obtained by calculating the static energy difference between the two eigenstates. 

The straightforward extension of this approach to interacting electronic systems uses the 

neutral combination (AB), and determines the splitting between the LUMO and LUMO+1 so that 

both levels are unoccupied and there is no inconsistency to the treatment.  This method will be 

referred to as static-split. 

 2.2.2 TD Excitation 

 Finally, we suggest to obtain the splitting γ from a TD treatment, rather than from the static 

splitting.   To obtain a time-dependent expression for γ, we revert back to the one-electron problem.  

The transition can be viewed as starting a wavefunction in one molecule and watching the transition 

to the other molecule; fundamentally this will then be: 

 ( ) ( )
2

L RQ t tφ φ≡
 .    (2.7)  

The time-evolution of the symmetric and antisymmetric eigenstates is: 
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( )

( )

i t

i t

t e

t e

λ

λ

ψ ψ

ψ ψ

+

−

−
+ +

−
− −

=

=
. (2.8) 

Substituting into equation (2.7) and simplifying, we get: 

 

( )2 2( ) 4 sin
2

Q t a b t
λ λ+ −−# $

= % &
' ( . (2.9) 

A Fourier transform of Q(t) will give γ/2 by the location of the maximum and the magnitude will 

give 4a2b2.   

It is necessary to obtain a form that can be used with TD-PM3.  This will be done by 

introducing the following: 

 
( ) iHt iHt

L RB t e eψ θ θ ψ−
+ +≡  (2.10)  

Here, θL and θR are step functions; θL is 1 on the left and 0 on the right, and the opposite for θR.  

Formally, 

 0
0.

L L L

R L

L R

θ φ φ

θ φ

θ θ

=

=

=

             (2.11) 

To verify that B(t) in equation (2.10) serves the same purpose as equation (2.7), we note that: 

 
( )( )( ) i H t

L RB t e λψ θ θ ψ+−
+ += . (2.12) 

Now let: 

 1 ψ ψ ψ ψ+ + − −= + . (2.13) 

Inserting equation (2.13) into equation (2.12) gives: 
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 ( ) ( )( )( ) i H t
L RB t e λψ θ ψ ψ ψ ψ θ ψ+−

+ + + − − += + , (2.14) 

so 

 
( )

 
L R

i t
L R

B t

e γ

ψ θ ψ ψ θ ψ

ψ θ ψ ψ θ ψ
+ + + +

−
+ − − +

=

+ .
 (2.15) 

Substituting with equation (2.4) gives 

 ( )2 2( ) 1 i tB t a b e γ= − . (2.16) 

This is analogous to Q(t) and taking the Fourier transform of both will yield a similar spectrum of 

similar magnitude. 

 To make equation (2.10) more applicable for use in TD-PM3, it is written as 

 ( )( ) Tr iHt iHt
L RB t e eψ ψ θ θ −

+ += , (2.17) 

or: 

 ( )0( ) Tr iHt iHt
L RB t P e eθ θ −=

. (2.18) 

Here, P0 is the initial density matrix taken in the symmetric state,  

 0P ψ ψ+ += . (2.19)  

 Eq. (2.19) is in a form that can be usable in TD-PM3 or TD-DFT.   To turn it into a form 

that can be used with efficient numerical methods, first recognize that: 

 ( )( ) ( ) ( )0 R 02 Im Tr P TriHt iHt iHt iHt
L R Li B t e e e e Pθ θ θ θ− −= −

  (2.20) 

But since: 

 0|
Li

L
ei
αθ

αθ
α =

∂
=

∂    (2.21) 
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we get: 

 ( )( ) ( )-
0

0

Tr1Im | .
2

L Li iiHt iHt
Re e P e e

B t
αθ αθ

α

θ

α

−

=

∂
= −

∂
  (2.22) 

To simplify, let: 

 ( ) 00 L Li iP e P eαθ αθ
α

−= , (2.23) 

and also: 

 ( ) ( )0iHt iHtP t e P eα α
−= . (2.24) 

The above can then be inserted into equation (2.22) to become: 

 ( )( ) ( )
0

Tr ( )1Im |
2

RP t
B t α

α

θ

α =

∂
= −

∂
. (2.25) 

TD-PM3 or TD-DFT can be used to obtain the time evolution of Pα(t).  The derivative with respect 

to α can be obtained using numerical methods.  Some efficient numerical methods to be used are 

described in the next section. 

2.3 Practical Evolution 

Here we outline the practical evolution of the transmission. 

2.3.1 Initial State 

 The first stage is the preparation of an initial ground state; for large systems, we will likely 

choose between Hartree-Fock, a semi-empirical method (PM3, etc.), or DFT, although the same 

formalism is useful if other methods, such as MP2, are applied to the ground-state calculation.  

Eventually, the ground state of the complete system density (P0) or initial wavefunction/orbitals 

0Ψ  is obtained. 
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 Next, a perturbation operator is found.  In practice, several perturbation operators are 

potentially useful (possibly in combination, as described below).  The first is θL from equation (2.11).  

A second is: 

 L L R RA φ φ φ φ= − . (2.26) 

A third option is simply: 

 homo lumo' . .A c cφ φ= +    (2.27) 

The last (third) transition operator will not yield the correct amplitude for the transitions (the 

equivalent of 4a2b2) unless the system is close to symmetric, so a~b~1/√2. 

2.3.2 Linear-Response Evolution 

 Next is the evolution in time.  In the methods we consider the Fock operator is used to 

propagate a density matrix (or a set of orbitals); these methods includes TD-HF, TD-DFT, and TD-

PM3.  The details of the Fock operator depend on the method used; for TD-PM3, for example, see 

Ref.[14, 15], but briefly it is formally similar to Hartree-Fock: 

 
,ij ij ijkl kl

kl
F h V P= +∑  

(2.28)  

except that now hij, Vijkl are semiempirical matrix elements, and each Vijkl vanishes unless it is a two 

center integral, i.e., the only non-zero elements are: 

 ( ) ( ) ( ), , , ,  , , , ,  , , , ,a a b b a b a b a b b aV i j k l V i j k l V i j k l    (2.29) 

where ia, for example, refers to a basis function “i” localized on atom “a”. 

 One option would have been to use explicit time-dependent propagation.  Then, starting at 

P0, include the perturbation to get: 
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 ( ) [ ]0 00 , ,P t P i A Pη+= = −    (2.30) 

After that, propagate forward the Fock equation, 

 [ ]( ), ,idP F P P
dt

=    (2.31) 

where F is the density-dependent Fock operator. 

 Another option pursued here, is to use the linear response time-dependent Chebyshev 

approach[7, 16]; briefly, in the approach one first constructs residues: 

 ( )Trn nR BX= ,    (2.32) 

where the modified Chebyshev series is defined as: 

 
[ ]0 0

1 0

1 2

,
1

2 ,n n n

X i A P

X LX
H

X LX X
H − −

=−

=
Δ

= +
Δ    

(2.33) 

and ΔH is a numerical parameter characterizing the spectrum of the Fock operator (typically chosen 

as ~75eV for TD-PM3 applications) and the Liouville operator is defined as: 

 
( ) ( )0 0 0 0

1 , , ,LP F P P P P F P Pζ ζ
ζ

= + + −# $ # $% & % &    
(2.34) 

where ζ is a small number chosen to ensure the linear response; for clarity, we denote the explicit 

density dependence of the Fock operator. 

 From the modified Chebyshev series and the residues there are three options.  One is to 

construct explicitly the time-dependent signal, 
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( ) ( ) ( )02 ,n n n

n

B t J t H Rδ δ= − Δ∑  (2.35) 

and then Fourier transform the above signal.  A more efficient option is to directly Fourier 

transform the Chebyshev series elements, leading to 

 
( ) ( ) ,n n

n
B b Rω ω=∑

   
(2.36) 

where 

 
( ) ( )0

0

2 ( ) ( ) ,i t
n n nb e f t J t H dtωω δ

∞

= − Δ∫   (2.37) 

and the damping function is 

 ( ) .tf t e α−=
   (2.37) 

2.3.3 Filter-Diagonalization 

 The third option for extracting the eigenvalues is Filter-Diagonalization[17].  Briefly, this is a 

method to expand a general series, Cn, as made from (initially unknown) complex frequencies and 

weights (ωk, pk) as: 

 
ki n

n k
k

C p e ω=∑     
(2.39) 

 In its most relevant form for this problem,[18] Filter-Diagonalization becomes an approach 

to extract the frequencies and weights directly from the Chebyshev series.  Filter Diagonalization 

extracts the coefficients and eigenvalues directly from such a series in fewer terms than a Fourier 

transform will (i.e., with fewer elements than necessary in a series such as the one in equation (2.36) 

to develop well-isolated peaks).  In this context, this is based on formally writing the initial 

modification to the density matrix (i.e., its linear response part) as: 
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 0 k k
k

X p= Λ∑    
(2.40) 

where each Λk is a separate density matrix that is an eigenstate of the Liouville operator, i.e., 

 k k kL iλΛ = Λ    (2.41) 

and 

 

 ( )Tr k j jkδΛ Λ =    (2.42) 

so 

 ( )0Tr .k kp X= Λ
   (2.43) 

(Note that λk are the transition frequencies.)  Then, each residue is formally: 

 
( )cosn k k

k
R p nz=∑    

(2.44) 

where 

 
1cos k

kz H
λ− # $= % &Δ( )    

(2.45) 

Equation (2.44) has the form of a harmonic series, i.e., a sum of a series of exponential terms. 

