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ABSTRACT OF THE DISSERTATION 
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Professor Thomas M. Vondriska, Chair 

 

Heart failure is a syndrome resulting from multiple genetic and 

environmental factors. In response to neural/hormonal changes or hemodynamic 

stress, the heart can generate extra force through hypertrophic growth. Chronic 

hypertrophy, however, is deleterious because it leads to irreversible decrease of 

cardiac contractility. This process requires many molecular and cellular 

abnormalities in the cells of the failing heart. Cardiac hypertrophy and heart failure 

arise as the result of multiple biological processes acting within the context of 

multicomponent, interrelated cellular networks. The past decade has seen an 



iii 
 

explosion of research using high-throughput techniques, identifying hundreds of 

genes involved in disease pathogenesis. These studies raise the question of how 

global, coordinated changes in transcription are precisely regulated within the 

cardiac nucleus. We reason that altered chromatin structure and DNA methylation 

endow distinct gene expression patterns during the development of disease.  

This dissertation details several systems biology approaches aimed at 

defining cardiac epigenomic variations in the hypertrophied and failing heart. 

Chapter 1 reports the genome-wide nucleosome positioning in normal and pressure 

overload-induced hypertrophic cardiac myocytes. Because nucleosomes are the 

basic units of chromatin, their localization fundamentally affects the actions many 

types of regulatory machinery. In Chapter 2, we examined the non-histone 

chromatin structural protein High Mobility Group Protein B2, which we had 

previously determined to be a regulator of hypertrophic growth. We measured its 

genome-wide binding pattern in both normal and -adrenergic receptor 

agonist-induced hypertrophic cardiac myocytes. Our findings demonstrate that 

HMGB2 is reorganized away from coding regions in the genome of the 

hypertrophic myocyte, an action we interpret as globally coordinated relaxation of 

specific loci. In Chapter 3, we detail a comprehensive analysis of the DNA 

methylome in both normal and -adrenergic agonist-induced failing heart. We used 

two different mouse strains with different susceptibility to heart failure and 
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identified several strain-specific DNA methylation modules. The results presented 

here advance our understanding of the cardiac epigenome and provided essential 

insights into global mechanisms of chromatin structural remodeling.  
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PREFACE 

Part I. Quantitative Analysis of the Chromatin Proteome in Disease Reveals 

Remodeling Principles and Identifies High Mobility Group Protein B2 as a 

Regulator of Hypertrophic Growth. 

Sarah Franklin, Haodong Chen, Scherise Mitchell-Jordan, Shuxun Ren, Yibin Wang, Thomas M. 

Vondriska 

 [This research was originally published in Molecular and Cellular Proteomics by 

Franklin, S. et al. Quantitative analysis of the chromatin proteome in disease reveals remodeling 

principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. 

Molecular & cellular proteomics : MCP 11, M111.014258 (2012). © the American Society for 

Biochemistry and Molecular Biology] 

 

Heart is the organ that supplies the main pumping force to propel blood to the whole 

body. Cardiac hypertrophy, which is defined as the increase of heart chamber wall mass and 

individual myocyte size, can be either physiological or pathological. Under the condition of 

exercise or pregnancy, heart function can be increased by physiological hypertrophy. This 

process is reversible and does not cause cardiac dysfunction. However, under pathological 

conditions, e.g. hypertension or myocardial infarction, heart will undergo a change into 

pathological hypertrophy, and finally develop into heart failure with thin chamber wall, enlarged 

chamber size and poor heart function (measured as decreased ejection fraction). It has been 

known that the gene expression profile of failing heart is similar with fetal heart, compared with 

adult heart. This process is called fetal gene reprogramming, namely gene expression is 
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reprogrammed into fetal profile. Two outcomes of fetal gene reprogramming can affect 

pathophysiological function of myocardium: a) glycolytic metabolic pathway re-construction and 

b) contractile apparatus re-organization. It was found that the source of energy generation in 

failure heart switches from fatty acid -oxidation to glycolysis, which is mainly used by newborn 

heart. There is also a switch of cardiac myosin heavy chain (MHC), from  isoform to  isoform. 

Actually, mRNA microarray assay has shown that fetal gene reprogramming involves thousands 

of genes. Many cardiac specific transcription factors are also involved, reflecting the complexity 

of this pathological process. 

Transcriptional regulation must be preceded by non-random structural reorganization of 

the genome, such that stimulus-specific transcriptional regulators are recruited to the correct 

genomic regions and excluded from the wrong ones. During mitosis, eukaryotic chromosomes 

adapt an ordered and stunningly reproducible three-dimensional structure. During interphase, 

however, and in cells that do not divide (such as adult cardiomyocytes and neurons) the structure 

of the genome is much less clear. Chromosome territories have been described
1
, which are 

thought to facilitate co-localization of similarly regulated genes within the nucleus, and recent 

advances in chromosomal conformation capture techniques have provided exciting new insights 

into the global structure of the interphase genome, suggesting the structure resembles a fractal 

globule
2
. However, changes in this structure following stimulation, and the specific proteins 

responsible for dynamics of genomic structure, are less well understood. 

From a structural standpoint, DNA (~146-147 base pairs) is packaged around the 

nucleosome octamer
3
, itself composed of two copies each of four core histones (H2A, H2B, H3 

and H4). Previous work has described a 30nm fiber-level feature
4
 and it has been shown that 

chromatin structural molecules such as histone H1
5–7

 and high mobility group proteins
8,9
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contribute to higher order structure, and that core nucleosome histone variants
10

 may alter DNA 

packaging. The ability of histone-modifying enzymes to alter gene expression, presumably by 

altering chromatin compaction, has been well studied in various cell types and disease states
11–13

. 

These chromatin remodelers, however, are insufficient to explain global coordination of gene 

expression that occurs simultaneously and across distinct loci in the genome. Toward this end, 

several recent investigations have employed proteomic/genomic approaches to characterize 

large-scale changes in chromatin structure in eukaryotes
14–18

. Global principles for how the entire 

genome is structurally remodeled for gene expression changes are lacking. We reasoned that 

modulation of the abundance and stoichiometry of the chromatin backbone itself could be a 

mechanism by which the cell rapidly alters gene expression across the genome in a coordinated 

manner. To test this hypothesis and address the general paucity of knowledge about chromatin-

bound proteins in the heart, we have carried out a fundamentally new type of analysis of 

chromatin remodeling -- one that quantifies the constituents of the genome’s protein backbone at 

different stages of global transcriptional activation. Our mass spectrometry data reveal the 

itineraries of chromatin modifiers and chromatin structural proteins during the development of 

disease and provide a novel comprehensive blueprint for chromatin-associated proteins in the 

heart. 

Experimental Procedures 

Mouse model of cardiac hypertrophy and failure 

Adult male balb/c mice aged 8-12 weeks (Charles River Laboratories) were used for this 

study. All protocols involving animals conform to the NIH Guide for the Care and Use of 

Laboratory Animals and were approved by the UCLA Animal Research Committee. The murine 
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model of transverse aortic banding‐induced cardiac hypertrophy was performed as described 

previously
19–21

. Animals were anesthetized with 1.5-2.0% isoflurane, intubated, and ventilated 

with 1.5-2.0% isoflurane in 95% O2 / 5% CO2. After shaving hair from the animal, the chest was 

entered from the left side via the third intercostal space, the aorta identified at the T8 region and 

a venous vascular clamp (Fine Science Tools), outfitted with a band of silastic tubing at the distal 

edge of one of the clamps, placed around the vessel. The internal diameter of the resulting 

modified clamp was that of a 27 ½ gauge needle, a common diameter for aortic banding in the 

mouse; the clamp is of a size that does not impede pulmonary function. Once the aorta was 

clamped, distal blood flow was measured and quantified using a flow probe (Transonic 

Instruments). The chest was then closed using 6‐0 proline suture, during which negative pressure 

in the thorax was reestablished by removing air with a PE‐50 chest tube attached to a syringe. 

SHAM operated mice underwent the same procedure without placement of aortic clamp. 

Echocardiography 

ECHO was used to determine cardiac parameters in live mice as described
20,21

, including 

the following indices: left ventricular size (end-diastolic and end‐systolic dimension), wall 

thickness (intra‐ventricular septum and posterior wall thickness), ventricular mass, ventricular 

function (ejection fraction), and blood flow. ECHO was performed on mice sedated with 

isoflurane vaporized (2.5% for induction, 1.0% for maintenance) in oxygen. The animal’s chest 

was shaved and positioned in the left lateral decubitus position for ultrasonic imaging with Vevo 

770 high‐resolution ECHO system equipped with a 35 MHz transducer. The short axis view (M‐

mode) and the long axis view (Doppler) measurements were performed and data stored for off‐

line analysis. LV chamber dimensions, VST, PWT, and LV mass index (the ratio of LV mass to 
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body weight) were obtained from M‐mode images; LV systolic function is also assessed from 

these measurements by calculating EF. All mice underwent ECHO analyses once before TAC or 

SHAM surgery, once a day after and then once every 5 days for the duration of the study. 

Animals were considered “hypertrophic” when their LV mass was greater than the mean of the 

control animal with no depression of LV function as measured by EF; animals were considered 

in “failure” when the EF was significantly decreased below the mean of the control animal. 

These phenotypes corresponded to roughly 2 and 4 weeks after TAC surgery in most animals. 

Data from mice appear in Figures 1-3 and Supplemental Figures 1-4 and 6. 

Nuclear Isolation and Fractionation 

All buffers used for cell isolation or fractionation in this study contained the following 

protease, phosphatase and deacetylase inhibitors, respectively: 0.1mM 

phenylmethanesulfonylflouride, protease inhibitor cocktail pellet (Roche), 0.2mM sodium 

orthovanadate, 0.1 mM sodium flouride and 10mM sodium butyrate. 

Cardiac nuclei were isolated as previously described
22

. Briefly, hearts were excised, 

washed in PBS, minced with scissors and homogenized in a glass dounce in buffer containing 

10mM Tris (pH 7.4), 250 mM sucrose, 1mM EDTA, 0.15% NP-40. After homogenization the 

suspension was passed through a 100um nylon strainer (BD Falcon, #352360) to remove any 

large insoluble material. Subcellular fractionation was carried out by centrifuging at 1,000g to 

pellet crude nuclear fraction. The crude nuclear pellet was resuspended in homogenization 

buffer, layered on a 2M sucrose pad and centrifuged at 7,500g for 5 min to isolate the enriched 

nuclear fraction. All steps were carried out at 4C. The initial relative purity of the nuclei fraction 

was evaluated via western blotting for compartment specific proteins and compared to 
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unfractionated cells from the heart (whole heart lysate; WHL) using antibodies to histone H3 and 

GAPDH. Whole heart lysate (WHL) was made by homogenizing the entire heart in 20mM Tris 

(pH 7.4), 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% triton X-100, 2.5mM sodium 

pyrophosphate, 1mM beta-glycerophosphate, followed by sonication and centrifugation at 

13,000 rpm to remove insoluble material. We consistently achieve ≥80% enrichment of nuclei 

with this method as observed by electron microscopy and western blotting analysis
22

. 

Purification of cardiac chromatin and nucleoplasm and acid extraction of nuclear proteins 

Following isolation of nuclei, further fractionation was carried out to separate 

nucleoplasm from chromatin as previously described
22

. Briefly, isolated nuclei were resuspended 

in buffer (20mM HEPES (pH 7.6), 7.5 mM MgCl2, 30 mM NaCl, 1M Urea, 1% NP-40) to 

solubilize the nuclear membrane and extract soluble proteins in the nucleoplasm. After 

solubilization samples were centrifuged at 13,000g for 10 min to pellet the insoluble chromatin 

and remove the nucleoplasm fraction. The chromatin pellet was washed with PBS, solubilized in 

50mM Tris (pH 8), 10 mM EDTA, 1% SDS, sonicated to shear the DNA and centrifuged at 

13,000g to extract proteins (referred to as chromatin fraction). For acid extraction, isolated 

chromatin was treated with 400L of 0.4N H2SO4 and placed on a rotator at 4°C overnight. 

Samples were centrifuged at 16,000g to pellet acid-insoluble material. The supernatant was 

treated with 132L of TCA in a drop wise manner, inverting the tube between drops, and placed 

on ice for 30 min to precipitate the acid extracted proteins. Precipitated proteins were collected 

by centrifuging at 16,000g for 15 min (4°C). The pellet was washed twice with ice-cold acetone 

without disturbing the pellet and allowed to air dry. The pellet was resuspended in buffer 
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containing 1% SDS, 50mM Tris (pH 8) and 10mM EDTA. Proteins extracted in this manner 

were examined in Figures 1-3 and Supplemental Figures 2-4 and 6. 

Isolated Myocytes 

Neonatal rat ventricular myocytes (NRVMs; used in Figure 4 and for the microarray 

studies in Figure 5 and Supplemental Figure 5) were obtained by enzymatic dissociation from 1 

day old litters and plated in DMEM media (Invitrogen, #11965) containing 1% penicillin, 1% 

streptomycin, 1% insulin-transferrin-sodium selenite supplement and 10% fetal bovine serum for 

the first 24 hr after which the cells are cultured in serum- and antibiotic-free media. NRVMs 

were treated with 50nM siRNA targeted to HMGB1 (25nM each SI03034696 and SI03111626; 

Qiagen) or HMGB2 (25nM each SI02877252 and SI02877266; Qiagen) for 72 hrs. Control cells 

were treated with 50nM scrambled siRNA (Cat.# 1027280; Qiagen). Transfections were 

performed with Lipofectamine RNAiMax Transfection Reagent (Invitrogen). For cell size 

analysis NRVMs were fixed with 4% paraformaldehyde, incubated with rhodamine-conjugated 

phalloidin (Invitrogen) to stain the actin filaments and imaged on a Nikon Eclipse TE2000-U. 

The average size of treated and untreated NRVMs was quantified by measuring the area of actin 

staining in Photoshop (Adobe). For each condition at least 50 cells were quantified in three 

separate experiments. To induce hypertrophy in isolated NRVMs, cells were treated with one of 

the following three hypertrophic agonists: isoproterenol (1µM), phenylephrine (10µM) or 

endothelin-1(1nM) for 48 hours.  

Electrophoresis and western blotting 

Proteins were separated by standard SDS-PAGE using Laemmli buffer. Gels (12%) were 

stained with Oriole (BioRad). For western blotting, proteins were transferred to nitrocellulose, 
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membranes blocked with milk and protein signals detected by enzyme linked 

chemiluminescence (GE Biosciences). Ponceau staining of membranes was used to confirm 

transfer and protein loading. Antibodies used in this study were as follows, including sources: 

Histone H3 (Abcam, ab1791, 1:10,000 dilution); Histone H4 (Abcam, ab10158, 1:1000 dilution); 

SNRP70 (Abcam, ab51266, 1:400 dilution); HMGB1 (Abcam, ab18256, 1:1000 dilution); 

HMGB2 (Abcam, ab67282, 1:1000 dilution); Gapdh (Santa Cruz, sc-20357, 1:1000 dilution); 

Histone H3-trimethylated-K4 (Abcam, ab8898, 1:500 dilution); Histone H3-mono/di/tri-

methylated-K4 (Millipore, 04-791, 1:1000 dilution); Histone H1.0 (Abcam, ab11079, 1:1000 

dilution); Histone H3-trimethylated-K4 (Abcam, ab71998, 1:500 dilution); Ruvb-like 1 

(Proteintech, 10210-2-AP, 1:1000 dilution). Nuclear lysate control (Nuc) was made by 

solubilizing intact nuclei in buffer containing 1% SDS, 50mM Tris (pH 8) and 10mM EDTA 

followed by centrifugation at 13,000 rpm for 15 min to remove insoluble material. Hela lysate 

control (He) was made by solubilizing Hela cells, isolated by scraping cells from culture dishes, 

in 20mM Tris (pH 7.4), 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% triton X-100, 2.5mM 

sodium pyrophosphate, 1mM beta-glycerophosphate. The homogenate was then sonicated three 

times for 5 sec each followed by centrifugation at 13,000rpm to remove insoluble material.  

Enzyme digestion 

Proteins isolated from acid extraction of chromatin were separated by SDS-PAGE. Each 

gel lane was cut into 25 slices (~2mm each, labeled A through Y in Supplemental Figure 2) for 

protein identification by mass spec. Gel plugs were dehydrated in acetonitrile and dried in a 

speedvac. Samples were reduced and alkylated with 10 mM dithiotreitol and 10mM TCEP 

solution in 50 mM NH4HCO3 (30 min at 56°C) and 100 mM iodoacetamide (45 min in dark), 
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respectively. Gels were washed with 50 mM NH4HCO3, dehydrated with acetonitrile, and dried 

down in a speedvac. Gel pieces were then swollen in digestion buffer containing 50mM 

NH4HCO3, and 20.0 ng/L of trypsin (37°C, overnight). Peptides were extracted with 0.1%TFA 

in 50% acetonitrile solution, dried down and resuspended in 0.1% formic acid. For each 

condition (basal, hypertrophy and failure) three biological (de novo preparation of samples from 

different animals) and two technical (multiple LC/MS/MS experiments on the same preparation) 

replicates were analyzed by mass spectrometry. 

Mass spectrometry analyses and database searching via SEQUEST. 

Extracted peptides were analyzed by nano-flow LC/MS/MS on a Thermo Orbitrap with 

dedicated Eksigent nanopump using a reversed phase column (75 m i.d. 10 cm, BioBasic C18 

5m particle size, New Objective) and a flow rate of 200 nL/min. For peptide separation a linear 

gradient was utilized from 95% Buffer A (0.1% formic acid, 2% acetonitrile) and 5% Buffer B 

(0.1% formic acid, 20% water in acetonitrile) to 50% Buffer A and 50% Buffer B over 60 

minutes. Spectra were acquired in data-dependent mode with dynamic exclusion where the 

instrument selects the top six most abundant ions in the parent spectra for fragmentation. Data 

were searched against the mouse IPI database (version 3.76; 57, 605 entries) using the 

SEQUEST algorithm
23

 in the BioWorks software program version 3.3.1 SP1. False discovery 

rate, which was calculated on several independent datasets within this study by reverse database 

searching, ranged from 1.4-1.7%. All spectra used for identification had deltaCN>0.1, consensus 

score 20 and met the following Xcorr criteria: >3 (+2), >4 (+3), and >5 (+4). Peptides with +1 

charge were not used for identification of proteins; however, some +1 peptides were included in 

quantitative measurements (following manual inspection) only in the case of histone variants 
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(see Figure 2). Searches required full tryptic cleavage, 3 missed cleavages and were performed 

with the differential modifications of carbamidomethylation on cysteine and methionine 

oxidation. Mass tolerance was 2 Da for precursor and 1 Da for product ions. All proteins were 

identified on the basis of two or more unique peptides. 

Bioinformatics and protein annotation. 

The molecular weight, isoelectric point (pI) and the GRAVY (Grand Average of 

Hydropathy) score were calculated by ProtParam tool provided in the SeqUtils package of 

Biopython (v1.50; Supplemental Figure 3F). Protein expression plots were generated as 

described
24

. Redundancy in proteins was eliminated at the primary sequence level by manual 

inspection using CLUSTAL to compare the sequences in UniProt. Genome analysis (i.e. for 

determining from where in the genome mRNAs for the detected proteins were transcribed) was 

performed from the NCBI genome browser following conversion of IPI to ref-seq accession 

numbers (Supplemental Figures 3E and 4D). GO annotation enrichment analysis was performed 

using the DAVID Bioinformatics Resource (v6.7) developed by the NIAID (NIH; Figures 3B 

and 5A and Supplemental Figure 4A)
25

. The Interpro and KEGG analysis functions of DAVID 

were utilized to determine enrichment in protein domains and functional pathways 

(Supplemental Figures 4B, 4C, 5A and 5B). 

