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ABSTRACT OF THE DISSERTATION

On the Concrete Security of Identification and Signature Schemes

by

Wei Dai
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Professor Mihir Bellare, Chair

Digital signature schemes are ubiquitous in real-world applications of cryptography. They

are the core cryptographic building block for public-key infrastructures and distributed ledgers.

Yet, the exact security of signature and signature-related schemes are often unknown, due to gaps

in their security analyses.

A security proof for a cryptographic scheme S rules out attacks on the scheme assuming

hardness of some underlying problem P, for example the discrete-logarithm on elliptic curves.

Often, there are gaps between the quantitative security evidenced by cryptanalysis and the

quantitative security given by security proofs. For many deployed schemes, quantitative security

proofs do not give any meaningful security guarantees. The study of concrete security aims to
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eliminate this gap.

In this work, we study the concrete security of (1) a “big-key” identification scheme by

Alwen, Dodis, and Wichs, (2) Schnorr identification and signature schemes, and (3) discrete-

logarithm-based multi-signature schemes. We identify and tighten the gaps between theoretical

guarantees, practical expectations, and best-known cryptanalysis.
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Introduction

Digital signature schemes are ubiquitous in real-world applications of cryptography. They

are the core cryptographic building block for public-key infrastructures and distributed ledgers.

Yet, the exact security of signature and signature-related schemes are often unknown, due to gaps

in their security analyses.

A security proof for a cryptographic scheme S rules out attacks on the scheme assuming

hardness of some underlying problem P, for example the discrete-logarithm on elliptic curves.

Often, there are gaps between the quantitative security evidenced by cryptanalysis and the

quantitative security promised by security proofs. For many deployed schemes, quantitative

security proofs do not give any meaningful security guarantees. The study of concrete security

aims to eliminate this gap.

In this work, we study the concrete security of (1) a “big-key” identification scheme by

Alwen, Dodis, and Wichs, (2) Schnorr identification and signature schemes, and (3) discrete-

logarithm-based multi-signature schemes. We identify and tighten the gaps between theoretical

guarantees, practical expectations, and best-known cryptanalysis.

Efficiency Improvements for Big-Key Cryptography

The first chapter is concerned with the security threat of key exfiltration and the efficiency

of schemes achieving the goals of symmetric encryption and public-key identification. Key

exfiltration happens when attacker-planted malware on the key-storing system uses the system’s

1



network connection to convey the key to a remote accomplice. A line of theoretical work has

suggested a mitigation, called the Bounded Retrieval Model (BRM) [41, 38, 30, 6, 5], which

involves using big keys. BKR [11] initiated an effort to take the BRM (they call it big-key

cryptography) to practicality. We continue this effort.

We first identify probe complexity (the number of scheme accesses to the slow storage

medium storing the big key) as the dominant cost for BRM schemes. Our large-alphabet subkey

prediction lemma allows us to minimize the probe complexity required to reach a given level of

security, thereby optimizing storage usage. We use this to obtain efficiency improvements for big-

key symmetric encryption [11]. We then provide an additional lemma on polynomial-evaluation

entropy preservation, and use the two lemmas in conjunction to obtain efficiency improvements

for the ADW big-key identification scheme [6]. We note that the big-key identification scheme [6]

leads to an entropically unforgeable big-key signature signature scheme via the Fiat-Shamir

transform, and our efficiency improvements carries over to the signature setting.

Tight and Non-rewinding Proofs for Schnorr Identification and Signature

The second chapter is concerned with the concrete security of Schnorr identification and

signature schemes [79]. For these widely-deployed schemes, all known standard-model proofs

[76, 1, 58] exhibit a gap: the proven bound on adversary advantage (success probability) is much

inferior to (larger than) the one that cryptanalysis says is “true.” (The former is roughly the

square-root of the latter. Accordingly we will refer to this as the square-root gap.) The square-root

gap is well known and acknowledged in the literature. Filling this long-standing and notorious

gap between theory and practice is the subject of this paper.

We introduce the Multi-Base Discrete Logarithm (MBDL) problem. We use this to give

reductions, for Schnorr and Okamoto [74] identification and signatures, that are non-rewinding

and, by avoiding the notorious square-root loss, tighter than the classical ones from the Discrete

Logarithm (DL) problem. This fills a well-known theoretical and practical gap regarding the

2



security of these schemes. We show that not only is the MBDL problem hard in the generic group

model, but with a bound that matches that for DL, so that our new reductions justify the security

of these primitives for group sizes in actual use.

Chain Reductions for Multi-signatures and the HBMS Scheme

The third chapter is concerned with the concrete security of multi-signature schemes.

Usage in cryptocurrencies has lead to interest in practical, Discrete-Log-based multi-signature

schemes. Proposals exist, are efficient, and are supported by proofs, but, the bound on adversary

advantage in the proofs is so loose that the proofs fail to support use of the schemes in the 256-bit

groups in which they are implemented in practice. This leaves the security of in-practice schemes

unclear.

We ask, is it possible to bridge this gap to give some valuable support, in the form of

tight reductions, for in-practice schemes? As long as we stay in the current paradigm, namely

standard-model proofs from DL, the answer is likely NO. To make progress, we need to be

willing to change either the model or the assumption. We show that in fact changing either

suffices. Our approach is to give, for any scheme, many different paths to security. In particular

we give (1) tight reductions from DL in the Algebraic Group Model (AGM) [47], and (2) tight,

standard-model reductions from well-founded assumptions other than DL. We obtain these results

via a framework in which a reduction is “factored” into a chain of sub-reductions involving

intermediate problems.

We implement this approach first with classical 3-round schemes, giving chain reductions

yielding (1) and (2) above for the BN [14] and MuSig [64] schemes. Then, in the space of 2-round

schemes, we give a new, efficient scheme, called HBMS, for which we do the same.
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Chapter 1

Efficiency Improvements for Big-Key

Cryptography

1.1 Introduction

This paper is concerned with the threat of key exfiltration. This means attacker-planted

malware on the key-storing system uses the system’s network connection to convey the key

to a remote accomplice. A line of theoretical work has suggested a mitigation, called the

Bounded Retrieval Model (BRM) [41, 38, 30, 6, 5], which involves using big keys. BKR [11]

initiated an effort to take the BRM (they call it big-key cryptography) to practicality. We

continue this effort. We identify probe complexity (the number of scheme accesses to the slow

storage medium storing the big key) as the dominant cost. Our large-alphabet subkey prediction

lemma allows us to minimize the probe complexity required to reach a given level of security,

thereby optimizing storage usage. We use this to obtain efficiency improvements for big-key

symmetric encryption [11]. We then provide an additional lemma on polynomial-evaluation

entropy preservation, and use the two lemmas in conjunction to obtain efficiency improvements

for the ADW big-key identification scheme [6].
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LARGE-ALPHABET SUBKEY PREDICTION. Let b≥ 2 be an integer representing the block

size in a storage system, for example b = 32 or b = 64 for words in memory, or b = 8 ·512 (512

bytes) for a typical hard-disk drive. Let q = 2b be the alphabet size, and [q] = {0,1, . . . ,q−1}

the corresponding alphabet. Let KKK = (KKK[0], . . . ,KKK[k−1]) ∈ [q]k be a string over [q] of length k,

randomly chosen. It represents a (big) key stored in our storage system as a sequence of k blocks.

We imagine that an adversary-chosen function Lk : [q]k→ [q]` (representing adversary-implanted

malware, and here called the leakage function) is applied to KKK, and the result L (representing

exfiltrated information, here called the leakage), is provided back to the adversary. Think of ` as

somewhat smaller than k, for example `≤ k/10, so that the leakage, although not total, is certainly

non-trivial. Despite this, we wish to make secure use of the big key, specifically to (repeatedly)

extract “small” keys (τ≥ 1 blocks, for a parameter τ) for use with conventional cryptography. In

any such extraction, we make τ random but distinct probes i1, . . . , iτ ∈ [k] = {0,1, . . . ,k−1} into

KKK to determine J = KKK[i1] . . .KKK[iτ] as the τ-block short key. Given the leakage L and the probe

positions i1, . . . , iτ, the adversary aims to predict (compute in its entirety) J. Two metrics (see

Section 1.3 for precise definitions of what we discuss next) are of interest. First is the subkey

prediction advantage

Advskp
q,k,τ(`) , (1.1)

defined as the maximum probability that an adversary can compute J, the maximum being over all

leakage functions Lk returning ` blocks and over all adversary strategies. It is useful to let k∗ = kb

denote the amount of storage occupied by the big key in bits, and, correspondingly, `∗ = `b the

amount of allowed leakage in bits. (We will want to fix these and vary b, thereby defining k and

`.) Now, in usage, we would ask for a certain number s of bits of security (for example s = 128),

meaning we want the subkey prediction advantage to be at most 2−s, and then want to know the

number τ of probes it takes to get there. This is the probe complexity,

Probesk∗,`∗,s(b) = min
{

τ : Advskp
2b,k∗/b,τ(`

∗/b)≤ 2−s
}
. (1.2)
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The probe complexity will be our cost in accesses to a potentially slow storage system, like a

disk, and for effiency of the overlying big-key scheme, we want to minimize it. To this end,

Theorem 1.3.1 gives a good upper bound on the subkey prediction advantage, whence we obtain

a good upper bound on the probe complexity. Next, we compare our bounds to prior ones, and

discuss history and applications (to big-key cryptography and thus key exfiltration resistance).

PRIOR WORK AND COMPARISONS. ADW [7, Lemma A.3] is an elegant and general

result that, as a special case, gives an upper bound on the subkey prediction advantage (and

thus probe complexity) for all values of parameters we consider. The bounds, however are quite

poor, so that, to get a desired level of security, one needs a very large number of probes (we

will see numbers in a bit), resulting in a significant loss of efficiency for the overlying big-key

cryptography schemes. This lead BKR [11] (in their quest for practical big-key symmetric

encryption) to formulate subkey prediction, and seek better bounds by direct analysis. They

however only considered the case b = 1 of a binary alphabet. They gave an example to show

that there are non-obvious leakage functions that lead to better subkey prediction advantage

than one might expect, making the problem of giving a (good) upper bound challenging. Via a

combinatorial analysis, they showed that the worst case is when the pre-images of the outputs of

the leakage function are approximate Hamming balls in the space of big keys, thereby deriving

estimates (not quite upper bounds, something we rectify) on the subkey prediction advantage

and probe complexity, for the case b = 1 (q = 2), that are much better than those obtained via

ADW [6, Lemma A.3]. They posed the large alphabet (b > 1) case as an open question, asking,

specifically, to give bounds on subkey prediction advantage and probe complexity, in the b > 1

case, that are better than the ones obtained via ADW [7, Lemma A.3]. (The motivation, as we

will see later, was to improve efficiency of big-key symmetric encryption.) Our work answers this

question, giving (good) upper bounds as a function of the block size b.

In usage, we would typically first decide on the amount of storage k∗ (measured in bits) we

allocate to the big key, for example k∗ = 8 ·1011 bits = 100 GBytes. Next we would fix the amount
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Table 1.1: Fix the amount of storage we allocate to the big key at k∗ = 8 · 1011 bits = 100
GBytes. Fix the amount of leakage at 10% of the length of the big key, `∗ = k∗/10 = 10 GBytes.
The first table considers security level s = 128, while the second considers s = 512. Each
table then considers different block sizes b. (Once b is chosen, the length of the big key in
blocks is k = k∗/b and the length of the leakage in blocks is `= `∗/b.) The table entries show
upper bounds on the probe complexity Probesk∗,`∗,s(b). The “Us” column is our bound via
Theorem 1.3.1, and “ADW” is what is obtained via [7, Lemma A.3]. The block sizes are chosen
to represent common word or disk sector sizes in storage systems.

b
s = 128

Us ADW
1 271 11532
8 61 1584

32 47 592
64 45 434

8 ·512 43 287
8 ·4096 43 285

b
s = 512

Us ADW
1 971 46127
8 219 6335
32 171 2366
64 165 1735

8 ·512 159 1146
8 ·4096 158 1139

of leakage `∗ (also measured in bits), for example `∗ = k∗/10 = 10 GBytes, corresponding to

10% of the length of the big key. The block size b may be determined by the storage system (for

example 512 bytes or 4096 bytes) or chosen to optimize security and efficiency as per our bounds.

Once it is chosen, the length in blocks k = k∗/b of the big key and ` = `∗/b of the leakage

are determined. Now, for a given level s of security, we want to know the probe complexity

Probesk∗,`∗,s(b). Smaller (fewer probes into the likely slow storage system) is better. We tabulate

results in Fig. 1.1. Our bounds emerge as substantially better than those obtained via ADW [7,

Lemma A.3]. For example, for s = 128, the improvement ranges from a factor of 26 (b = 8) to a

factor of 6.6 (b = 8 ·4096). Below, we will see how this translates to efficiency improvements for

big-key cryptography.

THE BRM. Assume (for concreteness of this discussion) that the primitive is symmetric

encryption [11] (we will discuss other primitives later), and let KKK denote the encryption key, k∗

bits long. In the Bounded Retrieval Model (BRM) [41, 38, 30, 6, 5, 11], an adversary-chosen

function Lk (representing adversary-implanted malware) is applied to KKK, and the `∗-bit result

L (representing the exfiltrated information), is provided back to the adversary. Security would
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appear impossible, since Lk could be the identity function, so that L = KKK, but the idea is that

KKK is big (for example k∗ = 100 GBytes), while L is assumed to be somewhat smaller (like

`∗ = k∗/10 = 10 GBytes). In other words, the model assumes that the amount of data exfiltrated

can be limited, say via network or system monitoring. Indeed, security product vendors such as

McAfee [65] provide tools for this type of monitoring and detection.

If the scheme is poorly designed, the fact that the exfiltrated information is somewhat

shorter than the key won’t guarantee security. For example if the scheme applies SHA256 to

KKK to get a 256 bit key K and then uses AES256 to encrypt the data, then Lk(KKK) can just return

the 256 bit string K = SHA256(KKK) and security is entirely compromised no matter how big is

KKK. The first requirement for a BRM (also called big-key) scheme is thus leakage resilience,

meaning an adversary, given L = Lk(KKK), still cannot violate security, and this must be true for

any (adversary-chosen) function Lk that returns `∗ bits.

PROBE COMPLEXITY. Big keys may help for security, but it would be prohibitively costly

to process a 100 GByte key for every encryption. The BRM addresses this via a condition that

says that each encryption (or decryption) operation should only make a “small” number of probes

into the big key KKK, meaning have low probe complexity. Security in the presence of leakage is a

difficult goal under any circumstances, but made even more so here by this requirement.

FROM BITS TO BLOCKS. Viewing the big key KKK = (KKK[0], . . . ,KKK[k∗−1]) as a sequence

of bits, BKR encryption [11] begins by making some τ∗ random probes i1, . . . , iτ∗ ∈ [k∗] into KKK

to extract a τ∗-bit subkey J = KKK[i1] . . .KKK[iτ∗]. It then applies a (randomized) hash function to

J to get a key K for a conventional (AES-based) symmetric encryption scheme, and uses K to

encrypt the data. Once J has been obtained, the computation, being symmetric cryptography

operations, is quite efficient, but KKK, being big, is likely stored on a slow medium like a hard

drive, and so the encryption cost is dominated by the storage accesses needed to get J. For a

subkey prediction advantage of s = 128 (based on which BKR show ind-cpa style security of their

encryption scheme at the same security level), BKR will need τ∗ = 271 probes into the storage.
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(This is as per the b = 1 row of the first table in Fig. 1.1. BKR’s subkey prediction lemma gives

an estimate, not a bound, so we use our number, but numerically the two are almost the same.)

But (as BKR themselves point out), their scheme is making very poor use of storage by

drawing only a bit of the big key per probe. Letting b be some appropriate block size determined

by the storage system (for example b = 8 ·512 bits = 512 Bytes), KKK would actually be stored as a

sequence of blocks, and a single probe into the storage can retrieve an entire block at about the

same cost as retrieving a single bit. Indeed, a typical storage API does not even provide a way to

directly access a bit, so an implementation of BKR would, for a probe for bit-position j, have

to draw the block containing this bit position, take the corresponding bit, and throw the other

bits away. A natural improvement (suggested by BKR) is to draw (and use) an entire block per

probe. Thus, we now view the big key KKK = (KKK[0], . . . ,KKK[k−1]) ∈ [2b]k as a sequence of blocks,

corresponding to the way it is actually stored, where k = k∗/b is the number of blocks. Now,

making some τ probes i1, . . . , iτ ∈ [k] into KKK, one obtains the subkey J = KKK[i1] . . .KKK[iτ]. The rest

of the encryption process is as before, and as we have already noted, is efficient, even though

J could be a bit longer. Continuing to require a subkey prediction advantage of s = 128, the

question is, what value of τ guarantees this? This is the question that BKR could not answer. It is

answered by our large-alphabet subkey prediction lemma. Specifically, the first table of Fig. 1.1

gives values of τ for different choices of b. For b = 512 Bytes, we see that τ = 43. Recalling that

BKR needed τ∗ = 271 probes, we have reduced the number of probes (storage accesses) by a

factor of 271/43≈ 6, meaning offer a 6x speedup.

The price we pay (as alluded to above) is that J is longer, specifically, 271 bits for BKR

and 43 · 512 ≈ 22 KBytes for us. This means the hashing of J to obtain the AES key K takes

longer, but modern hash functions are fast, and the time saved in storage accesses is more than

the time lost in extra hashing [31, 34]. This is especially true since the hashing can be pipelined,

taking advantage of the iterated structure of hash functions to process blocks incrementally as

soon as they are retrieved rather than delaying hashing until after all blocks are retrieved.
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BIG-KEY IDENTIFICATION. In a (public-key) identification scheme, a user (called the

prover) has a secret key sk whose associated public key pk is held by the server (called the

verifier). Access control is enforced by having the prover identify itself as the owner of sk via an

interactive identification protocol. The Schnorr [79] and Okamoto [74] schemes are well-known

examples, but they are of course conventional (small-key) schemes. Identification is an interesting

target for a BRM scheme. Here it is the secret key sk that would be big (100 GBytes)— we want

the public key pk to remain of conventional size. The usage we envision is hardware-assisted

access control, where sk is on an auxiliary device like a USB stick that the user plugs into a

possibly infected machine to identify herself (login) to the server across the network. The key

being large, and reading from a USB being slow, the malware will have difficulty obtaining

enough information about the key (10 GBytes) to violate BRM security, even after a significant

number of usages (logins) by the user.

Identification in the BRM was first treated by ADW [6], who gave (asymptotic) security

definitions and a clever scheme that involves combining multiple instances of the Okamoto

scheme [74] in a compact way. We target making this scheme practical. The quest is meaningless

in the absence of concrete security, for practicality is fundamentally about maximizing efficiency

for a given level (eg. 128 bits) of security. A first and central step is thus a concrete-security

treatment. We render the definitions of big-key identification (the goal is security against

impersonation under active attack) concretely, then revisit the asymptotically-stated result of

ADW [6] to render it, too, in concrete form. We note that for the ADW scheme, probe complexity

dictates the computational cost of the two most costly phases of the protocol, the response phase

and verification phase (as we will demonstrate in Fig. 1.2). Hence, improvements in probe

complexity directly translate into improvements in efficiency. Towards lowering probe complexity

for a given level of security, we first improve the concrete security of the reduction via a lemma

on the entropy preservation of polynomial evaluation that improves bounds from ADW [6]. We

then obtain further reductions in probe complexity, by using our large-alphabet subkey prediction
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lemma in place of ADW’s own [7, Lemma A.3]. The large-alphabet aspect here is crucial, for the

scheme draws, from the big key, a value in Zm
p , where p is a prime of 512 bits long (for 128-bit

security of the identification scheme), and m≥ 2 is an integer parameter, so probes need to return

blocks of the (large) size b = m · dlog2(p)e. Putting it all together gives a reasonable-cost big-key

identification scheme, and the first concrete rendition of the ADW big-key identification scheme.

A preliminary implementation shows that with a pairing-friendly group of 512 bits, the execution

of the protocol takes a few seconds.

1.2 Preliminaries

For n a positive integer, we let [n] = {0,1, . . . ,n−1}, and [1..n] = {1, . . . ,n}. We also use

the notation Zn to denote the set [n] in contexts where we use the underlying algebraic structure

modulo n. If xxx is a vector, then |xxx| denotes its length and xxx[i] denotes its i-th coordinate. We call xxx

an n-vector if |xxx|= n. We number coordinates starting from 0. For example if xxx = (10,0,11) then

|xxx|= 3 and xxx[2] = 11. We let ε denote the empty vector, which has length 0. If 0≤ i≤ |xxx|−1

then we let xxx[0..i] = (xxx[0], . . . ,xxx[i]), this being ε when i = 0. We say that xxx is a vector over set S if

all its coordinates belong to S. We let Sn denote the set of all n-vectors over S and we let S∗ denote

the set of all finite-length vectors over the set S. If S is a set then |S| denotes its size. If τ≤ |S| is a

positive integer, we let S(τ) be the set of τ-vectors over S with distinct entries. Strings are treated

as the special case of vectors over {0,1}. Thus, if x is a string then |x| is its length, x[i] is its i-th

bit, x[0..i] = x[0]...x[i], ε is the empty string, {0,1}n is the set of n-bit strings and {0,1}∗ the set

of all strings. For K ∈ [q]k and pp ∈ [k]∗, we let K[pp] = (K[pp[0]],K[pp[1]], . . . ,K[pp[|pp|−1]]),

this being ε when pp= ε.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and

assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time is

worst case. If A is an algorithm, we let y← A(x1, · · · ;r) denote running A with random coins r
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on inputs x1, · · · and assigning the output to y. We let y←$ A(x1, · · ·) be the result of picking r at

random and letting y← A(x1, · · · ;r). We let [A(x1, · · ·)] denote the set of all possible outputs of A

when invoked with inputs x1, · · · .

We use the code-based game-playing framework [19] (see Fig. 1.1 for an example). By

Pr[Gm] we denote the probability that game Gm returns true. Uninitialized boolean variables,

sets and integers are assume initialized to false, the empty set and 0, respectively.

Following [17], our random oracle H is variable range. This means it takes two inputs, x

and Img, where the latter is a (description of) an efficiently sampleable set, and returns as output

a random point in Img. In schemes, we (implicitly or explicitly) fix a unique description for

each range set that is used. For example, x←$H(x, [k]) will return a random element in [k], and

pp←$H(x, [k](τ)) will return a random τ-dimensional vector over [k] with distinct entries.

HAMMING BALLS. Let q≥ 2 and n≥ 1 be integers. We define the weight of a n-vector v

over [q] to be

w(v) =
∣∣∣{i ∈ [n] | v[i] 6= 0}

∣∣∣ ,
the number of coordinates of v that are non-zero. Let K ⊆ [q]n for some integer n, we define the

weight of K to be

w(K ) = ∑
x∈K

w(x) ,

the sum of weights of vectors in K . For 0≤ r ≤ k, the q-ary hamming ball of radius r over [q]k is

the set

Bq,k(r) =
{

v ∈ [q]k : w(v)≤ r
}

of k-vectors over [q] that have more at most r non-zero coordinates. We let Bq,k(r) denote the

size of the set Bq,k(r) and note that

Bq,k(r) =
r

∑
i=0

(q−1)i
(

k
i

)
.
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Game Gskp
q,k,τ(A ,Lk)

KKK←$ [q]k;L← Lk(KKK)

p←$ [k](τ)

J←$ A(L,p)
Return (J = KKK[p])

Game Grskp
k,τ (A ,K )

KKK←$ K
p←$ [k](τ)

J←$ A(p)
Return (J = KKK[p])

q≥ 2 : the alphabet size. A block is an element of [q].
k : the length in blocks of the big key
τ≤ k : the number probes into the big key KKK
A : the adversary
Lk : the leakage function, Lk : [q]k→ [q]`

` : the length of the output of the leakage function,
called the leakage length, in blocks

b≥ 1 : the block length, meaning q = 2b. Theorem 1.3.1
does not assume q is a power of two, but it is in
some applications.

L : the leakage, an `-vector over [q] returned by Lk

KKK : the big key, a vector of length k over [q]
p : the probe vector, a τ-vector over [k] all of whose

coordinates are distinct
k∗ : the length of the big key in bits, k∗ = kb
`∗ : the length of the leakage in bits, `∗ = `b
ρ : the leakage rate, ρ = `∗/k∗ = `/k

Figure 1.1: Top Left: Subkey prediction game Gskp
q,k,τ. Bottom Left: Restricted subkey predic-

tion game Grskp
k,τ used in Section 1.3.3. Right: Summary of quantities involved.

For convenience of stating our results, we establish the following conventions: if r > k then we

let Bq,k(r) = Bq,k(k) = qk, and if k = 0 then for all r ≥ 0 we let Bq,k(r) = 1. We also define the

function

rdq,k(N) = max
{

r ∈ [k+1] : Bq,k(r)≤ N
}

to return the largest radius r in the range 0≤ r ≤ k such that the ball Bq,k(r) has size at most N.

1.3 Large-Alphabet Subkey Prediction

Here we define the subkey prediction problem parameterized by alphabet size and give

our results about it.
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1.3.1 The Problem

We consider the subkey-prediction game, Gskp
q,k,τ(A ,Lk), shown on the top left of Fig. 1.1.

(Ignore the game below it for now.) The quantities involved in the game, as well as associated

ones, are summarized on the right of the same Figure. In the game, a k-vector KKK over [q], called

the big key, is randomly chosen from [q]k. Then, a random τ-vector p is chosen from [k](τ), so

that its coordinates are all distinct. (Recall that [k](τ), the set from which p is selected in the game

in Fig. 1.1, denotes the set of all τ-vectors over [k] all of whose coordinates are distinct.) We

refer to p as the probe vector. Each of its coordinates is a probe, pointing to a location in the big

key. Adversary A is given the leakage L = Lk(KKK) and the probe vector p. Its goal is to predict

(compute, output) KKK[p] = (KKK[p[1]], . . . ,KKK[p[τ]]), the τ-vector consisting of the coordinates of KKK

selected by the coordinates of the probe vector. The adversary returns J as its guess, and the game

returns true if A succeeds, meaning J = KKK[p]. We define the following advantage metrics:

Advskp
q,k,τ(A ,Lk) = Pr

[
Gskp

q,k,τ(A ,Lk)
]
,

Advskp
q,k,τ(Lk) = max

A
Advskp

q,k,τ(A ,Lk),

Advskp
q,k,τ(`) = max

Lk:[q]k→[q]`
Advskp

q,k,τ(Lk).

The first advantage is the probability that the game outputs true, meaning the probability that the

adversary successfully returns KKK[p]. The second advantage is obtained by maximizing the first one

over all adversaries A . Note that this is well-defined since here we consider all computationally

unbounded adversaries. The third advantage is obtained by maximizing the second advantage

over all leakage functions Lk that output ` blocks.

Now fix some big-key length k∗ (in bits) and leakage length `∗ (in bits). Also fix an integer

s representing the desired security. For any block length b≥ 1 such that b divides k∗ and `∗, we
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let

Probesk∗,`∗,s(b) = min
{

τ : Advskp
2b,k∗/b,τ(`

∗/b)≤ 2−s
}
. (1.3)

Here, we have set the alphabet size to q = 2b. The length k of the big key and ` of the leakage

in blocks are determined, respectively, by k = k∗/b and `= `∗/b. Then, Probesk∗,`∗,s(b) is the

smallest number of probes τ that will guarantee that Advskp
q,k,τ(`) is at most 2−s.

The subkey prediction game and problem formulated by BKR [11] differs in two ways.

First, they had only considered the q = 2 case (that is, b = 1) of a binary alphabet. The large

alphabet aspect of our treatment refers to the fact that our alphabet size is a parameter q that we

view as quite large. In some applications, q = 2b where b is the block size of our storage medium,

but Theorem 1.3.1 does not assume q is a power of two. The second difference with BKR [11] is

that their probes p[1], . . . ,p[τ] were random and independent, so in particular two of them might

be the same, but ours are random subject to being distinct. This is important towards our being

able to get a provable upper bound on the subkey prediction advantage, whereas BKR were only

able to get (for their setting) an estimate or approximate upper bound.

Now our goal is to upper bound, as well as possible, the subkey prediction advantage

Advskp
q,k,τ(`) as a function of q,k,τ, `. Thence we will obtain upper bounds on Probesk∗,`∗,s(b).

1.3.2 Subkey Prediction Theorem

The bound in our subkey prediction theorem is the ratio of the sizes of two q-ary hamming

balls. We refer to Section 1.2 for definitions.

Theorem 1.3.1 (Subkey-prediction bound) Let q,k, `,τ be integers with q≥ 2 and `,τ≤ k. Let

r be any integer in the range 0≤ r ≤ rdq,k(qk−`). Then

Advskp
q,k,τ(`)≤

Bq,k−τ(r)
Bq,k(r)

. (1.4)
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The theorem allows us to pick the parameter r arbitrarily in the given range, so for the best

estimates we would pick a r that minimizes the ratio. We postpone the proof to first discuss how

this compares to prior work and how to use it to get numerical bounds.

COMPARISON. BKR [11] give an upper bound we denote Gbkr
k,τ (2

k−`) on the subkey

prediction advantage in their setting. Recall that their setting differs from ours in two ways. First,

q = 2 in their case. Second, in their game, the τ probes are random and independent, while in our

game they are random but distinct. Their function Gbkr
k,τ (N) is a sum of rd2,k(N) terms. It is quite

complex and it is hard to estimate numerically. BKR gave a simpler expression, that approximates

Gbkr
k,τ (N), and that they use for numerical estimates, but this expression is not an upper bound,

and thus it is not clear their numerical estimates are upper bounds either. Our bound, the ratio of

the sizes of two q-ary Hamming balls, is simpler than the bound of BKR (this makes crucial use

of the probes being distinct), and, we will see, more analytically tractable, even when q = 2. In

particular, we are able to upper bound minr Bq,k−τ(r)/Bq,k(r), subjected to 0≤ r ≤ rdq,k(qk−`),

quite nicely for numerical estimates, as discussed next.

TOOLS FOR DERIVING NUMERICAL BOUNDS. Theorem 1.3.1 upper bounds the subkey

prediction advantage as the ratio of the sizes of two hamming balls. Below, we present tools to

bound this ratio. First, we need some definitions. Let H2 be the binary entropy function, defined

for x ∈ [0,1] by H2(x) =−x log2(x)− (1− x) log2(1− x). We note that the value of x logq(x) is

taken to be 0 when x = 0. This ensures that H2 is continuous over [0,1]. More generally, for an

integer q≥ 2 the q-ary entropy function is defined for x ∈ [0,1] by

Hq(x) = x logq(q−1)− x logq(x)− (1− x) logq(1− x)

=
H2(x)

log2(q)
+ x logq(q−1) .

We note that Hq attains its maximum at x = 1−1/q. We define its inverse function, H−1
q : [0,1]→

[0,1− 1/q] to be such that H−1
q (Hq(x)) = x for any x ∈ [0,1− 1/q]. We define the following
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error function for q≥ 2 and 0≤ r ≤ k,

ε(q,k,r) = logq(e)
(

1
12r

+
1

12(k− r)
− 1

12k+1

)
+

1
2

logq

(
2πr(k− r)

k

)
. (1.5)

The following lemmas, the proofs of which are given in Section 1.6, are key to deriving numerical

bounds. The first gives both upper and lower bounds on the size of a Hamming ball.

Lemma 1.3.2 Let k,q,r be integers with q≥ 2 and 0≤ r ≤ k. Then,

qkHq(r/k)−ε(q,k,r) ≤ Bq,k(r) . (1.6)

Additionally, if 0≤ r ≤ k(1−1/q),

Bq,k(r)≤ qkHq(r/k) . (1.7)

The second lemma lower bounds the value of rdq,k(N).

Lemma 1.3.3 Let N,q,k be positive integers such that q≥ 2 and N ≤ qk. Then,

⌊
H−1

q

(
logq(N)

k

)
· k
⌋
≤ rdq,k(N).

The following provides a two-sided bound on H−1
q :

Lemma 1.3.4 Let q≥ 2 be an integer, and x ∈ [0,1] a real number. Then,

min(x,1− 1
q
)− 1

log2(q)
≤ H−1

q (x)≤ x(1− 1
q
) .

These bounds are good when q is large.

DERIVING NUMERICAL BOUNDS. We now use the above to derive upper bounds for

example parameter values. Let b≥ 1 be a block size, so that the alphabet has size q = 2b. Fix
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some big-key length k∗ (in bits) and leakage length `∗ (in bits) that are multiples of b, and let

k = k∗/b and `= `∗/b be the big-key and leakage lengths, respectively, in blocks. We assume

that τ and ` satisfy that `≥ τ, as the below method only apply when this condition is met. We note

that this is a reasonable assumption for practical applications, as leakage length ` is usually large,

and we are attempting to keep the probe complexity, τ, small. Now, suppose we have obtained

some integer value r such that: (1) r ≤ rdq,k(qk−`) and (2) 0≤ r ≤ (k− τ)(1−1/q). Then, we

use Equation (1.6) to lower bound Bq,k(r). Given condition (2), we can use Equation (1.7) to

upper bound the quantity Bq,k−τ(r). This results in an upper bound, denoted RatioBoundq,k,`,τ(r),

for the ratio Bq,k−τ(r)/Bq,k(r):

RatioBoundq,k,τ(r) =
q(k−τ)Hq(r/(k−τ))

qkHq(r/k)−ε(q,k,r)
.

Note that in the above expression, the terms Hq(r/(k−τ)), Hq(r/k) and ε(q,k,r) can be computed

numerically for any given value of q,k,τ and r. Hence, deriving numerical upper bound for the

ratio Bq,k−τ(r)/Bq,k(r) amounts to obtaining a value r satisfying the two conditions given above.

We take r to be rq,k,`, defined as

rq,k,` =
⌊

H−1
q (

k− `

k
) · k
⌋
.

Here, we assume that a method of obtaining numerical lower bounds for H−1
q (x) is available1. We

now check the two conditions required. For condition (1), we know that rq,k,` ≤ rdq,k(qk−`) by

Lemma 1.3.3 (taking N = qk−`). For condition (2), note that by Lemma 1.3.4 and the assumption

that `≥ τ,

H−1
q (

k− `

k
)≤ k− `

k
(1−1/q)≤ k− τ

k
(1−1/q) .

1For example, this is available in mathematical software Sage. Also, when q is large, Lemma 1.3.4 provides a
good lower bound for H−1

q that is easily computed numerically.
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Hence,

rq,k,` =
⌊

H−1
q (

k− `

k
) · k
⌋
≤ (k− τ)(1−1/q) .

We consider the quantity

Advskp
q,k,τ(`) = RatioBoundq,k,`,τ(rq,k,`) . (1.8)

We note that since r = rq,k,` satisfies condition (1) and (2), by Theorem 1.3.1 and above analysis,

Advskp
q,k,τ(`)≤

Bq,k−τ(rq,k,`)

Bq,k(rq,k,`)
≤ Advskp

q,k,τ(`) .

Hence, Advskp
q,k,τ(`) is an upper bound for Advskp

q,k,τ(`). Now, given a particular desired security

level, s, we want to find the smallest τ such that Advskp
q,k,τ(`)≤ 2−s. We let

Probesk∗,`∗,b(s) = min
{

τ ∈ [k+1] : Advskp
q,k,τ(`)≤ 2−s

}
.

Note that this is similar to the definition of Probesk∗,`∗,b(s) (Equation (1.3)), only that Advskp
q,k,τ(`)

is replaced with Advskp
q,k,τ(`). Thence,

Probesk∗,`∗,b(s)≤ Probesk∗,`∗,b(s) . (1.9)

We note that Probesk∗,`∗,b(s) can be computed numerically by iteratively incrementing τ and

computing Advskp
q,k,τ(`). Fig. 1.1 shows values of Probesk∗,`∗,b(s) for various practical values of

k∗, `∗, b and s.

PLOTS. For the left plot, we fix the following:

− Blocksize b = 32 bits, so that q = 232.

− Leakage length `∗ = 8 ·1010 bits = 10 GBytes, so that `= `∗/32.
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Figure 1.2: Fix the big key length k∗ to be 100 GBytes. The left graph plots (an upper bound
on) Probesk∗,ρk∗,128(32) as a function of the leakage rate ρ. The right graph plots (a lower bound
on) − log2(Advskp

232,k,47(ρk)) as a function of ρ, where k = k∗/32.

− Desired security level s = 128 bits.

The left graph in Fig. 1.2 plots Probes`∗/ρ,`∗,b(s), upper bound for Probes`∗/ρ,`∗,s(b), as a function

of the leakage rate ρ. The left plot shows that the number of probes needed to maintain s bits of

security increases faster once the leakage rate goes over 50%. Hence, for applications, it may be

beneficial to use big keys that are big enough so that the leakage rate can be assumed to be less

than 50%. For example, if 10 GBytes is the leakage bound, one might, for efficiency, target big

key of size at least 20 GBytes.

For the right plot, we fix the following

− Blocksize b = 32 bits, so that q = 232.

− Big key length k∗ = 8 ·1011 bits = 100 GBytes, so that k = k∗/32.

− Number of probes τ = 47.

The number 47 has been chosen because, as per Fig. 1.1, it ensures Advskp
q,k,τ(k/10)≤ 2−128. Now

with b,k∗,τ (and thus also q,k) fixed, the right graph plots − log2(Advskp
q,k,τρ · k), lower bound for

− log2(Advskp
q,k,τ(ρ · k)), as a function of leakage rate ρ. The right plot in Fig. 1.2 demonstrates

that, even though a scheme is designed for 10% leakage, security degrades gradually as the

leakage rate goes over 10%.
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1.3.3 Proof of Theorem 1.3.1

We follow the framework of the proof of BKR [11].

RESTRICTED SUBKEY PREDICTION. The proof involves consideration of a simpler game,

called the restricted subkey prediction game, denoted Grskp and shown on the right in Fig. 1.1.

Game Grskp is similar to game Gskp, except that there is no leakage function Lk and leakage L.

Instead, the big key KKK is drawn from a restricted subset K ⊆ [q]k of big keys. We define the

following advantage metrics:

Advrskp
k,τ (A ,K ) = Pr

[
Grskp

k,τ (A ,K )
]
,

Advrskp
k,τ (K ) = max

A
Advrskp

k,τ (A ,K ),

Advrskp
q,k,τ(N) = max

K⊆[q]k,|K |=N
Advrskp

k,τ (K ).

The first advantage is the probability that the game outputs true, meaning the probability that the

adversary successfully returns KKK[p]. The second advantage is obtained by maximizing the first

one over all adversaries A . The third advantage is obtained by maximizing the second advantage

over all sets K ⊆ [q]k that have size N. We note that the first two advantages do not have q in the

subscript, which is due to the fact that K encodes the value of q.

MONOTONE SETS. Let x,x′ be vectors in [q]k. We say that x dominates x′, or x′ is

dominated by x, written x′ ≤ x, if x′ can be obtained by changing non-zero coordinates of x to 0.

We let

DSq,k(x) = {x′ ∈ [q]k : x′ ≤ x}

be the set of all x′ dominated by x. A set K ⊆ [q]k is monotone if

⋃
x∈K DSq,k(x)⊆K .

That is, if x ∈K , and x′ is dominated by x, then x′ ∈K . For example, a Hamming ball in [q]k, of
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any radius, is a monotone set.

SOME NOTATION. For integers x,τ≥ 0, we let

x(τ) =
τ−1

∏
i=0

(x− i) =
x

∏
j=x−τ+1

j . (1.10)

Notice that x(τ) = 0 if τ > x. This can be seen because, if τ > x, then, in the second product

above, the starting value for j is ≤ 0, and since x≥ 0, this means the term j = 0 is included in the

product. Also when τ = 0, the product has zero terms, and hence by convention takes value 1,

meaning x(0) = 1 for all x≥ 0. We use below the notation from Equation (1.10).

For a nonempty K ⊆ [q]k, we define the function

gk,τ(K ) =
1
|K | ∑

x∈K

(k−w(x))(τ)
k(τ)

. (1.11)

The following lemma says that if K is monotone, then the restricted subkey prediction advantage

for big keys drawn from K can be expressed exactly, and in particular by the function of

Equation (1.11).

Lemma 1.3.5 Let q,τ,k be positive integers such that τ ≤ k and q ≥ 2. Let K ⊆ [q]k be a

non-empty monotone set. Then,

Advrskp
k,τ (K ) = gk,τ(K ).

Proof of Lemma 1.3.5: Let A0 be the adversary that, on input p, always returns the all-0 τ-vector.

We claim that this adversary maximizes the advantage, meaning

Advrskp
k,τ (K ) = Advrskp

k,τ (K ,A0) .

This follows from the assumption that K is monotone. Now, we compute the advantage of A0.
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For KKK ∈ [q]k, let Z(KKK) denote the set of all p ∈ [k](τ) such that K[pp] = (0, . . . ,0). We have

Advrskp
k,τ (K ,A0) =

1
|K | ∑

KKK∈K

|Z(KKK)|
|[k](τ)| =

1
|K | ∑

KKK∈K

(k−w(K))(τ)

k(τ)
= gk,τ(K ) .

We say that a set K ⊆ [q]k is sandwiched between hamming balls if

Bq,k(r)⊆K ⊂ Bq,k(r+1)

for r = rdq,k(|K |). For N an integer such that 1≤ N ≤ qk, we define

Gq,k,τ(N) =
1
N

rdq,k(N)

∑
i=0

(q−1)i
(

k
i

)
(k− i)(τ)

k(τ)
+

(
1− Bq,k(rdq,k(N))

N

)
(k− (rdq,k(N)+1))(τ)

k(τ)
.

(1.12)

The following says that if K is monotone and sandwiched between Hamming balls, then the

restricted subkey prediction advantage for big keys drawn from K can be expressed exactly, and

in particular by the function of Equation (1.12).

Lemma 1.3.6 Let q,τ,k be positive integers such that τ ≤ k and q ≥ 2. Let K ⊆ [q]k be a

non-empty monotone set that is also sandwiched between hamming balls, i.e. Bq,k(r) ⊆ K ⊂

Bq,k(r+1) for r = rdq,k(|K |). Then

Advrskp
k,τ (K ) = Gq,k,τ(|K |) .

Proof of Lemma 1.3.6: Let N = |K |. By Lemma 1.3.5, we have

Advskp
k,τ (K ) =

1
N ∑

x∈K

(k−w(x))(τ)
k(τ)

.

Since Bq,k(r) ⊆ K ⊂ Bq,k(r + 1). This means Bq,k(i) ⊆ K for i = 0, . . . ,r, and K contains
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N−Bq,k(r) vectors of weight r+1. Thus, the above equals

N−Bq,k(r)
N

(k− r−1)(τ)
k(τ)

+
1
N

r

∑
i=0

(q−1)i
(

k
i

)
(k− i)(τ)

k(τ)
= Gq,k,τ(N)

as claimed.