 For the present application, we note that Filter-Diagonalization can be further improved 

because of the structure of the eigenvalues.  The eigenvalues of the Liouville operator come here in 

pairs of negative and positive imaginary values, i.e., for each positive λk there is a negative one.  We 

are interested in the pair with the lowest |λk|, which we will denote as λmin, -λmin, each of which is 

associated with the HOMO–LUMO splitting frequency. 
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 The usual Filter-Diagonalization technique will be challenged by the need to separate the 

pair of z’s that are associated with λmin, -λmin, which we will denote as zmin, π-zmin (and zmin is close to 

π/2).  To circumvent this, we note that because of the pairing of the negative and positive 

eigenvalues, the odd terms will vanish 

 1 3 2 10 ... nR R R += = = =    (2.46) 

So that we define a new series 

 2 , 0,1, 2,...n nQ R n= =    (2.47) 

and then use Filter-Diagonalization to fit it to 

 
( )2 cos 2n k k

k
Q p nz=∑ ,   (2.48) 

where now the sum is over half the eigenvalues, i.e., the zk associated with positive λk.  With this 

slight modification, Filter-Diagonalization is much more effective as it does not need to separate two 

very closely-spaced eigenvalues. 

2.4 Results 

The simulations were done on electron transport between two fullerene derivatives.  The 

bulk of the simulations were done on a dimer of the PCBM fullerene derivatives.  This system was 

constructed by taking a PCBM molecule and its nearest neighbor from the crystal structure of 

PCBM·1,2-C6H4Cl2, as shown in Figure 2-1.[19]  The PCBM dimer used here was chosen out of the 

other combinations in the crystal structure as it is relatively the closest, so its conductivity is assumed 

to be the highest of all the other combinations. 

The rest of the simulations were done on a dimer of pentamethylmonohydro[60] fullerenes, 

which we will refer to as C60Me5H.   The system was obtained by taking a molecule of C60Me5H and 



! 
48 

its nearest neighbor in a head-to-tail stacked arrangement from the crystal structure of 

C60Me5H·CS2,[20]  as shown in Figure 2-2.  The C60Me5H  dimer was chosen as it provides a simple 

example of the stacking motif often observed in pentaaryl fullerenes, which have previously been 

evaluated as acceptors in bulk-heterojunction photovoltaic devices. Arranged in such a way, the 

contiguous π-electron systems are well separated and the dimer is thus expected to have a lower 

conductance, thereby exemplifying weakly conductive systems. 

 

Figure 2-1: PCBM dimer 

 

 

Figure 2-2: C60Me5H dimer 
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As a first stage in all methods, the ground state was found using the PM3 program in the 

MOPAC[21] package.  Simulations were done on the PCBM dimer at the natural distance of 10.1 Å 

determined from the crystal structure of PCBM·1,2-C6H4Cl2 and also at stretched distances. 

In the simplest approach, static splitting, the orbital eigenvalues for the ground state  were 

used to calculate the differences between the LUMO and LUMO+1 of the neutral combination.    

One important point is that before calculation, it is necessary to ensure that the LUMO and 

LUMO+1 are extended, i.e., do not localize on the fragments; otherwise, the splitting will be high 

but there will be no transition.  To ensure that the LUMO and LUMO+1 are delocalized, we apply a 

potential which is uniform on each fragment but is different between the fragments (similar results 

would have been obtained from applying an electric field).  Such a potential is similar to a 

localization potential, but its role is to delocalize the orbitals.  In practice, the value of the potential 

enters the Marcus formulae, i.e., it is 

essentially part of the rearrangement 

energy – which is defined by the point 

where the two fragments have the 

same potential energy (here where the 

potential is delocalized).  Results of 

the static splitting approach shown in 

Figure 2-3. 

Next we show the results of 

calculating the time-dependent 

transmission by biasing the molecule, 

releasing the bias, and following the actual transfer of the electron (release of bias method).   
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Figure 2-3: Static splitting for a stretched neutral PCBM dimer  

as a function of extra stretching distance “0” refers to the 

equilibrium distance; other distances refer to pushing or 

stretching the fragments away. 
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Specifically, first we obtain the ground state of the system in an ionic state using PM3 in the 

MOPAC package, with an extra electron inputted in the LUMO of the system.  A bias is then 

applied and then released.  The PCBM system is run with two choices: 

• A bias that is large enough to initially keep the extra electron in one of the molecules and: 

• A small bias that initially keeps 60% of the extra electron in one of the molecules and 40% in 

the other.   

Simulations were done on the PCBM system with the natural and stretched distances. The 

trace of the electron density on the molecule that had the lesser density was calculated over time and 

shown in Figure 2-4. 

Interestingly, for large bias the electron localizes, so that even after the bias is released the 

system does not fully oscillate (Figure 2-4).  This is because the system is initially not in an electronic 

transition state; i.e., the electrons on each side adjust their orbitals in the presence of the bias, and 

the release of the bias does not sufficiently force the electrons to redistribute.   

 

Figure 2-4: Trace of electron density using the bias release method 

In spite of the localization of the electron, it is possible to extract a form of a transfer 

frequency by taking a Fourier transform of the results shown in Figure 2-4; the peak, as a function 
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of the distance between the PCBM molecules, is shown in Figure 2-5.  As shown, the results depend 

on the bias.  This is discussed in the conclusions below.  However, since the amplitude of the 

oscillations is small, the frequency cannot be treated as a full electron oscillation.    

 

Figure 2-5: Transfer frequency (in eV) from extracting  a bias and then releasing it, for the PCBM dimer, as a 

function of stretching distance (“0” refers to the equilibrium distance). 

Finally, we turn to the main method discussed here, TD-Split, where TD-PM3 is used to 

extract the HOMO–LUMO splitting for the ionic state without applying a bias on the neutral 

molecule.  First, PM3 (again from MOPAC) was used, without applying a bias, to calculate the 

ground state.  TD-PM3 was then used to propagate Eq. (2.25).  The previously described Chebyshev 

and Filter-Diagonalization approaches (Eqs. (2.32)–(2.48)) were used to obtain the results. 

Both a direct Chebyshev propagation (Eq. (2.36)) and Filter-Diagonalization gave 

comparable results.  For the Chebyshev approach we typically used 25000 iterations, while for Filter-

Diagonalization typically 3000 total iterations were used.  The Chebyshev method gives a continuous 

graph (Eq. (2.36)) of spectra vs. frequency, and the first peak yields the splitting, as shown in Figure 

2-6.  Filter-Diagonalization gives the results as discrete values. 

The splitting determined from Chebyshev and Filter-Diagonalization is very similar, as 

shown in Figure 2-7; the only difference between the two methods is found for a weakly interacting 
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system, i.e., PCBM at very large distances where 25000 Chebyshev iterations are not sufficient for 

convergence, but Filter-Diagonalization with 3000 iterations is ample.  
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Figure 2-6:  TD-Split HOMO–LUMO splitting for the charged PCBM system  obtained with the Chebyshev 

approach (Eq. (2.36)). 

 

 

Figure 2-7: HOMO–LUMO splitting for a charged PCBM dimer system obtained using direct Chebyshev 

simulations (Eq. (2.36)) vs. Filter-Diagonalization using the Chebyshev residues (Eq. (2.44)). 

 

Finally, these three methods discussed above are compared to each other in Figure 2-8. 

The first method, static-split, involves finding the difference between the LUMO+1 and the 

LUMO of the neutral molecules.  This method is simple in that only a static PM3 or DFT 
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calculation is required and so is the fastest.  The results show that the splitting, and so the electron 

transfer, is reduced as the PCBM molecules are stretched apart, but is significantly smaller than the 

TD-PM3 results. 

The second method, release of bias, which involves a bias that initially fixes the electron 

density and then releases it, generally follows the trend of decreasing conductance with increasing 

distance between the molecules, but the oscillation amplitude is too small when a large bias is used. 

The third method, TD-Split, introduces TD-PM3 as a way to get the (charged-system) 

HOMO–LUMO split for the transferred molecule, from which we get the electron transfer rate.  

Similar methodology will work with TD-DFT.  TD-PM3 allows for fast results, so the method can 

conceivably be used for combinatorial searches of improved transfer.  Note that TD-Split can be 

considered as the limit of the 2nd approach (release of bias), when an infinitesimally small bias is used 

and then released. 

