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This dissertation summarizes the results from the development and application of models 

to investigate the transport and dispersion of pollutants from two major sources. In the first 

study, I formulate and apply a dispersion model to estimate emissions of methane from 

manure dairy lagoons, In the second, I examine the role of noise barriers in mitigating the 

impact of vehicular emissions on near-road air quality. I also present the development and 

application of a semi-empirical meteorological model to compute meteorological inputs 

required by dispersion models using measurements from instruments that are simpler and 

less cumbersome than those being used now. 

Manure lagoons in dairies make significant contributions to emissions of methane, a major 

greenhouse gas. Because there is no direct method to estimate these emissions, a variety of 

methods have been developed to infer these emissions from concentration measurements 

made close to lagoons. My research involves developing such an inference approach based 

on a state-of-the-art dispersion model combined with a unique sampling strategy. My 
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approach also allows for estimating the uncertainty in these emission estimates. I 

demonstrate my approach by applying it to estimating methane emissions from two manure 

lagoons, one located in southern California and the other in northern California. I compare 

my results with those obtained from a popular approach based on a Lagrangian particle 

dispersion model. 

Air pollution associated with vehicle emissions from roadways has been linked to a variety 

of adverse health effects on people living within 100 m of roadways. Wind tunnel and 

tracer studies indicate that near-road noise barriers have a mitigating impact on air pollution 

caused by vehicular emissions. Data from these studies formed the basis of a barrier model 

that accounted for this mitigating effect. This model has been incorporated into a research 

version of AERMOD, a model recommended by the USEPA for estimating the impact of 

a variety of pollution sources including highways. Before AERMOD can be used for 

regulatory applications that give credit for the mitigating effect of noise barriers, the barrier 

component of the model must be evaluated with real-world data with its attendant 

complexities that were absent in the controlled wind tunnel and tracer studies. I made 

significant contributions to the design and conduct of a comprehensive field study that 

UCR conducted to collect the data required to evaluate the performance of the barrier 

component of AERMOD. An analysis of the data indicates that AERMOD is likely to 

underestimate mitigation from barriers at low wind speeds. We suggest an approach to 

correct this problem. 

Currently used dispersion models require meteorological inputs that are best computed 

with time-resolved velocity and temperature measurements made with 3-D sonic 
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anemometers. Because such measurements are not routinely available, there is a need for 

methods that provide accurate estimates of these inputs using equipment that is easy to set 

up and provides measurements that can be readily interpreted. I demonstrate such a method 

based on measurements of horizontal wind speeds and temperature fluctuations. The 

method is evaluated by comparing methane emissions from a dairy manure lagoon inferred 

from a dispersion model that uses modeled meteorological inputs to those from 

measurements with a 3-D sonic anemometer. We show that this method can be adapted for 

temperature fluctuations measured with a low-cost temperature sensor that is unable to 

resolve the high-frequency temperature fluctuations captured by sonic anemometers. 
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1 Introduction and Objectives 

 

 

1.1 Background 

Atmospheric dispersion models are mathematical descriptions of the atmospheric processes that 

govern the transport, dispersion, removal, and chemical transformation of pollutants emitted by 

sources (Venkatram and Schulte 2018a). Once the results from a dispersion model have been 

evaluated with measurements, the model can be used as a surrogate for reality to conduct 

numerical experiments that are difficult or impossible to conduct. For example, atmospheric 

dispersion models can be used to estimate pollutant concentrations where measurements are not 

available (Pineda Rojas 2014; Ahangar et al. 2019). This is especially important for regulatory 

purposes where the impact of planned or existing pollutant sources needs to be determined at 

various locations. Thus, dispersion models are important in ensuring that air quality in a region 

is acceptable. 

Sometimes direct measurements of emission rates of pollutants from sources such as manure 

lagoons, wind-blown dust from dried up lake beds, are not possible. In such cases it is necessary 

to infer emission rates from measurements of pollutant concentration around these sources. In 

such cases, dispersion models can be applied to infer the emission rate by fitting these 

measurements to model estimates treating the emission rate as the unknown parameter. This 
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technique of inferring emissions rates from the measured pollutant concentration using a 

dispersion model is called Inverse Dispersion Modelling (Kia et al. 2022; Bühler et al. 2022). 

A dispersion model accounts for pollutant transport by, dispersion due to turbulence, scavenging 

due to dry and wet deposition, and chemical transformations (Venkatram and Schulte 2018a). 

The time scales of these processes relative to the transport time scale between the source and 

receptor determine the relative importance of the processes. Continuous pollutant emissions with 

source-receptor distances of the order of tens of kilometers are modelled as continuous plumes 

governed by meteorology near the source, when scavenging and chemical transformation are 

slow relative to the transport time scale. Some popular models using this approach are 

AERMOD (Cimorelli et al. 2005), RLINE (Snyder et al. 2013) and OML (Olesen et al. 2007) 

When the source-receptor distance becomes large, the wind fields between the source and 

receptor will show variations in both space and time. In such cases puff models or Eulerian grid 

models are usually used. In a puff or a particle model, a puff or air parcel consisting of the 

emissions from the pollutant source over a short period of time is tracked from the source 

through the varying wind fields. The puff evolves in response to the wind fields, turbulence, 

chemistry and scavenging of the species as it is transported from source to receptor. A puff 

model is resource intensive because it is necessary to release and track a large number of puffs 

to construct a time-averaged concentration at a receptor. The computational needs of a puff 

model can be reduced by applying a receptor-oriented approach. In this approach, the 

concentration at a receptor is only affected by the puffs that reach the receptor in the time of 

interest. The history of the puff before it reaches the receptor is calculated to determine the 

impact of the puff at the receptor. Some of the models using this approach are WindTrax (Flesch 

et al. 1995) and CALPUFF (Scire et al. 1990). 
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Eulerian grid models involve solving the mass conservation equation using a grid of boxes. A 

mass balance is performed in each box of the grid over a time interval that is small compared to 

the time scale of variation of the dominant governing processes. Inflow and outflow due to 

transport and turbulence, dry and wet deposition, and chemical transformation occurring within 

each box are considered in the mass balance. Each box in the grid is interconnected with each 

other such that the outflow from one box is the inflow into the adjacent box. The computational 

demand of a grid model is proportional to the number of grid boxes used in the model. Thus, it 

is often impractical to resolve plumes from sources individually in a grid model. Grid-based 

models are the best framework for straightforward treatment of chemical processes; each grid 

box is treated as a well-mixed reactor. CMAQ (Appel et al. 2021) and WRF-CHEM (Grell et al. 

2005) are dispersion models that treat chemistry using Eulerian grids. 

This dissertation focuses on the development and application of dispersion models for short 

range transport to investigate surface releases from major air pollution sources. These models 

are applicable for source-receptor distances in the order of a kilometer. At these short distances 

the major processes that govern the fate of the pollutant are transport due to mean winds and 

turbulent dispersion. Thus, the transport is modelled as continuous plumes with the meteorology 

assumed to be homogeneous in space and time. 

1.2 Objectives 

My research focuses on the development and application of dispersion models at scales of tens 

of meters between source and receptor. At these distances the major processes that govern the 

fate of the pollutant are transport by mean winds and turbulent dispersion. The meteorology is 

assumed to be homogeneous in space in these models. 
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In this thesis, I report on the development and application of dispersion models to address two 

problems: 

1. Estimation of methane emissions, an important greenhouse gas, from manure lagoons 

located in dairies. I pay particular attention to quantifying the uncertainty associated with 

emission estimates. 

2. Evaluation of dispersion models designed to estimate the impact of vehicle-related 

pollutant emissions on air quality next to roads. These models incorporate algorithms to 

account for the mitigating effect of near-road noise barriers on near-road air quality. I 

played a major role in conducting field studies to collect the data required to perform 

this evaluation and developed a method to estimate the inputs required by dispersion 

models using relatively simple measurements of scalar variables. 

1.3 Structure of the dissertation 

Chapter 2 describes the field experiments and the modelling techniques used to infer the 

𝐶𝐻4 emissions and their uncertainties from dairy manure lagoons. Chapter 3 describes a 

field study to collect data required to evaluate and improve a dispersion model that 

accounts for the impact of noise barriers on near-road air quality; the field study involved 

release of a tracer from vehicles traveling on a highway with a roadside noise barrier, 

collection of the tracer using automated samplers, and analysis of the sampled gases in the 

laboratory. This chapter also describes the evaluation of a semi-empirical dispersion model 

using data from the field study. I also suggest modification of the model to reduce the 

discrepancies between model estimates and corresponding measurements when the wind 

speeds are low. Chapter 4 describes the formulation of a model that estimates the 
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meteorological parameters required by dispersion models without measurements with a 3-

D sonic anemometer. The model uses measurements of horizontal wind speeds and 

temperature fluctuations, which facilitates on-site measurements of micrometeorological 

inputs with mobile platforms. Finally, Chapter 5 lists the major conclusions from each of 

these studies. 
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2 Estimating Methane Emissions from Dairy Manure 

Lagoons using Dispersion Models 

 

 

2.1 Introduction 

Atmospheric concentrations of methane (𝐶𝐻4), an important greenhouse gas, have tripled 

since the industrial revolution (Yu et al. 2018). Methane has an important role in causing 

climate change, with emissions rising more quickly than those of CO2 (Saunois et al. 

2016b). 𝐶𝐻4 is ten times more potent than 𝐶𝑂2 in warming the atmosphere. Given the short 

lifetime and the potential for rapid mitigation, controlling 𝐶𝐻4 emissions has become a 

priority for achieving short-term climate goals (United  Nations, 2021). 

Animal agriculture is the source of ~35% of anthropogenic methane emissions globally, 

and these emissions are increasing along with the number of animals (Saunois et al. 2016a). 

Methane emissions from animal agriculture derive primarily from enteric fermentation in 

cattle and from manure management, particularly when waste is treated or stored in 

anaerobic lagoons. Manure management accounts for nearly 10% of methane emissions in 

the U.S. (US Environmental Protection Agency 1990), and in California, more than a 

quarter (CARB 2019). However, as pointed out by a report from the National Academies 

of Sciences, Engineering 2018, these inventories are not supported adequately by 
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measurements. Furthermore, the report concludes that “fundamental research identifying 

and quantifying uncertainties is needed”. 

Currently, the US Environmental Protection Agency (US EPA) and California Air 

Resources Board (CARB) rely on a bottom-up estimate formulated by Mangino et al., 

(2002) to estimate the 𝐶𝐻4 emissions from manure lagoons in their emission inventories. 

There have been studies that show that the bottom-up estimates might underpredict 𝐶𝐻4 

emissions (Baldé et al. 2016; Hristov et al. 2017). Thus, there is a need to fill in key gaps 

in our understanding of the variability of methane emissions from manure lagoons in dairy 

farms. The methane emission rates inferred from the manure lagoons by applying 

dispersion models could be used to refine the empirical formulations of the bottom-up 

estimates, which are applied to obtain state-wide or nation-wide emission inventories. 

2.2 Background and Approach 

Methane emissions from area sources, such as manure lagoons, have been inferred using 

several micrometeorological methods, which are critically reviewed in McGinn, (2013). 

This work focuses on one of these methods, based on using dispersion models, to infer 

emissions from measurements of the concentrations of the relevant species near the source. 

Dispersion models have been used by several investigators (Ro et al., 2013; Leytem et al., 

2017) to estimate emissions from lagoons and determine their uncertainty. Most have used 

the WindTrax software, based on the backward Lagrangian particle model developed by 

Flesch et al. (2005), to infer emissions from path-averaged methane concentrations 

measured upwind and downwind of the lagoon of interest. Some of these studies have 
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quantified the uncertainty in these emissions. Kaharabata et al., (2000) used the 

approximate solution of the two-dimensional diffusion equation proposed by van Ulden, 

(1978) to infer emission rates from a 4 by 8 m plot with a tracer gas with a known release 

rate. 81% of the measurements made near the centerline of the plumes yielded emission 

estimates within ±20% of the actual source strength and within 22% to 55% away from the 

centerline. Ro et al. (2013) estimated the uncertainty using a similar approach. The inferred 

emission estimate was within a range of 0.68 to 1.08 of the actual value. Determining 

emission uncertainty using tracer releases is the most direct approach. However, a tracer 

study is not practical for typical lagoons with lengths and widths of the order of 100 m, and 

the results would be difficult to transfer to conditions that differ from those of the tracer 

study. 

In this study, we apply two dispersion models to estimate methane emissions from waste 

lagoons in two dairies, one located in Southern California, and the other in Central 

California. The difference in the results from the two models is one measure of the 

uncertainty in inferring emissions using dispersion models. 

