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Abstract

Embedding Intelligence into Robotic Systems − Programming, Learning, and Planning

by

Hsien-Chung Lin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Although robots play increasingly important roles in automated production due to their high
efficiency, high accuracy, and high repeatability, new challenges for robots arise from different
aspects as market demands shift and technology improves. The increasing product complexity
and shorter product life cycle bring more difficulties into factories. Hence, higher intelligence for
robots is necessary to perform various complicated tasks and to safely assist human workers.

In order to enhance robot intelligence, one could consider referencing the pattern of human
development. When dealing with a completely new task, humans would learn or ask for assistance
from experienced people or experts. Once learned, humans would apply such skill to various
similar tasks. Furthermore, rather than merely completing the task, humans would make plans to
accomplish the mission with better quality and efficiency. The following three phases could be
referred to if we apply the same pattern to robot intelligence: 1) Programming, 2) Learning, and
3) Planning. Programming is to retrieve the information/knowledge from human. Learning is to
generalize the learned skill to similar tasks. Planning is to plan an optimal policy to achieve the
goal given constraints.

Following the aforementioned phases, this dissertation is divided into three parts to study the
three phases. The programming part investigates several alternative programming approaches and
introduces an online collision avoidance algorithm for human guidance programming. Following
the framework of learning from demonstration, the learning part proposes remote lead through
teaching (RLTT) for assembling and grinding skill learning and applies the non-rigid registration
algorithm - coherent point drift (CPD) to transfer the learned grasp examples to similar objects.
The planning part presents a fast robot motion planner by using the convex feasible set (CFS) to
solve the nonconvex optimization problem in collision avoidance path planning and operational
time reduction.
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Chapter 1

Introduction

1.1 Motivation and Contribution
Since the industrial robot started to operate on the factory floor in 1960s, the application of robots
has continuously grown and evolved, which made significant impacts to manufacturing processes
and production lines. Today, robots play an increasingly important role in automated production
due to their high efficiency, high accuracy, and high repeatability.

New challenges for robots arise as market demands shift and technology improves. The in-
creasing product complexity and shorter product life cycles introduce more difficulties to the
shopfloor. The current shifting from mass production to mass customization [26] requires man-
ufacturers to combine human dexterity and robot productivity in flexible production lines [55].
Hence, robots should be made more intelligent perform various complicated tasks and to safely
assist human workers. In addition, the rapid growth of the Internet of Thing (IoT) and the e-
commerce business revolutionize customer behavior and expand the need of robots from factories
to warehouse. For instance, online shopping replaces traditional in-store shopping and further in-
duces the demands of automatic packaging and logistic. Unlike traditional “pick and place” tasks
in conventional production lines, versatile grasping skills are required for robots to adapt the vari-
ation among different products. Nevertheless, robots nowadays are not cognitive enough to satisfy
the aforementioned needs. Even for a simple task, it still requires tremendous programming ef-
forts. Moreover, robots are not able generalize the programmed trajectories to similar tasks, not to
mention to taking initiative to assist human by themselves.

In order to better innovate robot intelligence, one could consider referencing the pattern of hu-
man development. Human intelligence consists of the abilities to learn from experience, adapt to
new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s
environment [97]. When dealing with a complete new task, humans would learn or ask for assis-
tance from experienced people or experts. Once learned, humans would apply such skill to various
similar tasks. Furthermore, rather than merely completing the task, humans would make plans to
accomplish the mission with better quality and efficiency. The following three phases could be
referred to if we apply the same pattern to robot intelligence: 1) Programming, 2) Learning, and
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3) Planning. Programming is to retrieve the information/knowledge from humans. Learning is to
generalize the learned skill to similar tasks. Planning is to plan an optimal set of control actions to
achieve the goal given constraints.

Following the aforementioned pattern of intelligence development, this dissertation is divided
into three parts to study the “programming, learning and planning” phases. The first part discusses
alternative robot teaching methodologies. The second part follows the framework of learning from
demonstration and studies the skill learning of motion-force tasks and versatile grasping. The third
part introduces an optimization-based motion planning algorithm to generate safe and efficient
motion to perform tasks. This content can be further broken down into the following topics: 1)
robot programming interface for demonstration, 2) human guidance programming with collision
avoidance, 3) learning from demonstration with remote lead through teaching, 4) robot grasp trans-
ferring by non-rigid transformation, and 5) fast robot motion planning by convex feasible set. Each
of these topics is introduced below, and its details will be given in the respective chapter of this
dissertation.

Robot Programming Interface for Demonstration
Programming by Demonstration (PbD) allows to teach the skill to robots by demonstrating how
to achieve a task through examples instead of explicitly programming every detail. Chapter 3 fo-
cuses on the programming interface, which is one important keystone to gather and transmit the
information to robots. The robot programming interface for demonstration can be categorized into
three major trends: robot imitation from human motion, kinesthetic teaching, and immersive tele-
operation. Each programming interface has its own strength and drawback and may be appropriate
for various tasks and scenarios. Three case studies for each programming interface are provided
with a discussion on their features and implementations.

Human Guidance Programming with Collision Avoidance
In the application of physical human-robot interaction (pHRI), the collaboration between human
and robot can significantly improve the production efficiency through combination of the human’s
flexible intelligence and the robot’s consistent performance. In this application, however, it is
an important concern to ensure the safety of the human and the robot. In the human guidance
programming scenario, the operator plans a collision-free path for the robot end-effector, but the
robot body might collide with an obstacle while being guided by the operator. Chapter 4 focuses
on developing a novel on-line velocity based collision avoidance algorithm to solve the problem
in this particular scenario. The proposed algorithm gives an explicit solution to deal with both
collision avoidance and human guidance command at the same time, which provides the operator
a better and safer lead through programming experience. Real-time experiment is performed in
three different obstacle scenarios. Part of this work was published in [62, 63].
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Learning from Demonstration with Remote Lead Through Teaching
Many production applications require both position and force control; however, tuning the position-
force controller is nontrivial. To simplify this process, the learning from demonstration (LfD) is
proposed to transfer the human skills directly into robot applications. However, the current teach-
ing approaches are not perfectly fit in incorporating both the force and motion information for
robot skill learning. Chapter 5 proposes a framework of Remote Lead Through Teaching (RLTT)
for robots to learn control policies from human knowledge. To learn the human skill model, the
demonstration data is firstly synchronized by dynamic time warping (DTW), then decomposed into
several actions by a support vector machine (SVM) based classifier. Lastly, the learning controller
is trained by a Gaussian mixture regression (GMR). The experimental validation is performed on a
H7/h7 peg-hole insertion task and a surface grinding task. Part of this work was published in [64,
65].

Robot Grasp Transfer through Non-Rigid Transformation
Grasp planning is essential for robots to execute dexterous tasks. Solving the grasping problem on-
line, however, is challenging due to the heavy computation load during exhaustive sampling, and
the difficulties to consider task requirements. Chapter 6 focuses on combining analytic approach
with learning for efficient grasp generation. The example grasps are taught by human demonstra-
tion and mapped to similar objects by a non-rigid transformation. The mapped grasps are evaluated
analytically and refined by an orientation search to improve the grasp robustness and robot reach-
ability. The proposed approach is able to plan high-quality grasps, avoid collision, satisfy task
requirements, and achieve efficient on-line planning. The effectiveness of the proposed method is
verified by a series of experiments. Part of this work was published in [61].

Fast Robot Motion Planning with Convex Feasible Set Algorithm
Considering the growing demand of quick motion planning in robot applications, Chapter 7 focuses
on developing a fast robot motion planner to plan a collision-free and time-optimal trajectory. The
convex feasible set algorithm (CFS) is applied to solve both, the trajectory planning problem and
the temporal optimization problem. The performance of CFS in trajectory planning is compared
with sequential quadratic programming (SQP) in simulation. CFS shows a significant decrease in
iteration numbers and computation time to converge to a solution. The effectiveness of temporal
optimization is shown through the cycle time reduction in the experiment.
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1.2 Dissertation Outline
The structure of this dissertation is depicted in Fig. 1.1. More specifically, the remainder of this
dissertation is organized as follows. Chapter 2 describes robot modeling and the experimental
system setup. Part I studies the robot programming methodologies and is comprised of Chapters 3
and 4. Thereby, Chapter 3 investigates several alternative programming approaches, and Chapter
4 introduces the safe motion in kinesthetic teaching. Part II discusses the robot skill learning
with its applications. Chapter 5 introduces how to teach robots assembly and grinding skill by
demonstration. Chapter 6 discusses the transfer of robot grasping among various objects through
non-rigid registration. Part III focuses on the topic on robot motion planning, where Chapter 7
presents an optimization-based motion planning algorithm to deal with collision avoidance and
operational time reduction. Lastly, Chapter 8 summarizes the main results and contribution of this
dissertation and discuss the possible extension work.
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Figure 1.1: The structure of the dissertation
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Chapter 2

Robot Dynamics and System Setup

2.1 Multi-Joint Indirect Drive Robot Model
The multi-joint indirect drive trains considered in this dissertation are assumed to be connected in
serial. This is an appropriate assumption since the serial industrial robots with rotatory joints are
examples of this kind of system. The dynamics of an n-joint robot with the gear compliance can
be expressed as [102, 103]

M`(q`)q̈` + C(q`, q̇`)q̇` +G(q`) +D`q̇` + F`csgn(q̇`) + J(q`)
Tfext

= KJ

(
N−1qm − q`

)
+DJ

(
N−1q̇m − q̇`

)
(2.1)

Mmq̈m +Dmq̇m+Fmcsgn(q̇m)

= τm−N−1
[
KJ

(
N−1qm − q`

)
+DJ

(
N−1q̇m − q̇`

)]
(2.2)

where q` =
[
q`1 q`2 · · · q`n

]T ∈ Rn and qm =
[
qm1 qm2 · · · qmn

]T ∈ Rn are the load side
and the motor side position vectors, respectively. τm =

[
τm1 τm2 · · · τmn

]T ∈ Rn is the motor
torque vector. M`(q`) ∈ Rn×n is the load side inertia matrix, C(q`, q̇`) ∈ Rn×n is the Coriolis
and centrifugal matrix, and G(q`) ∈ Rn is the gravity vector. Mm, KJ , DJ , D`, Dm, F`c, Fmc,
and N ∈ Rn×n are all diagonal matrices. The (i, i)-th elements of these matrices, Jmi, KJi, DJi,
D`i, Dmi, F`ci, Fmci, and Ni, represent the motor side inertia, joint stiffness, joint damping, load
side damping, motor side damping, load side Coulomb friction, motor side Coulomb friction, and
gear ratio of the i-th joint, respectively. fext ∈ R6 denotes the external force acting on the robot
due to the contact with the environment. The matrix J(q`) ∈ R6×n is the Jacobian matrix of the
end effector. Notice that (2.1) and (2.2), is a simplified model, since the dynamics of each motor
does not include the angular motion of the previous carrying links, and thus the coupling inertia
and forces between every actuator and every link due to their relative positions are not considered
[102, 103, 78, 2]. For robots with large gear ratios, this simplification is reasonable, since the
angular velocities and accelerations of the links are much smaller than those of the motors.
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Figure 2.1: Dual LR Mate 200iD/7L Robot system

The overall robot dynamics combined with load side and motor side can be written as

τm =Mmq̈m +Dmq̇m + Fmcsgn(q̇m)+ (2.3)

N−1
[
M`(q`)q̈` + C(q`, q̇`)q̇` +G(q`) +D`q̇` + F`csgn(q̇`) + J(q`)

Tfext
]

(2.4)

If there is no contact with the environment, fext = 0. Furthermore, if the joints are rigid joints
instead of flexible joints, i.e., KJ and DJ become infinity, and qm = Nq`, (2.1) and (2.2) is further
simplified as follows [74, 94]:

M(q)q̈ + C(q, q̇)q̇ +G(q) +Dq̇ + Fcsgn(q̇) = τ (2.5)

where q = q` and τ = Nτm are the vectors of load side joint angles and applied load side joint
torques respectively. M(q) = M`(q`) + N2Mm is the positive-definite inertia matrix. C(q, q̇) =
C(q`, q̇`) accounts for Coriolis and centrifugal effects. Fc = F`c + NFmc represents Coulomb
friction effects, D = D` + N2Dm represents the viscous damping effects, and G(q) = G(q`)
represents the torques due to gravity.

2.2 Dual Robot Experimental Setup
The dual robot experimental setup used at the University of California, Berkeley, courtesy of
FANUC, is two LR Mate 200iD/7L industrial robots as shown in Fig. 2.1. LR Mate 200iD/7L
is a six-axis, small size robot. It is designed to carry objects up to 7 kg. Its main applications are
picking, handling and packaging. The specification of this robot can be found in [38].

The hardware scheme of the experimental setup is shown in Fig. 2.2. Each FANUC LR
Mate 200iD/7L robot has built-in motor encoders. Additionally, each robot is equipped with a
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Figure 2.2: Dual LR Mate 200iD/7L Robot system setup scheme

force/torque transducer, a parallel gripper, and a lead through handle bar on its end-effector. The
force/torque transducer (ATI mini 45[5]) is to measure the end-effector three-dimensional force
and three-dimensional torque. The parallel gripper is SMC LEHF20K2 [95], which has 11 to 28
N grasping force and up to 48 mm grasping width. The gripper has a servo control unit, SMC
LECP6 [95], where it can be programmed up to 64 grasping mode.The 3D-printed lead through
handle bar is used to trigger the lead through teaching mode.

The basic controller used for this multi-joint robot is a decentralized PID feedback controller
with pre-calculated feedforward torques (Fig. 2.3). In this controller, only motor side encoder
signals are used for real-time feedback. The feedforward torques are calculated on-line based on
the the multi-joint robot model (2.4) with the feedback motion signals. This controller can be
customized and added more high level controller to accomplish more sophisticated tasks. Fig. 2.2
shows the hardware connection diagram. The Simulink RealTime developed by MathWorks is used
to implement the proposed control algorithms. All real-time controls are deployed on the target
PC, which uses FANUC PCI interface to communicate with a FANUC digital servo adapter (DSA)
through EtherCAT. The force sensors, parallel grippers, and lead through bars are communicated
with the target PC through National Instrument data acquisition (DAQ) boards, NI 6528 and NI
6259. The host PC provides a user interface to operate some basic functions, such as brake on/off,
joint jogging, and run programmed trajectories, etc. The sampling rate for control and sensing is
1kHz. The vision sensors and motion capture system are communicated with the host PC through
the local network.

In this dissertation, vision sensors and motion capture systems are used in different applica-
tions. Kinect [72] is a motion sensing input device that was introduced by Microsoft. It consists an
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Figure 2.3: Basic controller structure

RGB camera and a depth sensor. The RGB camera outputs data in three channels with a 1280×960
pixel resolution. The depth sensor has two parts, IR emitter and IR depth sensor. The IR emitter
emits infrared light beams, and the IR depth sensor receives the beams reflected by objects. The
distance from the sensor to the object is calculated from the traveling time of infrared light beams.
Combining the RGB camera and the depth sensor, the 3D point cloud in the workspace can be re-
produced for robot perception. The Kinect sample rate is up to 30 Hz, and can track human motion
and dynamic objects. The Ensenso N35 [46] operates using stereo vision, which acquires images
from the same scene from two different positions. Although the cameras see the same scene con-
tent, there are different object positions according to the cameras projection rays. Special matching
algorithms compare the two images, search for corresponding points and visualize all point dis-
placements in a Disparity Map. Knowing intrinsic parameters of the camera, the Ensenso software
calculates 3D coordinates of each image pixel, which results to a 3D point cloud. Although En-
senso only has 10 fps frame rate, it has much accurate perception and higher resolution, which
is suitable for applications that require high precision. The motion capture system, PhaseSpace
Impulse X2 [82], is to measure the three-dimensional position of LED markers in the work space.
Its sampling rate is up to 960 Hz, and each camera achieves 3600 × 3600 optical resolution by
using two linear detectors with 16-bit dynamic range.
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Part I

Programming



11

Chapter 3

Robot Programming Interface for
Demonstration

3.1 Introduction
Robot programming is the essential way to “teach” the robot the desired motion/trajectory to com-
plete assigned tasks. The most common robot programming method is the teach pedant program-
ming. To program a robot, the operator moves it passing through all the via points using the buttons
on the panel and save each pose individually. Once the whole trajectory has been programmed, the
robot can replay the same motion at full speed. This method allows precise positioning since the
robot can be programmed using numerical coordinates which can be either the world coordinate,
the robot base coordinate, or any other defined coordinate systems. However, this method is not in-
tuitive to people without the related knowledge. Specifically speaking, the teach pendant has many
buttons on the penal as shown in Fig. 3.1a, which makes the programming complicated. Even for
a well-trained robotics technician, it still takes time to program a delicate trajectory. Moreover, the
system information is presented by various code numbers on the display; however, those codes are
not straightforward to understand and operate the robot system (see Fig. 3.1b).

