
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Optimization Tools for Constrained Energy Markets

Permalink
https://escholarship.org/uc/item/5wr8t03d

Author
Munsing, Eric

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wr8t03d
https://escholarship.org
http://www.cdlib.org/


Optimization Tools for Constrained Energy Markets

by

Eric Munsing

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering - Civil and Environmental Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Scott J. Moura, Chair
Professor Duncan S. Callaway

Professor Raja Sengupta

Summer 2018



Optimization Tools for Constrained Energy Markets

Copyright 2018
by

Eric Munsing



1

Abstract

Optimization Tools for Constrained Energy Markets

by

Eric Munsing

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Assistant Professor Scott J. Moura, Chair

This dissertation develops an interdisciplinary approach to integrating renewable energy
resources into energy markets, using tools from optimization theory, power systems, and
economics. It advances prior work with the development of a set of tools for securing dis-
tributed and fully-decentralized optimization problems, including both algorithmic guards
against attacks by malicious nodes, and system architectures which can enable decentralized
security checks. Leveraging the emerging technologies of blockchains and smart contracts, it
develops a new paradigm of blockchain-secured distributed optimization, demonstrated with
simulation of a microgrid which is able to securely operate without oversight from a utility
or central operator.

As the goal of interdisciplinary research is to show mastery of each field and extend current
knowledge by exploring their intersection, the chapters of this dissertation are designed to
support that goal:

• Chapter 1 provides background on the technical challenges of integrating high amounts
of renewable energy into the electricity system, and discusses technologies and policies
which can address those challenges.

• Chapter 2 introduces the idea of applying optimization tools to energy systems by
studying a small-scale energy harvesting system in which batteries and capacitors are
used to meet a defined load, and constraints force the use of nonlinear optimization
techniques.

• Chapter 3 explores how large-scale energy storage systems can be designed and sited
to maximize profits from participating in wholesale energy markets, using a linear
program which demonstrates how convex optimization tools can be united with energy
market data to create scalable tools for modeling large networks.

• Chapter 4 expands the study of market-based models by examining the strategic op-
eration of generation resources on a congested network. We use game theory to model
participants’ behavior, power flow models to reflect the underlying constraints of the
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Figure 0.1: Overview of the fields which are used in the current research, showing the
dissertation’s location at the intersection of optimization tools, power systems engineering,
and economics.

physical network, and robust convex optimization to explore how uncertainty is inte-
grated into decision-making.

• Chapter 5 discusses how decentralized optimization models can facilitate scalable opti-
mization tools, and explores the security risks which these optimization models intro-
duce. Tools for detection and mitigation of attacks are explored and tested on a simple
problem. Potential architectures for securing decentralized optimization are explored,
including blockchains and smart contracts.

• Chapter 6 extends this approach by developing a blockchain-secured fully-decentralized
optimization for a microgrid dispatch problem, coordinating distributed energy re-
sources. By demonstrating the usefulness of this blockchain-secured optimization
model, this culminating chapter shows how difficult optimization models can be scal-
ably solved in a manner which respects privacy while guaranteeing security.

• The Appendices present tutorial material on the tools used throughout the paper, and
are supplemented by the code in the author’s github repository: https://github.
com/emunsing/tutorials

Each of the chapters is independent and self-contained, and a reader familiar with the
underlying tools is encouraged to jump to the chapter of greatest interest. Figure 0.1 de-
picts how the different topics which are addressed in this dissertation fall into conventional
academic fields, illustrating how the current work draws from each.

https://github.com/emunsing/tutorials
https://github.com/emunsing/tutorials
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The following associates each of these topics with specific chapters, and provides a canon-
ical reference which can provide the unfamiliar reader with the necessary background in the
topic:

• Optimization Tools

– Nonlinear Optimization & Particle Swarm Optimization ( [1], Chapter 2)
– Convex Optimization ( [2], Chapters 3, 4, 5, 6)
– Robust Optimization ( [3], Chapter 4)
– Decentralized optimization and the Alternating Direction Method of Multipliers

( [4], Chapters 5,6)
– Fully-decentralized optimization ( [5], Chapters 5,6)

• Economics

– Microeconomics ( [6] Chapter 3, 4)
– Game theory and strategic bidding ( [7] Chapter 4)
– Blockchains and smart contracts ( [8], Chapters 5, 6)

• Power Systems

– AC and DC power flow models ( [9], Chapter 4)
– Distflow and local power flow models ( [10], Chapter 6)

This dissertation is intended to serve as a springboard for future researchers study-
ing smart grid systems, particularly those who are interested in developing secured fully-
decentralized optimization models which address constrained systems.
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Chapter 1

Background and Motivation

1.1 Motivation
The production of electricity from wind and solar energy has become a key element of
climate change mitigation strategies, and 29 US states currently have set procurement targets
through Renewable Portfolio Standards [14]. Some of these are quite aggressive- California
is considering a 50% RPS by 2030 [15], and Hawaii recently legislated a 100% RPS by 2045.

These renewable portfolio standards may be essential to meeting aggressive greenhouse
gas (GHG) emissions reduction targets both for the electricity grid and the wider econ-
omy [16,17]. However, the renewable energy sources which they promote are typically char-
acterized by intermittent and variable generation patterns, which may lead to significant
curtailment of renewable generation during peak hours and to increased reliance on natural
gas peaker plants to supply ramping response [15] - two outcomes that are environmentally
and economically undesirable.

We survey a number of options that could help the electricity grid adapt to increased
renewable energy integration in line with high Renewable Portfolio Standards. These can
broadly be described as contributing to the ‘flexibility’ of the grid, enabling it to respond to
the variability and intermittency inherent in renewable generation systems [12].

To date, much of the grid’s demand-side flexibility has been provided by demand re-
sponse programs, and this could be expanded in the future to address increased renewables
penetration [18]. We discuss how current demand response approaches might be expanded
to integrate automation systems and controllable loads that can be scheduled in advance.

The storage of electricity has been highlighted as a key technology with considerable
potential for addressing renewable energy integration [19], and could add considerable flex-
ibility to both transmission and distribution networks. To promote the development of
storage systems, the California Public Utility Commission has mandated that Californian
utilities secure 1.3 GW of electricity storage systems by 2020, 700 MW of which would be
at the transmission level [20], and other regions are considering similar policies.

Models of future carbon-constrained grid scenarios have shown the key roles that these
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technologies may play [21–23], but highlights that the ultimate mix of flexibility will be
strongly subject to system costs and carbon policies.

We briefly motivate this study with a survey of the key opportunities and challenges pre-
sented by the drive towards a higher renewable portfolio standard, and explore the technical
and market challenges which renewable resources present.

1.2 Background: High Renewable Energy Penetration

Opportunities
The electricity sector accounts for approximately 40% of US greenhouse gas (GHG) emis-
sions, mostly from the combustion of coal and natural gas to power centralized genera-
tors [21]. In addition to greenhouse gas emissions, these power plants are significant sources
of other air pollutants, creating short- and long-term health and welfare impacts [24].

Replacement of these centralized conventional generators with renewable energy sources
or low-pollution technologies has become a key environmental policy, and many US states
have adopted renewable portfolio standards (RPS) to incentivize the development of renew-
able energy sources [14]. These RPS mandates have been remarkably successful, and have
brought California to 20% renewable energy by 2012 and puts California on-path for at least
33% renewable energy procurement by 2030 [15]. This build-out of renewable energy is likely
to become particularly important if aggressive GHG reduction goals (e.g. 80% below 1990
emissions levels by 2050) are mandated, which will likely require significant electrification of
the vehicle fleet and other energy services [16], [17].

Models of energy deployments under low-carbon scenarios have shown that these changes
in the grid are possible under a cap-and-trade system or carbon tax, but that the specific
mix of technologies is highly subject to system costs for solar, storage, and demand response
resources, all of which are rapidly changing [21–23]. The development of these industries
presents significant technical and regulatory challenges, but holds the promise of a low-carbon
future.

Technical Challenges
While a few renewable energy sources such as hydropower and geothermal energy can be
used as base load power, their economic potential has been limited and they have not seen
the same rapid growth as wind and solar [23]. While wind and solar are readily scalable,
their energy output varies significantly over hourly, daily, and seasonal timeframes. Two
terms are used to refer to this: variability and intermittency.

Intermittency describes uncertainty in short-term power output, due to gusts of wind
or clouds passing over solar resources. While this uncertainty can be very high at small
geographic scales, variance from expected value decreases over larger geographic time scales.
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Figure 1.1: Forecasts for a “duck curve” with high renewable penetrations. Source: CAISO
[11]

Variability describes the predictable fluctuations in resource availability, e.g. due to
the rise of the sun or seasonal patterns in wind availability. Variability on an hourly scale
is most significant for solar power, which can have large morning and evening ramps as
the sun rises and sets. The mismatch between these diurnal fluctuations and the typical
demand curve (which peaks shortly after sundown) can lead to challenges for the system
operator, who is faced with a downward morning ramp followed by a long, steep evening
ramp when dispatchable resources must be rapidly brought online to maintain grid stability.
This problem is summarized in the “duck curve” in Figure 1 which depicts the forecast for net
load (load minus must-take generation resources) in future high-renewable scenarios [11,15].

Overgeneration and Flexibility

The evening ramp along the ‘neck’ of the duck requires a rapid increase in power generation
of roughly 4 GW/hour in the CAISO 2020 forecast [15].This is expected to exceed the current
ramping abilities of the generation fleet, resulting in significant overgeneration during the
mid-day hours in order to ensure that evening peak load can be served. In a business-as-
usual forecast, this would most likely be accomplished by significantly curtailing mid-day
solar generation [15, 25], an outcome that would undermine the state’s environmental and
RPS goals, and result in additional energy costs.

This problem of overgeneration could be introduced by adding system ‘flexibility’, either
in the form of flexibility down (increasing system net load, analogous to decreasing genera-
tion) or flexibility up (decreasing system net load, analogous to increasing generation). The
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solutions discussed below (particularly energy storage and load scheduling) achieve these
goals through technological means. Additional policy incentives could also incentivize sys-
tem flexibility response, as CAISO is seeking to do through the introduction of a set of
‘Flexible Ramping Products’ to provide payments for fast-ramping flexibility [26].

Frequency Regulation

The frequency of the power grid is maintained in a tight band both to ensure the proper
operation of electrical devices, and to ensure that the system remains stable. Generator
controls are linearized around a local operating region on the power-frequency curve, and
significant excursions from this region can result in catastrophic frequency collapse, as the
system operating point leaves the linearized region and is unable to adequately adjust power
to balance slipping frequency. A summary of the associated controls is provided below;
additional detail can be found in [9].

Historically, frequency control has been provided on three time scales: by inertial control,
by droop control, and by frequency regulation. Because thermal generators have significant
rotational inertia in their turbines, a decrease in frequency will transform rotational kinetic
energy into electrical energy, helping balance increased load. Droop controls monitor turbine
rotation and provide a proportional/integral increase in fuel consumption to balance slipping
frequency. Finally, the system operator can dispatch other generators through automatic
generation control to inject additional power into the system (this may be handled through
a dedicated frequency regulation market in restructured energy markets).

Renewable power systems, particularly photovoltaics, do not offer the first two of these
frequency controls. As they contain no spinning mass but instead synthetically generate an
AC waveform from an inverter, renewables increase the frequency sensitivity of the grid to
changes in load or generation. Because renewable resources have limited ability to adjust
their power output, they cannot provide the same type of droop control as found in conven-
tional generators. This means that the system operator must rely more heavily on real-time
dispatch of fast-responding resources to provide frequency regulation, potentially leading to
increased energy costs.

This has not been found to be a significant challenge at low renewable penetrations (¡30-
40%) [12], but will become a significant challenge at the high RPS levels being called for
by California and Hawaii [15]. Addressing this will require tools that can both respond to
short-term intermittency, and frequency needs along steep ramps.