Our application of dispersion models to infer emission rates of methane differs from others 

in several ways. The first is that the Eulerian model is a numerical solution of the mass 

conservation equation to model the vertical distribution of concentrations; the eddy 

diffusivity is specified using Monin-Obukhov similarity theory. Nieuwstadt and van Ulden, 

(1978) show that the solution agrees remarkably well with observations at the surface as 

well as of the vertical distribution of concentrations measured during the Prairie Grass 

experiment (Barad 1958). Thus, we do not have to resort to the often-used Gaussian 
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distribution, which is a useful approximation only under very stable conditions. The 

numerical solution also avoids specifying the height at which the plume is transported, 

which is usually chosen arbitrarily or needs to be computed from an implicit equation (van 

Ulden 1978). We refer to this model as the Eulerian Numerical (EN) model. 

Lagrangian particle methods offer similar advantages and have been used by several 

investigators (Todd et al., 2011; Ro et al., 2013; Grant et al., 2013; Baldé et al., 2016; 

Leytem et al., 2017). The model used in this study is that formulated by Flesch et al., (2005) 

and converted into free software called WindTrax 

(http://www.thunderbeachscientific.com/). This model, which computes emissions by 

tracking particles from the receptor to the source in a turbulent flow field, belongs to a class 

of models referred to as backward Lagrangian Stochastic (bLS) models. Details of the 

model can be found in the cited paper.  

The second way that this study differs from previous studies is the strategy used to sample 

atmospheric methane concentrations, which allows us to provide indirect estimates of the 

uncertainty in the inferred emissions associated with the uncertainty in the model physics. 

Our approach is to station the measurement platform at several locations around the lagoon 

to make time-averaged measurements of atmospheric methane accompanied by 

simultaneous measurements of micrometeorology. These measurements are then fitted to 

estimates from dispersion models that use the corresponding micrometeorological inputs 

to yield the unknown emission estimates. The residuals between model estimates and 

corresponding measurements are used to estimate the 95% confidence intervals of the 

inferred emission rates. 

http://www.thunderbeachscientific.com/
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The technique shown here can be used across multiple times of days and seasons to 

examine the role of temporal drivers of emissions from similar area sources. This technique 

also has the following advantages over previous studies: (1) it is easily deployable and 

applicable to other gases if they are measured, (2) it enables separate emission estimates 

for different sectors of the manure management system, (3) it provides uncertainty 

estimates for emissions, and (4) it does not require a measurement of background methane 

concentrations as the background is a parameter fitted in the model. 

2.3 Methodology 

Measurements were made near the manure lagoons in two dairies using a mobile platform 

that circulated around the lagoon complex and a stationary meteorological tower. 

Atmospheric methane (CH4) mixing ratios were collected with a cavity ring-down 

spectrometer (Picarro 2210-i) in the mobile platform, a Mercedes Sprinter van. An inlet 

was located at the front of the vehicle’s roof 2.87 m above ground level through which the 

outside air was pumped and sampled approximately every second by the analyzer. A GPS 

receiver (Garmin GPS 16X) mounted on the vehicle’s roof was used to collect high-

precision geolocation data. Data from the CH4 analyzer was calibrated against standards 

tied to the NOAA scale measured before and after data collection following Hopkins et al., 

2016. The general sampling approach was to drive the mobile platform around the lagoon 

complex, stopping for ~10-minute intervals to collect atmospheric CH4 mixing ratios at 

29-42 receptor locations around the perimeter. 
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The meteorological inputs to the model were collected using a 3-D Sonic Anemometer 

(CSAT3, Campbell Scientific) mounted on a stationary tower located on the dairy farm 

within 500 m of the most distant receptor location sampled by the mobile platform. At 

Southern California dairy, measurements were made at a height of 2.6 m and a frequency 

of 10 Hz. At the Central California dairy, measurements were made at a height of 2.4 m 

and a frequency of 20 Hz. 

The dispersion models are used to estimate emissions through the relationship that relates 

the measured atmospheric methane concentration (mixing ratio) at any receptor ′𝑗′ to the 

corresponding model estimate 

 j b i ij j

i

C C E T  (2.1) 

where 𝑇𝑖𝑗 is the modeled impact of source ′𝑖′ on receptor ′𝑗′ using a unit emission rate, 𝐸𝑖 

is the unknown emission rate from source ′𝑖′, and 𝜀𝑗 is the residual. The background 

concentration, 𝐶𝑏 is also treated as an unknown. The emissions and the background 

concentrations are the values that minimize ∑ 𝜀𝑗
2

𝑗  with the constraint that their values are 

greater than or equal to zero. To achieve this, we use the MATLAB function lsqnonneg 

described in Lawson and Hanson 1974, Chapter 23, p. 16. 

The 95% confidence intervals for these emission rates and background concentration are 

computed through a version of bootstrapping: the difference between the residuals 𝜀𝑗 and 

the mean residual < 𝜀𝑗 > are added randomly to the best fit model estimates to create 1000 

sets of pseudo-observations, which are then fitted to the model estimates to create sets of 
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emission rates and background concentrations. The 95% confidence interval corresponds 

to the 2.5 and the 97.5 percentiles of these sets. 

2.4 Dispersion Model 

In the model, the manure lagoon is represented as a set of area sources. In the EN model, 

the contribution of each area source to the concentration at a receptor at (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) is an 

integral over a set of line sources perpendicular to the wind direction. As shown in Figure 

2-1, each line source spans the area source and is placed perpendicular to the near surface 

wind speed; the x-axis of the co-ordinate system is parallel to the direction of the surface 

wind speed. This allows us to compute the contribution of each line source to the 

concentration at the receptor using the expression (Venkatram and Horst 2006) 

 ( ) ( ) ( ) ( )( )2 1, , , / 2r r r z r l rC x y z qF x x z erf t erf t= − − , (2.2) 

where 𝑞 is the emission rate per unit length of line source, 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟, are the co-ordinates 

of the receptor, 𝑥𝑙 is the x-co-ordinate of the line source, 𝐹𝑧(𝑥, 𝑧) is the cross-wind 

integrated vertical distribution of the concentration, and 

 
( )2

li r
i

y r l

y y
t

x x

−
=

−
. (2.3) 

The number of line sources used to compute the integral is successively doubled until the 

absolute relative difference between successive integrals, extrapolated to zero distance 

between lines, is less than 10−4. 
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Figure 2-1 The red polygon represents the area source. The blue line represents a single 

line source perpendicular to the wind speed (𝑼). The receptor is at (𝒙𝒓, 𝒚𝒓, 𝒛𝒓). 

The vertical distribution of concentrations, 𝐹𝑧(𝑥, 𝑧) is the numerical solution of the two-

dimensional mass conservation equation. Nieuwstadt and van Ulden (1978) showed that 

the solution of the mass conservation provides an excellent description of the cross-wind 

integrated concentrations measured during the Prairie Grass Experiment (Barad 1958) if 

the wind speed, 𝑈(𝑧) and the eddy diffusivity, 𝐾(𝑧) are expressed using Similarity Theory 

relationships (Businger et al. 1971). 

The two-dimensional mass conservation equation is 
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( ) ( )z z

s

F F
U z K z

x z z
and

Q ( z z )  at x=0

   
=  

   

= =

 (2.4) 

where 𝐾(𝑧) is the vertical eddy diffusivity, and 𝑈(𝑧) is the horizontal velocity. The 

emission at 𝑥 = 0 is specified by assigning non-zero concentrations to three vertical levels: 

at  𝑧 = 𝑧𝑠 and two heights below and above 𝑧 = 𝑧𝑠. The results of the numerical solution 

of Equation (2.4) are normalized by the integral 
0

( ) ( , )
H

zU z F x z dz , the horizontal mass 

flux at 𝑥 close to the source to obtain the solution for unit emission rate. Where 𝐻 is the 

top of the modeling domain. 

The mass conservation (Equation (2.4)) models turbulent dispersion using the concept of 

eddy diffusivity, which can be justified only when the travel time from the source is much 

larger the relevant Lagrangian time scale that governs particle motion in the turbulent flow 

(Mooney and Wilson 1993); its success in describing dispersion from surface releases 

provides posteriori justification for its use. 

The boundary conditions for the solution of Equation (2.4) are 

 

( )

0

z
d z o

z

F
K z v F  at z=z

z
and

F
 at z=H

z


= −




=



 (2.5) 

where 𝑣𝑑 is the deposition velocity, taken to be zero for methane, and 𝑧0 is the roughness 

length. 



15 

 

The horizontal plume spread, 𝜎𝑦, used in the Equation (2.3), for the contribution of a line 

source is based on the expression suggested by Eckman (1994) and applied by Venkatram 

et al., (2013) to describe horizontal spread of plumes released during the Prairie Grass field 

study: 

 

( )

0

0

where z, the center of  mass of the vertical distribution is

z=

y v
d

dx U z

C( z )zdz

C( z )dz

 





=





 (2.6) 

The horizontal domain for the solution of Equation (2.4) is taken to be 1.2 times the 

maximum distance between the vertex of the area source and the receptors. The vertical 

domain is taken to be 400 m, which is several times larger than the vertical spread of the 

plume at the maximum source-receptor distance of a few hundred meters. The horizontal 

grid points are linearly spaced with a distance between points of about 5 m, and the vertical 

spacing is logarithmic with 400 points to provide fine resolution close to the surface. The 

concentrations at receptors that do not coincide with grid points are computed using two-

dimensional linear interpolation. 

The backward-Lagrangian stochastic model used in this study was formulated by Flesch et 

al., (2005). The model releases particles from a receptor and traces their path backward in 

time in a turbulent flow field until they leave the domain that includes the source. The 
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source receptor matrix connecting the source at ′𝑖′ to the receptor at ′𝑗′ is given by the 

deceptively simple expression 

 
1

1 2 1jik P

ij k
kj ji i

T
N w A

 (2.7) 

where 𝑁𝑗  (= 50,000) is the number of particles released from the receptor, 𝑗 and 𝑤𝑗𝑖
𝑘 is the 

vertical velocity of the 𝑘𝑡ℎ particle released from the receptor, 𝑗 that touches down on the 

source, 𝑖, with an area 𝐴𝑖. The number of particles that touch down on the source, 𝑖 from 

the receptor, 𝑗, 𝑃𝑗𝑖 ≤ 𝑁𝑗 , because only a fraction, 𝑃𝑗𝑖/𝑁𝑗 of the released particles impact the 

source. The model has been converted by Thunder Beach Scientific into software called 

WindTrax, which is widely used to estimate emissions from small area sources. 

2.5 Results 

We evaluate the performance of the models in this study using the following statistics: the 

coefficient of determination (𝑅2) between model estimates and corresponding 

measurements, the percentage of predicted concentrations within a factor of 2 of the 

observed concentration (𝑓𝑎𝑐𝑡2), the geometric mean (𝑚𝑔) and the geometric standard 

deviation (𝑠𝑔) of the residuals between model estimates and observations. The 𝑚𝑔 and 𝑠𝑔 

are computed using the following equations, 

 

ln ln

exp( )

exp

m p o

g m

g m

C C

m

s

 (2.8) 
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where 𝐶𝑝 and 𝐶𝑜 are the model estimate and measured concentrations respectively, 〈 〉 

represents average and 𝜎 represents standard deviation. The deviation of 𝑚𝑔 from unity 

indicates the model bias with values greater than one indicating overprediction and values 

less than one indicating underprediction; 𝑠𝑔 represents the uncertainty in the model with 

𝑠𝑔
2 approximately representing the 95% confidence interval of the ratio, 𝐶𝑝/𝐶𝑜 .  

2.5.1 Southern California Dairy 

The Southern California dairy consists of five manure lagoon ponds shown in Figure 

2-2(a). The liquid manure stream enters the right-most pond shown in the left panel of 

Figure 2-2(a), outlined in red, and flows sequentially by gravity through the remaining 

ponds to the left indicated by red arrows. Initially the mobile platform circulated around 

the whole lagoon complex. Preliminary modeling indicated that the red highlighted lagoon 

in Figure 2-2(a) contributed more than 90% to the total methane emissions, consistent with 

the expectation that the highest emissions should come from the lagoon with the greatest 

amount of volatile solids (fresh manure). Subsequent measurements and modeling focused 

on quantifying emissions from just this lagoon. To capture heterogeneity in emissions 

across the surface of this lagoon, we divided the lagoon into four area sources and each one 

modeled separately as shown in Figure 2-2(b). 