In computer science field, Programming by Demonstration (PbD) is an end-user development
technique that teaches a computer or a machine new behavior by demonstrating the task to transfer
directly instead of programming it through lines of codes [29]. This idea is very attractive to
robotics applications due to the aforementioned problems. To be more specific, the operator often
has implicit knowledge on the tasks but does not have the programming skill to deploy a robot.
PbD allows to teach the skill to robots by demonstrating how to achieve the task through examples
instead of explicitly programming every detail.

In [11], Billard and Grollman further extend this idea to “Learning from Demonstration” (LfD),
which is not just a record and play technique but a methodology to generalize a task skill to var-
ious scenarios from observing several demonstrations. The robotics research on LfD has been
conducted and steadily grown recent years with the interest intersection of engineering and ma-
chine learning. Several research surveys can be found in [4, 12, 90]. In this dissertation, the related
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Figure 3.1: The teach pendant of FANUC robot system. (a) The FANUC iPendant (b) The display
of teach pendant.

contribution in LfD will be further discussed in Part II. This chapter will focus on the programming
interface, which is one important keystone to gather and transmit the information to robots.

In [11], the robot programming interface for demonstration is categorized into three major
trends: 1) Robot imitation from human motion, 2) Kinesthetic teaching, and 3) Immersive teleop-
eration. Robot imitation from human motion is directly recording the kinematic of human motion
by motion tracking systems that based on vision, exoskeleton, or other wearable motion sensors.
These tracking systems return the measurement of the human joints. Some works directly teach the
humanoid robot walking or arm swing by exploiting the full body motion of the human demonstra-
tion [99, 57]. Kinesthetic teaching, also called lead through teaching, is to let robot be physically
guided through the task by the humans. By using this teaching method, there is no explicit physi-
cal correspondence needed since the user demonstrates the skill with the robot’s own body. It also
provides a natural teaching interface to correct a skill reproduced by the robot. This technique be-
comes one of common programming methods in the current generation of robot products [100, 86,
37]. Immersive teleoperation can be achieved by using the remote control devices such as joysticks
or haptic devices. One advantage of teleoperation is that the teacher/demonstrator no longer needs
to stay in the same workspace with the robot. Ocean One [52] is one example that illustrates the
strength of teleoperation in ocean discovery by underwater robots. da Vinci Surgical System [47]
shows a success application of teleoperation in microsurgery.

Each programming interface has its own strength and drawback and may be appropriate for
various tasks and scenarios. The chapter provides the case studies for each programming inter-
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Figure 3.2: Three image formates provided by Kinect

face. In each case study, an example of the programming method is discussed, which includes its
framework and implementation. The remainder of this chapter is organized as follow. Section 3.2
discusses the Robot imitation from human motion by a vision sensor. Section 3.3 talks about the
implementation of kinesthetic teaching by a force damping control. Section 3.4 presents a immer-
sive teleoperation platform in virtual reality, which is also a collaborative project with Autodesk
Inc. [6]. Finally, Section 3.5 concludes the case studies of robot programming interfaces.

3.2 Robot Imitation from Human Motion
Robot imitation enables the robot to imitate human motion from demonstration. Human can ob-
serve and correct the robot trajectory whenever the robot is moving in an undesired manner. To
achieve robot motion imitation, the vision sensor is used to capture human motion for determining
the desired trajectory. In this case study, we use the Kinect as the vision sensor to track the human
motion and further implement the robot imitation.

Figure 3.2 shows the three types of data stream provided by Kinect, which are the RGB image,
depth image, and skeleton data, respectively. The first two are obtained from the RGB camera and
the depth sensor. The skeleton data is calculated from the estimates of the sensor. Since this case
study focus on the implementation for robot imitation, we directly exploit the skeleton data as the
human motion tracking result. For other human pose tracking research, the related works can be
found in [58, 3].

Kinematic Control Scheme of Robot Imitation
The basic framework for kinematic control of robot imitation on industrial robot M-16iB is shown
in Fig. 3.3. The motion of human arm is tracked by Kinect while demonstrating a specific trajec-
tory. Considering the sensor noise, a low-pass filter is embedded to smooth out the jittery signal.
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Figure 3.3: Scheme of robot imitation kinematic control on M-16iB

(a) (b)

Figure 3.4: Simulation result of robot imitation kinematic control on M-16iB. (a) Human motion
capture from Kinect. (b) FANUC M-16iB Visualization in the simulator

The end-effector position is converted from human arm reference by a mapping function. In this
work, the operator’s left hand and hip center are mapping to the robot end-effector and its base,
respectively. The desired tool center point (TCP), pd, in Cartesian space is defined as,

pd = ph − pc, (3.1)

where ph and pc are the operator’s left hand and hip center measured by Kinect, respectively. Since
the orientation of the hand joint has not been used in this work, the orientation of the robot end-
effector is assumed to be fixed, and the half-solution of inverse kinematics is used to solve for
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Figure 3.5: Scheme of robot imitation dynamic control on SCARA robot

Figure 3.6: Mapping from human arm to SCARA robot

the desired joint position for the first three joints of the robot. Figure 3.4 shows the simulation
interface. Fig. 3.4a is the RGB image from Kinect that shows human demonstration, and Fig 3.4b
is the 3D visualization of M-16iB that illustrating the simulation of robot imitation, which helps
the operator correct the robot motion.

Dynamic Control Scheme of Robot Imitation
The dynamic control scheme of robot imitation is similar to the kinematic one that introduced
previously. The main difference is that the dynamic model is taken into consideration. In this
work, the dynamic controller is applied to a two-link direct-drive SCARA robot. Figure 3.5 shows
the scheme of dynamic control on SCARA robot. The additional modules are the LQ controller
and a computed torque module to generate the desired control input to the robot dynamic system.
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Since SCARA robot works in a two-dimensional plane, the motion of the human arm is pro-
jected to x − y plane so that the calculation can be performed in the same dimension. Figure 3.6
shows the mapping from human arm to SCARA robot, where ps = (xs, ys), pe = (xe, ye), and
ph = (xh, yh) are the joint positions of the operator’s shoulder, elbow, and hand respectively.
Hence, the desired joints q1d and q2d are obtained from the human arm geometric relation is for-
mulated as

q1d = tan−1

(
ye − ys
xe − xs

)
, (3.2)

q2d = tan−1

(
yh − ye
xh − xe

)
− q1d. (3.3)

In order to smoothly track the human motion, an LQ tracking controller is introduced. Since the
human arm is mapped to the robot configuration, we directly exploit the kinematic model in the
joint space, where the discrete-time system is given by

x(k + 1) = Ax(k) +Bv(k) (3.4)
y(k) = Cx(k) (3.5)

where

q(k) = [q1(k) q̇1(k) q2(k) q̇2(k)]T ,

u(k) = [q̈1(k) q̈2(k)]T ,

A =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

 ,
B =

[
1
2
T 2
s Ts 0 0

0 0 1
2
T 2
s Ts

]T

,

C =

[
1 0 0 0
0 0 1 0

]
,

with Ts denoting the sampling time. Note that the linearized time invariant system is controllable
and observable, which guarantees closed-loop asymptotic stability. Therefore, we design the con-
troller via solving the infinite horizontal LQ problem [17]. Our goal is to track human motion with
reasonably sized control input; thus, the performance index is formulated as

J =
1

2

∞∑
i=0

(q(i)− qd(k))T Q (q(i)− qd(k)) + u(i)TRu(i), (3.6)

where qd(k) = [q1d(k) 0 q2d(k) 0]T is the desired joint position at time k. The indices i and
k represent for LQ horizon and time, respectively. In each time step k, the equilibrium point is
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Figure 3.7: Human demonstration and the SCARA robot imitation

assigned at qd(k), and the system state q(i) asymptotically approaches qd(k). Q � 0 and R � 0
are the weighting matrices of system outputs and control inputs, respectively. The optimal control
input is obtained by solving the algebraic Riccati equation.

Ps = CTQC + ATPsA− ATPsB((R +BTPsB))−1BPsA, (3.7)

where Ps is the stationary solution of Riccati equation. The optimal control law is given by

u∗(k) = −(R +BTPsB)−1BPsAe(k), (3.8)

where e(k) = q(k)− qd(k) is the tracking error.
Lastly, the optimal tracking control law is directly plugged into the robot dynamics equation to

obtain the desired control torque input.

τ = M(q)u∗ + C(q, q̇)q̇ +G(q). (3.9)

To validate the dynamic control scheme of robot imitation, an experiment was performed on a
NSK SCARA robot. In the experiment, the motion of the operator’s arm was tracked by the Kinect
sensor, and the robot tended to follow the corresponding motion as shown in Fig. 3.7. The further
details are provided in Fig. 3.8a and Fig. 3.8b. Figure 3.8a shows the input torque, velocity, and
acceleration of each robot joint, and Fig. 3.8b shows the joint position of human and robot and the
corresponding tracking error. The root mean squares (RMS) tracking errors of joints are 0.1531 rad
and 0.1846 rad respectively, which is mainly led from signal latency mentioned previously. If the
delay is compensated in 0.1 second, the RMS tracking errors reduce to 0.0103 rad and 0.0305 rad.
Although 0.1 second delay is large for the control system, the operator barely detects the latency
in experiments.
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Figure 3.8: The experimental result of SCARA robot imitation motion. (a) The joint position and
tracking error between human and robot. (b) The robot joint torque, velocity, and acceleration.
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In Fig. 3.8b, there exists a notch in human joint position at t = 4s. The reason is that the
skeleton estimate algorithm in Kinect is not robust enough, which leads to inaccurate estimates.
The problem becomes obvious when part of the operator’s arm is occluded by the human body or
obstacles. This problem can be solved by using more accurate sensors or optimizing the filter.

3.3 Kinesthetic Teaching
The kinesthetic teaching methodology provides a more intuitive robot programming approach,
which becomes more and more popular nowadays. With the kinesthetic teaching, the programmer
can directly grasp the robot end-effector or the lead through handle that usually mounted on the
robot tool and manually guide the robot through a desired path or successive points to define the
path and/or points used for the task.

There are several approaches to implement the kinesthetic teaching. The key idea is to transfer
the operator’s intention to the robot motion. One approach is to mount a 6D mouse or joystick on
the robot end-effector so that the operator can directly guide the robot by maneuvering the device.
Another approach is to estimate the force that the operator applied on the robot end-effector and
convert to the desired robot motion. For the direct-drive robot or light-weight robot such as UR
series [100], the motor current can also be exploited as a signal to estimate the operator’s intention.
Because it becomes more common that robot end-effector equipped a force sensor, the force-sensor
based kinesthetic teaching method will be discussed in this case study.

Compliance Control
In the scheme of the kinesthetic teaching, the operator addressed his/her desired pose by pushing
or dragging with the robot end-effector, and the interaction force between robot and human can be
regarded as a motion reference signal. Therefore, it falls into the category of compliance control,
which achieves force control via motion control without explicit closure of a force feedback loop.

In [89], a compliance control scheme is proposed to design the robot end-effector stiffness
along degrees of freedom in Cartesian space by modifying its position gain. Considering a general
spring with six degrees of freedom, its action could be described by

FE = Kpδx, (3.10)

where FE = [fTe , τ
T
e ] ∈ R6 is a wrench vector that includes the external force and moment at the

robot end-effector, δx = xd − xe is the displacement of the robot end-effector from the desired
position, and Kp ∈ R6×6 is a diagonal matrix with three linear stiffness followed by three torsional
stiffness on the diagonal entries. Recalling the definition of robot Jacobian is δx = J(q)δq, the
external force is thus given by

FE = KpJ(q)δq. (3.11)

For a robot with six degrees of freedom,Kp describes the desired stiffness of the robot end-effector
in Cartesian space. Through use of the Jacobian, the Cartesian stiffness is transformed to a joint-
space stiffness.
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Figure 3.9: The Scheme of the robot compliance control

By taking the inverse of Kp in (3.10), the desired end-effector displacement in Cartesian space
is given by

δx = CFE, (3.12)

where C = K−1
p is the compliance matrix that describes the desired behavior of the robot end-

effector by giving an external force.
In kinesthetic teaching, the operator continuously applies a force/moment to the robot end-

effector, and the corresponding displacement is considered as a reference signal for the robot servo
system, which is given by

δqr = J(q)†CFE, (3.13)

where J(q)† = JT (JJT )−1 is the pseudo inverse of the robot Jacobian. Figure 3.9 summarizes the
scheme of robot compliance control, where the compliance controller is given by (3.13) and the
servo controller is similar to the control structure introduced in Chapter 2.

External Force Sensor Identification
Although most force sensors have been calibrated by their manufacturers, there are several factors
that affect the force measurement in the actual robot operations. For example, the robot end-
effector induces a force offset by its own weight, and the displacement from the center of mass of
the payload to the sensor frame generates a torsional offset. Besides the effect from the payload,
mounting the sensor on the robot would also introduce a sensor offset to the force measurement.
Since the compliance control relies on the force measurement, those external offsets can not be
neglected. Hence, an external force sensor identification is essential to assure the correct measure-
ment.

Note that the force measurement by a six-axis transducer can be written as a wrench vector,
i.e. F = [fT , τT ]T ∈ R6. Considering the aforementioned effects and the measurement noise, the
force measurement is given by

F = FE + FP + FB + FN , (3.14)
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where FP is the payload wrench vector, FB is the sensor bias generated by the assembly force,
and the FN represents the measurement noise, where F• is a wrench vector that includes the cor-
responding force and the torque denoted as f• and τ• respectively.

When there is no external force applied on the robot end-effector, the force measurement in
(3.14) only consists the latter three terms. Since the measurement noise results from high frequency
signal, a law-pass filter can be designed to filter out the noise effect. The remainder includes the
effect from the payload weight and the sensor bias due to the assembly. The identification process
includes two parts: the force identification and the torque identification.

Force Identification

For noise-free and no external force case, the translational force measurement in the sensor frame
is given by

f = RT
eefP + fB, (3.15)

where theRee is the orientation of the end-effector. For the case that the sensor frame and the robot
end-effector share the same orientation, RT

ee = R−1
ee can project fP from the robot world frame to

the sensor frame. Rewriting (3.15), we can get

[
RT
ee I3

]︸ ︷︷ ︸
Af

[
fP
fB

]
=

fxfy
fz


︸ ︷︷ ︸
bf

, (3.16)

where I3 is a 3 × 3 identity matrix. Then the estimate of the payload weight and the sensor bias
can be solved by least square, i.e. [

f̂P
f̂B

]
= A†fbf , (3.17)

where Af is the pseudo-inverse of Af .

Torque Identification

For noise-free and no external force case, the torsional moment measurement in the sensor frame
is given by

τ = rP × fP + τB, (3.18)

where rP = [rP,x, rP,y, rP,z]
T is the center of mass position in the sensor frame. Substituting

the payload weight by the estimate f̂P = [f̂P,x, f̂P,y, f̂P,z]
T retrieved from the force identification,
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Figure 3.10: The force/torque identification result. (a) The residual force error before/after identi-
fication. (b) The residual torque error before/after identification.
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(3.18) can be rewritten as

τ =

 0 f̂P,z −f̂P,y
−f̂P,z 0 f̂P,x
f̂P,y −f̂P,x 0


︸ ︷︷ ︸

[f̂P×]

rP,xrP,y
rP,z

+ τB, (3.19)

Similar to the aforementioned process, the center of mass location of the payload and the torque
bias can be estimated by the least square solution of

[
[f̂P×] I3

]︸ ︷︷ ︸
Aτ

[
rP
τB

]
=

τxτy
τz


︸ ︷︷ ︸
bτ

. (3.20)

The force/torque identification is performed by collecting the force sensor measurement in var-
ious robot configurations. The result of identification is as shown in Fig. 3.10, where the red solid
line and the blue dash line are the residual error before and after the offset compensation. Since
there is no other external force acting on end-effector, the ideal case of the force sensor reading
should be zero and invariant to the pose of the end-effector. However, due to the aforementioned
effect, the sensor reading (the blue dash line in Fig. 3.10) changes with respect to the end-effector
pose. After the identification process, both the payload weight and the sensor bias effect are com-
pensated by the estimated parameters, and thus the residual error of sensor reading on the same
trajectory is close to zero.