Capacity Reserves

System operators seek to ensure that a power grid is able to respond to the unexpected
failure of a portion of the generator fleet or transmission network. To do so, they keep a
‘capacity reserve’ of generators that are either synced with the grid and ready to inject power
to the power system on short notice (spinning reserves), or are in standby state and able to
rapidly ramp up to provide additional capacity if needed (non-spinning reserves) [9].
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The intermittency of renewable resources has led grid operators to require larger capacity
reserves to ensure that dispatchable resources are available to meet unexpected changes
in supply, e.g. from a cloud bank moving over a centralized solar farm. As renewable
penetration has expanded, system operators have increased capacity margins to account
for increased intermittency [27], increasing the costs of providing power. Currently, only
dispatchable resources such as natural gas turbines are available to provide capacity reserves,
but these reserves could also be provided by energy storage or flexible loads [19].

Distributed Generation- Special Concerns

Traditional power generation has been centralized, with the transmission and distribution
grids engineered to support centralized control of a small number of large generators pro-
ducing power for a large number of uncontrolled distributed loads. Distributed generation,
particularly rooftop solar generation, has challenged this model, introducing large numbers
of uncontrolled distributed generators producing power on the same scale as the distributed
loads.

In 2013, the Hawaiian Electric Company (HECO) halted new residential solar net energy
metering (NEM) applications on many of its circuits in Oahu, out of concerns of equipment
protection in the face of high distributed PV penetration. In the subsequent eighteen months,
HECO has moved to a new structure for rooftop solar contracts and revised its equipment
requirements for distributed PV installations [28].

When generation on a branch exceeds local consumption, power may flow back through
the substation onto the transmission grid. If a distribution link were to fail while power is
being fed back to the grid, the isolated circuit must be controlled to minimize the following
concerns:

• Transient over-voltage: Excess generation on a disconnected circuit could cause local
voltage to rise significantly, known as a transient over-voltage event. Distribution
equipment has not typically been designed for this failure mode, and equipment damage
could result. To address this concern, HECO is working with NREL to develop a new
set of standards for inverter operations [29].

• Unintentional islanding: If generation matches load on the disconnected circuit, the
circuit could continue to operate as a self-contained ‘island’ without control from the
rest of the grid. While this could provide beneficial resiliency if planned properly,
unintentional islanding may present a risk to line workers or distribution equipment if
repairs are needed or the circuit needs to be reconnected with the main [30]. Inverters
are currently being designed with anti-islanding controls, but it is unclear whether these
operate quickly enough to avoid interfering with automatic reclosers in the distribution
grid [31].

• Frequency and Voltage Stability: Intermittency in distributed generation may create
frequency and voltage variations that are too localized to be addressed by centralized
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generation dispatch systems. For local system stability, it is essential that the dis-
tributed generators continue to operate appropriately under local voltage fluctuations,
leading to the definition of a standardized ‘ride-through’ response function which in-
verters are required to adhere to in order to allow distribution planners to design
resilient distribution systems [29].

Designing a cost-effective distributed generation infrastructure presents a unique and
challenging exercise in distributed control. While specific standards have emerged to address
some symptoms of the problems described above, HECO retains significant limits on its
distributed generation deployments [28], and the pathway to Hawaii’s proposed 100% RPS
is still unclear. Developing a distribution system that is able to provide reliability and
security without installing expensive telemetry at each household will require creative design
of distributed controls systems, in tandem with electricity rate reform to provide appropriate
incentives to emerging technologies and business models.

Planning for Expanded Capacity

The attainment of deep greenhouse gas emissions cuts (e.g. 80% reduction in GHG emissions
by 2050) is forecast to be attainable only with significant electrification of our energy in-
frastructure [16], and concurrent decarbonization of our energy supply in line with the RPS
standards discussed here. The model developed by Williams et al in [16] projects a doubling
of electricity end-use demand by 2050, requiring significant new investment in capacity for
generation, transmission, and distribution. These capacity expansions may have significant
environmental impacts in the form of habitat loss or land use change, and accordingly face
regulatory or permitting hurdles. These may result in costly delays and environmental im-
pact mitigation measures, as was the case in the Ivanpah solar project [32], or may require
collaboration with environmental groups to plot out minimal-impact development plans [33].

Policy Challenges
Many of the solutions described below sit within a specific policy or regulatory framework,
which may not be extensible to all power grids. Over the past decades, a number of regulatory
structures have emerged for the utility environment, from vertically integrated utilities to
fully competitive retail and wholesale energy markets, with utilities serving only to maintain
distribution networks [34], [35]. Each wholesale and retail market has unique mechanisms
designed to address the integration of renewables, which are continually adjusted as policy
goals shift. Detailed discussions of regulatory structure in the electricity space can be found
in [34] and [35].

Rate Design

Conventional electricity rates do not present the customer with representative information
on the real-time cost of energy, making demand strongly inelastic [35]. Utilities are seeking
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to change this by introducing a number of rates that better provide consumers with price
signals about the actual price of generating electricity, and thus encourage load shifting to
low-cost times. A detailed discussion of rate design is presented in [36], with summaries of
key rate structures described below:

• Real-Time Pricing: real-time or dynamic rates provide the consumer with a real-time
or nearly real-time (e.g. hourly) rate that changes to match wholesale energy rates.
These provide the most information to the consumer about optimum use patterns, but
have not been widely deployed due to technological and regulatory hurdles [36].

• Time-of-use Rates: These rates present the consumer with a set of time blocks at
differentiated rates, typically ‘peak’ and ‘off-peak’ (sometimes also ‘part-peak’).

• Critical Peak Pricing: Customers pay a low average rate in exchange for being charged
a very high ‘critical peak’ rate during a limited number of events announced shortly in
advanced (usually peak cooling load days).

• Demand Charge: Some rate plans, particularly for large commercial customers, include
both an energy component ($/kWh) and a demand charge based on peak demand
during the billing period ($/kW).

Market Tools

In restructured markets, generation resources are bid into markets for energy production
and potentially also ancillary services such as frequency regulation and capacity reserves
(described above). As system operators identify weaknesses in the market system, new mar-
ket mechanisms have been introduced to procure additional services (e.g., energy efficiency,
demand response, flexible ramping). The proposed introduction of a set of Flexible Ramping
Products into the CAISO market is an example of how market structures are being used to
address flexibility needs [26].

1.3 Potential Solutions
The following sections will discuss individual technologies and tools that can be used to
address the renewable generation integration challenges listed above. This does not con-
stitute a comprehensive list, and focuses particularly on transmission-scale energy storage,
behind-the-meter energy storage, and demand response or load scheduling.

Transmission-Scale Energy Storage
Energy storage systems can offer a variety of services to support the grid, including energy
arbitrage, ancillary services, upgrade deferral, increasing reliability, and distribution support
services. Both [19] and [37] use engineering estimates to quantify the value of different energy
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storage services under current grid conditions, and highlight that the need for storage will
grow with the increased penetration of renewable energy.

Storage systems are likely to either be owned by a regulated utility which dispatches them
to minimize total cost, or a merchant generator who bids the storage system into energy
markets to maximize profits [19]. These dispatch strategies have been modeled using system
economic dispatch [38] or by maximizing private storage operator profits when bidding into
restructured energy markets [39, 40]. The alignment of public and private optimal dispatch
is discussed in [19] and [37], both of which find that storage systems provide more value to
the grid than the operators would be currently able to monetize- suggesting that market
reforms or subsidies may be needed to support the development of storage.

Current storage capacity is dominated by large pumped-hydro storage systems which are
dependent on favorable geography [19], but new storage technology development has focused
on modular systems that can be moved into place and sited wherever the grid’s needs are
greatest [19,41]. This shift from a small number of large, geographically constrained systems
to a large number of smaller storage systems is expected to bring significant opportunities
and challenges to the field of power system management [15,19,41].

Most existing studies estimate the value of storage based on a specific technology and
location, e.g. an existing pumped-hydro storage reservoir as in [39] and [40], limiting their
usefulness for guiding future storage deployments. In contrast, [42] identifies the regional
arbitrage values of new storage systems by aggregating price nodes for a subset of the PJM
Interconnection near New York.

Behind-the-Meter Energy Storage
Some of the largest market potentials for storage systems lie ‘behind-the-meter’ of the con-
sumer, where storage might be sited next to loads in order to avoid time-of-use rates, demand
charges, or critical peak prices [19]. Behind-the-meter systems take advantages of the time-
varying rates described in Section 4.3.1 to provide energy savings to the consumer by charging
when the grid rate is cheap, and serving the behind-the-meter load when the grid rate is
expensive.

Time-of-use rates reflect both the cost of procuring wholesale energy at high costs during
high-demand periods, and also of constructing sufficient distribution capacity to ensure peak
loads can be adequately served. Behind-the-meter storage systems and the load-shifting
services below are uniquely positioned to reduce peak loads, thus allowing utilities to avoid
expensive equipment upgrades to serve infrequent peak loads [19], [43].

In the past, behind-the-meter energy storage systems were typically lead-acid battery
systems used to provide backup power or off-grid power support [43]. A recent surge of
interest in these systems has been spurred by increased deployments of rooftop PV systems
and electric vehicles, at the same time that utilities are shifting towards more time-of-use
electricity rates and decreasing net-energy metering [36], [44]. These combine to create strong
incentives for consumers to store cheap power or zero-cost PV generation to provide for their
mobility and household energy needs.
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Flexible loads / demand response
Traditionally, the operation of the power market has been invisible to energy loads, and
loads only adjusted to infrequent changes in energy rates [35]. Demand response systems
have sought to change that relationship, by providing payments to users for reducing their
consumption relative to normal levels. These demand response systems have typically have
relied on phone calls or messages hours or days ahead of an expected peak load event, asking
participants to schedule reduction for a defined period of time (typically 2-6 hours). The
transaction costs in this system have typically made it only economical for large commercial
loads, and limits its applicability to a few times per year in order to reduce response fatigue.

As more electric loads become connected to the Internet (e.g. thermostats, vehicles, ap-
pliances), it becomes possible to schedule or control loads in more applications, at finer time
scales. In the context of demand response, this automated switching is referred to as Auto-
mated Demand Response or ADR, and for our discussion it will mostly be indistinguishable
from load scheduling.

Automated demand response or load scheduling can serve to provide both flexibility up
(by shifting load away from high-demand periods) and flexibility down (by increasing load in
low-demand periods). In this manner, it can be thought of as being very similar to storage
systems.

Estimates for a high solar scenario with a 50% RPS in California found that with 5GW
of flexible load could decrease the severity of overgeneration incidents by half [15], suggesting
that this can be a key tool for addressing renewable energy integration.

Resource Curtailment
The simplest method of handling flexibility needs is arguably the curtailment of excessive
generation, in which the system operator or utility turns off generators in order to reduce
load. This can create additional costs by incurring startup or shutdown costs, and curtail-
ment is typically compensated with Exceptional Dispatch payments, which are reported to
FERC.

We focus on this last example, when the net demand (including exports) is less than the
amount that is already committed through must-take renewable resources. In these overgen-
eration scenarios, CAISO requests that committed resources submit additional ‘decrement’
bids for the cost of having them decrease their generation, and thus alleviate overgeneration
through a secondary market. This can compensate generators for costs associated with cur-
tailment, and provide a chance for generators to adjust their bids after the typical market
process.

If the decrement market does not result in a sufficient reduction, CAISO calls an excep-
tional dispatch event and takes actions outside of the market, calling generators to request
curtailment of generation. These overgeneration events are reported along with other Ex-
ceptional Dispatch events to FERC, and the exceptional payments to the generators are
compensated through the Load-Serving Entities.
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An estimate of the average cost of curtailment on the CAISO grid was developed in [13]
based on an analysis of lost revenues in exceptional dispatch events using historical data from
2013-2014, resulting in an estimate of $35/MWh of generation curtailed. This cost is likely to
increase if curtailment were to become more common, as renewable energy generators would
need to plan for curtailment in their financial analysis and power purchase agreements [15].

