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ABSTRACT OF THE THESIS

Using Optical Flow to Improve Semantic Video Segmentation

by

Justin Gorgen

Master of Science in Computer Science

University of California San Diego, 2017

Professor Zhuowen Tu, Chair

This thesis presents a deep neural network model that augments an existing

semantic image segmentation model with optical flow data to improve segmentation

performance on video sequences. Three network topologies combining optical flow data

layers with RGB data layers are compared. The best performing model, FlowSeg-A,

achieves an average per-class accuracy of 72.696% on the SegNet test set. This is

an improvement of 4.8 percentage-points versus SegNet, the RGB-only segmentation

model on which FlowSeg-A is based. The main accuracy improvements come from the

classes SignSymbol (15.4% improvement), Bicyclist(10.2%), and Pole (9.0%). These

viii



accuracy improvements are achieved with only 1,152 (0.004%) more parameters, and

FlowSeg-A achieves this performance using the same training set and training schedule

as the SegNet algorithm.
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1 Introduction and Background

Figure 1.1: Combining optical RGB and optical flow data improves semantic
segmentation for video sequences.

Semantic video segmentation is the art of assigning categorical labels to each

individual pixel in an video. It has applications in video editing, scene understand-

ing, and autonomous navigation for unmanned vehicles [17, 20]. While much of the

research in semantic segmentation has focused on segmenting still images, most image-

1
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segmentation algorithms can be applied to video by simply treating each frame of the

video as an independent image. However, the individual frames of video are not in-

dependent, and the relative motion of objects in the video can be calculated on a

pixel-by-pixel basis. This relative motion is called a motion field, or optical flow, and

the algorithm presented in this thesis uses optical flow to augment semantic segmen-

tation for video, as shown in Figure 1.1.

1.1 Optical Flow Estimation

Optical flow is an estimation of the motion field in video that assumes lumi-

nance is conserved in video sequences. Thus optical flow is calculated by finding the

translation vector that “explains” the mean change in luminance over a specified area

[18, 9]. In this thesis, a pre-trained deep neural network, FlowNetC [7], is used to es-

timate the optical flow for the frames. As shown in Figure 1.2, FlowNetC provides an

estimate of optical flow with sharper boundaries than the Lucas-Kanade method[18]

was able to achieve. FlowNetC is a deep neural network based on convolutional neural

networks, and uses a novel cross-correlation layer in order to calculate the displace-

ment between features in a sequence of two images. FlowNetC is trained on a synthetic

dataset for which the ground-truth motion field is known, and its estimations of op-

tical flow handle large displacements and require less tuning for individual datasets

than hand-coded iterative methods like Lucas-Kanade.

As shown in Figure 1.2, optical flow fields calculated from image sequences
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Figure 1.2: A comparison of optical flow algorithms. (A) In this synthetic
greyscale image of two arrows, the black arrow will translate 5 pixels to the left, and
the white arrow will translate 3 units to the right. (B) Lucas-Kanade Optical Flow
calculated with a window-size of 15 (C) Optical Flow calculated using FlowNet (D)
Ground truth from motion flow (E) An image from the CamVid dataset (F)Optical
Flow calculated using iterative Lucas-Kanade [3]. (G)Optical Flow calculated using
FlowNet (H) A vector representation of the same flow field in G. Note that both
algorithms struggle with the textureless synthetic image, but FlowNetC manages to
produce a more accurate region of flow, with recognizable features

provide information about the edges of objects. In this thesis, the segmentation data

from optical flow will be exploited to improve the video segmentation performance of

an existing segmentation algorithm, SegNet, that is based only on still images.

1.2 Related Research

Video segmentation has been tackled by researchers from both video editing

backgrounds and computer vision backgrounds. The video editing approach typically

focuses on identifying foreground and background objects [31, 10, 28]. Meanwhile
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computer vision researchers have long applied image segmentation techniques to se-

quences of images that happen to be from video [2, 23], but some recent research

[25, 16] has explicitly approached semantic video segmentation as its own topic with

unique challenges and constraints.

1.2.1 Video Segmentation with Optical Flow

Many papers have examined the use of optical flow for video segmentation

[22, 32, 28], with the main focus on developing algorithms for motion classification

[19] or methods that separate foreground and background areas to facilitate later

analysis on the foreground areas [31, 27]. These efforts are fascinating in that very

accurate segmentation results can be achieved without learning class-specific segmen-

tation features. However, these efforts differ from semantic segmentation in that the

segments are not given class labels, they are treated as moving layers for the purpose

of assigning depth to the layers or segregating objects based on movement.

