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ABSTRACT OF THE DISSERTATION

Hierarchical Modeling of Human-Object Interactions:

from Concurrent Action Parsing to Physics-Based Grasping

by

Tengyu Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Song-Chun Zhu, Chair

The study of human-object interaction (HOI) aims at modeling the geometric relationship

between a human and an object in an interaction. Understanding HOI is an essential step

towards holistic scene understanding and generating realistic scenarios that involve humans.

Conventionally, the study of HOI focuses on detecting and classifying instance-level HOI

on 2D images. Given an image, an example output would be a triplet xperson, chair, sity,

or xperson, apple, eaty, where the person, chair, and apple are all represented by bounding

boxes. This dissertation aims to understand HOI in 3D.

Extending HOI to 3D faces two significant challenges. The first challenge lies in the dif-

ficulty of obtaining high-fidelity 3D annotation of HOI data. Existing methods of collecting

3D datasets all suffer from high occlusion, poor resolution, and high annotation costs. An-

other critical challenge in modeling 3D HOI lies in the representation of the objects. Existing

methods treat each object as a unity, usually represented as an axis-aligned bounding box.

Such methods ignore the complexity of objects’ shapes and therefore fail to model complex

geometrical relationships in HOIs such as sitting. The root cause of this challenge traces
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back to the first challenge, where we do not have the high-fidelity data necessary to reflect

the details in object shapes.

This dissertation addresses both challenges by collecting a large-scale high-fidelity 3D

HOI dataset and by proposing hierarchical modeling of HOI. By using instance-level HOI

annotation, our dataset improves scene reconstruction performance by a significant margin.

This high-fidelity nature of the collected dataset enables part-level HOI modeling, which

addresses the second challenge. This dissertation also addresses the second challenge by

decomposing shape-level HOI into physics-level, which significantly improves the quality

and robustness of grasp synthesis.

iii



The dissertation of Tengyu Liu is approved.

Kai-Wei Chang

Demetri Terzopoulos

Ying Nian Wu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2021

iv



In memory of my late father, who showed me to always keep calm and never stop fighting.

To my mother, for her unconditional and unreserved love and support to me.

I am forever in debt.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Video Game Exploit: Hacking Game Assets to Learn 3D Human-Object

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Photo-Realistic Physics-Realistic Synthetic Game Environment . . . . 12

2.3.2 Game Plugin Design and Characteristics . . . . . . . . . . . . . . . . 12

2.3.3 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Copyright Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Detailed Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Comparison with Other Datasets . . . . . . . . . . . . . . . . . . . . 18

2.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 HOI Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



3 Hallucinating Sitting Human by Exploiting Part-Level Human-Object In-

teraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 HOI Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Human Object Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 InteractionField: Learning Intuitive Grasping from Human Demonstra-

tions via Conditional Descriptor Networks . . . . . . . . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Conditional Descriptor Nets as Intuitive Grasping . . . . . . . . . . . . . . . 42

4.4 3D Shape Aware Energy function . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Synthesizing Diverse and Physically Stable Grasps with Arbitrary Hand

Structures by Differentiable Force Closure Estimation . . . . . . . . . . . . . 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Differentiable Force Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



5.3.2 Implications of Assumptions . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Grasp Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.2 Runtime Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.3 Force-closure Contact-point Generation . . . . . . . . . . . . . . . . . 64

5.5.4 Grasp Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.5 Physical Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.6 Diversity of the Grasp Types . . . . . . . . . . . . . . . . . . . . . . 68

5.5.7 Grasp Synthesis for Arbitrary Hand Structures . . . . . . . . . . . . . 71

5.5.8 Synthesizing Specific Grasp Type . . . . . . . . . . . . . . . . . . . . 72

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



LIST OF FIGURES

1.1 An illustrative example spatial parse graph of a sitting scene. We only show

the HOI node between torso and backrest for clarity. The blue diamond is the

root node of the scene pg. Each terminal node is represented by a green sphere,

and each non-terminal node is represented by a yellow circle. The orange pen-

tagon shows the HOI node. The geometric relationship described by the HOI is

illustrated by the heat map on the lower-right. . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of photo-realistic synthetic data in our SHADE dataset. . . . . . . . 8

2.2 Illustration of variances of the same action. The first row belongs to eat and the

second row belongs to sit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Pipeline of our data collection pipeline. Given the video game GTA V, our data

acquisition plugin operates on accessible gaming interfaces, parsing and fetch-

ing both static (e.g., objects, buildings, landscapes) and dynamic (e.g., actions,

interactions, cinematic videos) gaming resources. . . . . . . . . . . . . . . . . . 11

2.4 Overview of our SHADE dataset. The six columns are: RGB scene, 3D mesh

model, 3D mesh model from novel viewpoint, depth map, surface normal map. . 15

2.5 Illustration of human skeleton used in SHADE dataset. . . . . . . . . . . . . . . 17

2.6 Action/interaction category frequencies in our SHADE dataset. Log scale is used

for Y-axis (i.e., sample size). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 2D t-SNE analysis of the human pose distribution. The left figure shows the

human pose distribution in SHADE (in blue) and the middle figure shows the

human pose distribution in H36M (in red). The right figure shows the overlap of

the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.8 Results of user studies of human motion quality. The left figure shows the average

user rating of how natural a sequence looks, where 1 means the least natural and

9 means the most natural. The right figure shows the difference in average scores

between eating sequences and smoking sequences, where 1 means most like eating

and 9 means most like smoking. Both values are better if larger. . . . . . . . . . 21

2.9 Qualitative results on 3D pose estimation. The first column are querying 2D

poses, the second column are ground truth 3D poses, the third column are 3D

poses predicted by model trained on H36M, and the fourth column are 3D poses

predicted by model trained on both H36M and SHADE. . . . . . . . . . . . . . 25

2.10 Qualitative results of model generalization to Human3.6M. We apply the learned

human-object interaction model from the SHADE dataset and sample the possible

interactions given poses from Human3.6M datasets. The first row synthesizes a

bagel or a sandwich for eating, the second row synthesizes a chair or a bench for

sitting, and the third row synthesizes a table or a desk for sitting-at. The four

columns show four different samples. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Instance-level HOI vs. Part-level HOI. . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 An illustration of our HOI representation as a bridge between spatial parse graph

and action parse graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Synthesized pose distribution of different methods. We show that our

method is capable of synthesizing much more diverse human pose than the base-

line method, and that part-level HOI provides even stronger diversity. . . . . . . 35

3.4 Synthesized sitting human pose conditioned on chairs. We show examples syn-

thesized using (top) cVAE with object parts as condition, (middle) our method

with instance-level HOI, and (bottom) our method with part-level HOI. We show

that our method can create significantly more diverse sitting poses, and that

incorporating part-level information creates more realistic examples. . . . . . . . 35

x



3.5 3D view of sitting poses synthesized by our method. Each row contains 6 views

of the same synthesized example. We observe that our method is capable of

synthesizing diverse and realistic examples. . . . . . . . . . . . . . . . . . . . . . 36

4.1 Pipeline of our model. Red shapes indicate differentiable steps. Blue arrow

indicates the synthesis step using Langevin dynamics. . . . . . . . . . . . . . . 42

4.2 Snapshots in our dataset. Each column shows three different forms of grasping

of an object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 The schematic diagram of data collection process. . . . . . . . . . . . . . . . . 48

4.4 Qualitative evaluation of our synthesized examples. The blue voxels are the

objects, and the red ones are the hands. The first 6 columns show synthesis results

on objects that have been seen during the training stage. The last two columns

show synthesis results on objects that have never been seen during training. The

animated version of this figure can be found in supplementary materials. . . . . 50

4.5 An example of physically-based optimization. We observe that the grasping hand

is qualitatively more natural than the proposed shape after optimization. . . . 51

5.1 Grasp synthesis process by minimizing force closure error. The green

trianglets in (c)(d) denote the friction cones at contact points used to calculate

force closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 A 2D illustration of the classical force closure test and our estimated

force closure error. (a)(b) Two scenarios passed and failed the classical force

closure test. (c)(d) Our estimated force closure error on the same scenarios as in

(a)(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



5.3 Estimated force closure error δ (x-axis) against minimum friction co-

efficient µ0 (y-axis). The violinplots [HN98] show the distributions of all esti-

mated force closure errors that require a minimum friction coefficient µ0 to pass

the classical force closure test. Overall, these two are linearly correlated. . . . . 60

5.4 Boxplot and log-linearly fitted curve of the runtime w.r.t. to the num-

ber of contact points. We run a simulated test of force closure with 3, 5,

10, 20, 100, and 1000 contact points for 1,000 iterations. X-axis is the number

of contact points in log scale. Y-axis is the runtime of our force closure error

estimation. The shaded area denotes the 95% confidence interval. . . . . . . . . 63

5.5 Examples of synthesized grasps. Top: synthesized grasps before refinement.

Bottom: the same set of synthesized grasps after refinement. FC: estimated force

closure error. SD: mean distance from each contact point to the object surface.

Left to right: examples with zero FC error, small FC error, and high FC error

qualitatively illustrate how our estimation of force closure correlates to grasp

quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Force-closure contact-point generations on unit spheres (top) and daily

objects (bottom) by minimizing Eq. (5.11). Objects in each columns have

3, 4, and 5 contact points, respectively. . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Energy landscape mapping generated by the ADELM algorithm [HNZ19]

(best viewed in color). Top: disconnectivity diagram of the energy landscape

of our energy function EpH,Oq. Green minima denote precision grasps, red power

grasps, and yellow intermediate grasps. Bottom: examples from selected local

minima; minima with lower energy barriers in between have similar grasps. We

also label the grasp taxonomy of each example according to [FRS15]. Examples

marked as unlisted do not belong to any manually classified type. . . . . . . . . 67

xii



5.8 Alignment between our energy landscape and existing grasp taxonomy [FRS15].

Best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Synthesized grasps of different hands using our formulation. Top: A

MANO hand with its thumb removed. Bottom: A Robotiq 3-finger gripper. The

left-most figure shows the hand used in each row. . . . . . . . . . . . . . . . . . 69

5.10 Examples of novel grasp poses that, to the best of our knowledge, are not included

in any grasp taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Synthesizing specific types of grasping by enforcing contact points.

(a)(d)(g)(j) show the query contact points in red, each followed by two synthesized

examples using the queried contact points. Grasp types can be determined by

enforcing the choice of contact points on the hand surface. . . . . . . . . . . . . 72

xiii



LIST OF TABLES

2.1 Comparisons between our dataset and existing 3D datasets. . . . . . . . . . . . 18

2.2 Quantitative results and comparisons of the accuracy on skeleton-based action

recognition. Higher values are better. The best score is marked in bold. . . . . 22

2.3 Quantitative results and comparisons of the accuracy (IoU) on interacting object

localization. Higher values are better. The best score is marked in bold. . . . . 22

2.4 Quantitative comparisons of Average Euclidean Distance (in mm) between the

estimated pose and the ground-truth on Human3.6M under Protocol #1 and

Protocol #3. Lower values are better. The best score is marked in bold. . . . . 22

3.1 Comparisons between our dataset and existing 3D datasets. Physical plausibility

is measured by the penetration between a human skeleton and object part bound-

ing boxes, and human pose diversity is measured by the standard deviation of

human joint positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Frame vector composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Human evaluation. We show ten unmarked animations of synthesized examples

for each method to 16 participants and ask them to choose the best description

from 4 options for each example. We report the proportions of chosen descriptions

for each method. Our method (U) shows the result of our method on unseen

objects. The options are: (1) A perfect grasping. (2) A good grasping with error

in details. (3) Close to a good grasping. (4) Not a grasping at all. . . . . . . . 50

5.1 Grasp success rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Song-Chun Zhu, for his

tremendous help in my Ph.D. program. I am in debt to his overwhelming support to my

academic career. His vision and quest in computer vision, cognition, and theory of mind will

be an invaluable guide for my future research. His dedication and undisturbed focus will be

my lifelong inspiration.

I would also like to thank my committee members: Professor Ying Nian Wu, Professor

Demetri Terzopoulos, Professor Kai-Wei Chang. This dissertation would not be possible

without their guidance and support.

In addition, I would like to thank all my labmates at VCLA. They are all responsible for

my growth as a researcher and as a person. My Ph.D. career would be miserable without

them. Particularly, I would like to thank Dr. Yuanlu Xu, Dr. Jianwen Xie, and Dr. Yixin

Zhu for their generous guidance and support. I would like to thank Dr. Siyuan Huang, Dr.

Siyuan Qi, Dr. Zilong Zheng, Dr. Hangxin Liu, Dr. Ruiqi Gao, Yifei Xu, Hanlin Zhu, Yixin

Chen, Xu Xie, Baoxiong Jia, Pan Lu, and many others for all the endless discussions and

debates, as well as for all the fun that we have had together.

I would like to thank my best friends Dr. Zhengxiang Yi, Wenxuan Mao, Zeyu Li, and

Lynn Zhang for helping me through the darkest times.

Finally, I would like to thank my family and my fiancée, Xinyi Wu, for their endless love

and support, and for tolerating my emotions and stress.

Portions of this dissertation are supported by ONR N00014-19-1-2153, ONR MURI

N00014-16-1-2007, and DARPA XAI N66001-17-2-4029.

xv



VITA

2015 B.S. (Computer Science), UIUC.

2018 M.S. (Computer Science), UCLA.

2018–2019 Research Assistant, Computer Science Department, UCLA.

2019–2020 Teaching Assistant, Computer Science Department, UCLA.

PUBLICATIONS

Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation, Yuanlu Xu,

Wenguan Wang, Tengyu Liu, Xiaobai Liu, Jianwen Xie and Song-Chun Zhu, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (T-PAMI), 2021.

Synthesizing Diverse and Physically Stable Grasps with Arbitrary Hand Structures by Dif-

ferentiable Force Closure Estimation , Tengyu Liu, Zeyu Liu, Ziyuan Jiao, Yixin Zhu and

Song-Chun Zhu, IEEE Robotics and Automation Letters (RA-L) , 2021.

xvi



CHAPTER 1

Introduction

The study of computer vision is to answer the question of “what” and “where” given 2D

images. With the help of deep learning and large-scale image datasets, modern computer

vision systems are getting comfortable answering the question of “what” but are struggling

to place the detected human and objects in 3D spaces correctly.