Mass spectrometry raw data were searched two ways in this study: by “conventional” 

SEQUEST searching (which were used to generate Figure 2) and via a quantitative analysis 

using the Rosetta Elucidator software (from Microsoft, which led to Figures 1 and 3 and 

Supplemental Figures 3A-D and 4D)
26,27

. The reason for this approach was that a main 

component of chromatin—histones—are small molecular weight proteins that yield few peptides 
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following enzymatic digestion and which often differ by only a few amino acids. To accurately 

quantify them, we sought to confirm all peptide identifications manually, which is more easily 

done after conventional SEQUEST search. For Elucidator analyses, peptides across the entire 

chromatographic run for each sample were aligned between mass spec runs and between 

conditions (basal, hypertrophy, failure). The peak intensity for each eluting peptide was 

calculated as area under the curve. To determine protein abundance, intensity data for all 

peptides mapping to a protein were combined and data from 3 biological and 2 technical 

replicates was averaged for each of the three conditions. Proteins whose intensity changed ≥ 2 

fold between conditions with a p-value ≤ 0.01 were considered to be statistically significant. To 

identify modules of proteins with similar expression behavior (Figure 3), intensity values were 

converted to z-scores. Proteins were then clustered using a self-organizing map with x and y 

nodes of of 3,3 and cosine correlation. Intensity data was coupled to peptide identification which 

was determined using the SEQUEST algorithm using the same criteria described above. Mass 

tolerance was 0.5 Da for precursor and 1 Da for product ions and all identifications were based 

on ≥2 peptides. 

Quantitative Real Time PCR Analysis 

Total RNA was isolated from the left ventricle of the heart (Supplemental Figure 1C) or 

from cultured NRVMs (Figure 4C) using TRIzol (Invitrogen) according to the manufacturer’s 

protocol. Total RNA was transcribed using SuperScript First‐Strand Synthesis system for RT‐

PCR (Invitrogen) according to the manufacturer’s protocol to produce cDNA. cDNA transcripts 

were amplified on the iCycler iQ real-time PCR detection system
 
with iQ SYBR Green 

Supermix (Bio-Rad, Hercules, Calif). Expression levels were analyzed using the iQ5 Optical 
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Systems software v2.0 and normalized against GAPDH by subtracting the mean cycle number 

for each experimental group from the mean cycle number for GAPDH from the same group. The 

normalized means were then applied to the formula ((2
(cycle#)

)
-1

) to calculate fold change. Primers 

used in this study are as follows: GAPDH F-5′-CCCACTAACATCAAATGGGG-3′ R-5′-

CCTTCCACA ATGCCAAAGTT-3′; HMGB2 F-5’-AAGCCGCGGGGCAAGATGTC-3’ R-5’-

TGCCCTTGGCACGGTAT GCA-3’; ANF F-5’-CTGATGGATTTCAAGAACCTGCT-3’ R-5’-

CTCTGGGCTCCAATCCTGTC-3’; SERCA2a F5’-CCTTCTACCAGCTGAGTCATTT-3’ 

R5’-CAGATGGAGCCCACGACCCA-3’; α-MHC F-5’-GAACAGCTGGGAGAAGGGGG-3’ 

R-5’-GCCTCTGAGGCTATTCTATTGG-3’; and β-MHC F-5’-

CTCAACTGGGAAGAGCATCCA-3’ R-5’-CCTTCAGCAAACTCTGGAGGC-3’. 

Microarrays 

Total RNA was isolated from cultured NRVMs after treatment with HMGB2 or 

scrambled siRNA using TRIzol (Invitrogen) according to the manufacturer’s protocol (Figure 4D 

and 5A). RNA was analyzed for genome-wide expression analysis using an Illumina rat bead 

chip (RatRef-12_V1_0_R2_11222119_A). The RatRef beadchip contains 22,523 probes which 

map to 21,791 genes in the rat genome. 200 ng of each sample was processed using the Illumina 

specific version of the Ambion TotalPrep 96 kit (Cat # 4393543). 750 ng of biotinylated cRNA 

product was added to each array hybridized according to standard Illumina protocols. Washing 

and signal development were performed with the aid of a SciGene model 650c microarray 

processor (LittleDipper). Chips were scanned on an Illumina iScan confocal scanner under 

standard parameters. Samples were analyzed in triplicate for each treatment group and data for 

each gene was averaged between the three samples. Data was subjected to background 
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subtraction and quantile normalization. For data analyses and figure generation, the coordinates 

of each probe on the microarray was extracted from the annotation file provided by Illumina. The 

Rat genome (Baylor 3.4/rn4) was used to generate Figure 4D, with each chromosome divided 

into bins of 1 megabase. Only transcripts meeting a p value cutoff of 0.001 were examined and 

are reported. 

 

Results 

Mass spectrometric measurements of the chromatin proteome 

To investigate changes in chromatin-bound proteins commensurate with global changes 

in gene expression, adult mice were subjected to cardiac pressure overload by transverse aortic 

constriction
19

, a model that recapitulates the human disease of heart failure (Supplemental Figure 

1), which affects millions of people worldwide
28

. This disease is associated with a global shift in 

gene expression (Supplemental Figure 1C)
29

 which drive a progressive increase in cardiac mass 

at the cell and organ level accompanied by deterioration of cardiac function (Supplemental 

Figure 1B). Hearts from mice in stages of cardiac hypertrophy, failure or basal state were 

excised. Chromatin was fractionated (Figure 1A and Supplemental Figure 2) from mouse cardiac 

nuclei and DNA-bound proteins were acid extracted. As with any fractionation study of a 

complex tissue like the heart, complete purification of individual fractions is not possible when 

using a non-biased technique like mass spectrometry for detection. Our previous work 

demonstrates that this method significantly enriches for histone and other chromatin-bound 

proteins
22

, although additional studies will be required to determine what role each individual 

protein has in the chromatin fraction (i.e. to discriminate between true residents and 
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contaminants). Proteins were separated by SDS-PAGE, in-gel trypsin digested, analyzed by 

quantitative mass spectrometry on an Orbi-trap instrument, and peptide spectra examined by a 

combination of traditional database searching (SEQUEST), label-free quantitative analysis using 

the Elucidator software package
26,27

, and manual inspection (please see Experimental Procedures 

and Supplemental Figure 3).  

This study includes the analysis of 3 biological replicates (i.e. 3 different animals), two 

technical replicates each, in the basal, hypertrophy (moderate disease) and failing heart (severe 

disease) conditions, resulting in the acquisition of ~5.14 million spectra from 450 LC/MS/MS 

runs. Aligning the multiple features of retention time, parent ion intensity and MS/MS-confirmed 

sequence, this quantitative analysis allows for trends of protein abundance to be extracted from 

highly reproducible LC/MS/MS runs. Using this approach, combined with manual validation, we 

measured the association of >300 proteins with chromatin during distinct stages of heart failure 

in the mouse (note: only proteins detected by mass spectrometry are reported in this study). The 

examples of histone 1.0 and histone 1.4 represent a protein with altered abundance during the 

development of disease contrasted with one whose abundance is stable, respectively (Figure 1B). 

Progression of disease was associated with global shifts in the abundance of chromatin-

associated proteins (Figure 1, C and D). Principle component analysis of all peptide intensities 

from all 18 datasets after ANOVA indicates good separation between the three experimental 

groups (and good agreement within them) (Figure 1E), supports the quantitative analysis of 

protein abundance and demonstrates strong reproducibility of the experimental workflow. Genes 

for proteins undergoing altered expression localize without bias throughout the genome 

(Supplemental Figure 3), suggesting genome-wide rearrangements are a prerequisite for disease. 

Furthermore, annotation of these proteins reveals extensive reprogramming at the level of 
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chromatin structure and regulation, including proteins harboring a panel of domains known to 

regulate transcription and to bind DNA (Supplemental Figure 4).  

Alteration in linker to core histone ratio as a mechanism for chromatin remodeling 

The protein building block of chromatin is the histone molecule. The murine genome has 

80 histone genes for which mass spectrometric evidence has been observed for at least 25, based 

on unequivocal peptide hits, and 54, based on combinatorial induction, highlighting the 

complexity of functional units available for DNA packaging and genomic structure in the heart
22

. 

In this study, disease progression is associated with isoform-specific (i.e. different gene 

products) reprogramming of histone variants (Figure 2A). Strikingly, the ratio of linker (i.e. H1) 

to core (H2A, H2B, H3 and H4) histones was decreased during hypertrophy and returned to 

baseline during failure (Figure 2B and Supplemental Figure 3G top panel). This change in core 

to linker histone ratio was associated with a global shift from hetero- to euchromatin (i.e. from 

silenced to more transcriptionally active chromatin)
30,31

, as evinced by the increase in histone 

mark H3K4me3 and decrease in H3K9me3 (Figure 2C). While this change in linker to core 

histone ratio is modest (~15%; Figure 2B), the functional impact could be profound, as it may be 

sufficient to affect ~15% of the coding and non-coding genome. This finding supports the 

concept that linker histones facilitate packaging of chromatin into higher order structures
7,32

, the 

local scale effects of which are represented diagrammatically in Figure 2D.  

Because these analyses are unbiased and quantitative, the opportunity exists to discover 

emergent properties within the data. Trend analyses reveal self-organizing modules of 

chromatin-bound proteins with similar behavior during disease progression (Figure 3A&B). 

Unsupervised clustering of z-score transformed data (which allows for analysis across ranges of 
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absolute abundance) in this manner allows for determination of groups of molecules(26, 27) with 

non-intuitive relationships that could not be revealed by annotation and would otherwise not be 

examined in a traditional gain/loss of function experiment. It remains unknown at what level(s) 

the abundance of these proteins are principally controlled (e.g. transcription, nuclear 

translocation, degradation, and so forth). 

HMGB2 is a novel regulator of pathologic cardiac cell growth 

To explore the isoform-specific roles of individual chromatin structural proteins from 

within modules identified in Figure 3, siRNA was used to knock-down expression of two high 

mobility group proteins identified in our study (HMGB1 and 2) and previously implicated in 

chromatin structure
8,32

. Loss of HMGB2 (but not HMGB1; Figure 4A) induced genomic 

structural remodeling conducive to cell growth, as measured by cell size (Figure 4B) and some 

aspects of genomic reprogramming associated
20,29

 with a fetal phenotype (Figure 4C). Although 

previous investigations had linked this family to cancer signaling
33,34

, this is to our knowledge 

the first demonstration of a functional role for HMGBs in cardiac phenotype. Microarray gene 

expression analyses following HMGB2 knock-down indicate that the resulting growth phenotype 

is the product of specific cardiac growth pathways, including hypertrophic gene up-regulation 

and MAPK pathway activation, among others (Figure 5A and Supplemental Figures 5A & B). 

HMGB2 appears to be important for structural inhibition of a genome-wide growth expression 

program, in that genes whose expression is influenced by HMGB2 knockdown are distributed 

with apparent randomness across the genome (Figure 4D). Interestingly, the role these proteins 

play in regulating chromatin structure is very stimulus-specific, in that hypertrophic growth 

induced by isoproterenol and phenylephrine induces an increase in HMGB1 and a decrease in 
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HMGB2, whereas stimulation with endothelin-1 has the antithetic effect (Figure 5B). 

Biochemical evidence was observed to support distinct populations of HMGB-associated 

chromatin, in that different amounts of each isoform were recovered depending on the use of 

either detergent or low pH in the chromatin isolation buffer (Supplemental Figure 6). Lastly, 

decreased HMGB2-dependent chromatin regulation was accompanied by a shift from hetero- to 

euchromatin, as shown by H3K4me3, H3K9me3 and heterochromatin binding protein-1 alpha 

abundance (Figure 5C). These findings support the concept that chromatin remodeling for 

transcription occurs in a context specific manner
35,36

, with different histone variants, structural 

proteins and modifications specifying control of different genomic regions
37–39

 (Figure 5D).  

 

Discussion 

Together these studies support a model in which a balance of local and global chromatin 

remodeling events is necessary to structurally poise all chromosomes for genome-wide changes 

in transcription. Evidence in support of this conjecture is the stimulus specificity of chromatin 

structural protein expression, the distinct localization of HMGB target genes across all 

chromosomes, and the alterations in HMGB protein expression and histone linker to core ratio in 

the setting of massive gene expression changes in disease. Decreased abundance (or knockdown, 

in the experimental setting) of chromatin structural proteins including linker histones and HMGs, 

would tend to shift the equilibrium toward relaxed chromatin (or to the left in Figure 2D). This 

hypothesis solves the problem of how an active transcription factor “finds” the right regions of 

the genome to bind: commensurate with transcription factor activation, global chromatin 

remodeling through altered linker histone/HMG abundance (Figure 5D) shifts the presentation of 

the interphase genome to a conformation permissive for binding of transcription factors to the 
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appropriate regions of the genome, while simultaneously masking those regions not targeted for 

immediate expression. Future work will be required to demonstrate whether these principles are 

operative in non-cardiac cell types. Likewise, additional studies will be required to test the 

hypothesis that three dimensional reorganization of the cardiac genome occurs reproducibly in 

real-time, using methods (likely microscopy-based) that capture the movements of chromosomes 

in the anatomical context of the cell
40

. It is likely that the function of chromatin structural 

proteins peripheral to the nucleosome is determined by local DNA sequence and chromatin 

associated proteins (and their post-translational modifications), rather than being universally 

activating or inhibiting of transcription across the genome. 

The unsupervised clustering of chromatin protein abundance provides novel insights into 

the global processes that control gene expression. Whether and if so, how, the proteins in the 

modules identified in Figure 3 are functionally connected in the cell is an exciting area of future 

work. Our bioinformatic analyses by gene ontology, however, yield interesting leads: modules 

involved in muscle development, stress response, transcription, differentiation, development and 

metabolism all suggest that chromatin-bound proteins participate in various aspects of cellular 

homeostasis, and that many of these processes are targeted in distinct ways during disease. 

In addition to controlling some genes previously associated with hypertrophic growth 

(ANF and SERCA; Figure 4C), our microarray studies following knockdown indicate a role for 

HMGB2 in the packing and regulation of other interesting cardiac-related genes. Among genes 

up-regulated when HMGB2 is knocked down (suggesting that the protein normally contributes to 

their silencing) are Wnt5, a well-studied morphogen with roles in cardiac development and 

disease
41

, and Ras, a GTPase known to induce hypertrophic growth through sarcoplasmic 

reticulum disruption
42

. Down-regulated genes following knockdown included HDACs, whose 
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activity is inversely correlated with gene activation in the heart
43

, supporting observations in the 

current study about a shift to more euchromatic phenotype in hypertrophy (Figure 2C) or during 

HMGB2 knockdown (Figure 5C), and the chromatin remodeling complex member PARP that, 

along with Brg1, contributes to reprogramming gene expression in hypertrophic 

cardiomyopathy
44

. How these and many other interesting genomic candidates coordinately 

regulate the hypertrophic response to pressure overload and/or loss of HMGB2 will be 

interesting to explore in future work. 

Chromatin remodeling is pervasive in cardiovascular development and disease
45,46

, 

although the mechanisms for genome-wide control of genomic structure remain unknown. 

Previous investigations have revealed key roles for histone modifying enzymes in controlling 

transcriptional states
47

, including in the regulation of cardiac development and disease
12,48

. Other 

investigators have used mass spectrometry to examine chromatin-associated proteins
14,15,17,18

, 

however the present studies provide the first quantitative blueprint of chromatin binding proteins 

from an endogenous source combined with unbiased analysis of the changes in chromatin 

structural proteins during the development of disease. Our data demonstrate global shifts in the 

hetero- to euchromatin balance during disease progression and implicate specific roles for 

individual histone and other chromatin structural proteins, including HMGB2. These findings 

have fundamental implications for the field of chromatin biology as well as for cardiovascular 

and other diseases, suggesting future therapeutic strategies may be engineered to target entire 

functional regions of the genome via specific chromatin structural proteins.  
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Figure Legends 

Figure 1: Proteomic measurement of chromatin-bound proteins. A, Chromatin-associated 

proteins were isolated by acid extraction from mouse cardiac nuclei. Proteins were 

electrophoretically separated, digested and analyzed by semi-quantitative label-free mass 

spectrometry. All the procedures are described in greater detail in Experimental Procedures. B, 

Individual peptide peaks were quantified and linked with sequence information by database 

searching; shown are examples of histone H1.0 (top; peptide YSDM(147.0355)IVAAIQAEK), 

which was altered with disease compared to histone H1.4 (bottom; peptide TSGPPVSELITK), 

which was unchanged (see Supplemental Figure 3 for expanded version of this data). In the left 

panels, the monoisotopic peptide peak from each biological and technical replicate were aligned 

and quantified as area under the curve. Dotted gold lines indicate the area of integration used for 

intensity calculations. Intensity data from all 6 replicates was averaged for each condition (right 

panels, top and bottom). All peaks in the isotopic window were used for intensity calculations, 

(see Supplemental Figures 3A & 3B). Note the reproducibility in alignment and quantitation 

between runs. C, Pair-wise analyses between basal and hypertrophy reveals remodeling of the 

chromatin protein backbone during disease. Red lines indicate 2-fold change; similar trends exist 

at peptide (left panel) and protein (right panel) level. Up- or down-regulated proteins/peptides 

indicated in green or red had p<0.01. D, Same as panel C except only peptides for the indicated 

proteins are shown, demonstrating good agreement between the peptides used for identification 

and quantification of a given protein. E, Principal component analysis of all measured peptide 

intensities after ANOVA reveals groupings of technical (n=2) and biological replicates (n=3) 

within basal (blue), hypertrophy (red) or failure (green) chromatin, concomitant with excellent 

reproducibility of expression variation between these three groups. Axes plot peptide intensities.  
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Figure 2: Mechanisms for genome-wide chromatin remodeling: changing the core to linker 

histone ratio. A, Global changes in gene expression with disease are associated with quantitative 

changes in histone families H2A, H2B and H1 as measured by mass spectrometry. Histone H3 is 

absent because of extensive post-translational modification, in agreement with previous reports 

from other cell types
49

; histone H4 has essentially only one known coding sequence. Findings 

were determined by spectral counting from manually validated SEQUEST results. B, Ratio of 

linker (histone H1) to core (here, histone H4 is used based on the aforementioned rationale) 

histone variants exhibits significant global decrease during hypertrophy, returning to baseline 

during failure (left panel; data confirmed by western blotting, see Supplemental Figure 3G). 

Ratio among core histones is unchanged (middle and right panels). C, The histone modifications 

H3K4me3 (an established activating mark
50

) and H3K9me3 (an established silencing mark
30

) 

were increased and decreased, respectively, serving as a readout for a global shift from hetero- to 

euchromatin. D, Model for effects of alterations in core to linker histone ratio on local chromatin 

structure. Red circle indicates chromatin structural protein, such as linker histone H1. “Loose” 

and “packed” local features would tend to favor global eu- or heterochromatin, respectively.  

 

Figure 3: Unsupervised clustering reveals modules of chromatin regulatory proteins. A, 

Proteins with altered chromatin association during disease are displayed (top left; each line is an 

individual protein). Trend analysis produced nine clusters (top right and then expanded in lower 

panels) with similar behavior during disease progression (data is z-score transformed to compare 

patterns of change across the entire dynamic range). B, Heat map display of modules from A, 

indicating the GO terms enriched in the given modules. In addition to these novel features, GO, 

21



 

 

Interpro and KEGG analyses revealed enrichment in various protein domains and established 

pathways in the cardiac chromatin data (Supplemental Figure 4). 

 

Figure 4: Specific chromatin structural proteins control distinct regions of the genome, 

enabling global changes in gene expression. A, Knockdown of HMGB2 leads to compensatory 

up-regulation of HMGB1 although the inverse does not occur. RT-PCR was also used to confirm 

efficacy of knockdown at mRNA level. Knockdown of HMGB2, but not HMGB1, induces 

neonatal cardiac myocytes to undergo hypertrophic growth akin to disease (B; Bar indicates 50 

µM; For each condition at least 50 cells were quantified in three separate experiments, yielding 

150 cells per condition.). C, This shift in phenotype recapitulates some but not all of the gene 

expression changes associated with disease in vivo (compare panel C with Supplemental Figure 

1C), suggesting that different chromatin structural proteins package distinct populations of 

genes. Error bars represent SEM. Asterisk indicates p<0.001 D, To examine regions of the 

genome whose structure is maintained—and therefore transcriptional activity modulated—by 

HMGB2, expression microarrays were performed in the absence and presence of HMGB2 

knockdown. The genomic distribution map shows up- (green) and down- (red) regulated genes 

following HMGB2 knockdown, demonstrating global effects that include all chromosomes 

(yellow indicates a bin in which some genes were up and other down regulated). 

