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ABSTRACT OF THE DISSERTATION

Division Algebras, Supersymmetry and Higher Gauge Theory

by

John Gmerek Huerta

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2011

Professor John Baez, Chairperson

Starting from the four normed division algebras—the real numbers, complex numbers,

quaternions and octonions, with dimensions k = 1, 2, 4 and 8, respectively—a systematic

procedure gives a 3-cocycle on the Poincaré Lie superalgebra in dimensions k + 2 = 3,

4, 6 and 10. A related procedure gives a 4-cocycle on the Poincaré Lie superalgebra in

dimensions k+3 = 4, 5, 7 and 11. The existence of these cocycles follow from certain spinor

identities that hold only in these dimensions, and which are closely related to the existence

of superstring and super-Yang–Mills theory in dimensions k + 2, and super-2-brane theory

in dimensions k + 3.

In general, an (n+1)-cocycle on a Lie superalgebra yields a ‘Lie n-superalgebra’: that is,

roughly speaking, an n-term chain complex equipped with a bracket satisfying the axioms of

a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the

Poincaré superalgebra in dimensions 3, 4, 6, and 10, and Lie 3-superalgebras extending the

Poincaré superalgebra in dimensions 4, 5, 7 and 11. As shown in Sati, Schreiber and Stash-

eff’s work on generalized connections valued in Lie n-superalgebras, Lie 2-superalgebra
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connections describe the parallel transport of strings, while Lie 3-superalgebra connections

describe the parallel transport of 2-branes. Moreover, in the octonionic case, these connec-

tions concisely summarize the fields appearing in 10- and 11-dimensional supergravity.

Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a ‘Lie n-

supergroup’ that is hugely infinite-dimensional. However, when the Lie n-superalgebra is

obtained from an (n + 1)-cocycle on a nilpotent Lie superalgebra, there is a geometric pro-

cedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup.

In general, a smooth (n+1)-cocycle on a supergroup yields a ‘Lie n-supergroup’: that is,

a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the

3-cocycle in dimensions 3, 4, 6 and 10, we obtain a Lie 2-supergroup extending the Poincaré

supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions 4, 5, 7

and 11, we obtain a Lie 3-supergroup extending the Poincaré supergroup in those dimensions.
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Chapter 1

Introduction

1.1 Overview

There is a deep relationship between supersymmetry, division algebras, and higher gauge

theory. In this thesis, we begin to tell this story: how division algebras give rise to higher

infinitesimal symmetries of strings and membranes, modeled by a generalization of a Lie

algebra called a ‘Lie n-algebra’, and how this infinitesimal picture can be integrated to global

one, with higher symmetries modeled by a ‘Lie n-group’. In this overview, we want to take

the opportunity to explain the big picture, postponing references until the next section.

From a physical perspective, gauge theory is the geometric language which allows us to

describe how point particles change as they move through spacetime. Higher gauge theory is

a generalization which describes how strings and membranes change as they move through

spacetime.

We can view higher gauge theory as a categorification of gauge theory, which is intuitively

clear from the diagrams we use to describe higher categories: as a particle moves through

spacetime from point x to point y, it sweeps out a worldline γ that we can view as a morphism
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from x to y in a certain category:

• •x y

γ

��
.

The job of a connection in gauge theory is to assign to γ an element hol(γ) in the gauge

group which describes how the state of our particle changes as it moves along γ.

Boosting up a dimension, when a string moves through spacetime, it sweeps out a world-

sheet Σ, which we can view as a 2-morphism in a certain 2-category:

• •
��
DDΣ

��
.

The job of a ‘2-connection’ in ‘higher gauge theory’ is to assign to Σ an element hol(Σ) in

the ‘higher gauge group’ which describes how the state of our string changes as it moves

along Σ.

In practice, the strings and membranes of interest in physics are supersymmetric, so they

are called superstrings and supermembranes. This also leads to higher gauge theory, but it

goes through the normed division algebras. There is a mysterious connection between su-

persymmetry and the four normed division algebras: the real numbers, complex numbers,

quaternions and octonions. This can be seen in super-Yang–Mills theory, in superstring the-

ory, and in theories of supermembranes and supergravity. Most simply, the connection is

visible from the fact that the normed division algebras have dimensions 1, 2, 4 and 8, while

classical superstring theories and minimal super-Yang–Mills theories live in spacetimes of

dimension two higher: 3, 4, 6 and 10. The simplest classical super-2-brane theories make

sense in spacetimes of dimensions three higher: 4, 5, 7 and 11. Classical supergravity makes

sense in all of these dimensions, but the octonionic cases are the most important: in 10 di-
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mensions supergravity is a low-energy limit of superstring theory, while in 11 dimensions it

is believed to be a low-energy limit of ‘M-theory’, which incorporates the 2-brane.

These numerical relationships are far from coincidental. They arise because we can use

the normed division algebras to construct the spacetimes in question, as well as their asso-

ciated spinors. A certain spinor identity that holds in dimensions 3, 4, 6 and 10 is an easy

consequence of this construction, as is a related identity that holds in dimensions 4, 5, 7 and

11. These identities are fundamental to the physical theories just listed.

Yet these identities have another interpretation: they are cocycle conditions in Lie super-

algebra cohomology for suitably chosen Lie superalgebras. We can use them to categorify the

infinitesimal symmetries of spacetime, or rather its supersymmetric analog, superspacetime.

This gives rise to Lie 2-superalgebras and Lie 3-superalgebras.

Thanks to work by Hisham Sati, Urs Schreiber and Jim Stasheff, we expect that gener-

alized connections valued in these Lie 2- and 3-algebras will incorporate fields of interest

to string theory and supergravity. However, these generalized connections are described in

terms of infinitesimal data, because Lie n-superalgebras are infinitesimal objects. We would

like to know the global story, so we want to integrate these to Lie n-supergroups.

Given a Lie n-algebra, there is a general technique, due to Getzler and Henriques, to

build a Lie n-group which integrates it. Usually, these are hugely infinite-dimensional. For

instance, if g is the finite-dimensional Lie algebra of a simply-connected, finite-dimensional

Lie group G, applying the construction of Getzler and Henriques yields not G, but a simpli-

cial Banach manifold which is infinite-dimensional at almost every level.

Fortuantely, our Lie n-algebras are special. The cocycles which define them are defined

on nilpotent Lie subsuperalgebras, and these can be integrated using a geometric method to

smooth cocycles on the corresponding Lie supergroups. So we obtain Lie n-supergroups

which are finite-dimensional, and even algebraic. We expect that studying the higher gauge

theory of these Lie n-supergroups will yield important results for physics.
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1.2 Introduction

The relationship between division algebras and supersymmetry can be seen in super-Yang–

Mills theory, in superstring theory, and in theories of supermembranes and supergravity. Most

simply, the connection is visible from the fact that the normed division algebras have di-

mensions 1, 2, 4 and 8, while classical superstring theories and minimal super-Yang–Mills

theories live in spacetimes of dimension two higher: 3, 4, 6 and 10. The simplest classical

super-2-brane theories make sense in spacetimes of dimensions three higher: 4, 5, 7 and

11. Classical supergravity makes sense in all of these dimensions, but the octonionic cases

are the most important: in 10 dimensions supergravity is a low-energy limit of superstring

theory, while in 11 dimensions it is believed to be a low-energy limit of ‘M-theory’, which

incorporates the 2-brane.

As we noted in our overview, these numerical relationships are far from coincidental.

They arise because we can use the normed division algebras to construct the spacetimes in

question, as well as their associated spinors. In a bit more detail, suppose K is a normed

division algebra of dimension k. There are just four examples:

• the real numbers R (k = 1),

• the complex numbers C (k = 2),

• the quaternions H (k = 4),

• the octonions O (k = 8).

Then we can identify vectors in (k + 2)-dimensional Minkowski spacetime with 2 × 2 her-

mitian matrices having entries in K. Similarly, we can identify spinors with elements of K2.

Matrix multiplication then gives a way for vectors to act on spinors. There is also an opera-

tion that takes two spinors ψ and φ and forms a vector [ψ, φ]. Using elementary properties of
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normed division algebras, we can prove that

[ψ, ψ]ψ = 0.

Following Schray [65], we call this identity the ‘3-ψ’s rule’. This identity is an example of a

‘Fierz identity’—roughly, an identity that allows one to reorder multilinear expressions made

of spinors. This can be made more visible in the 3-ψ’s rule if we polarize the above cubic

form to extract a genuinely trilinear expression:

[ψ, φ]χ+ [φ, χ]ψ + [χ, ψ]φ = 0.

In fact, the 3-ψ’s rule holds only when Minkowski spacetime has dimension 3, 4, 6 or

10. Moreover, it is crucial for super-Yang–Mills theory and superstring theory in these di-

mensions. In minimal super-Yang–Mills theory, we need the 3-ψ’s rule to check that the

Lagrangian is supersymmetric, thanks to an argument we will review in Chapter 4. In su-

perstring theory, we need it to check the supersymmetry of the Green–Schwarz Lagrangian

[42, 41]. But the 3-ψ’s rule also has a deeper significance, which we study here.

This deeper story involves not only the 3-ψ’s rule but also the ‘4-Ψ’s rule’, a closely

related Fierz identity required for super-2-brane theories in dimensions 4, 5, 7 and 11. To

help the reader see the forest for the trees, we present a rough summary of this story in the

form of a recipe:

1. Spinor identities that come from division algebras are cocycle conditions.

2. The corresponding cocycles allow us to extend the Poincaré Lie superalgebra to a

higher structure, a Lie n-superalgebra.

3. Connections valued in these Lie n-superalgebras describe the field content of super-

string and super-2-brane theories.
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To begin our story in dimensions 3, 4, 6 and 10, let us first introduce some suggestive

terminology: we shall call [ψ, φ] the bracket of spinors. This is because this function is

symmetric, and it defines a Lie superalgebra structure on the supervector space

T = V ⊕ S

where the even subspace V is the vector representation of Spin(k + 1, 1), while the odd

subspace S is a certain spinor representation. This Lie superalgebra is called the super-

translation algebra.

There is a cohomology theory for Lie superalgebras, sometimes called Chevalley–Eilenberg

cohomology. The cohomology of T will play a central role in what follows. Why? First,

because the 3-ψ’s rule is really a cocycle condition, for a 3-cocycle α on T which eats two

spinors and a vector and produces a number as follows:

α(ψ, φ,A) = 〈ψ,Aφ〉.

Here, 〈−,−〉 is a pairing between spinors. Since this 3-cocycle is Lorentz-invariant, it ex-

tends to a cocycle on the Poincaré superalgebra

siso(k + 1, 1) ∼= so(k + 1, 1) n T .

In fact, we obtain a nonzero element of the third cohomology of the Poincaré superalgebra

this way.

Just as 2-cocycles on a Lie superalgebra give ways of extending it to larger Lie superal-

gebras, (n+1)-cocycles give extensions to Lie n-superalgebras. To understand this, we need

to know a bit about L∞-algebras [51, 63]. An L∞-algebra is a chain complex equipped with

a structure like that of a Lie algebra, but where the laws hold only ‘up to d of something’. A
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Lie n-algebra is an L∞-algebra in which only the first n terms are nonzero. All these ideas

also have ‘super’ versions. In general, an h-valued (n+ 1)-cocycle ω on g is a linear map:

Λn+1g→ h

satisfying a certain equation called a ‘cocycle condition’. We can use an h-valued (n + 1)-

cocycle ω on a Lie superalgebra g to extend g to a Lie n-superalgebra of the following form:

g
d←− 0

d←− · · · d←− 0
d←− h.

Here, g sits in degree 0 while h sits in degree n− 1. We call Lie n-superalgebras of this form

‘slim Lie n-superalgebras’, and denote them by braneω(g, h).

In particular, we can use the 3-cocycle α to extend siso(k + 1, 1) to a slim Lie 2-

superalgebra of the following form:

siso(k + 1, 1) Rdoo .

We call this the ‘superstring Lie 2-superalgebra’, and denote it as superstring(k+ 1, 1). The

superstring Lie 2-superalgebra is an extension of siso(k+1, 1) by bR, the Lie 2-algebra with

R in degree 1 and everything else trivial. By ‘extension’, we mean that there is a short exact

sequence of Lie 2-superalgebras:

0→ bR→ superstring(k + 1, 1)→ siso(k + 1, 1)→ 0.

7



To see precisely what this means, let us expand it a bit. Lie 2-superalgebras are 2-term chain

complexes, and writing these vertically, our short exact sequence looks like this:

0 // R //

d

��

R //

d
��

0 //

d
��

0

0 // 0 // siso(k+1,1) // siso(k+1,1) // 0

In the middle, we see superstring(k+1, 1). This Lie 2-superalgebra is built from two pieces:

siso(k + 1, 1) in degree 0 and R in degree 1. But since the cocycle α is nontrivial, these two

pieces still interact in a nontrivial way. Namely, the Jacobi identity for three 0-chains holds

only up to d of a 1-chain. So, besides its Lie bracket, the Lie 2-superalgebra superstring(k+

1, 1) also involves a map that takes three 0-chains and gives a 1-chain. This map is just α.

What is the superstring Lie 2-algebra good for? The answer lies in a feature of string

theory called the ‘Kalb–Ramond field’, or ‘B field’. The B field couples to strings just as

the A field in electromagnetism couples to charged particles. The A field is described locally

by a 1-form, so we can integrate it over a particle’s worldline to get the interaction term in

the Lagrangian for a charged particle. Similarly, the B field is described locally by a 2-form,

which we can integrate over the worldsheet of a string.

Gauge theory has taught us that the A field has a beautiful geometric meaning: it is a

connection on a U(1) bundle over spacetime. What is the corresponding meaning of the B

field? It can be seen as a connection on a ‘U(1) gerbe’: a gadget like a U(1) bundle, but

suitable for describing strings instead of point particles. Locally, connections on U(1) gerbes

can be identified with 2-forms. But globally, they cannot. The idea that the B field is a U(1)

gerbe connection is implicit in work going back at least to the 1986 paper by Gawedzki [39].

More recently, Freed and Witten [36] showed that the subtle difference between 2-forms and

connections on U(1) gerbes is actually crucial for understanding anomaly cancellation. In

fact, these authors used the language of ‘Deligne cohomology’ rather than gerbes. Later work
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made the role of gerbes explicit: see for example Carey, Johnson and Murray [21], and also

Gawedzki and Reis [38].

More recently still, work on higher gauge theory has revealed that the B field can be

viewed as part of a larger package. Just as gauge theory uses Lie groups, Lie algebras, and

connections on bundles to to describe the parallel transport of point particles, higher gauge

theory generalizes all these concepts to describe parallel transport of extended objects such

as strings and membranes [9, 11]. In particular, Schreiber, Sati and Stasheff [61] have de-

veloped a theory of ‘n-connections’ suitable for describing parallel transport of objects with

n-dimensonal worldvolumes. In their theory, the Lie algebra of the gauge group is replaced

by a Lie n-algebra—or in the supersymmetric context, a Lie n-superalgebra. Applying their

ideas to superstring(k + 1, 1), we get a 2-connection which can be described locally using

the following fields:

superstring(k + 1, 1) Connection component

R R-valued 2-form

↓

siso(k + 1, 1) siso(k + 1, 1)-valued 1-form

The siso(k + 1, 1)-valued 1-form consists of three fields which help define the background

geometry on which a superstring propagates: the Levi-Civita connection A, the vielbein e,

and the gravitino ψ. But the R-valued 2-form is equally important in the description of this

background geometry: it is the B field!

Alas, this is only part of the story. Rather than building superstring(k + 1, 1) with the

cocycle α, quantum considerations indicate we should really use a certain linear combination

of α and the canonical 3-cocycle on so(k+ 1, 1). This canonical 3-cocycle can be defined on

any simple Lie algebra. It comes from combining the Killing form with the bracket:

j = 〈−, [−,−]〉.
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To ensure that certain quantum ‘anomalies’ cancel, we need to replace α with the linear

combination:
1

32
j +

1

2
α.

These coefficients come from careful analysis of the anomalies associated with superstring

theory. See the paper by Bonora et al. and the references therein [17].

We choose, however, to focus on α. This simplifies our later work, and because Lie 2-

algebras based on j have already been the subject of much scrutiny, it should be possible to

combine what we do here with the work of other authors to arrive at a more complete picture.

Next let us extend these ideas to Minkowski spacetimes one dimension higher: dimen-

sions 4, 5, 7 and 11. In this case a certain subspace of 4 × 4 matrices with entries in K will

form the vector representation of Spin(k + 2, 1), while K4 will form a spinor representation.

As before, there is a ‘bracket’ operation that takes two spinors Ψ and Φ and gives a vector

[Ψ,Φ]. As before, there is an action of vectors on spinors. This time the 3- ψ’s rule no longer

holds:

[Ψ,Ψ]Ψ 6= 0.

However, we show that

[Ψ, [Ψ,Ψ]Ψ] = 0.

We call this the ‘4-Ψ’s rule’. This identity plays a basic role for the super-2-brane, and related

theories of supergravity.

Once again, the bracket of spinors defines a Lie superalgebra structure on the supervector

space

T = V ⊕ S

where now V is the vector representation of Spin(k + 2, 1), while S is a certain spinor

representation of this group. Once again, the cohomology of T plays a key role. The 4-

Ψ’s rule is a cocycle condition—but this time for a 4-cocycle β which eats two spinors and
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two vectors and produces a number as follows:

β(Ψ,Φ,A,B) = 〈Ψ, (A ∧ B)Φ〉.

Here, 〈−,−〉 denotes the inner product of two spinors, and the bivector A ∧ B acts on Φ

via the usual Clifford action. Since β is Lorentz-invariant, we shall see that it extends to a

4-cocycle on the Poincaré superalgebra siso(k + 2, 1).

We can use β to extend the Poincaré superalgebra to a Lie 3-superalgebra of the following

form:

siso(k + 2, 1) 0
doo Rdoo .

We call this the ‘2-brane Lie 3-superalgebra’, and denote it as 2-brane(k + 1, 1). It is an

extension of siso(k+ 2, 1) by b2R, the Lie 3-algebra with R in degree 2, and everything else

trivial. In other words, there is a short exact sequence:

0→ b2R→ 2-brane(k + 2, 1)→ siso(k + 2, 1)→ 0.

Again, to see what this means, let us expand it a bit. Lie 3-superalgebras are 3-term chain

complexes. Writing out each of these vertically, our short exact sequence looks like this:

0 // R //

d
��

R //

d
��

0 //

d
��

0

0 // 0 //

d
��

0 //

d
��

0 //

d
��

0

0 // 0 // siso(k+2,1) // siso(k+2,1) // 0

In the middle, we see 2-brane(k + 2, 1).

The most interesting Lie 3-algebra of this type, 2-brane(10, 1), plays an important role

in 11-dimensional supergravity. This idea goes back to the work of Castellani, D’Auria and
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Fré [22, 27]. These authors derived the field content of 11- dimensional supergravity starting

from a differential graded commutative algebra. Later, Sati, Schreiber and Stasheff [61]

explained that these fields can be reinterpreted as a 3-connection valued in a Lie 3-algebra

which they called ‘sugra(10, 1)’. This is the Lie 3-algebra we are calling 2-brane(10, 1).

One of our messages here is that the all-important cocycle needed to construct this Lie 3-

algebra arises naturally from the octonions, and has analogues for the other normed division

algebras.

If we follow these authors and consider a 3-connection valued in 2-brane(10, 1), we find

it can be described locally by these fields:

2-brane(k + 2, 1) Connection component

R R-valued 3-form

↓

0

↓

siso(k + 2, 1) siso(k + 2, 1)-valued 1-form

Again, a siso(k + 2, 1)-valued 1-form contains familiar fields: the Levi-Civita connection,

the vielbein, and the gravitino. But now we also see a 3-form, called the C field. This is

again something we might expect on physical grounds, at least in dimension 11. While the

case is less clear than in string theory, it seems that for the quantum theory of a 2-brane to

be consistent, it must propagate in a background obeying the equations of 11-dimensional

supergravity, in which the C field naturally shows up [72]. The work of Diaconescu, Freed,

and Moore [30], as well as that of Aschieri and Jurco [2], is also relevant here.

So far, we have focused on Lie 2- and 3-algebras and generalized connections valued in

them. This connection data is infinitesimal: it tells us how to parallel transport strings and

2-branes a little bit. Ultimately, we would like to understand this parallel transport globally,

as we do with particles in ordinary gauge theory.
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To achieve this global description, we will need ‘Lie n-groups’ rather than Lie n-algebras.

Naively, one expects a Lie 2-supergroup Superstring(k + 1, 1) for which the Lie 2-super-

algebra superstring(k + 1, 1) is the infinitesimal approximation, and similarly a Lie 3-

supergroup 2-Brane(k + 2, 1) for which the Lie 3-superalgebra 2-brane(k + 1, 1) is an in-

finitesimal approximation. In fact, this is precisely what we will construct.

In order to ‘integrate’ Lie n-algebras to obtain Lie n-groups, we will have to overcome

two obstacles: how does one define a Lie n-group? And, how does one integrate a Lie

n-algebra to a Lie n-group? To answer the former question, we take a cue from Baez and

Lauda’s definition of Lie 2-group: it is a categorified Lie group, a ‘weak 2-category’ with one

object with a manifold of weakly associative and weakly invertible morphisms, a manifold

of strictly associative and strictly invertible 2-morphisms, and all structure maps smooth.

While this definition is known to fall short in important ways, it has the virtue of being

fairly simple. Ultimately, one should use an alternative definition, like that of Henriques

[44] or Schommer-Pries [64], which weakens the notion of product on a group: rather than

an algebraic operation in which there is a unique product of any two group elements, ‘the’

product is defined only up to equivalence.

So, roughly speaking, a Lie n-group should be a ‘weak n-category’ with one object, a

manifold of weakly invertible morphisms, a manifold of weakly invertible 2-morphisms, and

so on, up to a manifold of strictly invertible n-morphisms. To make this precise, however, we

need to get very precise about what a ‘weak n-category’ is, which becomes more complicated

as n gets larger. We therefore limit ourselves to the tractable cases of n = 2 and 3. We further

limit ourselves to what we call a ‘slim Lie n-group’, at least for n = 2 and 3.

A ‘slim Lie 2-group’ is what Baez and Lauda call a ‘special Lie 2-group’: it is a skeletal

bicategory with one object, a Lie groupG of morphisms, a Lie groupGnH of 2-morphisms,

and the group axioms hold strictly except for associativity—there is a nontrivial 2-morphism
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called the ‘associator’:

a(g1, g2, g3) : (g1g2)g3 ⇒ g1(g2g3).

The associator, in turn, satisfies the ‘pentagon identity’, which says the following pentagon

commutes:

(g1g2)(g3g4)

g1(g2(g3g4))

g1((g2g3)g4)(g1(g2g3))g4

((g1g2)g3)g4

a(g1,g2,g3g4)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1g1a(g2,g3,g4)

?G
����������

����������a(g1,g2g3,g4) +3

a(g1,g2,g3)1g4

��
7777777777

7777777777

a(g1g2,g3,g4)

3;ooooooooooooooooo

ooooooooooooooooo

We shall see that this identity forces a to be a 3-cocycle on the Lie group G of morphisms.

We denote the Lie 2-group of this from by Stringa(G,H).

Likewise, a ‘slim Lie 3-group’ is a skeletal tricategory with one object, with a Lie group

G of morphisms, trivial 2-morphisms, and a Lie groupGnH of 3-morphisms. The associator

is necessarily trivial, because it is a 2-morphism:

a(g1, g2, g3) : (g1g2)g3
1

=⇒ g1(g2g3),

14



However, it does not satisfy the pentagon identity! There is a nontrivial 3-morphism called

the ‘pentagonator’:

(g1g2)(g3g4)

g1(g2(g3g4))

g1((g2g3)g4)(g1(g2g3))g4

((g1g2)g3)g4

a(g1,g2,g3g4)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1g1 ·a(g2,g3,g4)

?G
����������

����������a(g1,g2g3,g4) +3

a(g1,g2,g3)·1g4

��
7777777777

7777777777

a(g1g2,g3,g4)

3;ooooooooooooooooo

ooooooooooooooooo
π(g1,g2,g3,g4)

�
�

This 3-morphism satisfies an identity of its own, called the ‘pentagonator identity’. Similar

to the case with the slim Lie 2-group Stringa(G,H), the pentagonator identity forces π to be

a Lie group 4-cocycle on G.

Moreover, we can generalize all of this to obtain Lie 2-supergroups and Lie 3-supergroups

from 3- and 4-cocycles on Lie supergroups. In general, we expect that any supergroup (n+1)-

cocycle f gives rise to a slim n-supergroup, Branef (G,H), though this cannot be made

precise without being more definite about n-categories for higher n.

Nonetheless, the precise examples of Lie 2- and 3-groups suggest a strong parallel to the

way Lie algebra (n + 1)-cocycles give rise to Lie n-algebras. And this parallel suggests a

naive scheme to integrate Lie n-algebras. Given a slim Lie n-superalgebra braneω(g, h), we

seek a slim Lie n-supergroup Branef (G,H) where:

• G is a Lie supergroup with Lie superalgebra g; i.e. it is a Lie supergroup integrating g,

• H is a Lie supergroup with Lie superalgebra h; i.e. it is a Lie supergroup integrating

h,

• f is a Lie supergroup (n+ 1)-cocycle on G that, in some suitable sense, integrates the

Lie superalgebra (n+ 1)-cocycle ω on g.
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Admittedly, we only define Branef (G,H) precisely when n = 2 or 3, but that will suffice to

handle our cases of interest, superstring(k + 1, 1) and 2-brane(k + 2, 1).

Unfortunately, this naive scheme fails to work even for well-known examples of slim Lie

2-algebras, such as the the string Lie 2-algebra string(n). In this case, we can:

• integrate so(n) to Spin(n) or SO(n),

• integrate R to R or U(1),

• but there is no hope to integrate ω to a nontrivial (n + 1)-cocycle f on SO(n) or

Spin(n), because compact Lie groups admit no nontrivial smooth cocycles.

Really, this failure is a symptom of the fact that our definition of Lie n-group is oversim-

plified. There are more sophisticated approaches to integrating the string Lie 2-algbera,

like those due to Baez, Crans, Schreiber and Stevenson [13] or Schommer-Pries [64], and

a general technique to integrate any Lie n-algebra due to Henriques [44]. All three involve

generalizing the notion of Lie 2-group (or Lie n-group, for Henriques) away from the world

of finite-dimensional manifolds, and the latter two generalize the notion of 2-group to one in

which products are defined only up to equivalence.

Given this history, it is remarkable that the naive scheme we outlined for integration

actually works for the Lie n-superalgebras we really care about—namely, the superstring Lie

2-algbera and the super-2-brane Lie 3-algebra. Moreover, this is not some weird quirk unique

to these special cases, but the result of a beautiful geometric procedure for integrating Lie

algebra cocycles defined on a nilpotent Lie algebra. Originally invented by Houard [45], we

generalize this technique to the case of nilpotent Lie superalgebras and supergroups.

Finally, we mention another use for the cocycles α and β. These cocycles are also used to

build Wess–Zumino–Witten terms for superstrings and 2-branes. For example, in the case of

the string, one can extend the string’s worldsheet to be the boundary of a three-dimensional

manifold, and then integrate α over this manifold. This provides an additional term for
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the action of the superstring, a term that is required to give the action Siegel symmetry,

balancing the number of bosonic and fermionic degrees of freedom. For the 2-brane, the

Wess–Zumino–Witten term is constructed in complete analogy—we just ‘add one’ to all the

dimensions in sight [1, 32].

Indeed, the network of relationships between supergravity, string and 2-brane theories,

and cocycles constructed using normed division algebras is extremely tight. The Siegel sym-

metry of the string or 2-brane action constrains the background of the theory to be that of

supergravity, at least in dimensions 10 and 11 [72], and without the WZW terms, there would

be no Siegel symmetry. The WZW terms rely on the cocycles α and β. These cocycles also

give rise to the Lie 2- and 3-superalgebras superstring(9, 1) and 2-brane(10, 1). And these,

in turn, describe the field content of supergravity in these dimensions!

As further grist for this mill, WZW terms can also be viewed in the context of higher

gauge theory. In string theory, the WZW term is the holonomy of a connection on a U(1)

gerbe [38]. Presumably the WZW term in a 2-brane theory is the holonomy of a connection

on a U(1) 2-gerbe [70]. This is a tantalizing clue that we are at the beginning of a larger but

ultimately simpler story.

1.3 Plan of the thesis

The focus of this thesis is not on the applications to physics that we sketched in the Introduc-

tion, but on constructing Lie n-superalgebras from division algebras, and integrating these

Lie n-superalgebras to Lie n-supergroups. We organize the thesis as follows:

• In Chapter 2, we give a review of the needed facts about normed division algebras, and

apply the division algebras to construct vectors and spinors in spacetimes of certain

dimension. We conclude by using these constructions to prove certain spinor identities

needed for supersymmetric physics.
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• In Chapter 3, we introduce the algebra underlying supersymmetry: super vector spaces

and Lie superalgebras. We construct some important examples of Lie superalgebras:

the supertranslation algebras, T , using division algebras. We give a well-known gener-

alization of Chevalley–Eilenberg cohomology to Lie superalgebras, and prove that the

supertranslation algebras admit nontrivial cocycles thanks to the spinor identities from

the previous chapter.

• In Chapter 4, we take a break from the larger story to discuss super-Yang–Mills theory.

We prove the supersymmetry of super-Yang–Mills theory in spacetime dimensions 3,

4, 6 and 10, using the division algebras.

• In Chapter 5, we describe how a Lie superalgebra (n + 1)-cocycle on g gives rise to a

Lie n-superalgebra which extends g. We use this general construction to build several

important examples of Lie 2- and 3-superalgebras: the well-known string Lie 2-algebra

string(n) extending so(n), the Heisenberg Lie 2-algebra, the superstring Lie 2-algebra

superstring(k+1, 1) and the super-2-brane Lie 3-algebra 2-brane(k+2, 1), extending

the Poincaré superalgebras siso(k + 1, 1) and siso(k + 2, 1), respectively.

• In Chapter 6, we describe Lie group cohomology based on smooth group cochains. We

define Lie n-groups for n = 2 and 3, using bicategories and tricategories internal to the

category of smooth manifolds. We sketch how a Lie group (n+ 1)-cocycle on G gives

rise to a Lie n-group which extends G, and give a full construction for n = 2 and 3.

• In Chapter 7, we apply a little-known geometric technique to integrate nilpotent Lie

n-algebras to Lie n-groups, by integrating Lie algebra (n + 1)-cocycles to Lie group

(n + 1)-cocycles. We compute some examples for 2-step nilpotent Lie algebras, and

conclude with by constructing the Heisenberg Lie 2-group from the Lie 2-algebra.

• In Chapter 8, we introduce a little supergeometry. Specifically, we sketch the definition

of supermanifold, and discuss the functor of points approach to studying these spaces.
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We describe how to get a supermanifold from any super vector space, and show the

corresponding functor of points is especially simple. We then describe how to integrate

a nilpotent Lie superalgebra to a supergroup.

• In Chapter 9, we generalize everything from Chapter 6 to the super setting. We describe

Lie supergroup cohomology, and we define Lie n-supergroups for n = 2 and 3, using

bicategories and tricategories internal to the category of supermanifolds.

• In Chapter 10, we generalize everything from Chapter 7 to the super setting. We show

how to integrate nilpotent Lie n-superalgebras to Lie n-supergroups, by integrating Lie

superalgebra (n+ 1)-cocycles to Lie supergroup (n+ 1)-cocycles. This is done using

the functor of points.

• Finally, in Chapter 11, we apply the results of the previous chapter to integrate

superstring(k+1, 1) and 2-brane(k+2, 1) to Lie n-supergroups, Superstring(k+1, 1)

and 2-Brane(k+2, 1). We conclude with some remarks about where these results could

lead, and the next steps in this research program.

1.4 Prior work

Portions of this thesis are adapted from two papers coauthored with my advisor, John Baez,

called “Supersymmetry and division algebras I and II” [7, 8]. Specifically, Sections 2.1, 2.2,

3.1, and Chapter 4 are adapted from the first paper [7], Sections 1.2, 2.3, 3.2, the beginning of

Chapter 5 and Section 5.1.4 are adapted from the second paper [8], and Section 2.4 combines

related results from both papers.
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Chapter 2

Spacetime geometry from division

algebras

In this chapter, we begin to explore the relationship between:

• Normed division algebras of dimension k = 1, 2, 4 and 8.

• Superstring theories in spacetimes of dimension k + 2 = 3, 4, 6 and 10.

• Super-2-brane theories in spacetimes of dimension k + 3 = 4, 5, 7 and 11.

Physically, a supersymmetric theory requires the use of vector representations of the Lorentz

group to describe its bosonic degrees of freedom, and the spinor representations of the

Lorentz group to describe its fermionic degrees of freedom. In this chapter, we will show

that a normed division algebra K of dimension k can be used to construct vectors and spinors

in k + 2 and k + 3 dimensions.

First, let us describe the most general situation. Let V be a real vector space equipped

with a nondegenerate quadratic form, | · |2. The group Spin(V ), the double-cover of SO0(V ),

acts on V as the symmetries of | · |2. We say that V is the vector representation of Spin(V ),

and call its elements vectors.
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We can also construct representations Spin(V ) by considering the Clifford algebra, Cliff(V ).

This is the associative algebra generated by V for which elements A ∈ V square to their

norm:

Cliff(V ) = TV
/
A2 ∼ |A|2,

where TV denotes the tensor algebra on V . Because the Clifford relation A2 = |A|2 respects

the parity of the number of vectors in any expression, the Clifford algebra is Z2-graded:

Cliff(V ) = Cliff0(V )⊕ Cliff1(V ).

We call Cliff0(V ) and Cliff1(V ) the even part and odd part of Cliff(V ), respectively.

Cliff0(V ) is the subalgebra of Cliff(V ) generated by products of pairs of vectors, while

Cliff1(V ) is a mere subspace of Cliff(V ), spanned by products of odd numbers of vectors.