The mobile platform stopped at each of the marked receptors for about 10 to 15 minutes 

during the course of about 4 hours of observations on August 08th, 2018. Simultaneous 

micrometeorological measurements were made with a 3-D sonic anemometer located to 
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the left of the highlighted lagoon as shown on Figure 2-2(b). Table 2-1 summarizes the 

meteorological conditions and the measurement periods. 
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(a) 

 

(b) 
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Figure 2-2 (a) An aerial value of the manure lagoon complex at the Southern California 

dairy. Red arrows show the flow of the manure. (b) Model setup showing the source, the 

receptors as circles, color coded by concentration and the wind vector represented as 

black arrows. 
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Table 2-1 Details of sampling times, concentrations and associated meteorological 

parameters during the measurement period 

Recep
tor # 

Start 
Time 
(hrs) 

End 
Time 
(hrs) 

Concen
tration  
(ppm) 

Wind 
Speed 
(m/s) 

σw 

(m/s) 
Wind 
Direction 
(Deg) 

u* 
(m/s) 

MO  
Length 
(m) 

  08/14/2018 

 

            

1 10:52 11:06 2.53 2.3 0.23 309 0.16 -10.9 

2 11:13 11:24 2.98 2.1 0.20 322 0.10 -3.4 

3 11:25 11:36 2.99 3.1 0.25 321 0.13 -6.0 

4 11:37 11:47 3.20 3.3 0.29 312 0.31 -61.7 

5 11:48 11:58 3.49 3.3 0.30 308 0.20 -12.8 

6 11:59 12:09 3.42 2.2 0.28 266 0.27 -57.7 

7 12:10 12:20 4.04 3.2 0.27 320 0.21 -17.3 

8 12:21 12:31 3.92 2.5 0.27 282 0.20 -26.2 

9 12:32 12:42 4.30 3.4 0.32 284 0.23 -27.9 

10 12:44 12:57 4.59 3.5 0.28 272 0.06 -0.6 

11 12:58 13:10 5.18 3.6 0.30 292 0.18 -15.1 

12 13:12 13:24 6.35 4.0 0.31 303 0.32 -63.3 

13 13:28 13:38 4.14 3.9 0.30 301 0.22 -20.5 

14 14:20 14:25 2.18 4.5 0.34 280 0.22 -21.1 

15 14:26 14:31 4.34 3.6 0.32 290 0.15 -6.8 

16 14:31 14:36 5.75 3.2 0.25 309 0.22 -36.9 

17 14:37 14:42 5.22 3.6 0.33 285 0.29 -42.8 

18 14:42 14:47 4.45 3.9 0.32 284 0.17 -11.4 
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19 14:47 14:52 3.71 4.5 0.37 272 0.21 -11.1 

20 14:53 14:58 4.28 3.9 0.31 293 0.25 -38.0 

21 14:58 15:03 3.26 4.1 0.35 286 0.26 -26.4 

22 15:04 15:09 3.58 4.0 0.33 301 0.23 -49.8 

23 15:09 15:14 3.34 4.0 0.32 289 0.18 -8.6 

24 15:15 15:20 3.13 4.4 0.31 296 0.26 -45.8 

25 15:20 15:25 2.31 3.9 0.34 305 0.19 -13.8 

26 15:26 15:32 2.45 3.3 0.26 293 0.18 -25.8 

27 15:33 15:39 2.76 3.5 0.25 292 0.25 -56.7 

28 15:41 15:47 3.45 4.2 0.30 308 0.20 -34.1 

29 15:59 16:11 3.56 4.1 0.33 291 0.20 -19.9 
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The results of the modeling exercise are presented in Figure 2-2 and Table 2. The area 

sources correspond to the bottom panel of Figure 1, where the primary lagoon marked in 

red is divided into 4 smaller regions numbered 1 to 4. 

Figure 2-3(b) and Figure 2-4(b) show the scatter plot between the predicted and measured 

CH4 concentration from the EN and bLS model respectively. The 𝑅2 between model 

estimates and the corresponding measurements is 0.86 for the EN model (Figure 2-3(b)) 

while it is 0.85 for the bLS model (Figure 2-4(b)). Geometric means, 𝑚𝑔, of 1.01 for the 

EN model and 0.93 for the bLS model indicate that there is little bias in the models. All the 

predicted values lie with a factor of 2 of the observed values for both the models. Geometric 

standard deviations, 𝑠𝑔, of 1.10 and 1.13 for the EN and bLS model respectively indicate 

little spread in the estimated concentrations. Both the models are able to predict the highs 

and lows in the observed CH4 concentrations very well (Figure 2-3(a); Figure 2-4(a)). 

Table 2-2 tabulates the emission rates inferred from the models. The estimate of total 

emission from the lagoon is 386 kg/d from the EN model, which is 1.83 times the bLS 

model estimate of 211 kg/d; there are also differences in the emissions rates inferred from 

the two models for the four sources. The uncertainty in the inferred emission rates is 

characterized by the 95% confidence interval, the limits of which are normalized by best 

fit value. Source 4, where the inlet for the manure stream is located, has the largest 

contribution to the total emissions and the smallest uncertainty range (Table 2-2). 
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(a) 

 

(b) 

Figure 2-3 (a) Performance of the EN model in describing the spatial distribution of 

measurements. (b) Scatter plot of modelled CH4 and measured CH4. The lines around the 

one-to-one line enclose model estimates within a factor of two of the measurements. 

 

 

(a) 

 

(b) 

Figure 2-4 (a) Performance of the bLS model in describing the spatial distribution of 

measurements. (b) Scatterplot of modelled CH4 and observed CH4. The lines around the 

one-to-one line enclose model estimates within a factor of two of the measurements. 
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Table 2-2 Inferred Emission Rates and Background Methane Mixing Ratio in Southern California Dairy. The 95% confidence 

limits of emission rates are normalized by the best fit value. 

 

Emissions Uncertainty 

EN Model bLS Model EN Model bLS Model 

kg/d kg/m2/yr kg/d kg/m2/yr 
Lower 
Limit 

Upper 
Limit 

Contribution 
to total 

emissions (%) 

Lower 
Limit 

Upper 
Limit 

Contribution 
to total 

emissions (%) 

Source 1 
43 7.6 0 1.8 11.09 1.74 10.69 0.42 1.57 0.39 

Source 2 
55 9.7 1 1.4 14.19 1.42 14.14 0.59 1.39 19.85 

Source 3 
89 15.9 1 1.3 23.03 1.31 23.46 0.64 1.43 20.21 

Source 4 
200 36.0 1 1.2 51.81 1.18 51.56 0.84 1.17 59.58 

Mean 
sum 

386  211  0.73 1.25  0.82 1.17  

Back 
Ground 
(ppm) 

2.3 2.2 0.83 1.20  0.83 1.19  
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2.5.2 Central California Dairy 

The dairy in central California consists of four manure lagoons shown in Figure 2-5(a). 

The manure wastewater flows from the bottom-most lagoon to the top and then to the left. 

Stationary measurements of atmospheric methane were made around these lagoons with 

the mobile laboratory at a total of 33 locations spread between 25th March 2019 and 30th 

March 2019. The averaging times for the stationary methane measurements were close to 

10 minutes except at a few receptors. The bottom two lagoons were the most active and 

thus were divided into four parts for the modeling. Lagoon 1 comprises of Sources 1-4, 

Sources 5-8 form lagoon 2, Lagoon 3 is Source 9, and lagoon 4 is Source 10 as shown in 

Figure 2-5(b). Figure 2-5(b) shows the sources, receptor locations, anemometer location 

and the mean winds during the measurements. Table 2-3 shows the details of the sampling 

times, concentrations and the associated meteorological parameters. 
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(a) 

 

(b) 
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Figure 2-5 (a) Aerial view of the manure lagoons in the Central California dairy. Red 

arrows show the flow of manure. (b) Model setup showing the source, the receptors as 

circles color coded by concentration and the mean wind direction at each receptor 

denoted by black arrows. 
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Figure 2-6(b) and Figure 2-7(b) indicate that the EN model explains 90% of the measured 

variance while the bLS model explains 95%. 94% of the values predicted by the models 

are within a factor of 2 of the observed values. Overestimates by more than a factor of 2 

occur at low observed methane concentrations which are at the upwind side of the lagoons. 

The geometric standard deviations of 1.39 and 1.35 for the EN and bLS model respectively 

indicate higher scatter in the predicted concentrations when compared to that at the 

Southern California Dairy. This is also reflected in the differences in the estimates and 

ranks of methane emissions from each of the nine sources from the two models. This might 

be related to the lower, variable winds measured at this site compared to those at the 

southern California dairy. 

Table 2-4 shows that the total emissions from the EN model is 3903 kg/d which is close to 

the 3637 kg/d estimated by the bLS model. The estimates of methane emissions from each 

of the ten sources differ in the two models, although the ranking of their contributions to 

the total emissions is the same:. lagoon 1 (sources 1-4) has the highest total emissions; 

lagoon 2 (sources 5-8) the next highest, followed by lagoons 9 and 10. This ordering of 

total emissions is consistent with the flow of the manure in the treatment process (Figure 

2-5(a)).  

The background concentrations here refer to the methane concentrations in the air coming 

into the lagoon complex area, and the elevated background concentrations predicted by the 

model here clearly reflect contributions of methane emissions from several nearby dairies 

on the upwind sides of the facility. The EN model predicted a background range of 2.1 to 
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6.8 ppm, whereas the bLS model predicted a background range of 2.6 to 6.5 ppm. The 

background concentrations measured from the upwind receptor locations varied from 2.1 

ppm to 5.6 ppm as the wind direction brought in emissions from different upwind dairies. 
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Table 2-3 Details of sampling times, concentrations and associated meteorological 

parameters at Central California Dairy 

Rece
ptor 
# 

Start 
Time 
(hrs) 

End 
Time 
(hrs) 

Concen
tration 
(ppm) 

Wind 
Speed 
(m/s) 

σw 
(m/s) 

Wind 
Direction  
(Degrees) 

u* 
(m/s) 

MO  
Length 
(m) 

03/25/2019 

1 12:33 12:44 2.92 1.6 0.21 306 0.17 -5.5 

2 12:45 12:55 13.34 2.3 0.22 295 0.15 -4.0 

3 12:56 13:06 23.54 2.8 0.21 302 0.18 -7.5 

4 13:17 13:27 21.69 2.7 0.22 312 0.14 -4.3 

5 13:28 13:38 25.55 2.0 0.21 330 0.14 -5.6 

6 13:39 13:49 38.20 1.9 0.23 300 0.18 -7.2 

7 13:50 14:00 32.15 2.1 0.21 308 0.15 -4.7 

8 14:20 14:31 14.39 1.7 0.19 311 0.10 -1.9 

9 14:32 14:42 20.27 1.9 0.18 332 0.10 -2.4 

10 14:42 14:53 20.55 1.3 0.21 305 0.03 -0.1 

11 14:53 15:04 22.73 1.6 0.19 270 0.16 -7.7 

12 15:15 15:25 11.69 1.3 0.19 293 0.11 -1.8 

13 15:26 15:37 10.05 1.6 0.19 325 0.10 -2.6 

14 15:39 15:44 31.42 1.8 0.20 321 0.15 -8.6 

15 17:52 18:03 32.73 1.6 0.15 226 0.14 -25.3 

16 18:04 18:14 34.48 2.0 0.15 232 0.10 -33.1 

17 18:14 18:24 43.41 1.7 0.14 222 0.13 53.6 



 

32 

 

18 18:25 18:35 21.51 1.8 0.15 227 0.11 31.0 

19 18:36 18:46 13.32 1.4 0.10 226 0.06 7.0 

20 18:46 18:57 9.45 1.3 0.08 225 0.05 5.6 

21 19:00 19:23 42.48 0.9 0.08 193 0.05 4.1 

03/30/2019 

22 13:46 13:56 9.24 1.9 0.21 325 0.12 -2.1 

23 14:02 14:12 2.66 1.0 0.26 333 0.12 -1.7 

24 14:14 14:24 2.70 1.6 0.22 324 0.07 -0.3 

25 14:25 14:36 3.00 1.5 0.21 287 0.13 -2.1 

26 14:37 14:48 6.69 1.2 0.24 279 0.11 -1.2 

27 14:49 14:59 14.98 0.2 0.24 298 0.13 -1.7 

28 15:00 15:11 15.12 1.0 0.23 291 0.22 -9.0 

29 15:12 15:22 5.57 1.4 0.26 259 0.19 -5.9 

30 15:23 15:33 26.27 0.8 0.22 294 0.14 -2.9 

31 15:34 15:44 21.14 0.5 0.25 300 0.12 -3.3 

32 16:21 16:31 2.61 2.2 0.21 295 0.15 -4.3 

33 16:33 16:43 2.12 2.5 0.20 327 0.16 -9.6 
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(a) 

 

(b) 

Figure 2-6 Results from the EN model applied at the Central California Dairy: (a) 

Comparison of measurements and model results along the sampling points along the path 

of the mobile platform. (b) Scatterplot of model estimates and methane measurements. 

The lines around the one-to-one line enclose model estimates within a factor of two of the 

measurements. 

 

(a) 

 

(b) 

Figure 2-7 Results from the bLS model applied at the Central Valley Dairy: (a) 

Comparison of measurements and model results along the sampling points along the path 

of the mobile platform. (b) Scatterplot of model estimates and methane measurements. 

The lines around the one-to-one line enclose model estimates within a factor of two of the 

measurements 
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Table 2-4 Inferred Emission Rates and Background Methane Concentration in Central California Dairy from the EN and bLS 

Models. The 95% confidence limits of emission rates are normalized by the best fit value. 