Most restructured energy markets feature a set of sequential markets (e.g. day-ahead
market, hour-ahead market, real-time market), which act as a set of forwards markets in
which participants can update their net position as additional information on load and
generation forecasts become available. Additional explanation of sequential markets can be
found in [9] and [45].

Power markets differ from financial markets in that there is typically a gate closure time,
some fixed period prior to dispatch at which point updated bids are no longer accepted,
and the system operator works to mitigate market power, clear the market, and schedule
generation. Shortening this gate closure period would reduce forecast uncertainty, allowing
generators to update their bids to reduce potential overgeneration and reduce the likelihood
of curtailment [46].

Adjusting bid limits
To mitigate the profit from exercising market power, most energy markets set limits on the
bids accepted from generators. However, when prices clear at this floor, it is not possible
to distinguish between the actual costs of shutdown/startup for different generators, cre-
ating the potential for uneconomic dispatch. Renewable resources, with zero fuel cost and
significant tax credits, may actually have a marginal cost well below $-30/MWh, and so in
2013 FERC approved a change of the CAISO bid floor from $-30/MWh to $-150/MWh,
effective April 1 2014 (this will be lowered to $-300 in April 2015) [25]. By reducing the bid
floor, CAISO hopes to allow the market to differentiate between renewable resources with a
negative marginal cost set by tax credits (totaling up to $115/MWh) or a truly must-run
resource that has a much lower marginal cost due to other constraints (equipment repair
costs from unscheduled downtime, environmental costs of must-run hydro, etc).

Taken together, we would expect that reducing the price floor will allow prices to go
increasingly negative and send a market signal to generators to self-curtail, reducing the
need for exceptional dispatch and its associated costs.

Balancing area expansion and transmission build-out
Local pockets of generation imbalance can be ameliorated by strengthening the transmission
grid, or by building new transmission lines to connect regions with different load and gener-
ation profiles. This may be the least-cost approach to adding flexibility to the grid [12, 46],
and is already being tried in some areas.

In 2014, CAISO and PacificCorp created a joint Energy Imbalance Market (EIM) to
provide real-time clearing for power transfers between ISOs, partly to mitigate the impact
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of increased renewable penetrations [15]. This effectively expands the balancing area to
cover a much larger territory, decreasing the variance due to random generation or demand
fluctuations. This can be particularly beneficial if the balancing area is large enough to
encompass multiple time zones and could thus spread out the peaks of solar generation
conventional loads, if sufficient transmission is present [46].

This strategy would not be feasible for geographically constrained grids such as Hawaii’s,
but where possible it provides an attractive and low-cost solution for well-developed conti-
nental grids, and has facilitated high renewable penetrations in European nations which are
able to export to neighboring countries [12].

Redesign of conventional generation
If renewable energy targets are modest, the flexibility needs can be met with additional
reliance on fast-ramping conventional resources, such as combined-cycle gas turbines [12,
23, 46]. Combined with single-cycle gas turbines, these provide fast-responding and cheap
capacity [12] with lower global warming impacts than coal plants. These plants can be
further redesigned to be more flexible, allowing for rapid ramping up and down at a slight
efficiency penalty [12]. If natural gas prices remain low, this can be expected to provide
much of the capacity required to meet a 50% RPS target in California [23].

1.4 Costs
For each of the technical solutions described above, a levelized cost of flexibility can be
calculated which levelizes capital and operation costs over the lifetime flexibility supplied.
These calculations were performed in [12], producing the results presented below. Note that
the storage cost projections presented here are higher than those prepared by the Department
of Energy in [47], and are 3-4x higher than the DOE’s long-term battery storage cost target
[43]. The horizontal dashed line at $35/MWh represents the current cost of curtailment
derived in [13].

1.5 Concluding Notes
We survey a number of options for increasing the flexibility of the electricity grid in order to
be able to meet increased renewable energy integration in line with high Renewable Portfolio
Standards. These can broadly be described as enabling the electricity grid to respond to the
variability and intermittency inherent in renewable generation systems.

A brief summary of these options, with their corresponding operating time horizons,
is shown in Figure 1.3. Each of these present technical, policy, and economic challenges.
Integrating them into the power system requires a toolkit which can cost-effectively integrate
them to be integrated into energy markets at scale, while respecting the unique physical
constraints of both the flexibility resources and of the power network. In the coming chapters,
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Figure 1.2: Levelized cost of flexibility for transmission, CCGT, demand side solutions, and
storage. Costs from [12] and figure from [13]
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we outline examples of how the combination of convex optimization tools and economic
models can be used to show how these emerging resources can be used to integrate these
new resources into energy markets.
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Chapter 2

Design of Small-Scale Storage Systems

This chapter introduces the reader to the methods used to apply optimization tools to energy
systems, by studying a small-scale energy storage system in which a low-power energy source
slowly charges banks of batteries and supercapacitors, which are ultimately discharged by a
payload with deterministic power draw.

By initially focusing on a small-scale application, we are forced to grapple with system
dynamics which are not visible at larger scales. Successful solution techniques for this small-
scale problem can be easily scaled up to larger systems such as electric vehicles, stationary
storage systems, and mobile devices.

2.1 Introduction
Energy management systems for wireless sensor nodes must deliver reliable power and voltage
while being small and low-cost. In prior literature, power reliability is maintained by using
active energy management components (voltage regulators, DC/DC converters), but these
impose efficiency losses [48] while increasing device cost and size [49, 50]. While the use of
an active energy management system allows for a convex formulation of the optimal sizing
problem in a two-reservoir battery/capacitor system [51], the passive energy management
problem is nonconvex and has not been explored in prior literature.

Building on previous work developing flexible printed batteries [52], capacitors [53], and
generators [54, 55] we propose a design which eliminates the need for active power manage-
ment, and instead passively maintains device performance through optimal sizing of gen-
erators, batteries, and supercapacitors. To overcome the nonconvexity in this problem, we
employ a Particle Swarm Optimization (PSO) algorithm to identify an optimal design [1],
and are able to demonstrate a significant reduction in system size while meeting all payload
power requirements.
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Figure 2.1: Equivalent Circuit Model; the
design can be adjusted by changing the
number of TEG elements in series in each
string, or adding parallel TEG strings, su-
percapacitors, or batteries in parallel.
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Figure 2.2: Radio power draw, with inset de-
tail of the data acquisition/transmission pe-
riod.

Novel Contributions
This work extends prior literature on energy management in energy harvesting systems in
the following ways:

• Demonstrates a method for designing a passive energy management system without
the use of voltage regulators or DC/DC converters, and

• Applies particle swarm optimization to microelectronic energy management system
design.

2.2 System Model
We consider a circuit model shown in figure 2.1 in which power is harvested through strings of
thermoelectric generator cells (TEGs) in series; the approach we consider can also accommo-
date photovoltaics or other energy harvesting modes [55]. Charge is stored in parallel banks
of supercapacitors and batteries; the components are linked by a main bus at voltage V . A
wireless sensor node (WSN) is attached to the bus, and is modeled as a current sink with
15-second cycles with a deterministic current profile. The radio current draw IR is shown in
figure 2.2: a 15-second inactive period is followed by a 50-millisecond data acquisition and
transmission load. We seek to design an energy management system which can repeat this
load cycle indefinitely.

The system designer chooses the number of TEG elements in series s, number of TEG
strings in parallel p, number of batteries b, and number of capacitors c. As the batteries
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have a low current capacity and supercapacitors have low energy capacity, we expect that
an optimal design may include both storage reservoirs. We assume that each component
has a constant per-unit cost, captured in the TEG unit cost α, battery unit cost β, and
supercapacitor unit cost γ; the net system cost is thus αps+ βb+ γc.

The system dynamics can be derived through the application of Kirchoff’s Current and
Voltage Laws (KCL and KVL) and a simple battery model where open circuit voltage OCV
is linearized within the acceptable ranges of State Of Charge SOCmin and SOCmax. These
governing equations and limits on variables are captured below, where italic fonts are used
to denote optimization variables:

min αps+ βb+ γc (2.1)
Subject to: KCL for circuit: pIT + cIC + bIB = IR (2.2)

TEG dynamics: IT + 1
s
V ζ = T0∆K

(2.3)
KVL in Capacitor: V + ICRC1 − VC = 0 (2.4)

KCL in Capacitor: V̇c + 1
Cc
IC + 1

CcRC2
VC = 0 (2.5)

KVL in Battery: V + IBRB1 − VB −OCV = 0 (2.6)

KCL in Battery: V̇B + 1
CB

IB + 1
CBRB2

VB = 0 (2.7)

Battery OCV linearization: OCV − νSOC = V0 (2.8)
Battery Charging/Discharging: IB − IBC − IDC = 0 (2.9)

Battery State of Charge Conservation: ˙SOC + η

QIBC + 1
ηQIDC = 0 (2.10)

Inequality Constraints: b, c, s, p ≥ 0 , Vcutoff ≤ V ≤ Vmax
(2.11)

ICmin ≤ IC ≤ ICmax, IBmin ≤ IB ≤ IBmax, IBmin ≤ IBC ≤ 0 , 0 ≤ IBD ≤ IBmax
(2.12)

2.3 System Design

Conventional Engineering Calculations
We expand on the methods in [49,50,56,57] to provide a baseline estimate of system design
using conventional engineering calculations.

To calculate the number of TEG elements in series within each string, and number of
TEG strings in parallel, we use the linear TEG dynamics found in equation (3) and consider
a constant temperature difference ∆K = 20. We determine the number of TEGs in series by
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dividing the nominal bus voltage by the midpoint voltage of the TEG output curve found
in [54]. Similarly, we calculate the necessary number of parallel TEG strings by dividing the
average WSN current demand by the midpoint current of a single TEG module.

We calculate the number of supercapacitors required to ensure that maximum payload
current Imax can be satisfied without violating V ≥ Vcutoff. We estimate the minimum number
of parallel supercapacitors by dividing Imax by the maximum current a single supercapacitor
is able to deliver, ICmax. We then verify that the combination of coulombic voltage drop and
ohmic voltage drop at Imax will not depress the bus voltage below Vcutoff.

Because the current limit of the batteries is 2.5% that of the supercapacitors, the battery’s
contribution to the radio’s current demand during peak discharge is assumed to be negligible.
Instead, the battery is sized such that it will be able to provide a nominal baseload power,
here considered as 10% of Imax, and has sufficient capacity to trickle charge the supercapacitor
over the cycle should the TEG power drop.

Particle Swarm Optimization
Particle Swarm Optimization is a nonlinear optimization method in which a large number
of particles explore the parameter space to identify a low-cost solution [1]. We consider an
optimization space in the state variables SOC(0), VC(0), and VB(0) in addition to the design
variables variables p, s, b, and c. We provide a brief description of our implementation below;
additional details can be found in [1] and associated references.

We assign a set of n particles to random locations and velocities in the optimization space,
and use the equations above to simulate the system dynamics at each particle’s coordinates.
If constraints are violated a high penalty is assigned, and the total cost (penalty plus the
value of the objective function) is saved for that point. After simulating the system at each
particle’s location, the location of the lowest-cost point is broadcast to all particles in the
swarm. The velocities of all particles are then updated as the weighted sum of the particle’s
own velocity and the vector to its own best location and the swarm’s overall best location.
The process is repeated until the swarm converges on a low-cost point, though this may not
be the global optimum.

2.4 Results
The results for both design methods are shown in table 2.1 and the resulting bus voltage
during the data transmission period is shown in figure 2.3. We assume that a constant per-
unit cost for each component, α = β = γ = 1. We see that both designs are feasible, though
the nonlinear optimization method converges on a solution which does not use batteries and
more closely tracks the system constraints. This contributes to a 55% decrease in the number
of components required to power the payload.