It is well-known that Spin(V ) lives inside Cliff0(V ). This is the group generated by

products of pairs of unit vectors: vectors A for which |A|2 = ±1. So, we can consider

representations of Spin(V ) that come from modules of Cliff0(V ). Such a representation is

called a spinor representation of Spin(V ), and its elements are called spinors. The algebra

Cliff0(V ) turns out to be either a matrix algebra or the sum of two matrix algebras, so there

are either two irreducible spinor representations, S+ and S−, or just one, S. In this latter

case, let us define S+ = S− = S, so that we may use uniform notation throughout. For a

wonderfully clear introduction to Clifford algebras, including a complete classification, see

the text of Porteous [57].

Since there are many different modules of Cliff0(V ), there are many different spinor rep-

resentations. Physicists distinguish some of them with special names like ‘Majorana spinors’

or ‘Weyl spinors’, and we will see some examples of these below. We do not, however, need

to define these terms precisely, because such distinctions are only important for comparing
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our work to the literature. Instead, we shall see how to handle all the vectors and spinors we

need in a uniform way using normed division algebras.

So far, we have said nothing that depends on the dimension of the space of vectors, V .

In some some dimensions, special phenomena occur, thanks to the existence of the normed

division algebras. A normed division algebra is a real, possibly nonassociative algebra K

with 1, equipped with a norm | · | satisfying

|ab| = |a||b|.

As with the complex numbers, this norm can be expressed using conjugation: |a|2 = aa∗ =

a∗a, where ∗ : K → K is a suitable involution. By a classic theorem of Hurwitz [46], there

are only four finite-dimensional normed division algebras: the real numbers, R, the complex

numbers, C, the quaternions, H, and the octonions, O. These algebras have dimension 1, 2,

4, and 8. Only the octonions are nonassociative, but mildly so: they are alternative, meaning

that the subalgebra generated by any two elements is associative.

One can use the theory of Clifford algebras to prove that normed division algebras can

only occur in these dimensions. This is a two-way street, however, and we will traverse it

the other way, using the division algebras to better understand objects that are usually only

studied with Clifford algebras: vectors and spinors. For a division algebra K of dimension k,

we will mainly be interested in the vectors and spinors in Minkowski spacetime of dimension

k+ 2 or k+ 3, but we can get a taste for how this works just by considering Euclidean space

of dimension k.

In this case, something remarkable happens. Namely, we can identify the vector and

irreducible spinor representations with the division algebra itself:

V = K, S+ = K, S− = K.
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Because each of these representations is just K in disguise, there is an obvious way for a

vector to act on a spinor: multiplication! We define:

· : V ⊗ S+ → S−

A⊗ ψ 7→ Aψ

and
· : V ⊗ S− → S+

A⊗ φ 7→ A∗φ.

Because the action of V swaps the spinor spaces, it preserves their direct sum, S+ ⊕ S−.

Acting on this latter space with the same vector twice, we get:

A · A · (ψ, φ) = A · (A∗φ,Aψ)

= (A∗Aψ,AA∗φ)

= |A|2(ψ, φ).

Note that nonassociativity poses no problem for us in the above calculation, thanks to alter-

nativity: everything in sight takes place in the subalgebra generated by only two elements, A

and ψ.

Now, the above equation is the Clifford relation: acting twice by A is the same as multi-

plying by |A|2. So the map V ⊗ (S+ ⊕ S−)→ S+ ⊕ S− induces a homomorphism:

Cliff(V )→ End(S+ ⊕ S−).

In this way, S+⊕S− becomes a module of Cliff(V ). Because acting by vectors swaps S+ and

S−, both of these subspaces are preserved by the subalgebra Cliff0(V ) generated by products

of pairs of vectors, and in this way they become representations of Spin(V ).
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We thus see how the vectors and spinors in k-dimensional Euclidean space are both just

elements in the division algebra K, albeit with different actions of Spin(V ). We can view this

as a mathematical signpost that supersymmetry is possible: physically, vectors and spinors

are used to describe bosons and fermions, so the fact that both vectors and spinors lie in divi-

sion algebra in dimension k suggests there is a great deal of symmetry between bosons and

fermions in dimension k. Such a symmetry is precisely what supersymmetry was invented to

provide.

There is much more to this story even in Euclidean signature. But we are interested in

physics, so having had a brief taste of Euclidean space, we now turn to Minkowski spacetime.

First, in Section 2.1, we review the basic facts we need about normed division algebras. Then

we develop vectors and spinors for (k + 2)-dimensional spacetime in Section 2.2, and for

(k + 3)-dimensional spacetime in Section 2.3.

2.1 Normed division algebras

As we note above, in 1898 Hurwitz [46] proved there are only four finite-dimensional normed

division algebras: the real numbers, R, the complex numbers, C, the quaternions, H, and the

octonions, O, with dimensions 1, 2, 4, and 8, respectively. Decades later, in 1960, Ur-

banik and Wright [74] removed the finite-dimensionality condition from this result. For an

overview of this subject, including a Clifford algebra proof of Hurwitz’s theorem, see [4]. In

this section, we focus on the tools we will need to study vectors and spinors with division

algebras later in this chapter.

Recall, a normed division algebra K is a (possibly nonassociative) real algebra equipped

with a multiplicative unit 1 and a norm | · | satisfying:

|ab| = |a||b|
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for all a, b ∈ K. Note this implies that K has no zero divisors. We will freely identify R1 ⊆ K

with R.

In all cases, this norm can be defined using conjugation. Every normed division algebra

has a conjugation operator—a linear operator ∗ : K→ K satisfying

a∗∗ = a, (ab)∗ = b∗a∗

for all a, b ∈ K. Conjugation lets us decompose each element of K into real and imaginary

parts, as follows:

Re(a) =
a+ a∗

2
, Im(a) =

a− a∗

2
.

Conjugating changes the sign of the imaginary part and leaves the real part fixed. We can

write the norm as

|a| =
√
aa∗ =

√
a∗a.

This norm can be polarized to give an inner product on K:

(a, b) = Re(ab∗) = Re(a∗b).

The algebras R, C and H are associative. The octonions O are not. Yet they come close:

the subalgebra generated by any two octonions is associative. Another way to express this

fact uses the associator:

[a, b, c] = (ab)c− a(bc),

a trilinear map K ⊗ K ⊗ K → K. A theorem due to Artin [62] states that for any algebra,

the subalgebra generated by any two elements is associative if and only if the associator is

alternating (that is, completely antisymmetric in its three arguments). An algebra with this

property is thus called alternative. The octonions O are alternative, and so of course are R,

C and H: for these three the associator simply vanishes!
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In what follows, our calculations make heavy use of the fact that all four normed division

algebras are alternative. Besides this, the properties we require are:

Proposition 2.1. The associator changes sign when one of its entries is conjugated.

Proof. Since the subalgebra generated by any two elements is associative, and real elements

of K lie in every subalgebra, [a, b, c] = 0 if any one of a, b, c is real. It follows that [a, b, c] =

[Im(a), Im(b), Im(c)], which yields the desired result.

Proposition 2.2. The associator is purely imaginary.

Proof. Since (ab)∗ = b∗a∗, a calculation shows [a, b, c]∗ = −[c∗, b∗, a∗]. By alternativity

this equals [a∗, b∗, c∗], which in turn equals −[a, b, c] by the above proposition. So, [a, b, c] is

purely imaginary.

For any square matrix A with entries in K, we define its trace tr(A) to be the sum of its

diagonal entries. This trace lacks the usual cyclic property, because K is noncommutative, so

in general tr(AB) 6= tr(BA). Luckily, taking the real part restores this property:

Proposition 2.3. Let a, b, and c be elements of K. Then

Re((ab)c) = Re(a(bc))

and this quantity is invariant under cyclic permutations of a, b, and c.

Proof. Proposition 2.2 implies that Re((ab)c) = Re(a(bc)). For the cyclic property, it then

suffices to prove Re(ab) = Re(ba). Since (a, b) = (b, a) and the inner product is defined by

(a, b) = Re(ab∗) = Re(a∗b), we see:

Re(ab∗) = Re(b∗a).

The desired result follows upon substituting b∗ for b.
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Proposition 2.4. Let A, B, and C be k × `, ` × m and m × k matrices with entries in K.

Then

Re tr((AB)C) = Re tr(A(BC))

and this quantity is invariant under cyclic permutations of A, B, and C. We call this quantity

the real trace Re tr(ABC).

Proof. This follows from the previous proposition and the definition of the trace.

2.2 Spacetime geometry in k + 2 dimensions

We shall now see how to construct vectors and spinors for spacetimes of dimension k + 2

from a normed division algebra K of dimension k. Most of the material for the here is well-

known [4, 25, 47, 52, 71]. We base our approach to it on the papers of Manogue and Schray

[65, 66]. The key facts are that one can describe vectors in (k + 2)-dimensional Minkowski

spacetime as 2 × 2 hermitian matrices with entries in K, and spinors as elements of K2. In

fact there are two representations of Spin(k + 1, 1) on K2, which we call S+ and S−. The

nature of these representations depends on K:

• When K = R, S+
∼= S− is the Majorana spinor representation of Spin(2, 1).

• When K = C, S+
∼= S− is the Majorana spinor representation of Spin(3, 1).

• When K = H, S+ and S− are the Weyl spinor representations of Spin(5, 1).

• When K = O, S+ and S− are the Majorana–Weyl spinor representations of Spin(9, 1).

Of course, these spinor representations are also representations of the even part of the relevant

Clifford algebras:
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Even parts of Clifford algebras

Cliff0(2, 1) ∼= R[2]

Cliff0(3, 1) ∼= C[2]

Cliff0(5, 1) ∼= H[2]⊕H[2]

Cliff0(9, 1) ∼= R[16]⊕ R[16]

Here we see R2, C2, H2 and O2 showing up as irreducible representations of these alge-

bras, albeit with O2 masquerading as R16. The first two algebras have a unique irreducible

representation. The last two both have two irreducible representations, which correspond to

left-handed and right-handed spinors.

Our discussion so far has emphasized the differences between the 4 cases. But the won-

derful thing about normed division algebras is that they allow a unified approach that treats

all four cases simultaneously! They also give simple formulas for the basic intertwining

operators involving vectors, spinors and scalars.

To begin, let K[m] denote the space of m × m matrices with entries in K. Given A ∈

K[m], define its hermitian adjoint A† to be its conjugate transpose:

A† = (A∗)T .

We say such a matrix is hermitian if A = A†. Now take the 2× 2 hermitian matrices:

h2(K) =


 t+ x y

y∗ t− x

 : t, x ∈ R, y ∈ K

 .
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This is an (k + 2)-dimensional real vector space. Moreover, the usual formula for the deter-

minant of a matrix gives the Minkowski norm on this vector space:

− det

 t+ x y

y∗ t− x

 = −t2 + x2 + |y|2.

We insert a minus sign to obtain the signature (k + 1, 1). Note this formula is unambiguous

even if K is noncommutative or nonassociative.

It follows that the double cover of the Lorentz group, Spin(k + 1, 1), acts on h2(K) via

determinant-preserving linear transformations. Since this is the ‘vector’ representation, we

will often call h2(K) simply V . The Minkowski metric

g : V ⊗ V → R

is given by

g(A,A) = − det(A).

There is also a nice formula for the inner product of two different vectors. This involves the

trace reversal of A ∈ h2(K), defined by

Ã = A− (trA)1.

Note we indeed have tr(Ã) = −tr(A). Also note that

A =

 t+ x y

y∗ t− x

 =⇒ Ã =

 −t+ x y

y∗ −t− x


so trace reversal is really time reversal. Moreover:
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Proposition 2.5. For any vectors A,B ∈ V = h2(K), we have

AÃ = ÃA = − det(A)1

and
1

2
Re tr(AB̃) =

1

2
Re tr(ÃB) = g(A,B)

Proof. We check the first equation by a quick calculation. Taking the real trace and dividing

by 2 gives
1

2
Re tr(AÃ) =

1

2
Re tr(ÃA) = − det(A) = g(A,A).

Then we use the polarization identity, which says that two symmetric bilinear forms that give

the same quadratic form must be equal.

Next we consider spinors. As real vector spaces, the spinor representations S+ and S−

are both just K2. However, they differ as representations of Spin(k+1, 1). To construct these

representations, we begin by defining ways for vectors to act on spinors:

γ : V ⊗ S+ → S−

A⊗ ψ 7→ Aψ.

and
γ̃ : V ⊗ S− → S+

A⊗ ψ 7→ Ãψ.

We have named these maps for definiteness, but we will also write the action of a vector on

a spinor with a dot:

A · ψ, ψ ∈ S±
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We can also think of γ and γ̃ as maps that send elements of V to linear operators:

γ : V → Hom(S+, S−),

γ̃ : V → Hom(S−, S+).

Here a word of caution is needed: since K may be nonassociative, 2×2 matrices with entries

in K cannot be identified with linear operators on K2 in the usual way. They certainly induce

linear operators via left multiplication:

LA(ψ) = Aψ.

Indeed, this is how γ and γ̃ turn elements of V into linear operators:

γ(A) = LA,

γ̃(A) = LÃ.

However, because of nonassociativity, composing such linear operators is different from mul-

tiplying the matrices:

LALB(ψ) = A(Bψ) 6= (AB)ψ = LAB(ψ).

Since vectors act on elements of S+ to give elements of S− and vice versa, they map

the space S+ ⊕ S− to itself. This gives rise to an action of the Clifford algebra Cliff(V ) on

S+ ⊕ S−:

Proposition 2.6. The vectors V = h2(K) act on the spinors S+⊕S− = K2⊕K2 via the map

Γ: V → End(S+ ⊕ S−)
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given by

Γ(A)(ψ, φ) = (Ãφ, Aψ).

Furthermore, Γ(A) satisfies the Clifford algebra relation:

Γ(A)2 = g(A,A)1

and so extends to a homomorphism Γ: Cliff(V ) → End(S+ ⊕ S−), i.e. a representation of

the Clifford algebra Cliff(V ) on S+ ⊕ S−.

Proof. Suppose A ∈ V and Ψ = (ψ, φ) ∈ S+ ⊕ S−. We need to check that

Γ(A)2(Ψ) = − det(A)Ψ.

Here we must be mindful of nonassociativity: we have

Γ(A)2(Ψ) = (Ã(Aψ), A(Ãφ)).

Yet it is easy to check that the expressions Ã(Aψ) and A(Ãφ) involve multiplying at most

two different nonreal elements of K. These associate, since K is alternative, so in fact

Γ(A)2(Ψ) = ((ÃA)ψ, (AÃ)φ).

To conclude, we use Proposition 2.5.

The action of a vector swaps S+ and S−, so acting by vectors twice sends S+ to itself

and S− to itself. This means that while S+ and S− are not modules for the Clifford algebra

Cliff(V ), they are both modules for the even part of the Clifford algebra, generated by prod-

ucts of pairs of vectors. Recalling that Spin(k + 1, 1) lives in this even part, we see that S+

and S− are both representations of Spin(k + 1, 1).
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Now that we have representations of Spin(k+1, 1) on V , S+ and S−, we need to develop

the Spin(k + 1, 1)-equivariant maps that relate them. Ultimately, we need:

• An invariant pairing:

〈−,−〉 : S+ ⊗ S− → R.

• An equivariant map that turns pairs of spinors into vectors:

[−,−] : S± ⊗ S± → V.

Another name for an equivariant map between group representations is an ‘intertwining op-

erator’. As a first step, we show that the action of vectors on spinors is itself an intertwining

operator:

Proposition 2.7. The maps

γ : V ⊗ S+ → S−

A⊗ ψ 7→ Aψ

and

γ̃ : V ⊗ S− → S+

A⊗ ψ 7→ Ãψ

are equivariant with respect to the action of Spin(k + 1, 1).

Proof. Both γ and γ̃ are restrictions of the map

Γ: V ⊗ (S+ ⊕ S−)→ S+ ⊕ S−,

so it suffices to check that Γ is equivariant. Indeed, an element g ∈ Spin(k + 1, 1) acts on V

by conjugation on V ⊆ Cliff(V ), and it acts on S+ ⊕ S− by Γ(g). Thus, we compute:

Γ(gAg−1)Γ(g)Ψ = Γ(g)(Γ(A)Ψ),
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for any Ψ ∈ S+⊕S−. Here it is important to note that the conjugation gAg−1 is taking place

in the associative algebra Cliff(V ), not in the algebra of matrices. This equation says that Γ

is indeed Spin(k + 1, 1)-equivariant, as claimed.

Now we exhibit the key tool: the pairing between S+ and S−:

Proposition 2.8. The pairing

〈−,−〉 : S+ ⊗ S− → R

ψ ⊗ φ 7→ Re(ψ†φ)

is invariant under the action of Spin(k + 1, 1).

Proof. Given A ∈ V , we use the fact that the associator is purely imaginary to show that

Re
(

(Ãφ)†(Aψ)
)

= Re
(

(φ†Ã)(Aψ)
)

= Re
(
φ†(Ã(Aψ))

)
.

As in the proof of the Clifford relation, it is easy to check that the column vector Ã(Aψ)

involves at most two nonreal elements of K and equals g(A,A)ψ. So:

〈γ̃(A)φ, γ(A)ψ〉 = g(A,A)〈ψ, φ〉.

In particular when A is a unit vector, acting by A swaps the order of ψ and φ and changes

the sign at most. 〈−,−〉 is thus invariant under the group in Cliff(V ) generated by products

of pairs of unit vectors, which is Spin(k + 1, 1).

With this pairing in hand, there is a manifestly equivariant way to turn a pair of spinors

into a vector. Given ψ, φ ∈ S+, there is a unique vector [ψ, φ] whose inner product with any

vector A is given by

g([ψ, φ], A) = 〈ψ, γ(A)φ〉.
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Similarly, given ψ, φ ∈ S−, we define [ψ, φ] ∈ V by demanding

g([ψ, φ], A) = 〈γ̃(A)ψ, φ〉

for all A ∈ V . This gives us maps

S± ⊗ S± → V

which are manifestly equivariant.

On the other hand, because S± = K2 and V = h2(K), there is also a naive way to turn

a pair of spinors into a vector using matrix operations: just multiply the column vector ψ by

the row vector φ† and then take the hermitian part:

ψφ† + φψ† ∈ h2(K),

or perhaps its trace reversal:

˜ψφ† + φψ† ∈ h2(K).

In fact, these naive guesses match the manifestly equivariant approach described above:

Proposition 2.9. The maps [−,−] : S± ⊗ S± → V are given by:

[−,−] : S+ ⊗ S+ → V

ψ ⊗ φ 7→ ˜ψφ† + φψ†

[−,−] : S− ⊗ S− → V

ψ ⊗ φ 7→ ψφ† + φψ†.

These maps are equivariant with respect to the action of Spin(k + 1, 1).
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Proof. First suppose ψ, φ ∈ S+. We have already seen that the map [−,−] : S+ ⊗ S+ → V

is equivariant. We only need to show that this map has the desired form. We start by using

some definitions:

g([ψ, φ], A) = 〈ψ, γ(A)φ〉 = Re(ψ†(Aφ)) = Re tr(ψ†Aφ).

We thus have

g([ψ, φ], A) = Re tr(ψ†Aφ) = Re tr(φ†Aψ),

where in the last step we took the adjoint of the inside. Applying the cyclic property of the

real trace, we obtain

g([ψ, φ], A) = Re tr(φψ†A) = Re tr(ψφ†A).

Averaging gives

g([ψ, φ], A) =
1

2
Re tr((ψφ† + φψ†)A).

On the other hand, Proposition 2.5 implies that

g([ψ, φ], A) =
1

2
Re tr([̃ψ, φ]A).

Since both these equations hold for all A, we must have

[̃ψ, φ] = ψφ† + φψ†.

Doing trace reversal twice gets us back where we started, so

[ψ, φ] = ˜ψφ† + φψ†
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as desired. A similar calculation shows that if ψ, φ ∈ S−, then [ψ, φ] = ψφ† + φψ†.

Map Division algebra notation Index notation

g : V ⊗ V → R 1
2
Re tr(AB̃) AµBµ

γ : V ⊗S+→S− Aψ Aµγµψ

γ̃ : V ⊗S−→S+ Ãψ Aµγ̃µψ

[−,−] : S+⊗S+→ V ˜ψφ† + φψ† ψγµφ

[−,−] : S−⊗S−→ V ψφ† + φψ† ψγ̃µφ

〈−,−〉 : S+⊗S−→ R Re(ψ†φ) ψφ

Table 2.1: Division algebra notation vs. index notation

We can summarize our work so far with a table of the basic bilinear maps involving vectors,

spinors and scalars. Table 1 shows how to translate between division algebra notation and

something more closely resembling standard physics notation. In this table the adjoint spinor

ψ denotes the spinor dual to ψ under the pairing 〈−,−〉. The gamma matrix γµ denotes a

Clifford algebra generator acting on S+, while γ̃µ denotes the same element acting on S−.

Of course γ̃ is not standard physics notation; the standard notation for this depends on which

of the four cases we are considering: R, C, H or O.

2.3 Spacetime geometry in k + 3 dimensions

In the last section we recalled how to describe spinors and vectors in (k + 2)-dimensional

Minkowski spacetime using a division algebra K of dimension k. Here we show how to

boost this up one dimension, and give a division algebra description of vectors and spinors in

(k + 3)-dimensional Minkowski spacetime.
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We shall see that vectors in (k + 3)-dimensional Minkowski spacetime can be identified

with 4× 4 K-valued matrices of this particular form:

 a Ã

A −a


where a is a real multiple of the 2 × 2 identity matrix and A is a 2 × 2 hermitian matrix

with entries in K. Moreover, Spin(k + 2, 1) has a representation on K4, which we call S.

Depending on K, this gives the following types of spinors:

• When K = R, S is the Majorana spinor representation of Spin(3, 1).

• When K = C, S is the Dirac spinor representation of Spin(4, 1).

• When K = H, S is the Dirac spinor representation of Spin(6, 1).

• When K = O, S is the Majorana spinor representation of Spin(10, 1).

Again, these spinor representations are also representations of the even part of the relevant

Clifford algebra:

Even parts of Clifford algebras

Cliff0(3, 1) ∼= C[2]

Cliff0(4, 1) ∼= H[2]

Cliff0(6, 1) ∼= H[4]

Cliff0(10, 1) ∼= R[32]

These algebras have irreducible representations on R4 ∼= C2, C4 ∼= H2, H4 and O4 ∼= R32,

respectively.
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The details can be described in a uniform way for all four cases. We take as our space of

‘vectors’ the following (k + 3)-dimensional subspace of K[4]:

V =


 a Ã

A −a

 : a ∈ R, A ∈ h2(K)


In the last section, we defined vectors in k + 2 dimensions to be V = h2(K). That space has

an obvious embedding into V , given by

V ↪→ V

A 7→

0 Ã

A 0


The Minkowski metric

h : V ⊗ V → R

is given by extending the Minkowski metric g on V :

h
((

a Ã
A −a

)
,
(
a Ã
A −a

))
= g(A,A) + a2

From our formulas for g, we can derive formulas for h:

Proposition 2.10. For any vectors A,B ∈ V ⊆ K[4], we have

A2 = h(A,A)1

and
1

4
Re tr(AB) = h(A,B).
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Proof. For A =
(
a Ã
A −a

)
, it is easy to check:

A2 =

a2 + ÃA 0

0 AÃ+ a2

 .

By Proposition 2.5, we have AÃ = ÃA = g(A,A)1, and substituting this in establishes the

first formula. The second formula follows from polarizing and taking the real trace of both

sides.

Define a space of ‘spinors’ by S = S+ ⊕ S− = K4. To distinguish elements of V from

elements of h2(K), we will denote them with calligraphic letters such as A and B. Similarly,

to distinguish elements of S from S±, we will denote them with capital Greek letters such as

Ψ and Φ.

Elements of V act on S by left multiplication:

V ⊗ S → S

A⊗Ψ 7→ AΨ.

We can dualize this to get a map:

Γ: V → End(S)

A 7→ LA.

This induces the Clifford action of Cliff(V) on S. Note that this Γ is the same as the map in

Proposition 2.6 when we restrict to V ⊆ V .

Proposition 2.11. The vectors V ⊆ K[4] act on the spinors S = K4 via the map

Γ: V → End(S)
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given by

Γ(A)Ψ = AΨ.

Furthermore, Γ(A) satisfies the Clifford algebra relation:

Γ(A)2 = h(A,A)1

and so extends to a homomorphism Γ: Cliff(V) → End(S), i.e. a representation of the

Clifford algebra Cliff(V) on S.

Proof. Here, we must be mindful of nonassociativity. For Ψ = (ψ, φ) ∈ S and A =(
a Ã
A −a

)
∈ V , we have:

Γ(A)2Ψ = A(AΨ)

which works out to be:

Γ(A)2Ψ =

 a2ψ + Ã(Aψ)

A(Ãφ) + a2φ

 .

A quick calculation shows that the expressions Ã(Aψ) and A(Ãφ) involve at most two non-

real elements of K, so everything associates and we can write:

Γ(A)2Ψ = A2Ψ

By Proposition 2.10, we are done.

This tells us how S is a module of Cliff(V), and thus a representation of Spin(V), the

subgroup of Cliff(V) generated by products of pairs of unit vectors.

In the last section, we saw how to construct a Spin(V )-invariant pairing

〈−,−〉 : S+ ⊗ S− → R.
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We can use this to build up to a Spin(V)-invariant pairing on S:

〈(ψ, φ), (χ, θ)〉 = 〈ψ, θ〉 − 〈χ, φ〉

To see this, let

Γ0 =

0 −1

1 0


Then, because 〈ψ, φ〉 = Re(ψ†φ), it is easy to check that:

〈ψ, θ〉 − 〈χ, φ〉 = Re


ψ
φ


†

Γ0

χ
θ


 .

We can show this last expression is invariant by explicit calculation.

Proposition 2.12. Define the nondegenerate skew-symmetric bilinear form

〈−,−〉 : S ⊗ S → R

by

〈Ψ,Φ〉 = Re(Ψ†Γ0Φ).

This form is invariant under Spin(V).

Proof. It is easy to see that, for any spinors Ψ,Φ ∈ S and vectors A ∈ V , we have

〈AΨ,AΦ〉 = Re
(
(Ψ†A†)Γ0(AΦ)

)
= Re

(
Ψ†(A†Γ0(AΦ))

)
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where in the last step we have used Proposition 2.4. Now, given that

A =

a Ã

A −a


a quick calculation shows:

A†Γ0 = −Γ0A.

So, this last expression becomes:

−Re
(
Ψ†(Γ0A(AΦ))

)
= −Re

(
Ψ†(Γ0Γ(A)2Φ))

)
= −|A|2Re

(
Ψ†Γ0Φ

)
where in the last step we have used the Clifford relation. Summing up, we have shown:

〈AΨ,AΦ〉 = −|A|2〈Ψ,Φ〉

In particular, when A is a unit vector, acting by A changes the sign at most. Thus, 〈−,−〉 is

invariant under the group generated by products of pairs of unit vectors, which is Spin(V). It

is easy to see that it is nondegenerate, and it is skew-symmetric because Γ0 is.

With the form 〈−,−〉 in hand, there is a manifestly equivariant way to turn a pair of

spinors into a vector. Given Ψ,Φ ∈ S, there is a unique vector [Ψ,Φ] whose inner product

with any vector A is given by

h([Ψ,Φ],A) = 〈Ψ,Γ(A)Φ〉.

It will be useful to have an explicit formula for this operation:
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Proposition 2.13. Given Ψ = (ψ1, ψ2) and Φ = (φ1, φ2) in S = S+ ⊕ S−, we have:

[Ψ,Φ] =

 〈ψ1, φ2〉+ 〈φ1, ψ2〉 − ˜[ψ1, ψ2] + ˜[φ1, φ2]

−[ψ1, ψ2] + [φ1, φ2] −〈ψ1, φ2〉 − 〈φ1, ψ2〉


Proof. Decompose V into orthogonal subspaces:

V =


0 Ã

A 0

 : A ∈ V

⊕

a 0

0 −a

 : a ∈ R


The first of these is just a copy of V , a (k+2)-dimensional Minkowski spacetime. The second

is the single extra spatial dimension in our (k + 3)-dimensional Minkowski spacetime, V .

Now, use the definition of [Ψ,Φ], but restricted to V . It is easy to see that, for any vector

A ∈ V , we have:

h([Ψ,Φ], A) = −〈ψ1, γ(A)φ1〉+ 〈γ̃(A)ψ2, φ2〉

Letting B be the component of [Ψ,Φ] which lies in V , this becomes:

g(B,A) = −〈ψ1, γ(A)φ1〉+ 〈γ̃(A)ψ2, φ2〉.

Note that we have switched to the metric g on V , to which h restricts. By definition, this is

the same as:

g(B,A) = g(−[ψ1, φ1] + [ψ2, φ2], A).

Since this holds for all A, we must have B = −[ψ1, φ1] + [ψ2, φ2].

It remains to find the component of [Ψ,Φ] orthogonal to B. Since {( a 0
0 −a ) : a ∈ R} is

1-dimensional, this is merely a number. Specifically, it is the constant of proportionality in

the expression:

h ([Ψ,Φ], ( a 0
0 −a )) = a(〈ψ1, φ2〉+ 〈φ1, ψ2〉)
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Thus, this component is 〈ψ1, φ2〉+ 〈φ1, ψ2〉. Putting everything together, we get

[Ψ,Φ] =

 〈ψ1, φ2〉+ 〈φ1, ψ2〉 − ˜[ψ1, ψ2] + ˜[φ1, φ2]

−[ψ1, ψ2] + [φ1, φ2] −〈ψ1, φ2〉 − 〈φ1, ψ2〉



2.4 The spinor identities

We now prove crucial identities involving spinors in spacetimes of dimension k + 2 and

k + 3. In a sense, this solves our puzzle concerning how division algebras are related to

string theory and 2-brane theory: the spinor identities allow the construction of WZW terms

for these theories, thus guaranteeing they have Siegel symmetry. Siegel symmetry forces

the bosonic and fermionic degrees of freedom to match, so it is essential for supersymmetry.

In dimensions 10 and 11, Siegel symmetry also constrains the background of spacetime to

be that of supergravity. Yet, in solving the puzzle, we uncover new questions. What, for

instance, is the significance of these spinor identities? We shall see, in the remainder of this

thesis, that these identities lead the way to higher gauge theory.

The first identity we shall prove holds in spacetimes of dimension 3, 4, 6 and 10. This

identity appears in several guises in the physics literature. Besides the role it plays in string

theory, we shall see in Chapter 4 that it implies the supersymmetry of super-Yang–Mills

theories in these dimensions.

Let us see the various forms this identity can take. In dimensions 3, 4, 6 and 10, we have

what Schray [65] has dubbed the 3-ψ’s rule:

[ψ, ψ] · ψ = 0.
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for all spinors ψ ∈ S+. That is, a spinor squared to a vector and then acting on itself vanishes.

It is also common to see this cubic form polarized to obtain a trilinear in three spinors:

[ψ, φ] · χ+ [χ, ψ] · φ+ [φ, χ] · ψ = 0.

A more geometric interpretation, emphasized by Deligne and Freed [29], is that spinors

square to null vectors in these special dimensions:

|[ψ, ψ]|2 = 0.

where the bracket is the bilinear map defined in Proposition 2.13. On the other hand, physi-

cists prefer to write all of these expressions using gamma matrices. Referring to Table 2.1, we

write components of the vector [ψ, ψ] as ψγµψ. These identities then become, respectively:

(ψγµψ)γµψ = 0,

(ψγµφ)γµχ+ (χγµψ)γµφ+ (φγµχ)γµψ = 0,

and

(ψγµψ)(ψγµψ) = 0.

Finally, it also common for the spinors to be removed from the second identity, to obtain an

equivalent expression in terms of gamma matrices alone. We now establish that these are all

equivalent. In fact, this is a consequence of the following symmetries:

Proposition 2.14. For any spinors ψ, φ, χ, θ ∈ S+, the 4-linear expression 〈θ, [ψ, φ]χ〉 is

symmetric under the exchange of the first and last spinors:

〈θ, [ψ, φ]χ〉 = 〈χ, [ψ, χ]θ〉
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and under the exchange of the bracketed and unbracketed spinors:

〈θ, [ψ, φ]χ〉 = 〈ψ, [θ, χ]φ〉

Proof. Using the definition of bracket, write:

〈θ, [ψ, φ]χ〉 = g([θ, χ], [ψ, φ]).

The first formula then follows from the symmetry of the bracket [θ, χ]. The second formula

follows from the definition of the bracket [ψ, φ].

Proposition 2.15. The following are equivalent:

1. [ψ, ψ] · ψ = 0 for all ψ ∈ S±.

2. [ψ, φ] · χ+ [χ, ψ] · φ+ [φ, χ] · ψ = 0 for all ψ, φ, χ ∈ S±

3. |[ψ, ψ]|2 = 0 for all ψ ∈ S±.

Proof. Because the bracket is symmetric, the trilinear expression

[ψ, φ] · χ+ [χ, ψ] · φ+ [φ, χ] · ψ

is totally symmetric in its three arguments. Just as a symmetric bilinear vanishes if and only

if the associated quadratic form vanishes, a symmetric trilinear vanishes if and only if the

associated cubic form does. In this case, that cubic form is, up to a numerical factor:

[ψ, ψ] · ψ.

So (1) holds if and only if (2) does.
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On the other hand, we can use the symmetries of Proposition 2.14 to show that the fol-

lowing expression is symmetric in all four spinors:

〈θ, [ψ, φ] · χ+ [χ, ψ] · φ+ [φ, χ] · ψ〉.

Statement (2) holds if and only if this expression vanishes for all θ, but this totally symmetric

4-linear vanishes if and only if the associated quartic form vanishes. In this case, that quartic

form is, up to a multiplicative factor:

〈ψ, [ψ, ψ]ψ〉 = g([ψ, ψ], [ψ, ψ]).

Thus, (2) holds if and only if (3) holds.

We now prove the 3-ψ’s rule. Note that it is really the alternative law, rather than any

division algebra axioms, that does the work.

Theorem 2.1. Suppose ψ ∈ S±. Then [ψ, ψ] · ψ = 0. In other words, [ψ, ψ]ψ = 0 for

ψ ∈ S+, and [̃ψ, ψ]ψ = 0 for φ ∈ S−.