Unlike modern computer vision algorithms, the ability to understand the 3D relationships

between humans and objects from 2D signals is innate to human beings. One could argue

that human vision relies on the stereo vision for depth information. However, we can still

easily tell the 3D arrangement of a scene when given its 2D projection, i.e., a picture or

a video. If we compare the current computer vision system to our human vision system,

both systems can detect, classify, and localize objects in 2D images. What is the difference,

then? It appears that our human mind can leverage commonsense to determine the best 3D

arrangement that satisfies both our commonsense and the visual cues. Those that do not

align with our commonsense are known to create illusions.

Human visual commonsense includes various priors, including geometrical relationships

between objects, object motion, object persistence, etc. This dissertation focuses on the 3D

geometrical relationship between a human body and an object in a human-object interaction

(HOI). An HOI can be anything involving a human and an object. Examples include sitting

in a chair, drinking from a coffee mug, or working on a computer.

Most existing studies of HOI focus on HOI detection on 2D images. With the develop-

ment of deep learning and large-scale datasets [CWH15, CLL18], 2D HOI detection becomes

1



another task that can be learned in an end-to-end fashion [ML16, CLL18, GGD18, QWJ18].

These methods represent both the human and the object by their image patches and deter-

mine the interaction by joining image features of both patches in some way. By joining the

image features of both patches, these methods capture both coarse level and fine-grained

level information implicitly.

In 3D, on the other hand, the study of HOI has only gained a few tractions [WZZ13,

WZZ17]. These methods model the human as a 3D skeleton and the object as a 3D axis-

aligned bounding box. The interaction is modeled as a geometrical relationship between a

critical body part and the position of the object bounding box. By representing an object

using its axis-aligned bounding box, all the details of the object shape are removed. The

models, therefore, are bounded to learn only a highly abstracted geometrical relationship for

each HOI.

The main challenge that stands between researchers and understanding 3D HOI is two-

fold. Firstly, it is extremely expensive to collect high-fidelity 3D HOI data with accurate

shapes of both humans and objects. Secondly, human-object interaction is usually repre-

sented on the instance level, where an HOI is a triplet xhuman, object verby. While the

instance-level representation has served 2D HOI detection well, it fails to model the complex

geometrical relationship between 3D shapes, such as a person sitting in a chair. Instead, the

geometrical relationship should be modeled between shapes or parts.

This dissertation addresses the first challenge by proposing SHADE, a high-fidelity dy-

namic 3D HOI dataset collected from well-established 3D video game assets. SHADE im-

proves the SOTA performance of 3D human pose estimation and 3D scene reconstruction

by a significant margin. We address the second challenge by modeling HOI in a hierarchical

fashion. By decomposing human-object interactions into part-level and physics-level inter-

actions, the models are capable of generative diverse, and realistic HOI snapshots that are

otherwise difficult if not impossible to generate otherwise.

In this dissertation, an HOI node is defined as a component of human activity when

2



Figure 1.1: An illustrative example spatial parse graph of a sitting scene. We only show the HOI
node between torso and backrest for clarity. The blue diamond is the root node of the scene pg.
Each terminal node is represented by a green sphere, and each non-terminal node is represented by
a yellow circle. The orange pentagon shows the HOI node. The geometric relationship described
by the HOI is illustrated by the heat map on the lower-right.
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human-object interaction is involved. It describes the geometric relationship between both

parties of an interaction. When we represent a scene as a spatial parse graph (pg) where each

entity is a node, the HOI nodes are connections between those nodes that provide spatial

constraints to help localize each other. Figure 1.1 shows an illustration of a spatial parse

graph of a sitting scene.

1.1 Definition

In order to formally define an HOI node, we first need to define the spatial parse graph pgS

and action parse graph pgA. A spatial parse graph can be described as a pair

pgS “ ppgo, pg`q (1.1)

, where the object pg pgo “ tV o, Eo, ψu represents the attributed parse graph for objects,

and the human pg pg` “ tV `, E`, φu represents the attributed parse graph for human. V o

and V ` are the sets of object nodes and human nodes, respectively. Eo and E` are edges

within object pg and human pg, respectively. Eo “ tpv1, v2q : v1 P V
o, v2 P V

ou is a set of

edges where v2 is a part of v1. E` is defined similarly on the human pg. ψ : V o ÞÑ Xo is the

function of object node features, where Xo is the object feature space. Similarly, φ defines

the function of human node features.

An action parse graph pgA “ tV N , V I , ENu describes the decomposition of human

actions, where V N is the set of human action nodes, and V I is the set of HOI nodes.

EN “ tpv1, v2q, v1 P V
N , v2 P V

N Y V Iu describes the decomposition of action nodes.

An HOI node is therefore defined as vI “ pvo, v`, fq, where vo is an object node, v` is

a human node, and f : Xo ˆ X` ÞÑ R is the energy function describing the geometrical

relationship between the two nodes. An HOI node functions as a bridge between the human
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parse graph and the object parse graph, and a bridge between the spatial parse graph and

the action parse graph.

1.2 Formulation

We can then formulate scene understanding as finding the optimal parse graph given an

image

pg˚ “ arg max
pg

P ppg|Iq (1.2)

“ arg max
pg

P pI|pgqP ppgq

P pIq
(1.3)

“ arg max
pg

1

Z
exp t´EpI|pgq ´ ESppgSq ´ EIppgS, V I

qu (1.4)

, where Z is the intractable normalizing constant. Here, EpI|pgq is the grounding energy

that can be computed by off-the-shelf human and object detectors. ESppgSq is the prior

energy for spatial configuration. This term usually contains human pose priors, physics con-

straints, functionality constraints, etc. EIppgS, V Iq “
ř

pvoi ,v
`
i ,fiqPV

I fipψpv
o
i q, φpv

`
i qq describes

the energy of geometric relationships between the interacting parties.

We can then describe different tasks using this formulation. In addition to scene under-

standing which is finding arg maxpg P ppg|Iq where I is the input image, hallucinating human

in a 3D scene can be solved by sampling from ˜pg` „ P ppg`|pgoq, and HOI detection can be

formulated as finding arg maxV I P ppg|Iq.
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CHAPTER 2

Video Game Exploit: Hacking Game Assets to Learn

3D Human-Object Interactions

A major challenge in studying 3D human-object interaction is the lack of high-quality data.

Existing human action datasets are either in 2D [SZS12, SVW16] where each frame is an

RGB image, or in 2.5D [KGS13, SLN16] where each frame is an RGB image associated with

a depth map. These datasets fail to describe the accurate 3D shapes of both the human and

the objects. With expensive motion capture systems, 3D human action datasets [IPO14]

can be collected. However, these datasets fail to collect accurate 3D shapes of the objects

interacting with a human. Without a high-fidelity 3D HOI dataset, it is challenging to

model HOI in 3D, let alone break down HOI into smaller pieces. This chapter addresses this

challenge by collecting a dynamic 3D HOI dataset from video game assets.

2.1 Introduction

Understanding the geometric relationships in human-object interactions (HOI) is beneficial

to many real-life tasks such as robot grasping, surveillance, human activity analysis, and

object detection. Although we have seen rapid growth in the analysis of 3D humans and 3D

scenes over the past few years, very few works focus on modeling the interaction between

human and dynamic objects in 3D.

Notations. In this chapter, we use the term static object for objects that do not move

over time and dynamic object for objects whose position or orientation changes over time.
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This chapter only considers objects that move due to HOI and neglect other factors such as

gravity.

The difficulty lying behind the challenge of modeling dynamic human-object interactions

is mainly two-fold:

Heavy occlusion. When a person interacts with an object, it is natural for the person

to partially, if not wholly, occlude it in front of a camera. Smaller objects such as a cup

or a pen are very likely to be completely occluded by the interacting person. This creates

formidable challenges for detection-based object localization algorithms. [WZZ13] argues

that we can predict dynamic object location from the 3D skeleton of the interacting hu-

man, whose estimation has been widely studied. However, detailed annotation of 3D object

locations is exceptionally difficult to acquire in real life, which leads to the next difficulty.

Data scarcity. Existing datasets are most likely focused on two aspects separately:

dynamic human analysis [IPO14] or static scene analysis [SYZ17]. Although some existing

datasets [SCH14, WZZ17] do contain 3D human-object interactions, they lack either the

annotation of dynamic object location or annotation of object location in general. In [KGS13]

they provide annotation of dynamic object location but are limited by its data complexity

as well as its annotation granularity since it only contains 3D positions of 15 joints and does

not provide the 3D geometry ground truth for objects.

In this chapter, we present a large-scale dataset SHADE (Synthetic Human Activities

with Dynamic Environment) to alleviate both difficulties by utilizing the graphics engine in

a video game containing abundant human-object interactions. Our dataset tracks the 3D

skeleton of every human accurate to three knuckle joints in each finger and contains real-

time 3D position, orientation, and geometry of every object as small as a potato chip. Our

experiment reveals three properties of our dataset: i) modeling of human-object interaction

provides a significant edge to understanding human behavior; ii) the geometric relationship in

human-object interactions can be generalized to real-world human activities; iii) in addition

to having more detailed annotation, the human skeleton in our dataset is a complement to
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Figure 2.1: Illustration of photo-realistic synthetic data in our SHADE dataset.

other public human pose datasets.

We conduct experiments on three vision tasks: HOI recognition, object localization, and

3D pose estimation using our dataset, and show improved performance to existing methods

when used as external training data.

2.2 Related Work

The work presented in this chapter is closely related to the following three research streams.

2D/3D human-object interaction. Rather than detecting objects or estimating ar-

ticulated human pose individually, recognizing human-object interactions (HOIs) requires a

deeper and more comprehensive understanding of the mutual spatial structure information

and rich semantic relations between humans and objects. HOI recognition has gained increas-

ing research interests over the past few years. With the popularity of deep learning tech-

niques in computer vision, various network architectures [ML16, CLL18, GGD18, QWJ18]
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Figure 2.2: Illustration of variances of the same action. The first row belongs to eat and the second
row belongs to sit.

were explored for tackling this task. Some large-scale 2D datasets [CWH15, CLL18] were

also proposed to support the training of deep HOI models.

However, most of the previous attempts focused on HOI recognition in 2D images. Only

a few methods [WZZ13, WZZ17] were proposed for modeling HOI in 3D scenes. Despite

the difficulties brought from the extra dimension, the lack of a large-scale, well-annotated

3D HOI dataset severely restricted the development of 3D HOI recognition. This chapter

proposes a large-scale, synthetic 3D dataset for HOI recognition, which is long-time urged

in this field. We believe that this dataset would open up new possibilities for moving HOI

recognition and analysis into 3D.

Action recognition. There are two main streams in current action recognition litera-

ture: appearance-based methods and skeleton-based methods. Similar to HOI recognition

methods, researches in appearance-based action recognition have moved from hand-crafted

features to learning deep features with neural networks [JXY13, SZ14, KTS14]. Recently,

appearance-based action recognition methods [ZLS17, HBE17] have seen significant improve-
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ment in both classification accuracy and generalization capability by incorporating contex-

tual information. Skeleton-based methods [WW17, YXL18], on the other hand, are more

robust against appearance and lighting changes since they ignore image features altogether.

However, the use of contextual information is very limited in skeleton-based action recogni-

tion, largely due to the lack of well-annotated data.

Object localization has long been a challenging task for computer vision. In 2D ob-

ject localization, a common practice is to use a sliding window and run object detection

algorithm on each window. This stream naturally extends to convolutional neural networks.

Others [OBL15, TGJ15] regress heatmaps of object presence on images directly. The recent

development of convolutional neural networks has yielded a huge leap [HGD17] in 2D ob-

ject localization by extending and combining both ideas into the region of interest (ROI)

operations. In 3D, however, object localization remains challenging due to the cubic growth

of data size brought by the extra dimension. [SX16] extended the sliding window to 2.5D

by applying a convolutional neural network on RGB-D images. However, such a method is

sensitive to occlusion.

In addition, many works [ISS17, LBM17, HQZ18] have been done to estimate the static

scene layout given a 2D image. However, small and dynamic object localization in 3D has

yet to be addressed due to the lack of data.

2.3 Proposed Framework

In this section, we will describe the framework we use to collect data. As illustrated in

Fig. 2.3, we first seek a video game environment that simulates people’s daily activities and

then develop a plugin to fetch the critical game assets from the graphics engine.
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Figure 2.3: Pipeline of our data collection pipeline. Given the video game GTA V, our data
acquisition plugin operates on accessible gaming interfaces, parsing and fetching both static (e.g.,
objects, buildings, landscapes) and dynamic (e.g., actions, interactions, cinematic videos) gaming
resources.
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2.3.1 Photo-Realistic Physics-Realistic Synthetic Game Environment

Although human activities involving objects are ubiquitous in daily life, the effort to record

such fruitful interaction data to a fine-grained level remains challenging.

Some resort to optical motion capturing systems for target localization, e.g., VICON

cameras [IPO14, SBB10]. Others make tactile sensors to estimate hand pose during an in-

teraction, such as tactile gloves [LXM17]. These approaches require an elaborated system

set up to serve real-time data recording. In our approach, instead, we build our data ac-

quisition pipeline based on a video game platform – Grand Theft Auto V (GTA V). Unlike

other video games that simplify human-object interaction dynamics, GTA V is well-known

for its richness in photo- and physics-realistic daily activities. In this video game, abundant

human-object interaction events are incorporated. For instance, we can see a human agent

walking in the street eating a sandwich and another human agent sitting on a low wall read-

ing from a tablet. In order to obtain the interaction data of agents and objects, we develop

a game plugin as the game data parser running parallel with the rendering process.

2.3.2 Game Plugin Design and Characteristics

The development of our data acquisition plugin is based upon the Script Hook library, which

provides an accessible interface to the GTA V script native functions. The released plugin is

portable to the GTA game running environment and can parse the game data in real-time.

We characterize the main features of our plugin as follows:

Asset Exploit. By using the native functions in GTA, we can access the states of

gaming agents with our plugin. We collect the data in two means.

First, we collect human-object interactions with dynamic objects (e.g., drinking, smoking)

in real-time. Such interactions are marked in the graphics engine so that the interacting

objects are attached to the corresponding agent. We develop a simple detection algorithm

to handle such objects. If a certain object is within a threshold distance to the character,
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this object is considered an interacting object. We record the locations and motions of both

the character and the object and couple them into an interacting relation.