 

Figure 5: Functional impact of HMGB knockdown on gene expression and chromatin 

structure. A, Pie charts demonstrate the processes enriched in the up- or down-regulated genes 

detected by microarray following HMGB2 knockdown. Additional bioinformatic analyses 

(Supplemental Figure 5) demonstrate enrichment of nucleotide binding domains and many 
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pathways implicated in cell growth and cardiac function/dysfunction in the genes under control 

of HMGB2. B, Changes in HMGB1/2 expression at distinct times following different 

hypertrophic agonists in neonatal rat ventricular myocytes (these stimuli are sufficient to induce 

hypertrophic cell growth). C, HMGB2 knockdown induces a shift from hetero- to euchromatin, 

as documented by increased histone H3 K4 methylation, decreased K9 methylation, and 

increased abundance of heterochromatin binding protein 1 alpha. D, Representation of the local 

chromatin remodeling effects that can orchestrate global shifts in DNA accessibility. In this 

model, linker histones or non-histone chromatin structural proteins (like HMGs; indicated by the 

red and purple circles) induce specific genomic regions (indicated with the green or blue 

nucleosomes) to assume a more compact structure (Figure 2D); regions not under structural 

regulation by the given proteins remain unaffected (grey nucleosomes). For simplicity, only 

nucleosomes and chromatin structural proteins are shown; in vivo, nucleosome positioning 

(through DNA sequence, proteins interactions and post-translational modifications) and other 

position-specific chromatin modifiers, likely are contributory to specifying these hypothetical 

populations of chromatin. This model suggests these distinct local principles are applied globally 

based on different expression profiles and genomic localization of linker histones and non-

histone chromatin structural proteins.  
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Part II. Hypothesis: Structural Considerations for Chromatin State Models with 

Transcription as a Functional Readout 

[This hypothesis was originally published in FEBS Letters by Chen, H. et al. Structural 

considerations for chromatin state models with transcription as a functional readout. FEBS letters 

586, 3548–54 (2012). The manuscript is re-used under the License Agreement between Haodong 

Chen and Elsevier.] 

 

Two established principles of chromatin biology present an obvious paradox for gene 

regulation: eukaryotic chromosomes are long, contiguous molecules that must be packaged in an 

ordered manner to fit into the nucleus and global changes in gene expression occur with 

specificity, reproducibility and speed, across the genome. The first principle has been known for 

decades; the second has emerged as a result of rigorous molecular dissection of individual 

transcriptional events in isolation and, in the past decade or so, through the application of global 

measures of gene expression (microarrays and RNA sequencing). The structure of the 

nucleosome, the octameric protein complex which binds ~146-147 base pairs of DNA and is the 

building block of chromatin, is known with atomic level resolution
1
. Likewise, the characteristic 

appearance of mitotic chromosomes has been known for nearly a century
2
. How the genome is 

organized in three dimensions in other phases of the cell cycle, or in non-dividing cells, is only 

beginning to be understood. Moreover, much less is known about the principles of chromatin 

packing that convert the beads on a string nucleosomal DNA into an ordered three dimensional 

unit, and how this structure is subsequently reorganized in a non-random way to enable gene 

expression. Lastly, the intermediate structural states the genome can assume in the non-mitotic 

somatic nucleus are unknown, although emerging evidence supports discrete intermediate fiber 

dimensions of 10 or 30 nm (based mostly on reconstitution studies
3
 and some microscopic 
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evidence in situ
4
) as well as reproducible inter- and intra-chromosomal interactions between 

endogenous genetic elements (based largely on chromosomal capture techniques
5–7

). 

We propose that the rapidly evolving field of chromatin regulation is inherently limited 

by a lack of understanding of the structural basis for packaging of the genome. In addition to 

work addressing this problem experimentally through techniques such as chromosomal 

conformation capture
5
, we believe the field can benefit from a state model of chromatin. Such a 

model could serve as a framework to bring together experimental data from reductionist 

transcription assays in cell culture and in vitro, along with global measures of protein occupancy 

across the genome and direct measurements of genomic structure. A chromatin state model 

should be able to evolve as new experiments reveal additional states (or disprove existing 

hypothesized ones) and importantly, provides a basis for mathematical representation of local 

and global transitions in chromatin structure.  

Considerations for Models of Chromatin Structure 

Transcription Classified in a Binary Manner 

For the purpose of this thesis we will define transcriptionally on regions of the genome 

as those areas directly being transcribed to RNA, including genes (exons and introns), validated 

non-protein-coding RNAs, and characterized proximal promoters. Transcriptionally off regions 

include distal enhancers (with some exceptions
8
), intergenic DNA and portions of the genome 

currently unrecognized to code for RNA. Off regions also include genes and other coding 

regions that can be transcribed but that are not actively being transcribed in the given cell or 

cellular environment. Sequencing studies estimate that at any given time, ~70% of the mRNA 

encoding genome is transcribed
9
, keeping in mind that this amounts to a little greater than one-

third of the total genome, which is only ~3% exon and ~35% intron in humans and mice (the rest 

is intergenic DNA; source: NCBI). It is tempting to immediately classify this group of genes (i.e. 

those that can be activated/transcribed, but that are not, given the overriding cellular condition) 
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as a third group of transcriptional activity. This is avoided in the current analysis based on the 

following rationale: differentiating off permanently (that is, areas that can never be transcribed) 

from off temporarily (the type described in the previous sentence) requires omniscient 

knowledge of all transcriptional states, for all RNAs, in all cells. A more conservative analysis 

that avoids a false negative assignment of one region as permanently inactive due to a lack of 

evidence leaves two transcriptional states—on and off—with genetic elements moving between 

these transcriptional states when polymerases use them as a template for RNA synthesis.  

 

Non-coding Regions and Other Structural Elements Contribute to Chromatin States 

Again, we define on as a region of the genome being read as a template to synthesize 

RNA in a given population of cells. It is possible to argue, however, that the physically 

contiguous nature of the genome makes it difficult or impossible to functionally separate two 

regions of DNA adjacent to each other on the physical strand—regardless of whether these 

regions are undergoing active transcription. Unlike bacteria which lack introns and large regions 

of intergenic DNA, it is well established that in eukaryotes, coding areas are widely interspersed 

with regions of non-protein coding, intergenic DNA. In humans, the size of intergenic DNA 

varies widely from several bases to several megabases. The implication, therefore, is that it is 

virtually impossible to separate regions involved in transcription from those that are not solely on 

the basis of whether RNA is actively produced. Indeed these large regions of untranscribed DNA 

are clearly essential for the genome to assume the convoluted three dimensional structure
2,5

 in 

the interphase nucleus that enables specific gene expression: without intergenic DNA, long range 

connections between disparate loci required for establishment of chromosomal territories could 

not be formed. Furthermore, the large amounts of intergenic DNA also likely play a role in 

genome evolution, acting as a substrate for gene duplication, modification and functional 

selection. Lastly, these non-coding regions of the genome have been shown to host non-

nucleosomal chromatin structural proteins
10

 and extensive DNA methylation
11

, both of which are 
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dynamically regulated over the life of a cell, highlighting the role of DNA-binding proteins and 

DNA modification of intergenic regions in transcriptional regulation (be it indirectly, from a 

physical standpoint). 

The three dimensional configuration of the genome, which is limited (but not encoded) 

by the primary sequence and the distribution of coding and non-coding regions, then, determines 

the phenotype of the cell by limiting the range of possible transcriptional states—gene 

expression states—at any given time. Converting between these states requires changes in the 

structure of the genome; since the DNA component is unchanged (over transcriptional time 

scales), this change must be endowed by the non-DNA component of the chromatin backbone: 

transcription factors, histones, non-histone chromatin structural proteins, post-translational 

modifications and non-coding RNAs. This relationship also establishes the means for the three 

dimensional structure of the genome—like the three dimensional structure of a protein—to be a 

substrate of selection and thereby evolution. In such a scheme, rearrangements of the linear DNA 

in three dimensions that enabled favorable transcriptional states to arise in the third dimension 

(that is, in the context of the in vivo packaging of the genome in the interphase nucleus) could 

undergo positive selection. Negative selection in this same manner is also possible. This logic 

can explain how transcriptional modules or gene expression profiles that contain genes 

distributed throughout the genome can be selected for, and thereby conserved, en toto. 

The two premises we have to this point are: firstly, from the perspective of chromatin, 

there are (only) transcriptionally on and off states (how many chromatin states there are will be 

addressed shortly); secondly, intergenic DNA along with DNA-bound chromatin structural 

proteins are involved in and probably necessary for the immense variety of cell types in 

individual eukaryotic organisms, for the countless transcriptional programs they can exhibit, and 

for their evolution. These two premises present an obvious problem, in that the second seems to 

contradict the digital logic of the first. Our requirements for a chromatin state model follow from 

these premises and attempt to resolve this conflict: the model must have a quantifiable 
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transcriptional readout and it must have a detectable structural impact on the genome. An 

ancillary goal is to provide a rhetoric for understanding the time dimension in chromatin biology, 

but structuring results in a state model whereby transitions between, and dwell times within, 

individual states can be captured and compared across different cell types. While pioneering 

work has suggested that chromatin can directly do things other than endow transcriptional 

states—such as functioning as a lens in the rod photoreceptor of the nocturnal eye
12

—these 

actions are at present esoteric and not codified (and certainly not known to be present in all 

nuclei).  For this discussion, we restrict our remarks to actions of chromatin as they relate to 

transcription, although it is certainly possible that more bizarre behaviors of chromatin remain to 

be discovered and may be proven evolutionarily important. 

Chromatin Model with Two States 

A two state model is appealing because it is for this model alone that unequivocal 

evidence exists for a transcriptional phenotype: a segment of DNA is either being transcribed, or 

it is not. A binary model does not require a more nuanced transcriptional or structural readout. 

Accordingly, in this model the functional chromatin states are either on or off, open or closed, 

euchromatin or heterochromatin (Panel A in Figure 1). One should not conclude that a two state 

model is equivalent to a simple one; the everyday example of the enormous complexity that can 

be generated with 1’s and 0’s in computer programming is an intuitive example of how two 

states, applied across a continuum and with differential reading frame, can create complexity 

(this has also been shown in more relevant examples of biological networks
13

). 

Superimposition of signal transduction preceding transcription, transcript/protein 

abundance and lifetime in the cell, and the role of interaction networks (physical and functional) 

onto the two state model can give rise to all the variation in transcriptional activities observed 

experimentally. In other words, the chromatin model itself need have no more than two states to 

account for the known behaviors of genomes. A cogent argument can be made, in fact, that 

46



unequivocal evidence exists for no more than two states of chromatin across model systems, 

genomes and importantly, individual loci (in contrast to detailed analyses of varied 

transcriptional behavior observed at isolated loci in vitro or in heterologous cell systems). 

While perhaps appealing from an analytical standpoint, there are several practical 

problems with a two state chromatin model, perhaps foremost that it is hard to disprove and thus 

a weak vehicle for hypothesis generation. There is also a wealth of knowledge about global 

chromatin regulation that is not incorporated into two states, including: distal 

enhancers/repressors, chromosomal territories, three dimensional genomic structure, nucleosome 

positioning and altered histone variant deposition, distinct activities of RNA polymerase, 

different rates of transcription, DNA methylation and histone post-translational modifications, to 

name the major categories that have been shown to affect the two properties—transcriptional 

readout and structural rearrangement of chromatin—we propose as  necessary components of a 

strong model. While we would argue that these factors have not been shown to universally 

control gene expression in a given manner, research in these areas is certainly not equivocal and 

an ideal chromatin state model should incorporate as much of our knowledge on transcription 

and chromatin structure as possible—even if some of it will ultimately be disproven—to 

stimulate further experimentation. Thus, there is a need for a chromatin model with greater than 

two states. Note that in such a model, our definition of two states of transcription still remain; it 

is a chromatin model that we are positing has a greater number of states. 

Multi-State Chromatin Models 

The recent deluge of chromatin immunoprecipitation studies coupled with either 

microarrays or next generation DNA sequencing has fueled the urge to define transcriptional 

states on the basis of protein binding profiles
14

. While these studies have led to unprecedented 

insights into genome-wide protein occupancy, a chromatin state model that can be tested and 

refined across laboratories is unlikely to result solely from this approach based on the following 
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pieces of evidence: global studies are rarely all done in the same cell type, making universality 

difficult to conclude; the chromatin proteome is known to contain hundreds of proteins, as 

confirmed from multiple cell types
15,16

; and histone proteins, themselves occurring in numerous 

isoforms and variants, can undergo scores of modifications in the same cell type
17

. Just 

considering the last two, a state model incorporating only the 4 core histone proteins and only 10 

post-translational modifications could theoretically specify 2^40 (or ~10^12) states, although the 

actual number would likely be less as some modifications are mutually exclusive. In our view, 

this is not a meaningful synthesis and, as has been recognized in other areas of cell biology, 

identifying modular features of biological systems can make their representation tractable
18–21

. 

Therefore, it is not experimentally (or conceptually) helpful to define states in a model of 

chromatin based solely on combinatorial patterns of protein occupancy—states in a manageable 

model should exhibit a transcriptional readout and a chromatin structure phenotype, rather than 

just reproducible patterns of protein occupancy. 

There are numerous histone variants
22

 and post-translational modifications
23,24

 for which 

transcriptional readouts, and/or chromatin features, have been described. This is true for states 

ostensibly “on” or “off” in terms of transcription. For some modifications, effects on higher 

order chromatin structure have been observed. The recent development of genome-wide ChIP-

seq studies has in turn provided extensive information about localization of these modifications 

in distinct cell types
25–27

. In a similar vein, it is apparent that nucleosome positioning is non-

random, dynamic and plays a fundamental role in gene expression
28–30

. What is lacking is a 

universal dogma for how these features operate in concert to specify global gene expression and 

thereby phenotype. An emerging theme is that no modification acts in isolation and that, to the 

extent such modifications specify chromatin states, global changes in gene expression are 

achieved through combinatorial complexity. A classic example of this phenomenon is bivalent 

chromatin marks
31

, that is, genes labeled with histone post-translational modifications that alone 
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specify opposing chromatin accessibility and/or transcriptional activity, but combined create 

decision-making nodes in gene regulation networks. 

Permanent inactivation of genes, a well-known example being inactivation of the X 

chromosome in the female, leads to a distinct type of off state. This process is mediated in large 

part by histone post-translational modifications, long non-coding RNAs and DNA methylation
32

. 

Genes in this region of DNA are permanently silenced in all cell types in the organism (“off 

permanently silenced”, panel B in Figure 1), although which copy of the X chromosome is 

inactivated varies between cells.  

Another functionally obvious chromatin state is characterized by genes not expressed in a 

given cell type due to silencing associated with normal differentiation
33

. Such genes clearly exist, 

but a universal dogma to explain their regulation in the context of chromatin states—why each 

cell has a different gene/protein expression profile—is lacking. Nevertheless, these genes clearly 

occupy a different off state, in that they can be activated in other cells but never will be in the 

normal life of the given cell (“off temporarily silenced”, panel B in Figure 1). We propose this 

chromatin state to be plastic as evinced by dedifferentiation in heart disease
34

, cancer
35

 and 

induced pluripotency
36

.  

The last species of functionally distinct off state we seek to define is that containing 

genes that can be expressed in the normal life of a differentiated cell but that are off at a given 

point in time (“off inactive”, panel B in Figure 1). This includes genes activated by stress, 

mitogens, injury, environmental cues and so forth. One can conceptually envision a “poised off” 

state that is distinct from those discussed so far and which may exist, for example when RNA 

polymerase disengages from DNA before nucleosomes reassemble, however we know of no 

functional readout for such a state in terms of transcription and/or chromatin structure. 

The most basic “on” state is that in which transcription is actively occurring (“on, active”, 

panel B in Figure 1) and is identical to the “on” state in the two state model. There is ample 

evidence that an additional on state exists when RNA polymerase “pauses” on the template, 
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temporarily delaying elongation
37,38

. Another distinct on state is one in which chromatin is 

“poised” for transcription
39,40

, at which sites transcription is imminent but not active. Both of 

these states imply directionality and whether they are biologically (rather than just semantically) 

distinct, remains unknown.  

It is well established that RNA polymerase exhibits different firing rates—that it, 

different rates at which the RNA is generated on a given template. In the present definition of a 

chromatin state model, we avoid delineation of these different rates as different states due to the 

absence of evidence for coordinate variable chromatin structure; it is very possible that such 

structural differences exist and have yet to be detected (or, perhaps these are subspecies of the 

“on, active” state).  

Based on currently available experimental data and the preceding structure-function 

considerations, we favor a six state chromatin model (Panel B in Figure 1). Of course these states 

are defined not for entire genomes but for regions of the genome within a single nucleus—

different regions of the same genome can simultaneously exist in multiple states. Constitutive 

heterochromatin is thought to be the same between cell types (although there are exceptions to 

this, for example in the regulation by centromeric satellite DNA
41

) whereas facultative 

heterochromatin will vary between cell types and within a cell given the state of development. In 

the present synthesis, these forms of chromatin would be considered “off permanently silenced” 

and “off temporarily silenced”, respectively (Panel B, Figure 1). In Panel C of Figure 1, we 

consider the types of genes that would reside in individual states in the example of a fully 

differentiated cell like a cardiac myocyte; while we can predict functional classes of genes for on 

active, off temporarily silenced, off permanently silenced, it is a priori possible to distinguish 

neither between on active poised and off inactive, nor between on paused, on active and on 

poised inactive. These distinctions can only be made experimentally. Our goal for this model is 

to create a framework that incorporates as much of the current data (and ongoing technique 

development) as possible while at the same time restricting the number of states based on the 
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field’s experimental knowledge of chromatin and transcription. An example of how we envision 

specific transcriptional phenotypes, along with to-be-determined structural features, contributing 

to chromatin states, is represented in Figure 2. Undoubtedly the result of this approach is an 

over-simplification of the endogenous behavior of chromatin and the actions of various proteins. 

To the latter point, non-nucleosomal chromatin structural proteins, such as CCCTC binding 

factor (CTCF)
42,43

 and high mobility group proteins (HMG)
10,15

, have been shown to control 

gene expression and phenotype, while their roles in chromatin packing appear to include 

formation of intermediate chromatin domains and global endogenous genomic structure. 

Incorporating the actions of these types of proteins into a chromatin state model with 

transcription as a readout requires conceptualizing their actions in the context of the endogenous 

genome: unlike a conventional transcription factor model, these proteins do not have their effects 

only in and around the transcription start site. 

Implications and Future Experiments 

The objective of this thesis is to lay the groundwork for a chromatin model that 

incorporates three-dimensional structural changes with a transcriptional readout. Such a model is 

an essential analytical tool, we reason, to resolve the issue of how genome-wide regulation of 

gene expression is accomplished in eukaryotes in vivo. We present two models that fulfill the 

criteria of having structural changes in chromatin and transcriptional readouts: a two state and 

greater than two state model. For reasons of completeness with existing data and ability to 

generate hypotheses, we favor a model with greater than two states and suggest that a six state 

model is best representative of current knowledge from both isolated genetic elements and 

genome-wide studies. While other models of chromatin have been proposed
14,27,44,45

, there are 

none to our knowledge with these criteria linking structure to transcription as described herein. 

Of course a model of chromatin states must be linked inextricably with data—our point herein is 

that incorporating knowledge of the biological function of chromatin can result in a more 

51



tractable model. The next experimental step is to directly measure structural features that define 

individual states. 

 

Use of a Chromatin State Model 

Implicit in a transcriptional model of chromatin states are the structural changes at 

intermediate levels of organization, that is, below the level of the chromosome and above the 

level of the individual nucleosome. Recent work
30,46

 with DNase hypersensitivity, MNase-

sequencing analyses and computational approaches has revolutionized the way we think about 

how nucleosomes associate with different regions of the genome and the logic for the 

repositioning of these protein complexes commensurate with transcription factor binding. For 

instance, we now know that upstream of transcription start sites, nucleosomes exhibit very 

regular spacing
29

, likely contributing to one of the “on” states in this or other chromatin state 

models. On a more global level, nucleosomes are enriched in exons and depleted in introns
47

, 

further supporting the role nucleosome density plays in chromatin structure. One limitation of 

these nuclease-sequencing studies is that the information, although now acquired with single 

base resolution, is projected onto the linear representation of the genome; in the process, three-

dimensional information is lost. Indeed these intermediate areas of chromatin structure represent, 

in our view, a key frontier in the study of chromatin and chromatin states: new techniques that 

can directly measure intermediate chromatin states (e.g. by imaging
12,48

 and/or chromosomal 

capture techniques
5,6

)—between the level of the nucleosome and the whole genome—and link 

these states with transcription, will advance our understanding of genome packing and chromatin 

biology. These approaches can enable representations of chromatin that include both three-

dimensional structure and gene expression networks, such that features of cell type-specific 

chromatin structure (and thereby, transcriptome generation) can be modeled
7
, and ultimately, 

compared. 
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The worth of this model is that it provides testable hypotheses. Converting between 

chromatin states requires something other than the DNA substrate itself; two obvious and 

extensively studied candidates are RNA and protein. Notwithstanding DNA sequence 

preferences for remodelers and transcription factors, how inter-state conversion is coordinated on 

a genome-wide scale is unknown. To test this, one would need to experimentally characterize 

transitions to establish directionality of movement among states. To the extent possible, this 

would include recapitulation of large-scale chromatin structures in vitro and/or use of 

mathematical modeling combined with experimental data to define distinct three-dimensional 

structural features, should they exist, that are hallmarks of different states. Once structural 

hallmarks can be established, dwell times in each state can be measured (similar to what has 

been done genome-wide for individual nucleosomes
49

) and this quantitative information added to 

the model. A major challenge with this type of experimentation is that it at present is conducted 

on populations of (usually millions) cells or on tissues. The heterogeneity present in such 

populations presents a major technical hurdle for rigorous delineation of any discrete subcellular 

event, chromatin remodeling included, and new methods to measure single-cell level changes
50

 

will revolutionize the way we examine subcellular processes.  