Proof. Let ψ ∈ S+. By definition,

[ψ, ψ]ψ = 2(ψ̃ψ†)ψ = 2(ψψ† − tr(ψψ†)1)ψ.

It is easy to check that tr(ψψ†) = ψ†ψ, so

[ψ, ψ]ψ = 2((ψψ†)ψ − (ψ†ψ)ψ).

Since ψ†ψ is a real number, it commutes with ψ:

[ψ, ψ]ψ = 2((ψψ†)ψ − ψ(ψ†ψ)).
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Since K is alternative, every subalgebra of K generated by two elements is associative. Since

ψ ∈ K2 is built from just two elements of K, the right-hand side vanishes. The proof for the

second case is similar.

Similarly, spinors in dimension 4, 5, 7 and 11 satisfy a related identity, written in gamma

matrix notation as follows:

ΨΓabΨΨΓbΨ = 0

This identity shows up in two prominent places in the physics literature. First, it is required

for the existence of 2-brane theories in these dimensions [1, 32]. This is because it allows

the construction of a Wess–Zumino–Witten term for these theories, which give these theories

Siegel symmetry.

Yet it is known that 2-branes in 11 dimensions are intimately connected to supergravity.

Indeed, the Siegel symmetry imposed by the WZW term constrains the 2-brane background

to be that of 11-dimensional supergravity [72]. So it should come as no surprise that this

spinor identity also plays a crucial role in supergravity, most visibly in the work of D’Auria

and Fré [27] and subsequent work by Sati, Schreiber and Stasheff [61].

This identity is equivalent to the 4-Ψ’s rule:

[Ψ, [Ψ,Ψ]Ψ] = 0.

To see this, note that we can turn a pair of spinors Ψ and Φ into a 2-form, Ψ ∗Φ. This comes

from the fact that we can embed bivectors inside the Clifford algebra Cliff(V) via the map

A ∧ B 7→ AB − BA ∈ Cliff(V).
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These can then act on spinors using the Clifford action. Thus, define:

(Ψ ∗ Φ)(A,B) = 〈Ψ, (A ∧ B)Φ〉. (2.1)

But when Ψ = Φ, we can simplify this using the Clifford relation:

(Ψ ∗Ψ)(A,B) = 〈Ψ, (AB − BA)Ψ〉

= 〈Ψ, 2ABΨ〉 − 〈Ψ,Ψ〉h(A,B)

= 2〈Ψ,ABΨ〉

where we have used the skew-symmetry of the form. The index-ridden identity above merely

says that inserting the vector [Ψ,Ψ] into one slot of the 2-form Ψ ∗Ψ is zero, no matter what

goes into the other slot:

(Ψ ∗Ψ)(A, [Ψ,Ψ]) = 2〈Ψ,A[Ψ,Ψ]Ψ〉 = 0

for all A. By the definition of the bracket, this is the same as

2h([Ψ, [Ψ,Ψ]Ψ],A) = 0

for all A. Thus, the index-ridden identity is equivalent to:

[Ψ, [Ψ,Ψ]Ψ] = 0

as required.

Now, let us prove this:

Theorem 2.2. Suppose Ψ ∈ S. Then [Ψ, [Ψ,Ψ]Ψ] = 0.
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Proof. Let Ψ = (ψ, φ). By Proposition 2.13,

[Ψ,Ψ] =

 2〈ψ, φ〉 −[̃ψ, ψ] + [̃φ, φ]

−[ψ, ψ] + [φ, φ] −2〈ψ, φ〉


and thus

[Ψ,Ψ]Ψ =

 2〈ψ, φ〉ψ − [̃ψ, ψ]φ+ [̃φ, φ]φ

−[ψ, ψ]ψ + [φ, φ]ψ − 2〈ψ, φ〉φ

 .

Both [ψ, ψ]ψ = 0 and [̃φ, φ]φ = 0 by the 3-ψ’s rule, Theorem 2.1. So:

[Ψ,Ψ]Ψ =

 2〈ψ, φ〉ψ − [̃ψ, ψ]φ

[φ, φ]ψ − 2〈ψ, φ〉φ

 .

The resulting matrix for [Ψ, [Ψ,Ψ]Ψ] is large and unwieldy, so we shall avoid writing it out.

Fortunately, all we really need is the (1, 1) entry. Recall, this is the component of the vector

[Ψ, [Ψ,Ψ]Ψ] that is orthogonal to the subspace V ⊂ V . Call this component a. A calculation

shows:

a = 〈ψ, [φ, φ]ψ〉 − 〈[̃ψ, ψ]φ, φ〉

= Re tr(ψ†(2φφ†)ψ)− Re tr(φ†(2ψψ†)φ)

= 0

where the two terms cancel by the cyclic property of the real trace, Proposition 2.4. Thus,

this component of the vector [Ψ, [Ψ,Ψ]Ψ] vanishes. But since the map Ψ 7→ [Ψ, [Ψ,Ψ]Ψ] is

equivariant with respect to the action of Spin(V), and V is an irreducible representation of

this group, it follows that all components of this vector must vanish.
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Chapter 3

Supertranslation algebras and their

cohomology

3.1 Superalgebra

So far we have used normed division algebras to construct a number of algebraic structures:

vectors as elements of h2(K) or K[4], spinors as elements of K2 or K4, and the various bilinear

maps involving vectors, spinors, and scalars. However, to describe supersymmetry, we also

need superalgebra. Specifically, we need anticommuting spinors. Physically, this is because

spinors are fermions, so we need them to satisfy anticommutation relations. Mathematically,

this means that we will do our algebra in the category of ‘super vector spaces’, SuperVect,

rather than the category of vector spaces, Vect.

A super vector space is a Z2-graded vector space V = V0 ⊕ V1 where V0 is called the

even or bosonic part, and V1 is called the odd or fermionic part. Like Vect, SuperVect is a

symmetric monoidal category [12]. It has:

• Z2-graded vector spaces as objects;

• Grade-preserving linear maps as morphisms;
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• A tensor product⊗ that has the following grading: if V = V0⊕V1 and W = W0⊕W1,

then (V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1) and (V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0);

• A braiding

BV,W : V ⊗W → W ⊗ V

defined as follows: v ∈ V and w ∈ W are of grade p and q, then

BV,W (v ⊗ w) = (−1)pqw ⊗ v.

The braiding encodes the ‘the rule of signs’: in any calculation, when two odd elements are

interchanged, we introduce a minus sign.

There is an obvious notion of direct sums for super vector spaces, with

(V ⊕W )0 = V0 ⊕W0, (V ⊕W )1 = V1 ⊕W1

and also an obvious notion of duals, with

(V ∗)0 = (V0)∗, (V ∗)1 = (V1)∗.

We say a super vector space V is even if it equals its even part (V = V0), and odd if it equals

its odd part (V = V1). Any subspace U ⊆ V of an even (resp. odd) super vector space

becomes a super vector space which is again even (resp. odd).

It is noteworthy that treating division algebras as odd is compatible with the physical

applications of this thesis. This turns out to force the spinor representations S± to be odd and

the vector representation V to be even, as follows.

We treat the spinor representations S± as super vector spaces using the fact that they are

the direct sum of two copies of K. Since K is odd, so are S+ and S−. Since K2 is odd, so is its
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dual. This in turn forces the space of linear maps from K2 to itself, End(K2) = K2 ⊗ (K2)∗,

to be even. This even space contains the 2×2 matrices K[2] as the subspace of maps realized

by left multiplication:

K[2] ↪→ End(K2)

A 7→ LA.

K[2] is thus even. Finally, this forces the subspace of hermitian 2× 2 matrices, h2(K), to be

even. So, the vector representation V is even. All this matches the usual rules in physics,

where spinors are fermionic and vectors are bosonic.

3.2 Cohomology of Lie superalgebras

We now fuse the vectors and spinors we described with division algebras into a single struc-

ture. In any dimension, a symmetric bilinear intertwining operator that eats two spinors

and spits out a vector gives rise to a ‘super-Minkowski spacetime’ [28]. The infinitesimal

translation symmetries of this object form a Lie superalgebra, called the ‘supertranslation

algebra’, T . The cohomology of this Lie superalgebra is interesting and apparently rather

subtle [19, 55]. We shall see that its 3rd cohomology is nontrivial in dimensions k + 2 = 3,

4, 6 and 10, thanks to the 3-ψ’s rule. algebras. Similarly, its 4th cohomology is nontrivial in

dimensions k + 3 = 4, 5, 7 and 11, thanks to the 4-Ψ’s rule.

For arbitrary superspacetimes, the cohomology of T is not explicitly known. Techniques

to compute it have been described by Brandt [19], who applied them in dimension 5 and

below. Schwarz, Movshev and Xu [55] showed how to augment these techniques using the

computer algebra system LiE [26], and fully describe the cohomology in dimension 6 and 10

in this way.

Based on the work of these authors, it seems likely that the 3rd and 4th cohomology of T

is nontrivial in sufficiently large dimensions. We conjecture, however, that dimensions k + 2
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and k+3 are the only ones with Lorentz invariant 3- and 4-cocycles. Exploratory calculations

with LiE bare this conjecture out, but the general answer appears to be unknown.

Now for some definitions. Briefly, a Lie superalgebra is a Lie algebra in the category

of super vector spaces. More concretely, it is a super vector space g equipped with a super-

skew-symmetric bracket:

[−,−] : Λ2g→ g,

that satisfies the Jacobi identity up to some signs:

[X, [Y, Z]] = [[X, Y ], Z] + (−1)|X||Y |[Y, [X,Z]],

for homogeneous X, Y, Z ∈ g. Here, Λ2g is the exterior square of g = g0 ⊕ g1 as a super

vector space. As an ordinary vector space,

Λ2g ∼= Λ2g0 ⊕ g0 ⊗ g1 ⊕ Sym2g1,

thanks to the rule of signs.

We will be concerned with several Lie superalgebras in this thesis. However, one of

the most important is also one of the most simple. Take V to be the space of vectors in

Minkowski spacetime in any dimension, and take S to be any spinor representation in this

dimension. Suppose that there is a symmetric equivariant bilinear map:

[−,−] : S ⊗ S → V.

Form a super vector space T with

T0 = V, T1 = S.
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We make T into a Lie superalgebra, the supertranslation algebra, by giving it a suitable

bracket operation. This bracket will be zero except when we bracket a spinor with a spinor,

in which case it is simply [−,−]. Since this is symmetric and spinors are odd, the bracket

operation is super-skew-symmetric overall. Furthermore, the Jacobi identity holds trivially,

thanks to the near triviality of the bracket. Thus T is indeed, a Lie superalgebra.

Despite the fact that T is nearly trivial, its cohomology is not. To see this, we must first

recall how to generalize Chevalley–Eilenberg cohomology [3, 24] from Lie algebras to Lie

superalgebras [50]. Suppose g is a Lie superalgebra and R is a representation of g. That is,

R is a supervector space equipped with a Lie superalgebra homomorphism ρ : g → gl(R).

We now define the cohomology groups of g with values in R.

First, of course, we need a cochain complex. We define the Lie superalgebra cochain

complex C•(g, R) to consist of super-skew-symmetric p-linear maps at level p:

Cp(g, R) = {ω : Λpg→ R} .

In fact, the p-cochains Cp(g, R) are a super vector space, in which grade-preserving elements

are even, while grade-reversing elements are odd. WhenR = R, the trivial representation, we

typically omit it from the cochain complex and all associated groups, such as the cohomology

groups. Thus, we write C•(g) for C•(g,R).

Next, we define the coboundary operator d : Cp(g, R) → Cp+1(g, R). Let ω be a homo-

geneous p-cochain and let X1, . . . , Xp+1 be homogeneous elements of g. Now define:

dω(X1, . . . , Xn+1) =
p+1∑
i=1

(−1)i+1(−1)|Xi||ω|εi−1
1 (i)ρ(Xi)ω(X1, . . . , X̂i, . . . , Xp+1)

+
∑
i<j

(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . Xp+1)
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Here, εji (k) is shorthand for the sign one obtains by moving Xk through Xi, Xi+1, . . . , Xj . In

other words,

εji (k) = (−1)|Xk|(|Xi|+|Xi+1|+···+|Xj |).

Following the usual argument for Lie algebras, one can check that:

Proposition 3.1. The Lie superalgebra coboundary operator d satisfies d2 = 0.

We thus say a R-valued p-cochain ω on g is an p-cocycle or closed when dω = 0, and

an p-coboundary or exact if there exists an (p − 1)-cochain θ such that ω = dθ. Every

p-coboundary is an p-cocycle, and we say an p-cocycle is trivial if it is a coboundary. We

denote the super vector spaces of p-cocycles and p-coboundaries by Zp(g, V ) and Bp(g, V )

respectively. The pth Lie superalgebra cohomology of g with coefficients in R, denoted

Hp(g, R) is defined by

Hp(g, R) = Zp(g, R)/Bp(g, R).

This super vector space is nonzero if and only if there is a nontrivial p-cocycle. In what

follows, we shall be especially concerned with the even part of this super vector space, which

is nonzero if and only if there is a nontrivial even p-cocycle. Our motivation for looking for

even cocycles is simple: these parity-preserving maps can regarded as morphisms in the

category of super vector spaces, which is crucial for the construction in Theorem 5.1 and

everything following it.

Now consider Minkowski spacetimes of dimensions 3, 4, 6, and 10. Here Minkowski

spacetime can be written as V = h2(K), and we can take our spinors to be S+ = K2. Since

from Section 2.2 we know there is a symmetric bilinear intertwiner [−,−] : S+ ⊗ S+ → V ,

we obtain the supertranslation algebra T = V ⊕ S+. We can decompose the space of n-

cochains with on T into summands by counting how many of the arguments are vectors and
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how many are spinors:

Cn(T ) ∼=
⊕
p+q=n

(Λp(V )⊗ Symq(S+))∗.

We call an element of (Λp(V )⊗Symq(S+))∗ a (p, q)-form. Since the bracket of two spinors

is a vector, and all other brackets are zero, d of a (p, q)-form is a (p− 1, q + 2)-form.

Using the 3-ψ’s rule we can show:

Theorem 3.1. In dimensions 3, 4, 6 and 10, the supertranslation algebra T has a nontrivial,

Lorentz-invariant even 3-cocycle taking values in the trivial representation R, namely the

unique (1, 2)-form with

α(ψ, φ,A) = g([ψ, φ], A)

for spinors ψ, φ ∈ S+ and vectors A ∈ V .

Proof. First, note that α has the right symmetry to be a linear map on Λ3(V ⊕ S+). Second,

note that α is a (1, 2)-form, eating one vector and two spinors. Thus dα is a (0, 4)-form.

Because spinors are odd, dα is a symmetric function of four spinors. By the defini-

tion of d, dα(ψ, φ, χ, θ) is the totally symmetric part of α([ψ, φ], χ, θ) = α(χ, θ, [ψ, φ]) =

g([χ, θ], [ψ, φ]). But any symmetric 4-linear form can be obtained from polarizing a quartic

form. In this, we polarize g([ψ, ψ], [ψ, ψ]) to get dα. Thus:

dα(ψ, ψ, ψ, ψ) = g([ψ, ψ], [ψ, ψ]) = 〈ψ, [ψ, ψ]ψ〉

where we have used the definition of the bracket to obtain the last expression, which vanishes

due to the 3-ψ rule. Thus α is closed.

It remains to show α is not exact. So suppose it is exact, and that

α = dω.

58



By our remarks above we may assume ω is a (2, 0)-form: that is, an antisymmetric bilinear

function of two vectors. By the definition of d, this last equation says:

g([ψ, φ], A) = −ω([ψ, φ], A).

But since S+ ⊗ S+ → V is onto, this implies

g = −ω,

a contradiction, since g is symmetric while ω is antisymmetric.

Next consider Minkowski spacetimes of dimensions 4, 5, 7 and 11. In this case Minkowski

spacetime can be written as a subspace V of the 4× 4 matrices valued in K, and we can take

our spinors to be S = K4. Since from Section 2.3 we know there is a symmetric bilinear

intertwiner [−,−] : S ⊗S → V , we obtain a supertranslation algebra T = V ⊕S. As before,

we can uniquely decompose any n-cochain in Cn(T ,R) into a sum of (p, q)-forms, where

now a (p, q)-form is an an element of (Λp(V)⊗ Symq(S))∗. As before, d of a (p, q)-form is

a (p− 1, q + 2)-form. And using the 4-Ψ’s rule, we can show:

Theorem 3.2. In dimensions 4, 5, 7 and 11, the supertranslation algebra T has a nontrivial,

Lorentz-invariant even 4-cocycle, namely the unique (2, 2)-form with

β(Ψ,Φ,A,B) = 〈Ψ, (AB − BA)Φ〉

for spinors Ψ,Φ ∈ S and vectors A,B ∈ V . Here the commutator AB − BA is taken in the

Clifford algebra of V .
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Proof. First, to see that β has the right symmetry to be a map on Λ4(V ⊕ S), we note that it

is antisymmetric on vectors, and that because

Γ0A = −A†Γ0,

we have:

Γ0AB = A†B†Γ0.

Thus:

〈Ψ,ABΦ〉 = 〈BAΨ,Φ〉 = −〈Φ,BAΨ〉,

so we have:

〈Ψ, (AB − BA)Φ〉 = 〈Φ, (AB − BA)Ψ〉.

Thus, β is symmetric on spinors.

Next note that dβ is a (1, 4)-form, symmetric on its four spinor inputs. It is thus propor-

tional to the polarization of

α(Ψ,Ψ, [Ψ,Ψ],A) = Ψ ∗Ψ([Ψ,Ψ],A)

We encountered this object in Section 2.4, where we showed that it is proportional to

h([Ψ, [Ψ,Ψ]Ψ],A).

Moreover, this last expression vanishes by the 4-Ψ’s rule. So, β is closed.

Furthermore, β is not exact. To see this, consider the unit vector ( 1 0
0 −1 ) orthogonal to

V ⊆ V . Taking the interior product of β with this vector, a quick calculation shows:

β(Ψ,Φ, ( 1 0
0 −1 ) ,A) = 2〈ψ1, γ(A)φ1〉+ 2〈γ̃(A)ψ2, φ2〉,
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where we have decomposed Ψ = (ψ1, ψ2) and Φ = (φ1, φ2) into their components in S =

S+⊕S−, and A is the component ofA in V . Restricting to the subalgebra V ⊕S+ ⊆ V ⊕S,

we see this is just α, up to a factor.

So, it suffices to check that interior product with X = ( 1 0
0 −1 ) preserves exactness. For

then, if β were exact, it would contradict that fact that α is not. Indeed, let ω be an n-cochain

on T , and let X1, . . . , Xn ∈ T . Then, by our formula for the coboundary operator, we have:

dω(X,X1, . . . , Xn) =∑
i<j

−(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω(X, [Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . Xn)

+
n∑
i=1

(−1)1+iεi−1
1 (i)ω([X,Xi], X1, . . . , X̂i, . . . , Xn),

where, taking care with signs, we have collected terms involving bracketing with X into

the second summation. But X is a vector, so all brackets with it vanish, and the second

summation is zero.

If we write iXω for the operation of taking the interior product of ω with X , we have just

shown:

iXdω = −diXω

for any ω. In particular, if ω = dθ then iXω = d(−iXθ), and so interior product with X

preserves exactness, as claimed.
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Chapter 4

An application: super-Yang–Mills theory

For the moment, let us set aside our grand quest to understand division algebras, supersym-

metry and higher gauge theory and focus on a special case: the connection between division

algebras and super-Yang–Mills theories. Such theories are the low energy limit of super-

string theories in a fixed background [41], so it is not surprising that they also occur only in

spacetimes of dimension 3, 4, 6 and 10.

The minimal supersymmetric extension of pure Yang–Mills theory has the Lagrangian:

L = −1

4
〈F, F 〉+

1

2
〈ψ, /DAψ〉.

Here A is a connection on a bundle with semisimple gauge group G, F is the curvature of

A, ψ is a g-valued spinor field, and /DA is the covariant Dirac operator associated with A. In

the physics literature, it is well-known that this theory is supersymmetric if and only if the

dimension of spacetime is 3, 4, 6, or 10. Our goal in this section is to present a self-contained

proof of the ‘if’ part of this result, based on the 3-ψ’s rule. Along the way, we shall give a

division algebra interpretation of the Lagrangian, L.

The proof that L is supersymmetric goes back to the work of Brink, Schwarz, and

Sherk [20] and others. The book by Green, Schwarz and Witten [41] contains a standard
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proof based on the properties of Clifford algebras in various dimensions. But Evans [35] has

shown that the supersymmetry of L in dimension k+ 2 implies the existence of a normed di-

vision algebra of dimension k. Conversely, Kugo and Townsend [47] showed how spinors in

dimension 3, 4, 6, and 10 derive special properties from the normed division algebras R, C,

H and O. They formulated a supersymmetric model in 6 dimensions using the quaternions,

H. They also speculated about a similar formalism in 10 dimensions using the octonions, O.

Shortly after Kugo and Townsend’s work, Sudbery [71] used division algebras to con-

struct vectors, spinors and Lorentz groups in Minkowski spacetimes of dimensions 3, 4, 6,

and 10. He then refined his construction with Chung [25], and with Manogue [52] he used

these ideas to give an octonionic proof of the supersymmetry of the above Lagrangian in

dimension 10. This proof was later simplified by Manogue, Dray and Janesky [31]. In the

meantime, Schray [65] applied the same tools to the superparticle.

All this work has made it quite clear that normed division algebras explain why the above

theory is supersymmetric in dimensions 3, 4, 6, and 10. Technically, what we need to check

for supersymmetry is that δL is a total divergence with respect to the supersymmetry trans-

formation

δA = [ε, ψ]

δψ = 1
2
Fε

for any constant spinor field ε. A calculation that works in any dimension shows that

δL = triψ + divergence

where triψ is a certain expression depending in a trilinear way on ψ and linearly on ε.

So, the marvelous fact that needs to be understood is that triψ = 0 in dimensions 3, 4, 6,

and 10, thanks to special properties of the normed division algebras R, C, H and O. Indeed,
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we shall show that it is a consequence of the 3-ψ’s rule. Yet this rule is a direct consequence

of the fact that R, C, H and O are alternative, so one could say that the vanishing of triψ is

a direct consequence of the total antisymmetry of a simpler trilinear: the associator [a, b, c].

Let’s get to work. For simplicity, we shall work over Minkowski spacetime, M . This

allows us to treat all bundles as trivial, sections as functions, and connections as g-valued

1-forms. At the outset, we fix an invariant inner product on g, the Lie algebra of a semisim-

ple Lie group G. We shall use the following standard tools from differential geometry to

construct L, none of which need involve spinors or division algebra technology:

• A connection A on a principal G-bundle over M . Since the bundle is trivial we think

of this connection as a g-valued 1-form.

• The exterior covariant derivative dA = d+ [A,−] on g-valued p-forms.

• The curvature F = dA+ 1
2
[A,A], which is a g-valued 2-form.

• The usual pointwise inner product 〈F, F 〉 on g-valued 2-forms, defined using the Minkowski

metric on M and the invariant inner product on g.

We also need the following spinorial tools. Because spinors describe fermions, we assume

S+ and S− are odd objects in SuperVect. So, whenever we switch two spinors, we introduce

a minus sign.

• A g-valued section ψ of a spin bundle over M . Note that this is, in fact, just a function:

ψ : M → S± ⊗ g.

We call the collection of all such functions Γ(S± ⊗ g).

• The covariant Dirac operator /DA derived from DA. Of course,

/DA : Γ(S± ⊗ g)→ Γ(S∓ ⊗ g)
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and in fact,

/DA = /∂ + A.

• A bilinear pairing

〈−,−〉 : Γ(S+ ⊗ g)⊗ Γ(S− ⊗ g)→ C∞(M)

built pointwise using our pairing

〈−,−〉 : S+ ⊗ S− → R

and the invariant inner product on g.

The basic fields in our theory are a connection on a principal G-bundle, which we think

of as a g-valued 1-form:

A : M → V ∗ ⊗ g.

and a g-valued spinor field, which we think of as a S+ ⊗ g-valued function on M :

ψ : M → S+ ⊗ g.

All our arguments would work just as well with S− replacing S+.

To show that L is supersymmetric, we need to show δL is a total divergence when δ is

the following supersymmetry transformation:

δA = [ε, ψ]

δψ =
1

2
Fε
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where ε is an arbitrary constant spinor field, treated as odd, but not g-valued. By a super-

symmetry transformation we mean that computationally we treat δ as a derivation on the

algebra of functions on spacetime. So, it is linear:

δ(αf + βg) = αδf + βδg

where α, β ∈ R, and it satisfies the product rule:

δ(fg) = δ(f)g + fδg.

For a more precise discussion of ‘supersymmetry transformations’, see Deligne and Freed

[29].

The above equations require further explanation. The bracket [ε, ψ] denotes an operation

that combines the spinor εwith the g-valued spinor ψ to produce a g-valued 1-form. We build

this from our basic intertwiner

[−,−] : S+ ⊗ S+ → V.

We identify V with V ∗ using the Minkowski inner product g, obtaining

[−,−] : S+ ⊗ S+ → V ∗.

Then we tensor both sides with g. This gives us a way to act by a spinor field on a g-valued

spinor field to obtain a g-valued 1-form. We take the liberty of also denoting this with by the

bracket:

[−,−] : Γ(S+)⊗ Γ(S+ ⊗ g)→ Ω1(M, g).
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We also need to explain how the 2-form F acts on the constant spinor field ε. Using

the Minkowski metric, we can identify differential forms on M with sections of the Clifford

algebra bundle over M :

Ω•(M) ∼= Cliff(M).

Using this, differential forms act on spinor fields. Tensoring with g, we obtain a way for

g-valued differential forms like F to act on spinor fields like ε to give g-valued spinor fields

like Fε.

Let us now apply the supersymmetry transformation to each term in the Lagrangian. First,

the bosonic term:

Proposition 4.1. The bosonic term has:

δ〈F, F 〉 = 2(−1)k+1 〈ψ, (?dA?F )ε〉+ divergence.

Proof. By the symmetry of the inner product, we get:

δ〈F, F 〉 = 2〈F, δF 〉.

Using the handy formula δF = dAδA, we have:

〈F, δF 〉 = 〈F, dAδA〉.

Now the adjoint of the operator dA is ?dA?, up to a pesky sign: if ν is a g-valued (p−1)-form

and µ is a g-valued p-form, we have

〈µ, dAν〉 = (−1)dp+d+1+s〈?dA? µ, ν〉+ divergence
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where d is the dimension of spacetime and s is the signature, i.e., the number of minus signs

in the diagonalized metric. It follows that

〈F, δF 〉 = 〈F, dAδA〉 = (−1)k 〈?dA?F, δA〉+ divergence

where k is the dimension of K. By the definition of δA, we get

〈?dA?F, δA〉 = 〈?dA?F, [ε, ψ]〉.

Now we can use division algebra technology to show:

〈?dA?F, [ε, ψ]〉 =
1

2
Re tr

(
(?dA?F )(εψ† + ψε†)

)
= −〈ψ, (?dA?F )ε〉,

using the cyclic property of the real trace in the last step, and introducing a minus sign in

accordance with the sign rule. Putting everything together, we obtain the desired result.

Even though this proposition involved the bosonic term only, division algebra technology

was still a useful tool in its proof. This is even more true in the next proposition, which deals

with the the fermionic term:

Proposition 4.2. The fermionic term has:

δ〈ψ, /DAψ〉 = 〈ψ, /DA(Fε)〉+ triψ + divergence

where

triψ = 〈ψ, [ε, ψ]ψ〉.

Proof. It is easy to compute:

δ〈ψ, /DAψ〉 = 〈δψ, /DAψ〉+ 〈ψ, δ /DAψ〉+ 〈ψ, /DAδψ〉.
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Now we insert δ /DA = δA = [ε, ψ], and thus see that the penultimate term is the trilinear one:

triψ = 〈ψ, [ε, ψ]ψ〉.

So, let us concern ourselves with the remaining terms:

〈δψ, /DAψ〉+ 〈ψ, /DAδψ〉.

A computation using the product rule shows that the divergence of the 1-form [ψ, φ] is given

by −〈φ, /DAψ〉+ 〈ψ, /DAφ〉, where the minus sign on the first term arises from using the sign

rule with these odd spinors. In the terms under consideration, we can use this identity to

move /DA onto δψ:

〈δψ, /DAψ〉+ 〈ψ, /DAδψ〉 = 2〈ψ, /DAδψ〉+ divergence.

Substituting δψ = 1
2
Fε, we obtain the desired result.

Using these two propositions, it is immediate that

δL = −1

4
δ〈F, F 〉+

1

2
δ〈ψ, /DAψ〉

=
1

2
(−1)k〈ψ, (?dA?F )ε〉+

1

2
〈ψ, /DA(Fε)〉+

1

2
triψ + divergence

All that remains to show is that /DA(Fε) = (−1)k+1(?dA?F ) ε. Indeed, Snygg shows (Eq.

7.6 in [69]) that for an ordinary, non-g-valued p-form F

/∂(Fε) = (dF )ε+ (−1)d+dp+s(?d?F )ε
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where d is the dimension of spacetime and s is the signature. This is easily generalized to

covariant derivatives and g-valued p-forms:

/DA(Fε) = (dAF )ε+ (−1)d+dp+s(?dA?F )ε.

In particular, when F is the curvature 2-form, the first term vanishes by the Bianchi identity

dAF = 0, and we are left with:

/DA(Fε) = (−1)k+1(?dA?F )ε

where k is the dimension of K. We have thus shown:

Proposition 4.3. Under supersymmetry transformations, the Lagrangian L has:

δL =
1

2
triψ + divergence.

The above result actually holds in every dimension, though our proof used division alge-

bras and was thus adapted to the dimensions of interest: 3, 4, 6, and 10. The next result is

where division algebra technology becomes really crucial:

Proposition 4.4. For Minkowski spacetimes of dimensions 3, 4, 6, and 10, triψ = 0.

Proof. At each point of M , we can write

ψ =
∑

ψa ⊗ ga,

where ψa ∈ S+ and ga ∈ g. When we insert this into triψ, we see that

triψ =
∑
〈ψa, [ε, ψb]ψc〉 〈ga, [gb, gc]〉.
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Since 〈ga, [gb, gc]〉 is totally antisymmetric, this implies triψ = 0 for all ε if and only if the

part of 〈ψa, [ε, ψb]ψc〉 that is antisymmetric in a, b and c vanishes for all ε. Yet these spinors

are odd; for even spinors, we require the part of 〈ψa, [ε, ψb]ψc〉 that is symmetric in a, b and c

to vanish for all ε.

Now let us remove our dependence on ε. While we do this, let us replace ψa with ψ, ψb

with φ, and ψc with χ to lessen the clutter of indices. By the second formula in Proposition

2.14, we have:

〈ψ, [ε, φ]χ〉 = 〈ε, [ψ, χ]φ〉,

So, if we seek to show that the part of 〈ψ, [ε, φ]χ〉 that is totally symmetric in ψ, φ and χ

vanishes for all ε, it is equivalent to show the totally symmetric part of [φ, χ]ψ vanishes. But

this happens for all ψ, φ and χ in S+ if and only if [ψ, ψ]ψ = 0 for all ψ in S+. This is the

3-ψ’s rule, Theorem 2.1, so we are done.
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Chapter 5

Lie n-superalgebras from Lie

superalgebra cohomology

In Section 3.2, we saw that the 3-ψ’s and 4-Ψ’s rules are cocycle conditions for the cocycles

α and β. This sheds some light on the meaning of these rules, but it prompts an obvious

followup question: what are these cocycles good for?

There is a very general answer to this question: a cocycle on a Lie superalgebra lets us

extend it to an ‘L∞-superalgebra’. As we touched on in the Introduction, this is a chain

complex equipped with structure like that of a Lie superalgebra, but where all the laws hold

only ‘up to chain homotopy’. We give the precise definition below.

It is well known that that the 2nd cohomology of a Lie algebra g with coefficients in

some representation R classifies ‘central extensions’ of g by R [3, 24]. These are short exact

sequences of Lie algebras:

0→ R→ g̃→ g→ 0

where g̃ is arbitrary and R is treated as an abelian Lie algebra whose image lies in the center

of g̃. The same sort of result is true for Lie superalgebras. But this is just a special case of an

even more general fact.
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Suppose g is a Lie superalgebra with a representation on a supervector space R. Then

we shall prove that an even R-valued (n + 2)-cocycle ω on g lets us construct an L∞-

superalgebra, called braneω(g, R), of the following form:

g
d←− 0

d←− · · · d←− 0
d←− R.

where only the 0th and and nth grades are nonzero. Moreover, braneω(g, R) is an extension

of g: there is a short exact sequence of L∞-superalgebras

0→ bnR→ braneω(g, R)→ g→ 0.

Here bnR is the abelian L∞-superalgebra with R as its nth grade and all the rest zero:

0
d←− 0

d←− · · · d←− 0
d←− R

Note that when n = 0 and our vector spaces are all purely even, we are back to the familiar

construction of Lie algebra extensions from 2-cocycles.

Technically, we should be more general than this in defining extensions. Maps between

L∞-algebras admit homotopies among themselves, and this allows us to introduce a weak-

ened notion of ‘short exact sequence’: a fibration sequence in the (∞, 1)-category of L∞-

algebras. In general, these fibration sequences give the right concept of extension for L∞-

algebras. However, for the very special extensions we consider here, ordinary short exact

sequences are all we need.

It is useful to have a special name for L∞-superalgebras whose nonzero terms are all of

degree < n: we call them Lie n-superalgebras. In this language, the 3-cocycle α defined in

Theorem 3.1 gives rise to a Lie 2-superalgebra

T d←− R
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extending the supertranslation algebra T in dimensions 3, 4, 6, and 10. Similarly, the 4-

cocycle β defined in Theorem 3.2 gives a Lie 3-superalgebra

T d←− 0
d←− R

extending the supertranslation algebra in dimensions 4, 5, 7 and 11.

Now let us make all of these ideas precise. In what follows, we shall use super chain

complexes, which are chain complexes in the category SuperVect of Z2-graded vector spaces:

V0
d←− V1

d←− V2
d←− · · ·

Thus each Vp is Z2-graded and d preserves this grading.