Next, we show that monotone sets sandwiched between Hamming balls are the extremal

cases for the restricted subkey prediction game, meaning that they maximize the restricted subkey

prediction advantage. The following is analogous to [11, Lemmas 6,8]. We streamline their

analysis and extend it to large alphabets.

Lemma 1.3.7 Let q,k,N be positive integers. Suppose q≥ 2, N ≤ qk and τ≤ k. Then, there is a

non-empty monotone set K ⊆ [q]k of size N such that

Advrskp
q,k,τ(N) = Advrskp

k,τ (K ) .

Additionally, K is also sandwiched between hamming balls, i.e. for r = rdq,k(N),

Bq,k(r)⊆K ⊂ Bq,k(r+1) .

The proof of Lemma 1.3.7 is deferred to Section 1.3.3. As a direct corollary of Lemma 1.3.6 and

Lemma 1.3.7, we get the following result.

Corollary 1.3.8 Let q,τ,k be positive integers such that τ≤ k and q≥ 2. Then,

Advrskp
q,k,τ(N) = Gq,k,τ(N) . (1.13)

Hence, from this point on, we identify the two functions Advrskp
q,k,τ(·) and Gq,k,τ(·). Next, we

observe a useful property of Gq,k,τ(N). In particular, it is decreasing in the domain [1..qk].
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Lemma 1.3.9 Let q,τ,k be positive integers such that τ≤ k and q≥ 2. Let i, j be integers such

that 1≤ i≤ j ≤ qk. Then,

Gq,k,τ(i)≥ Gq,k,τ( j) .

We proceed to relate the restricted subkey-prediction game to the subkey-prediction game via the

lemma below.

Lemma 1.3.10 Let `,q,k,τ be integers such that 0≤ `≤ k, q≥ 2, and 1≤ τ≤ k. Then,

Advskp
q,k,τ(`)≤ Advrskp

q,k,τ(q
k−`) .

The proofs of Lemma 1.3.9 and Lemma 1.3.10 are deferred to Section 1.3.3. Finally, we give a

way to bound the expression Gq,k,τ(N). In particular, we show that it is at most the ratio of two

hamming balls of the same radius rdq,k(N); one with dimension k− τ and one with dimension

k. Recall that BKR did not give concrete numerical upper bounds for their subkey-prediction

advantage, only estimates. Due to assuming the uniqueness of probes, we are able to simplify our

expression Gq,k,τ(N). In particular, we note that for non-negative integers k, i,τ such that i,τ≤ k,

(
k
i

)
(k− i)(τ)

k(τ)
=

k(i)
i(i)
·
(k− i)(τ)

k(τ)
=

(k− τ)(i)

i(i)
=

(
k− τ

i

)
. (1.14)

This property allows us to prove the following lemma.

Lemma 1.3.11 Let N,q,k,τ,r be positive integers such that q≥ 2, N ≤ qk, τ≤ k and r≤ rdq,k(N).

Then

Gq,k,τ(N)≤ Bq,k−τ(r)
Bq,k(r)

.

Proof of Lemma 1.3.11: By Lemma 1.3.9,

Gq,k,τ(N)≤ Gq,k,τ(Bq,k(r)).
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By Equation (1.12) and Equation (1.14),

Gq,k,τ(Bq,k(r))≤
1

Bq,k(r)

rdq,k(Bq,k(r))

∑
i=0

(q−1)i
(

k
i

)
(k− i)(τ)

k(τ)

=
1

Bq,k(r)

r

∑
i=0

(q−1)i
(

k− τ

i

)
=

Bq,k−τ(r)
Bq,k(r)

.

The proof of Theorem 1.3.1 follows directly.

Proof of Theorem 1.3.1: Note that when r = 0, Equation (1.4) is trivially true. Hence, we let

r ≤ rdq,k(N) be a positive integer. Then,

Advskp
q,k,τ(l)≤ Advrskp

q,k,τ(q
k−l) (Lemma 1.3.10)

= Gq,k,τ(qk−l) (Corollary 1.3.8)

≤ Bq,k−τ(r)
Bq,k(r)

. (Lemma 1.3.11)

Proof of Lemma 1.3.7

Let

T =
{

K ⊆ [q]k : |K |= N and Advrskp
k,τ (K ) = Advrskp

q,k,τ(N)
}
.

Let K ∈ T be the minimal weight element, i.e. the element K ∈ T that minimizes the value

w(K ) = ∑x∈K w(x). We will show that K is a set satisfying the properties claimed in the lemma.

We will prove the two properties separately, namely that K is monotone and Bq,k(r) ⊆ K ⊂

Bq,k(r+1). We first claim that K is monotone. The idea is to define a “shifting” operation for
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any set K ′ ⊆ [q]k at a coordinate to increase Advrskp
k,τ (K ′) while decreasing w(K ′). Seeking a

contradiction, suppose K is not monotone. Without loss of generality, suppose that for all pairs

of x ∈K and y 6∈K such that y≤ x, we have that x and y differ only in the first component. We

build another set K ′ with the following properties.

1. |K ′|= |K |

2. w(K ′)≤ w(K )

3. Advrskp
k,τ (K ′)≥ Advrskp

k,τ (K )

We first explain briefly explain the construction of K ′ on the high level before giving the formal

construction. Let z ∈ [q]k−1. We will attempt to “swap” vectors of the form α‖z, for α ∈ [q], in

and out of K . The swapping is done in two cases. We define Dz to contain the α’s such that

α‖z ∈ K . First, if 0 ∈ Dz or Dz = /0, no swapping will be done. Second, if 0 6∈ Dz and Dz 6= /0,

then we will do the following. Let β = maxDz. We will remove the element β‖z from K and add

the element 0‖z to K . After such operations are done for all z ∈ [q]k−1, the resulting set will be

K ′. Formally, the construction of K ′ is given below. K ′ is constructed from K via the function

φ : [q]k→ [q]k, which is defined relative to the set B (set A is used in the later analysis). Sets A

and B partition the set of strings of length k−1. Set A consists of z’s such that no swapping will

be done. Set B consists of z’s such that swapping will be done. The formal definition for A,B,φ,
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and K ′ is as follows:

A =
{

z ∈ [q]k−1 : 0 ∈ Dz or Dz = /0

}
,

B =
{

z ∈ [q]k−1 : 0 6∈ Dz and Dz 6= /0

}
,

φ(α‖z) =


0‖z if z ∈ B and α = maxDz

(maxDz)‖z if z ∈ B and α = 0

α‖z otherwise

,

K ′ =
{

φ(x) : x ∈K
}
.

By construction, we note that the swapping operation preserves the size of the set and only

decreases its overall weight. Hence, |K ′|= |K | and w(K ′)≤ w(K ). It remains to show property

(3). Let A be an adversary such that Advrskp
k,τ (A ,K ) = Advrskp

k,τ (K ). Consider the adversary A ′

that behaves exactly as A with the exception that it always guess 0 for the first position. More

precisely, A ′ does the following.

Adversary A ′((s1, . . . ,sτ))

J′← A((s1, . . . ,sτ))

For i← 1, . . . ,τ do

If si = 1 then J′[i]← 0

Return J′

Let P(·) denote the probability function in game Grskp
k,τ (A ,K ) and P′(·) the probability function

in game Grskp
k,τ (A ′,K ′). We now define three events for both games Grskp

k,τ (A ,K ), Grskp
k,τ (A ′,K ′),

where z ∈ [q]k−1.
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win : The game returns true

one : 1 ∈ {s1, . . . ,sτ}

sz : (K[1..k] = z), one and (∀i,si 6= 1 : J′[i] = K[si])

Note that P(one)=P′(one), and P(win|¬one)=P′(win|¬one). We claim that P(win|one)≤

P′(win |one). If so we have

Advrskp
k,τ (A ,K ) = P(win)

= P(win |one) ·P(one)+P(win |¬one) ·P(¬one)

= P(win |one) ·P′(one)+P′(win |¬one) ·P′(¬one)

≤ P′(win |one) ·P′(one)+P′(win |¬one) ·P′(¬one)

= P′(win) = Advrskp
k,τ (A ′,K ′) .

So now we need to show that P(win |one)≤ P′(win |one). We have

P(win | one) = ∑
z∈[q]k−1

P(win | sz) ·P(sz)

= ∑
z∈[q]k−1

P(win | Sz) ·P′(Sz) (1.15)

≤ ∑
z∈[q]k−1

P′(win | Sz) ·P′(Sz) (1.16)

= P′(win | one) .

Equation (1.15) is true because P(sz) = P′(sz) for all z ∈ [q]k−1, since the swapping operation do

not change the last k−1 component of any vector. Next, we argue the validity of Equation (1.16).

Let z ∈ [q]k−1 such that P(Sz) 6= 0 (and hence P′(Sz) 6= 0), which means that there is some

α ∈ [q] such that α‖z ∈ K . For any z ∈ [q]k−1, consider the sets Uz = {α ∈ [q] : α‖z ∈ K } and
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Vz = {α∈ [q] : α‖z∈K ′}. Note that P(win |sz)≤ 1/|Uz| and P′(win |sz)≤ 1/|Vz|. Additionally,

we note that |Uz|= |Vz|, and Vz always contains 0. Since A ′ always guess 0 for the first component,

we have P′(win | sz) = 1/|Vz|. Therefore,

P(win | sz)≤
1
|Uz|

=
1
|Vz|

= P′(win | sz) .

Next, we show that K must be sandwiched between two hamming balls. We first claim

that Bq,k(r) ⊆ K . Seeking a contradiction, suppose that Bq,k(r) 6⊆ K . Let x′ be a point in

Bq,k(r)\K of minimal Hamming weight. Let x be a point in K \Bq,k(r) of maximal Hamming

weight. We claim that w(x)> w(x′), otherwise Bq,k(r)⊆ K . Let K ′ be obtained by removing

x from K and then adding x′, i.e. K ′ = (K \{x})∪{x′}. Because x′ was minimal in Hamming

weight and x was maximal in Hamming weight, the set K ′ continues to be monotone, and it has

size N. Also gk,τ(K )< gk,τ(K ′) because w(x)> w(x′). Hence, by Lemma 1.3.5

Advrskp
k,τ (K ) = gk,τ(K )< gk,τ(K ′) = Advrskp

q,k,τ(K
′) .

This contradicts the assumption that Advrskp
q,k,τ(N) = Advrskp

k,τ (K ). Hence, it must be that Bq,k(r)⊆

K . Now suppose K 6⊆ Bq,k(r + 1). Let x′ be a point in Bq,k(r + 1) \K . Such a point exists

because we know that N < Bq,k(r+1). It must be that w(x′) = r+1 since Bq,k(r)⊆K . Let x be

a point in K \Bq,k(r+1) of maximal Hamming weight. Note that w(x)> r+1 = w(x′). Let K ′

be obtained by removing x from K and then adding x′, meaning K ′ = (K \{x})∪{x′}. The set

K ′ continues to be monotone, and it has size N. Also gk,τ(K )< gk,τ(K ′) because w(x)> w(x′).

Hence, by Lemma 1.3.5,

Advrskp
k,τ (K ) = gk,τ(K )< gk,τ(K ′) = Advrskp

k,τ (K ′).

This contradicts the assumption that Advrskp
q,k,τ(N) = Advrskp

k,τ (K ). Hence, it must be that K ⊂
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Bq,k(r+1).

Proof of Lemma 1.3.9 and Lemma 1.3.10

To prove Lemma 1.3.9 and Lemma 1.3.10, we recall the notion of discrete concavity.

Suppose F : [1..M]→ R. We say that F is concave if F(a+1)−F(a)≤ F(b+1)−F(b) for all

a,b ∈ [1..M] satisfying a≥ b. Now suppose t,m are integers with 1≤ m≤ t. Then we let

S(M,m, t) =
{
(x1, . . . ,xm) ∈ [1..M]m : x1 + · · ·+ xm = t

}
.

Define Fm : [1..M]m→ R by Fm(x1, . . . ,xm) = F(x1)+ · · ·+F(xm). We use the following lemma

proved by [11].

Lemma 1.3.12 ([11]) Suppose F : [1..M]→ R is concave. Suppose 1≤ m≤ t are integers such

that m divides t and t/m ∈ [1..M]. Then

max
(x1,...,xm)∈S(M,m,t)

Fm(x1, . . . ,xm) = m ·F(t/m) .

Lemma 1.3.13 The function, Fq,k,τ : [1..qk]→ R, defined below, is concave.

Fq,k,τ(N) =
N
qk ·Advrskp

q,k,τ(N).

Proof: Let N0,N1 be two integers such that qk ≥ N0 ≥ N1 ≥ 1. Consider, for i = 0,1,

∆i = Fq,k,τ(Ni +1)−Fq,k,τ(Ni),

For i = 0,1, we let ri be defined as follows. If Ni = Bq,k(r) for some r, then we take ri to be the

value such that Bq,k(ri) = Ni. Otherwise, we let ri = rdq,k(Ni)+1. Note that we can now express
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∆i in terms of ri as follow (via Equation (1.12)),

∆i = qk ·
(k− ri)(τ)

k(τ)
.

Since N0 ≥ N1, we note that r0 ≥ r1. Therefore, we have ∆0 ≤ ∆1 and that Fq,k,τ is concave.

We first prove Lemma 1.3.9 using Lemma 1.3.13.

Proof of Lemma 1.3.9: Note that,

Gq,k,τ(N) =
qk ·Fq,k,τ(N)

N
.

We let ∆i = qk ·Fq,k,τ(i+1)−qk ·Fq,k,τ(i) for all i = 0, . . . ,qk−1. We define ∆0 = qk ·Fq,k,τ(1) =

qk ·Gq,k,τ(1). Hence, by construction Gq,k,τ(i)= (∑i−1
j=0 ∆i)/i. Note that since Fq,k,τ(·) is concave in

the domain [1..qk], the sequence ∆1, . . . ,∆qk−1 is non-increasing, meaning that ∆i ≥ ∆ j whenever

1≤ i≤ j ≤ qk−1. Additionally, we check that ∆0 = qk and ∆1 ≤ qk, hence ∆0 ≥ ∆1. Therefore,

the partial averages of the sequence ∆0, . . . ,∆qk−1,

( i−1

∑
j=0

∆ j
)
/ i = Gq,k,τ(i) ,

is non-increasing as claimed.

Lastly, we prove Lemma 1.3.10 using Lemma 1.3.12 and 1.3.13.

Proof of Lemma 1.3.10: Let M = qk, m = q` and t = qk. We note that the leakage function

Lk : [q]k → [q]` defines a partition of [q]k into q` sets, with each set being Lk−1(L) for some

L ∈ [q]`. Hence, we can expand Pr[Gskp
q,k,τ(A ,Lk)] by conditioning on the value of L. Suppose
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[q]` = {L1, . . . ,Lm}. We let Ni = |Lk−1(Li)|. We derive

Advskp
q,k,τ(`)

= max
Lk

(
∑
L

|Lk−1(L)|
qk ·max

A
Pr[Gskp

q,k,τ(A ,Lk) |Lk(K) = L ]

)

= max
Lk

(
∑
L

|Lk−1(L)|
qk ·Advrskp

k,τ (Lk−1(L))

)

≤ max
(N1,...,Nm)∈S(M,m,t)

m

∑
i=1

Fq,k,τ(Ni)

= max
(N1,...,Nm)∈S(M,m,t)

Fm
q,k,τ(N1, . . . ,Nm)

= m ·Fq,k,τ(2k−`) (1.17)

= m · q
k−`

qk ·Advrskp
q,k,τ(q

k−`) = Advrskp
q,k,τ(q

k−`) . (1.18)

Equation (1.17) is justified since Fq,k,τ is concave and t/m= 2k−`. Equation (1.18) is by definition

of F and because m = q`.

1.3.4 Multi-challenge Subkey Prediction

Here, we present an extension of Gskp
q,k,τ with multiple challenges, Gmcskp

q,k,τ,t (Fig. 1.3), the

multi-challenge subkey prediction game. Note that [11] considers the multi-challenge version

directly. However, we only need this extension in the proof of Theorem 1.4.1.

Let q,k,τ, t, ` be positive integers such that q ≥ 2, k ≥ τ, k ≥ `, t ≥ 1. We define the

following advantages associated with the game Gmcskp
q,k,τ,t , analogously to the advantages associated

with Gskp
q,k,τ.
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Game Gmcskp
q,k,τ,t (A ,Lk)

KKK←$ [q]k;L← Lk(KKK)

For i ∈ [t] do pi←$ [k](τ)

J←$ A(L,p0, . . . ,pt−1)

Return (∃i ∈ [t] : J = KKK[pi]))

Figure 1.3: Multi-challenge subkey prediction game Gmcskp
q,k,τ,t .

Advmcskp
q,k,τ,t (A ,Lk) = Pr

[
Gmcskp

q,k,τ,t (A ,Lk)
]
,

Advmcskp
q,k,τ,t (Lk) = max

A
Advskp

q,k,τ,t(A ,Lk),

Advmcskp
q,k,τ,t (`) = max

Lk:[q]k→[q]`
Advmcskp

q,k,τ,t (Lk).

Lemma 1.3.14 Let q,k,τ, t be positive integers such that q≥ 2, k ≥ τ, k ≥ `, t ≥ 1. Then,

Advmcskp
q,k,τ,t (`)≤ t ·Advskp

q,k,τ(`) .

Proof: Let Lk : [q]k→ [q]` be any leakage function. Let A be a Gmcskp
q,k,τ,t adversary. We construct

Gskp
q,k,τ adversary A ′ such that

Advskp
q,k,τ(A

′,Lk)≥ 1
t
·Advmcskp

q,k,τ,t (A ,Lk) , (1.19)

which implies the lemma by maximizing over all A and Lk. A ′ is defined as follows.

Adversary A ′(L,p′)

j←$ [t]; p j← p′

For i ∈ [t]−{ j} do pi← [k](τ)

J′← A(L,p0, . . . ,pt−1)
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Game Gkey
KEY(A)

b←${0,1};
K←$ [q]k

(Lk,σ)←$ AH()

L← LkH(K)

b′←$ AROR,H(L,σ)
Return (b′ = b)

ROR( )

R←${0,1}r

If (b = 0) then K←${0,1}κ

Else K← KEYH(K,R)
Return (R,K)

H(x, Img)

If not T [x, Img] then T [x, Img]←$ Img
Return T [x,n]

Figure 1.4: Game for defining the security of a big-key key encapsulation algorithm
KEY :{0,1}k×{0,1}r→{0,1}κ.

Algorithm XKEYH
q,k,κ,τ,r(K,R) // K ∈ [q]k, |R|= r

pp← H(R, [k](τ)); J←K[pp]; K← H(R‖J, κ); Return K

Figure 1.5: Encapsulation algorithm XKEY. Given a length-k big-key K and a length-r
selector R, the algorithm returns a length-κ subkey K. The value τ specifies the number of
unique probes used.

Return J′

Let E1 be the event that A succeed in the game Gskp
q,k,τ(A

′,Lk), i.e. J′ = K[pα] for some α ∈ [t].

Note that α is random variable that is well-defined given E1 (in case J′ = K[pα] for multiple

α ∈ [t], we can take the smallest one). We note that since A ′ simulates the multi-challenge game

for A perfectly, Pr[E1] = Advmcskp
q,k,τ,t (A ,Lk). Let E2 ⊆ E1 be the event that A ′ also guesses the

correct α, i.e. j = α in the game Gmcskp
q,k,τ,t (A

′,Lk). We note that Pr[E2] =
1
t ·Pr[E1], since j is

independently uniform in [t] and the distribution of (p0, . . . ,pt−1) does not depend on the value

of j. Notice that Advskp
q,k,τ(A

′,Lk)≥ Pr[E2] =
1
t ·Pr[E1] =

1
t ·Advmcskp

q,k,τ,t (A ,Lk).

1.4 Big-Key Symmetric Encryption

In [11], Big-Key symmetric encryption schemes are constructed modularly from Big-Key

encapsulation schemes. In this section, we present a block-based big key encapsulation scheme
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that is more efficient than achieved previously.

KEY ENCAPSULATION SCHEMES. A (symmetric, Big-Key) encapsulation schemes, on

input a big key K and a random string R, returns a (short) key K. The string R encapsulates the

short key K in the sense that any party holding the big key K can derive K from R. The security

of a key encapsulation schemes is captured by Gkey
KEY(A) (Fig. 1.4). In this game, a big key K is

randomly sampled. The goal of the two-stage adversary A is to guess whether the real-or-random

oracle, ROR, is returning real keys, derived using key encapsulation scheme KEY from randomly

sampled R, or randomly sampled keys that is independent of R. In its first stage, A gets access to

H and chooses a leakage function Lk and state σ. Next, the game computes L← LkH(K) and run

the second stage of A with inputs L,σ and oracles ROR and H. A wins the game if it successfully

guesses the bit b. We define the following advantage of A against key encapsulation scheme KEY

Advkey
KEY(A) = 2 ·Pr

[
Gkey

KEY(A)
]
−1 .

OUR CONSTRUCTION. Our random oracle model construction is given in Fig. 1.5.

Theorem 1.4.1 Let k,b,κ,τ,r ≥ 1 be integers. Let q = 2b. Let KEY = XKEYq,k,κ,τ,r be the

big-key encapsulation scheme associated to them as per Fig. 1.5. Let A be an adversary making

at most t queries to its ROR oracle and leaking ` ·b bits. Assume the number of H queries made

by A in its first stage, plus the number made by the oracle leakage function Lk that it outputs in

this stage, is at most q1, and the number of H queries made by A in its second stage is at most q2.

Then

Advkey
KEY(A) ≤ q2 · t ·Advskp

q,k,τ(`)+
t · (2q1 + t−1)

2r+1 . (1.20)

The proof of Theorem 1.4.1 is deferred to Section 1.4.1.

SAMPLING UNIQUE PROBES. In XKEY, we have outsourced the sampling of the unique

probes to the variable-range random oracle. We note that sampling from [k](τ) can be done via
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Algorithm SE.EncH(K,M)

R←${0,1}r; K← KEYH(K,R)
C← AE.Enc(K,M); C← (R,C)

Return C

Algorithm SE.DecH(K,M)

(R,C)←C
K← KEYH(K,R)
M← AE.Dec(K,C)

Return M

Figure 1.6: Big-Key Symmetric Encryption Scheme [11, Section 5], SE, using a standard
symmetric key encryption scheme AE and a key encapsulation mechanism KEY.

rejection sampling efficiently. For example, per Lemma 1.7.1 in Section 1.7, it holds with all but

2−3τ probability that 4τ samples from [k] contains τ unique probes (hence for parameters involved

in Fig. 1.1, the failure probability is less than 2−129 since τ≥ 43).

SYMMETRIC ENCRYPTION SCHEMES. To obtain a (big-key) symmetric encryption scheme,

one can plug our XKEY construction directly into the (big-key) symmetric encryption scheme (in

Fig. 1.6) by BKR. For security, we omit the details here and appeal to [11, Theorem 13].

EFFICIENCY. Let k∗ = 8 ·1011 = 100 GBytes, and `∗ = 10 GBytes. Using b = 8 ·512 =

512 Bytes, our XKEY makes roughly the same number of H queries compared to [11] but makes

significantly less access into the big key K (43 vs. 271, Fig. 1.1). In practical instantiations

where K is stored on slow storage medium (e.g. hard disk), this translate to 6x improvement in

efficiency.

1.4.1 Proof of Theorem 1.4.1

Proof of Proof (of Theorem 1.4.1): Consider the games, Gm0, . . . ,Gm3 defined in Fig. 1.7. Let

KEY= XKEYq,k,κ,τ,r. We note that game Gm0, with the boxed code included, simulates the game

Gkey
KEY(A) exactly for b = 1 case and outputs true when A outputs 1. Similarly, we note that Gm3,

without the boxed code, simulates the game Gkey
KEY(A) exactly for b = 0 case and outputs true
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Game Gm0 Gm1

K←$ [q]k

For j← 1, . . . , t do
R[ j]←${0,1}r; K[ j]←${0,1}κ

P[ j]←$ [k](τ)

For i← 1, . . . , t do
If R[i] = R[ j] then
bad← true; K[ j]← K[i]

stage← 1
(Lk,σ)←$ AH0(); L←$LkH0(K)

stage← 2; b′←$ AROR,H0(σ,L)
Return (b′ = 1)

H0(x, Img)

If not T [x, Img] then
T [x, Img]←$ Img
If stage = 1 then For j ∈ [t] do

If x = R[ j] and Img = [k](τ) then
bad← true; T [x, Img]← P[ j]

If x = R[ j]‖J[ j] and Img = {0,1}κ then
bad← true; T [x, Img]← K[ j]

If stage = 2 then For j ∈ [t] do
If x = R[ j] and Img = [k](τ) then

T [x, Img]← P[ j]
If x = R[ j]‖J[ j] and Img = {0,1}κ then

T [x, Img]← K[ j]
Return T [x, Img]

Game Gm2 Gm3

K←$ [q]k

For j← 1, . . . , t do
R[ j]←${0,1}r; K[ j]←${0,1}κ

P[ j]←$ [k](τ)

stage← 1
(Lk,σ)←$ AH1(); L←$LkH1(K)

stage← 2; b′←$ AROR,H1(σ,L)
Return (b′ = 1)

H1(x, Img)

If not T [x, Img] then
T [x, Img]←$ Img
If stage = 2 then For j ∈ [t] do

If x = R[ j] and Img = [k](τ) then
T [x, Img]← P[ j]

If x = R[ j]‖J[ j] and Img = {0,1}κ then
bad← true; T [x, Img]← K[ j]

Return T [x, Img]

ROR()

j← j+1; Return (R[ j],K[ j])

Figure 1.7: Games Gm0, . . . ,Gm3. All games share the same procedure ROR shown on the
bottom of the middle column.

when A outputs 1. Hence,

Advkey
KEY(A) = Pr[Gm0]−Pr[Gm3] . (1.21)
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Game Gm4

K←$ [q]k

For j← 1, . . . , t do
R[ j]←${0,1}r; K[ j]←${0,1}κ

P[ j]←$ [k](τ)

stage← 1; (Lk,σ)←$ AH2(); L←$LkH2(K)

stage← 2; b′←$ AROR,H2(σ,L)
Return (b′ = 1)

ROR()

j← j+1; Return (R[ j],K[ j])

H2(x, Img)

If not T0[x, Img] then
T0[x, Img]←$ Img
If stage = 2 then For j ∈ [t] do

If x = R[ j] and Img = [k](τ) then
T0[x, Img]← P[ j]

If x = R[ j]‖J[ j] and Img = {0,1}κ then
bad← true

Return T0[x, Img]

Figure 1.8: Game Gm4. Note that T0 is a table obtained via coin-fixing.

Adversary B(L,pp0, . . . ,ppt−1)

i← 0; For j ∈ [t] do
R[ j]←${0,1}r ; P[ j]←$pp j

b′←$ A ′ROR,H3(L)
α←$ [i]
Return Jα

ROR()

j← j+1; Return (R[ j],K[ j])

H3(x, Img)

If not T0[x, Img] then
T0[x, Img]←$ Img
If stage = 2 then For j ∈ [t] do

If x = R[ j] and Img = [k](τ) then
T0[x, Img]← P[ j]

If Img = {0,1}κ then
Ri‖Ji← x; i← i+1

Return T0[x, Img]

Figure 1.9: Subkey prediction adversary B .

We will proceed to bound Pr[Gm0]. Note that Gm0 and Gm1 are identical-until-bad. Hence, via

the Fundamental Lemma of Game Playing [19]

Pr[Gm0] = Pr[Gm1]+ (Pr[Gm0]−Pr[Gm1])

≤ Pr[Gm1]+Pr [Gm1 sets bad] .
(1.22)

Next, we claim that

Pr[Gm1 sets bad]≤ t(t−1)
2r+1 +

t ·q1

2r . (1.23)
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First, there is at most t(t−1)/2r+1 probability of collision in the r-bit values R[1], . . . ,R[t] by the

birthday bound. Next, H0 sets bad only when stage = 1, and there are exactly q1 H0-queries when

stage = 1. We note that each H0-query when stage = 1 has at most t/2r probability of setting bad

since there are at most t distinct values for R[1], . . . ,R[t].

We proceed to bound Pr[Gm1]. We note that Gm2, with the boxed code included, is

equivalent to Gm1. Furthermore, Gm3, without the boxed code, is identical to Gm2 until bad is

set. Hence,

Pr[Gm1] = Pr[Gm2] = Pr[Gm3]− (Pr[Gm2]−Pr[Gm3])

≤ Pr[Gm3]+Pr[Gm3 sets bad] .
(1.24)

Lastly, we claim that

Pr[Gm3 sets bad]≤ q2 · t ·Advskp
q,k,τ(`) , (1.25)

Notice that the theorem follows from Equations (1.21), (1.22), (1.23), (1.24), and (1.25). It

remains to show Equation (1.25). The justification of Equation (1.25) involves two step. First, we

argue that there is some fixing of the coins of A ,H1,Lk, which results in a deterministic leakage

function Lk′, an adversary A ′, and partial H table T0 such that

Pr[Gm3 sets bad]≤ Pr[Gm4 sets bad] , (1.26)

where Gm4 is given in Fig. 1.8. Next, we show that

Pr[Gm4 sets bad]≤ q2 ·Advmcskp
q,k,τ,t (B,Lk′)≤ q2 · t ·Advskp

q,k,τ(`) , (1.27)

by constructing a multi-challenge subkey prediction adversary B , which is given in Fig. 1.9.

B will embed the probes given, pp0, . . . ,ppt−1 into the H response and run A ′. It will guess,

at random, one of the H queries of A ′ of the form (R‖J,{0,1}κ). Hence, if Gm4 sets bad,
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then with at least 1
q2

probability, B succeeds. The second part of Equation (1.27) follows from

Lemma 1.3.14. This justifies Equation (1.25) and concludes the proof of the theorem.

1.5 Big-Key Identification

IDENTIFICATION SCHEMES. An identification scheme ID specifies the following:

− Via prm←$ ID.ParamGen, parameter generation algorithm ID.ParamGen generates parameter

prm, which is a common input to all other algorithms.

− Via (sk,vk,hlp)←$ ID.KeyGen(prm), key generation algorithm ID.KeyGen is run by the prover

to generate secret key sk, corresponding verification key vk and a string hlp called the help string.

The last is information that, conceptually, can be viewed as part of the public verification key vk,

meaning public and available to the adversary, but to keep the verification key small, hlp is stored

by the prover along with sk.

− Via (com,st)←$ ID.Com(prm), commitment algorithm ID.Com is run by the prover to generate

its first message com, called the commitment, along with state information st that it saves.

− Via c←${0,1}ID.Chl, the verifier generates a random challenge c to return to the prover.

− Via z← ID.Rsp(prm,hlp,sk,st,c), deterministic response algorithm ID.Rsp is run by the prover

to generate its response z.

− Via d← ID.Vrf(prm,vk,com,c,z), deterministic decision algorithm ID.Vrf returns a boolean

decision d for the verifier to accept or reject.

In the ROM, algorithms may have oracle access to the random oracle H. This syntax is non-

asymptotic, in that there is no explicit security parameter. Correctness requires that

Pr[ExecuteID(prm,vk,sk,hlp)] = 1

for all prm ∈ [ID.ParamGen] and (sk,vk,hlp) ∈ [ID.KeyGen(prm)], where
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Game Gimp
ID,`(A)

prm←$ ID.ParamGen; s← 0
(sk,vk,hlp)←$ ID.KeyGen(prm)

st←$ A .SetupLeak`,Prover,H(prm,vk,hlp)

(com,st′)←$ A .ComH(st);
c←${0,1}ID.Chl

z←$ A .RspH(prm,hlp,sk,st′,c)
d←$ ID.VrfH(prm,vk,com,c,z)
Return d

Leak`( f )

L←$ f (sk) ; s← s+ |L|
If s≤ ` then return L else return ⊥

Prover(i,args)

If pst[i] =⊥ then // Commit
(pcom[i],pst[i])←$ ID.Com(prm)

Return pcom[i]
If prsp[i] =⊥ then // Response
prsp[i]←$ ID.RspH(prm,hlp,sk,pst[i],args)
Return prsp[i]

Return ⊥

H(x, Img)

If T [x, Img] =⊥ then T [x, Img]←$ Img
Return T [x, Img]

Figure 1.10: Game defining security of identification scheme ID under pre-impersonation
leakage.

Game ExecuteID(prm,vk,sk,hlp)

(com,st)←$ ID.Com(prm)

c←${0,1}ID.Chl

z← ID.Rsp(prm,hlp,sk,st,c)

d← ID.Vrf(prm,vk,com,c,z)

Return d

SECURITY OF IDENTIFICATION SCHEMES. We give definitions allowing concrete-security

assessments. The core definition is that of adversary advantage. The notion captured is security

against impersonation under active attack [45, 15] in the further presence of leakage on the secret

key [6].

Let ID be an identification scheme. Let ` be an integer representing a bound (in bits) on

the leakage. Let A be an impersonation adversary, made up of component algorithms A .Setup,

A .Com, and A .Rsp. We associate to these the game of Fig. 1.10. First, the parameters and keys
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are generated. Next, A .Setup is run with access to a leakage oracle Leak` a prover oracle Prover

and the random oracle H. The leakage oracle takes input a function Lk from the adversary and

returns leakage L = Lk(sk). This oracle can be called adaptively and any number of times, its

code ensuring that the total number of bits returned to the adversary does not exceed `. The

prover oracle allows an active attack in which the adversary, playing the role of a dishonest

verifier, can generate prover instances and interact with them. The commitment and state of

instance i are produced by the game and stored as pcom[i] and pst[i], respectively. If instance i

has been activated, meaning pst[i] 6=⊥, then the adversary can submit, via args, a challenge of

its choice, and obtain response prsp[i]. After exiting this setup phase, the adversary turns into a

dishonest prover, aiming to convince the honest verifier to accept. It produces its commitment via

A .Com, receives a random challenge c, and produces its response via A .Rsp. The game returns

the boolean decision d of the verifier’s decision function. We define the leakage impersonation

advantage of A against ID to be

Advimp
ID,`(A) = Pr

[
Gimp

ID,`(A)
]
.

GROUPS. We fix a bilinear group description G = (G,GT ,g,e, p), where

− p≥ 3 is a prime number that will be the order of the groups

− G,GT are (cyclic) groups of order p

− g ∈ G is a generator of G

− e : G×G→GT is an efficiently computable, non-degenerate bilinear map. This means that (1)

e(ga,gb) = e(g,g)ab for all a,b ∈ [p], and (2) e(g,g) is not the identity element of GT .

We will base security on the assumed hardness of the CDH (Computational Diffie-Hellman) and

DL (Discrete Logarithm) problems in G. The definitions are based on games Gcdh and DL in
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Game Gcdh
G (A)

(G,GT ,g,e, p)← G
x,y←$ [p] ; h←$ A(G ,gx,gy)

Return (h = gxy)

Game DLG (A)

(G,GT ,g,e, p)← G
x←$ [p] ; x′←$ A(G ,gx)

Return (x = x′)

Game Gpskp
p,m,k,τ(A ,Lk)

For i ∈ [k] do sk[i]←$ Zm
p

pp←$ [k](τ); e←$ Zp

For j ∈ [m] do
sk∗[ j] = ∑

τ−1
i=0 (sk[pp[i]][ j])e

i

L← Lk(sk); sk←$ A(pp,e,L)
Return (sk∗ = sk).

Figure 1.11: Left: Games Gcdh
G and DLG defining the security of CDH and DL problems in G .

Right: Game Gpskp
p,m,k,τ(A ,Lk). Where Lk : [q]k→ [q]` is a leakage function. [k](τ) contains the

set of τ-dimensional vectors over [k] with distinct entries.

Fig. 1.11, associated to G and an adversary A . We define the following CDH and DL advantages:

Advcdh
G (A) = Pr[Gcdh

G (A)]

Advdl
G(A) = Pr[DLG(A)] .

Hardness of CDH of course implies hardness of DL. Quantitatively, given A , one can construct

A ′ with similar running time such that

Advdl
G(A)≤ Advcdh

G (A ′).

ADW IDENTIFICATION SCHEME. We present a variant of ADW’s identification scheme [6],

which uses a random oracle to derive the challenges (as considered in [6] without analysis). The

scheme ID= ADW[G ,k,m,τ,r] is parameterized by a bilinear group description G and positive

integers k,m,τ,r. We require that m ≥ 2 and k ≥ τ ≥ 1. Here k is the number of blocks of

the secret key, where each block is an m-dimensional vector over Zp, and τ is the number of

probes that algorithms make into the secret key. The parameter r determines the challenge length,

meaning we set ID.c = r. The algorithms ID.ParamGen, ID.KeyGen, ID.Com, ID.Rsp, ID.Vrf are
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ID.ParamGen()

For i ∈ [m] do gi←$ G
Return (g0, . . . ,gm−1)

ID.Com(prm)

y←$ (Zp)
m

a←$ ∏
m−1
j=0 gy[ j]

i
Return (a,y)

DeriveH(R)

pp← H(R, [k](τ))
e←$H(0‖R, [p]); c∗←$H(1‖R, [p])
Return (pp,e,c∗)

ID.KeyGenH(prm)

s←$ Zp; vk← gs

For i ∈ [k] do
sk[i]←$ (Zp)

m

pk[i]←∏
m−1
j=0 gsk[i][ j]i

σ[i]←$ (H(i,G)pk[i])s

hlp← (pk,σ)

Return (sk,vk,hlp)

ID.RspH(prm,hlp,sk,st,c)

(pp,e,c∗)← DeriveH(c)
For j ∈ [m] do
sk∗[ j]← ∑

τ−1
i=0 sk[pp[i]][ j] · ei

pk∗←∏
τ−1
i=0 pk[pp[i]]

ei

σ∗←∏
τ−1
i=0 σ[pp[i]]e

i

For j ∈ [m] do
z← y[ j]+ c∗ · sk∗[ j]

Return (pk∗,σ∗,z)

ID.VrfH(prm,vk,com,c,z)

a← com

(pp,e,c∗)← DeriveH(c)
(pk∗,σ∗,z)← z
A← (∏m−1

i=0 gz[i]
i = a(pk∗)c∗)

h1← e(pk∗∏
τ−1
i=0 H(pp[i],G)ei

,vk)

h2← e(σ∗,g)
B← (h1 = h2)

Return (A∧B)

Figure 1.12: Algorithms of identification scheme ID= ADW[G ,k,m,τ,r] associated to bilinear
group description G = (G,GT ,g,e, p) and parameters k,m,τ,r satisfying m≥ 2 and k ≥ τ≥ 1.
Here H is a variable range function, meaning H(·, Img) returns outputs in the set (described by)
Img. In addition, algorithms KeyGen,Com,Rsp,Vrf also takes prm as argument.

given in Fig. 1.12.

Intuitively, the scheme consists of k generalized Okamoto identification scheme [74, 6],

and one instance of BLS signature scheme [28]. Each block of the secret key (in Zm
p ) is a

secret key for a generalized Okamoto identification scheme of dimension m. The public keys,

pk[0], . . . ,pk[k−1], of the k Okamoto’s identification schemes, are signed using the BLS signature

scheme under signing key s, yielding signatures σ[0], . . . ,σ[k−1]. The public verification key of

the identification scheme, consists only of the verification key, vk, of the BLS signature scheme.

During identification, a random τ instances out of k instances is chosen (via H by the verifier) and

compressed via polynomial evaluation to sk∗,pk∗, and σ∗ by the prover. During response phase,

the prover, in addition to answering the challenge from the Okamoto identification scheme, needs

to transmit pk∗ and σ∗ to the verifier. We note that the signing key, s, of the underlying signature

scheme must not be visible to the attacker. This signing key is simply be discarded after KeyGen.

(However, we note that, as ADW has pointed out, there are advanced uses of this key such as
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updating the big secret key.) The correctness of ID = ADW[G ,k,m,τ,r] is checked as follows.

Let prm ∈ [ID.ParamGen] and (sk,vk,hlp) ∈ [ID.KeyGen(prm)]. We claim that, during a honest

execution of the protocol (ExecuteID(prm,sk,vk,hlp)), the flags A,B in ID.Vrf will both be set to

true. A is set to true because

m−1

∏
i=0

gz[i]
i =

m−1

∏
i=0

gy[i]+c∗·sk∗[i]

=
m−1

∏
i=0

gy[i] · (
m−1

∏
i=0

gsk
∗[i])c = a ·pk∗c∗ .

B is set to true because

e(pk∗
τ−1

∏
i=0

H(pp[i],G)ei
,vk) = e(

τ−1

∏
i=0

pk[pp[i]]e
i
τ−1

∏
i=0

H(pp[i],G)ei
,gs)

= e(
τ−1

∏
i=0

((pk[pp[i]]H(pp[i],G))s)ei
,g)

= e(
τ−1

∏
i=0

(σ[pp[i]])ei
,g) = e(σ∗,g) .

Hence, Pr[ExecuteID(prm,sk,vk,hlp)] = 1, and ID satisfies correctness.

EFFICIENCY. As pointed out in [6], the identification scheme has nice efficiency prop-

erties. First, the public key (verification key) is very short (one group element). Second, the

communication costs of all phases are very small. The bulk of communication happens in the

response phase, which outputs 2 group elements and m elements from Zp. Third, the scheme has

probe complexity depending τ, which can be made small while preserving security. In particular,

during each run of the protocol, only τ locations of the secret-key will be accessed (each location

consist of m elements of Zp). Fig. 1.2 demonstrates the computation and communication costs of

different operations. Note that very small values of τ makes the scheme insecure. The crux of the
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Table 1.2: Left: Table illustrating computation and communication cost of different operations
of the identification scheme ADWG ,k,m,τ,r. Chl here represents the challenge phase of the
protocol. Right: Example parameters for ADW scheme to achieve 128-bit security. The
schemes uses group of size p such that 2511 < p < 2512, and we impose a bound on the leakage
of 10% on a big-key of size 100 GB = 8×1011 bits. For each value of m on the left column, we
look the value of τ needed to achieve 128-bit security for the identification scheme, both using
our bound and using ADW’s bound.

Computation cost
KeyGen Com Chl Rsp Vrf

Mult G k ·m m−1 0 2τ m+ τ

Exp G k(m+1)+1 m 0 2τ−2 τ+m+1
Mult Zp 0 0 0 m 1
Exp Zp m 0 0 2τ τ

e eval 0 0 0 0 1
Communication cost

G - 1 0 2 0
Zp - 0 0 m 0
{0,1}r - 0 1 0 0

Example parameters
m τ (Us) τ (ADW)
2 718 3951
4 349 2397
8 245 1996

16 201 1840
32 180 1771
64 169 1739

security analysis amounts to giving a lower bound of τ for a desired security level. Here is where

we make significant concrete security improvements over ADW.