 

Emissions Uncertainty 

EN Model bLS Model EN Model bLS Model 

kg/d kg/m2/yr kg/d kg/m2/yr 
Lower 
Limit 

Upper 
Limit 

Contribution 
to total 

emissions (%) 

Lower 
Limit 

Upper 
Limit 

Contribution 
to total 

emissions (%) 

Source 1 751 384.2 858 440.5 0.73 1.24 19.25 0.85 1.14 23.60 

Source 2 179 90.2 0.00 0.00 0.00 2.42 4.58 - - 0.00 

Source 3 596 355.0 635 404.1 0.54 1.41 15.26 0.75 1.26 17.45 

Source 4 551 287.8 519 269.0 0.55 1.43 14.12 0.71 1.38 14.27 

Source 5 313 157.8 130 64.7 0.35 1.70 8.01 0.24 1.89 3.58 

Source 6 806 413.3 565 289.4 0.62 1.37 20.64 0.79 1.16 15.53 

Source 7 211 139.1 69 45.3 0.00 3.15 5.40 0.00 3.63 1.90 

Source 8 196 105.5 274 151.3 0.00 2.19 5.02 0.42 1.64 7.54 

Source 9 0.00 0.00 283 3.7 - - 0.00 0.05 1.76 7.77 

Source 

10 
0.00 0.00 0.00 0.00 - - 0.00 - - 0.00 

Mean 

sum 
3903  3637  0.82 1.36  0.81 1.37  



 

 

 

3
5

 

 Back 

Ground 

(ppm) 

4.58  4.60  0.45 1.48  0.57 1.41  
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2.6 Discussion 

We used two state-of-the-art dispersion models, an Eulerian Numerical (EN) model and a 

backward Lagrangian Stochastic (bLS) model to infer methane emissions from manure 

lagoons located in dairies in Southern and Central California. The emissions are obtained 

by fitting model estimates to corresponding methane concentrations measured at several 

receptors surrounding the lagoons. The 95% confidence intervals for these emission 

estimates were computed by bootstrapping the residuals between model estimates and 

measurements.  

The total emission rates of methane from the manure lagoons inferred by the two model 

differ by a factor of almost 2 in the Southern California Dairy although both models explain 

more than 85% of the variance of the measured methane concentrations. The inferred total 

emissions from the manure lagoons are close to each other in the Central California Dairy, 

although there are differences in the emission estimates from the source regions within the 

lagoons. 

Other authors have compared emission rates from area sources using different models.  

Faulkner et al., (2007) compared ammonia emission fluxes (emission rate per unit area) 

from a feedlot inferred from four dispersion models using ammonia concentrations 

measured downwind of the feedlot over a 24 hour period in August 2002. They found that, 

as expected, the emission estimates depended on the model. AERMOD (Cimorelli et al. 

2005), which uses semi-empirical vertical plume spreads based on the Project Prairie Grass 

(PPG) data (Venkatram 1992), yielded an emission rate that was 20% larger than that from 
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WindTrax. Bonifacio et al., (2013) conducted a one-year study to compare PM10 emission 

fluxes from a feedlot and found that AERMOD derived fluxes were about 30% higher than 

those from WindTrax for all stabilities; the fluxes were also highly correlated with an 𝑟2 >

0.88. The results from these two studies are relevant to those presented in this paper 

because the vertical plume spreads in AERMOD are derived by fitting asymptotic solutions 

of the diffusion equation to the Prairie Grass data. They suggest that emission estimates 

from the diffusion equation are generally higher than those from the backward particle 

model in WindTrax. This trend is evident in the results from the Southern California dairy 

but is not clear in those from the Central California dairy.   

The differences in the results from the two approaches, diffusion equation and Lagrangian 

particle model, are discussed by Sawford (2001) and Mooney and Wilson, (1993). The bLS 

model mimics turbulent dispersion by tracing the path of particles in turbulent flow using 

a stochastic differential equation. The EN model, on the other hand, is based on the concept 

of eddy diffusivity, which can be justified only when the travel time from the source is 

much larger the relevant Lagrangian time scale; its success in describing dispersion from 

surface releases (Nieuwstadt and Ulden 1978) provides posteriori justification. Thus, in 

principle, the bLS model is based on a more rigorous approach than the EN model. Sawford 

(2001) shows that the results from the diffusion model differ from the particle model even 

for surface releases: estimates of concentrations near the surface from the diffusion model 

are about 25% smaller than those from the particle model at the distances considered in the 

Project Prairie Grass (PPG) field study (Barad, 1958) when the surface layer is unstable.  

However, he found that in order to reproduce the vertical profiles measured in the PPG 
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study, it was necessary to increase the diffusivity, used to compute the Lagrangian time 

scale, by an empirical factor. Thus, for the time being, comparison of model results with 

concentration measurements has not established the superiority of the particle model for 

the application considered in this paper; the diffusion equation provides an excellent 

description of measured concentrations associated with surface releases.   

The 95% confidence intervals computed for the emission estimates from each of the models 

are derived by bootstrapping the residuals between model estimates and corresponding 

measurements. Thus, they correspond to a combination of factors that affect the residuals: 

uncertainties in model formulation, model inputs, concentration measurements, locations 

and frequency of sampling, and temporal and spatial variation of the emissions from the 

lagoons. Identifying the major source of uncertainty would be speculation at this point. 

We compared our results with lagoon calculations according to a bottom-up estimate based 

on the number of cows and management practices of the dairy. In this inventory, annual 

CH4 emissions from lagoons are a function of the population, which we multiply by the 

fraction of manure entering the lagoons, according to the following calculation: 

 
4 44 ( ) . . . . .lagoon cows f CH CHCH EmissionRate f p VSP C P  (2.9) 

where 𝑓𝑙𝑎𝑔𝑜𝑜𝑛 is the fraction of manure that ends up in the lagoon, and 𝑝𝑐𝑜𝑤 is the 

population of dairy cows. The other variables in the equation are 𝑉𝑆𝑃, which is the volatile 

solids production rate assigned its default value of 2833 kg/ year, 𝐶𝑓, the methane 

conversion factor taken to be 0.748, and 𝑃𝐶𝐻4
, the maximum methane production capacity 

taken to be 0.24 m3/kg, and the density of methane, 𝜌𝐶𝐻4
 taken to be 662 g/m3. 
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The southern California dairy, with 1066 milking cows, is an open lot dairy, where most 

of the manure is dropped on the field. Manure from the milking parlor and the feedlots are 

flushed in the lagoon. We estimate 𝑓𝑙𝑎𝑔𝑜𝑜𝑛 = 0.33, which yields a methane emission rate 

of 324 kg/d, which lies between the best fit values of 211 kg/d and 386 kg/d from the two 

dispersion models. 

The Central Valley dairy has 3200 milking cows that have access to both corrals and a free 

stall barn. In temperate and dry weather, the cows spend up to 42% of their time outside, 

where their manure remains in the corrals. However, during the winter months, the cows 

are only allowed in the free stall barns, which suggests that 100% of the manure is stored 

in the lagoons. Because March is the beginning of the spring season, much of the winter 

manure will still be in the lagoons. Assuming that 𝑓𝑙𝑎𝑔𝑜𝑜𝑛 lies between 0.58 and 1 yields 

methane estimates between 1712 kg/d and 2952 kg/d. The model best fit estimates are 3637 

kg/d and 3903 kg /d. 
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3 Impacts of Noise Barriers on Near-road Air Quality 

 

 

3.1 Introduction 

Air pollution from roadways is a major source of pollution in urban areas. Exhaust 

emissions from vehicles on roads contain ozone precursors, 𝑁𝑂𝑋 and volatile organic 

compounds, as well as directly emitted particulate matter. The elevated levels of air 

pollutants near the freeway have been linked to a variety of adverse health effects (Chen et 

al., 2019; Brandt et al., 2014). Because a quarter of households in the metropolitan United 

States living within 300 feet of a 4- or more lane roadway (Bucholtz et al. 2011), it is 

important to examine methods that can mitigate the impact of vehicle emissions on near-

road air quality.  

Near road noise barriers have become common in California. Although these barriers are 

primarily designed to reduce noise from traffic on freeways, recent studies indicate that 

they a mitigating impact on the near-road vehicular pollution (Baldauf et al. 2008; Heist et 

al. 2009; Finn et al. 2010; Hagler et al. 2011).  

Transportation conformity refers to the requirement under the Clean Air Act that federally 

supported highway and transit projects are consistent with the state air quality 

implementation plan (USEPA 2015). Because modeling the impact of emissions resulting 

from such projects is the US EPA suggested approach for transportation conformity it is 



 

41 

 

important to account for the effects of near-road barriers in this modeling exercise. A non-

regulatory version of AERMOD (Cimorelli et al. 2005), the US EPA’s regulatory model 

for short range dispersion, includes semi-empirical formulations to account for the effects 

of the noise barrier. This version of the model is based on data from wind tunnel and tracer 

experiments. Before it can be used for regulatory applications, it has to be evaluated and 

improved, if necessary, with data collected in a field study that includes features of the real 

world such as the complex geometry of the urban highway and unsteady meteorological 

conditions. This chapter summarizes my contribution to conducting such a field study and 

the subsequent analysis of the data from the field study. 

3.2 Background and Approach 

Results from a tracer study in which the noise barrier was simulated with a 6 m hay bale 

barrier indicate that near-road noise barriers have a mitigating impact on near road 

concentrations (Finn et al. 2010): the concentrations relative to those in the absence of the 

barrier were reduced by as much as 80% next to the barrier and about an average of 70% 

over a downwind distance of 30 times the barrier height. A wind tunnel study examining 

the effects of different road configurations observed concentration reductions ranging from 

40% next to the barrier to 20% at downwind distances of 40 times the barrier height (Heist 

et al. 2009). A field experiment on adjacent sections of highways with and without noise 

barriers showed lower concentrations downwind of the noise barrier (Baldauf et al. 2008). 

The wind tunnel study (Heist et al., 2009) showed that noise barriers reduce ground-level 

concentrations downwind of the barrier by lifting the plume from a line source over the 
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barrier. This plume is then entrained into the recirculating wake of the barrier resulting in 

a concentration profile that is relatively uniform through the height of the barrier. This well 

mixed region persists for downwind distances of about ten times the barrier height. The 

qualitative features of these observations have been have been reproduced by Hagler et al., 

(2011) using a Computational Fluid Dynamics (CFD) model. Laboratory simulation of 

plume using water channels also indicated that barriers created significant recirculating 

flow and updrafts resulting in enhanced turbulence and mixing (Pournazeri and Princevac 

2015) that results in the reduction of ground-level concentration. 

The data from the tracer field study (Finn et al. 2010) and the wind tunnel (Heist et al. 

2009) form the basis of a semi-empirical model that accounts for the effects of a barrier on 

dispersion of emissions from a highway (Schulte et al. 2014). This model overpredicted 

concentrations during unstable conditions near the barrier. Amini et al., (2016) improved 

this model, reducing the over predictions near the barrier during unstable conditions, and 

evaluated the model by conducting a field experiment measuring ultrafine particles (UFP) 

from vehicles, downwind of a real-world barrier next to a freeway. Because of the 

uncertainty involved in estimating the UFP emission factor of vehicles, it was inferred by 

fitting model results to corresponding UFP concentrations. 

The major features of the model developed by Schulte et al., (2014) have been incorporated 

into a non-regulatory version of AERMOD (Cimorelli et al. 2005), the USEPA’s regulatory 

model for short range dispersion. The performance of this version of the model has not yet 

been evaluated under real-world conditions in which the geometry of the urban highway 

as well as the meteorological conditions are far from the idealized conditions of the tracer 
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field study and the wind tunnel. This chapter describes a tracer field study designed to 

collect the data required to evaluate the performance of AERMOD under these conditions. 

We have also conducted a preliminary evaluation of the resulting data set using a dispersion 

model that accounts for the effects of a barrier. 

The next section describes the formulation of a semi-empirical model that accounts for the 

effects of the barrier on the dispersion of vehicular emissions. The following section 

describes the tracer study that collected the required data next to a noise barrier running 

along the University of California, Riverside. The final section describes the evaluation of 

the barrier model with the data collected from the field study. 

3.3 Scaled Barrier Model 

This section describes the formulation of a dispersion model that accounted for the two 

major effects of the barrier: lifting of the plume above the barrier followed by the 

entrainment of material in the plume into the wake downwind of the barrier. First, we 

assume that the wind direction is perpendicular to an infinitely long barrier, which allows 

us to formulate the model in a two-dimensional framework. The plume undergoes a series 

of idealized processes as it is transported from the source to the receptor. It first disperses 

vertically without being affected by the presence of the barrier. At the barrier, the vertical 

concentration profile resulting from dispersion upwind of the barrier is lifted to the top of 

the barrier by simply changing the vertical coordinate system used in describing the release 

so that the origin is at the top of the barrier: the new coordinate 𝑧′ = 𝑧 − ℎ𝑜, where ℎ𝑜 is 

the barrier height. The entrainment into the wake is modeled by scaling the concentration 
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profile above the barrier by a factor 𝑓𝑞 < 1 to account for the mass flux below the barrier. 