There are thus two gradings in play: the Z-grading by degree, and the Z2-grading on

each vector space, which we call the parity. We shall require a sign convention to establish

how these gradings interact. If we consider an object of odd parity and odd degree, is it in

fact even overall? By convention, we assume that it is. That is, whenever we interchange

something of parity p and degree q with something of parity p′ and degree q′, we introduce

the sign (−1)(p+q)(p′+q′). We shall call the sum p+ q of parity and degree the overall grade,

or when it will not cause confusion, simply the grade. We denote the overall grade of X by

|X|.

We require a compressed notation for signs. If x1, . . . , xn are graded, σ ∈ Sn a permuta-

tion, we define the Koszul sign ε(σ) = ε(σ;x1, . . . , xn) by

x1 · · ·xn = ε(σ;x1, . . . , xn) · xσ(1) · · ·xσ(n),

the sign we would introduce in the free graded-commutative algebra generated by x1, . . . , xn.

Thus, ε(σ) encodes all the sign changes that arise from permuting graded elements. Now
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define:

χ(σ) = χ(σ;x1, . . . , xn) := sgn(σ) · ε(σ;x1, . . . , xn).

Thus, χ(σ) is the sign we would introduce in the free graded-anticommutative algebra gen-

erated by x1, . . . , xn.

Yet we shall only be concerned with particular permutations. If n is a natural number and

1 ≤ j ≤ n− 1 we say that σ ∈ Sn is an (j, n− j)-unshuffle if

σ(1) ≤ σ(2) ≤ · · · ≤ σ(j) and σ(j + 1) ≤ σ(j + 2) ≤ · · · ≤ σ(n).

Readers familiar with shuffles will recognize unshuffles as their inverses. A shuffle of two

ordered sets (such as a deck of cards) is a permutation of the ordered union preserving the or-

der of each of the given subsets. An unshuffle reverses this process. We denote the collection

of all (j, n− j) unshuffles by S(j,n−j).

The following definition of an L∞-algebra was formulated by Schlessinger and Stasheff

in 1985 [63]:

Definition 5.1. An L∞-superalgebra is a graded vector space V equipped with a system

{lk|1 ≤ k < ∞} of linear maps lk : V ⊗k → V with deg(lk) = k − 2 which are totally

antisymmetric in the sense that

lk(xσ(1), . . . , xσ(k)) = χ(σ)lk(x1, . . . , xn) (5.1)

for all σ ∈ Sn and x1, . . . , xn ∈ V, and, moreover, the following generalized form of the

Jacobi identity holds for 0 ≤ n <∞ :

∑
i+j=n+1

∑
σ∈S(i,n−i)

χ(σ)(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0, (5.2)

where the summation is taken over all (i, n− i)-unshuffles with i ≥ 1.
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The following result shows how to construct L∞-superalgebras from Lie superalgebra

cocycles. This is the ‘super’ version of a result due to Crans [5]. In this result, we require

our cocycle to be even so we can consider it as a morphism in the category of super vector

spaces.

Theorem 5.1. There is a one-to-one correspondence between L∞-superalgebras consisting

of only two nonzero terms V0 and Vn, with d = 0, and quadruples (g, V, ρ, ln+2) where g is a

Lie superalgebra, V is a super vector space, ρ is a representation of g on V , and ln+2 is an

even (n+ 2)-cocycle on g with values in V .

Proof. Given such an L∞-superalgebra we set g = V0. V0 comes equipped with a bracket as

part of the L∞-structure, and since d is trivial, this bracket satisfies the Jacobi identity on the

nose, making g into a Lie superalgebra. We define V = Vn, and note that the bracket also

gives a map ρ : g⊗ V → V , defined by ρ(x)f = [x, f ] for x ∈ g, f ∈ V . We have

ρ([x, y])f = [[x, y], f ]

= (−1)|y||f |[[x, f ], y] + [x, [y, f ]] by (3) of Definition 5.1

= (−1)|f ||y|[ρ(x)f, y] + [x, ρ(y)f ]

= −(−1)|x||y|ρ(y)ρ(x)f + ρ(x)ρ(y)f

= [ρ(x), ρ(y)]f

for all x, y ∈ g and f ∈ V , so that ρ is indeed a representation. Finally, the L∞ structure

gives a map ln+2 : Λn+2g→ V which is in fact an (n+ 2)-cocycle. To see this, note that

0 =
∑

i+j=n+4

∑
σ

χ(σ)(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n+3))

where we sum over (i, (n+ 3)− i)-unshuffles σ ∈ Sn+3. However, the only choices for i and

j that lead to nonzero li and lj are i = n + 2, j = 2 and i = 2, j = n + 2. Thus, the above
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becomes, with σ a (n+ 2, 1)-unshuffle and τ a (2, n+ 1)-unshuffle:

0 =
∑
σ

χ(σ)(−1)n+2[ln+2(xσ(1), . . . , xσ(n+2)), xσ(n+3)]

+
∑
τ

χ(τ)ln+2([xτ(1), xτ(2)], xτ(3), . . . , xτ(n+3))

=
n+3∑
i=1

(−1)n+3−i(−1)n+2εn+2
i+1 (i)[ln+2(x1, . . . , x̂i, . . . , xn+3), xi]

+
∑

1≤i<j≤n+3

(−1)i+j+1(−1)|xi||xj |εi−1
1 (i)εj−1

1 (j)ln+2([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xn+3)

On the second line, we have explicitly specified the unshuffles and unwrapped the signs

encoded by χ. Since ln+2 is a morphism in SuperVect, it preserves parity, and thus the

element ln+2(x1, . . . , x̂i, . . . , xn+2) has parity |x1|+ · · ·+ |xi−1|+ |xi+1|+ · · ·+ |xn+2|. So,

we can reorder the bracket in the first term, at the cost of a sign:

0 =
n+3∑
i=1

−(−1)i+1εi−1
1 (i)[xi, ln+2(x1, . . . , x̂i, . . . , xn+3)]

+
∑

1≤i<j≤n+3

−(−1)i+j(−1)|xi||xj |εi−1
1 (i)εj−1

1 (j)ln+2([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xn+3)

= −dln+2

Here, we have used the fact that εn+2
i+1 (i)(−1)|xi|(|x1|+···+|xi−1|+|xi+1|+···+|xn+2|) = εi−1

1 (i). Thus,

ln+2 is indeed a cocycle.

Conversely, given a Lie superalgebra g, a representation ρ of g on a vector space V , and

an even (n + 2)-cocycle ln+2 on g with values in V , we define our L∞-superalgebra V by

setting V0 = g, Vn = V , Vi = {0} for i 6= 0, n, and d = 0. It remains to define the system

of linear maps lk, which we do as follows: Since g is a Lie superalgebra, we have a bracket

defined on V0. We extend this bracket to define the map l2, denoted by [·, ·] : Vi ⊗ Vj → Vi+j
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where i, j = 0, n, as follows:

[x, f ] = ρ(x)f, [f, y] = (−1)|y||f |ρ(y)f, [f, g] = 0

for x, y ∈ V0 and f, g ∈ Vn. With this definition, the map [·, ·] satisfies condition (1) of

Definition 5.1. We define lk = 0 for 3 ≤ k ≤ n + 1 and k > n + 2, and take ln+2 to be the

given (n+ 2) cocycle, which satisfies conditions (1) and (2) of Definition 5.1 by the cocycle

condition.

This theorem tells us how to take a Lie superalgebra (n + 1)-cocycle ω, and construct

a Lie n-superalgebra with d = 0, concentrated in degrees 0 and n − 1. We call such a Lie

n-superalgebra a slim Lie n-superalgebra, and denote it by braneω(g, R). When n = 2, we

will also write stringω(g, R) for the same object, and when R is the trivial representation R,

we omit it. In the next section, we give some examples of these objects.

5.1 Examples of slim Lie n-superalgebras

5.1.1 The string Lie 2-algebra

For n ≥ 3, consider the Lie algebra so(n) of infinitesimal rotations of n-dimensional Eu-

clidean space. This matrix Lie algebra has Killing form given by the trace, 〈X, Y 〉 =

tr(XY ), and an easy calculation shows that

j = 〈−, [−,−]〉

is a 3-cocycle on so(n). We call j the canonical 3-cocycle on so(n). Using j, we get a

Lie 2-algebra stringj(so(n)), which we denote simply by string(n). We call this the string

Lie 2-algebra. First defined by Baez–Crans [5], it is so-named because it turned out to be
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intimately related to the string group, String(n), the topological group obtained from SO(n)

by killing the 1st and 3rd homotopy groups. For a description of this relationship, as well as

the construction of Lie 2-groups which integrate string(n), see the papers of Baez–Crans–

Schreiber–Stevenson [13], Henriques [44], and Schommer-Pries [64].

5.1.2 The Heisenberg Lie 2-algebra

As we mentioned earlier, central extensions of Lie algebras are classified by second cohomol-

ogy. A famous example of this is the ‘Heisenberg Lie algebra’, so named because it mimics

the canonical commutation relations in quantum mechanics. Here we present a Lie 2-algebra

generalization: the ‘Heisenberg Lie 2-algebra’.

Consider the abelian Lie algebra of translations in position-momentum space:

R2 = span(p, q).

Here, p and q are our names for the standard basis, the usual letters for momentum and

position in physics. Up to rescaling, this Lie algebra has a single, nontrivial 2-cocycle:

p∗ ∧ q∗ ∈ Λ2(R2),

where p∗ and q∗ comprise the dual basis. Thus it has a nontrivial central extension:

0→ R→ H→ R2 → 0.

This central extension is called the Heisenberg Lie algebra. As a vector space, H = R3,

and we call the basis vectors p, q and z, where z is central. When chosen with suitable
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normalization, they satisfy the commutation relations:

[p, q] = z, [p, z] = 0, [q, z] = 0.

These are the same as the canonical commutation relations in quantum mechanics, except that

the generator z would usually be a number, i~. It is from this parallel that the Heisenberg Lie

algebra derives its physical applications: a representation of H is exactly a way of choosing

linear operators p, q and z on a Hilbert space that satisfy the canonical commutation relations.

With Lie 2-algebras, we can repeat the process that yielded the Heisenberg Lie algebra

to obtain a higher structure. Before we needed a 2-cocycle, but now we need a 3-cocycle.

Indeed, letting p∗, q∗ and z∗ be the dual basis of H∗, it is easy to check that γ = p∗ ∧ q∗ ∧ z∗

is a nontrivial 3-cocycle on H. Thus there is a Lie 2-algebra stringγ(H), the Heisenberg

Lie 2-algebra, which we denote by Heisenberg. Later, we will see how to integrate this Lie

2-algebra to a Lie 2-group.

We suspect the Heisenberg Lie 2-algebra, like its Lie algebra cousin, is also important for

physics. We also suspect that the pattern continues: the Heisenberg Lie 2-algebra may admit

a ‘4-cocycle’, and a central extension to a Lie 3-algebra. However, since we have not defined

the cohomology of Lie n-algebras, we do not pursue this here.

5.1.3 The supertranslation Lie n-superalgebras

Some exceptional cocycles arise on the supertranslation algebras in certain dimensions. Re-

call from Section 3.2 that a supertranslation algebra is a Lie superalgebra of the form:

T = V ⊕ S,

where the even part V is a vector space with a nondegerate quadratic form, the odd part S

is a spinor representation of Spin(V ), and the bracket comes from a symmetric, Spin(V )-
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equivariant map that takes pairs of spinors to vectors:

[−,−] : Sym2S → V.

In spacetime dimensions 3, 4, 6 and 10, we proved in Theorem 3.1 that there is a 3-cocycle

α, which is nonzero only when given two spinors and a vector:

α : Λ3(T ) → R

A ∧ ψ ∧ φ 7→ 〈ψ,Aφ〉.

There is thus a Lie 2-superalgebra, the supertranslation Lie 2-superalgebra, stringα(T ).

Likewise, in spacetime dimensions 4, 5, 7 and 11, we proved in Theorem 3.2 that there is

a 4-cocycle β, which is nonzero only when given two spinors and two vectors:

β : Λ4(T ) → R

A ∧ B ∧Ψ ∧ Φ 7→ 〈Ψ, (A ∧ B)Φ〉.

There is thus a Lie 3-superalgebra, the supertranslation Lie 3-superalgebra, braneβ(T ).

There is much more that one can do with the cocycles α and β, however. We can use

them to extend not just the supertranslations T to a Lie n-superalgebra, but the full Poincaré

superalgebra, so(V ) n T . We turn to this now.

5.1.4 Superstring Lie 2-superalgebras, 2-brane Lie 3-superalgebras

One of the principal themes of theoretical physics over the last century has been the search

for the underlying symmetries of nature. This began with special relativity, which could be

summarized as the discovery that the laws of physics are invariant under the action of the

Poincaré group:

ISO(V ) = Spin(V ) n V.
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Here, V is the set of vectors in Minkowski spacetime and acts on Minkowski spacetime by

translation, while Spin(V ) is the Lorentz group: the double cover of SO0(V ), the con-

nected component of the group of symmetries of the Minkowski norm. Much of the progress

in physics since special relativity has been associated with the discovery of additional sym-

metries, like the U(1)×SU(2)×SU(3) symmetries of the Standard Model of particle physics

[6].

Today, ‘supersymmetry’ could be summarized as the hypothesis that the laws of physics

are invariant under the ‘Poincaré supergroup’, which is larger than the Poincaré group:

SISO(V ) = Spin(V ) n T.

Here, V is again the set of vectors in Minkowski spacetime and Spin(V ) is the Lorentz

group, but T is the supergroup of translations on Minkowski ‘superspacetime’. Though we

have not yet learned enough supergeometry to talk about T precisely, we have already met

its infinitesimal approximation: the superstranslation algebra, T = V ⊕ S. We think of the

spinor representation S as giving extra, supersymmetric translations, or ‘supersymmetries’.

In this thesis, we show how to further extend the Poincaré group to include higher sym-

metries, thanks to the normed division algebras. That is, we will show that in dimensions

k + 2 = 3, 4, 6 and 10, one can extend the Poincaré supergroup SISO(k + 1, 1) to a ‘Lie

2-supergroup’ we call Superstring(k + 1, 1). Similarly, in dimensions k + 3 = 4, 5, 7 and

11, one can extend the Poincaré supergroup SISO(k + 2, 1) to a ‘Lie 3-supergroup’ we call

2-Brane(k + 2, 1).

We begin this construction in this section by working at the infinitesimal level. We con-

struct a Lie 2-superalgebra,

superstring(k + 1, 1),
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which extends the Poincaré superalgebra in dimension k + 2:

siso(k + 1, 1 = so(k + 1, 1) n T

Then we construct a Lie 3-superalgebra,

2-brane(k + 2, 1),

which extends the Poincaré superalgebra in dimension k + 3:

siso(k + 2, 1) = so(k + 2, 1) n T .

We do this construction using the cocycles α and β. This is possible because both α and β are

invariant under the action of the corresponding Lorentz algebra: so(k + 1, 1) in the case of

α, and so(k + 2, 1) for β. This is manifestly true, because α and β are built from equivariant

maps.

As we shall see, this invariance implies that α and β are cocycles, not merely on the

supertranslations, but on the full Poincaré superalgebra—siso(k + 1, 1) in the case of α, and

siso(k + 2, 1) in the case of β. We can extend α and β to these larger algebras in a trivial

way: define the unique extension which vanishes unless all of its arguments come from T .

Doing this, α and β remain cocycles, even though the Lie bracket (and thus d) has changed.

Moreover, they remain nontrivial. All of this is contained in the following proposition:

Proposition 5.1. Let g and h be Lie superalgebras such that g acts on h, and let R be a

representation of g n h. Given any R-valued n-cochain ω on h, we can uniquely extend it to

an n-cochain ω̃ on g n h that takes the value of ω on h and vanishes on g. When ω is even,

we have:

1. ω̃ is closed if and only if ω is closed and g-equivariant.
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2. ω̃ is exact if and only if ω = dθ, for θ a g-equivariant (n− 1)-cochain on h.

Proof. As a vector space, g n h = g⊕ h, so that

Λn(g n h) ∼=
⊕
p+q=n

Λpg⊗ Λqh,

as a vector space. Thanks to this decomposition, we can uniquely decompose n-cochains

on g n h by restricting to the summands. In keeping with our prior terminology, we call an

n-cochain supported on Λpg⊗Λqh a (p, q)-form. Note that ω̃ is just the n-cochain ω regarded

as a (0, n)-form on g n h. We shall denote the space of (p, q)-forms by Cp,q.

We have two actions to distinguish: the action of g n h on R, which we denote by ρ, and

the action of g on h, which we shall denote simply by the bracket, [−,−]. Inspecting the

formula for the differential:

dω̃(X1, . . . , Xn+1) =
n+1∑
i=1

(−1)i+1(−1)|Xi||ω̃|εi−1
1 (i)ρ(Xi)ω̃(X1, . . . , X̂i, . . . , Xn+1)

+
∑
i<j

(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω̃([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . Xn+1)

it is easy to see that

d : Cp,q → Cp,q+1 ⊕ Cp+1,q.

In particular:

d : C0,n → C0,n+1 ⊕ C1,n.

Given an n-cochain ω on h, it is easy to see that the part of dω̃ which lies in C0,n+1 is just

d̃ω, the extension of the (n+ 1)-cochain dω to g n h.

Let eω denote the (1, n)-form part of dω̃. To express this explicitly, choose Y1 ∈ g

and X2, . . . , Xn+1 ∈ h. By definition eω(Y1, X2, . . . , Xn+1) = dω̃(Y1, X2, . . . , Xn+1), and
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inspecting the formula for the differential once more, we see this consists of only two nonzero

terms:

eω(Y1, X2, . . . , Xn+1) = (−1)|ω̃||Y1|ρ(Y1)ω̃(X2, . . . , Xn+1)

+
n+1∑
i=2

(−1)i+1εi−1
2 (i)ω̃([Y1, Xi], X2, . . . , X̂i, . . . , Xn+1)

= (−1)|ω||Y1|ρ(Y1)ω(X2 ∧ · · · ∧Xn+1)− ω([Y1, X2 ∧ · · · ∧Xn+1])

In particular, note that for even ω, eω = 0 if and only if ω is g-equivariant.

To summarize, for any n-cochain ω, we have that

dω̃ = d̃ω + eω,

where the first d is defined on g n h, while the second is only defined on h. The proof of 1 is

now immediate: for even ω, dω̃ = 0 if and only if d̃ω = 0 and eω = 0, which happens if and

only dω = 0 and ω is g-equivariant.

To prove 2, suppose ω is even. Assume ω̃ = dχ, for some (n − 1)-cochain χ on g n h.

Because dχ is an even (0, n)-form, we may assume χ is an even (0, n − 1)-form, as any

other part of χ is closed and does not contribute to dχ. Thus χ is the extension of an even

(n− 1)-cochain θ on h. By our prior formula, we have:

ω̃ = dθ̃ = d̃θ + eθ

The left-hand side is a (0, n)-form, and thus the (1, n − 1)-form part of the right-hand side,

eθ, vanishes. Thus θ is g-equivariant, and ω̃ = d̃θ, which implies ω = dθ. On the other hand,

if ω = dθ and θ is g-equivariant, then eθ = 0 and thus ω̃ = dθ̃.
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Thus we can extend α and β to nonexact cocycles on the Poincaré Lie superalgebra.

Thanks to Theorem 5.1, we know that α lets us extend siso(k+ 1, 1) to a Lie 2-superalgebra:

Theorem 5.2. In dimensions 3, 4, 6 and 10, there exists a nonexact Lie 2-superalgebra

formed by extending the Poincaré superalgebra siso(k + 1, 1) by the 3-cocycle α, which we

call we the superstring Lie 2-superalgebra, superstring(k + 1, 1).

Likewise, in dimensions one higher, β lets us extend siso(k+2, 1) to a Lie 3-superalgebra. In

the 11-dimensional case, this coincides with the Lie 3-superalgebra which Sati, Schreiber and

Stasheff call sugra(10, 1) [61], which is the Koszul dual of an algebra defined by D’Auria

and Fré [27].

Theorem 5.3. In dimensions 4, 5, 7 and 11, there exists a nonexact Lie 3-superalgebra

formed by extending the Poincaré superalgebra siso(k + 2, 1) by the 4-cocycle β, which we

call the 2-brane Lie 3-superalgebra, 2-brane(k + 2, 1).
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Chapter 6

Lie n-groups from group cohomology

Having constructed Lie n-algebras from Lie algebra (n+1)-cocycles, we now turn to a paral-

lel construction of Lie n-groups. Roughly speaking, an ‘n-group’ is a weak n-groupoid with

one object—an n-category with one object in which all morphisms are weakly invertible,

up to higher-dimensional morphisms. This definition is a rough one because there are many

possible definitions to use for ‘weak n-category’, but despite this ambiguity, it can still serve

to motivate us.

The richness of weak n-categories, no matter what definition we apply, makes n-groups

a complicated subject. In the midst of this complexity, we seek to define a class of n-groups

that have a simple description, and which are straightforward to internalize, so that we may

easily construct Lie n-groups and Lie n-supergroups, as we shall do later in this thesis. The

motivating example for this is what Baez and Lauda [10] call a ‘special 2-group’, which has a

concrete description using group cohomology. Since Baez and Lauda prove that all 2-groups

are equivalent to special ones, group cohomology also serves to classify 2-groups.

So, we will define ‘slim Lie n-groups’, at least for n ≤ 3. This is an Lie n-group which

is skeletal (every weakly isomorphic pair of objects are equal), and almost trivial: all k-

morphisms are the identity for 1 < k < n. Slim Lie n-groups are useful because they can be

completely classified by Lie group cohomology. They are also easy to ‘superize’, and their
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super versions can be completely classified using Lie supergroup cohomology, as we shall

see later. Finally, we note that we could equally well define ‘slim n-groups’, working in the

category of sets rather than the category of smooth manifolds. The results in this section

would hold in this case as well, but are of less use to us in this thesis.

We should stress that the definition of Lie n-group we sketch here (and make precise for

n ≤ 3), while it is good enough for our needs, is known to be too naive in some important

respects. For instance, it does not seem possible to integrate every Lie n-algebra to a Lie

n-group of this type, while Henriques’s definition of Lie n-group does make this possible

[44].

First we need to review the cohomology of Lie groups, as originally defined by van

Est [77], who was working in parallel with the definition of group cohomology given by

Eilenberg and MacLane. Fix a Lie group G, an abelian Lie group H , and a smooth action of

G on H which respects addition in H . That is, for any g ∈ G and h, h′ ∈ H , we have:

g(h+ h′) = gh+ gh′.

Then the cohomology of G with coefficients in H is given by the Lie group cochain

complex, C•(G,H). At level p, this consists of the smooth functions from Gp to H:

Cp(G,H) = {f : Gp → H} .

We call elements of this setH-valued p-cochains onG. The boundary operator is the same

as the one defined by Eilenberg–MacLane. On a p-cochain f , it is given by the formula:

df(g1, . . . , gp+1) = g1f(g2, . . . , gp+1)

+

p∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gp+1)

+(−1)p+1f(g1, . . . , gp)
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The proof that d2 = 0 is routine. All the usual terminology applies: a p-cochain f for which

df = 0 is called closed, or a cocycle, a p-cochain f = dg for some (p−1)-cochain g is called

exact, or a coboundary. A p-cochain is said to be normalized if it vanishes when any of its

entries is 1. Every cohomology class can be represented by a normalized cocycle. Finally,

when H = R with trivial G action, we omit it when writing the complex C•(G), and we call

real-valued cochains, cocycles, or coboundaries, simply cochains, cocycles or coboundaries,

respectively.

This last choice, that R will be our default coefficient group, may seem innocuous, but

there is another one-dimensional abelian Lie group we might have chosen: U(1), the group

of phases. This would have been an equally valid choice, but we have chosen R because it

simplifies our formulas slightly.

We now sketch how to build a slim Lie n-group from an (n + 1)-cocycle. In essence,

given a normalized H-valued (n+ 1)-cocycle a on a Lie group G, we want to construct a Lie

n-group Branea(G,H), which is the smooth, weak n-groupoid with:

• One object. We can depict this with a dot, or ‘0-cell’: •

• For each element g ∈ G, a 1-automorphism of the one object, which we depict as an

arrow, or ‘1-cell’:

• g // • , g ∈ G.

Composition corresponds to multiplication in the group:

• g // • g′ // • = • gg′ // • .

• Trivial k-morphisms for 1 < k < n. If we depict 2-morphisms with 2-cells, 3-

morphisms with 3-cells, then we saying there is just one of each of these (the identity)
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up to level n− 1:

• •

g

��

g

DD1g
��

, • •

g

��

g

BB
�' w�

_*4
11g

1g 1g , . . .

• For each element h ∈ H , an n-automorphism on the identity of the identity of . . . the

identity of the 1-morphism g, and no n-morphisms which are not n-automorphisms.

For example, when n = 3, we have:

• •

g

��

g

BB
�' w�

_*4h1g 1g , h ∈ H.

• There are n ways of composing n-morphisms, given by different ways of sticking n-

cells together. For example, when n = 3, we can glue two 3-cells along a 2-cell, which

should just correspond to addition in H:

���& x�

_*4h _*4k• •

g

��

g

DD =

�& x�

_ *4
h+k

• •

g

��

g

DD

We also can glue two 3-cells along a 1-cell, which should again just be addition in H:

�& x�
_ *4h

�' w�

_ *4k
• •

g

��

g

DD
//g

=

�& x�

_ *4
h+k

• •

g

��

g

DD

And finally, we can glue two 3-cells at the 0-cell, the object •. This is the only com-

position of n-morphisms where the attached 1-morphisms can be distinct, which dis-
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tinguishes it from the first two cases. It should be addition twisted by the action of

G:

• •

g

��

g

EE •

g′

��

g′

EE
�% y� �% y�

_*4h _*4k =

�& x�

_*4
h+gk

• •

gg′

��

gg′

DD

For arbitary n, we define all n compositions to be addition in H , except for gluing at

the object, where it is addition twisted by the action.

• For any (n + 1)-tuple of 1-morphisms, an n-automorphism a(g1, g2, . . . , gn+1) on the

identity of the identity of . . . the identity of the 1-morphism g1g2 . . . gn+1. We call a the

n-associator.

• a satisfies an equation corresponding to the n-dimensional associahedron, which is

equivalent to the cocycle condition.

In principle, it should be possible to take a globular definition of n-category, such as that of

Batanin or Trimble, and fill out this sketch to make it a real definition of an n-group. Doing

this here, however, would lead us too far afield from our goal, for which we only need 2-

and 3-groups. So let us flesh out these cases. The reader interested in learning more about

the various definitions of n-categories should consult Leinster’s survey [49] or Cheng and

Lauda’s guidebook [23].

6.1 Lie 2-groups

Speaking precisely, a 2-group is a bicategory with one object in which all 1-morphisms and

2-morphisms are weakly invertible. Rather than plain 2-groups, we are interested in Lie 2-

groups, where all the structure in sight is smooth. So, we really need a bicategory ‘internal

to the category of smooth manifolds’, or a ‘smooth bicategory’. To this end, we will give
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an especially long and unfamiliar definition of bicategory, isolating each operation and piece

of data so that we can indicate its smoothness. Readers not familiar with bicategories are

encouraged to read the introduction by Leinster [48].

Before we give this definition, let us review the idea of a ‘bicategory’, so that its basic

simplicity is not obscured in technicalities. A bicategory has objects:

x •,

morphisms going between objects,

x • f // • y ,

and 2-morphisms going between morphisms:

x• •y

f

��

g

DDα
��

.

Morphisms in a bicategory can be composed just as morphisms in a category:

x
f // y g // z = x

f ·g // z .

But there are two ways to compose 2-morphisms—vertically:

x yg //

f

��

h

EE

α
��
β
��

= x y

f

��

h

DDα◦β
��
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and horizontally:

x y

f

��

g

DD
α
��

y z

f ′

��

g′

DD
β
��

= x z

f ·f ′

��

g·g′

BBα·β
��

Unlike a category, composition of morphisms need not be associative or have left and right

units. The presence of 2-morphisms allow us to weaken the axioms. Rather than demanding

(f · g) · h = f · (g · h), for composable morphisms f, g and h, the presence of 2-morphisms

allow for the weaker condition that these two expressions are merely isomorphic:

a(f, g, h) : (f · g) · h⇒ f · (g · h),

where a(f, g, h) is an 2-isomorphism called the associator. In the same vein, rather than

demanding that:

1x · f = f = f · 1y,

for f : x → y, and identities 1x : x → x and 1y : y → y, the presence of 2-morphisms allow

us to weaken these equations to isomorphisms:

l(f) : 1x · f ⇒ f, r(f) : f · 1y ⇒ f.

Here, l(f) and r(f) are 2-isomorphisms called the left and right unitors.
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Of course, these 2-isomorphisms obey rules of their own. The associator satisfies its own

axiom, called the pentagon identity, which says that this pentagon commutes:

(fg)(hk)

f(g(hk))

f((gh)k)(f(gh))k

((fg)h)k

a(f,g,hk)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1f ·a(g,h,k)

?G
����������

����������a(f,gh,k) +3

a(f,g,h)·1k

��
7777777777

7777777777

a(fg,h,k)

3;ooooooooooooooooo

ooooooooooooooooo

Finally, the associator and left and right unitors satisfy the triangle identity, which says the

following triangle commutes:

(f1)g f(1g)

fg

a(f,1,g) +3

r(f)·1g

�#
???????????

???????????

1f ·l(g)
{� �����������

�����������

A word of caution is needed here before we proceed: we are bucking standard mathemat-

ical practice by writing the result of doing first α and then β as α ◦β rather than β ◦α, as one

would do in most contexts where ◦ denotes composition of functions. This has the effect of

changing how we read commutative diagrams. For instance, the commutative triangle:

f
α //

γ
��========
g

β

��
h

reads γ = α ◦ β rather than γ = β ◦ α.

We shall now give the full definition, not of a bicategory, but of a ‘smooth bicategory’.

To do this, we use the idea of internalization. Dating back to Ehresmann [33] in the 1960s,
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internalization has become a standard tool of the working category theorist. The idea is based

on a familiar one: any mathematical structure that can be defined using sets, functions, and

equations between functions can be defined in categories other than Set. For instance, a

group in the category of smooth manifolds is a Lie group. To perform internalization, we

apply this idea to the definition of category itself. We recall the essentials here to define

‘smooth categories’. More generally, one can define a ‘category in K’ for many categories

K, though here we will work exclusively with the example whereK is the category of smooth

manifolds. For a readable treatment of internalization, see Borceux’s handbook [18].

Definition 6.1. A smooth category C consists of

• a smooth manifold of objects C0,

• a smooth manifold of morphisms C1,

together with

• smooth source and target maps s, t : C1 → C0,

• a smooth identity-assigning map i : C0 → C1,

• a smooth composition map ◦ : C1 ×C0 C1 → C1, where C1 ×C0 C1 is the pullback of

the source and target maps:

C1 ×C0 C1 = {(f, g) ∈ C1 × C1 : s(f) = t(g)} ,

and is assumed to be a smooth manifold.

such that the following diagrams commute, expressing the usual category laws:
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• laws specifying the source and target of identity morphisms:

C0
i //

1   AAAAAAAA C1

s

��
C0

C0
i //

1   AAAAAAAA C1

t
��
C0

• laws specifying the source and target of composite morphisms:

C1 ×C0 C1
◦ //

p1

��

C1

s

��
C1

s // C0

C1 ×C0 C1
◦ //

p2

��

C1

t

��
C1

t // C0

• the associative law for composition of morphisms:

C1 ×C0 C1 ×C0 C1

◦×C0
1

//

1×C0
◦

��

C1 ×C0 C1

◦

��
C1 ×C0 C1

◦ // C1

• the left and right unit laws for composition of morphisms:

C0 ×C0 C1
i×1 //

p2

!!CCCCCCCCCCCCCCCCC
C1 ×C0 C1

◦

��

C1 ×C0 C0
1×ioo

p1

}}{{{{{{{{{{{{{{{{{

C1

The existence of pullbacks in the category of smooth manifolds is a delicate issue. When

working with categories internal to some category K, it is customary to assume K contains
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all pullbacks, but this is merely a convenience. All the definitions still work as long as the

existence of each required pullback is implicit.

To define smooth bicategories, we must first define smooth functors and natural transfor-

mations:

Definition 6.2. Given smooth categories C and C ′, a smooth functor F : C → C ′ consists

of:

• a smooth map on objects, F0 : C0 → C ′0,

• a smooth map on morphisms, F1 : C1 → C ′1

such that the following diagrams commute, corresponding to the usual laws satisfied by a

functor:

• preservation of source and target:

C1
s //

F1

��

C0

F0

��
C ′1

s′ // C ′0

C1
t //

F1

��

C0

F0

��
C ′1

t′ // C ′0

• preservation of identity morphisms:

C0
i //

F0

��

C1

F1

��
C ′0

i′ // C ′1
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• preservation of composite morphisms:

C1 ×C0 C1

F1×C0
F1 //

◦

��

C ′1 ×C′0 C
′
1

◦′

��
C1

F1 // C ′1

Definition 6.3. Given categories smooth categoriesC andC ′, and smooth functorsF,G : C →

C ′, a smooth natural transformation θ : F ⇒ G is a smooth map θ : C0 → C ′1 for which the

following diagrams commute, expressing the usual laws satisfied by a natural transformation:

• laws specifying the source and target of the natural transformation:

C0

F

  AAAAAAA

θ
��
C ′1 s

// C ′0

C0

G

  AAAAAAA

θ
��
C ′1 t

// C ′0

• the commutative square law:

C1
∆(sθ×G) //

∆(F×tθ)

��

C ′1 ×C0 C
′
1

◦′

��
C ′1 ×C0 C

′
1

◦′ // C ′1

Now we know enough about smooth category theory to bootstrap the definition of smooth

bicategories. We do this in a somewhat nonstandard way: we make use of the fact that

the morphisms and 2-morphisms of a bicategory form an ordinary category under vertical

composition. Generalizing this, the morphisms and 2-morphisms in a smooth bicategory

should form, by themselves, a smooth category. We can then define horizontal composition
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as a smooth functor, and introduce the associator and left and right unitors as smooth natural

transformations between certain functors. In detail:

Definition 6.4. A smooth bicategory B consists of

• a manifold of objects B0;

• a manifold of morphisms B1;

• a manifold of 2-morphisms B2;

equipped with:

• a smooth category structure on MorB, with

– B1 as the smooth manifold of objects;

– B2 as the smooth manifold of morphisms;

The composition in MorB is called vertical composition and denoted ◦.

