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Abstract

On Rate Design in Modern Electricity Sectors

by

Felipe Ignacio Castro Altamirano

Doctor of Philosophy in Energy & Resources

University of California, Berkeley

Associate Professor Duncan Callaway, Chair

This dissertation focuses on the problem of designing rates in the utility sector. It is moti-
vated by recent developments in the electricity industry, where renewable generation tech-
nologies and distributed energy resources are becoming increasingly relevant. Both technolo-
gies disrupt the sector in unique ways. While renewables make grid operations more complex,
and potentially more expensive, distributed energy resources enable consumers to interact
two-ways with the grid. Both developments present challenges and opportunities for regula-
tors, who must adapt their techniques for evaluating policies to the emerging technological
conditions.

The first two chapters of this work make the case for updating existing techniques to
evaluate tariff structures. They also propose new methods which are more appropriate given
the prospective technological characteristics of the sector. The first chapter constructs an
analytic tool based on a model that captures the interaction between pricing and investment.
In contrast to previous approaches, this technique allows consistently comparing portfolios
of rates while enabling researchers to model with a significantly greater level of detail the
supply side of the sector. A key theoretical implication of the model that underlies this
technique is that, by properly updating the portfolio of tariffs, a regulator could induce
the welfare maximizing adoption of distributed energy resources and enrollment in rate
structures. We develop an algorithm to find globally optimal solutions of this model, which
is a nonlinear mathematical program. The results of a computational experiment show
that the performance of the algorithm dominates that of commercial nonlinear solvers. In
addition, to illustrate the practical relevance of the method, we conduct a cost benefit analysis
of implementing time-variant tariffs in two electricity systems, California and Denmark.
Although portfolios with time-varying rates create value in both systems, these improvements
differ enough to advise very different policies. While in Denmark time-varying tariffs appear
unattractive, they at least deserve further revision in California. This conclusion is beyond
the reach of previous techniques to analyze rates, as they do not capture the interplay
between an intermittent supply and a price-responsive demand.
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While useful, the method we develop in the first chapter has two important limitations.
One is the lack of transparency of the parameters that determine demand substitution pat-
terns, and demand heterogeneity; the other is the narrow range of rate structures that could
be studied with the technique. Both limitations stem from taking as a primitive a demand
function. Following an alternative path, in the second chapter we develop a technique based
on a pricing model that has as a fundamental building block the consumer utility maximiza-
tion problem. Because researchers do not have to limit themselves to problems with unique
solutions, this approach significantly increases the flexibility of the model and, in particu-
lar, addresses the limitations of the technique we develop in the first chapter. This gain
in flexibility decreases the practicality of our method since the underlying model becomes
a Bilevel Problem. To be able to handle realistic instances, we develop a decomposition
method based on a non-linear variant of the Alternating Direction Method of Multipliers,
which combines Conic and Mixed Integer Programming. A numerical experiment shows that
the performance of the solution technique is robust to instance sizes and a wide combination
of parameters. We illustrate the relevance of the new method with another applied analysis
of rate structures. Our results highlight the value of being able to model in detail distributed
energy resources. They also show that ignoring transmission constraints can have meaningful
impacts on the analysis of rate structures. In addition, we conduct a distributional analysis,
which portrays how our method permits regulators and policy makers to study impacts of
a rate update on a heterogeneous population. While a switch in rates could have a positive
impact on the aggregate of households, it could benefit some more than others, and even
harm some customers. Our technique permits to anticipate these impacts, letting regula-
tors decide among rate structures with considerably more information than what would be
available with alternative approaches.

In the third chapter, we conduct an empirical analysis of rate structures in California,
which is currently undergoing a rate reform. To contribute to the ongoing regulatory debate
about the future of rates, we analyze in depth a set of plausible tariff alternatives. In our
analysis, we focus on a scenario in which advanced metering infrastructure and home energy
management systems are widely adopted. Our modeling approach allows us to capture a wide
variety of temporal and spatial demand substitution patterns without the need of estimating
a large number of parameters. We calibrate the model using data of appliance ownership,
census household counts, weather patterns, and a model of California’s electricity network.
The analysis shows that the average gains of implementing time-varying rates with respect
to a simple flat rate program are rather mild, not greater than 2 dollars per month, even
in the scenario in which volumetric charges are allowed to vary freely from hour to hour.
Our results also show that factors such as the presence of an air conditioning system and
the exterior temperature profile can have a meaningful impact on the surplus gains that
different rates generate on households. These two results combined suggest that defaulting
all residential customers into a time-of-use rate structure, which is the current path California
is following for the residential sector, may not be an optimal strategy. Targeting different
rates to households with different appliance stocks and in different locations will likely be a
superior policy.
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Chapter 1

Introduction

This dissertation focuses on the problem of designing rates in the utility industry. It develops
a technique to conduct applied analysis of rate structures and uses this method to study
retail pricing in California. This work is highly motivated by recent developments in the
electricity sector. The industry is experiencing two mayor changes: one corresponds to the
increasing importance of renewables, such as wind or solar power, in generation mixes; the
other is the the emergence of distributed energy resources (DERs) (IEA, 2013). While the
electricity sector has experienced many waves of technological transformation, the advent of
these technologies poses unique challenges.

High-voltage grid-connected intermittent generation technologies, such as windmills or
solar photovoltaic systems, challenge grid operations. The output of these technologies is
driven mainly by weather conditions, such as wind speed, wind direction, cloud cover or
haze, which change considerably across time. As a result, systems operators cannot dispatch
these resources at will. In absence of economically feasible storage, the intermittentcy of
wind or solar requires additional reserves to ensure reliability and more capacity to meet
demand. These requisites could translate into higher production costs and even undermine
carbon emission reductions (Frondel et al., 2015). Rate structures that reflect closely system
conditions could work in sync with renewable resources, incentivizing consumption when
these resources are available, and bringing demand down when they are scarce.

The increasing penetration of distributed energy resources, including advanced metering
infrastructure (AMI), energy management systems (HEMS), rooftop solar photovoltaic and
battery storage systems are enabling residential consumers, or “prosumers”, to interact bidi-
rectionally with electric grid. Customers can not only purchase electricity but also provide
the system with energy and reliability services (Schleicher-Tappeser, 2012). In regulated
retail sectors, residential rate structures greatly influence this interaction. Rates can impact
adoption decisions, by changing the economic value of the technology, and can influence
the usage of this resource. Rates may also increase distributional disparities, creating cross
subsidies between those who can and cannot adopt the distributed technology (Eid et al.,
2014).

Despite the crucial role of rate design, the body of techniques to discern in a systematic
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manner among many alternatives is rather scant. Factors explaining this reality include
limitations of the theory and the focus of the empirical work. While the theory asserts that
real-time pricing (RTP), a structure with charges that vary freely across time, is optimal
from an economic efficiency perspective (Joskow and Tirole, 2006), regulators must balance
efficiency with other public goals, such as rate simplicity, equity or meeting environmental
directives (Stanton, 2015). Absent a comprehensive quantification of the impacts associated
with implementing RTP, it is difficult for regulators to judge the value of this alternative,
especially when it may compromise other regulatory goals.

The empirical literature has tried to quantify impacts, however, the scope has been
somewhat limited. Researchers have focused on estimating price responsiveness to quantify
changes in efficiency in the short-run. Examples include the work of Allcott (2011), Caves
et al. (1984a), Faruqui and Sergici (2010), Faruqui and Sergici (2011) and Herter (2007).
Other relevant metrics such as long-run welfare effects, equity or environmental implications
have been explored either in isolation or with stylized analyses, but never with an applied
approach, within a unified framework.1

1.1 A Technique to Evaluate Rate Structures

The first two chapters of this dissertation focus on developing a comprehensive technique to
evaluate rate structures. Building upon a mature theory of pricing for public utilities—Peak-
Load Pricing, the first chapter constructs an analytic tool based on a model that captures the
interaction between pricing and investment. In contrast to previous approaches, this tech-
nique allows consistently comparing portfolios of rates while capturing complexities emerging
in modern electricity sectors. Welfare analyses conducted with the method can account for
interactions between intermittent renewable generation, distributed energy resources and
tariff structures.

We explore the theoretical and practical implications of the model that underlies the tech-
nique. Our analysis shows that a regulator can induce the welfare maximizing configuration
of the demand by properly updating the portfolio of tariffs. We exploit the structure of the
model to construct a simple algorithm to find globally optimal solutions of the associated
nonlinear optimization problem. A computational experiment suggests that the specialized
procedure can outperform standard nonlinear programming techniques. This dominance in
performance is specially stark for large-sized instances.

To illustrate the practical relevance of the rate analysis method, we conduct a numerical
study of the deployment of advanced metering infrastructure. Previous cost-benefit evalua-
tions considered this technology in isolation and did not study how pricing could affect its
value. In the chapter, we take a different approach. We consider customers with and without
AMI as resources competing with technologies at the supply side. Customer with AMI can
enroll in a time-varying rate and thus be a source of demand responsiveness. Our analysis
numerically explores the optimal mix of demand and supply side resources. We consider

1See, for instance, Borenstein (2006), Borenstein (2013), Crew et al. (1995) and Joskow and Tirole (2006).
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two hypothetical systems constructed with data from California and Denmark. The analysis
shows that pricing greatly influences the optimal deployment of AMI. If customers with this
technology enrolled in real-time pricing, the optimal deployment would be up to ten times
greater than if they enrolled in a time-of-use (TOU) rate structure. In addition, as one would
expect with supply side technologies, the optimal deployment of AMI depends upon the spe-
cific characteristics of the systems, in this exercise, the correlation between the time series
of baseline consumption and renewable production. This correlation is greater in Denmark’s
than in California, which makes demand responsiveness more valuable in the latter system.
As a result, with data from California the optimal roll-out of AMI could be up to five times
higher than with Denmark’s data. The results suggest fairly different policy prescriptions.
In the case of Denmark, there seems to be little value in implementing time-varying rates,
such as TOU or RTP. On the other hand, in California regulators should seriously consider
time-varying rates, as they could create value, even after netting out AMI costs.

1.2 Developing a Comprehensive Approach to

Evaluate Rates

While useful, the model that underlies the method that we develop in the first chapter has
two important limitations. One is the lack of transparency of the parameters that determine
demand substitution patterns, and demand heterogeneity; the other is the narrow range of
rate structures that could be studied with the technique. All models based upon the theory
of Peak-Load Pricing inherit these limitations. The theory assumes that the demand, the
solution of the consumer utility maximization problem, is a singleton. Thus, the models
based upon this theory take this consumer demand as a primitive, instead of considering the
consumer problem as the fundamental building block. While simplifying mathematical ana-
lysis, this assumption considerably restricts modeling flexibility. Important determinants of
household electricity consumption behavior such as weather patterns or appliance ownership
cannot be transparently included in models where a representative demand function is the
starting point. In addition, while a researcher could represent a wide variety of time-varying
rate structures, more complex designs such as combining a time-varying rate with a demand
charge or a block rate cannot be captured. Modeling these rates requires to modify the
consumer problem, breaking the basic assumptions of Peak-Load Pricing.

In the second chapter, we develop a model that tackles both limitations by considering as
basic building block the consumer maximization problem. As a result, the technique allows
researchers to consistently benchmark a large class of tariffs. The literature of utility pricing
is divided into two branches: non-linear and time-varying pricing. Non-linear pricing encom-
passes prices that differ depending on the levels of aggregated consumption. On the other
hand, in time-varying pricing volumetric charges are contingent upon time. Researchers
have studied these branches independently, comparing structures within the branches, but
never between. The model we develop provides a unified analytic framework to compare
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most structures relevant in practice, including non-linear and time-varying prices, and also
structures with a charge for peak-consumption. It also makes possible capturing an unprece-
dented level of detail, making direct and transparent the inclusion of important technological
aspects emerging in the utility industry. Our model finds the Ramsey-Boiteux prices while
simultaneously determining production schedules, supply and demand side investments and
consumption allocations.

This flexibility comes at a cost, however. The model becomes more complex since, in
general, the demand function does not have analytic expression. We formulate the utility
pricing problem as a Bilevel Program and develop a distributed algorithm to solve it. We
first cast the Bilevel Problem as a Mathematical Program with Equilibrium Constraints,
and solve it using conic and mixed-integer programming, as well as a non-convex variant
of the Alternating Direction Method of Multipliers. Our solution approach is suitable to
distributed computation and, thus, appropriate for large-scale applications. A numerical
experiment shows that the performance of the technique is robust to instance sizes and a
wide combination of parameters. With a simple application, we illustrate its value for the
emerging utility industry.

The analysis highlights the value of being able to model DERs. It shows how the eco-
nomics of rooftop PV systems impact the rate comparison, and that time-varying rates and
inexpensive DERs could complement each other; the former can improve the relative value
of the latter while DERs being inexpensive increases the gains of switching from a time in-
variant rate. In addition, the exercise shows that ignoring transmission constraints can have
meaningful impacts on the analysis of rate structures. In the exercise, the presence of net-
work constraints translates into significantly higher welfare gains when switching from a flat
rate to more sophisticated structures. Omitting this element underestimates the benefits by
about 3000 times. Finally, we are able to conduct a distributional analysis, which portrays
how our method permits regulators and policy makers to study impacts of a rate update on
a heterogeneous population. While a switch in rates could have a positive impact on the
aggregate of households, it could benefit some more than others. It could even harm some
customers, which can be particularly problematic if those harmed were low income house-
holds. A technique such as the one introduced in this chapter permits to anticipate these
impacts, letting regulators decide among rate structures with considerably more information
than what would be available with alternative techniques.

1.3 An Applied Analysis of Utility Pricing in

California

In the third chapter, we use the technique developed in the second in an applied study. This
work contributes with analysis of residential rate structures, in the context of California’s
electricity sector. The state of California is in the process of transitioning all residential
customers from a default increasing block rate structure to a time-varying tariff. In July of
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2015, decision D.15−07−001 set a schedule and a series of steps to transition all residential
customers to a time-of-use rate by 2019. In this chapter, we embark on an exploration of
the long-run consequences of this rate redesign.

Our bottom up approach to demand modeling allows us to capture a wide variety of
temporal and spatial substitution patterns without the need of estimating a large number
of parameters. We calibrate the demand model using data of appliance ownership, census
household counts and weather patterns. We supplement this data with a realistic model of
the western interconnection, including a simplified representation of the network’s topology
and a comprehensive set technical parameters for the power production technologies. A
distinctive element of our analysis is the variety of perspectives it offers. We are able to
asses the impacts of diverse rate updates from an efficiency point of view, while at the same
time we are able to grasp the distributional and environmental consequences.

Besides the time-of-use structure, we compare a set of rates which are plausible future
alternatives, a TOU with a charge for peak-consumption (TOU& DC) and an RTP tariff.
Our analysis indicates considerable welfare gains when switching to an RTP structure. These
gains are an order of magnitude greater than those obtained when switching to a TOU or
a TOU& DC program. The total gains are so small, in this second case, that they cannot
cover the costs of AMI. Importantly, the fact that these gains are small is because under
TOU or TOU& DC customers with central air conditioning are worse off. On hot summer
days, when the system is not under peak conditions, these customers will pay much more
than what they would have paid under RTP. Even though customers with no central air
conditioning benefit from switching, the welfare loss of those with these devices is such that
the total efficiency gains are small when transferring all customers to the TOU or TOU&
DC rates. This suggests that defaulting all customers to TOU, which is the path that
California’s regulators are following, might not be an optimal strategy. Instead, targeting
different rates to households with different appliance stocks and in different locations will
likely be a superior policy.
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Chapter 2

Optimal Rate Design in Modern
Electricity Sectors

2.1 Introduction

Electricity sectors are experiencing two major shifts: accelerating deployment of inter-
mittent renewable generation1 and pervasive information and communications technologies
(ICT) (IEA, 2013). The management of the demand, or demand response, is broadly seen
as an important resource in the presence of intermittent renewables, and ICT has a clear
role to play in providing information or control signals to end-use devices to enable this
resource (Joskow and Wolfram, 2012). There are two types of demand response programs.
One includes programs in which a utility can directly alter the demand level of a customer.2

The other encompasses programs where price signals are the means the utility uses to in-
fluence its demand (FERC, 2006). In this paper we focus on the latter type of programs,
commonly known as rates or tariffs.

In many jurisdictions, a regulated utility distributes the electricity to most end customers.
In these instances, this agent collects its revenue through a set of rates or tariffs, which are
under the oversight of the regulatory body. A central element defining these tariffs is their
structure or design, which specifies what charges compose these instruments (Joskow, 2007,
p. 1276). Given the new reality of the electricity industry, where renewable generation
and distributed energy resources (DERs) play an increasingly important role, regulators
are exploring more sophisticated tariff structures (Stanton, 2015). Advanced rate designs
that align better with marginal costs (e.g., time-varying rates) can reduce generation fuel
costs and decrease investment in distribution, transmission and generation infrastructure
(Joskow and Wolfram, 2012). However, when other public goals—such as carbon emission
reductions—are at stake and the presence of intermittent renewables is significant, the case

1Intermittent renewables include wind and solar power plants.
2In the US, an example of this type of program is direct load control. Utilities can remotely control some

of the devices of a customer under this program.
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for advanced rates is less clear-cut. Depending on the characteristic of the system, these
rate designs may or may not decrease emissions (Holland and Mansur, 2008); simpler tariffs
structures, such as a flat rate (FR), may produce greater environmental benefits and even
improve consumer surplus (Kök et al., 2016).

The emergence of distributed energy resources further complicates the analysis of rate
structures. Advanced metering infrastructure (AMI), a set of technologies allowing utilities
to collect and transmit granular consumption information, and home energy management
systems (HEMS) enable the implementation of sophisticated rate designs, and can boost
consumer price-responsiveness (Faruqui and Sergici, 2010). However, these DERs are not
necessarily cost-effective. While AMI comes along with operational savings, including a
decrease in meter reading or fault detection expenditures, these are insufficient to cover
its capital costs (Faruqui et al. 2010, Faruqui and Sergici 2010). Improved tariff designs
in combination with HEMS could fill this gap. But they are not exempt of costs either.
Implementing complex rate structures requires at least creating awareness in the population
and educating retail customers on the benefits these rates; home energy management systems,
that can enlarge the benefits of advanced rates, such as smart thermostats or in-home displays
(see Faruqui and Sergici 2013), require meaningful capital outlays as well.

Given these benefits and costs, to what extent it is beneficial for a system to implement
more sophisticated rate structures? While this policy-relevant question has been traditionally
approached by economists, we believe that the OR community has an important role to play
in improving past answers, specially in the face of the complexities unfolding in the electricity
industry. Sioshansi (2012) gives a step in this direction. The paper investigates the impacts
of different tariff structures on the efficient operation of Plug-In Hybrid Electric Vehicles
(PHEVs). Using a Unit Commitment and Vehicle-Charging models, the paper finds that a
simple flat rate can outperform time-varying rate designs. Sioshansi (2012) detailed model
illuminates the inefficiencies that can emerge at the retail level when using time-varying
structures in sectors with non-convex costs—where production technologies have costs with
terms independent of the level of production (O’Neill et al., 2005). This finding contradicts
economists common wisdom, which asserts that rate designs that reflect marginal costs better
are more desirable (see, e.g., Joskow and Wolfram 2012).

Kök et al. (2016) is another example showing that capturing new complexities, charac-
teristic of modern electricity sectors, can challenge intuition. The paper investigates the
interaction between two rate designs, a flat and a time-varying structure, and investment
in the presence of renewable generation. Using a model that captures the intermittentcy of
renewables and the pricing behavior of the utility, the paper finds that the flat rate design
leaves consumers always better-off relative to the time-varying structure. Although this con-
clusion rests upon the characteristics of the setting that Kök et al. (2016) analyze, the result
does provide additional evidence of the importance of detailed modeling when evaluating
tariff structures.

The present work adds to the contributions by developing a general technique to eval-
uate rate structures. We take as a starting point empirical methods which have been used
to conduct welfare analysis of rate changes (e.g., Acton and Bridger M. 1983, Caves et al.
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1984b, Gallant and Koenker 1984, Howrey and Varian 1984, Lillard and Aigner 1984, Parks
and Weitzel 1984, Borenstein 2005, Borenstein and Holland 2005, Taylor et al. 2005 and
Allcott 2011). We add layers of detail that capture salient aspects of modern electricity sec-
tors. Specifically, we extend previous techniques in four significant ways. First, our method
improves the consistency of the comparison among rates. Existing approaches compare tar-
iff structures either specifying ex-ante rate levels (the specific values of each of the charges
composing the rate structure), or imposing unnecessary constraints on them (e.g., Acton
and Bridger M. 1983, Borenstein 2005, Sioshansi 2012). In contrast, our technique computes
rate levels following an optimality criterion. Researchers compare the best case of a rate
structure against the best case of another (see Subsection 2.3 for more details).

In addition, we improve the supply cost representation of previous methods. With the
exception of Sioshansi (2012), past work either represents these costs with stylized models
(e.g., Borenstein 2005, Kök et al. 2016) or omits the supply side, only assessing welfare im-
pacts on end customers (e.g., Lillard and Aigner 1984, Allcott 2011). The present technique
permits researchers to include complex representations of the supply side. The main differ-
ence with the approach of Sioshansi (2012) is that we consider long term costs while this
author focuses on the short-run.

A third extension allows comparing multiple rate structures simultaneously. Except for
Borenstein (2005) and Borenstein and Holland (2005),

The last element that distinguish our method from others is the endogenous computation
of an optimal demand mix. That is, the model we use for comparing rates finds the socially
optimal fraction of customers enrolled in different programs. Borenstein and Holland (2005)
explores the welfare implications of alternative demand mixes. Specifically, the paper studies
the impacts of exogenously varying the fraction of customers under an advanced tariff. It
shows that while the marginal benefit of increasing this fraction decreases, the marginal cost
remains constant. Consequently, the authors observe that the optimal fraction ultimately
depends upon the specific characteristics of the system under study. The endogenous com-
putation of an optimal demand mix simplifies the analysis in Borenstein and Holland (2005).
More importantly, in combination with the other improvements we introduce, it allows com-
paring portfolios of rate structures making far less assumptions than one would have to if
using other approaches.

Our technique uses a nonlinear optimization model that we build based on the Peak-
Load Pricing theory. This strand of utility pricing was developed in the seventies and
eighties with the work of Steiner (1957), Boiteux (1960), Drèze (1964), Crew and Kleindorfer
(1976), Panzar (1976), Joskow (1976), Carlton (1977) and Chao (1983), and more recently
was revisited by Zöttl (2010) and Chao (2011). While it originally intended to provide
theoretical guidelines for the optimal pricing of public utility services (Crew et al., 1995),
other authors have used this theory as a framework to analyze a range of regulatory issues.
Joskow and Tirole (2006) uses Peak-Load Pricing to construct a benchmark to understand
the implications of competition at the retail level in the electricity industry; Zöttl (2010)
explores the incentives to invest of strategic firms participating in markets where demand
is fluctuating and storage is prohibitively expensive; and Chao (2011) uses the theory to
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explore the interaction between time-varying rates and intermittent renewables. Following
the approach of these papers, we use Peak-Load Pricing as a basis for our model which we
modify to meet our purposes.

2.2 Peak-Load Pricing: An Overview

The problem that this theory addresses is how to price the set of commodities that a regulated
monopoly provides. It answers this question taking the perspective of a regulator. Optimal
prices are such that the societal welfare is maximized subject to the revenue sufficiency
and technical constraints of the regulated monopoly (Crew et al., 1995). We formalize the
Peak-Load Pricing problem following Crew et al. (1995) and Joskow and Tirole (2006).

Before starting, we introduce some notation. Let Ω be a discrete sample space, qω the
probability that ω ∈ Ω occurs, and E[·] the associated expectation operator. We refer to an
element in Ω as outcome or state of nature, and distinguish a random from a deterministic
variable placing a bar on top of the former. Given a random variable ȳ, we denote yω the
realization of this variable when ω occurs. The symbol > indicates the transpose of a vector.

The theory considers a monopolist offering a set {1, . . . , T} of goods. Customers are of
different types i ∈ I, and distribute according to a frequency function δi, denoting the number
of types i. A quasi-linear utility U i

ω(d) + mω characterizes the preferences of the customers
of type i over consumption bundles d ∈ RT

+. The scalar mω is her expenditure in all other
goods. For a vector of prices pω ∈ RT

+, a customer with an income Mi consumes according
to the demand function Di

ω (pω) := arg maxd≥0

{
U i
ω(d) +Mi − p>ωd

}
.3 It is customary to

assume that U i
ω(·) is strictly concave and, thus, Di

ω(p) is a singleton. The gross surplus of
this customer is Siω(pω) := U i

ω (Di
ω(pω)).

We define D̄I′(p̄) as the aggregated consumption of types i ∈ I ′, where I ′ ⊆ I. That is,
D̄I′(p̄) =

∫
I′
D̄i(p̄)δidi. Defined similarly, SI

′
ω (pω) represents the aggregated gross surplus.

The monopolist offers a two-part rate structure. That is, a contract which has a fixed
charge l and a vector of volumetric charges p̄. In this arrangement, the monopolist charges
ptω per unit of consumption of good t under ω. The corresponding consumer surplus is

CS(l, p̄) = E
[
S̄I(p̄)− p̄>D̄I(p̄)

]
− l · νI , (2.1)

where νI′ :=
∫
I′
δidi for any I ′ ⊆ I.