Comparison with the first method (static split) shows that TD-Split gives significantly larger 

rates than the static version, at least when we used TD-PM3 and PM3.  TD-Split best shows a trend 

of decreased electron transfer with increasing distance between the molecules.  To further test the 

magnitude of the splitting produced by the TD-Split, simulations were done on C60Me5H and are 

compared with  those of PCBM.  The results are shown in figure 2-9. The equilibrium distance of 

C60Me5H is 10.0 Å.  This graph shows how the C60Me5H dimer has much lower TD-based splitting 

than PCBM dimer (where in both cases the systems are negatively charged, to represent the 

transferred electron). 
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Figure 2-8: Comparison of all methods.  “Chebyshev” refers to Eq. (2.36) and Filter-Diagonalization to Eq. 

(2.44).  The most important feature of this figure is the large difference between the static approach (LUMO+1 

to LUMO for a neutral system) and the linear response TD split approaches, which predict a much larger 

splitting (i.e., transfer). 
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2.5 Conclusions 

 We have presented a TD-method to studying electron transfer between two molecules, TD-

Split.   We used here TD-PM3 due to its speed over TD-DFT, but either TD-DFT or alternately any 

other semiempirical method beyond PM3 could be used.  This method was also compared with two 

other methods to study electron transfer, static-split and release of bias, and showed larger rates and 

consistent decay with transfer distance. 

 Future work involves improving on this proposed method.  One is to use open-shell TD-

PM3, rather than closed-shell.  This should eliminate any residual self-energy and its effects.  

Another potential improvement is to use this method with TD-DFT rather than TD-PM3. 

 An interesting variant will be to study the flux-flux evolution in time, and see how 

polarization and time-dependent effects influence it; i.e., how the other electrons in the molecule 

“solvate” the transferred electrons. 
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Figure 2-9: Comparison of TD-Split from Filter-Diagonalization for both systems: PCBM dimer and 

C60Me5H dimer 
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 Finally, the technique allows quantitative studies of the efficiency of transfer in different 

organic systems, and will be used to suggest theoretical guidance on the experimental transport of 

electrons in fullerenes.  A follow-up paper will tackle this problem. 
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Chapter 3 

Electron Transfer Beyond the Static Picture: 

A TDDFT/TD-ZINDO Study of a Pentacene Dimer 

We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical 

method) to study transfer of an extra electron between a pair of pentacene molecules.  A measure of 

the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy 

from a delocalized anionic ground state.  With increasing dimer separation, this dynamical 

measurement of charge transfer is shown to be significantly larger than the commonly used static 

approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged 

dimer), up to an order of magnitude higher at 6 Å.  These results offer a word of caution for 

calculations involving large separations, as in organic photovoltaics, where care must be taken when 

using a static picture to model charge transfer. 

3.1 Introduction 

Accurately computing electron transfer rates and probabilities is crucial for understanding a wide 

range of devices and effects, including many types of chemical reactions[1, 2], solar cells[3, 4], 

nanoelectronics[5], and molecular electronics[6-9]. For example, in fullerene-based organic 

photovoltaics (OPVs), after photo-excitation of the light harvesting polymer, a charge-separated 

electron is first transferred to a nearby fullerene molecule, then subsequently shuttled to the 

electrode via a series of “hops” from one fullerene to another adjacent one.  The success of an OPV 

often hinges on how readily electrons can be shunted from polymer to electrode without 
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recombination with a hole.  In general, this is a function of both the device morphology and also the 

electron transfer probability between two fullerene molecules.  Increasing device efficiencies by 

optimizing transfer between fullerene pairs (e.g., via functionalization) thus offers a tantalizing 

opportunity.  Unfortunately, predictive calculations of transfer probabilities are often elusive as 

electron transfer in these systems is a complicated process involving coupling between electronic 

and nuclear motion, in addition to the coupling with environment. 

Electron transfer calculations on model systems and simple analogues offer a path forward.  There 

has been much recent progress in modeling electron transfer between isolated molecules.  The 

electron transfer reaction A!!B → A!B! is well established in principle using Marcus Theory (for 

overview see Ref. [10]), where the transfer is computed in the non-adiabatic regime—i.e., weak 

electronic coupling between the donor and acceptor means that inter-conversion between from the 

donor to the acceptor diabatic potential energy surface can be computed semi-classically.  Here, two 

potential surfaces (reactants and products) are required as functions of molecular coordinates, and 

the transfer probability is computed from three main ingredients: ΔG!, the free energy difference 

between the two states; λ, the energy required to reorganize the system, possibly including a solvent 

shell, from initial to final state without actually transferring charge; and J, the electronic coupling 

between the initial and final states.  While any number of theoretical approaches can be used within 

the Marcus framework (e.g., from semi-empirical to correlated methods), density functional theory 

(DFT) has been the most popular recently, due to good accuracy and modest computational cost[7, 

9, 11-14]. 

For DFT, the main challenge lies in determining proper initial and final states in the transfer integral 

J in the Marcus formalism 
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J = ψ! H ψ! !, 

where |ψ!⟩ and ψ!  are the initial and the final states, and H is the electronic coupling Hamiltonian 

(for more details, see review by Hsu[15]).  Although at first glance straightforward, extreme care 

must be taken in choosing these states to avoid non-physical effects.  For example, if one picks 

ψ! = A!!B and ψ! = A!B! the resulting dynamics could be dominated by electronic relaxation 

rather than charge transfer. 

This issue of correct choice of initial and final states can be bypassed by simply comparing the 

LUMO and LUMO+1 of the neutral pair, which also gives a rough measure of the coupling (i.e., the 

larger the splitting the less the transfer probability).  The picture, however, is only qualitative as in 

reality the transfer involves the coupling of a negatively charged molecule with a neutral one; this 

often consists of a significantly perturbed electronic structure from the neutral case. 

For predictive calculations, however, the transfer integral J must be computed as accurately as 

possible, with proper choice of |ψ!⟩ and ψ! .  To this end, we recently presented a new approach 

to electron transfer calculations named TD-Split, where the transfer integral is calculated using the 

vertical excitation energy of a negatively charged dimer from a fully delocalized ground state[16]; this 

excitation energy can be computed using virtually any time-dependent method.  A related method is 

generalized Mulliken-Hush (GMH), which computes the coupling using the vertical excitation 

energy and transition dipole moment between two charge-localized states[17]. In TD-Split the 

nuclear degrees of freedom are frozen, the “reaction coordinate” is the degree of charge localization, 

and the resulting transfer integrals are associated with the rate of electron transfer for particular 

system geometry.  This is contrast to traditional Marcus-type calculations, which includes the effect 

of the vibrational degree of freedom. 
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Marcus theory gives essentially the exact result (in the nonadiabatic limit) when the electronic 

transfer integrals are known.  For large scale systems, where the transfer integrals are almost always 

calculated by DFT or Hartree Fock or semiempirical methods, most of the electronic degrees of 

freedom are frozen in the calculation.  Put differently, the possibly crucial effect of the other 

electrons on the transfer is neglected in such single-particle static calculations, and TD Split corrects 

this omission. Therefore, in the non-adiabatic limit the result of TD-Split of can be viewed as the 

transfer integral in Marcus theory; when the distortion is weak and the vibrational degrees of 

freedom do not contribute, TD-Split directly yields the transfer rate. 

As a first step towards modeling charge transfer in OPVs, in this paper we use TD-Split in 

conjunction with time-dependent density functional theory (TDDFT) and time-dependent 

ZINDO[18] to study electron transfer across a pentacene dimer consisting of two planar stacked 

pentacene molecules with an intermolecular separation ranging from 3.5 Å to 6.0 Å (see Figure 3.2).  

The rest of the paper is structured as follows: In Section II we briefly review the approach and 

discuss computational details, in Section III we present calculations on a pentacene dimer model 

system, and in Section IV we summarize the results and offer some outlooks on future directions. 

3.2 Methodology  

3.2.1 Static splitting 

In this section, we briefly discuss both the TD-split (dynamic) and static approaches to computing 

the Marcus coupling term J.  In the static picture, one assumes that the charge distribution for the 

neutral combination is not perturbed (dynamically or statically) by adding an extra electron.  If that 

assumption is correct, the difference in energy between the LUMO+1 and LUMO for the neutral 
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pair AB is equivalent to the Marcus factor for identical dimers with delocalized orbitals.  Transition 

requires that the LUMO and LUMO+1 are delocalized over both fragments, otherwise the splitting 

will be high but there will be no transition; this effect is easily included with an additional weight 

term which measures the delocalization of the LUMO and LUMO+1. 