With the external force sensor identification, the force sensor can measure the external force
more accurately by eliminating other force effects. Hence, while the human operator using the
compliance control to perform the kinesthetic teaching, the remainder of the force sensor reading
can be used to exploiting the operator’s intention.

Kinesthetic Teaching Path Reproduction
Kinesthetic teaching is intuitive for human operators to design a path to target pose; however, it is
not data-efficient to record/reproduce the whole guided path. Moreover, the operator might induce
some redundant motion while guiding the robot. One alternative approach is to record the key
points for the task and then interpolate the trajectory between these points.

As shown in Fig. 3.11, the blue line is the recorded path guided by a human operator and the
orange line is the path that generated by a Cartesian space trajectory generator. The Cartesian space
trajectory generator produces line segments between key points and interpolates a smooth trajec-
tory by cubic or higher order polynomials, where the joint space velocity reference is provided in
Fig. 3.12.

In this case study, a basic kinesthetic teaching is implemented through compliance control.
Chapter 4 will further discuss the kinesthetic teaching with real-time collision avoidance as well
as its experimental validations.
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Figure 3.13: The operator teleoperate the robot through virtual reality.

3.4 Immersive Teleoperation
In Immersive teleoperation scenarios, the human operator is performs the task through using the
robot’s own sensors and actuators. Although the flexibility is limited, it resolves the problem of the
discrepancies in how robots and humans are embodied, i.e. the perceptual and physical difference
between human and robot. The teleoperation can be achieved by using joysticks or other remote
control devices such as haptic devices. The latter devices provide the force feedback to the operator
that allows operators to teach tasks that require force information, while the joysticks can only
provide kinematic information such as position and velocity.

Over the past few years, the technology of virtual reality (VR) has grown rapidly due to the
significant progress in computer graphics. VR is a computer-generated scenario that simulates
experience through senses and perception. The immersive environment could be either a simulation
of the real world or the imaginary world. Hence, it has been applied to various applications such as
entertainment, medical, and aerospace. Using VR as the platform to interact with robots is another
novel application that provides a safe interaction experience at a low cost.

This case study investigates the implementation of immersive teleoperation through VR, which
is mainly based on the result of the Autodesk collaborative project - Human Interaction with Robot
through Virtual Reality (HIROVR) [6].
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Figure 3.14: The system framework of robot teleoperation through virtual reality.

Scheme of Robot Teleoperation through Virtual Reality
Figure. 3.13 shows how the human operator teleoperates a robot through VR. The human operator
wears a VR headset to immerse himself in a digital factory, which provides an identical environ-
ment to the actual workspace. By manipulating the VR controller, the human operator directly
controls the virtual robot as well as the actual robot to follow his motion.

As shown in Fig. 3.14, the system framework of robot teleoperation through VR includes three
parts: VR system, communication module, and robot controller. In this work, HTC Vive VR
system [45] operates on Stingray, a game engine produced by Autodesk [7]. The VR program con-
structs the virtual environment and simulates the robot motion, including forward kinematics and
inverse kinematics. In addition, the user interface is built to allow the VR operator to interact with
the virtual environment. The robot controller is connected to the VR system through EtherCAT. In
order to transfer the correct data protocol for the robot system, a communication socket is embed-
ded to transmit the desired joint positions or the desired end-effector pose in Cartesian space to the
robot. The robot controller generates the real-time motion command through the online trajectory
generator. In this work, a small size industrial robot, KUKA KR 5 Arc, and a large size industrial
robot, ABB IRB 6700, serve as the teleoperated robot subjects.

The work flow of robot teleoperation through VR is as follows. The human operator and the
robot share the same coordinate reference in the virtual environment. The pose of the operator’s
hand that tracked by the VR controller is regarded as the target pose of the robot end-effector. The
VR program calculates the corresponding joint position by an analytic inverse kinematic module
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(a) (b)

(c) (d)

Figure 3.15: The virtual reality scene that the human operator sees through the VR headset.

and visualizes the robot configuration in real-time. In the same time, the robot controller receives
the motion data streaming from the VR side and generates the motion accordingly.

Implementation of Robot Teleoperation through Virtual Reality
Figure 3.15 reveals several scenes that the human operator sees through the VR headset. In
Fig. 3.15a and Fig. 3.15b, the operator performs a path programming through VR. The operator
guides the virtual robot to several waypoints and presses the trigger of the VR controller to record
these waypoints, which are visualized as the coordinates in Fig. 3.15b. The robot would repeat
exactly the same path if the operator pressed the replay button on the VR controller. In Fig. 3.15c
and Fig. 3.15d, the operator remotely controls a robot to conduct a welding task. With the help
of telepresence, the operator could keep a safe distance away from the dangerous welding site but
closely observe the detail of welding process through VR screen, e.g., the feed rate of solder with
respect to the motion of robot end-effector.
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Figure 3.16: The experiment footages of the robot teleoperation through virtual reality.

Figure 3.16 shows the footages taken in the experiment of robot teleoperation through VR. In
Fig. 3.16a, the human operator using VR system, while the television monitor (behind the human
operator) displays the current scene in the VR headset. It allows other people to observe the
interaction occurred in the virtual environment. The remaining three subfigures show the robot
motion synchronized with the motion of operator’s hand. The operator can even take off the VR
headset to see the real robot behave the same movement as his arm as shown in Fig. 3.16d.

The pipeline of this VR teleoperation is very natural, because humans can simply move their
hand and the target pose for the robot end-effector to follow in the same way, making it intuitive for
even first-time users to accomplish the robot programming. Moreover, the kinematic configuration
difference is reduced to minimal in this setting.
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3.5 Chapter Summary
This chapter discussed the programming interface for demonstration. Unlike conventional pro-
gramming methods that required tremendous programming efforts to implement a task, program-
ming by demonstration (PbD) allows human operator teaching robots by more intuitive ways. This
chapter investigated three main trends of robot programming interfaces: robot imitation from hu-
man motion, kinesthetic teaching, and immersive teleopeation.

In the case study of robot imitation from human motion, the human gesture was captured and
mapped to the robot configuration by a Kinect sensor. A simulation and an experimental validation
were performed on a FANUC M-16iB simulator and a NSK SCARA robot system, respectively.
In the case study of kinesthetic teaching, the compliance control was introduced and implemented
on FANUC LR Mate 200iD robots, where the guided path could be recorded and reproduced. In
the case study of immersive teleoperation, the framework of robot teleoperation through virtual
reality (VR) was presented. Combining the VR system and the robot controller with a real-time
data streaming module, the robot motion could be synchronized with the motion of the operator’s
hand. The experiment was performed on both KUKA KR 5 Arc (a small size industrial robot) and
ABB IRB 6700 (a large size industrial robot).
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Chapter 4

Human Guidance Programming with
Collision Avoidance

4.1 Introduction
Human-robot collaboration is one of the most important application in physical human-robot in-
teraction (pHRI). It has great potential to improve production efficiency. Human laborers can often
do flexible and intelligent tasks, whereas robots excel in repetitive and assistive tasks. However,
the risk increases when humans and robots work together. Not only it is potentially hazardous
that the robot can harm a human, but it is also that the robot can damage its environment through
human mistake.

A human-robot collaboration scenario is given in Fig. 4.1a to highlight the safety issue. The
robot is handling a heavy tire, while the operator is guiding the end-effector to put the tire into
the car body. The operator might focus only on the task of placing the object at the right location
without being aware of the entire robot configuration. Therefore, the robot arm might collide
with the rear door. Fig. 4.1b is a simplified drawing to show how this type of collision might
happen. vlead is the lead through command from the operator’s guiding force, which leads the end-
effector towards the bottom of the trunk. Meanwhile, there is a point on the robot body, which
is approaching the obstacle with a velocity vo. A collision would occur if the operator kept on
guiding the robot at the current direction.

With regards to collision avoidance, several methods have been proposed. Brock and Khatib [18]
presents the framework of robot motion modification in the dynamical environment. Khatib [51]
introduces the potential field method to prevent collision in manipulators and mobile robots. De
Santis [31] and Täubig et. al. [98, 34] prevent a dual-arm robot from self-collision by adding a
reactive force at the minimum distance pair. Flacco et al. [40] develops an algorithm to estimate
the obstacle distance and its velocity by the depth sensor. Although these works provide very good
results in the real-time applications, they do not deal with the end-effector task performance. How-
ever, the behavior of the robot end-effector should be cautiously considered in pHRI applications.
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(a) (b)

Figure 4.1: The scenario of human-robot collaboration. (a) The human laborer is guiding the robot
to place a tire. [37] (b) The collision might happen if the labor does not notice the distance of the
robot body and the obstacle.

Maciejewski and Klein [69] illustrate the benefit of redundancy. The redundant degrees of
freedom give the robot the ability to track the desired trajectory and avoid obstacles at the same
time. Petrič and Lajpah [81] formulate the redundant robot command for multiple tasks and
analyze its stability. However, these redundant degree of freedom approaches are not applicable
in non-redundant robots such as CR 35-iA in Fig. 4.1a. Although traditional collision avoidance
methods will move the robot in a direction away from the obstacle, these methods often fail to take
advantage of a human’s intuition in collision-avoidance path planning.

To deal with the problem mentioned above, this chapter introduces how to implement both
robot collision avoidance and human lead through following on a 6-DoF robot simultaneously.
Then, a novel collision constraint relaxation is proposed to give the robot more flexibility to deal
with obstacles, which not only preserves the robot safety but also improves user’s flexibility.

The remainder of this chapter is organized as follows. Section 4.2 briefly introduces the relevant
works such as collision avoidance by a repulsive action and a null space projection for simultane-
ous collision avoidance and end-effector positioning. Section 4.3 presents the collision avoidance
algorithm for a 6-DoF robot. The experimental verification is presented in Section 4.4. Lastly, the
conclusion is given in Section 4.5.

4.2 Related Works

Repulsive Action
For the collision avoidance, it is necessary to calculate the distance between the robot and the
obstacle. In order to accelerate the distance calculation, it is necessary to simplify the robot links
into a simple geometric model such as ellipsoids [88] and cylinders [98]. In [9], the manipulator
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(a) (b)

Figure 4.2: The robot geometry approximation. (a) The original robot CAD model. (b) The robot
model is approximated by several spheres.

is modeled by several spheres. The advantages of the spherical approximation are the geometrical
simplicity and the computational efficiency.

The sphere-based geometry approximation is illustrated in Fig. 4.2. The red points are the
control points of the robot body. The orange balls are the spheres that centered at the control
points. The distance between the robot and the obstacle is reformulated as the distance between
the ball to the obstacle surface. Then, the repulsive action is applied to the control point that has
the shortest distance to the obstacle.

The repulsive action in traditional collision avoidance methods is adding a repulsive vector vrep

at the control point. vrep is defined as an artificial force assigned to push the robot away from the
obstacle. In [51], this artificial force is obtained by the derivative of a designed potential function.
[40] uses a sigmoid function to present a smooth repulsive vector. These repulsive actions have the
same property: the closer the distance between robot and obstacle, the larger the magnitude of vrep.

Null Space Projection
Although the repulsive action prevents collisions, it may also affect the robot end-effector position.
[69] shows the possibility of both preventing of collision and desired positioning of the end-effector
on a redundant robot. To be more specific, the motion of a redundant robot can be decomposed
into a least square solution of Cartesian space motion and a homogeneous solution created by the
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null space projector,

q̇ = J†ẋ+Nz (4.1)

where q̇ and ẋ are the joint and Cartesian velocity, respectively; J† is the pseudo inverse of the
robot Jacobian, J , i.e. J† = JT (JJT )−1, N = I − J†J is the null space projector, and z is an
arbitrary vector. [81] gives a more general form for a redundant robot to satisfy multiple tasks
requirement,

q̇ = J†1 ẋ1 +
K∑
i=2

Ni−1J
†
i ẋi (4.2)

where Ni = I − J†i Ji, and i = 1, · · ·K is the task priority order. In this formulation, the lower
index number has higher task priority. The lower priority task is satisfied by adding robot velocity
in the robot Jacobian’s null space. In other words, redundant robots can leverage the fact that there
are extra degrees of freedom to achieve the lower priority tasks while ensuring higher priority tasks
are still satisfied. Hence, the robot velocity command for a collision avoidance and an end-effector
tracking can be formulated as

q̇ = J†o ẋo +NoJ
†
e ẋe (4.3)

where Jo is the Jacobian at the control point, No = I − J†oJo is the null space of Jo, Je is the
Jacobian at the end-effector, ẋo is the desired velocity for collision avoidance at control point, and
ẋe is the desired end-effector velocity.

4.3 Algorithm

Jacobian Decomposition
Because of redundancy, the null space projector is applicable to a redundant robot and can perform
the desired task as well as collision avoidance at the same time. However, the Jacobian of a 6-DoF
robot is full rank in nonsingular configuration. There is no additional degree of freedom to directly
apply the original null space projection method.

Note that if a robot is to avoid the obstacle at the control point, the repulsive motion, ẋrep, is
given by

ẋrep = Jo(q)q̇rep (4.4)

where q̇rep ∈ Rn and Jo ∈ R6×n are the joint velocity and Jacobian at the control point respectively,
and n is the degrees of freedom at the robot control point. Notice that the repulsive vector that is
introduced previously only deals with translation, not rotation. i.e. vrep ∈ R3. Thus, (4.4) can be
written as [

vrep

0

]
=

[
Jo,1:3

Jo,4:6

]
q̇rep (4.5)
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Because only the first three rows of Jacobian projects the repulsive vector to joint space, a decom-
posed Jacobian is defined as

Jrep := Jo,1:3 ∈ R3×n (4.6)

It gives vrep = Jrepq̇rep. The physical meaning of Jrep is the mapping of the joint velocity at the
control point to the repulsive vector in Cartesian space. For n > 3, Jrep has a null space of
dimension n−3. For example, if n = 4, the rank of Jrep is 3, then the null space has one dimension
and the null space projection method can be applied. Because there exists at least one redundant
degree of freedom, the robot arm can achieve multiple tasks as described in (4.3). i.e.

q̇rep = J†repvrep +Nrepz (4.7)

where Nrep = I − J†repJrep is the null space projector of Jrep, z ∈ Rn is the weighted coefficient of
the null space vectors. Since JrepNrep = 0, the joint velocity at the control point is deterministic.
Even if n = 3 and Nrep is an empty set, (4.7) still gives a proper repulsive joint velocity by

q̇rep = J†repvrep (4.8)

The case with n < 3 is not discussed here. In such cases, since the robot degree of freedom is less
than the dimension of the repulsive vector, there exists at least one direction that the robot would
not be able to avoid the collision.

Collision Avoidance Optimization
To incorporate both the human guidance command and the collision avoidance, the problem can
be formulated as an optimization problem,

min
q̇cmd

‖ẋlead − J(q)q̇cmd‖2
2

s.t. Jrepq̇cmd,n = vrep

(4.9a)

(4.9b)

where ẋlead ∈ R6 is the human lead through motion command, q̇cmd ∈ R6 is the 6-DoF robot joint
velocity command, and q̇cmd,n is the first n-th joint velocity command. The cost function is the
velocity difference between human’s desired motion and the robot actual motion command. The
constraint indicates that the robot command should give an equivalent velocity to the repulsive
vector at the control point so as to avoid collision.

Let q̇cmd,n = q̇rep and plug (4.7) into (4.9b) The original problem can be reformulated as a
standard least square problem, where its optimizer is given by[

z∗

q̇∗c

]
= −

[
J1Nrep J2

]† (
ẋlead − J1J

†
repvrep

)
(4.10)

where z∗ ∈ Rn is the optimal weighting coefficient of the null space vectors, q̇∗c ∈ R6−n is the
optimal complementary joint velocity command, J1 is the first n columns of J , and J2 is the rest
of J . This analytical form solution makes it feasible for real-time applications.
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(a) (b)

Figure 4.3: The collision avoidance scenarios. (a) In order to prevent the collision avoidance, the
repulsive vector vrep is necessary. (b) The repulsive vector vrep is not necessary in this case, since
vlead can guide the robot to escape the obstacle.

Note that (4.9b) is a strong restriction that fixes the robot velocity. Thus, the solution (4.10)
makes the robot move in the direction of the repulsive vector at the control point, which is always
orthogonal to the obstacle surface. However, we may ask whether this is necessary in all cases
when the human is guiding the robot.

Fig. 4.3 shows two different scenarios of robot collision avoidance while the human is guiding
the robot. In Fig. 4.3a, the repulsive vector is critical in preventing the robot from colliding into the
obstacle. Because the lead through command leads the end-effector going down, the robot body
might approach the obstacle underneath.