The monopolist produces with a set of technologies that we index with the letter k ∈ K.
Each technology differs from others on its variable costs per unit of production, cωk ∈ RT

+,
its fixed costs r̂k, and its availability factor, ρωk ∈ RT

+, capturing the variability in the
technology’s availability—e.g., due to the intermittent output of some renewables or the
occurrence of outages. Before uncertainty realizes, the monopolist decides the installed
capacity of each technology, xk. After, the firm determines a production vector for each

3The problem the customer solves is
{
U i
ω(d) + mω : Mi ≥ p>ω d + mω

}
. Because peak-load pricing as-

sumes mω > 0 in any optimum, one can simplify the problem.
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technology, yωk ∈ RT
+. For a consumption vector d̄, the monopolist’s cost function satisfies

C
(
d̄
)

= min
(x,y)

∑
k∈K

E
[
ȳ>k c̄k + xkr̂k

]
(2.2)

subject to

d̄ ≤
∑
k∈K

ȳk, (2.3)

0 ≤ ȳk ≤ xkρ̄k, k ∈ K (2.4)

and the firm’s profit is

Π(l, p̄) = E
[
p̄>D̄I(p̄)

]
+ l · νI − C

(
D̄I(p̄)

)
− Π0, (2.5)

where Π0 captures transmission and distribution costs, overhead expenses and the opportu-
nity cost of the monopolist.

The welfare maximization problem or, as it is referred to in Peak-Load Pricing (e.g.,
Crew et al. 1995, Joskow and Tirole 2006), the Ramsey problem is

max
(l,p̄)
{CS(l, p̄) : Π(l, p̄) ≥ 0, (l, p̄) ∈ L × P} . (2.6)

Henceforth, we refer to L × P as rate structure, and to an element of this set as rate level.
The literature theoretically explores optimal pricing rules for alternative structures. For

instance, Joskow and Tirole (2006) consider the case where L = R, and compare a real-

time pricing structure (RTP), in which P = RT ·|Ω|
+ , with a flat rate structure, where P ={

p̄ ∈ RT ·|Ω|
+ : ptω = pt′ω′ ∀(t, ω)

}
; Crew et al. (1995), on the other hand, focus on the case

where L = {0}, and also review the real-time and flat rate cases.

2.3 A Method to Compare Rate Structures

We propose using the model of Peak-Load Pricing as a framework to compare rate structures.
For a set of tariffs under analysis, the comparison requires solving the Ramsey problem for
each of the corresponding structures, and then comparing the optimal values of the problem.

This method is closely related to the approaches used by Acton and Bridger M. (1983),
Caves et al. (1984b), Gallant and Koenker (1984), Howrey and Varian (1984), Lillard and
Aigner (1984), Parks and Weitzel (1984), Taylor et al. (2005) and Allcott (2011). For a
change in rates, these studies compute a change in welfare (W ) using that ∆W = ∆Π −
∆r + ∆Y , where ∆Π is the change in producer surplus, ∆r the variation in demand side
infrastructure costs, and ∆Y is the compensating variation—the money that when taken
away from an individual leaves him with the same level of welfare he had before the price
change (Mas-Colell et al., 1995, pp. 80–91). Researchers can use the optimal value of the
Ramsey problem to quantify ∆W . With the following Lemma, we formalize this claim.
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Lemma 2.3.1 Suppose prices change from (l1, p̄
1) to (l2, p̄

2), and let v1 and v2 be the optimal
value of the Ramsey problem for the rates 1 and 2, respectively. Then,

∆W = v2 − v1 −∆r. (2.7)

The proof of this and all other results in this section are in the Appendix A.1.

Consistently Comparing Rate Structures

One advantage of using (2.7) is that it offers a consistent criterion to compare rate structures.
The solution of the Ramsey problem corresponds to the optimal rate levels. Thus, researchers
compute the change in welfare associated to the best case of each structure.

This criterion offers an alternative to previous approaches. Allcott (2011), Howrey and
Varian (1984), Lillard and Aigner (1984), Parks and Weitzel (1984) and Taylor et al. (2005)
compute the welfare changes using predefined rates. Acton and Bridger M. (1983) compare
two time-of-use (TOU)4 with a flat rate structure. The authors determine the TOU assuming
a difference between the peak and off-peak charges and imposing revenue neutrality. Caves
et al. (1984b) follows a similar approach except that the authors search for an optimal TOU
rate evaluating various peak to off-peak ratios. The method that is closest to ours is the
one that Gallant and Koenker (1984) use. This work computes welfare changes from a flat
rate to a TOU and to an RTP structures. As in our method, the paper numerically finds
optimal rate levels for each structure. The key difference is that the authors use a simplified
representation of the production costs. While a simplification, the function do captures
an important trade-off present in electricity industries: a more capital intensive production
mix, commonly associated to an increased average cost of capital, will tend to have lower
short-run marginal costs at all levels of production.

A Flexible Cost Function

The difficulty of using the approach of Gallant and Koenker (1984) is that the cost function
cannot be easily customized. It is not possible to use this function, for instance, in systems
with potentially high penetrations of intermittent renewables. A crucial determinant of the
value of these technologies is how their output correlates with consumption. This aspect is
missing in the cost representation of Gallant and Koenker (1984). Using the cost function
of Peak-Load Pricing, on the other hand, avoids this problem, without missing the trade-off
between capital and short-run marginal costs.

Furthermore, a researcher can easily modify (2.2)-(2.4) to increase the realism and suit-
ability of this cost representation depending on the data available. Indeed, the technical
results of Subsections 2.3 and 2.3 hold if the objective function is convex, and (2.4) is a

4A TOU structure charges differently depending on the hour of the day, day of the weak and possibly
season.
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general convex set. In particular this allows modeling a transmission system, rationing and
disruption costs,5 and technologies with storage and ramping constraints.

Comparing Portfolios of Rate Structures

An element characteristic of previous tariff analyses is the pairwise comparison of rate struc-
tures. With the exception of Borenstein (2005) and Borenstein and Holland (2005), past
work assesses welfare changes resulting from the whole population being in one rate and
then switching to another.

In practice, a utility recovers its costs offering a portfolio of tariffs. Each rate in the
portfolio applies to an specific class—a fraction of the customer base with particular cost
characteristics (RAP, 2011, pp. 47–50). It is not uncommon for utilities to distinguish vari-
ous classes (e.g., industrial, commercial and residential customers) and, thus, offer portfolios
with several rates (RAP, 2011, pp. 47–50). It seems then appropriate to have methods that
allow measuring welfare changes when changing more than one rate at a time.

These approaches can also help improving analyses focusing on just one rate structure.
Changing the tariff of one class can impact other classes as well. For instance, if a new rate
reduces the contribution of the class to the aggregated peak consumption, this will cause a
reduction in the overall production costs.6 If this effect is systematic, in the medium to long
term, it will translate into lower bills for all customers, not just those in the class with the
new rate.

To the best of our knowledge, only Borenstein (2005) and Borenstein and Holland (2005)
explore welfare changes while simultaneously adjusting multiple rates. These papers study
a setting with two type of customers, those enrolling in a flat rate structure and those
in an RTP tariff. The studies analyze various scenarios in terms of the fraction of the
population under each rate. For each scenario they compute rate levels that satisfy market
equilibrium conditions, and calculate the corresponding welfare metric. Our method builds
upon the idea of comparing multiple rates which are adjusted simultaneously to new systems’
conditions. We expand the approach of Borenstein and Holland (2005) with a model that
allows comparing general portfolios of rate structures.

In order to achieve this goal, we introduce a slight modification to the Ramsey problem.
Let L := L1 × . . . × Ln, P := P1 × . . . × Pn and L × P be the constraint set for the rate
revels, that we call portfolio of rate structures. We consider P being a convex set. Besides,
we let l = (l1, . . . , ln)> be a vector of fixed charges and p̄ = ((p̄1)>, . . . , (p̄n)>)> a block vector
of volumetric charges. Now the duple (l, p̄) corresponds to a portfolio of rate levels. The
subindex h identifies a particular rate and the partition of population under this tariff (for
instance, a class). The set Ih contains the types under partition h, and αh is the number of
customer under this partition. We focus on the case where Ih ∩ Ih′ = ∅, ∀h 6= h′. This is the

5Following the technique of Crew and Kleindorfer (1976).
6In the electricity sector more efficient units have priority. This implies that during peak periods the

more inefficient plants are used, which increases the marginal cost of production.
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relevant case since classes distinguish customers with different characteristics. We modify
the consumer surplus function of Peak-Load Pricing as follows

CS(l, p̄) =
n∑
h=1

E
[
S̄h(p̄h)− D̄h(p̄h)>p̄h

]
− l>α, (2.8)

and similarly update the profit function

Π(l, p̄) =
n∑
h=1

E
[
D̄h(p̄h)>p̄h

]
+ (l + r)>α− C

(
n∑
h=1

D̄h(p̄h)

)
− Π0, (2.9)

where, for simplicity, we replaced S̄Ih(p̄h) and D̄Ih(p̄h) by S̄h(p̄h) and D̄h(p̄h), respectively.
In (2.9) the vector r = (r1, . . . , rn)> has in its components fixed costs which are directly
associated with each rate. For example, if a utility decides to implement a time-varying rate
for customers in h, it needs to upgrade its metering equipment. The parameter rh is the cost
of the new capital, and may also account for program implementation and marketing costs
(all expressed as annuities).

Observe that (2.8) and (2.9) do not alter the structure of the Ramsey problem, only
increase its dimensionality. If it is possible to solve (2.6) efficiently, then the same applies
for the new problem.

Optimal Demand Mix

Distributed energy resources change the way in which customers interact with the electricity
grid. Households and businesses become more responsive to complex price signals (Faruqui
and Sergici, 2013), and they may even sell energy and provide reliability services to the grid
(IEA, 2016, pp. 198–202). In an effort to adapt to this emerging reality, regulators are
rethinking the design of existing rates (Stanton, 2015). The challenge involves developing
tariffs that (i) provide the right long term incentives, so that DERs are adopted efficiently
(NARUC, 2016, p. 41),7 and (ii) uncover the operational value of these resources (Lazar and
Gonzalez, 2015). To enable researchers to explore the extent in which a given rate structure
meets these goals, we introduce a final modification to the Peak-Load Pricing framework.

This modification builds upon the observations of Borenstein and Holland (2005) and
Joskow and Tirole (2006). These papers analyze the value of advanced metering infrastruc-
ture (AMI) as enabler of real-time pricing. They observe that, depending on the capital
cost of this distributed energy resource, it is optimal to deploy AMI in only a fraction of the
customer base. The reason is that the marginal benefit of an increasing number of customers
enrolled in RTP decreases (Borenstein and Holland, 2005), while the marginal cost (the cap-
ital cost of AMI) remains constant. This result suggests treating the number of customers

7In this context, the word adoption refers to households and businesses acquiring a resource relevant for
the grid operation, for instance, a solar photovoltaic panel or an electric vehicle. Efficient adoption refers to
the deployment of these resources at the right place and time.
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with the same rate structure and DER in a similar fashion as one treats the installed capacity
of a production technology. Making an analogy with the supply side, one can think the dis-
tribution of customers across tariffs and DERs as a demand mix. The final modification we
introduce to the Peak-Load Pricing model, allows comparing tariff structures under optimal
supply and demand mixes.

Beyond improving the internal consistency of the rate evaluation method we propose, this
symmetrical treatment improves the accuracy of the technique. Comparing rates assuming
arbitrary long-run configurations for the demand can produce misleading results. Past rate
analyses, such as Caves et al. (1984b) or Gallant and Koenker (1984), concluded that time-
of-use rates were not cost-effective for residential customers. Metering costs would have
outweighed efficiency gains if the program would have been implemented for the whole
customer base. The observations of Borenstein and Holland (2005) and Joskow and Tirole
(2006) weaken the conclusions of these studies. Time-varying rates could have passed the
cost-benefit test if the authors would have focused on the optimal subset of the population.
In addition, computing a demand mix is important for a reason not directly related with rate
analysis. An optimal supply and demand mix provides regulators and policymakers with a
snapshot of the long term configuration of the system, given a portfolio of rate structures.
This perspective can be used as a benchmark and also to set targets for DERs adoption or
rate enrollment.

To model a demand mix, we now assume that I is a discrete set, with νi being the number
of customers under type i ∈ I (e.g., I = {industrial, commercial, residential}). For customers
that adopt a technology h the rate that applies is (lh, p̄

h); and αh continues to be the number
of customers in h. Defining the matrix Γ such that [Γ]ih = 1 if a type i can enroll in h and 0
otherwise, the feasible region for α, henceforth the demand mix, is A :=

{
α ∈ Rn

+ : Γα ≤ ν
}

.
As in the setting of Borenstein and Holland (2005), we focus on the case where

∑
i [Γih] =

1. That is, we consider that one rate applies to only one customer type. In our setting the
type i is a representative customer. Though interesting, we postpone the development of the
general case, in which different customer types can enroll in the same rate, for future work.

The new consumer surplus function is now

CS(l, p̄) =
n∑
h=1

αhE
[
S̄h(p̄h)− D̄h(p̄h)>p̄h

]
− l>α, (2.10)

and the utility surplus

Π(l, p̄) =
n∑
h=1

αhE
[
D̄h(p̄h)>p̄h

]
+ (l + r)>α− C

(
n∑
h=1

αhD̄
h(p̄h)

)
, (2.11)

where rh not only includes the costs associated to the implementation of the rate but also
those related to the technology of the customers enrolled in h. For simplicity, henceforth we
consider that rh includes the costs Π0/

∑
i νi.

8

8In practice utilities and customers share technology costs, for instance, utilities may own metering
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We simplify the Ramsey problem noting that Π(l, p̄) = 0 in the optimum. Using this
condition, and equations (2.10) and (2.11), the version of the Ramsey problem we propose
for rate analysis is

max
(α,p̄)

n∑
h=1

αhE
[
S̄h(p̄h)− rh

]
− C

(
n∑
h=1

αhD̄
h(p̄h)

)
(2.12)

subject to

p̄ ∈ P , (2.13)

α ∈ A. (2.14)

Researchers evaluating portfolios of rate structures can solve (2.12)-(2.14) for alternative
definitions of P and compare the optimal value of this problem. Note that it is no longer
necessary to add exogenously the variation in demand side capital costs (∆r) to the variation
in optimal values of the Ramsey problem, as in (2.7). These costs are part of the objective
of (2.12)–(2.14).

Enhancing the Applicability of the Framework

The Ramsey problem is nonlinear, and non-convex. This poses two important challenges to
analysts using this model. First, in general it is not possible to guarantee that a solution of
(2.12)-(2.14) is globally optimal. Thus, despite finding solutions for two competing portfolios
of rate structures their comparison could be inconsistent. The analyst could benchmark a
sub-optimal against an optimal solution. Second, the non-convexity of the problem limits
its scalability as the problem size greatly decreases the performance of non-convex solvers.
To enhance the practical applicability of the method, we make the following assumption:

Assumption 2.3.1 The gross surplus function Shω(·) is strictly concave and the demand
function Dh

ω(·) is convex.9

Under Assumption 2.3.1 (2.12)–(2.14) remains nonlinear and not necessarily convex or
concave. However, its specific structure allows us to develop an efficient solution method.
The following proposition suggests a suitable approach.

Proposition 2.3.1 Let Pα refer to the problem (2.12)–(2.14) with α entering as a fixed
parameter, and let g(α) be the optimal value of Pα. Under Assumption 2.3.1, for any α ∈ A,
g(α) is concave.

infrastructure and customers rooftop solar panels. However, ownership is not relevant from a social planning
perspective when the focus is efficiency. Besides, utilities can always pass along this cost with the fixed
charge lh.

9Convex demand functions are mappings whose components are all convex.
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Indeed, even though g(·) does not have an explicit functional form, we can leverage an
iterative procedure solving

max {g(α) : α ∈ A} (2.15)

to find a solution to the Ramsey problem. Because (2.15) is a convex problem, such an
approach could potentially outperform non-convex solvers. In Section 2.4 we present evidence
suggesting that this is in fact the case.

Optimal Long Term Incentives

An implicit assumption of the Ramsey problem is that regulators can control the demand mix
α, i.e., the adoption of technologies and rate enrollment. While these authorities could have
certain influence on the roll-out of distribution equipment, for many demand side technologies
and rates customers are the agents making the adoption and enrollment decisions. At best,
regulators could design long term incentives consistent with a desired demand configuration.
Thus, the solution of (2.12)–(2.14) should be interpreted as the demand mix given optimal
long term incentives.

For concreteness, we now propose one approach for setting these incentives. Let p̄(α) be
the optimal solution of Pα. Define, in addition, λ̄(α) as the dual variable of (2.3) when the
demand parameter is the aggregated demand (the argument of C(·) in (2.11)) evaluated at
(α, p̄(α)). Further, define the vector of fixed charges l(α) as follows,

lh(α) = E
[
(λ̄(α)− p̄h(α))>D̄h(p̄h(α))

]
+ rh. (2.16)

The incentive rule we propose is set the rate levels at (l(α), p̄(α)) when the demand mix is
α.

This rule has appealing theoretical properties. It replicates the incentive structure of an
industry with a distribution utility and a competitive wholesale market (see e.g., Joskow and
Tirole (2006)). More importantly, one can show that that these incentives align customers’
individual choices with the maximization of societal welfare. The three results that follow
formalize this property.

First, we observe that if the system is at a socially optimal configuration, under the rule
we propose no customer has incentives to switch.

Proposition 2.3.2 Let (α∗, p̄(α∗)) be an optimal solution of (2.12)-(2.14), and l(α∗) the
vector of fixed charges. Then, the portfolio of rate levels (l(α∗), p̄(α∗)) is such that no cus-
tomer has an incentive to switch to an alternative rate.

Assuming that the utility updates rates relatively fast compared with how customers
switch, it is possible to show a result akin to Theorem 5 in Borenstein and Holland (2005).
The result provides an intuition about the welfare effects of customers switching, including
effects on these customers and on the population as a whole.
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Proposition 2.3.3 If immediately after a rate update the first group of customers switching
leave h1 to enroll in h2, then (i) the surplus of switchers increases, (ii) the difference between
surplus of customers in h1 and h2 decreases, (iii) the aggregated welfare increases, and (iv)
the marginal benefit of the switch decreases.

The final proposition shows that a regulator could induce the optimum of the Ramsey prob-
lem instructing an incentive rule such as the one we propose. Interestingly, this incentive rule
does not require the regulator knowing the optimal demand mix in advance. The current
conditions fully determine the incentive.

Proposition 2.3.4 The incentive rule that sets rate levels at (l(α), p̄(α)), when α describes
the demand mix, induces the Ramsey optimum in the long-run.

Beyond being compelling from a theoretical perspective, this result enhances the con-
sistency of the method introduced in this paper. When using (2.12)–(2.14) to compare
structures, a researcher compares among best cases which could be implemented. The result
also improves the value of the Ramsey problem as a benchmark case for planning studies.

2.4 Solution Method

In principle, one could solve (2.12)–(2.14) with a non-convex optimization package. Here we
describe an alternative approach that exploits Proposition 2.3.1. We propose solving (2.15),
thereby solving implicitly the Ramsey problem. Because g(α) does not have an explicit
functional form, we use an iterative procedure comprising an inner and outer routines. The
inner routine solves Pα, a task that, in general, a convex optimization solver can handle.
The outer routine searches an optimum for (2.15). At each iteration it uses information
of the optimal solution of Pα in order to compute a search direction and a step size. The
outer routine can be implemented with a variety of nonlinear optimization algorithms; in
this paper we implement it with a Barrier method (Boyd and Vandenberghe, 2009).

The barrier method works by dropping the problem’s inequality constraints and augment-
ing the objective with a barrier function φ(·). The new objective is zt(α) := tg(α) + φ(α),
where t is a weighting parameter that changes across iterations. We define φ(·) as φ(α) :=∑

i∈I ln(νi−Γi•α)+
∑n

h=1 ln(αh), where Γi• is the ith row of the matrix Γ. The new problem
is an unconstrained nonlinear program, thus, it can be handled with a Newton-like method.
Algorithm 1 describes the outer routine.

In practice, one cannot use a standard Newton method in order to maximize zt(·). Be-
cause this function does not have an analytic formula, there is no analytic expression for its
inverse Hessian. A suitable approach is using a quasi-Newton algorithm (Luenberger and
Ye, 2008). These methods use an approximation of the inverse Hessian when computing a
Newton step. The more sophisticated versions calculate improved approximations of this ma-
trix using first order information gathered as the optimization procedure progresses. In this
paper we use the Limited Memory Broyden-Fletcher-Goldfard-Shanno method (L-BFGS),
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Algorithm 1 Outer routine solved via Barrier method

1: Initialization: Given a strictly feasible α, t← t0 > 0, µ > 1 and ε > 0
2: while (|I|+ n)/t ≥ ε do
3: t← t+ µ
4: Find with Newton method α∗ := arg maxα zt(α)
5: α(t)← α∗

which guarantees R-linear convergence for uniformly concave problems. The performance of
this algorithm improves considerably if ∇[zt(α)] = t∇g(α) +∇φ(α) is available analytically.
While deriving an analytic expression for the second term is straightforward, for the first we
use a result from sensitivity analysis for nonlinear programs.10 Its explicit formula is

[∇g(α)]h = E
[
S̄h
(
p̄h(α)

)
− λ̄(α)>D̄h

(
p̄h(α)

)]
− rh. (2.17)

Performance To test the performance of our approach, we constructed a simple experi-
ment that is similar to the one described in Section 2.5 with two key differences. First, we
used only two tariffs: (i) real-time pricing (RTP), for which the volumetric charge varies
freely, and (ii) flat rate, for which the volumetric charge is constant across all time steps and
outcomes. Second, in addition to examining a scenario with a sample spaces composed of
365 outcomes (as in Section 2.5), we also examined a smaller case with 50 outcomes. For
each scenario, we implemented the preceding algorithm, which we will refer to as parametric,
as well as a first order and second order procedures. The latter two methods solve the Ram-
sey problem directly with a nonlinear solver. While the first order passes to the solver the
analytic formula of the gradients, the second order provides the analytic Hessian as well. We
tested each algorithm-scenario combination for 20 different parameter choices corresponding
to a range of technology costs and demand price-responsiveness parameters. The stopping
criterion for all algorithms was the same: the lesser of the time to converge within a 10−6

duality gap, or 14, 400 seconds.
Overall, we found that the parametric method converged in 13±5s (for 50 states of

nature, ± denotes standard deviation) and 226±79s (365 states of nature). The second order
method converged in 49±25s and 3,132±1,762s (50 and 365 outcomes, respectively) and the
first order method converged (or reached the maximum compute time) in 2,865±2,568s and
11,405±5,050s.

10For details see the proof of Proposition 2.
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Figure 2.1: Structure of analysis

2.5 An Application: The Value of Real-Time Pricing

Analysis Design and Data Assumptions

We compared two portfolios of rate structures: (i) a portfolio that includes a flat rate and
a time-of-use tariff11 and (ii) a portfolio that adds an RTP tariff to the first portfolio. As
Figure 2.1 shows, for each portfolio we considered a range of scenarios for demand-side
technology costs, a range of Renewable Portfolio Standard (RPS)12 targets, and load and
renewable production data from two systems (Denmark and California; for simplicity we
restrict renewable production to wind).

Table 2.1 shows the supply-side technologies we considered and their economic parame-
ters. The only relevant supply-side technical parameter is the availability factor, which we
set to 85% for all states of nature for non-wind technologies.13 For wind, we use histori-
cal system-wide hourly capacity factors for 2014, available from California’s Open Access
Same-time Information System (OASIS) and the website of the Danish transmission system
operator.

On the demand side, we consider one customer type14 and three arrays of technologies,
denoted as Tech 1, 2 or 3: (1) a standard meter, (2) advanced metering infrastructure
(AMI) or (3) AMI plus automation technology. AMI enables customers to participate in

11Here we consider a TOU with different volumetric charges for each hour of the day.
12An RPS target mandates the utility to produce a fraction of its energy with renewables.
13The availability factor from NERC’s Generating Availability Data System website.
14We chose one type due to data availability and to simplify the analysis.
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Table 2.1: Economic parameters of supply-side technologies

Base-load Mid-merit Peak High-peak Wind

Capital cost

k$/MW-yr

207 85 27 16 225
Fixed O&M 69 21 16 11 40
Total fixed 227 106 43 27 265

Fuel

$/MWh

11 27 43 66 0
Variable O&M 5 11 11 11 0
Total variable 16 38 54 77 0

Notes: Non-wind parameters taken from De Jonghe et al. (2012). Wind costs are the average
of those from EIA (2013) for California and from Vitina (2015) for Denmark.

TOU or RTP tariffs, whereas automation technology enables customers to automate the
price response of their appliances. We model the latter phenomenon assuming different price
elasticities for customers with and without automation. Table 2.2 shows these elasticities
whose range is taken from empirical estimates in Faruqui and Sergici (2013).

Table 2.2: Demand elasticities

No automation Automation
Low increase Medium increase High increase

owna crossb own cross own cross own cross

(0.02) 0.07 (0.04) 0.14 (0.05) 0.20 (0.07) 0.27
(0.04) 0.14 (0.05) 0.20 (0.07) 0.27 (0.08) 0.33
(0.05) 0.20 (0.07) 0.27 (0.08) 0.33 (0.10) 0.40

a Own-price elasticity.
b Cross-price elasticity.
Note: Rows provide a range of own- and cross-price elasticities.

Tech 1 costs are normalized to zero; the costs to move to Tech 2 or 3 are incremental.
AMI costs are based on U.S. DOE data (DOE, 2012a,c).15 For automation technology we
base costs on currently available advanced programmable controllable thermostats. The
highest x-axis values in Fig. 2.1 agree with these incremental cost data; the two additional
costs correspond to 25% and 50% reductions.

The baseline levels of consumption correspond to the hourly, system-wide load profile for
the year 2014 for both, California and Denmark. While for California this data is publicly
available in OASIS, the Danish transmission system operator makes the hourly, system-wide
load profile available in its web page.

15These estimates are for capital and installation costs, net of any benefits to utility operations (e.g.
meter reading and back-office staffing). The estimates do not include hypothetical reductions in energy or
capacity expansion costs.
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A.2 contains further details of our implementation for this exercise. It describes how we
calibrated the demand parameters and makes explicit our treatment of the RPS target.