A number of other demand profiles were considered, including those in which the TEGs
were not able to produce power for a portion of the load cycle. In these scenarios, the



CHAPTER 2. DESIGN OF SMALL-SCALE STORAGE SYSTEMS 18

Engineering

Calculations

Nonlinear

Optimization

Battery Cells 3 0

Supercapacitors 2 3

TEGs in series 50 22

TEG strings 1 1

Total units 55 25

Table 2.1: System designs result-
ing from conventional engineering and
optimization-based approaches; a 55%
decrease in cost is shown.
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Figure 2.3: Bus voltage during radio dis-
patch, showing how the nonlinear opti-
mization reduces costs by operating closer
to system bounds.

nonlinear optimization resulted in a design in which batteries are added to maintain bus
voltage through the drop in generation.

We note that the convergence rate of the nonlinear optimization is dependent on the
penalty function, and was found to slow significantly for longer study periods.

2.5 Conclusions
We demonstrate a method for energy management in a wireless sensor node which does
not require the use of voltage regulators or DC-DC converters, instead satisfying payload
requirements through optimal component sizing. Using particle swarm optimization, we
find a design with significant reductions in system cost relative to conventional engineering
calculations. While this nonlinear optimization technique does not guarantee a globally
optimal design, it can be readily applied to other demand profiles and generation/storage
technologies and we expect that similar results may be found in other energy management
problems.

2.6 Potential Improvements
The relatively slow convergence of the particle swarm optimization model makes it difficult
to scale this optimization approach up to very long time series, large numbers of components,
or large numbers of load scenarios. Speeding up convergence would require time-consuming



CHAPTER 2. DESIGN OF SMALL-SCALE STORAGE SYSTEMS 19

experimentation and refinement with nonlinear solvers, or finding a convex approximation
to the problem.

While the general form of this problem is indeed nonconvex (a bilinear program or non-
convex quadratically constrained quadratic program), the specific problem might still allow
for convex relaxations because the problem is highly constrained, and specifically is limited
to positive numbers of components.

A variety of techniques were explored in attempting to find a convex relaxation to this
problem, including:

• Geometric programming

• Change-of-variables techniques

• Monotonicity Analysis

• Complementarity Programming

Unfortunately, the problem as stated was not compatible with these various tools, par-
ticularly because the equality constraint created by Kirchoff’s Current Law relaxes into an
inequality of the wrong sign, resulting in a nonconvex problem formulation.

The following non-convex approaches offer a promising toolset for this class of problems,
but do not offer guarantees of optimality or convergence:

• Sigonomial Programming

• Mixed-integer Programming

• Gradient Descent

• Constraint Satisfaction Solvers

• Nonconvex optimization techniques such as Particle Swarm Optimization, presented
here.

We can conclude that both the general class of problems and the specific problem as stated
are indeed nonconvex. However, relaxations in which some equality constraints are relaxed
into inequalities and combinations of the above tools are applied may offer a relaxation with
guarantees of optimality or of convergence.
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Chapter 3

Transmission-Scale Storage Sizing and
Siting

We next consider a much larger energy system, in which component-level details can be
smoothed out through use of power management electronics. By shifting focus, we are able
to represent the problem as a linear program, allowing the problem to be solved rapidly and
allowing us to evaluate tens of thousands of possible scenarios, over a long time horizon.

This chapter examines in detail the deployment of transmission-scale energy storage sys-
tems, a promising technology for facilitating renewable energy integration. As discussed in 1,
energy storage has been proposed at both the large (transmission scale) and small (behind-
the-meter) systems. We here consider transmission-scale storage systems which able to
dispatch several enough power to participate directly in energy markets (typically at least
100kW), rather than being controlled by an aggregator. By considering transmission-scale
storage systems, we are able to accurately represent the battery as a single unit, and focus
on the relationship of the battery size and location with actual electricity prices.

3.1 Introduction

Motivation
The production of electricity from wind and solar energy has become a key element of
climate change mitigation strategies, and 29 US states currently have set renewable energy
procurement targets through Renewable Portfolio Standards [14]. However, intermittency
and variability in these energy sources may lead to curtailment of renewable generation
during peak hours and to increased reliance on peaker plants [15] - two outcomes that
are environmentally and economically undesirable. Energy storage has been proposed as a
technology that can help accommodate the intermittency of the renewable energy systems,
while also providing other services such as increasing reliability, deferring upgrade costs, and
providing ancillary services [19] [37]. To promote development of new storage systems, the
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California Public Utility Commission has mandated that Californian utilities purchase 1.3
GW of storage by 2020 [20], and other regions are considering similar policies.

While many researchers are working on developing low-cost battery chemistries and stor-
age technologies [41], less work has focused on how to design, site, and dispatch this new
wave of storage systems.

This study characterizes the optimal sizing and siting of storage over an electricity grid in
order to guide policy makers, utility operators, and energy developers. Rather than studying
a specific site or technology, we are interested in understanding the impact of location, system
efficiency, and reservoir sizing on the profitability of transmission-scale storage.

Prior Literature
The value of energy storage services can be assessed using a variety of methods, including
engineering estimates, system economic dispatch models, and simulation of optimal bidding.
For vertically integrated utilities, engineering estimates and economic dispatch models can be
used to calculate the savings associated with owning storage systems [19,37,38,58]. However,
in regions where the energy industry has been restructured to allow open competition, the
profitability of a storage system can be calculated using mathematical programming models.
These tools can optimize bidding in wholesale energy markets [42,59], ancillary service (AS)
markets [39,40], and bidding across multiple nodes in a network [60].

Current storage installations are dominated by large pumped-hydro facilities which are
limited to favorable geographic sites, but new technology development has focused on modu-
lar systems that can be sited wherever the grid’s needs are greatest [15,19,41,61]. While this
flexibility promises to be an asset to the new storage technologies, the impact of site selection
on system profitability has only been examined in [59] and [42], both of which considered a
small number of nodes in the PJM market.

The sizing of a storage system’s energy reservoir is another important design decision.
Unlike conventional generators, the output of a storage system is limited by the capacity of
its reservoir (typically described as the number of hours of storage available at peak output,
e.g. a 1MW/4h system). While large reservoir capacities are seen in pumped-hydro storage
systems due to economies of scale, new storage technologies typically have constant marginal
cost, making such large reservoirs much more expensive [47].

Prior literature on sizing storage systems has focused on âĂĲbehind-the-meterâĂİ in-
stallations. In these applications, storage is installed to reduce demand charges [19] in a
commercial facility, or to smooth intermittency in a renewable energy plant such as a wind
farm [62–64], photovoltaic array [65], or concentrated solar power system [66]. When stor-
age is combined with these renewable energy sources, optimal sizing of the storage reservoir
allows the plant operator to guarantee contractual energy delivery in the face of uncertain
wind or solar forecasts [62, 64,65].

By contrast, an independent storage system bidding into restructured energy markets
would be sized to maximize profits (or minimize utility costs). The impact of reservoir
sizing on arbitrage profits is explored through iterative simulation in [59] and [42], but an
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optimal size was not identified, and no prior literature has shown a method for endogenously
optimizing the reservoir capacity of an independent storage system.

Novel Contributions
This paper builds on prior literature by examining the optimal sizing of a storage system
bidding into wholesale energy markets. We examine the arbitrage value for transmission
nodes across the grid operated by the California Independent System Operator (CAISO),
allowing us to assess the statistical and geographic distribution of storage profits.

This paper addresses gaps in prior literature by introducing the following novel contri-
butions:

1. Simultaneously optimizing reservoir size and system dispatch for energy arbitrage

2. Demonstrating the dependence of optimal reservoir size on storage reservoir cost

3. Presenting storage values for all nodes on the transmission network of an Independent
System Operator (ISO)

4. Demonstrating that the storage profits are not uniform or normally distributed across
transmission nodes, but rather show a significant tail of high-value nodes

5. Introducing a visualization tool for graphically describing nodal profits

Outline
In Section 2, we outline the assumptions of our model, based on findings in the literature
described above. In Section 3 we propose a linear program (LP) that simultaneously opti-
mizes the dispatch and reservoir size for a storage system, and then introduce the data that
will be used for our analysis. In Section 4 we present results, first for a sample of nodes
in order to validate the model’s output, and then for all nodes of the CAISO grid. We
examine the impact of system efficiency and reservoir cost on the profitability of the system,
relax the assumption that the storage operator acts as a price-taker, and test the statistical
distribution of profits across nodes. We conclude by noting limitations to our work.

3.2 Modeling Assumptions
In the formulation proposed below, we examine the sale of energy in the wholesale energy
market, and do not consider ancillary services (regulation up/down, capacity reserves, etc.).
Other authors have examined the co-optimization of arbitrage and ancillary services [40,42,
66–68], and the current results could be similarly extended. We limit ourselves to energy
arbitrage for several reasons: (i) not all ISOs operate ancillary service markets; (ii) the
ancillary service markets are traded at the regional level and would not affect comparisons
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between nodes; and (iii) the ancillary services markets have smaller trading volume than the
wholesale energy market, and thus prices are more likely to be affected by the addition of
storage [19,59].

We assume that the cost of constructing the storage reservoir can be represented as a
constant marginal cost, and that for accounting purposes it can be amortized across the
lifetime of the storage system, as $/kWh/year. This follows the approach outlined in [47],
and is representative for the electrochemical battery systems which have seen the bulk of
recent development [61]. Economies of scale (decreasing marginal cost of reservoir capacity)
are seen in pumped-hydro systems, flow batteries, and underground compressed-air energy
storage, and could be integrated into the current formulation as an affine decreasing cost
function (resulting in a convex quadratic program).

We report results for a storage system normalized to 1kW power capacity, and consider
a variety of reservoir capacities, e.g. 2, 4, or 8 hours of storage. This allows results to be
presented on the basis of kWh capacity for comparison with other studies. We assume that
our results would scale up to a large-scale system (MW of power and MWh of capacity).

We assume that the storage operator has perfect foresight of energy prices. While this
assumption appears generous, it allows us to compute an upper bound on storage profits,
which is useful for system planning. We initially assume that the storage system is a price-
taker, i.e. that it is too small for its actions to affect the energy price at its trading node. This
assumption is then relaxed in Section 3.4 by allowing market prices to respond to the actions
of the storage operator. The assumptions of perfect foresight and price-taking behavior have
been examined for individual nodes in [60] and [59].

3.3 Formulation
In the following sections we outline the mathematical formulation of our optimization prob-
lem, and the data used in our simulations.

Mathematical Formulation
The parameters and variables used in this analysis are defined below, with optimization
variables presented in italics. Note that energy flow c(k) into the battery is defined as
negative, and energy flow out of the battery to the grid d(k) is defined as positive, consistent
with accounting for energy purchases as costs and sales as revenues.
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k Time index, from 0 to time horizon N
∆t Time step size (hours)
c(k) Energy flow into the battery at time k (kW)
d(k) Energy flow out of the battery at time k (kW)

Pcharge Maximum charge power capacity of the system (kW)
Pdischarge Maximum discharge power capacity of the system (kW)
cgrid(k) Nodal electricity clearing price ($/kWh)
ηin One-way system efficiency when charging
ηout One-way system efficiency when discharging
E(k) Energy level in reservoir at time k
Emin Minimum allowable energy level as portion of capacity
Emax Maximum allowable energy level as portion of capacity
Einit Starting energy level of the storage system
h Reservoir capacity (h), in hours of peak discharge
γ Annualized cost of constructing one kWh of reservoir capacity ($/kWh/yr)

Asymmetry in the power limits and efficiencies can be accounted for by adjusting the
appropriate parameters. Using these variables, the optimization problem can be stated as
maximizing the net profit from buying and selling energy on the wholesale market, after
considering the cost for constructing h hours of storage capacity:

max
c(k),d(k),E(k),h

N∑
k=1

cgrid(k)∆t (c(k) + d(k))− hγPdischarge (3.1)

Subject to the following constraints:

Pcharge ≤ c(k) ≤ 0 ∀k = 1...N (3.2)
0 ≤ d(k) ≤ Pdischarge ∀k = 1...N (3.3)

hEmin ≤ E(k) ≤ hEmax ∀k = 0...N (3.4)
E(k) = E(k − 1) + c(k)∆tηin + d(k)∆t/ηout ∀k = 1...N (3.5)

E(0) = hEinit (3.6)
h ≥ 0 (3.7)

In this formulation, the signs of the optimization variables c(k) and d(k) are constrained
in order to accommodate the inefficiency in the system while preserving linearity in the
constraints. Although it is compact, this model advances prior literature by simultaneously
calculating both optimal reservoir size h and the optimal storage dispatch pattern E(k).

