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ABSTRACT OF THE DISSERTATION 

 

Super resolution of Optical Fluctuation Imaging 2.0 (SOFI-2.0): 

Towards fast super resolved imaging of live cells 

by 

Xiyu Yi 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2017 

Professor Shimon Weiss, Chair 

 

Super resolution Optical Fluctuation Imaging (SOFI) has been widely acknowledged and 

advanced over the past years. Comparing to other extensively adopted super resolution 

techniques such as PALM, STORM, STED and SIM, advantages of SOFI include compatibility 

with different imaging platforms, suitability for a wide variety of probes, flexibility in imaging 

conditions, and a user-controlled trade-off between spatial- and temporal- resolutions. SOFI 

therefore holds great promise for ‘democratizing’ super resolution imaging for broad 

applications by non-expert practitioners. The theoretical resolution enhancement of SOFI scales 

as the square root of the cumulant order n, and once combined with a post-processing 

deconvolution algorithm, the resolution enhancement factor increases up to n.  In this 

dissertation I will discuss the fundamental challenges faced by high order SOFI applications 

including pixel intensity dynamic range expansion, associated artifacts, point-spread function 

(PSF) estimation, and deconvolution. Several approaches for solving these challenges will be 
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presented, that together constitute what we dub as ‘SOFI-2.0’. The power of SOFI-2.0 will be 

demonstrated for focal-adhesion dynamics (at super resolution) in live cells. 
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Chapter 1.  Introduction of optical super resolution 

 

Fluorescence microscopy is one of the most extensively used technologies in biology studies due 

to its capability to visualize specific biological structure at cellular and sub-cellular level. 

However, the spatial resolution of fluorescence microscopy is limited due to the diffraction limit 

of light, described as the Abbe’s diffraction limit [1.1] described as follows: 

 
2

d
NA


   (1.1) 

Where   is the emission wavelength and NA  is the numerical aperture of the optical system. Over 

the past decades, multiple techniques have been developed to break the diffraction limit of light to 

achieve super-resolution in fluorescence microscopy. Pioneering methods include Photo-activated 

Localization Microscopy (PALM)[1.2], Stochastic Optical Reconstruction Microscopy 

(STORM)[1.3], Stimulated Emission and Depletion Microscopy (STED)[1.4], Structure Illumination 

Microscopy (SIM)[1.5-1.7]. The principals of PALM and STORM in terms of reconstruction 

algorithms are similar, and belong to the family of Single Molecule Localization Microscopy 

(SMLM). Over the past decade many advanced versions of the methods have been developed to 

further push the super-resolution technology to further increase both the spatial and time 

resolution, as well as extending the super-resolution technology to three dimensions. In this 

chapter, an introductory discussion of the widely acknowledged super-resolution technologies will 

be discussed.  
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1.1. Single Molecule Localization Microscopy (SMLM) 

Single molecule localization microscopy achieves super-resolution through localization fitting of 

individual emitters. Two of the most widely acknowledged method within this family is PALM 

and STORM. In the practice of single molecule localization as illustrated in Figure 1.1, the feature 

of interest is labeled with fluorescence fluorophore, common fluorophores include quantum dots, 

fluorescence proteins and organic dyes. These fluorophores are then chemically or optically 

manipulated such that at given time instance, only a small portion of the fluorophores will be bright 

and form an image with a sparse distribution of individual fluorophores. Different images are 

captured at different time instances as consecutive frames to form a movie. For each frame in the 

acquired movie, single fluorophores are identified, and single molecule localization fitting is 

performed to find the locations of the fluorophores. After finding all the location of the 

fluorophores, these locations are super-imposed together to form the output image with super-

resolution. 
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Figure 1.1. Concept of Single Molecule Localization Microscopy (SMLM).  

Given a feature of interest as shown in (a), fluorescence labeling was performed. Due to the 

diffraction limit of light, the image of each individual fluorophore will be a diffraction limited 

point spread function, thus the conventional imaging result is diffraction limited as shown in (b). 

Blinking or bleaching is then induced in the fluorophores to achieve a small portion of bright 

fluorophores at a time instance. Different portion of emitters will be bright at different time 

instances, and captured in different frames in the acquired movie as shown in the upper panel of 

(c). Each single molecule is then identified and fitted to find the location of the fluorophores as 

shown in the lower panel in (c). All the localization results are super-imposed together to form the 

final super-resolution imaging as shown in (d). The single molecule localization microscopy 

provides super-resolution capability to resolve feature of interest that is too small to be observed 

with conventional imaging technique, as illustrated in the area with red circle in panel (b) and (c). 
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1.2. PALM and STORM 

Two of the most extensively adopted single molecule localization microscopy method is Photo-

activated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy 

(STORM). The major difference between these two method is the way to achieve a sparse 

population of bright fluorophores in in a single frame of the acquired movie, and will be discussed 

separately as follows: 

 

Photo-activated Localization Microscopy (PALM) 

PALM was initially introduced by Betzig, E. et al. in 2006 [1.2] that takes advantage of the bleaching 

and activation properties of photoactivable fluorescence proteins (FA-FPs). In the practice of 

PALM, FA-FPs are used to label the feature of interest. Two lasers are used to achieve an optical 

density of bright emitters at given time instance, where one laser is responsible for the excitation 

and bleaching of the FA-PAs and we call it the excitation/bleaching laser, the other laser is 

responsible for activation of the FA-PAs, we call it activation laser. The special property of FA-

FPs here is that the fluorescence protein generally has two different state, one is active and the 

other one is inactive state as illustrated in Figure 1.2. When the fluorescence protein is in its active 

state, it can absorb the photons supplied by the excitation laser, and being excited to emit light. In 

addition, this excitation laser can also turn the activated fluorescence protein into bleached state 

such that it will no longer be able to emit light. When the fluorescence protein is at its inactive 

state, it will not response to the excitation laser thus remains dark at the presence of excitation 

laser, however it can be activated by the activation laser and be turned into active state. The 

activation process is random and the rate is dependent on the activation laser power. As illustrated 

in Figure 1.3, at the initial imaging stage, in the FA-FP labeled sample, it is considered that only a 
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small portion of the fluorescence proteins are in the active states that can respond to the 

excitation/bleaching laser. The excitation/bleaching laser is initially turned on and maintained, 

only the activate FA-FPs will emit light and form images with sparse single molecules in the field 

of view. Consecutive frames are recorded, from which single molecule localization will be 

performed to each identified single molecules in each frame. As the excitation/bleaching laser is 

maintained, more and more FA-FPs are turned into the bleached state thus the total concentration 

of single molecules will decrease until the density is considered to be larger than the density 

requirement for single molecule identification. Then the activation laser is supplied in the form of 

a pulse. During this pulse, a small portion of the previously inactive fluorescence protein will be 

transformed into the active state thus will respond to the excitation/bleaching laser, thus irradiates 

light and becomes bleached after prolonged excitation. The process is repeated until adequate 

amount of data is acquired. Single molecule localization is performed for each data set where 

single emitters can be identified, and the localization result will be overlaid together to yield the 

final PALM image. 
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Figure 1.2. Property of Photoactivable Fluorescence Proteins (FA-FPs). 

As illustrated above, the FA-FPs can be activated by the activation laser, and be excited by the 

excitation/bleaching laser to turn into irradiation state (bright). Prolonged excitation will further 

term the fluorescence protein into bleached state. 
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Figure 1.3. Data acquisition of Photo-activated localization microscopy (PALM).  

At the initial imaging state, only a small portion of the FA-FPs are in the active state as shown in 

(a). Only the active fluorescence proteins will response to the excitation/bleaching laser and turns 

into irradiation state as shown in (b). Prolonged excitation of the activate FP will transform them 

into the bleached state as shown in (c). A pulsed activation laser can activate another portion of 

the inactive FA-FPs and turn them into active state as shown in (d). Then the next cycle begins by 

continuous excitation/bleaching laser so the activated FPs will now response and irradiate light, as 

shown in (e). The cycle goes back to panel (c) and repeat until adequate amount of data is acquired.  
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Stochastic Optical Reconstruction Microscopy (STORM) 

Stochastic optical reconstruction microscopy(STORM) was developed by Xiaowei Zhuang, et al. 

[1.3] in 2006. Instead of using photoactivable fluorescence proteins, STORM utilizes the photo 

switchable dyes to achieve blinking control in the fluorophores thus to achieve the active 

fluorophore density condition for single molecule localization at given time instance. The practice 

of STORM also takes advantage of the different response of photo switchable dyes to two different 

lasers, as illustrated in Figure 1.4. One laser is responsible for the excitation of the fluorophore as 

well as switching the fluorophore into a non-radiative dark state. Another laser is responsible for 

switching the fluorophores in the dark state back into the fluorescent state. Such dye such as Cy5 

can be switched on and off for hundreds of cycles before it is photo-bleached, allowing multiple 

appearance of the same single molecule over the acquisition series. Over the past years, a family 

of different photo-switchable fluorophores has been engineered and discovered that possess 

different photo switching properties with different emission wavelength [1.8], allowing for multi-

color STORM image and many advances of STORM technique. 
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Figure 1.4. Property of photo-switchable dyes.  

Photo-switchable dyes can be switched between the dark state and fluorescent state. The dark state 

dye can be switched ‘on’ by a “on”-switch laser into the fluorescent state. When a dye is in 

fluorescence state, it can response to the excitation/”off”- switch laser that either drives the dye to 

irradiate light or switch it back into the dark state. One single dye can be switched between “on” 

and “off” for multiple cycles before it turns into the bleached state. 
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Figure 1.5. Data acquisition of Stochastic Optical Reconstruction Microscopy (STORM).  

In the practice of STORM, all the dyes are turned into the “dark” state at the beginning as shown 

in (a), then a short illumination of the “on”-switch laser is turned on where a small portion of the 

dye will be switched to the fluorescence as shown in (b). Fluorescence state dyes will irradiate 

light under excitation laser as shown in (c), and can be further switched into the dark state at the 

same time as shown in (d). Then the next cycle begins by a short illumination of the “on”-switch 

laser as shown in (d) that corresponds to (a), another portion of the dyes will be switched to the 

fluorescent state as shown in (e) in accordance with (b), then under the illumination of excitation 

laser the new portion of the dyes in fluorescent state will irradiate light. During the data acquisition, 

all the images that shows small portion of fluorophores as bright molecules will be analyzed where 

single molecule localization are performed for each identified single fluorophores, to construct for 

the final super-resolution image. 
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1.3. Stimulated Emission Depletion (STED) microscopy 

Stimulated emission depletion (STED) microscopy is a scanning based super-resolution 

technology where the excitation beam is co-centered with a doughnut shape de-excitation beam 

(STED beam) to confine the spontaneous fluoescence area in to a focal spot below the size of 

diffraction limit thus to achieve super-resolution [1.4]. The principal of STED relies greatly on the 

difference between spontaneous emission and stimulated emission, as illustrated in panel (a) of 

Figure. 1.6, where the energy levels are depicted for a typical fluorophore. After the fluorophore 

is excited from ground state (G) to the excitation state (E), as shown in Figure 1.6 (a) as transition 

from L0 to L1, the fluorophore can transit from L1 into L2 state, from which the fluorophore further 

transit into the ground state and emit a photon. This emission process is called spontaneous 

emission with the absence of external field and the lifetime of L2 is typically 2 ns [1.4]. When there 

exist an external optical field that matches the energy difference between the energy states L2 and 

L3, the transition rate from L2 to L3 will be greatly increased, this emission process is called 

stimulated emission. The practice of STED (Figure 1.7) takes uses a focused excitation laser to 

transform the emitters from ground state into the excited state(Figure 1.7(a) to (c)), and a doughnut 

shape STED beam that is co-centered with the excitation beam is applied (Figure 1.7(d)) before 

simultaneous fluorescence take place. The STED beam will deplete the excited emitters (Figure 

1.7(e)) in the area covered by the STED beam, such that only the center part of the STED beam 

will undergo spontaneous fluorescence (f). The spontaneous fluorescence signal is collected and 

will form one pixel in the STED image, where the location of this pixel is determined by the center 

of the excitation beam and STED beam. Scanning the excitation beam and STED beam across the 

entire field of view allows the reconstruction of the image with the resolution defined by the non-
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depleted region of the STED beam, which is much smaller than the diffraction limited excitation 

beam, thus yield the reconstructed STED image with super-resolution. 
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Figure 1.6. Energy diagram of a fluorophore with different fluorescence mechanism.  