The vertical distribution beyond the barrier is given by 
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where 𝑥𝑑 is the effective distance downwind of the barrier, 𝜎𝑧 is the vertical plume spread 

at this distance, 𝑈𝑒 is the effective horizontal velocity above barrier height and 𝑓𝑒 is the 

entrainment factor. The calculation of these parameters is described later. 

Note that the concentration below barrier height is constant. If the entrainment factor 𝑓𝑒 =

1, the concentration is continuous across 𝑧 = ℎ𝑜. A value of 𝑓𝑒 < 1 results in a 

discontinuity in the concentration at the top of the barrier; this mimics the sharp increase 

in concentration at the top of the barrier observed in wind tunnel simulations (Heist et al. 

2009). The scaling factor, 𝑓𝑞, can be derived by multiplying the expressions in Equation 

(3.1) by the effective velocities 𝑈𝑒 and 𝑈𝑏 above and below the barrier respectively, and 

then integrating them from 0 to ∞ to obtain a a mass balance based on unit emission rate 

from the source. Simplifying the mass balance results in 

 ( ),0 1q q e z d b of f f D x U h+ =  (3.2) 

where the first term on the left-hand side corresponds to the horizontal mass flux above the 

barrier, and the second term is the flux below the barrier. The uniform velocity below 

barrier height, 𝑈𝑏, is taken to be the average velocity below the barrier height. The velocity 
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profile is based on Monin-Obukhov similarity theory, where the values of the roughness 

length, 𝑧𝑜, the friction velocity, 𝑢∗, and the Monin-Obukhov length, 𝐿, are based on upwind 

micrometeorological measurements modified to account for barrier effects as discussed 

later.  

Equation (3.2) yields 
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 (3.3) 

The formulation for 𝑓𝑒 is discussed in the next section.  

The concentration profile with and without the barrier are shown in Figure 3-1. The 

concentration below the barrier height is constant and is lower than the concentration 

without the barrier. Above the barrier height, the concentration distribution follows a 

Gaussian profile: 𝑓𝑞𝐷𝑧(𝑥𝑑, 𝑧′). Note that the concentration profile assumes its near ground 

release shape when the barrier height, ℎ𝑜. Also, the effect of the barrier becomes small as 

𝐷𝑧(𝑥𝑑, 0) becomes small at large downwind  distances. 
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Figure 3-1 Schematic showing the vertical concentration distribution of the scaled barrier 

model. The swirls indicate the recirculation zone formed behind the barrier and the 

inclined arrow indicates the lifting of the plume up to the barrier height. The well-mixed 

layer below the barrier and scaled concentration above it are shown by the blue line while 

the red line represents the distribution without any barrier. 

In the model, the highway is represented as a set of six-line sources. The contribution from 

each line source to the concentration at a receptor when the wind is not perpendicular to 

the line source is obtained from the approximate expression (Venkatram and Horst, 2006), 
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where 𝑞 is the line source emission rate per unit length of the road, 𝑥 and 𝑦 are the receptor 

coordinates based on the coordinate system in which the x-axis is parallel to the wind 
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direction, 1 and 2 correspond to the endpoints of the line source, 𝜃 corresponds to the wind 

direction with respect to the x-axis, 𝑦 − 𝑦𝑖 is the distance of the endpoints from the receptor 

along the direction perpendicular to the wind direction, 𝜎𝑦(𝑥 − 𝑥𝑖) is the horizontal plume 

spread (Venkatram et al. 2013b) at the distance of the receptor from the two endpoints 

along the direction parallel to the wind, and 𝐹𝑧(𝑥𝑑, 𝑧′) is the vertical distribution function 

discussed earlier. The effective downwind distance from the barrier 𝑥𝑑, is the shortest 

distance along the wind direction between the receptor and the barrier.  

The effective wind velocity, 𝑈𝑒 in Equation (3.1) is given by, 

 
2 22 ( )e v oU U z h  (3.5) 

where 𝑈(𝑧̅) is the wind speed at the mean plume height, 𝑧̅. The mean plume height, 𝑧̅, is 

related to the vertical plume spread, which in turn is a function of 𝑈𝑒. So these parameters 

are computed iteratively (Venkatram et al. 2013b) from , 
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Equation (3.4) breaks down when 𝜃 = 90∘ because of the 𝑐𝑜𝑠𝜃 in the denominator. The 

term 𝜎𝑧𝑐𝑜𝑠𝜃 (Venkatram et al. 2013a) is modified as follows to avoid this, 

 
( cos ) ( )cos

( )cos
2

z d z d
z d

x x
x  (3.8) 

Vertical mixing occurs when the plume travels from the line source to the barrier. This 

mixing is also enhanced by the movement of the vehicles on the freeway. To account for 

this an effective initial mixing distance, 𝑥𝑜 is computed which is added to 𝑥𝑑. The vertical 

plume spread due to this vertical mixing is, 

 
2 2

*( , , , (0))
oz s e vf x u L U h  (3.9) 

Where 𝑥𝑠 is the downwind distance from the line source to the barrier and ℎ𝑣(= 1.5𝑚) is 

the effective height of the vehicles traveling on the freeway. The value of 𝑥 in Equation 

(3.10) that gives the 𝜎𝑧𝑜
 computed in Equation (3.9) is 𝑥𝑜. 

 *, , ,
oz e of x u L U h  (3.10) 

3.3.1 𝒖∗ Correction 

The presence of the barrier increases turbulent mixing downwind of the barrier as observed 

in various studies (Heist et al., 2009). This increase in turbulence is accounted for by 

increasing the friction velocity, 𝑢∗ near the barrier as follows, 
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The friction velocity was used to compute a modified Monin-Obukhov length assuming 

that the heat flux does not change. The modified friction velocity, 𝑢∗𝑏 recovers to its 

upwind value over a length scale determined empirically to be 5ℎ𝑜. Then, 
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where 𝑢∗𝑐 is the corrected friction velocity used in computing vertical spread of the plume. 

The factor 𝑓𝑚 tends to 1 near the barrier and zero at downwind distances that are several 

times the height of the barrier. 

3.3.2 Entrainment Factor, 𝒇𝒆 

When the wind speeds are low, we found that the model overestimated concentrations, 

which suggested decreasing the entrainment, i.e., 𝑓𝑒 < 1. This effect is illustrated in Figure 

3-2, which shows the ratio of the mean predicted concentration to the mean observed 

concentration (𝐶𝑝/𝐶𝑜) versus the friction velocity, 𝑢∗. The mean predicted concentration 

is close to 3.5 times the observed concentration when 𝑢∗ is less than 0.1 m/s and these 

overpredictions reduce with increasing 𝑢∗. This suggested the following empirical relation, 
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where 𝑢∗𝑜 = 0.1 𝑚/𝑠. 𝑓𝑒 tends to 1 as 𝑢∗ increases. Equation (3.15) is designed to reflect 

the possibility that the turbulence generated by wind shear at the top of the barrier becomes 

less effective in entraining the plume above the barrier as the wind speeds approach zero. 

 

Figure 3-2 Plot between the ratio of the predicted to the observed concentration without 

the entrainment factor (𝒇𝒆 = 𝟏). The overpredictions decrease with increasing 𝒖∗. 

 

3.4 Field Study 

This section describes a field study that was conducted next to a real-world barrier to collect 

the data necessary to evaluate the barrier model. 
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3.4.1 Site 

The study was conducted on a portion of Interstate-215 freeway passing through the 

University of California, Riverside (UCR) campus. The freeway runs from north-northeast 

to south-southwest as shown in Figure 3-3. A single noise barrier almost parallel to the 

freeway is located towards the east of the freeway. The noise barrier is about 5 m high and 

is approximately 1.3 km long. The highway and the barrier curve to the west near the 

southern edge of the barrier. The three outermost lanes on each side of the freeway were 

used in the study. The aerial view of the study region is shown in Figure 3-3. The study 

was conducted on four different days to capture different atmospheric stability conditions. 

Table 3-1 provides the dates of the study days and the time intervals when the 

measurements were made. 
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Figure 3-3 Aerial view of the study region. The receptor locations are shown using 

yellow circles, the red lines are the sources, the noise barrier is represented using a blue 

line, and the red triangles show the locations where the meteorological data was 

collected. 
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Table 3-1 Dates of study days and the measurement time intervals. 

Date 7/30/2019 8/6/2019 8/13/2019 8/20/2019 

Study Day 1 2 3 4 

Exp 1 (Background) 13:00 - 13:30 15:00 - 15:30 20:00 - 20:30 18:00 - 18:30 

Exp 2 14:00 - 14:30 16:00 - 16:30 21:00 -21:30 19:00 -19:30 

Exp 3 14:30 - 15:00 16:30 - 17:00 21:30 - 22:00 19:30 - 20:00 

Exp 4 15:00 - 15:30 17:00 - 17:30 22:00 - 22:30 20:00 - 20:30 

Exp 5 15:30 - 16:00 17:30 - 18:00 22:30 - 23:00 20:30 - 21:00 

Exp 6 16:00 - 16:30 18:00 - 18:30 23:00 -23:30 21:00 - 21:30 

 

3.4.2 Tracer Release System 

Custom-built tracer gas release systems were fitted to eight road vehicles. The release 

system consisted of a cylinder containing pure 𝑆𝐹6 with a pressure regulator as shown in 

Figure 3-4. The pressure regulator was attached to an electronic solenoid that could be 

controlled from inside the vehicle. The solenoid opened the gas flow to a mass flow 

controller that was controlled by an Arduino computer. A GPS unit on the roof of the 

vehicle fed the location data to the computer. The mass flow controller was programmed 

to provide a full release rate of 42 ml/s when vehicle speeds were above 100 km/hr. The 

release rate linearly reduced with decreasing vehicle speed to simulate exhaust emissions 
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from vehicles. The outlet flow from the mass flow controller was looped into the vehicle 

exhaust.  

Eight vehicles fitted with the tracer release system were driven on the I-215 freeway. The 

vehicles started about 1-minute apart from each other to obtain a uniform release. The gas 

cylinders were weighed before and after each study period to determine the total gas 

release. The tracer gas released on each study day is shown in Table 3-2. 

Table 3-2 Total tracer gas released on each study day 

Day Tracer Released (kg) 

1 1.990 

2 2.620 

3 1.900 

4 2.225 
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(a) 

 

(b) 

Figure 3-4 (a) Picture of the 𝑆𝐹6 gas cylinder with the pressure regulator, the electronic 

solenoid (green and white box) that could be operated from within the vehicle, and the 

mass flow controller. (b) The 𝑆𝐹6 gas from the mass flow controller was looped into the 

vehicle exhaust. 
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3.4.3 Samplers 

A total of 46 air samplers were used in the study. The sampler locations on one of the study 

days is shown using in Figure 3-3. As winds were expected to be predominantly westerly, 

downwind samplers were placed east of the sound barrier while a single upwind sampler 

was placed west of the freeway. All the samplers had inlets at a height of 1.8m. 

Each sampler consisted of 6 pumps and each pump was connected to a 12-liter 

polyethylene bag. An air sampler system used in the study is shown in Figure 3-5(a). A 

single-board computer (Z-World Rabbit Model 1810) with drivers to control each sample 

pump formed the timer system. The samplers were programmed to collect integrated 30-

minute air samples. The first sample on each study day was collected 45 minutes before 

the start of the tracer release to measure the background while subsequent experiments 

were conducted every 30 minutes with the second experiment beginning 15 minutes after 

the start of the tracer release. 

The collected samples were taken to a laboratory at UCR CE-CERT for analysis using the 

system shown in Figure 3-5(b). All six bags from three samplers could be sampled 

simultaneously using the custom-built auto-sampler system. Pumps and solenoid valves 

were used to control the flow of the samples. The samples were measured using a bank of 

Agilent Technology 6890N electron capture (ECD) gas chromatographs (GC) equipped 

with a 1/8-inch diameter Molecular Sieve 5A column and multi-port gas sampling valves 

to measure 𝑆𝐹6. 
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(a) 

 

(b) 

Figure 3-5 (a) Inside of the sampler system containing six pumps and six bag samplers. 

(b) Custom built analysis system used in the study to measure 𝑆𝐹6 concentrations in the 

collected samples. 

3.4.4 Meteorological and Air Quality Data 

The meteorological data were collected using six 3-D Sonic Anemometers. The locations 

of the anemometers are shown in Figure 3-6. Two of the sonics (RM Young Model 81000) 

were placed towards the west (upwind) of the freeway mounted at 3 m and 5 m on a tower 

(Figure 3-6), while the four remaining sonics (Campbell Scientific Model CSAT3) were 

placed east (downwind) of the freeway at a height of 2 m. The meteorological data were 

recorded with a frequency of 20 Hz. The data from the upwind sonic at 5 m height were 

used in the dispersion model to interpret the data from the field study. 
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Figure 3-6 Upwind meteorological measurement site containing two 3-D sonic 

anemometers mounted at heights of 3 m and 5 m. 