CONCRETE-SECURITY ANALYSIS. Before we present the theorem stating the concrete

security of the ADW identification scheme, we first need to define the following special subkey

prediction game. The game Gpskp
p,m,k,τ(Lk,A) (Fig. 1.11) captures a particular type of subkey

prediction game in which the subkey is interpreted as a tuple of polynomials. In this game, the

adversary A needs to predict the value of these polynomials at a random point e, which is given

to A . We define the following prediction advantage

Advpskp
p,m,k,τ(`) = max

A , Lk:(Zm
p )

k→(Zm
p )

`
Pr
[
Gpskp

p,m,k,τ(A ,Lk)
]
.

We state a theorem which captures the concrete security of the ADW identification scheme.

The theorem streamlines the original analysis of ADW to a precise relation of advantages, which

allows us to instantiate parameters of practical sizes.
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Theorem 1.5.1 Let G = (G,GT ,g,e, p) be a group with efficient pairngs. Let ID = ADWG ,k,m,τ,r

be the ADW identification scheme shown in Fig. 1.12. Let A = (A .Setup,A .Com,A .Rsp) be

a leakage impersonation adversary. Let q denote the number of H queries plus the number of

Prover queries that A .Setup and A .Com makes. Fig. 1.14 and Fig. 1.14 gives two adversaries

Acdh and Adl such that

Advimp
ID,`(A)2 ≤ Advcdh

G (Acdh)+m ·Advdl
G(Adl)+Advpskp

p,m,k,τ(`+ k/m)+
q
2r +

1
p
. (1.28)

Additionally, let t1 be the running time of A .Setup, t2 be the running time of A .Com, t3 be the

running time of A .Rsp, and let t4 be the running time of ID.KeyGen. We have that the running

time of Acdh and Adl is approximately t1 + t2 +2 · t3 + t4.

The proof of Theorem 1.5.1 is given in Section 1.5.1. The following lemma relates

Advpskp
p,m,k,τ(`+ k/m) to the large-alphabet subkey prediction advantage (as bounded in Sec-

tion 1.3.3).

Lemma 1.5.2 Let p,m,k,τ, ` be positive integers, then

Advpskp
p,m,k,τ(`)≤

√
Advskp

pm,k,τ(`)+
τ

p
.

We note that with Lemma 1.5.2, we can bound the term Advpskp
p,k,k,τ(`) for any value

p,m,k,τ, `. Hence, the only term that is not explicitly bounded on the right-hand side of

Equation (1.28) are Advcdh
G (A) and m ·Advcdh

G (A), which can be assumed to be small when

the CDH and DL problems are suspected to be hard in group G.

COMPARISON WITH ADW’S ANALYSIS. Our analysis of ADW’s identification scheme

improves upon the original analysis in the following ways. First, we analyze the scheme in

which the challenge is generated using a random oracle directly. (The construction that uses

a random oracle to derive the challenge is mentioned to be secure in [6] with no proof.) Sec-
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ond, while ADW’s analysis is offered in the asymptotic case, we state and prove a reduction

that gives concrete security, which lead to practical instantiation of parameters. The reduction

gives a bound of the impersonation advantage in terms of three dominating quantities: CDH

and DL advantages in G , and a special form of subkey-prediction advantage under polynomial

compression, Advpskp
p,m,k,τ(Lk,A). Hence, giving a good numerical bound of the impersonation

advantage amounts to bounding Advpskp
p,m,k,τ(Lk,A). Here is where we make significant improve-

ments: we use the large-alphabet subkey prediction lemma (Theorem 1.3.1) as well as a tighter

polynomial-evaluation entropy preservation lemma (Lemma 1.5.2) to give significantly better

concrete bounds. The comparison of parameters can be found in Fig. 1.2.

PARAMETER INSTANTIATION. We give an example instantiation of the ADW identifica-

tion scheme with 128-bits security. First, we find a pairing friendly group G with symmetric

pairing e : G×G→ GT . Because of the square-root loss of security, we need 256-bit of se-

curity for CDH and DL in G. Hence, G needs to be of size roughly 512 bits. We consider

G = (G,GT ,g,e, p), where p is a prime of roughly 512 bits (2511 < p < 2512). We represent

elements in Zp using exactly 512 bits. We pick a big key size of 100 GB, i.e. k∗ = 8 ·1011. For a

choice of m≥ 2, we have that the block size in bits is b = m ·512. We let k = k∗/b be the size

of the big key in blocks. We fix a leakage rate of 10%. By Theorem 1.5.1 and Lemma 1.5.2,

to achieve 128-bit security for the identification scheme, we need 512 bits of security from

Advskp
pm,k,τ(`+

k
m). Hence, we need

τ = Probesk∗,`∗+k∗/m,s(m ·512)

probes. Values of Probesk∗,`∗+k∗/m,s(m · 512) versus various values of m is shown in Fig. 1.2

using both our bound and ADW’s bound.

ENTROPY PRESERVATION UNDER POLYNOMIAL EVALUATION. Lemma 1.5.2 relates the

prediction advantage to the large-alphabet subkey prediction advantage. Note that our bound is
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quantitatively better than [6, Corollary A.1]. In particular, we prove 1
2 rate entropy preservation

while ADW proves a rate of 1
3 . Before proving the lemma, we define the following quantities

for jointly distributed random variables (X ,Y ). Let X be a random variable, the prediction and

collision probability of X is defined, respectively, to be

Pred(X) = max
x

Pr[X = x] , CP(X) = Pr[X = X ′] ,

where X ′ is an independent random variable that is identically distributed to X . Additionally,

suppose that (X ,Y ) are jointly distributed, we define the conditional prediction and collision

probability of X given Y , respectively, to be

P̃red(X | Y ) = EY [Pred(X | Y )] , C̃P(X | Y ) = EY [CP(X | Y )] .

We note that Pred(X | Y ) and CP(X | Y ) are random variables in Y . We need the following

well-known lemma,

Lemma 1.5.3 Let (X ,Y ) be jointly distributed random variables, then

C̃P(X | Y )≤ P̃red(X | Y )≤
√
C̃P(X | Y ) .

Proof: For each value y of the random variable Y , we consider the probability mass function of

the random variable X | Y = y, PX |Y=y(·). We note that

Pred(X | Y = y) = max
x

PX |Y=y(x) ,

CP(X | Y = y) = ∑
x

PX |Y=y(x)
2 .
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First, we derive that

CP(X | Y = y)≥
(

max
x

PX |Y=y(x)
)
·∑

x
PX |Y=y(x) = Pred(X | Y = y) .

Taking expectation over y sampled from Y on both sides of the above equation, we obtain that

P̃red(X | Y ) ≤ C̃P(X | Y ). Next, we note that viewing Pred(X | Y = y),
√
CP(X | Y = y) as 1-

and 2-norms of PX |Y=y(·) respectively, we have Pred(X | Y = y)≤
√
CP(X | Y = y). Hence, by

the above property and Jensen’s inequality

P̃red(X | Y ) = EY [Pred(X | Y )]

≤ EY [
√
CP[X | Y ]]

≤
√

EY [CP[X | Y ]]

= C̃P(X | Y ) .

Proof of Lemma 1.5.2: Let A be any adversary and Lk : [q]k → [q]` be a leakage function.

Consider the sample space defined by the experiment Gpskp
p,m,k,τ(A ,Lk) (all the coins used by the

experiment and adversary A). We consider all the variables used inside Gpskp
p,m,k,τ(A ,Lk) as random

variables (e.g. sk∗ and L = Lk(KKK)). We note that

Pr
[
Gpskp

p,m,k,τ(A ,Lk)
]
≤ P̃red(sk∗ |pp,L,e) .

Furthermore, by Lemma 1.5.3,

P̃red(sk∗ |pp,L,e)≤
√

C̃P(sk∗ |pp,L,e) .

We now need to bound C̃P(sk∗ | pp,L,e). To compute this quantity. We consider another
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independent execution of Gpskp
p,m,k,τ(A ,Lk), where the variables in the second execution is denoted

with ′, e.g. sk′. We restrict to the event that Lk(sk)= Lk(sk′) and pp= pp′. We define polynomials

p1, . . . , p j, which are functions of sk,sk′,pp, p j(x) = ∑
τ−1
i=0 (sk[pp[i]][ j]− sk′[pp[i]][ j])xi. Notice

that these polynomials are of degree at most τ. If sk 6= sk′, then at least one of p j is a non-zero

polynomial, and has at most τ roots. Hence, if sk 6= sk′, over a independently uniform e, the

probability that p j(e) = 0 is at most τ

p when p j is not the zero polynomial. Finally, we derive that

C̃P(sk∗ | pp,L,e) = Epp,L,e
[
CP(sk∗ | pp,L,e)

]
≤ Epp,L,e

[
Pr
[
sk[pp] = sk′[pp] | pp,L,e

]
+Pr

[
∀ j ∈ [m] : p j(e) = 0 | sk[pp] 6= sk′[pp],pp,L,e

]]
= C̃P(sk[pp] | pp,L)+Ee

[
Pr
[
∀ j ∈ [m] : p j(e) = 0

]]
≤ P̃red(sk[pp] | pp,L)+ τ

p

≤ Advskp
pm,k,τ(`)+

τ

p
.

1.5.1 Proof of Theorem 1.5.1

We follow the proof technique used by [6]. Let ID= ADWG ,k,m,τ,r be the ADW identifi-

cation scheme. The reduction is very similar to the reduction from [6, Appendix B.5]. Rewind

attemps to run a given leakage impersonation adverasry A twice with two different programmed

challenges that only differ in the element c∗ (R and e stay the same). Rewind takes an algorithm

Gen that generates (prm,vk,sk,hlp,T ), where T is the table used by H. Rewind simulates H for

A using Hr as decribed by the code. Rewind returns the success status of the rewinding process,

along with the two responses of the two executions (z1,z2), plus the honest response (z∗) and the
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Game Rewind1(Gen,A) Rewind2(Gen,A)

(prm,vk,sk,hlp,T )← Gen(); s← 0
st←$ A .SetupLeak,Prover,Hr(prm,vk,hlp)

(com,st′)← A .ComHr(st); c←{0,1}ID.Chl

T1[0‖c, [p]]←$ [p]; T1[1‖c, [p]]←⊥
T1[c, [k](τ)]←$ [k](τ); T2← T1

If C[c] then
bad← true

T [0‖c, [p]]←⊥; T [1‖c, [p]]←⊥; T [c, [k](τ)]←⊥
z1← A .RspHr[T1](st′,c)
z2← A .RspHr[T2](st′,c)
For j ∈ [m] do y[ j]← 0
(pk∗,σ∗,z∗)← ADW.RspHr[T2](prm,hlp,vk,sk,y,c)
(pp,c,e)← DeriveH(c)
For j ∈ [m] do sk∗[ j]← ∑

τ−1
i=0 (sk[pp[i]][ j])e

i

A← VrfHr[T1](prm,vk,com,c,z1)

B← VrfHr[T2](prm,vk,com,c,z2)

C← (T1[1‖c, [p]] 6= T2[1‖c, [p]])
Return (A∧B∧C,z1,z2,z∗,sk∗)

Gen()

prm←$ParamGen(); (vk,sk,hlp)←$KeyGen(prm)

Return (prm,vk,sk,hlp,⊥)

Hr[T ′](x, Img)

If Img = [p] then b‖x← x
C[x]← true

If T [x, Img] then return T [x, Img]
If T ′ then

If not T ′[x, Img] then T ′[x, Img]←$ Img
Return T ′[x, Img]

Else if not T [x, Img] then T [x, Img]←$ Img
Return T [x, Img]

Prover(i,args)

If pst[i] =⊥ then // Commit
(pcom[i],pst[i])←$ ID.Com(prm)

Return pcom[i]
Else If prsp[i] =⊥ then // Response
prsp[i]←$ ID.RspHr(prm,hlp,sk,pst[i],args)
Return prsp[i]

Return ⊥

Figure 1.13: Game Rewind1 and Rewind2 (boxed). The oracle Leak is the same as the one
given in Fig. 1.10.

honestly generated and compressed secrete key (sk∗). Let x∈ {1,2}, we use Pr[Rewindx(Gen,A)]

to denote the probablity that the first component of the output of Rewindx is true. First, using the

well-known rewind technique [15], we will argue that

Pr[Rewind1(Gen,A)]≥ Advimp
ID,`(A)2− 1

p
. (1.29)

We now justify Equation (1.29). We consider the event that the flags A,B,C are all set to true.

Notice that the marginal probability that A is true and the marginal probability that B is ture are

both exactly Pr[Gimp
ID,`(A)]. We partition the random tape for Gimp

ID,`(A) into two parts: the random
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Adversary Acdh(G ,v,h)

(G,GT ,g,e, p)← G
(t,z1,z2,z∗,sk∗)← Rewind2(Gencdh,A)

(pk∗1,σ
∗
1,z

(1))← z1

(pk∗2,σ
∗
2,z

(2))← z2

(pk∗,σ∗,z∗)← z∗

σ̂← ((σ∗1)
c∗1/(σ∗2)

c∗2) ·σ∗c∗2−c∗1

ω = ∑
m
j=1 γ j(z

(1)
j − z(2)j − x∗j(c

∗
1− c∗2))

s′← (σ̂)1/ω

Return s′

Gencdh()

(G,GT ,g,e, p)← G
For j ∈ [m] do

γ j← Zp; g j← hγ j

prm= (g0, . . . ,gm−1,g); vk← v
For i ∈ [m] do
sk[i]← [p]m; pk[i]←∏

m−1
j=0 gsk[i][ j]j

βi← [p]; σ[i]← vkβi

T [i,G]← gβi/pk[i]
hlp← (pk,σ)

Return (prm,vk,sk,hlp,T )

Adversary Adl(G ,X)

(t,z1,z2,z∗,sk∗)← Rewind2(Gendl,A)

(pk∗1,σ
∗
1,z

(1))← z1

(pk∗2,σ
∗
2,z

(2))← z2

(pk∗,σ∗,z∗)← z∗

For j = 1, . . . ,m do
ŝk
∗
[ j]← (z(1)[ j]− z(2)[ j])/(c∗1− c∗2)

x← (∑i∈[m]−{ρ} xi(ŝk
∗
[i]− sk∗[i]))/(sk∗[ρ]− ŝk

∗
[ρ])

Return x

Gendl()

ρ←$ [m]; gρ← X
For j ∈ [m]−{ρ} do

x j←$ Zp; g j← gx j

prm= (g0, . . . ,gm−1,g)
(pk,sk,hlp)← ADW.KeyGen(prm)

Return (prm,pk,sk,hlp,⊥)

Figure 1.14: Left: Adversary Acdh. Right: Adversary Adl.

tape that is used upto right before A .Rsp is run, and the rest of the tape that is used after A .Rsp

starts its execution. Let T be a random variable denoting the first part of the random tape. For any

value of T , say t, we let G(t) be the game Gimp
ID,`(A) with the first part of random tape fixed to t.
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We have that

Pr
[
Rewind1(Gen,A)

]
= Pr [A∧B∧C]

= ET [Pr [A∧B∧C | T ]]

≥ ET [Pr [A∧B | T ]−Pr [¬C | T ]]

= ET [Pr [G(T )]2]− 1
p

≥ Pr
[
Gimp

ID,`(A)
]2
− 1

p
,

where at the last step we used Jensen’s inequality and the convexity of squaring. This justifies

Equation (1.29). Second, we argue that

Pr[Rewind1(Gen,A)]−Pr[Rewind2(Gen,A)]≤ Pr[Rewind1(Gen,A) sets bad] =
q
2r . (1.30)

This is because the size of the table C is upper-bounded by the number of queries that A .Setup

and A .Com makes to H and Derive, which is q. Next, we attempt to bound Pr[Rewind2(Gen,A)].

We define the following events in the game Rewind2(Gen,A).

E : A∧B∧C∧
((pk∗1)(c∗1)
(pk∗2)

(c∗2)
= (pk∗)c∗1−c∗2

)
,

E : A∧B∧C∧
((pk∗1)(c∗1)
(pk∗2)

(c∗2)
6= (pk∗)c∗1−c∗2

)
.

Notice that per construction of the events,

Pr[Rewind2(Gen,A)] = Pr[E]+Pr[E] . (1.31)
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Consider Acdh (Fig. 1.14) and Adl (Fig. 1.14), which attemps to break CDH and DL problems,

respectively, using Rewind2. We will show the following (in)equalities

Pr[E] = Advcdh
G (Acdh) , (1.32)

and

Pr[E]≤ m ·Advdl
G(Adl)+Advpskp

p,m,k,τ(`+
k
m
) . (1.33)

This part of the analysis follows from [6, Appendix B.5] and we restate their derivation here.

Assume E or E, since the signatures verifies, for w = ∏
τ
i=0H(pp[i],G)ei

, we have

σ
∗ = (pk∗w)s , σ

∗
1 = (pk∗1w)s , σ

∗
2 = (pk∗2w)s .

If E happens, the following two values are distinct

(σ1)
c∗1

(σ2)
c∗2

=

(
w(c∗1−c∗2)

(pk∗1)
c∗1

(pk∗2)
c∗2

)s

, (σ∗)c∗1−c∗2 =
(

wc∗1−c∗2(pk)c∗1−c∗2
)s

.

Hence, the value σ̂ computed by Acdh is

σ̂ =

(
(pk∗1)

c∗1

(pk∗2)
c∗2
· 1
(pk∗)c∗1−c∗2

)s

= (gω)s .

Therefore, Acdh can compute gs and solve the CDH problem that it was given. This concludes

the proof for Equation (1.32). If E happens, then we claim that sk∗ = ŝk with probability at most

Advpskp
p,k,k,τ(`+ k/m). This is true per definition of Advpskp

p,k,k,τ(`+ k/m). Notice that if sk∗ 6= ŝk,

then with probability 1/m, Adl can solved the DL problem that it embedded into the parameters.

This is because Adl has two representation of pk∗ in the basis g0, . . . ,gm−1, namely sk∗ and ŝk.

This concludes the proof of Equation (1.33). Notice that Equations (1.29), (1.31), (1.30), (1.32),

and (1.33) together implies the theorem. Finally, notice that Acdh and Adl has roughly the running
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time of Rewind2 and ADW.KeyGen, which is about t1 + t2 +2t3 + t4.

1.6 Proofs of Lemmas 1.3.2, 1.3.3, and 1.3.4

We need the following version of Stirling’s approximation of n!.

Lemma 1.6.1 [77] For any n ∈ Z+,

√
2πn

(n
e

)n
e

1
12n+1 ≤ n!≤

√
2πn

(n
e

)n
e

1
12n .

We first prove Lemma 1.3.2.

Proof of Lemma 1.3.2: We first show the lower bound Equation (1.6) . Notice that by definition

of Hq(r/k),

qkHq(r/k) = (q−1)r(r/k)−r(1− r/k)r−k .

Hence, by Lemma 1.6.1,

Bq,k(r) =
r

∑
i=0

(q−1)i
(

k
i

)
≥ (q−1)r k!

r!(k− r)!

≥ (q−1)r

√
2πk(k

e)
ke

1
12k+1

√
2πr( r

e)
re

1
12r
√

2π(k− r)(k−r
e )k−re

1
12(k−r)

= qkHq(r/k)
√

ke
1

12k+1√
2πr(k− r)e

1
12r e

1
12(k−r)

= qkHq(r/k)−ε(k,r) .
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Now, we assume that r ≤ k− k/q and derive the upper bound, Equation (1.7).

Bq,k(r)

qkHq(r/k)
=

∑
r
i=0(q−1)i(k

i

)
(q−1)r(r/k)−r(1− r/k)r−k

=
r

∑
i=0

(
k
i

)
(q−1)i−r(r/k)r(1− r/k)k−r

=
r

∑
i=0

(
k
i

)
(q−1)i(1− r/k)k

( r/k
(q−1)(1− r/k)

)r

≤
r

∑
i=0

(
k
i

)
(q−1)i(1− r/k)k

( r/k
(q−1)(1− r/k)

)i

=
r

∑
i=0

(
k
i

)
(r/k)i(1− r/k)k−i

≤
k

∑
i=0

(
k
i

)
(r/k)i(1− r/k)k−i

= 1 ,

where the first inequality is by the fact that r/k≤ (q−1)(1− r/k) if r ≤ k−k/q. Lemma 1.3.3

follows from Lemma 1.3.2. Proof of Lemma 1.3.3: Per definition of rdq,k(N), it suffices to

show that

Bq,k(r)≤ N ,

for r = bH−1
q (logq(N)/k) · kc. Per definition of H−1

q , r ≤ (1− 1/q) · k. Hence, we can apply

Equation (1.7) and obtain

Bq,k(r)≤ qkHq(r/k) ≤ qkHq(H−1
q (logq(N)/k)) = N .

Lastly, we prove Lemma 1.3.4.
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Proof of Lemma 1.3.4: We first show the lower bound that

min(x,1− 1
q
)− 1

log2(q)
≤ H−1

q (x) . (1.34)

Note that this is trivially true if the left-hand side of Equation (1.34) is negative. Hence, we

suppose that the left-hand side of Equation (1.34) is non-negative. As noted before, Hq is

increasing in the domain [0,1− 1/q]. Additionally, note that min(x,1− 1/q)− 1/ log2(q) ≤

1−1/q. Hence, it suffices to show

Hq

(
min(x,1− 1

q
)− 1

log2(q)

)
≤ x . (1.35)

We consider two cases. Case 1, x ≤ (1−1/q). Case 2, (1−1/q)≤ x ≤ 1. We claim that both

cases follow from the equation below, which holds for x ∈ [log2(q),1].

Hq(x−
1

log2(q)
)≤ x . (1.36)

Case 1 is directly implied by Equation (1.36). For case 2, note that the left-hand side of

Equation (1.34) always evaluate to 1− 1/q− 1/ log2(q). Hence, by Equation (1.36), Hq(1−

1/q− 1/ log2(q)) ≤ 1− 1/q ≤ x. Finally, we justify Equation (1.36). Recall that Hq(x) =
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H2(x)/ log2(q)+ x logq(q−1). We compute

Hq(x−
1

log2(q)
) =

H2(x− 1
log2(q)

)

log2(q)
+(x− 1

log2(q)
) logq(q−1)

≤ 1
log2(q)

+ x logq(q ·
q−1

q
)−

logq(q−1)
log2(q)

=
1

log2(q)
+ x− x logq(

q
q−1

)−
logq(q−1)

log2(q)

= x+
1

log2(q)
(1− logq(

q(x log2(q))

(q−1)(x log2(q)−1)
))

≤ x+
1

log2(q)
(1− logq(q))

= x.

Next, we show the upper bound that

H−1
q (x)≤ x(1− 1

q
) . (1.37)

Similar to the lower bound we just obtained, we note that it suffices to show Hq(x(1− 1
q))≥ x.

Let us define, for x ∈ [0,1]:

f (x) =
x
q

logq(
x
q
)− x logq(x)− (1− x+

x
q
) logq(1− x+

x
q
) .
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We will show that Hq(1(1−1/q)) = x+ f (x). The derivation is as follows.

Hq(x(1−1/q))

= x(1−1/q) logq(q−1)− x(1−1/q) logq(x(1−1/q))

− (1− x+ x/q) logq(1− x+ x/q)

≥ x logq(q−1)− x/q logq(q−1)

− x(1−1/q)(logq(x)+ logq(1−1/q))

− (1− x+ x/q) logq(1− x+ x/q)

= x logq(q−1)− x/q logq(q−1)

− x logq(x)− x logq(1−1/q)+ x/q logq(x)+ x/q logq(1−1/q)

− (1− x+ x/q) logq(1− x+ x/q)

= x
(

logq(q−1)+ logq(q/(q−1))
)
− x logq(x)

− x/q
(

logq(q−1)+ logq(1/x)+ logq(q/(q−1))
)

− (1− x+ x/q) logq(1− x+ x/q)

= x+ x/q logq(x/q)− x logq(x)− (1− x+ x/q) logq(1− x+ x/q)

= x+ f (x) .

Lastly, we show that f (x) ≥ 0 for any x ∈ [0,1]. First, we check that f (0) = f (1) = 0. Next,

check that the second derivative of f ,

f ′′(x) =
q−1

x(qx−q− x)
≤ 0 ,

is at most 0 for any x ∈ [0,1]. We omit the details of the derivative computation here. Hence, f is
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concave over the domain [0,1], with f (0) = f (1) = 0. Thence, f (x)≥ 0 for all x ∈ [0,1].

1.7 A Rejection Sampling Lemma

We prove the following lemma, which allows one to efficiently sample from [k](τ), for

appropriately constrained integers k,τ, via rejection sampling.

Lemma 1.7.1 Let τ,k,c be positive integers. Suppose k ≥ 2(c+1) · τ2. Let x1, . . . ,xt←$ [k] be

i.i.d samples, where

t = τ+
⌈ cτ

log2(k)− log((c+1)τ2)

⌉
≤ τ+ cτ .

Let S = {x1, . . . ,xt}. Then

Pr[|S|< τ]≤ 2−c·τ .

Proof: Let δ = t − τ. Since k ≥ 2(c+ 1) · τ2, we have log2(k)− log2((c+ 1)τ2) ≥ 1. Hence,

δ ≤ c · τ. Define Si = {x1, . . . ,xi}. Hence, S0 = /0 and St = S. Suppose that |S| < τ, then there

exists at least δ positions i such that xi ∈ Si−1. Since xi is a independent uniform sample from [k],

the probability that xi ∈ Si−1 is |Si−1|/k, which is at most τ/k. Hence,

Pr[|S|< τ]≤
(

τ+δ

δ

)
(
τ

k
)δ

≤
(
(c+1)τ

δ

)
(
τ

k
)δ

≤
((c+1)τ2

k

)δ

.

Hence,

log2(Pr[|S|< τ])≤ δ log2(
(c+1)τ2

k
)≤−c · τ .
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Chapter 2

Tight and Non-rewinding Proofs for

Schnorr Identification and Signatures

2.1 Introduction

It would not be an exaggeration to say that Schnorr identification and signatures [79]

are amongst the best-known and most influential schemes in cryptography. With regard to

practical impact, consider that Ed25519, a Schnorr-derived signature scheme over twisted Edwards

curves [20], is used, according to IANIX [55], in over 200 different things. (OpenSSL, OpenSSH

and GnuPG to name a tiny fraction.) Meanwhile the algebraic structure of the Schnorr schemes

has resulted in their being the basis for many advanced primitives including multi- [66, 14, 8, 63],

ring- [2, 53] and threshold- [84, 59] signatures.

Proving security of these schemes has accordingly attracted much work. Yet, all known

standard-model proofs [76, 1, 58] exhibit a gap: the proven bound on adversary advantage

(success probability) is much inferior to (larger than) the one that cryptanalysis says is “true.”

(The former is roughly the square-root of the latter. Accordingly we will refer to this as the

square-root gap.)
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The square-root gap is well known and acknowledged in the literature. Filling this long-

standing and notorious gap between theory and practice is the subject of this paper. We start with

some background.

SCHNORR SCHEMES. Let G be a group of prime order p, and g ∈ G a generator of G. We

let ID= SchID[G,g] denote the Schnorr identification scheme [79] (shown in Figure 2.3). The

security goal for it is IMP-PA (impersonation under passive attack [44]). The Schnorr signature

scheme DS= SchSig[G,g] [79] is derived from ID via the Fiat-Shamir transform [45] (also shown

in Figure 2.3). The security goal for it is UF (unforgeability under chosen-message attack [50]) in

the ROM (random oracle model [18]).

Recall that, G,g being public, the DL problem is for an adversary, given X = gx, to recover

x. Since we will introduce variants, we may, for emphasis, refer to DL itself as the “basic” version

of the discrete-logarithm problem. Existing standard-model proofs for both ID and DS [76, 1, 58]

are based on the assumed hardness of DL. The heart of the proof for DS, and the cause of the

square-root gap, is the rewinding reduction in the proof for ID. This makes ID the first and most

basic concern.

THE SITUATION WITH ID. The simplest proof of IMP-PA for ID= SchID[G,g] uses the

Reset Lemma of [15]. It shows that, roughly:

ε
imp-pa(t)≤

√
εdl(t)+

1
p
, (2.1)

where εimp-pa(t) is the probability of breaking IMP-PA security of ID in time t and εdl(t) is the

probability of breaking DL in time t. To draw quantitative conclusions about εimp-pa(t) as required

in practice, however, we now also need to estimate εdl(t). The accepted way to do this is via the

Generic Group Model (GGM) bound [81], believed to be accurate for elliptic curve groups. It
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says that

ε
dl(t)≈ t2

p
. (2.2)

Putting together the two equations above, we get, roughly:

ε
imp-pa(t)≤ t√

p
. (2.3)

There is, however, no known attack matching the bound of Eq. (2.3). Indeed, the best known

time t attack on ID is via discrete-log computation and thus has the considerably lower success

probability of t2/p. For example if p≈ 2256 the best known attack against ID gives a time t = 280

attacker a success probability of t2/p = 2−96, but Eq. (2.3) only rules out a success probability of

t/
√

p = 2−48. The proof is thus under-estimating security by a fairly large margin.

Accordingly in practice the proof is largely viewed as a qualitative rather than quantitative

guarantee, group sizes being chosen in ad hoc ways. Improving the reduction of Eq. (2.1) to

bring the theory more in line with the indications of cryptanalysis has been a long-standing open

question.

TIERS AND KNOBS. Before continuing with how we address this question, we draw

attention to the two-tiered framework of a security proof for a scheme S (above, S= ID) based on

the assumed hardness of some problem P (above, P=DL). The first tier is the reduction from P. It

is represented above by Eq. (2.1). The second tier is the estimate of the security of P itself, made

(usually) in an idealized model such as the GGM [81] or AGM (Algebraic Group Model) [47]. It

is represented above by Eq. (2.2). Both tiers are necessary to draw quantitative conclusions. This

two-tier structure is an accepted one for security proofs, and widely, even if not always explicitly,

used.

In this structure, we have the flexibility of choice of P, making this a “knob” that we

can tune. Creative and new choices of P have historically been made, and been very valuable
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in cryptography, yielding proofs for existing schemes and then going on to be useful beyond.

Historically, a classical example of such a (at the time, new) P is the Diffie-Hellman problem; the

schemes S whose proof this allows include the Diffie-Hellman secret-key exchange [39] and the

El Gamal public-key encryption scheme [43]. An example P closer to our work is the One-More

Discrete Logarithm (OMDL) problem [13], which has by now been used to prove many schemes

S [15, 37, 75, 46, 40]. But this knob-tuning approach is perhaps most visible in the area of bilinear

maps, where many choices of problem P have been made, justified in the GGM, and then used to

prove security of many schemes S. In the same tradition, we ask, how can we tune the knob to fill

the square-root gap? Our answer is a choice of P we call MBDL.

MBDL. Our Multi-Base Discrete Logarithm (MBDL) problem is a variant of the One-

More Discrete Logarithm (OMDL) problem of [13]. Continue to fix a cyclic group G and

generator g of G. In MBDL, the adversary is given a challenge Y ∈ G, a list X1,X2, . . . ,Xn ∈ G∗

of generators of G, and access to an oracle DLO that, on input i,W , returns DLG,Xi(W ), the

discrete logarithm of W , not in base g, but in base Xi. To win it must find DLG,g(Y ), the discrete

logarithm of the challenge Y to base g, while making at most one call to DLO overall, meaning

it is allowed to take the discrete log of at most one group element. (But this element, and the

base Xi, can be chosen as it wishes.) The number of bases n is a parameter of the problem,

so that one can refer to the n-MBDL problem or assumption. (Our results will rely only on

1-MBDL, but we keep the definition general for possible future applications.) The restriction

to at most one DLO call is necessary, for if even two are allowed, DLG,g(Y ) can be obtained as

DLO(1,Y ) ·DLO(1,g)−1 mod p where p = |G|.

CORE RESULTS. We suggest that the square-root gap of Eq. (2.1) is a manifestation

of an unformalized strength of the discrete logarithm problem. We show that this strength is

captured by the MBDL problem. We do this by giving a proof of IMP-PA security of the Schnorr

identification scheme ID= SchID[G,g] with a tight reduction from 1-MBDL: letting ε1-mbdl(t)

67



Table 2.1: Speedups yielded by our results for the Schnorr identification scheme ID =
SchID[G,g] (top) and signature scheme DS= SchSig[G,g] (bottom). The target for the first is
that IMP-PA adversaries with running time t should have advantage at most ε. We show the log
of the group size pi required for this under prior results (i = 1), and our results (i = 2). Assuming
exponentiation in G is cubic-time, we then show the speedup ratio of scheme algorithms. The
target for the second is that UF adversaries with running time t, making qh queries to H, should
have advantage at most ε, and the table entries are analogous.

Schnorr Identification
t ε log(p1) log(p2) Speedup s = (log(p1)/ log(p2))

3

280 2−48 256 208 1.9
264 2−64 256 192 2.4
2100 2−156 512 356 3

Schnorr Signatures
t qh ε log(p1) log(p2) Speedup s = (log(p1)/ log(p2))

3

280 260 2−48 316 268 1.6
264 250 2−64 306 242 2.0
2100 280 2−156 592 436 2.5

be the probability of breaking the 1-MBDL problem in time t, Theorem 2.4.1 says that, roughly:

ε
imp-pa(t)≤ ε

1-mbdl(t)+
1
p
. (2.4)

Eq. (2.4) does not suffer from the square-root gap of Eq. (2.1). Progress. But this is in the first of

the two tiers discussed above. Turning to the second, we ask, how hard is MBDL? Theorem 2.5.1

shows that, in the GGM, roughly:

ε
1-mbdl(t)≈ t2

p
. (2.5)

That is, 1-MBDL problem has essentially the same GGM quantitative hardness as DL. Putting

68



Eqs. (2.4) and (2.5) together, we get (roughly) the following improvement over Eq. (2.3):

ε
imp-pa(t)≤ t2

p
. (2.6)

This bound is tight in the sense that it matches the indications of cryptanalysis.

A direct indication of the practical value of this improvement is that, for a given target

level of provable security, we increase efficiency. Thus suppose that, for some chosen values

of ε, t, we want to pick the group G to ensure εimp-pa(t)≤ ε. Eq. (2.6) allows us to use smaller

groups than Eq. (2.3). Since scheme algorithms have running time cubic in the log of p = |G|,

this results in a performance improvement. Figure 2.1 says that this improvement can range from

1.9x to 3x.

WHAT HAS BEEN GAINED? A natural question is that our results rely on a new assump-

tion (MBDL), so what has been gained? Indeed, MBDL, as with any new assumption, should

be treated with caution. However, it seems that improving Eq. (2.1) to something like Eq. (2.4)

under the basic DL assumption is out of reach and likely not possible, and thus that, as indicated

above, the apparent strength of the Schnorr schemes indicated by cryptanalysis is arising from

stronger hardness properties of the discrete log problem not captured in the basic version. We are

trying to understand and formalize this hardness via new problems that tightly imply security of

the Schnorr primitives.

Of course it would not be hard to introduce some problem which allows this. But we

believe MBDL, and our results, are “interesting” in this regard, for the following reasons. First,

MBDL is not a trivial reformulation of the IMP-PA security of ID, meaning we are not just

assuming the square-root problem out of existence. Second, and an indication of the first, is

that the proof of the IMP-PA security of ID from MBDL (see “Reduction approach” below) is

correspondingly not trivial. Third, the use of MBDL is not confined to Schnorr identification; as

we also discuss below under “MBDL as a hub,” it already has many further applications and uses,
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and we imagine even more will arise in the future.

REDUCTION APPROACH. The proof of Eq. (2.1) uses a rewinding argument that exploits

the special soundness property of the Schnorr identification scheme, namely that from two

compatible transcripts —this means they are accepting and have the same commitment but

different challenges— one can extract the secret key. To find the discrete log, in base g, of a given

challenge Y , the discrete log adversary B plants the challenge as the public key X and performs

two, related runs of the given IMP-PA adversary, hoping to get two compatible transcripts, in

which case it can extract the secret key and solve its DL instance. The Reset Lemma [15] says it

is successful with probability roughly the square of the IMP-PA advantage of A , leading to the

square-root in Eq. (2.1).

Recall that our 1-mbdl adversary B gets input a challenge Y whose discrete logarithm in

the usual base g it must find, just like a DL adversary. To get Eq. (2.4) we must avoid rewinding.

The question is how and why the ability to take one discrete logarithm in some random base X1

helps to do this and get a tight reduction. Our reduction deviates from prior ones by not setting

Y to the public key. Instead, it sets X1 to the public key. Then, it performs a single execution of

the given IMP-PA adversary A , “planting” Y in the communication in such a way that success of

A in impersonating the prover yields DLG,g(Y ). This planting step makes one call to DLO(1, ·),

meaning asks for a discrete logarithm in base X1 of some W that depends on the execution. The

full proof is in Section 2.4.

MBDL AS A HUB. Having identified MBDL, we find that its applicability extends well

beyond what is discussed above, making it a hub. Here we briefly discuss further results from

MBDL.

The Schnorr signature scheme DS= SchSig[G,g] has a proof of UF-security in the ROM

under the basic DL assumption [76, 73, 1, 58]. The bound —recalled in Eq. (2.15)— continues to

exhibit the square-root gap. Theorem 2.4.3 gives a square-root avoiding reduction from 1-MBDL

to fill this gap. Figure 2.1 shows resulting speedup factors of 1.6x to 2.5x for Schnorr signatures.
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Security above refers to the single-user setting. Our results extend to tightly reduce the

multi-user IMP-PA security of SchID[G,g] to 1-MBDL, and analogously for signatures. This can

be shown directly, but is also a consequence of general results of [58].

The situation for the Okamoto identification and signature schemes [74] is analogous to

that for Schnorr, meaning the reductions in the current security proofs, from DL, use rewinding

and has the square-root loss. In Section 2.6 we give results for Okamoto that are analogous to our

results for Schnorr, meaning reductions from 1-MBDL that avoid the square root.

There’s more. In a follow-up work, we also give reductions from MBDL that improve

security of the following: (1) Bellare-Neven multi-signatures [14] (2) Abe, Ohkubo, Suzuki

1-out-of-n (ring/group) signatures [2] and (3) Schnorr-based threshold signatures [84].

RELATED WORK. One prior approach to resolving the square-root gap has been to use

only an idealized model like the GGM [81] or AGM [47]. Thus, Shoup [81] directly showed that

εimp-pa(t)≤ t2/p in the GGM. Fuchsbauer, Plouviez and Seurin [48] give, in the AGM, a tight

reduction from DL to the UF security of DS= SchSig[G,g]. These results correspond to a setting

of the knob, in the above-discussed two-tier framework, that is maximal: P is the target scheme

itself (here Schnorr identification or signatures), so that the first tier is trivial and the second tier

directly proves the scheme secure in the idealized model.

But it is well understood that idealized models have limitations. Proofs in the GGM

assume the adversary does not exploit the representation of group elements. In the AGM, it is

assumed that, whenever an adversary provides a group element Z, it is possible to extract its

representation as a product of known powers of prior group elements. This is analogous to a

“knowledge of exponent assumption” [35, 51, 16]. However, even in a typical elliptic curve group,

an adversary can quite easily create group elements without “knowing” such a representation.

The maximal setting of knob (working purely in an idealized model) means the security guarantee

on the scheme is fully subject to the limitations of the idealized model.

With MBDL, we, instead make a non-trivial, moderate setting of the knob. Our tight
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reductions from MBDL, such as Eq. (2.4), are in the standard model, and make no GGM or

AGM-like assumptions on adversaries. It is of course true that we justify MBDL in the GGM

(Theorem 2.5.1), but we are limiting the use of the idealized model to show security for a purely

number-theoretic problem, namely MBDL. The first direct benefit is better security guarantees

for the schemes. The second is that MBDL is a hub. As discussed above, we can prove security

of many schemes from it, which reduces work compared to proving them all from scratch in

idealized models, and also increases understanding by identifying a problem that is at the core of

many things.

Another prior approach to improving reduction tightness has been to change metrics,

measuring tightness, not via success probability and running time taken individually, but via

their ratio [58]. This however does not translate to actual, numeric improvements. To discuss

this further, let IMP-KOA denote impersonation under key-only attack. (That is, IMP-PA for

adversaries making zero queries to their transcript oracle.) Kiltz, Masny and Pan (KMP) [58]

define a problem they call 1-IDLOG that is a restatement of (“precisely models,” in their language)

the IMP-KOA security of ID= SchID[G,g]. Due to the zero knowledge of ID, its IMP-PA security

reduces tightly to its IMP-KOA security and thus to 1-IDLOG. Now, KMP [58] give a reduction

of 1-IDLOG to DL that is ratio-tight, meaning preserves ratios of advantage to running time. This,

however, uses rewinding, and is not tight in our sense, incurring the usual square-root loss when

one considers running time and advantage separately. In particular the results of KMP do not

seem to allow group sizes any smaller than allowed by the classical Eq. (2.1). Our reductions, in

contrast, are tight for advantage and time taken individually, and across the full range for these

values, and numerical estimates (Figure 2.1) show clear improvements over what one gets from

Eq. (2.1). Also our results establish 1-IDLOG tightly (not merely ratio-tightly) under 1-MBDL.

We discuss ratio-tightness further in Section 2.7.

DISCUSSION. Measuring quality of a reduction in terms of bit security effectively only

reflects the resources required to attain an advantage close to 1. Under this metric, whether one
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starts from Eq. (2.1) or Eq. (2.4), one concludes that ID = SchID[G,g] has log2(|G|)/2-bits of

security. This reflects bit security being a coarse metric. The improvement offered by Eq. (2.4)

over Eq. (2.1) becomes visible when one considers the full curve of advantage as a function of

runtime, and is visible in Figure 2.1.

While new assumptions (like MBDL) should of course be treated with caution, crypto-

graphic research has a history of progress through introducing them. For example, significant

advances were obtained by moving from the CDH assumption to the stronger DDH one [67, 33].

Pairing-based cryptography has seen a host of assumptions that have had many further applica-

tions, including the bilinear Diffie-Hellman (BDH) assumption of [26] and the DLIN assumption

of [24]. The RSA Φ-Hiding assumption of [29] has since found many applications. This suggests

that the introduction and exploration of new assumptions, which we continue, is an interesting

and productive line of research.

There is some feeling that “interactive” or “non-falsifiable” assumptions are undesirable.

However, it depends on the particular assumption. There are interactive assumptions that are

unbroken and successful, like OMDL [13], while many non-interactive ones have been broken.

It is important that it be possible to show an assumption is false, but this is possible even

for assumptions that are classified as “non-falsifiable;” for example, knowledge-of-exponent

assumptions have successfully been shown to be false through cryptanalysis [16]. (The latter

result assumes DL is hard.) MBDL is similarly amenable to cryptanalytic evaluation.