Second, static objects (e.g., walls, trees, benches) are unmarked and thus untracked in

the game interface. We manually mark such objects (i.e., categories, asset ids, locations) to

track human-object interactions with such static objects, e.g., sitting on a low wall, climbing

over a tree. Given marked assets, we can dump such environment data from the game asset

library using OPENIV GTA static parser. Like the dynamic parser, we also use a simple

action detection algorithm to record human interactions with static objects.

Data Scope. Once the plugin is hooked up inside the game, it runs silently in the back

end for data collection. Though our plugin can retrieve data in the area of the whole game

map, we limit the data collection range to a fixed radius w.r.t the main character’s position

for efficiency considerations. In order to collect the different body motion styles featured

in different areas in the game map, we periodically teleport the tracking character to a

predefined series of locations across the map, covering common environments (e.g., streets,

parks, downtown areas, outskirts) in daily activities. In this sense, we guarantee the diversity

of collected data.

Data Formation. Our plugin runs in the background to fetch gaming assets in every

frame. The data collection rate is empirically set to 10Hz to not interfere with the rendering

process. The raw data incorporates three types of entities in the GTA environment in each

frame, including human agents, objects, and vehicles. The plugin captures the real-time

physical quantities such as position, orientation, velocity, acceleration, and heading for each

entity. Besides, for human agents, our plugin also records skeleton data which contains 98

key points, of which 55 are skeletal joints, 21 are facial bone joints, and the rest are control

nodes. We also collected the 3D geometry of each object in the form of 3D meshes, which

are dumped from the OPENIV GTA static parser mentioned above.
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2.3.3 Dataset Collection

We adopt two modes in the data collection process: street mode and theater mode.

Street Mode. We uniformly create 595 grid coordinates across the game map. We

observe and record all humans and objects that reside in the graphics engine at each coor-

dinate, regardless of whether it is rendered on the screen. The humans include pedestrians,

drivers, business people, construction workers, gangsters, police officers, etc. Although the

action space of the observed agents is limited to a predefined collection of activities, each

person adopts a different style of body motion according to their gender, age, occupation,

and physique. Therefore, we observe a wide variety of body motion sequences. Fig. 2.2

illustrates the wide variance within two action categories.

Theater Mode. In addition to the constrained set of activities collected from the

street mode, we also record human and object dynamics in cutscenes. Cutscenes are CG

video clips between game events that are performed by real actors and are perfected by

professional artists. The dynamics in cutscenes are more diverse and realistic than those

collected in street mode.

Notice that there are multiple characters at each time step, referring to both a time step in

the game engine and a snapshot of a human skeleton as a frame. To avoid miscommunication,

we denote each time step in the game engine as a world-frame and denote a snapshot of a

human character as a person-frame.

Action Annotation. We ask volunteers to label human actions to each frame and up to

one associated object for each action. For example, if a person is sitting while drinking, our

volunteer would label the current frame as (sit, chair), (drink, cup) where ‘chair’ and ‘cup’

each refer to a specific object instance in the scene. It is impossible to annotate every frame

of our dataset since it contains 902,478 world-frames and, on average, 32 person-frames in

each world-frame. We took our best effort to annotate 609,045 person-frames in the training

set and 164,628 person-frames in the testing set. We made sure that we have annotated the
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Figure 2.4: Overview of our SHADE dataset. The six columns are: RGB scene, 3D mesh model,
3D mesh model from novel viewpoint, depth map, surface normal map.
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actions of every performed activity in our testing set.

2.3.4 Copyright Issues

Grand Theft Auto V allows non-commercial use of its content as long as certain conditions,

such as no spoilers, are met [Roc17]. The content of this game has been used in [RVR16] for

acquiring semantic segmentation annotations for self-driving cars.

2.4 Dataset Overview

In this section, we describe the design and composition of our dataset.

2.4.1 Detailed Statistics

Data Scale. We collected 902,478 world-frames and 29,164,913 person-frames, of which

772,229 person-frames are annotated. On average, each annotated person-frame contains

2.03 action labels and 0.89 interacting objects. Detailed action/interaction frequencies are

reported in Fig. 2.6.

Human Action. We record the 3D positions of 55 human body keypoints for each

person, including 25 major skeleton joints, 30 finger joints. Fig. 2.5 illustrates the human

skeleton representation used in our dataset. In addition to skeletal joints, our dataset con-

tains 21 key points on facial bones for expression and gaze analysis, although we do not

provide annotations for expression and gaze.

Object Geometry. We represent the geometry of each object as a 3D mesh accompa-

nied by its translation and rotation in each frame. We use the mesh representation instead of

the more popular bounding box representation because it contains much richer information

and can support more detailed analysis such as analyzing forces, modeling fine-grained geo-

metric relationships, or modeling the relationship between shape and affordance. We express
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Figure 2.5: Illustration of human skeleton used in SHADE dataset.
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Dataset # Joint # Action Object Sequence Mesh GT Bbox GT

HumanEva 16 6 No No No No

Human3.6M 32 16 No No No No

UCLA Multiview 20 8 No No No No

MSRA DA3D 20 16 No No No No

SYSU 3DHOI 20 12 No No No No

SceneGrok 25 7 Yes No No Yes

CAD-120 15 20 Yes Yes No Yes

SunCG N/A N/A Yes No Yes Yes

SHADE 55 161 Yes Yes Yes Yes

Table 2.1: Comparisons between our dataset and existing 3D datasets.

the rotation of an object in quaternions to avoid the singularity problem in the Euler angle

expression.

Dataset Partition. We segment our dataset into training and testing set according to

the way they are collected. Since the street mode produces varieties of repeating activities

and the theater mode produces more diverse variations of the same set of activities, but with

a smaller number of frames, it is natural to assign the street data to the training set and the

theater data to the testing set.

2.4.2 Comparison with Other Datasets

Annotation Richness. Existing 3D datasets [SBB10, IPO14, HZL15, SYZ17, WZZ17] fo-

cus on either human or environment instead of both, with the only exceptions of CAD-

120 [KGS13] and SceneGrok [SCH14]. Table 2.1 shows the qualitative comparison between

our dataset and other 3D datasets. We show that our dataset has richer and more fine-

grained annotations than other public datasets.

Pose & Action Diversity. We show that the human pose distribution in SHADE is

more diverse than that in H36M by comparing the t-SNE embedding of the poses in both

datasets. In order to make the two datasets comparable, we map the poses from SHADE
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Figure 2.6: Action/interaction category frequencies in our SHADE dataset. Log scale is used for
Y-axis (i.e., sample size).
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Figure 2.7: 2D t-SNE analysis of the human pose distribution. The left figure shows the human
pose distribution in SHADE (in blue) and the middle figure shows the human pose distribution in
H36M (in red). The right figure shows the overlap of the two.

to the same skeleton structure in H36M by removing joints on both hands. Notice that this

modification reduces the number of joints by more than half. Figure 2.7 shows that SHADE

has a more extensive coverage of human pose space than H36M, even with a reduced skeleton.

Pose & Action Quality. Since the human actions in SHADE are synthesized, we

evaluate the quality by conducting two user studies on Amazon Mechanical Turk (AMT).

In the first user study, we show each worker with 20 human motion sequences (with 3D

skeleton only) and ask the worker to rate each sequence from 1 to 9 based on whether the

sequence looks like natural human motion. In the second user study, we show each worker

a mix of 10 sequences of eating action and 10 sequences of smoking action and ask workers

to rate the sequences from 1 to 9 based on whether the sequences look like eat (1) or smoke

(9). We select eating and smoking because they look similar in the H36M skeleton, and

both actions exist in H36M and SHADE. We conduct both user studies with three input

variants, i.e., H36M skeleton, SHADE with H36M-like reduced skeleton, and SHADE with a

full skeleton. For each study, We sample 100 sequences (200 frames each) from each dataset

and have around 200 participants. The average user score is reported in Figure 2.8. We can

observe that human motions from the SHADE dataset are more natural and contain more

information for action recognition than those in H36M and that the additional information

from hand poses makes an additional contribution to motion quality.
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Figure 2.8: Results of user studies of human motion quality. The left figure shows the average
user rating of how natural a sequence looks, where 1 means the least natural and 9 means the
most natural. The right figure shows the difference in average scores between eating sequences and
smoking sequences, where 1 means most like eating and 9 means most like smoking. Both values
are better if larger.

2.5 Experiment

We evaluate our dataset with four tasks: HOI recognition, object localization, human pose

estimation, and scene reconstruction.

2.5.1 HOI Recognition

We run state-of-the-art skeleton-based action recognition models [WW17, YXL18] on our

data, and augmented the better one with an additional coarse contextual feature, richness-

of-object, around each joint. Table 2.2 shows that this simple feature has already provided

a significant edge for the state-of-the-art action recognition model.

Richness-of-object. We first uniformly sample point clouds on the surfaces of all ob-

jects. Then we compute the number of points within a fixed radius around each joint. We

then divide the number by 1000 and clip the result to be between 0 and 1. We append the

resulting number to each joint in the human skeleton to reflect the richness of contextual

objects around each joint.
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mAP Top-1 Acc. Top-3 Acc.

ST-GCN [YXL18] 0.54 0.35 0.59

2stream [WW17] 0.76 0.61 0.94

ST-GCN + SHADE 0.61 0.42 0.75

2stream + SHADE 0.84 0.78 0.94

Table 2.2: Quantitative results and comparisons of the accuracy on skeleton-based action recogni-
tion. Higher values are better. The best score is marked in bold.

IoU Smoke Eat Drink Sit Sit at

KNN 0.08 0.02 0.10 0.37 0.14

DNN-single 0.11 0.07 0.13 0.42 0.14

DNN-joint 0.14 0.15 0.20 0.50 0.16

Table 2.3: Quantitative results and comparisons of the accuracy (IoU) on interacting object local-
ization. Higher values are better. The best score is marked in bold.

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

[TMS17] 85.0 108.7 84.3 98.9 119.3 95.6 98.4 93.7 73.7 170.4 85.0 116.9 113.7 62.0 94.8 100.0

[PZD17] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

[ZHS17] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9

[MHR17] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

[FXW18] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

[MHR17] + SHADE 49.7 56.6 57.1 58.0 67.2 77.4 54.7 57.8 81.1 91.5 61.0 58.5 65.8 49.47 53.2 62.6

[FXW18] + SHADE 49.3 54.9 56.6 57.1 65.8 75.4 53.5 56.0 73.0 88.8 60.6 57.1 61.9 45.8 48.7 60.3

Protocol #3 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD. Smoke Wait WalkD. Walk WalkT. Avg.

[PZD17] 79.2 85.2 78.3 89.9 86.3 87.9 75.8 81.8 106.4 137.6 86.2 92.3 72.9 82.3 77.5 88.6

[ZHS17] 61.4 70.7 62.2 76.9 71.0 81.2 67.3 71.6 96.7 126.1 68.1 76.7 63.3 72.1 68.9 75.6

[MHR17] 65.7 68.8 92.6 79.9 84.5 100.4 72.3 88.2 109.5 130.8 76.9 81.4 85.5 69.1 68.2 84.9

[FXW18] 57.5 57.8 81.6 68.8 75.1 85.8 61.6 70.4 95.8 106.9 68.5 70.4 73.8 58.5 59.6 72.8

[MHR17] + SHADE 64.8 64.1 83.8 78.2 80.2 100.5 67.6 84.2 113.9 129.1 73.5 78.0 85.9 67.8 67.2 82.6

[FXW18] + SHADE 59.6 61.0 73.5 68.0 67.6 81.3 62.5 67.4 87.0 100.4 64.2 71.5 78.0 61.9 61.5 71.0

Table 2.4: Quantitative comparisons of Average Euclidean Distance (in mm) between the estimated
pose and the ground-truth on Human3.6M under Protocol #1 and Protocol #3. Lower values are
better. The best score is marked in bold.

22



2.5.2 Object Localization

We establish three baselines on five common activities in our dataset for the reference of

future research. The results are listed in Table 2.3.

Referred object. For the first four activities, the referred objects are cigarettes, food,

drinks, and chairs, respectively. For the last activity, the referred object is the table in front

of the sitting person if there exists one.

Baseline methods. We develop three simple baselines for the task of 3d object local-

ization: i) KNN. We normalize each joint coordinate to zero-mean and unit variance and

find the nearest neighbor given the query skeleton in training data. We return the associated

bounding box of the nearest neighbor as our prediction result; ii) DNN-single. We design

a neural network based on the structure proposed in [MHR17]. We consider the object 3D

bounding box boundaries as keypoints and learn to regress their coordinates end-to-end; iii)

DNN-joint. We further consider human poses and extend the architecture from ii) to jointly

optimize the locations of human skeleton joints and interacting object bounding boxes. We

evaluate the baseline models on intersection over union (IOU). Notice that the first two

activities suffer from extremely low IOU since the referred objects are usually much smaller

than other objects, and therefore it is harder for the predicted bounding boxes to intersect

with the ground truth ones.

Generalizing to real humans. To show that the geometric relationship learned in

our dataset can be generalized to real-world cases, we evaluate the KNN method on a pose

chosen from Human3.6M [IPO14] and show four synthesized objects for eat, sit and sit at

in Fig. 2.10. The selected pose is sitting on a chair and is acting as if she is eating.

2.5.3 Human Pose Estimation

We demonstrate the diversity of our collected human pose in this subsection by training a

state-of-the-art 3D pose estimation model [MHR17] on a combination of our dataset and
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H36M and compare it with the same model trained solely on the H36M dataset. Table 2.4

shows that our dataset helps improve performance on state-of-the-arts in action recognition.

We further test the two trained models on less common human poses in our testing set, i.e.,

Yoga poses. Fig. 2.9 qualitatively illustrate that our dataset allows better generalization of

the state-of-the-art model than H36M does. We make sure that no Yoga poses or any similar

poses to the testing poses are present in the training data.