1.2.2 Semantic Image Segmentation

Semantic image segmentation, as illustrated by Figure 1.3, assigns class labels

to each individual picture in an image. As computers have become more accurate

than humans at classifying the main subject of an image [13], the natural extension to

classifying single subjects in images is to classify each object in an image and identify

its location in the image [23]. For applications such as caption generation and target
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tracking, it is often sufficient to identify bounding boxes around each object in an

image [20, 23]. However, for other applications, like lane detection for autonomous

vehicles[4], it is useful to know exactly which pixels correspond to which semantic class.

This has given rise to recent research in the area of semantic image segmentation using

deep neural networks.

Figure 1.3: An example of semantic segmentation. Semantic segmentation is
the art of assigning labels to individual pixels.

The use of neural networks for semantic still-image segmentation is an ac-

tive area of research. Since Karen Simonyan and Andrew Zisserman’s publication of

VGG in 2014[26], the standard approach to semantic image segmentation has been

to take a convolutional neural network designed for image classification and devise a

method for determining which parts of the original image strongly activate the var-

ious image classes. Initial approaches involved masking parts of the original image

to observe the affect on image classification, and further improvements were made by

developing manually-constructed upsampling networks or integrating multi-resolution

featuremaps from the downsampling layers to estimate segmentation [24, 8, 17]. Ad-



6

ditional efforts have re-purposed the VGG16 classification network for class-agnostic

edge detection and segmentation [30, 27], which can serve as general segmentation for

higher-level classifiers. Recent approaches directly estimate semantic segmentation

with an end-to-end training approach [2, 21, 29] ,including the 2015 paper ”SegNet:

A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” from

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. These recent efforts use

a fully convolutional encoder-decoder approach and differ from earlier approaches by

learning the weights for the deconvolution layers. The fully convolutional encoder-

decoder approach has the advantage of having the capacity to learn upsampling and

deconvolutional filters that are directly optimized for the encoding filters, at the ex-

pense of having roughly twice the number of parameters as the convolutional classifier

network it is based on. While new approaches have implemented fully connected condi-

tional random field (CRF) layers to refine the edge details of the output segmentation

[5], CRF layers are complex with feature depths on the order of the square of the num-

ber of classes. Furthermore, performance from fully convolutional meets or surpasses

CRF networks at semantic segmentation[29]. The fully convolutional approach retains

the advantages of CNNs, (e.g. translation and scale invariance) and gains speed in

training and inference from the lack of fully-connected layers. The fully-convolutional

network presented in this thesis is directly derived from the SegNet encoder-decoder

network presented in [2].
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1.2.3 Semantic Video Segmentation

Deep learning approaches to semantic video segmentation typically involve ap-

plying a semantic image segmentation to each image independently. However, there

has recently been some research specifically into semantic video segmentation using

neural networks. Of note, the most closely related research to this thesis are the

2016 CVPR paper ”Feature Space Optimization for Semantic Video Segmentation”

by Abhijit Kundu, Vibhav Vineet, and Vladlen Koltun [16], and the 2016 CoRR paper

”Optical Flow with Semantic Segmentation and Localized Layers” by Laura Sevilla-

Lara, Deqing Sun, Varun Jampani, Michael J. Black [25]. Kundu’s paper [16] uses

optical flow indirectly to enforce temporal consistency between semantic segmenta-

tion in different video frames after an initial segmentation refinement performed by a

fully-connected Conditional Random Field (CRF) layer. Meanwhile, while [25] com-

bines segmentation from RGB data with separately-calculated segmentation from flow

in an iterative approach that improves both optical flow and and segmentation bor-

ders. The approach presented in this thesis differs from [16] and [25] by using optical

flow directly as inputs to a convolutional model, and uses a fully-convolutional model

throughout the network without CRF layers.



2 Methods

To evaluate the effects of optical flow data on semantic video segmentation,

several network topologies are compared. These different topologies combine optical

flow features with RGB features at different layers of the network. The neural network

models presented in this thesis are derived from the SegNet model [2]. The SegNet

model is chosen because it is fully convolutional, performs well when trained from a

small dataset, and fits in the 12GB of memory on an nVidia K40c GPU.