Results

As Figure 2.2 shows, welfare in Portfolio (ii) exceeds Portfolio (i) across the range of factors
we explored. Additionally, higher elasticity levels increase the positive impact of adding
RTP to (i). These findings are not surprising in light of previous work (e.g. Borenstein and
Holland (2005), De Jonghe et al. (2012), Crew et al. (1995) and Joskow and Tirole (2006)).
However, our framework allows a more comprehensive analysis.
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Figure 2.2: Average welfare differences between portfolios ((ii) - (i)) by RPS target. Absolute
differences in black. Relative differences in gray. Line thickness represents different elasticity
levels. Thicker lines correspond to lower own- and cross-price elasticities.

In terms of relative welfare differences, Portfolio (ii) does not seem particularly attractive.
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Considering additional rate design factors such as simplicity or public acceptance, a regu-
lator could conclude that neither in California nor in Denmark real-time pricing is valuable
enough to justify its deployment. However, a significantly different picture emerges when
one observes the results in Table 2.3.

Table 2.3: Demand mix by RPS target

California Denmark

RPS [%]

Portfolio Tech Tariff 15 35 55 75 15 35 55 75

(i)

1 FR 97 97 96 97 96 97 99 99
2 TOU 2 2 3 2 3 2 1 1
3 TOU 1 1 1 1 1 1 0 0

(iI)

1 FR 87 82 79 77 96 95 95 95
2 RTP 9 11 13 14 2 3 3 3
3 RTP 4 7 8 9 2 2 2 2

Note: Values are percentages of population under each category.

The demand mix provides a complementary perspective on the relevance of demand
alternatives for a system. While in California between 13 to 23 percent of the population
would enroll in real-time pricing were it present, only a 4 to 5 percent would in Denmark.
In equilibrium these differences appear not relevant because welfare results are similar, in
relative terms. But, in view of Proposition 2.3.3, the roll-out of RTP will certainly accrue
more benefits across time for customers in systems like California’s than for those in systems
like Denmark’s. This policy-relevant perspective cannot be achieved without a modeling
framework such as that developed in this paper.

An alternative way of inferring differences in the demand mix would be analyzing net-load
duration curves.16 Since demand responsiveness competes with peaking plants (Borenstein
and Holland, 2005; De Jonghe et al., 2012), differences during peak-hours should translate
into differences in the demand mix. Figure 2.3 shows, however, that small variations in the
shape of the curves can imply significantly different demand mixes. Thus, using net-load
duration curves in order to anticipate possible differences does not seem a suitable approach.

Finally, we point out two additional conclusions an analyst can derive from the demand
mix. First, it allows simplifying portfolios of rate structures. For instance, Table 2.3 shows
that when faced with Portfolio (ii) no customer enrolls in the time-of-use program, which

16Net load-duration curves are analysis tools used in the electricity sector to estimate the long term
value of different production technologies. They plot hourly net loads (system demand minus the renewable
production) for each hour of a period, say a year. Hours are sorted from left to right with the highest net
load hour to the extreme left and the lowest to the extreme right. A point in this curve indicates the fraction
of the time (x−coordinate) the net load is greater or equal to the net load in the curve (the ordinate). For
more details, we refer the reader to Stoft (2002, pp. 40–45).
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Figure 2.3: Net-load duration curves by RPS target. California net-load in black. Denmark
net-load in gray. All curves reach a maximum of 100%.

indicates that a simpler portfolio achieves the same benefits. Second, the demand mix
establishes targets for rolling-out demand technologies and rate structures. These targets
are not trivial as they correspond to fractions of the population and are contingent on the
many factors we explored. In particular, considering that the AMI costs we used are net of
any benefits to utility operations (e.g. meter reading and back-office staffing), our results
suggest that 100% smart meter rollouts are not cost-effective in the regions we investigated.

2.6 Conclusions

This work introduces an analytic method for helping planners and regulators in the design of
rates in the electricity sector. It develops a nonlinear program that serves as tool to compare
portfolios of rate structures, and proposes a suitable approach to find an optimal solution of
this model.

The flexibility of our method allows consistently comparing tariff structures, and it en-
ables researchers to model a richer set of trade-offs influencing the production costs in the
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sector. It also allows the comparison of portfolios of tariffs under optimal demand mixes. A
theoretical exploration of the properties of the nonlinear program suggests that our method
compares rates which are not only socially optimal but could also be implemented. Besides,
the demand mix that the model computes offers a valuable perspective on the potential
of competing demand alternatives. It helps planners and regulators to prioritize demand
technologies and rates, and to establish appropriate levels of deployment for each demand
option.

The application of the framework to the comparison of portfolios of rate structures in
California and Denmark shows its practical value. As the theory predicts, real-time pricing
increases welfare in both systems. But these benefits may not be enough to deploy it in
either. The systems have, however, different demand mixes which indicate different policy
prescriptions. While in Denmark RTP appears unattractive, it at least deserves further
revision in California.
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Chapter 3

A Mathematical Programming
Approach to Utility Pricing

3.1 Introduction

The distribution segment of the supply chain of commodities such as gas or electricity has
characteristics of natural monopoly. In these instances one firm, a distribution utility, serves
all customers and maintains the entire distribution infrastructure. Absent competition,
a regulator supervises the pricing, or rate design, of the utility’s services. The resulting
regulated prices serve two main purposes. They guarantee that the firm recovers its costs,
and thereby sustains its operations, and sends proper economic signals to retail customers
(Kahn, 1988, pp. 1–14).

Changes in the landscape of the utility industry are challenging prevailing rate designs. In
some sectors, such as in the electricity industry, innovations in information and automation
technologies enable utilities to implement more complex tariffs. For instance, advanced
metering infrastructure (AMI) allows measuring and recording electricity consumption at the
hourly timescale. With this technology utilities can implement time-varying rate structures,
designs in which volumetric charges can change across time (Joskow and Wolfram, 2012).

The increasing penetration of distributed energy resources (DERs) and intermittent gen-
eration also incentivize innovation in rate design. The massive adoption of DERs, such
as rooftop solar photovoltaic (PV) panels, home energy management systems (HEMS) or
electric vehicles (EVs), has pushed regulators to rethink the way in which utilities should
collect their revenue (NARUC, 2016). In a world of pervasive DERs, innovative tariffs design
are expected to improve the efficiency of the sector, decreasing short- and long-run systems
costs, and tackling distortions such as the cross-subsidization between customers with and
without DERs (NARUC, 2016).

On the other hand, high-voltage grid-connected intermittent generation technologies,
such as windmills or solar photovoltaic systems, bring new challenges to the grid operations.
The output of these technologies is driven mainly by weather conditions, such as wind
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speed, wind direction, cloud cover or haze, which change considerably across time. As a
result, systems operators cannot dispatch these resources at will. In absence of economically
feasible storage, the intermittentcy of wind or solar requires additional reserves to ensure
reliability and more capacity to meet demand. These requisites could translate into higher
production costs and even undermine carbon emission reductions (Frondel et al., 2015). Rate
structures that reflect closely system conditions could work in sync with renewable resources,
incentivizing consumption when these resources are available, and bringing demand down
when they are scarce.

In theory, there is one type of rate that could materialize all these benefits: a two-part
real-time pricing (RTP). This variant of a time-varying rate, in which volumetric charges
can differ from hour to hour, outperforms all other structures from an efficiency perspective
(Joskow and Tirole, 2006). Despite of this fact, at the time of this writing, only a small
number of jurisdictions have implemented this structure (Schwartz et al., 2017). Part of
the reason is that designing rates not only involves economic considerations. Regulators
must balance other objectives such as the simplicity, distributional impacts and stability of
competing tariff designs (Bonbright, 1988). Having techniques that allow consistently quan-
tifying the economic differences of various rates brings more clarity to the overall analysis.
Regulators can balance economic gains of more efficient rates, such as a real-time pricing,
versus other objectives. Even though RTP could maximize efficiency, the economic gains
with respect to a more simple or stable rate could be small enough to advice against its
implementation.

This paper contributes with a quantitative technique to evaluate rate structures. In
contrast to previous approaches, our method allows comparing within a unified framework a
large class of tariff designs. This includes time-varying structures, rates with demand charges,
or charges for peak-consumption, and block rates—tariff with volumetric charges contingent
on total consumption. A second distinctive characteristic of the present technique is that it
enables modeling in a transparent manner important aspects emerging in the utility industry.
Our framework allows representing in detail distributed energy resources, such as PV panels
or battery storage systems, and flexible appliances, such as heating and cooling systems.
This realistic representation of the demand side is embedded within a traditional capacity
expansion setting (e.g., Murphy and Smeers 2005). This allows researchers to explore the
long-run implications of different rate structures, taking into account their interaction with
the full supply chain. More importantly, it enables to model the time-variant and stochastic
nature of intermittent technologies, resources which are increasingly important in modern
utility sectors.

Our model builds upon the theory of Peak-Load Pricing, a framework that captures the
interaction between rate structures and investment decisions in the utility sector, and can be
used to compare rate designs. In this setting, a regulator chooses the pricing of a monopolistic
utility in order to maximize societal welfare, solving what is called the Ramsey-Boiteux
problem (Joskow, 2007, ch. 6). In doing so, the regulator, or Ramsey planner, internalizes
the consumer responses to different prices and the cost function of the monopolist, which
together determine the optimal allocation (Crew et al., 1995). One can use this framework to
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compare rate structures. By solving the model with different constraints sets for the prices,
researchers can compare the characteristics of the resulting equilibria.

The Ramsey-Boiteux problem is an instance of a Bilevel Model, a type of mathematical
programming problem in which group of variables is constrained to be in the solution sets
of subordinate, or lower level, problems (Dempe and Dutta, 2012). One way of approaching
a Bilevel Problem is replacing these solution sets by the first order necessary conditions of
the lower level problems. The resulting model is a Mathematical Program with Equilibrium
Constraints (MPEC), which can be handled with specialized nonlinear algorithms.

Because of dimension of the type of problems we attempt to tackle with the present tech-
nique, we develop a decomposition approach for the MPEC version of the Ramsey-Boiteux
problem (RMPEC). The algorithm is a nonlinear variation of the Alternating Directions
Methods of Multipliers (ADMM), a distributed computation technique which blends the
decomposabilty of dual subgradient methods and the convergence properties of the method
of multipliers. ADMM algorithms solve optimization problems via successive iterations,
each of which optimizes an augmented problem along two blocks of variables. Typically,
the resolution of one block can be distributed, and the other uses as input parameters the
distributed solutions. In our implementation, the distributed step involves solving low-
dimensional MPECs, that we tackle using the mixed integer programing representation of
Fortuny-Amat and McCarl (1981). To handle the problem of the other block of variables
we use conic programming. While inexact, our variant of ADMM allows tackling large-
scale instances of the Ramsey-Boiteux problem, greatly enhancing the applicability of our
approach.

With a computational experiment, we explore the performance of the present technique.
We test the algorithm on 200 hundred instances, which we construct varying the number of
variables and parameters of the model. We find that the algorithm has desirable properties
for practical applications. It vastly outperforms a popular commercial solver for Mathemat-
ical Programs with Equilibrium Constrains: Knitro. While this package is not able to find
a solution within 24 hours even for instances of small size, our algorithm converges within 2
hours in 94% of the instances tested. Furthermore, the results suggest that the algorithm is
suitable for distributed computation. The distributed step of our variant of ADMM increases
close to linear with the size of the problem while the centralized step grows at a rate lower
than linear.

In order to illustrate the value of the technique as a tool to compare rates in the the
utility sector, we conduct an analysis of tariffs structures in a simplified setting. The analysis
highlights the value of the modeling flexibility that the present technique provides. It shows
how abstracting from network constraints can introduce significant distortions in the analysis
of rates. In our exercise, omitting the existence of a network leads to underestimating the
benefits of time-varying rate structures by close to 31 times. In addition, the analysis shows
that DERs could potentially complement time-varying rates, increasing the value of this
structures while at the same time these type of rates could incentivize greater adoption
of distributed resources. Finally, the exercise highlights the value of being able to explore
impacts of rate design on a population of heterogeneous customers. While in all cases
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switching from a flat rate to a more sophisticated rate structure improves the welfare of the
aggregate of households, some rates benefit wealthier customers more. Moreover, there are
time-varying structures that can even harm customers with low levels of wealth, being these
worse off after the switch.

3.2 Pricing Utility Services

The pricing of utility services involves the determination of a revenue requirement and rate
structures. While the former corresponds to the total compensation utilities receive from its
customers, the latter are the instruments they use to collect such compensation.1 To the
extent that rate structures have an impact on consumption behavior which affects operational
and capital expenses, determining the revenue requirement and the structure of the rates
are not independent efforts. However, it has been the industry and academic practice to
consider these steps independently, understanding the complexities involved in one task
while simplifying the other (see, e.g., Joskow 2007, RAP 2011). In this work we adhere to
this strategy, focusing on the determination of rate structures.

One can further divide the definition of a rate structure into selecting the set of charges
that the tariff will include—what we call its design—and setting the actual values of these
charges. The technique we contribute with allows regulators and policy makers to discern
among competing rate designs. For simplicity and because it is the focus of this paper, we
refer to the design of a rate as rate structure or tariff structure as well.

Quantitatives methods for evaluating rate structures

Applied analyses of rate structures in the utility sector have sought measuring welfare changes
resulting from modifications in the design of the prevailing rates. The techniques developed
in these studies differ in how they quantify a change on welfare, ∆W . All make use of the
following identity,

∆W = ∆Y + ∆Π−∆r, (3.1)

where ∆r correspond to a change in customer related costs (e.g., capital cost of AMI), ∆Π
change in production costs and ∆Y is the compensating variation—the money that when
taken away from individuals leaves them with the same level of welfare they had before the
price change (Mas-Colell et al., 1995, pp. 80–91). Based on how the studies treat ∆Y ,
we distinguish two groups. Caves et al. (1984b), Gallant and Koenker (1984), Howrey and
Varian (1984), Lillard and Aigner (1984) and Parks and Weitzel (1984) start assuming a
functional form for the indirect utility function—the optimal value of the consumer utility
maximization problem, estimate the parameters of a theoretically consistent demand model,
and use these estimates plus the relationship between the indirect utility and compensating

1For a more complete discussion on the subject of rate design, see (Joskow, 2007, ch. 6 - 7)
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variation to derive the latter.2 A second group uses the consumer surplus to approximate
∆Y . Acton and Bridger M. (1983), Borenstein (2005), Borenstein and Holland (2005),
Taylor et al. (2005) and Allcott (2011) start by assuming a functional form for a system of
demand equations, estimate or calibrate its parameters, and integrate the system in order
to compute the consumer surplus. Willig (1976) shows that when focusing on goods with an
associated expenditure relatively small with respect to the customer’s budget—such as the
consumption of utility services, consumer surplus and compensating variation are equivalent.

The method that we propose in this paper falls within the second strand of approaches
and extends previous techniques in significant ways. It allows the consistent comparison of a
wide range of rate designs, including time-varying rate structures, rates with demand charges
and increasing or decreasing block rates. With the exception of Gallant and Koenker (1984),
previous studies have developed techniques to measure welfare differences between variations
of time-varying rate designs, such as a flat rate (FR), a time-of-use rate (TOU) or a real-time
pricing structure (RTP). These approaches have either compared tariff structures specifying
ex-ante the value of the volumetric charges, or imposing unnecessary constraints on them
(see, e.g., Acton and Bridger M. 1983 or Borenstein 2005). Gallant and Koenker (1984), on
the other hand, develops a technique that permits researchers to compare time-varying rate
structures with designs of the same kind supplemented with demand charges. In their setting
volumetric charges are endogenous. This approach, however, does not permit to model other
important groups of rate design such as block rate structures.

A second limitation of Gallant and Koenker (1984), which is shared by all other techniques
with the exception of Caves et al. (1984b), is a simplified representation of the supply side.
Previous work has either ignored the supply side (e.g. Allcott 2011, Howrey and Varian
1984 and Taylor et al. (2005)), or has simplified its representation with a cost function
(e.g. Borenstein and Holland 2005 and Gallant and Koenker (1984)). Even though, Caves
et al. (1984b) take a more comprehensive approach, using a detailed economic dispatch
model, they use this model only to estimate a marginal production cost function. Our
technique, on the other hand, finds rates while simultaneously optimizing short- and long-
run production decisions for a wide variety of production technologies and in the presence
of key infrastructure such as a transmission network.

While we believe these contributions are valuable, the most salient aspect of the present
technique is that it allows researchers to construct a bottom up model of customer behavior.
In our setting, the demand of a customer is the solution of a utility maximization problem
subject to a set of constraints. This constraints can be defined by the researcher providing
the flexibility to model a wide variety of devices, such as HVACs systems or refrigerators,
or distributed energy resources, such as rooftop solar PV or battery storage systems. This
modeling flexibility is fully unique to our method; all previous techniques use a top-down,
aggregated representation of the demand. A bottom up model overcomes three important

2For an individual with an income I, the relationship between the compensating variation and the indirect
utility function when prices change from p0 to p1 is v(p0, I) = v(p1, I − ∆Y ), where v(·, ·) is the indirect
utility function (Mas-Colell et al., 1995, pp. 80–91).
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limitations of past approaches. One is that these implicitly consider a population of homo-
geneous customers. While heterogeneity may not be crucial in determining the aggregated
benefits of a change in the design of rates, it will certainly help to understand the implications
for different types of customers. One cannot use a model with a representative customer
to study distributional impacts. A second drawback is that a top down approach precludes
researchers from including in a transparent manner important determinants of consumption
behavior, such as weather patterns. The third limitation, which is specially relevant today,
is the impossibility of using top down approaches to study distributed energy resources. By
their very nature, these technologies are sources of heterogeneity in the population, geo-
graphically, and in terms of consumption patterns. Given that rate design can not only
influence how households use these resources but also how they adopt them, it is important
to have tools that permit anticipate plausible outcomes.

We build our model considering as starting point the model we developed in the previ-
ous chapter, which is based on the theory of Peak-Load Pricing. For completeness and to
introduce the notation that we will use throughout the chapter, we now succinctly review
this theory.

Peak-Load Pricing: A Theoretical Framework to Compare Rate
Structures

Let Ω be a discrete sample space, qω the probability that ω ∈ Ω occurs, and E[·] the
associated expectation operator. We refer to an element in Ω as outcome or state of nature,
and distinguish a random from a deterministic variable writing the former in boldface. Given
a random variable y, we denote yω the realization of this variable when ω occurs. The symbol
> indicates the transpose of a vector.

The theory of Peak-Load Pricing has as objective to provide guidelines for the pricing
of public utility services (Crew et al., 1995). Its starting point is the problem faced by a
regulator that set prices with the aim of maximizing societal welfare. At the same time, the
regulatory body must guarantee that the regulated monopolist is able to cover its costs.

The monopolist serves a population of customers with different types i ∈ I. These
distribute in the population according to the frequency function δ(·), such that δ(i) is the
number of customers with type i. The monopolist offers a set {1, . . . , T} of commodities and
the customers decide among consumption bundles d ∈ RT

+. A quasi-linear utility U(d; θiω) +
mω characterizes the preferences of types i over these bundles, with U : RT

+ → R and θiω a
set of exogenous parameters. A type i has limited budget Mi. The customer’s demand for
each commodity results from her choosing optimally among bundles, i.e.,

D
(
pω; θiω

)
:= arg max

d≥0

{
U(d; θiω) +Mi − p>ωd

}
. (3.2)

The theory assumes that U is strictly concave so that D (pω; θiω) is a singleton; and the
gross surplus of this customer is S(pω; θiω) := U (D(pω; θiω)). In addition for I ′ ⊆ I, we
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denote DI′(p) :=
∫
I′
D(p;θi)δ(i)di the aggregated demand of the types in I ′, define SI

′
(p)

in a similar fashion, and call νI′ :=
∫
I′
δ(i)di the total number of customers with types in I ′.

The monopolist collects its revenue with a two-part rate structure, a contract (l,p) where
l is a fixed (or customer) charge and p a vector of charges per unit of consumption. The
corresponding consumer surplus is

CS(l,p) = E
[
SI(p)− p>DI(p)

]
− l · νI . (3.3)

There is a set of production technologies that we index with the letter k ∈ K. Each tech-
nology differs from others on its variable costs per unit of production, cωk ∈ RT

+, its fixed
costs r̂k, and its availability factor, ρωk ∈ RT

+. The latter captures the variability in the
technology’s availability due to, for instance, the intermittent output of some renewables or
the occurrence of outages. The installed capacity of technology k is xk and yωk ∈ RT

+ is its
production vector. Wit this definitions, the production cost for a bundle d is

C (d) = min
(x,y)

∑
k∈K

E
[
y>k ck + xkr̂k

]
(3.4)

subject to

d ≤
∑
k∈K

yk, (3.5)

0 ≤ yk ≤ xkρk, k ∈ K (3.6)

The profit of the monopolist is

Π(l,p) = E
[
p>DI(p)

]
+ l · νI − C

(
DI(p)

)
− Π0, (3.7)

where Π0 captures transmission and distribution costs, overhead expenses and the oppor-
tunity cost of the monopolist. We note that this profit function can also represent the
aggregated profits of a sector in which there is perfect competition at the wholesale level,
and there is a regulated utility at the retail level (see Joskow and Tirole 2006, Chao 2011).

The welfare maximization problem or simply the Ramsey problem is

max
(l,p)
{CS(l,p) : Π(l,p) ≥ 0, (l,p) ∈ L × P} . (3.8)

Henceforth we refer to L × P as rate structure, and to an element of this set as rate level.

3.3 An Alternative Quantitative Technique

The model we developed in the previous chapter extends the basic setting Peak-Load Pricing.
We now briefly review this model and discuss its limitations.

Let h ∈ {1, . . . , H} index the rates in the portfolio, and redefine P := P1 × · · · × PH ,
and L := L1 × · · · × LH such that Ph is the feasible region for the volumetric charges of
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rate h and Lh constraints the fixed charges of the same rate. In this setting h also indicates
the DER a customer adopts. The letter αh denotes the number of customers enrolled in h,
and the vector α ∈ RH

+ represents the distribution of the population across rates, which we
call demand mix. In this context I is a discrete set indexed by i, with νi being the number
of customers with type i. Defining the matrix Γ such that [Γ]ih = 1 if a type i can enroll
in h and 0 otherwise, the feasible region for α is A :=

{
α ∈ Rn

+ : Γα ≤ ν
}

. As in the basic
Peak-Load Pricing framework, the functions U,D, S correspond to the direct utility, demand
and gross surplus, respectively; and a set of endogenous parameters θh determines them for
each h.

The consumer surplus function in this model is

CS(l,p) =
n∑
h=1

αhE
[
S(ph;θh)−D(ph;θh)>ph

]
− l>α, (3.9)

and the surplus of the regulated utility

Π(l,p) =
n∑
h=1

αhE
[
D(ph;θh)>ph

]
+ (l + r)>α− C

(
n∑
h=1

αhD(ph;θh)

)
. (3.10)

Because Π(l,p) = 0 in the optimum, we can write the Ramsey problem as follows

max
(α,p)

n∑
h=1

αhE
[
S(ph;θh)− rh

]
− C

(
n∑
h=1

αhD(ph;θh)

)
(3.11)

subject to

p ∈ P , (3.12)

α ∈ A. (3.13)

Limitations of the model

The Ramsey problem has some limitations as a model to compare rate structures. The main
two relate to the realism of the demand representation and the type of rates that could be
modeled with this framework. The demand representation in (3.11)–(3.13) is similar to that
of the basic Peak-Load Pricing model in that it is the solution of a utility maximization
problem akin to (3.2). The theory makes the assumptions needed so the solution set of
this problem is a singleton. While this simplification makes the Ramsey problem amenable
to mathematical analysis, it comes along with two mayor drawbacks. First, in many cases
of interest, the solution set of the utility maximization problem may not be a singleton.
Example 3.3.1 shows a case of great relevance in modern electricity systems.

Example 3.3.1 Consider a household with an electric vehicle (EV) enrolled in a flat rate
with volumetric charge p ∈ R+. For simplicity, we consider that the round-trip efficiency of
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the vehicle’s battery is 1. While implausible, the reader can verify that this assumption does
not alter the point we make with this example. The aggregated demand of the household is
d + s, where d is the electricity consumption of the household and s that of the EV. The
battery of the electrical vehicle has a maximum and minimum charge and discharge rates
R+ > R−, and a maximum and minimum state of charge E+ > E−. Consistently, the
feasible region for s is

S =

{
s ∈ RT : s0 +

t∑
τ=1

sτ ∈
[
E−, E+

]
∧ st ∈

[
R−, R+

]
∀t

}
, (3.14)

with s0 the initial state of charge. The utility maximization problem is

max
(d,s)

{
U(d; θ) +M − p

T∑
t=1

(dt + st) : d ≥ 0, s ∈ S

}
(3.15)

Let s∗ be optimal for (3.15), suppose that there is a pair of consecutive periods where s∗t <
s∗t+1, and define ∆ := (s∗t+1 − s∗t ) · ψ. For any ψ ∈ (0, 1), we have that s∗∗ = (s∗1, . . . , s

∗
t +

∆, s∗t+1 −∆, . . . , s∗T ) is also optimal for optimal for (3.15). �

A second problem with the demand representation of the Ramsey problems relates to
the calibration of this function. Researchers have estimated price elasticities for electricity
demand. One can classify the approaches in two groups. One group focuses on estimating
own-price elasticties and peak-to-off-peak elasticities (e.g., Caves et al. 1984b, Howrey and
Varian 1984 and Lillard and Aigner 1984). While these have been useful for analysis of time-
off-use rate structures, they impose limits in terms of the range of rates that a researcher
can analyze. To evaluate rate structures such as a real-time pricing, the approaches used
in these papers fall short, as peak-to-off peak substitution is not a relevant concept in the
case of RTP. To overcome these limitations other researchers have used techniques that
permit to compute a full matrix of elasticities (e.g., Gallant and Koenker (1984) and Taylor
et al. 2005). While this approach brings more flexibility to the analysis of rates, it has
three limitations. One is that the demand system must be a linear function of the price,
which limits the range of utility maximization problems one can consider in an analysis. A
second drawback is the lack of transparency when introducing heterogeneity. In principle,
one can capture heterogeneity estimating various elasticity matrices. Having these inputs,
however, makes it hard to understand the role of fundamentals, such as weather patterns
or new technological conditions, on the results of an analysis. A third limitation is range
of rates that researchers can model. This framework permit analyzing any variations of a
time-varying rate structures. However, other tariffs such as increasing block rates or rate
structures supplemented with demand charges cannot be modeled.