2.2 Preliminaries

NOTATION. If n is a positive integer, then Zn denotes the set {0, . . . ,n− 1} and [n] or

[1..n] denote the set {1, . . . ,n}. We denote the number of coordinates of a vector xxx by |xxx|. If

xxx is a vector then |xxx| is its length (the number of its coordinates), xxx[i] is its i-th coordinate and

[xxx] = { xxx[i] : 1≤ i≤ |xxx| } is the set of all its coordinates. A string is identified with a vector over
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{0,1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. By ε we denote the empty

vector or string. The size of a set S is denoted |S|. For sets D,R let Func(D,R) denote the set of

all functions f : D→ R.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from

S and assigning it to x. We let y← AO1,...(x1, . . . ;r) denote executing algorithm A on inputs x1, . . .

and coins r with access to oracles O1, . . . and letting y be the result. We let y←$ AO1,...(x1, . . .)

be the resulting of picking r at random and letting y← AO1,...(x1, . . . ;r). We let [AO1,...(x1, . . .)]

denote the set of all possible outputs of A when invoked with inputs x1, . . . and oracles O1, . . ..

Algorithms are randomized unless otherwise indicated. Running time is worst case.

GAMES. We use the code-based game playing framework of [19]. (See Fig. 2.2 for an

example.) Games have procedures, also called oracles. Amongst these are Init and a Fin. In

executing an adversary A with a game Gm, procedure Init is executed first, and what it returns

is the input to A . The latter may now call all game procedures except Init,Fin. When the

adversary terminates, its output is viewed as the input to Fin, and what the latter returns is the

game output. By Pr[Gm(A)] we denote the event that the execution of game Gm with adversary

A results in output true. In writing game or adversary pseudocode, it is assumed that boolean

variables are initialized to false, integer variables are initialized to 0 and set-valued variables are

initialized to the empty set /0. When adversary A is executed with game Gm, the running time of

the adversary, denoted TA , assumes game procedures take unit time to respond. By QO
A we denote

the number of queries made by A to oracle O in the execution. These counts are all worst case.

GROUPS. Let G be a group of order p. We will use multiplicative notation for the group

operation, and we let 1G denote the identity element of G. We let G∗ = G\{1G} denote the set of

non-identity elements, which is the set of generators of G if the latter has prime order. If g ∈ G∗ is

a generator and X ∈ G, the discrete logarithm base g of X is denoted DLG,g(X), and it is in the set

Z|G|.
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Game Gmdl
G,g

Init:
1 p← |G| ; y←$ Zp ; Y ← gy

2 Return Y

Fin(y′):
3 Return (y = y′)

Game Gmbdl
G,g,n

Init:
1 p← |G| ; y←$ Zp ; Y ← gy

2 For i = 1, . . . ,n do

3 xi←$ Z∗p ; Xi← gxi

4 Return Y,X1, . . . ,Xn

DLO(i,W ): // One query
5 Return DLG,Xi(W )

Fin(y′):
6 Return (y = y′)

Figure 2.1: Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Left:
Game defining standard discrete logarithm problem. Right: Game defining (n,m)-multi-base
discrete logarithm problem. Recall DLG,X(W ) is the discrete logarithm of W ∈G to base X ∈G∗.

2.3 The Multi-Base Discrete-Logarithm Problem

We introduce the multi-base discrete-logarithm (MBDL) problem. It is similar in flavor to

the one-more discrete-logarithm (OMDL) problem [13], which has found many applications, in

that it gives the adversary the ability to take discrete logarithms. For the rest of this Section, we fix

a group G of prime order p = |G|, and we fix a generator g ∈ G∗ of G. Recall that DLG,g : G→ Zp

is the discrete logarithm function in G with base g.

DL AND OMDL. We first recall the standard discrete logarithm (DL) problem via game

Gmdl
G,g on the left of Figure 2.1. Init provides the adversary, as input, a random challenge group

element Y , and to win it must output y′ = DLG,g(Y ) to Fin. We let Advdl
G,g(A) = Pr[Gmdl

G,g(A)]

be the discrete-log advantage of A .

In the OMDL problem [13], the adversary can obtain many random challenges Y1,Y2,

. . . ,Yn ∈ G. It has access to a discrete log oracle that given W ∈ G returns DLG,g(W ). For better

comparison with MBDL, let’s allow just one query to this oracle. To win it must compute the

discrete logarithms of two group elements from the given list Y1,Y2, . . . ,Yn ∈ G. The integer n≥ 2

is a parameter of the problem.
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MBDL. In the MBDL problem we introduce, we return, as in DL, to there being a single

random challenge point Y whose discrete logarithm in base g the adversary must compute. It

has access to an oracle DLO to compute discrete logs, but rather than in base g as in OMDL, to

bases that are public, random group elements X1,X2, . . . ,Xn. It is allowed just one query to DLO.

(As we will see, this is to avoid trivial attacks.) The integer n≥ 1 is a parameter of the problem.

Proceeding formally, consider game Gmbdl
G,g,n on the right in Fig. 2.1, where n ≥ 1 is an

integer parameter called the number of bases. The adversary’s input, as provided by Init, is

a random challenge group element Y together with random generators X1,X2, . . . ,Xn. It can

call oracle DLO with an index i ∈ [n] and any group element W ∈ G of its choice to get back

DLG,Xi(W ). Just one such call is allowed. At the end, the adversary wins the game if it outputs

y′ = DLG,g(Y ) to Fin. We define the mbdl-advantage of A by

Advmbdl
G,g,n(A) = Pr[Gmbdl

G,g,n(A)] .

DISCUSSION. By n-MBDL we will refer to the problem with parameter n. It is easy to

see that if n-MBDL is hard then so is n′-MBDL for any n′ ≤ n. Thus, the smaller the value of

n, the weaker the assumption. For our results, 1-MBDL, the weakest assumption in the series,

suffices.

We explain why at most one DLO query is allowed. Suppose the adversary is allowed

two queries. It could compute a =DLO(1,Y ) = DLG,X1(Y ) and b =DLO(1,g) = DLG,X1(g),

so that Xa
1 = Y and Xb

1 = g. Now the adversary returns y′ ← ab−1 mod p and we have gy′ =

(gb−1
)a = Xa

1 = Y , so the adversary wins.

As evidence for the hardness of MBDL, Theorem 2.5.1 proves good bounds on the

adversary advantage in the generic group model (GGM). It is also important to consider non-

generic approaches to the discrete logarithm problem over elliptic curves, including index-calculus

methods and Semaev polynomials [82, 80, 83, 57, 49], but, to the best of our assessment, these
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ExecID(pk,sk):

1 (R,st)←$ ID.Cmt(pk)

2 c←$ ID.Chl

3 z← ID.Rsp(sk,c,st)

4 b← ID.Vf(pk,R,c,z)

5 tr← (R,c,z)

6 Return (b, tr)

Game Gmimp-pa
ID

Init:
1 (pk,sk)←$ ID.Kg ; Return pk

Tr:
2 (b, tr)←$ExecID(pk,sk) ; Return tr

Ch(R∗): // One query
3 c∗←$ ID.Chl ; Return c∗

Fin(z∗):
4 Return ID.Vf(pk,R∗,c∗,z∗)

Figure 2.2: Left: Algorithm defining an honest execution of the canonical identification scheme
ID given key pair (sk,pk). Right: Game defining IMP-PA security of ID.

do not yield attacks on MBDL that beat the GGM bound of Theorem 2.5.1.

The MBDL problem as we have defined it can be generalized to allow multiple DLO

queries with the restriction that at most one query is allowed per base, meaning for each i there

can be at most one DLO(i, ·) query. In this paper, we do not need or use this extension. We

have found applications based on it, but not pursued them because we have been unable to

prove security of this extended version of MBDL in the GGM. We consider providing such a

GGM proof an intriguing open question, resolving which would open the door to several new

applications.

Our formalizations of DL and MBDL fix the generator g. See [9] for a discussion of fixed

versus random generators.

2.4 Schnorr Identification and Signatures from MBDL

In this section, we give a tight reduction of the IMP-PA security of the Schnorr identifi-

cation scheme to the 1-MBDL problem and derive a corresponding improvement for Schnorr

signatures.

IDENTIFICATION SCHEMES. We recall that a (canonical) identification scheme [1] ID
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(see Figure 2.3 for an example) is a 3-move protocol in which the prover sends a first message

called a commitment, the verifier sends a random challenge, the prover sends a response that

depends on its secret key, and the verifier makes a decision to accept or reject based on the

conversation transcript and the prover’s public key. Formally, ID is specified by algorithms

ID.Kg, ID.Cmt, ID.Rsp, and ID.Vf, as well as a set ID.Chl of challenges Via (pk,sk)←$ ID.Kg,

the key generation algorithm generates public verification key pk and associated secret key sk.

Algorithms ID.Cmt and ID.Rsp are the prover algorithms. The commitment algorithm ID.Cmt

takes input the public key pk and returns a commitment message R to send to the verifier, as well

as a state st for the prover to retain. The deterministic response algorithm ID.Rsp takes input the

secret key sk, a challenge c ∈ ID.Chl sent by the verifier, and a state st, to return a response z to

send to the verifier. The deterministic verification algorithm ID.Vf takes input the public key and

a conversation transcript R,c,z to return a decision b ∈ {true, false} that is the outcome of the

protocol.

An honest execution of the protocol is defined via procedure ExecID shown in the upper

left of Fig. 2.2. It takes input a key pair (pk,sk) ∈ [ID.Kg] to return a pair (b, tr) where b ∈

{true, false} denotes the verifier’s decision whether to accept or reject and tr = (R,c,z) is the

transcript of the interaction. We require that ID schemes satisfy (perfect) completeness, namely

that for any (pk,sk) ∈ [ID.Kg] and any (b, tr) ∈ [ExecID(sk,pk)] we have b = true.

Impersonation under passive attack (IMP-PA) [44] is a security metric asking that an

adversary not in possession of the prover’s secret key be unable to impersonate the prover, even

given access to honestly generated transcripts. Formally, consider the game Gmimp-pa
ID given in the

right column of Fig. 2.2. An adversary has input the public key pk returned by Init. It then has

access to honest transcripts via the oracle Tr. When it is ready to convince the verifier, it submits

its commitment R∗ to oracle Ch. We allow only one query to Ch. In response the adversary

obtains a random challenge c∗. It must now output a response z∗ to Fin, and the game returns

true iff the transcript is accepted by ID.Vf. The R∗,c∗ at line 4 are, respectively, the prior query
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Prover
Input: X ,x
r←$ Zp
R← gr

z← (xc+ r) mod p

R-
c�
z-

Verifier
Input: X

c←$ Zp

b← (gz = RXc)

ID.Kg:

1 x←$ Z|G| ; X ← gx ; Return (X ,x)

ID.Cmt(X):

2 r←$ Z|G| ; R← gr ; Return (R,r)

ID.Rsp(x,c,r):

3 z← (xc+ r) mod |G|
4 Return z

ID.Vf(X ,R,c,z):

5 b← (gz = XcR) ; Return b

DS.Kg:

1 x←$ Z|G| ; X ← gx

2 Return (X ,x)

DS.SignH(x,m):

3 r←$ Z|G| ; R← gr

4 c←H(R,m)

5 z← (xc+ r) mod |G|
6 Return (R,z)

DS.VfH(X ,m,σ):

7 (R,z)← σ

8 c←H(R,m)

9 Return (gz = XcR)

Figure 2.3: Let G be a group of prime order p = |G| and let g ∈ G∗ be a generator of G. The
Schnorr ID scheme ID= SchID[G,g] is shown pictorially at the top and algorithmically at the
bottom left. At the bottom right is the Schnorr signature scheme DS = SchSig[G,g], using
H : G×{0,1}∗→ Zp.

to Ch, and the response chosen at line 3. We define the IMP-PA advantage of A against ID as

Advimp-pa
ID (A) = Pr[Gmimp-pa

ID (A)], the probability that the game returns true.

SCHNORR IDENTIFICATION SCHEME AND PRIOR RESULTS. Let G be a group of prime

order p = |G|, and g ∈ G∗ a generator of G. We recall the Schnorr identification scheme [79]

ID= SchID[G,g] in Fig. 2.3. The public key pk = X = gx ∈G where sk = x∈Zp is the secret key.

The commitment is R = gr ∈ G, and r is returned as the prover state by the commitment algorithm.

Challenges are drawn from ID.Chl = Zp, and the response z and decision b are computed as

shown.

The IMP-PA security of ID= SchID[G,g] based on DL is proven by a rewinding argument.
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The simplest analysis is via the Reset Lemma of [15]. It leads to the following (cf. [15, Theorem

2], [17, Theorem 3]). Let A be an adversary attacking the IMP-PA security of ID. Then there is a

discrete log adversary B such that

Advimp-pa
ID (A)≤

√
Advdl

G,g(B)+
1
p
. (2.7)

Additionally, the running time TB of B is roughly 2TA plus simulation overhead O(QTr
A ·T e

G),

where T e
G is the time for an exponentiation in G.

OUR RESULT. We show that the IMP-PA-security of the Schnorr identification scheme

reduces tightly to the 1-MBDL problem. The reduction does not use rewinding. Our mbdl-

adversary B solves the 1-MBDL problem by running the given imp-pa adversary A just once, so

the mbdl-advantage, and running time, of the former, are about the same as the imp-pa advantage,

and running time, of the latter. Refer to Section 3.2 for notation like TA ,QTr
A .

Theorem 2.4.1 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G.

Let ID= SchID[G,g] be the Schnorr identification scheme. Let A be an adversary attacking the

imp-pa security of ID. Then we can construct an adversary B (shown explicitly in Figure 2.4)

such that

Advimp-pa
ID (A)≤ Advmbdl

G,g,1(B)+
1
p
. (2.8)

Additionally, TB is roughly TA plus simulation overhead O(QTr
A ·T e

G).

Proof of Theorem 2.4.1: Recall that, when reducing IMP-PA security of Schnorr to DL, the

constructed dl adversary B sets the target point Y to be the public key X . It is natural to take the

same approach in our case. The question is how to use the discrete logarithm oracle DLO to

avoid rewinding and get a tight reduction. But this is not clear and indeed the DLO oracle does

not appear to help towards this.

Our reduction deviates from prior ones by not setting the target point Y to be the public
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Adversary BDLO:

1 (Y,X)←$ Init() ; z∗←$ ACh,Tr(X) ; Return z∗

Ch(R∗):

2 W ← R∗−1 ·Y ; c∗←DLO(1,W ) ; Return c∗

Tr:

3 z←$ Zp ; c←$ Zp ; R← gz ·X−c ; Return (R,c,z)

Game Gm0 / Gm1 / Gm2

Init: // Games Gm0, Gm1

1 p← |G| ; y←$ Zp ; Y ← gy ; x←$ Zp

2 If (x = 0) then bad← true ; x←$ Z∗p
3 X ← gx ; Return (Y,X)

Init: // Game Gm2

4 p← |G| ; y←$ Zp ; Y ← gy ; x←$ Z∗p ; X ← gx ; Return (Y,X)

Ch(R∗): // Games Gm0,Gm1

5 c∗←$ Zp ; Return c∗

Ch(R∗): // Game Gm2

6 W ← R∗−1 ·Y ; c∗← DLG,X (W ) ; Return c∗

Tr(W ): // Games Gm0,Gm1,Gm2

7 z←$ Zp ; c←$ Zp ; R← gz ·X−c ; Return (R,c,z)

Fin(z∗): // Games Gm0,Gm1

8 Return (gz∗ = Xc∗R∗)

Fin(z∗): // Games Gm2

9 Return ( z∗ = DLG,g(Xc∗R∗) )

Figure 2.4: Top: MBDL adverary B for Theorem 2.4.1, based on IMP-PA adversary A . Bottom:
Games for proof of Theorem 2.4.1.

key. Instead we look at a successful impersonation by A . (Simulation of A’s transcript oracle Tr

is again via the honest-verifier zero-knowledge property of the scheme.) Adversary A provides

R∗, receives c∗ and then returns z∗ satisfying gz∗ = R∗Xc∗ , where X is the public key. Thus, A

effectively computes the discrete logarithm of R∗Xc∗ . We make this equal our mbdl challenge Y ,

meaning B , on input Y , arranges that Y = R∗Xc∗ . If it can do this successfully, the z∗ returned by

A will indeed be DLG,g(Y ), which it can output and win.
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But how can we arrange that Y = R∗Xc∗? This is where the DLO oracle enters. Adversary

B gives X as input to A , meaning the public key is set to the group generator relative to which B

may compute discrete logarithms. Now, when A provides R∗, our adversary B returns a challenge

c∗ that ensures Y = R∗Xc∗ . This means c∗ =DLG,X(Y R∗−1), and this is something B can compute

via its DLO oracle.

Some details include that the X returned by Init is a generator, while the public key is a

random group element, so they are not identically distributed, and that the challenge computed

via DLO must be properly distributed. The analysis will address these.

For the formal proof, consider the games of Figure 2.4. Procedures indicate (via com-

ments) in which games they are present. Game Gm1 includes the boxed code at line 2 while Gm0

does not. The games implement the transcript oracle via the zero-knowledge simulation rather

than using the secret key, but otherwise Gm0 is the same as game Gmimp-pa
ID so we have

Advimp-pa
ID (A) = Pr[Gm0(A)]

= Pr[Gm1(A)]+(Pr[Gm0(A)]−Pr[Gm1(A)]) .

Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [19]

we have

Pr[Gm0(A)]−Pr[Gm1(A)]≤ Pr[Gm1(A) sets bad] .

Clearly Pr[Gm1(A) sets bad]≤ 1/p. Now we can work with Gm1, where the public key X is a

random element of G∗ rather than of G. We claim that

Pr[Gm1(A) = Pr[Gm2(A)] . (2.9)

We now justify this. At line 4, game Gm2 picks x directly from Z∗p, just like Gm1, and also
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rewrites Fin in a different but equivalent way. The main thing to check is that Ch in Gm2 is

equivalent to that in Gm1, meaning line 6 results in c∗ being uniformly distributed in Zp. For this

regard R∗,X as fixed and define the function fR∗,X : G→ Zp by fR∗,X(Y ) = DLG,X(R∗−1Y ). The

adversary has no information about Y prior to receiving c∗ at line 6, so the claim is established if

we show that fR∗,X is a bijection. This is true because X ∈ G∗ is a generator, which means that

the function hR∗,X : Zp→ G defined by hR∗,X(c∗) = R∗Xc∗ is the inverse of fR∗,X . This establishes

Eq. (2.9).

We now claim that adversary B , shown in Fig. 2.4, satisfies

Pr[Gm2(A)]≤ Advmbdl
G,g,1(B) . (2.10)

Putting this together with the above completes the proof, so it remains to justify Eq. (2.10).

Adversary B has access to oracle DLO as per game Gmbdl
G,g,1. In the code, Ch and Tr are subroutines

defined by B and used to simulate the oracles of the same names for A . Adversary B has input

the challenge Y whose discrete logarithm in base g it needs to compute, as well as the base X

relative to which it may perform one discrete log operation. It runs A on input X , so that the

latter functions as the public key, which is consistent with Gm2. The subroutine Ch uses DLO

to produce c∗ the same way as line 6 of Gm2. It simulates Tr as per line 7 of Gm2. If Gm2 returns

true at line 9 then we have gz∗ = Xc∗R∗ =WR∗ = R∗−1Y R∗ = Y , so B wins.

QUANTITATIVE COMPARISON. Concrete security improvements are in the end efficiency

improvements, because, for a given security level, we can use smaller parameters, and thus the

scheme algorithms are faster. Here we quantify this, seeing what Eq. (2.8) buys us over Eq. (2.7)

in terms of improved efficiency for the identification scheme.

We take as goal to ensure that any adversary A with running time t has advantage

Advimp-pa
ID (A)≤ ε in violating IMP-PA security of ID= SchID[G,g]. Here t,ε are parameters for

which many choices are possible. For example, t = 290 and ε = 2−32 is one choice, reflecting a
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128-bit security level, where we define the bit-security level as log2(t/ε). The cost of scheme

algorithms is the cost of exponentiation in the group, which is cubic in the representation size

k = log p of group elements. So we ask what k must be to provably ensure the desired security.

Equations (2.7) and (2.8) will yield different choices of k, denoted k1 and k2, with k2 < k1. We

will conclude that Eq. (2.8) allows a s = (k1/k2)
3-fold speedup for the scheme.

Let B1 denote the DL adversary referred to in Eq. (2.7), and B2 the 1-MBDL adversary

referred to in (2.8). To use the equations, we now need estimates on their respective advantages.

For this, we assume G is a group in which the security of discrete-log-related problems is captured

by the bounds proven in the generic group model (GGM), as seems to be true, to best of our

current understanding, for certain elliptic curve groups. We will ignore the simulation overhead

in running time since the number of transcript queries of A reflects online executions of the

identification protocol and should be considerably less than the running time of A , so that we

take the running times of both B1 and B2 to be about t, the running time of our IMP-PA adversary

A . Now the classical result of Shoup [81] says that Advdl
G,g(B1)≈ t2/p, and our Theorem 2.5.1

says that also Advmbdl
G,g,1(B2)≈ t2/p.

Here we pause to highlight that these two bounds being the same is a central attribute of the

1-MBDL assumption. That Theorem 2.4.1 (as per Figure 2.1) provides efficiency improvements

stems not just from the reduction of Eq. (2.8) being tight, but also from that fact that the 1-MBDL

problem is just as hard to solve as the DL problem, meaning Advmbdl
G,g (B2)≈ Advdl

G,g(B1)≈ t2/p.

Continuing, putting together what we have so far gives two bounds on the IMP-PA

advantage of A , the first via Equations (2.7) and the second via Eq. (2.8), namely, dropping the

1/p terms,

Advimp-pa
ID (A)≤ ε1(t) =

√
t2

p
=

t√
p

(2.11)

Advimp-pa
ID (A)≤ ε2(t) =

t2

p
. (2.12)
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Recall our goal was to ensure that Advimp-pa
SchID[G,g](A)≤ ε. We ask, what value of p, in either case,

ensures this? Solving for p in the equations ε = ε1(t) and ε = ε2(t), we get two corresponding

values, namely p1≈ t2/ε2 and p2≈ t2/ε. We see that p1 > p2, meaning Theorem 2.4.1 guarantees

the same security as Eq. (2.7) in groups of a smaller size. Finally, the ratio of representation sizes

for group elements is

r ≈ log(p1)

log(p2)
≈ log(t2/ε)+ log(1/ε)

log(t2/ε)
= 1+

log(1/ε)

log(t2/ε)
.

Scheme algorithms employ exponentiation in the group and are thus cubic time, so the ratio of

speeds is s = r3, which we call the speedup factor, and we can now estimate it numerically. For

a few values of t,ε, Figure 2.1 shows the log of the group size pi needed to ensure the desired

security under prior results (i = 1) and ours (i = 2). Then it shows the speedup s. For example

if we want attacks of time t = 264 to achieve advantage at most ε = 2−64, prior results would

require a group of size p1 satisfying log(p1)≈ 256, while our results allow it with a group of size

log(p2)≈ 192, which yields a 2.4x speedup. Of course many more examples are possible.

SIGNATURE SCHEMES. Towards results on the Schnorr signature scheme, we start by

recalling definitions. A signature scheme DS specifies key generation algorithm DS.Kg, signing

algorithm DS.Sign, deterministic verification algorithm DS.Vf and a set DS.HF of functions

called the hash function space. Via (pk,sk)←$DS.Kg the signer generates a public verification

key pk and secret signing key sk. Via σ←$DS.Signh(sk,m) the signing algorithm takes sk and

a message m ∈ {0,1}∗, and, with access to an oracle h ∈ DS.HF, returns a signature σ. Via

b← DS.Vfh(pk,m,σ), the verifier obtains a boolean decision b ∈ {true, false} about the validity

of the signature. The correctness requirement is that for all h ∈ DS.HF, all (pk,sk) ∈ [DS.Kg],

all m ∈ {0,1}∗ and all σ ∈ [DS.Signh(sk,m)] we have DS.Vfh(pk,m,σ) = true.

Game Guf in Fig. 2.5 captures UF (unforgeability under chosen-message attack) [50].

Procedure H is the random oracle [18], implemented as a function h chosen at random from
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Game Guf
DS

Init:
1 h←$DS.HF ; (pk,sk)←$DS.Kg

2 Return pk

Sign(m):
3 σ←$DS.SignH(sk,m) ; S← S∪{m}
4 Return σ

H(x):
5 Return h(x)

Fin(m∗,σ∗):
6 Return ( (m∗ 6∈ S) and DS.VfH(pk,m∗,σ∗) )

Figure 2.5: Game defining UF security of signature scheme DS.

DS.HF. We define the UF advantage of adversary A as Advuf
DS(A) = Pr[Guf

DS(A)].

SCHNORR SIGNATURES. The Schnorr signature scheme DS= SchSig[G,g] is derived by

applying the Fiat-Shamir transform [45] to the Schnorr identification scheme. Its algorithms are

shown at the bottom right of Fig. 2.3. The set DS.HF consists of all functions h : G×{0,1}∗→Zp.

OUR AND PRIOR RESULTS. We give a reduction, of the UF security of the Schnorr

signature scheme to the 1-MBDL problem, that loses only a factor of the number of hash-oracle

queries of the adversary. We start by recalling the following lemma from [1]. It derives the UF

security of SchSig[G,g] from the IMP-PA security of SchID[G,g]:

Lemma 2.4.2 [1] Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G.

Let ID= SchID[G,g] and DS= SchID[G,g] be the Schnorr identification and signature schemes,

respectively. Let Ads be an adversary attacking the uf-security of DS. Let α = (1+QH
Ads

+

QSign
Ads

)QSign
Ads

. Then we can construct an adversary Aid such that

Advuf
DS(Ads)≤ (1+QH

Ads
) ·Advimp-pa

ID (Aid)+
α

p
.

Additionally, TAid ≈ TAds and QTr
Aid

= QSign
Ads

.
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Combining this with Theorem 2.4.1, we have:

Theorem 2.4.3 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G.

Let DS= SchSig[G,g] be the Schnorr signature scheme. Let A be an adversary attacking the uf

security of ID. Let β = (1+QH
A +QSign

A )QSign
A +(1+QH

A ). Then we can construct an adversary

B such that

Advuf
DS(A)≤ (1+QH

A ) ·Advmbdl
G,g,1(B)+

β

p
. (2.13)

Additionally, TB is roughly TA plus simulation overhead O(QSign
A ·T e

G).

Let’s compare this to prior results. A simple proof of UF-security of DS from DL can be obtained

by combining Lemma 2.4.2 with the classical DL-based security of ID as given by Eq. (2.7). For

A an adversary attacking the UF security of DS, this would yield a discrete log adversary B such

that

Advuf
DS(A)≤ (1+QH

A ) ·
√

Advdl
G,g(B)+

β

p
, (2.14)

where β is as in Theorem 2.4.3 and TB is about 2TA plus the same simulation overhead as above.

This is however not the best prior bound. One can do better with a direct application of the

general Forking Lemma of [14] as per [76]. For A an adversary attacking the UF security of DS,

this would yield a discrete log adversary B such that

Advuf
DS(A)≤

√
(1+QH

A ) ·Advdl
G,g(B)+

β

p
, (2.15)

where β and TB are as above. The reason Eq. (2.15) is a better bound than Eq. (2.14) is that the

1+QH
A term has moved under the square root. Still we see that Eq. (2.13) is even better; roughly

(neglecting the additive term), the bound in Eq. (2.13) is the square of the one in Eq. (2.15), and

thus (always) smaller.

QUANTITATIVE COMPARISONS. Our numerical comparisons will be with the best prior

bound, meaning that of Eq. (2.15). For a few values of t,qh,ε with t ≥ qh = QH
A , Figure 2.1 shows
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the speedup s from Eq. (2.13) over Eq. (2.15). The table shows that the speedup is a bit less than

for Schnorr identification shown in the same Figure, but still significant. For example if we want

attacks of time t = 264 to achieve advantage at most ε = 2−64, Theorem 2.4.3 is allowing group

sizes to go down enough to yield a 5.4-fold speedup.

To derive these estimates, we use the same framework and setup as we did for identification.

Let G be a group of prime order p with generator g. We take as goal to ensure that any adversary A

with running time t, making qh queries to H and qs queries to Sign, has advantage Advuf
DS(A)≤ ε

in violating UF security of DS= SchSig[G,g], where t,ε,qh,qs are parameters. We assume qs <

< qh ≤ t, as one expects in practice. Let B1,B2 be the adversaries of Equations (2.15) and (2.13),

respectively. As before, assume Advdl
G,g(B1) ≈ t2/p from [81], and also Advmbdl

G,g,1(B2) ≈ t2/p

from Theorem 2.5.1. Then

Advuf
DS(A)≤ ε1(t,qh)≈

√
qht2

p

Advuf
DS(A)≤ ε2(t,qh)≈ qh ·

t2

p
=

qht2

p
≈ ε1(t,qh)

2 .

In the estimates above, we have dropped the additive term, which has order qhqs/p, because this

is negligible compared to the other term for reasonable parameter values, including the ones we

consider. This leaves ε1,ε2 not depending on qs, but recall the latter is expected to be (much)

smaller than qh. Then our bound ε2 is about the square of the prior one, and thus always smaller.

We now ask what value of p ensures Advuf
DS(A)≤ ε, in each case. Solving ε1(t,qh)≤ ε

yields p1 ≈ t2qh/ε2, and solving ε2(t,qh) ≤ ε yields p2 ≈ t2qh/ε. As before we see that p2 <

p1, meaning Theorem 2.4.1 guarantees security in groups of smaller size. The ratio of the

representation-size of group elements is

r ≈ log(p1)

log(p2)
≈ log(t2qh/ε)+ log(1/ε)

log(t2qh/ε)
= 1+

log(1/ε)

log(t2qh/ε)
.
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Game Ggg-mbdl
G,n // Set G is the range of the encoding, |G| is prime.

Init():
1 p← |G| ; E←$ Bijections(Zp,G) // Think “ E(x) = gx ”
2 1← E(0) ; g← E(1) // Think 1 the identity and g generator
3 y←$ Zp ; Y ← E(y)

4 For i = 1, . . . ,n do xi←$ Z∗p ; Xi← E(xi)

5 GL←{1,g,Y,X1, . . . ,Xn}
6 Return 1,g,Y,X1, . . . ,Xn

Op(A,B,sgn): // A,B ∈ G and sgn ∈ {+,−}
7 If (A 6∈ GL or B 6∈ GL) then return ⊥
8 c← (E−1(A) sgn E−1(B)) mod p ; C← E(c) ; GL← GL∪{C}
9 Return C

DLO(i,W ): // i ∈ [1..n] and W ∈ G
10 If (W 6∈ GL) then return ⊥
11 z← x−1

i ·E−1(W ) mod p // x−1
i is inverse of xi mod p

12 Return z

Fin(y′):
13 Return (y = y′)

Figure 2.6: Game defining n-MBDL problem in the generic group model.

As before the ratio of speeds (speedup factor) is s = r3, and we can now estimate it numerically.

For a few values of t,ε, Figure 2.1 shows the log of the group size pi needed to ensure the desired

security under prior results (i = 1) and ours (i = 2). Then it shows the speedup s.

2.5 MBDL hardness in the Generic Group Model

With a new problem like MBDL it is important to give evidence of hardness. Here we

provide this in the most common and accepted form, namely a proof of hardness in the generic

group model (GGM).

The quantitative aspect of the result is just as important as the qualitative. Theorem 2.5.1

below says that the advantage of a GGM adversary A in breaking n-MBDL is O(q2/p) where

q is n plus the number of group operations (time) invested by A , namely about the same as the
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ggm-dl-advantage of an adversary of the same resources. Reductions (to some problem) from

MBDL that are tighter than ones from DL now bear fruit in justifying the secure use of smaller

groups, which lowers costs.

The proof of Theorem 2.5.1 begins with a Lemma that characterizes the distribution of

replies to the DLO query. A game sequence is then used to reduce bounding the adversary

advantage to some static problems in linear algebra.

Some prior proofs in the GGM have been found to be wrong. (An example is that of [22]

as pointed out by [54]. We note that the assumption was changed to fill the gap in [23].) Also we,

at least, have often found GGM proofs imprecise and hard to verify. This has motivated us to try

to be precise with definitions and to attend to details.

Starting with definitions, we associate to any encoding function E an explicit binary

operation opE that turns the range-set of E into a group. A random choice of E then results in the

GGM, with the “generic group” being now explicitly defined as the group associated to E. The

proof uses a game sequence and has been done at a level of detail that is perhaps unusual in this

domain.

MBDL IN THE GGM. We start with definitions. Suppose G is a set whose size p = |G| is

a prime, and E : Zp→G is a bijection, called the encoding function. For A,B∈G, define AopE B=

E(E−1(A)+E−1(B)). Then G is a group under the operation opE [86], with identity element

E(0), and the encoding function becomes a group homomorphism: E(a+ b) = E(a) opE E(b)

for all a,b ∈ Zp. The element g = E(1) ∈ G is a generator of this group, and E−1(A) is then the

discrete logarithm of A ∈ G relative to g. We call opE the group operation on G induced by E.

In the GGM, the encoding function E is picked at random and the adversary is given

an oracle for the group operation opE induced on G by E. Game Ggg-mbdl
G,n in Fig. 2.6 defines,

in this way, the n-MBDL problem. The set G parameterizes the game, and the random choice

of encoding function E : Zp→ G is shown at line 1. Procedure Op then implements either the

group operation opE on G induced by E (when sgn is +) or its inverse (when sgn is −). Lines 3,4
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pick y,x1, . . . ,xn and define the corresponding group elements Y,X1, . . . ,Xn. Set GL holds all

group elements generated so far. The new element here is the oracle DLO that takes i ∈ [1..n]

and W ∈ G to return the discrete logarithm of W in base Xi. This being x−1
i times the discrete

logarithm of W in base g, the procedure returns z← x−1
i ·E−1(W ). The inverse and the operations

here are modulo p. Only one query to this oracle is allowed, and the adversary wins if it halts with

output y′ that equals y. We let Advgg-mbdl
G,n (A) = Pr[Ggg-mbdl

G,n (A)] be its ggm-mbdl-advantage.

RESULT. The following upper bounds the ggm-mbdl-advantage of an adversary A as a

function of the number of its Op queries and n.

Theorem 2.5.1 Let G be a set whose size p = |G| is a prime. Let n ≥ 1 be an integer. Let A

be an adversary making QOp
A queries to its Op oracle and one query to its DLO oracle. Let

q = QOp
A +n+3. Then

Advgg-mbdl
G,n (A)≤ 2+q(q−1)

p−1
. (2.16)

PROOF FRAMEWORK AND LEMMA. Much of our work in the proof is over Zn+2
p regarded

as a vector space over Zp. We let~0 ∈ Zn+2
p be the all-zero vector, and~ei ∈ Zn+2

p the i-th basis

vector, meaning it has a 1 in position i and zeros elsewhere. We let 〈~a,~b〉= (~a[1]~b[1]+ · · ·+~a[n+

2]~b[n+2]) denote the inner product of vectors~a,~b ∈ Zn+2
p , where the operations are modulo p.

In the GGM, the encoding function takes as input a point in Zp. The proof of GGM

hardness of the DL problem [81] moved to a modified encoding function that took input a

univariate polynomial, the variable representing the target discrete logarithm y. We extend this to

have the modified encoding function take input a degree one polynomial in n+1 variables, these

representing x1, . . . ,xn,y. The polynomial will be represented by the vector of its coefficients, so

that representations, formally, are vectors in Zn+2
p . At some point, games in our proof will need to

simulate the reply to a DLO(i,W ) query, meaning provide a reply z without knowing xi. At this

point, W ∈ G will be represented by a vector ~w ∈ Zn+2
p that is known to the game and adversary.
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Game Gsmp-1
p,n

Init(i,~w): // i ∈ [1..n] and ~w ∈ Zn+2
p

1 x1, . . . ,xn←$ Z∗p ; y←$ Zp ; w← ~w[i]

2 ~xi← (x1, . . . ,xi−1,0,xi+1, . . . ,xn,1,y)

3 z← w+ x−1
i · 〈~w,~xi〉 ; Return (x1, . . . ,xn,y,z)

Game Gsmp-0
p,n

Init(i,~w): // i ∈ [1..n] and ~w ∈ Zn+2
p

1 x1, . . . ,xi−1,xi+1, . . . ,xn←$ Z∗p ; y←$ Zp ; w← ~w[i]

2 ~xi← (x1, . . . ,xi−1,0,xi+1, . . . ,xn,1,y)

3 If ( 〈~w,~xi〉 6= 0 ) then z←$ Zp \{w} ; xi← (z−w)−1 · 〈~w,~xi〉
4 Else z← w ; xi←$ Z∗p
5 Return (x1, . . . ,xn,y,z)

Figure 2.7: Games for Lemma 2.5.2.

The natural simulation approach is to return a random z←$ Zp or z←$ Z∗p, but these turn out to

not perfectly mimic the true distribution of replies, because this distribution depends on ~w. We

start with a lemma that describes how to do a perfect simulation.

While the above serves as motivation for the Lemma, the Lemma itself is self-contained,

making no reference to the DLO oracle. We consider the games of Figure 2.7. They are played

with an adversary making a single Init query whose arguments are an integer i ∈ [1..n] and a

vector ~w ∈ Zn+2
p . The operations in the games, including inverses of elements in Z∗p, are in the

field Zp. Game Gsmp-1
p,n captures what, in our vector-representation, will be the “real” game, with

z at line 3 computed correctly as a function of xi. Game Gsmp-0
p,n represents the simulation, first

picking z and then defining xi. Lines 3,4 show that there are two cases for how z,xi are chosen in

the simulation, depending on the value of w = ~w[i] and the inner product of ~w with~xi. The games

return all variables involved. The claim is that the outputs of the games are identically distributed,

captured formally, in the statement of Lemma 2.5.2 below, as the condition that any adversary

returns true with the same probability in the two games.
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Lemma 2.5.2 Let p be a prime and n≥ 1 an integer. Then for any adversary A we have

Pr[Gsmp-1
p,n (A)] = Pr[Gsmp-0

p,n (A)] , (2.17)

where the games are in Figure 2.7.

Proof of Lemma 2.5.2: With i,~w being A’s query to Init, we can regard vector~xi = (x1, . . . ,

xi−1,0,xi+1, . . . ,xn,1,y) as fixed, since its constituents are chosen identically in the two games.

Let α= 〈~w,~xi〉. Now consider two cases. The first is that α= 0. Then, in both games, z=w, and xi

is chosen randomly from Z∗p. The second case is that α 6= 0. For x ∈ Z∗p let Zw,α(x) = w+ x−1 ·α,

so that z = Zw,α(xi) at line 3 of game Gsmp-1
p,n . That α 6= 0 implies Zw,α(x) 6= w, meaning the

function Zw,α maps as Zw,α : Z∗p→ Zp \ {w}. For z ∈ Zp \ {w}, let Xw,α(z) = α · (z−w)−1, so

that xi = Xw,α(z) at line 3 of game Gsmp-0
p,n . That z 6= w and α 6= 0 means Xw,α(z) 6= 0, meaning

the function Xw,α maps as Xw,α : Zp \ {w} → Z∗p. The proof is complete if we show that these

functions are inverses of each other, in particular showing that both are bijections. Indeed, for any

x ∈ Z∗p we have Xw,α(Zw,α(x)) = Xw,α(w+ x−1 ·α) = α · (w+ x−1 ·α−w)−1 = α · x ·α−1 = x.

Equipped with this lemma, we give the proof of Theorem 2.5.1.

Proof of Theorem 2.5.1: By span(~v) we denote the span of a vector ~v ∈ Zn+2
p , which simply

means the set of all a ·~v as a ranges over Zp. Beyond the procedures of game Ggg-mbdl
G,n,m , some

of our games define procedures VE and VE−1, the vector-encoding and its inverse. These

procedures are not exported, meaning can be called only by other game procedures, not by the

adversary. Throughout, we assume the adversary A makes no trivial queries. By this we mean

that the checks at lines 7 and 10 of game Ggg-mbdl
G,n,m are not triggered. In our games the consequence

is that we assume TI[A],TI[B] 6=⊥ in any Op(A,B,sgn) query and, for a DLO(i,W ) query, that

i ∈ [n], that TI[W ] 6=⊥ and that the number of queries to this oracle is exactly m = 1. (The table

TI[·] referred to here starts appearing in Game Gm0 of Figure 2.8.)
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Init(): // Gm0–Gm3

1 p← |G| ; E←$ Bijections(Zp,G) ; y←$ Zp

2 For i = 1, . . . ,n do xi←$ Z∗p

3 ~x← (x1, . . . ,xn,1,y) ;~v←~0

4 1←VE(~0) ; g←VE(~en+1) ; Y ←VE(~en+2)

5 For i = 1, . . . ,n do Xi←VE(~ei)

6 Return 1,g,Y,X1, . . . ,Xn

VE(~t): // Gm0. Here~t ∈ Zn+2
p .

7 If (TV[~t] 6=⊥ ) then return TV[~t]

8 v← 〈~t,~x〉 ; C← E(v) ; TV[~t]←C ; TI[C]←~t ; Return TV[~t]

VE−1(C): // Gm0–Gm3. Here TI[C] 6=⊥.
9 Return TI[C]

Op(A,B,sgn): // Gm0–Gm3. Here TI[A],TI[B] 6=⊥ and sgn ∈ {+,−}
10 ~c←VE−1(A) sgnVE−1(B) ; C←VE(~c) ; Return C

DLO(i,W ): // Gm0. Here i ∈ [n] and TI[W ] 6=⊥.
11 ~w←VE−1(W ) ; z← (xi)

−1 · 〈~w,~x〉 ; Return z

Fin(y′): // Gm0–Gm3

12 Return (y = y′)

Figure 2.8: Game Gm0 for the proof of Theorem 2.5.1. Some procedures will also be in later
games, as marked.

We start with game Gm0 of Figure 2.8, claiming that

Advgg-mbdl
G,n,m (A) = Pr[Gm0(A)] . (2.18)

We now explain the game and justify Eq. (2.18). At line 10, operation sgn is performed modulo p,

and at line 11, the inverse and product in computing z are modulo p. The game picks y,x1, . . . ,xn

in the same way as game Ggg-mbdl
G,n,m . At line 1, it also picks encoding function E in the same way

as game Ggg-mbdl
G,n,m , but does not use this function directly to do the encoding, instead calling VE,

which we call the vector-encoding function, on the indicated vector arguments. This procedure

maintains tables TV : Zn+2
p → G∪{⊥} and TI : G→ Zn+2

p ∪{⊥} (the “I” stands for “inverse”)

that from the code can be seen to satisfy the following, where vector~x is defined at line 3:
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VE(~t): // Gm1 , Gm2. Here~t ∈ Zn+2
p .

13 If (TV[~t] 6=⊥ ) then return TV[~t]

14 If (∃~t ′ : (TV[~t ′] 6=⊥ and~t−~t ′ ∈ span(~v) ) ) then

15 C← TV[~t ′] ; TV[~t]←C ; TI[C]←~t ; Return TV[~t]

16 C←$ G\GL

17 If (∃~t ′ : (TV[~t ′] 6=⊥ and 〈~t,~x〉= 〈~t ′,~x〉 ) ) then

18 bad← true ; C← TV[~t ′]

19 TV[~t]←C ; TI[C]←~t ; GL← GL∪{C} ; Return TV[~t]

DLO(i,W ): // Gm1, Gm2. Here i ∈ [n] and TI[W ] 6=⊥.
20 ~w←VE−1(W ) ; z← (xi)

−1 · 〈~w,~x〉 ;~v← ~w− z ·~ei

21 Return z

Figure 2.9: Procedures for games Gm1,Gm2,Gm3 in the proof of Theorem 2.5.1, where Gm1
includes the boxed code.