3.2.2 Dynamic splitting 

In the dynamic picture (TD-Split), rather than use the LUMO+1 - LUMO of the neutral system to 

compute the splitting (and thus the charge transfer rate), we instead use the vertical excitation energy 

(VEE) of the -1 charged dimer from a delocalized ground state, where the extra electron is equally 

shared between the two fragments.  In a Marcus-like picture, this delocalized ground state is akin to 

an electronic “transition state” for the transferred electron; i.e., the intermediate situation between 

the charge on one fragment and the charge on the other, and the VEE is thus the electronic 

coupling between the two diabatic surfaces. Since the nuclear geometries are fixed, this does not 

correspond to the Marcus intermediate state, but rather to the halfway point in the electron transfer 

for the given geometry. By using the VEE of the -1 charged dimer from its delocalized ground state, 

you have carefully chosen the initial and final states in the transfer integral J to exclude non-physical 

re-arrangement of the electrons due to localization on one fragment or the other.  In contrast, if you 

instead compute the transfer starting from a system with the extra electron localized on one 

fragment you will have added an indeterminate amount of energy; the calculation will thus give non-

physical results since the localized charge perturbs the electronic density on the other fragment, and 

the resulting dynamics from this initial state will be dominated by electronic relaxation rather than 

transfer.  An alternate approach is to use an isolating potential to create initial states with well-

defined energies[19].  When the vibrational degrees of freedom are weakly coupled, TD split 
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corresponds directly to the transfer rate.  Note that when the system is not completely symmetric, 

the rate of transfer can still be obtained using the TD-Split approach from a flux-flux time-

dependent calculation which starts with the system in its ground anionic state  (delocalized to a 

certain extent, depending on the degree of asymmetry) and then propagates the fluxes[16].  The flux-

flux result is the equivalent of the H!" ! term in Marcus theory. 

Schematically, the TD- Split approach can be expressed as 

δA ≡ Ψ t A Ψ t , 

where |Ψ t ⟩ is a perturbed ground state for the entire charged system (including donor, acceptor 

and the extra delocalized electron), and A is the perturbation operator.  The time dependent 

dynamics is thus directly associated with transport since the added charge is delocalized.  In this 

method, the initial state is the ground static density matrix for the entire (donor and acceptor) 

charged system.  A time-dependent excitation is applied and the response to this excitation is a 

measure of electron transfer rate.  As formulated, this method is linear-response in nature.  This type 

of calculation is “dynamic” in the sense that it goes beyond simply using the static eigenvalues of the 

single-particle Hamiltonian and instead accounts for electronic structure changes during the 

excitation.  For example, in TDDFT this corresponds to correcting the static Kohn-Sham DFT 

eigenvalue differences with the electron-hole response.  As will be shown later, these effects are 

crucial for properly capturing the separation dependence of the charge transfer. 

3.2.3 Computational details 

Both the static and dynamic approaches are flexible, as the orbital energies (LUMO, LUMO+1) and 

the vertical excitation energies can be computed via any number of static and time-dependent 
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approaches, such as coupled cluster (e.g., equation of motion coupled cluster[20, 21]), linear-

response[22, 23] or real-time TDDFT[24-28], or time-dependent semi-empirical methods[18, 29].  In 

this paper, we use DFT and ZINDO to compute the static splitting and VEEs of a -1 charged 

pentacene dimer.  All DFT/TDDFT calculations were performed with atom-centered Gaussian 

basis sets using a development version of the NWChem software package[30, 31].  Since these 

methods are commonplace, we omit the details.  

The ZINDO and TD-ZINDO results were obtained by using a modified version of ZINDO-MN 

package[32].  In a nutshell, in ZINDO only the valence electrons are treated, which is done via semi-

empirical one-body (i.e., nuclear and core) parameters h!" and two-body interaction parameters v!"#$, 

which are fit to experimental data: 

F!" = h!" + ! v!"#$P!"
!"

, 

where P is the density matrix in the atomic orbital basis.  The time-dependent response is computed 

using explicit time propagation via the von Neumann equation: 

i ∂P′∂t = F! P! t ,P!(t) , 

where the prime denotes quantities in the molecular orbital (orthogonal) basis.  The actual 

propagation was carried out using a linear-response von Neumann operator 

LZ ≡ dZ
dt = −i F

! P!! + ηZ ,P!! + ηZ − F! P!′ ,P!′
η  

where Z(t) ≡ P! t − P!! is the deviation of the MO density matrix from the initial state, and η is a 



!
!

 
66 

small parameter ensuring linearity.  Z(t)  is propagated from a dipole perturbed ground state 

Z! = −i D,P!′  via a Chebyshev expansion, and the Fourier transform of the resulting time-

dependent dipole moment yields the absorption spectrum, and thus the vertical excitation energies.  

For all TD-ZINDO simulations, the time step was 0.4 a.u (0.01 fs) and the ZINDO parameters 

were taken to be as in the original ZINDO-MN package.   For a more complete discussion of the 

TD-ZINDO approach see Ref. [18]. 

3.3 Results  

3.3.1 Convergence with basis set 

The large separations in these systems can pose a serious problem for atom-centered basis sets, so as 

a first step we confirmed that the TDDFT and static splitting (LUMO+1 - LUMO for the neutral 

dimer) results were all converged with basis.   

!

Figure' 3.1:" Static& B3LYP& splitting& (dashed)& and& TD"B3LYP& energies& (solid)& for& a& range& of& basis& sets.& & Larger&
separations* require* a* basis* set* with* diffuse* functions* (e.g.,% 6"31++G% and% POL1)% to% avoid% non"physical) super"
exponential*falloff.!
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!

Figure'3.2:'Snapshots'of'the'orbitals'involved'in'the'vertical'excitation'of'the'"1"charged"dimer"(5"Å"separation,"
PBE,%6"31++G%basis).%%The%excitation&corresponds&to&a&symmetric&→&antisymmetric&flip&of&the&wavefunction.!

Figure 3.1 shows the B3LYP TDDFT vertical excitation energy (VEE) for the negatively charged 

dimer, and the difference in energy between the LUMO and LUMO+1 for the neutral dimer for the 

3-21G, 6-31G, 6-31++G, and POL1 basis sets.  For shorter separations (R < 4.5 Å), both the static 

and TDDFT energies are relatively insensitive to basis set, whereas there is a pronounced deviation 

from exponential behavior at larger separations for the 3-21G and 6-31G basis sets.  The super-

exponential falloff (non-linear in log plot) is a non-physical consequence of the insufficient physical 

extent of the smaller basis sets.  The POL1 basis, which is highly diffuse and optimized for response 

properties, retains the correct exponential falloff, as does the 6-31++G basis, which is a 6-31G basis 

with extra diffuse functions.  The TDDFT VEEs are less sensitive to basis set than the static DFT 

LUMO+1 – LUMO energies, since individual orbital energies are typically more sensitive to 

incomplete overlap due to finite basis.  Given these results, we henceforth use the 6-31++G basis, 

which for our purposes yields effectively the same quality results as POL1 with significantly less 

computational effort (656 basis functions instead of 1308).  In general, for calculations of this kind 

on extended systems, augmenting a small basis with a few diffuse functions offers an affordable way 

to capture charge transfer processes. 

III.2 Static versus dynamic splittings 
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For the -1 charged system, the HOMO and LUMO are extended across the dimer, and the 

excitation corresponds to a symmetric → antisymmetric flip for the dimer wavefunction (see Figure 

3.2).  This is important because transitions between orbitals localized on individual fragments would 

result in an apparently large splitting, but with no electron transfer.  This situation can be remedied 

somewhat by applying a “delocalizing” potential to the system to force a delocalized initial state but 

this was unnecessary for this symmetric system.  The shapes of the neutral LUMO and LUMO+1 

are qualitatively similar to the HOMO and LUMO of the negatively charged dimer (not shown), and 

since they are likewise extended, the difference in their energy is a fair measure of the static splitting. 

Figure 3.3 shows the -1 charged dimer vertical excitation energies using a range of TDDFT 

exchange-correlation functional: LDA (slater exchange[33] and VWN correlation[34]), PBE[35], 

!

Figure' 3.3:' Static' DFT/ZINDO' splitting' for' the' neutral' dimer' (dashed)' and'HOMO'→' LUMO'TDDFT/TD"ZINDO&
vertical)excitation)energies)for)the)"1"charged"dimer"(solid);"the"corresponding"exponential"decay"constants"are"
shown&above&each&curve.&!All#DFT#calculations#used#the#6"31++G%basis%set.%%The%ZINDO%results%are%scaled%by%1.5%
for$easier$comparison.!



!
!