2.1 Models

As shown in Figure 2.1, three methods of integrating per-pixel optical flow

features are examined, here described as FlowSeg Models A through C. For ease of

comparison to the SegNet results, each of these models follows the SegNet’s pattern

of having the 13 convolutional layers of FlowSeg-A consists of concatenating the two

optical flow channels du, dv onto the data layer of the SegNet model. Thus, FlowSeg-A

differs from the SegNet model only in the construction of the first convolutional layer,

8
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which now calculates a 64 convolutional features on a 5-channel, 3 × 3 × 5 receptive

field instead of 3 × 3 × 3. FlowSeg-B calculates two layer of convolutional features

on an optical flow image independently of the RGB data, and then concatenates this

data with the RGB convolutions at a new, third convolutional layer before the first

pooling layer. Finally, FlowSeg-C concatenates optical flow features with the output

of the SegNet network, a construction which allows FlowSeg-C to share most of its

weights with a pre-trained SegNet network. In essence, FlowSeg-C is tacked-on and

fine-tuned after the segmentation on RGB is already trained. This makes FlowSeg-C a

construction that can be adapted easily to any semantic segmentation. The kernel size

of each convolutional layer is shown in Table 2.1. The number of trainable parameters

for each of the networks is summarized in Table 2.2.

Figure 2.1: FlowSeg models compared to the SegNet model. FlowSeg-A
and FlowSeg-B combine optical flow features with the input image features, while
FlowSeg-C combines optical flow features with the output image labels to refine the
labeling.
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Table 2.1: Convolutional kernel sizes for the SegNet and FlowSeg networks.
Columns S, A, B, and C indicate the presence of a layer in the architectures SegNet,
FlowSeg-A, FlowSeg-B, and FlowSeg-C, respectively. Here i, j are kernel height and
width, k is the number of output channels, and l is the number of input channels.

Layer Name i j k l S A B C
conv1 1 5 3 3 64 5 X
conv1 1 3 3 64 3 X X X
conv1 2 3 3 64 64 X X X X
conv1 1 flow 3 3 64 2 X X
conv1 2 flow 3 3 64 64 X X
conv1 3 3 3 64 128 X
conv2 1 3 3 128 64 X X X X
conv2 2 3 3 128 128 X X X X
conv3 1 3 3 256 128 X X X X
conv3 2 3 3 256 256 X X X X
conv3 3 3 3 256 256 X X X X
conv4 1 3 3 512 256 X X X X
conv4 2 3 3 512 512 X X X X
conv4 3 3 3 512 512 X X X X
conv5 1 3 3 512 512 X X X X
conv5 2 3 3 512 512 X X X X
conv5 3 3 3 512 512 X X X X
conv5 3 D 3 3 512 512 X X X X
conv5 2 D 3 3 512 512 X X X X
conv5 1 D 3 3 512 512 X X X X
conv4 3 D 3 3 512 512 X X X X
conv4 2 D 3 3 512 512 X X X X
conv4 1 D 3 3 512 512 X X X X
conv3 3 D 3 3 256 512 X X X X
conv3 2 D 3 3 256 256 X X X X
conv3 1 D 3 3 256 256 X X X X
conv2 2 D 3 3 128 256 X X X X
conv2 1 D 3 3 128 128 X X X X
label softmax 3 3 11 128 X X X X
conv1D with flow 3 3 64 75 X
flowsegc softmax 1 1 11 64 X
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Table 2.2: Network parameter counts for SegNet and the three FlowSeg models

Network Number of parameters
SegNet 31,705,547
FlowSeg-A 31,706,699
FlowSeg-B 31,891,595
FlowSeg-C 31,793,558

All networks are implemented in Caffe [15]. The design of the FlowSeg and

SegNet models is straightforward, with standard convolutional layers with stride 1

and pooling layers with stride 2. However, the implementation in Caffe has additional

layers to aid training. In Caffe, a batch-normalization layer is placed after each of the

convolutional layers, which recursively estimates a mean and variance value for each

of the input channels during training of the network [14]. The mean and variance

are set to 0 and 1, respectively, through a scale-and-shift transformation. Thus, each

n×n×c convolutional layer has an additional 2c parameters learned from the data that

represent a mean and variance for each channel. This batch-normalization whitens the

input data for each layer during training. The end result of the batch-normalization

during training allows training speed to be improved a with a learning rate of 0.001

during stochastic gradient descent [2]. For deployment of the network for inference,

the average scale-and-shift operation learned from each layer during the entire training

set is applied as a constant transformation on each layer in the model.
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2.2 Weight Matrix Initialization and Surgery