(1) If TV[~t] 6=⊥ then TV[~t] = E(〈~t,~x〉)

(2) If TI[C] 6=⊥ then 〈TI[C],~x〉= E−1(C)

This ensures Eq. (2.18) as follows. From line 4 and the above we have g = TV[~en+1] =

E(〈~en+1,~x〉) = E(1), and, similarly, we have Y = E(y) and Xi = E(xi) for i ∈ [1..n], meaning

these quantities are as in game Ggg-mbdl
G,n,m . Turning to Op, by linearity of the inner product and

item (2) above, we have

〈~c,~x〉= 〈TI[A] sgnTI[B],~x〉= 〈TI[A],~x〉 sgn 〈TI[B],~x〉

= E−1(A) sgnE−1(B) ,

so by item (1) we have VE(~c) = E(E−1(A) sgnE−1(B)), as in game Ggg-mbdl
G,n,m . Finally, for DLO,

item (2) says that 〈~w,~x〉= E−1(W ), again as in game Ggg-mbdl
G,n,m .

Games Gm1,Gm2 are formed by taking the indicated procedures of Figure 2.8 and adding

those of Figure 2.9, with the former game including the boxed code, and the latter not. Procedure

VE no longer invokes E, instead sampling it lazily. The vector ~v defined at line 20 satisfies

〈~v,~x〉= 〈~w− z ·~ei,~x〉= 〈~w,~x〉− z · 〈~ei,~x〉= 〈~w,~x〉− x−1
i · 〈~w,~x〉 · xi = 0. As a result, at any time,
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any vector~u ∈ span(~v) satisfies 〈~u,~x〉= 0. Now we claim that

Pr[Gm1(A)] = Pr[Gm0(A)] . (2.19)

Let us justify this. If the “If” statement at line 14 is true, we have, by the above, 〈~t−~t ′,~x〉= 0,

or 〈~t,~x〉 = 〈~t ′,~x〉, and so, as per line 8 of Figure 2.8, ought indeed to set TV[~t] = TV[~t ′]. The

inclusion of the boxed code at line 18 further ensures consistency with line 8 of Figure 2.8. So

VE is returning the same things in games Gm1,Gm0. While DLO defines some new quantities,

what it returns does not change compared to game Gm0. This concludes the justification of

Eq. (2.19).

Games Gm1,Gm2 are identical-until-bad as defined in [19]. Let B2 be the event that

Gm2(A) sets bad. Then by the Fundamental Lemma of Game Playing [19],

Pr[Gm1(A)]≤ Pr[Gm2(A) and B2]+Pr[B2] , (2.20)

where B2 denotes the complement of event B2. We claim that

Pr[Gm2(A) and B2]+Pr[B2]≤ Pr[Gm3(A)] , (2.21)

where game Gm3 is in Figure 2.10. It includes the boxed code, which game Gm4 excludes. In

these games, VE returns the same thing as in game Gm2, but also indexes (keeps track of) vectors

~t that might set bad in Gm2, so that it can refer to them in Fin. The achievement is that this

procedure no longer refers to ~x. Now we would like the same to be true for DLO. A natural

approach would be to have DLO return a random z←$ Zp. However, the true distribution of

z is more complex, and instead we will use Lemma 2.5.2. Line 11 sets w ∈ Zp to be the i-th

coordinate of vector ~w. Line 12 checks if ~w is 0 at all but its i-th coordinate, if so correctly

returning w as the answer to the oracle query. At lines 13,14, the choices of z and xi are made in
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Init(): // Gm3–Gm5, Gmα,β.
1 p← |G| ; 1←VE(~0) ; g←VE(~en+1) ; Y ←VE(~en+2)

2 For i = 1, . . . ,n do Xi←VE(~ei)

3 Return 1,g,Y,X1, . . . ,Xn

VE(~t): // Gm3–Gm5, Gmα,β. Here~t ∈ Zn+2
p .

4 If (TV[~t] 6=⊥ ) then return TV[~t]

5 C←$ G\GL

6 If (∃~t ′ : (TV[~t ′] 6=⊥ and~t−~t ′ ∈ span(~v) ) ) then C← TV[~t ′]

7 Else k← k+1 ;~tk←~t ; GL← GL∪{C}
8 TV[~t]←C ; TI[C]←~t ; Return TV[~t]

VE−1(C): // Gm3–Gm5, Gmα,β. Here TI[C] 6=⊥.
9 Return TI[C]

Op(A,B,sgn): // Gm3–Gm5, Gmα,β. Here TI[A],TI[B] 6=⊥ and sgn ∈ {+,−}
10 ~c←VE−1(A) sgnVE−1(B) ; C←VE(~c) ; Return C

DLO(i,W ): // Gm3 , Gm4. Here i ∈ [n] and TI[W ] 6=⊥.
11 ~w←VE−1(W ) ; w← ~w[i]

12 If (~w−w ·~ei =~0) then return w

13 z←$ Zp \{w} ; y←$ Zp ; x1, . . . ,xi−1,xi+1, . . . ,xn←$ Z∗p
14 ~xi← (x1, . . . ,xi−1,0,xi+1, . . . ,xn,1,y) ; xi← (z−w)−1 · 〈~w,~xi〉
15 If ( 〈~w,~xi〉= 0 ) then bad← true ; z← w ; xi←$ Z∗p
16 ~v← ~w− z ·~ei ; Return z

Fin(y′): // Gm3, Gm4.
17 ~x← (x1, . . . ,xn,1,y)

18 Return ( (y = y′) or (∃α,β : 1≤ α < β≤ k and 〈~tα−~tβ,~x〉= 0 ) )

Figure 2.10: Procedures for games Gm3,Gm4 in the proof of Theorem 2.5.1. Some procedures,
as marked, will be used in later games.

accordance with one case of Lemma 2.5.2, with y, and the x j for j 6= i, chosen correctly. Line 15

checks if it is the other case that happened, and, if so, game Gm3 corrects the choices of z,xi

according to the Lemma. The Lemma thus implies that in game Gm3, the returned z is distributed

as it is in game Gm2. Fin of game Gm3 returns true if either y = y′, or game Gm2 would set bad,

justifying Eq. (2.21).

Games Gm3,Gm4 are identical-until-bad, so by the Fundamental Lemma of Game Play-
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DLO(i,W ): // Gm5, Gmα,β. Here i ∈ [n] and TI[W ] 6=⊥.
19 ~w←VE−1(W ) ; w← ~w[i]

20 If (~w−w ·~ei =~0) then return w

21 z←$ Zp \{w} ;~v← ~w− z ·~ei ; Return z

Fin(y′): // Gm5.
22 y←$ Zp ; Return (y = y′)

Fin(y′): // Gmα,β.
23 If (not (1≤ α < β≤ k)) then return false

24 y←$ Zp ; x1, . . . ,xi−1,xi+1, . . . ,xn←$ Z∗p
25 ~xi← (x1, . . . ,xi−1,0,xi+1, . . . ,xn,1,y) ; xi← (z−w)−1 · 〈~w,~xi〉
26 ~x← (x1, . . . ,xn,1,y)

27 Return ( 〈~tα−~tβ,~x〉= 0 )

Figure 2.11: Further procedures to define game Gm5 and games Gmα,β (1≤ α < β≤ q) in the
proof of Theorem 2.5.1.

ing [19],

Pr[Gm3(A)]≤ Pr[Gm4(A)]+Pr[Gm4(A) sets bad] . (2.22)

We claim

Pr[Gm4(A) sets bad]≤ 1
p−1

. (2.23)

That is, the probability that 〈~w,~xi〉= 0 at line 15 is at most 1/(p−1). We now justify this. Line 12

tells us that, at line 15, there is some j ∈ [1..n+2]\{i} such that ~w[ j] 6= 0. Consider two cases.

The first is that there is such a j satisfying j 6= n+1. If j = n+2, there is exactly one choice of

y ∈ Zp making 〈~w,~xi〉= 0, while if j ∈ [1..n]\{i}, there is at most one choice of x j ∈ Z∗p making

〈~w,~xi〉 = 0, so overall the probability that 〈~w,~xi〉 = 0 is at most 1/(p−1). The second case is

that ~w[ j] = 0 for all j 6= n+1. But then the probability that 〈~w,~xi〉= 0 is zero. This completes

the justification of Eq. (2.23).

We now define a game Gm5, and also a game Gmα,β for each 1 ≤ α < β ≤ q, where
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q = QOp
A +n+3. The DLO,Fin procedures of these games are shown in Figure 2.11, and the

other procedures remain as in Figure 2.10. Since the boxed code is absent in DLO of game

Gm4, the only random choice it needs to make is z, yielding the simplified DLO procedure of

Figure 2.11. The other random choices are delayed to Fin. The event resulting in game Gm4

returning true is broken up in the new games so that, by the union bound,

Pr[Gm4(A)]≤ Pr[Gm5(A)]+ ∑
1≤α<β≤q

Pr[Gmα,β(A)] . (2.24)

Clearly

Pr[Gm5(A)]≤ 1
p
. (2.25)

Now, fix any 1 ≤ α < β ≤ q. We assume wlog that k always equals q. In game Gmα,β, let

~d =~tα−~tβ, let a = (z−w)−1 and let~u = a · ~d[i] ·~w+ ~d. Let Z be the event that 〈~d,~x〉= 0, and let

S be the event that ~d ∈ span(~v). Then

Pr[Gmα,β(A)] = Pr[Z] = Pr[Z and S]+Pr[Z and S]

≤ Pr[Z |S ]+Pr[S] . (2.26)

We will show that

Pr[Z |S ]≤ 1
p−1

(2.27)

Pr[S]≤ 1
p−1

. (2.28)
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We now justify Eq. (2.27). We have

〈~d,~x〉= xi · ~d[i]+ 〈~d,~xi〉= a · 〈~w,~xi〉 · ~d[i]+ 〈~d,~xi〉

= 〈a · ~d[i] ·~w+ ~d,~xi〉= 〈~u,~xi〉

Assume ~d 6∈ span(~v), meaning event S happens. Then we claim (we will justify this in a bit) that

there exists a j ∈ [1..n+ 2] \ {i,n+ 1} such that ~u[ j] 6= 0. This means that the random choice

of either x j (if j ∈ [1..n] \ {i}) or y (if j = n+ 2) has probability at most 1/(p− 1) of making

〈~u,~xi〉= 0. To justify the claim, suppose to the contrary that for all j ∈ [1..n+2]\{i,n+1} we

have ~u[ j] = 0. Since 〈~u,~xi〉 = 0, it must be that ~u[n+ 1] = 0 as well. Let b = −a · ~d[i], so that

~d[i] =−b ·a−1 =−b ·(z−w) = b ·(w−z). For j ∈ [1..n+2]\{i} we have a · ~d[i] ·~w[ j]+ ~d[ j] = 0,

or ~d[ j] =−a · ~d[i] ·~w[ j] = b ·~w[ j]. Recalling that~v = ~w− z ·~ei and w = ~w[i], we see that ~d = b ·~v,

which puts ~d in span(~v), contradicting our assumption that ~d 6∈ span(~v). This concludes the

justification of Eq. (2.27).

We turn to Eq. (2.28). Suppose ~d ∈ span(~v), meaning ~d = b ·~v = b ·~w−bz ·~ei for some

b ∈ Z∗p. By line 4 of Figure 2.10,~tα 6=~tβ, so ~d 6=~0 so b 6= 0. So there is at most one z ∈ Zp such

that ~d[i] = bw−bz, and our z chosen at random from Zp \{w} has probability at most 1/(p−1)

of being this one.

Putting the above together we have

Advgg-mbdl
G,n,m (A)≤ 1

p−1
+

1
p
+

q(q−1)
2

2
p−1

=
1+q(q−1)

p−1
+

1
p
.

This concludes the proof.
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Prover
Input: (g2,X),(g2,x1,x2)

r1,r2←$ Zp
R← gr1gr2

2

z1← (x1c+ r1) mod p
z2← (x2c+ r2) mod p

R -
c�

(z1,z2)-

Verifier
Input: (g2,X)

c←$ Zp

b← (gz1gz2
2 = RXc)

ID.Kg:

1 g2←$ G∗

2 x1,x2←$ Z|G| ; X ← gx1gx2
2

3 Return ((g2,X),(g2,x1,x2))

ID.Cmt((g2,X)):

4 r1,r2←$ Z|G| ; R← gr1gr2
2

5 Return (R,(r1,r2))

ID.Rsp((g2,x1,x2),c,(r1,r2)):

6 z1← (x1c+ r1) mod |G|
7 z2← (x2c+ r2) mod |G|
8 Return (z1,z2)

ID.Vf(X ,R,c,(z1,z2)):

9 b← (gz1gz2
2 = XcR) ; Return b

DS.Kg:

1 g2←$ G∗

2 x1,x2←$ Z|G| ; X ← gx1gx2
2

3 Return ((g2,X),(g2,x1,x2))

DS.SignH((g2,x1,x2),m):

4 r1,r2←$ Z|G| ; R← gr1gr2
2

5 c←H(R,m)

6 z1← (x1c+ r1) mod |G|
7 z2← (x2c+ r2) mod |G|
8 Return (R,(z1,z2))

DS.VfH((g2,X),m,σ):

9 (R,(z1,z2))← σ

10 c←H(R,m)

11 Return (gz1gz2
2 = XcR)

Figure 2.12: Let G be a group of prime order p = |G| and let g ∈ G∗ be a generator of G. The
Okamoto ID scheme ID=OkaID[G,g] is shown pictorially at the top and algorithmically at the
bottom left. At the bottom right is the Okamoto signature scheme DS = OkaSig[G,g], using
H : G×{0,1}∗→ Zp.

2.6 Okamoto Identification and Signatures from MBDL

In this section, we give a tight reduction of the IMP-PA security of the Okamoto identifi-

cation scheme to the 1-MBDL problem and derive a corresponding improvement for Okamoto

signatures.

OKAMOTO IDENTIFICATION SCHEME AND PRIOR RESULTS. Let G be a group of prime

order p = |G|, and g ∈ G∗ a generator of G. We recall the Okamoto identification scheme [74]

ID = OkaID[G,g] in Fig. 2.12. The public key has the form pk = (g2,X) ∈ G2 where g2 is
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a generator and X = gx1gx2
2 , where the secret key is sk = (g2,x1,x2) ∈ Z3

p. The commitment

is R = gr1gr2
2 ∈ G, and (r1,r2) is returned as the prover state by the commitment algorithm.

Challenges are drawn from ID.Chl = Zp, and the response z and decision b are computed as

shown.

Given an IMP-PA adversary A against ID=OkaID[G,g], the classical proof of [74] builds

a DL-adversary B , as follows. On input a target point Y whose discrete-log it wants to compute,

B sets g2 = Y . It then itself picks x1,x2 and sets X = gx1gx2
2 , so that (x1,x2) is what’s called a

representation of X . Now B runs A on public key (g2,X). Knowing the secret key (g2,x1,x2), it

is easy for B to simulate the Tr oracle. When A makes its impersonation attempt, rewinding is

used, as usual, to obtain two accepting conversation transcripts with the same commitment R∗.

From these, B can compute another representation of X , namely some a1,a2 such that X = ga1ga2
2 .

The witness indistinguishability property of the protocol says that (a1,a2) 6= (x1,x2), except with

probability 1/p. Finally, from the two distinct representations of X , adversary B can compute

DLG,g(g2). Again the simplest analysis is via the Reset Lemma of [15], which says that

Advimp-pa
ID (A)≤

√
Advdl

G,g(B)+
2
p
, (2.29)

the extra 1/p term compared to Equation (2.7) being due to the probability that the two represen-

tations are equal. The running time TB of B is roughly 2TA plus simulation overhead O(QTr
A ·T e

G),

where T e
G is the time for an exponentiation in G.

OUR RESULT. We show that the IMP-PA-security of the Okamoto identification scheme

reduces tightly to the 1-MBDL problem. As with Schnorr, the reduction does not use rewinding.

Theorem 2.6.1 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let

ID = OkaID[G,g] be the Okamoto identification scheme. Let A be an adversary attacking the

imp-pa security of ID. Then we can construct an adversary B (shown explicitly in Figure 2.13)
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Adversary BDLO:

1 (Y,X)←$ Init() ; w←$ Z∗p ; g2← gw

2 (z1,z2)←$ ACh,Tr((g2,X))

3 Return z1 +wz2

Ch(R∗):

4 W ← R∗−1 ·Y ; c∗←DLO(1,W ) ; Return c∗

Tr:

5 z1,z2←$ Zp ; c←$ Zp ; R← gz1gz2
2 ·X−c ; Return (R,c,(z1,z2))

Figure 2.13: MBDL adverary B for Theorem 2.6.1, based on IMP-PA adversary A .

such that

Advimp-pa
ID (A)≤ Advmbdl

G,g,1(B)+
1
p
. (2.30)

Additionally, TB is roughly TA plus simulation overhead O(QTr
A ·T e

G).

Proof of Theorem 2.6.1: Our reduction from MBDL deviates from the prior one discussed

above. It does not set g2 to the target point Y , instead picking w and setting g2 = gw. It sets X

to a base under which it can take a discrete logarithm. When adversary A provides R∗ in its

impersonation attempt, adversary B picks c∗ so that Y = R∗Xc∗ . Then, from A , it gets (z1,z2)

satisfying gz1gz2
2 = R∗Xc∗ = Y . Using w, adversary B then finds DLG,g(Y ). It simulates the Tr

oracle using the zero-knowledge simulator. Thus, while in the prior approach the reduction knows

the secret key but not DLG,g(g2), in ours the reduction does not know the secret key but knows

DLG,g(g2).

For the formal proof, we claim that the adversary B , shown in Fig. 2.13, satisfies Equa-

tion (2.30). Since the analysis is similar to that in the proof of Theorem 2.4.1, we will be brief.

The X provided by B to A is a generator. In the scheme, X = gx1+wx2 fails to be generator iff

x1 +wx2 = 0, which happens with probability 1/p, accounting for this additive term in the bound.

Adversary B simulates the transcript oracle correctly by the usual zero-knowledge method. If

A succeeds, we have gz1gz2
2 = R∗Xc∗ . But gz1gz2

2 = gz1+wz2 and R∗Xc∗ = Y , so z1 +wz2 can be
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returned as the discrete log of Y .

OKAMOTO SIGNATURES. The Okamoto signature scheme DS= OkaSig[G,g] is derived

by applying the Fiat-Shamir transform [45] to the Okamoto identification scheme. Its algorithms

are shown at the bottom right of Fig. 2.12. The set DS.HF consists of all functions h : G×

{0,1}∗→ Zp.

Combining Lemma 2.4.2 with Theorem 2.6.1, we get the following reduction, of the UF

security of the Okamoto signature scheme to the 1-MBDL problem, that loses only a factor of the

number of hash-oracle queries of the adversary.

Theorem 2.6.2 Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let

DS = OkaSig[G,g] be the Okamoto signature scheme. Let A be an adversary attacking the uf

security of ID. Let β = (1+QH
A +QSign

A )QSign
A +(1+QH

A ). Then we can construct an adversary

B such that

Advuf
DS(A)≤ (1+QH

A ) ·Advmbdl
G,g,1(B)+

β

p
. (2.31)

Additionally, TB is roughly TA plus simulation overhead O(QSign
A ·T e

G).

As before, the best prior result, obtained via the general Forking Lemma of [14], said that given

an adversary A attacking the UF security of DS, one can construct a discrete log adversary B

such that

Advuf
DS(A)≤

√
(1+QH

A ) ·Advdl
G,g(B)+

β

p
, (2.32)

where β and TB are as above. Roughly the bound in Eq. (2.31) is the square of the one in

Eq. (2.32), and thus (always) smaller.

2.7 Ratio-based tightness

KMP [58] claims a tight reduction between passive impersonation security of Schnorr

identification and discrete log. Their results are claimed to be tight when evaluated under
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time-to-sucesss ratio. We show here why their result does not give bounds that are as good as

ours.

Let ID be the Schnoor identification scheme defined in Section 2.4. Let A be an adversary

against the IMP-PA security of ID with running time TA . For any given parameter N ≥ 1,

KMP [58][Lemma 3.5] construct a DL adversary DN such that

√
Advdl

G,g(DN)≥ 1−
[

1−
(

Advimp-pa
ID (A)− 1

p

)]N

, (2.33)

and TDN = 2N ·TA . Notice that when N = 1, this is identical to Eq. (2.7), meaning there is no

improvement in that case. Next, KMP [58] pick a specific value of N that we call N∗. This value

is N∗ = (Advimp-pa
ID (A)−1/p)−1. So the term on the right hand side of Eq. (2.33) becomes

1−
[

1−
(

Advimp-pa
ID (A)− 1

p

)]N∗

≈ 1− 1
e
≈ 0.63 , (2.34)

a constant close to 1. Let B∗ = DN∗ be the DL adversary for this parameter choice. Then,

neglecting 1/p as being essentially 0, one has

Advdl
G,g(B

∗)≥
(

1− 1
e

)2

≈ 0.4 (2.35)

TB∗ = 2N∗ ·TA ≈
TA

Advimp-pa
ID (A)

. (2.36)

Dividing, they obtain the ratio tightness

Advimp-pa
ID (A)

TA
≤

Advdl
G,g(B∗)
TB∗

. (2.37)

“Tightness” is claimed because the time-to-success ratio is preserved. However, we will show that

one cannot use the above to instantiate parameters that as competitive as the ones guaranteed by

our bounds. This is because the running time TB∗ from Eq. (2.36) is in general much larger than
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TA and the ratio tightness only holds when the running time of the DL adversary is increased in

this way to make its advantage a constant as per Eq. (2.35).

As before, let us the GGM bound for breaking DL, i.e. Advdl
G,g(B∗)≤ T2

B∗/p. Then, from

Eq. (2.35) one has TB∗ ≈
√

0.4 · p, so

Advimp-pa
ID (A)

TA
≤ 0.4√

0.4 · p , (2.38)

which means that one would need a group of size

p≈
(

TA

Advimp-pa
ID (A)

)2

. (2.39)

This is exactly the same requirement as dictated by the prior results, namely Equation (2.7) and

Equation (2.11). Hence, the guarantee by the results of KMP is the same as offered by prior

results in Fig. 2.1.
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Chapter 3

Chain Reductions for Multi-signatures and

the HBMS Scheme

3.1 Introduction

Usage in cryptocurrencies has lead to interest in practical, Discrete-Log-based multi-

signature schemes. Proposals exist, are efficient, and are supported by proofs, BUT, the bound on

adversary advantage in the proofs is so loose that the proofs fail to support use of the schemes

in the 256-bit groups in which they are implemented in practice. This leaves the security of

in-practice schemes unclear.

We ask, is it possible to bridge this gap to give some valuable support, in the form of

tight reductions, for in-practice schemes? As long as we stay in the current paradigm, namely

standard-model proofs from DL, the answer is likely NO. To make progress, we need to be

willing to change either the model or the assumption. We show that in fact changing either

suffices. Our approach is to give, for any scheme, many different paths to security. In particular

we give (1) tight reductions from DL in the Algebraic Group Model (AGM) [47], and (2) tight,

standard-model reductions from well-founded assumptions other than DL. We obtain these results
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via a framework in which a reduction is “factored” into a chain of sub-reductions involving

intermediate problems.

We implement this approach first with classical 3-round schemes, giving chain reductions

yielding (1) and (2) above for the BN [14] and MuSig [64] schemes. Then, in the space of 2-round

schemes, we give a new, efficient scheme, called HBMS, for which we do the same. We now look

at all this in more detail.

BACKGROUND. A multi-signature σ on a message m can be thought of as affirming

that “We, the members of this group, all, jointly, endorse m.” The group is indicated by the

vector vk = (vk[1], . . . ,vk[n]) of individual public verification keys of its members, and can be

dynamic, changing from one signature to another. Signing is done via an interactive protocol

between group members; each member i begins with its own public verification key vk[i], its

matching private signing key ssskkk[i], and the message m, and, at the end of the interaction, they

output the multi-signature σ. The latter should be compact (of size independent of the size of the

group), precluding the trivial solution in which σ is a list of the individual signatures of the group

members on m.

Following its suggestion in the 1980s [56], the primitive has seen much evolution [52, 60,

72, 66, 14]. Early schemes assumed all signers in the signing protocol picked their verification

keys honestly. “Rogue-key attacks,” in which a malicious signer picked its verification key as

function of that of an honest signer, lead to an upgraded target, schemes that retain security

even in the presence of adversarially-chosen verification keys. Towards this challenging end

we first saw schemes either using interactive key-generation [66] or making the “knowledge of

secret key” assumption [21, 61]. Finally, BN [14] gave an efficient, Schnorr-based scheme in the

“plain public-key” model, where security was provided even in the face of maliciously-chosen

verification keys, yet no more was assumed about these keys than their having certificates as per a

standard PKI.

The BN model and definition have become the preferred target; it is the one used in the
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schemes we discuss next, and in our scheme as well. We denote the security goal as MS-UF.

In Section 3.4 we define it via a game, and define the ms-uf advantage of an adversary as its

probability of winning this game.

A NEW WAVE. Applications in blockchains and cryptocurrencies —see [25] for details—

have fueled a resurgence of interest in multi-signatures. The desire here is MS-UF-secure,

DL-based schemes that work over standard elliptic curves such as Secp256k1 or Curve25519.

(Pairing-based schemes [25] are thus precluded.) The natural candidate is BN. But the new

application arena has lead to a desire for the following further features, not possessed by BN: (1)

Key aggregation. There should be a way to aggregate a set of verification keys into a single, short

aggregate key, relative to which signatures are verified. (2) Two rounds. A signing protocol using

only 2 rounds of interaction, as opposed to the 3 used by BN.

MuSig [64, 25] broke ground by adapting BN to add key aggregation. Now the effort

moved to reducing the number of rounds. This proved challenging. Early proposals of two-

round schemes —[8, 62, 85] as well as an early, two-round version of MuSig [64]— were

broken by DEFKLNS [40]. To fill the gap, DEFKLNS gave a new two-round scheme, mBCJ.

Other proposals followed: MuSig2 [69], MuSig-DN [70] and DWMS [4]. All these support key

aggregation.

All the schemes discussed here come with proofs of MS-UF security based on the

hardness of the DL (Discrete Log) problem in the underlying group G, up to variations in the

model (standard or AGM [47]) or the type of DL problem (plain or OMDL [13]).

CURRENT BOUNDS. On being informed that a scheme has a proof of security based on

the hardness of the DL problem in an underlying elliptic-curve group G, the expectation of a

practitioner is that the probability that a time t attacker can violate MS-UF security is no more

than the probability of successfully computing a discrete logarithm in G, which, as per [81],

is t2/p, where p, a prime, is the size of G. Concretely, with the 256-bit curves Secp256k1 or

Curve25519 —p≈ 2256— they would expect that a time t ≈ 280 attacker has ms-uf advantage at
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Table 3.1: Bounds on ms-uf advantage for the 3-round schemes BN and MuSig. First we
show prior bounds, then ours. In each case we first show the upper bound UBms-uf

MS (t,q,qs, p)
as a formula, where t,q,qs are, respectively the adversary running time, the number of its RO
queries and the number of executions of the signing protocol, while prime p is the size of the
underlying group G. We then show the evaluation with t = q = 280, qs = 230 and p≈ 2256, to
capture security over 256-bit curves Secp256k1 or Curve25519. Our bounds assume generic
hardness of IDL (for BN) and XIDL (for MuSig), which both hold in AGM. Our bounds are
also tight and optimal, matching those for the DL problem itself.

Scheme MS

Previous Ours

UBms-uf
MS (t,q,qs, p) p≈ 2256 UBms-uf

MS (t,q,qs, p) p≈ 2256

BN [14]
√

(q · t2)/p 2−8 t2/p 2−96

MuSig [25, 64] 4
√

(q3 · t2)/p 1 t2/p 2−96

most 2160−256 = 2−96.

But this expectation is only correct if the reduction in the proof is tight. Current proofs for

DL-based multi-signature schemes are loose. With the 256-bit curves Secp256k1 or Curve25519,

and for a 280-time attacker, the proof of [14] for BN can preclude only a 2−8 ms-uf advantage,

while the proof of [64, 25] for MuSig cannot even preclude a ms-uf advantage of 1, meaning there

may be, per the proof, no security at all (cf. Figure 3.1). For 2-round schemes, the advantage

precluded by current proofs is 2−16 in one case, and again just 1 for the others (cf. Figure 3.1).

Overall, the proofs fail, by big margins, to support the parameter choices and expectations of

practice.

Before continuing, let us expand on the above estimates. A proof of MS-UF security for

a multi-signature scheme MS gives a formula UBms-uf
MS (t,q,qs, p) that upper bounds the ms-uf

advantage of an adversary as a function of its running time t, the number q of its queries to the

random oracle, and the number qs of executions of the signing protocol in the chosen-message

attack in the ms-uf game. They are shown in Figures 3.1 and 3.1. We assume that t ≥ q≥ qs. To

get these formulas, we first assume that the best attack against the DL problem is generic, so that

a time t attacker has success probability at most t2/p [81]. Next, we use the concrete-security
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Figure 3.1: Bounds on ms-uf advantage for 2-round schemes. First we show bounds for
prior schemes, then the bounds for our new scheme HBMS. As before, we first show the upper
bound formula UBms-uf

MS (t,q,qs, p), where t,q,qs are, respectively the adversary running time,
the number of its RO queries and the number of executions of the signing protocol, while prime
p is the size of the underlying group G. We then show the evaluation with t = q = 280, qs = 230

and p≈ 2256, to capture security over 256-bit curves Secp256k1 or Curve25519. For MuSig2,
results differ depending on a parameter ν of the scheme. We also show estimates of signing time
(per signer) and verification time. Here T me

n is the time to compute one n-multi-exponentiation
in G. The “NIZK” for MuSig-DN indicates that signing requires computation and verification
of a NIZKs, which is (much) more expensive then other operations shown.

Scheme
Security Efficiency

UBms-uf
MS (t,q,qs, p) p≈ 2256 Sign Vf

mBCJ [40] (q3
s ·q2 · t2)/p 1 T me

2 +T me
3 3T me

2
MuSig-DN [70] 4

√
(q3 · t2)/p 1 NIZK T me

2
MuSig2, ν≥ 4 [69] 4

√
(q3 · t2)/p 1 T me

ν T me
2

MuSig2, ν = 2 [69] (t2 +q3)/p 2−16 T me
2 T me

2
DWMS [4] t2/p+q/

√
p 2−48 T me

2 +T me
2N T me

2

HBMS t2/p 2−96 T me
2 T me

3

results, in theorems in the papers, that give reductions from the DL problem to the MS-UF security

of their scheme. The square-roots in the formulas arise from uses of forking lemmas [76, 14, 8];

the fourth-roots from nested use. The bounds in our Figures are approximate, dropping negligible

additive terms. The proofs on which the bounds of Figures 3.1 and 3.1 are based, are, for BN [14],

MuSig [25, 64], mBCJ [40], MuSig-DN [70] and MuSig2 (ν ≥ 4) [69], in the standard model;

and for MuSig2 (ν = 2) [69], DWMS [4] and HBMS, in the AGM. See Section 3.8 for details.

TOWARDS BETTER BOUNDS. Our thesis is that proofs should provide, not merely a

qualitative guarantee, but one whose bounds quantitatively support parameter choices made in

practice and the indications of cryptanalysis. Accordingly we want multi-signature schemes for

which we can prove tight bounds on ms-uf advantage. How are we to reach this end? Impossibility

results for Schnorr signatures [75, 58], on which the multi-signature schemes under consideration

are based, indicate that a search for tight reductions that are both (1) in the standard model, and
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(2) from DL, is unlikely to succeed. We need to be flexible, and relax either (1) or (2). In fact

we show that relaxing either suffices: We give (1) tight reductions from DL in the Algebraic

Group Model (AGM) [47], and (2) tight, standard-model reductions from assumptions other than

DL. Together, these provide valuable theoretical support for the use of practical multi-signature

schemes in 256-bit groups.

AGM. The AGM considers a limited, but still large class of adversaries, called algebraic.

When such an adversary queries a group element to an oracle, it provides also its representation

in terms of prior group elements that the adversary has seen. Intuitively, the assumption is that

the adversary “knows” how group elements it creates are represented. For elliptic curve groups,

this appears to be a realistic assumption, and here the AGM captures natural and currently-known

attack strategies.

When considering the merits of the AGM, an important one to keep in mind is that a proof

in the AGM immediately implies a proof in the well-accepted Generic Group Model (GGM)

of [81]. (So the AGM is only “better” than the GGM.) In more detail, a tight AGM reduction from

DL to some problem X immediately yields a GGM bound on adversary advantage, for X, that

matches the GGM bound for DL [47]. Thus, overall, tight AGM reductions provide a valuable

guarantee. This is recognized by Fuchsbauer, Plouviez and Seurin [48] who use the AGM to give

a tight reduction from DL to the UF security of the Schnorr signature scheme. Their result gives

hope, realized here, that such reductions are possible for multi-signatures as well.

CHAIN REDUCTIONS. We achieve the above ends, and more, as follows. For each multi-

signature scheme MS we consider, we give a chain of reductions, starting from DL, that we depict

as

DL = P0→ P1→ ·· · → Pm−1→ Pm =MS ,

where P1, . . . ,Pm−1 are intermediate computational problems. We refer to m≥ 1 as the length of

the chain. For each step Pi−1→ Pi we provide one of the following.
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1. A tight, standard-model reduction. This is the ideal and done for as many steps as possible.

2. When 1. is not possible, we give BOTH of the following:

2.1 A tight AGM reduction, AND ALSO

2.2 A non-tight standard-model reduction.

Since a tight standard-model reduction implies a tight AGM one, this yields a tight AGM reduction

from DL to MS, the first of our goals stated above. (A bit better, since some sub-reductions are

standard-model.) For i such that the chain Pi→ ··· →MS consists only of tight standard-model

reductions, we have a tight, standard model proof of MS from assumption Pi, realizing our second

goal, stated above, of tight standard-model reductions from assumptions other than DL. (Of

course how interesting or valuable this is depends on the choice of Pi, but as discussed below, we

are able to make well-founded choices.)

Finally, something not yet mentioned, that follows from 1 and 2.2 of the chain reductions,

is that we always have a standard model (even if non-tight) reduction DL→MS. This means

that, while adding tight AGM reductions that are valuable in practice, we are not lowering the

theoretical or qualitative guarantees, these remaining as one would expect or desire.

Chain reductions can be seen as a way to implement a modular proof framework in the

style of [58], in which steps are reused across proofs for different schemes.

NEW BOUNDS FOR CLASSICAL SCHEMES. We start by revisiting the classical 3-round

schemes, namely BN and MuSig. Figure 3.2 illustrates our chains, that we now discuss.

IDL, formulated in [58] —they call it IDLOG, which we have abbreviated— is a purely

group-based problem that is equivalent to the security against parallel impersonation under key-

only attack (PIMP-KOA) of the Schnorr ID scheme. A tight GGM bound for IDL was shown by

[58], but an AGM reduction DL→ IDL does not seem to be in the literature; we fill this gap by

providing it in Theorem 3.3.1. A (non-tight) standard model DL→ IDL reduction is in [58], but

we slightly improve it in Theorem 3.3.2.

Now our chain for BN is DL→ IDL→ BN. This chain has length 2. Our main result for
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DL

IDL BN

XIDL MuSig

HBMS

1
2

3

4

5

Reduction SM AGM

1 DL→ IDL Th. 3.3.2 Th. 3.3.1
2 IDL→ BN Th. 3.5.1 –

3 IDL→ XIDL Th. 3.3.4 Th. 3.3.3
4 XIDL→MuSig Th. 3.6.1 –

5 XIDL→ HBMS Th. 3.7.2 Th. 3.7.1

Figure 3.2: Chain reductions for multi-signatures. SM stands for “Standard Model” and
AGM for “Algebraic Group Model.” An arrow P→ Q means a reduction from P to Q; i.e. a
proof that P implies Q. A boldface Theorem Number indicates the reduction is tight. A blank
appears in the AGM column when a (tight) SM reduction to its left makes the AGM reduction
unnecessary. Writing a MS scheme like BN,MuSig,HBMS as a point in a chain refers to MS-UF
security of the scheme in question.

BN is Theorem 3.5.1, which shows IDL→ BN with a tight, standard model reduction. Putting

this together with our above-mentioned tight DL→ IDL AGM-reduction of Theorem 3.3.1, we

get a tight DL→ BN AGM-reduction. Also our tight, standard-model IDL→ BN reduction says

that BN is as secure as the Schnorr identification scheme, which is valuable in its own right since

the latter has withstood cryptanalysis for many years.

We introduce an intermediate, purely group-based problem we call XIDL. We show

IDL→ XIDL with a tight AGM reduction (Theorem 3.3.3) and a (non-tight) standard-model

reduction (Theorem 3.3.4).

Our chain for MuSig is DL→ IDL→ XIDL→ MuSig. This chain has length 3. Our

main result for MuSig is Theorem 3.6.1, which shows XIDL→MuSig with a tight, standard

model reduction. Putting this together with the rest of the chain, we get a tight DL→MuSig

AGM-reduction. If we are willing to view XIDL as an assumption extending IDL, we can also

view MuSig as based tightly on that.
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This means we show that UBms-uf
MS (t,q,qs, p)≤ t2/p for both schemes, matching the DL

bound. This is tight and optimal, since the multi-signature schemes can be broken by taking

discrete-logs. Figure 3.1 compares our results with the prior ones.

NEW 2-ROUND SCHEME. Turning to 2-round schemes, we give a new scheme, called

HBMS. HBMS supports key aggregation, in line with other 2-round schemes. Our chain for

our new 2-round HBMS scheme is DL→ IDL→ XIDL→ HBMS. This chain has length 3. We

show XIDL→ HBMS with a tight AGM reduction (Theorem 3.7.1) and a (non-tight) standard-

model reduction (Theorem 3.7.2). Putting this together with the rest of the chain, we get a tight

DL→ HBMS AGM-reduction, in particular showing UBms-uf
MS (t,q,qs, p) ≤ t2/p, matching the

DL bound. We also get a (non-tight) DL→ HBMS standard-model-reduction.

Figure 3.1 compares HBMS with prior 2-round schemes. It shows that our improvement

in security is not at the cost of efficiency. (Signing in HBMS is as efficient, or more so, than

in prior schemes. For verification, MuSig-DN [70] is slightly faster, but signing in the latter is

prohibitive due to the use of NIZKs.)

As the above shows, we reuse steps across different chains. Thus XIDL is an intermediate

point for both MuSig and HBMS, and IDL for both BN and XIDL. This simplifies proofs and

reduces effort. It also shows common elements and relations across schemes.

EQUIVALENCES. As discussed above, Theorem 3.5.1 shows IDL→ BN with a tight,

standard model reduction. We also give, in Theorem 3.5.2, a converse, namely a tight, standard-

model reduction showing BN→ IDL. This shows that IDL and BN are, security-wise, equivalent.

Similarly, as discussed above, Theorem 3.6.1 shows MuSig→XIDL with a tight, standard model

reduction, and we also give, in Theorem 3.6.2, a converse, namely a tight, standard-model

reduction showing XIDL→MuSig. This shows that XIDL and MuSig are equivalent. Overall,

this shows that IDL and XIDL are not arbitrary choices, but characterizations of the schemes

whose consideration is necessary.

DEFINITIONAL CONTRIBUTIONS. DEFKLNS [40] found subtle gaps in some prior
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proofs of security for some two-round multi-signature schemes [8, 62, 85]. This indicates

a need for greater care in the domain of multi-signatures. We suggest that this needs to begin with

definitions. The ones in prior work, stemming mostly from [14], suffer from some lack of detail

and precision. In particular, the very syntax of a multi-signature scheme is not specified in detail.

This results in scheme descriptions that lack in precision, and proofs that stay at a high level in

part due to lack of technical language in which to give details. This in turn can lead to bugs.

To address these issues, we revisit the definitions. We start by giving a detailed syntax

that formalizes the signing protocol as a stateful algorithm, run separately by each player. Details

addressed include that a player knows its position in the signer list, that player identities are

separate from public keys, and integration of the ROM through a parameter describing the type of

ideal hash functions needed. Then we give a security definition written via a code-based game.

See Section 3.4.

RELATED WORK. The interest for blockchains and cryptocurrencies, and thus our focus,

is DL-based schemes over elliptic curves. There are many other multi-signature schemes, based on

other hard problems. Aggregate signatures [27, 12] yield multi-signatures, but these use pairings

(bilinear maps). A pairing-based multi-signature scheme is also given in [25]. Lattice-based

multi-signature schemes include [42, 36].

As noted above, IDL [58] captures the security against parallel impersonation under

key-only attack (PIMP-KOA) of the Schnorr ID scheme and thus, given the ZK property of

the scheme, also its security against parallel impersonation under passive attack (PIMP-PA).

“Parallel” means multiple impersonation attempts are allowed. IMP-PA, traditional security

against impersonation under passive attack, is the case where just one impersonation attempt is

allowed. The Reset Lemma [15] gives a standard model DL→ IMP-PA reduction. This uses

rewinding and is non-tight, with a square-root loss. BD [10] introduce the Multi-Base Discrete

Logarithm (MBDL) problem, give a tight standard-model MBDL→ IMP-PA reduction, and

show that, in the GGM, the security of MBDL is the same as that of DL. An interesting open
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question is whether MBDL can be used as a starting point for tight reductions for multi-signature

schemes. Rotem and Segev [78] give a standard model DL→ IMP-PA reduction that improves

the square-root-loss reduction but is still not tight.

3.2 Preliminaries

NOTATION. If n is a positive integer, then Zn denotes the set {0, . . . ,n− 1} and [n] or

[1..n] denote the set {1, . . . ,n}. If xxx is a vector then |xxx| is its length (the number of its coordinates),

xxx[i] is its i-th coordinate and [xxx] = { xxx[i] : 1≤ i≤ |xxx| } is the set of all its coordinates. A string

is identified with a vector over {0,1}, so that if x is a string then x[i] is its i-th bit and |x| is its

length. By ε we denote the empty vector or string. The size of a set S is denoted |S|.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from

S and assigning it to x. We let y← AO1,...(x1, . . . ;ρ) denote executing algorithm A on inputs x1, . . .

and coins ρ with access to oracles O1, . . ., and letting y be the result. We let ρ←$ rand(A) denote

sampling random coins for algorithm A and assigning it to variable ρ. We let y←$ AO1,...(x1, . . .)

be the result of ρ←$ rand(A) followed by y← AO1,...(x1, . . . ;ρ). We let [AO1,...(x1, . . .)] denote the

set of all possible outputs of A when invoked with inputs x1, . . . and oracles O1, . . .. Algorithms

are randomized unless otherwise indicated. Running time is worst case.