 
69 

B3LYP[36].  The corresponding DFT neutral dimer LUMO+1 – LUMO energies are shown for 

comparison.  Overall, all TDDFT VEEs are quite insensitive to exchange-correlation functional; 

B3LYP is slightly red-shifted from LDA and PBE, but all have roughly the falloff rate (exponential 

decay constant of κ = 0.73!Å!! ).  For separations less than 4.5 Å, there are intra-fragment 

excitations which are lower in energy than the HOMO → LUMO excitation.  These excitations are 

independent of separation, however, and with increasing R the HOMO → LUMO transition is 

guaranteed to become the lowest excitation, since it decays exponentially with separation.  The DFT 

neutral static splittings between the first two virtual states (LUMO+1 vs. LUMO) are likewise 

insensitive to the functional, but are both significantly shifted lower in energy than the TDDFT 

VEEs, and also decay much faster (κ = 1.5!Å!!).  Figure 3.3 also shows the corresponding static 

and time-dependent ZINDO results.  Since we are interested in the slope rather than absolute 

energies, they were scaled by 1.5 to facilitate comparison with the DFT results.  The ZINDO results 

are qualitatively similar to DFT, except for steeper exponential falloffs.  Better tuning of the 

ZINDO coupling parameter might lead to better agreement with DFT.  

Overall, these results suggest that the neutral static picture drastically underestimates the charge 

transfer rate, and the underestimation grows rapidly with increased separation.  For example, 

whereas the static PBE energy is only 34% lower than the TD-PBE VEE at 3.5 Å, it is a full order 

of magnitude smaller at 6 Å.  The reason for this is twofold: Firstly, the static picture of orbital 

energy differences does not include re-arrangement of the electronic density during charge transfer; 

this is analogous to static DFT orbital energy differences versus TDDFT for traditional excitations.  

Secondly, the static picture assumes negligible perturbation of the electronic structure of the 

fragments upon adding an additional electron.  Although the qualitative features of the orbitals (e.g., 

shape and ordering) are qualitatively unchanged by the additional electron, the orbital energetics are 
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affected.  For shorter separations, this effect is lessened since the dimer is more like a super-

molecule.  In a similar vein, the electronic structure of larger systems (e.g., fullerenes) is likewise less 

sensitive to extra electron.   

In devices such as solar cells we are often interested in charge transfer across even larger length 

scales than these, so it is clear that a time-dependent approach is vital for even a qualitative 

description of the transfer.  For example, it becomes impossible to use a static splitting-based 

calculation to correlate device morphology with charge transfer, since the static approach predicts 

far too fast a falloff with separation. 

As a final check, we compared the neutral LUMO+1 – LUMO splitting to the -1 charged HOMO – 

LUMO, as shown in Figure 3.4.  For pure DFT functionals (LDA, PBE), the two are virtually 

identical, which is consistent with the idea that the electronic structure of the dimer is negligibly 

!

Figure'3.4:'Static'splitting'for'the'neutral'and'"1"charged"dimer."The"two"agree"well"for"pure"DFT,"but"the"anion"is"
poorly&described&by&B3LYP&and&ZINDO,&due&to&the&failure&of&HF&to&capture&the&delocalized&ground&state.!
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affected by the addition of an extra electron.  The anion splitting for the hybrid functional (B3LYP), 

however, is significantly overestimated, and falls off in an incorrect sub-exponential manner.  For 

pure Hartree-Fock (HF; not shown), this is even more pronounced.   In a nutshell, HF is driving the 

system into an ionic-like state rather than a delocalized one, resulting in unphysical orbital energies; 

this failure of HF to describe anions is well-known. It is not surprising that B3LYP shows this 

behavior because it contains 20% HF.  ZINDO, which is a HF-type method (albeit with modified 

interaction terms), also suffers from this problem.  There are two things to note from these results:  

First, they confirm that dynamic (time-dependent) effects (e.g., electronic relaxation) are indeed 

important, and these calculations are not merely a measure of the anion static HOMO – LUMO 

splitting.  Second, even though HF-based methods break down when describing the anionic orbital 

energies, the corresponding dynamics are still quite reasonable,  i.e., the TD-B3LYP excitation 

energies are in excellent agreement with TD-LDA and TD-PBE, and TD-ZINDO is in reasonable 

agreement.  Put another way, the response of the system is relatively insensitive to the poor ground 

state description.  

3.4 Conclusions 

In summary, we computed the electronic couplings for a -1 charged pentacene dimer as a first step 

towards modeling electron transfer in organic photovoltaics.  Two types of splitting were computed: 

the static DFT and ZINDO LUMO+1 – LUMO of the neutral dimer, and the vertical excitation 

energy of the -1 charged dimer from a delocalized ground state, which was obtained via time-

dependent methods (TDDFT and TD-ZINDO).  The static picture consistently underestimates the 

splitting, and results in a far steeper exponential falloff than the dynamic splitting.  As a 

consequence, while the static splitting offers a decent approximation to the transfer at short 
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distances, with increasing separation it becomes ever more important to use the dynamic approach.  

These results have strong implications in systems like organic photovoltaics, where the LUMO+1 - 

LUMO is a common rule of thumb for estimating charge transfer efficiency, since the addition of an 

extra electron on a fullerene is usually assumed to not significantly perturb the electronic structure.  

Care must be taken, however, as using the static approximation for large separations will drastically 

underestimate transfer probabilities, perhaps even by orders of magnitude in extreme cases.  Future 

studies will address the accuracy of the static versus dynamic picture for charge transfer across 

fullerene pairs. 
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Chapter 4 

Excited-State Studies of Polyacenes: A Comparative Picture Using 

EOMCCSD, CR-EOMCCSD(T),  

Range-Separated (LR/RT)-TDDFT, TD-PM3 

  and TD-ZINDO 

The low-lying excited states (La and Lb) of polyacene from naphthalene to heptacene (N=2-7) are 

studied using various time-dependent computational approaches. We perform high-level excited-

state calculations using equation of motion coupled cluster with singles and doubles (EOMCCSD) 

and completely renormalized equation of motion coupled cluster with singles, doubles, and 

perturbative triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of 

various range-separated exchange-correlation functionals within linear-response (LR) and real-time 

(RT) time-dependent density functional theories (TDDFT). As has been reported recently, we find 

that the range-separated family of functionals addresses the well-documented TDDFT failures in 

describing these low-lying singlet excited states to a large extent and are as about as accurate as 

results from EOMCCSD on average.  Real-time TDDFT visualization shows that the excited state 

charged densities are consistent with the predictions of the perimeter free electron orbital (PFEO) 

model.  This corresponds to particle-on-ring confinement, which leads to the well-known red-shift 

of the excitations with acene length.  We also use time-dependent semi-empirical methods like TD-
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PM3 and TD-ZINDO, which are capable of handling very large systems.  Once re-parameterized to 

match the CR-EOMCCSD(T) results, TD-ZINDO becomes roughly as accurate as range-separated 

TDDFT, which opens the door to modeling systems such as large molecular assemblies. 

4.1 Introduction 

Polyacenes or acenes constitute a class of 

polycyclic organic compounds consisting 

of linearly fused benzene rings.  These 

compounds, and their derivatives, have 

been studied extensively and over the last 

several years the larger representatives in 

this class have been used in a plethora of 

applications such as light-emitting 

diodes,1-4 photovoltaic cells,5-7 liquid 

crystal displays,8 organic field-effect 

transistors9,10 to name a few.  Pentacene, 

in particular, has received much attention 

because of its high charge-carrier (hole) 

mobility in films and molecular crystals.11-

13  For an overview of the electronic 

applications of acenes, see the reviews by Anthony.14,15 

In a nutshell, the electronic properties of these materials are dictated by the ! electrons which 

occupy the highest occupied and lowest unoccupied states; the ! interactions between adjacent 

!

Figure 4.1!Structures of the acenes studied.  From top to 
bottom: naphthalene (N=2), anthracene (N=3), tetracene 
(N=4), pentacene (N=5), hexacene (N=6), heptacene 
(N=7)!
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acene molecules, for example, gives rise to the high hole mobility through molecular films.  In a 

single molecule, the lowest valence excitations have ! − !∗  character and the two lowest singlet 

excitations are commonly assigned as the La (B2u symmetry) and Lb (B3u symmetry) states, 

respectively. The former represents the polarization along the short-axis, whilst the latter represents 

the polarization along the long-axis. The Lb is the lowest excited-state in benzene and naphthalene 

but switches positions with the La state for larger acenes, with the crossing happening around 

anthracene. It has long been suggested, from a valence-bond point of view, that the La state is 

mostly ionic in character involving significant rearrangement of the excited-state density, whereas 

the Lb state is mostly covalent where the excited-state density is similar to the ground state. 

There has been significant progress in describing these excitations theoretically,16-23 within which 

time-dependent density functional theory (TDDFT)24-26 has been the predominant method.  It is 

now well-known, however, that for TDDFT traditional and global hybrid functionals fail to describe 

these lowest excitations.  Grimme and Parac demonstrated that the ordering switches earlier than 

expected with both classes of functionals and the excitation energy of the La state is severely 

underestimated and progressively worsens with system size.20 Increasing the Hartree-Fock (HF) 

content in the exchange-correlation improves the picture for the La but worsens the excitation 

energy of the Lb state.  They concluded that it was impossible to capture both states accurately just 

by adjusting the HF content. 