Following the procedure from SegNet [2], transfer learning is used to initialize

the 13 convolutional layers borrowed from VGG16. The weight matrices for the SegNet

and FlowSeg networks are initialized, where possible, with the weights from VGG16

trained on the ImageNet dataset. The remaining weights for the deconvolution layers

and classification layers are initialized with Xavier initialization [12]. For Xavier ini-

tialization, a layer’s weights wij corresponding to the ni outputs and nj inputs to the

layer are sampled from a normal distribution with variance:

V ar [wij] =
2

ni + nj

(2.1)

For convolutional layers, with nk kernels, nl input channels, and kernel dimen-

sions of (ni, nj), the Xavier initialization from (2.1) becomes:

V ar [wijkl] =
2

ninjnl + ninjnk

(2.2)

Because the input depth of some convolutional layers are changed from VGG16

in the FlowSeg architectures, some surgery is required to correctly initialize the weights.

For FlowSeg-A, the first convolutional layer has a different size kernel than the corre-

sponding layer in VGG16. That is, FlowSeg-A has 5 input channels versus the 3 input

channels of VGG16. For each of the 64 kernels in the first convolutional layer, the

first 3 layers of weights are copied from VGG16, with the remaining 2 layers initialized
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with Xavier initialization.

For FlowSeg-B, a third convolutional layer is added before the first pooling step,

and has an input depth of 128, with 64 output channels to maintain compatibility with

the higher layers of the VGG16 network. In this layer, the first 64 channels of the

input correspond to features from the second convolutional layer operating on the

RGB input data. The second set of 64 input channels correspond to features from

the second convolutional layer operating on the optical flow data. The weights of the

the two convolutional layers above the optical flow data are initialized with Xavier

initialization. The kernel weights of the third layer are initialized with a modified

form of Xavier initialization:

wkl = wXavier
kl + δkl



0 0 0

0 1 0

0 0 0


(2.3)

Here, the term δkl is the Kronecker delta function that is 1 if and only if the

output kernel index k is equal to the input kernel index l, and 0 otherwise. The

term wXavier
kl is the 3x3 array of weights created by Xavier initialization with variance

from (2.2). This biases the initial kernels towards using the features learned from the

RGB data. This is necessary to improve the segmentation performance of FlowSeg-

B because the higher layers of the FlowSeg-B network are initialized with VGG16’s

ImageNet features. Without this weight initialization, classification accuracy is 3-7%

lower per class.
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For FlowSeg-C, no such surgery is required because all new layers are added

above the VGG16 layers and therefore do not change the size or shape of the VGG16

layers. All weights for the deconvolutional and classification layers are initialized with

Xavier initialization.

2.3 Data Set

The data set used in this thesis is the CamVid dataset [4], which consists of

18,202 images taken from 5 separate videos of a vehicle driving on streets in Cam-

bridge, UK. The video is taken 29.97Hz, with a resolution of 960x720 recorded on a

. Of the 18,202 video frames, 701 images are accompanied by semantic segmentation

ground-truth images that are hand-labeled with 32 classes. The labeled frames are

approximately 1 second (30 frames at 29.97 fps) apart.

2.3.1 Data Set Modifications

To enable direct comparison with the published SegNet results, the image and

ground truth labels are downsampled to a resolution of 480x360. Additionally, the

number of classes are reduced from the 32 original classes to 11, with the excluded

classes are relabeled with a 12th class label representing ”void.” The 11 classes and

their proportion of the training sets are shown in Table 2.3. The images are split into

the same test and train sets used by SegNet.
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Table 2.3: Data set classes and proportions. The 11 classes and the proportion
of pixels belonging to each class in the training set and test set

Class Training Test
Sky 0.1695 0.1701
Building 0.2409 0.2475
Pole 0.0096 0.0190
Road 0.3104 0.2639
Pavement 0.0486 0.1036
Tree 0.1150 0.1200
SignSymbol 0.0046 0.0139
Fence 0.0239 0.0121
Car 0.0645 0.0381
Pedestrian 0.0070 0.0104
Bicyclist 0.0060 0.0015

2.3.2 Optical Flow Calculation from the Data Set

Optical flow is calculated for each of the 701 frames of the CamVid dataset

that has an accompanying ground-truth segmentation label. Two sets of optical flow

images were calculated, nominally at 1Hz and one at 30Hz. The 1Hz flow calculations

used For the 1Hz flow, optical flow for the n-th frame is estimated by using the n-th

and n+ 30-th frames of the dataset as inputs to the optical flow estimator FlowNetC.