Table 3-3 summarizes the meteorological data collected by the upwind sonic at a height of 

5 m where, 𝑄𝑜 is the kinematic heat flux, 𝑢∗ is the friction velocity, and 𝐿 is the Monin-

Obukhov length. On Days 3 and 4, the measurements were conducted in the late evening 

hours when the sun had set, but the surface heat fluxes remained positive, athough they 

were relatively small. This suggests that heat fluxes in this urban area are affected by 

advection of colder rural air onto a warmer urban surface.  
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On Day 3, the wind speeds and consequently the surface friction velocities were relatively 

small compared to the values on the other days. This has an impact on model performance 

described below. 
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Table 3-3 Summary of meteorological data collected at the upwind side of the freeway at 

a height of 5 m. 

 

Exp 

Day 1 Day 2 

Q (K.m/s) *u (m/s) L  (m) Q (K.m/s) *u (m/s) L  (m) 

1  0.260 0.30 -8.0 0.215 0.45 -34.2 

2 0.261 0.45 -27.7 0.215 0.53 -56.0 

3 0.263 0.52 -41.1 0.188 0.51 -56.7 

4 0.257 0.49 -36.2 0.170 0.47 -48.5 

5 0.218 0.47 -37.8 0.133 0.44 -49.6 

6 0.227 0.46 -34.0 0.110 0.47 -73.1 

 

Exp 

Day 3 Day 4 

Q (K.m/s) *u (m/s) L  (m) Q (K.m/s) *u (m/s) L  (m) 

1 0.039 0.18 -11.9 0.098 0.38 -43.1 

2 0.019 0.14 -10.3 0.052 0.38 -84.1 

3 0.008 0.11 -10.7 0.029 0.30 -70.6 

4 0.016 0.13 -9.5 0.028 0.19 -17.9 

5 0.005 0.10 -12.4 0.027 0.19 -19.0 

6 0.011 0.06 -1.5 0.011 0.14 -21.0 
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Figure 3-7 shows the variation of the measured 𝑆𝐹6 concentration as a function of the 

distance from the barrier. The vertical axis represents the ratio of the measured 

concentration to the maximum concentration observed during a 1-hr averaging period and 

the horizontal axis represents the perpendicular distance from the barrier.  

The solid line represents the same ratio using a dispersion model (Venkatram and Schulte 

2018) that accounts for the effect of the barrier as follows, 

 
2

( ) ln 1
cosb

o ew
b

w

q W
C x

h UW
x

 (3.16) 

where 𝑞 is the emission rate per unit length, ℎ𝑜 is the barrier height, 𝑥𝑏 is the perpendicular 

distance from the barrier, 𝑊 is the width of the road, 𝜎𝑤 is the standard deviation of the 

vertical wind fluctuations, 𝜃 is the angle between the wind direction and the perpendicular 

to the road and 𝑈𝑒 is the effective wind speed. The maximum concentration, used to 

normalize 𝐶(𝑥𝑏) is 𝐶(0). 

The model implies that the primary effect of the barrier is to shift the road sources upwind 

by a distance, ℎ𝑜𝑈𝑒𝑐𝑜𝑠𝜃/𝜎𝑤. We see that the downwind variation of the concentrations is 

consistent with this idea. The next section describes a model that includes more of the 

governing processes. 
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Figure 3-7 Plot between the ratio of measured concentration to the maximum 

concentration observed during the 1-hr averaging period, and the downwind distance 

from the barrier. The colored symbols represent the 1-hr averaged measured 

concentration while the solid lines represent the ratio from Equation 1. The color of the 

solid line represents the measurement period and uses the same color code as the 

measured values. 

3.5 Model Performance and Barrier Effects 

The performance of the barrier model formulated in Section 3.3 is summarized in Table 

3-4 using the coefficient of regression between the one hour averaged observed and 

predicted 𝑆𝐹6 concentration, 𝑅2, and median of the ratio between the one hour averaged 

predicted and observed 𝑆𝐹6 concentration, 𝑚𝑔. The deviation of 𝑚𝑔 from 1 quantifies the 

overall bias in the model. An 𝑚𝑔 value less than 1 points to underprediction and an 𝑚𝑔 
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value greater than 1 indicates overprediction. On Days 1 and 2, the model performs well 

both with and without the entrainment factor. The 𝑅2 and 𝑚𝑔 are 0.90 and 0.99 respectively 

on Day 1 without the entrainment factor, and are 0.91 and 0.88 with the entrainment factor. 

The 𝑅2 and 𝑚𝑔 are 0.75 and 1.12 on Day 2 without the entrainment factor, and 0.75 and 1 

with the entrainment factor.  

The model has large overpredictions on Day 3 without the entrainment factor with a 𝑚𝑔 of 

2.21 and a low 𝑅2 of 0.49. When the entrainment factor is included in the model, 

performance improves with a 𝑚𝑔 of 1.35 and an 𝑅2 of 0.53. On Day 4, the inclusion of the 

entrainment factor improves the results with the 𝑅2 and 𝑚𝑔 changing from 0.87 and 1.19 

without the entertainment factor to 0.89 and 0.93 with the entrainment factor. 

Figure 3-8 shows the plot with the 𝑆𝐹6 concentration on the vertical axis and the distance 

from the barrier on the horizontal axis. The concentration data was averaged based on the 

distance from the barrier using 25 m long bins. The observed concentrations are 

represented by red circles while the predicted concentrations are represented by blue 

squares. The plots on the left panels show results without the entrainment factor, i.e., 𝑓𝑒 =

1 and the plots on the right show results with 𝑓𝑒 given by Equation (3.15). The 

overpredictions on day 3, when the wind speeds are low, are reduced when the entrainment 

factor is incorporated, as seen in the right panel.  
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Table 3-4 Performance statistics between 1-hr averaged observed concentration with the 

1-hr averaged predicted concentration from the scaled barrier model. 

  Without Entrainment Factor With Entrainment Factor 

R2 mg R2 mg 

Day 1 0.90 0.99 0.91 0.88 

Day 2 0.75 1.12 0.75 1.00 

Day 3 0.49 2.21 0.53 1.35 

Day 4 0.87 1.19 0.89 0.93 

 

The effect of the barrier was studied by running the barrier model with no barrier 

(ℎ𝑜 = 0, 𝑂𝑝𝑒𝑛) and comparing with results with the barrier (ℎ𝑜 = 5, 𝐵𝑎𝑟𝑟𝑖𝑒𝑟). The 

predicted concentration without the barrier is represented by green triangles in Figure 3-8. 

The reduction in concentration due to the barrier is more than 50% close to the freeway 

and becomes very small at downwind distances greater than 150 m. These results are 

consistent with previous studies on barriers (Baldauf et al. 2008; Heist et al. 2009; Finn et 

al. 2010). 
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Figure 3-8 Plot showing the 𝑆𝐹6 concentration with the distance from the barrier. The 

observed concentration with the barrier is shown by blue squares, the predicted 

concentration with the barrier is shown by red circles, and the predicted concentration 

without the barrier is shown by green triangles. 
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3.6 Conclusions 

In this chapter we formulated a plum based dispersion model to account for the effects of 

the solid nose barriers on the dispersion of vehicular emissions from roadways. We then 

performed a tracer study next to a real-world barrier to collect the data required to evaluate 

the barrier model. The barrier model was evaluated using the data collected in the tracer 

studies and was found to explain the observed concentration well. This study forms the 

first step towards including algorithms to incorporate the effects of solid noise barriers in 

regulatory models. 
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4 Estimating Micrometeorological Inputs for 

Dispersion Models 

 

 

4.1 Introduction 

Application of dispersion models requires meteorological inputs such as wind speed, 

friction velocity and heat flux (Cimorelli et al., 2005). In principle, these inputs can be 

inferred from multi-height measurements of wind speed and temperature. These inferences 

are based on Monin-Obukhov Similarity theory (MOST, Businger, 1973; Holtslag and van 

Ulden, 1985). MOST is based on the idea that measured gradients of mean horizontal wind 

speeds and temperatures become “similar” when they are expressed in terms of non-

dimensional variables obtained by scaling them with appropriate velocity, temperature, and 

length scales. These scales are related to the fluxes of heat and momentum at the surface. 

Integrating the nondimensional gradients yields profiles of horizontal velocity and 

temperature. Thus, in principle, measurements of velocity and temperature at several 

heights can be used to infer surface heat and momentum fluxes, which in turn can be used 

to estimate the variables required in dispersion models. 

Although MOST holds strictly over horizontally homogeneous surfaces over which these 

fluxes are relatively uniform, the theory has been applied to other conditions because it 

provides reasonable estimates of the surface fluxes. But the estimates of momentum and 



 

68 

 

heat fluxes from measured mean profiles are prone to errors when the differences between 

levels are small during convective conditions. The micrometeorological inputs can also be 

computed using measurements made with 3-D sonic anemometers. The reliability of these 

measurements depends on careful alignment of the anemometer arms to avoid the 

contamination of vertical velocity fluctuations, used to compute heat flux, by horizontal 

velocity fluctuations. Alignment of the 3-D sonic anemometer might not be possible 

especially when the ground is not firm or uneven. Thus, there is a need for a method that 

avoids these problems and is accurate enough for its intended application.  

The uncertainty in meteorological inputs might not be critical in regulatory applications in 

which producing realistic concentration distributions is more important than describing 

concentrations paired in space and time. In some applications of dispersion models, such 

as the ones considered in this study, this uncertainty needs to be minimized by using on-

site meteorological measurements. 

The major motivation for the development of the micrometeorological model described in 

this work is the growing popularity of mobile monitoring platforms (MMF) in air quality 

studies. For example, Brantley et al., (2014) used mobile monitoring to survey oil and gas 

production facilities to estimate leaks of methane. U.S. EPA’s Other Test Method (OTM33; 

33 and 33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-

Direct Assessment (GMAP-REQ-DA). 2014. (http://www.epa.gov/ttn/emc/prelim.html) 

for estimating fugitive emissions relies on mobile monitoring. 

http://www.epa.gov/ttn/emc/prelim.html
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In the work we performed to characterize methane emissions from dairy manure lagoons, 

we describe the use of a mobile platform to estimate methane emissions from manure 

lagoons in dairies. In such studies (Amini et al., 2022), the unknown emissions are 

generally inferred from the concentration measurements using a dispersion model. The 

meteorological inputs for the dispersion models are estimated from a stationary 3-D sonic 

anemometer or from routine measurements made at the nearest airport. It is clearly better 

to have these meteorological inputs derived from instrumentation placed on the mobile 

monitor. The micrometeorological method that we describe in this paper is suited for 

mobile applications in which the set-up and dismantling of meteorological instrumentation 

is relatively simple, can be performed quickly, and is not prone to errors. 

4.2 Background and Approach 

Application of currently used dispersion models, such as AERMOD (Cimorelli et al. 2005) 

and ADMS (Carruthers et al. 2011) require meteorological inputs such as wind speed, 

friction velocity and heat flux. In the absence of on-site measurements from 3-D sonic 

anemometers, these inputs are constructed with AERMET (meteorological data 

preprocessor for AERMOD) using variables such wind speed, wind direction, and cloud 

cover, that are routinely measured at an airport close to the site where AERMOD is being 

applied. AERMET uses a one-dimensional boundary layer theory to convert these 

measurements into micro-meteorological inputs required by AERMOD. These inputs 

include the surface friction velocity, the sensible heat flux, the convective velocity scale, 

the Monin-Obukhov length, and the convective and mechanical boundary layer heights.  

The output from AERMET is likely to differ from that applicable to the site where 
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AERMOD is being applied for two major reasons: 1) the inputs to AERMET, such as mean 

wind speed and direction will differ from those at the nearest airport, especially if the 

airport is far away from the site, 2) the one-dimensional boundary layer model used in 

AERMET might not be applicable to the site. For example, the boundary layer model in 

AERMET does not account for shoreline effects that are important if AERMOD is applied 

to examine sources next to a water-land interface. 

Recognition of the inadequacy of the one-dimensional boundary layer model of AERMET 

has prompted the development of methods to infer AERMOD inputs using the outputs of 

prognostic meteorological models (Isakov et al., 2007; Touma et al., 2007). These studies 

suggest that the outputs from one of the models studied, MM5, can be processed to provide 

AERMOD inputs that provide concentration estimates that compare favorably with those 

from onsite measurements; however, onsite meteorological measurements are preferable 

to outputs from a meteorological model. 

In this study, we re-examine a technique that estimates heat and momentum fluxes with 

measurements of temperature fluctuations and horizontal wind speeds at a single level. 