2.6 Conclusion

This chapter presents a large-scale synthetic dataset SHADE (Synthetic Human Activities

with Dynamic Environment). Our dataset is the first that contains rich and fine-grained 3D

annotations of human-object interactions. Our experiments show that the human pose in our

dataset complements existing human pose datasets and that the geometrical relationship in

our dataset can be applied to real-life human behaviors. We believe that this dataset would

open up new possibilities in modeling 3D human-object interactions.
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Figure 2.9: Qualitative results on 3D pose estimation. The first column are querying 2D poses,
the second column are ground truth 3D poses, the third column are 3D poses predicted by model
trained on H36M, and the fourth column are 3D poses predicted by model trained on both H36M
and SHADE.
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Figure 2.10: Qualitative results of model generalization to Human3.6M. We apply the learned
human-object interaction model from the SHADE dataset and sample the possible interactions
given poses from Human3.6M datasets. The first row synthesizes a bagel or a sandwich for eating,
the second row synthesizes a chair or a bench for sitting, and the third row synthesizes a table or
a desk for sitting-at. The four columns show four different samples.
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CHAPTER 3

Hallucinating Sitting Human by Exploiting Part-Level

Human-Object Interaction

3.1 Introduction

The previous chapter shows that understanding HOI does improve scene understanding.

However, there is one assumption that is problematic when we look at it closely. Namely, we

assumed that a single bounding box could represent each object, and its position follows a

multivariate Gaussian distribution anchored from a specific joint of the human skeleton. This

assumption seems to be working effectively and has been widely adopted in multiple publica-

tions involving HOI [HQZ18, WZZ13, WZZ17]. However, all the mentioned works evaluated

their models’ performance in a minimal environment, where the chairs are predominately

office chairs and have a consistent shape distribution.

By representing each chair as a single bounding box, we assumed the seats and backs of a

chair are always around certain positions of the chair’s bounding box and that the geometric

relationship between the human hip and the chair’s geometrical center is consistent across

the dataset. This assumption is most likely valid when we only consider one specific type

of chair, but it would break as soon as we consider chairs with different shapes, such as

sofas and stools. We show this dilemma in Fig. 3.1a, where the instance-level HOI does not

accurately show the relationship between the human and the object.

In this chapter, we argue that instead of defining HOI between the object-level bounding

box and a key joint, we should build HOI between lower-level parts of the object and body
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Moving towards Part-Level HOI

• Intuition 
• Geometrical relationship between human and object should be between 

parts instead of instances

(a)

Moving towards Part-Level HOI

• Intuition 
• Geometrical relationship between human and object should be between 

parts instead of instances

(b)

Figure 3.1: Instance-level HOI vs. Part-level HOI.

parts, as shown in Fig. 3.1b. We propose a novel algorithm of hallucinating sitting humans

given a decomposed chair. By leveraging part-level HOI relationships, our method is capable

of achieving

‚ simpler geometric relationship in each HOI node,

‚ more diverse hallucinated human pose, and

‚ more physically plausible hallucinated human pose.

3.2 Related Works

Human Object Interaction (HOI) has been widely studied as both a 2D detection

problem and a 3D reconstruction problem. 2D HOI detection often involves identifying

an interacting pair of human and object and classifying the verb of interaction given an

interacting human and object image. Most of the current HOI detection algorithms [YF10,

LZH19, WYD20, KLG18] project both the human and object patch into image feature space,

and classify the interaction verb using both features. Some recent approaches use graph

neural networks to predict human-object pairs that contain HOI relationship [QWJ18]. In

addition to detecting instance-level HOI, several recent works [LXL20, LSL18] demonstrate
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improved generalization capability by identifying the interaction between body parts and

objects.

3D HOI is often used as the prior knowledge of arranging estimated 3D human and

objects in scene reconstruction tasks [WZZ13, WZZ17, HQZ18]. While these methods all

improve existing 3D scene reconstruction methods by a significant margin, they all rely on

consistent shape distribution for each object type. If, for example, the object category chair

includes both high stools and office chairs, they would have very similar bounding boxes but

significantly different positions for a person to sit on. This chapter aims to solve this issue

by using a set of part-level oriented bounding boxes to represent an object accurately and

efficiently.

Hallucinating Human is another trending research topic that utilizes 3D HOI to im-

prove its hallucination quality [HGT21, ZHN20, ZZM20, HCT19]. Publications along this

stream use the exact 3D shape, usually represented by triangular meshes, to regulate the

placement of hallucinated human bodies. The use of mesh representation includes high-

frequency details of the interacting objects. However, the overwhelming amount of detail

limits the proposed models from learning significant features between humans and objects.

As a result, the hallucinated human had to re-use poses from demonstration data and then

be placed in the given scene to match some pre-defined features. Our proposed method

can learn pairwise part-level interaction features that can produce highly diverse interacting

human poses.

3.3 HOI Representation

Existing algorithms often represent objects as 2D and 3D bounding boxes. Although bound-

ing boxes are excellent in representation efficiency, it does eliminate important details for

complex shapes such as a chair. Another extreme of the spectrum is to use expensive rep-

resentations such as voxels, point clouds, or meshes to include the high-frequency details of
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What is HOI, exactly? (cont’d.)

Formal Definition
• Spatial parse graph 𝑝𝑔𝑆 = 𝑝𝑔𝑜, 𝑝𝑔+

• 𝑝𝑔𝑜 = 𝑉𝑜, 𝐸𝑜 , 𝜓 represents the attributed parse graph for 
objects, where

• 𝑉𝑜 is the set of object nodes

• 𝐸𝑜 = 𝑣1, 𝑣2 : 𝑣1 ∈ 𝑉𝑜, 𝑣2 ∈ 𝑉𝑜 is a set of edges where 𝑣2 is a 
part of 𝑣1

• 𝜓:Vo ↦ 𝑋𝑜 is a function of object node attributes, where 𝑋𝑜

denotes the object attribute space. 

• 𝑝𝑔+ = 𝑉+, 𝐸+, 𝜙 represents the attributed parse graph for 
human

• Definitions are similar to 𝑝𝑔𝑜

• 4DHOI node 𝑣𝐼 = (𝑣𝑜, 𝑣+, 𝑓), where

• 𝑣𝑜 is an object node, 𝑣+ is a human node, and 𝑓: 𝑋𝑜 × 𝑋+ ↦ ℝ
is the energy function describing geometrical relationship 
between the two nodes.

Scene

Human Object

Person 1 Chair Cup TV

𝑝𝑔+ 𝑝𝑔𝑜

Upper Body Lower Body Head

Torso L.Arm R.Arm

L. Upper Arm L. Lower Arm L. Hand

Backrest Seat Armrests Legs

L. Armrest R. Armrest

4DHOI

(a) Spatial parse graph

What is HOI, exactly? (cont’d.)

Formal Definition (cont’d.)

• Action parse graph 𝑝𝑔𝐴 = 𝑉𝑁, 𝑉𝐼, 𝐸𝑁

• 𝑉𝑁: action nodes, where each node represents a 

decomposable action

• 𝑉𝐼: 4DHOI nodes, which are fundamental 

components of human actions

• 𝐸𝑁 = 𝑣1, 𝑣2 , 𝑣1 ∈ 𝑉𝑁 , 𝑣2 ∈ 𝑉𝑁 ∪ 𝑉𝐼 describes 

the decomposition of actions

4DHOI

𝑣𝑜 𝑣+
𝑝𝑔𝑆

𝑝𝑔𝐴

4DHOI 4DHOI

Sit

(b) Action parse graph

What is HOI, exactly? (cont’d.)

Formulation
• 𝑝 𝑝𝑔 𝐼 ∝ 𝑝 𝐼 𝑝𝑔 𝑝 𝑝𝑔

• = 𝑝 𝐼 𝑝𝑔 𝑝 𝑝𝑔

• =
1

𝑍
exp −ℰ 𝐼 𝑝𝑔 − ℰ𝑆 𝑝𝑔𝑆 − ℰ𝐼 𝑝𝑔𝑆 , 𝑉𝐼

• ℰ 𝐼 𝑝𝑔 is the grounding energy, computed by off-the-shelf detectors

• ℰ𝑆 𝑝𝑔𝑆 is the prior energy for spatial configuration. This usually contains 
terms such as human pose prior, physics prior, functionality prior, etc. 

• ℰ𝐼 𝑝𝑔𝑆 , 𝑉𝐼 = σ
𝑣𝑖
𝑜,𝑣𝑖

+,𝑓𝑖 ∈𝑉
𝐼 𝑓𝑖 𝜓 𝑣𝑖

𝑜 , 𝜙 𝑣𝑖
+ describes the energy of the 

geometrical relationship between interacting parties 

Reconstruction: argmax
𝑝𝑔

𝑝(𝑝𝑔|𝐼)

Hallucinating Human: ෫𝑝𝑔+ ∼ 𝑝 𝑝𝑔+ 𝑝𝑔𝑜

HOI Detection: argmax
𝑉𝐼

𝑝 𝑝𝑔|𝐼

Scene

Human Object

Person 1 Chair Cup TV

𝑝𝑔+ 𝑝𝑔𝑜

Upper Body Lower Body Head

Torso L.Arm R.Arm

L. Upper Arm L. Lower Arm L. Hand

Backrest Seat Armrests Legs

L. Armrest R. Armrest

4DHOI 4DHOI 4DHOI

Sitt

(c) Full view

Figure 3.2: An illustration of our HOI representation as a bridge between spatial parse graph and
action parse graph.

the object. We observe that most manufactured objects, especially furniture, can be decom-

posed into semantic parts, and each part can be approximated by a shape primitive. In this

chapter, we use oriented bounding boxes to represent each part.

Since we can decompose both object and human into semantic parts, we propose to use

a hierarchical structure to represent actions that involve human-object interactions. In this

chapter, we use the action sitting as an example to illustrate our idea.

Consider a scene where a person sits in an office chair, with both arms on the armrest.

The static scene includes a human H and an object O, which is the chair. Both H and O can

be organized into a parse graph. We use pgO to represent the object and pgH to represent
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the human. pgO “ xV O, EOy is a graph where V O “ tvoi , i “ 1, ..., nu is the set of object part

nodes that each describes a component of the object. EO “ tpv1, v2q, v1, v2 P V
Ou is the set

of edges in pgO where v2 is a sub-part of v1. The root node represents the entire object, and

every level down in pgO represents a more fine-grained decomposition of the object. pgH is

defined similarly following the hierarchical decomposition of a human skeleton. We represent

action A as a hierarchical structure pgA where the action is decomposed into several HOI

nodes. Each HOI node represents a geometrical relationship between an object part and a

human body part. We illustrate the representation in Fig. 3.2.

3.4 Formulation

We formulate the human hallucination problem as sampling from the conditional distribution

ppH|O; Θq, where Θ is the set of learnable parameters. We model the distribution as a Gibbs

distribution

pApH|O; Θq “
1

ZpΘq
exp´EApH|O; Θqp0pHq (3.1)

, where we can learn the parameters Θ by maximizing the log-likelihood

LppΘq “
1

n

n
ÿ

i“1

log ppHi|Oi; Θq (3.2)

. ZpΘq “
ş

exp´EApH|O; ΘqdH is the normalizing constant. To maximize Lp, we use

standard gradient-ascent algorithm and compute the gradient
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L1ppΘq “ EΘ

„

B

BΘ
EApH|O; Θq



´
1

n

n
ÿ

i“1

B

BΘ
EpHi|Oi; Θq (3.3)

. The EΘ term is the expectation of energy with respect to ppH|O; Θq, which is in-

tractable. We use Langevin sampling to sample tH̃iu from ppH|O; Θq with given tÕiu, and

use the sampled results to estimate EΘ. The gradient then becomes

L1ppΘq “ EΘ

„

B

BΘ
EApH|O; Θq



´
1

n

n
ÿ

i“1

B

BΘ
EApHi|Oi; Θq (3.4)

“
1

n

n
ÿ

i“1

B

BΘ
EApH̃i|Õi; Θq ´

1

n

n
ÿ

i“1

B

BΘ
EApHi|Oi; Θq (3.5)

In light of Eq. (3.5), we implement Algorithm 1 for hallucinating interacting human given

an object: h

Algorithm 1: Hallucinating Interacting Human

Input: HOI datasets tpHi, Oiq, i “ 1, ..., Nu, query objects tÕi, i “ 1, ..., Nu, initial
parameters Θ0, total iterations L, langevin steps l, step size η, random noise
size ζ

Output: Hallucinated human H̃i, final parameters Θ˚

1 Initialize Θ0

2 for iter “ 1 : L do
3 for step“ 1 : l, i “ 1 : N do

4 H̃i Ð H̃i ´
B

BHi
EApH̃i|Õi; Θq ` ε, ε „ N p0, ζq;

5 end

6 Θpiterq “ Θpiter´1q ` η ¨ L1ppΘq;

7 end
8 Θ˚ Ð ΘL

Algorithm 1 can be interpreted as a minimax game, where Line 4 updates the synthesized

examples H̃ to minimize its energy, and Line 6 updates the parameters Θ to maximize the
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energy of synthesized examples and minimize the energy of observed ones. It can further be

interpreted as two competing forces attacking each other’s weaknesses. In one turn, Line 4

tries to exploit the weakness of the energy function and fool the energy function into thinking

the synthesized examples are real. In the next turn, the energy function tries to identify the

weaknesses in the synthesized examples in order to tell the synthesized ones apart from the

observed ones in Line 6.

3.5 Human Object Interaction Energy

We use a neural network Fpx; Θq : X ÞÑ R to model the energy function EA, where xpH,Oq P

X is the collection of all part-level HOI features between human H and object O. For each

object part o and human joint j, we compute two scalar part-level HOI features between o

and j as

1. distance from j to o’s bounding box center, and

2. distance from j to o’s closest bounding box surface.

For each object part o and human bone k, we compute six scalar part-level HOI features

between o and k as

1-3. angle between bone and bounding box axes, and

4-6. angle between bone and world axes.

In total, we have 24 joints and 23 bones in a human skeleton, and therefore 186-vector

for each object part. We then aggregate the features with max-pooling by part name and

concatenate the features of different part names into a long vector before feeding the features

to the energy network F .
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Method Physical Plausibility Ó Human Pose Diversity Ò

cVAE (Instance-Level) 1.82ˆ 10´2 0.032
cVAE (Part-Level) 9.32ˆ 10´3 0.057

Ours (Instance-Level) 3.16ˆ 10´2 0.081

Ours (Part-Level) 2.14ˆ 10´2 0.110

Table 3.1: Comparisons between our dataset and existing 3D datasets. Physical plausibility is
measured by the penetration between a human skeleton and object part bounding boxes, and
human pose diversity is measured by the standard deviation of human joint positions.