Importantly, should a model such as the one proposed herein be tested experimentally, 

analyses of genome occupancy (ChIP-seq) must be coupled with expression 

(microarrays/sequencing) and chromosomal conformation capture analysis, to define whether 

nuanced structural states accompany the various patterns that emerge from ChIP-seq and gene 

expression studies. Any of these three global methods alone is insufficient to define chromatin 

states. If one accepts the premise of chromatin states defined by structural features and 

transcriptional states, then any investigation of chromatin measuring these outputs directly or 

indirectly could be interpreted in the context of this model—that is, assigning individual loci 

measured in a given system to one chromatin state. In more comprehensive studies, this would 

allow determination of what percentage of the coding genome resides in any given state, and if 
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carried out before and after stimuli (or perhaps in healthy and diseased cells), would shed light 

on how physiological processes result from shifting portions of the genome between different 

chromatin states. Such comprehensive studies, which are increasingly common, would allow the 

model to be disproven by showing that additional chromatin states exist based on significant 

portions of the genome exhibiting structural and transcriptional features not defined in the 

existing states, or to demonstrate the absence of structural features distinguishing two states 

posited to exist, implying only transcriptional states, not those of chromatin, determine a 

physiological response. Regardless of the system, key data inputs for such a model include loci-

specific transcriptional data (microarrays and RNA seq—the higher the resolution, the better) 

and chromatin structural readouts (principally techniques like MNase-seq, DNase 

hypersensitivity analysis and ChIP-seq, but increasingly super resolution imaging and 

chromosomal capture techniques like 3C/HiC will play a role). We speculate that regions of the 

genome near each other in three-dimensions based on 3C/HiC data would occupy the same 

chromatin state. Insights into cellular phenotype will certainly aid in the use of these models of 

chromatin states but in principle are not required for their generation. We envision these models 

being probabilistic to begin with, due to the large amounts of data and distinct number of loci to 

be considered, although when possible it will be appealing to apply numerical and potentially 

analytical methods (employing differential equations) to encapsulate the behaviors of chromatin. 

 

Other Contributors to Chromatin States? 

While DNA methylation is clearly associated with modulating chromatin function
51

, the 

discrete structural features it endows make challenging its direct incorporation into a state model. 

Like histone post-translational modification, context specificity clearly plays a role in 

determining the readout. Future studies into histone and DNA modifications need to address 

directly whether there is universal employment of combinations of marks to endow different 

readouts. Whether there is a code in the strict sense will require omniscient knowledge of all 
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histone modifications (an unrealistic proposition) or a reimagining of what constitutes the digits 

in such a code. Regardless, if the goal is to understand global remodeling of chromatin, more 

studies examining histone and DNA modifications need to test readouts of chromatin structure 

directly, including: DNase sensitivity, MNase digestion, sedimentation analysis in reconstituted 

chromatin, high resolution microscopy and perhaps most prominently, chromosomal 

conformation capture techniques. This model posits six states for coding DNA, but only one 

(“off permanently silenced”) for non-transcribed regions of the genome. A major challenge for 

structural studies of chromosomes in situ is to determine structures of non-coding regions in a 

manner that allows them to be linked to phenotype, regardless of whether these non-coding 

regions directly or indirectly affect transcription.  

How does one distinguish whether a structural or transcriptional action is of paramount 

importance, when evidence for both exists (whereas often when evidence for which comes first, 

on an atomic scale, does not)? In the case of a transcription factor binding to the promoter of a 

gene, it is not much of a jump to assume that if the transcription factor induces a structural 

change important for transcription, then this change should precede transcription. However, for 

chromatin structural proteins that decorate various coding and non-coding areas of the genome, 

the simple linear view of local structural changes preceding transcription of the same region 

quickly becomes inadequate. Thus, when no data on time-course exist (from a straightforward 

cause-effect point of view), our preference is to consider them as a single event. Novel 

approaches that can link structural changes to transcriptional outputs when these two events are 

not connected by the linear DNA strand (i.e. that rely on the endogenous three-dimensional 

architecture of the genome) will enhance this understanding. 

Genomes—the term here referring to the DNA and all the chromatin structural proteins 

and RNAs that bind it—are self-organizing systems; there is no master regulator mechanism that 

assembles the three dimensional structure of the genome in vivo. In this property genomes are 

not unlike proteins themselves
52

, in that structural features arise at secondary, tertiary and 
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quaternary levels to endow functionality not present in the primary protein/DNA sequence. Like 

protein structures, then, we can examine genome structures in different cells to reveal features 

endowing cell type specific gene expression profiles. One fundamental difference between these 

two systems is that proteins are thought to be structurally super-imposable between copies within 

a cell or between cells; we certainly do not imply this to be the case with the genome, where 

structural similarities between copies of a genome are more likely global patterns (think: cloud 

formations). From an evolutionary standpoint, structural features that arose in proteins, 

untraceable to amino acid sequence, are selected for based on function. So too it may be with 

genomes, in that the structural features of the genome in three dimensions—and the consequent 

properties thereby determining how different regions shift their chromatin states—determine 

phenotype. 
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Figure 1. Chromatin state models. (A) Although unequivocal data may exist for 

only a two state model of chromatin with transcription as a readout, with on and off 

states corresponding to DNA being transcribed or not, this model does not facilitate 

hypothesis generation for unraveling new properties of chromatin. (B) We propose a 

model with six states based on the following criteria: each state is defined by 

chromatin structural features and a transcriptional readout; major chromatin behaviors 

meeting the previous requirement are incorporated in one of the states; an open 

format is used in which more states can be added based on the determination of global 

features meeting the structure/transcription criteria; and the model incorporates high-

throughput ChlP-seq and related data and is constrained by the known physiological 

properties of chromatin. The arrows indicate hypothesized routes of transition 

between states and the shaded areas indicate how we envision these distinct states 

fitting into a broader concept of chromatin as either hetero- or euchromatic. (C) 

Different types of genes in various states are given for the example of a cardiac 

myocyte to illustrate the hypothesized relationship between chromatin states and cell-

type specific gene expression and phenotype. 
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Figure 2. Hypothesized structural differences between chromatin states. We 

hypothesize that three key structural groups can, in conjunction with endogenous 3D 

genomic structure, distinguish the different proposed states at the level of the gene, 

namely the accessibility of the gene to RNA polymerase II and transcriptional 

machinery binding (top row), the presence of the appropriate transcription factor in 

the nucleus and the localization of specific chromatin structural proteins/non-coding 

RNAs to the gene (middle row) and the presence of conducive, and absence of 

inhibitory, DNA and histone modifications at the gene (bottom row). Together these 

help define the structural accessibility of the gene (bottom triangle, with decreasing 

accessibility as one moves from left to right through the states as displayed). For each 

state we propose which class of structural elements are conducive to transcription 

(green) and which are limiting (red). We further propose that for two states in 

particular, paused and inactive, more experimental data is needed to determine which 

class of structural features cause the different transcriptional read-outs (half red/half 

green indicates possibilities which must be confirmed experimentally). Finally, for 

each class of structural groups we propose their relative stability and thus the energy 

required to interconvert between states when these levels of structural regulation are 

modified. 
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Chapter 1: Characterization of Nucleosome Positioning in Cardiac 

Hypertrophy 

A. Abstract 

Nucleosome organization in the cardiac myocyte is not well characterized. Local 

chromatin packing around the nucleosome protein complex is understood at the atomic 

resolution; however, higher level properties of chromatin packing in the cardiovascular 

system are unknown. We hypothesized that nucleosome occupancy (i.e. exact positioning 

of nucleosomes at given loci) is a feature that regulates altered gene expression in 

hypertrophy. To investigate mechanisms that establish chromatin structure, genome-wide 

nucleosome location in heart was determined by Micrococcal Nuclease treatment 

followed by next-generation sequencing (MNase-Seq). Resulting occupancy profiles 

from normal and diseased cardiac myocytes exhibit global (i.e. chromosome scale) 

similarities, but local (i.e. gene/promoter scale) differences. In depth analyses of the data 

showed that nucleosome positioning patterns at many regulatory chromatin elements are 

regulated by factors other than primary DNA sequence (presumably, other proteins), 

especially the periodicity of nucleosome positioning at enhancers, insulators and DNase I 

Hypersensitive sites. Moreover, our data reveal different periods of nucleosome 

positioning at these sites. Comparing the nucleosome occupancy profiles between normal 

and hypertrophic cardiac myocytes, we find a decrease of nucleosome occupancy at 

many functional elements including DNase I Hypersensitive sites and Long Terminal 
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Repeats. This study is the first to examine nucleosome positioning in heart and reveals a 

dynamic process of nucleosome remodeling during cardiac hypertrophy. 

B. Introduction 

DNA within the eukaryotic nucleus is packed in the form of chromatin. The basic 

structure unit of chromatin is the nucleosome, containing eight histone core proteins and 

a segment of DNA wrapped around the histone core. The classical model of chromatin is 

called “beads-on-a-string”, which means multiple nucleosomes bind one DNA molecule 

non-specifically and form a string. However, the location of nucleosomes throughout the 

whole genome is not random, and precise positioning at certain regions is important in 

maintaining normal gene expression
1–3

. For example, the removal of nucleosomes at 

promoter region, thereby creating a nucleosome free region, is associated with active 

gene expression
4,5

.   

Cardiac hypertrophy is a disease that involves multiple molecular events at the 

cellular level. Several high-throughput studies have shown that cardiac hypertrophy 

features a genome-wide co-regulation of numerous genes
6–9

. Many kinds of regulatory 

machineries are required to coordinate such a complex network. Although it is difficult to 

examine all molecular behaviors within the cardiac nuclei comprehensively, we reason 

that we can provide some clues as to how global cardiac chromatin structure is modulated 

under disease status by studying nucleosome positions on a genome-wide scale.  

To our knowledge, no studies of global nucleosome positioning in the heart have 

been reported. With the development of high throughput techniques, the impact of global 

nucleosome positioning on the chromatin structure has been increasingly appreciated in 
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lower organisms such as yeast, as well as in mammalian cells
10–12

. Many experimental 

and bioinformatic tools have been developed to study how nucleosome positioning is 

regulated. In this chapter, we wanted to characterize chromatin structure within cardiac 

nuclei from the perspective of nucleosome positioning, and to explore whether 

nucleosome positions are altered in hypertrophic cardiac myocytes.  

C. Materials and Methods 

Mice. All experiments were approved by the UCLA Animal Research Committee 

and conform to the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. BALB/c mice were purchased from Charles River Lab, Inc. All 

experiments were performed on 8~12-week-old adult male mice. 

Transverse aortic constriction surgery. The cardiac hypertrophy was induced by 

transverse aortic banding surgery as described previously
13–15

. Briefly, animals were 

anesthetized with 1.5–2.0% isoflurane, intubated, and ventilated with 1.5–2.0% 

isoflurane in 95% O2, 5% CO2. After shaving the hair from the animal, the chest was 

entered from the left side via the third intercostal space; the aorta was identified at the T8 

region; and a venous vascular clamp (Fine Science Tools), outfitted with a band of 

silastic tubing at the distal edge of one of the clamps, was placed around the vessel. The 

internal diameter of the resulting modified clamp was that of a 27.5-gauge needle, a 

common diameter for aortic banding in the mouse; the clamp is of a size that does not 

impede pulmonary function. Once the aorta was clamped, distal blood flow was 

measured and quantified using a flow probe (Transonic Instruments). The chest was then 
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closed using 6–0 proline suture, during which negative pressure in the thorax was 

reestablished by removing air with a PE-50 chest tube attached to a syringe.  

Echocardiography (ECHO). ECHO was used to determine cardiac parameters in 

live mice as described
13,15

. ECHO was performed on mice sedated with isoflurane 

vaporized (2.5% for induction, 1.0% for maintenance) in oxygen. The animal's chest was 

shaved and positioned in the left lateral decubitus position for ultrasonic imaging with a 

Vevo 770 high resolution ECHO system equipped with a 35 MHz transducer. The short 

axis view (M-mode) measurements were performed, and data were stored for off-line 

analysis. Left ventricular (LV) chamber dimensions, including LV size (end diastolic, 

LVID;d, and end systolic, LVID;s), intra-Ventricular septum (IVS; d) and posterior wall 

thickness (LV PW;d ), were obtained from M-mode images. LV systolic function is 

assessed from these measurements by calculating fractal shortening (FS), and left 

ventricular size assessed by calculating LV Mass and relative wall thickness (RWT; d). 

       
             

      
     

      
       

      
 

        (         )       [(                    )         ]      

Isolated adult cardiac myocytes. Adult cardiac myocytes were isolated using the 

protocol adopted from others
16,17

. Mouse was injected i.p. with 0.5 cc heparin and 

anesthetized with isoflurane. After the mouse was fully anesthetized, chest was opened, 

heart excised out and cannulated gently to the Langendorff perfusion apparatus. Heart 

was perfused with perfusion buffer (113 mM NaCl, 4.7 mM KCl, 0.6 mM KH2PO4, 0.6 
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mM Na2HPO4, 1.2 mM MgSO4, 4.6 mM NaHCO3, 10mM KHCO3, 10 mM HEPES 

buffer, 30mM Taurine, 5.5 mM Glucose, pH 7.5) for 4 min and switch to myocyte 

digestion buffer (2.4 mg/mL collagenase II dissolved in perfusion buffer) for another 8 

min. Then, ventricles were cut and teased into several small pieces with fine forceps. 

Cells were filtered through cell strainer (100 m Nylon, BD Falcon), and sediment by 

gravity for 8 to 10 mins. After a brief centrifuge, cell pellet was resuspended in myocyte 

digestion stopping buffer (12.5 M CaCl2, 10% Bovine calf serum in perfusion buffer), 

and washed in PBS. 

Purification of cardiac chromatin. Cardiac chromatin was isolated as previously 

described
15,18

. Briefly, isolated cardiac myocytes were resuspended in ice cold cell lysis 

buffer containing 10 mM Tris (pH 7.4), 250 mM sucrose, 1 mM EDTA, 0.15% Nonidet 

P-40. The crude nuclei were pelleted by centrifuging and resuspended in nuclear lysis 

buffer (20 mM HEPES, pH 7.6, 7.5 mM MgCl2, 30 mM NaCl, 1 M urea, 1% Nonidet P-

40). After solubilization, the samples were centrifuged at 13,000 × g for 10 min to pellet 

the insoluble chromatin and remove the nucleoplasm fraction.  

Micrococcal nuclease digestion and DNA-sequencing (MNase-Seq). Chromatin 

pellet was washed twice in MNase digestion buffer (10 mM Tris-HCl pH 7.4, 15 mM 

NaCl, 60 mM KCl, 0.15 mM spermine, 0.5mM spermidine), and resuspended in 100 L 

MNase digestion buffer supplementing with 1 mM CaCl2. 50 units MNase (Worthington, 

NJ) was added into nuclei and incubated at 37°C for 5 min. Digestion was stopped by 

adding 20 L MNase stop buffer (100 mM EDTA, 10 mM EGTA, pH 7.5) and 100L 

MNase digestion buffer. Proteins were removed by incubating with 3L of proteinase K 
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(25 mg/mL) and 10 L of 20% SDS at 37°C overnight, and DNA was purified by 

phenol/chloroform extraction and ethanol precipitation. DNA fragment size was checked 

by DNA agarose gel electrophoresis. Sequencing libraries were prepared according to the 

manufacturer provided genomic library preparation protocol version 2.3(Illumina, La 

Jolla, CA), and were sequenced on Illumina GAII sequencer on single-end mode.  

Bioinformatics. 76-nt reads were aligned to mouse genome (mm9) using 

Novoalign V2.07.00. Read trimming is turned on to progressively trim read trailing bases 

until reads can be aligned or length reduces to less 21nt. Reads aligned to locations are 

reported as no alignment. For normal mouse, we generated a total of 45.3 million reads, 

and uniquely aligned 24.8 million reads; for TAC mouse, we generated a total of multiple 

43.7 million reads, and uniquely aligned 25.9 million reads. After the alignment, each 

read was extended to 148nt. Nucleosome score at a given position is defined as the 

number of reads covering that position. Nucleosome positioning prediction was 

downloaded from Segal’s lab
19

. CpG island and Long Terminal Repeat (LTR)
20

 

coordinates were downloaded from UCSC Genome Browser. 

Cardiac transcription factor binding sites, histone modification peaks and 

DNaseI hypersensitive sites. The ENCODE project
21

 and many other high-throughput 

ChIP-Seq studies
22,23

 provide a high quality source of protein-DNA interaction datasets. 

Cardiac transcription factor (TF) binding sites for GATA binding protein 4 (GATA4) 

(GSM558904)
23

, NK2 homeobox 5 (NKX2.5) (GSM558906)
23

 , serum response factor 

(SRF) (GSM558906)
23

 and T-box 3 (TBX3) (GSM862695)
22

 were downloaded from 

Gene Expression Omnibus
24

. ENCODE ChIP-Seq peak data were download through 
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USCS Genome Browser. Binding peak coordinates for mouse heart p300, RNA 

polymerase II (Pol II), zinc finger CCCTC-binding factor (CTCF), histone modification 

peaks, were from Dr. Bing Ren's laboratory at the Ludwig Institute for Cancer Research 

(LICR). Mouse heart DNaseI hypersensitive sites (DHS) were from the University of 

Washington ENCODE group. Because binding peaks for GATA4, NKX2.5 and SRF are 

too broad, we identified their binding positions from ChIP-Seq peaks using FIMO from 

the MEME Suite (version 4.7.0)
25

. 

Local normalization of nucleosome positioning profile. In Figures 1-4, 1-5, 1-6 

and 1-7, we applied a local normalization method to each nucleosome positioning profile. 

Briefly, both normal and TAC nucleosome positioning profiles were normalized to the 

average read counts at both -3,000 bp ~ -2,500 bp and +2,500 bp ~ +3,000 bp regions. 

This normalization cancels the background difference between normal and TAC 

conditions. 

Nucleosome periodicity analysis. To measure the period of nucleosome positions 

at p300, CTCF and DHS sites, a similar method
26

 was adopted with the following 

modifications. Nucleosome positioning profiles were smoothed using simple arithmetic 

moving average with a window size of 50 bps. Local minima of the smoothed curve were 

chosen as boundaries of nucleosomes. The length of nucleosome repeat was then 

determined from a linear fit of the peak positions, relative to the first nucleosome, versus 

the nucleosome number.  
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D. Results 

Pressure overload-induced heart hypertrophic growth 

In this chapter, we used transverse aortic constriction (TAC) as an experimental 

mouse model to study pressure overload-induced cardiac hypertrophy. Ligation of the 

transverse aorta (Fig 1-1, A) generates a back force that increases the afterload on the left 

ventricle, resulting in a compensatory growth of the heart muscle. When measured by M-

mode echocardiography (Fig 1-1, B), altered cardiac morphology can be seen, as 

indicated by the increased chamber wall thickness (Fig 1-1, C). This growth also 

manifests as increased heart weight as a ratio of body weight (Fig 1-1, D). We collected 

samples at the stage of compensatory hypertrophy, when heart function is still normal 

(Fig 1-1, E).  