A realistic demand model

We believe that a bottom up approach can tackle these limitations. It can simplify and make
more transparent the calibration of the demand model. Further, a bottom up approach can
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enable the analysis of more sophisticated rate structures. We slightly modify the frame-
work of the previous chapter to allow the bottom up modeling of the demand. Instead of
considering the demand function as a primitive, we consider as fundamental inputs the ele-
ments defining the consumer maximization problem. In the present extension, the demand
is simply some optimizer of this problem. The new version of the Ramsey problem follows

max
(α,d,p)

n∑
h=1

αhE
[
U(dh;θh)

]
− C

(
n∑
h=1

αhΨhd
h

)
(3.16)

subject to

dh ∈ arg max
d

{
E
[
U(d;θh) +Mh − d>Λhph

]
: bh − Ahd ≥ 0

}
, ∀h (3.17)

p ∈ P , (3.18)

α ∈ A, (3.19)

where for simplicity we have added the parameter rh to the set of parameters θh. In
this formulation, Λh, bh, Ah permit modeling customers with a wide array of DERs as well
as more complex rate structures. The parameter Ψh is a demand aggregation matrix. For
concreteness, we now provide illustrative examples.

Examples

We start showing how to set the parameters Λh, bh, Ah and Ψh to model a customer having
DERs and enrolled in a simple flat rate structure. Next, we show how the parameters
change to model the same customer under more complex rates. In both examples, we drop
the subindex h since we focus on one customer.

Example 3.3.2 Consider a household with a photovoltaic solar panel (PV), a battery storage
systems (BS), and a thermostatically controlled load (TCL)—the latter regulates the temper-
ature inside the customer premises (e.g., an AC system). Define J = {TCL,PV,BS,OD}
as the of devices the household owns, with OD representing all other devices of this cus-
tomer. The demand vector of the household is d = (dTCL, dPV , dBS, dOD), and the customer’s
consumption choices are consistent with an additively separable utility function U(d) =∑

j∈J Uj(dj). Neither the electricity consumption of the PV nor that of the BS produce
any benefit for the household so UPV (dPV ) = UBS(dBS) = 0. We leave the utility function
associated to other devices (OD) as generic and concentrate in specifying the one correspond-
ing to the TCL. As appendix B.3 shows, the inside temperature of the household w can be
modeled as a linear function of the power consumption of the TCL

w(dTCL; ξ, ŵ) = W1(ξ)dTCL + w2(ξ, ŵ), (3.20)

where ξ is the set of thermal characteristics of the dwelling and ŵ is the outdoor temperature;
W1 and w2 are a matrix and a vector depending on these parameters. We specify the utility
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function associated to the TCL as the negative of the disutility that deviations from a desired
indoor temperature, wtarget, produce on the customer. That is,

UTCL(dTCL) = −β‖w(dTCL; ξ, ŵ)− wtarget‖2, (3.21)

where β is a parameter characterizing how the household trades comfort for savings.
Let Sj be the constraint associated to the end use j. We have already defined SBS in

(3.14). Since this set is a polyhedron, we can write SBS =
{
d ∈ RT : bBS − ABSd ≥ 0

}
. The

constraint set for the photovoltaic system is simply SPV =
{
d ∈ RT : dt ∈ [0, xρt] ∀t

}
, with

x and ρ the nameplate capacity and availability factor of the PV, respectively. Again, SPV is
a polyhedron so it can be written as the intersection of halfspaces bPV −APV d ≥ 0. The final
group of technological constraints corresponds to those imposing power limits one the TCL.
Let STCL =

{
d ∈ RT : dt ∈ [0, dmax] ∀t]

}
; the corresponding inequality is bTCL−ATCLdTCL ≥

0. The full set of constraints for the household demand follows
bTCL
bPV
bBS
z


︸ ︷︷ ︸

b

−


ATCL Z Z Z
Z APV Z Z
Z Z ABS Z
Z Z Z −Id


︸ ︷︷ ︸

A


dTCL
dPV
dBS
dOD

 ≥ 0, (3.22)

where Z and z are, respectively, a matrix and a vector of zeros of the proper dimensions and
Id is an identity matrix. The corresponding demand aggregation matrix is Ψ = [Id −Id Id Id].

Given that the household is under a flat rate, P =
{
p ∈ RT : pωt = pω′t′ ∀(ω′, t′)

}
and

Λ = Ψ>. �

In the example that follows, we consider the same household enrolled in a flat rate
structure supplemented with a demand charge—a charge per unit of peak consumption.

Example 3.3.3 Redefine the households demand as follows d← (d, dDC), where dDC ∈ R is
the consumption on peak. We also update the parameters of the constraint (3.22) assigning

b←
[
b
z

]
and A←

[
A z
Ψ −e

]
, (3.23)

with e a vector of ones of dimension T . The price-demand multiplication matrix Λ ←
[Λ z; z> 1] and the new demand aggregation matrix is now Ψ ← [Ψ z]. Finally, the con-
straint for the prices updates as follows P ← P × R+. �

In our last example we also consider as starting point the definition of the parameters
and variables in Example 3.3.2. We show how to update such parameters and variables in
order to model a customer enrolled in a increasing block (IB) structure.
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Example 3.3.4 In the case of an IB design a customer pays a volumetric charge which
differs depending on the level of her total consumption over a certain horizon. Here we
consider that the relevant horizon is {1, . . . , T}. There are N consumption blocks with upper
bounds {qn}Nn=1, corresponding to the components of the vector q ∈ RN

+ . In an increasing block
structure if the total consumption is within block n, i.e., if it falls in the interval [qn−1, qn],
then the per unit charge is at least as high as that of the block n′, for any n′ < n.

We start redefining the household demand d← (d, dIB), where dIB ∈ RN has in its n-th
component the total consumption if it falls in the n-th block. The new parameters of the
constraints follow

b←


b
0
q
zN

 and A←


A Z
e>TΨ −e>N
Z ′ IN
Z ′ −IN

, (3.24)

with Z, Z ′ matrices of zeros of the proper dimensions, zN an N-dimensional zeros vector,
eT and eN vectors of ones with T and N components, respectively, and IN the identity of
dimension N . The price-demand multiplication matrix changes to Λ ← [Z ′ IN ]>, and the
demand aggregation matrix becomes Ψ ← [Ψ IN · 0]. Finally, we redefine the constraint set
for the price vector as

P ←
{
p ∈ RN

+ : pn ≥ pn−1 ∀n ∈ {2, . . . , N}
}
. (3.25)

�

3.4 Solution Method

The solution method that we describe here is well suited for the class of problems (3.16)–
(3.19) where U is quadratic. We leave the more general case for future research. Even with
this simplification, we believe that the development of a solution technique for (3.16)–(3.19)
is a valuable endeavor.

The mathematical program (3.16)–(3.19) is an instance of a Bilevel Programming prob-
lem. The first problem of this class, introduced by von Stackelberg (1954), modeled the
interaction of two firms. The leader firm, which moves first, selects its production quan-
tity knowing that the follower will observe its decision and respond accordingly. That is,
in defining its strategy the leader takes into account the reaction of the follower, which in
turn depends on the leader’s decision. Bilevel optimization problems generalize this setting.
A program in this class has an upper level (leader’s problem) that has a set of constraints
which are the solution set of subordinate (follower) problems.

When a solution set has more than one element, one can take two approaches. One,
called pessimistic, assumes that followers do not cooperate with the leader; the other, often
referred to as optimistic, assumes the opposite. Under this approach, the leader can select
any element of the solution set of a follower. In this paper, we take the optimistic approach.
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Because in our setting the subordinate problems (which (3.17) describes) are convex,
their first order necessary conditions are also sufficient. Thus, we can use these conditions
to express the solution sets of the subordinate problems analytically. In doing so we are
effectively casting the Bilevel Problem (3.16)–(3.19) as a Mathematical Program with Equi-
librium Constraints (MPEC).

Formulating the Ramsey problem as an MPEC

Let νh be the Lagrange multiplier of the constraint of problem (3.17). For those customers
under rate h, the Lagrangean of this problem is

L = E
[
U(dh;θh) +Mh − (dh)>Λhph + (bh − Ahdh)>νh

]
, (3.26)

and the first order necessary conditions are

∇U(dhω; θhω)− Λhphω − (Ah)>νhω = 0, (3.27)

0 ≤ νhω ⊥ bh − Ahdhω ≥ 0 = 0 (3.28)

for all ω ∈ Ω and h = 1, . . . , n, with the symbol ⊥ indicating that the vectors must be
orthogonal. We reformulate the Bilevel Model (3.16)–(3.19) replacing (3.17) with conditions
(3.27)–(3.28). Henceforth we refer to this reformulation as RMPEC. The new problem falls
within a class of non-linear programs which are particularly difficult to solve: MPEC. Because
these problems fail to satisfy the Mangasarian-Fromovitz constraint qualifications at every
feasible point, there are no convergence guarantees for standard non-linear methods. As a
consequence, researchers have developed specialized algorithms to find stationary points for
these programs (Giallombardo and Ralph, 2008). While these algorithms may work well
for small- to middle-sized instances, due to the combinatorial nature of MPECs (Luo et al.,
1996, ch. 1), finding an exact solution for large-scale instances becomes impractical. Because
the instances that we are interested to tackle are large-scale, in what follows we develop a
specialized approximation method to find stationary points for large-scale instances of the
RMPEC. Our technique is based upon the Alternating Direction Method of Multipliers
(ADMM).

Decomposing the problem

The key idea behind the ADMM algorithm is to combine the decomposability of the dual
ascent or dual subgradient methods with the superior convergence of the method of multi-
pliers. The former group of methods aims to find a solution to the original (primal) problem
by solving its dual with an iterative procedure. This is often useful when the dual problem
has a structure that permits simplifying its resolution. One important example is when the
primal has coupling constraints—constraints that link a group of variables together. One
can construct a dual relaxing these constraints. By doing so, the computation of a dual step
can be decoupled and distributed, improving the scalability of the problem. A dual step is
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the multiplication of a step direction by a step size. In the case of the dual ascent method
the step direction is the gradient of the dual function at the current point. Its computa-
tion requires the Lagrangian having a unique optimum at such a point. While this holds in
many problems in some important cases, such as for mixed integer programs, the condition
does not hold. A researcher can overcome this difficulty with a dual subgradient method.
These use subgradients as steps directions. While consecutive iterations may not improve
the objective function of the dual problem, provided that the step size is selected properly,
the subgradient method reduces the distance between the current dual solution and the dual
optimum at each iteration. One problem when using this method is that the computation of
the step size is not straightforward. The correct magnitude depends on the optimal value,
which is not known. As a result, the performance of this method is highly dependent on the
specific structure of the problem at hand, being very effective in some cases and showing
very slow convergence or an oscillating behavior in others.

A notable approach that overcomes the limitations of the dual ascent or subgradient
methods is the method of multipliers. The crucial idea behind this technique is to strengthen
the convexity of the objective function of the original problem to facilitate the search of an
optimal solution. One way of achieving this is by adding a term to the objective which pe-
nalizes the violation of a set of constraints. Since what is penalized are constraint violations,
the original and the problem with the penalty—henceforth the augmented problem—are
equivalent. However, under mild conditions the latter’s structure permits the application
of a dual ascent method, with good global convergence properties. The main drawback of
this technique is that the penalty term makes it impossible to decouple and distribute the
computation of the dual steps, which hinders the practical use of this approach for large-scale
problems.

The alternating direction method of multipliers seeks to combine the best properties
of the dual ascent (or subgradient) method and the method of multipliers. It does so by
introducing a slight modification to the dual step computation of the associated augmented
problem. For concreteness and because we will use it later, we now provide a description
of the algorithm ADMM for a class of problems that, as we show in the next subsection,
contains the RMPEC.

Let F and Gj be multivariate smooth functions, with j ∈ {0, 1, . . . , J} and J possibly
large. Let Z = Z0 × Z1 × . . . × ZJ be the domain of F , with Zj a convex set contained in
Rmj . The domain of each Gj is Zj × W̄j, also a convex set, and we denote (zj, w̄j) a generic
element of this set. The range of F is RF ⊆ R and that of Gj is RGj

⊆ Rιj , with ιj some
positive integer. The problem of interest is

min
(z,w̄)∈Z×W̄

{F (z) : Gj(zj, w̄j) ≤ 0 ∀j = 1, . . . , J} , (3.29)

where W̄ = W̄1 × · · · × W̄J .
Suppose we need to decouple this problem, for instance, because the constraints that the

functions Gj define make the problem hard to solve. To this end, consider the equivalent
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program

min F (z) (3.30)

subject to

Gj(ŵj, w̄j) ≤ 0 ∀j = 1, . . . , J, (3.31)

zj = ŵj ∀j = 1, . . . , J, (3.32)

(z, w̄) ∈ Z × W̄ , (3.33)

We could use a dual subgradient method relaxing the constraints (3.32) to decouple this
problem. But, as we discussed before, this approach can have poor performance. Instead,
we use the ADMM algorithm. As the method of multipliers, this technique also defines an
Augmented Lagrangean

Lρ(w, z; γ) = F (z) +
J∑
j=1

γ>j (zj − ŵj) +
ρ

2
‖zj − ŵj‖2, (3.34)

where w = (ŵ>1 , · · · , ŵ>J , w̄>1 , · · · , w̄>J )>, γ = (γ>1 , · · · , γ>J )> is the block vector of the dual
variables of (3.32) and ρ > 0 a penalty. The key difference between ADMM and the method
of multipliers is that the former do not minimizes at each iteration Lρ(w, z; γ). Instead, it
decreases this function in two steps, a w- and z-minimization step. Before presenting this
algorithm, we define the matrices B1, B2 such that (3.32) is equivalent to

B1w +B2z = 0. (3.35)

Algorithm 2 describes ADMM applied to problem (3.29).

Algorithm 2 Alternating Direction Method of Multipliers

1: Initialization: Given z0 ∈ Z, γ0 = 0, two tolerances epri > 0 and edual > 0, and a
primal and a dual residual r0, s0, such that ‖r0‖ > epri and ‖s0‖ > edual

2: while (‖rk‖ > epri) ∧ (‖sk‖ > edual) do
3: w-minimization: wk+1 ← arg minw

{
Lρ(w, z

k; γk) : G(ŵj, w̄j) ≤ 0, w̄j ∈ W̄j, ∀j
}

4: z-minimization: zk+1 ← arg minz
{
Lρ(w

k+1, z; γk) : z ∈ Z
}

5: γk+1 ← γk + ρ(B1w
k+1 +B2z

k+1)
6: rk+1 ← B1w

k+1 +B2z
k+1

7: sk+1 ← ρB>1 B2(zk+1 − zk)

The w-minimization step can be distributed noting that if z is fixed then the Augmented
Lagrangian can be decoupled. Thus, another way of obtaining wk+1 is by assigning to

(ŵk+1
j , w̄k+1

j )← arg min
(ŵj ,w̄j)

{
−γkj · ŵj +

ρ

2
‖zkj − ŵj‖

2 : G(ŵj, w̄j) ≤ 0, w̄j ∈ W̄j

}
(3.36)

for every j = 1, . . . , J .
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It is possible to show that when the functions F,Gj are convex (possibly nonsmooth)
and if strong duality holds then the algorithm converges to a global optimum (Boyd et al.,
2011). Even if F is nonconvex but smooth, it can still converge to stationary solutions
(Hong et al., 2016). When the constraints G(ŵj, w̄j) ≤ 0 define nonconvex regions then
one can use the algorithm as a heuristic. Takapoui et al. (2017) show that for problems
with quadratic objectives and nonconvex separable constraints, the algorithm can rapidly
converge to approximated solutions, and in many cases to the global optimum.

A closely related method, extensively used in large-scale stochastic optimization, is
Progressive Hedging (PH). As the alternating direction method of multipliers, this algo-
rithm—introduced by Rockafellar and Wets (1991)—is a specialization of the Proximal Point
algorithm (Rockafellar and Wets, 1991). While PH converges to stationary points for a large
class of stochastic optimization problems, for models involving discrete variables the method
becomes a heuristic. In practice, it has proven to be a very effective technique to tackle
large-scale, stochastic mixed integer programs (see, e.g., Løkketangen and Woodruff 1996;
Listes and Dekker 2005), and more recently to solve stochastic MPECs (see, e.g., Fan and
Liu 2010; Guo and Fan 2016).

We propose using using ADMM as a heuristic for the particular stochastic MPEC that
we introduce in this paper. The experience of Fan and Liu (2010), Guo and Fan (2016) and
Takapoui et al. (2017) suggests that this is a suitable approach, and Subsection 3.4 provides
additional evidence.

Implementing ADMM

Before showing how we implement the alternating direction method of multipliers, we make
some clarifications that ease the understanding of our approach. Henceforth we treat a ran-
dom vector ξ also as a block vector, i.e., ξ = (ξ>1 , . . . , ξ

>
|Ω|)
> is an alternative representation.

If ξ is a block vector of random vectors, that is ξ = (ξ>1 , . . . , ξ
>
n )>, another way of expressing

this object is ξ = (ξ>11, . . . , ξ
>
|Ω|1, . . . , ξ

>
1n, . . . , ξ

>
|Ω|n)>.

We start our description showing that the problem RMPEC is an instance of (3.29).
To see this, define z := (α>,d>,p>)>, the constraint set Z := A × D × P , where D =
R|Ω|κ1

1×· · ·×R|Ω|κ1
n and κ1

h is the number of columns of Ah. In addition, define the functions

F (z) := C

(
n∑
h=1

αhΨhd
h

)
−

n∑
h=1

αhE
[
U(dh;θh)

]
, (3.37)

and

Gωh(zωh, w̄ωh) :=


∇U(dhω; θhω)− Λhphω − (Ah)>νhω
−∇U(dhω; θhω) + Λhphω + (Ah)>νhω

(bh − Ahdhω)>νhω
−(bh − Ahdhω)>νhω
−bh + Ahdhω

 ∀ω ∈ Ω, h = 1, . . . , n, (3.38)
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where zωh := (dhω, p
h
ω), w̄ωh := νhω, and W̄ωh = Rκ2

h
+ , with κ2

h the number of rows of Ah.
In order to decouple the problem, we duplicate the vectors zωh introducing the variables

ŵωh = (d̂ωh, p̂ωh) and the coupling constraints

αh(d
h
ω − d̂hω) = 0 ∀ω ∈ Ω, h = 1, . . . , n and (3.39)

phω − p̂hω = 0 ∀ω ∈ Ω, h = 1. . . . , n, (3.40)

Because we will use it later, we now define Q(w, z) as a block vector function that has in
each block (ω, h) the left hand side of (3.39) and (3.40). In addition, we call SMPEC the
stochastic MPEC that results from replacing (3.32) with (3.39) and (3.40) in (3.30)–(3.33).
Note that, while (3.32) defines a set of linear constraints, those in (3.39) are nonlinear. This
does not alter the structure of Algorithm 2, however, it does changes the update of sk+1. We
will describe this update in detail later in this subsection. In what follows, we concentrate
in the optimization steps.

The Augmented Lagrangean of the reformulated problem is

Lρ(w, z;γ) = −
n∑
h=1

αhE
[
U(dh;θh)− (dh − d̂h)>γhd −

ρ

2
αh‖dh − d̂h‖2

]
+

n∑
h=1

E
[
(ph − p̂h)>γhp +

ρ

2
‖ph − p̂h‖2

]
+ C

(
n∑
h=1

αhΨhd
h

)
,

(3.41)

where γ = (γhd ,γ
h
p ) corresponds to the block vector of Lagrange multipliers of the constraints

(3.39) and (3.40), and w := (d̂>, p̂>,ν>)>.

The w-minimization step

In order to update wk+1, we solve for every ω ∈ Ω and h ∈ {1, · · · , H} the MPEC that
follows

min
(d̂ωh,p̂ωh,νωh)

αh

[
(dhω − d̂hω)>γhωd +

ρ

2
αh‖dhω − d̂hω‖

2
]

+ (phω − p̂hω)>γhωp +
ρ

2
‖phω − p̂hω‖

2 (3.42)

subject to (3.27) and (3.28), (3.43)

and assign its solution to (d̂k+1
ωh , p̂

k+1
ωh , ν

k+1
ωh ).

There are various approaches to solve this optimization problem. We refer the reader
to Giallombardo and Ralph (2008) for a comprehensive review. Here we describe the ap-
proach we take, which casts the MPEC as a Mixed-Integer Quadratic Program (MIQP).
The technique, proposed by Fortuny-Amat and McCarl (1981), introduces integer variables

and new constraints to reformulate the complementarity conditions. Letting σhω ∈ {0, 1}
κ2
h ,

M̄h
ω , M̃

h
ω > 0 scalars, and e a vector of ones of dimension κ2

h, in our setting the procedure
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involves replacing (3.28) with the following constraints

M̄h
ωσ

h
ω ≥ bh − Ahdhω, (3.44)

M̃h
ω(e− σhω) ≥ νhω, (3.45)

bh − Ahdhω ≥ 0, (3.46)

νhω ≥ 0, (3.47)

σhω ∈ {0, 1}
κ2
h . (3.48)

Researchers can solve the reformulated problem (3.42), (3.27), (3.44)–(3.48), which we refer
to as w -MPEC, using standard MIQP techniques.

In principle, the approach of Fortuny-Amat and McCarl (1981) can be inaccurate and
inefficient. Inaccurate because if M̄h

ω , M̃
h
ω are too small, bh − Ahdhω or νhω may be far from

the optimum of (3.42)–(3.43). On the other hand, increasing these scalars too much can
lead to inefficiencies because the problem could be ill-conditioned. Besides, even if they are
selected properly, since MIQP is in NP-complete (Pia et al., 2017), it can take a long time
for a solver to reach a solution of acceptable quality. In practice, for the class of problems
that we focus on, non of these concerns posed significant difficulties to use this approach.
Based on the physical nature of the constraints of the customer problem (3.46), one can find
adequate values for M̄h

ω and, with some additional work, for M̃h
ω ; and while the complexity

of the problem translated into slow performance, we were able to overcome this issue by
providing the MIQP solver with good starting points.

A good starting point decreases the solution time of w -MPEC by pruning several sub-
optimal branches of the Branch and Bound tree, and by providing an adequate range for
M̃h

ω . The procedure we used to construct a good starting point exploits that, in general,
solutions across iterations do not differ as much, and that depending on the magnitude of αh
the first two terms of (3.42) might be irrelevant. Then, one way of constructing a starting
point is using the price of the previous iteration and solve the customer problem to find the
associated demand and dual variables. In addition, assuming the first two terms of (3.42)
are irrelevant (because αh is relatively small) then, one can construct another starting point
finding (p̂hω)∗ = arg minp̂hω

{
(phω − p̂hω)>γhωp + ρ

2
‖phω − p̂hω‖

2} and solving the customer problem

for this price. A third technique is to simply use p̂hω as input to the customer problem. Then,
the starting point is the one with the smallest objective value for w -MPEC.

The z -minimization step

Note that the z -minimization problem can be separated into two subproblems. One that
finds the optimal (α,d) and another that optimizes p. This is possible because there are no
constraints coupling these block of variables. The problem that optimizes p is

min
p

{
n∑
h=1

E
[
(ph − p̂h)>γhp +

ρ

2
‖ph − p̂h‖2

]
: p ∈ P

}
, (3.49)
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which depending on the structure of P (a convex set), can be solved either analytically or
using a standard convex optimization solver. To find the optimal (α,d), we solve

min
(α,d)

{
C

(
n∑
h=1

αhΨhd
h

)
−

n∑
h=1

αhE
[
U(dh;θh)− (dh − d̂h)>γhd −

ρ

2
αh‖dh − d̂h‖2

]
: α ∈ A

}
.

(3.50)
We could use a standard nonlinear solver to handle this problem. However, specially

for problems of large size, this approach is less attractive than using specialized convex
optimization algorithms. We are able to take this approach by casting the problem (3.50)
as a conic program. In order to do so, we first rewrite the term inside the expectation in the
objective function as follows

U(d̂h;θh) + (dh − d̂h)>(∇U(d̂h;θh)− γhd ) +
1

2
(dh − d̂h)>

[
∇2U(d̂h;θh)− ραhIh

]
(dh − d̂h),

(3.51)
where we replaced U(dh;θh) by its taylor expansion about d̂h, and Ih is an identity of
dimension κ1

h. Next, we introduce variables d̃h = αhd
h, vh0 , vh1 , and write the following

reformulation of the problem

min
(α,d̃)

C

(
n∑
h=1

Ψhd̃
h

)
−

n∑
h=1

E
[
αhU(d̂h;θh) + (d̃h − αhd̂h)>(∇U(d̂h;θh)− γhd )− vh0 − vh1

]
(3.52)

subject to

2αhv
h
0 ≥ (d̃h − αhd̂h)>

[
−∇2U(d̂h;θh)

]
(d̃h − αhd̂h), ∀h = 1, . . . , n (3.53)

2vh1 ≥ ρ(d̃h − αhd̂h)>(d̃h − αhd̂h), ∀h = 1, . . . , n (3.54)

α ∈ A. (3.55)

To obtain a conic program, we introduce the variables φh0 , φh1 , vh2 , replace (3.53) with the
conditions

2αhv
h
0 ≥ (φh0)>φh0 , ∀h = 1, . . . , n (3.56)

φh0 =
[
−∇2U(d̂h;θh)

] 1
2

(d̃h − αhd̂h), ∀h = 1, . . . , n, (3.57)

and (3.54) with

2vh1v
h
2 ≥ (φh1)>φh1 , ∀h = 1, . . . , n (3.58)

φh1 = ρ
1
2 (d̃h − αhd̂h), ∀h = 1, . . . , n, (3.59)

vh2 = 1, ∀h = 1, . . . , n. (3.60)

While constraints (3.56) and (3.58) define two rotated quadratic cones, the others are sim-
ply linear constraints. The problem that (3.52), (3.56)–(3.60) and (3.55) define is a conic
program. Researchers can solve it using an off-the-shelf conic optimization package.
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Updates

After the two optimization steps Algorithm 2 updates the dual variable γk+1, and residuals
rk+1 and sk+1. We now show how we adapt these steps for SMPEC. The dual variable and
(primal) residual rk+1 update in a similar fashion. That is,

γk+1 ← γk+1 + ρQ(wk+1, zk+1), (3.61)

rk+1 ← Q(wk+1, zk+1). (3.62)

However, the update of the (dual) residual sk+1 is different. In order to derive an update
rule for this vector, we follow a line of reasoning similar to that used in the standard ADMM
algorithm. In this technique, if the norms of rk+1 and sk+1 are small then, provided that the
problem is convex, the algorithm converged to an optimal solution (Boyd et al., 2011). We
now discuss why this is the case considering (3.30)–(3.33), and then show how we can adapt
this reasoning to construct a residual update for SMPEC.