When The fluorophore is excited from the ground state (G) to the excited state (E), as illustrated 

in both (a) and (b), the fluorophore can undergo spontaneous fluorescence as shown in (a) without 

the existence of an external optical field. And at the presence of an optical field that is on resonance 

with a certain energy difference between an excitation state and a ground state, the fluorophore 

will undergo stimulated fluorescence as shown in (b). In the case of spontaneous fluorescence, the 

lifetime of L2 is around 2 ns, however under the case of stimulated fluorescence the lifetime is 

much faster, creating a time difference between the two different type of fluorescence signals. In 

addition, the wavelength of the emitted photons from the two different types of fluorescence signal 

are different, allowing the selective collection of spontaneous fluorescence signal.  
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Figure 1.7. Stimulated Emission Depletion (STED) microscopy.  

In the practice of STED, each individual pixel of the STED image is constructed with the cycle 

explained in this figure. (a) shows the feature of interest labeled with fluorophores, excitation beam 

is applied as shown in (b) that transit the fluorophores within the excited volume into the excited 

state as shown in (c). Right after the excitation beam is applied and before spontaneous emission 

takes place, a doughnut shape STED beam (co-centered with the excitation beam) is applied as 

shown in (d) and causes most of the fluorophores undergo stimulated emission thus depleted from 

the excited state as shown in (e). The fluorophores located at the center region of the STED beam 

will not be stimulated thus can have spontaneous emission as shown in (f). The spontaneous 

fluorescence emission is collected to form a pixel in the STED image at the location of the center 

of the excitation beam and STED beam. The same process is repeated by scanning the beams 

across the field of view to achieve the final STED image reconstruction. 

  



 

15 
 

 

1.4. Structured illumination Microscopy (SIM) 

In the conventional fluorescence microscope, the spectrum of feature of interest is truncated by the 

aperture of the optical system, resulting in the diffraction limited image observation with limited 

resolution. Structured illumination Microscopy utilizes structured illumination to encode high 

frequency component in the Fourier plane that is otherwise not available due to limited numerical 

aperture of the optical system. Super-resolution is achieved with the high frequency information 

encoded by the structured illumination pattern as shown in Figure 1.8. In the conventional sense, 

SIM uses sinusoidal patterned illuminations for excitation as shown in Figure 1.8(b). Given the 

fact that the fluorescence intensity is linearly dependent on the excitation field intensity, the image 

brightness is the product of the excitation pattern and the image of the feature of interest (Figure 

1.8(c)). This means in the frequency domain which is the Fourier transform of the image, the 

spectrum will be the convolution of the original frequency spectrum for the feature of interest 

(Figure 1.8(d)), and the spectrum of the illumination field (Figure 1.8(e)). The spectrum of the 

sinusoidal illumination pattern is three delta peaks with one peak located at the origin point in the 

Fourier space, and two peaks located symmetrically away from the origin point.  So the 

convolution of the two spectrum will yield three overlapping duplicates of the spectrum of the 

feature of interest as shown in Figure 1.8(f) and illustrated in Figure 1.8(g)(h)(i)(j). Due to the 

limited aperture size of the optical system, the frequency components that are collected in the 

image is only the center part that passes the pupil function. Due to the sinusoidal illumination field, 

information of the high frequency component regime of the original image spectrum is shifted to 

be within the aperture of the system, as shown in Figure 1.8(j) that can be solved and shifted back 

to the corresponding regime as shown in Figure 1.8(k). Repeating the process for many different 



 

16 
 

sinusoidal illumination patter to extend the frequency domain as shown in Figure 1.8(l), inverse 

Fourier transform of the extended spectrum will yield SIM image reconstruction with enhanced 

resolution. Figure 1.9 illustrate the big picture of SIM reconstruction, where the original image 

spectrum (Figure 1.9(a) and (d)) is truncated by the aperture of the optical system (Figure 1.9(e)) 

that yields the diffraction limited image as shown in Figure 1.9(b), and with SIM reconstruction, 

the high frequency domain of the image spectrum can be recovered (Figure 1.9(f)) 

to yield SIM image reconstruction with 2 fold resolution enhancement (Figure 1.9(c)).
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Figure 1.8. Principals of Structured Illumination Microscopy.  

(a) shows the original labeled feature of interest. (b) shows one sinusoidal illumination pattern as 

an example. (c) the captured image would be the product between the illumination pattern and 

the original labeled feature of interest (diffraction limited). (d) shows the spectrum of the original 

feature of interest, (e) shows the spectrum of the illumination patter, and (f) shows the spectrum 

of the image under such illumination patter. We can see that the spectrum is actually the 



 

18 
 

convolution between the spectrums of the original feature of interest and the spectrum of the 

illumination patter. The captured image is actually from the spectrum truncated by the aperture 

as shown in (j), and can be decomposed as three components centered at different locations from 

the spectrum of the original feature of interest as shown in (g)(h)(i). Shifting the phase of the 

sinusoidal illumination pattern allow us to solve for the three components shown in (g)(h) and 

(i), that can be shifted back and extend the observed spectrum as shown in (k). Repeat the 

process with sinusoidal illumination patter with different orientation will results in the spectrum 

extension in multiple directions as shown in (l). 
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Figure 1.9. Resolution enhancement of Structured Illumination Microscopy.  

Given the feature of interest as shown in (a), the spectrum of the image is shown in (d). 

However, the observed image (b) is diffraction limited and the spectrum of the image is 

truncated by the aperture of the optical system. SIM image reconstruction (c) process enhanced 

resolution that is below the diffraction limit because of the extended spectrum as shown in (f). 
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Chapter 2. A review of SOFI theory 

 

2.1. General review of SOFI 

SOFI relies on the stochastic fluctuations of optical signal introduced under variety of occasions. 

Such as the stochastic blinking of emitters demonstrated in the existing SOFI works [2.1], or other 

types of optical fluctuation demonstrated in multiple SOFI derivatives including diffusion of 

particles [2.2], FRET due to diffusion [2.3], or induced from stochastic speckle illumination[2.4].  

The theoretical resolution enhancement for SOFI at nth order is n  fold. Once combined with 

deconvolution or Fourier re-weighting [2.5], this enhancement becomes n-fold. Because of this 

continuous resolution enhancement with the increase of SOFI order, it is of particular interest to 

seek for high order SOFI applications. In practice, the fundamental issues that limit the application 

of high order SOFI includes the non-linear expansion of pixel intensity dynamic range, and cusp-

artifacts (will be discussed in Chapter 3).  

2.2. SOFI algorithm implementation 

In the practice of SOFI, the sample is labeled with emitters possess stochastic blinking behavior. 

Such labeled sample is imaged under fluorescence microscopy where consecutive frames are 

recorded and processed to yield SOFI image. Given a sample with N  emitters that blink 

independently, the fluorescence signal captured at location r  and time t  is characterized as 

follows: 

 
1

( ), ( )) (
N

k k k

k

F b r rUr r t


      (2.1) 
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where k  is the index of emitter, k  is the ‘on’-state brightness of the thk  emitter, ( )kb t  is the 

time dependent blinking profile of thk  emitter where we have: 

 
1, when emitter is at 'on'-state

( )
0, when emitter is at 'off'-state

kb t


 


  (2.2) 

 ( )U r  is the point spread function (PSF) of the current imaging system, and kr  is the location of 

the thk  emitter. In SOFI calculation, we first take the raw data with T total frames, and calculate 

the time average of each pixel as follows: 

 
1

1
( , ) ( , )

T

t
t

F r t F r t
T 

    (2.3) 

We subtract the time average ,( )
t

F r t  from ,( )F r t  as follows: 

 ( , ) ( , ) ( , )
t

F r t F r t F r t     (2.4) 

and obtain ( , )F r t  as the fluctuation of ,( )F r t . 

Then we can calculate the autocorrelation functions of ( , )F r t  along the time axis with time lags 

1 2, ,...( ), n    at order n as follows:  

 1 2 1 2( , ,..., ) ( , ) ( , ) ( , ),n n n t
r F r t F r t F r tG                  (2.5) 

Usually the first time lag 1  is set to 0. Cross-correlation functions with ( , )F r t  from different 

pixel locations (different r  values) can also be calculated: 

 1 2 1 2 1 2 1( , ; ,..., ) (,.. , ) ( ,., ), ) ( ,n n n n n t
r r r F r t FG r t F r t              (2.6) 

Replace ( , )i iF r   with notation iF  , equation (2.6) is simplified as: 
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 1 2 1 2( , . ),.. ,n n n t
G F F F F F F          (2.7) 

We address 1 2( , ,..., )n nF F FG     as the joint correlation function for set { }| [1, ]iF i n  , which is 

defined by the choice of pixel combinations and time lags combinations. For a given instance of 

time lags 1 2, ,...{ }, n   , we also address 1 2( , ,..., )n nF F FG     as the joint-moment of set 

{ }| [1, ]iF i n  .  

The next step is to calculate the thn  order cumulant, denoted as 1 2( , ,..., )n nF F FC     which we 

address as joint-cumulant of set { }| [1, ]iF i n  . Note that a special case of equation (2.6) with 

21 ... nr r r r     reduces to equation (2.5), consequently, the differences between auto-

correlation functions and cross-correlation functions are retained while we form our discussion 

under the framework of joint-moments and joint-cumulants in the general sense. 
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Figure 2.1. Calculation of 5th order joint-cumulant.  

A set of five elements is shown in (a), where the element is the fluctuation profile of five pixels. 

Repeating pixels are allowed, for example if element A and B are repeating pixels, we have 1 2r r

. Simplified notations for the five elements are { , , }, ,C DB EAF F F F F       respectively. (b) 

demonstrate all possible partitions of a set of five elements, and how each partition contributes a 
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term to the summation series (as the product of f1 and f2) to yield the joint-cumulant. Note here 

that all the partitions that contain a part of size 1 equals to 0, because 0( )
t

F t  . The graphical 

demonstration of partitions are inspired by the work by Tilman Piesk [2.6] 
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The calculation of joint-cumulant of set { }| [1, ]iF i n  is illustrated in Figure 2.1 in the case of 5th 

order as an example. In the general sense regardless of the choices of { }| [1, ]iF i n  , n  

fluorescence fluctuations profiles are selected from individual pixels (with or without pixel 

repetition) to form the set { }| [1, ]iF i n  (Figure 2.1(a)), from which all the possible partitions are 

identified as shown in Figure 2.1(b). Partitions can possess different number of parts where each 

parts can possess different number of element (1st and 2nd columns in Figure 2.1(b)). For each 

partition, the elements of set { }| [1, ]iF i n   are grouped into specific parts as subsets of 

{ }| [1, ]iF i n  ), where each part is a subset of { }| [1, ]iF i n  (3rd column in Figure 2.1(b)). Each 

specific partition of set { }| [1, ]iF i n   contributes one term to a summation series to construct the 

joint-cumulant, where each term can be expressed as the product of two factors, as shown in the 

4th- and 5th column in Figure 2.1(b). The first factor ( 1f ) depends on the size of this partition 

(denote as q in 1st column in Figure 2.1(b)) and is defined as: 
1( 1) ( 1)!q q   ( 4th column in Figure 

2.1(b)), the second factor ( 2f ) is the product of all the joint-moments of each part within this 

partition: if we use I  to represent for set { }| [1, ]iF i n  , and pI  (with 1, 2,3,...,p q )  to 

represent for different parts that belongs to this partition (as different subsets of I ), we have 

1 2 ... qI I I I    . The joint-moments for each part pI ( denote as ( )pG I ) are multiplied 

together to yield 1 2( )) ( )( qG I G I G I   as the second factor ( 2f ), as illustrated in the 5th column 

in Figure 2.1(b).  