As the objective and all constraints are affine in the optimization variables c(k), d(k),
E(k), and h, this optimization can be solved with standard solvers for linear programs,
allowing for rapid simulation of thousands of scenarios.
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Figure 3.1: Example of Location Marginal Price (LMP) distribution on the CAISO grid.
Each circle represents an LMP node on the the CAISO grid. Data from 4PM PDT, August
18 2013

Data
Data on the day-ahead location marginal price (LMP) of energy in the CAISO power grid
for calendar year 2013 was collected from the web portal of the of the California Independent
System Operator [69].

These LMPs reflect the clearing price at which energy sales are settled on the CAISO
grid, and would be the price at which a transmission-connected storage system would buy
and sell energy. In the day-ahead market, participants bid in one-hour blocks (∆t = 1 hour),
and all participants bidding at a node receive the hourly clearing price for that node. Data
was collected for the 2247 LMP nodes for which location information (latitude and longitude)
is available, as shown in Fig. 3.1.

We set Pcharge = −1 and Pdischarge = 1 to represent 1kW of power capacity. For ease of
presentation, we will assume that the depth of discharge is not constrained, i.e. Emin = 0
and Emax = 1. While many storage technologies have depth-of-discharge limits due to
electrochemical or physical constraints, the constraint has the simple effect of adjusting the
effective size (and effective cost) of the storage reservoir. For example, a 5-hour reservoir
with an 80% depth-of-discharge constraint would show the same optimal trading behavior as
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a 4-hour system with no depth-of-discharge constraint (but the 5h system would incur the
cost of constructing 1 additional hour of reservoir capacity). Except where otherwise noted,
all simulations were conducted with a round-trip efficiency of 90%, which is assumed to be
the product of symmetric charging and discharging inefficiencies (ηin = ηout ≈ 0.95).

3.4 Results
Because we assume the storage system acts as a price-taker and has perfect price foresight,
the results below represent best-case arbitrage profits for a given power-to-energy ratio.
For a merchant storage operator to be profitable, the arbitrage profits would need to cover
average costs, which we expect will be dominated by the annualized costs of the battery
and power system [47]. For this reason, we will refer to the value of the objective function
as the âĂĲlong-run profitsâĂİ. We refer to the trading profits excluding the costs of the
reservoir construction as the âĂĲshort-run trading profitsâĂİ [6]. Both are presented as
$/kWh/year. For electrochemical batteries that degrade as the system is repeatedly charged
and discharged, an important performance metric is profit per cycle (expressed here as
$/kWh/1000 cycles). This is calculated by dividing the short-run trading profits by the
number of charge/discharge cycles during the year, and normalizing to 1000 cycles.

Validation
We validate the output of the linear program by evaluating simulation output against the
charge/discharge behavior and system size which would be predicted by microeconomic
principles, to check that the reported behavior is both economically efficient and profit-
maximizing.

As the optimization variables c(k), d(k), and E(k) are linked through the constraints
3.2, we can capture the full system behavior by examining just the reservoir level E(k). In
Fig. 3.2 and Fig. 3.3 we plot the charge level for a randomly chosen LMP node from the
CAISO dataset (BARRY 6 N001 is shown). Two days in August 2013 are shown, chosen for
exhibiting periods of both low and high price volatility.

In Fig. 3.2, the two reservoir sizes are illustrated, obtained by fixing h in the optimization
problem and examining the resulting values of E(k). We see that the 6h system charges
throughout the morning low-price period, and discharges throughout the evening high-price
hours. The smaller system is able to more selectively charge and discharge at extreme price
events, but is limited in its ability to capture value from sustained price differences.

In Fig. 3.3 we examine the impact of changing the round-trip efficiency while fixing the
reservoir capacity at one hour of storage (h = 1.0). At the lowest efficiency (60%), the
system only charges once (during the second day), as price differences during the first day
are not great enough to outweigh the round-trip efficiency losses. As efficiency increases to
80%, the system is able to take full advantage of diurnal price differences, and begins to
arbitrage morning/midday price swings.
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Charge/Discharge Behavior: Varying Reservoir Size

Figure 3.2: Example of the impact of reservoir size h on optimal charging behavior, while
system efficiency is held constant. The smaller 2-hour system is able to more quickly charge
and discharge, creating larger average price differences for each transaction (and thus greater
profits per average cycle). The larger reservoir allows the system to take advantage of
sustained price differences- increasing net profits but reducing average profits per cycle.
The larger system also incurs greater construction costs, and so optimal system design thus
balances reservoir size with construction costs.

This reflects the economically efficient behavior of charging whenever the price difference
between two local extrema is greater than the energy loss, 1/ (ηinηout), i.e. when the short-run
trading profits are greater than the transaction cost created by round-trip inefficiencies [6].

In Fig. 3.4 the annualized storage price γ is held constant at $5/kWh/year while the
reservoir size h was constrained to take on a range of values as in Fig. 3.2. The long-term
operator profits (including reservoir cost) are plotted against reservoir size h, and are shown
to peak at a value of h = 2.0, which coincides with the optimal solution of the linear program
when h is unconstrained.

At low reservoir sizes in Fig. 3.4, the operator charges and discharges the system at the
hours with the most extreme price events (similar to the 2h system in Fig. 3.2). As reservoir
capacity increases the operator is able to capture off-peak price differences, but because price
differences are smaller the marginal benefit of this additional reservoir capacity decreases.
When the reservoir is below optimal size, the increase in trading profits is greater than the
annualized costs of constructing the additional reservoir capacity. At optimum, the marginal
benefits of adding capacity are precisely equal to the annualized costs of construction the
additional capacity, and the operator’s profits are maximized [6]. If the reservoir size is
increased beyond the optimum, the annualized costs of storage construction overwhelm short-
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Figure 3.3: Example of the impact of storage system round-trip efficiency on optimal charging
behavior, assuming a constant reservoir size. The storage system will only discharge when
price differences are greater than the cost of efficiency losses, leading the high-efficiency
system to cycle more often.

run trading profits, and the storage system may operate at a net loss.
The shape of this curve will differ for each node, as the returns to increasing storage size

are determined by daily, weekly, and seasonal fluctuations in the location marginal price,
which will depend on a node’s local consumption and congestion patterns.

Sensitivity Analysis: Reservoir Construction Cost
This analysis can be extended by considering a range of reservoir costs, representing the
variety of system costs associated with different storage technologies. In Fig. 3.5 the optimal
reservoir size is plotted for each node over a range of annualized reservoir costs γ ranging from
$1-$20/kWh/year, assessed at $0.10/kWh/year intervals. Note that because the problem is
formulated as an LP the resulting curves are not smooth, as the optimum jumps between
vertices of the polyhedron defining the feasible region.

As storage price increases we see a monotonic decrease in optimal reservoir size. As
shown in Fig. 3.4, the optimal reservoir size occurs when the marginal benefit equals the
marginal cost of the additional reservoir capacity: as cost increases this optimum will come
at lower reservoir sizes.
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Figure 3.4: Example of the impact of reservoir sizing on long-run operator profits (including
the cost of constructing the reservoir). At low reservoir sizes, the operator is not able to take
advantage of all arbitrage opportunities. At large reservoir sizes, construction costs outweigh
arbitrage benefits. At optimum, the marginal benefit of additional reservoir capacity is
balanced by construction costs. Data is shown for the BARRY 6 N001 node in 2013 and
assumes an amortized reservoir cost $5/kWh/year.

Sensitivity Analysis: Storage System Efficiency
A key differentiator between storage technologies is round-trip efficiency, which also has an
impact on the optimal dispatch schedule as was shown in Fig. 3.3. To explore the impact of
system efficiency on system operation, the optimization was run for all nodes while varying
round-trip efficiency from 40% to 100%. This reflects the full range of efficiency values seen
in common storage technologies [41,47].

We examine three metrics: short-run trading profits, number of charge/discharge cycles,
and average profits per cycle. The latter two metrics are relevant for many electrochemical
battery technologies which have a limited cycle life [47].

For clarity of presentation, in the results below the reservoir size was fixed at h = 1.0
(i.e. a 1kW/1kWh system), and results are presented as short-run arbitrage profits excluding
reservoir costs. For each node and efficiency, an optimal size could be derived as in Section
3.4.

As efficiency increases, the storage system has fewer losses, increasing profits for a given
temporal fluctuation in wholesale energy prices. Simultaneously, the storage operator makes
more transactions because they can profitably arbitrage smaller price fluctuations. These
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Figure 3.5: Optimal reservoir size in hours of storage capacity with varying annualized
construction costs γ, across all CAISO LMP nodes. Optimal size of the storage system
decreases when construction costs increase, as the marginal benefits from a larger reservoir
are more rapidly offset by construction costs.

effects combine to create a slightly nonlinear increase in profits with increasing efficiency,
as shown in Fig. 3.6. A small number of nodes show high profits at low efficiencies due
to significant negative price events, when inefficient loads would be paid for their ability to
consume more energy.

In Fig. 3.7 the number of charge/discharge cycles is plotted, and shows a slight plateau
around 365 charges/year from arbitraging diurnal price differences. There is a rapid increase
in cycle count at high efficiencies because the optimization takes advantage of an increasing
number of small variations in energy prices. While diurnal and midday/evening price dif-
ferences occur very regularly, the more frequent trading seen above 95% efficiency is due to
minor price fluctuations that may be difficult to predict without perfect foresight.

The per-cycle profits shown in Fig. 3.8 stay fairly constant over the range of 60-
90% efficient systems, as the increase in profits is balanced by the increase in number of
charge/discharge cycles. However, the per-cycle profits taper dramatically at high efficien-
cies as the operator chases the small profits associated with frequent hourly price swings.

Comparison with Prior Results
Previous literature estimated the arbitrage value of storage on the CAISO grid to be in the
range of $3-10/kWh/yr [19, 40]. These results are consistent with the median values shown



CHAPTER 3. TRANSMISSION-SCALE STORAGE SIZING AND SITING 31

40 50 60 70 80 90 100
Round-trip efficiency (%)

0

5

10

15

20

25

A
nn

ua
l t

ra
di

ng
 p

ro
fit

s (
$/

kW
h/

ye
ar

) Nodal data
Min value
Max value
Median value

Annual short-run trading profits per kWh

Figure 3.6: Short-run arbitrage profits for each node, plotted at varying efficiencies for a
1kW/1kWh system. Each node is represented by a line plotted at 1% opacity to show the
distribution of values at each efficiency.

above, but miss the long tail of high-value nodes. By assessing all LMP nodes, we see that
there is a much wider range than previously reported, and that reporting a single value does
not sufficiently characterize the distribution of storage value.

Comparing our per-cycle profitability results with the storage system cost and lifetime
estimates reported in [47] we find that arbitrage-only profits at high-value nodes could cover
the capital costs of pumped-hydro storage, underground compressed-air energy storage, lead-
acid batteries with carbon electrodes, and the DOE long-term electrochemical battery cost
target. These findings are consistent with existing deployments, which are mostly comprised
of pumped-hydro storage [61].