• smooth source and target maps:

s, t : B1 → B0.

• a smooth identity-assigning map:

i : B0 → B1.

• a smooth horizontal composition functor:

· : MorB ×B0 MorB → MorB.
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That is, a pair of smooth maps:

· : B1 ×B0 B1 → B1

· : B2 ×B0 B2 → B2,

satisfying the axioms for a functor.

• a smooth natural transformation, the associator:

a(f, g, h) : (f · g) · h⇒ f · (g · h).

• smooth natural transformations, the left and right unitors, which are both trivial in the

bicategories we consider:

l(f) : 1 · f ⇒ f, r(f) : f · 1⇒ f.

such that the following diagrams commute, expressing the same laws regarding sources,

targets and identities hold as with a smooth category, and one new law expressing the com-

patibility of the various source and target maps:

• laws specifying the source and target of identity morphisms:

B0
i //

1   BBBBBBBB B1

s

��
B0

B0
i //

1   BBBBBBBB B1

t
��
B0
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• laws specifying the source and target of the horizontal composite of 1-morphisms:

B1 ×B0 B1
· //

p1

��

B1

t

��
B1

t // B0

B1 ×B0 B1
· //

p2

��

B1

s

��
B1

s // B0

• laws expressing the compatibility of source and target maps:

B2
s //

t

��

B1

s

��
B1 s

// B0

B2
t //

s

��

B1

t

��
B1 t

// B0

Finally, associator and left and right unitors satisfy some laws of their own—the following

diagrams commute:

• the pentagon identity for the associator:

(fg)(hk)

f(g(hk))

f((gh)k)(f(gh))k

((fg)h)k

a(f,g,hk)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1f ·a(g,h,k)

?G
����������

����������a(f,gh,k) +3

a(f,g,h)·1k

��
7777777777

7777777777

a(fg,h,k)

3;ooooooooooooooooo

ooooooooooooooooo

for any four composable morphisms f , g, h and k.
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• the triangle identity for the left and right unit laws:

(f1)g f(1g)

fg

a(f,1,g) +3

r(f)·1g

�#
???????????

???????????

1f ·l(g)
{� �����������

�����������

for any two composable morphisms f and g.

This definition of smooth bicategory may seem so long that checking it is utterly intimi-

dating, but we shall see an example in a moment where this is easy. This will be an example

of a Lie 2-group, a smooth bicategory with one object where all morphisms are weakly

invertible, and all 2-morphisms are strictly invertible.

Secretly, the pentagon identity is a cocycle condition, as we shall now see. Given a nor-

malizedH-valued 3-cocycle a on a Lie groupG, we can construct a Lie 2-group Stringa(G,H)

with:

• One object, •, regarded as a manifold in the trivial way.

• For each element g ∈ G, an automorphism of the one object:

• g−→ •

Horizontal composition given by multiplication in the group:

· : G×G→ G.

Note that source and target maps are necessarily trivial. The identity-assigning map

takes the one object to 1 ∈ G.
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• For each h ∈ H , a 3-automorphism of the 2-morphism 1g, and no 3-morphisms be-

tween distinct 2-morphisms:

• •

g

��

g

DDh
��

, h ∈ H.

Thus the space of all 2-morphisms is G × H , and the source and target maps are

projection onto the first factor. The identity-assigning map takes each element of G to

0 ∈ H .

• Two kinds of composition of 2-morphisms: given a pair of 2-morphisms on the same

morphism, vertical compostion is given by addition in H:

• •//

g

��

g

EE

h
��
h′

��

= • •

g

��

g

DDh+h′
��

That is, vertical composition is just the map:

◦ = 1×+: G×H ×H → G×H.

where we have used the fact that the pullback of 2-morphisms over the one object is

trivially:

(G×H)×• (G×H) ∼= G×H ×H.
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Given a pair of 2-morphisms on different morphisms, horizontal composition is addi-

tion twisted by the action of G:

• •

g

��

g

DD
h
��
• •

g′

��

g′

DDh′

��
= • •

gg′

��

gg′

??h+gh′
��

Or, in terms of a map, this is the multiplication on the semidirect product, GnH:

· : (GnH)× (GnH)→ GnH.

• For any triple of morphisms, a 2-isomorphism, the associator:

a(g1, g2, g3) : g1g2g3 → g1g2g3,

given by the 3-cocycle a : G3 → H , where by a slight abuse of definitions we think of

this 2-isomorphism as living in H rather than G ×H , because the source (and target)

are understood to be g1g2g3.

• The left and right unitors are trivial.

A slim Lie 2-group is one of this form. When H = R, we write simply Stringa(G) for the

above Lie 2-group. It remains to check that this is, in fact, a Lie 2-group:

Proposition 6.1. Stringa(G,H) is a Lie 2-group: a smooth bicategory with one object in

which all 1-morphisms and 2-morphisms are weakly invertible.

In brief, we prove this by showing that the 3-cocycle condition implies the one nontrivial

axiom for this bicategory: the pentagon identity.
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Proof. For Stringa(G,H), the left and right unitors are the identity, and thus the triangle

identity just says:

a(g1, 1, g2) = 1

Or, written additively:

a(g1, 1, g2) = 0

Since a is normalized, this is automatic.

To check that Stringa(G,H) is really a bicategory, it therefore remains to check the

pentagon identity. This says that the following automorphisms of g1g2g3g4 are equal:

a(g1, g2, g3g4) ◦ a(g1g2, g3, g4) = (1g1 · a(g2, g3, g4)) ◦ a(g1, g2g3, g4) ◦ (a(g1, g2, g3) · 1g4)

Or, using the definition of vertical composition:

a(g1, g2, g3g4) + a(g1g2, g3, g4) = (1g1 · a(g2, g3, g4)) + a(g1, g2g3, g4) + (a(g1, g2, g3) · 1g4)

Finally, use the definition of the dot operation for 2-morphisms, as the semidirect product:

a(g1, g2, g3g4) + a(g1g2, g3, g4) = g1a(g2, g3, g4)) + a(g1, g2g3, g4) + a(g1, g2, g3).

This is the 3-cocycle condition—it holds because a is a 3-cocycle.

So, Stringa(G,H) is a bicategory. It is smooth because everything in sight is smooth: G,

H , the source, target, identity-assigning, and composition maps, and the associator a : G3 →

H . And it is a Lie 2-group: the morphisms in G and 2-morphisms in H are all strictly

invertible, and thus of course they are weakly invertible.

In fact, we can say something a bit stronger about Stringa(G,H), if we let a be any nor-

malized H-valued 3-cochain, rather requiring it to be a cocycle. In this case, Stringa(G,H)
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is a Lie 2-group if and only if a is a 3-cocycle, because a satisfies the pentagon identity if

and only if it is a cocycle.

6.2 Lie 3-groups

We now sketch the construction of slim Lie 3-groups from a normalized 4-cocycle π. In a

sense, this is a straightforward generalization of what we have done above, but the details

must be checked against a specific definition of 3-category. We choose to use tricategories,

originally defined by Gordon, Power and Street [37], but extensively studied by Gurski. We

use the definition from his thesis [43].

We saw in the last section that a smooth bicategory B is consists of a smooth manifold of

objects, B0, a smooth manifold of morphisms, B1, and a smooth manifold of 2-morphisms,

B2, such that:

• B1 and B2 fit together to form a smooth category;

• horizontal composition is a smooth functor;

• satisfying associativity and left and right unit laws up to natural transformations, the

associator and left and right unitors;

• satisfying the pentagon and triangle identities.

Here, we will define a ‘smooth tricategory’ T to consist of a smooth manifold of objects,

T0, a smooth manifold of morphisms, T1, a smooth manifold of 2-morphisms, T2, and a

smooth manifold of 3-morphisms, T3, such that:

• T1, T2 and T3 fit together to form a smooth bicategory;

• horizontal composition is a smooth ‘pseudofunctor’;
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• satisfying associativity and left and right unit laws up to smooth ‘pseudonatural trans-

formations’, the associator and left and right unitors;

• satisfying the pentagon and triangle identities up to ‘smooth modifications’;

• satisfying some identities of their own.

Each of the above quoted terms—pseudofunctor, pseudonatural transformations, modification—

would usually need to be defined completely in order to understand tricategories. But we

really only need modifications, because our functors and natural transformations will not be

‘pseudo’. Nonetheless, so it is clear what we leave out, let us discuss each of these terms

briefly.

• ‘Pseudofunctor’ is to ‘bicategory’ as ‘functor’ is to ‘category’: it is a map F : B →

B′ between bicategories B and B′, preserving all structure in sight except horizontal

composition and identities, which are only preserved up to specified 2-isomorphisms:

F (f · g)⇒ F (f) · F (g), F (1x)⇒ 1F (x).

For the tricategories we construct, all pseudofunctors will be strict: the above 2-

isomorphisms are identities.

• ‘Pseudonatural transformation’ is to ‘pseudofunctor’ as ‘natural transformation’ is to

’functor’: given two pseudofunctors

B B′

F

��

G

@@
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a pseudonatural transformation is a map:

B B′

F

��

G

@@θ
��

Like a natural transformation, this consists of a morphism for each object x in B:

θ(x) : F (x)→ G(x).

Unlike a natural transformation, it is only natural up to a specified 2-isomorphism.

That is, the naturality square:

F (x)
F (f) //

θ(x)

��

F (y)

θ(y)

��
G(x)

G(f) // G(y)

does not commute. It is replaced with a 2-isomorphism:

F (x)
F (f) //

θ(x)
��

F (y)

θ(y)
��w� xxxxxxxx

xxxxxxxx

G(x)
G(f) // G(y)

that satisfies some equations of its own. For the tricategories we construct, all pseudo-

natural transformations will be strict: the 2-isomorphism above is the identity.
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• Finally, a modification is something new: it is a map between pseudonatural transfor-

mations. Given two pseudonatural transformations:

B B′

F

  

G

>>
�'

θ

w�

η

a modification Γ is a map:

B B′

F

  

G

>>
�'

θ

w�

η_*4Γ
.

Just as a pseudonatural transformation consists of a morphism for each object x in B,

a modification consists of a 2-morphism for each object x in B:

F (x) G(x)

θ(x)

!!

η(x)

==
Γ(x)
��

With these preliminaries in mind, we can now sketch the definition of a smooth tricate-

gory.

Definition 6.5. A smooth tricategory T consists of:

• a manifold of objects, T0;

• a manifold of morphisms, T1;

• a manifold of 2-morphisms, T2;

• a manifold of 3-morphisms, T3;

equipped with:

• a smooth bicategory structure on MorT , with
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– T1 as the smooth manifold of objects;

– T2 as the smooth manifold of morphisms;

– T3 as the smooth manifold of 2-morphisms;

We call the vertical composition in MorT composition at a 2-cell, and the horizontal

composition in MorT composition at a 1-cell.

• smooth source and target maps:

s, t : T1 → T0.

• a smooth identity-assigning map:

i : T0 → T1.

• a smooth composition pseudofunctor, called composition at a 0-cell, which is strict

in the tricategories we consider:

· : MorT ×T0 MorT → MorT.

That is, three smooth maps:

· : T1 ×T0 T1 → T1

· : T2 ×T0 T2 → T2

· : T3 ×T0 T3 → T3

satisfying the axioms of a strict functor.
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• a smooth pseudonatural transformation, the associator, which is trivial in the tricate-

gories we consider:

a(f, g, h) : (f · g) · h⇒ f · (g · h).

• smooth pseudonatural transformations, the left and right unitors, all trivial in the tri-

categories we consider:

l(f) : 1 · f ⇒ f, r(f) : f · 1⇒ f.

• a smooth modification called the pentagonator:

(fg)(hk)

f(g(hk))

f((gh)k)(f(gh))k

((fg)h)k

a(f,g,hk)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1f ·a(g,h,k)

?G
����������

����������a(f,gh,k) +3

a(f,g,h)·1k

��
7777777777

7777777777

a(fg,h,k)

3;ooooooooooooooooo

ooooooooooooooooo
π(f,g,h,k)

�
�

• smooth modifications called the left, right and middle triangulators, all trivial in the

tricategories we consider:

fg fg
1f · 1g

f(1g)

1f · l

(f1)g
a

r∗ · 1g

V

µ
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(1f)g

1(fg)

a

fg
l

l · 1g V λ

f(g1)

(fg)1

a∗

fg
r

1f · r V ρ

These smooth modifications all satisfy their own axioms. When λ, ρ and µ are trivial,

their axioms boil down to the statement that π is trivial whenever one its arguments is trivial.

We therefore omit them. The one axiom we need to consider is the pentagonator identity:

(f(g(hk)))p

(f((gh)k))p

(1fa)1p

((f(gh))k)p

a1p

(((fg)h)k)p

(a1k)1p

((fg)h)(kp)

a

(fg)(h(kp))

a

f(g(h(kp)))

a

f(g((hk)p))

1f (1ga)

f((g(hk))p) 1fa

a

((fg)(hk))p

a1p

a1p

(fg((hk)p))

a

a

(1f 1g)a

V π

V

π

V π

∼=

=
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(f(g(hk)))p

(f((gh)k))p

(1fa)1p

((f(gh))k)p

a1p

(((fg)h)k)p

(a1k)1p

((fg)h)(kp)

a

(fg)(h(kp))

a

f(g(h(kp)))

a

f(g((hk)p))

1f (1ga)

f((g(hk))p) 1fa

a

f(((gh)k)p)

1f (a1p)

a

(f(gh))(kp)

a(1k1p)

a

f((gh)(kp))

a

1fa

1fa

V π

V π

V π

∼=

∼=

The above identity comes from a 3-dimensional solid called the associahedron. This is

the polyhedron where:

• vertices are parenthesized lists of five morphisms, e.g. (((fg)h)k)p;

• edges connect any two vertices related by an application of the associator, e.g.

(((fg)h)k)p⇒ ((fg)(hk))p.

In fact, the pentagonator identity gives us a picture of the associahedron. Regarding the

left-hand side of the equation as the back and the right-hand side as the front, we assemble

the following polyhedron:
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Identifying the vertices, edges and faces of this polyhedron with the corresponding mor-

phisms, 2-morphisms and 3-morphisms from the pentagonator identity, we see the identity

just says that the associahedron commutes.

A Lie 3-group is a smooth tricategory with one object in which all morphisms are weakly

invertible. Though it looks quite complex, the pentagonator identity is secretly a cocycle

condition, for the 4-cocycle π. Futhermore, given a normalized H-valued 4-cocycle π on a

Lie group G, we can construct a Lie 3-group Braneπ(G,H) with:

• One object, •, regarded as a manifold in the trivial way.

• For each element g ∈ G, an automorphism of the one object:

• g−→ •

Composition at a 0-cell given by multiplication in the group:

· : G×G→ G.

The source and target maps are trivial, and identity-assigning map takes the one object

to 1 ∈ G.

• Only the identity 2-morphism on any 1-morphism, and no 2-morphisms between dis-

tinct 1-morphisms:

• •

g

��

g

DD1g
��

, g ∈ G.
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So the space of 2-morphisms is also G. The source, target and identity-assigning maps

are all the identity onG. Composition at a 1-cell is trivial, while composition at a 0-cell

is again multiplication in G.

• For each h ∈ H , a 3-automorphism of the 2-morphism 1g, and no 3-morphisms be-

tween distinct 2-morphisms:

• •

g

��

g

BB
�' w�

_*4h1g 1g , h ∈ H.

Thus the space of 3-morphisms is G × H . The source and target maps are projection

onto G, and the identity assigning map takes 1g to 0 ∈ H , for all g ∈ G.

• Three kinds of composition of 3-morphisms: given a pair of 3-morphisms on the same

2-morphism, we can compose them at at a 2-cell, which we take to be addition in H:

���& x�

_*4h _*4h
′

• •

g

��

g

DD =

�& x�

_ *4h+h′• •

g

��

g

DD

We can also compose two 3-morphisms at a 1-cell, which we again take to be compo-

sition in H:

�& x�
_ *4h

�' w�

_ *4h
′• •

g

��

g

DD
//g

=

�& x�

_ *4h+h′• •

g

��

g

DD

In terms of maps, both of these compositions are just:

1×+: G×H ×H → G×H.
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And finally, we can glue two 3-cells at the 0-cell, the object. We call this composition

at a 0-cell, and define it to be addition twisted by the action of G:

• •

g

��

g

EE •

g′

��

g′

EE
�% y� �% y�

_*4h _*4h
′

=

�& x�

_*4
h+gh′

• •

gg′

��

gg′

DD

In terms of a map, · is just given by multiplication on the semidirect product:

· : (GnH)× (GnH)→ GnH.

• The associator, left and right unitors are automatically trivial, because all 2-morphisms

are trivial.

• For each quadruple of 1-morphisms, a specified 3-isomorphism, the 2-associator or

pentagonator:

π(g1, g2, g3, g4) : 1g1g2g3g4 → 1g1g2g3g4 .

given by the 4-cocycle π : G4 → H , which we think of as element of H because the

source (and target) are understood to be 1g1g2g3g4 .

• The three other specified 3-isomorphisms are trivial.

A slim Lie 3-group is one of this form. As before, it remains to check that it is, in fact, a Lie

3-group. We claim:

Proposition 6.2. Braneπ(G,H) is a Lie 3-group: a smooth tricategory with one object and

all morphisms weakly invertible.

Once again, we prove this by showing that the 4-cocycle condition implies the one non-

trivial axiom for this tricategory: the pentagonator identity.
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Proof. As noted above, the 3-isomorphisms Gurski calls λ, ρ and µ are trivial. The axioms

they satisfy are automatic because π is normalized.

So to check that Braneπ(G,H) is a tricategory, it remains to check that π satisfies the

pentagonator identity. Since the 3-cells of the pentagonator identity commute (they represent

elements of H), and all the faces not involving a π are trivial, the first half reads:

0g1 · π(g2, g3, g4, g5) + π(g1, g2g3, g4, g5) + π(g1, g2, g3, g4g5).

Here, we do not need to be worried about order, since composition of 3-morphisms is addition

in H . The second half of the pentagonator identity reads:

π(g1, g2, g3, g4) · 0g5 + π(g1g2, g3, g4, g5) + π(g1, g2, g3g4, g5).

Applying the definition of ·, we see the equality of the first half with the second half is just

the cocycle condition on π:

g1π(g2, g3, g4, g5) + π(g1, g2g3, g4, g5) + π(g1, g2, g3, g4g5)

= π(g1, g2, g3, g4) + π(g1g2, g3, g4, g5) + π(g1, g2, g3g4, g5).

So, Braneπ(G,H) is a tricategory. It is smooth because everything in sight is smooth:

G, H , and the map π : G4 → H . And it is a Lie 3-group: the 1-morphisms G, the trivial

2-morphisms, and the 3-morphisms H are all strictly invertible, and thus of course they are

weakly invertible.

Once again, we can say something a bit stronger about Braneπ(G,H), if we let π be any

normalizedH-valued 4-cochain, rather requiring it to be a cocycle. In this case, Braneπ(G,H)

is a Lie 3-group if and only if π is a 4-cocycle, because π satisfies the pentagon identity if

and only if it is a cocycle.
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Chapter 7

Integrating nilpotent Lie n-algebras

Any mathematician worth her salt knows that we can easily construct Lie algebras as the

infinitesimal versions of Lie groups, and that a more challenging inverse construction exists:

we can ‘integrate’ Lie algebras to get Lie groups. By analogy, we expect that the same is true

of Lie n-algebras and Lie n-groups: that we can construct Lie n-algebras as the infinitesimal

versions of Lie n-groups, and we can ‘integrate’ Lie n-algebras to obtain Lie n-groups.

In fact, it is easy to see how to obtain slim Lie n-algebras from slim Lie n-groups. As

we saw in Chapter 5, slim Lie n-algebras are built from (n + 1)-cocycles in Lie algebra

cohomolog. Remember, p-cochains on the Lie algebra g are linear maps:

Cp(g, h) = {ω : Λpg→ h} ,

where h is a representation of g, though we shall restrict ourselves to the trivial representation

h = R in this chapter.

On the other hand, in Chapter 6, we saw that slim Lie n-groups are built from (n + 1)-

cocycles in Lie group cohomology, at least for n = 2 and 3. Remember, p-cochains on G are

smooth maps:

Cp(G,H) = {f : Gp → H} ,
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where H is an abelian group on which G acts by automorphism, though we shall restrict

ourselves to H = R with trivial action in this chapter.

Thus, to derive a Lie n-algebra from a Lie n-group, just differentiate the defining Lie

group (n+ 1)-cocycle at the identity to obtain a Lie algebra (n+ 1)-cocycle. In other words,

for every Lie group G with Lie algebra g, there is a cochain map:

D : C•(G)→ C•(g),

given by differentiation. Here, we have omitted reference to the coefficientsH and h because

both are assumed to be R. We continue this omission for the rest of the chapter.

Going the other way, however, is challenging—integrating a Lie n-algebra is harder, even

when the Lie n-algebra in question is slim. Nonetheless, this challenge has been met. Build-

ing on the earlier work of Getzler [40] on integrating nilpotent Lie n-algebras, Henriques

[44] has shown that any Lie n-algebra can be integrated to a ‘Lie n-group’, which Henriques

defines as a sort of smooth Kan complex in the category of Banach manifolds. More recently,

Schreiber [67] has generalized this integration procedure to a setting much more general than

that of Banach manifolds, including both supermanifolds and manifolds with infinitesimals.

For both Henriques and Schreiber, the definition of Lie n-group is weaker than the one we

sketched in Chapter 6—it weakens the notion of multiplication so that the product of two

group ‘elements’ is only defined up to equivalence. This level of generality is essential for

the construction to work for every Lie n-algebra.

However, for some Lie n-algebras, we can integrate them using the more naive idea of

Lie n-group we prefer in this thesis: a smooth n-category with one object in which every

k-morphism is weakly invertible, for all 1 ≤ k ≤ n. We shall see that, for some slim Lie

n-algebras, we can integrate the defining Lie algebra (n + 1)-cocycle to obtain a Lie group

(n + 1)-cocycle. In other words, for certain Lie groups G with Lie algebra g, there is a
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cochain map:

∫ : C•(g)→ C•(G).

which is a chain homotopy inverse to differentiation.

When is this possible? We can always differentiate Lie group cochains to obtain Lie alge-

bra cochains, but if we can also integrate Lie algebra cochains to obtain Lie group cochains,

the cohomology of the Lie group and its Lie algebra will coincide:

H•(g) ∼= H•(G).

By a theorem of van Est [77], this happens when all the homology groups of G, as a topolog-

ical space, vanish.

Thus, we should look to Lie groups with vanishing homology for our examples. How bad

can things be when the Lie group is not homologically trivial? To get a sense for this, recall

that any semisimple Lie group G is diffeomorphic to the product of its maximal compact

subgroup K and a contractible space C:

G ≈ K × C.

When K is a point, G is contractible, and certainly has vanishing homology. At the other

extreme, when C is a point, G is compact. And indeed, in this case there is no hope of

obtaining a nontrivial cochain map from Lie algebra cochains to Lie group cochains:

∫ : C•(g)→ C•(G)

because every smooth cochain on a compact group is trivial.

This fact provided an obstacle to early attempts to integrate Lie 2-algebras. For instance,

consider the string Lie 2-algebra string(n) we described in Section 5.1.1. Recall that it is
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the slim Lie 2-algebra stringj(so(n)), where j is the canonical 3-cocycle on so(n), given by

combining the Killing form with the bracket:

j = 〈−, [−,−]〉.

One could attempt to integrate string(n) to a slim Lie 2-group String∫ j(SO(n)), where ∫ j

is a Lie group 3-cocycle on SO(n) which somehow integrates j, but because the compact

group SO(n) admits no nontrivial smooth Lie group cocycles, this idea fails.

The real lesson of the string Lie 2-algebra is that, once again, our notion of Lie 2-group is

not general enough. By generalizing the concept of Lie 2-group, various authors, like Baez–

Crans–Schreiber–Stevenson [13], Henriques [44], and Schommer-Pries [64], were successful

in integrating string(n).

Nonetheless, there is a large class of Lie n-algebras for which our Lie n-groups are

general enough. In particular, when G is an ‘exponential’ Lie group, the story is completely

different. A Lie group or Lie algebra is called exponential if the exponential map

exp: g→ G

is a diffeomorphism. For instance, all simply-connected nilpotent Lie groups are exponential,

though the reverse is not true. Certainly, all exponential Lie groups have vanishing homology,

because g is contractible. We caution the reader that some authors use the term ‘exponential’

merely to indicate that exp is surjective.

WhenG is an exponential Lie group with Lie algebra g, we can use a geometric technique

developed by Houard [45] to construct a cochain map:

∫ : C•(g)→ C•(G).
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The basic idea behind this construction is simple, a natural outgrowth of a familiar concept

from the cohomology of Lie algebras. Because a Lie algebra p-cochain is a linear map:

ω : Λpg→ R,

using left translation, we can view ω as defining a p-form on the Lie group G. So, we can

integrate this p-form over p-simplices in G. Thus we can define a smooth function:

∫ ω : Gp → R,

by viewing the integral of ω as a function of the vertices of a p-simplex:

∫ ω(g1, g2, . . . , gp) =

∫
[1,g1,g1g2,...,g1g2···gp]

ω.

For the right-hand side to truly be a function the p-tuple (g1, g2, . . . , gp), we will need a

standard way to ‘fill out’ the p-simplex [1, g1, g1g2, . . . , g1g2 · · · gp], based only on its vertices.

It is here that the fact that G is exponential is key: in an exponential group, we can use the

exponential map to define a unique path from the identity 1 to any group element. We think

of this path as giving a 1-simplex, [1, g], and we can extend this idea to higher dimensional

p-simplices.

Therefore, when G is exponential, we can construct ∫ . Using this cochain map, it is

possible to integrate the slim Lie n-algebra braneω(g) to the slim Lie n-group Brane∫ ω(G).

We proceed as follows. In Section 7.1, we construct ∫ and show that, along with D, it

gives a homotopy equivalence between the complexes C•(g) and C•(G). In Section 7.2, we

give explicit formulas for the p-cochain ∫ ω in terms of ω, for p = 0, 1, 2, and 3. Finally,

in Section 7.3, we use ∫ to integrate the Heisenberg Lie 2-algebra of Section 5.1.2. Later,
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in Chapter 10, we shall see that this construction can be ‘superized’, and integrate Lie n-

superalgebras to n-supergroups.

7.1 Integrating Lie algebra cochains

So let us build the map ∫ . In what follows, we shall see that for an exponential Lie group, we

can construct simplices in G that get along with the action of G on itself. Since we can treat

any p-cochain ω on g as a left-invariant p-form onG, we can integrate ω over a p-simplex in S

in G. Regarding
∫
S
ω as a function of the vertices of S, we will see that it defines a Lie group

p-cochain. The fact that this is cochain map is purely geometric: it follows automatically

from Stokes’ theorem.

Let us begin by replacing the cohomology of g with the cohomology of left-invariant

differential forms on G. Recall that the cohomology of the Lie algebra g is given by the Lie

algebra cochain complex, C•(g), which at level p consists of p-linear maps from g to R:

Cp(g) = {ω : Λng→ R} .

We already defined this for Lie superalgebras in Section 3.2. In that section, we saw that the

coboundary map d on this complex is usually defined by a rather lengthy formula, but here

we shall substitute an equivalent, more geometric definition. Since we can think of the Lie

algebra g as the tangent space T1G, we can think of a p-cochain on g as giving a p-form on

this tangent space. Using left translation on the group, we can translate this p-form over G

to define a p-form on all of G. This p-form is left-invariant, and it is easy to see that any

left-invariant p-form on G can be defined in this way.

So, in fact, we could just as well define

Cp(g) = {left-invariant p-forms on G} .
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It is well-known that the de Rham differential of a left-invariant p-form ω is again left-

invariant, and remarkably, the formula for dω1 involves only the Lie bracket on g. This

formula is Chevalley and Eilenberg’s original definition of d [24], the one we gave in Section

3.2, albeit adapted for Lie superalgebras. In this section, we may forget about this messy

formula, and use the de Rham differential instead.

The cohomology of the Lie group G is given by the Lie group cochain complex, C•(G),

which at level p is given by the set of smooth functions from Gp to R:

Cp(G) = {f : Gp → R} .

We have already discussed this in Chapter 6. The coboundary map d on this complex is

usually defined by a complicated formula we gave in that section, but we can give it a more

geometric description just as we did in the case of Lie algebras.

Since we are going to construct a cochain map by integrating p-forms over p-simplices,

it would be best to view Lie group cohomology in terms of simplices now. To this end, let

us define a combinatorial p-simplex in the group G to be an (p + 1)-tuple of elements of

G, which we call the vertices in this context. Of course, G acts on the set of combinatorial

p-simplices by left multiplication of the vertices.

Now, we would like to think of Lie group p-cochains as ‘smooth, homogeneous, R-valued

cochains’ on the free abelian group on combinatorial p-simplices. Of course, we need to say

what this means. We say an R-valued p-cochain F is homogeneous if it is invariant under

the action of G, and that it is smooth if the corresponding map

F : Gp+1 → R
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is smooth. Now if

Cp
H(G) = {smooth homogeneous p-cochains} .

denotes the abelian group of all smooth, homogeneous p-cochains, there is a standard way to

make C•H(G) into a cochain complex. Just take the coboundary operator to be:

dF = F ◦ ∂,

where ∂ is the usual boundary operator on p-chains. It is automatic that d2 = 0.

In fact, this cochain complex is isomorphic to the original one, which we distinguish as

the inhomogeneous cochains:

Cp
I (G) = {f : Gp → R} .

To see this, note that any inhomogeneous cochain:

f : Gp → R

gives rise to a unique, smooth, homogeneous p-cochain F , by defining:

F (g0, . . . , gp) = f(g−1
0 g1, g

−1
1 g2, . . . , g

−1
p−1gp)

for each combinatorial p-simplex (g0, . . . , gp). Conversely, every smooth, homogeneous p-

cochain F gives a unique inhomogeneous p-cochain f : Gp → R, by defining:

f(g1, . . . , gp) = F (1, g1, g1g2, . . . , g1g2 . . . gp).
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Finally, note that these isomorphisms commute with the coboundary operators on C•H(G)

and C•I (G). Henceforth, we will write C•(G) to mean either complex.

These simplicial notions will permit us to define a cochain map from the Lie algebra

complex to the Lie group complex:

C•(g)→ C•(G).

For ω ∈ Cp(g), the idea is to define an element ∫ ω ∈ Cp(G) by integrating the left-invariant

p-form ω over a p-simplex S in the group G. In other words, the value which ∫ ω assigns to

S is defined to be:

(∫ ω)(S) =

∫
S

ω.

This is nice because Stokes’ theorem will tell us it is a cochain map:

(∫ dω)(S) =

∫
S

dω =

∫
∂S

ω = d(∫ ω)(S)

The only hard part is defining p-simplices in G in such a way that ∫ ω is actually a smooth,

homogeneous p-cochain. It is here that the fact that G is exponential is key.

Note that, up until this point, we have only discussed combinatorial p-simplices, which

have no relationship to the Lie group structure of G—they are just (p+ 1)-tuples of vertices.

We now wish to ‘fill out’ the combinatorial simplices. That is, we want to create a rule that

to any (p + 1)-tuple (g0, . . . , gp) of vertices in G assigns a filled p-simplex in G, which we

denote

[g0, . . . , gp].

In order to prove that ∫ ω is smooth, we need smoothness conditions for this rule, and in order

to prove ∫ ω is homogeneous, we shall require the left translation of a p-simplex to again be
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a p-simplex. In other words, we need:

g[g0, . . . , gp] = [gg0, . . . , ggp].

We make this precise as follows.

Definition 7.1. Let ∆p denote {(x0, . . . , xp) ∈ Rp+1 :
∑
xi = 1, xi ≥ 0}, the standard

p-simplex in Rp+1. Given a collection of smooth maps

ϕp : ∆p ×Gp+1 → G

for each p ≥ 0, we say this collection defines a left-invariant notion of simplices in G if it

satisfies:

1. The vertex property. For any (p+ 1)-tuple, the restriction

ϕp : ∆p × {(g0, . . . , gp)} → G

sends the vertices of ∆p to g0, . . . , gp, in that order. We denote this restriction by

[g0, . . . , gp].

We call this map a p-simplex, and regard it as a map from ∆p to G.

2. Left-invariance. For any p-simplex [g0, . . . , gp] and any g ∈ G, we have:

g[g0, . . . , gp] = [gg0, . . . , ggp].
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3. The face property. For any p-simplex

[g0, . . . , gp] : ∆p → G

the restriction to a face of ∆p is a (p− 1)-simplex.

Note that the second condition just says that the map

ϕp : ∆p ×Gp+1 → G

is equivariant with respect to the left action of G, where we take G to act trivially on ∆p.

On any group equipped with a left-invariant notion of simplex, we have the following

result:

Proposition 7.1. LetG be a Lie group equipped with a left-invariant notion of simplices, and

let g be its Lie algebra. Then there is a cochain map from the Lie algebra cochain complex

to the Lie group cochain complex

∫ : C•(g)→ C•(G)

given by integration—that is, if ω is a left-invariant p-form on G, and S is a p-simplex in G,

then define:

(∫ ω)(S) =

∫
S

ω.

Proof. Let ω ∈ Cp(g). We have already noted that Stokes’ theorem

∫
S

dω =

∫
∂S

ω
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implies that this map is a cochain map. We only need to check that ∫ ω really lands in Cp(G).

That is, that it is smooth and homogeneous. Because G acts trivially on the coefficient group

R, homogeneity means that (∫ ω)(S) is invariant of the left action of G on S.

Indeed, note that we can pull the smooth, left-invariant p-form ω back along

ϕp : ∆p ×Gp+1 → G.