In contrast, the repulsive vector in Fig. 4.3b is not necessary, because the human lead through
command provides enough downward velocity component to move the robot away from the ob-
stacle above the robot body. Moreover, the velocity component from the repulsive vector would
counteract the forward velocity component of the lead through command, which in turn would
make the operator feel resistance in guiding the robot. This example reflects the limitation of
traditional repulsive action methods. Although the repulsive vector is the fastest way to prevent
obstacle collision, it does not consider user’s comfort and is inflexible in the context of human-
robot collaboration.

Constraint Relaxation
A novel approach to formulate the collision avoidance is illustrated in Fig. 4.4, where urep =

vrep

‖vrep‖
is the unit repulsive vector. The shaded area is a half ball with its center located at the control
point, P . It is also a safety set, where any velocity within this region would not move the robot
arm towards the obstacle.

v1 and v2 are two different example velocities at the same control point P . The inner product
of v1 and urep is positive. Thus, v1 does not hit the boundary of the half ball. On the other hand, the
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Figure 4.4: The velocity constraint at the control point, P , is a half unit ball to bound any velocity
that approaches to the obstacle.

inner product of v2 and urep is negative. It means v2 that has a velocity component that counteracts
urep. A feasible velocity is v′2, which stays within the safety set and is tangent to the obstacle
surface.

Hence, the original equality constraint can be replaced by an inequality constraint, and the
original problem can be reformulated as,

min
q̇cmd

‖ẋlead − J(q)q̇cmd‖2
2

s.t uTrepJrepq̇cmd,n ≥ 0

(4.11a)

(4.11b)

where (4.11b) implies that the robot could not have any velocity component that opposes the re-
pulsive vector at the control point.

Since this is a standard quadratic programming problem, it has a global optimal solution. More-
over, the explicit solution can be found because the dimension of the constraint is small. In fact,
the dimension of the constraint is equal to the number of obstacles in the environment. For a single
obstacle case, the problem can be simplified by checking the active set of collision constraints.

Velocity Composition
Although (4.11) prescribes a more flexible velocity command to the robot compared to traditional
collision avoidance algorithms, the constraint would still limit the robot mobility if the obstacle is
far away. Thus, it is necessary to design a switch mechanism to turn on the collision avoidance
optimization when the obstacle is within a certain distance.

Note that the discontinuous velocity command would cause an uncomfortable user experience.
Instead of using a distance threshold as a trigger condition, the velocity command here is generated
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Figure 4.5: The weighted coefficient λ with d0 = 0.15 m and various shaping factor α.

by a composition of the lead through command and the collision avoidance command.

q̇′cmd = λ(d)q̇∗cmd + (1− λ(d))q̇lead (4.12)

where q̇∗cmd is the optimal solution of (4.11), q̇lead is the lead through command given by the operator,
and λ(d) ∈ [0, 1] is the weighted coefficient for the velocity combination. Here λ is given by a
sigmoid function,

λ =
1 + exp(−α)

1 + exp(α‖d‖(2/d0)− 1)
(4.13)

where d is the distance between the control point and the obstacle, d0 is the safety margin, and α is
a positive shaping factor. Fig. 4.5 shows the relationship between λ and the obstacle distance with
various α.

When the robot stays in a safe distance (i.e far away from the obstacle), λ is close to zero,
and the operator can freely guide the robot. Once the control point of the robot reaches the safe
distance margin, λ will increase gradually. The weight of the collision avoidance becomes larger
when λ increases. When λ = 1, the collision avoidance command fully controls the robot to
prevent collision. Thus, the velocity composition not only preserves the switch feature but also
smoothen the transition between two different velocity commands.
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Table 4.1: The cylinder obstacle position in the three scenarios

Obstacle Scenario
Obstacle Cylinder Parameters, Units: mm

Diameter Center x Center y Center z
I. Lower front

70
480 ±500 13

II. Upper front 710 ±500 546
III. Beside 230 430 -330, 670

4.4 Experiment

Experimental Setup
The experimental verification is implemented on the robot setup as introduced in Chapter 2. The
operator steer the robot by applying a guidance force on the lead through handle bar. Note that
the experiment does not use a sensor or a vision camera to locate obstacle, but the distance to
obstacle is calculated based on the geometry parameters predefined in the program. Experiments
are performed for three scenarios in Table 4.1, where it lists the cylinder diameter and the two
circular center positions in the robot base frame. The parameters of the velocity composition
weighting factor λ are assigned as α = 6 and d0 = 0.15 m. In future experiments, we will
introduce a sensing means to detect and find the distance to obstacles in real time. The video of
experiments can be found in [60].

Results
Fig. 4.6a, Fig. 4.7a, and Fig. 4.8a show part of the operator lead through sequence motions in the
three experiment scenarios, where the cyan solid line and the red dash line represent the robot ac-
tual path and the operator’s lead through intention, respectively. The experimental measurements
are plot in Fig. 4.6b, Fig. 4.7b, and Fig. 4.8b. Each experiment has four plot. The first plot shows
both the robot translational velocity commands, Vcmd, and the operator’s lead through commands
Vlead at the tool center point. Vlead is determined by the operator’s lead through force, Flead, i.e.
Vlead = KdFlead, where Kd is the damping gain. The damping gain is 0.07 (m/Ns) for translational
velocity, and 0.06 (rad/Ns) for angular velocity. The difference between these two velocity com-
mands, ∆V = Vcmd − Vlead, is shown in the second plot. The third plot shows the projection of
the velocity command at urep direction. i.e. ‖V ‖rep = V Turep. The last plot shows the minimum
obstacle distance to the robot body.

In the first experiment (See Fig. 4.6a), the obstacle is placed at the lower front position, where
the end-effector might collide the obstacle if the operator guided the robot to move forward directly.
The collision avoidance algorithm modifies the velocity command so that the robot moves slightly
upward to cross the obstacle.

The detail of the robot motion can be found in Fig. 4.6b. The shaded areas in the plots are the
time segments that the collision algorithm is inactive. Thus, there is no difference between Vlead

and Vcmd, and the operator can freely guide the robot. In the unshaded area, the collision algorithm
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(a)

(b)

Figure 4.6: Lead through teaching with collision avoidance in the obstacle scenario I. (a) The
sequence of figures that human operator is guiding the robot (b) The experiment plot.
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(a)

(b)

Figure 4.7: Lead through teaching with collision avoidance in the obstacle scenario II. (a) The
sequence of figures that human operator is guiding the robot (b) The experiment plot.



CHAPTER 4. HUMAN GUIDANCE PROGRAMMING WITH COLLISION AVOIDANCE 41

(a)

(b)

Figure 4.8: Lead through teaching with collision avoidance in the obstacle scenario III. (a) The
sequence of figures that human operator is guiding the robot (b) The experiment plot.



CHAPTER 4. HUMAN GUIDANCE PROGRAMMING WITH COLLISION AVOIDANCE 42

protects the robot by contributing a nonnegative velocity command in the direction of the repulsive
vector. Hence, the blue solid line in the third plot of Fig. 4.6b is regularized at zero in the unshaded
area, i.e. urep ⊥ Vcmd. This prevents the robot from moving closer to the obstacle. If the robot
is operated by the lead through command only, the result would be more like the orange dash
line, which would collide into the obstacle. Moreover, when the algorithm is activated, it tends to
generate a tangential velocity along the obstacle consequently, and the modified path looks like a
half circle in this experiment.

In the second experiment (see Fig. 4.7a), the obstacle is placed on the upper front position.
Similar to the first experiment, a collision might happen if the operator does not pay attention to
the obstacle during the lead through demonstration. However, the collision avoidance algorithm
lowers the robot body to sidestep through the obstacle. Even if the operator intends to steer the
robot arm to collide with the obstacle, the algorithm is still able to protect the robot. As shown
in the third plot of Fig. 4.7b, there is a large velocity difference in z direction from t = 25 sec
to t = 30 sec, which indicates that the operator intends to move the robot upward. However, the
proposed method prevents this behavior. The operator would feel a heavy load when he tends to
move the robot upward.

Unlike the first two experiment, the third experiment has a cylinder obstacle standing beside
the robot (see Fig. 4.8a). This simulates the case where there is a pillar or a standing object beside
the robot. In this experiment, the operator tests how fast the algorithm could switch between
the free lead through mode and collision avoidance mode. As shown in Fig 4.8b, the operator
moves around the boundary of the avoidance criteria from t = 30 sec to t = 45 sec. The third
plot illustrates the blue solid line converges to 0 at a very short time. Hence, this algorithm can
instantly protect the robot from colliding into the obstacle.

To summarize the experimental results, two trigger conditions have to be satisfied simultane-
ously to activate the collision avoidance algorithm. The first condition is that the obstacle distance
is below the safety margin. The second one is that the projection between the lead through velocity
command with the repulsive direction is non-negative. Thus, it is possible that the robot is close
to an obstacle, but the collision avoidance algorithm is not activated because the operator’s lead
through velocity would not collide with the obstacle. This is a good property in the human guid-
ance programming because the velocity difference is minimized during the operation. Moreover,
because the repulsive vector affects the translational velocity only, the angular velocity difference
remains at zero during this experiment. Lastly, the collision avoidance algorithm converges to zero
in a short time even if the mode is frequently switched. This shows that this method can provide
instant protection for the robot.

4.5 Chapter Summary
This chapter proposed a novel collision avoidance algorithm for physical human-robot interaction
(pHRI). The Jacobian decomposition modified the original null space projection method and led
it applicable to a non-redundant robot. The human guidance command and collision avoidance
were formulated into an optimization problem, where the closed form solution could be found.
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Unlike other conventional collision avoidance methods that only considers the obstacle distance,
the proposed collision algorithm took the human intention into consideration as well. When the
operator’s lead through command was in a safe direction, the collision avoidance would not be
activated. This not only preserved the safety from the traditional method, but also improved the
flexibility and comfort in the human guidance programming. Lastly, the proposed algorithm was
verified on a 6 DoF industrial manipulator in three different obstacle scenarios. The video for the
experiment is in [60].



44

Part II

Learning
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Chapter 5

Learning from Demonstration with Remote
Lead Through Teaching

5.1 Introduction
Many industrial tasks performed by robots require position-force control. For example, the assem-
bly and the surface polishing are realized by controlling not only the position of the end-effector
but also the applied force to the workpiece. The position-force control can be categorized into
two methods [83], the impedance control and the hybrid position/force control. The impedance
control first proposed by Hogan [43] establishes a relationship between the velocity/position of the
robot and the interaction force with the environment. The hybrid position/force control proposed
by Raibert and Craig [84] separates the position and force control into two independent channels.
Hence, the desired position or force for each can be individually specified. These controllers can
achieve a good performance when the desired task and the environment are well-defined. However,
tuning a set of control parameters is nontrivial. Also, even when the task changes slightly, tuning
has to be repeated.

Compared to the robot, human can learn from and adapt to various tasks with shorter time
and fewer trials. Based on this observation, many researchers have investigated how to transfer
the human knowledge and skill to the robot. To simplify the robot programming, the idea of
Learning from Demonstration (LfD) is introduced by Schaal [92]. The main principle of robot
LfD is that the users can teach the robots through demonstration instead of programming. Then,
a question comes up: what is the interface for demonstration? The first intuitive answer is direct
demonstration by human. Namely, operators use their own bodies to demonstrate the task, and
the motion capture suits or markers record the demonstration. Calinon et al. [20] and Schaal [91]
illustrate robot imitation learning from demonstration. This approach may be well suited to the
humanoid or anthropomorphic robots. However, the different configurations between human and
industrial robot make the mapping difficult. Furthermore, the wearable sensors usually only record
the human motions, but many industrial applications require the force information as well.

The lead through teaching [42, 25] is another common technique in LfD. The operator directly
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Figure 5.1: The common tool frame of the human demonstration device is defined for both the
human and robot workspace.

Figure 5.2: The framework of remote lead through teaching, where it is decomposed into two
phase, human demonstration and robot reproduction. In order to transfer human knowledge/skill
to the robot, a skill learning process is established between the two phases.
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grasps the link or the handle mounted on the robot. The robot force controller allows the operator
manually move the robot arm to pass though a desired path or a sequence of successive points so
as to define the task. The lead through teaching provides a convenient and intuitive path planning
approach, but it requires physical contact between the operator and the robot, which poses a po-
tential danger to the operator. Also, the force measurement is the external force applied by human,
the lead through teaching can not be used to teach the interactive force between the robot and the
environment.

Teleoperation [23, 21] or virtual robot teaching [50] separates the workspace of human and
robot. The operator manipulates the robot in a virtual reality environment by maneuvering a haptic
interface. A sequence of robot commands are generated by recording the human motion/force
on the haptic device. The remote operation ensures the operator’s safety, but insufficient tactile
feedback limits the applications. For instance, the teleoperation method may not be applicable to
the complicated industrial tasks such as surface polishing.

In this chapter, a novel approach called remote lead through teaching (RLTT) is proposed to
simplify the robot programming process. Under the framework of RLTT, human and robot share
the common reference. Hence, the human demonstration data can be directly utilized by the robot.
RLTT preserves the properties of the lead through teaching method. It also provides to the users a
natural and safe demonstration approach.

The remainder of this chapter is organized as follows. The basic concepts and the framework of
RLTT are outlined in Section 5.2. The demonstration data processing and learning are introduced
in Section 5.3. Section 5.4 presents two applications of RLTT teaching method. Finally, the
conclusion is given in Section 5.5.

5.2 Remote Lead Through Teaching
The basic idea of RLTT is illustrated in Fig. 5.1. A human demonstration device (HDD) is designed
as a common tool for both human and robot. The tool frame in human demonstration phase is
aligned to that in robot reproduction phase. HDD is a senor fusion system to record all the task
required information during human demonstration. While the human is performing the task, the
HDD records the demonstrator’s motion and force. When the robot is assigned to reproduce the
task, the HDD is mounted on the robot end-effector, and sends the measurement as feedback signal
to the robot controller.

The framework of RLTT is shown in Fig. 5.2. As previously discussed, RLTT is decomposed
into two phase, human demonstration and robot reproduction. In order to transfer human knowl-
edge/skill to the robot, a skill learning process is established between the two phases.

Human Demonstration Phase
In human demonstration phase, the demonstrator uses HDD to naturally perform the task. At the
same time, HDD records the information in the tool frame. As mentioned previously, HDD is a
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Figure 5.3: The design of the human demonstration device

combination of different sensor devices, which may include the measurement of position, velocity,
and force, etc.

The structure of the HDD is briefly illustrated in Fig. 5.3, which consists of the handle bar,
the sensor, the end-effector tool, and the adapters. The handle bar provides the place held by the
human operator and mounted on the robot end-effector. A rapid release mechanism is placed on the
robot end-effetor so that handle bar can be easily installed/uninstalled on the robot. As previously
introduced, the HDD requires both force and motion sensing abilities. In this prototype design,
a six-DoF force/torque transducer is fixed in the center of the HDD. The motion capture markers
are placed on different surfaces of the HDD so that motion capture camera would not lose the
tracking signal. The end-effector tool can be changed with various tools corresponding to the task
requirement. For example, a gripper is placed for the peg-hole insertion, while a grinder is used
for the surface polishing. The adapters are designed to protect the sensor and to link the handle bar
with end-effector tool. Figure 5.4 shows the completed prototype of the HDD. The force sensor
model is ATI mini 45 F/T transducer[5]. The PhaseSpace Impulse X2 LED markers[82] are placed
on the top and body of the HDD.

There are several benefits of HDD in the human demonstration phase. Firstly, the human and
robot workspaces are separated. Hence, the user’s safety is guaranteed. Secondly, the HDD can be
regarded as an add-on of the tool. It does not make significant changes of the user operating the
task. Thus, the natural demonstration behavior can be preserved by RLTT.

Skill Learning Process
The purpose of skill learning process is to build the skill model from the demonstration data. The
skill model is a policy or a reference generator for the robot system. When the robot is given a
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Figure 5.4: The prototype of the human demonstration device

feedback signal from the HDD, the skill model generates a corresponding command to the robot
control loops, where the policy is learned from the human demonstration data.

Before training the model from the demonstration data, some processes are required for im-
proving the learning quality. For instance, the demonstrator has different motion speed in each
demonstration. Although the demonstration behaviors are similar, the trajectories might look very
different due to the mismatched timing. Besides, robot and human have their own expertise. It
is not necessary to learn every single action from human demonstration. For example, the robot
moves more precisely and faster than human, while human is more intelligent in assembly. Then,
the robot does not need to imitate how human approaches the workpiece, but to learn how human
assembles the parts together. Hence, the data processing involves two steps. The demonstration
data is firstly synchronized, then decomposed into several action segments. The data in the target
segments are further utilized for skill model learning.