3.6 Experiment

We collect 108 instances of sitting pose from the SHADE dataset described in the previous

chapter as our training data. We evaluate our model with two quantitative metrics: physical

plausibility and human pose diversity.

‚ Physical Plausibility. We compute the total penetration between the human pose

skeleton and the oriented bounding boxes of the interacting object. This metric is

better when lower.

‚ Human Pose Diversity. We compute the average standard deviation of per-joint

rotation angles for the hallucinated human pose. This metric is better when larger.

We compare our model with a baseline method of naive conditional VAE. We also con-

ducted an ablation study where our model is used with the entire object as a single part,

forcing the model to use instance-level HOI. We show in Table 3.1 that our model performs

significantly better in both metrics, and in Fig. 3.3 to qualitatively show how our method

improves synthesis diversity by a large margin at a slight cost in physical plausibility. We

also show that by including part-level HOI, we can reduce physics violations.

We also show a qualitative result of the synthesized sitting poses in Fig. 3.4 to demon-

strate that our method is capable of hallucinating diverse poses that are not included in the

training set. We further show the 3D views of sitting poses synthesized by our full model in

Fig. 3.5.
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(a) cVAE (b) Ours (instance-level HOI) (c) Ours (part-level HOI)

Figure 3.3: Synthesized pose distribution of different methods. We show that our method
is capable of synthesizing much more diverse human pose than the baseline method, and that
part-level HOI provides even stronger diversity.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 3.4: Synthesized sitting human pose conditioned on chairs. We show examples synthesized
using (top) cVAE with object parts as condition, (middle) our method with instance-level HOI, and
(bottom) our method with part-level HOI. We show that our method can create significantly more
diverse sitting poses, and that incorporating part-level information creates more realistic examples.

3.7 Conclusion

This chapter proposed representing human-object interaction as a combination of part-level

HOIs, where an oriented bounding box represents each object part. We introduced a novel

algorithm of hallucinating interacting humans to prove the expressiveness of our representa-

tion. We show that we can express a richer set of HOIs using naive geometric relationships

by decomposing the HOI relationships into lower levels.
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Figure 3.5: 3D view of sitting poses synthesized by our method. Each row contains 6 views of
the same synthesized example. We observe that our method is capable of synthesizing diverse and
realistic examples.
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CHAPTER 4

InteractionField: Learning Intuitive Grasping from

Human Demonstrations via Conditional Descriptor

Networks

In addition to complex body-scale human-object interactions such as sitting, this disserta-

tion also investigates hand-object interaction, which is an equally complex human-object

interaction on a smaller scale. This chapter proposes to learn a geometry-aware grasping

energy function that describes the shape distribution of humanoid grasping of daily objects.

4.1 Introduction

In recent years, the robotics community views grasping as a physics problem of finding

a hand configuration that ensures force closure on an object. Although this is a widely

accepted stream in the robotics community, it is different from the internal dynamics of

human grasping. When a person performs grasping of an object, two stages are involved.

First, the person positions his hand next to the object and places his fingers around it in

anticipation of a grasp. Then, the person contracts the muscle on his fingers to hold the

object steadily. The first stage is commonly referred to as the preshape stage, and the second

is named the holding stage. A recent study found that the electroencephalographic (EEG)

activity, which reflects the brain activity, in the preshape stage corresponds to the shape and

size of the object, while the EEG activity in the holding stage reflects muscle activity [SM18].

This finding suggests that when the hand configuration is determined, the human brain is
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more likely to focus on geometries than physics. We refer to this phenomenon as “intuitive

grasping” instead of the “physical grasping” that the majority of the robotics community is

focusing on. Specifically, intuitive grasping refers to synthesizing a grasping snapshot (or a

sequence) of a given object without reasoning on physics. We argue that we are converting

a challenging optimization problem under complex physical constraints to a much simpler

problem of learning geometric relationships by studying intuitive grasping.

In this chapter, we model intuitive grasping as a conditional distribution of the human

hand configuration given an object shape. We propose to learn the conditional distribution

with a conditional descriptor network, a conditional energy-based model that aims to describe

the energy landscape of its input. We can sample from the learned energy landscape with

Markov chain Monte Carlo (MCMC) methods such as Langevin dynamics. We develop

a 3D shape-aware energy function for the proposed model, which can extract 3D hand-

object interaction from hand and object configuration variables. The energy function consists

of two parts: (1) some pre-trained interaction-field modules (IF modules) that facilitates

differentiable mappings from geometric variables to 3D voxel-based representations of hand

and object, and (2) a trainable 3D bottom-up ConvNet structure that takes the channel-wise

concatenation of the voxel-based representations of hand and object as input and outputs

the negative energy. We designed a platform to collect a dataset of human demonstrations

of grasping for training our model. We demonstrate that the proposed model can generate

meaningful grasping when a seen or unseen object is given. and it outperforms the baseline

methods we develop based on GAN [GPM14, MO14] and VAE [KW13].

Our contribution is four-fold: i) Despite a naming collision with an earlier work [US00],

we are the first to learn the intuitive grasping that is decoupled from physics; ii) We propose

the conditional descriptor network, which is a deep conditional energy-based model, for

modeling the geometric relationship in grasping; iii) We propose a 3D shape aware energy

function for the proposed model; iv) We design a platform to collect a dataset of human

demonstrations of grasping to train our model.
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We will discuss our similarities and differences with related works in section 4.2. We will

then introduce our framework for learning intuitive grasping from human demonstrations in

section 4.3. Next, we will introduce the 3D shape aware energy function for the proposed

model in section 4.4. In section 4.5, we will introduce how to collect a human demonstration

dataset and evaluate our framework by conducting experiments. A conclusion is made in

section 4.6.

4.2 Related Works

Hand-Object Grasping. Current research in grasping can be organized into three streams,

analytic approach, data-driven approach, ( [BMA13]) and contact-based approach. The

analytic approach [RMF12, PMG12, RSG12, Mur17] attempts to generate grasps by ensuring

force closure of rigid objects, assuming simplified contact and friction models. Although this

stream of work established a good foundation in analyzing stable grasp quality, it largely

relies on the precise knowledge of the 3D shape being grasped. Their performance drops

significantly if the shape is obtained via estimation. The data-driven approach leverages

recent advancements in machine learning and attempts to estimate grasping points from

input images. Although many works have shown progress along this stream [SDN08, CA09,

RKK09, LLS15, MLN17, LPK18], this approach relies on huge datasets to learn successful

grasping. In addition, the mapping from grasping points to a grasping hand is non-trivial.

Most work along the data-driven stream focuses on grippers with limited DOF. The contact-

based approach [AKH12, LS15, BHH19] extends data-driven approach to more complex hand

models. Given an object and a contact map, contact-based algorithms optimize hand poses

to fit the contact map. This approach assumes that the contact point of at least one finger

must be given in addition to the contact map. This chapter focuses on modeling intuitive

grasping with probabilistic models and learning the distribution of hand pose given the

object to be grasped, which is a fundamental problem in cognitive robotics.
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Human Hand Grasp Datasets. Collecting a high-quality human grasping dataset has

been challenging due to the musculoskeletal complexity of the human hand and occlusion

between the interacting parties. Several attempts have been made to record the image and

6D poses of hands and objects. [MA04] generated grasping data by sampling random grasps

and accepting valid ones according to a force closure criteria introduced in [FC92]. Although

this approach reduces manual labor in labeling grasp poses, the collected grasping gestures

are not necessarily natural human grasps. Some datasets ( [KRK11, BFD15, SXL16]) collect

2D images from human demonstrations. Due to high redundancy in visual information,

estimating human poses from images/videos may be expensive and inaccurate. [HAW07,

LS14] introduced data gloves to collect the exact hand poses in 3D. However, aligning an

object with the hand still requires additional effort. [GYB18] can record the 6D poses of

hand and object with seven magnetic 6D pose sensors. However, recording the exact shapes

of hand and object during a hand-object interaction remains a challenging task.

Descriptive Models. Our model is related to a stream of publications in the field of

descriptive models. [ZWM98] proposed the FRAME (Filters, Random Fields and Maximum

Entropy) model for modeling and synthesizing textures. The resulting model is energy-

based in the form of Gibbs distribution. [XHZ15, XLZ16a] proposed the sparse FRAME

models for object patterns. The above two models use linear filters to capture local image

features. [LZW15] extends the FRAME model by using pre-trained ConvNet structure as

non-linear filters. Instead of using filters from a pre-trained ConvNet, [XLZ16b] learns a

deep convolutional energy-based model from the observed data. [XZN17, XZG18] further

explore the possibilities of learning such deep energy-based models for representing videos

and 3D shapes using voxels, respectively. Previous works show that the most difficult part

in training a descriptive network is the sampling process from high dimensional spaces such

as the image space. [XZG18, LZW15] use a warm-start technique to overcome the problem,

where a very long sampling chain (probably more than 1000 Langevin steps) is required

before good examples can be synthesized. [GLZ18] first samples from a low-dimensional
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space (low-resolution image space) and gradually move up in resolution. [XLG18] learns a

separate network for sampling. This chapter proposes a conditional version of a descriptive

model with a novel 3D shape aware energy function that extracts 3D hand-object geometric

interaction from their configuration variables.

Deep Learning with 3D Shapes. Currently, most deep learning algorithms involving

3D shapes adopt one of three representations: occupancy grid (voxel), point cloud, and mesh.

voxel is the most commonly used 3D representation for analysis on 3D shapes [XZG18,

ROG17, CAL16] due to its innate similarity to pixels and compatibility to 3D ConvNets.

However, the voxel representation suffers from many drawbacks. In addition to the commonly

criticized problem of cubic complexity with respect to resolution, [LPS16] shown that the

voxel representation also suffers from increasing sparsity with increasing resolution. Recently

[ROG17] aims to solve both problems so that voxel of higher resolution can fit in the deep

learning framework. The voxel representation also lacks surface information such as surface

normal. Point cloud is a set of points sampled (often uniformly) from object surfaces.

Although point cloud is a more compact representation than voxels, it does not fit well

in most machine learning frameworks as there can be N ! permutation of the same set of

points. Point clouds also do not host volumetric information and surface normal information.

Although recent works [QSM17, QYS17] have demonstrated possibilities in working on point

cloud data directly in a deep learning framework, it is still an open problem to process

point cloud for generic tasks. mesh is more commonly used in computer graphics than in

deep learning due to its compactness but is less favored in the machine learning community.

Our model involves voxel-based representations of 3D shapes in the 3D shape-aware energy

function.
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Figure 4.1: Pipeline of our model. Red shapes indicate differentiable steps. Blue arrow indicates
the synthesis step using Langevin dynamics.

4.3 Conditional Descriptor Nets as Intuitive Grasping

Problem definition. This chapter aims to train a conditional descriptor network as in-

tuitive grasping, a conditional distribution ppH|Oq for the geometric configuration H of a

grasping hand conditioned on a given object with geometric configuration O to be grasped.

We shall learn ppH|Oq from human demonstrations, which are represented by hand-and-

object pairs tpHi, Oiq, i “ 1, ..., nu. With the learned model ppH|Oq, given an object with

observed geometric configuration Oobs, we can generate meaningful geometric configurations

of grasping hands by sampling from ppH|Oobsq via Markov Chain Monte Carlo (MCMC).

Model and learning. The model is based on an objective function fpH,O; θq defined

on pH,Oq, where θ collects all parameters. Serving as a negative energy function, fpH,O; θq

defines a joint energy-based model

P pH,O; θq “
1

Zpθq
exp rfpH,O; θqs, (4.1)

where Zpθq “
ş

exp rfpH,O; θqsdHdO is the normalizing constant that is analytically in-

tractable. We denote energy function EpH,O; θq “ ´fpH,O; θq. Fixing an object with

geometric configuration O, fpH,O1; θq evaluates the value of the grasping H for the ob-

ject represented by O, and ´fpH,O; θq plays a role of conditional energy function. The
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conditional probability for intuitive grasping is defined by

P pH|O; θq “
P pH,O; θq

P pO; θq
“

P pH,O; θq
ş

P pH,O; θqdH
“

1

ZpO, θq
exp rfpH,O; θqs, (4.2)

where ZpO, θq “ ZpθqppO; θq. We call this model the conditional descriptor nets, because

fpH,O; θq describes some statistical features about object grasping. Given the observed

human demonstrations of grasping objects tpHi, Oiq, i “ 1, ..., nu, we learn the model by

finding the optimal θ to maximize the log-likelihood function Lpθq “ 1
n

řn
i“1 logP pHi|Oi; θq.

The gradient of Lpθq is

L1pθq “
1

n

n
ÿ

i“1

B

Bθ
fpHi, Oi; θq ´ EppH|O;θq

„

B

Bθ
fpH,O; θq



(4.3)

where the EppH|O;θq is the expectation with respect to ppH,O; θq. Since the expectation term

is analytically intractable, we approximate it with a MCMC, such as Langevin dynamics,

which samples from the current conditional distribution P pH|O; θq by iterating the following

steps:

Hτ`1 “ Hτ ´
∆

2

B

BH
EpHτ , O; θq `

?
∆ετ “ Hτ `

∆

2

„

B

BH
fpHτ , O; θq



`
?

∆ετ (4.4)

where τ is the current step and ∆ is the step size. ετ „ Np0, Iq is a random noise

sampled from a Gaussian distribution. Each step of Langevin dynamics performs gradient

descent with a random perturbation to escape local minima to minimize the energy function.

Suppose we sample H̃j for each Oi from the distribution ppH|Oi; θq, Equation 4.3 can be

approximated by

L1pθq «
1

n

n
ÿ

i“1

B

Bθ
fpHi, Oi; θq ´

1

n

n
ÿ

j“1

B

Bθ
fpH̃j, Õj; θq (4.5)

We then update the model parameters by θpt`1q “ θptq ` βL1pθptqq.
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Model understanding. The learning of our model follows what Grenander [GMM07]

called “analysis by synthesis” scheme, which alternates the sampling step defined by equation

(4.4) and the learning step involving computing the gradient of θ in equation (4.5). The

keys of both steps are the computations of B

BH
fpH,O; θq and B

Bθ
fpH,O; θq, each of which

can be easily computed by back-propagation. The learning process corresponds to learning

a value function fpH,O; θq for intuitive grasping by shifting high value region of fpH,O; θq

from the currently generated grasping tpH̃i, Oiq, i “ 1, ..., ñu toward human demonstration

tpHi, Oiq, i “ 1, ..., nu, while the MCMC sampling process corresponds to the exploration of

the hand configuration space in order to generate hand poses given an object that maximize

the value function.