Measurement of cardiac global nucleosome positioning by MNase-Seq 

MNase digests linker DNA between two nucleosomes and produces nucleosome 

associated DNA (Fig 1-2, A)
1
. These ~147 bp DNA fragments (Fig 1-2, B), when 

sequenced, can indicate the position of nucleosomes. Our data first confirmed other 

groups’ conclusion that regions with high GC content prefer nucleosome occupancy
19,27

 

(Fig 1-3, A). When examined at the scale of entire chromosomes, we did not observe 

major differences between normal and TAC animals (Fig 1-3, A). However, chromatin-

remodeling events, as indicated by the relocation of nucleosomes, are clearly visible 

when zooming in to smaller scales (Fig 1-3, B).  
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Nucleosome occupancy at cardiac TF binding sites 

We examined the nucleosome occupancy profiles for the binding sites of four 

cardiac TFs that are known to be important in regulating cardiac gene expression and 

development. Previous studies have shown that the co- localization of GATA4, NKX2.5 

and SRF can be used to identify cardiac active transcriptional enhancers
23

. Interestingly, 

we observed that these three TFs share a similar nucleosome occupancy profile (Fig 1-4, 

A-C, left panels), implying that the positioning of nucleosomes in these TF sites is 

determined by primary sequence. Moreover, we observed a pattern of single split peak 

for these three TFs. To our surprise, nucleosome-positioning prediction gives a similar 

pattern, including the split peak phenomena (Fig 1-4, A-C, right panels). We also 

examined the nucleosome occupancy profile for TBX3, which is known as a transcription 

repressor and plays an important role in cardiac development
28,29

. The nucleosome 

occupancy profile shows a depletion of nucleosome at the TBX3 binding site (Fig 1-4, D, 

left panel). We speculate that this depletion may be caused by TBX3 binding rather than 

reduced nucleosome affinity of DNA sequence, because the nucleosome binding 

prediction showed an increased nucleosome binding signal (Fig 1-4, D, right panel), 

which is inconsistent with the experimental profile. 

Nucleosome occupancy and positioning at cardiac RNA Pol II, p300, CTCF sites and 

CpG islands 

To further explore the role of nucleosome positioning in regulating chromatin 

structure, we examined the nucleosome positioning profiles at active transcribed regions, 

enhancers, insulators and CpG islands (Fig 1-5). Surprisingly, we observed that 
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nucleosomes are depleted at the center of all these four elements (Fig 1-5, A-D, left 

panels), while nucleosome occupancy algorithms predict high nucleosome affinity (Fig 1-

5, A-D, right panels). This discrepancy indicates protein-DNA complexes other than 

nucleosomes located at these regions play a role in repelling nucleosome formation. 

Moreover, the nucleosome positioning profile at CpG island displays a ~60% depletion in 

nucleosome occupancy, which is the largest nucleosomal depletion among the four 

elements we surveyed.  

We also observed periodicity of nucleosome positioning at p300 and CTCF 

binding sites, but at neither RNA Pol II nor CpG islands. Interestingly, even though 

nucleosome occupancy profiles at both P300 and CTCF show periodicity, P300 site has a 

wider nucleosome free region comparing with CTCF site. We speculate that this 

periodicity is caused by interactions of other non-nucleosomal proteins with DNA, as 

DNA sequence-based prediction algorithms failed to detect this periodicity. 

Nucleosome occupancy at histone modification peaks 

Next, we investigated whether nucleosome occupancy varies depending on 

chromatin states as specified by histone modification. We studied both euchromatic 

marks, including H3K4me3, H3K36me3, H3K79me2, H3K9ac and H3K27ac, and the 

heterochromatic mark H3K27me3. Due to the lack of histone modification data in 

disease, our data cannot examine the nucleosome positioning at disease-specific histone 

modification peaks. 

Based on the shape of nucleosome positioning profiles from normal mouse, it can 

be inferred that H3K4me1, H3K36me3, H3K79me2, H3K27me3 and H3K27ac 
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modifications stabilize nucleosome formation, as indicated by the increase of nucleosome 

scores at the center of histone modification (Fig 1-6). In contrast, H3K4me3 and H3K9ac 

repel nucleosome formation (Fig 1-6). Comparing the nucleosome occupancy between 

normal and TAC mice, we found that nucleosome scores decreased at H3K4me1, 

H3K4me3, H3K27me3 and H3K9ac, indicating chromatin remodeling events at these 

sites. 

Nucleosome occupancy at DNaseI hypersensitivity sites 

DHS mark open chromatin regions that often serve as cis-regulatory elements 

including promoters, enhancers, and insulators
30

. The high chromatin accessibility at 

DHS usually indicates a low level of nucleosome occupancy. To investigate the 

nucleosome positioning within DHS to test this hypothesis for the heart, we calculated 

the average nucleosome occupancy at DHS using published heart DHS position data from 

two replicates (Fig 1-7). We observed a reduced nucleosome occupancy at DHS (Fig 1-7, 

left panels), which is inconsistent with nucleosome occupancy predictions for these 

regions (Fig 1-7, right panels), indicating that the major cause of DHS is not due to the 

low nucleosome affinity of primary DNA sequence. Moreover, nucleosomes are well 

positioned at DHS and form a pattern similar, although not exactly the same, as CTCF or 

p300. Again, this periodicity is not predicted by nucleosome positioning algorithms, 

suggesting that this pattern is caused by protein-DNA interactions, not primary DNA 

sequence.  
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Nucleosome repeat length at enhancers, insulators and DHS 

Our nucleosome positioning profiles showed well-positioned nucleosomes at 

enhancers (Fig 1-5, B), insulators (Fig 1-5, C) and DHS (Fig 1-7). The periodicity of 

nucleosome positioning at these elements makes it possible to measure the nucleosome 

repeat length, i.e. the length of nucleosomal DNA plus linker DNA between 

nucleosomes. We chose ±1,000 bp region at the center of these three elements because 

this region gives a strong periodicity signal (Fig 1-8, A-C). This region is large enough to 

give us 8~10 well resolved nucleosomes, and the periodicity signal starts to decay outside 

of this region. Using a linear fit model, we obtained the value of 188bp and 186bp, for 

enhancers and insulators, respectively. Interestingly, this value decreases to 177bp for 

DHS. A decrease of nucleosome repeat length indicates shorter distance between 

nucleosomes. Whether there is a difference in the ratio of linker histone H1 to core 

histone at these regions is not clear. We did not observe dramatic difference in the 

nucleosome repeat length at these elements between normal and TAC mice (Fig 1-8, D-

F). 

Enhanced nucleosome occupancy at long terminal repeats 

The periodicity of nucleosome positioning at enhancers, insulators and DHS sites 

raised a question of what causes this periodicity. One potential explanation is the 

nucleosomal barrier model
31

. Based on this model, highly phased nucleosomes, either due 

to the barrier effect of nucleosome free regions or highky compacted chromatin regions, 

should be able to form well-positioned arrays of nucleosomes. Long terminal repeats 

(LTR) are insertions of large DNA fragments caused by retrotransposons. According to 

74



the data from UCSC Genome Browser, there are about 7.7×10
6
 LTRs in the mouse 

genome, and the length of LTR ranges from 12bp to about 7,000 bp. It is believed that 

heterochromatin, formed either by non-coding RNA or by histone modification, plays an 

important role in silencing transposable elements
32

. Therefore, it can be expected that the 

nucleosomes at LTR and adjacent regions are well positioned due to the formation of 

heterochromatin at LTR elements. 

To test this hypothesis, we generated nucleosome positioning profiles for different 

length of LTR for both 5’ end and 3’ end (Fig 1-9). We first observed an enrichment of 

nucleosome signals at the LTR, but not its upstream or downstream regions. There is also 

a small but observable dip of nucleosome occupancy signal at the boundary of each LTR. 

This may indicate the formation of heterochromatin. We observe only very weak 

periodicity upstream, downstream, or within the LTRs. Strikingly, comparing with the 

healthy animal, genomic DNA from the TAC mice shows a decrease of nucleosome 

levels within LTRs, especially the long ones (Fig 1-9, C, F). This may indicate a potential 

stress-induced transformation at LTR from heterochromatin to euchromatin, or chromatin 

remodeling at LTRs as part of a global reprogramming of chromatin structure. 

E. Discussion 

In this chapter, we asked the question whether genome-wide nucleosome 

positioning is remodeled during cardiac hypertrophy. We first generated nucleosome 

occupancy maps for both normal and hypertrophic cardiac myocytes. We then evaluated 

nucleosome positioning at cardiac TF binding sites, RNA polymerase II binding sites, 

enhancers, insulators, CpG islands, histone modification peaks and DHS. Finally, we 

75



calculated nucleosome repeat length based on the nucleosome positioning profiles at 

enhancer, insulators or DHS. Interestingly, we found substantial differences between 

experimentally-measured nucleosome positioning and that predicted based on primary 

DNA sequence. We also identified a number of rearrangements of nucleosome 

positioning in hypertrophic cardiac myocytes at different histone modification peaks. Our 

study concludes that many factors other than primary DNA sequence determine 

nucleosome positioning, and genome-wide nucleosome reorganization occurs during 

cardiac hypertrophy development. More studies will be needed to examine whether 

nucleosome rearrangement at histone modification peaks facilitates alterations of 

chromatin states and how nucleosome positioning and histone PTMs are co-regulated at 

individual loci. 

The discovery that Brahma-related gene 1 (Brg1), an ATPase subunit of 

Brg1/Brm-associated factor (BAF) chromatin remodeling complex, is involved in heart 

development
33

 and heart failure
34

 suggests that chromatin remodeling is an important 

mechanism of cardiac gene regulation. Unfortunately, no direct evidence was available to 

examine whether nucleosomes are globally repositioned in cardiovascular diseases. In 

fact, very few studies have looked at the global nucleosome positioning in disease states 

in any mammalian cell or tissue. Our study provides the first global view of nucleosome 

positioning in the heart, a fully differentiated organ, under normal and disease state, and 

reveals some basic principles for how nucleosomes coordinate with other chromatin 

features to affect phenotype.  

76



Based on the observation that the arrangement of DNA nucleotides affects DNA 

flexibility and bendability, several groups have proposed various models to predict 

nucleosome occupancy based on primary DNA sequences
19,35–37

. The success of these 

models confirmed the idea that DNA sequence is an important factor that regulates 

nucleosome formation. However, the fact that prediction results matched in vitro formed 

chromatin better than in vivo chromatin clearly suggests the existence of more complex 

mechanisms other than DNA sequence that determine nucleosome positioning. In this 

study, we found that a few of nucleosome-positioning patterns obtained through MNase-

Seq are consistent with prediction, while others are not (Table 1-1). Among the sixteen 

functional elements we examined in this chapter (Fig 1-4, Fig 1-5, Fig 1-6 & Fig 1-7, 

right panels), all of them showed a DNA sequence-based preference of nucleosome 

formation, while MNase-Seq results showed variance on nucleosome occupancy. Unlike 

transcription start sites which have an intrinsic nucleosome reduction due to DNA 

sequence
19

, our data suggests that the depletion of nucleosomes at several regulatory 

regions, such as CpG island and enhancers, is mainly due to multiple protein-DNA 

complexes competition, not primary sequence. 

The split peak pattern of nucleosome positioning profiles at GATA4, NKX2.5 and 

SRF is very interesting (Fig 1-4, A-C). This cannot be explained by two well positioned 

nucleosomes because the distance between peaks is too close (~70 bps). Remarkably, 

predicted nucleosome occupancy profiles are similar to, but not exactly like, 

experimental data. It is difficult to provide an explanation for this pattern solely based on 

nucleosome positioning data, but at least this shows that the nucleosome positioning at 
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some TFs is partially controlled by primary DNA sequence. Whether this is a specific 

pattern for cardiac TFs or a general pattern for TFs in other organs is unknown.  

Unlike model organisms with smaller genome, such as Arabidopsis thaliana
38

 or 

Caenorhabditis elegans
39

, mammals generally have a big genome with billions of 

nucleotides. This makes it difficult to measure the genome-wide nucleosome distribution 

accurately, due to the need to perform significantly more sequencing to precisely call 

mammalian nucleosome positions with base resolution. Chodavarapu, et al. reported a 

study of nucleosome positioning and DNA methylation using Arabidopsis
40

. In that 

study, they obtained a total number of 48.1 million MNase-Seq reads and generated a 68-

fold coverage of nucleosome space. Considering the size of mouse genome is about 20-

fold bigger than Arabidopsis genome, a total number of 960 million reads will be needed 

to achieve the same coverage in mice, which is very expensive to conduct. Using MNase-

Seq in mouse cardiac myocytes, we obtained ~25 million uniquely aligned reads for one 

mouse, which converts into a 1~2 -fold coverage. This coverage is not deep enough to do 

single gene/locus analysis. Nevertheless, it is still possible to study mammalian 

nucleosome positioning using MNase-Seq. Averaging nucleosome signals at one kind of 

regulatory element will cancel noise and enhance the real signal, resulting in a more 

smoothed distribution of nucleosome positioning profile. Nonetheless, this will require 

certain amount of regions to generate a well-smoothed curve. For example, the ChIP-Seq 

peak data we used to generate CTCF profile contained 33,172 CTCF binding sites. To 

effectively cancel noise and smooth nucleosome positioning profile, a large number of 
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protein-DNA binding sites as identified by ChIP-Seq is required, and this number can be 

lowered if the depth of MNase-Seq is high enough. 

The results of nucleosome spacing, or nucleosome repeat length, from different 

studies reveal heterogeneity in nucleosome organization, depending on cell type, 

chromatin state, gene activity and measurement method. Valouev, et al. reported 178-187 

bp at active promoter-associated regions, 190-195 within gene bodies and 205 in 

heterochromatin, in human CD4+ T cells
41

. Teif, el al. using a similar method but 

different cell types, reported 186 bp for mouse embryonic stem cells and 193bp for 

mouse neural progenitor cells, and observed an ~10 bp smaller value for CTCF binding 

sites at these cell types
26

. In this chapter, we reported 188 bp for enhancers, 186 bp for 

insulators, and 178 bp for DHS. It should be noted that short nucleosome spacing does 

not always indicate a highly compact chromatin. The binding of H1 to linker DNA may 

increase the nucleosome spacing and at the mean time form the higher order structure of 

heterochromatin
42–46

. Therefore, a smaller nucleosome repeat length at DHS indicates 

less H1 binding and more euchromatic structure at DHS. 

In our data, we did not observe any difference in nucleosome repeat length 

between TAC and normal mice at enhancer, insulator or DHS regions. However, this 

cannot rule out the possibility that some regions other than the above ones feature a 

difference of nucleosome repeat length. In fact, our previous study has shown that the 

ratio between linker histone H1 and core histone H4 decreased in hypertrophic heart
15

. If 

the hypothesis that the binding of H1 increases linker DNA length and forms higher order 

structure is correct, then in hypertrophic hearts we should be able to observe a decrease of 

79



linker DNA length. Due to the lack of cardiac H1 localization data, we cannot examine 

whether there is a difference of linker DNA length at H1 binding sites after hypertrophy. 

A combination of H1 ChIP-Seq study with our data will be able to answer this question.  
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Figure 1-1. Pressure overload-induced cardiac hypertrophy in mice. (A) 

Transverse aortic constriction (TAC) surgery was performed on mice as described in 

methods. (B) Increased afterload leads to left ventricular growth as measured by 

echocardiography. Left ventricular wall size, as measured by diastolic relative wall 

thickness (C), and left ventricular mass (D) significantly increase after one week of 

TAC, whereas left ventricular fractional shortening remains unchanged (E). 
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Figure 1-2. MNase digestion generates mononucleosomal DNA fragments. (A) 

Flowchart showing the experimental design of this study. Adult cardiac myocytes are 

isolated from whole heart, followed by Mnase digestion to remove linkder DNA 

between nucleosomes. DNA from mononucleosomes are then isolated. (B) DNA 

argarose gel showing the length of MNase digestion products. Lane M, DNA 

molecular weight ladder. Lane 1, genomic DNA. Lane 2, mononucleosomal DNA 

after MNase digestion. 
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Figure 1-3. Pressure overload induced alteration of nucleosome occupancy 

profiles in promoter regions. (A) Chromosome 1 is shown as an example to display 

the overall nucleosome positioning at the whole chromosome level. Normal and TAC 

mice are shown as green and red colors, respectively. GC percent and RefSeq gene 

tracks are shown at the bottom. Correlation between nucleosome positioning and GC 

percent, at the chromosome scale level, can be observed. (B) The promoter of b-MHC 

is shown as an example. Nucleosome scores at the promoter region are shown, along 

with the nucleosome position prediction based on primary DNA sequence. A diagram 

of nucleosome position is shown at the bottom panel.  
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Figure 1-4. Nucleosome positioning profiles at transcription factor binding sites. 

Averaged nucleosome positioning profiles at four cardiac transcription factors, 

including GATA4 (A), NKX2.5 (B), SRF(C) and TBX3 (D), are shown. Black, 

control. Red, TAC. X-axis, distance to transcription factor binding site (±3,000bp). 

Y-axis, averaged nucleosome score. Left panel, data experimentally obtained. Right 

panel, nucleosome occupancy prediction based on primary DNA sequences. 
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Figure 1-5. Nucleosome positioning profiles at chromosomal functional elements. 

Averaged nucleosome positioning profiles at active transcription regions, (RNA Pol II 

binding site, A), enhancers (p300 binding site, B), insulators (CTCF binding site, C) 

and CpG island(D), are shown. Black, control. Red, TAC. X-axis, distance to the 

center of the functional element (±3,000bp). Y-axis, averaged nucleosome score. 

Left panel, data experimentally obtained. Right panel, nucleosome occupancy 

prediction based on primary DNA sequences. 
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Figure 1-6. Nucleosome positioning profiles at histone modification peaks. 

Averaged nucleosome positioning profiles at histone modification peaks are shown. 

Black, control. Red, TAC. X-axis, distance to the center of histone modification 

peaks(±3,000bp). Y-axis, averaged nucleosome score. Left panel, data 

experimentally obtained. Right panel, nucleosome occupancy prediction based on 

primary DNA sequences. Nucleosome profiles at randomly chosen peaks are shown in 

H. 
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Figure 1-7. Nucleosome positioning profiles at DNaseI HS sites. Averaged 

nucleosome positioning profiles at DNaseI HS are shown. Profiles are plotted for the 

two replicates of DNaseI HS datasets. Black, control. Red, TAC. X-axis, distance to 

DNaseI HS site (±3,000bp). Y-axis, averaged nucleosome score. Left panel, data 

experimentally obtained. Right panel, nucleosome occupancy prediction based on 

primary DNA sequences 
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Figure 1-8. Nucleosome repeat length at enhancer (A, D), insulator (B, E) and 

DNaseI HS (C, F) regions. (A-C) Smoothed nucleosome positioning profiles at these 

three regions are shown. Black, control. Red, TAC. X-axis, distance to the center of 

these elements (±1,000 bp). Y-axis, averaged nucleosome score. (D-F) Linear 

regression fit of peak positions (y-axis) versus the nucleosome number (x-axis). The 

slope of trendline equals to the nucleosome repeat length. Due to the broad peak at the 

center of DNaseI HS, nucleosomes from the left or right side are calculated 

separately.  
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Figure 1-9. Nucleosome positioning profiles at the boundaries of LTR. Both 5’ 

ends (A-C) and 3’ ends (D-F) are shown. LTRs are classified based on the length. (A, 

D) 50~250bp. (B, E) 250~450bp. (C, F) > 450bp. Black, control. Red, TAC. X-axis, 

distance to the boundaries of LTR (±3,000 bp). Y-axis, averaged nucleosome score.  
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Chapter 2: High-Mobility Group Protein B2 is Essential in Regulating 

Normal Cardiac Gene Expression and Participates in Cardiac Hypertrophy 

A. Abstract 

Heart hypertrophy is a complex disease that involves differential expression of hundreds 

of genes. Unknown, however, are the highly coordinated chromatin remodeling events that must 

facilitate such genome-wide changes in gene expression. Chromatin architectural proteins such 

as the linker histone H1 and high-mobility group proteins have been shown to occupy specific 

regions in chromatin, but whether their location is static or dynamic is ucclear. To address this 

question, we examined the genome-wide distribution of HMGB2 in isolated cardiac myocytes 

with or without adrenergic receptor agonist stimulation and compare it with other cardiac related 

chromatin elements. We report a comprehensive map of HMGB2 binding in both normal and 

hypertrophic cardiac myocytes, and find that HMGB2 preferentially localizes to promoters, CpG 

islands, enhancers and transcription factor binding sites. Moreover, we find that upon 

hypertrophic stimulation, HMGB2 peaks move from regulatory elements to intergenic regions. 

These studies provide the first evidence for the fundamental mechanisms by which the chromatin 

structural protein HMGB2 facilitates global chromatin remodeling in heart hypertrophy. 