Let X be a convex set. We denote IX (x) the indicator function, which is 0 when x ∈ X
and∞ otherwise. In addition, define the setW :=

{
(ŵ, w̄) : Gj(ŵj, w̄j) ≤ 0, ∀j, w̄ ∈ W̄

}
.

The Lagrangian of (3.30)–(3.33) is

L(w, z;µ, γ) = F (z) + γ>(B1w +B2z) + IW(w) + IZ(z). (3.63)

Assuming that the Slater constraint qualification holds then, the necessary and sufficient
condition for (w∗, z∗) to be optimal is 0 ∈ ∂(z,w)L(w∗, z∗;µ, γ), where ∂(z,w) denotes the
subdifferential with respect to (z, w) (Schirotzek, 2007, Theorem 5.2.1). Using subdifferential
calculus rules (e.g., Rockafellar and Wets 2009, ch. 10), we can write this condition as follows

0 ∈ B>1 γ +NW(w), (3.64)

0 ∈ ∇F (z) +B>2 γ +NZ(z), (3.65)

with NX (x) denoting the normal cone of X at x.
On the other hand, we have that the z-minimization step of Algorithm 2 is such that

zk+1 satisfies

0 ∈ ∂ωLρ(wk+1, zk+1; γk) +NZ(zk+1) (3.66)

= ∇F (zk+1) +B>2 γ
k + ρB>2 r

k+1 +NZ(zk+1) (3.67)

= ∇F (zk+1) +B>2 γ
k+1 +NZ(zk+1), (3.68)

where the last equality follows from the update rule for γ. In other words, the points that
Algorithm 2 generates always satisfy (3.65). The same does not hold for condition (3.64).
Indeed, wk+1 satisfies

0 ∈ ∂ωLρ(wk+1, zk; γk) +NW(wk+1) (3.69)

= B>1 γ
k + ρB>1 (B1w

k+1 +B2z
k) +NW(wk+1) (3.70)

= B>1 γ
k + ρB>1 r

k+1 +NW(wk+1) + ρB>1 B2(zk − zk+1), (3.71)

= B>2 γ
k+1 +NW(wk+1) + sk+1, (3.72)
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which differs from (3.64). However, if sk+1 vanishes at some iteration k + 1 then, (3.72)
becomes (3.64). If in addition, rk+1 = 0 then (wk+1, zk+1) is optimal for (3.30)–(3.33).

We can follow a similar strategy to define the update of sk in the context of SMPEC.
However, we need to address two properties that distinguish this problem from (3.30)–(3.33).
One is that in our setting the coupling constraints (3.39) and (3.40) are nonlinear, the other
that Gωh(ŵωh, w̄ωh) are nonconvex functions. Because of these, we cannot use techniques
from convex analysis in order to derive an update rule for sk. However, if F , Gωh and Q
were locally Lipchitz-continuous,3 and the sets Z and W were closed, we could leverage
classic results from nonsmooth analysis. It easy to see that Z and W are closed sets. We
now show that F , Gωh and Q are locally Lipchitz-continuous functions.

First, note that convex or smooth functions are locally Lipchitz-continuous (Clarke, 1990,
p. 228), and that the summation and composition preserve this property. The function
F (z), defined in (3.37), is locally Lipchitz-continuous because it is the summation of two
locally Lipchitz-continuous functions. The first term in the right hand side of (3.37) has
this property since it is the composition of a convex with a smooth function, both lo-
cally Lipchitz-continuous; the second term is a smooth function of (α,d), and thus locally
Lipchitz-continuous. In addition, Gωh(ŵωh, w̄ωh) are smooth vector functions since all their
components are smooth, which is also the case for Q(w, z).

To write in a simple manner necessary conditions for optimality, we first introduce the
block diagonal matrices qd and qp such that the block (ω, h) is equal to qωIκ1

h
for the former

and qωIT for the latter, with qω the probability that ω occurs. In addition, we define the
two-block diagonal matrix q, having in its first block qd and qp in the second. It is direct
to verify that for any pair of vectors, (d′,p′) and (d′′,p′′), with the dimensions of (d,p), we
have

(d′,p′)>q(d′′,p′′) = E

[
n∑
h=1

(d′h)
>d′′h + (p′h)

>p′′h

]
(3.73)

We now define the following Lagrangian for the problem SMPEC

L(w, z;µ, γ, η) = µF (z) + γ>qQ(w, z) + η‖(µ1, µ2)‖dW×Z(w, z), (3.74)

where η is some positive scalar and dX (x) = inf {‖x− x′‖ : x′ ∈ X}. Then, in virtue of
Theorem 6.1.1 in Clarke (1990), also known as the Lagrange multiplier rule, we have that if
(w∗, z∗) solves globally or locally SMPEC

∃µ ≥ 0 and γ not all zero, such that 0 ∈ ∂(w,z)L(w∗, z∗;µ, γ, η), (3.75)

for every η ≥ η̂, with η̂ the Lipchitz constant of the function [F,Q] in a neighborhood of
(w∗, z∗), and ∂(w,z) denoting the Clarke subdifferential (see Definition 7.3.4 in Schirotzek
2007). Using calculus rules for this type of subdifferentials (see, e.g., Clarke 1990, ch. 2), we

3For a definition of local Lipchitz-continuity, we refer the reader to (Clarke, 1990, p. 25).
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can rewrite the expression 0 ∈ ∂(w,z)L(w, z;µ, γ, k) as follows

0 ∈ µ∇F (z∗) + JzQ(w∗, z∗)>qγ +NZ(z∗) (3.76)

0 ∈ JwQ(w∗, z∗)>qγ +NW(w∗), (3.77)

with J the standard Jacobian, and NX (x) denoting the normal cone of X at x, defined in
Clarke (1990, p. 51).

As in the convex case, we now analyze what first order conditions wk+1 and zk+1 satisfy.
Before, we note that one can write the augmented Lagrangean of SMPEC, defined in (3.41),
as follows

Lρ(w, z; γ) = F (z) + γ>qQ(w, z) +
ρ

2
Q(w, z)>qQ(w, z). (3.78)

As we showed before, the problem of the z-minimization step is convex. Thus, we have zk+1

satisfies

0 ∈ ∇F (zk+1) + JzQ(wk+1, zk+1)>qγk + ρJzQ(wk+1, zk+1)>qQ(wk+1, zk+1) +NZ(zk+1)
(3.79)

= ∇F (zk+1) + JzQ(wk+1, zk+1)>qγk+1 +NZ(zk+1), (3.80)

which is exactly (3.76), with µ = 1. Before, analyzing the case of wk+1, we introduce the
following notation Qk,k := Q(wk, zk). In this case, using the Lagrange multiplier rule, we
have that wk+1 satisfies

0 ∈ JwQ>k+1,kqγk + ρJwQ
>
k+1,kqQk+1,k +NW(wk+1) (3.81)

= JzQ
>
k+1,k+1qγk+1 +NW (wk+1) + sk+1, (3.82)

with
sk+1 = JwQ

>
k+1,kq[γk + ρQk+1,k]− JwQ>k+1,k+1qγk+1. (3.83)

In (3.81) we use that the Linear Independence constraint qualification for MPECs (MPEC
LICQ) holds for the problem of the w-minimization step. In virtue of Theorem 2 in Scheel
and Stefan (2000), and the fact that MPEC LICQ implies the MPEC Mangasarian-Fromovitz
constraint qualification,4 we have that the multiplier of the objective function of the w-
minimization problem is equal to 1.

The definition of dual residual in (3.83) is such that that our variation of the ADMM
algorithm applied to the SMPEC stops at stationary point for this problem. While we do
not prove convergence, Subsection 3.4 shows that the algorithm converges in most instances.

To gain a some intuition on when this residual becomes zero, we consider the case when
α does not change between consecutive iterations. Before doing so, we note that

Q(w, z) = H(α)

[
d− d̂
p− p̂

]
= H(α)∆, (3.84)

4See Ye (2005) for various definitions of constraint qualifications, including MPEC LICQ and MPEC
Magasarian–Fromovitz CQ.
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where H(α) is a block diagonal matrix such that the block corresponding to dh is equal to
αhIk1

h
, and that corresponding to p is an identity matrix. In addition, we observe that (3.83)

can be expressed as follows

sk+1 = JwQ
>
k+1,kq[γk+1 + ρ(Qk+1,k −Qk+1,k+1)]− JwQ>k+1,k+1qγk+1 (3.85)

= [JwQk+1,k − JwQk+1,k+1]>qγk+1 + ρJwQ
>
k+1,kq[Qk+1,k −Qk+1,k+1], (3.86)

which in view of (3.84) is equal to

H(αk+1 − αk)qγk+1 − ρH(αk)q[H(αk)∆k+1,k −H(αk+1)∆k+1,k+1]. (3.87)

If α does not vary between k and k + 1

sk+1 = −ρH(αk)qH(αk)

[
dk − dk+1

pk − pk+1

]
(3.88)

= −ρH(αk)q
[
d̃k − d̃k+1

pk − pk+1

]
(3.89)

= −ρE

[
n∑
h=1

αkh(d̃
k
h − d̃k+1

h ) + (pkh − pk+1
h )

]
, (3.90)

a residual akin to that of Algorithm 2.

Testing the performance of the approach

We now focus on the computational performance of the method. In order to explore this,
we work with moderately sized instances which we describe in detail in the next section.
Here we concentrate on the convergence properties and the resolution times of the algorithm
we propose for various sizes and parameter configurations. We change the size of the in-
stances by varying the number of scenarios (or states of nature); the number of variables
and complementarity constraints are affine transformations of this parameter. We consider 5
instance sizes, corresponding to 2, 3, 10, 25 and 50 scenarios, 2462, 3686, 12 254, 30 614 and
61 214 variables, or 1200, 1800, 6000, 15 000 and 30 000 complementarity constraints. For
a given instance size, we run the algorithm for 40 different parameter configurations which
corresponds to combinations of different rate structures, network constraints, and costs for
the intermittent and distributed technologies.

We ran our experiment in an ASUS M51AC PC, with a 4 core processor Intel i7-4770
of 3.40 GHz, 16 GB of RAM, and a 64-bit Windows operating system. Of a total of 200
instances, we considered convergent the instances that meet the stopping criterion before
400 iterations. These corresponded to 188 or 94% of the total. The results we report in this
subsection are those associated to the convergent instances. For convergence, we required
the primal residual to be lower than or equal to 0.25% and a dual residual being lower than
or equal to 2.5%. Intuitively, this criterion places more emphasis on the feasibility than the
stationarity of the solution.
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Figure 3.1: Primal and dual residual evolution across iterations.

Before discussing the results, we note that in order to have a benchmark we attempted
to run this experiment with an alternative algorithm. Specifically, we tried solving RMPEC
with Knitro, a nonlinear optimization package which has specialized routines to solve MPECs
(see Byrd et al. 2006). We could not obtain results within 24 hours, even for the smallest
instances we considered in this test. In contrast, with the same machine and using the
technique we present in this paper, we were able to obtain results within a few hours for the
majority of the instances.

Figure 3.1 shows the evolution of the average primal and dual residuals across iterations,
for the instance sizes we tested. For most instances, after a few tens of iterations the
algorithm finds a solution of reasonable quality, with small primal and dual residuals. The
iterations that follow, while improving the solution quality, do this in a relatively slow fashion
when compared with the improvement achieved in the first 50 iterations. Interestingly, this
convergence behavior seems not to depend on the size, at least for the instances with 10
or more scenarios. We see a different behavior for the instances with 2 and 3 scenarios.
While all instances of these sizes converged, the convergence metrics oscillate much more
across iterations than the other instances. We only observe this oscillating behavior in the
resolution of instances where the transmission is constrained.

In order to have an idea on the potential scalability of the algorithm, we plot in the
Panel A of Figure 3.2 the resolution and average iteration times, and number of iterations
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for different instances sizes. We note that while the graph shows that there is an increase in
total resolution times, the median is always below 2000 seconds. In fact, for more than 75%
of the instances that converged, the algorithm found a stationary point in less than one hour.
This result stands in sharp contrast to the more than 24 hours it took to the off–the–shelf
solver to find a solution for instances with just 2 scenarios.

In addition, Panel A shows that the main driver of the rise in resolution times as the size
of the instances increases is the average iteration time. As the number of states of nature
rises, the distribution of the average time per iteration shifts upwards. This does not happen
for the number of iterations. While its variance increases for instances with larger sizes,
its median is always below 75. This suggests that if the time per iteration does not grows
exponentially with the size of the problem, then it is unlikely that the total resolution time
will grow at an exponential rate.

The plots in Panel B provide additional evidence supporting that this is the case. These
plots graph the logarithm of the number scenarios versus the logarithm of the average itera-
tion times and the number of iterations. The upper plot shows that a line of slope 0.94 and
intercept −0.3 fits well the data. That is, for every additional scenario the average time per
iteration increases on average by about a half of a second. On the other hand, the number
of iterations increases in proportion to the square root of the number of scenarios.

These results highlight the potential of the algorithm to scale. The increase in the
average time per iteration can be handled with more computing nodes, keeping approxi-
mately constant the duration of the w-minimization step. While the resolution time of the
z-minimization step increases, it does so at a slower rate than linear.

3.5 A Simple Application

We conduct an analysis of rate structures using the method we develop in this paper. Our
objective here is to show with an exercise the type of analysis a researcher can conduct
using the technique. To keep the analysis simple, we perform this exercise with small sized
instances, all with 3 representative scenarios. We explain bellow how we select this scenarios.

Designing the analysis

In this analysis, we compare rate structures that have been proposed as possible alterna-
tives for future electricity systems. We explore five tariffs, ranging from the simplest one,
a flat-rate (FR), to the most complex, a real-time price (RTP). In addition, we study how
the results change when changing the parameters of the transmission system, and the eco-
nomics of the renewable generating technologies and distributed energy resources. Figure
3.3 describes the structure of the analysis.

As Figure 3.4 depicts, the network we consider has five buses, two load and three gener-
ation buses. In the base case scenario all branches have unlimited capacity; we change only
the capacity of branch 1–4 to introduce congestion. In this network, there are five different
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Figure 3.3: Structure of analysis. An instance corresponds to the combination of a rate
structure, network parameter and the renewable and DER costs. There are 30 instances in
total.

technologies distributed as depicted in Figure 3.4. The economic parameters of the genera-
tion technologies are standard for capacity expansion studies (see, for instance, De Jonghe
et al. 2012). Table 3.1 summarizes these parameters.

Table 3.1: Economic parameters of supply-side technologies

Base-load Mid-merit Peak High-peak Wind

Capital cost

k$/MW-yr

207 85 27 16 225
Fixed O&M 69 21 16 11 40
Total fixed 227 106 43 27 265

Fuel

$/MWh

11 27 43 66 0
Variable O&M 5 11 11 11 0
Total variable 16 38 54 77 0

Besides the network includes two load buses—1 and 2 in Figure 3.4, where a set of
representative household are located. These households can differ in terms of their appliances
and the DER they can adopt (for instance, because of differences in income). For this
exercise, we consider two representative households per location. One can adopt DER, the
other cannot. In addition, households located at bus 1 do not have air conditioning while
those at bus 2 do. Figure 3.5 summarizes this configuration. As in Example 3.3.2, we model
the consumption preferences for each household, assuming the utility function is additively
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Figure 3.4: Network model. The letter X denotes the reactance of the branch, and the
arrow the default direction of the flows. Buses 1 and 2 correspond to loads, and 3, 4 and 5
to generating technologies.

separable. For the purposes of this exercise, we refer to the demand of all other appliances
as baseline.

Another relevant input are the time series we use in this exercise. We model weather
and consumption patterns with six time series, including temperature profiles and rooftop
solar availability factors at each bus. We also include the baseline consumption of the
households—which we assume is the same for both buses, and the availability factors of the
wind power generator. All time series correspond to one year of hourly data, and we define
a scenario as one day, or a 24 hour period. We sample from the data three representative
scenarios using the imortance sampling technique described in Papavasiliou and Oren (2013),
which minimizes the distortions introduced by the sampling. Figure 3.6 depicts the time
series we use and the scenarios we selected.

To the best of our knowledge, an analysis of these characteristics has not been undertaken
before. The paper of Gallant and Koenker (1984) presents the closest attempt. The authors
develop a model that allows them to estimate the parameters of a demand system with
own and cross-price elasticities, and conduct a welfare comparison of time-varying rates and
combinations with demand charges. The key difference between the analysis of Gallant
and Koenker (1984) and the present is the representation of the supply side. These authors
consider a simple supply cost function, which does not permit including renewable generation
nor it allows modeling a network, or distributed energy resources. As we see below, different
configurations of theses factors can drastically impact the results.
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Figure 3.5: Household configuration per bus. There are in total 6 different households types.
The final number per type, α, is an outcome of the model, and is constrained by the number
of representative households, ν.

Results

Welfare Analysis

We first analyze welfare differences with respect to the theoretically inferior rate, the flat
rate. Table 3.2 shows these differences for all the parameter combinations and rates. We
see that across all these configurations RTP is the structure that improves welfare the most;
on the opposite extreme is the flat rate supplemented with a demand charge. The other
two tariffs are close in the middle. On average, across all parameters configurations, the
time of use and the combination of this structure with a demand charge obtain close to
90% of the welfare gains that RTP achieves, while the other structure only approximately
50%. These results suggests that while adding a demand charge to a flat rate structure
can improve welfare (on average 1.93%), adding a demand charge does not have an effect
when complementing a TOU structure. In addition, we see that the TOU outperforms the
FR + DC structure, producing almost the same welfare improving effects as the RTP. We
observe, however, that the relatively small differences between TOU and RTP are due to our
definition of time-windows for the former tariff. This structure has 24 time-windows, 1 per
hour; the main difference with respect to the RTP rate is that in the case of the TOU the
price for a given hour cannot vary across scenarios. As the number of representative scenarios
increases, we should observe a widening in the welfare gains that these two structures can
achieve.

Table 3.2 shows, in addition, the affect of the other factors we explore in this exercise
in the rate comparison. The network status has the most pronounced effect. When the



CHAPTER 3. A MATHEMATICAL PROGRAMMING APPROACH TO UTILITY
PRICING 54

2 4 6 8 10 12 14 16 18 20 22 24

Temperature
Bus 1 [C]

Temperature
Bus 2 [C]

Availabilty
Factor Solar
Rooftop PV

Availability
Factor Solar
Rooftop PV

Baseline
Household [kWh]

Availability
Factor Wind

0

10

20

30

0

20

40

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

All Scenarios

Selected Scenarios

Hour

Figure 3.6: Time Series.



CHAPTER 3. A MATHEMATICAL PROGRAMMING APPROACH TO UTILITY
PRICING 55

Table 3.2: Welfare gains with respect to FR in percentages

Tariff

Network
Status1

Cost DER Cost
Renewable

RTP TOU TOU +
DC

FR +
DC

const.

low
low 8.43 8.23 8.22 4.39
high 8.01 7.81 7.71 4.70

high
low 7.52 6.76 6.18 3.07
high 7.52 6.78 6.49 3.08

unconst.

low
low 0.63 0.47 0.40 0.03
high 0.63 0.41 0.40 -0.05

high
low 0.49 0.32 0.30 0.11
high 0.48 0.32 0.31 0.12

1 const. = constrained, unconst. = unconstrained.

network is constrained the welfare gains of switching from FR to any other rate are much
higher, on average 31 times the gains that occur when the network is unconstrained. A
model that does not account for a network implicitly assumes that there are no network
constraints. This simple example shows that this assumption can have meaningful impacts
on the rate comparison. A policy maker could conclude that given that the economic benefits
of switching to a more complex rate are small, it is better to leave households enrolled in a
FR tariff. The same conclusion would be hardly sustainable in the presence of the results of
the constrained case.

The other factor that has an effect—though smaller—is the cost of the DER. When this
technology is less expensive, the gain of switching from FR to a more complex rate is greater
than when it has a higher cost. This happens because when the DER is less expensive
more households adopt this technology, which increases the value of a flexible demand side.
Households enrolled in more complex rates alter their loads to consume electricity when it
is less expensive, which is when rooftop PV systems produce it. This in turn increases the
utilization of the overall fleet of (supply and demand side) generating technologies, allowing
households to get more energy per unit of capacity installed. Table 3.3 shows an increase in
adoption and capacity utilization when the cost of the DER is low with respect to the case
when it is high.

This table also highlights the potential complementarity between DERs and time-varying
rates. In this application, when the cost of the DER is low, not only dynamic rates become
more valuable. The adoption of rooftop solar PV increases as rates become more dynamic.
This indicates an increase in the relative value of the DER with respect to other generation
alternatives. That is, time-varying rates may improve the economics of DERs.
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Table 3.3: Rooftop solar PV adoption and generation fleet utilization

Tariff

Network
Status1

Cost DER Cost Re-
newable

RTP TOU TOU +
DC

FR +
DC

FR

population with rooftop solar PV [%]

const.

low
low 24 23 23 19 16
high 24 23 22 20 16

high
low 7 11 15 16 7
high 7 10 12 15 7

unconst.

low
low 24 23 23 22 21
high 24 23 22 22 21

high
low 0 0 0 0 0
high 0 0 0 0 0

capacity utilization [%]

const.

low
low 59 56 56 49 44
high 59 56 54 51 45

high
low 55 54 54 47 41
high 56 52 52 47 41

unconst.

low
low 59 56 55 47 46
high 59 56 55 45 46

high
low 49 48 48 43 41
high 49 48 48 43 41

1 const. = constrained, unconst. = unconstrained.

Distributional Analysis

We explore now the results from a distributional perspective. As Figure 3.5 shows, a group
of households cannot adopt the DER. This element of our setting seeks to reflect that in a
population there will be some households which cannot afford adopting a distributed energy
resource, such as a rooftop PV system. Now we ask the question of how the switching from
a simple flat rate to a more complex structure benefits customers with different financial
means—in our setting those who can and cannot adopt DERs.

Table 3.4 shows the surplus increase as a result of the switch in rate structures, for the
case where the cost of the DER is low. When the switch improves welfare the most, which is
when the network is constrained, the disparities are more significant. In one of the buses, for
those household that can afford the DER, the increase in surplus is approximately 1.5 times
that of the households that cannot afford a PV system. It is interesting to notice that this is
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Table 3.4: Net surplus increase per household with respect to FR [%]

Household Type Tariff

Network
Status2

Cost
Renewable

Bus Can Adopt
DER

RTP TOU TOU +
DC

FR +
DC

const.

low

1
yes 7.28 7.26 7.24 2.48
no 7.29 7.26 7.25 2.44

2
yes 10.98 10.72 10.46 4.53
no 6.60 6.55 6.80 3.48

high

1
yes 6.60 6.55 6.80 3.48
no 6.60 6.55 6.51 3.48

2
yes 10.46 10.06 9.81 5.92
no 6.94 6.75 6.50 5.28

unconst.

low

1
yes 0.28 0.20 0.21 (0.00)
no 0.28 0.20 0.21 (0.00)

2
yes 1.47 1.50 1.32 (0.02)
no (0.06) (0.72) (0.74) 0.20

high

1
yes 0.22 0.22 0.24 (0.05)
no 0.22 0.21 0.21 (0.05)

2
yes 1.59 1.58 1.28 (0.19)
no (0.14) (1.15) (0.74) 0.19

1 A 10 % increase is between $100 and $250 per year.
2 const. = constrained, unconst. = unconstrained.

not always the case, as there no differences in the surplus increase between the households
located in bus 1. When weather patterns and network conditions are favorable, wealthier
households can take more advantage of sophisticated rates by adopting distributed energy
resources. Additionally, the model indicates that the flexibility of the structures across time
and states of nature makes this phenomenon more pronounced. In fact, the switch to RTP
translates into surplus increases for households that can adopt the DER being 1.6 times that
of households with less financial means. On the other hand, when the switch is to the FR
+ DC structure, the surplus increase of wealthier households is only 1.2 times that of those
that cannot afford the DERs.

In Table 3.4 we can also see that in the constrained case the switch to a more complex
rate is always Pareto improving. All type of households are better off after the switch.
This does not happen when the network is unconstrained. In most cases all households
increase or maintain their net surpluses. However, when the cost of the renewable generating
technology is high and the switch is to a time of use rate, households that cannot adopt DERs
and are located at Bus 2 are worse off after switching. While the absolute harm is small,
approximately $31 per year, since it happens to household with comparatively less financial
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resources, it potentially has more negative consequences than if it were borne by those that
can afford adopting DERs. In addition, we see that in the unconstrained case time-varying
rates continue to accentuate disparities. While the switch to a FR + DC rate practically has
no effect on consumer surplus, it does has an affect when it is to a time-varying rate. As in
the constrained case, households that can afford rooftop PV systems take advantage of this
technology to increase their surpluses under the time-varying rate.