Since it is difficult to directly derive the human skill model, the data must be first analyzed
to describe the human behavior. The statistical learning and machine learning are the methods to
identify the model by the training data. If the structure of model is known, the model parameter
identification technique is applicable to estimate the model parameters. The detail of the skill
learning process is discussed in Section 5.3.
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Robot Reproduction Phase
In the robot reproduction phase, the HDD is mounted on the robot end-effector. In addition, the
skill model established from the previous process is embedded into the robot control system. Be-
cause the HDD frame in the robot reproduction phase is aligned to that in the human demonstration
phase, the sensory information in these two phases are shared in the same reference. Hence, the
mechanism of skill model finds the closest human demonstrated policy to the current HDD mea-
surements.

5.3 Skill Learning From Demonstration
This section introduces how to process and learn from the demonstration data, so as to build the
human skill model. The three steps are (1) Data Synchronization, (2) Data Decomposition, and (3)
Data Regression.

Data Synchronization
Berndt at el [10] proposed the dynamic time warping (DTW) method to deal with the speech
recognition problem. The technique of DTW uses a dynamic programming approach to align
the time series and a specific pattern so that the distance is minimized. Because each human
demonstration is a time series with a specific pattern, DTW is applicable to synchronize multiple
demonstrations.

Suppose there are three demonstration trajectories with different speed (see Fig. 5.5a). Tr is
the trajectory with reference speed, while Tf and Ts are the fast and slow trajectories, respectively.
In practice, the reference trajectory is determine by the user.

As shown in Fig. 5.5a, the node i is the value of the trajectory at time step i. wk(i, j) is the
warping distance between two trajectories. The goal of DTW algorithm is to find the optimal
sequence of wk(i, j) such that the total warping distance is minimized.

min
ik,jk

K∑
k=1

‖wk(ik, jk)‖ (5.1)

s.t i1 = 1, j1 = 1, (5.2)
iK = m, jK = n, (5.3)
ik−1 ≤ ik, jk−1 ≤ jk (5.4)
ik − ik−1 ≤ 1, jk − jk−1 ≤ 1 (5.5)
|ik − jk| ≤ r (5.6)

The constraints are designed to reduce the space of possible warping paths and to make the warping
time index more reasonable. (5.2) and (5.3) are the initial and final condition of the time series,
respectively. (5.4) implies that all the grid points are monotonically ordered with respect to time.
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Figure 5.5: The illustration of data synchronization and data decomposition (a)Different trajecto-
ries synchronized by dynamic time warping (b) The synchronized data decomposed by the split
points



CHAPTER 5. LEARNING FROM DEMONSTRATION WITH REMOTE LEAD THROUGH
TEACHING 52

The continuity of the time series is restricted by (5.5). The last constraint is to define the size of
the warping window, r ∈ Z+, which makes indices searching more efficient.

As shown in Fig. 5.5b, T ′f and T ′s are the trajectories aligned with the reference trajectory. With
the synchronized trajectories, the pattern of the demonstration is more distinct to users. The data
decomposition is thus applicable to the multiple demonstrations.

Data Decomposition
The data decomposition is to find the time steps that the demonstrator changes the action behavior.
e.g. the purple points in Fig. 5.5b. Since each action has its own pattern in motion/force trajectory,
searching the action sequence can be formulated as an action classification problem. The support
vector machine is a mature algorithm in classification problems [16, 27]. We introduce a SVM-
based action classifier to decompose the demonstration data. A demonstration trajectory is given
by

T =

[
p1 · · · pt · · · pn
f1 · · · ft · · · fn

]
∈ Rd×n (5.7)

where pt, and ft are the position and the force measurement at t, d is the total dimension of the
measurements, and n is the total time steps of the demonstration. The feature vector is written as

Φ = vec(T ) (5.8)

=
[
pT1 fT1 · · · pTt fTt · · · pTn fTn

]T ∈ Rnd (5.9)

Since the actions are the segments of the demonstration, each action can be represented similarly
in the vector form.

To illustrate the action classification by SVM, a simple example is given. Suppose there are
two sets of actions. The mechanism of SVM is to construct an optimal hyperplane in the middle of
the two classes, so that the margin to the nearest positive or negative example is maximized. The
decision function of the action classification is

f(Φ) = θ>Φ + b (5.10)

where θ ∈ Rnd is the weighting parameter vector, and b ∈ R is the bias or offset scalar.
Although the actions are assumed to have different patterns, there are some cases that the

different actions have a similar pattern, which makes it difficult to determine the decision boundary.
Regarding the robustness issue, the soft margin SVM algorithm [104] is proposed by adding the
slack variables ξi ≥ 0. Hence, the training example Φi can satisfy the constraint even if it is on the
wrong side of the decision boundary. The soft-margin SVM is given by

min
θ,b,ξ

‖θ‖+ C
N∑
i=1

ξi (5.11)

s.t. yi(θ
>Φi + b) ≥ 1− ξi, ∀i = 1, · · · , N (5.12)

ξi ≥ 0 (5.13)
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Algorithm 1 Demonstration Decomposition
Input the demonstration trajectory
Initialize: Ps = 0, Iter = 1
if Iter < k then

Crop the segment by the sliding window
Align the segment dimension by DTW
Classify by SVM
if classified label = sequence(Iter) then

Map Score = 1
else Map Score = 0
end if
Calculate the center of the local score map for the separate point Ps
Update: Iter← Iter +1, Ps ← Ps

else return the decomposition with Ps
end if

where C ≥ 0 is a penalized constant, and y ∈ {−1, 1} is defined as the class label. The SVM
classifier can be extended to multi-classes classification without losing the generality.

Hence, a SVM-based classifier can decompose the demonstration into several actions by clas-
sifying the motion/force trajectory based on trained class sets.

The demonstration is assumed to be a specific sequence, and the total number of actions is
known. e.g. in a peg-hole insertion task, the demonstrator first approaches the hole, then rotates
the peg to align with the hole, lastly inserts the peg into the hole. The total number of actions in
the insertion task is three. The basic idea of the data decomposition is to find the split points, Ps,
in the demonstration, where the split points are the timings that the demonstrator changes his/her
action or move on to the next step in the task. To search the split points along the trajectory, the
sliding window method is realized, which is a common technique in computer vision for finding
the target objects in a picture[105].

The whole algorithm is presented in Algorithm 1. First, the Ps ∈ Rk is initialized as zeros,
where k is the total number of actions in the task. In each iteration, a segment is firstly cropped
by the sliding window, where the width of the window is designed by users. The time steps of
cropped segments are aligned with the trained actions by DTW. Then, a classified label is assigned
by SVM. The matched segments are labeled with a map score. By calculating the score map, the
locations of split points are determined. Keep the iteration until the whole split points are found.
With the set of split points, the demonstration can be decomposed into several actions, A(p, f).

Data Regression
To mathematically quantify the human skill is not a trivial work. There is no convincing determin-
istic model to describe the human decision during a single task [44]. Thus, the statistical learning
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Figure 5.6: Skill model in the position-motion hybrid control scheme

model is utilized to represent the human skill. Suppose the human skill model is a black box, then
the human perception Ψ and policy Π are the model input and output, respectively.

Although the relationship between Ψ and Π are ambiguous, the pair of (Ψ,Π) of the human
skill is obtained by observing the target actionA(p, f). For instance, when demonstrator performs
the insertion task, he/she usually senses the contact force first, then adjusts the motion. In sur-
face grinding case, the demonstrator would think a desired shape first, then apply force on the
workpiece.

The skill model is estimated by a mixture of Gaussian models [71]. The joint probability of a
human perception/policy is estimated by N Gaussian components

Pr(Ψ,Π) =
N∑
i=1

αiN (µi,Σi) (5.14)

where µi and Σi are the mean and covariance matrix, and αi is the weighting factor of the i-th
Gaussian component.

The purpose of skill model is to generate a policy/reference when given a perception. The
conditional probability is given by

Pr (Π|Ψ) = N (µΠ|Ψ,ΣΠ|Ψ) (5.15)

and is also a Gaussian due to the properties of Gaussian [71]. The GMR algorithm [14] determines
the optimal policy Π∗ by maximizing the likelihood of Pr(Π|Ψ)

Π∗ = arg max
Ψ

Pr(Π|Ψ) (5.16)

=
N∑
i=1

αiN (µiΠ|Ψ,Σ
i
Π|Ψ)∑N

j=1 α
jN (µjΠ|Ψ,Σ

j
Π|Ψ)

µiΠ|Ψ (5.17)
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where αi is the weighting factor of the i-th Gaussian component. To implement the GMR, the
Gaussian parameters (µiΠ|Ψ,Σ

i
Π|Ψ, α

i) are estimated by EM algorithm from the demonstration
data [13]. Because the EM algorithm is usually sensitive to initialization, K-means clustering [8]
is applied to the dataset for a good initial condition.

The skill model trained by (5.17) is embedded into the position-force hybrid control scheme,
which is shown as a shaded block in Fig. 5.6. The skill model uses the current measurements to
represent Ψ, and then generates a policy Π as a robot reference. In this way, the human skill model
could be transferred for robot applications. Note that the choice of perception will vary by tasks.
For example, in the peg-hole insertion application, the force measurement is used as a feedback to
generate the corrective velocity for insertion. In the surface grinding application, the current pose
is used to generate the desired force.

5.4 Experiment
In order to validate the proposed RLTT framework, it is applied on two classical position-force
industrial tasks. The first application scenario is the assembly task, which is represented by peg-
hole insertion. The second one is the grinding scenario, which is represented by a simplified
testbed. In this section, the experimental setup is firstly introduced, followed by the illustration of
data acquisition, synchronization and decomposition in peg-hole insertion demonstration. Lastly,
the skill learning by GMR and the robot execution in the two scenarios are provided.

Experiment Setup
Fig. 5.7 shows the experimental setup for the remote lead through teaching. Fig. 5.7a and 5.7b
are the photos of the peg-hole insertion in human demonstration and robot reproduction phases,
respectively. Fig. 5.7c and 5.7d show both phases in the surface grinding. In the human demon-
stration phase, the demonstrator’s motion is captured by tracker cameras. The robot in Fig. 5.7b
and 5.7d is FANUC LR Mate 200iD/7L as introduced in Chapter 2, where the force sensor is in-
stalled on the end-effector. However, markers are not necessary to place on the robot body because
the motion of the end-effector can be obtained by calculating the forward kinematics of the current
robot joint position.

Data Acquisition
The demonstration trajectory and force during the peg-hole insertion task were shown in Fig. 5.8.
The first plot illustrated the motion of the marker on the top of the HDD. The second plot shows
the orientation of the HDD. The direction angles are the HDD relative to the basis axes. The third
plot illustrated the force measured by the HDD.

The peg-hole insertion is decomposed to four phases: approaching, rotation, insertion, and
completion, where each phase was labeled under the bottom of the Fig. 5.8. The approaching
phase is from 0s to 2s, where the operator holds the tilted HDD to approach the hole. The position
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(a) (b)

(c) (d)

Figure 5.7: Remote lead through teaching in two industrial applications. (a) The human demon-
strator performs the peg-hole insertion task. (b) The robot reproduces the peg-hole insertion ex-
periment. (c) The human demonstrator performs the grinding task. (d) The robot reproduces the
grinding experiment.



CHAPTER 5. LEARNING FROM DEMONSTRATION WITH REMOTE LEAD THROUGH
TEACHING 57

Figure 5.8: The demonstration motion and force
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Figure 5.9: The demonstration motion and force
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Figure 5.10: The demonstration data processing. (a) The original demonstration data. (b) The
synchronized demonstration data.

of the HDD decreases to a certain height and approached the entrance of the hole. The force is
caused by the gravity and inertia of the HDD. Notice that when the HDD contacts the hole in this
phase, there is a support force compensating the gravity effect. The rotation phase is the shaded
area from 2s to 3.5s. The orientation of the HDD is adjusted to the insertion direction by the
operator in this interval. Due to the orientation adjustment, the height of the marker increases until
the HDD was perpendicular to the table. The insertion phase is from 3.5s to 5.2s. The HDD moves
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Figure 5.11: The demonstration decomposed into three actions: approaching, rotation, insertion.

downward to the bottom of the hole, and the orientation remains the same. The force sensor reflects
the fluctuation caused by the friction during the insertion. In the completion step, the HDD was in
the static status, and the measurements remained the same. The experimental results clearly show
the motion/force, which satisfied the expectation. Also, the results provide users with a insightful
information of the demonstration.

Data Processing
To illustrate the data processing, sixty demonstrations of peg-hole insertion are recorded. The orig-
inal and synchronized demonstration motion/force trajectories of peg-hole insertion are shown in
Fig. 5.10a and 5.10b, respectively. In order to have a better illustration, there are only five demon-
strations plotted in the figures. The original insertion timings are inconsistent due to the different
demonstrator’s motion speed. The data decomposition is realized by the SVM-based action classi-
fier with the SVM toolbox package [24]. The training data is acquired by manually decomposing
and labeling in the 20 demonstrations, and the rest of demonstrations are automatically decom-
posed by the SVM-based action classifier. The result is shown in Fig. 5.11, where the three actions
decomposed from the peg-hole insertion demonstration are approaching, rotation, and insertion.

Assembly Scenario
The assembly scenario is designed as an industrial standard H7/h7 peg-hole insertion task. The
material and the dimension of the workpieces are listed in Table 5.1, where the tolerance is below
0.030 mm. The action segments of the insertion from the data processing are used to train the
skill model. The sensed wrench is regarded as the input of the model, and the corrective velocity
is regarded as the output of the model. Since the dimensions of wrench is six, it is difficult to
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Figure 5.12: The GMR model for the assembly scenario

Table 5.1: The specification of peg-hole insertion testbed

Material mm (SI) inch (UI) Tolerance
Hole T6101 φ25.400+0.003

−0.000 φ1.000+0.0001
−0.0000 H7

Peg T6101 φ25.400+0.000
−0.030 φ1.000+0.0012

−0.0000 h7

Table 5.2: The robot execution result in peg-hole insertion

Total trials Success Fail Success Rate(%)
50 48 2 96.00%

visualize the model. An insertion action segment is used as a query data, and the comparison of
the skill model output and the original demonstration is shown in Fig. 5.12. The red-dash line is the
corrective velocity from human demonstration, while the blue solid line is the velocity reference
generated by the skill model. The robot has completed 50 trials in the experiment. The statistical
result for the robot reproduction is shown in Table 5.2. The robot achieves the 96% success rate in
the H7/h7 peg-hole testbed. The two failure cases is caused by the fact that the peg is tilted before
insertion.
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Grinding Scenario
In the grinding scenario, the demonstrator performs the grinding task as shown in Fig 5.7c. For
the safety consideration and the process simplification, an aluminum plate represents a grinder
in this experiment. Also, the demonstrator only presses large forces at two specific regions of
the workpiece, and moves on the surface with small force. The skill model is trained by the
demonstration, where the demonstrator’s pose is the input and the pressing force is the output of
the model. The skill model of the demonstrator’s force distribution on the workpiece is shown
in Fig. 5.13a. The orange dash line in Fig. 5.13b is the force reference that sliced in the diagonal
direction from Fig. 5.13a, and the blue solid line is the force that the robot applies on the workpiece
along the path. The result indicates that the robot learns the human’s intension in applying the
different forces along the trajectory.

5.5 Chapter Summary
In this chapter, a novel framework of the remote lead through teaching (RLTT) was introduced
to simplify the robot programming problem. The idea of RLTT is to design a common reference
between human demonstration and robot reproduction. Hence, the demonstration data from human
can be directly utilized in the robot reproduction.

This chapter also introduced the skill learning process by three steps. First, the dynamic time
warping (DTW) synchronizes the demonstration data in the same time horizon. Second, a support
vector machine (SVM) based action classifier is designed to decompose the demonstration data
into several action segments. Lastly, the Gaussian mixture regression (GMR) is used to train the
human skill model.