The result, ϕ∗pω, is a smooth p-form on ∆p × Gp+1, still invariant under the action of G.

Integrating out the dependence on ∆p, we see this results in a smooth, invariant map:

∫ ω : Gp+1 → R,

which is precisely what we wanted to prove.

We would now like to show that any exponential Lie group G comes with a left-invariant

notion of simplices. Our essential tool for this is our ability to use the exponential map to

connect any element of G to the identity by a uniquely-defined path. If h = exp(X) ∈ G

is such an element, we can then define the ‘based’ 1-simplex [1, h] to be swept out by the

path exp(tX), left translate this to define the general 1-simplex [g, gh] as that swept out by

the path g exp(tX), and proceed to define higher-dimensional simplices with the help of the

exponential map and induction, using what we call the apex-base construction: given a

definition of (p− 1)-simplex, we define the p-simplex

[1, g1, . . . , gp]
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by using the exponential map to sweep out a path from 1, the apex, to each point of the

already defined (p− 1)-simplex, the base:

[g1, . . . , gp].

Having done this, we can then use left translation to define the general p-simplex:

[g0, g1, . . . , gp] = g0[1, g−1
0 g1, . . . , g

−1
0 gp].

In fact, this construction also covers the 1-simplex case. All we need to kick off our induction

is to define 0-simplices to be points in G.

To make all this precise, we must use it to define smooth maps

ϕp : ∆p ×Gp+1 → G,

for each p ≥ 0. To overcome some analytic technicalities in constructing ϕp, we will also

need to fix a smooth increasing function:

` : [0, 1]→ [0, 1]

which is 0 on a neighborhood of 0, and then monotonically increases to 1 at 1. We shall call

` the smoothing factor. We shall see latter that our choice of smoothing factor is immaterial:

ϕp depends on `, but integrals over simplices do not.

Let us begin by defining 0-simplices as points. That is, we define

ϕ0 : ∆0 ×G→ G

as the obvious projection.
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Now, assume that we have defined (p− 1)-simplices, so we have:

ϕp−1 : ∆p−1 ×Gp → G.

Using this, we wish to define:

ϕp : ∆p ×Gp+1 → G.

But since we want this to beG-equivariant, we might as well define it for based p-simplices:

a simplex whose first vertex is 1. So first, we will give a map:

fp : ∆p ×Gp → G

which we think of as giving us the based p-simplex

[1, g1, . . . , gp]

for any p-tuple. We do this using the apex-base construction. First, the map ϕp−1 : ∆p−1 ×

Gp → G can be extended to a map

fp : [0, 1]×∆p−1 ×Gp → G

by defining fp to be ϕp−1 on {1} ×∆p−1 × Gp, to be 1 on {0} ×∆p−1 × Gp, and using the

exponential map to interpolate in between. Since [0, 1] ×∆p is a kind of generalized prism,

we take the liberty of calling {0} ×∆p the 0 face, and {1} ×∆p the 1 face.

Here, the requirement for smoothness complicates things slightly, because we shall actu-

ally need fp to be 1 on a neighborhood of the 0 face. So, to be precise, for (t, x, g1, . . . , gp)) ∈
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[0, 1]×∆p−1 ×Gp, we have that ϕp−1(x, g0, . . . , gp) is a point of G, say exp(X). Define:

fp(t, x, g0, . . . , gp) = exp(`(t)X).

where ` is the smoothing factor we mention above: a smooth increasing function which is 0

on a neighborhood of 0, and 1 at 1. This guarantees fp will be 1 on a neighborhood of the 0

face, and will match ϕp−1 on the 1 face.

Since fp is smooth and is constant on a neighborhood of the 0 face of the prism, [0, 1]×

∆p−1, we can quotient by this face and obtain a smooth map:

f̃p : ∆p ×Gp → G.

For definiteness, we can use the smooth quotient map defined by:

qp : [0, 1]×∆p−1 → ∆p

(t, x) 7→ (1− t, tx)

which we note sends the 0 face to the 0th vertex of ∆p, and sends the vertices of ∆p−1 to the

remaining vertices of ∆p, in order. Finally, to define the nonbased p-simplices, we extend by

the left action of G—for any g ∈ G and any (x, g1, . . . , gp) ∈ ∆p ×Gp, set:

ϕp(x, g, gg1, . . . , ggp) = gf̃p(x, g1, . . . , gp).

This defines

ϕp : ∆p ×Gp+1 → G.

It just remains to check that:

Proposition 7.2. This defines a left-invariant notion of simplices on G, which we call the

standard left-invariant notion of simplices with smoothing factor `.
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Proof. By construction, the ϕp are all smooth and G-equivariant, so we only need to check

the vertex property and the face property. We do this inductively.

For 0-simplices, the vertex property is trivial. Assume it holds for (p − 1)-simplices. In

particular, the map

[g1, . . . , gp] : ∆p−1 → G

sends the vertices of ∆p−1 to g1, . . . , gp, in that order. By construction, the based p-simplex

[1, g1, . . . , gp] : ∆p → G

sends the 0th vertex to 1 and the rest of the vertices to g1, . . . , gp, since the (p − 1)-simplex

[g1, . . . , gp] has the vertex property and is defined to be the base of this p-simplex in the

apex-base construction. By G-equivariance, this extends to all p-simplices.

For 0-simplices, the face property holds vacuously, and for 1-simplices it is the same as

the vertex property. Now take p ≥ 2, and assume the face property holds for all k-simplices

with k < p. By G-equivariance, the face property will hold for all p-simplices as long as it

holds for all based p-simplices, for instance:

[1, g1, . . . , gp].

By the apex-base construction, the (p−1)-simplex [g1, . . . , gp] is the 0th face of [1, g1, . . . , gp],

since it was chosen as the base. For any other face, say the ith face, the apex-base construction

gives the (p− 1)-simplex

[1, g1, . . . , ĝi, . . . , gp] : ∆p−1 → G

with 1 as apex, and the (p − 2)-simplex [g1, . . . , ĝi, . . . , gp] as base. Thus, the face property

holds for the p-simplex [1, g1, . . . , gp].
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While the existence of any left-invariant notion of simplices in G suffices to integrate

Lie algebra cochains, we have found an almost overwhelming wealth of these notions—one

for each smoothing factor `. In fact, for the moment we will indicate the dependence of the

standard notion of left-invariant simplices on ` with a superscript:

ϕ`p : ∆p ×Gp+1 → G.

Of course, the dependence of ϕ`p on ` passes to the individual simplices, so we give them a

superscript as well:

[g0, . . . , gp]
` : ∆p → G.

Fortunately, however, the cochain map:

∫ : C•(g)→ C•(G)

is independent of `. That is, if `′ is another smoothing factor, we have:

∫
[g0,...,gp]`

ω =

∫
[g0,...,gp]`′

ω,

for any left-invariant p-form ω.

We shall prove this not by comparing the integrals for two smoothing factors, but rather

computing the integral in a way that is manifestly independent of smoothing factor. We do

this by showing that the role of the smoothing factor is basically to allow us to smoothly

quotient the p-dimensional cube [0, 1]p down to the standard p-simplex ∆p. Had we parame-

terized our p-simplices with cubes to begin with, we would have had no need for a smoothing

factor. As a trade off, however, our proof that integration gives a chain map would have re-

quired more care when analyzing the boundary.
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Now we get to work. Rather than parameterizing the p-simplex on the domain ∆p:

[g0, g1, . . . , gp]
` : ∆p → G,

we shall show how to parameterize it on the p-dimensional cube:

〈g0, g1, . . . , gp〉 : [0, 1]p → G,

That is, these two functions have the same images—a p-simplex inGwith vertices g0, . . . , gp ∈

G, they induce the same orientations on their images, and both traverse it the image precisely

once. So, as we shall prove, the integral over either simplex is the same. But, as we shall also

see, the latter parameterization does not depend on the smoothing factor `.

How do we discover the parameterization 〈g0, . . . , gp〉? We just repeat the apex-base

construction, but we avoid quotienting to down to ∆p! Begin by defining the 0-simplices to

map the 0-dimensional cube to the indicated vertex:

〈g0〉 : {0} → G

Define a 1-simplex by using the exponential map to sweep out a path from g0 to g0g1:

〈g0, g0g1〉 : [0, 1]→ G,

by defining:

〈g0, g0g1〉(t1) = g0 exp(t1X1), t1 ∈ [0, 1].

135



where g1 = exp(X1). Now, define a 2-simplex using the exponential map to sweep out paths

from g0 to the 1-simplex 〈g0g1, g0g1g2〉. That is, define:

〈g0, g0g1, g0g1g2〉 : [0, 1]2 → G,

to be given by:

〈g0, g0g1, g0g1g2〉(t1, t2) = g0 exp(t1Z(X1, t2X2)),

where g1 = exp(X1), g2 = exp(X2), and Z denotes the Baker–Campbell–Hausdorff series:

g1g2 = exp(Z(X1, X2).

Continuing in this manner, with a bit of work one can see that the p-simplex:

〈g0, g0g1, g0g1g2, . . . , g0g1g2 · · · gp−1gp〉 : [0, 1]p → G

is given by the horrendous formula:

〈g0, g0g1, g0g1g2, . . . , g0g1g2 · · · gp−1gp〉(t1, t2, . . . , tp) =

g0 exp(t1Z(X1, t2Z(X2, . . . , tp−1Z(Xp−1, tpXp) . . . ))) .

While horrendous, this formula is at least independent of the smoothing factor `, and this

forms the basis of the following proposition:

Proposition 7.3. Let G be an exponential Lie group with Lie algebra g, let ` be a smoothing

factor, and equipG with the standard left-invariant notion of simplices with smoothing factor

`. For any p-simplex

[g0, . . . , gp]
` : ∆p → G,
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depending on ` and parameterized on the domain ∆p, there is a p-simplex:

〈g0, . . . , gp〉 : [0, 1]p → G

given by the formula:

〈g0, . . . , gp〉(t1, . . . , tp) = g0 exp(t1Z(X1, t2Z(X2, . . . , tp−1Z(Xp−1, tpXp) . . . ))),

where g−1
0 g1 = exp(X1), g−1

1 g2 = exp(X2), . . . , g−1
p−1gp = exp(Xp). Then 〈g0, . . . , gp〉 is

independent of `, parameterized on the domain [0, 1]p, and has the same image and orienta-

tion as [g0, . . . , gp]
`. Furthermore, for any p-form ω on G, the integral of ω is the same over

either simplex: ∫
[g0,...,gp]`

ω =

∫
〈g0,...,gp〉

ω.

Proof. Equality of images and orientations follows from the apex-base construction, and

equality of the integrals follows from reparameterization invariance.

Corollary 7.1. Let G be an exponential Lie group with Lie algebra g, let ` be a smoothing

factor, and equipG with the standard left-invariant notion of simplices with smoothing factor

`. Let

∫ : C•(g)→ C•(G)

be the cochain map from Lie algebra cochains to Lie group cochains given by integration

over simplices. Then ∫ is independent of `.

Proof. Recall that if ω is a left-invariant p-form on G, and [g0, . . . , gp]
` is a p-simplex in G,

the cochain map ∫ is defined by:

(∫ ω)(g0, . . . , gp) =

∫
[g0,...,gp]`

ω
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By the above theorem, this integral is equal to

∫
〈g0,...,gp〉

ω,

where 〈g0, . . . , gp〉 : [0, 1]p → G is given as above, and is independent of `. Thus, ∫ is also

independent of `.

Having proven that the cochain map ∫ is independent of smoothing factor, we will now

allow the smoothing factor to recede into the background. Henceforth, we abuse terminology

somewhat and speak of the standard left-invariant notion of simplices to mean the standard

notion with some implicit choice of smoothing factor.

We would now like to go the other way, and show how to get a Lie algebra cochain from

a Lie group cochain. This direction is much easier: in essence, we differentiate the Lie group

cochain at the identity, and antisymmetrize the result. To do this, we make use of the fact that

any element of the Lie algebra can be viewed as a directional derivative at the identity. The

following result, due to van Est (c.f. [77], Formula 46) just says this map defines a cochain

map:

Proposition 7.4. Let G be a Lie group with Lie algebra g. Then there is a cochain map from

the van Est complex to the Chevalley–Eilenberg complex:

D : C•(G)→ C•(g)

given by differentiation—that is, if F is a homogeneous p-cochain onG, andX1, . . . , Xp ∈ g,

then we can define:

DF (X1, . . . , Xp) =
1

p!

∑
σ∈Sp

sgn(σ)X1
σ(1) . . . X

p
σ(p)F (1, g1, g1g2, . . . , g1g2 . . . gp),

where by Xj
i we indicate that the operator Xi differentiates only the jth variable, gj.
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Proof. See Houard [45], p. 224, Lemma 1.

Having now defined cochain maps

∫ : C•(g)→ C•(G)

and

D : C•(G)→ C•(g),

the obvious next question is whether or not this defines a homotopy equivalence of cochain

complexes. Indeed, as proved by Houard, they do:

Theorem 7.1. Let G be a Lie group equipped with a left-invariant notion of simplices, and g

its Lie algebra. The cochain map

D ∫ : C•(g)→ C•(g),

is the identity, whereas the cochain map

∫ D : C•(G)→ C•(G)

is cochain-homotopic to the identity. Therefore the Lie algebra cochain complex C•(g) and

the Lie group cochain complex C•(G) are homotopy equivalent and thus have isomorphic

cohomology.

Proof. See Houard [45], p. 234, Proposition 2.

7.2 Examples: Explicitly integrating 0-, 1-, 2- and 3-cochains

In this section, in order to get a feel for the integration procedure given in Proposition 7.1, we

shall explicitly calculate some Lie group cochains from Lie algebra cochains. The resulting
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formulas are polynomials on the Lie group, at least in the nilpotent case. It is important to

note, however, that you do not need to know these explicit formulas in what follows. It is

enough to understand that they exist, and have the properties described in Section 7.1. We

nonetheless suspect that explicit formulas will prove useful in future work, so we collect

some here.

To facilitate this calculation, we shall also have to explicitly construct some low-dimensional

left-invariant simplices. For 0-cochains and 1-cochains, we will find the task very easy—we

only need our Lie group G to be exponential. On the other hand, for 2- and 3-cochains, the

construction gets much harder. This complexity shows just how powerful the abstract ap-

proach of the previous section actually is—imagine having to prove Proposition 7.1 through

an explicit integration such as those we present here!

So, for 2- and 3-cochains, we simplify the problem by assuming our Lie algebra g to be

2-step nilpotent: all brackets of brackets are zero. This allows us to use a simplified form of

the Baker–Campbell–Hausdorff formula:

exp(X) exp(Y ) = exp(X + Y +
1

2
[X, Y ])

and the Zassenhaus formula:

exp(X + Y ) = exp(X) exp(Y ) exp(−1

2
[X, Y ]) = exp(X) exp(Y − 1

2
[X, Y ]). (7.1)

Partially, this nilpotentcy assumption just makes our calculations tenable, but secretly it is

because our main application of these ideas will be to 2-step nilpotent Lie superalgebras.

0-cochains

Let ω be a Lie algebra 0-cochain: that is, a real number. Then ∫ ω = ω is a Lie group

0-cochain. We can view it as the integral of ω over the 0-simplex [1].
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1-cochains

Let ω be a Lie algebra 1-cochain: that is, a linear map

ω : g→ R,

which we extend to a 1-form on G by left translation. We define a Lie group 1-cochain ∫ ω

by integrating ω over 1-simplices in G. In particular

∫ ω(g) =

∫
[1,g]

ω.

Since G is exponential, it has a standard left-invariant notion of 1-simplex, given by expo-

nentiation. So, if g = exp(X), then the 1-simplex [1, g] is given by

[1, g](t) = exp(tX), 0 ≤ t ≤ 1.

We denote this map by ϕ for brevity. So:

∫ ω(g) =

∫ 1

0

ω(ϕ̇(t)) dt

Noting that the derivative of ϕ is

ϕ̇(t) = exp(tX)X

we have

∫ ω(g) =

∫ 1

0

ω(exp(tX)X) dt =

∫ 1

0

ω(X) dt = ω(X),
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where we have used the left invariance of ω. In summary,

∫ ω(g) = ω(X),

for g = exp(X).

As a check on this, note that because we have proved ∫ is a cochain map, ∫ ω should be a

cocycle whenever ω is. So let us verify this. Assume dω = 0. That is, for all X and Y ∈ g,

we have:

dω(X, Y ) = −ω([X, Y ]) = 0.

So the cocycle condition merely says that ω must vanish on brackets. Now compute the

coboundary of ∫ ω:

d ∫ ω(g, h) = ∫ ω(h)− ∫ ω(gh) + ∫ ω(g).

If g = exp(X) and h = exp(Y ), we have

gh = exp(X) exp(Y ) = exp(X + Y +
1

2
[X, Y ] + · · · )

by the Campbell–Baker–Hausdorff formula, and thus:

d ∫ ω(g, h) = ω(Y )− ω(X + Y +
1

2
[X, Y ] + · · · ) + ω(X) = 0

where we have used ω’s linearity along with the cocycle condition.

2-cochains

As we have just seen, 0-cochains and 1-cochains are easily integrated on any exponential

Lie group, and the result is always a polynomial Lie group cochain. Unfortunately, even for

2-cochains, the integration is much more complicated, and no longer polynomial unless g is
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nilpotent. So, at this point, we will simplify matters by assuming g to be 2-step nilpotent. To

hint at this with our notation, we will now call our Lie algebra n and the corresponding Lie

group N .

Let ω be a Lie algebra 2-cochain: that is, a left-invariant 2-form. We define a Lie group

2-cochain ∫ ω by integrating ω over 2-simplices in N . In particular:

∫ ω(g, h) =

∫
[1,g,gh]

ω.

Now suppose g = exp(X) and h = exp(Y ). Recall we that obtain the 2-simplex [1, g, gh]

using the apex-base construction: we connect each point of the base [g, gh] = g[1, h] to 1 by

the exponential map. Since [1, h](t) = exp(tY ), the base is parameterized by

[g, gh](t) = g exp(tY ) = exp(X + tY +
t

2
[X, Y ])

by the Baker–Campbell–Hausdorff formula. Now let us construct [1, g, gh] by first construct-

ing a map from the square

ϕ : [0, 1]× [0, 1]→ N

given by

ϕ(s, t) = exp(s(X + tY +
t

2
[X, Y ])).

At this stage in our general construction, since this map is 1 on the {0} × [0, 1] edge of the

square, we would typically quotient the square out by this edge to obtain a map from the

standard 2-simplex. But in practice, we do not need to do this. Since the integral
∫

[1,g,gh]
ω

is invariant under reparameterization, we might as well parameterize our 2-simplex [1, g, gh]

with ϕ and integrate over the square to obtain:

∫ ω(g, h) =

∫ 1

0

∫ 1

0

ω(
∂ϕ

∂s
,
∂ϕ

∂t
) ds dt.
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Our task has essentially been reduced to computing the partial derivatives of ϕ. Thanks to

the left invariance of ω, we may as well left translate these partials back to 1 once we have

them, since:

ω(
∂ϕ

∂s
,
∂ϕ

∂t
) = ω(ϕ−1∂ϕ

∂s
, ϕ−1∂ϕ

∂t
).

Let us begin with ∂ϕ
∂s

. Since the exponent of ϕ(s, t) = exp(s(X+tY + t
2
[X, Y ])) is linear

in s, this is simply:
∂ϕ

ϕs
(s, t) = ϕ(s, t)(X + tY

t

2
[X, Y ]).

This is a tangent vector at ϕ(s, t). We can left translate it back to 1 to obtain:

ϕ−1∂ϕ

∂s
= X + tY

t

2
[X, Y ]).

The partial with respect to t is slightly harder, because the exponent is not linear in t. To

compute this, we need the Zassenhaus formula, Formula 7.1, to separate the terms linear in t

from those that are not. Applying this, we obtain

ϕ(s, t) = exp(sX) exp(stY +
st

2
[X, Y ]− s2t

2
[X, Y ]).

Differentiating this with respect to t and left translating the result to 1, we get:

ϕ−1∂ϕ

∂t
= sY +

s− s2

2
[X, Y ].

Substituting these partial derivatives into the integral, our problem becomes:

∫ ω(g, h) =

∫ 1

0

∫ 1

0

ω(X + tY +
t

2
[X, Y ], sY +

s− s2

2
[X, Y ]) ds dt.
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It is now easy enough, using ω’s bilinearity and antisymmetry, to bring all the polynomial

coefficients out and integrate them, obtaining an expression which is the sum of three terms:

∫ ω(g, h) =
1

2
ω(X, Y ) +

1

12
ω(X, [X, Y ])− 1

12
ω(Y, [X, Y ]).

Nevertheless, we would like to do this calculation explicitly. In essence, we use ω’s bilin-

earity and antisymmetry to our advantage, to write these coefficients as integrals of various

determinants. To wit, the coefficent of ω(X, Y ) is the integral of the determinant

∣∣∣∣∣∣∣
1 t

0 s

∣∣∣∣∣∣∣ = s,

which we obtain from reading off the coefficients of X and Y in the integrand:

ω(X + tY +
t

2
[X, Y ], sY +

s− s2

2
[X, Y ]).

So the coefficient of ω(X, Y ) is
∫ 1

0

∫ 1

0
s ds dt = 1

2
. We can use this idea to obtain the other

two coefficients as well—the coefficient of ω(X, [X, Y ]) is the integral of the determinant

∣∣∣∣∣∣∣
1 t

2

0 s−s2
2

∣∣∣∣∣∣∣ =
s− s2

2
,

which is 1
12

, and the coefficient of ω(Y, [X, Y ]) is the integral of the determinant

∣∣∣∣∣∣∣
t t

2

s s−s2
2

∣∣∣∣∣∣∣ = −s
2t

2
,

which is − 1
12

.
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As a final check on this calculation, let us again show that when ω is a cocycle, so is ∫ ω.

We know this must be true by Proposition 7.1, of course, but when checking it explicitly the

cocycle condition seems almost miraculous. Since this final computation is a bit of a workout,

we tuck it into the proof of the following proposition. It is only a check, and understanding

the calculation is not necessary for what follows.

Proposition 7.5. LetN be a simply-connected Lie group whose Lie algebra n is 2-step nilpo-

tent. If ω is a Lie algebra 2-cocycle on n, then the Lie group 2-cochain on N defined by

∫ ω(g, h) =
1

2
ω(X, Y ) +

1

12
ω(X − Y, [X, Y ]),

where g = exp(X) and h = exp(Y ), is also a cocycle.

Proof. As already noted, this fact is immediate from Proposition 7.1, but we want to ignore

this and check it explicitly. To do this, we repeatedly use the Baker–Campbell–Hausdorff

formula, the assumption that n is 2-step nilpotent, and the cocycle condition on ω. This latter

condition reads:

dω(X, Y, Z) = −ω([X, Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X) = 0.

Note how this resembles the Jacobi identity. We prefer to write it as follows:

ω(X, [Y, Z]) = ω([X, Y ], Z) + ω(Y, [X,Z]).

To begin, by definition, the coboundary of ∫ ω is given by

d ∫ ω(g, h, k) = ∫ ω(h, k)− ∫ ω(gh, k) + ∫ ω(g, hk)− ∫ ω(g, h).
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Let us assume that

g = exp(X), h = exp(Y ), k = exp(Z),

so that

gh = exp(X + Y +
1

2
[X, Y ]), hk = exp(Y + Z +

1

2
[Y, Z]).

Now we repeatedly insert the expression for our Lie group 2-cochain, so the coboundary of

∫ ω becomes:

d ∫ ω(g, h, k) =
1

2
ω(Y, Z) +

1

12
ω(Y − Z, [Y, Z])

−1

2
ω(X + Y +

1

2
[X, Y ], Z)− 1

12
ω(X + Y +

1

2
[X, Y ]− Z, [X + Y, Z])

+
1

2
ω(X, Y + Z +

1

2
[Y, Z]) +

1

12
ω(X − Y − Z − 1

2
[Y, Z], [X, Y + Z])

−1

2
ω(X, Y )− 1

12
ω(X − Y, [X, Y ]),

Note that the cocycle condition combined with nilpotency implies that any term in which

ω eats two brackets vanishes. In general,

ω([X, Y ], [Z,W ]) = ω([[X, Y ], Z],W ) + ω(Z, [[X, Y ],W ]) = 0,

thanks to the fact that brackets of brackets vanish. So, in the expression for d ∫ ω, we can

simplify the fourth term:

ω(X + Y +
1

2
[X, Y ]− Z, [X + Y, Z]) = ω(X + Y − Z, [X + Y, Z]) +

1

2
ω([X, Y ], [X + Y, Z])

= ω(X + Y − Z, [X + Y, Z]).

Similarly for the sixth term:

ω(X − Y − Z − 1

2
[Y, Z], [X, Y + Z]) = ω(X − Y − Z, [X, Y + Z]).
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This leaves us with:

d ∫ ω(g, h, k) =
1

2
ω(Y, Z) +

1

12
ω(Y − Z, [Y, Z])

−1

2
ω(X + Y +

1

2
[X, Y ], Z)− 1

12
ω(X + Y − Z, [X + Y, Z])

+
1

2
ω(X, Y + Z +

1

2
[Y, Z]) +

1

12
ω(X − Y − Z, [X, Y + Z])

−1

2
ω(X, Y )− 1

12
ω(X − Y, [X, Y ]),

Expanding this using bilinearity, we obtain, after many cancellations:

d ∫ ω(g, h, k) = −1

4
ω([X, Y ], Z)− 1

12
ω(X, [Y, Z])− 1

12
ω(Y, [X,Z])

+
1

4
ω(X, [Y, Z])− 1

12
ω(Y, [X,Z])− 1

12
ω(Z, [X, Y ])

We combine the two terms with coefficient 1/4 using the cocycle condition:

−ω([X, Y ], Z) + ω(X, [Y, Z]) = ω([Y,X], Z) + ω(X, [Y, Z]) = ω(Y, [X,Z]).

Similarly, for the first and fourth terms with coefficent 1/12, we apply the cocycle condition

to get:

ω(X, [Y, Z]) + ω(Z, [X, Y ]) = ω(Y, [X,Z]).

So, substituting these in, we finally obtain:

d ∫ ω(g, h, k) =
1

4
ω(Y, [X,Z])− 1

12
ω(Y, [X,Z])− 1

12
ω(Y, [X,Z])− 1

12
ω(Y, [X,Z]) = 0,

as desired.
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As a corollary, note that we could equally well have said:

Corollary 7.2. Let N be a simply-connected Lie group whose Lie algebra n is 2-step nilpo-

tent. If ω is a Lie algebra 2-cocycle on n, then the Lie group 2-cochain on N defined by

∫ ω(g, h) =

∫ 1

0

∫ 1

0

ω(X + tY +
t

2
[X, Y ], sY +

s− s2

2
[X, Y ]) ds dt,

where g = exp(X) and h = exp(Y ), is also a cocycle.

Proof. By our calculation in this section,

∫ ω(g, h) =
1

2
ω(X, Y ) +

1

12
ω(X − Y, [X, Y ]),

so the result is immediate.

3-cochains

Let ω be a 3-cochain on the Lie algebra: that is, a left-invariant 3-form. Judging by our

experience in the last section, the complexity of integrating ω to a Lie group 3-cochain may

be quite high. Indeed, we shall ultimately avoid writing down ∫ ω, except as an integral.

Nonetheless, we can make this integral quite explicit.

We define the Lie group 3-cochain ∫ ω to be the integral of ω over a 3-simplex in N . In

particular:

∫ ω(g, h, k) =

∫
[1,g,gh,ghk]

ω.

Now assume that g = exp(X), h = exp(Y ) and k = exp(Z). Recall we that obtain the

3-simplex [1, g, gh, ghk] using the apex-base construction: we connect each point of the base

[g, gh, ghk] = g[1, h, hk] to 1 by the exponential map. In the last section, we saw that

149



[1, h, hk](t, u) = exp(t(Y + uZ + u
2
[Y, Z])), so the base is parameterized by

[g, gh, ghk](t, u) = g exp(t(Y + uZ +
u

2
[Y, Z])

= exp(X + tY + tuZ +
tu

2
[Y, Z] +

1

2
[X, tY + tuZ]),

by the Baker–Campbell–Hausdorff formula. Now let us construct [1, g, gh, ghk] by first con-

structing a map from the cube

ϕ : [0, 1]× [0, 1]× [0, 1]→ N

given by

ϕ(s, t, u) = exp(s(X + tY + tuZ +
tu

2
[Y, Z] +

1

2
[X, tY + tuZ]))

= exp(sX + stY + stuZ +
st

2
[X, Y ] +

stu

2
[Y, Z] +

stu

2
[X,Z]).

At this stage in our general construction, since this map is 1 on the {0} × [0, 1]× [0, 1] face

of the cube and on the lines {s} × {0} × [0, 1] of constant s on the [0, 1]× 0× [0, 1] face of

the cube, we could quotient the cube out by these sets to obtain a map from the standard 3-

simplex. But in practice, we do not need to do this. Since the integral
∫

[1,g,gh,ghk]
ω is invariant

under reparameterization, we might as well parameterize our 3-simplex [1, g, gh, ghk] with

ϕ and integrate over the cube to obtain:

∫ ω(g, h, k) =

∫ 1

0

∫ 1

0

∫ 1

0

ω(
∂ϕ

∂s
,
∂ϕ

∂t
,
∂ϕ

∂u
) ds dt du.

Once again, our task has essentially reduced to computing the partial derivatives of ϕ, and

once again, thanks to the left invariance of ϕ, we may as well left translate these partials back
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to 1 once we have them, since:

ω(
∂ϕ

∂s
,
∂ϕ

∂t
,
∂ϕ

∂u
) = ω(ϕ−1∂ϕ

∂s
, ϕ−1∂ϕ

∂t
, ϕ−1∂ϕ

∂u
).

Let us begin with ∂ϕ
∂s

. Since the exponent of ϕ(s, t, u) is linear in s, this is simply:

∂ϕ

ϕs
(s, t, u) = ϕ(s, t, u)(X + tY + tuZ +

t

2
[X, Y ] +

tu

2
[Y, Z] +

tu

2
[X,Z]).

This is a tangent vector at ϕ(s, t, u). We can left translate it back to 1 to obtain:

ϕ−1∂ϕ

ϕs
= X + tY + tuZ +

t

2
[X, Y ] +

tu

2
[Y, Z] +

tu

2
[X,Z].

The partial with respect to t is slightly harder, because the exponent is not linear in t.

To compute this, we again need the Zassenhaus formula, Formula 7.1, to separate the terms

linear in t from those that are not. Applying this, we obtain

ϕ(s, t, u) = exp(sX) exp(stY+stuZ+
st

2
[X, Y ]+

stu

2
[Y, Z]+

stu

2
[X,Z]−1

2
[sX, stY+stuZ]).

Differentiating this with respect to t and left translating the result to 1, we get:

ϕ−1∂ϕ

∂t
= sY + suZ +

s

2
[X, Y ] +

su

2
[Y, Z] +

su

2
[X,Z]− 1

2
[sX, sY + suZ],

which we can simplify by combining like terms:

ϕ−1∂ϕ

∂t
= sY + suZ +

s− s2

2
[X, Y ] +

su

2
[Y, Z] +

su− s2u

2
[X,Z].
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Finally, the partial with respect to u requires that we separate out the terms linear in u,

again using the Zassenhaus formula:

ϕ(s, t, u) = exp(sX+stY+
st

2
[X, Y ]) exp(stuZ+

stu

2
[Y, Z]+

stu

2
[X,Z]−1

2
[sX+stY, stuZ]).

Differentiating this with respect to u and left translating the result to 1, we get:

ϕ−1∂ϕ

∂u
= stZ +

st

2
[Y, Z] +

st

2
[X,Z]− 1

2
[sX + stY, stZ],

which we can again simplify by combining like terms:

ϕ−1∂ϕ

∂u
= stZ +

st− s2t2

2
[Y, Z] +

st− s2t

2
[X,Z].

Substituting these partial derivatives into the integral, our problem becomes:

∫ ω(g, h, k) =

∫ 1

0

∫ 1

0

∫ 1

0

ω( X + tY + tuZ +
t

2
[X, Y ] +

tu

2
[Y, Z] +

tu

2
[X,Z],

sY + suZ +
s− s2

2
[X, Y ] +

su

2
[Y, Z] +

su− s2u

2
[X,Z],

stZ +
st− s2t2

2
[Y, Z] +

st− s2t

2
[X,Z] ) ds dt du.

This integral is bad enough. Further evaluating this integral is quite a chore (the answer

involves 17 nonzero terms!), so we stop here. We would only like to give a hint as to how the

evaluation could be done. As in Section 7.2, thanks to ω’s trilinearity and antisymmetry, the

coefficients of the terms in ∫ ω(g, h, k) are integrals of various determinants. For instance,

the coefficient of ω(X, Y, Z) is the integral of the 3× 3 determinant

∣∣∣∣∣∣∣∣∣∣
1 t tu

0 s su

0 0 st

∣∣∣∣∣∣∣∣∣∣
= s2t,
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which we obtain from reading off the coefficients of X , Y and Z in the integrand. So the

coefficient of ω(X, Y, Z) in ∫ ω(g, h, k) is
∫ 1

0

∫ 1

0

∫ 1

0
s2t ds dt du = 1

6
. The other terms may

be computed similarly.

Just as we shall not attempt to evaluate the integral for ∫ ω(g, h, k), we also do not attempt

to demonstrate that it gives a Lie group cocycle when ω is a Lie algebra cocycle. After all,

Proposition 7.1 does this for us:

Proposition 7.6. LetN be a simply-connected Lie group whose Lie algebra n is 2-step nilpo-

tent. If ω is a Lie algebra 3-cocycle on n, then the Lie group 3-cochain on N given by

∫ ω(g, h, k) =

∫ 1

0

∫ 1

0

∫ 1

0

ω( X + tY + tuZ +
t

2
[X, Y ] +

tu

2
[Y, Z] +

tu

2
[X,Z],

sY + suZ +
s− s2

2
[X, Y ] +

su

2
[Y, Z] +

su− s2u

2
[X,Z],

stZ +
st− s2t2

2
[Y, Z] +

st− s2t

2
[X,Z] ) ds dt du,

where g = exp(X), h = exp(Y ) and k = exp(Z), is also a cocycle.