In conclusion, given a set of intensity trajectories as a group of pixels (set I ), either with or without 
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pixel repetition, the joint-cumulant of I  is constructed as a function of joint-moments of all the 

parts over all possible partitions of set I  based on the following formula1: 

 

1 2

1

1 2

all partitions of I:
...

( ) ( 1) ( 1)! ( ) ( ) ( )

q

q

n

I II I

qq G I G I GI IC

  





       (2.8) 

Note here that in equation (2.8) the joint-moments ( )pG I  are essentially the lower order 

correlation functions discussed in the original SOFI paper[2.1]. If a partition contains a part that has 

only one element, we have the corresponding ( )pG I  as 0( )
t

F t  , so the corresponding 2f  

factor will be 0, thus  this partition will not contribute to the joint-cumulant calculation. The actual 

partitions that have a contribution to the joint-cumulant are those without any parts that contains 

only one element, the case of 5th order is shown Figure 2.2.  
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Figure 2.2.  Analytical expression of 5th order joint-cumulant.  

(a) shows a set with five elements as shown in figure 2.1. (b) shows the effective partitions that 

possess contributions to the joint-cumulant. (c) shows the analytical form of this joing-cumulant 

expressed as a function of individual fluorescence fluctuation profiles xF .  
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2.3. Physical meaning of SOFI cumulant 

It is worth to be noticed here that the choices of the pixels to form the joint-cumulant can all be 

the same pixel repeated for n times in the case of nth order, or from different pixels with partial 

repeating pixels, or without repeating pixels. The location of the SOFI pixel would be the geometry 

center of all the pixels in the pixel combination, which gives rise to the ability of achieving virtual 

pixels at locations that original doesn’t have a real pixel. This capability allows for extra sampling 

frequency of the image as required by the increased spatial resolution as the SOFI order increases.  

 

In order to understand the physical meaning of SOFI cumulant, we suubstitute equation (2.1) - 

(2.7) into equation (2.8) we find the expression of thn  order joint-cumulant of set 

( , ) | 1,{ }[ ]i iF r i n    as follows: 
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  (2.9)  

Where 1 2, ,..( ).,n nr rW r  is the distance factor.  

The SOFI pixel location is equivalence to the location of the geometry center of the selected pixels. 

The choice if pixel combination imposes a trade-off between noise contribution and the distance 

factor. When the distribution of the selected pixels is too far away, the distance factor will become 
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small thus attenuates the correlation signal. If we want to seek for a pixel combination that yield 

less attenuation imposed by the distance factor, at high orders we need to have repetition of pixels 

in the pixel combination. In my approach we went into the opposite extreme of this trade off, where 

we want to diminish the effect of distance factor at the sacrifice of noise contribution. Because 

noise can be expressed as another random variable so the contribution of noise is an additive term 

to the cumulant reconstruction and can be cleared out after fitting for the distance factor. We 

explain below our strategy of pixel combinations for high order SOFI pixels. 

 

 

 

Figure 2.3.  The choice of Pixel combination.  

(a) shows a pixel array with {P1, P2, P3, P4} indicate real detector pixels and small green tiles 

indicate virtual pixel locations. {r1, r2, r3, r4} indicates the directions of real detector pixel location 

vectors while setting P3 as the origin point. (b) and (c) show two possible ways of choosing the 

real detector pixels such that the vector sum point at the indicated virtual pixel location V1. (d) 
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and (e) show shows the corresponding selection of pixel combinations respectively. 
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In the general sense, every SOFI pixel in the nth order SOFI image is calculated as the joint 

cumulant of a set of n elements (in the form of pixels with or without repetition) selected from a 

supply of real detector pixels. As indicated in Figure 3(a) (in the case of 5th order). As shown in 

Figure 2.3, we use the case of 5th order SOFI to explain how to choose the pixel combinations. We 

demonstrate here a pixel array with four real detector pixels {P1, P2, P3, P4} as the supply, and 

all possible virtual pixel locations corresponding to 5th order. Each virtual pixel requires the 5 

element set {A, B, C, D, E} constructed with elements from the real pixel supply {P1, P2, P3, P4}, 

with allowance of repeating pixels. For a given SOFI pixel location, the choice of the five elements 

from the real pixel supply {P1, P2, P3, P4} need to carry their geometry center located at the SOFI 

pixel. The total number of pixel combinations that yield all the SOFI pixels is enormous. In this 

example, all the SOFI pixels listed in (a) can be constructed by the combination of the four given 

real pixels, and there are 45=1024 candidate combinations to choose from, if we increase the supply 

of real pixels this number further increases).  

An efficient way to search for such pixel combinations could be guided by the geometric 

interpretation of the geometry center of vectors. We can define location vectors of each pixels in 

the set {A, B, C, D, E} as , },{ , ,C DB EAr r r r r  respectively. So the geometry center of these five real 

pixel locations would be ( ) / 5Bc Eg A C Dr r r r r r     . If we denote ' / 5x xr r  where x  represents 

for A, B, C, D, E, the calculation of geometry center gcr  is equivalence to aligning all the vectors 

of set { '}xr  one after another (with any order) from any pre-defined origin point, so the ending 

point of the last vector would be the location pointed by vector gcr .  

In our example here, each vector xr  and 'xr  can have 4 different possibilities based on the choices 
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of real pixels, denote as 
ir  and 'ir  with i  represents for 1, 2, 3, 4. If we define the origin point at 

location of P3, we can get directions of the vectors of real pixels as shown in (a). Note here that 

we have 3 0r   , so both 
3r  and 

3 'r  doesn’t have a direction. The length of one location vector 

(with 
4r  shown as an example in (a)) is the distance of the pixel to the origin point (P3 in this 

example). The length of 'ir  is one fifth of the original location vector (see 
4 'r  as an example in 

(a)). The summation of the vectors { '}ir  in a geometric way are shown in (b), and (c) where two 

possible choices of pixel combinations are demonstrated that both yield virtual pixel V1 as labeled 

in (a) (b) (c). Based on the vectors used in the alignment, we can get the corresponding pixel 

combinations as shown in (d) and (e) respectively, where in (d) the set of five pixels is {P2, P3, 

P3, P4, P4}; and in (e) the set is {P1, P3, P3, P3, P4}. Note here that the repeating pixel P3 is zero 

vector, so the repeating 
3 'r  is overlapping with each other in (b) and (c). 

2.4. Virtual-emitter interpretation of SOFI cumulants 

In order to better understand and describe the physical meaning of SOFI cumulants discussed 

above, we want to introduce the virtual-emitter interpretation of SOFI cumulants. As discussed 

above, there are two major differences between the original image and nth order SOFI cumulant 

image (Equation 2.1 and 2.6). First, the PSF width is reduced by a factor of n , we call the 

narrower PSF virtual PSF. Second, the brightness of kth emitter is characterized by ( )k kb t  in the 

original image, which is a time dependent intensity profile. In the nth order SOFI image, the 

apparent brightness of kth virtual emitter is 2, 1 1( , ,..., )k n k nw     , we call it virtual brightness. 

Comparing the virtual brightness to the original brightness of the kth emitter, we can see that the 

first factor which contains the on-state brightness k  is raised to the power of n (becomes n

k  ), 
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this part contributes to the expanded brightness dynamic range of the resulting SOFI image. In 

addition, the second factor that carries the time dependent blinking profile ( )kb t  in the original 

image is changed into , 1 2 1( , ,..., )n k nw     , which is the nth order cumulant of blinking profile 

fluctuation ( )kb t . The location of emitters are not changed in SOFI cumulant image compared to 

the original image, we call these equivalence of emitters in the SOFI cumulant image virtual 

emitters.  

The virtual-emitter interpretation of SOFI would thus be: For a given order of SOFI cumulant, the 

resulting image is equivalent to an image captured with a virtual microscope that has a virtual PSF 

with reduced width compared to the original PSF (thus increased resolution), and the captured 

signal is formed from virtual emitters that are located at exactly the same location as the real 

emitters in the imaging sample, but with virtual brightness’s that differ from the real emitter 

brightness and could exhibit either positive or negative values.  
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Chapter 3.  Cusp artifacts of high order SOFI 

 

In this chapter, we are going to talk about an intrinsic artifacts of high order SOFI cumulant, which 

we dub as Cusp artifact. 

3.1. Theoretical origin of cusp-artifact  

As discussed in the 2nd chapter, the virtual brightness of virtual emitters in a high order SOFI image 

are dependent on the nth order cumulants of the blinking statistics of the corresponding real emitters 

in the sample. If we assume a two-state blinking profile ( )kb t  ( k  is emitter index) with ( ) 1kb t   

indicates on-state, and ( ) 0kb t   indicates off-state, we can use k  to represent for the percentage 

time that the emitter spent at on-state during the total data acquisition time. If the acquisition time 

is long enough such that the blinking behavior reaches statistical significance, for Poisson blinking, 

k  would converge to / ( )on on off    , for pure power-law blinking statistics, k  doesn’t 

converge. Adjacent emitters can have different k  values due to insignificant statistics during the 

acquisition time, or spatially subtle change of local microenvironment, or intrinsic property of the 

emitter type. Any order of Cumulant of ( )kb t  can thus be expressed as a function of k . If we 

set all the time lags equal to zero, we find out that the cumulants with order higher than 2 will have 

positive-negative oscillations with the change of k . Given the nth order moments expressed as a 

function of   as follows: 

 (1 ) (1 ) ( )n n

nM           (3.1) 

And with the interchangeable relation between cumulants and moments[3.1], we can have 

cummulants as functions of on-time ratio from 2nd order to 7th order are as follows: 
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  (3.2) 

where emitter index k  and the time lags 
1 2 1( , ,..., )n   

 are dropped to simplify the notation.  

In Figure 3.1(v), we plot the different orders of cumulants as functions of “on”-time ratio we denote 

as ρ, we can clearly see the positive-negative oscillations of cumulants as functions of ρ at orders 

higher than 2nd order. In a high order SOFI image, if we have two virtual emitters located within 

the diffraction limit of the virtual PSF, it is possible that the virtual brightness of these two emitters 

have different ± values, as illustrated in Figure 3.1(i). The SOFI image, which shows the 

convolution of virtual emitters with the virtual PSF, will have a profile that has a positive lobe and 

a negative lobe. In the image display we usually take the amplitude of each pixel value, as 

illustrated in Figure 3.1(iv), the transition region becomes a cusp (so we call the resulting artifact 

cusp-artifact).  
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Figure 3.1. Conceptual demonstration of cusp artifact.  

(i) and (ii) shows the theoretical 3rd order SOFI cumulant image of two emitters. The on-time ratio 

of left emitter is 0.4 for the left emitter, and 0.6 for the right emitter. (iii) and (iv) show the cross-

section plot of the dashed line in (i) and (ii) respectively, where (iv) is the plot of absolute intensity 

value along the dashed line. (v) shows the plot of cumulants wn as a function of ρ, with n = 2 to 7. 

We can see that when n > 2, wn oscillates between negative and positive values under different 

manner with respect to the order n. In addition, we have w3(0.4) > 0 and w3(0.6) < 0, this 

corresponds to the virtual brightness shown in (i) and (ii), where the left emitter has positive virtual 

brightness and the right emitter has negative virtual brightness. So when we take the image display, 

we have cusp artifact indicated by the arrow in (ii) and (iv).  
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Figure 3.2. Cusps on blinking probes.  