Two experimental verifications in the classical industrial application scenarios were given. In
the assembly scenario, the robot has achieved 96% success rate in H7/h7 peg-hole insertion, where
the tolerance was below 0.030 mm. In the grinding scenario, the robot successfully imitated the
human behavior to press large forces in the desired spots.
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(a)

(b)

Figure 5.13: The skill model for the grinding scenario. (a) The grinding force reference distribution
over the workpiece trained by GMR. (b) The force reference of the skill model and the actual robot
force along the desired path.
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Chapter 6

Robot Grasp Transferring by Non-Rigid
Transformation

6.1 Introduction
Grasping is an essential capability for robots to accomplish complex manipulation tasks. In tradi-
tional grasping scenarios, such as pick-and-place in assembly lines, object-specific grippers might
be designed for the robust grasping of a single type of objects. In recent years, however, more
and more applications require a versatile ability for robots to grasp various objects with general
purpose grippers. For example, human robot interaction requires collaboration and assistance be-
tween robots and humans, during which robots may pass different tools to humans or help holding
various workpieces for assembly tasks. The increasing demand for massive customization and
warehouse automation also promotes the development of dexterous grasping.

However, the grasp planning for various objects with general purpose grippers is challenging
to solve due to heavy computational loads, large task variance and imperfect perceptions. First of
all, many analytic planners such as Ferrari-Canny metric [39] and grasp isotropy [53] require con-
siderable time for exhaustive searching and complex computation for evaluation. Secondly, these
planners generally assume point contact, and calculate the quality based on the local features such
as contact position and contact normal, while the global task requirements such as robot reacha-
bility and collision avoidance are not under consideration. Moreover, analytic planners are usually
sensitive to the noises and distortion of point clouds caused by hardware limitations and calibration
errors. Therefore, the grasp quality evaluated by analytic planners is usually inconsistent with the
empirical success rate and cannot resemble reality effectively [15].

Another common approach for grasp planning is to learn optimal grasps from previous grasp
examples. For example, the Dex-Net [70] trains a neural network from a database which is built by
analytic planners. The network is able to estimate optimal grasps for unseen objects after training.
In [101], the grasp is calculated from heatmaps that generated by deep learning. However, these
methods usually require considerable data for the training process and the optimal grasp is planned
without considering the task constraints.
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Despite the variance of object shapes, we notice that objects to grasp can be classified into
several categories. For example, in the tool picking scenario, objects can often be specified into
categories such as wrenches, pliers, and screwdrivers. Objects in each category share similar
topological structures but may have difference in shapes and sizes.

Some research has been conducted based on this observation. In [19], the perceived cloud
of the object is fitted to different objects templates in the database, and the grasp is estimated
by superimposing all representations considering their confidence levels. A semantic grasping is
proposed in [30] to consider task requirements. The task constraints are implicitly represented by
a grasp example in each object category and the desired grasp on the novel object is retrieved by
mapping the grasp example and refined by eigen-grasp planner. A dictionary of object parts is
learned in [33] to generate grasps across partially similar objects. The dictionary assumes that the
segments that shared by objects are rigid and have similar sizes. However, this assumption cannot
hold in many scenarios.

In this work, we propose a novel framework for efficient and effective grasp generation from
previous grasp examples1. Firstly, a ‘learning from human demonstration’ approach is introduced
to teach robots candidate grasping poses by human experts. In the test stage, the category of
the target object will be classified by its similarities towards the taught objects. Then a grasping
pose transferring is performed between similar objects based on the concept of coherent point drift
method [75, 76]. Moreover, the transformed poses will be rated by analyzing the grasp isotropy
metric [53]. An orientation search method will also be introduced to improve the robot reachability
and avoid collisions.

The remainder of this chapter is organized as follows: Section II introduces the normal formu-
lation of grasping problems and the benefits of involving human demonstration. The background
of coherent point drift, together with its application on grasping pose transferring is introduced
in Section III. Section IV presents the dissimilarity measure between objects and the refinement
of poses after transferring. A series of experiments on grasping multiple categories of objects are
shown in Section V. Experimental videos can be found in [36]. Section VI concludes the chapter.

6.2 Grasp Planning with Human Demonstration
A basic grasp planning for parallel grippers can be formulated as

max
c,nc

Q(c,nc) (6.1a)

s.t. ci ∈ ∂O i = 1, 2 (6.1b)
‖c1 − c2‖ ≤ wmax, (6.1c)

where Q denotes the grasp quality to be maximized, c = {c1, c2} denotes the contact pair with
ci ∈ RD, and nc = {nc,1, nc,2} denotes the normals of the contact pair with nc,i ∈ SD−1. Con-

1This work published in [61] was co-authored with Dr. Te Tang. The similar content may be appeared in his
dissertation.
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straint (6.1b) shows the contacts should lie on the surface of object ∂O, and (6.1c) shows that the
distance of the contact pair should be less than the width of the gripper wmax.

Equation (6.1) is challenging to solve gradient based methods because of the high complexity
of surface modeling, the discrete representation of surface points, and the discontinuity of surface
normal. Compared with gradient based searching, the sampling based method is able to adapt to
discrete object representation and escape from local optimum. However, it requires considerable
computation for sampling and quality evaluation to find a reasonable grasp due to the complicated
structure of the object and the feasibility constraints such as gripper width, task requirements and
collisions, thus the direct sampling method is generally not affordable for real-time implementa-
tion.

We assume that the objects to grasp can be clustered into various categories. The objects in the
same category share similar topological structures but can have different shapes, sizes and configu-
rations. The objective of this work is to provide an efficient framework to grasp objects in the same
category without overwhelmed training, modeling and computation. To achieve this, we introduce
human demonstration to accelerate grasp searching by providing heuristics to guide sampling. In-
stead of directly using human demonstration as the sampling pool for the target object to grasp, we
use a mapping function to transfer the example grasps based on the topological similarity between
the source object and the target object. Therefore, (6.1) becomes:

max
c,nc

Q(c,nc) (6.2a)

s.t. {c,nc} ∈ map(H) (6.2b)
‖c1 − c2‖ ≤ wmax, (6.2c)

whereH denotes a human demonstration database containing example grasps on the source object,
and the function map(·) represents a grasp transferring. Compared with (6.1), the introduction of
human demonstration in (6.2) has the following advantages. First, incorporating human intelli-
gence into the framework will improve the empirical success rate, since the human demo usually
considers a variety of factors such as the local structure of the object and the global geometry for
collision avoidance. Second, some tasks have special requirements. For example, some workpieces
have fragile parts or polished surfaces which are not suitable for grasping. Some workpieces have
some preferred grasping poses for the ease of following assembly procedures. Explicitly impos-
ing such constraints to traditional approaches is nontrivial, while these requirements can be easily
encoded by human demonstration. Moreover, by mapping the grasp examples to novel objects,
the proposed method exploits much fewer but reasonable grasp samples compared to traditional
exhaustive search methods. Therefore, the searching time is greatly reduced.

6.3 Grasping Pose Transferring by Point Registration
Assume a grasp template consists of a source object (Fig. 6.1a) and multiple demonstrated grasping
poses (Fig. 6.1b), where the blue dots are the point clouds of the source object and each coordinate
labeled with a number represents a demonstrated grasping pose. The source object is represented
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Figure 6.1: The Grasping Pose Transferring: (a) A toy manipulator model as a grasping object.
(b) The grasp example that contains a source object and several grasping poses. (c) The non-rigid
point registration by Coherent Point Drift. (d) The target object with the warped grasping poses.
The grasping poses are labeled with number.
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by a point set X = (x1, · · · , xN) ∈ RN×D, where xn ∈ RD is the n-th point in the point set. The
grasping poses are denoted as gi = (ti,Ri) ∈ RD ⊗ SO(D), i = 1, 2, · · · , I , where ti ∈ RD

is the center of the grasping point, Ri ∈ SO(D) represents the grasping orientation, and i is
the index among the total I grasping poses. The target object is represented by another point set
Y = (y1, · · · , yM) ∈ RM×D, where ym ∈ RD is the m-th point in the target point set. Our
objective is to find a smooth transformation T : RD → RD that maps the source object to the
target object as well as transferring the grasp examples to new grasping poses g′i = (t′i,R

′
i) on the

target object (Fig. 6.1d).
The transformation can be found by aligning the source object to the target object. Then the task

can be formulated as a point set registration problem as shown in Fig. 6.1c. Considering variation
and deformation between the source object and the target object, the mapping should have more
flexibility than rigid transformation. In the meantime, the topological structure of point sets must
be preserved during the alignment process so that the the grasping pose can be transferred to a
reasonable location. In this work, we use the coherent point drift (CPD) algorithm [75] to perform
a smooth non-rigid registration.

Coherent Point Drift
In order to align the source object toward the target object, CPD considers source points in X
as the centroids of Gaussian mixtures, and transforms them to fit the target points in Y coher-
ently. The source points are assumed to deform toward the target points according to a continuous
displacement field v(·), and the transformed source point is written as

T (xn) = xn + v(xn). (6.3)

The goal of CPD is to retrieve the displacement field v that maximizes the likelihood of Y sampled
from X.

With the Gaussian mixture model, the probability distribution of ym can be described as

p(ym) =
N∑
n=1

p(n)p(ym|n)

=
N∑
n=1

1

N
N (ym; T (xn), σ2)

=
N∑
n=1

1

N

1

(2πσ2)D/2
exp(−‖ym − xn − v(xn)‖2

2σ2
), (6.4)

where it is assumed that each Gaussian shares the same isotropic covariance σ2 and has equal
membership probability p(n) = 1/N .

Since there might be some noise and outliers from the measurement, which may deteriorate
the result of registration, an additional uniform distribution is added to the mixture model to take
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account of these effects. Thus, the complete mixture model is reformulated as

p(ym) =
N+1∑
n=1

p(n)p(ym|n)

= (1− µ)
N∑
n=1

1

N
N (ym; T (xn), σ2) +

µ

M
, (6.5)

where µ ∈ [0, 1] denotes the weight of the uniform distribution. The log-likelihood function of Y
is given by

l(v, σ2) = log
M∏
m=1

p(ym)

=
M∑
m=1

log
N+1∑
n=1

p(n)p(ym|n). (6.6)

The parameter (v, σ2) can be estimated by maximizing (6.6); however, it is nontrivial to directly
optimize over the log-likelihood function, since the summation inside the log(·) leads to a non-
convex formulation. An alternative log-likelihood function L can be constructed as

L(v, σ2) =
M∑
m=1

N+1∑
n=1

p(n|ym) log (p(n)p(ym|n)) . (6.7)

It can be proven by Jensen’s inequality [56] that L is the lower bound of l. Hence, increasing the
value of L will always ‘push’ the value of l increased until it reaches the local optimum. Compared
with the structure of l, the inside summation of L is moved to the front of the log(·) function, which
provides much convenience to maximize the log-likelihood by the EM algorithm [32].

The EM algorithm runs the expectation step (E-step) and maximization step (M-step) iteratively
to estimate the parameters by maximizing L.

E-step: The expectation step computes the posterior probability distribution of p(n|ym) with
the previous estimated parameters from the last M-step,

p(n|ym) =
exp

(
−‖ym−xn−v(xn)‖2

2σ2

)
∑N

n=1 exp
(
−‖ym−xn−v(xn)‖2

2σ2

)
+ c

, (6.8)

where c = (2πσ2)D/2 µ
(1−µ)

N
M

.
M-step: Ignoring the terms that are independent of v and σ2, the log-likelihood function can

be written as

L(v, σ2) = − 1

2σ2

N∑
n=1

M∑
m=1

p(n|ym)‖ym − xn − v(xn)‖2

− D

2

N∑
n=1

M∑
m=1

p(n|ym) log σ2. (6.9)
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The maximization step is to substitute (6.8) into (6.9) and take partial derivative with respect to v
and σ2 to find its maximum.

Although alternating between E-step and M-step will converge to a local optimal, it can not
guarantee that the topological structure of the source object is preserved after the transformation.
That is because there is no topological constraints to restrict the locations of these Gaussian cen-
troids. Therefore, a regularization term is added to the log-likelihood function to regularize the
smoothness of the deformation function, and the modified likelihood function is given by

L̃(v, σ2) = L(v, σ2)− λ

2
‖v‖2

F , (6.10)

where ‖v‖2
F =

∫
RD
|V (s)|2
G(s)

ds is a norm to quantitatively measure the function smoothness [41].
V (s) is a Fourier transform of v and G(s) presents a symmetric filter that approaches to zero as
s → ∞. The overall Fourier domain norm here basically captures the energy of high frequency
components of V (s). Intuitively, the larger the norm ||v||F , the more ‘oscillating’ v will be, i.e.,
less smoothness. λ ∈ R+ is a weighting coefficient that represents the trade off between the fitting
of the point sets and the smoothness constraints on the transformation.

It can be proved by variational calculus that the maximizer of (6.10) has the form of the radial
basis function [75],

v(z) =
N∑
n=1

wng(z − xn), (6.11)

where g(·) is a kernel function retrieved from the inverse Fourier transform of G(s), and wn is the
unknown kernel weights. In general, g(·) can be any formulation with positive definiteness, and
G(s) behaves like a low-pass filter. For simplicity, a Gaussian kernel is chosen so that g(z−xn) =
exp(− 1

2β2 ||z − xn||2), where β ∈ R+ is a parameter that defines the width of smoothing Gaussian
filter. Larger β corresponds to more rigid transformation, whereas smaller β produces more local
deformation.

Substituting (6.7) and (6.11) to (6.10), we get

L̃ =
−1

2σ2

N∑
n=1

M∑
m=1

p(n|ym)‖ym − xn −
N∑
k=1

wkg(xn − xk)‖2

− D

2

N∑
n=1

M∑
m=1

p(n|ym) log σ2 − λ

2
tr(WTGW), (6.12)

where G ∈ RN×N is a Gramian matrix with element Gij = g(xi−xj) and W = [w1, · · · , wn]T ∈
RN×D is the vectorization of kernel weights in (6.11).

From (6.12), the regularized log-likelihood function is now parameterized by (W, σ2). Similar
to (6.7), the EM algorithm can be performed to estimate the parameters iteratively. In E-step,
the posterior p(n|ym) is calculated by using the previous estimated parameters. In M-step, take
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∂L̃/∂W = 0 and ∂L̃/∂σ2 = 0 to obtain a new estimate of (W, σ2). The closed-form solution for
M-step requires further mathematical derivation, more details can be found in [75, 76].

After L̃ is converged, the point set of the source object X can be aligned toward the target
object by

T (X) = X + GW. (6.13)

Grasp Pose Transferring
As shown in Fig. 6.1d, after finding the mapping from source object X to target object Y, the
demonstrated grasping poses on X will also be transferred to achieve new grasping poses that
are suitable for object Y. The grasping poses can be decomposed to two parts: the position and
the orientation of the robot end-effector. With regard to the position, the non-rigid transformation
T : RD → RD can directly map the center of grasp from grasp example to the target object by

t′i ← T (ti), i = 1, 2, · · · , I. (6.14)

As for the orientation, it can be considered as transferring x, y, and z axes of the original grasp
orientation to the new object space. One natural way to transform a vector v at a point t through
a function is to multiply the vector with the gradient of T (t) [1], i.e. ∇T (t)v. Considering the
properties of the special orthogonal group, the singular value decomposition (SVD) of the matrix
is performed to construct the new orientation of the grasp, which is

R′i ← UiV
T
i , i = 1, 2, · · · , I. (6.15)

where UiΣVT
i = svd(∇T (ti)Ri), Ui,Vi are the orthonormal basis of the matrix, and Σ is a

diagonal matrix that consists of the singular values of the matrix∇T (ti)Ri.
Hence, the new grasping poses on the target can be transferred by

g′i = (t′i,R
′
i)← (T (ti),UVT

i ), i = 1, 2, · · · , I. (6.16)

6.4 Grasping Poses for Various Objects

Dissimilarity Measure
During the training stage, multiple grasping poses for different categories of objects are demon-
strated by human experts. Given a new object at test, it is necessary to first classify which category
the object belongs to, then use the Section III method to transfer the corresponding grasping poses
from the correct category to get a new feasible grasp. Therefore, an object classifier is essential for
pose transferring.

There are some researches that apply surface matching technique to rigidly fit the object tem-
plate to the measured point clouds and calculate the dissimilarity [79, 54]. The source objects
from different categories are exploited as the templates to match the target object. By measuring
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the dissimilarity between each of the source objects X and the target object Y, the most similar
pair will be selected to determine the category of the target object. In our work, since CPD can
be applied to warp the template X to T (X) which is aligned with Y, the residual dissimilarity
between T (X) and Y instead of the dissimilarity between X and Y will be checked to provide a
more robust category classification.

The average minimum distance between the two point sets can be designed as:

d(T (X),Y) =
1

N

N∑
n=1

min
m∈[1,M ]

||T (xn)− ym||, (6.17)

where ||T (xn)−ym|| is the Euclidean distance between point T (xn) and ym. Equation (6.17) is an
error function that is commonly used for point cloud alignment. However, (6.17) is asymmetric.
The dissimilarity between a source object and a target object can be formulated as

D(X′,Y) = d(X′,Y) + d(Y,X′), (6.18)

where X′ = T (X) is the source points warped toward Y by CPD. The function D(·, ·) sums the
two asymmetric dissimilarity measurements together so thatD is symmetric to its input arguments,
i.e. D(X′,Y) = D(Y,X′).