Proof. This is immediate upon combining Proposition 7.1 with the above discussion.

7.3 The Heisenberg Lie 2-group

In Section 5.1.2, we met the Heisenberg Lie algebra, H = span(p, q, z). This is the 3-

dimensional Lie algebra where the generators p, q and z satisfy relations which mimic the

canonical commutation relations from quantum mechanics:

[p, q] = z, [p, z] = 0, [q, z] = 0.

As one can see from the above relations, H is 2-step nilpotent: brackets of brackets are zero.
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We then met the Lie 2-algebra generalization, the Heisenberg Lie 2-algebra:

Heisenberg = stringγ(H),

built by extending H with the 3-cocycle γ = p∗ ∧ q∗ ∧ z∗, where p∗, q∗, and z∗ is the basis

dual to p, q and z.

It is easy to construct a Lie group H with Lie algebra H. Just take the group of 3 × 3

upper triangular matrices with units down the diagonal:

H =




1 a b

0 1 c

0 0 1

 : a, b, c ∈ R

 .

This is an exponential Lie group:

exp: H → H

ap+ cq + bz 7→


1 a b

0 1 c

0 0 1

 .

So we can apply Proposition 7.2 to construct the standard left-invariant notion of simplices

in H , and Proposition 7.1 to integrate the Lie algebra 3-cocycle γ to a Lie group 3-cocycle

∫ γ. We therefore get a Lie 2-group, the Heisenberg Lie 2-group:

Heisenberg = String∫ γ(H).
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Chapter 8

Supergeometry and supergroups

We would now like to generalize our work from Lie algebras and Lie groups to Lie su-

peralgebras and supergroups. Of course, this means that we need a way to talk about Lie

supergroups, their underlying supermanifolds, and the maps between supermanifolds. This

task is made easier because we do not need the full machinery of supermanifold theory. Be-

cause our supergroups will be exponential, we only need to work with supermanifolds that

are diffeomorphic to super vector spaces. Nonetheless, let us begin with a sketch of super-

manifold theory from the perspective that suits us best, which could loosely be called the

‘functor of points’ approach.

The rough geometric picture one should have of a supermanifold M is that of an ordinary

manifold with infinitesimal ‘superfuzz’, or ‘superdirections’, around each point. At the in-

finitesimal level, an ordinary manifold is merely a vector space—its tangent space at a point.

In contrast, the tangent space to M has a Z2-grading: tangent vectors which point along the

underlying manifold of M are taken to be even, while tangent vectors which point along the

superdirections are taken to be odd.

At least infinitesimally, then, all supermanifolds look like super vector spaces,

Rp|q := Rp ⊕ Rq,
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where Rp is even and Rq is odd. And indeed, just as ordinary manifolds are locally modeled

on ordinary vector spaces, Rn, supermanifolds are locally modeled on super vector spaces,

Rp|q. But before we sketch how this works, let us introduce our main tool: the so-called

‘functor of points’.

The basis for the functor of points is the Yoneda Lemma, a very general and fundamental

fact from category theory:

Yoneda Lemma. Let C be a category. The functor

C → Fun(Cop, Set)

x 7→ Hom(−, x)

is a full and faithful embedding of C into the category Fun(Cop, Set) of contravariant func-

tors from C to Set. This embedding is called the Yoneda embedding.

The upshot of this lemma is that, without losing any information, we can replace an object

x by a functor Hom(−, x), and a morphism f : x→ y by a natural transformation

Hom(−, f) : Hom(−, x)⇒ Hom(−, y)

of functors. Each component of this natural transformation is the ‘obvious’ thing: for an

object z, the function

Hom(z, f) : Hom(z, x)→ Hom(z, y)

just takes the morphism g : z → x to the morphism fg : z → y.

On a more intuitive level, the functor of points tells us how to reconstruct a ‘space’ x ∈ C

by probing it with every other space z ∈ C—that is, by looking at all the ways in which

z maps into x, which forms the set Hom(z, x). The true power of the functor of points,

however, arises when we can reconstruct x without having to probe it will every z, but with

z from a manageable subcategory of C. And while it deviates slightly from the spirit of the
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Yoneda Lemma, we can shrink this subcategory still further if we allow Hom(z, x) to have

more structure than that of a mere set. In fact, when M is a supermanifold, we will consider

probes z for which Hom(z,M) is an ordinary manifold.

For what z is Hom(z,M) a manifold? One clue is that when M is an ordinary manifold,

there is a manifold of ways to map a point into M :

M ∼= Hom(R0,M),

but the space of maps from any higher-dimensional manifold to M is generally not a finite-

dimensional manifold in its own right. Similarly, when M is a supermanifold, there is an

ordinary manifold of ways to map a point into M :

MR0|0 = Hom(R0|0,M).

One should think of this as the ordinary manifold one gets from M by forgetting about the

superdirections. But thanks to the superdirections, we now we have more ways of obtaining

a manifold of maps to M : there is an ordinary manifold of ways to map a point with q

superdirections into M :

MR0|q = Hom(R0|q,M).

So, for every supermanifold M , we get a functor:

Hom(−,M) : SuperPointsop → Man

R0|q 7→ Hom(R0|q,M)

where SuperPoints is the category consisting of supermanifolds of the form R0|q and smooth

maps between them. Of course, we have not yet said what this category is precisely, but one

should think of R0|q as a supermanifold whose underlying manifold consists of one point,
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with q infinitesimal superdirections—a ‘superpoint’. Because this lets us probe the superdi-

rections of M , this functor has enough information to completely reconstruct M . We will go

further, however, and sketch how to defineM as a certain kind of functor from SuperPointsop

to Man.

This approach goes back to Schwarz [68] and Voronov [76], who used it to formalize

the idea of ‘anticommuting coordinates’ used in the physics literature. Since Schwarz, a

number of other authors have developed the functor of points approach to supermanifolds,

most recently Sachse [59] and Balduzzi, Carmeli and Fioresi [15]. We will follow Sachse,

who defines supermanifolds entirely in terms of their functors of points, rather than using

sheaves.

8.1 Supermanifolds

Let us now dive into supermathematics. Our main need is to define smooth maps between

super vector spaces, but we will sketch the full definition of supermanifolds and the smooth

maps between them. Just as an ordinary manifold is a space which is locally modeled on

a vector space, supermanifolds are locally modeled on a super vector space. Since we will

define a supermanifold M as a functor

M : SuperPointsop → Man,

we first need to say how to think of the simplest kind of supermanifold, a super vector space

V , as such a functor:

V : SuperPointsop → Man.

But first we owe the reader a definition of the category of superpoints.
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Recall from Section 3.1 that a super vector space is a Z2-graded vector space V =

V0 ⊕ V1 where V0 is called the even part, and V1 is called the odd part. There is a symmetric

monoidal category SuperVect which has:

• Z2-graded vector spaces as objects;

• Grade-preserving linear maps as morphisms;

• A tensor product⊗ that has the following grading: if V = V0⊕V1 and W = W0⊕W1,

then (V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1) and (V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0);

• A braiding

BV,W : V ⊗W → W ⊗ V

defined as follows: v ∈ V and w ∈ W are of grade |v| and |w|, then

BV,W (v ⊗ w) = (−1)|v||w|w ⊗ v.

The braiding encodes the ‘the rule of signs’: in any calculation, when two odd elements are

interchanged, we introduce a minus sign. We write Rp|q for the super vector space with even

part Rp and odd part Rq.

We define a supercommutative superalgebra to be a commutative algebra A in the

category SuperVect. More concretely, it is a real, associative algebra A with unit which is

Z2-graded:

A = A0 ⊕ A1,

and is graded-commutative. That is:

ab = (−1)|a||b|ba,
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for all homogeneous elements a, b ∈ A, as required by the rule of signs. We define a ho-

momorphism of superalgebras f : A → B to be an algebra homomorphism that respects

the grading. So, there is a category SuperAlg with commutative superalgebras as objects,

and homomorphisms of superalgebras as morphisms. Henceforth, we will assume all our

superalgebras to be supercommutative unless otherwise indicated.

A particularly important example of a supercommutative superalgebra is a Grassmann

algebra: a finite-dimensional exterior algebra

A = ΛRn,

equipped with the grading:

A0 = Λ0Rn ⊕ Λ2Rn ⊕ · · · , A1 = Λ1Rn ⊕ Λ3Rn ⊕ · · · .

Let us write GrAlg for the category with Grassmann algebras as objects and homomorphisms

of superalgebras as morphisms.

In fact, the Grassmann algebras are essential for our approach to supermanifold theory,

because:

GrAlg = SuperPointsop

so rather than thinking of a supermanifold M as a contravariant functor from SuperPoints to

Man, we can view a supermanifold as a covariant functor:

M : GrAlg→ Man

To see why this is sensible, recall that a smooth map between ordinary manifolds

ϕ : M → N
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is the same as a homomorphism between their algebras of smooth functions which goes the

other way:

ϕ∗ : C∞(N)→ C∞(M)

By analogy, we expect something similar to hold for supermanifolds. In particular, a smooth

map from a superpoint:

ϕ : R0|q →M

ought to be to the same as a homomorphism of their ‘superalgebras of smooth functions’

which points the other way:

ϕ∗ : C∞(M)→ C∞(R0|q).

But since R0|q is a purely odd super vector space, we define its algebra of smooth functions

to be Λ(Rq)∗. Intuitively, this is because R0|q is a supermanifold with q ‘odd, anticommuting

coordinates’, given by the standard projections:

θ1, . . . , θq : Rq → R,

so a ‘smooth function’ f on R0|q should have a ‘power series expansion’ that looks like:

f =
∑

i1<i2<···<ik

fi1i2...ikθ
i1 ∧ θi2 ∧ · · · ∧ θik .

where the coefficients fi1i2...ik are real. Thus f is precisely an element of Λ(Rq)∗. Thus, we

define

Hom(R0|q,M) = Hom(C∞(M),Λ(Rq)∗).
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In this way, rather than thinking of M as a functor:

Hom(−,M) : SuperPointsop → Man

R0|q 7→ Hom(R0|q,M)

where Hom is in the category of supermanifolds (though we have not defined this), we think

of M as a functor:

Hom(C∞(M),−) : GrAlg → Man

A 7→ Hom(C∞(M), A)

where Hom is in the category of superalgebras (which we have defined, though we have not

defined C∞(M)).

Since we have just given a slew of definitions, let us bring the discussion back down to

earth with a concise summary:

• Every supermanifold is a functor:

M : GrAlg→ Man,

though not every such functor is a supermanifold.

• Every smooth map of supermanifolds is a natural transformation:

ϕ : M → N,

though not every such natural transformation is a smooth map of supermanifolds.

• Let us write MA for the value of M on the Grassmann algebra A, and call this the

A-points of M .
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• Let us write Mf : MA → MB for the smooth map induced by a homomorphism

f : A→ B.

• Finally, we write ϕA : MA → NA for the smooth map which the natural transformation

ϕ gives between the A-points. We call ϕA a component of the natural transformation

ϕ.

With this background, we can now build up the theory of supermanifolds in perfect anal-

ogy to the theory of manifolds. First, we need to say how to think of our model spaces, the

super vector spaces, as supermanifolds.

Indeed, given a finite-dimensional super vector space V , the supermanifold associated

to V , or just the supermanifold V to be the functor:

V : GrAlg→ Man

which takes:

• each Grassmann algebra A to the vector space:

VA = (A⊗ V )0 = A0 ⊗ V0 ⊕ A1 ⊗ V1

regarded as a manifold in the usual way;

• each homomorphism f : A → B of Grassmann algebras to the linear map Vf : VA →

VB that is the identity on V and f on A:

Vf = (f ⊗ 1)0 : (A⊗ V )0 → (B ⊗ V )0.

This map, being linear, is also smooth.
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We take this definition because, roughly speaking, the set of A-points is the set of homomor-

phisms of superalgebras, Hom(C∞(V ), A). By analogy with the ordinary manifold case, we

expect that any such homomorphism is determined by its restriction to the ‘dense subalgebra’

of polynomials:

Hom(C∞(V ), A) ∼= Hom(Sym(V ∗), A),

though here we are being very rough, because we have not assumed any topology on our

superalgebras, so the term ‘dense subalgebra’ is not meaningful. Since Sym(V ∗) is the free

supercommutative superalgebra on V ∗, a homomorphism out of it is the same as a linear map

of super vector spaces:

Hom(Sym(V ∗), A) ∼= Hom(V ∗, A),

where the first Hom is in SuperAlg and the second Hom is in SuperVect. Finally, because V

is finite-dimensional and linear maps of super vector spaces preserve grading, this last Hom

is just:

Hom(V ∗, A) ∼= V0 ⊗ A0 ⊕ V1 ⊗ A1.

which, up to a change of order in the factors, is how we defined VA. This last set is a manifold

in an obvious way: it is an ordinary, finite-dimensional, real vector space. In fact, it is just

the even part of the super vector space A⊗ V :

VA = (A⊗ V )0,

as we have noted in our definition.

In fact, VA = A0 ⊗ V0 ⊕ A1 ⊗ V1 is more than a mere vector space—it is an A0-module.

Moreover, given any linear map of super vector spaces:

L : V → W

164



we get an A0-module map between the A-points in a natural way:

LA = (1⊗ L)0 : (A⊗ V )0 → (A⊗W )0.

So natural, in fact, that LA defines a natural transformation between the supermanifold V and

the supermanifold W . That is, given any homomorphism f : A→ B of Grassmann algebras,

the following square commutes:

VA
LA //

Vf

��

WA

Wf

��
VB LB

//WB

We therefore have a functor

SuperVect→ Fun(GrAlg,Man)

which takes super vector spaces to their associated supermanifolds, and linear transforma-

tions to natural transformations between supermanifolds. For future reference, we note this

fact in a proposition:

Proposition 8.1. There is a faithful functor:

SuperVect→ Fun(GrAlg,Man)

which takes a super vector space V to the supermanifold V whose A-points are:

VA = (A⊗ V )0,

and takes a linear map of super vector spaces:

L : V → W
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to the natural transformation whose components are:

LA = (1⊗ L)0 : (A⊗ V )0 → (A⊗W )0.

In the above, A is a Grassmann algebra and the tensor product takes place in SuperVect.

Proof. It is easy to check that this defines a functor. Faithfulness follows from a more general

result in Sachse [59], c.f. Proposition 3.1.

While this functor is faithful, it is far from full; in particular, it misses all of the ‘smooth

maps’ between super vector spaces which do not come from a linear map. We define these

additional maps now.

Infinitesimally, all smooth maps should be like a linear map L : V → W , so given two

finite-d imensional super vector spaces V and W , we define a smooth map between super

vector spaces:

ϕ : V → W,

to be a natural transformation between the supermanifolds V and W such that the derivative

(ϕA)∗ : TxVA → Tϕ(x)WA

is A0-linear at each A-point x ∈ VA, where the A0-module structure on each tangent space

comes from the canonical identification of a vector space with its tangent space:

TxVA ∼= VA, Tϕ(x)WA
∼= WA.

Note that each component ϕA : VA → WA is smooth in the ordinary sense, because by virtue

of living in the category of smooth manifolds. We say that a smooth map ϕA : VA → WA

whose derivative is A0-linear at each point isA0-smooth for short.

166



This last definition is the last piece of supermanifold theory we need for the remainder of

this thesis, but for completeness, let us sketch how one defines a general supermanifold, M .

Since M will be locally isomorphic to a super vector space V , it helps to have local pieces

of V that play the same role as open sets for ordinary manifolds. So, fix a super vector space

V , and let U ⊆ V0 be open. The superdomain over U is the functor:

U : GrAlg→ Man

that takes each Grassmann algebra A to

UA = V −1
εA

(U)

where εA : A→ R the projection of the Grassmann algebraA that kills all nilpotent elements.

We say that U is a superdomain in V , and write U ⊆ V .

If U ⊆ V and U ′ ⊆ W are two superdomains in super vector spaces V and W , a smooth

map of superdomains is a natural transformation:

ϕ : U → U ′

such that for each Grassmann algebra A, the component on A-points is smooth:

ϕA : UA → U ′A.

and the derivative:

(ϕA)∗ : TxUA → Tϕ(x)U ′A

167



is A0-linear at each A-point x ∈ UA, where the A0-module structure on each tangent space

comes from the canonical identification with the ambient vector spaces:

TxUA ∼= VA, Tϕ(x)U ′A ∼= WA.

Again, we say that a smooth map ϕA : UA → U ′A whose derivative is A0-linear at each point

isA0-smooth for short.

At long last, a supermanifold is a functor

M : GrAlg→ Man,

equipped with an atlas

(Uα, ϕα : U →M),

where each Uα is a superdomain, each ϕα is a natural transformation, and one can define tran-

sition functions that are smooth maps of superdomains. A smooth map of supermanifolds

is a natural transformation:

ψ : M → N

which induces smooth maps between the superdomains in the atlases. Thus, there is a cate-

gory SuperMan of supermanifolds. See Sachse [59] for more details.

Finally, note that there is a supermanifold:

1: GrAlg→ Man,

which takes each Grassmann algebra to the one-point manifold. We call this the one-point

supermanifold. It is the terminal object in the category of supermanifolds.
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8.2 Supergroups from nilpotent Lie superalgebras

We now describe a completely algebraic procedure to integrate a nilpotent Lie superalgebra

to a Lie supergroup. This is a partial generalization of Lie’s Third Theorem, which describes

how any Lie algebra can be integrated to a Lie group. In fact, the full theorem generalizes to

Lie supergroups [73], but we do not need it here.

A Lie superalgebra is a Lie algebra in the category of super vector spaces. More con-

cretely, it is a super vector space g = g0⊕g1, equipped with a graded-antisymmetric bracket:

[−,−] : Λ2g→ g,

which satisfies the Jacobi identity up to signs:

[X, [Y, Z]] = [[X, Y ], Z] + (−1)|X||Y |[Y, [X,Z]].

for all homogeneous X, Y, Z ∈ g.

A Lie superalgebra n is called k-step nilpotent is any k nested brackets vanish, and it

is called nilpotent if it is k-step nilpotent for some k. Nilpotent Lie superalgebras can be

integrated to a unique supergroup N defined on the same underlying super vector space n.

For us, a Lie supergroup, or supergroup, is a group object in the category of superman-

ifolds. That is, it is a supermanifold G equipped with the following maps of supermanifolds:

• multiplication, m : G×G→ G;

• inverse, inv : G→ G;

• identity, id : 1→ G, where 1 is the one-point supermanifold;

such that the following diagrams commute, encoding the usual group axioms:
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• the associative law:

G×G×G
1×m

''NNNNNNNNNNN
m×1

wwppppppppppp

G×G

m
''OOOOOOOOOOOO G×G

m
wwoooooooooooo

G

• the right and left unit laws:

I ×G id×1 //

%%KKKKKKKKKK G×G
m

��

G× I1×idoo

yyssssssssss

G

• the right and left inverse laws:

G×G G×G

G G

1
&&MMMMMMMMM

∆
EE����

id

88qqqqqqqqq

m
��2

222
1×inv // G×G G×G

G G

1
&&MMMMMMMMM

∆
EE����

id

88qqqqqqqqq

m
��2

222
inv×1 //

where ∆: G → G × G is the diagonal map. In addition, a supergroup is abelian if the

following diagram commutes:

G×G τ //

m
%%KKKKKKKKKKK G×G
m

��
G

where τ : G×G→ G×G is the twist map. Using A-points, it is defined to be:

τA(x, y) = (y, x),

for (x, y) ∈ GA ×GA.
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Examples of supergroups arise easily from Lie groups: if G is an Lie group, it is also a

Lie group defined on the supermanifold whose A-points are:

GA = Hom(C∞(G), A),

where C∞(G) is the ordinary algebra of smooth functions on G, regarded as a purely even

superalgebra. In this way, any classical Lie group, such as SO(n), SU(n) and Sp(n), becomes

a supergroup.

To obtain more interesting examples, we will integrate a nilpotent Lie superalgebra, n to

a supergroup N . For any superalgebra A, the bracket

[−,−] : Λ2n→ n

induces an A0-linear map between the A-points:

[−,−]A : Λ2(nA)→ nA,

where Λ2(nA) denotes the exterior square of A0-modules. Thus [−,−]A is antisymmetric,

and it easy to check that it makes nA into a Lie algebra which is also nilpotent.

On each such A0-module nA, we can thus define a Lie group NA where the multplication

is given by the Baker–Campbell–Hausdorff formula, inversion by negation, and the identity

is 0. Because we want to write the group NA multiplicatively, we write expA : nA → NA for

the identity map, and then define the multiplication, inverse and identity maps:

mA : NA ×NA → NA, invA : NA → NA, idA : 1A → NA,
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as follows:

mA(expA(X), expA(Y )) = expA(X) expA(Y ) = expA(X + Y +
1

2
[X, Y ] + · · · )

invA(expA(X)) = expA(−X) = expA(X)−1,

idA(1) = expA(0) = 1,

for any A-points X, Y ∈ nA, and the first 1 in the last equation refers to the single element

of 1A. But it is clear that all of these maps are natural in A. Furthermore, they are all A0-

smooth, because as polynomials with coefficients inA0, they are smooth with derivatives that

are A0-linear. They thus define smooth maps of supermanifolds:

m : N ×N → N, inv : N → N, id : 1→ N,

where N is the supermanifold n. And because each of the NA is a group, N is a supergroup.

We have thus proved:

Proposition 8.2. Let n be a nilpotent Lie superalgebra. Then there is a supergroupN defined

on the supermanifold n, obtained by integrating the nilpotent Lie algebra nA with the Baker–

Campbell–Hausdorff formula for all superalgebras A. More precisely, we define the maps:

m : N ×N → N, inv : N → N, id : 1→ N,

by defining them on A-points as follows:

mA(expA(X), expA(Y )) = expA(Z(X, Y )),

invA(expA(X)) = expA(−X),
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idA(1) = expA(0),

where

exp: n→ N

is the identity map of supermanifolds, and:

Z(X, Y ) = X + Y +
1

2
[X, Y ] + · · ·

denotes the Baker–Campbell–Hausdorff series on nA, which terminates because nA is nilpo-

tent.

Experience with ordinary Lie theory suggests that, in general, there will be more than one

supergroup which has Lie superalgebra n. To distinguish the one above, we call N the

exponential supergroup of n.
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Chapter 9

Lie n-supergroups from supergroup

cohomology

We saw in Chapter 6 that 3-cocycles in Lie group cohomology allow us to construct Lie 2-

groups. We now generalize this to supergroups. The most significant barrier is that we now

work internally to the category of supermanifolds instead of the much more familiar category

of smooth manifolds. Our task is to show that this change of categories does not present a

problem. The main obstacle is that the category of supermanifolds is not a concrete category:

morphisms are determined not by their value on the underlying set of a supermanifold, but

by their value on A-points for all Grassmann algebras A.

The most common approach is to define morphisms without reference to elements, and to

define equations between morphisms using commutative diagrams. This is how we gave the

definition of smooth bicategory, except that we found it convenient to state the pentagon and

triangle identities using elements. As an alternative to commutative diagrams, for superman-

ifolds, one can use A-points to define morphisms and specify equations between them. This

tends to make equations look friendlier, because they look like equations between functions.

We shall use this approach.
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First, let us define the cohomology of a supergroup G with coefficients in an abelian

supergroup H , on which G acts by automorphism. This means that we have a morphism of

supermanifolds:

α : G×H → H,

which, for any Grassmann algebra A, induces an action of the group GA on the abelian group

HA:

αA : GA ×HA → HA.

For this action to be by automorphism, we require:

αA(g)(h+ h′) = αA(g)(h) + αA(g)(h′),

for all A-points g ∈ GA and h, h′ ∈ HA.

We define supergroup cohomology using the supergroup cochain complex, C•(G,H),

which at level p just consists of the set of morphisms of from Gp to H as supermanifolds:

Cp(G,H) = {f : Gp → H}

Addition on H makes Cp(G,H) into an abelian group for all p. The differential is given by

the usual formula, but using A-points:

dfA(g1, . . . , gp+1) = g1fA(g2, . . . , gp+1)

+

p∑
i=1

(−1)ifA(g1, . . . , gigi+1, . . . , gp+1)

+(−1)p+1fA(g1, . . . , gp)
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where g1, . . . , gp+1 ∈ GA and the action of g1 is given by αA. Noting that fA, αA, multipli-

cation and + are all:

• natural in A;

• A0-smooth: smooth with derivatives which are A0-linear;

we see that dfA is:

• natural in A;

• A0-smooth: smooth with a derivative which is A0-linear;

so it indeed defines a map of supermanifolds:

df : Gp+1 → H.

Furthermore, it is immediate that:

d2fA = 0

for all A, and thus

d2f = 0.

So C•(G,H) is truly a cochain complex. Its cohomology H•(G,H) is the supergroup

cohomology ofG with coefficients inH . Of course, if df = 0, f is called a cocycle, and f

is normalized if

fA(g1, . . . , gp) = 0

for any Grassmann algebra A, whenever one of the A-points g1, . . . , gp is 1. When H = R,

we omit reference to it, and write C•(G,R) as C•(G).

A super bicategory B has

• a supermanifold of objects B0;
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• a supermanifold of morphisms B1;

• a supermanifold of 2-morphisms B2;

equipped with maps of supermanifold as described in Definition 6.4: source, target, identity-

assigning, horizontal composition, vertical composition, associator and left and right unitors

all maps of supermanifolds, and satisfying the same axioms as smooth bicategory. The as-

sociator satisfies the pentagon identity, which we state in terms of A-points: the following

pentagon commutes:

(fg)(hk)

f(g(hk))

f((gh)k)(f(gh))k

((fg)h)k

a(f,g,hk)

#+OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

1f ·a(g,h,k)

?G
����������

����������a(f,gh,k) +3

a(f,g,h)·1k

��
7777777777

7777777777

a(fg,h,k)

3;ooooooooooooooooo

ooooooooooooooooo

for any ‘composable quadruple of morphisms’:

(f, g, h, k) ∈ (B1 ×B0 B1 ×B0 B1 ×B0 B1)A.

Similarly, the associator and left and right unitors satisfy the triangle identity, which we state

in terms of A-points: the following triangle commutes:

(f1)g f(1g)

fg

a(f,1,g) +3

r(f)·1g

�#
???????????

???????????

1f ·l(g)
{� �����������

�����������
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for any ‘composable pair of morphisms’:

(f, g) ∈ (B1 ×B0 B1)A.

A 2-supergroup is a super bicategory with one object (more precisely, the one-point

supermanifold), and all morphisms and 2-morphisms weakly invertible. Given a normalized

H-valued 3-cocycle a on G, we can construct a 2-supergroup Stringa(G,H) in the same

way we constructed the Lie 2-group Stringa(G,H) when G and H were Lie groups, by just

deleting every reference to elements of G or H:

• The supermanifold of objects is the one-point supermanifold, 1.

• The supermanifold of morphisms is the supergroup G, with composition given by the

multiplication:

· : G×G→ G.

The source and target maps are the unique maps to the one-point supermanifold. The

identity-assigning map is the identity-assigning map for G:

id : 1→ G.

• The supermanifold of 2-morphisms is G×H . The source and target maps are both the

projection map to G. The identity assigning map comes from the identity-assigning

map for H:

1× id : G× 1→ G×H.

• Vertical composition of 2-morphisms is given by addition in H:

1×+: G×H ×H → G×H,
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where we have used the fact that the pullback of 2-morphisms over objects is trivially:

(G×H)×1 (G×H) ∼= G×H ×H.

Horizontal composition, ·, given by the multiplication on the semidirect product:

· : (GnH)× (GnH)→ GnH.

• The left and right unitors are trivial.

• The associator given by the 3-cocycle a : G3 → H , where the source (and target) is

understood to come from multiplication on G.

A slim 2-supergroup is one of this form. It remains to check that it is, indeed, a 2-

supergroup.

Proposition 9.1. Stringa(G,H) is a 2-supergroup: a super bicategory with one object and

all morphisms and 2-morphisms weakly invertible.

Proof. This proof is a duplicate of the proof of Proposition 6.1, but with A-points instead of

elements.

In a similar way, we can generalize our construction of Lie 3-groups to ‘3-supergroups’.

A super tricategory T has

• a supermanifold of objects T0;

• a supermanifold of morphisms T1;

• a supermanifold of 2-morphisms T2;

• a supermanifold of 3-morphisms T3;
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equipped with maps of supermanifolds as described in Definition 6.5: source, target, identity-

assigning, composition along 0-cells, 1-cells and 2-cells, associator and left and right unitors,

pentagonator and triangulators all maps of supermanifolds, and satisfying the same axioms

as a smooth tricategory. As in the case of the pentagon identity above, we express the pen-

tagonator identity in terms of A-points: the following equation holds:

(f(g(hk)))p

(f((gh)k))p

(1fa)1p

((f(gh))k)p

a1p

(((fg)h)k)p

(a1k)1p

((fg)h)(kp)

a

(fg)(h(kp))

a

f(g(h(kp)))

a

f(g((hk)p))

1f (1ga)

f((g(hk))p) 1fa

a

((fg)(hk))p

a1p

a1p

(fg((hk)p))

a

a

(1f 1g)a

V π

V

π

V π

∼=

=
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(f(g(hk)))p

(f((gh)k))p

(1fa)1p

((f(gh))k)p

a1p

(((fg)h)k)p

(a1k)1p

((fg)h)(kp)

a

(fg)(h(kp))

a

f(g(h(kp)))

a

f(g((hk)p))

1f (1ga)

f((g(hk))p) 1fa

a

f(((gh)k)p)

1f (a1p)

a

(f(gh))(kp)

a(1k1p)

a

f((gh)(kp))

a

1fa

1fa

V π

V π

V π

∼=

∼=

for any ‘composable quintet of morphisms’:

(f, g, h, k, p) ∈ (T1 ×T0 T1 ×T0 T1 ×T0 T1 ×T0 T1)A

A 3-supergroup is a super tricategory with one object (more precisely, the one-point

supermanifold) and all morphisms, 2-morphisms and 3-morphisms weakly invertible. Given

a normalized H-valued 4-cocycle π on G, we can construct a 3-supergroup Braneπ(G,H)

in the same way we constructed the Lie 3-group Braneπ(G,H) when G and H were Lie

groups, but deleting every reference to elements of G or H:

• The supermanifold of objects is the one-point supermanifold, 1.
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• The supermanifold of morphisms is the supergroup G. Composition at a 0-cell given

by multiplication in the group:

· : G×G→ G.

The source and target maps are the unique maps to 1. The identity-assigning map is

the identity-assigning map for G:

id : 1→ G.

• The supermanifold of 2-morphisms is againG. The source, target and identity-assigning

maps are all the identity on G. Composition at a 1-cell is the identity on G, while

composition at a 0-cell is again multiplication in G. This encodes the idea that all

2-morphisms are trivial.

• The supermanifold of 3-morphisms isG×H . The source and target maps are projection

onto G. The identity-assigning map is the inclusion:

G→ G×H

that takes A-points g ∈ GA to (g, 0) ∈ GA ×HA, for all A.

• Three kinds of composition of 3-morphisms: composition at a 2-cell and at a 3-cell are

both given by addition on H:

1×+: G×H ×H → G×H.
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While composition at a 0-cell is just given by multiplication on the semidirect product:

· : (GnH)× (GnH)→ GnH.

• The associator, left and right unitors are automatically trivial, because all 2-morphisms

are trivial.

• The triangulators are trivial.

• The 2-associator or pentagonator given by the 4-cocycle π : G4 → H , where the

source (and target) is understood to come from multiplication on G.

A slim 3-supergroup is one of this form. It remains to check that it is, indeed, a 3-

supergroup.

Proposition 9.2. Branea(G,H) is a 3-supergroup: a super tricategory with one object and

all morphisms, 2-morphisms and 3-morphisms weakly invertible.

Proof. This proof is a duplicate of the proof of Proposition 6.2, but with A-points instead of

elements.
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Chapter 10

Integrating nilpotent Lie n-superalgebras

We now generalize our technique for integrating cocycles from nilpotent Lie algebras to

nilpotent Lie superalgebras. Those familiar with supermanifold theory may find it surprising

that this is possible—the theory of differential forms is very different for supermanifolds than

for manifolds, and integrating differential forms on a manifold was crucial to our method in

7.1. But we can sidestep this issue on a nilpotent supergroup N by considering A-points for

any Grassmann algebra A. Then NA is a manifold, so the usual theory of differential forms

applies.

Here is how we will proceed. Fixing a nilpotent Lie superalgebra n with exponential

supergroup N , we can use Proposition 8.1 turn any Lie superalgebra cochain ω on n into a

Lie algebra cochain ωA on nA. We then use the techniques in Section 7.1 to turn ωA into a Lie

group cochain ∫ ωA on NA. Checking that ∫ ωA is natural in A and A0-smooth, this defines a

supergroup cochain ∫ ω on N .

As we saw in Proposition 8.1, any map of super vector spaces becomes an A0-linear map

on A-points. We have already touched on the way this interacts with symmetry: for a Lie

superalgebra g, the graded-antisymmetric bracket

[−,−] : Λ2g→ g
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becomes an honest antisymmetric bracket on A-points:

[−,−]A : Λ2gA → gA.

More generally, we have:

Lemma 10.1. Graded-symmetric maps of super vector spaces:

f : SympV → W

induce symmetric maps on A-points:

fA : SympVA → WA,

defined by:

fA(a1v1, . . . , apvp) = ap · · · a1f(v1, . . . , vp),

where SympVA is the symmetric power of VA as an A0-module and ai ∈ A, vi ∈ V are of

matching parity. Similarly, graded-antisymmetric maps of super vector spaces:

f : ΛpV → W

induce antisymmetric maps on A-points:

fA : ΛpVA → WA,

defined by:

fA(a1v1, . . . , apvp) = ap · · · a1f(v1, . . . , vp),
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where ΛpVA is the exterior power VA as an A0-module and ai ∈ A, vi ∈ V are of matching

parity.

Proof. This is straightforward and we leave it to the reader.