The optical flow for the last frame of each video sequence is calculated using the n

and n− 30-th frames. Similarly, the optical flow for the 30Hz run is calculated using

the n and n+ 1-th frames.

2.4 Training

Training is executed on an nVidia Tesla K40 GPU. Training is performed using

stochastic gradient descent (SGD), with a learning rate of 0.001, and momentum
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of 0.9. Training is performed for 40,000 epochs, with images shuffled and mirrored

at random. Because the networks have similar depths and numbers of learn-able

parameters, training takes 33 hours for FlowSeg-A, FlowSeg-B, and FlowSeg-C.



3 Results

The results of the FlowSeg architecture are reported in Table 3.1. The FlowSeg-

A and FlowSeg-C architectures are able to improve upon the results of SegNet, with

a minimal increase in the number of weights.

Several metrics are used in the literature to describe the accuracy of segmen-

tation results. Among these are accuracy, intersect-over-union, and cover.

Inference accuracy, as used by Badrinarayanan, Kendall, and Cipolla in the

SegNet paper [2], is defined as:

accuracyi =
cii∑
j cij

(3.1)

Here, cij is count of pixels with ground-truth class label i and inferred label

j. Average accuracy is thus defined as the arithmetic mean of accuracy over all

classes, without weighting for the frequency of each class. The SegNet paper also uses

intersect-over-union (IoU), which is defined as the count of correctly labeled pixels

for a class divided by the combined number of ground-truth pixels for that class and

inferred pixels for that class. This metric is used to punish algorithms that allow class

17
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labels to grow outside the true segmentation boundaries.

IoUi =
cii∑

j cij +
∑

j cji − cii
(3.2)

An additional metric for scoring segmentation algorithms, closely related to

intersect-over-union, is cover [1]. Cover, also called weighted intersect-over-union, is

calculated using the relative number of pixel counts for each class. This summarizes

the segmentation performance of all classes into one value, while accounting for the

relative frequency of each class.

cover =
1∑

i′j′ ci′j′

∑
i

IoUi

∑
j

cij

 (3.3)

As shown in Table 3.1, all three FlowSeg models are able to improve on the

average accuracy of the SegNet model. However, it should be noted that while there is

no clear difference in performance between FlowSeg-A and FlowSeg-C. For FlowSeg-

A, this improvement is gained with only 1,152 extra parameters, or a 0.004% increase.

This increase in parameter count comes solely from the extra input parameters re-

quired to increase the kernel size from 3x3x3 to 3x3x5 for each of SegNet’s 64 convo-

lution kernels in the first layer. The greatest improvement is on the segmentation of

Bicyclists, which had a 33.94% accuracy under SegNet and a 47.59% accuracy with

FlowSeg-A. This represents an improvement by a factor of 40%; however, this im-

provement has limited effect on the overall accuracy because only a very small portion

(0.15%) of total pixels that are classified as Bicyclist, as shown in Table 2.3. Results
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Table 3.1: Results on the CamVid Dataset. Results in bold are improvements
over the SegNet baseline. Results that are underlined are the top score for that
category.

SegNet
w/VGG

FlowSegA
1Hz

FlowSegA
30hz

FlowSegB
30hz

FlowSegC
30hz

IoU 0.551 0.577 0.583 0.575 0.576
Weighted IoU 0.778 0.784 0.792 0.785 0.784
Average Accuracy 0.679 0.728 0.728 0.720 0.727
Weighted Acc. 0.868 0.873 0.879 0.874 0.874

Per Class Accuracy
Sky 0.930 0.932 0.926 0.936 0.928
Building 0.853 0.842 0.854 0.849 0.847
Pole 0.402 0.498 0.491 0.492 0.475
Road 0.939 0.937 0.945 0.939 0.933
Pavement 0.880 0.887 0.889 0.871 0.915
Tree 0.821 0.838 0.846 0.838 0.826
SignSymbol 0.410 0.505 0.564 0.553 0.603
Fence 0.407 0.522 0.478 0.475 0.443
Car 0.772 0.810 0.817 0.794 0.815
Pedestrian 0.719 0.756 0.757 0.781 0.753
Bicyclist 0.339 0.476 0.442 0.396 0.459

from selected images in the test set are shown in Figure 3.1.