Very recently, range-separated hybrid (RSH) functionals have been applied to the La state in 

acenes.17-19, 22 RSHs correct the incorrect asymptotic behavior of the exchange by splitting the 

exchange into a short-range part and long-range part. For many optically active charge transfer 

states, RSHs rival the accuracy of the equation of motion coupled cluster singles doubles 

(EOMCCSD) method on average.  The success of RSHs in this case, however, is in many ways quite 
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surprising, as the La state is an intra-molecular transverse excitation (along short-axis of molecule) 

and clearly not long-range at all.  Richard and Herbert labeled this a charge-transfer-like state in 

disguise,18 which Kuritz et al. subsequently rationalized as arising from minimal overlap in auxiliary 

orbitals,19 akin to minimal overlap of the hole/charge orbitals in a typical charge transfer excitation. 

In some sense, acenes serve as a rough prototype for more complicated light harvesting system, and 

also as the fundamental building block for many molecular electronic devices.  Careful analysis of 

the excitations in these deceptively simple molecules serves as a crucial test for the accuracy and 

predictive power of a theoretical technique, as indicated by the intense interest in benchmarking 

TDDFT results in these systems.  In this light, our main goal in this paper is to examine the low-

lying excited states of polyacenes from naphthalene to heptacene (Figure 4.1) using a wide selection 

of time-dependent approaches.  We first perform a systematic analysis based on high-level coupled 

cluster (EOMCCSD and CR-EOMCCSD(T)) calculations. These calculations are used to 

benchmark the performance of various range-separated exchange-correlation functionals 

implemented within linear response and real-time TDDFT.  Additionally, we explore the use of 

semi-empirical time-dependent PM3 and ZINDO for describing these excitations, and 

reparametrize their Hamiltonians to better match the results of high level theory.  All structures were 

obtained using cc-pVTZ/B3LYP. 

The rest of the paper is organized as follows: In section 4.2, we briefly review the various time-

dependent approaches used in this study and provide the necessary computational details. The 

results are presented and discussed in section 4.3 and the concluding remarks in section 4.4. 

4.2 Methodologies and computational details 

Below we briefly review the formalisms for equation of motion coupled cluster (EOMCC), real-time 

time-dependent density functional theory (RT-TDDFT), and real-time time-dependent PM3 and 
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ZINDO.  All results except the PM3 and ZINDO ones were obtained using NWChem.27 The TD-

PM3 results were obtained by a modification of the PM3 module from MOPAC 6.0,28,29 to perform 

iterative time-dependent calculation of the TD-PM3 excitation energies.30 The TD-ZINDO results 

were obtained by an analogous modification of ZINDO from the ZINDO-MN package.31 The 

linear response TDDFT results were calculated using the module in NWChem; since the approach is 

widely used (e.g., refs 26 and 32), we omit the details. 

4.2.1 Equation of motion coupled cluster 

The EOMCC formalism33 can be viewed as an excited-state extension of single-reference coupled 

cluster method, where the wavefunction corresponding to the K-th state is represented as 

|Ψ! = !!!!|Φ  

 
(4.1) 

where !and state-specific !! operators are the cluster and excitation operators, respectively, and 

|Φ  is the so-called reference function usually chosen as a Hartree-Fock determinant. Various 

approximate schemes range from the basic EOMCCSD approximation where the cluster and 

correlation operators are represented as sums of scalar (!!,! for excitation operator only), single 

(!!,!!,!) and double (!!,!!,!) excitations 

|Ψ!!"#$$%& = (!!,! + !!,!+!!,!)!!!!!!|Φ  

 
(4.2) 

to the more advanced EOMCCSDT and EOMCCSDTQ approach, accounting for the effect of 

triple and/or quadruple excitations.  It has been demonstrated that the progression of methods: 

EOMCCSD ⟶  EOMCCSDT ⟶  EOMCCSDTQ..., in the limit converge to the exact (full 

configuration interaction) energies. However, the rapid growth in the numerical complexity of the 
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EOMCC methods makes calculations with the EOMCCSDT or EOMCCSDTQ methods very 

expensive even for relatively small systems.  Unfortunately, the EOMCCSD method is capable of 

providing reliable results only for singly excitedstates. However, as it has recently been 

demonstrated,34 errors in the range of 0.25-0.30 eV with respect to the experimental vertical 

excitation energies (VEE) persist with increasing system size. 

In order to narrow the gap between the EOMCCSD and EOMCCSDT VEEs, several non-iterative 

!!-scaling methods that mimic the effect of triples in a perturbative fashion have been proposed in 

the past.35-40 The completely renormalized EOMCCSD(T) approach, denoted CR-EOMCCSD(T),41 

falls into this class (see also refs 42 and 43-45 for the most recent developments). In this approach 

the energy correction !!!"!!"#$$%&(!)!is added 

to the EOMCCSD VEE (!!!"#$$%&) 

!!
!"−!"#$$%&(!) = !!!"#$$%&+!!

!"−!"#$$%&(!) (4.3) 

 

where the !!!"!!"#$$%&(!)!is expressed through the trial wavefunction Ψ!| and the triply excited 

EOMCCSDmoment operator !!,!
!"#$$%& (see ref 41 for details): 

!!
!"−!"#$$%&(!) = Ψ! !!,3

!"#$$%& Φ
Ψ! (!!,! + !!,!+!!,!)!!!!!! Φ

 (4.4) 

 

Although the CR-EOMCCSD(T) method is characterized by the same !!scaling as the ground-state 

CCSD(T) method\cite{raghavachari_1989_ccsd_t}, the fact that triply excited EOMCCSD 

moments needs to be calculated makes this approach few times more expensive than the ground-

state CCSD(T) approach. 
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4.2.2 Real-time TDDFT 

In real-time time-dependent density functional theory (RT-TDDFT), the time-dependent Kohn-

Sham (KS) equations are explicitly propagated in time: 

! !!!(!, !)!" = [− 12∇
! + !!" ! !, ! ]!!(!) (4.5) 

= − 12∇
! + !!"# !, ! + !! !, ! + !!" ! !, ! !!(!) 

(4.6) 

where !(!, !)  is the charge density, !!"# !, !  is the external potential describing the nuclear-

electron and applied field contributions, !! !, !  is the electron-electron potential, and !!" ! !, !  

is the exchange-correlation potential, which is henceforth assumed to depend only on the 

instantaneous density (adiabatic approximation).  In a Gaussian-orbital basis it is simpler to work 

with density matrices rather than KS orbitals, in which case the evolution of the electronic density is 

governed by the von Neumann equation: 

! !!
!

!" = !! ! ,!! !  (4.7) 

where the prime notation denotes matrices in the orthogonal molecular orbital (MO) basis, and 

unprimed denotes matrices in the atomic orbital (AO) basis.  Note that in eq 4.7, all matrices are 

complex quantities.  The Fock matrix !(!) is computed in the AO basis similar to ground state 

DFT, with the important distinction that in the absence of Hartree-Fock exchange (e.g., pure DFT), 

!(!) is real symmetric and only depends on the real part of !(!). If HF exchange is included (e.g, 

hybrid functionals), it becomes complex Hermitian (see ref 47 for details of the NWChem RT-

TDDFT implementation, derivations, and references). 

There are numerous approaches taken to propagating eq 4.7. In this study, we use a second order 

Magnus scheme, which is equivalent to an exponential midpoint propagator 
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!! ! + ∆! = !−!!′ !+∆!/! ∆!!!(!)!!!′ !+∆!/! ∆! (4.8) 

where we compute the Fock matrix at the future time via linear extrapolation from the previous two 

values, followed by iterative interpolation until converged.  This approach is extremely stable, as it 

maintains the idempotency of the density matrix, and yields order 

(∆!)! accuracy.  In practice, this allows for time steps on the order of ∆! = 0.1!au! = !2.42!×

!10!!!!" with minimal loss of accuracy.  The exponentiation of eq 4.8 is done via contractive power 

series, where the operator is first divided by 2! such that the norm of the scaled operator is less 

than 1, performing the power series (which is guaranteed to converge well numerically since it is 

contractive), then squaring the result !! times to recover the result.! ! All real-time TDDFT 

simulations here used a time step of ∆!  = 0.2!au! = !0.0048!!"  and ran up to 1500!!"! =

36.3!!", which corresponds to 7500~time steps.!

To obtain spectroscopic information, the system is excited via a linearly polarized (!,!, !) narrow 

Gaussian electric field kick which adds to the Fock matrix via dipole coupling: 

!(!) = !"#$ − ! − !! !/2!! ! (4.9) 

where ! = !,!, ! is the polarization, ! is the field maximum (dimensions of electric field),!!! is the 

center of the pulse, and!!!is the width, which is typically∼ ∆!.  This induces all electronic modes 

simultaneously, and the Fourier transform of the resulting time-dependent dipole moment yields the 

absorption spectrum for that polarization; the sum of the three spectra gives the full absorption.  In 

the limit of a small electric field perturbation, real-time TDDFT and linear-response yield essentially 

identical spectroscopic results; unlike LR-TDDFT, RT-TDDFT is also valid in the strong 

perturbation regime, but the studies presented here are all the weak-field and thus comparable to 
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LR-TDDFT.  All kick-type results here used a kick with ! = 0.002!!" = !.!!
!" , !! = 3.0!!" =

0.07!!",!"#!! = 0.2!!" = 0.0048!!" 