4.4 3D Shape Aware Energy function

3D Shape Aware. The conditional descriptor model proposed in section 4.3 relies on a

well-designed energy function fpH,Oq that captures the interaction between the hand poses

H and the object O to be grasped. Given that the hand-object geometry relationship of

grasping can be better captured in the 3D space than in the configuration parameter space,

we propose a 3D shape-aware energy function that maps H and O into negative energy.

The energy function captures the hand-object interaction in the 3D voxel space instead of

directly building a bottom-up multilayer perceptron on the concatenated version of hand-

object configuration pH,Oq.

Let O “ pro, toq denote the geometric configuration of object, where ro and to are the

rotation and translation of the object respectively, and H “ pzh, rh, thq denote the geometric

configuration of hand, where zh, rh, and th are the joint angle, rotation and translation of the

hand respectively. We define I as an operation that takes O and H as inputs and output a 3D

voxel-based hand-object interaction V , which is represented by a channel-wise concatenation

of the voxel-based 3D shapes of object Vo and hand Vh. The 3D shape aware energy function
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is given by fpH,O; θq “ gpIpH,Oq; θq, where g is a bottom-up 3D convolutional neural

network that maps IpH,Oq into negative energy with parameters θ. Figure 4.1 illustrates

the structure of the proposed 3D shape aware energy function.

IF-module. Let X be a set of coordinates from a regular grid. Let DO
o pXq represent

the signed distances from coordinate X to the object under transformation O, and DH
h pXq

represent the signed distances from coordinate X to the hand under transformation H.

DSpXq is positive if X is inside shape S, is negative if X is outside of S, and is 0 if X is on

the surface of S. Both DO
o pXq and DH

h pXq can be reshaped to voxel-based 3D representations

Vo and Vh. Here we expect I to be a differentiable function such that the derivative of the

energy function can be performed by back-propagation. We approximate DO
o pXq with an

IF-module and DH
h pXq with a combination of IF-modules.

The IF-module for object is a differentiable function IFopro, to, Xq, which takes the rota-

tion ro, translation to and coordinate X as inputs and outputs the signed distance from X to

the object with transformation of ro and to. The DeepSDF model [PFS19] learned an MLP

to approximate a transformation-invariant function ĪFopX;αĪFoq, whose output is the signed

distance from X to the object with no transformation. We build IFo on the pre-trained ĪFo

and fix αĪFo , i.e., IFopro, to, Xq “ ĪFopr
´1
o pX ´ toq;α

ĪFoq.

The shape of a human hand is a combination of multiple rigid parts, and the joint angles

control the overall hand shape. Due to the complexity of hand shape and possible topology

changes of a hand shape across different gestures, it is challenging to represent the hand

with a single IF module. To address this issue, we implemented a differentiable forward

kinematics module to compute the rotation and translation of each rigid part from the joint

angles. The signed distance to the hand is the max of signed distances to all parts.

Comparison to Interaction Bisector Surface. Interaction Bisector Surface (IBS)

[ZWK14] is a general representation for two-party 3D interactions. For a pair of 3D shapes

A,B, the IBS is defined as the equidistant surface between A and B. We argue that the IBS is

a special case of Interaction Field. For IBS, we are interested in a surface on which all points
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satisfy the constraint DAp¨q ““ DBp¨q. Although IBS is a strong baseline for classifying

and retrieving 3D interactions, it is a computationally intensive task. With pretrained IF

modules, we can quickly sample a set of points on the IBS via MCMC.

Physics. Although we can not write all the physics laws in the term of interaction field,

many important ones involved in two-party interactions can be encoded. Penetration of

two objects A,B can be written as
ř

xPX

a

DApxq2 `DBpxq2, where X “ tx : DApxq ą

0 and DBpxq ą 0u. Optimization for contact can be written as arg minH
ř

xPC
a

DH
A pxq

2 `DH
B pxq

2, where C is a collection of points on predefined contact regions on A

and B. Recall that BDOpXq
BX

is the normal vector of object O at coordinate X. We can also

enforce surface alignment with arg minH
ř

xPC‖
B

Bx
DH
A pxq ´

B

Bx
DH
B pxq‖2.

4.5 Experiment

Collecting Human Demonstrations of Grasping Objects. In order to learn intuitive

grasping by the conditional descriptor networks proposed in section 4.3 from human demon-

stration, we design a framework to collect a dataset of grasping objects, which contains over

56k frames of natural human grasping of 10 household objects. Each frame is represented

by a vector containing the hand pose, object pose, joint angles, and forces on each prede-

fined region. Table 4.1 describes the composition of a frame vector. The 3D scene can be

reconstructed from the frame vectors. Figure 4.2 shows a visualization of our dataset.

Figure 4.2: Snapshots in our dataset. Each column shows three different forms of grasping of an
object.
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time obj. position obj. orientation joint angle force total

1 28ˆ 3 x-y-z 28ˆ 4 quaternion 36 19 252

Table 4.1: Frame vector composition

Our data collection environment consists of a set of sensors, a VR environment, and

a communication process. Our sensor composition consists of a data glove developed in

[LXM17] and an HTC Vive tracker. We use the glove to collect joint angles and the HTC

Vive tracker to collect the 6D pose of the upper arm, which is the root node of the hand.

The collected data is streamed to MuJoCo [KT15] in real-time to control an MPL hand

model [JBB11]. MuJoCo renders the hand model according to the received data to provide

visual feedback for participants to adjust their actions. The communication channel between

our tracker and the VR environment is implemented in ROS. Figure 4.3 depicts the overall

schematic diagram of our environment setup.

We ask ten right-handed subjects to grasp the given objects in VR steadily without

external support except for visual feedback. Each participant is given 60 seconds to perform

as many forms of natural stable grasping for each object. To increase data variance, we ask

the participants to move their fingers slightly for each form of grasping. To avoid interfering

with human intuitive grasping strategy, we asked subjects to grasp with whatever poses

they think comfortable and natural, without telling the subjects to perform the specific,

well-defined grasping poses as categorized in [FRS15]. As proved in [US00], people can

grasp arbitrary virtual objects with realistic grasping poses intuitively without any haptic

feedback. The collected dataset serves as human demonstrations, from which our model

learns intuitive grasping.

Data Processing. For each frame, we align the data so that its center of gravity is at

the origin, and the palm of the human hand is pointing along the x-axis. We use a 6-vector to

represent a 3D rotation and a 2-vector to represent and 1D rotation for better performance

with neural networks [ZBL18]. Therefore, our H is a 53-vector with the following correspon-
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Figure 4.3: The schematic diagram of data collection process.

dence. 0-43: joint angles for 22 joints. 44-49: rotation of the hand. 50-52: translation of

hand. Our Y is a 9-vector for rotation and translation of the object. We further perform a

singular value decomposition on H and keep the top 24 principal components.

Training. We use a 3D convolutional neural network to estimate the energy as a function

of the interaction field. The network consists of 4 3D convolutional layers, with the input

size being N ˆ 64 ˆ 64 ˆ 64 ˆ 2, where N is the batch size. The layers have 128 8 ˆ 8 ˆ 8,

128 8ˆ 8ˆ 8, 64 8ˆ 8ˆ 8 and 64 6ˆ 6ˆ 6 filters respectively. The bottom layer is followed

by a fully-connected layer with one output unit. There is no downsampling operation, and

each layer is followed by ReLU activation except for the last layer.

We use 4 Titan RTX graphics cards in parallel to train our model. Due to memory limits,

we randomly pick 4000 frames from our dataset to train our model. We use l “ 90 Langevin

steps in the sampling process with step size ∆τ “ 0.1. Each epoch takes „ 20 hours to train.

During training, we make two key observations and applied two tricks for easier training.

Soft start. We observe that in the first epoch, when the learned energy landscape is yet

to be meaningful, we do not need a long sequence of Langevin dynamics to sample from

P pH|O; θq. Therefore, we adjust the number of Langevin steps lt “ min
`

90, floor
`

t
10

˘˘

at

the t-th step. Adaptive step size. We also observe that the gradient on the control vector

H suffers from unbalanced gradients. Specifically, more sensitive signals (such as translation

and rotation of hand) receive much larger gradients than less sensitive ones (such as the angle
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of the terminal joint of each finger). In our experiment, the difference between gradients can

be as large as 20X. We adopt the idea from Adam [KB14] to set the step size of each signal

to be inversely proportional to a moving average of its gradient.

Results and Analysis. Figure 4.4 shows qualitative synthesis results from our model

and two baseline models. For each example, we run 16 parallel syntheses and show the one

with the lowest energy. We can observe that our model can synthesize different grasping

patterns for the same object. We can also observe failure cases where the fingers either

penetrate or do not touch the object. We expect such behavior because we only model the

geometric features of human grasping that correspond to the brain activity in the preshape

stage. Physical constraints can be met with additional optimization procedures and is out

of the scope of this chapter. We also see some failure cases with complex shapes, such as

wine glass. A possible explanation is that the energy landscape for grasping complex shapes

is much more complex than simpler shapes. Additional effort in the sampling process may

be required to improve our robustness over complex shapes. We also observe that our model

significantly outperforms baseline methods [MO14, KW13] with the same architecture. A

possible reason is that both baseline methods use two networks. The interplay between two

networks makes efficient training exceptionally hard. Our method only contains one network

and therefore is easier to train. Another explanation is that both the generator in conditional

GAN and the encoder in VAE computes H as a function of the geometrical features of the

object, without leveraging the geometrical relationship between both shapes.

Since our method does not model physical stability, we cannot evaluate our result with

simulation. Instead, we ask volunteers to rate synthesis quality for our synthesized results.

The results shown in Table 4.2 show that our method can synthesize much more realistic

graspings compared to conditional GAN and VAE. Compared with GAN and VAE, our

model does not rely on any extra network structures, such as discriminator in GAN and

inference network in VAE.

To illustrate that intuitive grasping can be applied to actual grasping with physically-
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Figure 4.4: Qualitative evaluation of our synthesized examples. The blue voxels are the objects,
and the red ones are the hands. The first 6 columns show synthesis results on objects that have been
seen during the training stage. The last two columns show synthesis results on objects that have
never been seen during training. The animated version of this figure can be found in supplementary
materials.

Description Our method Our method (U) Conditional GAN VAE

(1) 16.25% 10.63% 0.63% 1.25%
(2) 30.63% 21.88% 1.25% 6.88%
(3) 35.00% 44.38% 4.38% 6.88%
(4) 18.13% 23.13% 93.75% 85.00%

Table 4.2: Human evaluation. We show ten unmarked animations of synthesized examples for each
method to 16 participants and ask them to choose the best description from 4 options for each
example. We report the proportions of chosen descriptions for each method. Our method (U)
shows the result of our method on unseen objects. The options are: (1) A perfect grasping. (2) A
good grasping with error in details. (3) Close to a good grasping. (4) Not a grasping at all.
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(a) Before physics (b) After physics

Figure 4.5: An example of physically-based optimization. We observe that the grasping hand is
qualitatively more natural than the proposed shape after optimization.

based optimization, we implement a naive optimization algorithm to reduce penetration and

promote contact. Our algorithm alternatively performs penetration reduction and contact

promotion. Penetration reduction. We define a penetration loss LppHq “
ř

xPP Dhpxq
2`

Dopxq
2 where P is a set of points sampled from the surfaces of the object and the hand,

where the signed distances from each point to both the hand and the object are non-negative.

Contact promotion. We define a contact loss LcpHq “
ř

xPP c Dhpxq
2 ` Dopxq

2 where P c

is a set of sampled points between the object and the hand. P c is sampled with MCMC

sampling where the energy term is Epxq “ Dopxq`Dhpxq. The MCMC sampling starts from

points on the inner surface of the hand model. We update H in both steps by gradient

descent on the corresponding loss. Figure 4.5 shows an example of our physically-based

optimization.

4.6 Conclusion

In this chapter, we propose a conditional descriptor network to represent intuitive grasping,

a deep conditional energy-based model with ConvNet structure defined on the configurations

of both hand pose and object as negative energy. The model can be learned from human

demonstrations and can synthesize possible intuitive grasping for given objects. We show

that our method is superior to the baseline methods we developed based on GAN and VAE.

We also introduce a 3D shape-aware energy function with Interaction Field as an intermediate

representation for 3D shape interactions. In addition, we collect a grasping dataset serving

as human demonstrations, from which the proposed model learns intuitive grasping. The
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dataset contains over 56k frames of natural and realistic human grasping that contains shape,

joint angles, contact surfaces, and forces. We expect future works to perfect the generation

of intuitive grasping and optimize generated intuitive grasping proposals based on physical

constraints.
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CHAPTER 5

Synthesizing Diverse and Physically Stable Grasps

with Arbitrary Hand Structures by Differentiable

Force Closure Estimation

The previous chapter describes an energy-based method of learning humanoid grasping.

While the method can synthesize realistic grasps, the synthesis results are restricted to a

single type of grasping. This chapter breaks down the shape-level interaction into physics-

level and shows significant improvement of synthesis diversity and robustness of the new

method.

5.1 Introduction

Grasp synthesis has been a challenging task due to the complexity of hand kinematics.

Although force closure has been commonly accepted to evaluate the quality of the generated

grasps, researchers usually avoid using it as an optimization objective: Computing force

closure requires solving for contact forces, which is an optimization problem itself. As a

result, using force closure as the optimization objective in grasp synthesis would produce

a notoriously slow and nested optimization problem. Instead, researchers have turned to

analytical or data-driven methods [BMA13].

Analytical methods use manually derived algorithms. Due to the intrinsic complex-

ity of the grasp synthesis, these methods [PSB93, PSS97, LLC03] typically perform only in
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limited settings (usually on power grasps as defined in grasp taxonomy) and are only ap-

plicable to specific robotic hand structures. Modern approaches focus more on data-driven

methods [TGB20, BKK20, KYZ20], which relies on large datasets of human demonstrations.