Details on improvements in segmentation results around class examples of a

Bicyclist, a Car, and a Pole, are shown in Figure 3.2. This example shows that both

SegNet and FlowSeg-A tend to over-cover small, skinny segments. FlowSeg-A, however

does a better job of keeping skinny segments contiguous. This characteristic is what

allows the FlowSeg-A network to improve on the segmentation scores for Bicyclist,

Pole, SignSymbol, Fence, and Pedestrian. Learned convolutional filters and the filter

responses to optical flow on an image from the test set are shown in Figures 3.3 -

3.8. The filters in FlowSeg-A largely respond to edges in the image, while filters from
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FlowSeg-B and C respond to areas of contiguous optical flow.
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Figure 3.1: A comparison of SegNet and FlowSeg-A results. Areas of sky,
road, and pavement are well covered by both networks, but FlowSeg-A improves cover
of skinny,narrow objects like poles and bicyclists.
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Figure 3.2: A close-up of segmentation results from SegNet and FlowSeg, as
compared to ground truth. FlowSeg’s use of optical flow allows it to keep skinny
segments continuous, as illustrated by the pole and bicyclist examples in this figure.



23

Figure 3.3: FlowSeg-A kernels. The 320 convolutional kernels of the first layer of
FlowSeg-A. These correspond to the r,g,b, du, and dv channels.
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Figure 3.4: Example FlowSeg-A kernel responses for the first layer kernels with
the highest energy response on the combined optical flow and RGB data. (A) The
input image (B) The input optical flow calculated from 30Hz video (C) Response of the
0th filter (D) Response of the 12th filter (E) Response of the 36th filter (F) Response
of the 61st filter
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Figure 3.5: FlowSeg-B kernels. The 128 convolutional kernels of the first layer of
FlowSeg-B that takes optical flow as input. These correspond to the du,dv channels.
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Figure 3.6: Example FlowSeg-B kernel responses for the first layer kernels
with the highest energy response on the input optical flow. (A) The input image (B)
The input optical flow calculated from 30Hz video (C) Response of the 2nd filter (D)
Response of the 5th filter (E) Response of the 34th filter (F) Response of the 56th
filter
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Figure 3.7: FlowSeg-C kernels. The 128 convolutional kernels of the first layer of
FlowSeg-C that takes optical flow as input. These correspond to the du,dv channels.
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Figure 3.8: Example FlowSeg-C kernel responses for the first layer kernels
with the highest energy response on the input optical flow. (A) The input image (B)
The input optical flow calculated from 30Hz video (C) Response of the 5th filter (D)
Response of the 39th filter (E) Response of the 42nd filter (F) Response of the 52nd
filter



4 Conclusion

It is clear that video segmentation can be improved by the addition of optical

flow. With the best performing model, FlowSeg-A, for only a 0.0005% increase in

parameter count, accuracy and cover are improved by 2%. Additionally, FlowSeg-

A, achieves an average-per-class accuracy of 72.696%. This is an improvement of 4.8

percentage-points and 7.1% proportionally versus SegNet, the RGB-only segmentation

model on which all the FlowSeg models are based. The main accuracy improvements

come from the classes SignSymbol (15.4% improvement), Bicyclist(10.2%), and Pole

(9.0%). These improvements were earned using the same training set and training

schedule as the SegNet algorithm, and therefore demonstrate that the improvement

in segmentation performance can be attributed to optical flow.

Nevertheless, there is still room for improvement in the performance of se-

mantic segmentation for video. Newer approaches such as conditional random fields

(CRF) and residual networks (ResNet) [29] have shown promising results on still im-

age segmentation. Following the methods in this thesis, optical-flow can be added on

to CRF or ResNet networks to improve segmentation. One of the caveats of using

29
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optical-flow for image segmentation is the limited availability of data-sets from video

with both ground-truth semantic segmentation and dense enough video frames to cal-

culate optical flow. However, recently released datasets such as VirtualKITTI [11]

and Cityscapes [6] have both video sequences and ground-truth segmentation. Theses

data-sets create opportunities for further research in applying the techniques of this

thesis.

As shown in this thesis, one of the benefits of using optical flow to augment

semantic segmentation is that optical flow features can be added on to existing seg-

mentation networks with a very small increase in the number of network parameters.

Due to the common practice of having larger feature depths in higher layers of convo-

lutional neural networks, adding channels at the bottom of a network as in FlowSeg-A

is the most efficient way of adding optical flow to a semantic segmentation network.

Therefore, this thesis demonstrates that adding a few parameters to a neural to pro-

cess optical flow can create a significant improvement in segmentation with virtually

no impact on computational requirements.
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