The true power of RT-TDDFT, however, lies in direct modeling of the electron dynamics in 

response to a realistic stimulus, such as a laser tuned to resonance with a particular electronic 

transition.  For example, to excite the system into a particular state of interest, it is simplest to use a 

Gaussian enveloped monochromatic laser pulse of the form: 

! ! = !"#$ − ! − !! !

2!! cos!(!!!)!! (4.10) 

where !! is the driving frequency, and ! is broad enough to encapsulate at least a few oscillations.  

In this case, the charge density can be visualized in 4D (three space + time) which yields detailed 

insight into the fundamental nature of the excitation.  This is especially important as an intuitive 

metric for characterizing charge transfer excitations, and when elucidating the mechanism of 

excitations.  In this paper, RT-TDDFT is used as a visual tool to assign longitudinal and transverse 

excitations into two distinct classes (ionic vs covalent, respectively), and to study the physical origin 

of the red-shift with acene length. 

4.2.3 Time-dependent semi-empirical methods 

A well known alternative to first-principles approaches is semi-empirical methods (e.g., PM328 and 

ZINDO48) which can be extended to a time-dependent formalism.30 A minimal valence basis set is 

used, so that there are only 4 orbitals for each carbonatom.  Typically, the Fock matrix has the 

generic Hartree-Fock-like form: 

!!" = ℎ!" + ! !!"#!!"
!"

 (4.11) 
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where ℎ!" and !!"# are semi-empirical one-body and interaction parameters, respectively.  Unlike 

Hartree-Fock and DFT, however, the interaction parameters are restricted to be at most two-center.  

The calculations are done in an atomic basis (rather than molecular orbital basis, which earlier TD-

semi-empirical methods use) so that the calculation of the Fock matrix scales like !!, where ! is the 

number of orbitals. 

After the initial SCF solution labeled as !!, the same von Neumann equation as in TDDFT (eq 4.7) 

is propagated.  While the same real-time approach as in eq 4.8 could have been used, here however a 

different algorithm is found to be more efficient.  The algorithm has been covered recently (see ref 

30), so it will only be briefly reviewed.  Basically, the linear-response von Neumann operator is 

constructed: 

!" ≡ !!"!" = −! ! !! + !" ,!! + !" − ! !! ,!!
!  (4.12) 

for the deviation from the initial density matrix: 

! ≡ !! − !! (4.13) 

and ! is a small parameter ensuring linearity.  Then, the time-dependent dynamics are represented by 

writing a Chebyshev algorithm for the propagator: 

! ! = !!"!! = (2− !!!)!!(!∆!)!!(
!
∆!)!!

!
 (4.14) 

where we introduced the Bessel and modified Chebyshev operators, with the latter propagated as: 

!!(
!
∆!)!! = 2 !

∆! !!!!
!
∆! !! + !!!!(

!
∆!)!! (4.15) 

and 
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!! = !−!! !,!!  (4.16) 

where ! is the dipole moment matrix.  ∆! is half the spectrum width, so that (∆!)!!  is the 

effective time-step; it is quite large (almost 0.4~a.u.), so that the overall number of iterations 

required is quite small (a few thousands even without any signal processing approaches).  This 

approach minimizes the number of matrix multiplications, which in semi-empirical calculations are 

the most time-consuming steps (scales as !! unless sparse matrix algorithms are used).  Further 

savings are obtained by Fourier transforming the time-dependent Bessel function coefficients in eq 

4.14 analytically, thereby reducing the required number of iterations.  As with RT-TDDFT, 

spectroscopic information is obtained via kick-type excitations. 

4.3 Results 

In this section we present acene vertical excitation energies (VEEs) for a wide range of theories: 

Coupled cluster (EOMCCSD, CR-EOMCCSD(T)); linear response TDDFT with a global hybrid 

functional (B3LYP49) and a variety of range-separated functionals (CAM-B3LYP,50 LC-BLYP, LC-

ωPBE,51 BNL52) real-time TDDFT with the BNL functional; and two semi-empirical methods (TD-

ZINDO, TD-PM3).  Before discussing results, it is important to note that vertical excitation 

energies, which correspond to the energy difference between ground and excited states without a 

change in geometry, cannot be directly measured experimentally (see ref 21).  As a good 

approximation, VEEs can be measured experimentally via the locations of experimental UV-Vis 

absorption peaks, but the accuracy of this approximation varies depending on state and molecule, 

with deviations typically on the order of a few tenths of an eV.  To ensure meaningful comparisons 

between the computed VEEs and experimental results, we use the corrected acene experimental 

values from Grimme and Parac20 (see ref 53 for the original experimental results).  In a nutshell, 
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these incorporate adjustments to the !! and !! computed from TDDFT (B3LYP/TZVP) excitation 

energies with fully optimized excited state geometries (calculated for acenes N = 2, 3, 4 ; 

extrapolated to N=5, 6, 7).  This somewhat accounts for geometry relaxation effects, but significant 

theory-experiment discrepancies still arise from basis set quality and the level of theory, specifically 

the treatment of correlation effects.  

The !! and !! vertical excitation energies for the set of acenes are summarized in Table 4.1, along 

with the corrected experimental values, and the mean average error (MAE) from experiment, for the 

full set of acenes for each approach.  These VEEs (for a few representative theories) are plotted 

against acene size in Figure 4.4.  Qualitatively speaking, all methods capture most of the gross 

features, including red-shift of the !! (longitudinal) state with acene length, and steeper red-shift of 

the !! (transverse) state with acene length.  However, there is only mixed success in describing the 

important experimentally observed crossover of lowest energy state from !! → !!!  around 

anthracene; this is discussed in more detail below. 

4.3.1 Equation-of-motion coupled cluster 

Overall, CR-EOMCCSD(T) has the best agreement with experimental energies, with a MAE of 

0.07~eV for the !!  state, and 0.06~eV for the !! .  Most importantly, CR-EOMCCSD(T) 

simultaneously describes both states well, and captures the crossover at the right energy (near 

anthracene).  That is, it predicts that !!!is lower in energy than !! for naphthalene, they are roughly 

equal for anthracene, and !! is lower afterwords (see Figure 4.2).  In contrast to the experimental 

vertical excitation energies, the EOMCCSD and CR-EOMCCSD(T) approaches predict for 

anthracene the reversed ordering of the !! and !! states. The CR-EOMCCSD(T) excitation energy 

for !! state is located 0.1 eV below the one corresponding to the !! state. Similar reverse ordering 



!
!
 

90 

has been reported in the context of multireference M∅ller-Plesset (MRPT) theory54,55 calculations for 

low-lying excited states of anthracene.16  In the case of the MRPT approach, the 0.17 eV separation 

between !! and !! states is slightly larger than 0.1 eV obtained with the CR-EOMCCSD(T) method 

for POL1 basis set.  The CC2 model,56 which is an approximation to the EOMCCSD formalism, 

predicts the !!  state to the lowest state, and the calculated separation between !!and !!!states is 

around 0.2 eV. 

4.3.2 Linear response TDDFT 

The range-separation 

parameter for the CAM-

B3LYP,50 LC-BLYP and 

BNL52 functionals was taken 

to be 0.33!!"!! ; for LC-

ωPBE,51 it was 0.30!!"!! .  