Methods based on single level temperature and velocity measurements have been proposed 

by several authors ever since Monin and Yaglom (1971) proposed the relationship between 

heat flux and temperature fluctuations measured under unstable conditions. Tillman (1972) 

extended this relationship through a semi-empirical correction to account for finite friction 

velocities. Tillman (1972) and Albertson et al. (1995) showed that measurements of 

moments of temperature fluctuations can be used to improve the accuracy heat flux 

estimates. Hsieh et al. (1996) and Lloyd et al. (1991) showed that the free convection 
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formulation provides adequate estimates of heat flux even when friction velocities are not 

small. 

In this chapter we show that errors associated with using this simple method of estimating 

heat and momentum fluxes has a relatively small effect on model estimates from dispersion 

models such as AERMOD. This study builds upon these earlier studies and those by 

Venkatram and Princevac (2008) and Qian et al. (2010) on determining the meteorological 

inputs for dispersion models under unstable conditions. Our approach to estimating surface 

fluxes modifies those presented earlier. The major contribution of this study is to examine 

the impact of using these inferred meteorological inputs on estimates of methane emissions 

from manure lagoons. 

The next section focuses on the formulation and validation of a model to compute the 

metrological parameters required by dispersion models using reduced measurements. In 

the fourth section, the usefulness of the proposed method is evaluated by using the results 

in a dispersion model to infer methane emissions from a dairy manure lagoon system in 

Central California. The final section demonstrates an application of this method using a 

low-cost temperature sensor to measure temperature fluctuations. 

4.3 Meteorological Model 

4.3.1 Surface Flux Model 

In this section we derive a semi-empirical formulation to compute the kinematic heat flux 

(𝑄𝑜) and surface friction velocity (𝑢∗) (the momentum flux is 𝜌𝑎𝑖𝑟𝑢∗
2; where 𝜌𝑎𝑖𝑟 is the 

density of air) under unstable conditions using only measurements of horizontal wind speed 
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(𝑈) and temperature fluctuations (𝜎𝑇) at a single level. Under unstable conditions, we can 

express the kinematic heat flux (𝑄𝑜) in terms of the standard deviation of the vertical wind 

speed (𝜎𝑤), and the standard deviation of the temperature (𝜎𝑇), 

 
o wT w TQ r  (4.1) 

where, 𝑟𝑤𝑇, is the correlation coefficient that, in principle is a function of 𝑧𝑟/𝐿, where 𝑧𝑟 

is the height at which the heat flux is measured, and 𝐿 is the Monin-Obukhov length give 

by, 
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where 𝑢∗ is the friction velocity,𝑔 is the acceleration due to gravity, 𝜅(= 0.4) is the von 

Karman constant, and 𝑇𝑜 is the reference temperature assumed to be the air temperature at 

the measurement height. 

Equation (4.1) is the basis of the proposed method if 𝑟𝑤𝑇 varies little with 𝑧𝑟/𝐿. The 

analysis of data, described later, indicates that this is a reasonable assumption (Section 

4.3.2). Then, 𝑄0, can be estimated using measurements of the horizontal wind speed, 𝑈, 

and temperature fluctuations, 𝜎𝑇 using the formulations that follow. 

The standard deviation of the vertical wind velocity, 𝜎𝑤, is given by (Panofsky et al., 1977), 
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An equation that is alternative to Equation (4.3) is obtained by equating turbulence 

production in the surface layer to the dissipation rate, 
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Where the left-hand side of the equation is the sum of the production of turbulence through 

shear and buoyancy respectively, and the right-hand side is a parameterization of the 

dissipation rate. The non-dimensional momentum function, 𝜙𝑚(𝑥) = (1 − 15𝑥)−1/4 

(Businger et al. 1971). Taking the dissipation scale, 𝐿𝑑~𝑧𝑟, we get, 
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Equations (4.3) and (4.5) yield similar results for 𝜎𝑤 (Figure 4-1) with Equation (4.3) 

performing slightly better especially when 𝜎𝑤 is large; thus, Equation (4.3) was used to 

compute 𝜎𝑤 in the subsequent analysis. Combining Equation (4.1) with Equation (4.3) 

yields the semi-empirical equation for the kinematic heat flux, 
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We will compare Equation (4.6) with a semi-empirical formulation suggested by Tillman 

(1972), 
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Given the mean wind speed, 𝑈, and the standard deviation of temperature fluctuations, 𝜎𝑇 

at some measurement height 𝑧𝑟, we can solve for 𝑄𝑜 and 𝑢∗ using Equation (4.6), the 

expression for the Monin-Obukhov length, 𝐿 (Equation (4.2)), and the friction velocity, 

𝑢∗ (Equation (4.8)). 

The wind velocity profiles are modelled using Monin-Obukhov Similarity Theory (MOST) 

with the wind speed (𝑈) at the measurement height of 𝑧𝑟 related to the friction velocity, 𝑢∗ 

by the following equation (Businger et al. 1971), 
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Where, 𝑑ℎ is the zero-plane displacement height, 𝜁1 = (𝑧𝑟 − 𝑑ℎ)/𝐿, 𝜁𝑜 = 𝑧𝑜/𝐿, and the 

function 𝜓𝑚 is, 
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for 𝑄𝑜 > 0, and 𝑥′ = (1 − 16𝜁)1/4. 

In the next sub section, we describe the field studies used to collect the data that was used 

to evaluate the surface flux model. 
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Figure 4-1 Comparison of 𝜎𝑤 predicted from the formulation by Panofsky et al., (1977) 

(Equation (4.3)) and from the dissipation rate (Equation (4.5)) 

4.3.2 Field Studies 

Meteorological data used for the evaluation were collected at two locations. The first 

location was next to a manure lagoon in a dairy farm in Central California (CC). This site 

is surrounded by a cluster of dairy farms and can be classified as rural. Data was collected 

over three different seasons at this site. The second location was in the city of Riverside in 

Southern California (SC). This site was in a parking lot belonging to the University of 

California, Riverside. This site is located upwind of a freeway and can be classified as 

urban. The measurement periods at the two sites are tabulated in Table 4-1. 
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Table 4-1 Summary of meteorological data collected in Central California (CC) and 

Southern California (SC). 

Location Measurement 

Period 

𝒖∗ (𝒎/𝒔) 𝑸𝒐 (𝑲. 𝒎/𝒔) 

Mean Min Max Mean Min Max 

CC 24-28 Mar 2019 0.14 0.01 0.41 0.05 0.01 0.22 

CC 17-21 Jun 2019 0.18 0.04 0.38 0.09 0.01 0.23 

CC 10-13 Sep 2019 0.14 0.03 0.31 0.08 0.01 0.25 

SC 19-22 Jul 2019 0.23 0.03 0.61 0.10 0.01 0.40 

 

The meteorological measurements were made using a 3-D Sonic Anemometer (CSAT3, 

Campbell Scientific) mounted between 2.3 to 2.4 m at the CC site during the different 

seasons and at 5 m at the SC Site. The sonic anemometer sampled data at a rate of 20 Hz. 

The sonic anemometer measures the wind speed along the three orthogonal directions and 

the air temperature (𝑇). If 𝑢 (along wind), 𝑣 (crosswind), and 𝑤 (vertical) are the velocity 

components along the three co-ordinate directions, the meteorological parameters were 

computed as follows, 

Kinematic Heat Flux,  

 oQ w T  (4.10) 

Friction Velocity, 

 

1
2 2 4
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where, 𝑥′ = 𝑥̅ − 𝑥 denotes the turbulent or fluctuating component of the parameter of 

interest and 𝑥̅ represents the mean of the parameter of interest over 5 minutes. Use of 

Equation (4.10) and (4.11) to compute 𝑄𝑜 and 𝑢∗ requires the measurements of wind speed 

in 3-D and temperature. 

The data was filtered for unstable conditions when 𝑄0 > 0.01 𝐾. 𝑚/𝑠. Nighttime (1900 - 

0500) unstable cases at the CC site were excluded as the stable periods mixed intermittently 

with unstable periods. Table 4-1 shows the statistics of the meteorological data collected 

at the two sites. The wind speeds were generally lower at the CC site than those at the SC 

site. At the SC site, the heat fluxes were always positive even after sunset possibly due to 

the advection of colder rural air onto the warmer urban surface. 

The aerodynamic roughness length, 𝑧𝑜 , at each site was estimated by assuming that the 

velocity profiles follow MOST. The roughness length, 𝑧𝑜 is obtained by fitting the 

measured 𝑢∗ (Equation (4.11)) with the similarity 𝑢∗ (Qian et al. 2010) given by Equation 

(4.8). The zero-plane displacement, 𝑑ℎ was taken to be 5𝑧𝑜. A roughness length of 0.002 

m and 0.15 m were obtained for the CC and the SC site respectively. The CC site has no 

buildings or any other large obstacles nearby while the SC site is in a parking lot surrounded 

by large buildings. 

The kinematic heat flux (𝑄𝑜) and the product of the fluctuations in vertical wind speed and 

temperature (𝜎𝑤 . 𝜎𝑇) computed using the full 3-D information from the sonic anemometer 

were highly correlated with the 𝑅2 ranging from 0.84 to 0.93 (Figure 4-2). The slope of the 
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best fit line is the mean value of the correlation coefficient, 𝑟𝑤𝑇. The value of 𝑟𝑤𝑇 ranged 

from 0.49 to 0.55 (Figure 4-2). 

  

  

Figure 4-2 Scatter plot between the measured kinematic heat flux (𝑄𝑜) and the product 

of the fluctuations in the measured standard deviations of the vertical wind speed 𝜎𝑤 and 

temperature 𝜎𝑇. The red dots are the observed data points, and the red line is the best fit 

line. The slope of the best fit line is 𝑟𝑤𝑇. 

The small variation of the slope of the best fit line over different seasons and sites suggests 

that a practical model for the heat flux can be based on a constant value of 𝑟𝑤𝑇 = 0.5, 
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ignoring its dependence on 𝑧𝑟/𝐿 (Figure 4-2). Thus, 𝑟𝑤𝑇 was considered a constant with a 

value of 0.5 in Equation (4.6). 

In the next sub section, we evaluate this approach to compute heat flux using the data 

collected in the field studies described. 

4.3.3 Evaluation with field studies 

The heat flux model was evaluated using the meteorological data collected at the CC and 

the SC sites. The kinematic heat fluxes (𝑄𝑜) and the friction velocities(𝑢∗) estimated with 

the heat flux model (Equation (4.2), (4.6), , and (4.8)) were compared with the measured 

values from the 3-D sonic anemometer (Equation (4.10) and (4.11)). The mean of the ratio 

of the estimated to the measured values (𝑚𝑔) and the percentage of estimated values within 

a factor of 2 of the measured values (𝑓𝑎𝑐𝑡2) were chosen as the primary measures of model 

performance. The 𝑚𝑔 quantifies the overall bias in the model with values greater than 1 

indicating overestimates and values less than 1 indicating underestimates. 

Comparison of estimates of 𝑄𝑜 and 𝑢∗ based on Equation (4.7), suggested by Tillman 

(1972), with Equation (4.6) based on the constant correlation used in this study show that 

both the models estimate 𝑢∗ very well, but Equation (4.7) tends to overestimate 𝑄𝑜 with an 

𝑚𝑔 of 1.59 (Figure 4-3). Thus, Equation (4.7) improves the heat flux model. 
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Figure 4-3 Comparison of the formulation by Tillman (1972) (Equation (4.7); Blue 

Squares) with the constant correlation formulation (Equation (4.6); Red Circles) in 

estimating the kinematic heat flux, 𝑄𝑜 (left) and the surface friction velocity, 𝑢∗ (right) 

from the data collected at the Southern California site. The formulation by Tillman 

(1972) overestimates 𝑄𝑜. 

The flux model was able to estimate the kinematic heat fluxes, 𝑄𝑜 very well over all the 

measured seasons and sites (Figure 4-4). The 𝑚𝑔 between the estimated and measured 𝑄𝑜 

ranged between 1.09 and 1.35. There was a slight overestimating at the CC site in June 

with a 𝑚𝑔 of 1.35. More than 95% of the estimated fluxes lie within a factor of 2 of the 

measured fluxes. 
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Figure 4-4 Scatter plot between the measured and estimated kinematic heat fluxes (𝑄𝑜). 

The dashed lines next to the solid 1:1 line enclose the estimated values within a factor of 

2 of the measured values. 

The measured friction velocities agreed very well with the modeled values (Figure 4-5). 

The 𝑚𝑔 ranged from 1.06 to 1.11 indicating very little positive bias in the model. The 

higher scatter at the CC site compared to that at the SC site suggests that the wind profiles 

follow MOST better at the SC site than at the CC site (Figure 4-5). The percentage of 

estimated values within a factor of 2 of the measured values at the CC and SC site ranged 

between 85.8% – 95.9%. 

The next section examines the performance of this simple model for computing heat flux 

by applying a dispersion model to infer methane emissions from manure lagoons located 

at a dairy in Central California (CC). 
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Figure 4-5 Scatter plot between the measured and estimated friction velocities (𝑢∗). The 

dashed lines next to the solid 1:1 line enclose the estimated values within a factor of 2 of 

the measured values. 