We here by performed realistic simulation of 3 emitters equally spaced with spacing distance 193 

nm, the simulated emission wavelength is 800nm, with NA=1.4. Pixel size is 93.33 nm. For 

blinking statistics, we have ρ equal to 83.1%/41.6%/10.3% for emitter 1/2/3 respectively. The 

virtual brightness signs as predicted by Figure 3.1(v) of these three emitters is shown as (+/-) signs 

above each figure. SOFI images from left → right correspond to cumulant order 2,3,4,5,6,7. We 

can see that the virtual brightness signs follow the predictions. The dashed lines in each SOFI 

image are plot as i, and the absolute values are plot as |i|. We can clearly see the positive/negative 

oscillations in plots of i, and the cusps in the plots of |i|. Scale bars: 280nm.  
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Figure 3.3. Cusp-artifact demonstration with experimental data.  

We labeled fixed Hela cells with quantum dot (emission wavelength = 800 nm) through immuno-

staining using primary antibody (eBioscience, Cat#: 14-4502-80) and secondary antibody 

conjugated QD800 (ThermoFinsher Scientific. Ref#: Q11071MP). 2000 frames (30ms exposure 

time) were processed to get SOFI cumulants up to 7th order using both auto- and cross-correlations. 

In order to better illustrate the origin of cusp artifact, deconvolution and Fourier re-weighting were 

not included. Among the three pictures for each panel, left picture shows a bigger field of view, 

where the boxed region is shown in the middle picture, and right picture shows the image where 

the positive/negative domains are color coded separately. Gamma display is used in this figure, let 

nC  be the nth order SOFI cumulant, we display here either 1/| | n

nC  (left/middle pictures) or 1/| | n

ns C  

(right picture), where s  is the ± sign of each pixel value in nC . We can see that cusps exist in 

cumulant with order > 2, the spatial distribution of cusps also differ between different cumulant 

orders, and they are located at the region with a transition between positive and negative domains. 

Scale bars: 3.2 μm (left) and 1.6 μm (middle/right) for every panel.  
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In order to better demonstrate the cusp-artifact, we performed a simulation of 3 different blinking 

emitters with the same on-state brightness, but with on-time ratio equal to 83.1%, 41.6% and 10.3% 

respectively (Figure 3.2). We can see that the high order cumulants of these three emitters can 

have either positive or negative peak values at different orders, as predicted from Figure 3.1(v) 

and listed in Figure 3.2, and cusp-artifacts exist at the region in the image where there is a 

positive/negative transition of pixel values. In addition, we identified from a real dataset, that we 

take a gamma display of SOFI cumulants of different orders without taking deconvolution or 

Fourier re-weighting, as is shown in Figure 3, we can clearly see the cusp artifacts from the SOFI 

cumulants with order > 2, these cusps are located at the transition region between the positive and 

negative domains in the image.  

3.2. Conditions that yield cusp-artifact  

In order to better understand the significance and effect of cusp-artifact for SOFI reconstruction, 

we performed a series of simulations. Poisson blinking statistics was used in the simulation, with 

Gibson Lanni’s PSF model. Poisson noise was simulated, and empty frames recorded from 

EMCCD camera were used to simulate background noise in the conditions where there is 

background noise. SOFI cumulants up to 7th order are calculated and analyzed.  

In the first set of simulation (simulation 3-1), we have three different types of emitters as illustrated 

in Figure 3.4(i). Assume sufficient statistical significance, we have:  

 on

on off




 



  (3.3) 

The estimation of   (based on equation (3.2)) of the three populations (P1, P2 and P3) of emitters 

in the simulation dataset are in the ranges of 0.50 ± 0.1, 0.70 ± 0.17 and 0.52 ± 0.41 respectively, 
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as shown in Figure 3.4(i) and Figure 3.4(iii). Based on the range of   we could predict the signs 

of virtual brightness of virtual emitters in different cumulant order for each simulated populations, 

as shown in Figure 3.4(ii). For P1, ρ is distributed in a region with positive lobes of 2nd and 6th 

order cumulants, negative lobe of 4th order cumulant, and positive/negative transition region of 3rd, 

5th and 7th order cumulants. This means all the virtual emitters will exhibit positive virtual 

brightness in 2nd and 6th order cumulants, negative virtual brightness in the 4th order cumulant, and 

exhibit both negative and positive virtual brightness in the 3rd, 5th and 7th order cumulants. Based 

on this information we could predict that P1 can yield cusp-artifact for 3rd, 5th and 7th order of 

cumulants. Similarly, for P2, ρ is distributed in a region with positive lobes of 2nd and 5th order 

cumulants, negative lobes of 3rd, 4th and 7th order cumulant, and positive/negative transition region 

of 6th order cumulants. So we expect Cusp-artifact in cumulants of order 6 for P2. In addition, for 

P3, ρ is distributed at positive/negative transition region for all the cumulants with order higher 

than 2, and stay positive for 2nd order cumulant, so P3 can yield cusp-artifact for all cumulants 

with orders higher than 2. This prediction is clearly shown in Figure 3.4(iii), where 20000 frames 

of simulation-1 are SOFI processed to ensure sufficient statistical significance of the blinking 

behavior.  

As we reduce the total number of frames to be SOFI processed from simulation 3-1, we start to 

lose statistical significance of the predicted ρ as well as the independence of blinking trajectories 

between different emitters, thus we will get unexpected cusp-artifacts in certain cumulant orders, 

although by prediction from the ground truth on  and off  values they supposed to be cusp-artifact 

free. It is shown that the higher the SOFI order, the more frames are needed for SOFI processing 

to reach the theoretical prediction of cusp-artifact-free images. But for some of the orders where 
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the prediction of virtual brightness is a mixture of positive and negative values, the prediction is 

intrinsically not cusp-artifact free, depends on the order and the actual photo-physical properties 

of the emitters in the sample.  

In the next simulation (simulation 3-2) we imposed bleaching effect to the simulated emitters in 

simulation 3-1 by stochastically turning the emitters into bleached-state, where they stay at off 

state till the end of the simulated movie, as illustrated in Figure 3.5(i), Figure 3.5(ii) and Figure 

3.5(iii). The overall population of emitters at unbleached status is controlled over time to maintain 

the pre-calculated bleaching curve (Figure 3.5(i)). We SOFI-processed 20000 frames of the 

simulation data and have shown that cusp-artifacts exist in cumulants higher than 2nd order. This 

is because the bleaching of a given individual emitter will intrinsically change the ρ of this emitter 

over the entire acquired movie and cause its ρ to deviate from the estimation from equation (3.2). 

Bleaching effect on a group of emitters will thus broaden the apparent distribution of ρ of emitters 

in the testing sample, as a result, the apparent ρ distribution will expand over a positive/negative 

transition region as shown in Figure 3.4(i), thus yield a mixture of positive and negative virtual 

brightness as well as cusp-artifact. In addition, the assumption of independent blinking statistics 

between different emitters will fail because of the equivalence of long off-state after the emitter is 

bleached, this further drive the virtual brightness distribution to deviate from the prediction. We 

then added bleaching correction[3.3] to the simulated data by dividing the whole movie into 

individual blocks of frames, where each block has signal decrease by 1%bcf   of the overall 

signal decrease within the field of view ( where bcf  is the bleaching correction factor). The final 

cumulant reconstruction is achieved by averaging all the cumulants calculated from all the 

individual blocks. After bleaching correction, the prediction of virtual brightness distribution can 
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be recovered as if there were no bleaching, as shown in Figure 3.5(iv). In addition, in Figure 3.5(iv) 

when we added recorded empty frames from EMCCD camera to simulate background noise, we 

find out that the cumulants that intrinsically has both positive/negative virtual brightness are more 

vulnerable to the background noise, this is because wn has smaller amplitude around the 

negative/positive transition region thus attenuates the virtual brightness of virtual emitters in the 

SOFI cumulants.  

Here we want to point out the trade-offs between bleaching correction factor bcf , noise level and 

statistical significance. When we decrease the bleaching correction factor, the block size will 

decrease, and the total number of bleaching events happened within each block will decrease, so 

the bleaching effect is better suppressed, however the signal level per block will decrease thus the 

reconstruction will be more vulnerable to noise. In addition, statistical significance within each 

block is decreasing as the block size decreases, we get increased number of blocks for the final 

construction, so the final cumulant construction in terms of statistical significance is not going to 

change greatly. If we increase the bcf , we increased the block size thus within each block we get 

better statistical significance, while more bleaching effect will remain within each block. In 

summary: Bleaching effect can affect the prediction of cusp-artifact but bleaching correction can 

diminish this effect. Too small of a bcf  will make the SOFI image more vulnerable to background 

noise. SOFI cumulants that intrinsically have cusp artifacts are more vulnerable to the noise 

because of the attenuated virtual brightness by small amplitudes of cumulant wn.  

 



 

45 
 

 

Figure 3.4. Simulation 3-1: Blinking statistics dependence of cusp-artifact.  

In this set of simulations, we used 3 different population of simulated emitters that has different 

distribution of τon and τoff values, thus yield different distribution of ρ, as illustrated in (i). The 

predicted virtual brightness signs of P1, P2 and P3 with respect to different cumulant orders are 

listed in (ii). SOFI processed simulated data is shown in (iii). We can clearly see that the virtual 

brightness of virtual emitters under different SOFI cumulant orders follows the prediction in (ii), 

except for certain regions where the simulated feature goes out-of-focus (P2). 

In the next simulation (simulation 3-3) we want to see how would cusp artifacts behave if we have 

spatially slow-varying blinking statistics of emitters in the feature of interest. We prepare a 

simulated filament with the same type of simulation as we used for simulation-1, but with slow 

varying input spatial distribution of on  and off  (Figure 3.6). SOFI cumulants of 2nd to 7th orders 
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are calculated, we can see that at a given cumulant order, when the ρ of the emitters reach the 

transition point of cumulant value we expect a cusp.  

3.3. Effect of cusp-artifact on post-processing steps of SOFI  

If not handled properly, cusp-artifact can affect the post-processing steps of SOFI, including the 

direct image display, deconvolution processing, and the balanced cumulant reconstruction in 

bSOFI. Fourier re-weighting is not affected by cusp-artifact in principal, but cusp-artifact will still 

present in the Fourier re-weighting result because the virtual brightness will not be changed, thus 

further post-processing steps like the display of the output and balanced cumulant with still be 

affected.  

When we take the image display by mapping pixel intensity with the amplitude of each pixel value, 

the cusp-artifact is directly displayed. Because at high order SOFI cumulant reconstruction, the 

cusp-artifact co-exist with the expanded pixel brightness dynamic range, so it was never clearly 

identified and discussed in press as an independent factor that degrades the image output 

perceptibility. In addition, cusp-artifacts can affect the deconvolution step that was proposed to 

serve as a follow-up post-processing step after high order SOFI cumulants reconstruction. For 

example, in the MATLAB built-in function deconvlucy and deconvblind, the algorithm has 

constraints on all the pixel values that force them to be positive values. In practice after each step 

of iteration, the algorithm automatically set all the negative values to be zero or to be its absolute 

value. This positive pixel value constraint requires all the ground truth signal source (the true signal 

to be recovered through deconvolution) to have positive values, thus it conflicts with the cumulant 

reconstruction when the virtual brightness of the virtual emitters can be negative values. In other 

words, given a blur image that is in the form of convolution between a ground truth signal that has 
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a mixture of positive and negative values, and a Gaussian convolution kernel (virtual PSF in this 

case), the absolute value of this image, it is no longer a proper deconvolution problem thus 

deconvolution cannot be applied to the image after taking the absolute value of each pixel.  
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Figure 3.5. Simulation 3-2: Bleaching effect.  