3.6 Conclusions

This study develops a technique to compare rate structures. It allows researchers to trans-
parently model a wide range of tariffs, distributed energy resources and supply side configu-
rations. The specific values of the tariffs, as well as the demand and supply side consumption,
production and investment decisions result from solving the problem of a Ramsey-Boiteux
planner. This is the problem of a regulator that anticipates the impacts of it choice of rates
on demand and supply side short- and long-run decisions.

We cast this Bilevel Model as a Mathematical Program with Equilibrium Constrains,
and solve it using a variant of the alternating direction method of multipliers. This vari-
ant handles the complementary constraints in a distributed manner. It solves the MPEC
iteratively, at each iteration solving independently several small MPECs and one nonlin-
ear program. Using the technique of Fortuny-Amat and McCarl (1981) we cast the small
MPECs as MIPs and develop heuristics to find reasonable starting points; we handle the
nonlinear program via a conic reformulation. A computational exercise demonstrates that
our solution approach has several desirable properties for practical applications. First, it
vastly outperforms Knitro, a popular commercial solver for MPECs. Second, the method
shows good convergence behavior, reaching solutions of reasonable quality after a few tens of
iterations. Third, the algorithm scales well with size as part of the resolution of the problem
can be distributed to various computing nodes and the solution time of the centralized step
increases at a rate lower than linear.

With a numerical analysis, we demonstrate the importance of the modeling flexibility
of the present technique to compare rate structures. In contrast to previous approaches,
our method allows capturing complex supply side configurations. In particular, researchers
can model a network. Our exercise shows that abstracting away this element can have
meaningful impacts on the analysis of rate structures. In the example, the presence of
network constraints translates into significantly higher welfare gains when switching from a
flat rate to more sophisticated structures. Omitting this element underestimates the benefits
by about 3000 times. In addition, the analysis highlights the value of being able to model
DERs. It shows how the economics of rooftop PV systems impact the rate comparison,
and that time-varying rates and inexpensive DERs could complement each other; the former
can improve the relative value of the latter while DERs being inexpensive increases the
gains of switching from a time invariant rate. Finally, the distributional analysis portrays
how our method permits regulators and policy makers to study impacts of a rate update
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on a heterogeneous population. While a switch in rates could have a positive impact on
the aggregate of households, it could benefit some more than others. It could even harm
some customers, which can be particularly problematic if those harmed were low income
households. A technique such as the one introduced in this paper permits to anticipate
these impacts, letting regulators and policy makers to decide among rates structures with
considerably more information that what would be available with alternative techniques.
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Chapter 4

Utility Pricing in the Prosumer Era:
An Analysis of Residential Electricity
Pricing in California

4.1 Introduction

The increasing penetration of distributed energy resources (DER) including advanced me-
tering infrastructure (AMI), energy management systems (HEMS), solar photovoltaic and
battery storage systems are enabling residential consumers, or “prosumers”, to interact bidi-
rectionally with electricity systems. Customers can not only purchase electricity from the
grid but also provide the system with energy and reliability services (Schleicher-Tappeser,
2012). In regulated retail sectors, residential rate structures greatly influence this interaction.
Rates can impact adoption decisions, by changing the economic value of the technology, and
can influence the usage of this resource. Rates may also increase distributional disparities,
creating cross subsidies between those who can and cannot adopt the distributed technology
(Eid et al., 2014). Despite this crucial role, no consensus exists with respect to the ideal
rate structure. Factors explaining this reality include limitations of the theory and the focus
of the empirical work. While the theory asserts that real-time pricing (RTP) is optimal
from an economic efficiency perspective (Joskow and Tirole, 2006), regulators must balance
efficiency with other public goals, such as rate simplicity, equity or meeting environmental
directives (Stanton, 2015). Absent a comprehensive quantification of the impacts associated
with implementing RTP, it is difficult for regulators to judge the value of this alternative,
especially when it may compromise other regulatory goals. The empirical literature has tried
to quantify impacts, however, the scope has been somewhat limited. Researchers have fo-
cused on estimating price responsiveness to quantify changes in efficiency in the short-run.1

Other relevant metrics such as long-run welfare effects, equity or environmental implications

1Examples include the work of Allcott (2011), Caves et al. (1984a), Faruqui and Sergici (2010), Faruqui
and Sergici (2011) and Herter (2007).
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have been explored either in isolation or with stylized analyses, but never with an applied
approach, within a unified framework.2

This work contributes to rate regulation policy with an applied study in the context of
California’s residential electricity sector. Our focus is the comparison of the long-run welfare
effects as well as the equity and environmental implications of a set rate structures. The
analysis considers the hypothetical scenario in which HEMS is widely adopted. Under this
circumstance the household responses to price signals are likely to be fully rational, driven by
an algorithm optimizing the consumption of the appliances (Beaudin and Zareipour, 2015).

A second contribution is the development of a framework that permits comparing rate
structures along each of the metrics we consider in our analysis. We develop a model of
optimal pricing that accommodates a wide variety of tariffs. Our framework builds upon
peak-load pricing3, and borrows some elements from the literature of generating capacity
expansion.4 We embed a detailed model of household behavior in this setting, expanding
the basic model of peak-load pricing to include heterogeneous households and the adoption
of DERs. Our approach allows us to capture a wide variety of temporal and spatial demand
substitution patterns, without needing to use a large number of estimates.

Our analysis is particularly relevant to the current regulatory situation in California, in
which the default increasing block pricing program is gradually being retired and time-of-use
becomes the default rate. We compare this prospective structure with two variants of this
program, a TOU combined with demand charges (TOU&DC) and a TOU combined with a
critical peak pricing program (TOU&CPP). We also include in the comparison the cases in
which households enroll in a flat rate (FR) and in a real-time pricing program.

Considering all households under the FR rate as a reference case, our analysis shows that
implementing any other pricing alternative produces gains for the average household that are
mild at best. When implementing time-of-use pricing, or any of its variants, the average gain
is not greater than 1.2 dollars per month. Even though real-time pricing performs better
than the other rate structures, the improvement over the FR tariff seems mild. The average
household increases its net surplus by 2 dollars per month under this rate scenario.

In addition, our analysis shows that the net surplus gain varies considerably across house-
holds. Factors such as the presence of an air conditioning system or the temperature outside
the dwelling are major drivers of this variation. For all rates, households with air condi-
tioners experience higher average gains than household without these appliances. However,
the gains in net surplus vary more across the former group of households. The exterior
temperature profile is a key factor. Its relationship with the net surplus gains, however, is
not simple, and depends on the specific rate. For instance, under the RTP case customers
experience greater gains in areas with higher average temperature. But this statistic has no
correlation with gains under the TOU&DC program.

These two results combined suggest that defaulting all residential customers into a time-

2See, for instance, Borenstein (2006), Borenstein (2013), Crew et al. (1995) and Joskow and Tirole (2006).
3For a comprehensive survey of the literature we refer the reader to Crew et al. (1995).
4Sauma and Oren (2006) provide a good example of these models.
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of-use rate structure, which is the current path California is following for the residential
sector, may not be the best strategy. Targeting different rates to households with different
appliance stocks and in different locations will likely be a superior policy.

4.2 California Electricity Sector and the Emergence

of Prosumers

An overview of the sector

The California electricity sector serves approximately 30 million people across the state.
With 59 GW of power plant capacity, the sector delivers near 309 TWh of electricity an-
nually. Its market size is close to $8 billion per year and its transmission system, spanning
25, 627 circuit-miles, is part of the Western Interconnection. In terms of market regulation
and oversight, there are three institutions involved, each with different roles. The first,
the Federal Energy Regulatory Commission (FERC), has jurisdiction over the interstate
transmission of electricity. Its responsibilities include the oversight of important merger
and acquisitions, reviewing applications for transmission projects, as well as licensing and
inspecting private, municipal and state hydroelectric projects. The commission also sets
mandatory reliability standards and monitors energy markets across the US. The other two
regulatory agencies have jurisdiction in the sate of California. One is the California En-
ergy Commission which is the primary energy policy and planning agency of the state. The
other is the California Public Utilities Commission (CPUC). Its main role is regulating the
three investor-owned electric utilities of California, including Pacific Gas and Electric Com-
pany (PG&E), Southern California Edison (SCE) and San Diego Gas and Electric Company
(SDG&E), which collectively serve two thirds of the electricity demand throughout Califor-
nia. Among other functions, the CPUC sets and approves the retail rates, is responsible for
ensuring that utilities meet state environmental policies and ensures electricity safety at the
distribution level.

In terms of system and market operations, the California’s Independent System Opera-
tor (CAISO) is responsible for maintaining a reliable transmission of power as well as the
comprehensive long-term planning of grid infrastructure. This entity also coordinates for-
ward and spot markets for energy and ancillary services. In addition, CAISO complies with
the reliability standards set by the North American Electric Reliability Corporation (NERC)
and the Western Electricity Coordinating Council (WECC). While the former is a non-profit
organization developing and enforcing reliability standards for the continental United States,
Canada and Baja California, Mexico, the latter is a regional entity promoting bulk electric
system reliability in the Western Interconnection.
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Residential rates in California

The distinctive characteristic of residential electricity rates in California is its increasing
block structure. They have had this form since 1976, when the Miller-Warren Energy Life-
line Act was enacted. This legislation sought to provide California’s residential customers
with a minimum necessary quantity of gas and electricity at a fair price, and also to en-
courage conservation. The legislation set a precedent, providing a conceptual justification
for implementing increasing block rates. Since 1976 rates did not change meaningfully until
California’s electricity crisis.

Beginning in the summer of 2000, tight supply margins, weak federal oversight, lack of an
elastic demand and flaws in the market design yielded a period of highly volatile electricity
prices, known as California’s Electricity Crisis. As a result of the crisis the sector underwent a
period of drastic reforms. At the retail level, a first response to the high wholesale prices was
to lift the retail price cap. This triggered notorious increases in electricity bills, which were
then mitigated by freezing the charges of the lower two tiers. The result of this legislation
was the replacement of a two tier system by a five tier structure, with prices of Tiers 3 to 5
considerably higher than those of the remaining lower tiers. From 2000 to 2009 differences
among tiers increased. However, the enactment of SB695 in 2009 began to allow limited
annual increases for Tiers 1 and 2.

At the time of this writing, decision D.15 − 07 − 001 is the main piece of regulation
laying the path for the future of residential electricity rates in California. Key elements of
this regulation include the promotion of the consolidation of the tiers and the development
of rates that reflect better cost causation. In particular, the decision approves transitioning
all residential customers to a default time-of-use tariff by 2019.

The emergence of prosumers

There are two main forces pushing the emergence of prosumers in California: Environmental
policy directives and distributed technologies reaching maturity. The relevant environmen-
tal policy is the renewable portfolio standard which established, among others, targets for
distributed generation. The policy has triggered the development of an array of incentives
for generation at the customer’s premises which has caused the massive deployment of dis-
tributed energy resources, such as solar photovoltaic panels. As for technological evolution,
California has taken major steps towards modernizing its distribution grid, having the largest
installation of AMI in the US. This technology constitutes a vital element for implementing
time-varying-rates. By enabling two way communication between customer and utility on
time intervals of an hour or less, AMI allows utilities measuring consumption on an hourly
basis as well as sending price signals on a consistent time scale.



CHAPTER 4. UTILITY PRICING IN THE PROSUMER ERA: AN ANALYSIS OF
RESIDENTIAL ELECTRICITY PRICING IN CALIFORNIA 64

4.3 A Modeling Framework to Compare Rate

Structures

Utility pricing: An overview of the theory

An important function of regulators is determining the rates that a regulated utility can
charge for the provision of its services. This process, also known as rate regulation, includes
the determination of the rate rate level and the design of rate structures (Phillips Jr, 1993,
pp. 176 - 180). Establishing the rate level entails specifying the total compensation that the
utility, or load serving entity (LSE), receives for its services. The design of rate structures,
which is the focus of this work, defines how the LSE collects its compensation. Designing
rate structures is far from trivial. So it is not surprising that a myriad of methodologies
have been suggested and adopted in different jurisdictions. Brown and Sibley (1986, pp. 44
- 60) divide the approaches according to how they assign common or non-attributable costs
across different services and consumer classes. There are two broad categories: the cost-based
pricing and pricing based on the concept of marginal cost. The first group of approaches
allocate costs based on criteria other than efficiency. One example is the fully distributed costs
method, in which common costs are assigned according to the relative shares of magnitudes
that can be attributed to a service or group of customers, such as peak-demand, output or
revenue.5 On the other hand, in pricing based on the concept of marginal cost efficiency has a
prominent position. How common costs are attributed to the different groups of customers is
a byproduct of a welfare maximization process. Our framework falls into the second category
of approaches. The model that this work introduces produces a set of rates and allocations
of costs that emerge from the welfare maximization of the system under study. This is the
approach to rate design that the literature of peak-load pricing studies.

Peak-load pricing develops a normative theory of efficient or welfare maximizing pricing
for industries with limited storage capability and time-varying demand. The modern ver-
sion of the theory originates with the contributions of Boiteux (1960) and Steiner (1957),
and intended to provide guidelines in the context of price regulation of natural monopolies,
such as vertically integrated electric utilities (Crew et al., 1995). The basic model considers
the problem of a social planner choosing prices that maximize welfare, i.e., the surplus of
customers and the public utility’s profits. Prices coordinate production and consumption
decisions over a time horizon. The monopolist invests in production capacity at the begin-
ning of the horizon and prices are such that the utilization and the level of the installed
capacity are optimal (Drèze, 1964). Studies including Carlton (1977), Chao (1983), Crew
and Kleindorfer (1976) and Panzar (1976) further refine the model to include a stochastic
demand, supply-side uncertainties and multiple technologies.

Borenstein and Holland (2005) and Joskow and Tirole (2006), in examining the merits of

5Other approaches seek to minimize cross subsidies across services and consumer classes and others build
a set of axioms and derive rate structures consistent with them. For more details on the subject of cost-based
pricing, see (Brown and Sibley, 1986, pp. 44 - 60).
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retail competition in the electricity industry, show that the theory also applies to restructured
electricity sectors. In these models, a competitive wholesale market replaces the production
side of the vertically integrated utility. At the retail level, both papers distinguish the
cases of a regulated distribution company and competitive retailers. While Borenstein and
Holland (2005) consider a setting with linear or uniform prices, Joskow and Tirole (2006)
contemplate the case of a two-part, non-linear price. Further, Borenstein and Holland (2005)
explore the long-run effects of different pricing policies, analyzing the equilibria that emerge
at the wholesale and retail levels. More recently, Zöttl (2010) investigates a setting in which
there is imperfect competition at the wholesale level, and Chao (2011) updates earlier work
exploring the interaction of different pricing policies and renewable technologies.

Our model departs from previous work first by generalizing the type of rate structures
present in peak-load pricing. In addition, we introduce a mechanism linking pricing and
technology adoption decisions. Finally, our model accommodates household heterogeneity
beyond a scale factor.

The regulator’s problem

The regulator’s problem combines elements of the peak-load pricing and capacity expansion
literature. The key element from capacity expansion not present in peak-load pricing is a
transmission network. For simplicity, we do not detail this element of the model in this
section. We refer the interested reader to the appendix B.4. As in peak-load pricing, our
model falls into the broad category of two-stage stochastic optimization models. Agents in
these models make long-run decisions at the beginning of the horizon before uncertainty is
realized and define state contingent strategies for the short-run stage. These are static models
that can describe systems in steady state. Our framework, therefore, is not suitable for
studying system dynamics. In terms of the institutional setting, at the retail level we consider
a distribution utility as the load serving entity. In general, however, one can consider settings
within two polar cases. While the utility could be fully integrated with the supply side in
one case, in the opposite, it could be just a distribution company. Under the assumption
of perfect competition at the wholesale level, both cases are equivalent (Joskow and Tirole,
2007), however.

Let ω index a finite and countable set Ω of states of nature, π the corresponding proba-
bility vector, E [·] the expectation operator, and a time horizon of t ∈ T time steps. Given
a random vector of consumption d, the household pays l+ η(d, p) to the utility, where l is a
fixed charge, p ∈ P a vector of rate parameters and η(·) a fee contingent on consumption and
the rate parameters. We call the triple (l, η(·), p) a rate structure. Our setting is similar to
the one in (Joskow and Tirole, 2006) insofar we focus on two-part structures with a state and
time contingent demands and prices. However, we generalize this model to accommodate
more complex rate structures. In our setting the vectors d do not only have one component
for every time and state of nature but also may include other relevant metrics associated to
the demand profile, such as peak or total consumption across the time horizon. Similarly,
price parameters may include charges for peak or total demand. Specifically, we focus on
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the case in which η(·) is bilinear on the demand vector and price parameters. The following
assumption formalizes this specification.

Assumption 4.3.1 The demand contingent charge η(d, p) = d>Mp+ Ind
{
b̃− Ãd

}
, where

Ind {x} is 0 if x ≥ 0, and ∞ otherwise.

As subsection 4.3 shows, this specification is fairly general, allowing researchers to model
a wide range of the rate structures used in practice.

As in peak-load pricing, we consider homogeneous households, with a mapping Dω(p) :
P → R|T | and a real valued function Uω(dω) representing their demand and gross surplus
metric, respectively. Given a set of wholesale prices {λω}, the planner problem optimizes
the household net surplus, E [Uω (Dω(p))− η (Dω(p), p)]− l, and guarantees that the utility
meets its revenue requirement, E

[
η (Dω(p), p)−Dω(p)>λω

]
+ l − Π, with Π an exogenous

fixed cost. As (Joskow and Tirole, 2006) shows, this amounts to find (l∗, p∗) such that

(d∗, p∗) ∈ arg max
(d,p)

{
E
[
Uω(dω)− d>ωλω

]
: dω = Dω(p) ∀ω ∈ Ω

}
, (4.1)

l∗ = E
[
λ>ωd

∗
ω

]
− η(d∗, p∗) + Π. (4.2)

A competitive wholesale electricity market

The wholesale market representation in this model is a variant of the supply-side model
studied in the peak-load pricing and capacity expansion literature. More specifically, we
follow closely the representation in (Chao, 2011). In this model, infinitesimal competitive
firms interact in a spot market for electricity. Each decides on their long-run installed capac-
ity and short-run generation profiles. We denote the total installed capacity of technology
k ∈ K as xk and its cost of carrying capacity as r̃k. The aggregated production profile of this
technology in state of nature ω is yωk ∈ RT

+, and variable costs per unit of power production
is cωk ∈ RT

+. We capture variability in a technology’s availability – e.g. due to outages
– with an availability factor per technology contingent on the states of nature, ρωk ∈ RT .
In a perfectly competitive market firms are price takers, thus, production and capacity for
technology k are the solution of the problem

max
(yωk,xk)

{
E
[
(λω − cωk)>yωk

]
− xkr̃k : 0 ≤ yωk ≤ xkρωk

}
. (4.3)

The market equilibrium is a tuple (d∗, p∗, y∗, x∗, λ∗) such that (d∗, p∗) solves the regulator’s
problem at λ∗, (y∗, x∗) solves the problem of the producer at that price, and supply equals
demand. It is easy to verify that the market equilibrium is the solution of
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max
(d,p,x,y)

E

[
Uω(dω)−

∑
k∈K

y>kωckω

]
− x>r̃ (4.4)

subject to

dω =
∑
k∈K

yωk : λω, (4.5)

0 ≤ ykωt ≤ xkρωk, (4.6)

p ∈ P , (4.7)

dω = Dω(p). (4.8)

The household behavior

Except for our specification of the demand contingent fee, η(·), (4.4) − (4.7) is the classic
peak-load pricing problem. Researchers can use the model to analyze theoretically and
numerically implications of different constraint sets for the vector of retail prices. A key
assumption that facilitates the study of these models is a demand system with analytic
expression. Our framework drops this assumption because our specification of η(·) implies,
in general, demands with no analytic definition. Consistently, our model updates the peak-
load pricing problem replacing (4.8) with the following condition,

d ∈ arg max
d

{
E
[
Uω (dω)− d>ωMωpω

]
: b̄ω − Āωdω ≥ 0, ∀ω ∈ Ω

}
, (4.9)

where (b̄, Ā) contain the parameters of the rate structure, (b̃, Ã), and possibly others. Hence-
forth we refer to (4.9) as the household problem, and to (4.4) − (4.7), (4.9) as the pricing
problem.

Illustrative examples

Our specification of the household demand allows to model the influence on demand of
several rate structures and, also, represent demand-side technologies of interest. Here we
show how to implement the models that we use in our analysis. The appendix B.2 provides
additional examples. Some notation will prove useful. The matrix Im corresponds to the
identity of m by m. The vectors em and zm are, correspondingly, vectors of ones and zeros
of m dimension.

Modeling rate structures. Our analysis compares time-varying pricing (TVP) and a
TVP combined with a demand charge (DC). A time varying pricing is the simplest type of
rate to model. Set Mω = I|T |, let the vectors pω ∈ RT

+ and dω ∈ RT , and define define P as
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follows,

P :=


{
p ∈ R|T |×|Ω|+ : pωt = pω′t′ ∀(ω, t), (ω′, t′)

}
for FR,{

p ∈ R|T |×|Ω|+ : pωt = pω′t′ ∀(ω, t), (ω′, t′) ∈ TW (ω, t)
}

for TOU,{
p ∈ R|T |×|Ω|+

}
for RTP,

(4.10)

where TW (ω, t) is the set of time windows (ω′, t′) in the same time window as (ω, t).
Adding a demand charge to any of these structures requires redefining d := [d̄, d̂] and

p := [p̄, p̂], where d̄, p̄ ∈ R|T |×|Ω|+ , and d̂ω, p̂ω correspond to the maximum consumption and
demand charges under ω, respectively. The matrix Mω is now equal to I|T |+1, and the analyst
may add additional conditions to the set P to model demand charges constant across some
scenarios. A final element of this structure is the constraint linking the hourly consumption
profile d̄ and the maximum consumption d̂, which we model via the following definitions

b̃ := z|Ω|·|T |, Ã :=
[
I|Ω|×|T | −I|Ω| ⊗ e|T |

]
. (4.11)

Household as composite of devices. Following the approach of Reiss and White
(2005), we consider that households are composite of devices and assume their utility func-
tions are additively separable. For reasons we explain later, we consider in our analysis two
devices, a central air conditioning unit and a rooftop solar panel, and the household base-
line. Central air conditioning falls in the more general category of thermostatically controlled
loads (TCL’s), whose behavior follows the laws of thermodynamics. Mathieu et al. (2015)
presents a model describing the behavior of these appliances, which links the household’s
inside temperature, θ, with the outdoor temperature θ̃, the thermal characteristics of the
dwelling, ξ, and the electricity consumption of this appliance, d. It is possible to show that
the inside temperature profile has the following form

θ(d; ξ, θ̃) = Θ1(ξ)d+ θ2(ξ, θ̃), (4.12)

where Θ1 and θ2 are a matrix and a vector, functions of the thermal parameters and temper-
ature outside the dwelling. Appendix B.3 shows the full derivation of this relationship. Here
we close the model of the TCL behavior introducing a mechanism capturing household’s
preferences for thermal comfort. The simplest approach involves a penalty for deviating
from an ideal inside temperature, θ̂. Equation (4.13) shows a utility function consistent with
this approach, which we use in our analysis.

U(d) = −β‖θ(d; ξ, θ̃)− θ̂‖2 (4.13)

For modeling the household baseline, we assume a linear demand system and compute
the associated utility function using a standard procedure. For the rooftop solar panel we
add to the household problem a constraint limiting its hourly production given the hourly
availability of the solar resource. A final element of the household model links the demands
of each device with the net demand of the customer,

d̄ = dbaline + dac − dsolar. (4.14)
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Household heterogeneity and DER adoption

The pricing problem contemplates one representative customer and there is no mechanism
modeling customer adoption. In our analysis, however, we consider heterogeneous customers
and analyze impacts of pricing on adoption. We incorporate these two elements using the
framework that Castro and Callaway (2016) develop. The paper distinguishes different
customer types i ∈ I,6 each of which decides a set of technologies to adopt j ∈ J . 7 Calling
the combination h := (i, j) a segment and defining αh and rh, respectively, as the number of
households and cost associated to a segment,8 the paper shows how modifying the pricing
problem permits modeling adoption decisions. Specifically, equation (4.4) becomes

max
(α,d,p,x,y)

E

[∑
h

αh [Uhω(dhω)− rh]−
∑
k∈K

y>kωckω

]
− x>r̃ (4.15)

and (4.5) updates to ∑
h

αhdhω =
∑
k∈K

yωk : λω. (4.16)

A final element to include for modeling adoption is the feasible region for α, which ensures
that the number of households per segment is consistent with the number of households per
customer type.

Comparing rate structures

Subsections 4.3 to 4.3 develop an analytic tool to compare rate structures. Researchers
can explore the effects of different structures on welfare and other metrics by changing
the specification of the consumption contingent fee, η(·), solving the pricing problem and
comparing the metrics of interest. While the method is not intended to predict what would
happen were the tariff under analysis in place, it provides a consistent assessment of the
potential differences between them.

Solving the pricing problem is not straightforward. The problem falls into the broad
category of Bilevel Problems, in which a leader – in our setting, the regulator – indirectly
controls the actions of the follower – the household – changing one or more parameters of
her problem. Bilevel problems are hard to solve in general, and state of the art solvers
can only handle problems of moderate size. For large instances, researchers have to devise
specialized algorithms. Given the size of the instance we explore in this study, we had
to develop a specialized algorithm as well. However, the development of the algorithm is
beyond the scope of this work. It constitutes a completely separate research effort, which
Castro et al. (2016) describes in detail. The basic idea is to decompose the pricing problem

6In order to fix ideas consider the following two examples: I = {with central AC,without central AC}
or I = {live in hot weather, live in cold weather} .

7An instance of this set is J = {{solar PV, battery storage} , {solar PV} , {battery storage}}.
8The cost associated to a segment (i, j) is the annualized capital cost of the set of technologies j.