Although these methods are able to reproduce (and even interpolate) similar but different

grasps compared to human demonstrations, they are inherently difficult to generalize (espe-

cially to extrapolate) to arbitrary hand kinematics and unseen grasp types. Furthermore,

these data-driven methods usually do not consider the physical stability in producing grasps,

making them difficult to deploy on physical robots.

In this chapter, different from analytical or data-driven approaches, we derive a fast

and differentiable estimation of force closure. It can be computed within milliseconds on

modern desktops, significantly faster than classic algorithms. Such fast computation of force

closure opens a new venue for grasp synthesis. Since it does not rely on training data or

restrict to specific robotic hand structures, the proposed method can be applied to arbitrary

hand structures to synthesize diverse types of grasps with physical stability.

Specifically, our method is based on two simple yet reasonable and effective assumptions:

zero friction and equal magnitude of contact forces, which avoid solving the contact

forces in the inner optimization problem. Intuitively, such assumptions indicate that the

contact force on each contact point becomes simply the object’s surface normal on that

point. As such, the overall nested optimization problem is converted to minimizing the

errors that violate the above assumptions; see an example in Fig. 5.1. In experiments, we

demonstrate that our estimated error reflects the difference between surface normal vectors

and force closure contact force vectors. We further devise a grasp energy function based on

the estimated force closure and validate the force-closure grasp synthesis by minimizing the

energy function.

This chapter makes two primary contributions:1

1See additional material on our website https://sites.google.com/view/ral2021-grasp/.
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Figure 5.1: Grasp synthesis process by minimizing force closure error. The green trianglets
in (c)(d) denote the friction cones at contact points used to calculate force closure.

1. We formulate a fast and differentiable estimation of force closure, computed within mil-

liseconds.

2. We propose a grasp synthesis algorithm that can generate diverse types of grasps with

arbitrary hand structures without any training data.

5.2 Related Work

Grasp synthesis literature can be roughly categorized into two schools of thought: analytic

and data-driven approach.

The analytic approach generates grasps by considering kinematics and physics con-

straints [SEB12]. Although force closure has been commonly adopted as the physics con-

straint [RMF12, PMG12, RSG12, Mur17], primary efforts have been devoted to simplify the

search space (e.g ., [PSB93, PSS97, LLC03]) as testing force closure is expensive. However,

these methods are only effective in specific settings.

The data-driven approach leverages recent advancements in machine learning to estimate

grasp points. Despite promising progress [SDN08, CA09, RKK09, LLS15, MLN17, LPK18],

this approach relies heavily on large datasets to learn successful grasps, with a particular fo-

cus on grippers with limited DoF. Although recent literature [AKH12, LS15, BHH20, GTT21]

extends this approach to more complex hand models, capable of generating more realistic
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grasps, they still rely on the expensive and tedious collection of human demonstration data.

Fundamentally, it is non-trivial for a data-driven approach to generalize the learned model

to other hand kinematics.

An example that does not fall into either of the above categories is the popular toolkit

of GraspIt! [MA04]. It generates grasps by initializing hand pose randomly, squeezing the

fingers as much as possible, and ranking them by a user-defined grasp metric (e.g ., a force

closure metric). Although this method can generate valid grasps, it is highly inefficient and

incapable of generating diverse grasps [CPA20].

A force-closure grasp is a grasp with contact points txi P R3, i “ 1, ..., nu such that

txiu can resist arbitrary external wrenches with contact forces fi, where fi lies within the

friction cones rooted from xi. The angles of the friction cones are determined by the surface

friction coefficient: The stronger the friction, the wider the cone. The force-closure metric

is, therefore, irrelevant to the actual hand pose, but only relevant to the contact points and

friction cones.

To test whether a set of contact points form a force-closure grasp, the first step is solving

an optimization problem regarding contact forces rooted from the points [BW07, HTL00].

Although various methods have been devised, they all require iterations to jointly solve an

auxiliary function, e.g ., a support function [ZC09], a bilinear matrix inequality [DMT18], or

a ray shooting problem [Liu99]. As a result, solving force-closure grasps under the constraint

of hand kinematics and force closure becomes a nested optimization problem.

Human grasps can be organized into a grasp taxonomy [FRS15]; humans perform

grasps to provide different levels of power and precision. According to the taxonomy [FRS15],

most existing grasp synthesis methods focus on synthesizing power grasp, including both an-

alytical approaches [RMF12, PMG12, RSG12, Mur17] and data-driven approaches [KYZ20].

At a high cost of annotating object-centric grasp contact information, some data-driven ap-

proaches [BHH20, TGB20] demonstrate a certain level of capability to generate a broader

range of grasp types.
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The diversity of grasp synthesis can be evaluated by comparing the types of generated

grasps against the ones in the grasp taxonomy. Corona et al . [CPA20] provide a dataset,

YCB-Affordance, of 3D grasps with corresponding grasp types, which covers all 33 grasp

types as defined in [FRS15].

5.3 Differentiable Force Closure

Formally, given a set of n contact points txi P R3, i “ 1, ..., nu and their corresponding

friction cones tpci, µqu, where ci is the friction cone axis and µ is the friction coefficient, a

grasp is in force closure if there exists contact forces tfiu at txiu within tpci, µqu such that

txiu can resist arbitrary external wrenches. We follow the notations in Dai et al . [DMT18]

to define a set of contact forces to be force closure if it satisfies the following constraints:

GG1 ľ εI6ˆ6, (5.1a)

Gf “ 0, (5.1b)

fTi ci ą
1

a

µ2 ` 1
|fi|, (5.1c)

xi P S, (5.1d)

where S is the object surface, and

G “

»

–

I3ˆ3 I3ˆ3 ... I3ˆ3

tx1uˆ tx2uˆ ... txnuˆ

fi

fl , (5.2)

txiuˆ “

»

—

—

—

–

0 ´x
p3q
i x

p2q
i

x
p3q
i 0 ´x

p1q
i

´x
p2q
i x

p1q
i 0

fi

ffi

ffi

ffi

fl

. (5.3)

The form of txiuˆ ensures the cross product txiuˆfi “ xi ˆ fi; f “ rf
T
1 f

T
2 ...f

T
n s

T P R3n is
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the unknown variable of contact forces. In Eq. (5.1a), ε is a small constant. A ľ B means

A´B is positive semi-definite, i.e., it is symmetric, and all its eigenvalues are non-negative.

Eq. (5.1a) states that G is full rank. Eq. (5.1c) describes the constraint that fi should not

deviate from the friction cone tpci, µqu.

5.3.1 Relaxation

Of note, Eq. (5.1b) is bilinear on xi and fi. Given a set of contact points txiu, verification

of force closure requires finding a solution of tfiu. The time complexity for computing such

a solution is linear w.r.t. the number of contact points [DMT18]. However, we observe that

under the assumption of zero friction and the contact forces have equal magnitude, Eq. (5.1b)

can be relaxed and rewritten to

GG1 ľ εI6ˆ6, (5.4a)

Gc ă δ, (5.4b)

xi P S, (5.4c)

where c “ rcT1 c
T
2 ...c

T
n s
T is the set of friction cone axes; ci can be simply replaced by the

surface normal of the object on xi, which is easily accessible in many shape representations.

By combining Eq. (5.4b) along with Eq. (5.1a) and Eq. (5.1c), we no longer need to solve

the unknown variable f . The constraints of xi becomes quadratic. Hence, the verification

of force closure can now be computed extremely fast. The error in Gc reflects the difference

between force closure contact forces and friction cone axes.

5.3.2 Implications of Assumptions

Enforcing zero friction and equal magnitude contact forces may seem to eliminate a large

pool of force-closure contact-point compositions. In practice, however, this is not the case:

A residual in ||Gc||2 indicates that the zero-friction and equal-magnitude contact forces do
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finger 1

finger 2
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(c)

finger 1

finger 2
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(d)

Figure 5.2: A 2D illustration of the classical force closure test and our estimated force
closure error. (a)(b) Two scenarios passed and failed the classical force closure test. (c)(d) Our
estimated force closure error on the same scenarios as in (a)(b).

not perfectly cancel out. Such residual could have been reduced to zero should friction and

magnitude difference be allowed. Fig. 5.2 illustrates the implication of our assumptions in

2D. Specifically, for cases where our assumptions are violated, ||Gc||2 would have a non-zero

error δ. Eq. (5.1b) can be rewritten as

Gf “ Gpfn ` ftq “ 0, (5.5a)

G
fn
||fn||2

“ ´
Gft
||fn||2

, (5.5b)

Gc “ ´
Gft
||fn||2

, (5.5c)

where fn and ft are the normal and tangential components of contact force f in the force clo-

sure model. Having an error in ||Gc||2 essentially implies that there is a friction components

in the contact forces to form a force closure grasp, and the error δ indicates the magnitudes

of the friction components.

To further verify our interpretation, we randomly sample 500,000 grasps, each containing

three contact points on the surface of a unit sphere. For each grasp, we compute the minimum

friction coefficient µ0 required for the grasp to satisfy the traditional force closure constraints

described in Eq. (5.1). We plot the error δ of our estimated force closure value against µ0 in

Fig. 5.3 to show that the relation between µ0 and δ is almost linear.
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Figure 5.3: Estimated force closure error δ (x-axis) against minimum friction coefficient
µ0 (y-axis). The violinplots [HN98] show the distributions of all estimated force closure errors
that require a minimum friction coefficient µ0 to pass the classical force closure test. Overall, these
two are linearly correlated.

5.4 Grasp Synthesis

5.4.1 Formulation

We formulate the grasp synthesis problem as sampling from a conditional Gibbs distribution:

P pH|Oq “
P pH|OqP pOq

P pOq
“
P pH,Oq

P pOq
(5.6)

9P pH,Oq “
1

Z
exp´EpH,Oq, (5.7)

where H denote the hand, O the object, Z the intractable normalizing constant, and EpH,Oq

is the grasp energy. EpH,Oq can be further decomposed to

EpH,Oq “ min
xĂSpHq

EgrasppH, x,Oq (5.8)

“ min
cĂSpHq

FCpc, Oq ` EpriorpHq ` EpenpH,Oq, (5.9)

where SpHq is a set of points sampled from the hand surface determined by the hand pose

H, c Ă SpHq the set of contact points selected from hand surface, and FCpc, Oq the force
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closure formulation from Eq. (5.11).

EpriorpHq is the energy prior of the hand kinematic tree; its exact form depends on the

hand definition. EpenpH,Oq “
ř

xPSpHq σpx,Oq is the penetration energy, where SpHq is a

set of points sampled from hand surface, and σpx,Oq is a modified distance function between

a point x and an object O:

σpx,Oq “

$

’

&

’

%

0 if x outside O

|d| otherwise

, (5.10)

where d is the distance from x to surface of O.

5.4.2 Algorithm

Due to the complexity of human hand kinematics, the landscape of our grasp energy is highly

non-convex. With a naive gradient-based optimization algorithm, it is very likely to get stuck

at bad local minima. We use a modified Metropolis-adjusted Langevin algorithm (MALA)

to overcome this issue; see the algorithm details in Algorithm 2. The random walk aspect of

Langevin dynamics provides the chance of escaping bad local minima. Our algorithm starts

with random initialization of hand configuration H and contact points c Ă SpHq. Next, we

run our algorithm L iterations to update H, c and maximize P pH,Oq. In each iteration, our

algorithm randomly decides to update either the hand configuration by Langevin dynamics

or one of the contact points to a point uniformly sampled from the hand surface.

To sample contact points from the hand surface, we start with random initialization of

contact points, and randomly update one of the contact points to a point uniformly sampled

from the hand surface each time. Notice that different compositions of contact points in fact

correspond to different grasp types as they contribute to some of the classification basis of

the grasp taxonomy, including virtual finger assignment and opposition type. Hence, this

step is crucial for exploring different types of grasps. In practice, we also empirically find

61



that this step is crucial for escaping bad local minima.

Algorithm 2: Modified MALA Algorithm

Input: Energy function Egrasp, object shape O, step size η, Langevin steps L,
switch probability ρ

Output: grasp parameters H, c
1 Initialize H, c
2 for step “ 1 : L do
3 if randpq ă ρ then
4 Propose H˚ according to Langevin dynamics

H˚
“ H ´

η2

2

B

BH
EgrasppH, c,Oq ` ηε,

where ε „ Np0, 1q is a Gaussian noise
5 else
6 Propose c˚ by sampling from SpHq
7 end
8 Accept H Ð H˚, cÐ c˚ by Metropolis algorithm using energy function Egrasp
9 end

5.4.3 Refinement

While our modified MALA algorithm can produce realistic results, there may still be physical

inconsistencies in the synthesized examples, such as penetrations and gaps between contact

points and object surface. To resolve these issues, we further refine the synthesized results

by minimizing Egrasp using gradient descent on H. We do not update the contact point

selection c in this step since we hope to focus on optimizing the physical consistency in this

step, rather than exploring the grasp landscape for diverse grasp types.
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Figure 5.4: Boxplot and log-linearly fitted curve of the runtime w.r.t. to the number of
contact points. We run a simulated test of force closure with 3, 5, 10, 20, 100, and 1000 contact
points for 1,000 iterations. X-axis is the number of contact points in log scale. Y-axis is the runtime
of our force closure error estimation. The shaded area denotes the 95% confidence interval.

5.5 Experiment

5.5.1 Experiment Setup

Hand Model We use MANO [RTB17] to model the humanoid hand. It is a parameterized

3D hand shape model that maps low-dimensional hand poses to 3D human hand shapes.

We use the norm of the PCA weights of the hand pose as EpriorpHq. Since MANO vertices

are distributed uniformly across the hand surface, we sample points from the hand surface

by directly sampling from MANO vertices.

Object Model We use the DeepSDF model [PFS19] to model the objects to be grasped.

DeepSDF is a densely connected neural network that implicitly represents the surface of a

shape. The model estimates the signed distance from a position to an object surface. The

signed distance is negative if the point is inside the object, and is positive if the point is

outside the object. The set of points with zero distance compose the surface of the object.