B. Introduction 

One significant difference between eukaryotes and prokaryotes is that in eukaryotes, 

DNA is organized into chromosomes and is contained within a nucleus. The formation of 

chromosomes provides an important gene regulation mechanism that is also known as epigenetic 

regulation. A chromosome is composed of DNA, protein and RNA, the latter two being the 
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major components of epigenetic regulatory machinery. To maintain the structure of 

chromosome, both histone proteins and nonhistone proteins work in a coordinative way to form 

euchromatin or heterochromatin, which consists of actively transcribed genes or inactive genes, 

respectively. 

High-Mobility Group Protein B2 (HMGB2), also known as high mobility group box 2, or 

HMG2
1
, is a highly abundant non-histone chromosomal structural protein expressed in many 

eukaryotes
2
. Despite the long history of study since its discovery in 1970s

3,4
, its function is still 

far from clear. Before the development of high-throughput sequencing technique, studies on 

HMGB2 mainly focused on its interaction with a few genomic loci. These studies demonstrated 

the roles of HMGB2 in nucleosome remodeling
5
, DNA double-strand break repair

6
, and 

enhancing transcription factor binding to DNA
7
. Based on the crystal structure studies of HMG 

box-DNA complex
8
, it is believed that HMGB proteins bind to the minor groove of DNA and 

bend DNA towards the major groove, stabilizing distorted DNA structure
9–12

. To further reveal 

the molecular role of HMGB2 under physiological conditions, a genome-wide binding study is 

necessary. Genome-wide distribution of another high-mobility group protein, named HMGN1, 

showed that it is not randomly distributed throughout the genome, but preferentially localizes to 

functional elements
13

. It remains unknown whether HMGB2 has a similar behavior. 

Using quantitative mass spectrometry, we previously found that the protein abundance of 

chromatin-associated HMGB2 is up-regulated in heart failure, and demonstrated that in isolated 

cardiac myocytes, interfering RNA-mediated HMGB2 knock down, but not HMGB1, can induce 

hypertrophic growth
14

. It has been known that chromatin remodeling is involved in 

cardiovascular development and disease
15,16

. Several histone modification enzymes and 

chromatin remodelers have been identified to explain the abnormal gene expression during heart 
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failure
17,18

. These molecules, however, are insufficient to explain the global changes of 

chromatin structure, which lead to pathological gene expression in disease. Using high-

throughput techniques, hundreds to thousands of genes have been shown to be dynamically 

regulated in different stages of heart failure development
19–23

. The disease-associated gene 

expression pattern cannot be explained by single transcription factor or signaling pathway, and 

genes with altered expression in disease are located across the whole genome without a clear 

chromosomal pattern. This indicates that genome-wide regulatory machinery is needed to 

regulate pathological gene expression. To test the hypothesis that chromosomal structural 

proteins are dynamically altered across the genome to coordinate gene expression during heart 

failure, and to address the general principle for how the entire genome is remodeled as a result of 

chromosomal architectural protein modulation, we used ChIP-Seq to identify the genome wide 

localization of HMGB2 in normal and hypertrophic cardiac myocytes. Our data reveal another 

layer of information on how chromatin is globally remodeled and provide important new insights 

into the molecular mechanism by which HMGB2 coordinates the overall protein-DNA 

interactions.  

C. Materials and Methods 

Neonatal rat ventricular myocytes 

Neonatal rat ventricular myocytes (NRVMs)
24

 were obtained by enzymatic dissociation 

from 1-day-old litters and plated in Dulbecco modified Eagle medium (Invitrogen, #11965) 

containing 1% penicillin, 1% streptomycin, 1% insulin-transferrin-sodium selenite supplement 

and 10% fetal bovine serum for the first 24 h after which the cells are cultured in serum-free 
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media. To induce hypertrophy, cells were treated with phenylephrine (PHE) (10M dissolved in 

phosphate-buffered saline) for 48 hours. 

Chromatin immunoprecipitation and sequencing 

Cells were cross-linked by adding formaldehyde to the culture media to a final 

concentration of 1% and were incubated at room temperature for 10 minutes, followed by adding 

glycine to a final concentration of 125 mM to the media to quench the cross-linking. Cells were 

scraped and pelleted in cold PBS, and resuspended in lysis buffer (50 mM HEPES pH 7.5, 150 

mM NaCl, 1 mM EDTA pH 8, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS, 

supplied with protease inhibitor cocktail tablet from Roche). Chromatin was sonicated into 

fragment size of 500bp, and diluted in RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 

mM EDTA, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS, supplied with protease inhibitor 

cocktail tablet). DNA-HMGB2 complexes from chromatin preparation were purified by 

incubating anti-HMGB2 antibody (ChIP Grade, ab67282, Abcam) at 4°C overnight, and ligating 

to protein A conjugated magnetic beads (Millipore, LSKMAGA10). After washing beads two 

times in Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA pH8, 150 mM NaCl, 20 mM 

Tris-HCl pH 8) and one time in high salt Wash Buffer (500 mM NaCl in Wash Buffer), DNA 

was eluted from beads by incubating beads in Elution Buffer (1% SDS, 100 mM NaHCO3) and 

rotating for 15 min, 30°C. DNA fragments were purified using phenol:chloroform extraction and 

ethanol precipitation. Sequencing adapters were ligated using the Illumina Paired-End sample 

prep kit, and sequenced on Illumina Genome Analyzer IIx in the paired-end sequencing mode. 

To confirm HMGB2 binding peaks identified from ChIP-Seq data, the 

immunoprecipitated DNA was amplified on the MyiQ
TM

 Real-Time PCR Detection System 
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(Bio-Rad). Primer sets used for ChIP-PCR are shown in Table 2-1. Results are reported as fold 

change normalized to IgG IP control. 

Bioinformatics 

Paired-end 100-bp Illumina reads were aligned to rat reference genome (rn4) using 

Bowtie
25

 (0.12.7), allowing up to two mismatches in the seed region (the first 28nt of one read) 

of alignment. HMGB2 binding peaks were called using MACS 1.4.1
26

, with a p-value cutoff at 

10
-5

 . Genome annotation tracks, including rat gene structure and CpG island positions, were 

downloaded from the UCSC Genome Browser. Promoter was defined as the region within 2kb 

upstream of transcription start site. 

DNA bendability scores 

DNA bendability score was calculated using the trinucleotide parameters as proposed by 

Brukner et al
27

. Rat genome was divided into 10bp bins. For each bin with the DNA sequence of 

          , the bending propensity was calculated as  

        (∑      

 

   

) 

where        represents the trinucleotide DNA bendability parameter for           . 

According to Brukner et al, a high score indicates bending towards the major groove. Bins with 

unknown nucleic acid residue were disregarded.  

Transcription factor binding sites 

The ENCODE project
28

 and many other high-throughput ChIP-Seq studies
29

 provide a 

high quality source of protein-DNA interaction datasets. However, most of these studies were 
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conducted in either human or mouse tissue samples; to date, these datasets also do not include 

HMGB2. To compare our rat data with other protein-DNA interaction data, we utilized the 

following method to overcome this cross-species problem. Binding peak coordinates for mouse 

heart p300
28

, CTCF (from human CD4+ T cells
30

, mouse ES
31

 and mouse heart tissue
28

), and 

other cardiac transcription factors
29

 were converted into rat genome (version rn4) using LiftOver 

from UCSC Genome Bioinformatics Site, with the parameter of –minMatch=0.85. Binding sites 

were then identified from converted DNA sequences using FIMO from the MEME Suite(version 

4.7.0)
32

. 

Microarray datasets 

Microarray data were obtained from two previously published studies
14,33

. Expression 

data before and after HMGB2 knock down were obtained from our previously published report
14

. 

Total RNA from either HMGB2 knock down or control NRVMs was analyzed using Illumina 

RatRef-12 Expression BeadChip. Expression data before and after PHE treatment were 

downloaded from Gene Expression Omnibus (Series GSE925)
33

, which was conducted on 

Affymetrix Rat Expression 230A Array. Probe annotation information was extracted from 

Ensembl database (version 69) using Biomart
34

. Probes mapped to multiple genes were removed. 

D. Results 

Genome wide distribution of HMGB2 identified by ChIP-Seq and validated by ChIP-PCR. 

Our HMGB2 ChIP-Seq data showed a genome-wide distribution of HMGB2 in isolated 

myocytes, without preferential localization to any given chromosome or chromosome-scale 

feagure (e.g. centromeres, telomeres) (Fig 2-1). Although it is believed that HMGB proteins bind 
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to DNA in a sequence-independent manner, this distribution in cardiac myocytes is neither 

uniform nor random. Peaks and valleys of HMGB2 ChIP-Seq intensity are clearly visible when 

plotting for each chromosome (Fig 2-1), indicating the preference of HMGB2 binding to certain 

regions. To confirm the ChIP-Seq signals, we chose 19 HMGB2 binding peaks that are located 

in promoters of genes whose expression is altered after HMGB2 knock down, and validated the 

binding events using anti-HMGB2 ChIP-qPCR for 18 of them.  

Genomic annotation of HMGB2 binding peak reveals its enrichment in promoters and CpG 

islands. 

Next, we examined the binding of HMGB2 to promoter, exon, intron and intergenic 

regions (Fig 2-3, A-C). HMGB2 regulates gene expression by directly interacting with 

nucleosomes or with other transcription factors
35,36

. This activity requires the binding of HMGB2 

to functional DNA elements. We found that promoter and exonic regions have a higher 

preference for HMGB2 binding compared with intergenic regions. In particular, using the whole 

genome annotation as the background (Fig 2-3, A), HMGB2 binding peaks have an 8.8-fold 

enrichment in promoters and a 4.6-fold enrichment in exons (Fig 2-3, B). These data decrease to 

5.2-fold and 3.6-fold, respectively (Fig 2-3, C), in PHE-induced hypertrophic cardiac myocytes. 

Given that many promoters are associated with CpG islands, the enrichment of HMGB2 

at promoters indicates that CpG islands may be another HMGB2-enriched regulatory regions. 

After comparing HMGB2 binding peaks with CpG island annotation, we found a 16-fold 

enrichment at CpG islands (Fig 2-3, E), confirming our prediction. Consistent with the 

observation of PHE-induced decrease at promoters, we observed a decrease of HMGB2 binding 

peaks in CpG islands, to 10.9-fold after PHE treatment (Fig 2-3, F). 
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CpG island associated promoters are targets of HMGB2. 

Given our previous study suggesting an enrichment of HMGB2 at CpG island and 

promoter regions, we asked the question what percent of CpG island associated promoters are 

targets of HMGB2. To answer this question, we first counted the number of genes in rat genome 

as well as genes with CpG island-associated promoters, and found that 49% of rat genes have 

CpG islands in their promoters (Fig 2-4, A). This ratio, however, increased dramatically to 89%, 

when only the genes bound by HMGB2 at their promoters were considered (Fig 2-4, 

A.      ⁄     ). In another word, this means that 89% HMGB2 targeted genes have CpG 

island promoters. Meanwhile, we did a similar calculation for other TFs and found that some TFs 

prefer CpG island-associated promoters while others do not (Supplementary Fig 2-1). We also 

show that almost half of the genes with CpG island associated promoters are targets of HMGB2 

(Fig 2-4 A, right,       ⁄      . 

Previous studies have indicated that CpG island associated promoters behave differently 

from non-CpG island associated promoters
37,38

. We then asked the question whether HMGB2 

targeted promoters have a different behavior. To assess the relationship between gene expression 

level and HMGB2 binding, we plotted the distribution of Illumina microarray probe signals 

measured in unstimulated NRVMs (Fig 2-4, B). Interestingly, we found that genes with HMGB2 

bound promoters have a high expression level comparing with average expression level for all 

genes examined in that microarray experiment. These genes also exhibit wider expression 

variance. Since HMGB2 most likely targets CpG island promoters, this observation may be the 

effect of CpG islands located at promoters. To our surprise, we found that genes with CpG island 

promoters, but not HMGB2 binding, show no difference with the average of the whole genome. 

It seems that genes whose promoters are both HMGB2 targeted and CpG island associated, but 
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not those promoters with either feature alone, have a higher expression level than the overall 

genome.  

HMGB2 knock down or PHE treatment induces hypertrophic growth through different 

molecular mechanisms. 

Our previous study has shown that loss of HMGB2 in isolated cardiac myocytes can 

induce hypertrophic growth
14

. To examine the role of HMGB2 in gene regulation, we conducted 

siRNA knock down to remove HMGB2 in isolated cardiac myocytes, and measured the changes 

of transcriptome using expression microarray. Meanwhile, we compared our HMGB2 knock 

down data with the published PHE-treated microarray data. Surprisingly, we found that these 

two types of hypertrophy remodel the myocyte transcriptome in distinct patterns (Fig 2-5, 

A,D&F). To tease out the effect of HMGB2 on gene regulation, we plotted the genes that are not 

only regulated by HMGB2 knock down or PHE treatment, but also bound by HMGB2 at their 

promoters (Fig 2-5, B,C&E). It is clear that the remove of HMGB2 from promoters, either 

through PHE treatment (Fig 2-5, B) or siRNA interference (Fig 2-5, E), results in both up-

regulation and down-regulation of gene expression. Therefore, unlike transcription factors, 

which mainly facilitate gene expression, the effect of HMGB2 at gene promoters depends on the 

local chromatin environment.  

HMGB2 binding profiles at chromosomal structural proteins and cardiac transcription factor 

binding sites. 

HMGB family proteins have been known to interact with other chromatin-associated 

proteins, including linker histone H1
39

 , estrogen receptor
40

, Sterol regulatory element-binding 

protein
41

 and transcription factor Oct4
42

 to facilitate their binding to DNA. To study the 
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prospective effects of HMGB2 in facilitating chromatin remodeling and cardiac transcription 

factor binding, we profiled the HMGB2 binding intensity at different regulatory protein binding 

sites.  

The first regulatory element that we wanted to study is enhancer. In this study, we chose 

p300 as the marker for enhancers, which was also used by other groups to identify heart 

enhancers in both human
43

 and mouse
44

. Because there is no published genome-wide p300 

binding data from rat tissue, we converted the mouse binding data into rat genome based on the 

sequence homology. After normalizing to the average genome-wide read count, we found that 

there is a 3-fold enrichment of HMGB2 binding intensity at the p300 regions, and this 

enrichment is not altered by PHE treatment (Fig 2-6, A). To rule out the possibility that this 

enrichment is due to the enhanced binding of HMGB2 at promoters, we plotted HMGB2 binding 

profile at p300 binding peaks far away from any transcription start sites, and still found a 2.5-

fold enrichment (Fig 2-6, B). 

Next, we examined the pattern of HMGB2 at the binding site of the zinc finger protein 

CCCTC-binding factor (CTCF). CTCF is a conserved zinc finger protein known to be involved 

in transcriptional insulation, X chromosome inactivation and gene activation/repression
45

. Again, 

we converted mouse and human CTCF binding data to rat genome before comparison. To rule 

out the possible tissue-specific or species-specific bias, we studied three datasets from human 

CD4+ T cells (Fig 2-6, C), mouse heart tissue (Fig 2-6, D) and mouse embryonic stem cells (Fig 

2-6, E). Interestingly, we observed a similar colocalization pattern of HMGB2 among these three 

datasets, and this pattern remained the same after PHE treatment. 

To further test the role of HMGB2 in regulating cardiac gene expression, we examined 

four cardiac transcription factors, including Myocyte-specific enhancer factor 2A (MEF2A) (Fig 
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2-7, A), NK2 transcription factor-related, locus 5 (NKX2-5) (Fig 2-7, B), GATA-binding protein 

4 (GATA4) (Fig 2-7, C) and serum response factor (SRF) (Fig 2-7, D). It was reported that the 

co-occupancy of these transcription factors can identify a distinct set of enhancers and 

consequently direct cardiac gene expression in a collaborative way
29

. We observed 2.5-fold, 1.6-

fold, and 2-fold enrichment of HMGB2 at MEF2A, NKX2.5 and GATA4 binding sites, 

respectively, and a moderate decrease of HMGB2 binding at the SRF binding regions. Because 

our transcription factor binding data were converted from the mouse genome, it is possible that 

this observation was caused by conservation between mouse and rat. To rule out this possibility, 

we randomly chose similar amount of peaks from mouse genome and converted them into rat, 

and observed no enrichment of HMGB2. This demonstrated that the binding patterns in Figure 2-

6 and 2-7 are not artifacts induced by cross-species conversion. 

DNA bending propensity facilitates HMGB2 binding. 

If the binding position of HMGB2 affects global gene expression, then its location should 

be strictly regulated. However, HMGB2 has no known DNA binding consensus motif. 

Therefore, one question remaining unanswered is how HMGB2 finds the right place to bind. 

HMGB2 has been known to bend DNA by interacting with the minor grooves of DNA 

backbone
11,12

. To examine whether HMGB2 has a high affinity to DNA regions 

thermodynamically favoring bending, we calculated the bendability of DNA as measured by 

DNase I digestion
27

, and compared the binding affinity of HMGB2 with DNA bendability within 

each 500Kbp bin (Fig 2-8, A&B). We found a positive correlation between HMGB2 binding and 

DNA bendability. This observation provides some clues as to how HMGB2 finds its place to 

bind.  
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To further assess the relationship between HMGB2 binding and DNA bending 

propensity, we generate the averaged DNA bendability score profiles for HMGB2 binding peaks. 

Comparing with the randomly chosen peaks, an increase of DNA bendability at HMGB2 binding 

peaks is clearly observed (Fig 2-8 C, blue line). In comparison, after PHE treatment, HMGB2 

molecules move to regions with less flexible regions, as indicated by the lower DNA bendability 

score (Fig 2-8 C, red line). Meanwhile, we calculated the DNA bendability score for mouse 

cardiac TFs and CTCF and showed that CTCF and GATA4 favor more bendable regions while 

NKX2.5 and MEF2A favor less bendable regions (Supplementary Fig 2-2). 

E. Discussion 

In this chapter, we asked the question what is the role of HMGB2 to maintain normal 

cardiac gene expression and how is this changed during cardiac hypertrophy. To answer this 

question, we started with the HMGB2 ChIP-Seq experiment to measure genome-wide HMGB2 

binding in normal and hypertrophic cardiac myocytes, and found that HMGB2 binding is 

enriched in functional elements including promoters and CpG islands. Because both HMGB2 

knock-down and PHE treatment can induce hypertrophic growth, we decided to compare the 

alterations of gene expression between HMGB2 knock-down and PHE treatment using 

expression microarrays, and found that the hypertrophy-related gene expression pattern upon 

HMGB2 knock-down is different from the one after PHE treatment (Fig 2-5). This also indicates 

the existence of multiple pathways that can lead to hypertrophic growth of cardiac myocytes. 

Further study revealed that HMGB2 co-localizes with many other chromosomal protein binding 

sites including p300 and CTCF. Interestingly, we found that HMGB2 binding profiles are 

different at the binding sites of four cardiac transcription factors, MEF2A, NKX2.5, GATA4 and 
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SRF. More specifically, HMGB2 localization is higher at MEF2A binding sites, indicating that 

HMGB2 may be involved in facilitating the functioning of MEF2A. Finally, we calculated the 

DNA bendability score based on the primary sequence of the rat genome and correlated it with 

HMGB2 binding intensity. Consistent with the understanding that HMGB2 bends DNA toward 

DNA major groove, we found a positive correlation between HMGB2 binding and DNA bending 

propensity. Surprisingly, PHE treatment in NRVMs induced the relocation of HMGB2 to less 

bendable intergenic regions. Taken together, our data conclude that HMGB2 is required for 

maintaining the normal cardiac gene expression pattern, and its binding to cardiac chromatin is 

dynamically altered during hypertrophic growth. 

HMGB2 preferentially binds to CpG islands and CpG island promoters. The 

promoter of a protein-coding gene is the regulatory region located upstream of transcription start 

site. Based on the frequency of CpG dinucleotide, promoters can be classified into CpG island 

associated promoter and non-CpG island promoter. Strikingly, we found that half of CpG island 

promoters are bound by HMGB2, while the overall genome has only 28% of promoters 

associated with HMGB2 binding peaks (Fig 2-4, A). In mammalian cells, CpG island associated 

promoters usually have a low level of DNA methylation. However, under pathological 

conditions CpG islands can be hypermethylated
46

, which will disrupt the binding of chromatin 

binding proteins such as CTCF
47

. It is unclear whether DNA methylation prevents HMGB2 

binding, and whether binding of HMGB2 to CpG islands affects DNA methylation, which can be 

tested by anti-HMGB2 ChIP followed by bisulfite sequencing, ChIP-chop, or confocal 

immunofluorescent co-staining microscopy. 