Suppose there areK object categories, the most possible category that the target object belongs
to can be estimated by

k∗ = arg min
k∈[1,K]

D(X′k,Y). (6.19)

Grasping Pose Optimization
Once the object category is determined, we can map the example poses from the corresponding
category to the target object. The grasp quality of the mapped poses will then be evaluated by
analytic methods using the grasp isotropy index [53]. The grasp isotropy index measures the
uniformness of different contact forces to the total wrench. More concretely, it can be written as

Qi =
σminG(g′i, go)

σmaxG(g′i, go)
, (6.20)

where go denotes the pose of the object, G(g′i, go) represents the grasp map determined by the
contacts and the object [73], and σmin and σmax respectively denote the minimum and maximum
singular values of the grasp map. The contacts are inferred by the line search along the grasp axis.
The line search tries to locate the nearest neighbor of the grasp center on the object’s point cloud.
The contacts are represented by the nearest neighbors search in the positive and negative directions
of the grasp axis respectively. The transferred grasp would be treated as a bad pose if the contacts
deviate from grasp axis too much, in which case a negative quality will be allocated.

Apart from the grasp quality, we have to consider the feasibility constraints such as the reacha-
bility and the gripper-object collision. The feasibility constraints are guaranteed by an orientation
search introduced below.
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(a) (b)

Figure 6.2: (a) a grasp example, where the red arrows indicate the direction of gripper closing
(which is also the grasp axis). (b) The side view of the grasp example, and the transparent grippers
are shared the same grasp center and grasp axis but different orientations.

Because the robot grasping pose with a parallel-jaw gripper is composed of a center of grasping
and a grasp axis, it does not necessarily restrict all the rotation axis. i.e. the grasping quality is
not affected by rotating along the grasp axis. A parallel-jaw gripper grasp example is shown in
Fig. 6.2a, where the center of grasping point is the blue dot and the red arrows represent the
operational direction of the jaw which parallels to the grasp axis. By rotating along the grasp axis,
the grasping pose can be modified as the translucent grippers as shown in Fig. 6.2b, where the
modified poses are also valid for grasping. If the initial grasping pose is not feasible, then the
modification can be made by searching the various orientations around the initial one. Suppose the
initial orientation is denoted as R0, the sampled orientation is denoted as Ri, and R is the set of
all the sampled orientations. The orientation search can be formulated as

min
Ri∈R

∆ξ(R0,Ri) + C [fIK(t,Ri) + fcol(t,Ri,Y)] , (6.21)

where ∆ξ(R0,Ri) = 1 − ξ(R0)T ξ(Ri) ∈ [0, 1] is the rotation deviation in quaternion between
R0 and Ri, ξ(·) converts a rotation matrix to a quaternion. We use quaternion rather than Euler
angles to represent rotation difference to avoid singular representation in rotations. fIK(t,R) is
a boolean function that returns 1 when the inverse kinematics of (t,R) is invalid and returns 0
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Figure 6.3: The experimental setup of grasp transferring: a FANUC LR Mate 200iD/7L and dual
Ensenso stereo cameras

otherwise. fcol(t,R,Y) is another boolean function that return 1 when the gripper with the pose
(t,Ri) is collided with Y and returns 0 otherwise. C is a large constant number to penalize
the condition of both the infeasible inverse kinematics and the gripper-object collision. If all the
sampled orientations are invalid, the value of (6.21) will be greater than or equal to C. Then the
orientation search is applied to exploit the other candidates until it finds a feasible grasping pose
to perform the task.

6.5 Experimental Results
In order to verify the proposed grasping approach, a series of experiments were conducted to grasp
various objects on the robot system that introduced in Chapter 2, where the grasping task is as
shown in Fig. 6.3.

The point clouds retrieved from the dual Ensenso stereo cameras were shown in Fig. 6.4a.
By applying the snapshot of the empty workspace as a filter mask, the point clouds of objects
were extracted from the background as shown in Fig. 6.4b. Then running the density-based spatial
clustering application with noise (DBSCAN) algorithm [35], the point clouds can be separated to
several clusters to represent different objects (Fig. 6.4c). A voxel grid filter with step size 5mm
was implemented to downsample the point clouds uniformly.

Six categories of objects, including cups, pliers, wrenches, cable adapters, toy manipulator
models and toy humanoid models, were tested in the experiment (Fig. 6.5). Note that neither CAD
models nor mesh files were used in this work. For each category, a specific source object was
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(a) (b) (c)

Figure 6.4: The point cloud process, (a) The raw data was captured by the dual Ensenso stereo
camera. (b) The objects were extracted from the background by predefined region. (c) The point
cloud was clustered by DBSCAN.

Figure 6.5: Grasp examples: the first row shows one of the grasp pose on each source object, and
the second row provides the snapshots of the actual demonstrated grasping poses.

selected, and the human operator taught multiple preferred grasp poses on it through kinesthetic
teaching. The point cloud of the object and the demonstrated grasp poses were recorded as training
database.

At the test stage, objects with different sizes and configurations across all the categories were
randomly placed in the workspace. For example, multiple types of cups and wrenches were tested
for grasping; the pliers were either open or closed; the cable adapter were twisted to various shapes;
the joints of the two toy manipulator models and the toy humanoid model were rotated to random
angles. All the target objects were shown in Fig. 6.6.

Before running the grasping experiment, an object classification test was performed by mea-
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Figure 6.6: Target objects, which are similar to the source objects but different in size, shape, and
configuration.

Figure 6.7: The confusion matrix of object classification. Each column represents a predicted
class, and each row represents a actual class.

suring the dissimilarity between the target object and all the source objects (see Section IV.A).
The target objects in Fig. 6.6 were randomly placed, with each category of objects collecting 20
different configurations. The parameters of CPD were set as β = 2 and λ = 50.

As shown in Fig. 6.7, the performance of object classification was presented by a confusion
matrix, where each column represented the predicted class and each row represented the actual
class. The diagonal entries of the confusion matrix indicated the correct classification, whereas
the off-diagonal entries were misclassification. The overall classification accuracy was 94.17%
(113/120).
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Table 6.1: Grasping Quality Evaluation

Grasping
Pose No. 1 2 3 4 5

Isotropy
Index 0.0098 -1.000 0.0001 0.0089 -1.000

Table 6.2: Grasping Results

class success/trials
avg. CPD time

(ms)
avg. numbers

of points
manipulator 19/20 1276.4 1563.7

wrench 20/20 111.3 316.7
plier 18/20 706.1 1419.0

humanoid 17/20 369.5 773.3
cup 20/20 350.5 609.3

adapter 19/20 480.2 917.0
average 18.8/20 549.0 933.2

Each category of objects was tested 20 times for grasping with different orientations, shapes,
sizes, and configurations. The parameters of CPD were the same as the ones in object classification.

Take one target object (Fig. 6.1d) as an example. The grasping qualities of the transferred
grasps are provided in Table 6.1. Note that the qualities of the second and fifth transferred poses
are marked as negative based on the isotropy index analysis, since the second pose was mapped
to a region with sparse points, and the contacts for the the fifth grasp was wider than the width of
the gripper. The remaining pose with the highest grasping quality, i.e., the first pose, was selected.
The selected pose was then refined by the orientation search to improve the reachability and avoid
collision. The final grasp performed in the experiment is shown in Fig. 6.8b. The grasp was
regarded as success when the object could be robustly lifted up at least 10 cm without slipping.
The success rate, average computation time and average point numbers for each category of objects
are provided in Table 6.2. The experimental video can be found at [36]. The snapshots of grasping
experiments are shown in Fig. 6.8.

Although the shapes and configurations of target objects were different to the ones of the source
object, they shared the similar structures. Therefore, the grasping poses on the source object could
be transferred to reasonable locations on the target objects. For instance, the grasping poses on the
various toy manipulator models were invariant in terms of topological structures (see the first row
of Fig. 6.8). The grasping poses taught by kinesthetic teaching had the intuition from human such
as the task specific consideration and fairly good grasping quality, and CPD transferred the insight
to the target objects. Therefore, the test can be successful in most of the cases.

The failure case happened when there was a very large distortion to transform the source object
to the target, which degraded the accuracy of the transformation estimated by CPD. As a result, the
grasping pose was not accurately transformed, which caused the grasp failed. Although CPD did
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Figure 6.8: The planned grasping poses and the corresponding snapshots of the grasping results.
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not transfer grasping poses with high accuracy in this situation, it provided a relatively close one.
In the future, we may include an adaptation on the warped grasping pose to avoid this failure.

6.6 Chapter Summary
This Chapter proposed a framework for efficient grasp generation by combining analytic approach
with learning from demonstration. A database containing multiple categories of source objects
with demonstrated grasping poses were constructed by human experts. During the test scenario, a
novel object was firstly classified into one of the example categories by measuring its dissimilarity
to each source object. Then the grasping poses on the most similar source object were transferred
to the novel object by the coherent point drift (CPD) method. All the transferred grasping poses
were evaluated and sorted by the grasp isotropy metric. The selected pose was further refined by
an orientation search mechanism, which improves the robot reachability and avoids collision. A
series of experiments were performed to grasp six categories of objects with various shapes, sizes
and configurations. The average success rate was 18.8 out of 20 grasp trials. The experimental
video is available at [36].
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Part III

Planning
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Chapter 7

Fast Robot Motion Planning by Convex
Feasible Set

7.1 Introduction
Robot motion planning has been a popular topic for several decades. Most researches address
the two key factors: safety and efficiency. Safety indicates the protection for the robot system
from any risk of collision. Several sampling-based methods [59, 49] and optimization-based ap-
proaches [85, 80] have been developed to plan collision-free trajectories for robots. Efficiency
refers the minimization of the cost such as control input and operation time. Some algorithms[28,
87] are proposed to find the time-optimal trajectory on a specified path.

However, this field is still open for research especially from the viewpoint of computation-
ally efficient motion planning because of the increasing demand of massive customization and the
growing application of human-robot interaction (HRI). Massive customization is unlike conven-
tional massive production, where every product looks very similar but slightly different. However,
the whole trajectory is required to be reprogrammed due to these subtle changes, which is nontriv-
ial and time-consuming. On the other hand, HRI requires the robot to frequently re-plan its motion
so that it can safely interact with human in a dynamic environment. Both applications show the
need of a fast robot motion planning, which helps the robot to efficiently generate new motion
trajectories to adapt to varying environment.

In this chapter, the framework of fast robot motion planner (FRMP) is proposed as shown
in Fig.7.1. It has two layers, the trajectory planning layer and the temporal optimization layer,
where each layer deals with safety and efficiency respectively. Trajectory planning is to plan
a collision-free trajectory from a given reference trajectory or several way points, whereas the
temporal optimization is to minimize the cycle time over the planned trajectory. This chapter
utilizes optimization-based algorithms to deal with the problems in both layers in FRMP. The
optimization-based motion planning methods, such as model-predictive control (MPC)[22], often
need to face highly nonlinear dynamics constraints and highly non-convex constraints for obstacle
avoidance, which make it difficult to solve the problem efficiently.
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Figure 7.1: The framework of fast robot motion planner (FRMP)

Convexification is a common technique to transform a non-convex problem into a convex
one. One of the most popular convexification method is the sequential quadratic programming
(SQP)[96, 77], which iteratively solves a quadratic subproblem obtained by quadratic approxima-
tion of the Lagrangian function and linearizion of all constraints. The method has been success-
fully applied to robot motion planning as discussed in [48] and [93]. However, SQP is designed
for general purposes, and it often takes multiple iterations to find the solution.

Considering the specific geometric structure in motion planning problems, the convex feasible
set algorithm (CFS)[66] and the slack convex feasible set algorithm (SCFS)[67] are proposed for
the real time motion planning, a successful application to path planning for autonomous vehicles
is given in [68]. FRMP follows the similar algorithmic structure to plan a collision-free trajectory
for robot manipulators. Moreover, in order to achieve the time optimality in a short computational
time, temporal optimization is formulated into another CFS problem and solved in a fast manner.

The rest of this chapter is organized as follow. Section 7.2 reviews the convex feasible set
algorithm for trajectory planning. Section 7.3 firstly formulates the temporal optimization problem,
then introduces how to apply CFS to this problem. Section 7.4 compares the performance between
CFS and SQP in trajectory planning and provides the experimental results of FRMP conducted on
FANUC LR Mate 200iD/7L. Section 7.5 concludes the chapter.
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(a) (b)

Figure 7.2: Illustration of (a) The geometric structure of the trajectory planning problem (b) The
convex feasible set in the trajectory space

7.2 Trajectory Planning

Problem Formulation
Denote the state of the robot as x ∈ X ⊂ Rn, where X is the feasible configuration state space of
the robot and n is its dimension; u ∈ U ⊂ Rm is the the control input of the robot, where U is the
constraints of u and m is its dimension. In general robot trajectory planning, the input constraint
is often formulated as a box constraint, e.g. −umax ≤ u ≤ umax, where umax is the maximum
magnitude of the control input.

Suppose the robot needs to move from the initial position to the goal position, its discrete-time
trajectory is denoted as x =

[
xT0 , x

T
1 , · · · , xTN

]T ∈ XN+1, where xt ∈ X is the robot state at time
step t and N is the horizon. The sampling time is defined as dt. The reference trajectory and the
reference state at time step t are denoted as xr ∈ XN+1 and xrt ∈ X , respectively. Similarly,
u =

[
uT0 , u

T
1 , · · · , uTN−1

]T ∈ UN = Ω is the control input for the whole trajectory.
The Cartesian space occupied by the robot body at the state xt is denoted as C(xt) ∈ R3,

whereas the area occupied by the obstacles in the environment at time t is denoted as Ot ∈
R3. Suppose the Euclidean distance between pA and pB in the Cartesian space is denoted as
dE(pA, pB) : R3 × R3 → R, then the minimum distance between the robot and the obstacles is
given by d(xt,Ot) := minpR∈C(xt),pO∈Ot dE(pR, pO).

With the notation above, the robot trajectory planning problem can be formulated as a general
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(a) (b)

Figure 7.3: Illustration of (a) the nonlinear equality constraint and (b) the nonlinear inequality
constraints with slack variables

non-convex optimization problem,

min
x,u

J(x,u) = w1‖x− xr‖2
Q + w2‖u‖2

R (7.1a)

s.t. xt ∈ X , ut ∈ U , (7.1b)
xt = f(xt−1, ut−1), (7.1c)
d(xt,Ot) ≥ dmin, ∀t = 1, · · · , N (7.1d)

Equation (7.1a) is designed to be a quadratic cost function for the task performance, where
w1, w2 ∈ R+, ‖x−xr‖2

Q := (x−xr)TQ(x−xr) penalizes the deviation of the planned trajectory
from the reference trajectory, and ‖u‖2

R = uTRu penalizes the control effort over the trajectory.
Note that the matrices Q,R are designed to be positive definite. Equation (7.1b) are the feasible
constraints of the state and the input, e.g. joint limits, singularity points, and saturation of the
control input. Equation (7.1c) is the dynamics constraints. Equation (7.1d) describes the collision
avoidance constraints, where dmin ∈ R+ is the safety distance margin.

The Geometric Structure of Trajectory Planning
Combining the feasible state constraint in 7.1b and the safety constraint 7.1d together, the feasible
trajectory constraint in the trajectory space is given by x ∈ Γ = XN+1 ∩D, where D describes the
safety set in the trajectory space. Moreover, the dynamics constraint in (7.1c) can be rewritten as
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G(x,u) in the trajectory space. Hence, the robot trajectory planning problem can be rewritten as

min
x,u

J(x,u) (7.2a)

s.t. x ∈ Γ, u ∈ Ω, (7.2b)
G(x,u) = 0 (7.2c)

The geometry of this problem in the trajectory space is illustrated in Fig. 7.2a, whereM is the
manifold of the robot dynamics, and the gray patch on the manifold is the infeasible region. Notice
that there are two important features in this problem.
Feature 1 (Symmetry): The cost function given in (7.1a) is designed to be J(x,u) = J1(x)+J2(u),
where the minimum of J2(u) is achieved at u = 0. Moreover, the box constraint of Ω is also
symmetric to u = 0.
Feature 2 (Affine Dynamics): Considering the robot dynamics equation is written as M(x)ẍ +
N(x, ẋ) = u, it can be regarded as an affine dynamics equation, i.e. G(x,u) = F (x)+H(x)u = 0.