We can obtain the surface normal of the object by taking the derivative of the signed distance

w.r.t. the input position.
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5.5.2 Runtime Efficiency

Figure 5.4 shows that the time complexity of testing force closure with a fitted log-linear curve

w.r.t. the number of contact points. Each test takes 4-6ms to run on an NVIDIA Titan RTX

GPU, significantly faster than the exact solution [DMT18]. We also observe that roughly

80% of the total runtime is spent at the computation of surface normal; this operation is

particularly slow because it takes a derivative of the DeepSDF model. Taken together, these

empirical simulated results indicate that a further improvement in runtime efficiency would

be achievable with a more computationally tractable object shape representation.

5.5.3 Force-closure Contact-point Generation

By directly minimizing the proposed force closure estimate, we can synthesize force closure

contact points with arbitrary shapes. Specifically, we rewrite the solution of constraint in

Eq. (5.4) as

x˚ “ arg min
x

FCpx,Oq,

FCpx,Oq “ λ0pGG
1 ´ εI6ˆ6q ` ||Gc||2 ` w

ÿ

xiPx

dpxi, Oq,
(5.11)

where G is defined in Eq. (5.2), and c “ tciu, where ci is the surface normal of object O at

point xi. λ0p¨q gives the smallest eigenvalue. dpx,Oq returns the distance from point x to the

surface of object O. w is a scalar that controls the weight for the distance between contact

points and object. By minimizing the three terms, we are looking for txiu that satisfies the

constraints in Eqs. (5.4a) to (5.4c), respectively.

We run gradient descent on contact point positions to minimize FCpx,Oq; the computed

contact points on a unit sphere and some daily objects are shown in Fig. 5.6. Despite

our assumptions, minimizing our force closure estimate can properly produce force closure

contact points.
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without
refinement

(a)
FC=0

SD=0.0143

(b)
FC=0

SD=0.0457

(c)
FC=0.0467
SD=0.0323

(d)
FC=0.0581
SD=0.0128

(e)
FC=0.1035
SD=0.0274

(f)
FC=1.2294
SD=0.0053

without
refinement

(g)
FC=0

SD=0.0033

(h)
FC=0

SD=0.0022

(i)
FC=0.0900

SD=0.0015

(j)
FC=0

SD=0.0020

(k)
FC=0

SD=0.0006

(l)
FC=1.1509
SD=0.0004

Figure 5.5: Examples of synthesized grasps. Top: synthesized grasps before refinement. Bot-
tom: the same set of synthesized grasps after refinement. FC: estimated force closure error. SD:
mean distance from each contact point to the object surface. Left to right: examples with zero FC
error, small FC error, and high FC error qualitatively illustrate how our estimation of force closure
correlates to grasp quality.

Figure 5.6: Force-closure contact-point generations on unit spheres (top) and daily
objects (bottom) by minimizing Eq. (5.11). Objects in each columns have 3, 4, and 5
contact points, respectively.
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5.5.4 Grasp Synthesis

We test our grasp synthesis algorithm on various bottle shapes retrieved from the ShapeNet

dataset [CFG15]. Given the pre-trained DeepSDF model of an object, we randomly initialize

a MANO hand and use Algorithm 2 to sample the hand configuration as well as contact points

from P pH|Oq. We set the step size η “ 0.1, switch probability ρ “ 0.85, distance weight

w “ 1, temperature T “ 0.1, and Langevin steps L “ 106. We filter out samples trapped in

bad local minima by keeping samples that satisfy the constraint:

||Gc||2 ă 0.5 (5.12a)
ÿ

xiPx

dpxi, Oq
2
ă 0.02 (5.12b)

EpenpH,Oq ă 0.02 (5.12c)

where x is the set of contact points on the hand surface, and c is the friction cone axes

at contact points. Fig. 5.5 shows a collection of synthesis results with and without the

refinement step: Higher values of our force closure estimation corresponds to non-grasps,

whereas force closure estimation closed to zero is as good as the ones with force closure

estimation equal to zero. This observation confirms our previous analysis. We also

notice cases when the synthesis is trapped in bad local minima; these examples exhibit

large values in our force closure estimation. We show two examples in the last column

of Fig. 5.5. Such errors happened since the optimization problem is highly non-convex; one

cannot avoid every bad minimum with gradient-based methods. Fortunately, we can identify

these examples by their high force closure scores.

5.5.5 Physical Stability

We verify the physical stability of our synthesized examples by simulating the samples in

PyBullet. Specifically, we set gravity to be r0, 0,´10s; an example is deemed to be a suc-
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Figure 5.7: Energy landscape mapping generated by the ADELM algorithm [HNZ19]
(best viewed in color). Top: disconnectivity diagram of the energy landscape of our energy
function EpH,Oq. Green minima denote precision grasps, red power grasps, and yellow interme-
diate grasps. Bottom: examples from selected local minima; minima with lower energy barriers
in between have similar grasps. We also label the grasp taxonomy of each example according
to [FRS15]. Examples marked as unlisted do not belong to any manually classified type.

cessful grasp if the object’s vertical drop is less than 0.3 after 1000 steps of simulation.

Notice that a grasp’s physical stability depends not only on the force closure score of the

contact points, but also on whether the contact points are close enough to the object sur-

face. We set two different thresholds on the contact point distance; Table 5.1 tabulates

detailed comparisons of the success rate between our method against state-of-the-art al-

gorithms [PAD10, ORG19]. To the best of our knowledge, [PAD10] is the state-of-the-art

analytic approach, whereas [ORG19] is the state-of-the-art data-driven approach. Of note,

although [ORG19] reported 95% success rate in the original paper, many of the objects be-

ing tested have simple shapes, such as a sphere or a box; the success rate would drop to

85% when we remove these simple objects. Additionally, neither of the two state-of-the-art

methods has demonstrated the ability to synthesize diverse types of grasps. Although some
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other data-driven methods have demonstrated a certain level of diverse grasp synthesis, they

fail to report their physical stability as it is not their primary focus.

Table 5.1: Grasp success rates

method success rate

Unions of Balls [PAD10] 72.53%
Visuo-Haptic [ORG19] 85.00%

Ours (σ ă 0.0015) 76.98%
Ours (σ ă0.0005) 85.00%

5.5.6 Diversity of the Grasp Types

To evaluate the grasp synthesis’s diversity generated by the proposed method, we examine

the energy landscape of our grasp energy function. Below, we show that the distribution

of grasps defined by our energy function loosely aligns with the carefully organized grasps

taxonomy [FRS15] when applied to humanoid hands. We use the ADELM algorithm [HNZ19]

to build the energy landscape mapping of our grasps energy function EpH,Oq.

Specifically, we collected 371 synthesized grasp examples and adopted the ADELM al-

gorithm [HNZ19] to find minimum energy pathways (MEPs) between them. We project the

MEPs between examples to a disconnectivity graph in Fig. 5.7. In the disconnectivity graph,

each circle at the bottom represents a local minima group. The size of the circle indicates how

many synthesized examples fall into this group. The height of the horizontal bar between

two groups represent the maximum energy (or energy barrier) along the MEPs between two

groups. The MEPs with lowest barriers connect smaller groups into larger groups, and this

process is repeated until all examples are connected. The produced disconnectivity graph is

an estimation of the true landscape of the energy function. Energy landscape mapping in

Fig. 5.7 shows that the local minima with low energy barriers between them have similar

grasps, and those with high energy barriers between them tend to have different grasps. We

also observe that the energy landscape contains all three categories in the power/precision
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(a) Red: power grasps. Yellow: in-
termediate grasps. Green: Preci-
sion grasps. Other: Unlisted.

(b) Red: power sphere grasps. Yel-
low: power disk grasp. Green:
power cylinder grasps (large diam-
eter, medium wrap, small diame-
ter)

(c) Red: power sphere and preci-
sion sphere grasps. Yellow: tri-
and quad- pod grasps.

Figure 5.8: Alignment between our energy landscape and existing grasp taxonomy [FRS15]. Best
viewed in color.

Figure 5.9: Synthesized grasps of different hands using our formulation. Top: A MANO
hand with its thumb removed. Bottom: A Robotiq 3-finger gripper. The left-most figure shows
the hand used in each row.

dimension as described in [FRS15].

To provide a more comprehensive understanding of the alignment between our energy

landscape and the existing taxonomy, we further plot the local minima groups as a 2D graph

in Fig. 5.8, which supplements the 1D energy landscape shown in Fig. 5.7. In Fig. 5.8, each

node represents a local minima group. The edges between nodes denote the energy barriers

between the minima groups they connect: Thicker edges indicate lower energy barriers and

therefore closer minima groups, and no edge between two nodes means no pathway has been

found between the two groups. Nodes with lower barriers between them are placed closer to

each other.

Fig. 5.8a shows that the power grasps and precision grasps are mostly separated from
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Figure 5.10: Examples of novel grasp poses that, to the best of our knowledge, are not included in
any grasp taxonomy.

each other, indicating a high energy barrier between the two. One interpretation is that there

is no smooth transition between a power grasp and a precision grasp without a non-force-

closure grasp along with the transition. Intermediate grasps are scattered around. Nodes

that are not colored are grasp types not listed in any existing grasp taxonomy, indicating the

manually-defined grasp taxonomy, though carefully collected and designed, still falls short

when facing a large variety of grasps.

In Fig. 5.8b, we draw different types of power grasps in different colors. Only the power

grasps close to the precision grasps belong to the power sphere type. This observation

matches our intuition as a power sphere grasp is similar to a precision sphere grasp, with

a slight difference in the distance between the object and the palm. In other words, there

exists a smooth transition between a precision sphere grasp and a power sphere grasp such

that all snapshots along the transition are force-closure grasps. Please refer to [FRS15] for

more details on power and precision sphere grasp.

In Fig. 5.8c, we observe that sphere grasps and tri- or quad-pod grasps are close to each

other. This observation is also expected since many sphere grasps can be converted to tri-

or quad-pod grasps by merely lifting one or two fingers.

We further demonstrate that our algorithm can find natural but novel and stable grasps

in Fig. 5.10. These grasps are rarely collected in any of the modern 3D grasp datasets

(e.g ., [TGB20, CPA20]), since they do not belong to any type as defined in the grasp tax-
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onomy. However, these grasps are valid grasps and could well exist in physical interactions.

For example, the left example in Fig. 5.10 is commonly used when one needs to twist-open a

bottle when some of your fingers are occupied or injured. The second example would occur

if one is already holding something in the palm while picking up another bottle. These grasp

poses happen because the human hand is excellent in doing multiple tasks simultaneously;

they have not been well recognized in the grasp literature as we always assumed otherwise.

Such limitation would hinder a robotic hand’s capacity from developing to its full poten-

tial. Our method provides possibilities to explore grasps in different types beyond the grasp

taxonomy, which is a crucial step toward exploiting the total capacity of a complex hand

structure such as human hands.

5.5.7 Grasp Synthesis for Arbitrary Hand Structures

Although the above experiments primarily rely on MANO for hand modeling and grasp

taxonomy, our method in fact makes no assumption on the hand kinematics except for

having a differentiable mapping between pose and shape. As a result, we can synthesize

grasps for arbitrary hand so long as there exists such a mapping. In Fig. 5.9, our method,

without modifications, can synthesize grasps of a MANO hand with its thumb removed and

a Robotiq 3-finger gripper. Specifically, for the 3-finger gripper, we used a differentiable

forward kinematics [SWL20] as the mapping from joint states to the hand shape. These

examples demonstrate that our method can explore a wide range of grasps for arbitrary

hand structure, which could provide valuable insights for understanding the task affordance

of prosthetic or robotic hands, and hands with injuries or disabilities. Our method is also

applicable to animations, wherein grasps of non-standard hands or claws are common.
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(i)

(j) (k) (l)

Figure 5.11: Synthesizing specific types of grasping by enforcing contact points.
(a)(d)(g)(j) show the query contact points in red, each followed by two synthesized examples using
the queried contact points. Grasp types can be determined by enforcing the choice of contact points
on the hand surface.

5.5.8 Synthesizing Specific Grasp Type

As mentioned in Section 5.4.2, the choice of contact points on the hand surface primarily

determines the grasp type. Hence, specific grasp types can be synthesized by mandating the

choice of contact point; see examples in Fig. 5.11.

5.6 Conclusion

We formulated a fast and differentiable approximation of the force closure test computed

within milliseconds, which enables a new grasp synthesis algorithm. In a series of experi-

ments, we verified that our force closure estimation correctly reflects the quality of a grasp,

and demonstrated the proposed grasp synthesis algorithm could generate diverse and phys-

ically stable grasps with arbitrary hand structures. The diversity of the generated grasps is

validated by its alignment with widely accepted grasp taxonomy.

We believe that exploring different grasp types is crucial for future works of understanding

72



the hand’s total functional capacity, whether it is a prosthetic hand, a robotic hand, or an

animated character’s hand.
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CHAPTER 6

Conclusion

This dissertation addresses two major missing parts in the study of 3D human-object inter-

action, namely, the lack of high-quality data and the lack of a hierarchical representation of

3D HOI.

We collected a large-scale synthetic dataset SHADE by exploiting the asset of a popular

3D video game. Our dataset contains rich and fine-grained 3D annotations of human-object

interactions. In addition, the human pose in our dataset is a complement to existing human

pose datasets, and the geometrical relationship in our dataset can be applied to real-life

human behaviors. This dataset opens up new possibilities in modeling 3D human-object

interactions. The SHADE dataset contains high-fidelity 3D shapes of the objects in HOI,

which allowed us to address the second challenge by decomposing the object shape into

functional parts.

We also propose a hierarchical modeling of human-object interaction and demonstrate

that we can learn a more robust descriptive model by modeling HOI in a hierarchical fashion.

We further demonstrated that we could obtain an explicitly derived descriptive model of

grasping for arbitrary hand structure by decomposing shape-level geometrical relationships

into physics-level.

We conclude this dissertation by observing that human activities are the results of fulfill-

ing specific goals, where these goals can be written as physical or social constraints. In this

dissertation, we explored the activity of sitting, where the goal is learned by an energy-based

model, and the activity of grasping, where the goal is to resist arbitrary external wrench.
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Some other examples include drinking, where the goal is to let water flow into the mouth,

and group activity, where the goal is to maximize communication efficiency within a group.

Once we understand these goals, understanding human behavior becomes trivial. However,

it is a more challenging task to understand the goal behind observed human activities. It is

an especially challenging task to have a unified representation to facilitate automatic goal

discovery. Such a task may require joint understanding of object affordance and fluents.
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