This set of simulations shows how cusp artifact behave under bleaching and noisy condition. (i) is 

the plot of the change of total pixel value over time of our simulated movie before adding the 

background noise. It shows bleaching curve profile. (ii) is a zoom-in region of (i) where we can 

still see the fluctuations. (iii) shows an example blinking trajectory of a single emitter, where it 

was bleached around time 17s, the emitter remains at off state till the end of the movie after it is 

bleached. (iv) gives the SOFI cumulants display. We can see that bleaching effect changes the 

virtual brightness prediction ( bcf  = 100% means no bleaching correction), but bleaching correction 

is effective to restore the virtual brightness distribution to the values as if there were no bleaching 

effect. In addition, for the cumulant orders where we have virtual brightness with mixed +/- signs, 

the cumulants is heavier affected compared to those orders where the virtual brightness have pure 
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+ or - signs, this is because when the ρ value is distributed around the region to yield (+/-) virtual 

brightness, ωn(ρ) is located at a transition region so the amplitude is brought down because of the 

small amplitude of ( )n   at the transition region. Here we want to point out that the background 

noise is directly recorded from EMCCD camera as empty frames, and cumulant of background 

noise is always positive. So negative contrast is possible if we can have a emitter blinking statistics 

to yield pure negative virtual brightness, as shown here in 4th order cumulant. 

 

 

  

 

Figure 3.6. Simulation 3-3: Spatially slow varying photo-physics.  

In this simulation we put emitters along the feature of interest to have spatial varying ρ, and we 

can clearly see the cusps at the transition region of positive/negative virtual brightness.  
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3.4. Cusp-artifact reduction with in-painting  

Because cusp-artifact is originated from the intrinsic properties of high order cumulants, on the 

long term prospective of view, one could seek for methods to avoid cusp-artifacts by tuning the 

photo-physics properties of the emitters chemically/physically in order to achieve a pure positive 

or negative virtual brightness for a certain order of SOFI cumulant. As a compromise, we here by 

present one method to fill-in the cusps using in-painting algorithm [3.2]. As illustrated in Figure 3.7, 

for high order SOFI cumulant image we will have positive domains and negative domains and 

cusps are located at the transition area of positive/negative domains. In order to apply in-painting 

to the cusps, first we identify the cusp region by detecting the positive/negative domain transition 

region, then we extend the width of the region by a given radius (empirically we use 5 pixels wide, 

but this width is dependent on the pixel size and the virtual PSF size.) to get the area to be inpainted 

(region m ). The goal is to refill the identified region using the surrounding information from the 

image. Our implementation extends the isophotes of the image from surrounding the region m   

into region m  thus yield a smooth inpaint of pixel values within the region identified, so the gaps 

created by the cusps will thus be smoothed. The algorithm is implemented according to the method 

developed by Bertalmio, et al [3.2]. with minor modifications. In addition, a local image dynamic 

range compression method (dubbed as “ldrc” method) were developed to correct for the image 

dynamic range expansion problem (details to be discussed in Chapter 5) of high order SOFI. We 

compared the in-painting and ldrc enhanced 6th order SOFI cumulants reconstruction with bSOFI, 

using both simulation and experimental data, and have shown that under many circumstances it 

can give us faithful representations.  
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Figure 3.7. Cusp-artifact reduction with inpainting.  

Suppose we start with two virtual emitters with positive and negative virtual brightness (with the 

ground truth image denoted as u  ) as shown in (i), and suppose the current virtual PSF (denote as 

h ) is demonstrated in (ii), the cumulant will thus be the convolution between u  and h , as shown 

in (iii). Take the absolute value of u h (where   represents convolution operation) we get a cusp 

artifact at the positive/negative domain transition region as shown in (iv). We use m  to represent 

for the identified region to be inpainted, where we have ( , ) 0m i j   if pixel at location ( , )i j  is 

within the identified region to be inpainted, and ( , ) 1m i j   otherwise. (·) represent for entry-wise 

multiplication. The inpainting result is shown in (vi) where î  stand for inpainting operation. We 

can see the smooth connection between the sides of the gap. (vii) shows the equivalence of a blur 

image if we force all the virtual brightness to be positive value. We want to point out that inpainting 

enhanced high order cumulant is not feasible for balanced cumulant reconstruction in bSOFI, as 

we can tell from the difference between (vi) and (vii). Another simulation is with more virtual 
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emitters located alone a line is shown in (viii), we can see here that inpainting result indeed shows 

faithful reconstruction.  
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3.5. Effect of cusp-artifact on high order moments reconstruction  

In addition, because of the valuable fact that even-order moments are intrinsically cusp-artifact 

free, we analyzed the cusp artifacts on moments reconstruction from all the cumulants 

reconstructed from cross-correlations. Moments was initially rejected due to the mixed terms that 

contain signal contributed from multiple individual emitters, rendering the physical meaning of 

the resulting image hard to interpret. We here-by tested the moments reconstruction and find out 

that moments indeed pro- vides enhanced resolution from simulations by comparing to the ground 

truth as well as from cross-section plots, as shown in Figure 3.8. A full understanding of moments 

reconstruction at high orders is yet to be investigated in the future.  
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Figure 3.8. Simulation 3-5, 6th order moments.  

(i) shows the sum image of this simulation (ii) shows the 6th order moment reconstruction 

combined with local dynamic range compression. Boxed region in both (i) and (ii) are shown in 

(iii), (iv), (v) and (vi) as labeled in the figure. In panel (iii) and (v), green dots mark the exact 

locations of emitters in the simulation, and we can see that the 6th order moment indeed shown 

some faithful information as compared to the ground truth of the location of emitters. Two cross 

sections labeled in (iv) and (vi) are plotted in (vii).  
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3.6. Performance comparisons on real data  

In this section we tested and compared inpainting enhanced 6th order SOFI cumulant, 6th order 

moment reconstruction as well as bSOFI on experimental data. We labeled the α-tubulin on fixed 

Hela cells using QD800. As shown in Figure 3.9(i), (ii), (iii), (iv) show the large field of view of 

the average image, 2nd order SOFI cumulant with extra pixels from cross-correlations (XC2), Local 

dynamic range compressed (ldrc) 6th order moment (M6) reconstructed from cumulants with extra 

pixels provided from cross-correlations (M6+ldrc), and balanced cumulant reconstruction using 

2nd, 3rd and 4th order cumulants (bSOFI), respectively. No deconvolution or Fourier reweighting is 

involved in XC2 or M6 in order to isolate the factors of resolution enhancement, bSOFI involves 

deconvolution because balanced cumulant reconstruction is a post-processing step after 

deconvolution. We can see that both XC2 and M6+ldrc shows faithful image reconstruction, at the 

region where the feature density is low and α-tubulins are well separated, XC2 and bSOFI performs 

better than M6+ldrc in terms of feature visibility. How- ever, at the image region where the feature 

of interest is dense, as shown in the boxed region in Figure 3.9(i) and displayed in Figure 3.9(v), 

(vii), (viii) and (iv) respectively, we can see that M6-ldrc starts to out-perform XC2 and bSOFI. In 

the case of inpainting enhanced cumulant, we performed local dynamic range compression on 6th 

order SOFI cumulant with extra pixels provided by cross- correlations as shown in Figure 3.9(x), 

and detected the region where there is a transition between positive domain and negative domain 

in the image and broaden the region to be the region to be inpainted, as shown in Figure 3.9(xi), 

and the inpainting result is shown in Figure 3.9(xii).  
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Figure 3.9. QD800 labeled α-tubulin of fixed Hela cell.  

Panel (i), (ii), (iii), (iv) are larger field of view of the data set. The rest of the panels shows the 

zoom-in images that corresponds to the area shown in the boxed region in (i). We take 2000 frames 

with 30ms in this dataset, (i) and (v) show the average signal from the dataset, (ix) is an example 

single frame of the dataset. (ii) and (vi) shows the 2nd order SOFI cumulant with extra pixels from 

cross-correlations (XC2). (iii) and (vii) shows the 6th order moment (M6) reconstructed from 

cumulants, with local dynamic range compression (ldrc). (iv) and (viii) shows bSOFI of balanced 

cumulant reconstruction from cumulants with all the lower orders. (x) is the 6th order cumulant 

with extra pixels from cross-correlations(XC6), combined with local dynamic range compression 

(ldrc). (xi) is the XC6+ldrc with the pixel values located within the inpainting mask set to 0, and 

(xii) is the inpainting result of XC6. Scale bars: 1.6μm  



 

57 
 

 

3.7. Discussions  

In general, 2nd order cumulants is not jeopardized by cusp-artifacts because virtual emitters of 2nd 

order cumulants in principal cannot yield negative virtual brightness. For cumulants with order > 

2, the significance of cusp-artifact can be summarized as follows: First, if the number of frames 

SOFI-processed is not large enough to exhibit statistical significance of blinking behavior, cusp-

artifact is expected for cumulants higher than 2nd order. This is shown in simulation-1. Cusp-

artifact exist in cumulants with order > 2 if 2000 frames are SOFI-processed, but has the chance 

to be avoided if more frames are SOFI-processed to ensure statistical significance, but this is not 

guaranteed for every circumstance. Second, given that there is statistical significance of blinking 

behavior in the imaging sample, a fixed expectation value of ρ for given blinking statistics is 

required to avoid cusp-artifact. This is because if the blinking statistics doesn’t ensure fixed 

expectation value of ρ for the emitters in the testing sample, the apparent ρ could have a wide range 

of values that yield co-existence of positive/negative virtual brightness in a given order of 

cumulants. Third, given statistical significance and fixed expectation value of ρ, if the range of ρ 

covers a transition region on a given order of cumulant, cusp-artifact is expected at the order of 

cumulant. No matter if the photo-physical properties is spatially slow varying or fast varying.  

Fourth, given statistical significance, fixed expectation value of ρ and desired range of ρ without 

positive/negative transition for a give order of cumulant, bleaching effect can still impose a cusp-

artifact to the image reconstruction. In summary, in order to avoid cusp-artifact, one would 

consider four conditions: 1), choose the labeling emitters that has intrinsic expectation value of ρ, 

2), acquire dataset that is long enough to hold statistical significance of blinking behavior of all 
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the emitters in the imaging sample, 3) manage to have a desired range of ρ distribution that does 

not cover a positive/negative transition region for the chosen order of cumulants, 4) avoid 

bleaching or perform bleaching correction to the dataset, given that in the bleaching correction 

approach, condition-1 to -3 should be fulfilled within each bleaching correction block. In addition, 

given a SOFI cumulant that already has cusp artifact, we can use inpainting algorithms to fill-in 

the gaps created by the cusps, or avoid the cusp-artifacts by using moments reconstruction.  

  



 

59 
 

 

3.8. References  

[3.1].  M. G. Kendal. 1946. The advanced theory of statistics. 

[3.2]. M. Bertalmio, G. Sapiro, et al.2000.  Image inpainting. Proceedings of the 27th annual 

conference on Computer graphics and interactive techniques.  

[3.3]. Dertinger, Thomas, et al. "Achieving increased resolution and more pixels with 

Superresolution Optical Fluctuation Imaging (SOFI)." Optics express 18.18 (2010): 

18875-18885. 

 

  



 

60 
 

Chapter 4. Moments reconstruction of high order SOFI 

 

In order to avoid cusp artifacts created by the negative/positive brightness of virtual emitters in the 

high order SOFI cumulant image, we evaluated the moments reconstruction and have empirically 

shown that moments can give a faithful reconstruction at high orders. In this chapter, we will first 

introduce the algorithm for moments reconstruction, followed by theoretical evaluation of high 

order moments reconstruction. In the end, we will demonstrate the performance of moments 

reconstruction on real data. 

4.1. Algorithm for moments reconstruction 

The algorithm for moments reconstruction is based on the interchangeable relationship between 

cumulants and moments[4.1], and is illustrated in Figure 4.1. First the fluctuation of the fluorescence 

signal is calculated at each original pixel. Then SOFI cumulant at different order is calculated with 

cross-correlation from different pixels to yield virtual pixels. Then Fourier back projection is 

performed on every order of SOFI cumulant to match the grid of the image matrixes so at one 

location there exist cumulant of different orders. Then using the interchangeable relationship 

between cumulant and moments below: 
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We can perform moments reconstruction as above.
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Figure 4.1. Algorithm of moments reconstruction for high order SOFI.  