Due to these two features, the problem can be relaxed by introducing the slack variable y,

min
x,y

J(x,y) (7.3a)

s.t. x ∈ Γ, y ≤ umax, (7.3b)
F (x) +H(x)y ≥ 0, F (x)−H(x)y ≥ 0 (7.3c)

It is proven in [67] that the optimizer of this relaxed problem is equivalent to that of the original
problem. The intuition behind the relaxation is that: by introducing the slackness, the feasible
region is augmented from the original nonlinear manifoldM in Fig. 7.2a to the volume Γe with
linear structure in Fig. 7.2b. Due to Feature 1, as J2 achieves the minimum at u = 0, the algorithm
will pull the optimal solution down toM, which is on the “bottom” of Γe, so that we may still get
the same optimal solution as in the original problem.

The difference between these two problems is illustrated in Fig. 7.3, where the curve in Fig. 7.3a
represents the nonlinear equality constraint (7.2c) and the shaded area in Fig. 7.3b represents the
nonlinear inequality constraints (7.3c).By introducing the slack variable y, the nonlinear equality
constraint is successfully removed. Then, let z = [xT yT ]T , and the problem becomes minz∈Γe J(z),
which will be solved by the CFS algorithm.

The Convex Feasible Set Algorithm
The idea of the CFS algorithm proposed in [66] is to transform the original non-convex problem
into a sequence of convex subproblems by obtaining convex feasible sets within the non-convex
inequality constraints and linear equality constraints, then iteratively solve the quadratic program-
ming (QP) subproblems until convergence. Note that the CFS algorithm is applied to the problem
under the following assumption: 1) The cost function J is assumed to be smooth, strictly convex.
2) The constraint Γe is assumed as the intersection of N supersets Γi which can be represented by
continuous, semi-convex and piecewise smooth functions φi, e.g. Γe = ∩i{z : φi(z) ≥ 0}. The
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Figure 7.4: The illustration of the convex feasible set algorithm, where the yellow polygons are the
convex feasible set obtained at each iteration and the gray areas are the infeasible set in the space
Γe

Algorithm 2 The Convex Feasible Set Algorithm
z(0) = zr

while ‖z(k+1) − zk‖ > ε do
Find the convex feasible set: F(z(k)) ⊂ Γe

Solve QP: z(k+1) = arg minz∈F(k) J(z)
zr ← z(k+1), k = k + 1

end while

semi-convexity of φi implies that the hessian of φi is lower-bounded. i.e. there exists a positive
semi-definite matrix Hi such that for any z and v, φi(z + v)− 2φi(z) + φi(z− v) ≥ −vTHiv.

Fig. 7.4 shows how CFS computes the solution iteratively, where the space Γe is filled contour
plots of J(z), and the infeasible sets are the gray polygons on the plot. At iteration k, given a
reference point z(k), a convex feasible set F (k) := F (z(k)) ⊂ Γe is computed around z(k), which
are the yellow polygons in Fig. 7.4. Then a new reference point z(k+1) will be obtained by solving
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the following QP problem

z(k+1) = arg min
z∈F(k)

J(z) (7.4)

The iteration will be terminated until the solution converges, i.e. ‖z(k+1) − zk‖ ≤ ε.
Given a reference point zr, the desired convex feasible set F(zr) is obtained by F(zr) :=

∩iFi(z), where Fi(zr) ⊂ Γi. The different cases of Fi(zr) are illustrated in Fig. 7.5, where the
gray shaded areas represent the infeasible set. The mathematical definition of Fi(zr) is stated
below,
Case 1: Γi is convex.
Define Fi = Γi.
Case 2: The complementary of Γi is convex.
In this case, φi can be designed to be convex, then φi(z) ≥ φi(z

r) + ∇φi(zr)(z − zr). At the
point where φi is not differentiable,∇φi is a sub-gradient which should be chosen as such that the
steepest descent of J in the set of Γe is always included in the convex set F . the convex feasible
set Fi with respect to a reference point zr is defined as

Fi(zr) := {z : φi(z
r) +∇φi(zr)(z− zr) ≥ 0} (7.5)

Case 3: neither Γi nor its complementary is convex.
In this case, φi is neither convex nor concave, but we can define a new convex function as φ̃i(z) :=
φi(z) + 1

2
(z − zr)THi(z − zr). Then φ̃i(z) ≥ φ̃i(z

r) + ∇φ̃i(zr)(z − zr) + ∇φi(zr)(z − zr),
where∇φi is identified with the sub-gradient of φ̃i at points that are not differentiable. The convex
feasible set with respect to zr is then defined as

Fi(zr) := {z :φi(z
r) +∇φi(zr)(z− zr)

≥ 1

2
(z− zr)THi(z− zr)} (7.6)

The CFS algorithm is summarized in Algorithm 2, and the detail of its convergence and feasibility
are proven in [66].

7.3 The Temporal Optimization

Concept
In the previous section, a collision-free trajectory with fixed time step is optimized in the feasible
set. However, the operational time of this trajectory has not been optimized yet. In order to
obtain the time optimality, the time step should be considered as a variable as well. For example,
suppose there is a N -step trajectory planning problem as the green line shown in Fig. 7.6. Since
the sampling time dt is fixed, the operational time is given by

∑N
k=1 dt = N · dt. On the other

hand, the same trajectory planning problem with variable time step is shown as the orange line
in Fig. 7.6. Its operational time is determined by the summation of time steps, i.e.

∑N
k=1 τk. In

short, the idea of the temporal optimization is to penalize the time variables over the horizon of the
defined path.
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(a) (b) (c)

Figure 7.5: The geometry illustration of the feasible set F at the reference point zr. (a) Case 1:Γi
is convex. (b) Case 2: The infeasible set is convex. (c) Case 3: Neither Γi nor the infeasible set is
convex.

Problem Formulation
Denote that the time variable at time step t as τk ∈ R+, and τ = [τ1, τ2, · · · , τN ]T ∈ RN

+ is denoted
as the time profiles over the horizon. Considering the smoothness of the trajectory in the defined
path, the acceleration should be limited, i.e. −amax ≤ at ≤ amax, where at, amax ∈ A ⊂ Rm are
denoted as the acceleration and the acceleration bound. Suppose the initial velocity and the final
velocity are given as v0, vN ∈ Rm respectively, then acceleration are computed by

at =


1
τ1

(
x1−x0
τ1
− v0

)
t = 1

1
τt

(
xt+1−xt

τt
− xt−xt−1

τt−1

)
t = 2, · · · , N − 1

1
τN

(
vN − xN−xN−1

τN

)
t = N

(7.7)

Denote the acceleration profile in the horizon by a =
[
aT1 , a

T
2 , · · · , aTN

]T ∈ AN = A. a and τ
define a nonlinear dynamics, i.e. GT (τ ,a) = 0. Then, the temporal optimization problem can be
formulated as

min
τ ,a

JT (τ , a) = w3‖τ‖1 + w4‖a‖2
R (7.8a)

s.t. τ > 0, a ∈ A (7.8b)
GT (τ ,a) = 0 (7.8c)

where w3, w4 ∈ R+, JT is designed as the convex and smooth cost function of the temporal
optimization, where ‖τ‖1 =

∑N
t=1 τt penalizes the operational time, and ‖a‖2

R = aTRa penalizes
the acceleration with a positive definite matrix R. Note that the cost function can be decoupled
as JT (τ ,a) = JT1(τ ) + JT2(a), and the minimum of the second term is achieved at a = 0.
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Figure 7.6: Illustration of the temporal optimization, where the green line is represents original
trajectory, whereas the orange line represents the modified trajectory.

Furthermore, GT is affine with respect to a. For example, for t = 2, · · · , N − 1, (7.7) can be
reformulated as,

τt (xt − xt−1)− τt−1 (xt+1 − xt)︸ ︷︷ ︸
F tT (τt)

+ τ 2
t τt−1︸ ︷︷ ︸
Ht
T (τt)

at = 0 (7.9)

where F t
T (τ) ∈ R → Rm and H t

T (τt) ∈ R → Rm×m. Therefore, this problem has the same
geometric features as (7.2). Hence, (7.8) can be solved by CFS.

In the fast robot motion planning framework, both the trajectory planning and the temporal
optimization can be translated to CFS-solvable problems, which are formulated as several QP
subproblems and solved iteratively. This results in a significant reduction of the computation time,
comparing to the conventional motion planning methods.

7.4 Experiment
In order to verify the proposed algorithm, a series of experimental validations were perform on the
robot system introduced in Chapter 2. The robot reference path was shown in Fig. 7.8a. The red
points were the way points that the robot needed to pass and stop by. The cyan lines represented
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Figure 7.7: The experimental setup, where the robot is a FANUC LR Mate 200iD/7L, the Microsoft
Kinect is used to detect the pink and black obstacles, and the red line represents the reference path.

the desired path, and path segments were sequentially numbered. Table 7.1 showed the perfor-
mance of both algorithms on the planning of a trajectory with 95 steps. Paths 1,2, and 5 were
collision-free, while Paths 3 and 4 were occupied by obstacles. On the collision-free paths, there
were not significant difference between two algorithms. On the blocked paths, the CFS algorithm
exhibited much less computation time and iterations than SQP to converge to local optima. This
was because SQP was developed for general purposes, where it was more conservative the step
size selection. On the other hand, CFS considered the specific geometric structure of the trajectory
planning problem, and the computational efficiency was significantly improved. The results of the
simulation was shown in Fig. 7.8b, where the red line and the yellow line represented the SQP
and CFS trajectory respectively. Although these algorithms converged to different solution, both
of them achieved the collision avoidance motion.

We used the same path to evaluate the performance of FRMP, which was the CFS trajectory
planning with the temporal optimization. The computation time of FRMP was shown in Table 7.2,
where the average computation per path of the temporal optimization was 31 ms. Hence, the tem-
poral optimization would not become a burden in FRMP; moreover, it could significantly reduce
the operational time, where the improvement by FRMP could be found in Table 7.3 and Fig. 7.9.
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Table 7.1: The comparison of SQP and CFS

SQP CFS
Total Horizon: 95

unit: sec Computation Iterations Computation Iterations
Path 1 0.0043 0 0.0033 0
Path 2 0.0031 0 0.0033 0
Path 3 46.8098 94 0.8938 2
Path 4 48.8767 96 0.8397 5
Path 5 0.0032 0 0.0031 0
Total 95.725 190 1.7434 7

Table 7.2: The computation time of FRMP

Fast Robot Motion Planner (FRMP)
unit: sec Path Planning Temporal Optimization

Path 1 0.0033 0.0279
Path 2 0.0033 0.0272
Path 3 0.8938 0.0272
Path 4 0.8397 0.0485
Path 5 0.0031 0.0252
Total 1.7434 0.1561

Table 7.3: The comparision of CFS and FRMP

unit: sec CFS FRMP
Operational Time 15.00 6.63

Computation Time 1.74 1.90

7.5 Chapter Summary
This chapter proposed the fast robot motion planner (FRMP) by formulating trajectory planning
and temporal optimization as two optimization problems and solving them by the convex feasible
set (CFS) algorithm.

The CFS algorithm is developed to deal with a problem with specific geometric structure, and
it outperforms the benchmark optimization algorithm, sequential quadratic programming (SQP)
in the trajectory planning problem, where both the computation time and iteration numbers are
significantly reduced.

In order to achieve the time optimality on a defined path, the time variables are introduced to the
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temporal optimization problem, which can be solved by CFS. It was shown by the experimental that
the average computation time of the temporal optimization only takes 31 ms, and the operational
time is reduced from 15 second to 6.6 second.

The experiment demonstrated that FRMP can plan a time-optimal trajectory on a 95th-step
horizon within 2 second. In future, a more complicated and practical scenario will be designed to
evaluate the performance of FRMP.
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(a)

(b)

Figure 7.8: The geometry illustration. (a) The geometric structure of the path planning problem
(b) The convex feasible set in the trajectory space
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Figure 7.9: The trajectory reference of the CFS and FRMP
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(a)

(b)

Figure 7.10: The sequential of the figures shows the robot motion in the experiment, where the
executive motion of the robot planned by FRMP is shown as the orange line (a) The robot avoids
the pink obstacle. (b) The robot avoids the black obstacle.



96

Chapter 8

Conclusions

8.1 Summary
Inspired by the pattern of human intelligence development, this dissertation studied to improve
robot intelligence from three parts: Programing, Learning, and Planning. The programming part
investigated various interfaces that retrieve the information/knowledge from humans. The learning
part studied the methodologies to generalize the learned skills to similar tasks. The planning
part discussed the algorithm to plan an optimal set of control actions to achieve the goal given
constraints. The contributions of each chapter are as follows.

Chapter 3 discussed the alternative programming methodology - Programming by Demonstra-
tion (PbD). Three case studies are given to investigate three major trends of robot programming
interfaces: robot imitation from human motion, kinesthetic teaching, and immersive teleopeation.
Each case study introduced the framework and the implementation of each programming mecha-
nisms.

Chapter 4 proposed a novel collision avoidance algorithm for kinesthetic teaching. The hu-
man guidance command and collision avoidance were formulated into an constrained least square
problem. The proposed collision algorithm not only preserved the safety from the conventional col-
lision avoidance methods, but also improved the flexibility and comfort in the kinesthetic teaching.
Chapter 5 introduced a novel framework of the remote lead through teaching (RLTT) to simplify
the robot programming problem in the tasks that required both motion and force. The human
demonstration device was developed to align both human demonstration and robot reproduction
phase in the same tool frame. In addition, this chapter further introduced the skill learning pro-
cess from synchronizing demonstration data to constructing the skill model by Gaussian mixture
regression. The experimental verifications were performed in two classical industrial applications.
The robot achieved 96% success rate in the H7/h7 insertion task and successfully imitate human
behavior in the grinding task.

Chapter 6 proposed a framework for efficient grasp generation by combining analytic approach
with learning from demonstration. A database containing multiple categories of source objects
with demonstrated grasping poses were constructed by human experts. The grasping poses to the
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new target object were transferred from the most similar grasp example by the coherent point drift
(CPD) method. All the transferred grasping poses were evaluated and sorted by the grasp isotropy
metric. A series of experiments were performed to grasp objects with various shapes, sizes and
configurations. The average success rate was 18.8 out of 20 grasp trials.

Chapter 7 proposed the fast robot motion planner (FRMP) by formulating trajectory planning
and temporal optimization as two optimization problems and solving them by the convex feasi-
ble set (CFS) algorithm. CFS outperformed the benchmark nonconvex optimization algorithm,
sequential quadratic programming (SQP) in the trajectory planning problem. The experiment
demonstrated that FRMP can plan a time-optimal trajectory on a 95th-step horizon within 2 second.

8.2 Future Topics
Several open issues were raised during this dissertation study. This section discusses several direc-
tions for future research topics.

Programming
Chapter 3 introduced three different kinds of programming interface for demonstration with their
frameworks and preliminary implementations. The performance of those programming interfaces
can be further improved from the perception part. For instance, the noisy signal retrieved from
the Kinect sensor might deteriorate the estimation of human motion. Hence, the computer vision
research in human pose recovery would be very useful in the articulated body motion tracking.

The online collision avoidance algorithm proposed in Chapter 4 was applied to the scenar-
ios with predefined environments. One possible direction to improve the ability of the proposed
method would be integrating distance sensors such as infrared sensors or acoustic sensors to help
robot deal with an unknown or dynamic environment.

Learning
In Chapter 5, robots had learned the peg-hole insertion and grinding task from human demonstra-
tion and successfully performed these learned tasks. However, a question then is raised: “Could
robots further improve and outperform than the human teacher?” One possible answer may be
found in reinforcement learning. By formulating the task as a reward function, the robot could
explore and exploit the state space to further improve its control policy.

Chapter 6 applied the coherent point drift (CPD) algorithm to transfer grasping pose from grasp
example to similar objects. There is one strong assumption that the point clouds of different objects
could be perfectly separated. In practice, however, this assumption could not hold in bin-picking
tasks or cluttered scenarios.Thus, one improvement direction would be pushing the registration
algorithm from the object level to the feature level. Instead of mapping the grasping pose from
similar objects, transferring the grasping pose based on the similar features would be more robust.
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Planning
Chapter 7 discussed the planning problem in motion level, where it focused on the path collision
avoidance and the operational time reduction. The intelligence of robots may be further enhanced
to perform higher level planning. For instance, a hierarchical task planning would enable robots
to manage complex tasks. Moreover, environment cognition would help robots understand the
current status and needs and further improve the ability of robot planning.
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