Biophysical characterization of HMGB2 reveals its role in chromatin remodeling. 

Early X-ray crystallographic studies on DNA/HMG-domain complex displayed the interaction 
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between HMG box and widened DNA minor groove
8
. Later on, many groups studied the kinetics 

of HMGB2-DNA interaction using optical tweezers
48,49

, showing that the binding of HMGB2 to 

dsDNA is able to generate sharp DNA bends with an angle of 70~100°. The binding of HMGB2 

to the minor groove of DNA -- which contributes to its apparent lack of a strict binding 

consensus motif -- makes it an ideal molecule for global chromatin remodeling. We found that 

HMGB2 prefers binding DNA regions thermodynamically favoring bending toward major 

groove (Fig 2-8), confirming that the behavior of HMGB2 predicted from biophysical properties 

is manifest under physiological conditions. This observation also provides another theory on how 

HMGB2 localizes itself to the right chromatin position. Fluorescent microscopy examination has 

shown the nucleus location of HMGB2-EGFP in interphase cells
50

, forming an ocean of HMGB2 

molecules submerging DNA molecules. Based on the theory of dynamic chemical equilibrium, 

DNA regions that are either intrinsically favoring bending, or bended by protein-DNA 

interactions, will have a higher chance to become HMGB2 targets. HMGB2, together with other 

chromosomal structural proteins, maintains chromatin confirmation and regulates gene 

expression. 

HMGB2 is a versatile regulator of multiple DNA-protein interactions. HMGB proteins 

orchestrate protein-DNA interaction through numerous ways including direct interacting with 

both DNA and transcription factors
51

, binding to protein but not DNA
7
, and/or facilitating 

nucleosome sliding
52

. HMGB2 binding profiles at different transcription factor binding sites (Fig 

2-6 & 2-7) suggests that HMGB2 mainly facilitates the binding of chromatin structural proteins 

(p300 & CTCF) as well as some, but not all transcription factors (in the case of the myocyte, 

MEF2A but not SRF). This observation, however, should not be interpreted as demonstrating co-

localization of HMGB2 with other proteins. In fact, ternary complexes with HMGB-protein-
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DNA were not detected in most cases, with the exception of TBP
12

. Instead, it is likely that 

HMGB2 assists the binding of other proteins secondarily through its primary role in sculpting 

higher-order chromatin structure and enhancing the DNA structural flexibility, which opens the 

binding window for other proteins, without simultaneous direct interaction with both protein and 

DNA at a given locus (Fig 2-9, model 2). This is different from many transcription factors or co-

factors which, when initiating gene transcription, form a protein complex and co-occupy the 

same site. Moreover, HMGB2 may compete with other proteins and repress gene expression. 

The bending toward major groove induced by HMGB2 may impede the binding of proteins that 

recognize DNA major groove. The high-order chromatin structure form by HMGB2 binding may 

also suppress DNA-protein binding. An in vitro study using different concentrations of HMGB2 

found that the protein binds to DNA in a flexible hinge model at low concentration, but forms an 

irreversible filament at high concentration
48

. Whether both modes exist under physiological 

conditions is unknown, but this information indicates that HMGB2 may have distinct functions 

depending on its concentration within nucleus. This may also explain why increased amount of 

HMGB2 in pressure overload-induced cardiac hypertrophy
14

 failed to protect cells from the 

hypertrophic growth. More than enough HMGB2 in nucleus may trigger malicious events that 

lead to abnormal cell growth, resulting in a different gene expression pattern as HMGB2 knock 

down (Fig 2-5). 

The pathophysiological role of HMGB2 in different diseases indicates its involvement 

in cell growth. Many clinical oncology studies have shown that the level of HMGB2 is up-

regulated in cancer cells, including hepatocellular carcinoma
53

, squamous cell carcinoma
54

, 

bladder carcinoma
55

 and glioblastoma
56

. Tumor cells lacking HMGB2 are more sensitive to 

chemotherapy drugs
55–57

, while overexpression of HMGB2 activates antiapoptotic pathways
53,54

. 
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Moreover, studies using isolated cells from gene knockout mice showed that the lack of HMGB2 

can result in impaired development of neural stem cells
58

 and mesenchymal stem cell 

differentiation
59

. These studies indicate that HMGB2 promotes cell growth by up-regulating cell 

cycle-related genes and down-regulating apoptosis-related genes. A detailed study in a cell line 

showed that HMGB2 expression increases markedly after S phase and reaches maximum at G2 

phase, and the progression of G1 to S phase is repressed by anti-HMGB2 antisense RNA
60

. It is 

very likely that HMGB2 serves as a checkpoint for cell proliferation, and its misregulation could 

result in a variety of diseases including cancer. Cardiovascular diseases are different from 

cancer. Nevertheless, up-regulation of some proto-oncogenes such as c-fox and c-myc  was 

reported as part of the fetal gene reprogramming in adult heart failure
61

. It has also been 

proposed that inhibition of Myc is a potential therapeutic for hypertrophic cardiomyopathy
62

. 

Therefore, it will be interesting to investigate in preclinical models whether HMGB2 has a 

similar effect in hypertrophic cardiac myocytes as in tumor cells. 
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Figure 2-1. Genome-wide distribution of HMGB2. Rat genome is divided into 

500Kbp bins. HMGB2 binding intensity, i.e. the mean number of HMGB2 ChIP-Seq 

reads, is plotted for both control NRVMs (black) and PHE treated NRVMs (red). 

Chromosome names are labeled on top of each panel, followed by the median 

intensity of control and PHE treated myocytes, respectively, for each chromosome. 

Chromosome X is removed. 
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Figure 2-2. HMGB2 binding distribution along the genome. ChIP analysis 

showing binding to 18 HMGB2 positive sites identified by ChIP-seq. Relative 

enrichment is quantified by real-time PCR with the indicated primer sets. Data are 

normalized against the IgG negative enrichment. Errors bars represent s.d. of at least 

3 independent experiments. (Dr. Manuel Rosa Garrido & Ricardo Gray) Gene 

expression fold changes, as measured by microarray after HMGB2 knock-down, are 

shown as the line-plot.  
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A B C 

D E F 

Figure 2-3. Annotation of HMGB2 binding peaks. HMGB2 binding peaks as 

identified by MACS are annotated based on its location on promoter, exon, intron or 

intergenic regions (A-C), or CpG island, island shore or far from CpG island (D-F). A 

& D, annotation of rat reference genome (rn4). B & E, annotation of HMGB2 binding 

peaks from control cardiac myocytes. C & F, annotation of HMGB2 binding peaks 

from ISO-treated cardiac myocytes. Promoter, regions within 2kb upstream of 

transcription start site. CpG island shore, regions within 2kb flanking CpG island. 
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Figure 2-4. Binding of HMGB2 to CpG island associated promoters. (A) Number 

of genes bound by HMGB2 and/or overlapped with CpG island. Genes are separated 

based on whether their promoters overlap with CpG island. Left, the whole rat 

genome. Right, genes with CpG island associated promoters. Red, genes with 

HMGB2 binding in their promoters. (B) Box plot showing microarray probe signal 

distribution for each group of genes. Expression data are from NRVMs without PHE 

stimulation. Genes are clustered in the same way as panel A.*, p<10-5. †, p=0.23. 
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A C B 

D F E 

Figure 2-5. Distribution of genes affected by PHE treatment or HMGB2 knock 

down. (A) Genomic location of genes affected by PHE treatment in NRVMs. Gene 

expression microarray data are downloaded from Gene Expression Omnibus using the 

following accession IDs: unstimulated, GSM13869; PHE treated, GSM13870. Subset 

of these genes whose promoters featuring loss of HMGB2 binding (B), or gain of 

HMGB2 (C) after PHE treatment, are shown. (D) Genomic location pattern of genes 

affected by HMGB2 knock down in NRVMs. (E) Genes affected by HMGB2 knock 

down and occupied by HMGB2 at promoter before stimulation. Red, up-regulated 

genes after either PHE or HMGB2 siRNA treatment. Green, down-regulated genes. 

(F) Venn diagram showing the overlap of genes affected by PHE treatment or 

HMGB2 siRNA treatment. 
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A 

C 

B 

D E 

Figure 2-6. Illustration of HMGB2 binding enrichment at p300 binding 

enhancers and CTCF binding sites. Averaged HMGB2 read counts, after 

normalization, were plotted around the binding sites of p300 (A,B) and CTCF (C-E). 

Genome wide p300 binding sites (A), as well as distal binding sites (B), i.e. more than 

2.5kb far away from any transcription start sites, are shown. CTCF binding sites as 

identified from human CD4+ T cells (C), mouse heart tissure (D), and mouse 

embryonic stem cells (E) are also shown. x-axis, relative distance to binding site. y-

axis, scaled density of HMGB2 ChIP-Seq reads. Dark blue, reads from unstimulated 

NRVMs. Red, reads from PHE treated NRVMs. 
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A C B 

D E 

Figure 2-7. HMGB2 binding profiles in cardiac transcription factor binding 

sites. Averaged HMGB2 read counts, after normalization, were plotted around the 

binding sites of MEF2A (A), NKX2.5 (B), GATA4 (C) and SRF (D). To rule out the 

effects of cross-species conversion, regions from mouse genome were randomly 

chosen and converted into rat genome. This conversion generates a flat HMGB2 

binding profile (E). x-axis, relative distance to binding site. y-axis, scaled density of 

HMGB2 ChIP-Seq reads. Dark blue, reads from unstimulated NRVMs. Red, reads 

from PHE treated NRVMs. 
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A B 

C D 

Figure 2-8. HMGB2 binding intensity versus DNA bending propensity. (A,B) 

Each point represents one 500Kbp bin of rat genome. HMGB2 signals from both 

control (A) and PHE-treated (B) NRVMs are shown. x-axis, normalized HMGB2 

ChIP-Seq read counts. y-axis, averaged DNA bendability scores. Red line represents 

the linear trend. The positive slope of the trend line indicates the positive correlation 

between HMGB2 binding intensity and the DNA bending propensity toward major 

groove. (C) DNA bendability is profiled near HMGB2 bind peaks. x-axis, distance 

from HMGB2 binding peak represented as the zero point. y-axis, averaged DNA 

bendability score. (D) Diagram showing that HMGB2 interacts with DNA through the 

minor groove, and bends DNA toward the major groove. HMGB2 may search locally 

for the place with a higher DNA bending propensity, i.e. thermodynamically favoring 

bending toward major groove, to find the place to bind. 
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Model 1 

Model 2 

HMGB2 TF DNA 

Figure 2-9. Diagrammatic figure showing models of how HMGB2 facilitates 

transcription factor binding. Two models are proposed to explain how HMGB2 

facilitates transcription factor binding by altering DNA conformation. Each circle 

represents one cell within a population. In model one, HMGB2 and TF bind to the 

same position simultaneously. In model two, HMGB2 stabilizes the structure of 

bended DNA to enable TF binding, but does not co-localize with TF.  
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Supplementary Figure 2-1. Preference of transcription factors for CpG island 

promoters. Percentage is calculated as the ratio between the counts of TF-bound CpG 

island-associated promoters to the counts of TF-bound promters. 100% means all TF-

bound promoters are associated with CpG islands, while 0% means none of the TF-

bound promoters are CpG island-associated.  Dotted line represents the percentage of 

CpG island-associated promoters as a fraction of the whole genome. Dashed line 

represents that percentage (89%) of HMGB2 associated promoters as calculated from 

figure 2-4. (A) Data from human B-lymphocyte cell line GM12878. (B) Data from 

mouse B-lymphoma cell line CH12. ENCODE ChIP-Seq Peak files used in this 

analysis are included in Supplementary Table 2-1. 
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Supplementary Figure 2-2. Bendability scores for cardiac transcription factors 

and CTCF. DNA bendability scores are profiled near cardiac TFs (A) and CTCF (B) 

bind peaks. Same as figure 2-8 (C). x-axis, distance (bp) from binding peak 

represented as the zero point. y-axis, averaged DNA bendability score.  
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Chapter 3: The Role of DNA Methylation in Cardiac Chromatin Structure 

and in the Susceptibility to Heart Failure 

A. Abstract 

DNA methylation is an epigenetic mechanism that controls gene expression. To 

determine how DNA methylation participates in the development of heart failure, we measured 

the DNA methylome in healthy and hypertrophic mouse hearts using reduced representational 

bisulfite sequencing (RRBS). To mimic heart failure, Isoproterenol (ISO) minipumps were 

implanted into two mouse strains with opposite phenotypes: BUB/BnJ, which is resistant to ISO-

induced hypertrophy/heart failure, and BALB/cJ, which is susceptible. Contrary to the dogma of 

DNA methylation being a stable modification, we observed noteworthy ISO-induced 

methylation differences in genes related to heart diseases. Interestingly, the DNA methylome of 

the two mouse strains respond differently to ISO treatment. We selected the top 15,000 DNA 

fragments with high variations and carried out an unbiased weighted gene correlation network 

analysis (WGCNA). We found that CpGs can be clustered into modules based on their behavior 

after ISO treatment and these modules in turn correlate with the localization of different 

epigenetic marks. Our data demonstrate global changes in DNA methylation in the diseased adult 

heart and reveal networks of modified CpG loci that may be associated with heart failure 

development. 
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B. Introduction 

DNA methylation is a covalent modification that adds a methyl group to the 5’ carbon of 

cytosine nucleotides
1
. Extensive studies have shown that DNA methylation is an important 

epigenetic modification that regulates chromatin structure and gene expression. The deregulation 

of DNA methylation has been linked to many diseases including different types of cancers
2–6

. 

Traditionally, DNA methylation is thought to be a marker of heterochromatin because condensed 

chromatin has a higher level of DNA methylation, as observed during X-chromosome 

inactivation, for example. Conversely, in cancer cells, chromatin is often globally 

hypomethylated, which is believed to be a cause of oncogenesis
2
. Unlike other epigenetic marks, 

DNA methylation has long been considered a stable modification of DNA and expected to 

remain unchanged throughout the life of the fully differentiated somatic cell, but this idea has 

received many challenges recently. 

Recent studies using human samples have indicated the pathological changes of DNA 

methylation in heart diseases
7–10

. These studies, however, cannot provide a comprehensive 

analysis of DNA methylation alteration in a case-control fashion, and do not fully establish the 

causal relationship between DNA methylation and disease development. Meanwhile, most of 

these studies do not give single base resolution for the whole genome. To solve this problem and 

provide a clear map on how DNA methylation is altered in heart disease, we used animal models 

to better understand this feature of chromatin. With the recent development of bisulfite high-

throughput sequencing, we are able to study the genome-wide DNA methylation in any tissues or 

cell types of interest.  
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Attempts to study alterations in cardiac DNA methylation in human dilated 

cardiomyopathy did not identify global DNA methylation pattern that is specific to the heart and 

explains the actions of DNA methylation in this organ
9,10

. Most of these studies, although 

conducted using genome-wide techniques such as microarray or sequencing methods, only 

identified a few loci with altered DNA methylation. Importantly, this contradicts the fact that 

heart diseases involve dozens of genes and molecular pathways. Moreover, these studies did not 

examine the relationship between DNA methylation and other chromatin modifications due to 

limited availability of epigenetic data from human samples 

In this study, we aimed to investigate DNA methylation in heart failure by: i) measuring 

the genome-wide DNA methylation pattern in both healthy and failing hearts using high 

resolution (single base specificity) and quantitatively rigorous next generation DNA sequencing, 

ii) comparing alterations in DNA methylation between two mouse strains with different 

sensitivity to heart failure, iii) understanding the role of differential methylation in phenotype by 

analyzing the annotations of the nearby or associated genes, and iv) studying the crosstalk 

between DNA methylation and other epigenetic marks using systems approach. 

C. Materials and Methods 

Mice 

Adult female BALB/cJ or BUB/BnJ mice aged 8-10 weeks were obtained from Jackson 

Laboratories (Bar Harbor, ME). All protocols involving animals were approved by the UCLA 

Animal Research Committee. Mice were housed in pathogen-free conditions according to NIH 

guidelines.  

136



 

 

Isoproterenol treatment 

The treatment protocol was adapted from the Hybrid Mouse Diversity Panel
11

. Briefly, 

mice were implanted with an Alzet (Cupertino, CA) Micro-Osmotic Pump (Model 1004) filled 

with 420 g/g body weight of Isoproterenol to provide a constant supply of 20 g/g (body 

weight)/day of ISO. Mice were monitored by echocardiography before surgery and at days 7, 14 

and 21 after surgery. Mice were sacrificed at day 21 after surgery and left ventricles were 

harvested for further analysis.  

Genomic DNA extraction 

Tissues were cut into small pieces, put in a tube with 0.7mL Extraction Buffer (50 mM 

Tris-Cl pH 8.0, 50 mM EDTA, 100 mM NaCl, 0.5% SDS, 0.5 mg/mL Proteinase K) and 

incubated at 55°C overnight. DNA was extracted using Phenol:Chloroform, followed by ethanol 

precipitation, and dissolved in 150 L TE buffer (10 mM Tris-Cl pH 8.0, 0.5 mM EDTA).  

Bisulfite conversion for reduced representational sequencing 

The RRBS method was adapted from other studies
12,13

. Genomic DNA was digested with 

MspI overnight at 37°C and purified using Phenol:Chloroform as described before. DNA 

fragments were end repaired using Klenow DNA polymerase. An excess amount of dATP was 

added to provide sufficient 5’ adenosine overhangs. Illumina Genome Analyzer adapters 

containing methylated cytosines instead of unmethylated cytosines were annealed and ligated to 

Klenow treated DNA fragments, and purified by Phenol:Chloroform extraction. Size selection of 

adapter-ligated fragments was conducted through agarose gel purification. To select the 

fragments with the size of 40-280 bp, adapter-ligated fragments with the size of 160-400 bp were 
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excised and purified. The EpiTect system from Qiagen was used for bisulfite treatment to 

convert unmethylated C to U, according to the provided protocol. The final library was built by 

large-scale PCR amplification using Pfu Turbo Cx Hotstart DNA Polymerase and 1.1/2.1 

Illumina Primers, and cleaned up by AMPure magnetic beads.  

Illumina sequencing and alignment 

The RRBS library sequencing and alignment protocol was adapted from our 

collaborators
12

. Briefly, 100-base Illumina single-end sequencing reads were generated from 

previously prepared RRBS libraries using Solexa sequencing technology (Illumina HiSeq 2000 

sequencers). The reads were aligned to the reference mouse genome (mm9) using BS-Seeker2, 

allowing up to ten mismatches, and methylation call was conducted by the script provided with 

BS-Seeker2. The methylation level for each covered cytosine is calculated as the number of 

methylated reads divided by the total number of reads. To achieve an accurate estimate of 

methylation level, we only included cytosines that are covered by at least ten reads. Cytosines 

overlapping with known mouse SNPs were removed. Because the methylation occurs almost 

exclusively in the CpG context, we focused only on those cytosines in CpG dinucleotides. 

Identification of differentially methylated regions 

To identify differentially methylated fragments (DMF), we applied the two-sided 

unpaired t-test to each fragment to calculate the t-score and p-value between two groups of 

comparison. Each fragment was defined as the in silico MspI digestion product of mouse 

reference genome with length ranging from 50 bp to 300 bp, which is wider than the size range 

of RRBS gel selection to compensate errors from gel running and cutting. The unpaired two-
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sided t-test was conducted using the function t.test in R 3.0.1. Each CpG within one fragment 

was considered as an independent measurement and the methylation level for an entire fragment 

is defined as the mean methylation level for all CpG sites within that fragment. Fragments with a 

difference of methylation larger than 5% and p value of less than 10
-3

 were considered as DMFs. 

This threshold gave us a reasonable amount of DMFs. 

Co-methylation network analysis 

The weighted Gene Co-Expression Network Analysis (WGCNA) package was used for 

co-methylation network analysis
14

, following the standard protocol provided online
15

. To 

preserve the information of both correlation and anti-correlation of co-methylation, the similarity 

of methylation profiles between two fragments is defined as     
          

 
, where i and j 

represent the methylation levels of two DNA fragments. The top 15,000 DNA fragments with the 

highest methylation variation among samples were chosen for co-methylation network 

construction. To achieve a scale-free topology, a soft-thresholding power of 10 was chosen, 

resulting in a R
2
 of 0.8 as measured by the scale-free topology model linear regression

14
. This R

2
 

value meets the recommendation from the authors of WGCNA package
14

. In total, we generated 

82 clusters with the smallest cluster having 30 DNA fragments. 