4.4 Estimating methane emissions 

Methane mixing ratio measurements were made with simultaneous meteorological 

measurements near the manure lagoons in the dairy at the CC site. Measurements of 

methane were conducted with an instrumented mobile platform that stopped at various 

locations around the lagoons for about 9 minutes at each location. Atmospheric methane 

ratios were collected with a cavity ring-down spectrometer (Picarro 2210-i) at a height of 

2.87 m AGL. More details on the measurement system can be found in Thiruvenkatachari 

et al., (2020).  
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The measurements were made in field studies conducted during four different seasons: 25th 

and 30th of March 2019, 18th and 19th of June 2019, 10th and 11th of September 2019, and 

16th of January 2020. A dispersion model based on the numerical solution of the two-

dimensional advection-diffusion equation (Thiruvenkatachari et al. 2020), was used to 

infer emissions from the lagoons. The model, which requires micrometeorological inputs 

to construct vertical profiles of wind speeds and eddy diffusivities, has been evaluated with 

data from the Prairie Grass experiment (Barad 1958; Nieuwstadt and van Ulden 1978a) 

and the Idaho Falls study (Finn et al. 2010). 

The dispersion model treats the manure lagoon as an area source. The contribution of the 

area source to the concentration at a receptor is the integral of the contributions from a set 

of line sources perpendicular to the wind direction. The analytical solution formulated in 

Venkatram and Horst, (2006) provides the horizontal concentration distribution from each 

line source. 

The measured atmospheric methane concentration (mixing ratio) measured at any receptor 

’𝑗’ is related to the corresponding model estimate as follows, 

 j b i ij j

i

C C E T  (4.12) 

where 𝑇𝑖𝑗  is the transport coefficient which is the modeled impact of source ′𝑖′on receptor 

′𝑗′ using a unit emission rate, 𝐸𝑖 is the unknown emission rate from source ′𝑖′, and 𝜀𝑗 is the 

residual. The background concentration, 𝐶𝑏 is also treated as an unknown. The emission 
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rates and the background concentration are the values that minimize ∑ 𝜀𝑗
2

𝑗  with the 

constraint that their values are greater than or equal to zero.  

The 95% confidence intervals were computed through a version of bootstrapping that adds 

residuals between the observed and estimated concentrations to model estimates to create 

pseudo-observations. These observations are then used in Equation (4.12) to derive 

emission estimates corresponding to 1000 sets of pseudo-observations. The bootstrapping 

includes residuals from the application of the dispersion model to analyze data from all the 

field studies conducted at the site. 

The emission rates of the manure lagoon and their confidence intervals inferred from the 

dispersion model using the measured (3-D information from the sonic anemometer) and 

the modelled (heat flux model) meteorological inputs show that the differences in the mean 

emission rates are much smaller than the model uncertainty (Figure 4-6). These results 

suggest that the measured and the modelled meteorological inputs can be used 

interchangeably. 
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Figure 4-6 Emission rates and their 95% confidence intervals from the manure lagoons 

inferred from the dispersion model using the measured (red) and modelled (green) 

meteorological inputs. The differences in the mean emission rates are much lower than 

the model uncertainty. 

Estimating the roughness length, 𝑧𝑜 requires knowledge of both 𝑢∗ and 𝑄𝑜 and thus cannot 

be computed when only the measurements of temperature fluctuations and horizontal wind 

speeds are available (Section 4.3.2). The sensitivity of the emission estimates to uncertainty 

in 𝑧𝑜 was examined by using meteorological inputs corresponding to roughness lengths 

ranging from an order of magnitude lower to an order of magnitude higher than the best 

estimate (𝑧𝑜 = 0.002 𝑚). The differences in the emission rates caused by the uncertainty 

in 𝑧𝑜 were well within the uncertainty of the model estimates (Figure 4-7). 
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Figure 4-7 Bar chart showing the sensitivity of the emission estimates to the roughness 

length, 𝒛𝒐. The difference in the emission estimates due to 𝑧𝑜 are much lower than the 

model uncertainty. 

4.5 Performance with a low-cost temperature sensor 

In this section we demonstrate the usefulness of the surface flux model by using a low-cost 

sensor rather than a 3-D sonic anemometer to measure temperature fluctuations. This 

method can be the basis for making on-site estimates of micrometeorological inputs with 

instrumentation that can be easily installed in a mobile laboratory. 

Measurements of horizontal wind speed and temperature were made at the University of 

California Riverside Engineering Center for Environmental Research and Technology 

(CE-CERT) between January 10th to 13th, 2022 with a 3-D sonic anemometer (CSAT3, 

Campbell Scientific) collocated with a bead thermistor (iMET-XQ2, InterMet) at a height 



 

87 

 

of 1.5 m (Figure 4-8). The sonic anemometer sampled 3-D wind speeds and temperature at 

a frequency of 20 Hz, while the thermistor measured the temperature, atmospheric 

pressure, and humidity at a frequency of 1 Hz. 

 

Figure 4-8 Picture showing the experimental setup used to measure the horizontal wind 

speeds and temperature. A 3-D sonic anemometer was collocated with a bead thermistor. 

The temperature fluctuations (𝜎𝑇) measured by the thermistor are well correlated with the 

𝜎𝑇 measured by the sonic anemometer with a correlation coefficient of 0.8 (Figure 4-9). 

But the 𝜎𝑇 from the thermistor was on an average 0.7 times that from the sonic anemometer. 

Since no pollutant concentrations were measured during this experiment, we determined 

the usefulness of the 𝜎𝑇 measured by the thermistor by repeating the exercise performed in 

Section 4.4 by relating the temperature fluctuations measured with the onsite sonic 
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anemometer to the possible measurements from the thermistor using the regression 

equation (Figure 4-9), 

 2 0.66 3 0.02T TXQ CSAT  (4.13) 

where 𝜎𝑇(𝑋𝑄2) is the modelled thermistor temperature fluctuation, 𝜎𝑇(𝐶𝑆𝐴𝑇3) is the 

measured sonic anemometer temperature fluctuation and 𝜖 is a normally distributed 

random number corresponding to the deviations between the sonic anemometer and 

thermistor 𝜎𝑇 measurements shown in Figure 4-9. This allowed us to use the simulated 

thermistor temperature fluctuations in the heat flux model to determine meteorological 

inputs for the dispersion model. We generated 100 sets of modelled meteorological inputs 

using Equation (4.13) which were then used to determine the mean and the 95% confidence 

interval of the methane emission rates. This confidence limit represents the sensitivity of 

the emission rates to uncertainty in 𝜎𝑇. 
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Figure 4-9 Scatter plot between the 𝜎𝑇 measured by the sonic anemometer (CSAT3) and 

the thermistor (XQ2). The thermistor 𝜎𝑇  is 0.7 times the sonic anemometer 𝜎𝑇. 

The measured and the modelled meteorological inputs were then used in the dispersion 

model along with the methane mixing ratio measurements described in the last section to 

infer the methane emission rates. The differences in the mean methane emission rates are 

much less than the uncertainty in the inferred emission rates (Figure 4-10). Also, the 

uncertainty in the emission rates due to the uncertainties in the measured 𝜎𝑇 was much 

lower than the uncertainty inherent in the modelling process. These results suggest that 

measurements from a low-cost temperature can be used in the heat flux model to obtain 

useful estimates of meteorological inputs needed for dispersion models. 
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Figure 4-10 Bar graph showing the emission rate estimated by the dispersion model and 

their 95% confidence interval using the measured meteorology (left, red) and the 

modelled meteorology (right, yellow) using temperature fluctuations from the thermistor. 

The uncertainty inherent in the modelling process is much higher than the uncertainty due 

to the measured 𝜎𝑇. 
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5 Conclusion 

In this dissertation, I have demonstrated two applications of dispersion models. In the first, 

I used a dispersion model to estimate emissions of methane, an important green-house gas, 

from manure lagoons in dairy farms. In the second application, I used a dispersion model 

to interpret data collected from a field study designed to examine the impact of near-road 

noise barriers on dispersion of vehicular emissions from freeways  

As part these studies, I developed and evaluated a micrometeorological model to estimate 

the meteorological inputs required by dispersion models. This model obviates the need for 

measurements with 3-D sonic anemometers, which are usually used for on-site 

measurements of micrometeorology. We will discuss the major impacts of each of these 

studies separately in the following sections. 

5.1 Estimating methane emissions from dairy manure lagoons using 

dispersion models 

A widely used method to estimate emissions from area sources, such as manure lagoons, 

is based on using a dispersion model, such as WindTrax, to relate emissions to 

concentration measurements made in the vicinity of the source. The uncertainty associated 

with such emission estimates depends on uncertainties in 1) the formulation of the 

dispersion model used to infer emissions, 2) model inputs that include micrometeorology, 

physical characteristics of the source, and locations of concentration measurements, and 3) 

the duration and accuracy of concentration measurements used to infer emissions.  
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We have demonstrated a new sampling and modelling approach to estimating emissions 

from manure lagoons. The approach also provides the uncertainty associated with these 

emission estimates. Our approach to infer emissions from lagoons has the following 

advantages over methods used in previous studies: (1) it is easily deployed and applicable 

to other gases if they are measured, (2) it enables separate emission estimates for different 

sectors of the manure management system either by separating a single pond into areas 

with different emission rates as in the Southern California dairy, or by isolating different 

treatment lagoons as in the Central California dairy, (3) it provides uncertainty estimates 

for emissions, and (4) it does not require a measurement of background methane 

concentrations as the background is a parameter fitted in the model. However, as with most 

techniques to estimate lagoon emissions, site access is required. 

I applied the sampling and modeling approach to infer methane emissions at two dairies, 

one in Southern California and the other in Central California. The results show that the 

differences in the formulation of the models used to infer emissions can result in emission 

estimates that can differ by as much as a factor of two. The uncertainty in emission 

estimates from any one model ranges from 0.8 times to 1.4 times the best fit value. These 

uncertainty estimates, which are specific to the field studies considered in this paper, are 

the result of a combination of factors. There is a need for future studies to examine the 

relative roles of these factors in determining total uncertainty. This information is critical 

to determining the efficacy of manure management methods to mitigate methane emissions 

from manure ponds. 
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In principle, this technique can be applied to any emission source of a similar scale and 

surface expression. Emission estimates for the two farms given here double the number of 

methane emission estimates for California dairy lagoons (Arndt et al. 2018), and if 

deployed more widely have a potential to fill in key gaps in our understanding of the 

variability of methane emissions from this source. Because it is rapidly deployable, the 

technique can be used across multiple times of days and seasons to examine the role of 

temporal drivers of emissions. 

5.2 Impacts of Noise Barriers on Near-road Air Quality 

I played a major role in the first tracer study designed to examine the mitigating effect of 

noise barriers under real-world conditions. The data collected from the field study will be 

used by regulatory agencies, such as the US Environmental Protection Agency, to evaluate 

dispersion models that incorporate the effects of solid near-road barriers. 

I analyzed the data using a dispersion model that incorporated the major processes 

responsible for the mitigating impact of a barrier: lifting of the plume above the barrier 

followed by entrainment of the elevated plume into the wake of the barrier. The model 

provided an adequate description of the measured concentrations except when the wind 

speeds were less than 1 m/s: the model overestimated measured concentrations by a factor 

of three. We proposed an approach to reducing this overestimation through a function that 

depends on the upwind friction velocity. 

An examination of the data showed that the downwind variation of the tracer concentration 

is consistent with the results from the simple model described by Equation (3.16). This 
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model is based on the idea that the mitigating effect of a sound barrier on near-road air 

quality is equivalent to shifting the source, the road, by the height of the barrier divided by 

the upwind turbulent intensity. This equation is a rule-of-thumb for estimating the impact 

of a sound barrier as a function of distance from a road. 

5.3 Estimating Micrometeorological Inputs for Dispersion Models 

In this study the micrometeorological inputs required by dispersion models, such as 

AERMOD, were estimated with a model that uses the horizontal wind speed and 

temperature fluctuations at a single level. The model was evaluated using field 

measurements from 3-D sonic anemometers at sites in Central California and Southern 

California. The impact of the deviations of the modeled from the measured meteorological 

inputs were evaluated by comparing methane emissions inferred from a dispersion model 

based on the two sets of inputs. The differences in the mean emission estimates are much 

smaller than the uncertainties in the emission estimates. The uncertainty in roughness 

lengths had little impact on the emission estimates.  

We show that the proposed method does not have to have to rely on measurements from a 

3-D sonic anemometer to measure temperature fluctuations required for the method 

described here. A low-cost temperature sensor provides useful estimates. This suggests that 

any instruments that can measure horizonal winds and temperature fluctuations can be used 

to determine meteorological inputs for dispersion models used to estimate emissions from 

area sources such as manure lagoons. Such instruments can be carried on mobile platforms 
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or even unmanned aerial vehicles to provide meteorological inputs quickly and in locations 

where it is difficult to set up a 3-D sonic anemometer. 
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