GAMES. We use the code-based game playing framework of [19]. (See Fig. 3.3 for an

example.) Games have procedures, also called oracles. Amongst these are Init and a Fin. In

executing an adversary A with a game Gm, procedure Init is executed first, and what it returns

is the input to A . The latter may now call all game procedures except Init,Fin. When the

adversary terminates, its output is viewed as the input to Fin, and what the latter returns is the

game output. By Gm(A)⇒ y we denote the event that the execution of game Gm with adversary

A results in output y. We write Pr[Gm(A)] as shorthand for Pr[Gm(A)⇒ true], the probability

that the game returns true. In writing game or adversary pseudocode, it is assumed that boolean
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variables are initialized to false, integer variables are initialized to 0 and set-valued variables are

initialized to the empty set /0.

A procedure (oracle) with a certain name O may appear in several games. (For example,

Ch appears in two games in Figure 3.3.) To disambiguate, we may write Gm.O for the one in

game Gm.

When adversary A is executed with game Gm, we consider the running time of A as the

running time of the execution of Gm(A), which includes the time taken by game procedures. By

QO
A we denote the number of queries made by A to oracle O in the execution. These counts are

both worst case.

GROUPS. Throughout, G is a group whose order, assumed prime, we denote by p. We

will use multiplicative notation for the group operation, and we let 1G denote the identity element

of G. We let G∗ = G\{1G} denote the set of non-identity elements, which is the set of generators

of G since the latter has prime order. If g ∈ G∗ is a generator and X ∈ G, then DLG,g(X) ∈ Zp

denotes the discrete logarithm of X in base g.

ALGEBRAIC ALGORITHMS. We recall the definition of algebraic algorithms [47]. As

above, fix a group G of prime order p, and let g be a generator. In all of our security games

involving G and g, we assume that any inputs and outputs of game oracles that are group elements

(meaning, in G) are distinguished. In particular, it will be clear from the game pseudocode

definition which components of inputs and outputs are such group elements. We say that an

adversary, against game Gm, is algebraic, if, whenever it submits a group element Y ∈ G as

an oracle query, it also provides, alongside, a representation of Y in terms of group elements

previously returned by the game oracles (the latter including Init). Specifically, suppose during

an execution of adversary A with game Gm, the adversary submits a group element Y ∈G to game

oracle O. Then, alongside, it must provide a vector (v0,v1, . . . ,vm)∈Zm
p , called a representation of

Y , such that Y = gv0 ·hv1
1 · · ·hvm

m , where h1, . . . ,hm are the group elements that have been returned

to the adversary by game oracles of Gm, so far. When considering an execution of game Gm with
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an adversary A that is not algebraic, we omit the writing of representations in the oracle calls.

HEDGING. Not all attacks are algebraic. The thesis of [47] is that natural ones are, and

thus proving security relative to algebraic adversaries gives meaningful guarantees in practice.

We adopt this here but add hedging. Recall this means that, for the same scheme, we seek both

(1) A tight AGM reduction from DL, and (2) a standard-model (even if non-tight) reduction from

DL. The former is used to guide and support parameter choices. The latter is viewed as at least

qualitatively ruling out non-algebraic attacks.

REDUCTIONS. All our standard-model reductions are black-box and preserve algebraic-

ness of adversaries, meaning, if the starting adversary is algebraic, so is the constructed one. This

means that we can chain standard-model reductions with AGM-reductions to get overall AGM

reductions.

3.3 Hardness of problems in groups

Our chain reductions exploit three computational problems related to groups: standard

discrete log (DL); IDL [58]; and a new problem XIDL that we introduce. Here we give the

definitions. We then show the length-2 chain DL→ IDL→ XIDL. We give reductions that are

tight in the AGM and also give (non-tight) standard-model reductions, a total of four results.

Referring to Figure 3.2, we are establishing the four theorems, shown in the table, that correspond

to arrows 1 and 3. For the rest of the section, we fix a group G of prime order p, and a generator

g ∈ G.

DL. We recall the standard discrete logarithm (DL) problem via game Gmdl
G,g in Figure 3.3.

Init provides the adversary, as input, a random challenge group element X , and to win it must

output x′ = DLG,g(X) to Fin. We let Advdl
G,g(A) = Pr[Gmdl

G,g(A)] be the discrete-log advantage

of adversary A .

IDL. The identification discrete logarithm (IDL) problem, introduced by KMP [58],
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characterizes the hardness of parallel impersonation under key-only attack (PIMP-KOA) security

[58] of the Schnorr identification scheme [79]. Formally, consider the game Gmidl
G,g,q given in

Fig. 3.3, where parameter q is a positive integer. The IDL-adversary receives a random target point

X from Init. It is additionally given access to a challenge oracle Ch that can be called at most q

times. The oracle takes as query a group element R (representing the commitment sent by the

prover in Schnorr identification), stores it as Ri, and responds with a random challenge ci←$ Zp

(representing the one sent by the verifier). The adversary wins if it can produce the discrete log z

(representing the final prover response) of the group element Ri ·Xci , for a choice of i, denoted I,

made by the adversary. We define the IDL-advantage of A to be Advidl
G,g,q(A) = Pr[Gmidl

G,g,q(A)].

KMP [58] study IDL in the Generic Group Model (GGM) [81] and prove a bound

matching that for DL. Here, we strengthen this to give a tight AGM reduction DL→ IDL. This

could be seen as implicit in part of the AGM proof of security for the Schnorr signature scheme

given in [48], although they make no connection to IDL.

Theorem 3.3.1 [DL→ IDL, AGM] Let G be a group of prime order p with generator g. Let q

be a positive integer. Let Aalg
idl be an algebraic adversary against Gmidl

G,g,q. Then, adversary Adl

can be constructed so that

Advidl
G,g,q(A

alg
idl )≤ Advdl

G,g(Adl)+
q
p
.

Furthermore, the running time of Adl is about that of Aalg
idl .

The idea of the proof is as follows. Since Aalg
idl is algebraic, its query R to Ch is accompanied by

(r1,r2) such that R = gr1X r2 . Our adversary Adl, who is running Aalg
idl , records these as Ri,ri,1,ri,2,

and responds with a random ci. Eventually, Aalg
idl outputs I,z. Assuming it succeeds, we have

gz = RI ·XcI = grI,1X rI,2XcI , or gz−rI,1 = Xw where w = (rI,2 + cI) mod p. Now DLG,g(X) can

be obtained as long as w has an inverse modulo p, meaning is non-zero. But cI was chosen at

random after the adversary supplied rI,2, so the probability that w is 0 is at most 1/p. The factor

120



Game Gmdl
G,g

Init:
1 x←$ Z|G| ; X ← gx ; Return X

Fin(x′):
2 Return (x = x′)

Game Gmidl
G,g,q

Init:
1 x← Z|G| ; X ← gx

2 Return X

Ch(R): // At most q queries.
3 i← i+1 ; Ri← R

4 ci←$ Z|G| ; Return ci

Fin(I,z):
5 Return (gz = RI ·XcI )

Game Gmxidl
G,g,q1,q2

Init:
1 x← Z|G| ; X ← gx

2 Return X

NwTar(S): // At most q1 queries.
3 j← j+1 ; S j← S

4 e j←$ Z|G| ; Tj← S j ·Xe j

5 Return e j

Ch( jsel,R): // At most q2 queries.
6 i← i+1 ; Ri← R ; Yi← Tjsel

7 ci←$ Z|G| ; Return ci

Fin(I,z):
8 Return (gz = RI ·YI

cI )

Figure 3.3: Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
q,q1,q2 be positive integers. Top: Game defining discrete logarithm (DL) problem. Bottom
left: Game defining identification logarithm (IDL) problem. Bottom right: Game defining
random-target identification logarithm (XIDL) problem.

of q accounts for the adversary’s having a choice of I made after receiving challenges. The full

proof is given in Section 3.10.

By q-IDL, we refer to IDL with parameter q. 1-IDL corresponds to IMP-KOA security of

the Schnorr identification scheme, and a reduction DL→ 1-IDL is obtained via the Reset Lemma

of [15]. KMP show that 1-IDL→ q-IDL. Overall this gives a standard model (very non-tight)

DL→ q-IDL reduction. However, a somewhat tighter (but still non-tight) result can be obtained

when the forking lemma of [14] (which we recall as Lemma 3.9.1) is applied directly instead.

Concretely, we give the following theorem, improving the prior reduction by a
√

q factor. The

proof is in Section 3.11.
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Theorem 3.3.2 [DL→ IDL, Standard Model] Let G be a group of prime order p = |G|, and let

g ∈ G∗ be a generator of G. Let q be a positive integer. Let Aidl be an adversary against the game

Gmidl
G,g,q. The proof constructs an adversary Adl (explicitly given in Fig. 3.11) such that

Advidl
G,g,q(Aidl)≤

√
q ·Advdl

G,g(Aidl)+
q
p
. (3.1)

Additionally, the running time of Adl is approximately TAdl ≈ 2 ·TAidl .

XIDL. We define a new problem, random target identification discrete logarithm, abbre-

viated XIDL. It abstracts out the algebraic core of MuSig, and we will show that its security is

equivalent to the MS-UF security of MuSig. It will also be an intermediate point in our reduction

chain reaching our new HBMS scheme, thereby serving multiple purposes.

With G, p,g fixed as usual, XIDL is parameterized by positive integers q1,q2. Formally,

consider the game Gmxidl
G,g,q1,q2

given in Fig. 3.3. The adversary receives a randomly chosen group

element X from Init. The game maintains a list T1, . . . ,Tq1 of “targets.” The adversary can create

a target by querying the New Target oracle NwTar with a group element S of its choosing,

whence Tj = S ·Xe j is added to the list of targets, for e j chosen randomly from Zp by the game and

returned to the adversary. The adversary can query the challenge oracle Ch( jsel,R) by supplying

an index jsel and a group element R. The oracle records Tjsel as Yi, and R as Ri, based on the

counter i it maintains. Intuitively, Ch is similar to the challenge oracle Ch in IDL game, besides

that our adversary here needs to specify the target Tjsel it is trying to impersonate against. The

adversary wins the game if it can produce the discrete log z of RI ·Y cI
I , for an index I of its choice.

The oracles NwTar and Ch are allowed to be called at most q1 and q2 times, respectively. We

define the XIDL advantage of A as Advxidl
G,g,q1,q2

(A) = Pr[Gmxidl
G,g,q1,q2

(A)].

We show hardness of XIDL in both the AGM and the standard model, starting with the

former. The theorem actually establishes the stronger DL→ XIDL, tightly in the AGM.
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Theorem 3.3.3 [IDL→ XIDL, AGM] Let G be a group of order p with generator g. Let q1,q2

be positive integers. Let Aalg
xidl be an algebraic adversary against Gmxidl

G,g,q1,q2
. Then, adversary

Adl can be constructed so that

Advxidl
G,g,q1,q2

(Aalg
xidl)≤ Advdl

G,g(Adl)+
q1 +q2

p
.

Furthermore, the running time of Adl is about that of Aalg
xidl.

The full proof is given in Section 3.12. Here we sketch the intuition. Since Aalg
xidl is algebraic,

the j-th query to NwTar is of the form S j,s j,1,s j,2 such that S j = gs j,1X s j,2 , and the i-th query

to Ch is of the form jsel,Ri,ri,1,ri,2 such that Ri = gri,1X ri,2 . Let e j,ci denote, respectively, the

responses to the j-th query to NwTar and the i-th query to Ch. Eventually, Axidl outputs I,z.

Assuming it succeeds, the equation gz = RI ·T cI
J = RI · (SJ ·XeJ)cI must hold, where J was the

selected index jsel in the I-th query to Ch. This means that gz = grI,1X rI,2(gsJ,1X sJ,2XeJ)cI , whence

gz−rI,1−sJ,1·cI = Xw, where w = rI,2 +(sJ,2 + eJ)cI . As long as w is non-zero modulo p, one can

solve for the value of DLG,g(X). But eJ and cI were independently chosen after the adversary

supplied sJ,2 and rI,2, respectively. The probability that there exists j such that (s j,2 + e j) = 0

mod p is at most q1/p over q1 queries to NwTar. Assuming there is no such j, the probability

that w = 0 is at most q2/p, due to the q2 queries to Ch that Aalg
xidl can make.

In the standard model, techniques in the security proof of MuSig [25, 64] could be used

to show DL→ XIDL, which involves two applications of the Forking Lemma, leading to a

fourth-root in the bound. Instead, we give a modular result showing IDL→ XIDL, using a single

application of the forking lemma. The same quantitive standard model bound (with fourth-root

loss) can be obtained by composing Theorem 3.3.2 and Theorem 3.3.4.

Theorem 3.3.4 [IDL→ XIDL, Standard Model] Let G be a group of prime order p with gener-

ator g. Let q1,q2 be positive integers. Let Axidl be an adversary against Gmxidl
G,g,q1,q2

. Then, an

123



adversary Aidl can be constructed so that

Advxidl
G,g,q1,q2

(Axidl)≤
√

q2 ·Advidl
G,g,q1

(Aidl)+
q2

p
.

Furthermore, the running time of Aidl is about twice of that of Axidl.

The full proof is given in Section 3.13. We now sketch the intuition. Adversary Aidl receives

X from game Gmidl
G,g,q1

and runs adversary Axidl, forwarding it X as the target point. It answers

queries to Axidl’s NwTar oracle using its own Gmidl
G,g,q1

.Ch oracle. Specifically, the j-th query

S to NwTar is responded to with e j←$ Gmidl
G,g,q1

.Ch(S), and Aidl additionally records the group

element Tj ← S ·Xe j . It simulates adversary Axidl’s Ch oracle locally, meaning the i-th query

Ch( jsel,R) is responded to with a fresh challenge ci←$ Zp. Eventually, adversary Axidl gives

a response I,z. Our Aidl adversary wins game Gmidl
G,g,q1

if it can produce the discrete log of Tj

for any j of its choice. To do so, Aidl uses rewinding, the analysis of which uses the Forking

Lemma [14] that we recall as Lemma 3.9.1. Rewinding is used to produce another response,

(I′,z′), from a forked execution of Axidl. The Forking Lemma applies to an execution of an

algorithm making queries to one oracle, but adversary Axidl has two oracles NwTar and Ch.

We only “fork” Axidl on its queries to Ch. Specifically, we program oracle NwTar to behave

identically compared to the first run (meaning we use previously recorded values of e1, . . . as long

as they are defined). In the second run, oracle Ch is replied with c1, . . . ,cI−1,c′I, . . ., where c′I, . . .

are randomly chosen from Zp. Let us assume that Aidl has derived two valid responses from Axidl

using the Forking Lemma. Then it is guaranteed that I = I′ and cI 6= c′I . Moreover, we know the

two executions of Axidl only differ after the response of the I-th query to Ch, so the I-th query to

Ch in both runs is some J,RI . This allows our adversary to solve the equations gz = RI ·T cI
J and

gz′ = RI ·T c′I
J (which are guaranteed to be true if both runs succeed) to compute DLG,g(TJ) and

thus win the IDL game.
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3.4 Definitions for multi-signatures

DEFKLNS [40] found subtle gaps in some prior proofs of security for some two-round

multi-signature schemes [8, 62, 85]. Some of the latter schemes had been around for quite a long

time before this happened. This suggests that, in the domain of multi-signatures, we need more

care and careful analyses. We suggest that this needs to begin with definitions. The ones in prior

work, stemming mostly from [14], suffer from some lack of detail and precision. In particular,

the very syntax of a multi-signature scheme is not specified in detail. This results in scheme

descriptions that lack somewhat in precision, and to proofs that stay at a high level in part due to

lack of technical language in which to give details. This in turn can lead to bugs.

To address these issues, we revisit the definitions. We start with a detailed syntax that

formalizes the signing protocol as a stateful algorithm, run separately by each player. (The state

will be maintained by the overlying game.) Details addressed include that a player knows its

position in the signer list, that player identities are separate from public keys, and integration of

the ROM through a parameter describing the type of ideal hash functions needed. Then we give a

security definition written via a code-based game.

SYNTAX. A multi-signature scheme MS specifies algorithms MS.Kg, MS.Vf, MS.Sign,

as well as a set MS.HF of functions, and an integer MS.nr, whose intent and operation is as

follows. Key generation. Via (pk,sk)←$MS.Kg, the key generation algorithm generates public

signature-verification key pk and secret signing key sk for a user. (Each user is expected to run

this independently to get its keys.) Hash functions. MS.HF is a set of functions, from which, via

h←$MS.HF, one is drawn and provided to scheme algorithms (except key generation) and the

adversary as the random oracle. Specifying this as part of the scheme allows the domain and

range of the random oracle to be scheme-dependent. Verification. Via d←MS.VfH(pppkkk,m,σ),

the verification algorithm deterministically outputs a decision d ∈ {true, false} indicating whether

or not σ is a valid signature on message m under a vector pppkkk of verification keys. Signing.
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The signing protocol is specified by signing algorithm MS.Sign. In each round, each party,

applies this algorithm to its current state st and the vector in of received messages from the

other parties, to compute an outgoing message σ (viewed as broadcast to the other parties) and

an updated state st′, written (σ,st′)← MS.SignH(in,st). In the last round, σ is the signature

that this party outputs. (See Figure 3.4.) Rounds. The interaction consists of a fixed number

MS.nr of rounds. (We number the rounds 0, . . . ,MS.nr. The final broadcast of the signature is

not counted as in practice it is a local output.) Key Aggregation. We say that a multi-signature

scheme MS supports key aggregation if MS has additional two algorithms MS.Ag and MS.VfAg

such that: (1) Via apk←$MS.AgH(pk1, . . . ,pkn), MS.Ag generates an aggregate public key, (2)

Via d←MS.VfAgH(apk,m,σ), the aggregate verification algorithm deterministically outputs

a decision d ∈ {true, false}, and (3) the verification algorithm MS.Vf is defined exactly as

MS.VfH(pppkkk,m,σ) :=MS.VfAgH(MS.AgH(pppkkk),m,σ).

Some conventions will aid further definitions and scheme descriptions. A party’s state

st has several parts: st.n is the number of parties in the current execution of the protocol;

st.me ∈ [1..st.n] is the party’s own identity; st.rnd ∈ [0..MS.nr] is the current round number; st.sk

is the party’s own signing key; st.pk is the st.n-vector of all verification keys; st.msg is the message

being signed; st.rej ∈ {true, false} is the decision to reject (not produce a signature) or accept. It

is assumed and required that each invocation of MS.Sign leaves all of these unchanged except for

st.rnd, which it increments by 1, and st.rej, which is assumed initialized to false and may at some

point be set to true. The state can, beyond these, have other components that vary from protocol to

protocol. (For example, Figure 3.5 describing the BN scheme has st.RRR[ j],st.ttt[ j],st.zzz[ j],st.R, . . ..)

We write st← StInit( j,sk, pppkkk,m) to initialize st by setting st.n← |pppkkk| ; st.me← j ; st.rnd← 0 ;

st.sk← sk ; st.pk← pppkkk ; st.msg←m ; st.rej← false. If an execution (σ,st′)←MS.SignH(in,st)

returns σ =⊥ then it is assumed and required that further executions starting from st′ all return

⊥ as the output message.

CORRECTNESS. Algorithm ExecMS, shown in the left column of Fig. 3.4, executes the

126



Algorithm ExechMS(ssskkk, pppkkk,m):

1 n← |pppkkk|
2 For j = 1, . . . ,n do

3 st j← StInit( j,ssskkk[ j], pppkkk,m)

4 bbb← (ε, . . . ,ε) // n-vector
5 For i = 1, . . . ,MS.nr do

6 For j = 1, . . . ,n do

7 (σ j,st j)←$MS.Signh(bbb,st j)

8 bbb← (σ1, . . . ,σn)

9 Return σ1

Game Gms-cor
MS,n

Fin:
1 h←$MS.HF

2 For i = 1, . . . ,n do

3 (pppkkk[i],ssskkk[i])←$MS.Kg

4 σ←$ExechMS(ssskkk, pppkkk,m)

5 d←MS.Vfh(pppkkk,m,σ)

6 Return d

Game Gms-uf
MS

Init:
1 h←$MS.HF ; (pk,sk)←$MS.Kg ; Return pk

NS(k, pppkkk,m):
2 pppkkk[k]← pk ; u← u+1 ; pppkkku← pppkkk ; mu← m ; stu← StInit(k,sk, pppkkk,m)

3 bbb← (ε, . . . ,ε) ; (σ,stu)←$MS.SignH(bbb,stu) ; Return σ

Sign j(s,bbb): // 1≤ j ≤MS.nr

4 (σ,sts)←$MS.SignH(bbb,sts) ; Return σ

H(x):
5 Return h(x)

Fin(k, pppkkk,m,σ):
6 If (pppkkk[k] 6= pk) then Return false

7 If (pppkkk,m) ∈ {(pppkkki,mi) : 1≤ i≤ u} then Return false

8 Return MS.VfH(pppkkk,m,σ)

Figure 3.4: Top left: Procedure specifying an honest execution of the signing protocol associ-
ated with multi-signature scheme MS. Top right: Correctness game. Bottom: Unforgeability
game.

signing protocol of MS on input a vector ssskkk of signing keys, a vector pppkkk of matching verification

keys with |ssskkk|= |pppkkk|, and a message m to be signed, and with access to random oracle h∈MS.HF.

The number of parties n at line 1 is the number of coordinates (length) of pppkkk. The state st j of

party j at line 3 is initialized using the function StInit defined above. The loop at line 5 executes

MS.nr rounds. Here bbb denotes the n-vector of currently-broadcast messages, meaning bbb[i] was
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broadcast by party i in the prior round, and the entire vector is the input to party j for the current

round. At line 8, bbb now holds the next round of broadcasts.

The correctness game Gms-cor
MS,n shown in the right column of Fig. 3.4 has only one proce-

dure, namely Fin. We say that MS satisfies (perfect) correctness if for all positive integers n we

have Pr[Gms-cor
MS,n ] = 1.

UNFORGEABILITY. Game Gms-uf
MS in Fig. 3.4 captures a notion of unforgeability for multi-

signatures that slightly extends [14]. There is one honest player whose keys are picked at line 1,

the adversary controlling all the other players. A new instance of the signing protocol is initialized

by calling NS with an index k and a vector pppkkk of verification keys that the adversary can choose,

possibly dishonestly, subject only to pppkkk[k] being the verification key pk of the honest player, as

enforced by line 2. The first message of the honest player is sent out, and at this point stu.rnd= 1.

Now the adversary can run multiple concurrent instances of the signing protocol with the honest

signer. Oracle H is the random oracle, simply calling h. Eventually the adversary calls Fin with

a forgery index k, a vector of verification keys (subjected to pppkkk[k] being the public key of the

honest signer), a message and a claimed signature. It wins if verification succeeds and the forgery

was non-trivial. The ms-uf-advantage of adversary A is Advms-uf
MS (A) = Pr[Gms-uf

MS (A)].

It is convenient for (later) proofs to have a separate signing oracle Sign j for each round

j ∈ [1..MS.nr]. It is required that any Sign j(s, ·) satisfy s ∈ [1..u], and that the prior round

queries Signk(s, ·) for k < j have already been made. It is required that for each j,s, at most one

Sign j(s, ·) query is ever made.

REMARKS. Our syntax and security notions for multi-signatures view a group of signers

as captured by the vector (rather than the set) of their public keys. So for example, a forgery

((pk1,pk2),m,σ) is considered to be non-trivial even if there was a previous signing session

under public keys (pk2,pk1) and message m. This differs from previous formalizations that work

instead with sets of public keys. However, previous definition can be recovered if a canonical

encoding of sets of public keys into vectors of public keys is fixed in the usage of a scheme.
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3.5 Analysis of the BN scheme

BN SCHEME. Let G be a group of prime order p. Let g be a generator of G and let `≥ 1

be an integer. The associated BN [14] multi-signature scheme MS= BN[G,g, `] is shown in detail,

in our syntax, in Fig. 3.5. The set MS.HF consists of all functions h such that h(0, ·) :{0,1}∗→

{0,1}` and h(1, ·) :{0,1}∗ → Zp. For b ∈ {0,1} we write Hb(·) for H(b, ·), so that scheme

algorithms, and an ms-uf adversary, will have access to oracles H0,H1 rather than just H.

The signing protocol has 3 rounds. In round 0, player j picks r←$ Zp, stores gr in its

state as st.RRR[ j], computes, and stores in its state, a value st.ttt[ j]←H0(( j,st.RRR[ j])) that we call

the BN-commitment, and broadcasts the BN-commitment. (Per our syntax, what is returned is

the message to be broadcast and the updated state to be retained.) Since each player does this, in

round 1, player j receives the BN-commitments of the other players, storing them in vector st.ttt,

and now broadcasting st.RRR[ j]. In round 2, these broadcasts are received, so player j can form the

vector st.RRR. At line 20, it returns ⊥ if one of the received values fails to match its commitment.

As per our conventions, when this happens, this player will always broadcast ⊥ in the future, so

for round 3 we assume lines 21 and 22 are executed. These lines create the second component

st.zzz[ j] of a Schnorr signature relative to the Schnorr-commitment st.RRR[ j] defined at line 13, and

the player’s own secret key, the computations being modulo p. This st.zzz[ j] is broadcast, so that,

in round 3, our player receives the corresponding values from the other players. At line 27 it

forms their modulo-p sum z and then forms the final signature (st.R,z).

Our description of the signing protocol differs, from that in [14], in some details that are

brought out by our syntax, for example in using explicit party identities rather than seeing these

as implicit in public keys.

PRIOR BOUNDS. We recall the prior result of [14]. Let MS = BN[G,g, `] and let Ams

be an adversary for game Gms-uf
MS . Assume the execution of game Gms-uf

MS with Ams has at most

q distinct queries across H0,H1 and at most qs queries to NS. Suppose the number of parties
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Kg:

1 sk←$ Zp ; pk← gsk

2 Return (pk,sk)

VfH(pppkkk,m,σ):

3 (R,z)← σ ; (pk1, . . . ,pkn)← pppkkk

4 BN :

5 For i = 1, . . . ,n do ci←H1((i,R, pppkkk,m))

6 Return (gz = R ·∏n
i=1pk

ci
i )

7 MuSig :

8 apk←∏
n
i pk

H2((i,pppkkk))
i

9 c←H1((R,apk,m))

10 Return (gz = R ·apkc )

SignH(bbb,st):

11 j← st.me ; n← st.n ; m← st.msg ; sk← st.sk ; pppkkk← st.pk

12 If (st.rnd= 0) then

13 st.r←$ Zp ; st.RRR[ j]← gr ; st.ttt[ j]←H0(( j,st.RRR[ j])) ; st.rnd← st.rnd+1

14 Return (st.ttt[ j],st)

15 If (st.rnd= 1) then

16 For all i 6= j do st.ttt[i]← bbb[i]

17 st.rnd← st.rnd+1 ; Return (st.RRR[ j],st)

18 If (st.rnd= 2) then

19 For all i 6= j do st.RRR[i]← bbb[i]

20 If (∃ i : H0((i,st.R[i])) 6= st.ttt[i] ) then Return (⊥,st)
21 st.R←∏

n
i=1 st.R[i]

22 BN : c j←H1(( j,R, pppkkk,m)) ; st.zzz[ j]← sk · c j + st.r

23 MuSig :

24 apk←∏
n
i=1 pppkkk[i]H2((i,pppkkk)) ; c←H1((R,apk,m))

25 st.zzz[ j]← sk ·H2((st.me, pppkkk)) · c+ st.r

26 st.rnd← st.rnd+1 ; Return (st.zzz[ j],st)

27 If (st.rnd= 3) then

28 For all i 6= j do st.zzz[i]← bbb[i]

29 z← ∑
n
i=1 st.zzz[i] ; Return ((st.R,z),st)

Figure 3.5: Algorithms of the multi-signature scheme BN[G,g, `] and MuSig[G,g, `], where G
is a group of prime order p with generator g. Code that differs between the two schemes is
marked explicitly. Oracle Hi(·) is defined to be H(i, ·) for i = 0,1 (BN) and i = 0,1,2 (MuSig).

(length of verification-key vector) in queries to NS and Fin is at most n. Let a = 8qs +1 and
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b = 2q+16n2qs. Let p = |G|. Then BN [14] give a DL-adversary Adl such that

Advms-uf
MS (Ams)≤

√
(q+qs) ·

(
Advdl

G,g(Adl)+
a
p
+

b
2`

)
. (3.2)

The running time of Adl is twice that of the execution of game Gms-uf
MS with Ams. BN obtain this

result via their general forking lemma, which uses rewinding and accounts for the square-root in

the bound.

SECURITY OF BN FROM IDL. We give a IDL→ BN reduction that is tight and in the

standard model. Combining this with our tight AGM reduction DL→ IDL of Theorem 3.3.1

we conclude a tight AGM reduction DL→ BN. However, the standard model tight IDL→ BN

reduction is also interesting in its own right. It says that BN is just as secure as the Schnorr

identification scheme. Since the latter has been around and resisted cryptanalysis for quite some

time, this is good support for the security of BN.

Theorem 3.5.1 [IDL→ BN, Standard Model] Let G be a group of prime order p. Let g be a

generator of G and let ` ≥ 1 be an integer. Let MS = BN[G,g, `] be the associated BN multi-

signature scheme. Let Ams be an adversary for game Gms-uf
MS of Figure 3.4. Assume the execution

of game Gms-uf
MS with Ams has at most q0,q1,qs distinct queries to H0,H1,NS, respectively, and

the number of parties (length of verification-key vector) in queries to NS and Fin is at most n.

Let α = qs(4q0 +2q1 +qs) and β = q0(q0 +n). Then we construct an adversary Aid for game

Gmidl
G,g,q1

(shown explicitly in Figure 3.17) such that

Advms-uf
MS (Ams)≤ Advidl

G,g,q1
(Aidl)+

α

2p
+

β

2`
. (3.3)

The running time of Aidl is about that of the execution of game Gms-uf
MS with Ams. Furthermore,

adversary Aidl is algebraic if adversary Ams is.

Above, q0 is the number of distinct queries to H0 made, not directly by the adversary, but across

131



the execution of the adversary in game Gms-uf
MS , and similarly for q1. A lower bound on q1 is the

length of pppkkk in Ams’s Fin query, so we can assume it is positive. With the above theorem, we can

now derive an upperbound UBms-uf
MS (t,q,qs, p) of the advantage of any MS adversary with running

time t, making q queries to H, and qs signing interactions. We take `≈ log2(p) and assume that

qs ≤ q≤ t ≤ p. Additionally, we assume that the advantage of any IDL adversary with running

time t is at most t2/p (as justified by Theorem 3.3.2). We obtain UBms-uf
MS (t,q,qs, p)≤ t2/p as

shown in Fig. 3.1.

The full proof of Theorem 3.5.1 is given in Section 3.14. Here we give a sketch. The

reduction adversary Aidl receives a group element X from Gmidl
G,g,q1

and forwards it to adversary

Ams as the target public key. In order to run adversary Ams, our adversary needs to be able to

simulate the signing oracles NS,Sign1,Sign2 as well as random oracles H0 and H1 without

knowing DLG,g(X). We first describe how the reduction proceeds if Ams makes no queries to

NS,Sign1 or Sign2, as this steps constitutes the main difference between our proof and the

original proof of security for BN [14]. Adversary Aidl uses the challenge oracle Gmidl
G,g,q1

.Ch to

program the random oracle H1 (hence Ch needs to be able to be queried upto the number of times

H1 is evaluated). In particular, for each query H1((k,R, pppkkk,m)) where pppkkk[k] = X , our adversary

first computes T ← R ·∏ j 6=k pppkkk[ j]H1(( j,R,pppkkk,m)), then obtains c←$Ch(T ) before returning c as the

return value for the query H1((k,R, pppkkk,m)). By construction, a valid forgery for pppkkk,m is some

signature σ = (R,z) such that

gz = R ·
n

∏
i=1

pppkkk[i]H1((i,R,pppkkk,m)) = T ·Xc ,

where the first equality is by the verification equation of BN and the second equality is by the

way H1 is programmed. This means that adversary Aidl can simply forward the value of z from a

valid forgery, along with the index of the Ch query corresponding to the H1 query of the forgery,

to break game Gmidl
G,g,q1

. Moreover, adversary Aidl succeeds as long as the forgery given by Ams
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is valid.

It remains to show that oracles NS,Sign1,Sign2 can be simulated without knowledge

of the secret key, DLG,g(X). Roughly, this is done using the zero-knowledge property of the

underlying Schnorr identification scheme as well as by programming the random oracles H0

and H1. The original proof by [14] constructs an adversary and argues that it simulates these

oracles faithfully if certain bad events do not happen. We take a more careful approach and do

this formally via a sequence of seven games and use the code-base game playing framework of

[19]. This game sequence incurs the additive loss as indicated in Equation (3.3).

CONVERSE. IDL is not merely some group problem that can be used to justify security

of BN tightly; the hardness of IDL is, in fact, tightly equivalent to the MS-UF security of BN.

Formally, we give below a reduction turning any adversary against IDL into a forger Ams against

BN. This means that any security justification for BN must also justify the hardness of IDL.

Theorem 3.5.2 [BN→ IDL, Standard Model] Let G be a group of prime order p. Let g be a

generator of G and let ` ≥ 1 be an integer. Let MS = BN[G,g, `] be the associated BN multi-

signature scheme. Let q be a positive integer and Aidl be an adversary against Gmidl
G,g,q. Then,

we can construct an adversary Ams for game Gms-uf
MS , making no queries to NS, and at most 2q

queries to H1, such that

Advms-uf
MS (Ams)≥ Advidl

G,g,q(Aidl) . (3.4)

The running time of Ams is about that of Aidl.

Proof of Theorem 3.5.2: Consider the adversary given in Fig. 3.6. The adversary receives the

target public key pk from the MS-UF game and samples a key pair (pk′,sk′)←$MS.Kg. The

adversary will attempt to forge a signature against the vector of public keys (pk,pk′). Adversary

Ams forwards X = pk as the target point and runs IDL adversary Aidl. For each query Ch(R) of
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AH1
ms (pk):

1 X ← pk ; (pk′,sk′)←$MS.Kg()

2 (I,z)← ACh
xidl(pk) // gz = RI ·pkcI,1

3 σ← (RI ,z+ sk′ · cI,2 mod p) ; Return ((pk,pk′),mI ,σ)

Ch(R):

4 i← i+1 ; Ri← R ; mi← 〈i〉
5 ci,1←$H1((1,Ri,(pk,pk

′),mi)) ; ci,2←$H1((2,Ri,(pk,pk
′),mi))

6 Return ci,1

Figure 3.6: Adversary Ams for Theorem 3.6.1. For an integer i, 〈i〉 denote the binary representa-
tion of i.

Aidl, adversary Ams simulates the response as per line 4 to 6. If Aidl succeeds, it must be that

gz = RI ·pkcI,1 .

The value of z can be used to construct a forgery signature (line 3).

3.6 Analysis of the MuSig scheme

The current three-round version of MuSig has been proposed and analyzed by both [64]

and [25]. Roughly, it is the BN scheme with added key aggregation.

Let G be a group of prime order p. And let g be a generator of g and `≥ 1 be an integer.

The formal specification of MS =MuSig[G,g, `] in our syntax is shown in Fig. 3.5. There are

minimal differences between MuSig and BN and we only highlight the differences. The set

MS.HF consists of all functions h such that h(0, ·) : {0,1}∗→ {0,1}` and h(i, ·) : {0,1}∗→ Zp

for i = 1,2. Verification is done as follows. First, an aggregate key apk for the list of keys

pppkkk = (pk1, . . . ,pkn) is computed as apk ← pk
H2((1,pppkkk))
1 · · ·pkH2((n,pppkkk))

n (line 8). Next, a single

challenge is derived from the commitment R and aggregate key apk (line 9). The signature (R,z)

is valid if gz = R ·apkc. The second round of signing also changes accordingly to generate a valid

134



signature (line 24 and 25).

The following gives a tight, standard-model reduction XIDL→MuSig. Combining this

with our tight AGM chain DL→ IDL→ XIDL from Theorems 3.3.1 and 3.3.3, we get a tight

AGM reduction DL→MuSig.

Theorem 3.6.1 [XIDL→MuSig, Standard Model] Let G be a group of prime order p. Let g

be a generator of G and `≥ 1 be an integer. Let MS=MuSig[G,g, `] be the associated MuSig

multi-signature scheme. Let Ams be an adversary for game Gms-uf
MS of Figure 3.4. Assume the

execution of game Gms-uf
MS with Ams has at most q0,q1,q2,qs distinct queries to H0,H1,H2,NS,

respectively, and the number of parties (length of verification-key vector) in queries to NS and

Fin is at most n. Let α = qs(4q0 +2q1 +qs)+2q1q2 and β = q0(q0 +n). Then we construct an

adversary Axidl for game Gmxidl
G,g,q2,q1

(shown explicitly in Figure 3.23) such that

Advms-uf
MS (Ams)≤ Advxidl

G,g,q2,q1
(Axidl)+

α

2p
+

β

2`
. (3.5)

The running time of Axidl is about that of the execution of game Gms-uf
MS with Ams. Furthermore,

adversary Axidl is algebraic if adversary Ams is.

We remark that the values of q1 and q2 above arise from the number of queries to H1

and H2 made in the execution of Gms-uf
MS (Ams). As a result, the appearance of q1 and q2 has their

orders “switched” compared to in Section 3.3. With the above theorem, we can now derive an

upperbound UBms-uf
MS (t,q,qs, p) of the advantage of any MS adversary with running time t, making

q queries to H, and qs signing interactions. We take `≈ log2(p) and assume that qs ≤ q≤ t ≤ p.

Additionally, we assume that the advantage of any XIDL adversary with running time t is at most

t2/p (as justified by Theorem 3.3.4). We obtain UBms-uf
MS (t,q,qs, p)≤ t2/p as shown in Fig. 3.1.

We again describe the reduction at a high level and defer the full proof to Section 3.15.

First, the reduction adversary Axidl receives group element X from game Gmxidl
Gg,q2,q1

and runs

Ams with the target public key set to X . Similar to the proof of Theorem 3.5.1, our adversary
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needs to simulate the signing oracles NS,Sign1,Sign2 as well as H0,H1,H2 without knowing

DLG,g(X) in order to run Ams. This again relies on the zero-knowledge property of the underlying

Schnorr identification scheme and the programming of H0,H1,H2. This step is done formally

in a game sequence in the full proof and incurs the additive loss in Equation (3.5). To turn a

forgery into a break against XIDL, our adversary programs H1 and H2 as follows. For the j-th

query of H2((k, pppkkk)) where pppkkk[k] = X , the adversary first computes S←∏i 6=k pppkkk[i]H2((i,pppkkk)), then

obtains e j←$NwTar(S) before returning e j as the response for the query. We remark that this

particular query of H2 have created an aggregate public key apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)) = S ·Xe j ,

which is also the value of Tj that is recorded in the game Gmxidl
G,g,q2,q1

. For each i-th query of

H1((R,apk,m)), the adversary first finds the index jsel of the H2-query that corresponds to the

input apk, then obtains ci←$Ch( jsel,R) before returning ci as the response for the query. If

the eventual forgery is given for these two particular queries to H1 and H2, meaning forgery

is pppkkk,m,(R,z) for some z, then the verification equation of the signature scheme says that

gz = R · apkH1((R,apk,m)). But this matches exactly the winning condition of Gmxidl
G,g,q2,q1

, since

apk = Tjsel and ci =H1((R,apk,m)). Hence, our adversary Axidl can simply return (i,z) to break

XIDL, as long as the forgery provided by Ams is valid.

Similar to the relation between IDL and BN, XIDL is also tightly equivalent to the MS-UF

security of MuSig. In particular, we turn any adversary breaking XIDL into a forger against

MuSig. This means that any security justification for MuSig must also justify the hardness of

XIDL.

Theorem 3.6.2 [MuSig→ XIDL, Standard Model] Let G be a group of prime order p. Let g

be a generator of G and let ` ≥ 1 be an integer. Let MS = MuSig[G,g, `] be the associated

MuSig multi-signature scheme. Let q1,q2 be a positive integers and Axidl be an adversary against

Gmxidl
G,g,q2,q1

. Then, we can construct an adversary Ams for game Gms-uf
MS , making no queries to
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AH1,H2
ms (pk):

1 X ← pk ; (I,z)← ANwTar,Ch
xidl (pk) ; J← TI[I]

2 σ← (RI ,z) ; Return ((pk,SJ),mI ,σ)

NwTar(S):

3 j← j+1 ; S j← S

4 e j,1←$H2((1,(pk,S))) ; e j,2←$H2((2,(pk,S))) ; e j← e j,2/e j,1 mod p

5 apk j← pke j,1Se j,2 ; Tj← pk ·Se j ; Return e j

Ch( jsel,R):

6 i← i+1 ; Ri← R ; mi← 〈i〉 ; TI[i]← jsel

7 ci←H1((apk jsel
,R,mi)) · e jsel,1 ; Return ci

Figure 3.7: Adversary Ams for Theorem 3.6.1. For an integer i, 〈i〉 denote the binary representa-
tion of i.

NS, and at most 2q1 and 2q2 queries to H1 and H2 respectively, such that

Advms-uf
MS (Ams)≥ Advxidl

G,g,q2,q1
(Axidl) . (3.6)

The running time of Ams is about that of Aidl.

Proof of Theorem 3.6.2: Consider the adversary given in Fig. 3.7. The adversary receives the

target publick key pk from the MS-UF game. Adversary Ams forwards X = pk as the target point

and runs XIDL adversary Aidl. For each query NwTar(S) of Axidl, adversary Ams uses S as a

public key to generate the aggregate key apk for the list (pk,S). By construction, the j-th target

Tj for the XIDL game is related to apk j by apk j = T
e j,1
j . For each Ch( jsel,R) query of Axidl,

adversary Ams programs in the H1 outputs corresponding to a forgery agaisnt the aggregate key

apk jsel
(line 6 and 7). By construction, if Axidl succeeds, it must be that

gz = RI ·T cI
J = RI ·TH1((apkJ ,R,mi))·eJ,1

J = RI ·apkH1((apkJ ,R,mi))
J .