Epigenetic mark enrichment in DNA methylation modules 

To call an overlap between one DNA fragment and an epigenetic mark, we required at 

least 50bp overlap between one DNA fragment and the peak of one epigenetic mark. A binomial 

test P-value was calculated to assess the significance of overlap between one track of epigenetic 

mark and one DNA methylation. The background was defined as the fraction of epigenetic mark 
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associated DNA fragments within all 15K DNA fragments used for the DNA co-methylation 

network analysis. To show the gradient of P values on a heatmap, a ceiling of six was set for the 

–log10 of P value to minimize the effects of extreme P values on heatmap color code, but this 

does not introduce dramatic difference to the clustering pattern. 

Bioinformatics 

The mouse reference genome (mm9) was downloaded from UCSC Genome 

Bioinformatics (ftp://hgdownload.cse.ucsc.edu/). The UCSC Genes track from UCSC Genome 

Browser was used as the genome annotation. The CpG islands (cpgIslandExt) track from UCSC 

Genome Browser was used as CpG island annotation. Functional analysis of cellular pathways 

was performed using DAVID Bioinformatics Resources 6.7
16

. ENCODE data of ChIP-Seq peaks 

for histone modifications and other epigenetic marks were downloaded from the ENCODE 

Project at UCSC
17

. 

D. Results 

Genomic annotation of CpG sites covered by RRBS libraries 

A brief report on sequencing depth and alignment is provided in table 3-1. Given that the 

size of the mouse genome is ~2.65 billion bp, ~265 million uniquely aligned 100-bp reads would 

be needed to achieve a ten-fold coverage of the mouse genome using traditional shotgun 

sequencing. To reduce the data size while maintaining data quality, we use RRBS instead of 

shotgun sequencing. Although RRBS cannot cover every CpG within the genome, this method 

provides us a very high coverage on the CpGs within RRBS libraries (Table 3-1). 
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RRBS uses MspI to digest genomic DNA into fragments during library preparation. MspI 

is a restriction endonuclease that recognizes the CCGG motif and generates a -CGG sticky end. 

This introduces a fragment selection bias towards CpG rich regions. To quantify this bias, we 

compared the annotation of CpG sites covered by our RRBS libraries with the total CpGs within 

the reference genome. Figure 3-1 shows the location of CpGs covered by our RRBS libraries 

(Fig 3-1, C & F), comparing with the genome background (Fig 3-1, A & D) and all CpG 

dinucleotides (Fig 3-1, B & E). This data indicate that RRBS provides good coverage for 

promoters and exons, as well as CpG islands and island shores, and that this method is useful for 

studying the methylation of gene-related and/or CpG island-related CpG dinucleotides.  

The RRBS profile of the mouse heart shows a bimodal distribution of DNA methylation 

(Fig 3-2A), with 42% CpGs poorly methylated (methylation level < 5%) and 29% CpGs highly 

methylated (methylation level > 80%). This distribution may be different from other cells/tissues. 

For example, Jiang, et al. reported a global hypermethylation in oocytes and sperms from 

Zebrafish
18

. Further analysis shows that almost all CpGs located within CpG islands (Fig 3-2B, 

upper panel) and most CpGs close to CpG islands (Fig 3-2B, middle panel) are hypomethylated, 

while most CpGs outside of any CpG islands (“lone” CpGs) are hypermethylated (Fig 3-2B, 

lower panel). On the other hand, more than 90% of hypomethylated CpGs are located in CpG 

islands or island shores (Fig 3-2C, panel d), while most hypermethylated CpGs are located far 

away from CpG islands (Fig 3-2C, panel f). 
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Differential methylation induced by ISO treatment 

To study how cardiac DNA methylation is altered in heart failure, we used ISO micro-

osmotic pumps to induce heart failure in mice. After three-week treatment, BALB/cJ mice 

showed a severe phenotype of dilated cardiomyopathy, while BUB/BnJ mice showed only a mild 

compensation (Fig 3-3).  

Using a t-test as a statistical tool, we found that while the majority of MspI digested 

fragments had no substantial methylation difference, some regions showed a significant 

alteration after ISO treatment (Fig 3-4 A&B). To further show that our statistical tool gave us 

reliable results, we plotted the distribution of P values for each DNA fragment (Fig 3-4 C-E). 

The shape of the overall P value distribution for biological replicate comparison, i.e. under null 

hypothesis (Fig 3-4 E), is similar with the ones for case-control comparison (Fig 3-4 C&D), with 

the exception that there are more DNA fragments with low P value in the latter two. This 

indicates that the surplus of small P values in the case-control comparison reflects the 

overdispersion of test statistics
19

.  

Table 3-2 shows the number of DMFs induced by ISO treatment in two different mouse 

strains. Among the 112,616 DNA fragments measured in both strains, 411 of them show 

differential methylation after ISO treatment in at least one strain. Surprisingly, despite of the 

similar volcano plot shape between BALB/cJ and BUB/BnJ strains (Fig 3-4 A&B), the overlap 

of DMFs between two strains is very small. Only 17 fragments show uniform behavior in both 

strains under our statistical threshold (table 3-2).  

To test whether certain chromosomes harbor more DMFs than others, we plot the 

location of all identified DMFs for two strains in the genome (Fig 3-5). The first observation was 
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that the genomic locations of DMFs between the two strains show little overlap (Fig 3-5). 

Moreover, we showed that DMFs are located across the whole genome without an obvious 

preference for a certain chromosome. This is in accordance with our previous report that cardiac 

hypertrophy related genes are distributed in all chromosomes
20

.   

DMFs are associated with genes involved in cardiomyopathy 

To understand the potential function of DMFs, we studied genes containing DMFs or 

harboring one within 5Kbp upstream of their transcription start sites. In total, we identified 312 

genes that are associated with at least one differentially methylated fragment between control 

and ISO-treated mice. More details on genes associated with DMFs are listed in table 3-3.  

Network analysis of DNA methylome shows different patterns of co-methylation 

When looking at the raw DNA methylation data, we found that some CpGs are highly 

correlated with each other. To study the co-methylation network of DNA methylation, we 

calculated the correlation among the top 15,000 variable DNA fragments and built a weighted 

network based on the correlation matrix (Fig 3-6). DNA fragments within one module have 

similar behaviors and one EigenCpG is assigned to each module to represent the group behavior 

(Fig 3-6 B). To show the higher-order topology, we correlated the EigenCpG network with the 

traits of ISO treatment. Interestingly, we found that most modules have some level of correlation 

with ISO treatment (Fig 3-6 A). Some modules show a uniform response to ISO treatment in 

both BALB/cJ and BUB/BnJ strains (Fig 3-6 B, upper and lower panels), while others show a 

different response between two strains (Fig 3-6 B, middle panel). We also found a few modules 

that, despite no significant responses to ISO treatment, show distinct methylation levels in two 
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strains at the basal level (data not shown), indicating methylation polymorphisms between the 

two strains.  

Overlap between co-methylation modules and epigenetic marks 

Because previous reports have indicated potential interactions between DNA methylation 

and histone post-translational modification as well as chromatin structure
21,22

, we asked the 

question of whether different modules have diverse preference for epigenetic marks. To answer 

this question, we determined which regions contained in various DNA methylation modules are 

also occupied by histone post-translational modifications and other chromatin-binding proteins, 

based on published data from the heart and other organs (Fig 3-7). To rule out the possibility that 

some epigenetic marks favor CpG rich regions, we chose the set of 15K DNA fragments used for 

network construction, rather than the whole genome, as the background to calculate the P value 

for the overlap amongst these subsets of loci. Surprisingly, we observed modularity of within the 

heatmap according to both the epigenome track direction (column-wise) and the DNA 

methylation module direction (row-wise). Moreover, we found that most DNA methylation 

modules featuring a decrease of methylation after ISO treatment overlap with H3K4me1 and 

K3K4me3 (as seen in the bottom half of the heatmap). The enrichment pattern of transcription 

factor binding in different DNA methylation modules is not obvious, probably because of the 

heterogeneity of transcription factors.  

E. Discussion 

In this chapter, we asked the question whether DNA methylation, a major epigenetic 

regulator of gene expression and chromatin structure, is involved in heart failure. Using the 
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RRBS method, we surveyed genome-wide methylation in the normal and diseased heart, with an 

emphasis on promoters, exons, and CpG islands. We observed a bimodal distribution of DNA 

methylation on a genome-wide level; when only CpG islands or lone CpGs are considered, this 

distribution takes on a unimodal character. Using the -adrenoreceptor agonist Isoproterenol, we 

induced heart failure in two mouse strains that have different responses to treatment and 

demonstrated that certain DNA regions showed methylation alterations in a strain-specific 

manner during disease. Further, we clustered DNA methylation fragments based on their 

correlation in terms of alteration after ISO and revealed that the resulting modules exhibit a 

range of behaviors after stimulation depending on whether the genome predisposes the animal to 

be susceptible or resistant to hypertrophy. Finally, we compared our DNA co-methylation 

modules with published epigenome ENCODE data, and found that different modules are co-

occupied by different epigenetic markers. Taken together, we demonstrated that in heart failure, 

the cardiac DNA methylome is globally remodeled to coordinate chromatin remodeling (Fig 3-8, 

black solid boxes and arrows) in combination with other protein-based chromatin features. 

Despite recent studies using patient samples
7–10,23

, the molecular mechanisms for how 

altered DNA methylation contributed to the progression of cardiomyopathy remains unclear
24

. 

These studies are important in that they showed the involvement of DNA methylation in 

cardiovascular disease. However, the main problem with these studies is the genetic 

heterogeneity of human samples, including different dietary and environmental exposures, etc. In 

addition, the heterogeneity of the types of heart disease between patients contributes more 

diversity to human samples, further decreasing the statistical power of recent studies. This is why 

most of these studies cannot provide a comprehensive picture of the disease-specific methylome 
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and they also lack the ability to resolve mechanisms of regulation. Our study utilized a strict 

case-control experimental design, including consistent housing conditions and diet. Furthermore, 

the genome-wide RRBS method we used here samples randomly from the entire mouse genome, 

providing more information than a microarray-based method that only studies promoter regions.  

Our study found distinct DNA methylation alteration patterns induced by ISO treatment 

in two different mouse strains. It is well known that different mouse strains exhibit different gene 

expression patterns
25

 and have variance in their susceptibility to diseases
26

. Previous studies of 

mouse genetics focused on how to explain strain-specificity through genetic variations
11,27

, and 

such studies are similar to Genome Wide Association Studies (GWAS) in humans. However, it is 

very likely that the strain-specific DNA methylation acts as an amplifier to magnify the effects of 

primary DNA sequence differences
28

. DNA methylation polymorphism highly depends on 

genetic polymorphism. One piece of evidence for this is that the F1 hybrids of two different 

strains maintain the strain-specific methylation pattern from their parental allele
29

. In our study, 

we found that the functional annotation of regions associated with altered DNA methylation in 

disease is different between the two strains. For example, when studying the DNA regions with 

up-regulated methylation in disease, we found genes of the dilated cardiomyopathy pathway 

enriched in the BLAB/cJ mice, while the Wnt signaling pathway is enriched in the BUB/BnJ 

mice. This further explains the strain-specific susceptibility to ISO-induced heart failure.   

The relationship between DNA methylation and gene expression is not linear. Although 

some believe that promoter hypermethylation is associated with gene repression, and gene body 

hypermethylation is associated with gene expression
30

, an increasing number of studies have 

demonstrated that the relationship is not so simple
9,12

. In reviewing reports on the role of DNA 
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methylation on gene expression, we found that this theory reflects a group behavior, but that it is 

not a strict rule for all genes. For one single gene, whether and how DNA methylation regulates 

its expression depends on the combination of many factors including histone modifications, 

binding of transcription factors, and even the higher order structure of chromatin. van Eijk and 

de Jone et al
31

 published a systematic study of DNA methylation and gene expression levels in 

human blood cells, reporting that while some modules are highly correlated (in a positive or 

negative manner) with gene expression, most modules had no correlation between gene 

expression and DNA methylation. Based on this information, we decided to combine our DNA 

methylation data with other available epigenetic data to explain how the alteration of DNA 

methylation affects disease development by regulating chromatin structure. 

The traditional method of identifying DMFs using a statistical hypothesis test is based on 

the assumption that all methylation measurements are independent and identically distributed 

(i.i.d.). However, this strong assumption does not reflect the reality of biology. In fact, many 

biological actions are accomplished through network behaviors
32

, such as gene expression and 

protein-protein interactions. The information on co-regulation can be used to infer the topology 

of a biological network
14

. Instead of using genes as nodes in the network, we used DNA 

fragments to build the co-methylation network, thus circumventing the difficulty that some DNA 

fragments are located in enhancers or other functional element-related regions far away from 

known genes. Using this method, we built an epigenetic interaction network in the heart and 

showed that DNA fragments can be clustered into modules when they are highly correlated. This 

clustering also implies that these fragments, their associated genomic loci, are potentially 

regulated by the same chromatin remodeling and gene transcription mechanisms. Interestingly, 
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members within the same module can be located far away from each other in the linear position 

of one chromosome, or even located on different chromosomes. One explanation is that these 

regions are positioned proximately in 3-D space, or they share a similar DNA motif that can be 

recognized by the same epigenetic regulatory machinery.  

Our study also revealed a noteworthy phenomenon that chromosomal regions with 

similar DNA methylation changes after stimulation share a common pattern of epigenetic marks. 

In figure 3-7, clustering, or modularity, of the enrichment heatmap is visible in both directions. 

The modularity of epigenome tracks (column-wise in figure 3-7) may be the result of correlation 

between the locations of different epigenetic marks. For example, H3K4me1 and H3K27ac are 

sometimes co-localized in enhancer regions to activate gene expression
33

. The modularity in the 

DNA methylation module direction (row-wise), however, cannot be explained by the co-

localization of DNA fragments between DNA methylation modules, because each DNA 

fragment was assigned to only one module and there cannot be an overlap between any DNA 

methylation modules. Since DNA modules are ordered based on their correlation with ISO 

treatment, this phenomenon indicates that if the DNA methylation patterns of two DNA regions 

respond to the environment stimulation in a similar way, these two regions may also have a 

similar histone modification pattern. In other words, chromosomal regions deposited with the 

same epigenetic patterns will have similar DNA methylation dynamics.  

To understand how our findings from mice may have clinical relevance, we need to 

consider DNA methylation in the context of endogenous regulation (Fig 3-8). Epigenetic 

modifications are known to be regulated by cellular metabolites. Previous studies have found that 

cardiac metabolism is aberrant in disease. This includes S-adenosylhomocysteine (SAH) / S-
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adenosylmethionine (SAM) ratio imbalance, as indicated by Hyperhomocysteinemia in 

cardiovascular disease
34

, and accumulation of -ketoglutarate or 2-oxoglutarate, due to 

inactivation of ketoglutarate dehydrogenase caused by abnormal mitochondrial function and 

oxidative stress
35

. Previous studies of heart failure metabolism mainly focused on how 

metabolites impair normal cellular functions, such as mitochondrial function or cell signaling 

pathways. In view of those studies showing the involvement of SAH/SAM in DNA 

methylation
36,37

 as well as a-ketoglutarate in active DNA demethylation
38

, we believe that the 

metabolic dysfunction in heart failure may cause abnormal DNA methylation, which will then 

change the normal cardiac gene expression. This study provides a map of how DNA methylation 

is remodeled in heart failure. Further studies can reveal whether and how manipulation of cardiac 

metabolites can modulate DNA methylation patterns to relieve disease symptoms. 
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A B C 

D E F 

Figure 3-1. Annotation of CpGs covered by RRBS libraries. CpGs are annotated 

based on its location on promoter, exon, intron or intergenic regions (A-C), or CpG 

island, island shore or far from CpG island (D-F). A & D, Annotation of mouse 

reference genome. B & E, Annotation of CpGs within the whole genome. C & F, 

Annotation of CpGs covered by our RRBS libraries. Promoter, regions within 2kb 

upstream of transcription start site. CpG island shore, regions within 2kb flanking 

CpG island. 
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A B 

Figure 3-2. Distributions of DNA methylation within CpG islands, CpG island 

shores and non-CpG island regions. (A,B) Histogram of DNA methylation level 

distribution for the whole RRBS library (A), CpGs located within CpG islands (B, 

upper panel), CpG island shores (B, middle panel) and non-CpG island regions (B, 

lower panel). x-axis, DNA methylation level. y-axis, the proportion of total RRBS 

CpGs. The black line in B represents the whole RRBS library. (C) Stacked histogram 

of DNA methylation distribution showing the percentage of CpGs located in CpG 

islands, shores or non-CpG island regions. CpGs are grouped based on their 

methylation level. (a), the length of each element in the whole genome. (b), all CpGs 

within the whole genome. (c), RRBS CpGs. (d) RRBS CpGs with lower than 5% 

methylation. (e) RRBS CpGs with > 5% and < 80% methylation. (f) RRBS CpGs 

with more than 80% methylation. 
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Figure 3-3. Isoproterenol induced heart failure in mice of BALB/cJ and 

BUB/BnJ strains indicating strain-specific responses  to b-adrenergic receptor 

agonist treatment. The size of heart as indicated by diastolic left ventricular volume 

(A), and heart function as indicated by ejection fraction (B), were measured using M-

mode mouse echocardiography. BALB/cJ mice showed a dramatic increase of LV 

volume and decrease of ejection fraction after three-week ISO treatment, while 

BUB/BnJ mice showed only a slight increase of ejection fraction.  
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Figure 3-4. ISO-treatment induces differential methylation on several DNA 

regions. (A,B) Volcano plot showing ISO-induced differentially methylated regions 

in BALB/cJ (A) and BUB/BnJ (B) strains. Each point represents one DNA fragment, 

i.e. MspI digestion product with length of from 50bp to 300bp. x-axis, difference of 

DNA methylation level between control and ISO treated mice. y-axis, -log10 of p-

value. To qualify as a differentially methylated fragment (DMF), one fragment must 

have a difference of DNA methylation level bigger than 5%, and a p-value smaller 

than 1×10-3. (C, D, E) Distribution of p-values for all DNA fragments. (C,D) P 

values of control v.s. ISO treated BALB/cJ (C) and BUB/BnJ (D) strains. (E) P values 

of two biological replicates that are sequenced at the same time. The enrichment of 

low P values can be seen as the high bar on the left of the distribution in panels C and 

D.  
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Figure 3-5. Genomic location of DMFs induced by ISO treatment in BALB/cJ 

(A) and BUB/BnJ (B) strains. Red: up-regulated DMFs. Green: down-regulated 

DMFs.  
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Figure 3-6. Co-methylation modules of CpGs identified by WGCNA. (A)  

Heatmap showing the correlation between EigenCpG methylation and ISO treatment 

for both strains (left), BALB/cJ (middle) or BUB/BnJ (right) strain. Each row 

represents one module of CpGs. (B) DNA methylation levels (m%) for individual 

CpG (colored lines) and eigenvalue for EigenCpG (black solid arrows, BALB/cJ, 

dashed arrows, BUB/BnJ) in nine samples. Three representing modules are shown. a, 

BALB/cJ control replicate 1. b, BALB/cJ ISO replicate 1. c, BUB/BnJ control 

replicate 1. d, BUB/BnJ ISO replicate 1. e, BALB/cJ control replicate 2. f, BALB/cJ 

ISO replicate 2. g, BUB/BnJ control replicate 2. h, BUB/BnJ ISO replicate 2.1. i, 

BUB/BnJ ISO replicate 2.2. 
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Figure 3-7. Heatmap of –log10 of P values showing the significance of overlapping 

between CpG modules and epigenetic markers. CpG modules from Fig 3-6 are 

shown on the left. Rows are CpG modules and columns are ENCODE ChIP-Seq Peak 

tracks of epigenetic markers. Columns, but not rows, are re-organized using 

hierarchical clustering. Colors below heatmap correspond to the epigenetic marks.  A 

decomposed color code is provided below the color bar under heatmap. CTCF, 

CCCTC-binding factor. DnaseI, DNaseI Hypersensitivity sites. Features, genomic 

features including promoters, exons, introns, intergenic regions, CpG islands and 

shores. 
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Figure 3-8. Working hypothesis based on this and other studies on DNA 

methylation in heart disease pathogenesis. In this chapter, we demonstrated a 

disease-specific DNA methylome in heart failure, and showed that alteration of the 

DNA methylome may affect chromatin remodeling. Gray color represents known 

information from other publications. How cardiac metabolism affects DNA 

methylation specifically, as indicated by dashed arrows, remains unclear and will be 

answered in the future studies.   
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