CHAPTER 4. UTILITY PRICING IN THE PROSUMER ERA: AN ANALYSIS OF
RESIDENTIAL ELECTRICITY PRICING IN CALIFORNIA 70

into one problem per household and state of nature, and one problem that coordinates the
demands of the households. The algorithm iterates solving all problems at each repetition
and stops when consecutive solutions do not change. The key aspect of the algorithm is
its distributed nature which, by enabling its implementation in cluster computing facilities,
makes our modeling framework practical.

4.4 Modeling California’s Electricity Sector

We construct our model of the California electricity sector supplementing the network model
that Price and Goodin (2011) developed for market analysis. The model consists of a net-
work with 240 nodes, or buses, which corresponds to a topological reduction of the transmis-
sion system encompassing the Western Interconnection.9 This reduced system also provides
generation technologies and demands at each node, and the physical characteristics of the
network, including transmission constraints. The generating power plants correspond to
aggregations per type of fuel. Non-dispatchable generating technologies10 such as solar or
wind generation, and reservoirs such a geothermal or hydro power plants come with a year of
hourly energy production. Fossil fuel technologies, on the other hand, only include physical
and short-run economic parameters, such as heat rates and fuel costs. As for the demands,
the network model includes a year of hourly energy consumption at nodes of the network
corresponding to demand centers.

Before describing how we complete this data set, we make two clarifications. At first sight,
the network model has more information than this analysis requires, because the Western
Interconnection includes more states than just California. Using the full interconnection
model, however, allows us to produce realistic import and export flows and provides the
opportunity to study the impacts of residential pricing policy outside California. Because
the main computational difficulties emerge from our detailed modeling of the demand, and
because we do not model in detail demand at nodes outside California, the full network
model did not increase significantly the computational complexity of our analysis.

A second clarification relates to our treatment of the Western Interconnection as an inte-
grated market. That is, in our model the physics of the transmission lines is the unique factor
limiting the flow of electricity through the interconnection. In practice, the administration
of this system is divided among 38 balancing authorities, each controlling one portion of the
network, and whose central role is to guarantee the reliable operation of their respective sub
regions. This adds additional limitations to the flows of electricity which our model does
not capture. At the time of this writing, however, California is leading the efforts to assess
the impacts of a multistate regional market for the Western Interconnection.11 Thus, an
integrated market is plausible for the future of the interconnection.

9We refer the reader to the Western Electric Coordinating Council website for detailed information on
the interconnection.

10Plants with outputs that are determined to great extent by exogenous factors such as weather conditions.
11See Brattle et al. (2016) for further detail.



CHAPTER 4. UTILITY PRICING IN THE PROSUMER ERA: AN ANALYSIS OF
RESIDENTIAL ELECTRICITY PRICING IN CALIFORNIA 71

Generating technologies

Because we are interested in studying long-run impacts, we replace the cost functions in the
network model with the functions we described in subsection 4.3. A fixed and variable cost
implement these functions. The fixed cost includes the annuity associated with developing
and installing the generating technology and the fixed O&M costs. The variable cost, on the
other hand, encompasses fuel and variable O&M costs.

In addition to these economic parameters, technologies have associated emissions and
availability factors. While the former captures the fact that different fuels have different
GHG emissions, the latter reflects the fact that power plants experience unplanned outages.
Emissions factors as well as the economic parameters of the generating technologies come
from EIA (2016), and table 4.1 summarizes the specific values we use in this study. As for
availability factors, we use the magnitudes that NERC makes publicly available through its
Generating Availability Data System (GADS).

Table 4.1: Generating technologies costs and GHG emissions

technology variable cost fixed cost emissions factor

[2015 $/MWh] [2015 k$/MW-year] [tCO2eq/MWh]

nuclear 11 448 -
biomass 35 424 1.93
coal 32 361 0.65
geothermal - 341 -
solar - 192 -
wind - 184 -
gas adv CC 39 84 0.33
gas conv CC 42 77 0.35
gas adv CT 63 52 0.52

We include in the model the existing plants, by technology, for each node.12 As men-
tioned, investment decisions to expand this fleet are endogenous to the model. We treat
hydro power generation as exogenous because a correct treatment of this technology, which
involves the stochastic dynamic optimization of reservoirs, is beyond the scope of our model.
Even though solar and wind are non-dispatchable generators, we use the time series in the
data set only to compute hourly availability factors.13 The actual hourly production for
these technologies is ultimately determined by their installed capacity, an outcome of our
model.

12Appendix B.1 shows the geographic distribution.
13Hourly availability factors are the ratio between the hourly production and the nameplate capacity of

the technology in the data set.
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Developing a model of California’s residential demand

We construct a model of the residential sector of California calibrating our model of household
behavior at each node of the network. Households can consume and produce electricity on
an hourly basis, and impact the system via their net demands. In terms of consumption,
we consider two major categories of household end uses: cooling and non-cooling. We take
this approach for two reasons. In California central air conditioning is a major source of
electricity consumption, and approximately one out of every two households has this type
of appliance (Palmgren et al., 2010). In addition, studies at the appliance level report air
conditioning to be a major source of demand responsiveness (Mathieu et al., 2015; Reiss and
White, 2005).

The second reason relates to the hourly demand data available for this study. In our
framework the baseline of a household is the fraction of its demand not modeled as any
particular device. In order to calibrate this function one needs an intercept, i.e., a time series
of electricity consumption and the prices in effect when this happened. For the demand part
of the intercept we use the load shapes developed by Itron Inc., described in Wei et al. (2013).
This data set disaggregates residential consumption into space conditioning and other loads.

Utility functions summarize household preferences for each end use. We calibrate them
using the appliance level elasticities and marginal effects estimates that Reiss and White
(2005) report. We model the baseline consumption as a linear demand system and use an
elasticity of −0.08, corresponding to the estimate for households with no space conditioning.
For the price intercept, we follow the procedure that Borenstein and Holland (2005) describe,
assuming the rate structure of the intercept to be a flat rate.

The model for cooling corresponds to the TCL model developed in subsection 4.3. This
has three groups of parameters which can be categorized as technical, behavioral and weather
related. Technical parameters include the thermal resistance and capacitance of the house-
hold, and the efficiency of the air conditioner. Mathieu et al. (2015) provide ranges for these
parameters in California, and we use the midpoint of those ranges in their study. The be-
havioral parameters are the ideal interior temperature, which we set to 22◦C (or 72◦F), and
the discomfort penalty, β. Using our model of the TCL, we link this latter parameter with
the estimate of the marginal effect for central air conditioning of Reiss and White (2005).
The expression linking the two magnitudes is

β = −
e>|T |Θ1(ξ)>Θ1(ξ)e|T |

d
dp
E[e>|T |dω]

. (4.17)

The weather related parameter corresponds to the outside temperature. The National
Renewable Energy Laboratory (NREL) develops the Typical Meteorological Year (TMY)
data set for modeling energy conversion systems.14 This data set contains 12 months of
hourly data at selected locations across the US. The data for each month typifies conditions
for the location over a longer period of time, such as 30 years. There are 73 locations

14For a detailed description of the data we refer the reader to Wilcox and Marion (2008).
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corresponding to California. Based on distance we assign each of these locations to one of
the buses with demand within the California portion of the network model. The TMY data
set also comes with hourly values for solar radiation. We use them for our model of rooftop
solar panels.

Another input for the analysis is the count of households types per bus. We distinguish
four types of households in our analysis, corresponding to the combinations of tenure status
and the presence of central air conditioning. While section 4.5 discusses this categorization
further, here we focus on the calibration of the household counts. The sources of data for
this task are the 2010 census and the Residential Appliance Saturation Survey 2010 (RASS),
described by Palmgren et al. (2010). The General Housing Characteristic data set of the 2010
census contains counts of occupied households by tenure. Based on distance we assign census
counts at the tract level to each bus in order to calibrate the total number of renter and
owner occupied households. Similarly, we use the distance between the zip code centroid and
the bus to assign the RASS responses to each bus. The survey, besides recording appliance
ownership per survey participant, includes their tenure status. We assume that the fraction
of household under each of the household types is that of the RASS survey and we multiply
this fraction by the census counts per bus to estimate the final number of households under
each of the categories that we analyze.

A final piece of the demand side is that corresponding to commercial and industrial
customers. The test system comes with total load profiles per bus. The commercial and
industrial load at each node of the network model is the difference between the total and
aggregated residential demand at each node. We assume the latter quantity to be equal to
the baseline profiles multiplied by the households counts.

4.5 An Analysis of Residential Rate Structures in

California

This analysis explores efficiency, as well as the distributional and environmental impacts of
residential electricity rate structures. We use our model to quantify these metrics for five
different tariffs that constitute plausible future residential rates in the Californian electricity
sector.

Because our analysis focuses on long-run impacts, ideally one would have to compare net
surplus distributions with respect to wealth levels under the different pricing regimes in our
study. This approach is impractical, however, for at least two reasons. First, to the best
of our knowledge information on households wealth for California is not publicly available.
Thus, having this input would require an indirect calculation, which is an effort beyond
the scope of this research. A second reason is that our model does not directly account
for household wealth. There is no explicit mechanism linking this metric with either short-
or long-run decisions. We assume, alternatively, that the level of wealth of a household
translates into differences in its technology options. Wealthier customers have access to a
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wider variety of technologies.
Consistently, we split the population according to whether they can or cannot adopt

distributed energy resources. The splitting criteria is household tenure status. That is, we
assume homeowners have enough resources to purchase DERs while renters do not. Even
though this criteria reflects the reality in California in the past decade (Borenstein, 2015),
with better financing alternatives and new business models such as community solar15 our
assumption may not be adequate for future analyses.

An additional clarification relates to the specific rate structures we use in our analysis.
An important element determining the final definition of the time-of-use schedules are the
time windows associated with the different charges. Commonly, these rate structures distin-
guish valley and peak periods and also seasons in order to set the volumetric charges. The
traditional approach is to consider existing time windows as inputs. In this analysis we take
a different path which avoids two difficulties involved with the traditional approach. One
is that existing time windows are likely inadequate for future system conditions. In Cali-
fornia only a small fraction of households have been enrolled in TOU’s programs. As TOU
becomes the default rate for residential customers and the net load16 shape changes due to
the increasing penetration of renewable generation, the existing time windows will likely be
obsolete. Furthermore, a TOU with a demand charge rate has not yet been implemented at
the residential level in California. A second difficulty is the sub-optimality of setting time
windows exogenously. This makes the comparison among rates inconsistent because our
framework computes optimal retail prices for the RTP and FR programs.

In order to avoid these shortcomings, we consider the most flexible type of TOU possible.
That is, tariffs in which the energy charge can vary hourly and across seasons but not for days
occurring in the same season. Similarly, we assume a demand charge that changes across
seasons. Our preliminary analysis indicates that four to five time-windows, depending on
the season, can approximate with no meaningful efficiency loss the hourly windows. The
results we report in this analysis, however, correspond to the hourly energy charges.

A final clarification relates to the DERs we include in our exercise. Besides considering
all residential customers having AMI and HEMS, originally, homeowners were able to adopt
either rooftop solar PV systems or battery storage units. Preliminary results indicated that
the latter two DERs were not cost-effective alternatives. No customer under any of the
rates we study, nor under current or projected economic parameters for these technologies,
adopted these DERs. In the case of the solar PV systems, this result indicates that the factors
driving the current adoption levels of this DER are policies specially designed to promote
this technology. These include the California Solar Initiative (CSI), federal subsidies and the
increasing block rate structure for residential customers. Because the CSI is not effective
anymore, and the future of federal subsidies is uncertain, we do not include these policies in
our analysis. On the other hand, even though increasing block structures are being phased

15We refer the reader to Huijben and Verbong (2013) for further discussion.
16Net load is the net of the aggregated demand, or system load, and the non-dispatchable generating

technologies.
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out, a surcharge for high monthly consumption will remain. This makes the study of this
structure relevant. Future versions of this analysis will include this rate.

In the case of battery storage systems, our preliminary results do not make a case against
this technology. It simply reflects the fact that our model only accounts for the energy
arbitrage value that a battery storage unit can create. In addition, however, this technology
can provide ancillary services for the distribution grid and serve as a mean of transportation
when being part of an electric vehicle. Because our model does not capture any of these
value streams, we do not include this technology in the final analysis.

Aggregated efficiency gains

Table 4.2 shows efficiency gains of four tariffs with respect to the base case scenario: the
flat rate structure. At the level of the Western Interconnection, the RTP rate achieves
greater efficiency gains followed by the time-of-use combined with a critical peak pricing
program. The TOU combined with a demand charge produces similar gains but the time-
of-use program alone only increases the net benefit by one half of the value when combined
with another program. All programs reduce the aggregated benefit - or gross surplus - of the
residential sector. However, the reductions in costs more than compensate the reductions in
gross surplus.

In terms of efficiency increases, the same ranking does not hold when focusing on the
residential sector in California. The main difference is that the TOU&DC rate structure
increases the net benefit the least. This is the result of differences in bill reductions for
customers inside and outside California. The presence of a transmission network explains
this outcome. In our framework, the bill of a customer is equal to the multiplication of
the locational marginal prices (LMPs)17 by her consumption profile. The topology of the
network significantly influences the magnitude of the LMPs at different nodes and, thus,
the household bill at different locations. Differences in LMPs then explain differences in
the distribution of bill reductions, in and outside California. In the case of the TOU&CPP
rate, customers outside California capture an important fraction of the cost reductions with
respect to the FR case. In all the other cases, on the other hand, the Californian residential
sector captures most of the reductions in costs.

The average efficiency gains per household are mild at best, being not greater than 2
dollars per month. Importantly, in all cases, with the exception of the RTP program, the
gains appear insufficient to justify the implementation of time-varying rate structures. Im-
plementing any time-varying rate requires the deployment of AMI. Estimates of the cost of
this infrastructure vary. However, one can construct a reasonable range using the documen-
tation of pilot projects conducted under the American Recovery and Reinvestment Act of
2009 in DOE (2012b,d). Considering the cost of AMI, the net of the average expenditure per
household on advanced metering infrastructure and the operational savings, plus the cost

17In many jurisdiction, in particular in California, the wholesale electricity prices differ at different nodes
of the transmission network, reflecting network congestion and transmission losses. These nodal prices are
called locational marginal prices.
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Table 4.2: Benefits and costs: Changes with respect to flat rate structure

Level Tariff Net benefit Benefit Cost
Net benefit as
a percentage
of the cost

[millions $/year] [%]

Western
Interconnection

RTP 340 -100 -440 1.50
TOU & CPP 155 -38 -193 0.68
TOU & DC 137 -22 -159 0.61
TOU 77 -22 -99 0.34

California’s
residential
sector

RTP 274 -100 -374 5.18
TOU & CPP 46 -38 -84 0.87
TOU & DC 176 -22 -198 3.28
TOU 82 -22 -104 1.53

[$/year]

Average
per household
in California

RTP 22 -8 -30 5.18
TOU & CPP 4 -3 -7 0.87
TOU & DC 14 -2 -16 3.28
TOU 6 -2 -8 1.53

of a standard meter, a reasonable approximation of this cost lays between 1 and 2.5 dollars
per month. The lower bound at least doubles the gains of TOU and TOU&CPP, warning
against the deployment of AMI if these tariffs are the pricing alternatives. Even tough in
California AMI is already deployed, unless the cost of AMI decreases, in the long run the
state might do as well with simpler rates and a simpler infrastructure.

Implications for different households

Figure 4.1 shows the distribution of households across net surplus gains with respect to the
flat rate tariff. The figure has four panels, one per each type of household we distinguish in
this analysis. In terms of the average gain, the ranking that we observe at the household level
in Table 4.2 also holds when disaggregating per type of household. While RTP remains the
most beneficial rate structure, the combination of a TOU and critical peak pricing program
is the least favorable. Even some household types would be better off with a simple flat rate
tariff than with the TOU&DC structure.

For all rates, the average net surplus gain is different for different households. Those
with central air conditioning have a greater average surplus gain when compared to house-
holds without this appliance. This difference translates in turn into homeowners having a
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greater average surplus gain than renters. This happens simply because the proportion of
homeowners with central AC is greater than 50%, and the opposite is true for renters. If
one consider home-ownership as a proxy for wealth, wealthier customers benefit more from
the rate structures we explored in this analysis.

Customers with no AC systems experience small average net surplus gains and this
metric has small variance across households. The small increase in net surplus is driven by
the elasticity we assume for the baseline consumption. The demands of households with no
AC system are inelastic. This small elasticity helps to explain the small variance as well. In
addition, other two elements influence the variance. One is the fact that we use one baseline
profile for all households. Another is that the LMPs show small variation in the demand
nodes of the California portion of the network.

The net surplus gains vary more across households with central AC systems. The variance
is driven by differences in the temperature profiles at the different locations. Interestingly,
the order in terms of net surplus gains induced by the different temperature profiles is
different for each rate we explore. For instance, in the case of real-time pricing locations
with higher within-day temperature variance and higher average temperature tend to have
greater net surplus gains. One observes a similar pattern when households are enrolled in
the TOU&CPP and TOU programs. However, this correlation disappears when the time-of-
use rate is combined with demand charges. In this latter case, households located in places
where the between-day variance of temperatures is lower tend to benefit the most.

The variance in net surplus for household with AC systems suggest targeting as a strategy
for implementing time-varying rates. In particular, the TOU&DC and the RTP program
appear to be the most attractive alternatives. However, the non-trivial relationship between
surplus gains and temperature profiles suggests that regulators should analyze carefully
where to implement these structures.

On carbon emissions

A final element we explore in this analysis is how the different rate structures impact carbon
emissions. A first observation is that not all technologies we consider are economical. Neither
coal, nor biomass or nuclear are profitable. Perhaps one could have anticipated this outcome
in light of the figures in table 4.1, which shows that geothermal, solar and wind dominate
nuclear, biomass and coal. This is not a fair comparison, however, because these resources are
of a different nature. While geothermal power plants have important geographic limitations,
wind and solar are intermittent resources. Thus, one cannot discard a priori technologies
with dominated economic characteristics.

A second observation is that some technologies do not change their total production
profile or capacities across the rate scenarios. Consistently, those technologies do not alter
their carbon emissions. This technologies include hydro and wind generating power plants.
We expected hydro power generation to be invariant because it was exogenous in this analysis.
The invariance of wind generation, on the other hand, is a outcome of the model.
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Table 4.3: Capacity, production and emissions changes with respect to FR scenario

Metric Tariff
Gas

adv. CC
Gas

adv. CT
Gas

conv. CC
Solar Total

Change
relative to
FR total

[MW-year] %

Capacity

RTP 315 (8,561) (177) 439 (7,984) (6.09)
TOU&CPP (715) (3,609) (754) 2,449 (2,629) (2.01)
TOU&DC (598) (3,043) (142) 1,463 (2,320) (1.77)
TOU 309 (1,600) (642) 15 (1,918) (1.46)

[GWh/year] %

Production

RTP 2,197 (2,900) 156 1,620 1,074 0.17
TOU&CPP (6,932) (610) (1,177) 9,268 549 0.09
TOU&DC (4,356) (793) (33) 5,536 352 0.06
TOU 1,693 (216) (1,135) 55 398 0.06

[kt of CO2eq/year] %

Emissions

RTP 725 (1,508) 55 - (728) (0.62)
TOU&CPP (2,288) (317) (412) - (3,017) (2.56)
TOU&DC (1,438) (412) (12) - (1,861) (1.58)
TOU 559 (112) (397) - 49 0.04

Table 4.3 shows changes in capacity production and emissions with respect to the ref-
erence case. In addition, the table shows total change as a percentage of the Western
Interconnection total for the FR scenario. We do not include unprofitable technologies nor
technologies that do not vary across rate scenarios.

Agreeing with the basic insight of peak-load pricing, the total installed capacity decreases
the most under real-time pricing, followed by TOU&CPP, TOU&DC and TOU. The order
in terms of total installed capacity is not the same for total production. Indeed, the figures
in Table 4.3 show that the order is somewhat reversed, with RTP increasing production the
most. These changes, however, are a minor fraction of the total production of the Western
Interconnection.

Even though production always changes positively, emissions do not. This is true for all
rate scenarios with the exception of the TOU case. What happens is that solar production
increases considerably in all but the TOU scenario. This suggests long-run complementarities
between the demand responsiveness of the residential sector in California and solar generating
plants in the Western Interconnection. Interestingly, RTP is not the rate that increases this
complementarity the most. The combination between a TOU and a CPP program is the
rate alternative that increases solar production and reduces emissions more notoriously.
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4.6 Conclusions

We conduct an analysis of rate design in California’s residential electricity sector. Beyond
the applied insights, we contribute with a modeling framework to evaluate rate structures.
The framework gives an important step towards bridging top down models of pricing and
investment with bottom up models of household behavior. Building upon the theory of
peak-load pricing, we illustrate how to modify the basic model to accommodate household
heterogeneity, as well as the adoption of distributed energy resources and more general types
of rate structures.

Our analysis seeks to quantify efficiency, distributional and environmental implications of
rate structures that are plausible alternatives for California’s future residential sector. The
analysis shows that the average gains of implementing time-varying rates with respect to a
simple flat rate program are rather mild, even in the real-time pricing scenario. Our results
also show that factors such as the presence of an air conditioning system and the exterior
temperature profile can have a meaningful impact on the surplus gains that different rates
generate on households. These two results combined suggest that defaulting all residential
customers into a time-of-use rate structure, which is the current path California is following
for the residential sector, may not be an ideal strategy. Targeting different rates to households
with different appliance stocks and in different locations will likely be a superior policy.
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Chapter 5

Conclusion

This dissertation addresses the problem of how to price the services of a utility in regulated
sectors. It is motivated by the current developments in the electricity industry, where the
nature of the supply and demand side is changing. On one hand, intermittent technologies
such wind or solar generation are becoming a salient feature of current generation mixes.
At the demand side, the penetration of distributed energy technologies gains momentum,
being a reality in some systems such as that of California or Hawaii. These technologi-
cal changes create challenges and opportunities for the sector. Sound regulatory policy, in
general, and judicious rate design, in particular, can help to unleash the potential of these
technologies, while addressing some of their inherent challenges. Carefully constructed rate
structures could send proper signals for energy consumption, and for adjusting the stock
supply and demand technologies at the right times and locations. While these are desirable
outcomes from an economic point of view, in addition, regulators must take into account
other consequences such as how simple rates are, what are the distributional or environ-
mental implications of a rate redesign, and what could be good strategies to roll-out new
tariff structures. While a rate update could produce gains in terms of efficiency, it could
score poorly in the other metrics, making it less attractive or even infeasible from a practical
perspective. Having analytic tools that permit regulators and policy makers to anticipate im-
plications, beyond just welfare changes, becomes increasingly relevant given the complexities
unfolding in the utility sector.

This dissertation develops an analytic technique to systematically compare a wide variety
of rate structures, including time varying rates, rates with demand charges, and block rates.
With the aim of contributing to the ongoing debate on the future of electricity pricing in
California, it uses the technique in an applied analysis of tariffs structures in this sector.
The method is based upon a model which is a variant of the Ramsey-Boiteaux problem: the
problem faced by a regulator that endogenizes the impacts of his choice of rate structures
in the long-run equilibrium of the system. Our variant of the problem advances previous
work by considerably increasing the realism of the regulator’s problem. With our setting,
researchers can explore in their analysis the impacts of transmission networks, intermittent
generation technologies, and distributed energy resources, all elements missing in previous
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models. In addition, a key building block of our approach is a bottom up representation of
consumption behavior. Households are a composite of devices, face income and technological
constraints and have preferences for electricity consumption. As result, demand heterogene-
ity in our setting is driven by fundamentals, such weather patterns or the appliance stock of
the households, among others. We exploit the richness of this model, and the availability of
detailed data on appliance ownership, weather patterns and consumption behavior, in our
analysis of California’s future rates. We supplement this demand data with a realistic model
of the western interconnection, including a simplified representation of the network’s topol-
ogy and a comprehensive set technical parameters for the power production technologies.
A distinctive element of our analysis is the variety of perspectives it offers. We are able to
asses the impacts of diverse rate updates from an efficiency point of view, while at the same
time we are able to grasp the potential distributional and environmental consequences.

5.1 A Method to Compare Rate Structures

The first two chapters focus on the methodological effort. This encompasses developing
sound models, a technique to solve the underlying mathematical programs efficiently, and
applied exercises portraying the type of analyses a researcher could conduct with the aid of
our methodologies.

In the first chapter, we introduce our first method for evaluating tariffs based on mathe-
matical programming. In contrast to previous approaches, this technique allows consistently
comparing portfolios of rates while capturing complexities emerging in modern electricity
sectors. Welfare analyses conducted with the method can account for interactions between
intermittent renewable generation, distributed energy resources and tariff structures.

We explore the theoretical and practical implications of the model that underlies the
technique. At a theoretical level, our analysis suggests that our model compares rates which
are not only socially optimal but could also be implemented. A regulator could induce the
welfare maximizing configuration of the demand by properly updating the portfolio of tariffs.
In the context of our model, the proper update translates into recomputing volumetric and
fixed charges every time the system conditions change meaningfully as a result of a change
in demand behavior. If a regulator follows this pricing rule, he will be providing incentives
consistent with a welfare maximizing long-run demand configuration.

We also derive conclusions that help practical purposes. These allow us to exploit the
structure of the model to construct a simple algorithm which finds globally optimal solutions
of the underlying nonlinear optimization problem. A computational experiment suggests that
the specialized procedure can outperform standard nonlinear programming techniques. The
speed dominance is specially stark for large sized instances.

To illustrate the practical relevance of the rate analysis method, we compare portfolios of
tariffs with data from two electricity systems: California and Denmark. Although portfolios
with sophisticated rates create value in both systems, these improvements differ enough to
advise very different portfolios. While in Denmark RTP appears unattractive, it at least
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deserves further revision in California. This conclusion is beyond the reach of previous
techniques to analyze rates, since the key factor driving these different outcomes is the
relationship between load and renewable production. The correlation between these two
time series is greater in Denmark than in California. As a result, modifying load via time-
variant pricing is more valuable in the latter as it is more needed to induce cheap electricity
consumption. Models to compare rates that neglect the supply side, or over simplified it,
cannot capture these types of effects, and thus could produce misleading conclusions.