Next, we need to show that Lie superalgebra cochains ω on n give rise to Lie algebra

cochains ωA on the A-points nA. In fact, this works for any Lie superalgebra, but there is one

twist: because nA is an A0-module, ω : Λpn→ R gives rise to an A0-linear map:

ωA : ΛpnA → A0,

using the fact that RA = A0. So, we need to say how to do Lie algebra cohomology with

coefficients in A0. It is just a straightforward generalization of cohomology with coefficients

in R.

Indeed, any Lie superalgebra g induces a Lie algebra structure on gA where the bracket

is A0-bilinear. We say that gA is an A0-Lie algebra. Given any A0-Lie algebra gA, we

define its cohomology with the A0-Lie algebra cochain complex, which at level p consists

of antisymmetric A0-multilinear maps:

Cp(gA) = {ω : ΛpgA → A0} .

We define d on this complex in exactly the same way we define d for R-valued Lie algebra

cochains. This makes C•(gA) into a cochain complex, and the cohomology of an A0-Lie

algebra with coefficients inA0 is the cohomology of this complex.

Proposition 10.1. Let g be a Lie superalgebra, and let gA be the A0-Lie algebra of its A-

points. Then there is a cochain map:

C•(g)→ C•(gA)
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given by taking the p-cochain ω

ω : Λpg→ R

to the induced A0-linear map ωA:

ωA : Λp(gA)→ A0,

where Λp(gA) denotes the pth exterior power of gA as an A0-module.

Proof. We need to show:

d(ωA) = (dω)A.

Since these are both linear maps on Λp+1(gA), it suffices to check that they agree on genera-

tors, which are of the form:

a1X1 ∧ a2X2 ∧ · · · ∧ ap+1Xp+1

for ai ∈ A and Xi ∈ g of matching parity. By definition:

(dω)A(a1X1 ∧ a2X2 ∧ · · · ∧ ap+1Xp+1) = ap+1ap · · · a1dω(X1 ∧X2 ∧ · · · ∧Xp+1).

On the other hand, to compute d(ωA), we need to apply the formula for d to obtain the

intimidating expression:

d(ωA)(a1X1, . . . , ap+1Xp+1)

=
∑
i<j

(−1)i+jωA([aiXi, ajXj]A, a1X1, . . . , âiXi, . . . , âjXj, . . . , ap+1Xp+1)

=
∑
i<j

(−1)i+jap+1 · · · âj · · · âi · · · a1ajaiω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1).
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If we reorder the each of the coefficients ap+1 · · · âj · · · âi · · · a1ajai to ap+1 · · · a2a1 at the

cost of introducing still more signs, we can factor all of the ais out the summation to obtain:

ap+1 · · · a2a1

×
∑
i<j

(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1)

= ap+1 · · · a2a1dω(X1 ∧X2 ∧ · · · ∧Xp+1).

Note that the first two lines are a single quantity, the product of ap+1 · · · a1 and a large sum-

mation. The last line is (dω)A(a1X1 ∧ · · · ∧ ap+1Xp+1), as desired.

This proposition says that from any Lie superalgebra cocycle on n we obtain a Lie algebra

cocycle on nA, albeit now valued in A0. Since NA is an exponential Lie group with Lie

algebra nA, we can apply the techniques we developed in Section 7.1 to integrate ωA to a

group cocycle, ∫ ωA, on NA.

First, however, we must pause to give some preliminary definitions concerning calculus

on NA, which is diffeomorphic to the A0-module nA. Recall from Section 8.1 that a map

ϕ : V → W

between two A0-modules said to be A0-smooth if it is smooth in the ordinary sense and its

derivative

ϕ∗ : TxV → Tϕ(x)W

isA0-linear at each point x ∈ V . Here, theA0-module structure on each tangent space comes

from the canonical identification with the ambient vector space:

TxV ∼= V, Tϕ(x)W ∼= W.
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It is clear that the identity is A0-smooth and the composite of any two A0-smooth maps is

A0-smooth. A vector field X on V is A0-smooth if Xf is an A0-smooth function for all

f : V → A0 that are A0-smooth. An A0-valued differential p-form ω on V is A0-smooth if

ω(X1, . . . , Xp) is an A0-smooth function for all A0-smooth vector fields X1, . . . , Xp.

Now, we return to integrating ω. As a first step, because nA = T1NA, we can view ωA as

an A0-valued p-form on T1NA. Using left translation, we can extend this to a left-invariant

A0-valued p-form on NA. Indeed, we can do this for any A0-valued p-cochain on nA:

Cp(nA) ∼= {left-invariant A0-valued p-forms on NA} .

Note that any left-invariant A0-valued form on NA is automatically A0-smooth, because left

translation on the A0-smooth Lie group NA is itself an A0-smooth operation. We can dif-

ferentiate and integrate A0-valued p-forms in just the same way as we would real-valued

p-forms, and the de Rham differential d of left-invariant p-forms coincides with the usual

differential of Lie algebra p-cochains.

As before, we need a notion of simplices in N . Since N is a supermanifold, the vertices

of a simplex should not be points of N , but rather A-points for arbitrary Grassmann algebras

A. This means that for any (p+ 1)-tuple of A-points, we want to get a p-simplex:

[n0, n1, . . . , np] : ∆p → NA,

where, once again, ∆p is the standard p-simplex in Rp+1, and this map is required to be

smooth. But this only defines a p-simplex in NA. To really get our hands on a p-simplex in

N , we need it to depend functorially on the choice of superalgebra A we use to probe N . So

if f : A → B is a homomorphism between Grassmann algebras and Nf : NA → NB is the
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induced map between A-points and B-points, we require:

Nf ◦ [n0, n1, . . . , np] = [Nf (n0), Nf (n1), . . . , Nf (np)]

Thus given a collection of maps:

(ϕp)A : ∆p × (NA)p+1 → NA

for all A and p ≥ 0, we say this collection defines a left-invariant notion of simplices in N

if

• each (ϕp)A is smooth, and for each x ∈ ∆p, the restriction:

(ϕp)A : {x} ×Np+1
A → NA

is A0-smooth;

• it defines a left-invariant notion of simplices in NA for each A, as in Definition 7.1;

• the following diagram commutes for all homomorphisms f : A→ B:

∆p ×Np+1
A

(ϕp)A //

1×Np+1
f
��

NA

Nf

��
∆p ×Np+1

B (ϕp)B

// NB

We can use a left-invariant notion of simplices to define a cochain map ∫ : C•(n)→ C•(N):

Proposition 10.2. Let n be a nilpotent Lie superalgebra, and let N be the exponential su-

pergroup which integrates n. If N is equipped with a left-invariant notion of simplices, then

there is a cochain map:

∫ : C•(n)→ C•(N)

190



which sends the Lie superalgebra p-cochain ω to the supergroup p-cochain ∫ ω, given on

A-points by:

(∫ ω)A(n1, . . . , np) =

∫
[1,n1,n1n2,...,n1n2...np]

ωA

for n1, . . . , np ∈ NA.

Proof. First, we must check that ∫ ωA : Np
A → A0 is natural in A and A0-smooth, and hence

defines a map of supermanifolds:

∫ ω : Np → R.

Smoothness is clear, so we check naturality and the A0-linearity of the derivative.

To check naturality, let f : A → B be a homomorphism, and Nf : NA → NB be the

induced map from A-points to B-points. We wish to show the following square commutes:

Np
A

∫ ωA //

Np
f

��

A0

f0

��
Np
B ∫ ωB

// B0

For A-points n1, . . . , np ∈ NA, we have:

f0

∫
[1,n1,n1n2,...,n1n2...np]

ωA =

∫
[1,n1,n1n2,...,n1...np]

f0ωA.

Since ωA : ΛpnA → A0 is natural itself, we have:

f0ωA(X1, . . . , Xp) = ωB(nf (X1), . . . , nf (Xp)),

for all X1, . . . , Xp ∈ nA. Now, under the identification nA ∼= T1NA, the linear map:

nf : nA → nB
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is the derivative of the linear map Nf : NA → NB, so we get the pullback of ωA along Nf :

ωB(nf (X1), . . . , nf (Xp)) = ωB((Nf )∗(X1), . . . , (Nf )∗(Xp)) = N∗fωB(X1, . . . , Xp).

Finally:

f0

∫
[1,n1,n1n2,...,n1n2...np]

ωA =

∫
[1,n1,n1n2,...,n1n2...np]

N∗fωB

=

∫
Nf◦[1,n1,n1n2,...,n1n2...np]

ωB

=

∫
[1,Nf (n1),Nf (n1)Nf (n2),...,Nf (n1)Nf (n2)...Nf (np)]

ωB

where in the last step we have used the fact that [1, n1, n1n2, . . . , n1 . . . np] is a left-invariant

simplex in N , as well as the fact that Nf is a group homomorphism. But this says exactly

that ∫ ωA is natural in A.

Next, we check that ∫ ωA has a derivative that is A0-linear. Briefly, this holds because the

derivative of (ϕp)A with respect toNA is A0-linear. The A0-linearity of the derivative of ∫ ωA

then follows from the elementary analytic fact that integration with respect to one variable

and differentiation respect to another commute with each other, at least when the integration

is performed over a compact set.

In detail, let us write ψ for the function ∫ ωA : Np
A → N . Let v ∈ TnN

p
A be a tangent

vector, and let a ∈ A0. Tedious as it may seem, we will show directly that the derivative of ψ

at n is A0-linear by computing its value on av. Denoting the derivative of ψ at n by ψ∗, we

want to show that:

ψ∗(av) = aψ∗(v).
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Take γ to be a path through n with tangent v:

γ(0) = n, γ̇(0) = v,

and δ to be a path through n with tangent av:

δ(0) = n, δ̇(0) = av,

With wish to show that:

d

dt
ψ(δ(t)) |t=0 = a

d

dt
ψ(γ(t)) |t=0 .

Now, by definition,

ψ(n) =

∫
∆p

g(x, n) dx,

where n ∈ Np
A, and g denotes the pullback of ωA along the function:

∆p ×Np
A → NA

(x, n1, . . . , np) 7→ (ϕp)A(x, 1, n1, n1n2, . . . , n1n2 · · ·np),

where x ∈ ∆p and n1, . . . , np ∈ NA. So:

ψ(δ(t)) =

∫
∆p

g(x, δ(t)) dx, ψ(γ(t)) =

∫
∆p

g(x, γ(t)) dx.

And thus, by differentiating and commuting with integration, we get:

ψ∗(av) =

∫
∆p

∂

∂t
g(x, δ(t)) |t=0 dx, ψ∗(v) =

∫
∆p

∂

∂t
g(x, γ(t)) |t=0 dx
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By hypothesis, (ϕp)A and ωA are A0-smooth in NA, therefore so is the pullback h. Thus:

∂

∂t
h(x, δ(t)) |t=0= a

∂

∂t
h(x, γ(t)) |t=0 .

Using the A0-linearity of integration, it follows that:

ψ∗(av) = aψ∗(v)

as desired.

Finally, let us check that it is a cochain map. Indeed, it is the composite of the cochain

maps:

ω 7→ ωA 7→ ∫ ωA,

∫(dω)A = d(∫ ωA) = (d ∫ ω)A

where in the last step we have used the fact that (df)A = d(fA) by definition of d.

Finally, we shall prove that there is a left-invariant notion of simplices with which we can

equip N . For a fixed superalgebra A, the Lie group NA is exponential. We shall show that if

we take:

(ϕp)A : ∆p ×Np+1
A → NA

to be the standard notion of left-invariant simplices in Proposition 7.2, then this defines a

left-invariant notion of simplices in N . The key is to note that each stage of the inductive

definition of (ϕp)A we get maps that are natural in A.

Proposition 10.3. Let N be the exponential supergroup of the nilpotent Lie superalgebra n.

Fix a smoothing factor ` : [0, 1]→ [0, 1]. For each superalgebra A and p ≥ 0, define:

(ϕp)A : ∆p ×Np+1
A → NA
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to be the standard left-invariant notion of simplices with smoothing factor `. Then this defines

a left-invariant notion of simplices in N .

Proof. Fix superalgebras A and B and a map f : A → B. We proceed by induction on p.

For p = 0, the maps:

(ϕ0)A : ∆0 ×NA → NA,

(ϕ0)B : ∆0 ×NB → NB,

are the obvious projections. The fact that:

∆0 ×NA

(ϕ0)A //

1×Nf

��

NA

Nf

��
∆0 ×NB (ϕ0)B

// NB

commutes is then automatic.

For arbitrary p, suppose that the following square commutes:

∆p−1 ×Np
A

(ϕp−1)A//

1×Np
f

��

NA

Nf

��
∆p−1 ×Np

B(ϕp−1)B

// NB

and that (ϕp−1)A and (ϕp−1)B are A0- and B0-smooth. In other words, the above square says

that for any p-tuple of A-points, we have:

Nf ◦ [n1, . . . , np] = [Nf (n1), . . . , Nf (np)].

We construct (ϕp)A and (ϕp)B from (ϕp−1)A and (ϕp−1)B, respectively, using the apex-base

construction. That is, given the (p−1)-simplex [n1, . . . , np] given by (ϕp−1)A for theA-points
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n1, . . . , np ∈ NA, we define the based p-simplex:

[1, n1, . . . , np]

in NA by using the exponential map expA to sweep out a path from the apex 1 to each point

of the base [n1, . . . , np]. Similarly, we define the based p-simplex:

[1, Nf (n1), . . . , Nf (np)]

in NB by using the exponential map expB to sweep out a path from the apex 1 to each point

of the base [Nf (n1), . . . , Nf (np)]. From the naturality of exp, we will establish that:

Nf ◦ [1, n1, . . . , np] = [1, Nf (n1), . . . , Nf [np)].

To verify this claim, let

expA(X) = [n1, . . . , np](x), for some x ∈ ∆p−1

be a point of the base in NA. By the inductive hypothesis, Nf (expA(X)) = expB(nf (X)) is

the corresponding point of the base inNB. We wish to see that points of the path expA(`(t)X)

connecting 1 to expA(X) in NA correspond via Nf to points on the path expB(`(t)nf (X))

connecting 1 to expB(nf (X)) in NB. But this is automatic, because:

Nf (expA(`(t)X) = expB(nf (`(t)X)) = expB(`(t)nf (X)),

where in the last step we use the fact that nf : nA → nB is linear. Thus, it is true that:

Nf ◦ [1, n1, . . . , np] = [1, Nf (n1), . . . , Nf [np)],
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for based p-simplices.

Using left translation, we can show that:

Nf ◦ [n0, n1, . . . , np] = [Nf (n0), Nf (n1), . . . , Nf [np)].

for all p-simplices. In other words, the following diagram commutes:

∆p ×Np+1
A

(ϕp)A //

1×Np+1
f
��

NA

Nf

��
∆p ×Np+1

B (ϕp)B

// NB

Because each step in the apex-base construction respects A0- or B0-smoothness, we note that

(ϕp)A and (ϕp)B are A0- and B0-smooth, respectively. The result now follows for all p by

induction.
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Chapter 11

Superstring Lie 2-supergroups, 2-brane

Lie 3-supergroups

We are now ready to unveil the Lie n-supergroups which integrate our favorite Lie n-super-

algebras, superstring(k + 1, 1) and 2-brane(k + 2, 1). Remember, these are the Lie n-

superalgebras which occur only in the dimensions for which string theory and 2-brane theory

make sense. They are not nilpotent, simply because the Poincaré superalgebras siso(k+1, 1)

and siso(k + 2, 1) that form degree 0 of superstring(k + 1, 1) and 2-brane(k + 2, 1) are not

nilpotent. Nonetheless, we are equipped to integrate them using only the tools we have built

to perform this task for nilpotent Lie n-superalgebras.

The road to this result has been a long one, and there is yet some ground to cover before

we are finished. So, let us take stock of our progress before we move ahead:

• In spacetime dimensions k+ 2 = 3, 4, 6 and 10, we used division algebras to construct

a 3-cocycle α on the supertranslation algebra:

T = V ⊕ S
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which is nonzero only when it eats a vector and two spinors:

α(A,ψ, φ) = 〈ψ,Aφ〉.

• In spacetime dimensions k+ 3 = 4, 5, 7 and 11, we used division algebras to construct

a 4-cocycle α on the supertranslation algebra:

T = V ⊕ S

which is nonzero only when it eats two vectors and two spinors:

β(A,B,Ψ,Φ) = 〈Ψ, (AB − BA)Φ〉.

• Because α is invariant under the action of so(k+1, 1), it can be extended to a 3-cocycle

on the Poincaré superalgebra:

siso(k + 1, 1) = so(k + 1, 1) n T .

The extension is just defined to vanish outside of T , and we call it α as well.

• Because β is invariant under the action of so(k+1, 1), it can be extended to a 3-cocycle

on the Poincaré superalgebra:

siso(k + 2, 1) = so(k + 2, 1) n T .

The extension is just defined to vanish outside of T , and we call it β as well.

• Therefore, in spacetime dimensions k+2, we get a Lie 2-superalgebra superstring(k+

1, 1) by extending siso(k + 1, 1) by the 3-cocycle α.
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• Likewise, in spacetime dimensions k+3, we get a Lie 3-superalgebra 2-brane(k+2, 1)

by extending siso(k + 2, 1) by the 4-cocycle β.

In the last chapter, we built the technology necessary to integrate Lie superalgebra cocy-

cles to supergroup cocycles, provided the Lie superalgebra in question is nilpotent. This al-

lows us to integrate nilpotent Lie n-superalgebras to n-supergroups. But superstring(k+1, 1)

and 2-brane(k + 2, 1) are not nilpotent, so we cannot use this directly here.

However, the cocycles α and β are supported on a nilpotent subalgebra: the supertransla-

tion algebra, T , for the appropriate dimension. This saves the day: we can integrate α and β

as cocycles on T . This gives us cocycles ∫ α and ∫ β on the supertranslation supergroup, T ,

for the appropriate dimension. We will then be able to extend these cocycles to the Poincaré

supergroup, thanks to their invariance under Lorentz transformations.

Proposition 11.1. Let G and H be Lie supergroups such that G acts on H , and let M be an

abelian supergroup on whichGnH acts by automorphism. Given a homogeneousM -valued

p-cochain F on H:

F : Hp+1 →M,

we can extend it to a map of supermanifolds:

F̃ : (GnH)p+1 →M

by pulling back along the projection (GnH)p+1 → Hp+1. In terms of A-points

(g0, h0), . . . , (gp, hp) ∈ GA nHA,

this means F̃ is defined by:

F̃A((g0, h0), . . . , (gp, hp)) = FA(h0, . . . , hp),
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Then F̃ is a homogeneous p-cochain on GnH if and only if F is G-equivariant, and in this

case dF̃ = d̃F .

Proof. We work over A-points, GA nHA. Denoting the action of g ∈ GA on h ∈ HA by hg,

recall that multiplication in the semidirect product GA nHA is given by:

(g1, h1)(g2, h2) = (g1g2, h1h
g1
2 ).

Now suppose F̃ is homogeneous. By definition of homogeneity, we have:

F̃A((g, h)(g0, h0), . . . , (g, h)(gp, hp)) = (g, h)F̃A((g0, h0), . . . , (gp, hp)).

Multiplying out each pair on the left and using the definition of F̃ on both sides, we get:

FA(hhg0, . . . , hh
g
p) = (g, h)FA(h0, . . . , hp).

Writing (g, h) as (1, h)(g, 1), and pulling h out on the left-hand side, we now obtain:

(1, h)FA(hg0, . . . , h
g
p) = (1, h)(g, 1)FA(h0, . . . , hp).

Cancelling (1, h) from both sides, this last equation just says that FA is GA-equivariant.

The converse follows from reversing this calculation. Since this holds for all A-points, we

conclude that F̃ is homogeneous if and only if F is G-equivariant.

When F is G-equivariant, it is easy to see that dF is also, and that dF̃ = d̃F , so we are

done.

Proposition 11.2. In dimensions 3, 4, 6 and 10, the Lie supergroup 3-cocycle ∫ α : T 3 → R

is invariant under the action of Spin(k + 1, 1). Similarly, in dimensions 4, 5, 7 and the 11,

the Lie supergroup 4-cocycle ∫ β : T 4 → R is invariant under the action of Spin(k + 2, 1).
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This is an immediate consequence of the following:

Proposition 11.3. Let H be a nilpotent Lie supergroup with Lie superalgebra h. Assume H

is equipped with its standard left-invariant notion of simplices, and letG be a Lie supergroup

that acts on H by automorphism. If ω ∈ Cp(h) is an even Lie superalgebra p-cochain which

is invariant under the induced action of G on h, then ∫ ω ∈ Cp(H) is a Lie supergroup

p-cochain which is invariant under the action of G on H .

Proof. Fixing a superalgebra A, we must prove that

∫
[hg

0,h
g
1,...,h

g
p]

ωA =

∫
[h0,h1,...,hp]

ωA,

for all A-points g ∈ GA and h0, h1, . . . , hp ∈ HA. We shall see this follows from the fact that

the p-simplices in H are themselves G-equivariant, in the sense that:

[hg0, h
g
1, . . . , h

g
p] = [h0, h1, . . . , hp]

g.

Assuming this for the moment, let us check that our result follows. Indeed, applying the

above equation, we get:

∫
[hg

0,h
g
1,...,h

g
p]

ωA =

∫
[h0,h1,...,hp]g

ωA

=

∫
[h0,h1,...,hp]

Ad(g)∗ωA

=

∫
[h0,h1,...,hp]

ωA,

where the final step uses Ad(g)∗ωA = ωA, which is just the G-invariance of ω.
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It therefore remains to prove the equation [hg0, h
g
1, . . . , h

g
p] = [h0, h1, . . . , hp]

g actually

holds. Note that this is the same as saying that the map

(ϕp)A : ∆p ×Hp+1
A → HA

is GA-equivariant. We check it by induction on p.

For p = 0, the map:

(ϕ0)A : ∆0 ×HA → HA

is just the projection, and GA-equivariance is obvious. So fix some p ≥ 0 and suppose

that (ϕp−1)A is GA-equivariant. We now construct (ϕp)A from (ϕp−1)A using the apex-base

construction, and show that equivariance is preserved.

So, given the (p−1)-simplex [h1, . . . , hp] given by (ϕp−1)A for theA-points h1, . . . , hp ∈

HA, we define the based p-simplex:

[1, h1, . . . , hp]

in HA by using the exponential map to sweep out a path from the apex 1 to each point of the

base [h1, . . . , hp]. In a similar way, we define the based p-simplex:

[1, hg1, . . . , h
g
p]

By hypothesis, [hg1, . . . , h
g
p] = [h1, . . . , hp]

g, and since the exponential map exp: hA → HA

is itself GA-equivariant, it follows for based p-simplices that:

[1, hg1, . . . , h
g
p] = [1, h1, . . . , hp]

g.

The result now follows for all p-simplices by left translation. This completes the proof.

203



It thus follows that in dimensions 3, 4, 6 and 10, the cocycle ∫ α on the supertransla-

tions can be extended to a 3-cocycle on the full Poincaré supergroup, SISO(k + 1, 1), while

in dimensions 4, 5, 7 and 11, the cocycle ∫ β can be extended to the Poincaré supergroup

SISO(k + 2, 1). By a slight abuse of notation, we continue to denote these extensions by ∫ α

and ∫ β respectively. As an immediate consequence, we have:

Theorem 11.1. In dimensions 3, 4, 6 and 10, there exists a slim Lie 2-supergroup formed by

extending the Poincaré supergroup SISO(k + 1, 1) by the 3-cocycle ∫ α, which we call we

the superstring Lie 2-supergroup, Superstring(k + 1, 1).

Theorem 11.2. In dimensions 4, 5, 7 and 11, there exists a slim Lie 3-supergroup formed by

extending the Poincaré supergroup SISO(k + 2, 1) by the 4-cocycle ∫ β, which we call the

2-brane Lie 3-supergroup, 2-Brane(k + 2, 1).

11.1 Outlook

In this thesis we have seen a number of clues that a categorified geometry is relevant to su-

perstrings, M-theory, and supergravity. Categorifying gauge theory to obtain higher gauge

theory boosts the dimension of objects which we can parallel transport. The special iden-

tities which make supersymmetry work allow us to categorify the spacetime symmetries of

superstrings. We propose there is a simple underlying reason for all of this: strings are ex-

tended objects, not point particles, so we need a geometry in which extended objects can

play a role as fundamental as points. It is precisely this kind of geometry which we are now

ready to explore, now that we have our hands the n-supergroups Superstring(k + 1, 1) and

2-Brane(k + 2, 1)
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[22] L. Castellani, R. D’Auria and P. Fré, Supergravity and Superstrings: A Geometric Per-
spective, World Scientific, Singapore, 1991.

[23] E. Cheng and A. Lauda, Higher-dimensional categories: an illustrated guide-
book. Available at http://www.cheng.staff.shef.ac.uk/guidebook/
index.html.

[24] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras,
Trans. Amer. Math. Soc. 63 (1948), 85–124.

206

http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/math/0504123
http://arxiv.org/abs/1009.3534
http://arxiv.org/abs/0902.1824
http://ncatlab.org/nlab/files/BonoraSuperGS.pdf
http://ncatlab.org/nlab/files/BonoraSuperGS.pdf
http://arxiv.org/abs/0911.2118
http://arxiv.org/abs/1004.2978
http://arxiv.org/abs/1005.2102
http://arxiv.org/abs/hep-th/0204199v3
http://www.cheng.staff.shef.ac.uk/guidebook/index.html
http://www.cheng.staff.shef.ac.uk/guidebook/index.html


[25] K.-W. Chung and A. Sudbery, Octonions and the Lorentz and conformal groups of ten-
dimensional space-time, Phys. Lett. B 198 (1987), 161–164.

[26] A. M. Cohen, B. Lisser, and M. A. A. van Leeuwen, LiE, A package for Lie
group computations. Available at http://www-math.univ-poitiers.fr/

˜maavl/LiE/.
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[46] A. Hurwitz, Über die Composition der quadratischen Formen von beliebig vielen Vari-
abeln, Nachr. Ges. Wiss. Göttingen (1898), 309–316.

[47] T. Kugo and P. Townsend, Supersymmetry and the division algebras, Nucl. Phys. B221
(1983), 357–380. Also available at http://ccdb4fs.kek.jp/cgi-bin/img_
index?198301032.

[48] T. Leinster, Basic bicategories. Available as arXiv:math/9810017.

[49] T. Leinster, A survey of definitions of n-category, TAC 10, 1–70. Available at http:
//www.tac.mta.ca/tac/volumes/10/1/10-01abs.html. Also available
as arXiv:math/0107188.

[50] D. Leites, Cohomologies of Lie superalgebras, Funct. Anal. Appl. 9, 340–341.

[51] M. Markl, S. Schnider and J. Stasheff, Operads in Algebra, Topology and Physics,
AMS, Providence, Rhode Island, 2002.

[52] C. Manogue and A. Sudbery, General solutions of the covariant superstring equations
of motion, Phys. Rev. D 40 (1989), 4073–4077.

[53] M. Markl, Homotopy algebras via resolutions of operads, available as
arXiv:math.AT/9808101.

208

http://arxiv.org/abs/hep-th/0205233
http://arxiv.org/abs/math.AT/0404003
http://www.math.yale.edu/~mg622/tricats.pdf
http://arxiv.org/abs/math/0603563
http://archive.numdam.org/article/AIHPA_1980__32_3_221_0.pdf
http://archive.numdam.org/article/AIHPA_1980__32_3_221_0.pdf
http://ccdb4fs.kek.jp/cgi-bin/img_index?198301032
http://ccdb4fs.kek.jp/cgi-bin/img_index?198301032
http://arxiv.org/abs/math/9810017
http://www.tac.mta.ca/tac/volumes/10/1/10-01abs.html
http://www.tac.mta.ca/tac/volumes/10/1/10-01abs.html
http://arxiv.org/abs/math/0107188
http://arxiv.org/abs/math.AT/9808101


[54] R. Mehta, Supergroupoids, double structures, and equivariant cohomology, PhD The-
sis. Available as arXiv:math/0605356.

[55] M. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries.
Available as arXiv:1011.4731.

[56] M. Penkava, L∞ algebras and their cohomology, available as
arXiv:q-alg/9512014.

[57] I. Porteous, Clifford Algebras and the Classical Groups, Cambridge University Press,
Cambridge, 1995.

[58] D. Roytenberg, On weak Lie 2-algebras, XXVI Workshop on Geometrical Methods in
Physics, Piotr Kielanowski et al (eds), American Institute of Physics, Melville, 2007.
Also available as arXiv:0712.3461.

[59] C. Sachse, A categorical formulation of superalgebra and supergeometry. Available as
arXiv:0802.4067.

[60] H. Sati, Geometric and topological structures related to M-branes.
Available as arXiv:1001.5020.

[61] H. Sati, U. Schreiber, J. Stasheff, L∞-algebras and applications to string– and Chern–
Simons n-transport. Available as arXiv:0801.3480.

[62] R. D. Schafer, Introduction to Non-Associative Algebras, Dover, New York, 1995.

[63] M. Schlessinger and J. Stasheff, The Lie algebra structure of tangent cohomology and
deformation theory, Jour. Pure App. Alg. 38 (1985), 313–322.

[64] C. Schommer-Pries, A central extension of smooth 2-groups and a finite-dimensional
string 2-group. To appear in Geom. Top. Available as arXiv:0911.2483.

[65] J. Schray, The general classical solution of the superparticle, Class. Quant. Grav. 13
(1996), 27–38. Also available as arXiv:hep-th/9407045.

[66] J. Schray and C. Manogue, Octonionic representations of Clifford algebras and triality,
Found. Phys. 26 (1996), 17–70. Also available as arXiv:hep-th/9407179.

[67] U. Schreiber, Differential cohomology in a cohesive topos. Habilitation thesis. Available
at http://nlab.mathforge.org/schreiber/show/differential+
cohomology+in+a+cohesive+topos.

[68] A. S. Schwarz, On the definition of superspace, Teoret. Mat. Fiz. 60 (1984), 37–42 (in
Russian). English translation in Th. Math. Phys. 60, 657–660.

[69] J. Snygg, Clifford Algebra: a Computational Tool for Physicists, Oxford U. Press, Ox-
ford, 1997.

209

http://arxiv.org/abs/math/0605356
http://arxiv.org/abs/1011.4731
http://arxiv.org/abs/q-alg/9512014
http://arxiv.org/abs/0712.3461
http://arxiv.org/abs/0802.4067
http://arxiv.org/abs/1001.5020
http://arxiv.org/abs/0801.3480
http://arxiv.org/abs/0911.2483
http://arxiv.org/abs/hep-th/9407045
http://arxiv.org/abs/hep-th/9407179
http://nlab.mathforge.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
http://nlab.mathforge.org/schreiber/show/differential+cohomology+in+a+cohesive+topos


[70] D. Stevenson, The Geometry of Bundle Gerbes, Ph.D. thesis, University of Adelaide,
2000. Also available as arXiv:math/0004117.

[71] A. Sudbery, Division algebras, (pseudo)orthogonal groups and spinors, Jour. Phys. A17
(1984), 939–955.

[72] Y. Tanii, Introduction to supergravities in diverse dimensions.
Available as arXiv:hep-th/9802138.

[73] G. Tuynman, Supermanifolds and Supergroups: Basic Theory, Kluwer Academic Pub-
lishers, Dordrecht, 2004.

[74] K. Urbanik and F. B. Wright, Absolute-valued algebras, Proc. Amer.
Math. Soc. 11 (1960), 861–866. Available at http://www.ams.org/
journals/proc/1960-011-06/S0002-9939-1960-0120264-6/
S0002-9939-1960-0120264-6.pdf.

[75] V. S. Varadarajan, Supersymmetry for Mathematicians: an Introduction, Courant Lec-
ture Notes 11, AMS, Providence, 2004.

[76] A. A. Voronov, Mappings of supermanifolds, Teoret. Mat. Fiz. 60 (1984), 43–48 (in
Russian). English translation in Th. Math. Phys. 60, 660–664.

[77] W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups, I and II,
Indag. Math. 15 (1953), 484–504.

[78] D. Wise, Topological Gauge Theory, Cartan Geometry, and Gravity, Ph.D. thesis, Uni-
versity of California, 2007. Available at http://math.ucr.edu/home/baez/
thesis_wise.pdf.

210

http://arxiv.org/abs/math/0004117
http://arxiv.org/abs/hep-th/9802138
http://www.ams.org/journals/proc/1960-011-06/S0002-9939-1960-0120264-6/S0002-9939-1960-0120264-6.pdf
http://www.ams.org/journals/proc/1960-011-06/S0002-9939-1960-0120264-6/S0002-9939-1960-0120264-6.pdf
http://www.ams.org/journals/proc/1960-011-06/S0002-9939-1960-0120264-6/S0002-9939-1960-0120264-6.pdf
http://math.ucr.edu/home/baez/thesis_wise.pdf
http://math.ucr.edu/home/baez/thesis_wise.pdf

	List of Tables
	Introduction
	Overview
	Introduction
	Plan of the thesis
	Prior work

	Spacetime geometry from division algebras
	Normed division algebras
	Spacetime geometry in k+2 dimensions
	Spacetime geometry in k+3 dimensions
	The spinor identities

	Supertranslation algebras and their cohomology
	Superalgebra
	Cohomology of Lie superalgebras

	An application: super-Yang–Mills theory
	Lie n-superalgebras from Lie superalgebra cohomology
	Examples of slim Lie n-superalgebras
	The string Lie 2-algebra
	The Heisenberg Lie 2-algebra
	The supertranslation Lie n-superalgebras
	Superstring Lie 2-superalgebras, 2-brane Lie 3-superalgebras


	Lie n-groups from group cohomology
	Lie 2-groups
	Lie 3-groups

	Integrating nilpotent Lie n-algebras
	Integrating Lie algebra cochains
	Examples: Explicitly integrating 0-, 1-, 2- and 3-cochains
	The Heisenberg Lie 2-group

	Supergeometry and supergroups
	Supermanifolds
	Supergroups from nilpotent Lie superalgebras

	Lie n-supergroups from supergroup cohomology
	Integrating nilpotent Lie n-superalgebras
	Superstring Lie 2-supergroups, 2-brane Lie 3-supergroups
	Outlook

	Bibliography