While previous literature has not examined the optimal sizing of a transmission-scale
storage system, the optimal sizes found here can be compared with current storage installa-
tions. Consistent with our results, high-capacity (8+ hour) reservoirs are only observed in
pumped-hydro storage systems, while electrochemical battery systems are most frequently
installed in 1-hour or smaller reservoir capacities [61].

Relaxing the Price-Taker Assumption
The model presented above in 3.1 assumes that the LMP values are not impacted by the
storage operator’s decision, but in reality a storage system used for arbitrage would smooth
prices by providing additional supply when prices are high and additional demand when
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Figure 3.7: Annual cycle count at each node with varying efficiency, 1kW/1kWh system.
Thresholds for daily and twice-daily charging are shown, and highlight the significance of
diurnal price patterns. Each node is represented by a line plotted at 1% opacity to show the
distribution of values at each efficiency.
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Figure 3.8: Profit per cycle for each node under varying efficiencies, assuming a 1kW/1kWh
system. Each node is plotted at 1% opacity to show the distribution of values.
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prices are low [6,37]. In the following section we introduce a method for relaxing this price-
taker assumption and show that the relaxation reduces profits for each node, but does not
affect the relative distribution of profits across the grid.

The impact of market elasticity on arbitrage profits in the PJM market was assessed in
[59], using regional trading quantities and clearing prices. However, expanding this approach
to nodal LMP calculations is difficult: transaction quantities are not available for individual
LMP nodes on the CAISO grid, and local congestion creates nonlinear price elasticity [35].

To overcome these challenges, we propose a simple method to approximate the impact
of the storage system on local prices, without assuming that we have a linear elasticity
or residual demand curve. We assume that buying energy will drive the market price up
by a factor α, and selling energy will decrease prices by the same factor α, regardless of
the quantity sold. For example, when α = 0.10, we assume that the LMP increases by
10% whenever the storage system is charged, and the LMP decreases by 10% whenever the
storage system discharges.

This does not affect the constraints 3.2 and only requires a linear modification to the
objective function 3.1, which becomes:

max
c(k),d(k),E(k),h

N∑
k=1

cgrid(k)∆t ((1 + α) c(k) + (1− α) d(k))− hγPdischarge (3.8)

For a given value of α, the linearity of the problem is preserved. Because each node faces
different transmission constraints and supply curves, no single value of α can be applied for
all nodes- at each node, α would need to be estimated from supply disruptions, a study
outside of the scope of the present work. Instead, we evaluate a range of values for α in Fig.
3.9, to see the impact of price sensitivity to the price-taker assumption on the profitability
of a storage operator under a variety of conditions. As in Section 3.4, we present short-run
profits for a 1kW/1kWh system at each LMP node.

As α increases, the arbitrage potential decreases as price variations are smoothed out.
However, the relative ordering and distribution of nodes is largely unaffected: our prior
conclusions about the distribution and normality of nodes remain unaffected. If price/volume
data were available, this assessment could be expanded to include a linear residual demand
function at each node, resulting in a convex quadratic program as described in [59].

Distribution of Results
In the results above, storage profits are seen to not be uniform across nodes, but instead
exhibit a random distribution. If we a priori think of storage profits as the weighted sum of
many uniform random variables (congestion, load, renewable energy intermittency, etc.), the
Central Limit Theorem suggests that storage values would be distributed normally. However,
in the results presented above and in Fig. 3.10, the distribution of storage profits appears
to be significantly skewed.
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Figure 3.9: Impact of price responsiveness on storage operator profits. We assume that the
market price of energy is depressed by a factor α whenever the storage operator sells energy,
and is increased by α when the storage system buys energy. While profits decrease, the
distribution of the profits across nodes is preserved.
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Using both the Kolmogorov-Smirnov and Jarque-Bera normality tests [70] on each of
the efficiencies and metrics above, we can reject at the 1% significance level the a priori
hypothesis of normal distribution. These findings emphasize the significance of high-value
nodes in understanding storage feasibility, and how storage site location dictates system
profitability.

There appears to be a bimodal distribution in Fig. 3.10 which may indicate additional
structure within this distribution; we plan to analyze this in future work.

Geographic Variation in Storage Value
The profitability of storage systems at each LMP was mapped out in a GIS-like web ap-
plication which the authors built to allow researchers to visualize price data on the CAISO
grid [71]. This allows for the geographic localization of high-value and low-value nodes,
and assessment of spatial trends. An example of this mapping application is shown in Fig.
3.11, highlighting annual trading profits for the 90% efficiency scenario. Note the cluster-
ing of higher-value nodes in the Eureka region and the San Diego foothills, suggesting that
congestion in these areas may be partly relieved by the deployment of storage.

3.5 Discussion

Limitations
By construction, this study has only examined transmission-scale storage bidding into the
wholesale energy market. Under current regulations, these results do not apply to behind-
the-meter storage or vehicle-to-grid services, but could be applied if aggregators were allowed
to bid into the wholesale energy market [72].

We only consider bidding into the day-ahead energy market, but the results could be
extended to cover sequential markets and ancillary services (AS), as has been done for single
nodes in [39, 40, 68]. Since AS markets cover large regions (the CAISO grid has several
thousand price nodes but only three ancillary service markets), the inclusion of AS markets
would shift the profits of all storage operators in the AS market area without affecting their
relative distribution.

The current results reflect a âĂĲbest-caseâĂİ scenario, since they are based on perfect
foresight and price-taking behavior using historical market data. The significance of diurnal
and morning/evening bidding in most efficiency levels was shown in Fig. 3.7, suggesting that
profits are relatively insensitive to relaxing the perfect foresight assumption (as has been
done in [59] and [60]). The price-taker assumption was discussed in Section 3.4 and [59] and
does not affect our conclusions about optimal sizing, distribution of results, or geographic
distribution of high-value nodes.

Only price data for 2013 was analyzed; the inclusion of a larger data set would increase the
robustness of the results by introducing variance in natural gas prices, hydropower availabil-
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Figure 3.11: Plot of short-run trading profits from energy arbitrage of a 90% efficient
1kW/1kWh system at LMP nodes on the California ISO grid. Broad regions of high-value
nodes in the Northern and Southern coastal regions suggest large regions of congestion where
storage may have greatest impact.

ity, and renewable energy deployment. The optimal siting of a new storage system would
also require forecasting future energy prices under different scenarios of renewable energy
penetration.

We have assumed that storage has a constant marginal cost, an assumption which could
be relaxed for system which have significant economies of scale (pumped-hydro storage, flow
batteries, and compressed-air energy storage) by replacing γ with an affine function of h,
which would turn the problem into a convex quadratic program. We have also assumed that
the impact of the storage system on energy prices can be represented by a constant factor,
a convenient proxy in the absence of historical price/quantity curves. For a specific node, a
linear price elasticity or residual demand function could be integrated and result in a convex
quadratic objective function. These two modifications modifications (affine economies of
scale and linear price elasticity) involve affine terms in separate variables, and thus can both
be integrated while preserving the convexity of the formulation.
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Conclusion
Using historic price data for 2247 price nodes on the California electricity grid, we utilized
a linear program to simultaneously optimize the dispatch and reservoir sizing of a storage
system for temporal arbitrage in the day-ahead wholesale energy market. We find that
the optimal reservoir size is strongly dependent on installed costs, and that systems with
4 hours of storage or more are only optimal when annualized reservoir costs are below
$10/kWh/year. We explore the dependence of system profitability on efficiency, finding
profits of $7-17/kWh/year or $10-27/kWh/1000 cycles for a 90% efficient storage system
with 1 hour of reservoir capacity. We find a long tail of nodes that are of significantly higher
value than have been reported in previous studies, and can reject the hypothesis that storage
values are normally distributed. Our revenue estimates show that some existing technologies
reported in [47] may be profitable in the highest-value nodes. These results will be of interest
to policy makers, utility planners, and storage developers, and will help guide the design and
siting of new transmission-scale energy storage systems.

3.6 Potential Improvements

Price Prediction
An extension to this research sought to correlate the value of storage with exogenous covari-
ates (demographics, weather, etc) using a variety of parametric and nonparametric regres-
sors, with the goal of producing a predictor which would guide storage siting for long-term
planning or in areas without a wholesale energy market.

These exogenous variables were found to have much poorer predictive quality than a
linear regression with the annual average marginal cost of congestion. As the nodal price
is composed of the marginal cost of energy (MCE, constant throughout the network), the
marginal cost of losses (MCL, usually very small) and the marginal cost of congestion (MCC,
often very large), the average MCC over the year ends up being a strong proxy for nodal
variation in prices. As the most significant driver of storage revenue is diurnal price swings
and MCC is typically very low across the network at night, this average MCC is very closely
tied to the value of storage at the node.

This suggests that the proposed line of research has relatively low value for identifying
high-value nodes, as simply computing the average MCC forms a good proxy. While the
formulation proposed above does provide insight into optimal sizing of the energy system, we
were not able to have any ends up being the best proxy for marginal cost of congestion the
biggest factor contributing to differences in prices between nodes, the factor most directly
related to
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Price-taker assumption
The approach used here to modeling the price-taker assumption assumes that all nodes have
the same price elasticity. This assumption is likely violated for low-volume nodes, where a
small and congested transmission line may result in high-magnitude price swings that would
be damped by any flexible resources.

A better model for the impact of dispatch on local prices requires simulating power flow
on the transmission network and generating prices endogenously. Unfortunately, there is
not a public model of the transmission network, making this difficult to do for real-world
systems. An attempt was made to replicate the topology estimation model used by [?], but
these results were not extended to the full CAISO network.

Instead, the following chapters will consider smaller networks in which the network topol-
ogy is known. These results are interesting for toy models, but cannot be readily compared
against real-world outcomes in the absence of a true network model.
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Chapter 4

Strategic Equilibria in Congested
Energy Markets

The previous chapter considered the profit-maximizing dispatch schedule for siting individual
storage systems. However, as a small number of firms own most of the generation capacity,
a more appropriate problem would be of optimizing the dispatch of a portfolio of generators
at different nodes on a congested network.

Studying this problem requires understanding how generator operation changes power
flows and congestion across the network. Rather than assuming that prices are fixed, we will
compute prices endogenously by using an optimal power flow model on a simple network
with known characteristics.

The previous problem was formulated as a linear program, resulting in solutions which
always were at the limits of operation. In this problem, we see how nash-cournot equilibria
result in a quadratic program, with interior solutions which are determined by economic
criteria rather than physical constraints.

Specifically, this approach uses microeconomic principles as a key component for deter-
mining the equilibria which will result from the actions of a set of profit-maximizing actors.
This represents a significant improvement over the previous approach, in which prices were
fixed and operation was constrained purely by the system’s own constraints.

4.1 Introduction
Electricity is unique among commodities, having highly inelastic demand, very limited stor-
age, network flows determined by Kirchoff’s laws, and transmission constraints which can
isolate consumers from low-cost suppliers. The deregulation of electricity generation in many
regions has left the operation of the power grid in the hands of Independent System Opera-
tors (ISOs), who are tasked with collecting bids for supply and demand, clearing the market
in such a way as to meet transmission and security constraints, and mitigating the use of
market power.
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However, the characteristics which make electricity unique also make energy markets
prone to manipulation, and empirical studies have shown that these markets often operate as
oligopolies in which participants affect outcomes by adjusting their bid curves to maximize
profits [35], [73]. By modeling strategic equilibria in energy markets, researchers hope to
measure social welfare impacts, design regulatory or technical changes which can promote
more competitive markets, or identify noncompetitive behavior by comparing models with
ex-post market outcomes.