Step (a) to step (g) shows the conventional way of SOFI cumulant calculation with cross-

correlations and extra pixels. Step (h) will match the image matrix onto the same grids using 

interpolation algorithm. In practice Fourier transform back projection is used to match the matrix 

grid for different order of cumulants, such that at each location there is a full set of cumulant values 

from 2nd order to nth order, to perform the moments reconstruction. 
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4.2. Theoretical evaluation of high order moments 

Because we have  
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For a given set of n elements, if we have one partition of set {1,2,3,..., }n  as { | 1,2,..., }pI p   , so 

we have 1 2 {1,2,3,..., }I I I n    , and if we denote ps  as the total number of element in part 

pI  , we have: 
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Substitute equation (4.2) into equation (4.1) and focus on the expression inside the summation 

series, we have: 
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Because we have: 
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So equation (4.4) becomes: 
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We can re-write the summation above (
1 1 1

( )
N N

k k 

   ) into summation over all possible combinations 

of  [{ 1| }, ]pk p   with [1, ]pk N . Introduce two extra simplification of notations as  
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Substitute into equation (4.1), we get: 
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When the coordinates [{ 1| }, ]pk p   is identical (denote as kr  ), we have 

({ , | }) 1[1, ]
pp kW s pr   , and  
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   . This means the signal is 

equivalence to a virtual emitter that is located at the same location of the original emitter. When 

the coordinates of ({ | }1 )[ , ]
pp kW s pr  is different, we have ({ | }) 1[1, ]

pp kW s pr   . So that 

means within all the terms in the summation series of the signal in equation (4.4), the term that 
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contains identical coordinates in [{ 1| }, ]pk p   contains the highest portion. This is the term 

when we have 
1 2 ...k k k    . If we denote this identical k  coordinates as k  , the term from 

equation (4.10) can be expressed as follows: 

 

     

 

1

1 2

1{ | }

{1,2,

[1, ]

all partitions of 1[1,

..., }

1

]

all partitions 1

( ) ( ) { , } { , }

(

( )

( )) ( )

p

p

p p p

p

p

p

p

p

k

k k k

k

pk p
I I

n

N

N

S n

s g p k p k

p
I

n n

k s k k

pk

r b r r rC U S r r

r b r U r r

W s

C

 









 


  











 


 
 
 

 
 




 


 







 



 

1 2

1 2

of

all partitions of

{1,2,..., }

11

{1,2,..., }

(( ) ( ))

p

p

p

I I

n

N

p

I

n n

k k

k
II I

s k

n

r r r bU rC




  




  



 
 

 
 



 

  (4.11) 

Because we have: 
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The expression shown in equation (4.11) becomes: 
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This term is intrinsically equivalence to a virtual image. Under the virtual emitter interpretation, 

the image is formed with virtual PSF as the original PSF raised to the power of n, by virtual emitters 

located at the original emitter location but carries virtual brightness as the product of the original 

‘on’-stage brightness raised to the power of n and the nth order moment of the fluctuation profile 

of the emitter. Take this term back into equation (4.10), we have: 
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Based on the expression above, we can interpret the moment reconstruction as two different 

portion of signals. Both portion of the signals can be viewed as with virtual point spread function 

that is nth power of the original PSF. Be in terms of the signal source, the first portion is signal 

contributed from virtual emitters that are located at exactly the same locations of the original 

emitters, but have virtual brightness as the product of two factors, where the first factor is the 

original ‘on’-stage brightness raised to the power of n and the second factor is the nth order moment 

of the fluctuation of the blinking profile of the corresponding original emitter. The second portion 

of the signal is much more complicated and a thorough investigation is still difficult. But we can 

see that this portion of the signal can be interpreted as the emitter located at weighted geometry 

center described in equation (4.7), and the virtual brightness is not only determined by an 

equivalence cumulant value and the brightness value, but also attenuated by factor  ( )n kM b r . 

We expect this second portion to serve as extra virtual emitters to fill-in the gaps left by the original 

emitters. 

4.3. Evaluation of moments on simulation and experimental data. 

We first evaluate the moments value as a function of ‘on’-time ratio   as defined in the previous 

chapter and find out that moments are always positive at even orders. As shown in Figure 421. 

And also evaluate the value of moments with 3 emitters simulation as shown in Figure 4.2, we 

show here that the brightness ratio of the peak value of each individual emitter of follows the 
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theoretical prediction. We also show the performance of moments reconstruction in Figure 4.3 on 

real data from Quantum dot labeled microtubules. The direct reconstruction of cumulant and 

moments both suffers from the image brightness dynamic range expansion such that the dim part 

of the image is hardly perceptible, as shown in panel (a) and (c) in Figure 4.3. So we take the 

gamma display of the image by showing the pixel intensity as the original pixel intensity raised to 

the power of 
1

6
 as shown in (b) and (c) accordingly. We can see from the zoom in area that for the 

6th order cumulant, we have cusp-artifact. However, with 6th order moment reconstruction as 

shown in (d), we no longer have cusp artifacts. 
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Figure 4.2. Moments evaluation with theory and simulation.  

(a) shows the theoretical plot of different order of moments as a function of ‘on’-state ratio  (

thn order moment is shown as ( )nM    ), and we show here that moments of 2nd, 4th, and 6th order 

is always positive. (b) (c) (d) shows the simulation of a 3-emitters that follows Poisson blinking 

statistics to verify the values of moments reconstruction. (b) shows the ground truth of the spatial 

locations of the 3 emitters, and (c) shows the ground truth blinking statistics of the three emitters. 

(d) shows the moments reconstruction of the simulated movie at different orders ( labeled as “ Mn

” with [2,7]n  ) as well as the average image ( labeled as “Ave”). we can see the moments with 

even orders doesn’t carry cusp artifact, in addition, the peak value intensity ratio follows the values 

predicted from the ground truth blinking statistics as shown in panel (c).   
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Figure 4.3. Moments reconstruction on real data.  

This is fixed 3T3 cells labeled with quantum dot 625, the labeled structure is  -tubulin. (a) shows 

the 6th order cumulant displayed at the original scale, and (b) shows the gamma scale display with 

1

6
   . right panel of panel (b) shows the zoom-in region as shown in the left panel in the red box 

region. (c) shows the 6th order moment and (d) shows the gamma scale display of (c) accordingly. 

We can see here that under moments reconstruction, the image shows no cusp artifacts. Scale bar: 

1.6 m  . 
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4.4. Reference 

 M. G. Kendal. 1946. The advanced theory of statistics. 
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Chapter 5. Local dynamic range compression of high order SOFI 

 

Aside from the cusp artifact, high order SOFI suffers from the nonlinear expansion of pixel 

intensity dynamic range. Although in the previous chapter we have demonstrated moments 

reconstruction as a concession to avoid cusp artifact, but the dynamic range expansion problem 

persists. As can be seen in Figure 5.1, we have shown the moments reconstruction result of 

different orders. The feature of interest in the image becomes less perceptible as the SOFI order 

increases. In this chapter, we aim for compression of such dynamic range to reveal the hidden 

information without introducing too much artifacts, as well as retaining the improved resolution. 

The algorithm is shown in Figure. 5.2, the first step is to choose a reference image that doesn’t 

carry severe expansion of pixel intensity dynamic range. Empirically we choose the second order 

SOFI image to be this reference image. The high order SOFI image is rescaled with respect to this 

reference image, where a small window is defined in the high order SOFI image, and the local 

dynamic range is rescaled with respect to the area in the same window from the reference image. 

It is worth noticing here that during the dynamic range rescaling process, we keep the minimal 

pixel value intact, and linearly stretch the pixel values to have the maximum pixel value in the 

windowed area to match the maximum pixel value of the window are in the reference image. We 

perform this local dynamic range compression over the entire field of view to obtain ldrc-SOFI 

reconstruction. 
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Figure 5.1. Pixel intensity dynamic range expansion.  

In this image we demonstrate a fixed 3T3 cell with microtubules labeled with QD625. Moments 

reconstruction of different SOFI order is demonstrated. It is worth noticing here that for fluctuation 

sequence that is center-shifted (subtracted the time average), 2nd order cumulant and 2nd order 

moment are identical. We can see here that as the SOFI order increases, the pixel intensity dynamic 

range expands such that the details of the feature of interest becomes imperceptible. 
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Figure 5.2. Algorithm of Local Dynamic Range Compression (ldrc).  

In this example we used second order SOFI as the reference image as shown in panel A. The 

corresponding field of view of 6th order moment reconstruction is shown in panel B. we define a 

small window and rescale the pixel intensity inside the window with respect to the pixel intensity 

scale in the same area from the reference image. We slide the window pixel-wise across the entire 

field of view and stich all the rescaled windows together to form the final reconstructed image, as 

shown in panel C and D. Such computation can be performed in parallel because the rescaling of 

different window regions are independent processes. 
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The performance of this ldrc-SOFI is demonstrated on fixed 3T3 cells with microtubules labeled 

with QD625 through immuno-staining, and compared to bSOFI reconstruction, as shown in Figure 

5.3. and Figure 5.4. 

 

Figure 5.3. Comparison of ldrc-SOFI with bSOFI.  

The image shows the performance of ldrc-SOFI and bSOFI on Fixed 3T3 cell with QD625 labeled 

α-tubulin (A) Time average of the entire movie. (B) bSOFI result. (C) ldrc-SOFI of 6th order 

moment. Total of 2000 frames were processed for each method. We can see ldrc-SOFI suffers 

from fewer artifacts, while exhibiting faithful dynamic range compression. Scale bar: 2 um. 2000 

frames were processed. 
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Figure 5.4. Cross-section analysis.  

Fixed 3T3 cell with QD625 labeled α-tubulin, cross-section analysis shows ldrc-SOFI holds about 

4-fold resolution enhancement 
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A large library of simulated data of filaments networks with variable filaments density, labeling 

density, labeling uncertainty, noise level, background level and nonspecific binding probability 

are generated and examined by both bSOFI and ldrc-SOFI. When the signal to noise ratio (SNR) 

and other sample conditions are favorable, both algorithms perform well. In fact, under very low 

filaments density bSOFI performs better. However, under challenging imaging conditions (high 

feature density, non-specific background, high noise level), ldrc-SOFI yields better performance 

with fewer artifacts, as shown in Figure 5.5 to Figure 5.8. 

 

 

Figure 5.5. Simulation of filaments with different labeling density.  

(a) shows the ground truth for this simulation. Two different labeling densities are simulated in 

this simulation. In (b, d, f), high labeling density condition (105 emitters per 100 nm) are analyzed 

for the sum image (b), ldrc-SOFI (d), and bSOFI (f)  respectively. In (c, e, g), low labeling density 

condition (25 emitters per 100nm) are analyzed for the sum image (c), ldrc-SOFI (e), and bSOFI 

(g) respectively. Scale bar: 2 um. 
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Figure 5.6. Simulation of filaments with different labeling uncertainty.  

(a) shows the ground truth for this simulation. Two different labeling uncertainty are simulated in 

this simulation. In (b, d, f),  low labeling uncertainty condition (20 nm) are analyzed for the sum 

image (b), ldrc-SOFI (d), and bSOFI (f)  respectively. In (c, e, g), high labeling uncertainty (80 

nm) are analyzed for the sum image (c), ldrc-SOFI (e), and bSOFI (g) respectively. Scale bar: 2 

um. 

 

 

Figure 5.7. Simulation of filaments with different nonspecific binding conditions.  