5.2 Improving the Applicability of the Method

While useful, the model that underlies the method that we develop in the first chapter has
two important limitations. One is the lack of transparency of the parameters that determine
demand substitution patterns, and demand heterogeneity; the other is the narrow range of
rate structures that could be studied with the technique. All models based upon the theory
of Peak-Load Pricing inherit these limitations. The theory assumes that the demand, the
solution of the consumer utility maximization problem, is a singleton. Thus, the models
based upon this theory take this consumer demand as a primitive, instead of considering the
consumer problem as the fundamental building block. While simplifying mathematical ana-
lysis, this assumption considerably restricts modeling flexibility. Important determinants of
household electricity consumption behavior such as weather patterns or appliance ownership
cannot be transparently included in models where a representative demand function is the
starting point. In addition, while a researcher could represent a wide variety of time-varying
rate structures, more complex designs such a combining a time-varying rate with a demand
charge or a block rate cannot be captured. Modeling these rates requires to modify the
consumer problem, breaking the basic assumptions of Peak-Load Pricing.

In the second chapter, we develop a model that tackles both limitations by considering as
basic building block the consumer utility maximization problem. As a result, the technique
allows researchers to consistently benchmark a large class of tariffs. It also makes possible
capturing an unprecedented level of detail, making direct and transparent the inclusion
of important technological aspects emerging in the utility industry. Our model finds the
Ramsey-Boiteux prices while simultaneously determining production schedules, supply and
demand side investments and consumption allocations.

This significant increase in flexibility comes at a cost, however. Finding a solution for
this variant of the Ramsey-Boiteux problem is much more difficult. The resulting underlying
mathematical program falls within the class of Bilevel Problems, which are hard to solve.
Thus we dedicate an important part of the second chapter to developing a solution technique.
We cast this Bilevel Model as a Mathematical Program with Equilibrium Constrains, and
solve it using a variant of the Alternating Direction Method of Multipliers. This variant han-
dles the complementary constraints in a distributed manner. It solves the MPEC iteratively,
at each iteration solving independently several small MPECs and one nonlinear program.
Using the technique of Fortuny-Amat and McCarl (1981), we cast the small MPECs as MIPs
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and develop heuristics to find reasonable starting points; we handle the nonlinear program
via a conic reformulation.

A computational experiment demonstrates that our solution approach has several de-
sirable properties for practical applications. First, it vastly outperforms Knitro, a popular
commercial solver for MPECs. Second, the method shows good convergence behavior, reach-
ing solutions of reasonable quality after a few tens of iterations. Third, the algorithm scales
well with size. Part of the resolution of the problem can be distributed to various computing
nodes and the solution time of the centralized step increases at a rate lower than linear.

A numerical analysis of tariff structures demonstrates the importance of the increased
modeling flexibility of this method. The analysis highlights the value of being able to model
DERs. It shows how the economics of rooftop PV systems impact the rate comparison, and
that time-varying rates and inexpensive DERs could complement each other; the former can
improve the relative value of the latter while DERs being inexpensive increases the gains of
switching from a time invariant rate. In addition, the exercise shows that ignoring trans-
mission constraints can have meaningful impacts on the analysis of rate structures. In the
exercise, the presence of network constraints translates into significantly higher welfare gains
when switching from a flat rate to more sophisticated structures. Omitting this element
underestimates the benefits by about 3000 times. Finally, we are able to conduct a dis-
tributional analysis, which portrays how our method permits regulators and policy makers
to study impacts of a rate update on a heterogeneous population. While a switch in rates
could have a positive impact on the aggregate of households, it could benefit some more than
others. It could even harm some customers, which can be particularly problematic if those
harmed were low income households. A technique such as the one introduced in this chapter
permits to anticipate these impacts, letting regulators to decide among rate structures with
considerably more information that what would be available with alternative techniques.

5.3 An Applied Analysis in California

After having developed the most advanced method for analyzing rates, we use it in an applied
study. The estate of California is transitioning its residential customers from an increasing
block rate structure to a time-of-use program. Since 1976, when the Miller-Warren Energy
Lifeline Act was enacted, California’s residential consumers have had an increasing block rate
as a default tariff. In the post crisis period, between 2000 and 2009, differences between tiers
became more prominent (one of the crises consequences), and have been decreasing—some
tiers even being consolidated—thereafter. In July of 2015, decision D.15 − 07 − 001 set a
schedule and a series of steps to transition all residential customers to a default time-of-use
rate by 2019.

In the third chapter, we embark in applied exploration of the long-run effects of this rate
redesign, and analyze alternatives. In concrete, we compare the prospective structure with
two variants of this program, a TOU combined with demand charges and a TOU combined
with a critical peak pricing program. We also include in the comparison the cases in which
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households enroll in a flat rate and in a real-time pricing program. In our analysis, we focus
on a scenario in which AMI and HEMS are widely adopted. Our approach allows us to
capture a wide variety of temporal and spatial demand substitution patterns without the
need of estimating a large number of parameters. We calibrate the model using data of
appliance ownership, census household counts, weather patterns, and a model of California’s
electricity network. The analysis shows that the average gains of implementing time-varying
rates with respect to a simple flat rate program are rather mild, not greater than 2 dollars
per month, even in the real-time pricing scenario. Our results also show that factors such as
the presence of an air conditioning system and the exterior temperature profile can have a
meaningful impact on the surplus gains that different rates generate on households. These
two results combined suggest that defaulting all residential customers into a time-of-use rate
structure, which is the current path California is following for the residential sector, may
not be an optimal strategy. Targeting different rates to households with different appliance
stocks and in different locations will likely be a superior policy.
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Zöttl, G. (2010). A framework of peak load pricing with strategic firms. Operations Research,
58(6):1637–1649.



94

Appendix A

Appendix of Chapter 2

A.1 Proofs of Results in Section 2.3

Proof of Lemma 2.3.1

Proof. Willig (1976) shows that when focusing on goods with an associated expenditure
relatively small with respect to the customer’s budget, such as the consumption of electricity,
consumer surplus and compensating variation are equivalent. Thus, in the context of the
present study, we can write

∆Y = CS(l2, p̄
2)− CS(l1, p̄

1). (A.1)

By definition, the change in producer surplus is

∆Π = Π(l2, p̄
2)− Π(l1, p̄

1). (A.2)

Π(l, p̄) = 0 for the optimal solution of (2.6). Combing this condition with (2.1) and (2.5),
and letting Ph =

{
p̄h
}

for h ∈ {1, 2}, we conclude that vh = E
[
S̄I(p̄h)

]
− C(D̄I(p̄h))− Π0.

Using this fact and adding (A.1) and (A.2), the expression (2.7) follows. �

Proof of Proposition 2.3.1

Proof. First we show that C(·) is a convex function. Consider d̄1, d̄2 non-negative, ψ ∈ [0, 1]
and define ψ1 := ψ, ψ2 := 1−ψ. We call ȳ the block vector that has ȳk in its k-th block, and
M(d̄) the problem (2.2)–(2.4) when d̄ is the demand parameter. Let (ȳj, xj) be the optimal
solution of M(d̄j) for j ∈ {1, 2}. Since (2.2)–(2.4) is a convex problem and (2.3) is a linear
constraint (ˆ̄y, x̂) := ψ1(ȳ1, x1) +ψ2(ȳ2, x2) is feasible for M(ψ1d̄1 +ψ2d̄2). Thus it holds that

C(ψ1d̄1 + ψ2d̄2) ≤ κ(ˆ̄y, x̂), (A.3)

where κ(·, ·) is the objective function of (2.2)–(2.4). Since this is a convex function we can
write

κ(ˆ̄y, x̂) ≤ ψ1C
(
d̄1
)

+ ψ2C
(
d̄2
)
. (A.4)
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Now we show the concavity of g(·). Let α1, α2 ∈ A and α̂ = ψ1α1 + ψ2α2. Consider the
following point,

ˆ̄ph :=

{
ψ1α1

h

α̂h
p̄h1 +

ψ2α1
h

α̂h
p̄h2 if α1

h + α2
h > 0,

ψ1p̄h1 + ψ2p̄h2 otherwise,
(A.5)

where pj is an optimal solution for the problem Pαj , j ∈ {1, 2}. Observe that by the convexity
of D̄h(·) it holds that

n∑
h=1

α̂hD̄(ˆ̄ph)︸ ︷︷ ︸
d(α̂)

≤ ψ1

n∑
h=1

α1
hD̄(p̄h1)︸ ︷︷ ︸
d(α1)

+ψ2

n∑
h=1

α2
hD̄(p̄h2)︸ ︷︷ ︸
d(α2)

, (A.6)

which implies that the optimal solution of M(ψ1d(α1) + ψ2d(α2)) is feasible for M(d(α̂)).
Then we can write

C(d(α̂)) ≤ C(ψ1d(α1) + ψ2d(α2)) ≤ ψ1C(d(α1)) + ψ2C(d(α2)), (A.7)

where the last inequality follows from the convexity of C(·). Because P is convex, ˆ̄p is feasible
for Pα̂. Thus, it holds that

g(α̂) ≥
n∑
h=1

α̂hE
[
S̄h(ˆ̄ph)− rh

]
− C (d(α̂)) (A.8)

≥
2∑
j=1

ψj
n∑
h=1

α̂jhE
[
S̄h(p̄hj)− rh

]
− ψ1C

(
d(α1)

)
− ψ2C

(
d(α2)

)
, (A.9)

where (A.9) follows from (A.7) and the fact that S̄h(·) is concave. �

Proof of Proposition 2.3.2

Proof. The Lagrangian of (2.12)–(2.14) is

L =
n∑
h=1

αhE
[
S̄h(p̄h)− rh

]
− C

(
n∑
h=1

αhD̄
h(p̄h)

)
+ η>(ν − Γα) + ζ>α + κ>h̄(p̄),

(A.10)

where η, ζ, κ are Lagrange multipliers, and h̄ is the mapping associated to the constraint set
P , such that p̄ ∈ P ⇔ h̄(p̄) ≥ 0. The optimal solution of the Ramsey problem satisfies the
following first order necessary condition for αh

E
[
S̄h(p̄h)− rh

]
− d

dαh
C

(
n∑
h=1

αhD̄
h(p̄h)

)
− ηiΓih + ζh = 0 (A.11)
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The second term can be derived using a result from sensitivity analysis for nonlinear program-
ming problems. Define Q0(ȳ, x) as the objective of (2.2)–(2.4), and Q̄1(ȳ, d̄) and Q̄2(ȳ, x)
as the mapping associated to constraints (2.3) and (2.4), respectively. The Lagrangian of
(2.2)–(2.4) is

L′ = Q0(ȳ, x) + E
[
Q̄2(ȳ, x)>ξ̄

]
+ E

[
λ̄>Q̄1

(
ȳ,

n∑
h=1

αhD̄
h(p̄h)

)]
(A.12)

We can use the Theorem 6.67 in Luderer et al. (2013) to write

d

dαh
C

(
n∑
h=1

αhD̄
h(p̄h)

)
= E

[
D̄h(p̄h)>∇d̄L

′] = E
[
D̄h(p̄h)>λ̄

]
. (A.13)

Theorem 6.67 requires Q̄(ȳ, x, d̄) := (Q̄1, Q̄2) being uniformly bounded and (R)-regular, and
the problem (2.2)–(2.4) being convex. In order to obtain Q̄ uniformly bounded, one can
reformulate (2.2)–(2.4) bounding each component of x by a number large enough so that the
solution set does not change. To see the (R)-regularity of Q̄, we note that for any d̄ there is
a point (ȳ, x) such that Q̄(ȳ, x, d̄) < 0. This implies (R)-regularity for convex problems (see
Definition 6.9 and Theorem 6.15 in Luderer et al. (2013)). Then, we can write

E
[
S̄h(p̄h)− D̄h(p̄h)>λ̄− rh

]
= ηi − ζh. (A.14)

Given our definition of fixed charges, the left hand side is the consumer surplus of the
customers in h, whereas the right hand side is lower or equal to ηi. Thus, as long as there
are customer in h, they do not have incentives to switch. �

Proof of Proposition 2.3.3

Proof. For simplicity, we denote the consumer surplus of a customer in rate h (the left hand
side of (A.14)) as csh(α), when the population distribution is α. Let α(t) be a curve such
that

αh(t) :=


α′h1 − t if h = h1,

α′h2 + t if h = h2,

α′h otherwise,

(A.15)

for t ∈ [0, α′h1]. A switch from h1 to h2 is a movement along this curve from t to t + ∆t.
Let f(t) := g(α(t)), and note that this is a concave function since g(·) is concave and α(t) is
linear.

In the steps that follow, we compute the derivative of f(t) applying Theorem 6.67 in
Luderer et al. (2013) to the Lagrangian of Pα

L =
n∑
h=1

αhE
[
S̄h(p̄h)− rh

]
− C

(
n∑
h=1

αhD̄
h(p̄h)

)
+ κ>h̄(p̄), (A.16)
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where we define κ and h̄(p̄) as in Appendix A.1.
We show first (iii). For ∆t small enough we have that the sign of f(0 + ∆t) − f(0) is

equal to the sign of

d

dt
f(0) = ∇g(α′)>

d

dt
α(0) (A.17)

= csh2(α′)− csh1(α′) (A.18)

> 0, (A.19)

where (A.18) follows from the fact that ∇g(α′)h is equal to csh (as we showed in the proof
of Proposition 2.3.2), and (A.19) holds because otherwise customers in h1 would not have
incentives to switch.

Now we focus on (ii) and (iv). Note that, in view of (A.18), both claims are equivalent.
By the concavity of f , we have(

d

dt
f(0 + ∆t)− d

dt
f(0)

)
(0 + ∆t− 0) ≤ 0, (A.20)

from where the result follows.
To show (i) it is enough to observe that ∇g is a continuous mapping, because g is

concave and differentiable (Hiriart-Urruty and Lemarchal, 2013, pp. 282–284). Then, for
small enough ∆t we have

csh2(α(0))− csh1(α(0)) > 0⇒ csh2(α(∆t))− csh1(α(0)) > 0. (A.21)

�

Proof of Proposition 2.3.4

Before proving the proposition, we introduce notation and make some observations. Define

Ai =

{
α ∈ Rni

+ : νi ≥
∑
h∈Hi

αh

}
, (A.22)

where Hi = {hi1, . . . , hini} is the set of rates associated to types i. The set A is the Cartesian
product of these sets. Based on Ai, we define the simplex

A0
i =

vi ∈ Rni+1
+ : νi =

∑
h∈H0

i

vh

 , (A.23)

were H0
i = Hi ∪ {hi0}, and vi = (vhi0 , . . . , vhini

). In addition, define

A0 := A0
1 × · · · × A0

|I| (A.24)
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and the problem
min

{
f(v) : v ∈ A0

}
, (A.25)

where v is a block vector that has vi in its i-th component, f(v) := g(v−0) and v−0 results
after removing vhi0 from v, for all i ∈ I.

Note that (A.25) is concave. Moreover, this problem is equivalent to (2.15). The optimal
values of both problem coincide, and for α ∈ A there is a unique v ∈ A0 and vice versa.
Further, applying Theorem 6.67 in Luderer et al. (2013) to (A.25), we have that for h 6= hi0,
∇f(v)h = csh (the consumer surplus of customers enrolled in h). We define cshi0 := 0 for all
i ∈ I. Given this, ∇f(v) = cs.

We also make explicit the way in which customer react to the incentives as well as how the
utility updates rates as customers switch. Given the previous definitions, one can interpret
an update in α as a switch between two groups, say from h1 to h2. We distinguish the
following three cases:

• If h1 = hi0, new customers enroll in rate h2.

• If h2 = hi0, existing customers end their utility services.

• Otherwise, existing customers replace h1 with h2.

We define a mapping s(v) such that if t customers switch the new distribution is v+ t · s(v).
If customers switch from h1 to h2 then

s(v)h =


1 if h = h2,

−1 if h = h1,

0 otherwise.

(A.26)

We consider that customers switch rationally but not strategically. That is, they consider
current differences in consumer surpluses among rates but do not internalize the impacts of
other customers’ decisions on their after-switching surpluses. In terms of timing, rationality
implies that the first to switch are those customers with the highest opportunity for increasing
their surpluses.

We now make precise what we mean by the utility updating rates relatively fast. Suppose
that the first event after the last rate update is a switch from h1 to h2, i.e., h1 and h2 produce
the lowest and highest surpluses respectively. The maximum number of customers that can
switch before the next update is t(v) = θpε, for some ε > 0 such that xh1 ≥ ε, θ ∈ (0, 1), and
p being the smallest number in Z+ satisfying

f(v + θpε · s(v)) ≥ f(v) + βθpε · s(v)>∇f(v), (A.27)

with β ∈ (0, 1). Further, we consider that the utility decreases ε as the difference between
the maximum and minimum consumer surpluses decreases across rate updates.

Proof. Given our previous considerations, the evolution of v across time follows the
iterations of the Selective Bi-coordinate Method described in Konnov (2016). The algorithm
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converges to the optimum for concave problems with compact feasible regions, and with
objective functions differentiable, with continous gradient (Konnov, 2016). The problem
(A.25) is concave, f is differentiable because Pα meets the conditions of Theorem 6.67 in
Luderer et al. (2013), and ∇f is a continuous mapping because f is concave and differen-
tiable (Hiriart-Urruty and Lemarchal, 2013, pp. 282–284). Thus, v converges to the Ramsey
optimum. �

We acknowledge that the method described in Konnov (2016) is developed for the case
in which I is a singleton. However, the reader can verify that the proof needed to show that
the algorithm converges require just minor modifications when I has more than one element.

A.2 Implementation Details

Demand model calibration

We consider customers with linear demands. These functions differ in their price respon-
siveness but have the same intercept. Let d̄0 and p̄0 be the demand and price intercepts,
and B̄h ≺ 0 the Jacobian of the demand of customers in h. The statement B̄h ≺ 0 indicates
that B̄ is negative definite. This assumption is implied by the strict concavity of the utility
function assumed in Peak-Load Pricing. A system of demand equation that satisfies these
conditions is

D̄h(p̄) = B̄h(p̄− p̄0) + d̄0, (A.28)

with an associated gross surplus function

S̄h(p̄) =
1

2
(p̄>B̄hp̄− p̄>0 B̄hp̄0). (A.29)

The latter expression results from assuming that the optimum of the utility maximization
problem is interior, a standard assumption in applied microeconomics analysis. This implies
that ∇Ū(D̄(p̄)) = p̄, which also provides an expression for the Hessian of Ū(·). Normalizing
Ū(0) = 0, researchers can derive an expression for the Taylor expansion of Ū(·) about d̄0.

It follows that d̄0, p̄0 and B̄h fully determine the demand and gross surplus functions.
The demand intercept d̄0 corresponds to the consumption baseline that we described in the
previous subsection. We assume that the price intercept is a flat rate, i.e., p̄0 = e · τ0 (with
e := (1, . . . , 1)>). Following a procedure similar to De Jonghe et al. (2012), we set τ0 simply
as the average long-run marginal cost of electricity for a system with aggregated demand
equal to

∑
i νi · d0 (recall that

∑
i νi is the total number of customers in the population).

To compute B̄h we use the definition of the price elasticity matrix as follows

[Eh]tl :=
∂D̄h

t (p̄)

∂p̄l
· p̄l0
d̄t0
⇔ [B̄h]tl = [Eh]tl

d̄t0
τ0

, (A.30)

where [Eh]tl is the element tl of the price-elasticity matrix of the corresponding segment. To
calibrate the elasticity matrix with the information we have, we use the following procedure.
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Let εho and εhc be the pair of own- and cross-price elasticities of customers in h. First, we
define Êh, which is not necessarily symmetric or negative definite,

[Êh]tl :=


εho if t = l,

εhc/10 if t ∈ {l − 5, . . . , l + 5} \ {l} ,
0 otherwise.

(A.31)

To ensure concave utility functions we then compute Eh as the closest elasticity matrix to
Êh consistent with a negative definite B̄h via the following conic program:

min
(B̄h,Eh)

{
‖Eh − Êh‖
‖Êh‖

: [B̄h]tl = [Eh]tl
d̄t0
τ0

∀tl, B̄h ≺ 0

}
, (A.32)

where ‖·‖ is the Frobenius norm.

Modeling a Renewable Portfolio Standard

A renewable portfolio standard is a policy in which the regulator mandates the utility to
produce a minimum fraction ζ of its total energy from renewable sources. In order to include
the effect of this policy in our analysis, we modify the model of the cost function (2.2)–(2.4)
by including a new constraint. Let e := [1, . . . , 1]> ∈ RT , the associated constraint is

e>E

[
ζ ·
∑
h∈H

αhD̄
h(p̄h)−

∑
k∈KR

ȳk

]
≤ 0, (A.33)

where KR is the set of qualified renewable technologies.
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Appendix B

Appendix of Chapter 4

B.1 Geographic Distribution of Production

Technologies

biomass

coal

exogenous 
demand

gas adv CC
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geothermal

hydro

nuclear

solar
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Figure B.1: Geographic distribution of generating technologies
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B.2 Examples of Rates and Devices

This appendix provides two additional examples. One describes how to implement an (IBP)
structure and the other how to model a battery storage system. We keep the notation in
section 4.3 and define Zm as a square matrix of zeros of m by m.

A model of an IBP structure. Under this rate a customer pays a volumetric charge
pn if its total consumption falls within the tier n ∈ {1, . . . , N}, that is, if d̄>e|T | ∈ [qn−1, qn].

To model this let the auxiliary variable d̂n denote the consumption on tier n, and define

b̃ :=

[
0
q

]
, Ã :=

[
e>|T | −e>N
zNz

>
|T | IN

]
, M :=

[
z|T |z

>
N

IN

]
. (B.1)

Additionally, define the prices constraint set as follows

P :=
{
p ∈ RN

+ : pn ≥ pn−1 ∀n > 1
}
. (B.2)

Modeling the dynamics of a battery storage system. A battery of roundtrip
efficiency1 ζ changes its state of charge in t, st, in response to an energy charge, d1

t , or
discharge, d2

t , according to the following relationship,

st+1 = st + d1
t

√
ζ − d2

t

1√
ζ
.

In addition, the battery has a maximum storage capacity smax, and a minimum state of
charge smin. The energy charge and discharge also have boundaries: the maximum charging
and discharging rates of the battery, dmax.

To include this model in our framework define d̄ := [d1, d2], and

bstorage :=


(smax − s1) · e|T |
−(smin − s1) · e|T |

dmax · e|T |
z|T |

dmax · e|T |
z|T |

 , Astorage :=



B
√
ζ −B 1√

ζ

−B
√
ζ B 1√

ζ

I|T | Z|T |
−I|T | Z|T |
Z|T | I|T |
Z|T | −I||T |

 , (B.3)

with B a lower triangular matrix of ones, and s1 the state of charge at the beginning of
the first period.

B.3 Deriving a Linear Model for a TCL

The model of the thermostatically controlled load we use in this paper is similar to the one
in (Mathieu et al., 2015). It originates from the thermodynamic identity,

C · θ̇(t) = d(t) · η − θ(t)− θ̃(t)
R

,

1Round trip efficiency is the maximum output per unit of energy input into the battery storage system.
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in which C is the thermal capacity of the interior space, η is the coefficient of performance
of central air conditioner and R is thermal resistance of the household. This identity simply
sates that the variation in heat in the interior space is equal to the heat extracted by the air
conditioner plus the heat that enters the space as a result of a temperature gradient. The
solution of this equation is

θ(t) = θ0e
−t
CR + e

−t
CR

∫ t

0

e
s

CRκ(s)ds,

where κ(s) :=
[
θ̃(t) + ηRd(s))

]
/CR. Thus, we can write the temperature in t+ ∆ as

θ(t+ ∆) = e
−∆
CR θ(t) + e

−t−∆
CR

∫ t+∆

t

e
s

CRκ(s)ds.

Assuming that the exterior temperature and the power consumption are constant over the
interval [t, t + ∆] and equal to θ̃(t) and d(t), κ(·) is also constant. Furthermore, If we
normalize ∆ to 1, we have that

θt+1 = aθt + (1− a)θ̃t + (1− a)ηRdt, (B.4)

where a := e
−∆
CR . Equation (B.4) shows a linear relationship between the consumption of

the central air conditioner and the interior temperature. Considering as border condition
θ|T |+1 = θ1, which is consistent with the assumption of similar consecutive days, we can
express (B.4) in matrix form as in (4.12). The explicit formulae follows

Θ1(ξ) = (1−a)ηR

1−a|T |



a|T |−1 a|T |−2 · · · · · · · · · a 1
1 a|T |−1 · · · · · · · · · a2 a
a 1 · · · · · · · · · a3 a2

...
...

. . .
...

...
...

...
at−2 at−3 · · · 1 · · · at at−1

...
...

...
...

. . .
...

...
a|T |−2 a|T |−3 · · · · · · · · · 1 a|T |−1


and θ2(ξ, θ̃) = 1

ηR
Θ1(ξ)θ̃.

B.4 Modeling a Transmission Network

In order to model a transmission network, we take the standard approach in capacity expan-
sion, e.g. (Sauma and Oren, 2006). In principle, a non-liner system, known as the power flow
equations, describe how electricity circulates in the transmission network. The non-linearity
of this system, however, adds significant complexity to the capacity expansion problem. In
order to keep this model tractable researchers approximate the power flow equations. In this
paper we use the dc approximation, which corresponds to a linearization of the original sys-
tem. The dc approximation considers a vector w of net imports at each node of the network,
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a matrix PTDF that maps net imports to flows across each of the network’s edges, and a
bounds for the flows, (f+, f−). There are two conditions associated to the approximation.
One expresses constraints on flows,

f+ ≥ PTDFw ≥ f−,

the other establishes that the summation off all net imports is zero. To incorporate this net-
work model in our framework, modify pricing problem adding these conditions. In addition,
modify (4.16) as follows, ∑

h

αhdhωn =
∑
k∈K

yωkn + wωn : λω, (B.5)

where n indexes the nodes of the network.