A key decision for producers in energy markets is how to respond to uncertainty in
supply, demand, and the actions of other producers. Risk-averse producers may hedge
their production through long-term contracts, or submit their generation capacity as ”must-
take” (accepting any price). There have been a number of studies examining the impact
of uncertainty on strategic equilibria in energy spot markets, particularly in two-settlement
markets, for example [74–76]. However, these approaches can be intractable due to the
computational burden required to model uncertainty on a large network using stochastic
models [7, 77].

This work advances prior literature by showing how robust optimization can be used
to integrate uncertainty into a convex model of strategic equilibrium in a single-settlement
Poolco electricity market with network constraints, allowing us to scale our results to large
networks while representing the most common form of spot market operation. The results
will be of interest to system operators, regulators, and generators in the electricity market,
as well as to economists and control theorists studying market design.

Relevant Literature
A number of game theoretic models of strategic competition have been used to model
oligopoly behavior in electricity networks, and are reviewed in [7, 77–79]. We highlight
three game theoretic models used to identify strategic equilibria in electricity markets:
Cournot competition assumes that producers adjust their output to maximize profits [80–82],
Bertrand competition assumes producers adjust prices [7], and Stackelberg leader-follower
games assume that some firms may have greater decision-making power and serve as market
leaders [83, 84]. Of these, Cournot models have gained particular attention for modeling
electricity markets due to their mathematical and computational simplicity, as well as their
ability to forecast market outcomes [78,82,85].

However, since electricity markets are coupled with complex engineered systems these
game-theoretic models are not a panacea. Unlike most commodities, electricity markets
are built on a transmission network with thousands of nodes [80], have temporal output
constraints on generation equipment [86], and are typically structured as a series of sequential
markets [87]. To address these issues, a parallel body of literature has sprung up in which
engineering models are used to reflect the technical decisions faced by individual producers
[88]. These models are often nonlinear, nonconvex, and computationally intractable for
modeling the decisions of more than a single producer with a small fleet of generators.
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Both game-theoretic and engineering models are challenged by the uncertainty inherent
in electricity provisioning: demand is dependent on weather, generation plants may have
unplanned outages, and increased penetration of renewable energy sources makes supply
uncertain. A variety of techniques from stochastic optimization have been used to model
the generators’ decision process under these uncertainties [89, 90]: historical energy prices
can be used to construct Monte Carlo simulations [91, 92] or to fit parametric probability
distribution models to sources of uncertainty [93].

These stochastic approaches can optimize expected profits, but struggle to deal with
modeling uncertainty in the hundreds or thousands of nodes which characterize electricity
grids. Robust optimization theory [94] and robust game theory [95] provide an alternative
approach to integrating uncertainty, by seeking a solution which still performs well under
a ‘worst case’ scenario. While this approach is anticipated to reduce the expected profits
for the operators relative to their non-robust actions [96], it can be attractive for risk-averse
players as it guarantees profits against uncertainty. These models are also mathematically
appealing as they do not require any distributional assumptions on random variables and
can preserve the convexity of the optimization problem, allowing the application of efficient
solvers which can scale up to handle uncertainty across thousands of nodes.

Robust optimization has previously been applied to game theoretic problems, allowing
the modeling of uncertainty in payoff matrices or competitors’ strategies [97, 98]. However,
robust optimization has only been applied to specific sub-problems in electricity market
operation, e.g. the unit commitment problem of the system operator [99–102], nonstrategic
bidding as a price-taker [92], strategic equilibrium in a Stackelberg leader-follower game [103],
and strategic equilibrium without congestion costs [104].

Novel contributions
We propose a convex formulation, computing the robust strategic equilibrium in an elec-
tricity network with congestion and demand uncertainty, and demonstrate it using a sample
network.

The following contributions are unique to this work:

• Convex formulation of robust Cournot-Bertrand equilibrium in a single-settlement
nodal Poolco electricity market

• Demonstration of the impact of congestion on robust strategic equilibria

• Demonstration of the impact of robust strategies on social welfare outcomes in elec-
tricity markets.

To our knowledge this is the first attempt to characterize robust Cournot-Bertrand equi-
libria in electricity markets on transmission networks, extending the work of [105–107] to
incorporate uncertainty and risk-averse producers.
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Outline
In Section 4.2 we present the ISO and producer problems as Cournot-Bertrand competition
on electricity networks. We formulate the resulting equilibrium as a monotone linear com-
plementarity problem (LCP), which can be solved as a convex QP. We apply the results
of [108, 109] to develop a robust LCP and formulate the robust counterpart of the corre-
sponding convex QP. In Section 4.3 we present results for a simple example problem. The
impact on producer profits, consumer surplus, and net social benefit is discussed, and we
conclude in Section 4.4.

4.2 Problem Formulation
This formulation builds on the work of [105] and [107], obtaining the equilibrium as the solu-
tion of a linear complementarity problem, for which a convex robust counterpart is developed.
Background on modeling energy markets with complementarity problems is provided in [7]
and background on robust optimization theory can be found in [94].

Network Modeling
The power network is modeled by a connected undirected graph G(N , E), where N :=
{1, . . . , n} is the set of n nodes, and E := {(i, j) : i, j ∈ N} is the set of m edges (transmission
lines), and (i, j) ∈ E means that there is a line connecting buses i and j. Throughout this
paper we will assume the standard linear DC power flow model, where lines are lossless,
and power flows on the network are governed by a shift-factor (PTDF) matrix H ∈ R2m×n

which linearly maps the vector of nodal net injections r ∈ Rn to the vector of bidirectional
line flows. We denote T ∈ R2m

+ as the vector of line capacities. Given that nodal injections
must sum to zero across the network, we can write the set of feasible power injections as the
polytope R ⊂ Rn.

R :=
{
r ∈ Rn |Hr ≤ T, 1>r = 0

}
(4.1)

We assume there are |F| firms, owning generation units at nodes i ∈ Nf ⊂ N , f ∈ F .
Each firm f makes production quantity decisions for its generators ({qi}i∈Nf

), where 0 ≤
qi ≤ qi. For simplicity, we assume that there is at most one generation unit per node.1
Generation costs C(qi) are assumed to be convex and quadratic.

At each node, we assume a (steeply) decreasing affine inverse demand function P (xi),
where xi is the quantity demanded at node i. This is a common assumption for relatively
inelastic electricity markets [35], and can represent a linearization of a more complicated
inverse demand function. It is worth noting that in general xi is endogenous, and is calculated
as xi = ri + qi.

1This can be achieved in practice by introducing dummy nodes into the network.
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The ISO Problem
The ISO controls the import (export) ri > 0 (ri < 0) at each node i ∈ N and sets the
corresponding locational marginal prices (LMPs). These quantities must satisfy the network
feasibility constraints, determined by the set R. The ISO’s objective is to maximize social
welfare, taken as the aggregated area under the nodal inverse demand functions Pi(·), less
the sum of all generation costs Ci(·). Mathematically, the ISO solves the following problem,
parametric on the firms’ production decisions ({qi}i∈N ):

maximize
ri

∑
i∈N

(∫ ri+qi

0
Pi(τi)dτi − Ci(qi)

)
subject to 0 = 1>r, : γ

0 ≤ T −Hr, : µ

(4.2)

As in [107], we have excluded the nonnegativity constraints ri + qi ≥ 0, i ∈ N , by implicitly
assuming an interior solution with respect to these constraints. The KKT conditions are as
follows

0 = Pi(qi + ri)− γ − ψi, i ∈ N
0 = ψ −H>µ
0 = 1>r
0 ≤ µ ⊥ T −Hr ≥ 0

(4.3)

The first KKT condition implies that

qi + ri = (Pi)−1(γ + ψi), i ∈ N (4.4)

And consequently, ∑
i∈N

qi =
∑
i∈N

(Pi)−1(γ + ψi) (4.5)

This equation represents the aggregate demand function in the network relating the total
consumption quantity to the reference node price γ and the nodal price premiums {ψi}i∈N ,
which determine the relative value of LMPs. We denote the LMP vector λ as

λ = γ1 + ψ (4.6)

To prevent arbitrage between nodes i and j, the corresponding congestion charge must be
ψj − ψi.

The Firm’s Problem
We assume that generation firms do not anticipate the impact of their production on the
congestion prices set by the ISO. We model this ‘bounded rationality’ as a game where the
ISO and generation firms move simultaneously. Similar to [107] we use a mixed Cournot-
Bertrand model, where the ISO behaves a la Bertrand, setting locational price differences,
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while the generation firms are Cournot players with respect to each other (i.e. set quantities),
but treat the ISO as a price setter. The reasons for choosing the ISO as a Bertrand player
are well discussed in [107].

Each firm chooses its production quantities to maximize profits with respect to the resid-
ual demand defined implicitly by (4.5). In this formulation, the reference bus price γ is
determined implicitly by the aggregate production decisions of all the generation firms, just
as in a regular Cournot game. However, these production decisions and the implied reference
node price also depend on the nodal premiums {ψi} set by the ISO. The resulting problem
solved by each firm f ∈ F is

maximize
qi:i∈Nf ,γ

∑
i∈Nf

(γ + ψi)qi − Ci(qi)

subject to 0 ≤ qi ≤ qi, : ν−i , ν+
i , i ∈ Nf ,∑

i∈N
qi =

∑
i∈N

(Pi)−1(γ + ψi), : βf

(4.7)

The KKT conditions are as follows

0 = γ + ψi −
∂Ci(qi)
∂qi

+ v−i − v+
i − βf , i ∈ Nf

0 =
∑
i∈Nf

qi + βf
∑
i∈N

∂(Pi)−1(γ + ψi)
∂γ

0 =
∑
i∈N

(Pi)−1(γ + ψi)−
∑
i∈N

qi

0 ≤ ν−i ⊥ qi ≥ 0, i ∈ Nf
0 ≤ ν+

i ⊥ qi − qi ≥ 0, i ∈ Nf

(4.8)

We only consider a single market (e.g. spot market) and do not consider optimization
across different energy markets (e.g. forward markets or ancillary services), however we will
show that it is possible to represent uncertainty with respect to the outcomes of different
energy markets.

These assumptions are consistent with other literature [87,105] and with the approaches
used by most ISOs for scheduling hour-ahead and real-time markets, where the computational
benefits of the (convex) lossless DC power flow model are important.

Equilibrium Conditions of the Deterministic Game
Aggregating the KKT conditions for the firms’ and the ISO’s programs yields the equilibrium
conditions, which in general form a mixed nonlinear complementarity problem. It becomes
a mixed LCP when both the nodal demand functions and the marginal cost functions are
linear, as is assumed henceforth.
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Let the inverse demand functions and the cost functions be, respectively

Pi(xi) = ai − bixi, i ∈ N (4.9)

Ci(qi) = diqi + 1
2siq

2
i , i ∈ N (4.10)

where ai, bi, di, si ≥ 0. We denote a = vec(ai), B = diag(bi), d = vec(di), S = diag(si).
We denote L ∈ R|N |×|F| as the firm-node assignment matrix, where Lij = 1 if node i

is owned by firm j, and Lij = 0 otherwise. We also denote β ∈ R|F|, where βi is the dual
variable associated with firm i. Also denoting ∑

i∈N
1
bi

= 1>B−11 = c, the equilibrium
conditions are then

0 = γ1 +H>µ− d− Sq + v− − v+ − Lβ (4.11)
0 = L>q − βc (4.12)

0 = γ + 1>q
c
− 1>B−1H>µ

c
− 1>B−1a

c
(4.13)

0 ≤ ν− ⊥ q ≥ 0 (4.14)
0 ≤ ν+ ⊥ q − q ≥ 0 (4.15)
0 = 1>r (4.16)
0 = a−B(q + r)− γ1−H>µ (4.17)
0 ≤ µ ⊥ T −Hr ≥ 0 (4.18)

Here, (4.11)-(4.15) are the aggregated KKT conditions for the firms’ problems, and (4.16)-
(4.18) are the aggregated KKT conditions for the ISO’s problem. Under the assumption of
linear demand functions and quadratic convex cost functions, the firms’ and the ISO’s pro-
grams are strictly concave-maximization problems, so (4.11)-(4.18) are also sufficient. Note
that (4.13) can be excluded from the preceding market equilibrium conditions because it is
implied by (4.16) and (4.17). This set of equations constitutes a mixed linear complemen-
tarity program (mLCP).