(a) shows the ground truth for this simulation. Nonspecific binded emitters are randomly dropped 

to the field of view with different density. In (b, d, f), low nonspecific binding density condition 

are analyzed for the sum image (b), ldrc-SOFI (d), and bSOFI (f)  respectively. In (c, e, g), high 

nonspecific binding density condition are anlayzed for the sum image (c), ldrc-SOFI (e), and 

bSOFI (g) respectively. Scale bar: 2 um. 
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Figure 5.8. Simulation with different filaments density  

(a1, a2) are the ground truths for different feature of filaments. In (b1, c1, d1), low filaments 

density condition are analyzed for the sum image (b1), ldrc-SOFI (c1), and bSOFI (d1) 

respectively. In (b2, c2, d2), high filaments density conditions are analyzed for the sum image 

(b2), ldrc-SOFI (c2), and bSOFI (d2) respectively. Scale bar: 2 m . 
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Chapter 6. Deconvolution 

 

One extra bonus that high order SOFI provides is an estimation of the point spread function (PSF) 

of the optical system. In our case the image is always a convolution between the PSF and a ground 

truth image that is formed by (1) the actual emitters in the case of original image (2) virtual emitters 

in the case of high order SOFI cumulant and moments as discussed in the previous chapters. With 

the information of PSF we can try to solve an inverse problem to seek for the corresponding ground 

truth image, the algorithm to solve such an inverse problem is deconvolution. 

If we use g  to represent for the ground truth image, and use U  to represent for the PSF, we have: 

 g U I    (6.1) 

where I  is the image to be deconvolved. In our case I  is the high order SOFI image, and U  is 

the PSF of the corresponding order. In the case of nth order SOFI cumulant or moment, the PSF 

U  is the nth power of the original PSF. In other words, if we use Gaussian approximation of the 

PSF, the nth order SOFI image will carry a PSF that has n  fold narrower Gaussian width.  

 

Let U  be a Gaussian function, we know that: 

 1 221

1 11 1

n na aa a a a
U U U U

  
     (6.2) 

 

Here we design { }ia  as described below: 

 
1

with  1
1

n

na





 


  (6.3) 

Such that we have: 
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    (6.4) 

Substitute equation (6.3) and equation (6.4) into equation (6.2), we get: 

 

2

1 1 1

n

U U U U
  

          (6.5) 

This means any Gaussian function can be decomposed into a consecutive convolution of a series 

of narrower Gaussian functions. The concept of our step-wise deconvolution algorithm is to 

decompose the overall PSF into a series of small PSFs, and deconvolve them one after another, 

such that for each individual deconvolution step it is a lighter deconvolution task, because the 

target is more similar to the input image. Here we want to find a design for the power series { }ia  

such that the summation of the 
ia  series equals to one. 
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Chapter 7.  Multi-order Cumulant Analysis of SOFI (MOCA-SOFI) 

 

In this section, we will talk about how to use SOFI cumulant of multiple orders to construct an 

inverse problem to achieve point spread function estimation, and solve for the spatial distribution 

of blinking parameters of emitters in the field of view.  This version of SOFI utilizes multi-order 

cumulant analysis and we dub it as MOCA-SOFI. 

 

The nth order SOFI cross-cumulants are cumulants calculated from a group of different pixels from 

different locations. Intrinsically, the choice of the group of pixels used for nSOFI XC  

computation can either be n distinct pixels, or less than n pixels where part of the pixel is used 

more than once. nSOFI XC  encodes information of the PSF, that can be used either for either 

deconvolution of the image, or other purposes like sample parameter estimation as discussed in 

the previous section. In this section, we are going to talk about how to get a PSF estimation from 

nSOFI XC  values calculated from cross-correlations from a group of pixels. We’ll first discuss 

the theory of SOFI with cross-correlations, based on which we’ll migrate to a global fitting 

approach to estimate the PSF of our optical system.  

7.1. Understanding SOFI cross-cumulants 

First, let’s write down the fluorescence signal generated by N emitters captured at location r , 

denoted as ( )F r , as follows: 

 
1

( ) ( ) ( )k

k

k

N

kr rU b trF


   (7.1) 

Where k  is the emitter index, ( )U r  is the point spread function of the optical setup, k  is the on-
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time brightness of thk  emitter and ( )kb t  is the blinking profile of thk  emitter. Now if we want to 

calculate the nth order cross-cumulant (
nXC ) using the fluorescence signal captured from n pixel 

locations (Consider time lags all equal to 0):  

 
1 2( ), ..( ), . , ( )nr F r FF r   (7.2) 

The nth order cumulant is thus denoted as:  

 1 2 1 ,

1

2, ,...,( ) ( ) ( ) ( )
N

n n k k k n k

k

n

n kr r r r r r r r rXC U U U 


      (7.3) 

Now given that ( )U r  is the point spread function of the optical system that can be assumed as a 

Gaussian function: 

 
2

2
( p

2
) ex

r
U r



 
  

 
  (7.4) 

We can simplify the expression of 1 2( ) ( ) ( )nk k kr r r rU rU rU     in equation (7.3) as follows:  
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   (7.5) 

Now Let’s simplify the expression of 
2

1
( )i k

n r r
i
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  (7.6) 

We have gcr  as the geometry center of the group of pixels selected to compute our nth order SOFI 

with cross-cumulant 
nSOFI XC . Combining equation (7.3) – equation (7.6), we get: 
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  (7.7) 

In order to simplify the discussion, we introduce the following notations: 

 

2
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    (7.8) 

We can see that the first exponential factor 1f  is defined by the locations of pixels used to compute

nXC , and was previously identified as the distance factor [ref]. The second factor 2f  is 

equivalence to a virtual fluorescence signal collected at position gcr  that was generated by virtual 
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emitter at the same location as in the sample, but instead of having an intensity of 
k

, these virtual 

emitters now have intensity of ,

n

k n k  for the thk  emitter. It is worth noticing here that now the 

width of the PSF in this 
nXC  result shrank by a factor of ( )n  compared to that of the original 

PSF. 

7.2. Estimation of PSF with global fitting approach (Theory) 

In this section, we will start with a general discussion of PSF estimation, by combining 

nSOFI AC  of different orders, nSOFI XC  with different order and different choices of pixel 

combinations, to perform a global fitting. An example will be discussed in the next subsection to 

demonstrate the proposed approach with SOFI-AC2 and SOFI-XC2.  

First, let’s write down the mathematical expression of nSOFI AC  and nSOFI XC  values: 

 

1 1

,

1

2

1 2 ,2
1

1

2

( ) ( )

( , ,..., ) exp ( ) ( )
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  (7.9) 

We can choose the pixel combination 1 2, ... ,( , )nr r r  to have geometric center located at r , in this 

case we’ll have: 
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  (7.10) 

Now simplify our notation with   to represent for the distance factor shown below: 
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    (7.11) 

Where 
nXC  and 

nAC  are computed from the fluorescence measurement, ξ can be calculated per 

group of pixel combinations; the only unknown will thus be σ that characterize the size of PSF. 

Under this sense, we can perform many different pixel combinations, with multi-order analysis to 

expand our equation system, a global fitting can thus be applied to yield a robust estimation of 

PSF.  

7.3. Estimation of PSF with global fitting approach (Simulation verification) 

In this demonstration, we use 12 different pixel combinations (Combo A-L), the geometric center 

( gcr ) of every pixel combination is located at the center pixel. For each pixel combination we can 

calculate a set of 2SOFI XC  values that is compared to 2SOFI AC  values. The plot of 

2SOFI XC  against 2SOFI AC  will thus encode the PSF information as illustrated in table 7.1.  
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Figure 7.1. PSF estimation using multiple pixel combinations.  

Here we demonstrate the strategy to use multiple different pixel combinations to estimate the PSF 

by comparing the values of 2SOFI XC and 2SOFI AC . The first column shows 12 different 

choices of pixel combinations with which 2SOFI XC  will be calculated, and the  2SOFI AC

of the pixel located at the geometry center is calculated as well. In the second column we show the 

2  values with   defined in equation (7.11). and in the third column we show the theoretical value 

of the slopes between the 2SOFI XC  and 2SOFI AC  values as a function of  , which 

characterize the PSF as defined in equation (7.4). The units of   and   are unit pixel width. 
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Figure 7.2 shows the plot of 
2SOFI XC  with 12 different pixel combinations against the 

2SOFI AC  values, the simulation data (Simulation 7-1) used in this demonstration is 10 equally 

spaced quantum dots with power-law blinking statistics emitting at 800nm  , detected with 

150  magnification, objective numerical aperture equals to 1.4 and physical size of detectors is 

14 m . In this demonstration, the PSF is simulated as a Gaussian function with FWHM defined 

according to Rayleigh’s criteria:  

 0.61FWHM
NA


   (7.12) 

Under Gaussian approximation of the PSF, the theoretical width is: 

 
0.61

148.02
2 2 ln 2 2 2 ln 2N

n
A

FWHM
m


  




 
  

The 
2SOFI XC  values are calculated for all the 12 different choices of pixel combinations and 

compared to the value of 
2SOFI AC  at the pixel located at their geometry center, the plot is 

shown in Figure 7.2. The global fitting yields a σ value to be 152.89nm  while the theoretical input 

is 148.02nm .  
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Figure 7.2. Global fitting to achieve PSF estimation.  

Here we demonstrate the linear relationship between the between the values of 2SOFI XC  and 

2SOFI AC  values of the pixel combinations discussed in Figure 7.1, the data is calculated from 

Simulation 1 (explained in the following context of this chapter). The slopes of all these curves 

encodes the information of the PSF size   as described in the third column of Figure 7.1. 
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7.4. Local parameter mapping form multi-order cumulant analysis. (Theory) 

In the previous section we discussed how to extract information of PSF, the next step is to use the 

information of the PSF to estimate blinking statistics of emitters inside the field of view. First, we 

write down the nth order SOFI image as in the form of summation over N emitters: 

 
1 2 1 , 1 2 1

1

( , ,..., ) ( ) ( , ,..., ),
N

n n

n n k k n k n

k

C r rU r       



   (7.13) 

Where ( )nC r  is nth order cumulant value located at location r , ( )U r  is the point spread function 

of the imaging system, k  is the emitter index, 
k

 is the brightness of on-state of emitter k  and k  

is the nth order cumulant of the blinking profile of emitter k .  

Note here that 
k

 and ,k n  are expected to have slow local variation, because emitter brightness 

and blinking statistics are usually determined by the emitters’ local environment. So we can replace 

the notation of 
k

 into ( )r  defined as the on-time brightness of emitters if it is located at r . 

Similarly, ,k n  can be replaced as ( )n r  (defined as the nth order cumulant of the blinking profile 

of an emitter if it is located at r . Under this sense, ( )r  and ( )n r  are functions that encodes 

information of the local environment that doesn’t necessarily follow the spatial distribution of 

emitters. Introduce another variable ( )L r  as follows: 

 
when there is an emitter at location 

where there is no emi

1,

tt
( )

0, er at location 

r
L r

r


 


  (7.14) 

So equation (7.13) can be re-arranged into the convolution form is as follows:  
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  2

1 2 1 1 2 1, , ,..., ( ) ( ) ( , , ,...,( ))) (n

n n n nr r LC r r rU             (7.15) 

where   indicates the operation of spatial convolution. 

Considering the correlation analysis with all the time lags equal to 0, equation (7.15) can be 

simplified as: 

 ( )n n

n nC L U    (7.16)  

Where  and n  are slow varying variables in space. Here, for each SOFI order number n , we 

can always calculate the SOFI cumulants nC  from the captured signal, and end-up with one 

equation as equation (7.16) of three unknowns ( ( )r , ( )L r  and ( )n r ). If we introduce another 

notation on  to characterize the percentage of time an emitter spent at ‘on’-state and dub as ‘on’-

time ratio, given sufficient statistical significance, different orders of ( )n r  can further be 

expressed as different functions of ( )on r , thus different orders of ( )nC r  is always functions of 

three identical variables: ( )r , ( )L r  and ( )on r . Given the noisy nature of our observation of 

fluorescence signal measurement, and the intrinsically unlimited number of cumulants that can be 

computed, we can get an over-determinant equation system. Regression method is thus preferred 

to solve for our unknown variables rather than a direct mathematical inversion as outlined in [ref 

bSOFI paper]. In the following discussion, we are going to use a demonstration with cumulants 

from 2nd order to 7th order. Because SOFI with cross-correlation analysis can give us an estimation 

of the point spread function U ,  

and with Gaussian approximation of the point spread function, we have: 
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So we can obtain an equation system as follows:  
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  (7.18) 

Where n  follows the expressions below: 
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  (7.19) 

Introduce a new notation:  

 

2

2

2

n

n
n

n

C U
X

C


   (7.20) 

Where Xn can be directly computed from fluorescence signal and cross-correlation of fluorescence 

signal from different pixels. Combining equation (7.20) with equation(7.18) and equation (7.19), 

we get: 
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  (7.21) 

where all the three associated variables are functions of spatial coordinate r , but we dropped the 

( )r  in the expression for simplicity of notations. In the equation system outlined in equation (7.21)

, ( )nX r  is known, ( )r  and ( )on r  are unknowns, any regression method that solves for 

polynomial equation system with 2 unknowns can thus be applied to solve for ( )r  and ( )on r . 