For the transverse charge-

transfer-like !!  state (solid 

lines in Figure 4.2), all the 

range-separated TDDFT 

results agree well with experiment and EOMCC, with MAE typically around a few hundredths of an 

eV.  Real-time BNL results are essentially the same as the corresponding linear response ones, since 

the kick perturbation was small.  Range-corrected TDDFT is less accurate for the !!!  state, 

however, with MAEs of∼ 0.3!!", which is almost twice that of B3LYP.  Thus, range-separated 

TDDFT excels at predicting the challenging charge-transfer-like !!  state, but using a range-

!
Figure 4.2 Comparison between the two lowest singlet excitation 
energies of the set of acenes for a selection of theories, along with the 
experimental values.  The solid lines correspond to the !!  (transverse) 
excitation, and the dashed lines to the !! (longitudinal) excitation. 
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separated functional significantly compromises the accuracy of the !!!state versus a global hybrid 

approach (e.g., B3LYP).  To better understand the accuracy of RSH functionals, two versions of the 

CAM-B3LYP functional were studied: The first, denoted ``CAM-B3LYP(I)'' has an asymptote of 

0.65 ! (i.e., ! + ! = 0.65 while the second, denoted ``CAM-B3LYP (II)'' has an asymptote of 

1.0 !.  The full Hartree-Fock asymptote in the exchange in CAM-B3LYP(II) improves the accuracy 

in the !! state at a cost of slightly decreasing the accuracy of the !!! state.  On another note, range-

separated TDDFT correctly predicts the !! → !!! crossover (intersection of like colored solid and 

dashed lines in Figure 4.2), albeit at a lower energy than experiment.  B3LYP, in contrast, fails to 

even qualitatively capture this crossover.  In short, using range-separated functionals overcomes 

many of the failures of pure or hybrid DFT functionals in describing the transverse !! state and the 

!! → !!! crossover, with overall accuracy rivaling that of CC2.  The use of “tuned” RSHs, which 

has been pioneered by Baer and coworkers,57 shows promise in further improving the accuracy of 

TDDFT for systems such as this.19 

4.3.3 Time-dependent PM3 and ZINDO 

We performed time-dependent simulations with two typical semiempirical methods, PM3 and 

ZINDO.  The latter is well known to be better for spectra, as our results indicate.  In order to 

parametrize the TD-ZINDO approach against the coupled CR-EOMCCSD(T) results for the 

charge-transfer-like !! , we scaled down the strength of the !!!  interaction potentials, as is 

commonly done in ZINDO.  We found a scaling factor of 0.64, which we denote “ZINDO (II)”, 

yielded the best fit, compared to the stockscaling factor of 0.70 (denoted “ZINDO (I)”).!!In the case 

of the general ZINDO (I), the !!  is fairly poorly described (MAE of 0.24~eV) whereas the 

longitudinal !!! is quite well described, akin to the B3LYP results.  The !!-tuned ZINDO(II), 
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however, is extremely accurate for the !!! state, but as with range-separated TDDFT, the 

corresponding accuracy in the !!!state suffers.  One drawback of ZINDO, however, is that it fails to 

properly capture the crossover.  ZINDO (I) predicts that !! and !!! are roughly equal in energy at 

! = 2, whereas ZINDO (II) incorrectly predicts that !!! is always higher in energy than !!.! !Of 

course, the excellent quality of ZINDO (II) results for the !!.!are a consequence of being fit to this 

particular state, but it is still quite remarkable that with a single parameter it is possible to 

simultaneous fit six molecules so well.  These results suggest carefully parametrized semi-empirical 

approaches are an excellent tool for modeling excitations in large polyaromatichydrocarbons, where 

large system size makes coupled cluster, or even TDDFT, unfeasible. 

4.3.4 Real-time visualization of the excited charge density 

Next, to gain insight into the nature of the 

excitations we present real-time real-space 

visualization of the excited state charge 

density for the (transverse) !!  state. The 

(longitudinal) !!!  state has too small an 

oscillator strength to visualize clearly, so the 

major bright longitudinal UV Bb absorption 

(see Figure 4.3) was chosen as an illustrative 

analogue (note this peak is not compared in Table 4.1).  As before, the system was described using 

the BNL functional, and for speed the smaller 6-31G** basis set was used instead of POL1.  The 

spectra of the acenes with 6-31G** basis sets were extremely similar to the POL1 spectra, save a 

slight blue-shift due to the smaller basis. 

!
Figure 4.3  Absorption spectrum of anthracene (N=3) obtained via 
RT-TDDFT (POL1/BNL).  The bright La and dim Lb peaks 
correspond to transverse and longitudinal excitations,respectively.  
The intensely bright longitudinal UV Bb peak is visualized in Figure 
4.4 but not compared in Table 4.1 
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Figure 4.4 shows real-time TDDFT snapshots of the deviation of the charge density from the 

ground state for anthracene and heptacene after resonant excitation to the !! state.  Unlike plots of 

molecular orbitals, which are strictly ground state quantities, Figure 4.4 corresponds to the actual 

charge density dynamics resulting from an excitation.  For the longitudinal excitation (top), blue 

isosurfaces correspond to positive charge density deviation from the ground state, ! !, ! −

! !, ! = 0 = !10!!Å!! , and red isosurfaces to the corresponding negative deviation.  In the 

transverse excitation (bottom), the isosurface values were 10!!Å!!.  The two excitations were 

induced via longitudinal or transverse polarized enveloped laser pulses (See eq 4.10), with ! =

!
Table 4.1 The two lowest excitation energies in eV for the N=2-7 series of acenes for a range of theories, and 
the corresponding mean absolute error (MAE) and maximum absolute error (XAE) in eV from the 
experimental values. 
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2! !! and !! = 5!; the values of the driving frequencies !! are shown in Figure 4.4, along with 

the time taken for half an oscillation to occur. 

Two distinct mechanisms of excitation are clearly visible in Figure 4.4.  The longitudinally excited 

charge density (Bb state, top) sloshes back and forth along the !∗ orbitals along the acene backbone; 

at the extrema, the charge density has piled up at one end of the molecule, with corresponding 

depletion (hole) on the opposite end.  After transverse excitation (!!!state; bottom), however, the 

density is driven from delocalized ! orbitals across the acene and forced to populate the orbitals 

above and below the ! − ! bonds, which leads to alternating “fingers” of accumulated charge, and 

thus alternating ⋯ !!!!!!!!!!!!!⋯ atoms along the acene.  In a valence bond picture this is an 

ionic-like excitation, in agreement with previous analyses.18, 20  The intra-molecular charge-transfer-

like character (or charge transfer in disguise) is not due to long-range pile up of charge but instead 

arises from this ionic-like character.  Here, range-separated functionals perform well because they 

are able to capture interaction between these regions of alternating charge and hole.  This is related 

to Kuritz et al.'s discussion, where a state is characterized as charge-transfer-like based on minimal 

overlap of auxiliary orbitals.19 

RT-TDDFT can also shed light on the origin of the red-shifts.  As the acenes increase in length, the 

time taken to oscillate increases (frequency decreases) for both the transverse and longitudinal 

excitations.  Although not immediately obvious, the red-shifts of both excitations can be rationalized 

in a similar way.  The simplest 
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physical description for this comes 

from the perimeter free electron 

orbital (PFEO) theory,1,58 which 

models the !  electrons as being 

confined in an oval-shaped infinite 

potential with no other electron-

nuclear or electron-electron 

interactions.  This leads to a particle-

on-a-ring wavefunction for each ! 

electron; a particular electronic state is 

then characterized by the total ring 

quantum number !, which is the sum 

of the individual ring quantum 

numbers.  The number of nodal 

planes for a particular state is then !, 

with alternating positive and negative 

charge build-up at each antinode.  This is clearly visible in Figure 4.4, where the charge density 

deviations at the maxima of the oscillations (i.e., the excited electronic states) directly match up to 

the PFEO predictions.  In anthracene, for example, the excited state charge density of the !! state 

corresponds to a ! = 1 state (one node; high longitudinal dipole moment), whereas the !! state 

corresponds to ! = 7 (seven nodes; low but non-zero transverse dipole moment).  The transition to 

! = 7 (!!) requires less energy than to ! = 1 (!!), which is a consequence of Hund's rule.1  Larger 

acenes have larger circumferences, and are thus their excitation energies are red-shifted. 

!

Figure 4.4 Real-time TDDFT (6-31G**/BNL) 
isosurface snapshots of the deviation of the charge 
density from the ground state for anthracene (N=3) 
and heptacene (N=7), after resonant excitation 
(frequencies shown in eV).  Positive deviation (more 
charge density than in the ground state) is shown in 
blue, while negative deviation (less charge density than 
ground state) is shown in red.  
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4.4#Conclusions#

In summary, we have computed the !! and !!!vertical excitation energies for the acenes ranging 

from anthracene to heptacene, using a broad spectrum of excited-state theoretical approaches.  High 

accuracy coupled cluster calculations (CR-EOMCCST(T)) agree extremely with experiment well for 

both states, and thus serve as a baseline for validating the lower level theories.  Global hybrid 

TDDFT (e.g, B3LYP) perform poorly for the !!!state as expected, whereas range-separated hybrid 

(RSH) TDDFT (e.g, CAM-B3LYP, LC-BLYP, etc) better describe the ionic !!!state, at a cost of lost 

accuracy for the !!!state.  Real-time RSH TDDFT visualization shows that the excited state charge 

densities are consistent with the predictions of perimeter free electron orbital (PFEO) theory, and 

the red-shift of the excitations are due to particle-on-a-ring-like confinements. For the semi-

empirical methods, with proper parametrization ZINDO rivals range-separated hybrids in accuracy, 

at a fraction of the computational cost.  This suggests a multi-tiered approach to modeling 

complicated acene derivatives, as well films and crystals of these molecules: high accuracy coupled 

cluster calculations validate RSH TDDFT calculations on small (perhaps pairs) of molecules, which 

in turn enables careful parametrization of semi-empirical calculations capable of modeling large 

systems. 
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