Hence, adversary Ams produces a valid forgery at line 2.
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MS.Kg:

1 sk←$ Zp ; pk← gsk

2 Return (pk,sk)

MS.VfH0,H1,H2(pppkkk,m,σ):

3 (pk1, . . . ,pkn)← pppkkk ; apk←∏
n
i pk

H2((i,pppkkk))
i

4 (T,s,z)← σ ; c←H1((T,apk,m))

5 h←H0((pppkkk,m)) ; Return (gzhs = T ·apkc)

MS.SignH0,H1,H2(bbb,st):

6 j← st.me ; n← st.n ; m← st.msg ; sk← st.sk ; pppkkk← st.pk

7 (pk1, . . . ,pkn)← pppkkk ; apk←∏
n
i pk

H2((i,pppkkk))
i

8 If (st.rnd= 0) then

9 st.r[ j]←$ Zp ; st.s[ j]←$ Zp

10 h←H0((pppkkk,m)) ; st.RRR[ j]← gst.r[ j] ; st.TTT [ j]← st.RRR[ j] ·hst.s[ j]

11 st.rnd← st.rnd+1 ; Return (st.TTT [ j],st)

12 If (st.rnd= 1) then

13 For all i 6= j do st.TTT [i]← bbb[i]

14 st.T ←∏
n
i=1 st.TTT [i] ; st.c←H1((st.T,apk,m)) ; e j←H2(( j, pppkkk))

15 st.z[ j]← sk · c · e j + st.r[ j] ; st.ttt[ j]← (st.s[ j],st.z[ j])

16 st.rnd← st.rnd+1 ; Return (st.ttt[ j],st)

17 If (st.rnd= 2) then

18 For all i 6= j do st.ttt[i]← bbb[i]

19 (s,z)← ∑
n
i ttt[i] ; Return ((st.T,s,z),st)

Figure 3.8: Two-round multi-signature scheme MS= HBMS[G,g] parameterized by a group G
of prime order p with generator g.

3.7 HBMS: Our new two-round multi-signature scheme

Recall that BN and MuSig are three-round schemes, and two-round schemes are desired

due to blockchain applications. In this section, we introduce our new, efficient two-round multi-

signature scheme supporting key-aggregation, HBMS. We first demonstrate its tight security

against algebraic adversaries (Theorem 3.7.1), before justifying its security in the standard model

(Theorem 3.7.2). Referring to Fig. 3.2, these results establish arrow 5. We refer to Fig. 3.1 for

comparisons of HBMS against other two-round schemes.

TWO-ROUND MS SCHEME HBMS. The formal definition of our scheme is given in

Fig. 3.8. HBMS has the same key generation algorithm Kg and key aggregation Ag algorithm as
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MuSig. We describe informally the process involved to sign a message m under a vector of public

keys pppkkk. In the first round, each signer i samples si and ri uniformly from Zp and computes a

commitment

Ti←H0((pppkkk,m))si ·gri ,

which is sent to every other signer. In the second round, each signer receives the list of com-

mitments T1, . . . ,Tn from each signer, and computes the aggregate value T ←∏i Ti. Each signer

then computes the challenge value as c←H1((T,apk,m)). To compute the reply, each signer i

computes zi← ri + sk · c ·H2((i, pppkkk)) and sends (si,zi) to every other signer. Finally, any signer

can now compute the final signature as (T,s,z) where s = ∑i si and z = ∑i zi. To verify a signature

(T,s,z) on (pppkkk,m), the equation

gz ·H0((pppkkk,m))s = T ·apkH1((T,apk,m)) ,

must hold, where apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)). Compared to MuSig, the verification equation of

HBMS involves an additional power of H((pppkkk,m)) (hence the name HBMS, or “Hash-Base

Multi-Signature”).

TIGHT SECURITY AGAINST ALGEBRAIC ADVERSARIES. We first show that HBMS is

tightly MS-UF-secure against algebraic adversaries.

Theorem 3.7.1 [DL→ HBMS, AGM] Let G be a group of prime order p with generator g.

Let MS be the HBMS[G,g] scheme. Let Aalg
ms be an algebraic adversary for game Gms-uf

MS of

Figure 3.4. Assume the execution of game Gms-uf
MS with Ams has at most q1,q2 distinct queries to

H1,H2, respectively. Then we construct an adversary Adl for game DLG,g (shown explicitly in

Figure 3.25) such that

Advms-uf
MS (Aalg

ms )≤ Advdl
G,g(Adl)+

(q1 +1)q2

p
. (3.7)
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The running time of Adl is about that of the execution of game Gms-uf
MS with Aalg

ms .

Above, a reduction is given directly from DL, and there is no multiplicative loss. As

before, assuming qs ≤ q≤ t ≤ p and the generic hardness of DL (advantage of t-time adversary

to be at most t2/p), we derive that UBms-uf
MS (t,q,qs, p)≤ t2/p, as shown in Fig. 3.1.

We give the highlevel proof sketch here and defer the full proof to Section 3.16. Let

Ams be the algebraic adversary against HBMS. Our reduction adversary Adl sets its own target

point X (which it needs to obtain the discrete log of) as the target public key for Ams. In order

to run Ams, our adversary Adl needs to be able to simulate oracles NS,Sign1,Sign2 (oracles

representing the honest signer) as well as random oracles H0,H1,H2. We first tackle the problem

of simulating the honest signer without knowledge of the corresponding secret key. This is done

by programming of random oracle H0. Suppose for pppkkk,m, we set H0((pppkkk,m)) to be h = gαpkβ

for some α,β 6= 0 ∈ Zp (whose exact distribution will be specified later). When the adversary

interacts with the honest signer, the honest signer must first provide some commitment T ∈ G (in

the output of NS), then later produce z,s ∈ Zp (in the output of Sign1) such that

gzhs = T ·pkc , (3.8)

where c ∈ Zp is some challenge value (that is derived using the random oracle and the responses

of the adversary). To do this, our adversary set commitment T = gahb for a,b←$ Zp. It shall

be convenient to express pk in terms of g and h as well. Note that as long as β 6= 0, pk =

h(β
−1)g−α(β−1). Since both T and pk are known to be of the form g?h? (where ? denotes some

element of Zp), so is the group element T ·pkc (for any known value of c). Hence, the right-hand

side of Equation (3.8) is of the form gzhs for some values z and s that our adversary can compute,

and our adversary can return them as response in the second round. Above, we noted that this

works as long as β 6= 0. To guarantee this, we sample α←$ Zp and β←$ Z∗p in H0. It remains to

check that such way of simulating the honest signer is indistinguishable from the behavior of
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an honest signer holding the secrete key and executing the protocol. Roughly, this is because in

both cases, the triple (T,z,s) is uniformly distributed over G×Z2
p, subjected to the condition that

Equation (3.8) holds.

Now, our adversary Adl can move onto turning a forgery from Ams into a discrete logarithm

for target point X . Suppose adversary Ams returns forgery (pppkkk,m,(T,s,z)). Then,

gzhs = T ·apkc , (3.9)

where apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)) and c =H1((T,apk,m)). Since Ams is algebraic, our adversary

Adl can rewrite Equation (3.9) to the form gαg = XαX , which allows us to compute the discrete

log of X as αgα−1
x mod p, as long as αX is not zero. The full proof upperbounds the probability

that αX = 0 to be at most q1q2/p. Outside of this bad event, our adversary Adl will successfully

compute the value of DLG,g(X) from a valid forgery.

STANDARD MODEL SECURITY OF HBMS. We reduce the security of HBMS to the hard-

ness of XIDL, with factor qs loss. For applications, the number of signing queries qs is much

less than adversarial hash function evaluations. As a result, even though our reduction here is

non-tight, the reduction loss is smaller compared to previous results for BN, MuSig or other

two round schemes (cf. Figure 3.1 and 3.1), at the expense of assuming the hardness of XIDL.

Interestingly, due to Theorem 3.6.2, our results also state that HBMS is secure as long as MuSig is

(via the reduction chain MuSig→ XIDL→ HBMS), and this reduction again only losses a factor

of qs in the advantage.

Theorem 3.7.2 [XIDL→ HBMS, Standard Model] Let G be a group of prime order p with

generator g. Let MS be the HBMS[G,g] scheme given in Fig. 3.8. Let Ams be an adversary

for game Gms-uf
MS of Figure 3.4. Assume the execution of game Gms-uf

MS with Ams has at most

q0,q1,q2,qs distinct queries to H0,H1,H2,NS, respectively. Then we construct an adversary
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Axidl for game Gmxidl
G,g,q2,q1

(shown explicitly in Figure 3.27) such that

Advms-uf
MS (Ams)≤ e(qs +1) ·Advxidl

G,g,q2,q1
(Axidl)+

q1q2

p
, (3.10)

where e is the base of the natural logarithm. Adversary Axidl makes q2 queries to NwTar and q1

queries to Ch. The running time of Axidl is about that of the execution of game Gms-uf
MS with Ams.

Concretely, if we assume that XIDL is quantitatively as hard as DL, then against any

adversary with running time t, making q evaluations of the random oracle and making at most qs

signing queries, HBMS has security (qst2 +q2)/p≈ qst2/p.

We sketch the highlevel proof here and give the full proof in Section 3.17. Our adversary

receives the target point X from the XIDL game and sets it as the target public key for adversary

Ams. As before, in order to run Ams, we need to simulate oracles NwTar,Sign1,Sign2 as

well as H0,H1,H2. Recall that in the AGM proof, we can simulate the honest signer for pppkkk,m

if we set H0((pppkkk,m)) = gαhβ. However, this way of programming H0 does not facilitate in

turning a forgery into a break for XIDL. Instead, we would like to program H0((pppkkk,m)) = gα for

the forgery pppkkk,m. To do this, we use a technique of Coron [32], which programs H0((pppkkk,m))

randomly in one of these two ways depending on a biased coin flip (with probability ρ of giving

1). The reduction only succeeds if correct “guesses” are made. Specifically, we need that for every

pppkkk,m that is queried to the honest signer (in NS) then H0((pppkkk,m)) must have been programmed

to be gαpkβ (for some α and β), and for the forgery pppkkk,m, it must be that H0((pppkkk,m)) = gα (for

some α). We can then optimize for the value of ρ, resulting in a multiplicative loss of e(1+qs).

Suppose adversary Ams returns a forgery (pppkkk,m,(T,s,z)) where we have previously

programmed H0((pppkkk,m)) = gα. The verification equation say that gzhs = T ·apkc. Since h is just

a power of g, the left-hand side of the verification equation is also a known power of g (specifically

gz+α·s). This means that our adversary Axidl can proceed exactly as the reduction for MuSig.

In particular, for the j-th query of H2((k, pppkkk)) where pppkkk[k] = X , the adversary first computes
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S←∏i 6=k pppkkk[i]H2((i,pppkkk)), then obtains e j←$NwTar(S) before returning e j as the response for

the query. We remark that this particular query of H2 have created an aggregate public key

apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)) = S ·Xe j , which is also the value of Tj that is recorded in the game

Gmxidl
G,g,q2,q1

. For each i-th query of H1((T,apk,m)), the adversary first finds the index jsel of the

H2-query that corresponds to the input apk, then obtains ci←$Ch( jsel,T ) before returning ci

as the response for the query. If the eventual forgery is given for these two particular queries

to H1 and H2, meaning forgery is pppkkk,m,(T,s,z), then the verification equation of the signature

scheme says that gz+α·s = T ·apkH1((T,apk,m)) (if we programmed H0((pppkkk,m)) to be gα). Hence,

our adversary Axidl can simply return (i,z+α · s) to break XIDL, as long as the forgery provided

by Ams is valid and we have made the right guesses in programming H0.

3.8 Security bounds of multi-signature schemes

We survey previous results on discrete-log-based multi-signature schemes, with a focus

on their reduction loss. We restate these results in the same notation and framework to facilitate

comparisons. We have used this to obtain the estimates in Figures 3.1 and 3.1.

For the rest of the section, fix a group G of prime order p that shall be used by each of the

schemes of interest. Additionally, we assume that we fix adversaries Ams attacking each multi-

signature scheme of interest, with running time t (this is the total execution time of Gms-uf
MS (Ams)

and includes the running time of all oracles), making q queries to the random oracle, qs queries to

NS involving maximum of N-signers while achieving success advantage of ε. For convenience,

we let qT = 1+q+qs.

BN. Bellare and Neven [14] gave a 3-round MS scheme that is based on the DL problem.

In particular, they showed that given an MS-UF adversary A , there exists DL-adversary with
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running time t ′ achieving success advantage ε′:

ε
′ ≥ ε2

q+qs
− 2q+16N2qs

2`
− 8Nqs

p
, (3.11)

t ′ ≈ 2t , (3.12)

where ` is a parameter, describing the output lengths of the random oracle used for commitments.

MuSig. BDN [25] and MPSW [64] gave a 3-round MS scheme that adds key aggregation

on-top of BN. For security, BDN showed [25][Theorem 4] that given an MS-UF adversary A ,

there exists DL-adversary with running time t ′ achieving success advantage ε′ where

ε
′ =

ε−δ

64
, (3.13)

t ′ = 512 · t ·q2
T(ε−δ)−1 ln−2(64/(ε−δ)) , (3.14)

δ =
4NqT

p
, (3.15)

as long as p > 8q/ε. MPSW gave a tighter result by two direct applications of the forking lemma.

In particular, they showed that [64][Theorem 1] given an MS-UF adversary Ams, there exists

DL-adversary with running time t ′ achieving success advantage ε′ where

ε
′ =

ε4

q3
T
− 16qs(q+N ·qs)

p
− 16(q+Nqs)

2 +3
2`

, (3.16)

t ′ ≈ 4t . (3.17)

MBCJ. DEFKLNS [40] gave a 2-round MS scheme mBCJ. For security, they showed that

given an MS-UF adversary A , there exists DL-adversary with running time t ′ achieving success
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advantage ε′ where

ε
′ =

ε

8e(qs +1)
, (3.18)

t ′ = t ·64(N +1)2qT(qs +1)ε−1 ln−1(8e(N +1)(qs +1)/ε) , (3.19)

as long as p > 64e(N +1)qT(qs +1)/ε.

MUSIG-DN. NRSW [71] gave a 2-round MS scheme that has deterministic signing.

For security, their result [71][Theorem 1] roughly translates to: given an an adversary attack

MuSig-DN, there exists OMDL adversary attacking DL with success advantage approximately

ε
′ ≥
(

ε−qsδ−
q2

T
2λ−2 −

2
2λ/4

)4

q−3
T , (3.20)

t ′ ≈ 4t , (3.21)

where λ is a parameter of the scheme and δ is a small constant associated with the group.

MUSIG2. NRS [68] gave a 2-round MS scheme, parameterized by ν. For ν ≥ 4, they

showed that if there exists A attacking their scheme, they [68][Theorem 1] can build νqs-OMDL

adversary with running time t ′ achieving success advantage ε′ where

ε
′ ≥ ε4

m3 −
11
p
− 43m4

(p−1)ν−3 , (3.22)

t ′ ≈ 4t , (3.23)

m = (ν−1)(q+qs)+1 . (3.24)

For ν = 2, they give a tighter proof against algebraic adversaries. In particular, given an algebraic

adversary A attacking their scheme for ν = 2, they build adversary B against qs-OMDL that runs
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in time t ′ to achieve success advantage ε′ with

ε
′ ≥ ε−14

q3

p
,

t ′ ≈ t +O(q3) .

DWMS. Alper and Burdges [3] gave a 2-round MS scheme DWMS similar MuSig2 that is

also proved secure from OMDL in AGM. Their proof as given is non-concrete. However, tracing

through their reduction, we obtained the following reduction loss: given an algebraic MS-UF

adversary Aalg
ms , an qs-OMDL adversary can be constructed with advantage ε′ with running time t ′

where

ε
′ ≥ ε− q3

s q2
√

p
,

and t ′ ≈ t.

3.9 Forking lemma

We recall the general forking lemma of [14]. We restate it using the games of Figure 3.9.

Each game has just one procedure, Fin, which takes no inputs. The games are parameterized

by an algorithm A that is executed inside the game, and also by an algorithm IG called an input

generator.

Lemma 3.9.1 [14] Let q≥ 1 be an integer. Let C be a set of size |C| ≥ 2. Let A be a randomized

algorithm that on inputs x,c1, . . . ,cq returns a pair, the first element of which is an integer in

the range 0, . . . ,q, and the second element of which we refer to as a side output. Let IG be a

randomized algorithm that, as above, we call the input generator. Consider Gm0 (called the
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Game Gm0

Fin:
1 x←$ IG

2 c1, . . . ,cq←$C

3 (I,σ)←$ A(x,c1, . . . ,cq)

4 Return (I > 0)

Game Gm1

Fin:
1 x←$ IG

2 ρ←$ rand(A) ; c1, . . . ,cq←$C

3 (I,σ)←$ A(x,c1, . . . ,cq)

4 If (I = 0) then return (0,ε,ε)

5 c′I , . . . ,c
′
q←$C

6 (I′,σ′)←$ A(x,c1, . . . ,cI−1,c′I , . . . ,c
′
q)

7 Return ((I = I′) and (cI 6= c′I))

Figure 3.9: Games referred to in Lemma 3.9.1. Both games have just one procedure, Fin,
which does not take any input. These games run an algorithm A internally.

single run) and Gm1 (called the forked run) given in Fig. 3.9. Then:

Pr[Gm0]≤
q
|C| +

√
q ·Pr[Gm1] . (3.25)

3.10 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1: Consider game Gm0 given in the left panel of Fig. 3.10. By construc-

tion, it is the game Gmidl
G,g,q(A

alg
idl ). Next, consider game Gm1, where the winning condition has

been changed to checking that (x = x′), where x′ is either computed on line 8 or 9 depending on

whether w = 0. We claim that regardless of whether w = 0, game Gm1 returns true as long as

Gm0 does. Assume Gm0 returns true, then b is set to true. If w = 0, then the game Gm1 sets x′ to

x at line 8, so Gm1 alsot returns true. If w 6= 0, then the game Gm1 computes x′ as per line 12

and 13. Observe that if b is true, then

gz = RI ·XcI .
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 (I,z)←$ ACh
idl (X)

3 b← (gz = RI ·XcI )

4 Gm0: Return b

5 w← (rI,2 + cI)

6 If (w = 0) then bad← true

7 Gm1:

8 If b then x′← x

9 Else x′←⊥
10 Gm2: x′←$ Zp

11 Else

12 v← (z− rI,1)

13 x′← v ·w−1 mod p

14 Gm1,Gm2: Return (x = x′)

Ch(R,(r1,r2)):
15 i← i+1 ; Ri← R

16 ri,1← r1 ; ri,2← r2

17 ci←$ Zp ; Return ci

Adversary Adl(X):

1 (I,z)←$ ANwTar,Ch
idl (X)

2 w← (rI,2 + cI)

3 If (w = 0) then x′←$ Zp

4 Else

5 v← (z− rI,1)

6 x′← v ·w−1 mod p

7 Return x′

Ch(R,(r1,r2)):

8 i← i+1 ; Ri← R

9 ri,1← r1 ; ri,2← r2

10 ci←$ Zp ; Return ci

Figure 3.10: Games Gm0,Gm1,Gm2 and adversary Adl the proof of Theorem 3.3.1.

Expanding this equation using the fact that Ri = gri,1X ri,1 , we get

gz = grI,1X rI,2 ·XcI ,

which means that

gx = X = g(z−rI,1)w−1
= gx′ .

So game Gm1 must return true in this case as well. Hence

Pr[Gm0] = Pr[Gm1] . (3.26)
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Next, consider game Gm2, which sets x′ differently if w = 0. We have

Pr[Gm1]≤ Pr[Gm2]+Pr[Gm2 sets bad]

≤ Pr[Gm2]+
q
p
.

(3.27)

Above, the calculation of Pr[Gm2 sets bad] is justified as follows. For each Ch query, there is

1/p chance that ri,2 + ci = 0, since ci is uniform and independent of ri,2. Hence, the probability

that there is a choice of i to make w = ri,2 + ci zero is at most q/p using the union bound. Finally,

we construct adversary Adl, given in Fig. 3.10 such that

Pr[Gm2] = Advdl
G,g(Adl) . (3.28)

This is straight-forward, as Adl simulates Ch and computes x′ exactly as Gm2.

3.11 Proof of Theorem 3.3.2

Proof of Theorem 3.3.2: Consider games Gm0 given in Fig. 3.11. Game Gm0 pre-samples all

the c1, . . . ,cq values at line 2, but the game behaves otherwise exactly as Gmidl
G,g,q(Aidl). We define

Pr[Gm0] to be the probablity that the first component of the return value of Gm0 is non-zero.

Hence,

Pr[Gm0] = Advidl
G,g,q(Aidl) . (3.29)

Next, consider Gm1, which executes line 6 to 13 in addition to those executed by game Gm0.

Similar to Gm0, we define Pr[Gm1] to be the probablity that the first component of the return

value of Gm1 is non-zero. We have constructed Gm1 so that it is a forked run of Gm0 (with

c1, . . . ,cq viewed as inputs) as defined by the forking lemma [14]. Specifically, line 8 to 10 freshly

samples challenges c′I, . . . ,c
′
q2

after the selected forgery index I before invoking Aidl with these
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 ρ←$ rand(Aidl) ; c1, . . . ,cq←$ Zp

3 (I,z)← ACh1
idl (X ;ρ)

4 b← (gz = RI ·Y cI
I )

5 If not b then I← 0

6 Gm0: Return (I > 0)

7 For i = 1, . . . , I−1 do c′i← ci

8 c′I ,c
′
I+1, . . . ,c

′
q←$ Zp

9 i← 0 ; (I′,z′)←$ ACh2
idl (X ;ρ)

10 b′← (gz′ = RI′ ·Y
cI′
I′ )

11 If not b′ then I′← 0

12 Gm1:

13 Return ((I = I′ > 0) and (cI 6= c′I))

14 Gm2:

15 If ((I 6= I′) or (cI = c′I)) then

16 Return ⊥
17 w← (cI− c′I)

−1(z− z′) mod p

18 Return (gw = X)

Ch1(R):

11 i← i+1 ; Ri← R

12 Return ci

Ch2(R):

13 i← i+1 ; R′i← R

14 Return c′i

Adversary Adl(X):

1 c1, . . . ,cq←$ Zp ; ρ←$ rand(Aidl)

2 (I,z)←$ ACh1
idl (X ;ρ)

3 b← (gz = RI ·Y cI
I )

4 If not b′ then Return ⊥
5 For i = 1, . . . , I−1 do c′i← ci

6 c′I ,c
′
I+1, . . . ,c

′
q2
←$ Zp

7 i← 0 ; (I′,z′)←$ ACh2
idl (X ;ρ)

8 b′← (gz′ = Ri′ ·Y
ci′
i′ )

9 If not b′ then Return ⊥
10 If ((I 6= I′) or (cI = c′I)) then

11 Return ⊥
12 w← (cI− c′I)

−1(z− z′) mod p

13 Return w

Ch1(R):

14 i← i+1 ; Ri← R

15 Return ci

Ch2(R):

16 i← i+1 ; R′i← R

17 Return c′i

Figure 3.11: Games Gm0,Gm1,Gm2 and adversary Adl for proof of Theorem 3.3.2.
ρ←$ rand(Aidl) denotes sampling the random coins of Aidl and assigning it to ρ.

values programmed into Ch2. By the forking lemma, we have

Pr[Gm0]≤
q2

p
+
√

q2 ·Pr[Gm1] . (3.30)
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We now move onto game Gm2, which rewrites the winning condition of Gm1 into line 15 to 18.

We claim that game Gm2 returns true as long as game Gm1 returns true. This is because if both

flags b and b′ are ture, then

gz = RiXci

gz′ = Ri′X
ci′ ,

where i = i′ > 0. Notice that we also have Ri = Ri′ , this is because the two runs of Aidl has not

diverged when Ri and Ri′ are supplied (since the first different value of ci′ is only supplied afte Ri′

is given). Hence, putting the two equation together, we have

XcI−c′I = gz−z′ ,

which implies the the computed value of w = (cI− c′I)
−1(z− z′) (line 17) is the correct discrete

log of X base g. As a result, Gm2 must return true as well, and

Pr[Gm2]≥ Pr[Gm1] . (3.31)

Finally, we construct adversary Adl, given in Fig. 3.11, such that

Pr[Gm2] = Advdl
G,g(Adl) . (3.32)

Adversary Adl forwards its target point X to Aidl and simulates Gm2, starting from line 2 of Gm2

and ending at line 17 of Gm2, before outputting the computed value of w as the discrete log of

target point X . Putting the above equations together, we obtain the claim in the theorem.
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 e1, . . . ,eq1←$ Zp ; c1, . . . ,cq2←$ Zp

3 (I,z)←$ ANwTar,Ch
xidl (X)

4 b← (gz = RI ·Y cI
I )

5 Gm0: Return b

6 w← (rI,2 +(sI,2 + eJ) · cI)

7 If (w = 0) then bad← true

8 Gm1:

9 If b then x′← x

10 Else x′←⊥
11 Gm2: x′←$ Zp

12 Else

13 v← (z− rI,1− sI,1 · c)
14 x′← v ·w−1 mod p

15 Gm1,Gm2: Return (x = x′)

NwTar(S,(s1,s2)):
16 j← j+1 ; S j← S

17 s j,1← s1 ; s j,2← s2

18 e j←$ Zp ; Tj← S j ·Xe j

19 Return e j

Ch( jsel,R,(r1,r2)):
20 Requires 1≤ jsel ≤ j

21 i← i+1 ; Ri← R

22 ri,1← r1 ; ri,2← r2

23 Yi← Tjsel ; TJ[i]← jsel

24 ci←$ Zp ; Return ci

Adversary Adl(X):

1 (I,z)←$ ANwTar,Ch
xidl (X)

2 J← TJ[I]

3 w← (r2 + s2 · eJ · cI)

4 If (w = 0) then x′←$ Zp

5 Else

6 v← (z− rI,1− sI,1 · c)
7 x′← v ·w−1 mod p

8 Return x′

NwTar(S,(s1,s2)):

9 j← j+1 ; S j← S

10 s j,1← s1 ; s j,2← s2

11 e j←$ Zp ; Tj← S j ·Xe j

12 Return e j

Ch( jsel,R,(r1,r2)):

13 Requires 1≤ jsel ≤ j

14 i← i+1 ; Ri← R

15 ri,1← r1 ; ri,2← r2

16 Yi← Tjsel ; TJ[i]← jsel

17 ci←$ Zp ; Return ci

Figure 3.12: Games Gm0,Gm1,Gm2 and adversary Adl the proof of Theorem 3.3.3.

3.12 Proof of Theorem 3.3.3

Proof of Theorem 3.3.3: We recall the convention that representation of each of the group

elements S and R are additionally supplied when oracles NwTar and Ch are called. Specifically,
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each of its NwTar queries must be of the form

NwTar(S,(s1,s2)) ,

such that S = gs1X s2 . And each Ch query must be of the form

Ch( jsel,R,(r1,r2)) ,

such that R = gr1X r2 .

Consider game Gm0 given in the left panel of Fig. 3.12. By construction, it is the game

Gmxidl
G,g,q1,q2

(Axidl). Next, consider game Gm1, where the winning condition has been changed to

checking that (x = x′), where x′ is either computed on line 9 or 10 depending on whether w = 0.

We claim that regardless of the value of w, game Gm1 returns true as long as Gm0 does (Gm0

returns the boolean value b). We check this by cases. First, if w = 0, then the games sets x′ to x if

b is true, so Gm1 also returns true. If w 6= 0, then observe that if b is true, then

gz = RI · (SJ ·XeJ)cI .

Expanding this equation using the fact that Ri = gri,1X ri,1 and S j = gs j,1X s j,2 , we get

gz = grI,1X rI,2 · (gsJ,1X sJ,2 ·XeJ)cI ,

which means that

gx = X = g(z−rI,1−sJ1·cI)w−1
= gx′ .

Hence

Pr[Gm0] = Pr[Gm1] . (3.33)
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Next, consider game Gm2, which sets x′ differently if w = 0. We have

Pr[Gm1]≤ Pr[Gm2]+Pr[Gm2 sets bad]

≤ Pr[Gm2]+
q1 +q2

p
.

(3.34)

Above, the calculation of Pr[Gm2 sets bad] is justified as follows. First, the probability that

s j,2 + e j = 0 for any j is at most q1/p, since e j is uniform and independnet of s j,2. Second,

assuming s j,2 + e j 6= 0 for all j, then the probability that ri,2 +(sTJ[i],2 + eTJ[i]) · ci = 0 for some i

is at most q2/p, since ci is uniform and independent of ri,2. Finally, we construct adversary Adl,

given in the right panel of Fig. 3.12 such that

Pr[Gm2] = Advdl
G,g(Adl) . (3.35)

This is straight-forward, as Adl simulates NwTar,Ch and computes x′ exactly as Gm2.

3.13 Proof of Theorem 3.3.4

Proof of Theorem 3.3.4: Consider games Gm0 given in Fig. 3.13. Game Gm0 pre-samples all

the e j and ci values at line 2 and 3, but the game behaves otherwise exactly as Gmxidl
G,g,q1,q2

(Axidl).

We define Pr[Gm0] to be the probablity that the first component of the return value of Gm0 is

non-zero. Hence,

Pr[Gm0] = Advxidl
G,g,q1,q2

(Axidl) . (3.36)

Next, consider Gm1, which executes line 6 to 14 addition to those executed by game Gm0. Similar

to Gm0, we define Pr[Gm1] to be the probablity that the first component of the return value of

Gm1 is non-zero. We have constructed Gm1 so that it is a forked run of Gm0 (with c1, . . . ,cq2

viewed as inputs) as defined by the forking lemma [14]. Specifically, line 8 to 10 freshly samples
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx ; ρ←$ rand(Axidl)

2 e1, . . . ,eq1←$ Zp ; c1, . . . ,cq2←$ Zp

3 (I,z)← ANwTar,Ch
xidl (X ;ρ)

4 b← (gz = RI ·Y cI
I )

5 If not b then I← 0

6 Gm0: Return (I > 0)

7 For i = 1, . . . , I−1 do c′i← ci

8 i, j← 0 ; c′I ,c
′
I+1, . . . ,c

′
q←$ Zp

9 (I′,z′)←$ ANwTar,ChSim
xidl (X ;ρ)

10 b′← (gz′ = RI′ ·Y
c′I′
I′ )

11 If not b′ then i′← 0

12 j← TJ[I] ; j′← TJ[I′]

13 Gm1:

14 Return ((I = I′ > 0) and (cI 6= c′I))

15 Gm2:

16 If ((I 6= I′) or (cI = c′I)) then

17 Return ⊥
18 w← (cI− c′I)

−1(z− z′) mod p

19 Return (gw = Tj)

NwTar(S):
20 j← j+1 ; S j← S ; Tj← S j ·Xe j

21 Return e j

ChSimi( jsel,R): // i ∈ {1,2}
22 i← i+1 ; Ri← R

23 Yi← Tjsel ; TJ[i]← jsel

24 ChSim1 : Return ci

25 ChSim2 : Return c′i

Adversary ACh
idl (X):

1 c1, . . . ,cq2←$ Zp ; ρ←$ rand(Axidl)

2 (I,z)←$ ANwTar1,ChSim1
xidl (X ;ρ)

3 b← (gz = RI ·Y cI
I )

4 If not b then Return ⊥
5 For i = 1, . . . , I−1 do c′i← ci

6 i, j← 0 ; c′I ,c
′
I+1, . . . ,c

′
q←$ Zp

7 (I′,z′)←$ ANwTar2,ChSim2
xidl (X ;ρ)

8 b′← (gz′ = RI′ ·Y
cI′
I′ )

9 If not b′ then Return ⊥
10 If ((I 6= I′) or (cI = c′I)) then

11 Return ⊥
12 j← TJ[I] ; j′← TJ[I′]

13 w← (cI− c′I)
−1(z− z′) mod p

14 Return ( j,w)

NwTar1(S):

15 j← j+1 ; e j←$Ch(S) ; S j← S

16 Tj← S j ·Xe j ; Return e j

NwTar2(S):

17 j← j+1

18 If not e j then e j←Ch(S)

19 Return e j

ChSimi( jsel,R) // i ∈ {1,2}:
20 i← i+1 ; Ri← R

21 Yi← Tjsel ; TJ[i]← jsel

22 ChSim1 : Return ci

23 ChSim2 : Return c′i

Figure 3.13: Games Gm0,Gm1,Gm2 and adversary Aidl for proof of Theorem 3.3.4.

challenges c′i, . . . ,c
′
q2

after the selected forgery index i before invoking Axidl with these values

reprogrammed into Ch. We remark that the values of e1, . . . ,eq1 , which are outputs of NwTar
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are not resampled across the two runs of Axidl. By the forking lemma, we have

Pr[Gm0]≤
q2

p
+
√

q2 ·Pr[Gm1] . (3.37)

We now move onto game Gm2, which rewrites the winning condition of Gm1 into line 16 to 19.

We claim that game Gm2 returns true as long as game Gm1 returns true. This is because if both

flags b and b′ are ture, then

gz = RIY
cI
I

gz′ = RI′Y
cI′
I′ ,

where I = I′ > 0. Notice that we also have RI = RI′ , this is because the two runs of Axidl has not

diverged when RI and RI′ are supplied (since the first different value of c]i f orge′ is only supplied

afte Ri′ is given). Via simila reasoning, YI = YI′ = TJ . Hence, putting the two equation toether, we

have

Y ci−ci′
i = gz−z′ ,

which implies the the computed value of w (line 18) is the correct discrete log of TJ base g. As a

result, Gm2 must return true as well, and

Pr[Gm2]≥ Pr[Gm1] . (3.38)

Finally, we construct adversary Aidl, given in Fig. 3.13, such that

Pr[Gm2] = Advidl
G,g,q1

(Aidl) . (3.39)

Crucially, in the construction of Aidl, NwTar oracle need to be simulated differently for the two

runs of Axidl. In the first run, the oracle NwTar1 forwards the queries to Ch (that is given to our
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reduction adversary from the game Gmidl
G,g,q1

), while recording the responses e1, . . . ,e j. Then, in

the second run, the oracle NwTar2 will return previously recorded values of e1, . . . ,e j as long

as they are available, and only starts to forward queries when it runs out of previously recorded

ones. This is to simulate the behavior of Gm2, where there is one single fixed sequence of values

e1, . . . ,eq1 , used by the oracle NwTar. Putting the above equations together, we obtain the claim

in the theorem.

3.14 Proof of Theorem 3.5.1

Proof of Theorem 3.5.1: The proof uses a game sequence. Our games will implement H0,H1

with lazy sampling, maintaining tables HF0,HF1 for this purpose. They will provide oracles

Sign1,Sign2 for the first two rounds, but omit Sign3, since this round returns to the adversary

only a quantity it could itself compute already. In Fin (for example Figure 3.14) we assume the

query is non-trivial, meaning lines 6,7 of Figure 3.4 return true, and these lines are thus omitted.

We start with games Gm0,Gm1 in Figure 3.14. Game Gm0 includes the boxed code, and we

claim that

Advms-uf
MS (A) = Pr[Gm0(A)] . (3.40)

Let us explain. We wish to move to a game where signing queries are answered without using

the secret key sk. Naturally, we expect, for this, to use the zero-knowledge property of the

Schnorr scheme. But certain obstacles must be removed before we can do this, and this will take

a few steps. The first obstacle we address is that the BN-commitment tu,k =H0((k,Ru,k)) may

leak information about Ru,k. Rather than define tu,k in this way, games Gm0,Gm1 accordingly

pick it at random at line 3. The reason for the boxed code at line 4 is that, under the “true”

assignment tu,k =H0((k,Ru,k)), having Ru,ku = Ru′,ku′ would imply tu,ku = tu′,ku′ . At line 8, now
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Init: // Games Gm0–Gm7

1 (pk,sk)←$MS.Kg ; Return pk

NS(k, pppkkk,m): // Games Gm0 , Gm1

2 u← u+1 ; ku← k ; pppkkk[1]← pk ; pppkkku← pppkkk ; mu← m ; nu← |pppkkk|
3 CommitStageu← true ; ru,k←$ Zp ; Ru,k← gru,k ; tu,k←${0,1}`

4 If (∃u′ < u : Ru,ku = Ru′,ku′ ) then bad← true ; tu,ku ← tu′,ku′

5 If (HF0[(k,Ru,1)] 6=⊥) then bad← true ; tu,k← HF0[(k,Ru,k)]

6 Return tu,k

Sign0(s, ttt): // Games Gm0,Gm1

7 k← ks ; ttt[k]← ts,k ; ttts← ttt ; CommitStages← false

8 HF0[(k,Rs,k)]← ts,k ; Return Rs,k

Sign1(s,RRR): // Games Gm0,Gm1,Gm2

9 k← ks ; RRR[k]← Rs,k

10 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

11 If (∃ i : yi 6= ttts[i] ) then Return ⊥
12 Rs←∏

ns
i=1 RRR[i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

13 Return zs,k

H0(x): // Games Gm0 , Gm1

14 If (HF0[x] 6=⊥) then Return HF0[x]

15 HF0[x]←${0,1}`

16 If (∃u′ : x = (ku′ ,Ru′,ku′ ) and CommitStageu′ ) then

17 bad← true ; HF0[x]← tu′,ku′

18 Return HF0[x]

H1(x): // Games Gm0–Gm7

19 If (HF1[x] 6=⊥) then Return HF1[x]

20 HF1[x]←$ Zp ; Return HF1[x]

Fin(pppkkk,m,(R,z)): // Games Gm0–Gm7

21 n← |pppkkk|
22 For i = 1, . . . ,n do ci←H1((i,R, pppkkk,m))

23 X ←∏
n
i=1 pppkkk[i]ci ; Return (gz = RX)

Figure 3.14: Games Gm0,Gm1 for proof of Theorem 3.5.1. Some procedures will be included
in later games, as indicated. A box around the name of a game following an oracle means the
boxed code in that oracle is included in the game.
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that the BN-commitments ttt of all players are known, the games ensure that tu,k indeed equals

H0((k,Ru,k)). This is consistent with the real game only if the hash function was not already

defined at this point, captured by setting bad at line 17. The boolean CommitStage ensures that

bad is only set prior to the release of Rs,k, since the adversary can set it with probability one if it

knows Rs,k. This justifies Eq. (3.40).

Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Play-

ing [19]

Pr[Gm0(A)]≤ Pr[Gm1(A)]+Pr[Gm1(A) sets bad] .

The probability of setting bad at line 4 is at most (0+1+ · · ·+qs−1)/p, and the probabilities of

setting bad at line 5 and line 17 are at most qsq0/p, so

Pr[Gm1(A) sets bad]≤ qs(qs−1)
2p

+
2qsq0

p
=

qs(4q0 +qs−1)
2p

.

Game Gm2 changes the NS,Sign0,H0 oracles as shown in Figure 3.15, maintaining the

other oracles of Gm1 from Figure 3.14. It drops redundant code, which allows it to move the

choice of Rs,k to line 28. At line 40, it also introduces a table HI to maintain an inverse of the

hash function, but does not use this. We have

Pr[Gm1(A)] = Pr[Gm2(A)] .

Game Gm3 (oracles shown across Figures 3.15 and 3.14) aims to figure out the Rs, j-values of

parties j 6= k before having to supply Rs,k, because we will later need these to program H1 values.

It does this by “inverting” the BN-commitments, meaning at line 30 it seeks inputs to H0 that

result in the BN-commitments in ttt. If these cannot be found, then random values are chosen

instead at line 31. (Not finding the inverses is not yet a bad event. It can happen with high
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NS(k, pppkkk,m): // Games Gm2–Gm7

24 u← u+1 ; ku← k ; pppkkk[1]← pk ; pppkkku← pppkkk ; mu← m ; nu← |pppkkk|
25 tu,1←${0,1}` ; Return tu,1

Sign0(s, ttt): // Game Gm2

26 ttt[1]← ts,1 ; ttts← ttt ; rs,1←$ Zp ; Rs,1← grs,1 ; HF0[(1,Rs,1)]← ts,1
27 Return Rs,1

Sign0(s, ttt): // Games Gm3,Gm4

28 k← ks ; ttt[k]← ts,k ; ttts← ttt ; rs,k←$ Zp ; Rs,k← grs,1 ; HF0[(k,Rs,k)]← ts,k
29 For i = 1, . . . ,ns do

30 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

31 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

32 Return Rs,k

Sign1(s,RRR): // Games Gm3, Gm4

33 k← ks ; RRR[k]← Rs,k

34 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

35 If (∃ i : yi 6= ttts[i] ) then Return ⊥
36 If (RRR 6= RRR∗s ) then bad← true ; RRR← RRR∗s
37 Rs←∏

ns
i=1 RRR[i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

38 Return zs,k

H0(x): // Games Gm2–Gm7

39 If (HF0[x] 6=⊥) then Return HF0[x]

40 HF0[x]←${0,1}` ; (i,R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

Figure 3.15: Games for proof of Theorem 3.5.1.

probability. It becomes a bad event only at line 36 when the BN-commitments are verified.) The

computation of t at that line is only to ensure that H0 has been called; this variable will not be

used. These steps do not change what the oracles return compared to Gm2, so we have

Pr[Gm2(A)] = Pr[Gm3(A)] .

Moving to game Gm4, the change is only at line 36, which now includes the boxed code. The

hope here is that the RRR∗s obtained at lines 30,31 is correct with high probability. The boxed code
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Sign0(s, ttt): // Game Gm5

41 k← ks ; ttt[k]← ts,k ; ttts← ttt ; rs,k←$ Zp ; Rs,k← grs,k ; HF0[(k,Rs,k)]← ts,k
42 For i = 1, . . . ,ns do

43 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

44 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

45 Rs←∏
ns
i=1 RRR∗s [i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

46 Return Rs,k

Sign1(s,RRR): // Game Gm5,Gm6,Gm7

47 k← ks ; RRR[k]← Rs,k

48 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

49 If (∃ i : yi 6= ttts[i] ) then Return ⊥ else Return zs,k

Sign0(s, ttt): // Game Gm6 , Gm7

50 k← ks ; ttt[k]← ts,k ; ttts← ttt

51 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k
52 For i = 1, . . . ,ns do

53 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

54 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

55 Rs←∏
ns
i=1 RRR∗s [i]

56 If (HF1((k,Rs, pppkkks,ms)) 6=⊥) then bad← true ; cs,k← HF1[(k,Rs, pppkkks,ms)]

57 HF1[(k,Rs, pppkkks,ms)]← cs,k ; Return Rs,k

Figure 3.16: Games for proof of Theorem 3.5.1.

ensures that in Gm4, it is always correct. Since Gm3,Gm4 are identical-until-bad we have

Pr[Gm3(A)]≤ Pr[Gm4(A)]+Pr[Gm3(A) sets bad] .

Line 36 can only set bad if yi = ttts[i] for all i, due to line 35. So it is set only if there is a collision

in H0-values, or no query hashing to ttts[i] was made prior to the latter being provided, but is made

later. Thus

Pr[Gm3(A) sets bad]≤ q2
0 +nq0

2`
. (3.41)

In game Gm4, the RRR queried to Sign1 is the same as the RRR∗ determined in Sign0, allowing
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game Gm5 (Figure 3.16) to move line 37 into Sign0 as line 45 and to simplify Sign1. We have

Pr[Gm4(A)] = Pr[Gm5(A)] .

Now that Rs is determined prior to the release of Rs,ks , it becomes possible to successfully program

H1 via the zero-knowledge simulation. Game Gm6 of Figure 3.16 does this, setting bad at line 56

if the programming was precluded by the hash value already being defined, and including the

boxed code to correct. We have

Pr[Gm5(A)] = Pr[Gm6(A)] .