A small window can thus be defined that has the comparable size of 2U  to obtain multi 

observations, a global fitting method can be applied for more robust fitting of ( )r  and ( )on r  . 

In principal, the resolution of the spatial variation of the unknown variables is limited by the lowest 

cumulant order utilized to build this equation system. Which means in principal the same approach 

can be extended with extra higher order cumulants while excluding the lower order cumulant, and 

instead of performing convolution of the PSF to reach final PSF as 2U , we can redesign the 

convolution outlined in equation (7.17) and achieve the final PSF size that match to different PSF 

sizes as shown below: 

 
mn

n n mmU U u    (7.22) 

The general goal here is to perform convolution of the higher order cumulants to expand their PSF 

to match to the size of the lowest order of cumulant used to construct the equation system. Use 

deconvolution to shrink the lower order cumulants PSF is less preferable because of the lack of 

reliability in deconvolution performance.  
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Note here that we are assuming ( )r , ( )on r  are spatially slow varying variables, to be more 

specific, starting from equation (7.18) we are assuming ( )r , ( )on r  are constant within an area 

covered by 2U . If the equation system outlined in equation (7.21) is constructed with the lowest 

cumulant order as m , then we only need to assume ( )r , ( )on r  are constant within an area 

covered by mU . 

Once we have the information of  ( )r  and ( )on r , we can combine it with equation (7.17) and 

solve for nL U  that which encode the information of local emitter density. 

7.5. Local parameter mapping form multi-order cumulant analysis. (Simulation 

verification) 

In this section, we are going to use the data of Simulation-7.1 to demonstrate the process of the 

estimation of on  and ( )r  as outlined in the previouse section. The blinking statistics of the 

Simulation 7-1 is outline din Table 7.1, and the imaging system of the simulation is outlined in the 

section of “Estimation of PSF with global fitting approach” in this chapter. First, we calculate 

nSOFI AC  with the SOFI orders range from 2nd order to 7th order as shown in Figure 7.3. Noting 

here that in this demonstration, the on-time brightness of all the emitters are identical, the only 

difference between these emitters are their on-time ratio on . We can see that for different emitters 

with different blinking statistics, different order cumulants will show difference in ± signs and 

amplitudes, as outlined in equation (7.19). We then take the PSF estimation and convolve each 

order of 2SOFI AC  with 
2

2

n

nU   , and the images we get is shown in Figure 7.4 
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Figure 7.3. SOFI cumulants.  

different order cumulant calculated from auto-correlations, nSOFI AC  with n = 2, 3,...,7. In this 

simulation. Notice here that the PSF is shrinking with the increase of cumulant order. 
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Figure 7.4. Images of SOFI-AC2 convolved with U2n/(n-2).  

In this figure we show the convolution of different order of SOFI cumulant calculated for 

simulation 7-1 and shown in Figure 7.3, with different width of Gaussian functions. We can see 

that in each resulting image the PSF is of the same size. 
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The next step is to take the output shown in Figure 7,4, and follow the operation outlined in 

equation (7.20) to obtain the five output images (
3 7,...,X X  ) as shown in Figure 7.5: 

 

 

Figure 7.5. Computed equation system {Xn}.  

We can see there the computed { }nX  is in the form of images that has pixel intensity encoding 

the information of blinking statistics parameters on  and .  The information is only encoded in 

the area accessible by the emitters in the field of view. So here we only see circular area has the 

encoded information while the amplitude of the information in the background region remains 

low.  
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Now we can use these images of { }nX  with 3,4,5,6,7n   to solve for the two unknown variables 

( )r  and ( )on r  as outlined in equation  (7.21). In principal, solving the equation system is an 

independent problem that any suitable method can be applied. Here we demonstrate the method 

that is utilized in this demonstration: First, let’s reconstruct the equation into the following form: 

 

3

2

2

4

2 3

2 3 4

2 3 4

3

5

4

7

5

6

5

6

36

150

5

1 1
(1 2 )

1 1
(1 6 )

1 1
(1 14 24 )

1 1
(1 30 240 120 )

1 1
(1 62 1560 1800 720 )40

on

on on

on on on

on on on on

on on on on on

X

X

X

X

X



 

  

   

    

 

 



 









  

    

  (7.23) 

 

We can see that each equation is a curve in a two dimensional space where one axis represents for 

on  and the other axis represents for 
1

. This means at each given location r , the solution of the 

equation system should be the crossing point of the five curves corresponding to the five equations 

outlined above. However, since we are dealing with a noisy system here, the five curves do not 

necessarily cross at the same point in the two dimensional plane. Consequently, an estimation of 

the solution should be determined. Given that  should be positive, and on  should range from 0 

to 1, we can draw the curves that follows the form of )
1

(i onf    with 3,4,5,6,7i   as follows: 
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  (7.24) 

Now for each given r , we can have five curves that represents the five equations outlined above 

in equation (7.24). We can find the optimal 
on  such that { ( ) | 3,4,5,6,7}oi nf i   is most closely 

distributed to be the solution of our equation. In this demonstration, we take the average of the 

mutual cross points of the five curves. The solution of 
on  and  is find for each pixel across the 

FOV and is calculated and compared to the values calculated from bSOFI, as demonstrated in 

Figure 7.6. 
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Figure 7.6. Estimation of “on”-state brightness and “on”-time ratio.  

The values shown for the 10 emitters in simulation using moca-SOFI, and compared to the 

performance of bSOFI.  

 

 

Table 7.1. Simulation 7.1 blinking statistics. 
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Chapter 8. SOFI 2.0 imaging on fixed cells labeled with quantum dots 

 

In this section, we will discuss the imaging of fixed cells labeled with quantum dots. Either 3T3 

cells or Hela cells are cultured in 30mm glass bottom dish until the cell culture reaches about 70% 

confluency. The cell dish is washed with warm (37C) 1x PBS buffer >4 hours prior to cell fixation 

and is placed into 37C incubator (5% CO2) for cells to relax to healthy condition.  The cells are 

then fixed with fixative that contains both formaldehyde and Glutaraldehyde with 1% Triton 

(detailed recipe for fixative is explained in the protocols section).  We labeled alpha-tubulin 

structure using primary antibody (eBioscience Cat#14-4502-80) that binds to the alpha-tubulin and 

secondary antibody (ThermalFisher Ref#Q11071MP) that carries quantum dots and binds to the 

primary antibody. Imaging is performed with either a Nikon setup, or home built TIRF microscope. 

The SOFI analysis is performed with all the data processing discussed in the previous chapter sand 

the displayed result we dub as SOFI-2.0 result. As shown in Figure 8.1 we have shown the 

performance of SOFI 2.0 on QD labeled fixed cells. 
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Figure 8.1. Performance of SOFI 2.0 on fixe 3T3 cell. Scale bar: 1.6 m . 

 

Fixative is made with as described in the below: 

Prepare 5M sodium chloride solution, 1M magnesium chloride solution, 200mM MES solution, 

2x sucross (22.2% w/v) and 25mM EGTA. In the preparation of the EGTA solution, it is important 

to adjust the PH of the solution to be 8 such that EGTA can dissolve completely. The dissolving 

process may take up to 20 minutes with constant stir, and the PH value needs to be adjusted over 

the process. Mixing the following ingredients to make 100ml 4xCB buffer: 20mL 200mM MES, 

11.25mL 5M sodium chloride, 20mL 25mM EGTA, 1mL 1M MgCl2 and 47.25ml de-ionized 

water filtered with 0.22um filter. Then 50ml Fixative is prepared with 12.5mL 4xCB Buffer, 

12.5mL 2x Sucrose, 12.5mL 1% Triton, 1mL 25% Glutaraldehyde, 4.5mL 36.5% Formaldehyde 

and 7ml deionized water filtered with 0.22um filter.  

Fixative solution is store at 4℃ and warmed at 37C water bath prior to usage. 
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Chapter 9. SOFI 2.0 on live cells 

We performed SOFI analysis on live cell with all the improvement we have discussed in the 

previous sections including moments reconstruction, local dynamic range compression and step 

wise deconvolution (thus we dub this advanced version of SOFI as SOFI2.0). Here we demonstrate 

the live cell imaging using 3T3 cells with actin labeled through fluorescence protein fusion of 

DronpaC12 (unpublisehd) with  -Actin. The cells are cultured in 35mm glass bottom dish before 

transfection of the plasmid containing the sequence of DronpaC12-(GGGGS)x3 linker - -Actin 

fusion protein. The cells are transfected when it reaches around 90% confluency with 

lipofectamin 2000. The cells are incubated for 32 to 38 hours before imaging, and the cells are 

under warm 1x PBS buffer condition while imaging.  

As shown in Figure 9.1 where we have shown the image reconstruction of 300 frames. Because 

we use an epi lamp instead of laser for excitation, the bleaching rate is largely attenuated which 

allow us to acquire data set more than 15 minutes long. The entire movie is divided into individual 

blocks of 300 frames, where each block is processed independently using SOFI2.0. We can see 

from Figure 9.2 a zoom-in region from the dataset shown in Figure 9.1 at different time instance. 

During the data acquisition, the exposure time per frame is 50 miliseconds and each block of 300 

frames gives one instance of the SOFI2.0 reconstruction, that together can constitute a movie 

with super resolution as shown in SI movie 1 (Chapter9_SOFImovie.avi). 
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Figure 9.1. SOFI 2.0 performance on live cell.  

Here we present a live cell imaging result of SOFI 2.0 compared to the time average frames. (a) 

is the time average of the 300 frames, and (b) is the SOFI 2.0 result processed from the 300 

frames. Each frame is 50 ms exposure time and signal accumulation. The shown region is a focal 

adhesion site of a 3T3 cell. The labeled feature is  - actin, labeled with DronpaC12 through 

protein fusion. Cell is imaged in 1x PBS buffer with 90x magnification. Scale bar 1.92 m  .  
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Figure 9.2. SOFI 2.0 reconstruction compared to average image at different time instances. 

Here we show a zoom-in region of the reconstructed SOFI 2.0 movie of the same sample shown 

in Figure 9.1. The size of the field of view is 8 8m m  . Raw data of a movie with 19200 

frames are processed, where the entire movie is divided into 65 individual blocks with 300 

frames per block. Each block is processed with SOFI 2.0 individually and yield an output image 

that represents an instance in the reconstructed SOFI 2.0 movie. We have shown above all 65 

instances of SOFI 2.0 results and the corresponding time average result as labeled in the figure.   
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Chapter 10.  Discussion 

In this project, several advancement of SOFI is presented that together constitute what we dub as 

SOFI 2.0. The performance of SOFI 2.0 has been demonstrated on fixed cells as well as live cell 

imaging, especially the ability of SOFI 2.0 to produce a super resolution movie at a time 

resolution of 15 seconds per frame, and with continues imaging of more than 15 minutes. We 

look forward for follow up research to study and unveil new biological discoveries with the 

ability to visualize dynamic process with super-resolution provided by SOFI 2.0. 
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