Games Gm6,Gm7 (Figure 3.16) are identical-until-bad, so

Pr[Gm6(A)]≤ Pr[Gm7(A)]+Pr[Gm7(A) sets bad] . (3.42)

When line 56 is executed, the adversary has as yet no information about Rs, which means

Pr[Gm7(A) sets bad]≤ qsq1

p
. (3.43)

We now build an adversary Aidl so that

Advidl
G,g,q(Aidl)≥ Pr[Gm7(Ams)] . (3.44)

We specify Aidl in Figure 3.17. It forwards the public key pk to Ams. Simulating signatures

without knowing the secret key, as Aidl needs to do, is now easy because the oracles of games

Gm7 already did this, and Aidl can just use the same code. Line 17 to 19 programs the challenge

ck of the target public key by first deriving commitment Rk, which is then submitted to Ch to

derive ck. Since Gmidl
G,g,q game also samples the challenge uniformly at random, this does not
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Adversary ACh
idl (pk):

1 (pppkkk,m,(R,z))←$ ANS,Sign0,Sign1,H0,H1(pk) ; Return (TJ[R],z)

NS(k, pppkkk,m):

2 u← u+1 ; ku← k ; pppkkk[1]← pk ; pppkkku← pppkkk ; mu← m ; nu← |pppkkk|
3 tu,k←${0,1}` ; Return tu,k

Sign0(s, ttt):

4 k← ks ; ttt[k]← ts,k ; ttts← ttt

5 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k
6 For i = 1, . . . ,ns do

7 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

8 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

9 Rs←∏
ns
i=1 RRR∗s [i] ; HF1[(k,Rs, pppkkks,ms)]← cs,k ; Return Rs,k

Sign1(s,RRR):

10 k← ks ; RRR[k]← Rs,k

11 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

12 If (∃ i : yi 6= ttts[i] ) then Return ⊥ else Return zs,k

H0(x):

13 If (HF0[x] 6=⊥) then Return HF0[x]

14 HF0[x]←${0,1}` ; (i,R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

H1(x):

15 If (HF1[x] 6=⊥) then Return HF1[x]

16 (k,R, pppkkk,m)← x ; HF1[x]←$ Zp

17 If (pppkkk[k] = pk) then

18 j← j+1 ; For i = 2, . . . , |pppkkk| do ci←H1((i,R, pppkkk,m))

19 R j,k← R ·∏i6=k pppkkk[i]ci ; HF1[x]← ck←Ch(R j,k) ; TJ[R]← j

20 Return HF1[x]

Figure 3.17: Adversary Aidl for Theorem 3.5.1.

change the behavior of H1. However, if a forgery (pppkkk,m,(R,z)), then it must be that

gz = R ·
|pppkkk|
∏
i=1

pppkkk[i]H1(i,R,pppkkk,m) = R j,k ·pkc j,k .

So Aidl wins game Gmidl
G,g,q. Eq. (3.3) is obtained by putting the above all together.
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3.15 Proof of Theorem 3.6.1

Let G be a group of prime order p with generator g. Let MS = MuSig[G,g, `] be the

associated MuSig multi-signature scheme. Let Ams be an adversary for game Gms-uf
MS of Figure 3.4.

We shall fix these quantities for the rest of the proof. The first lemma relates the advantage of

Ams against Gms-uf
MS to a simplied game Gmsimp (given in Fig. 3.18).

Lemma 3.15.1 Assume the execution of game Gms-uf
MS with Ams has at most q0,q1,q2,qs distinct

queries to H0,H1,H2,NS, respectively, and the number of parties (length of verification-key

vector) in queries to NS and Fin is at most n. Let α = qs(4q0 + 2q1 + qs)+ 2q1q2 and β =

q0(q0 +n). Then,

Advms-uf
MS (Ams)≤ Pr[Gmsimp(Ams)]+

α

2p
+

β

2`
. (3.45)

The second lemma constructs the reduction adversary against Gmxidl
G,g,q2,q1

.

Lemma 3.15.2 Assume the execution of game Gms-uf
MS with Ams has at most q0,q1,q2,qs distinct

queries to H0,H1,H2,NS, respectively. We construct an adversary Axidl for game Gmxidl
G,g,q2,q1

(shown explicitly in Figure 3.23) such that

Pr[Gmsimp(Ams)]≤ Advxidl
G,g,q2,q1

(Axidl) . (3.46)

Proof of Lemma 3.15.1:

The proof uses a game sequence. Our games will implement H0,H1,H2 with lazy sam-

pling, maintaining tables HF0,HF1,HF2 for this purpose. They will provide oracles Sign0,Sign1

while omitting Sign2, since this round returns to the adversary only a quantity it could itself

compute already. In Fin (for example Figure 3.19) we assume the query is non-trivial, meaning

lines 6,7 of Figure 3.4 return true, and these lines are thus omitted. We start with games Gm0,Gm1
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Init:
1 (pk,sk)←$MS.Kg ; Return pk

NS(k, pppkkk,m):
2 u← u+1 ; ku← k ; pppkkk[1]← pk ; pppkkku← pppkkk ; mu← m ; nu← |pppkkk|
3 tu,1←${0,1}` ; Return tu,1

Sign1(s,RRR):
4 k← ks ; RRR[k]← Rs,k

5 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

6 If (∃ i : yi 6= ttts[i] ) then Return ⊥ else Return zs,k

Sign0(s, ttt):
7 k← ks ; ttt[k]← ts,k ; ttts← ttt

8 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k
9 For i = 1, . . . ,ns do

10 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

11 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

12 Rs←∏
ns
i=1 RRR∗s [i]

13 HF1[(k,Rs, pppkkks,ms)]← cs,k ; Return Rs,k

H0(x):
14 If (HF0[x] 6=⊥) then Return HF0[x]

15 HF0[x]←${0,1}` ; (i,R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

H1(x):
16 If (HF1[x] 6=⊥) then Return HF1[x]

17 (R,apk,m)← x ; TV[apk]← TV[apk]∪{x}
18 HF1[x]←$ Zp ; Return HF1[x]

H2(x):
19 If (HF2[x] 6=⊥) then Return HF2[x]

20 (k, pppkkk)← x ; For i = 1, . . . , |pppkkk| do HF2[(i, pppkkk)]← ei←$ Zp

21 apk←∏
|pppkkk|
i=1 pppkkk[i]ei ; For y ∈ TV[apk] do HF1[y]←⊥

22 Return HF2[x]

Fin(pppkkk,m,(R,z)):
23 For i = 1, . . . , |pppkkk| do ci←H1((i,R, pppkkk,m)) ; ei←H2((i, pppkkk))

24 X ←∏
|pppkkk|
i=1 pppkkk[i]ei·ci ; Return (gz = RX)

Figure 3.18: Game Gmsimp for proof of Theorem 3.6.1.
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Init: // Games Gm0–Gm9

1 (pk,sk)←$MS.Kg ; Return pk

NS(k, pppkkk,m): // Games Gm0 , Gm1

2 u← u+1 ; ku← k ; pppkkk[k]← pk ; pppkkku← pppkkk

3 mu← m ; nu← |pppkkk| ; CommitStageu← true

4 ru,k←$ Zp ; Ru,k← gru,k ; tu,k←${0,1}`

5 If (∃u′ < u : Ru,ku = Ru′,ku′ ) then bad← true ; tu,ku ← tu′,ku′

6 If (HF0[(k,Ru,k)] 6=⊥) then bad← true ; tu,k← HF0[(k,Ru,k)]

7 Return tu,k

Sign0(s, ttt): // Games Gm0,Gm1

8 ttt[k]← ts,k ; ttts← ttt ; CommitStages← false

9 HF0[(k,Rs,k)]← ts,k ; Return Rs,k

Sign1(s,RRR): // Games Gm0,Gm1,Gm2

10 RRR[k]← Rs,k

11 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

12 If (∃ i : yi 6= ttts[i] ) then Return ⊥
13 Rs←∏

ns
i=1 RRR[i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

14 Return zs,k

H0(x): // Games Gm0 , Gm1

15 If (HF0[x] 6=⊥) then Return HF0[x]

16 HF0[x]←${0,1}` ; If (∃u′ : x = (ku′ ,Ru′,ku′ ) and CommitStageu′ ) then

17 bad← true ; HF0[x]← tu′,ku′

18 Return HF0[x]

H1(x): // Games Gm0–Gm7

19 If (HF1[x] 6=⊥) then Return HF1[x]

20 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Games Gm0–Gm7

21 If (HF2[x] 6=⊥) then Return HF1[x]

22 HF1[x]←$ Zp ; Return HF1[x]

Fin(k, pppkkk,m,(R,z)): // Games Gm0–Gm9

23 For i = 1, . . . , |pppkkk| do ci←H1((i,R, pppkkk,m)) ; ei←H2((i, pppkkk))

24 X ←∏
|pppkkk|
i=1 pppkkk[i]ei·ci ; Return (gz = RX)

Figure 3.19: Games Gm0,Gm1 for proof of Theorem 3.6.1. Some procedures will be included
in later games, as indicated. A box around the name of a game following an oracle means the
boxed code in that oracle is included in the game.
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in Figure 3.19. Game Gm0 includes the boxed code, and we claim that

Advms-uf
MS (A) = Pr[Gm0(A)] . (3.47)

Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [19]

Pr[Gm0(A)]≤ Pr[Gm1(A)]+Pr[Gm1(A) sets bad] .

The probability of setting bad at line 4 is at most (0+1+ · · ·+qs−1)/p, while the probabilities

of setting it at line 5 and 15 are at most qsq0/p so

Pr[Gm1(A) sets bad]≤ qs(qs−1)
2p

+2 · qsq0

p
=

qs(4q0 +qs−1)
2p

.

Game Gm2 changes the NS,Sign0,H0 oracles as shown in Figure 3.20, maintaining the

other oracles of Gm1 from Figure 3.19. It drops redundant code, which allows it to move the

choice of Rs,1 to line 29. At line 31, it also introduces a table HI to maintain an inverse of the

hash function, but does not yet use this. We have

Pr[Gm1(A)] = Pr[Gm2(A)] .

Game Gm3 (oracles shown across Figures 3.20 and 3.19) aims to figure out the Rs, j-values of

parties j 6= k before having to supply Rs,k, because we will later need these to program H1 values.

It does this by “inverting” the BN-commitments, meaning at line 27 it seeks inputs to H0 that

result in the BN-commitments in ttt. If these cannot be found, then random values are chosen

instead at line 37. (Not finding the inverses is not yet a bad event. It can happen with high

probability. It becomes a bad event only at line 37 when the BN-commitments are verified.) The

computation of t at that line is only to ensure that H0 has been called; this variable will not be
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NS(k, pppkkk,m): // Games Gm2–Gm9

25 u← u+1 ; ku← k ; pppkkk[.]← pk ; pppkkku← pppkkk ; mu← m ; nu← |pppkkk|
26 tu,k←${0,1}` ; Return tu,k

Sign0(s, ttt): // Game Gm2

27 k← ks ; ttt[.]← ts,k ; ttts← ttt ; rs,k←$ Zp ; Rs,k← grs,k ; HF0[(k,Rs,k)]← ts,k
28 Return Rs,k

Sign0(s, ttt): // Games Gm3,Gm4

29 k← ks ; ttt[k]← ts,k ; ttts← ttt ; rs,k←$ Zp ; Rs,k← grs,k ; HF0[(k,Rs,k)]← ts,k
30 For i = 1, . . . ,ns do

31 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

32 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

33 Return Rs,k

Sign1(s,RRR): // Games Gm3, Gm4

34 RRR[k]← Rs,k

35 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

36 If (∃ i : yi 6= ttts[i] ) then Return ⊥
37 If (RRR 6= RRR∗s ) then bad← true ; RRR← RRR∗s
38 Rs←∏

ns
i=1 RRR[i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

39 Return zs,k

H0(x): // Games Gm2–Gm9

40 If (HF0[x] 6=⊥) then Return HF0[x]

41 HF0[x]←${0,1}` ; (i,R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

Figure 3.20: Games for proof of Theorem 3.6.1.

used. These steps do not change what the oracles return compared to Gm2, so we have

Pr[Gm2(A)] = Pr[Gm3(A)] .

Moving to game Gm4, the change is only at line 33, which now includes the boxed code. The

hope here is that the RRR∗s obtained at lines 32,33 is correct with high probability. The boxed code

ensures that in Gm4, it is always correct. Since Gm3,Gm4 are identical-until-bad we have

Pr[Gm3(A)]≤ Pr[Gm4(A)]+Pr[Gm3(A) sets bad] .
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Sign0(s, ttt): // Game Gm5

42 k← ks ; ttt[k]← ts,k ; ttts← ttt ; rs,k←$ Zp ; Rs,k← grs,k ; HF0[(k,Rs,k)]← ts,k
43 For i = 1, . . . ,ns do

44 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

45 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

46 Rs←∏
ns
i=1 RRR∗s [i] ; cs,k←H1((k,Rs, pppkkks,ms)) ; zs,k← sk · cs,k + rs,k

47 Return Rs,k

Sign1(s,RRR): // Game Gm5–Gm9

48 k← ks ; RRR[k]← Rs,k

49 For i = 1, . . . ,ns do yi←H0((i,RRR[i]))

50 If (∃ i : yi 6= ttts[i] ) then Return ⊥ else Return zs,k

Sign0(s, ttt): // Game Gm6 , Gm7–Gm9

51 k← ks ; ttt[k]← ts,k ; ttts← ttt

52 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k
53 For i = 1, . . . ,ns do

54 If (HI0[i, ttts[i]] 6=⊥) then RRR∗s [i]← HI0[i, ttts[i]]

55 Else RRR∗s [i]←$ G ; t←H0((i,RRR∗s [i]))

56 Rs←∏
ns
i=1 RRR∗s [i]

57 If (HF1((k,Rs, pppkkks,ms)) 6=⊥) then bad← true ; cs,k← HF1[(k,Rs, pppkkks,ms)]

58 HF1[(k,Rs, pppkkks,ms)]← cs,k ; Return Rs,k

Figure 3.21: Games for proof of Theorem 3.6.1.

Line 38 can only set bad if yi = ttts[i] for all i, due to line 37. So it is set only if there is a collision

in H0-values, or no query hashing to ttts[i] was made prior to the latter being provided, but is made

later. Thus

Pr[Gm3(A) sets bad]≤ q2
0 +nq0

2`
. (3.48)

In game Gm4, the RRR queried to Sign1 is the same as the RRR∗ determined in Sign0, allowing

game Gm5 (Figure 3.21) to move line 38 into Sign0 as line 46 and to simplify Sign1. We have

Pr[Gm4(A)] = Pr[Gm5(A)] .
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H1(x): // Game Gm8,Gm9

59 If (HF1[x] 6=⊥) then Return HF1[x]

60 (R,apk,m)← x ; TV[apk]← TV[apk]∪{x}
61 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Game Gm8, Gm9

62 If (HF2[x] 6=⊥) then Return HF2[x]

63 (·, pppkkk)← x ; For i = 1, . . . , |pppkkk| do HF2[(i, pppkkk)]← ei←$ Zp

64 apk←∏
|pppkkk|
i=1 pppkkk[i]ei

65 If TV[apk] 6=⊥ then

66 bad← true ; For y ∈ TV[apk] do HF1[y]←⊥
67 Return HF2[x]

Figure 3.22: Games for proof of Theorem 3.6.1.

Now that Rs is determined prior to the release of Rs,ks , it becomes possible to successfully program

H1 via the zero-knowledge simulation. Game Gm6 of Figure 3.21 does this, setting bad at line 57

if the programming was precluded by the hash value already being defined, and including the

boxed code to correct. We have

Pr[Gm5(A)] = Pr[Gm6(A)] .

Games Gm6,Gm7 (Figure 3.21) are identical-until-bad, so

Pr[Gm6(A)]≤ Pr[Gm7(A)]+Pr[Gm7(A) sets bad] . (3.49)

When line 57 is executed, the adversary has as yet no information about Rs, which means

Pr[Gm7(A) sets bad]≤ qsq1

p
. (3.50)

Moving on, let us consider games Gm8 and Gm9 in Fig. 3.22, which differ from Gm7 in modi-

fications to oracles H1 and H2. Oracle H1 now keeps track of a table TV, that stores for each

aggregate key apk the set of H1 queries that contain it. It otherwise behave identically to Gm7.H1.
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Adversary ACh
xidl(pk):

1 (pppkkk,m,(R,z))←$ ANS,Sign0,Sign1,H0,H1,H2(pk)

2 apk←∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)) ; Return (TI[(apk,R,m)],z)

H1(x):

3 If (HF1[x] 6=⊥) then Return HF1[x]

4 (R,apk,m)← x ; TV[apk]← TV∪{x}
5 If (TJ[apk] =⊥) then Return HF1[x]←$ Zp

6 ι← ι+1 ; TI[x]← ι

7 HF1[x]← cι←$Ch(TJ[apk],R) ; Return HF1[x]

H2(x):

8 If (HF2[x] 6=⊥) then Return HF2[x]

9 (·, pppkkk)← x ; If (pk 6∈ pppkkk) then Return HF2[x]←$ Zp

10 j← j+1 ; k←minInd(pk, pppkkk) ; If (x 6= (k, pppkkk)) then Return HF2[x]←$ Zp

11 S←∏i6=k pppkkk[i]H2((i,pppkkk))

12 HF2[x]← e j←NwTar(S) ; apk← S ·pke j ; TJ[apk]← j

13 For y ∈ TV[apk] do HF1[y]←⊥
14 Return HF2[x]

Figure 3.23: Adversary Axidl for Theorem 3.6.1. Oracles NS,Sign0,Sign1,H0 are copied
from game Gmsimp (Fig. 3.18).

Oracle Gm8.H2 does not contain the boxed code, which makes the oracle behave identically to

Gm7.H2. So, we have

Pr[Gm7(A)] = Pr[Gm8(A)] . (3.51)

By construction, Gm7 and Gm8 are identical-until-bad, hence

Pr[Gm8(A)]≤ Pr[Gm9(A)]+Pr[Gm8 sets bad] (3.52)

≤ Pr[Gm9(A)]+
q1q2

p
, (3.53)

where the last inequality is by the fact that each H2 query has probability at most q1/p of

setting bad. Lastly, we note that Gm9 and Gmsimp are identical. This completes the proof of

Lemma 3.15.1.
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Proof of Lemma 3.15.2: Consider Axidl in Figure 3.23. It forwards the public key pk to

Ams. Simulating signatures without knowing the secret key can be done exactly as Gmsimp.

To break Gmxidl
G,g,q2,q1

, our adversary Axidl needs to program H1 and H2. For each H2 query,

Line 10 to 12 programs the response e j for the target public key by first deriving commitment

S = ∏i 6=k pppkkk[i]ei , which is then submitted to NwTar to derive ek that is returned as the response.

By construction, the corresponding aggregate public key apk = S ·pkek is exactly the target Tj

recorded by Gmxidl
G,g,q2,q1

for this NwTar query. For each H1 query, our adversary first uses the

aggregate public key apk find the corresponding H2 query via table TJ. If possible, then the

adversary proceeds to program in a challenge using the challenge oracle Ch of XIDL. If this is

not possible, the advesary simply simulates H1 honestly. If a forgery (pppkkk,m,(R,z)) is valid, then

it must be that

gz = R ·
|pppkkk|
∏
i=1

apkH1((R,apk,m)) ,

where apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)). Observe that call involving a fresh vector pppkkk to oracle H2

erases the table HF1 at every entry associated with the derived apk. Hence, our adversary can

use the above relation to directly break XIDL. In other words, the value of z included in the

forgery makes the following equation true in game Gmxidl
G,g,q2,q1

, gz = R ·T ci
j , where j = TJ[apk]

and i = TI[(R,apk,m)]. This justifies Equation (3.46).

3.16 Proof of Theorem 3.7.1

The first step in the proof is to move from the security game Gms-uf
MS to a game where

the signing oracles can be simulated without the target secret key. We encapsulate this in the

lemma below, which works strictly in the standard model, meaning it does not require adversaries

involved to be algebraic. This allows our latter standard model proof of security for HBMS to

also rely on this lemma.
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Lemma 3.16.1 Let G be a group of prime order p with generator g. Let MS= HBMS[G,g] be

the scheme specified in Fig. 3.8. Let Ams be an adversary for game Gms-uf
MS of Fig. 3.4. Assume

the execution of game Gms-uf
MS with Ams has at most q0,q1,q2 distinct queries to H0,H1,H2

respectively. Let ρ ∈ [0,1] be a real number. Consider games Gm0 and Gm1,ρ give in Fig. 3.24.

Then,

Advms-uf
MS (Ams) = Pr[Gm0(Ams)] (3.54)

= Pr[Gm1,ρ(Ams) | Gm1,ρ(Ams) does not abort ] . (3.55)

Moreover, the probability that game Gm1 does not abort is

Pr[Gm1,ρ(Ams) does not abort ] = ρ
q0 , (3.56)

which is 1 if ρ = 1.

Proof of Lemma 3.16.1: Consider games Gm0 and Gm1,ρ given in Fig. 3.24. Game Gm0 is

simply a rewrite of Gms-uf
MS , where H0,H1,H2 are lazily sampled. We fix the given adversary Ams

for the rest of the proof and omit writing it in expression such as Pr[Gm0(Ams)] for simplicity.

Game Gm1,ρ is parameterized by a real number ρ ∈ [0,1], and changes the code of NS, Sign1

and H0. The changes are made so that Sign1 does not use the secret key sk, but will however

preserve the output distribution of all oracles when it does not abort, as we will show below. In

particular, for each H0 query, game Gm1 makes a guess, by flipping a biased coin Coin(ρ), which

has probability ρ of returning 1 and probability 1−ρ of returning 0. If the coin flip returns 1,

then we set the output of H0(x) to be gβgpkβpk , otherwise we set the output of H0(x) to be gβg .

In either case, βg and βpk are uniformly chosen at random as per line 25.

Looking ahead, Gm1,ρ will be able to simulate signatures for pppkkk,m when H0(pppkkk,m) is

set to gβgpkβpk (when the coin toss returns 1). In fact, ρ is set to 1 in deriving the AGM result
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Game Gm0, Gm1,ρ, Gm2,ρ

Init:
1 (pk,sk)←$MS.Kg ; Return pk

NS(k, pppkkk,m):
2 pppkkk[k]← pk ; u← u+1

3 ku← k ; mu← m

4 pppkkku← pppkkk ; h←$H0((pppkkk,m))

5 apku←∏
n
i pk

H2((i,pppkkk))
i

6 au,bu←$ Zp ; Tu,k← gauhbu

7 Return Tu,k

Sign1(v, in):
8 (Tv,1, . . . ,Tv,n)← in ; Tv←∏

n
i=1 Tv,i

9 cv←H1((Tv,apkv,mv))

10 ev←H2((kv, pppkkk))

11 Gm0:

12 zv← av + sk · ev · cv mod p

13 sv← bv

14 Gm1,ρ,Gm2,ρ:

15 (w,βg,βpk)← TH[(pppkkkv,mv)]

16 If (w 6= pk) then abort

17 sv← bv + ev · cv ·β−1
pk mod p

18 zv← av +βg ·bv−βg · sv mod p

19 Return (sv,zv)

Sign2(v, in):
20 (t1, . . . , tn)← in ; t← ∑i ti
21 (s,z)← t ; Return (Tv,s,z)

H0(x): // Gm0

22 If HF0[x] =⊥ then HF0[x]←$ G

23 Return HF0[x]

H0(x): // Gm1,ρ,Gm2,ρ

24 If HF0[x] 6=⊥ then Return HF0[x]

25 βg←$ Zp ; βpk←$ Z∗p
26 If (Coin(ρ) = 1) then

27 HF0[x]← gβgpkβpk

28 TH[x]← (pk,βg,βpk)

29 Else

30 HF0[x]← gβg

31 TH[x]← (g,βg,βpk)

32 Return HF0[x]

Hi(x): // i ∈ {1,2}
33 If (HFi[x] =⊥) then HFi[x]←$ Zp

34 Return HFi[x]

Fin(pppkkk,m,(T,s,z)):
35 If (pppkkk[k] 6= pk) then return false

36 If (pppkkk,m) ∈ {(pppkkki,mi) : 1 ≤ i ≤ u} then return
false

37 h←H0((pppkkk,m))

38 Gm2,ρ:

39 (w,βg,βpk)← TH[pppkkk,m]

40 If (w 6= g) then abort

41 (pk1, . . . ,pkn)← pppkkk

42 apk←∏
n
i pk

H2((i,pppkkk))
i

43 c←H1((T,apk,m))

44 Return (gzhs = T ·apkc)

Figure 3.24: Games Gm0, Gm1,ρ, and Gm2,ρ, where ρ ∈ [0,1] is a real number, used in
Lemma 3.16.1 and proof of Theorem 3.7.2. Notation Coin(ρ) denotes flipping of a biased coin
with probability ρ of giving 1 and 1−ρ of giving 0.

and the coin toss never returns 0. However, for the standard model result, we will need to make

sure that the H0 query corresponding to the forgery pk,m is programmed differently, namely that

H0((pppkkk,m)) = gβg .

Game Gm1,ρ could abort at line 16 (it is assumed that the adversary losses the game if
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Gm1 is aborted). By construction, we have

Pr[Gm1 does not abort] = ρ
q0 . (3.57)

We claim that, for any value of ρ, if game Gm1 does not abort, then it is indistinguishable from

Gm0 to the adversary. In particular, we claim

Pr[Gm1 | Gm1 does not abort] = Pr[Gm0] . (3.58)

Showing this amounts to showing that the outputs of Sign1 oracle in either games are distributed

identically. Observe that, in game Gm0, the return value Tv of NS and (sv,zv) of Sign1 are

uniformly distributed subjected to the constraint that

gzvH0((pppkkkv,m))sv = Tv,k ·pkevcv .

We will show that this is also true in Gm1,ρ, namely that Sign0 and Sign1 in Gm1,ρ also returns

Tv,k and (sv,zv) that are uniformly distributed subjected to the above equation. In game Gm1,ρ, if

w = pk at line 15, then h =H0((pppkkkv,m)) = gβgpkβpk , by construction of H0 (line 27). Hence,

for a query Sign1(v,(Tv,1, . . . ,Tv,n)) of game Gm1,ρ, it holds that

Tv,kv ·pkevcv = gav ·hbv ·pkevcv = gav · (gβgpkβpk )bv ·pkevcv

= gav+βg·bv ·pkβpk ·bv+evcv .

We claim that the above is also equal to gzv ·hsv . In fact, we set zv,sv on line 17 and 18 exactly to
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Adversary Adl(X):

1 vk← X ; (k, pppkkk,m,(T,s,z))←$ ANS,Sign1,Sign2,H0,H1,H2
ms (vk)

2 If (pppkkk[k] 6= X) then return ⊥
3 If (pppkkk,m) ∈ {(pppkkki,mi) : 1≤ i≤ u} then return ⊥
4 If not MS.VfH0,H1,H2(pppkkk,m,σ) then return ⊥
5 (w,βg,βpk)← TH[pppkkk,m] ; apk←∏

|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk))

6 c←H1((T,apk,m)) ; For i = 1, . . . , |pppkkk| do ei←H2((i, pppkkk))

7 αg← z+βg−Ext(T,g)− c ·∑i6=k Ext(pppkkk[i],g) · ei

8 αX ←−s ·βpk +Ext(T,X)+ c · (ek +∑i6=k Ext(pppkkk[i],X) · ei)

9 If (αX = 0) then bad← true ; x′←$ Zp

10 Else x′← αgα
−1
X mod p

11 Return x′

Figure 3.25: Adversary Adl for Theorem 3.7.1, oracles NS,Sign1,Sign2,H0,H1,H2 are
implemented using the exact code as those in Gm1,1. Notation Ext(·,g) and Ext(·,X) are
defined in the proof of Lemma 3.7.2. Computation of αg and αX are done modulo p.

make this true. To verify this, check that

gzvhsv = gav+βg·bv−βg·sv(gβgpkβpk )sv = gav+βg·bvpkβpk ·sv

= gav+βg·bv ·pkβpk ·bv+evcv .

Additionally, notice that sv,zv are both marginally uniform over Zp by construction. This means

the outputs of Sign0,Sign1 oracle from Gm1,ρ has the same output distribution compared to that

of Gm0. This justifies Equation (3.58).

Equipped with Lemma 3.16.1, we move on to prove Theorem 3.7.1. The proof constructs

adversary Adl that simulates Gm1,1 (with ρ set to 1).

Proof of Theorem 3.7.1: Consider the games Gm0 and Gm1,1 (with ρ = 1) in Fig. 3.24. We

know that,

Pr[Gm0] = Pr[Gm1,1 | Gm1,1 does not abort] .
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Moreover,

Pr[Gm1,ρ does not abort] = ρ
q0 = 1,

when ρ = 1. Hence, game Gm1,1 never aborts and Pr[Gm0] = Pr[Gm1,1] . We shall construct an

adversary Adl, using the fact that given adversary Aalg
ms is algebraic, directly against game Gmdl

G,g.

We first analyze the group elements involved in the inputs and outputs of oracles of Gm1,1.

The u-th NS query takes in a list of group elements pppkkku. The v-th Sign1 query takes in a list of

group elements (Tv,1, . . . ,Tv,n). The i-th H2 query take in a list of group elements pppkkkH2,i. The i-th

H1 query (T,apk,m) takes in group elements TH1,i and apkH1,i. Above are the exhaustive list of

group elements that are given to Gm1,1, let us denote this list by out, since they are the output of

the adversary. The initial query to Init outputs a group element pk. The u-th NS query gives

out a group element Tu,ku . The i-th H0 query gives out a group element hi. The last query to Fin

gives group elements T (first component of the forged signature) and pk. Above (plus the group

generator g) are the exhaustive list of group elements that are given out to the adversary Aalg
ms . Let

us denote this list as in. Hence, the algebraic adversary Aalg
ms gives, for each group element in the

list out, a vector that is of dimension |in| which is a valid representation of the corresponding

group element. Note that every group element in the list in is derived using only group operations

on two group elements: g and pk (this is by the construction of game Gm1,1). As a result, every

group element in the list out can be represent using g and pk only. For any Y ∈ out, we use

Ext(Y,g) and Ext(Y,pk) to denote this representation, i.e.

Y = gExt(Y,g) ·pkExt(Y,pk) .

We forego writing explicit code deriving these representations, with the understanding that they

are well-defined and can be computed easily from the oracle queries of Aalg
ms . We will use this

notation freely in simulations of Gm1,1.

We move on to giving adversary Adl, which simulates Gm1,1 for Aalg
ms . Our adversary Adl is
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given in Fig. 3.25. Our adversary Adl simulates oracles NS,SignStage1,SignStage2,H0,H1

exactly as Gm1,1, hence their code are omitted. As stated above, since Adl simulates Gm1,1, the

representation of any group element Y ∈ out are available via scalars Ext(Y,g) and Ext(g,pk).

Our adversary uses these scalars to compute the discrete log x′.

If Aalg
ms gives a valid forgery (pppkkk,m,(T,s,z))1 then the verification equation says that

gzH0((pppkkk,m))s = T ·apkH1((T,apk,m)) ,

where apk = ∏
|pppkkk|
i=1 pppkkk[i]H2((i,pppkkk)). Since every group element in the above equation can be

represented using g and X , one can solve for DLG,g(X). Our adversary Adl implements this

intuition, computing value αg and αX (line 7 and 8) such that gαg = XαX . The only caveat is that

αX could be 0, in which case DLG,g(X) cannot be solved for. When αX = 0 adversary Adl sets

bad, and we would like to upperbound the probability of this event. First, note that the view of

adversary Ams is independent of the value of βpk . This is because the adversary is only given

the value of h = gβgpkβpk . So, if the forgery is such that s 6= 0, then αX = 0 with probability at

most 1/p. If s = 0, then we need to make sure that Ext(T,X)+ c · (ek +∑i6=kExt(pppkkk[i],X) · ei)

is not zero. We first bound the probability that there exists some query H2((·, pppkkk′)) (which

defines the values of e′1, . . . ,e
′
|pppkkk′|) such that e′k +∑i 6=kExt(pppkkk′[i],X) · e′i = 0 (call this quantity

γpppkkk′). This happens with probability at most q2/p. Suppose the above does not happen, then

for each query H1((T ′,apk′,m′)) (which defines the value of c′), where apk′ is the aggregate

key of some vector pppkkk′, the probability that Ext(T ′,X)+ c′ · γpppkkk′ = 0 is at most q2/p, accounting

for at most q2 non-zero values that γpppkkk′ could take. This results in an overall bad probability of

q2/p+q1q2/p = (q1 +1)q2/p. This justifies Equation (3.7).

1Note that for the fogery pppkkk,m,(T,s,z) returend, the corresponding random oracles queries H0((pppkkk,m)),
H1((T,apk,m)), and H2((i, pppkkk)) are made in line 4 to 6, even if these points were previously unqueried during the
execution of Aalg

ms .
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H1(x): // Game Gm3,Gm4

45 If (HF1[x] 6=⊥) then Return HF1[x]

46 (T,apk,m)← x ; TV[apk]← TV[apk]∪{x}
47 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Game Gm3,Gm4

48 If (HF2[x] 6=⊥) then Return HF2[x]

49 (·, pppkkk)← x ; For i = 1, . . . , |pppkkk| do HF2[(i, pppkkk)]← ei←$ Zp

50 apk←∏
|pppkkk|
i=1 pppkkk[i]ei

51 If TV[apk] 6=⊥ then BadSet← BadSet∪TV[apk]

52 Return HF2[x]

Fin(pppkkk,m,(T,s,z)): // Game Gm3, Gm4

53 If (pppkkk[k] 6= pk) then return false

54 If (pppkkk,m) ∈ {(pppkkki,mi) : 1≤ i≤ u} then return false

55 (w,βg,βpk)← TH[pppkkk,m] ; If (w 6= g) then abort

56 (pk1, . . . ,pkn)← pppkkk ; apk←∏
n
i pk

H2((i,pppkkk))
i

57 If ( (T,apk,m) ∈ BadSet ) then bad← true ; HF1[(T,apk,m)]←⊥
58 c←H1((T,apk,m)) ; h←H0((pppkkk,m))

59 Return (gzhs = T ·apkc)

Figure 3.26: Games Gm3 and Gm4 for proof of Theorem 3.7.2. Oracles Init, NS, Sign1,
Sign2, and H0 are the same as those in Gm2,ρ. Parameter ρ is set to (1− (1+qs)

−1) in oracle
H0.

3.17 Proof of Theorem 3.7.2

Proof of Theorem 3.7.2: We will start by considering Gm1,ρ given in Fig. 3.24. By Lemma 3.16.1,

Advms-uf
MS (Ams) = Pr[Gm1,ρ(Ams) | Gm1,ρ(Ams) does not abort] .

Towards construction of an adversary against XIDL, consider game Gm2,ρ (Fig. 3.24), differ from

Gm1,ρ only at line 40–it aborts if the coin flip corresponding to the forgery target (pppkkk,m) results

in w = g. Marginally, Gm2,ρ does not abort at line 40 with probability (1−ρ). We need to lower

bound the probability of Gm2,ρ not aborting overall, at either line 16 or line 40. Since there are

overall qs unique queries to NS in the execution of Gm0 with Ams, then the probability that Gm1
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Adversary ANwTar,Ch,Fin
xidl (X):

1 pk← X ; (k, pppkkk,m,σ)←$ ANS,Sign1,Sign2,H0,H1,H2
ms (pk)

2 If (pppkkk[k] 6= pk) then return ⊥
3 If (pppkkk,m) ∈ {(pppkkki,mi) : 1≤ i≤ u} then return ⊥
4 (w,βg,βpk)← TH[pppkkk,m] ; If (w 6= g) then abort

5 (pk1, . . . ,pkn)← pppkkk ; apk←∏
n
i pk

H2((i,pppkkk))
i ; (T,s,z)← σ

6 If ( (T,apk,m) ∈ BadSet ) then HF1[(T,apk,m)]←⊥
7 c←H1((T,apk,m)) ; h←H0((pppkkk,m)) ; i← TI[(T,apk,m)]

8 Return (i,(z+ s ·βg) mod p)

H1(x):

9 If (HF1[x] 6=⊥) then Return HF1[x]

10 (T,apk,m)← x

11 TV[apk]← TV[apk]∪{x}
12 If (TJ[apk] =⊥) then

13 Return HF1[x]←$ Zp

14 ι← ι+1 ; TI[x]← ι

15 HF1[x]← cι←$Ch(TJ[apk],T )

16 Return HF1[x]

H2(x):

17 If (HF2[x] 6=⊥) then Return HF2[x]

18 (·, pppkkk)← x ; If (pk 6∈ pppkkk) then

19 Return HF2[x]←$ Zp

20 j← j+1 ; k←minInd(pk, pppkkk)

21 If (x 6= (k, pppkkk)) then

22 Return HF2[x]←$ Zp

23 S←∏i 6=k pppkkk[i]H2((i,pppkkk))

24 HF2[(k, pppkkk)]← e j←NwTar(S)

25 apk← S ·pke j ; TJ[apk]← j

26 If TV[apk] 6=⊥ then

27 BadSet← BadSet∪TV[apk]

28 Return HF2[x]

Figure 3.27: Adversary Axidl used in Theorem 3.7.2. Oracles NS,Sign1,Sign2,H0 are simu-
lated exactly per code from Fig. 3.24.

does not abort is exactly

Pr[Gm2(Ams) does not abort] = ρ
qs(1−ρ) .

Setting ρ = (1− (1+qs)
−1), we have that

Pr[Gm2(Ams) does not abort] = (1− (1+qs)
−1)qs(1+qs)

−1 ≥ 1
e(1+qs)

,
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where we applied the fact that (1− (1+n)−1)n ≥ e−1 for positive n. Since game Gm2 can only

abort more often than Gm1 and that the aborting at line 40 is an event independent of whether

Ams succeeds, Equation (3.58) gives us that

Pr[Gm0(Ams)] = Pr[Gm2(Ams) | Gm2(Ams) does not abort] .

Hence,

Pr[Gm2,ρ(Ams)]≥
1

e(1+qs)
·Pr[Gm0(Ams)] . (3.59)

For the rest of the proof, we set ρ = (1− (1+qs)
−1) and omit writing them in the subscript for

games. Next, we need to further modify oracles H1 and H2 so that whenever H2 derives a fresh

aggregate key apk, it must not have been queried to H1 (in the form of (T,apk,m) for any T and

m). Formally, consider games Gm3 and Gm4 given in Fig. 3.26. These games also keep track of a

set BadSet, which contains those H1 queries (T,apk,m) such that the aggregate key apk is later

derived in H2 (line 51). By construction, if any H1 query (T,apk,m) is not in BadSet (at the end

of the game execution), the aggregate key apk is either previosly derived in H2, or it has never

been derived in any H2 query. Game Gm3.Fin does not contain the boxed code, which makes

the oracle behave identically to Gm2.H2. So, we have

Pr[Gm2(A)] = Pr[Gm3(A)] . (3.60)

Oracle Gm4.H2 contains the boxed code, which reset the oracle H1 at the chosen forgery point

(T,apk,m) if it is part of BadSet. This ensures the value HF1[(T,apk,m)] to always be defined

after the H2 query that derives aggregate key apk. By construction, Gm3 and Gm4 are identical-

until-bad. So,

Pr[Gm3(A)]≤ Pr[Gm4(A)]+Pr[Gm4 sets bad] . (3.61)
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We first compute that probability that BadSet is non-empty at line 57. Since each H2 query has

probability at most q1/p probability of adding elements to BadSet, we can bound

Pr[BadSet 6= /0 at line 57 ]≤ q1q2

p
. (3.62)

Note that flag bad can only be set if Gm4 did not abort (in oracle H0 or line 55), which happens

with probability 1/(e(1+qs)) by previous analysis. Furthermore, the view of the adversary is

independent of whether game Gm4 aborts. Hence,

Pr[Gm4(A) sets bad]≤ q1q2

ep(1+qs)
. (3.63)

We now move on to the construction of the adversary, given in Fig. 3.27. The adversary Axidl

runs Ams while giving it simulated oracle H0,H1,H2,NS,SignStage1,SignStage2. Code

for H0,NS,Sign1,Sign2 are copied from game Gm4. The only new code here is in H1 and H2,

which we now explain.

For each j-th H2 query x = (·, pppkkk), where HF2[x] is not yet defined the adversary will

sample HF2[(i, pppkkk)] for each i = 1, . . . , |pppkkk| as follows. If the target public key X is not in pppkkk,

then these values are sampled honestly (line 15). Otherwise, let k be the smallest index such

that pppkkk[k] = X . Our adversary will query the NwTar oracle from Gmxidl
G,g,q2,q1

game so that the

resulting aggregate public key apk is the target point Tj generated by the game Gmxidl
G,g,q2,q1

. This

is done by first computing the partial aggregation value of S (line 17), before submitting it to the

NwTar oracle to obtain response e j which is set as the output of H2 (line 19).

For each H1 query (T,apk,m), the adversary will submit the commitment to the oracle

Ch, at the index that corresponds to the aggregate public key apk. This is done so that a forgery

(T,s,z) corresponding to this H1 query can be turned into a break against Gmxidl
G,g,q2,q1

. Here, we

are also utilizing the fact that a successful forgery (pppkkk,m,(T,s,z)) is such that H0((pppkkk,m)) is a
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known power of g. Hence, the verification equation

gzhs = T ·apkH1((T,apk,m)) ,

of the signature scheme implies that the computed response z+βgs, against the game Gmxidl
G,g,q2,q1

,

is valid, i.e. gz+βgs = T ·TH1((T,apk,m))
j , where Tj = apk is the j-th target point generated by

NwTar oracle. Hence,

Pr[Gm4(Ams)] = Pr[Gmxidl
G,g,q2,q1

(Axidl)] . (3.64)

Putting Equation (3.59), (3.60), (3.61) and (3.64) together, we obtain the result claimed in the

theorem.

3.18 Acknowledgements

We thank the ASIACRYPT 2021 reviewers for their careful reading and valuable com-

ments.

Bellare was supported in part by NSF grant CNS-1717640 and a gift from Microsoft. Dai

was supported in part by a Powell Fellowship and grants of the Bellare.

Chapter 3, in full, is a repreint of the material as it appears in International Conference on

the Theory and Application of Cryptology and Information Security, Asiacrypt 2021. Bellare,

Mihir; Dai, Wei. Springer, 2021. The dissertation author was the primary investigator and author

of this paper.

183



Bibliography

[1] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification
to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 418–433. Springer, Heidelberg, April / May 2002.

[2] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety
of keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432.
Springer, Heidelberg, December 2002.

[3] Handan Kilinc Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via
delinearized witnesses. Cryptology ePrint Archive, Report 2020/1245, 2020. https:
//eprint.iacr.org/2020/1245.
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