We wish to turn these set of conditions into a compact LCP. This derivation closely
follows that in [107]. We first write out equations (4.16) and (4.17) as follows[

a
0

]
−
[
B
0

]
q −

[
B 1
1> 0

] [
r
γ

]
−
[
H>

0

]
µ =

[
0
0

]
(4.19)

Rearranging and solving for γ and r yields

r = Qa−QBq −QH>µ (4.20)

γ = 1>B−1

c
a− 1>

c
q − 1>B−1

c
H>µ (4.21)

where, denoting E = 11>

Q = B−1 − B−1EB−1

1>B−11
(4.22)
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We note that
QB = I − B−1E

c
, BQ = I − EB−1

c
(4.23)

We now consider equations (4.11) and (4.12). We have that β = L>q
c

, and that LL> = Y ,
where Yij = 1 if either i = j, or if i 6= j but node i and j are owned by the same firm, Yij = 0
otherwise. Using substitution we rewrite equation (4.11) as

0 = 1(1>B−1

c
a− 1>

c
q − 1>B−1

c
H>µ) +H>µ

−d− Sq + ν− − ν+ − Y q

c

(4.24)

Collecting terms, using (4.23), and solving for ν− we get

ν− = (BQ− I)a+ d+ (S + Y

c
+ E
c

)q −BQH>µ+ ν+ (4.25)

We denote N = (S+ Y
c

+ E
c
), where N ∈ S+ is positive semi-definite, and has the following

properties

Nij =



2
c

+ si, if i = j,

2
c
,

if i 6= j, and the units at nodes i and j

belong to the same firm,
1
c
, otherwise

(4.26)

We can now write out the following LCP

w =

 q − q
ν−

T −Hr

 , z =

ν
+

q
µ

 ,

t =

 q
(BQ− I)a+ d
T −HQa

 , M =

0 −I 0
I N −BQH>
0 HQB HQH>


where w = t + Mz, w ≥ 0, z ≥ 0, w>z = 0. We notice that M is positive semidefinite but
not symmetric. Since it is square we can write M as the sum of a symmetric matrix P and
a skew symmetric matrix K, such that M = P +K

M =

0 0 0
0 N 0
0 0 HQH>

+

0 −I 0
I 0 −BQH>
0 HQB 0

 (4.27)

Due to the fact that z>Mz = 1
2z
>(M +M>)z = z>Pz, we can solve the LCP by solving

the following convex QP
minimize

z≥0
h(z) = z>Pz + t>z

subject to Mz + t ≥ 0
(4.28)
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with any solution z∗ solving the LCP(M, t), iff h(z) = 0 [7].

Formulating a Robust Counterpart
We wish to identify strategies for the producers that are robust to uncertainty, an increasingly
prevalent feature of modern power systems. Three potential sources of uncertainty for a
generator are: the parameters of the inverse demand function, the quantity of zero marginal
cost renewable generation in the network, and the volume of forward contracts signed by
other generation firms. All of these sources can be represented as aggregate uncertainty in
the residual demand curve faced by a producers, however we will see that this formulation
can additionally capture more general sources of uncertainty.

We seek a robust equilibrium where producers maximize their profits, robust to demand
uncertainty, while assuming that other producers are adopting strategies robust to demand
uncertainty. A robust optimization problem takes the form

min
x∈X

max
u∈U

f(x;u) (4.29)

which determines the best possible action x? under a worst case realization of uncertainty
u ∈ U . As seen in (4.28), the equilibrium solution of the deterministic problem is an
LCP which can be formulated as a convex QP. We obtain a robust equilibrium solution by
considering a robust LCP, and formulating the robust counterpart to the equivalent convex
QP.

A nominal LCP(M, t) has the form

0 ≤ z ⊥Mz + t ≥ 0 (4.30)

The function h(z) = z>(Mz + t) is known as the residual of LCP(M, t), with h(z) = 0 iff z
solves LCP(M, t). Applying the results of [108] we define an uncertain LCP(u) as

0 ≤ z ⊥M(u)z + t(u) ≥ 0 (4.31)

where M(u), t(u) are parametric on the realization of a random variable u ∈ U . A robust
solution to the LCP seeks to find a feasible solution z∗ which minimizes the residual function
h(z;u) under a worst case uncertainty realization u∗. This takes the form

min
z≥0

max
u∈U

z>(M(u)z + t(u))

subject to min
u∈U

M(u)iz + ti(u) ≥ 0, ∀i
(4.32)

In [109], the authors show that this problem is tractable for affine uncertainty sets of the
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form

t(u) = t0 +
L∑
l=1

ultl

M(u) = M0 +
K∑
k=1

ukMk, M0 � 0, Mk � 0, ∀k

u ∈ U ⊆ RL+K

(4.33)

where L and K are general scalars defining the affine uncertainty set, and U can take any
of the following forms2

U1 = {u : ‖u‖1 ≤ 1}, U2 = {u : ‖u‖2 ≤ 1}
U∞ = {u : ‖u‖∞ ≤ 1}

(4.34)

While the formulation is general, for exposition we restrict our attention to uncertainty
in t(u), such that M(u) = M , ∀u ∈ U . If U = U∞, then (4.32) takes the form

min
z≥0

z>(Mz + t0) +
L∑
l=1
‖z>tl‖1

subject to Miz + t0 −
L∑
l=1
‖(tl)i‖1 ≥ 0, ∀i

(4.35)

As stated previously we consider uncertainty in the residual demand function, which we
treat as interval uncertainty in the intercept of the inverse demand functions at each node.
We consider functions of the form

Pi(xi; ζi) = ai(ζi)− bixi, i ∈ N
ai(ζi) = a0 + ζiail, ‖ζi‖∞ ≤ 1

(4.36)

Where ail ≥ 0 is a common belief among producers regarding the bounds of the uncertainty
interval at node i. We implicitly assume that all firms have the same belief regarding the
uncertainty in the inverse demand function at each node. This assumption is required for the
robust LCP model we have used here. Incorporating different beliefs regarding uncertainty
to capture the presence of firms with different risk preferences should be possible, although
will require a much closer treatment of the individual robust optimization that each firm
faces.

Since a only appears in t in the deterministic LCP, it is straightforward to translate
uncertainty in a to uncertainty in t, with the resulting robust LCP having the form of
(4.35). This is a convex optimization problem, and thus a robust equilibrium solution exists
but may not be unique. The problem can be solved using standard convex optimization
solvers.

2For the case when U = U2, the M0, Mk are restricted to be symmetric matrices.
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Figure 4.1: 3 Node Network

4.3 Example and Results
We demonstrate our model on an example network, and compare outcomes with conventional
(non-robust) Nash-Cournot equilibrium. Networks with up to 300 buses were simulated and
were all found to demonstrate qualitatively similar behavior, thus for expositional clarity
the simple 3-node network shown in Fig. 4.1 is used here, similar to the network modeled
in [110].

Example Network
The three buses i = 1, 2, 3 have customers with inverse demand functions Pi(xi) = 40−0.08qi,
i = 1, 2, and P3(x3) = 35−0.05q3 $/MWh (node 3 has greater demand elasticity). Each pair
of buses is connected by a single transmission line, and all three lines have equal impedance.
The market has two firms f = 1, 2 each with a single generator in its fleet; Firm 1’s generator
is sited at i = 1, while Firm 2’s generator is at i = 2. Both generators have a maximum
capacity of qi = 1000MW. Each generator has a constant marginal cost: d1 = $15/MWh
for firm 1, and d2 = $20/MWh for firm 2. We simulate a congested scenario by imposing
a 20MW constraint on the line between nodes 1 and 2, and a 35MW constraint on the line
between nodes 1 and 3.

In the examples that follow, we assume that ail = al, ∀i. That is the uncertainty at each
node is independent but lies in the same interval. The uncertainty al is swept over a range
of $0-15/MWh.

For comparison, the non-robust quantity decisions (i.e. classic Nash-Cournot equilib-
rium) are also modeled. For each scenario, the non-robust quantity is intercepted with the
realized demand curve to produce the price at each node. This simulates the scenario where
uncertainty is present, but firms behave as if there is no uncertainty. The system is modeled
within Matlab using CVX and the Gurobi solver.

Results and Discussion
The profits for the two generation firms are shown in Fig. 4.2 for the case when the transmis-
sion lines are unconstrained and there is no congestion in the network. We plot the results
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Figure 4.2: Profits of both generation firms under a range of uncertainty intervals. Both
robust and non-robust strategies are shown, and the three lines indicate high, expected,
and low realizations of demand. The robust equilibrium increases prices for low uncertainty
intervals, and limits exposure to downside risk.

for the range of potential uncertainty realizations as a shaded region. These shaded regions
are bounded by the profits achieved at the maximum and minimum limits of the uncertainty
interval, plotted as thick lines. The results for the nominal value of the uncertainty are
plotted as a third solid line through each shaded region. By construction, the uncertainty
interval spans all potential realizations of demand and thus all possible market outcomes.

Compared with classic Nash-Cournot equilibrium, we see that the primary goal of the
robust optimization is met: the robust strategy always results in higher profits for the worst
case realization of demand. For small ranges of uncertainty, we see that the firms actually
make greater profits at the robust equilibrium than at the non-robust equilibrium, regardless
of the level of demand. This can be explained by observing that each firm restricts its output
in order to protect itself from low prices, contracting the net supply curve and driving up
prices.

Eventually the reduction in demand due to the higher prices offsets the initial gain in
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Figure 4.3: Profits of each generating firm when congestion is present on the network. Note
that the shape of the curves changes over distinct domains, dictated by the congestion on
the network: in domain a line 1-3 is congested; in domain b lines 1-3 and 1-2 are congested,
and in domain c only line 1-2 is congested.

profits, and we see that the Nash-Cournot equilibrium results in higher profits in nominal
and high demand scenarios. At low demand the robust scenario still guarantees that the
generators will not incur a loss, whereas a Nash-Cournot equilibrium can actually result in
a net loss for generators as realized prices fall below the marginal cost of generation.

It is important to emphasize that these results assume that all firms follow the same
robust optimization behavior, i.e. that they have the same belief about uncertainty and
the same sensitivity to risk. However, for a less risk-sensitive firm, there is an incentive to
increase production in order to increase expected profits. The final equilibrium would be
dependent on the firms’ risk acceptance, with greater risk aversion driving firms towards the
robust optimization, and lower risk sensitivity driving them towards Cournot optimization.
This is explored in greater detail in [95].
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Network Effects
As firms restrict their production in response to uncertainty, network flows change and can
shift the congestion patterns on the network. We can divide the uncertainty range into
distinct domains with unique congestion patterns, highlighted in Figure 4.3. Within each
domain the residual demand curves for each generator stay constant, and equilibrium follows
the principles outlined above for the uncongested case. However as uncertainty increases and
the congestion pattern changes, there is a discontinuous shift in the residual demand curve
each firm faces, seen as a change of curvature in Figure 4.3.

In our example, comparing Figures 4.2 and 4.3 shows that congestion reduces the profits
of Firm 1, but also makes a robust strategy more attractive for low and moderate uncertainty.
Firm 2 benefits from congestion rents, but sees profits more threatened by uncertainty in
domain a. As uncertainty increases and the line between nodes 1 and 2 becomes congested in
domain b, Firm 2 sees greater benefit from uncertainty and the profits of Firm 1 are eroded.
This effect is repeated more dramatically as uncertainty increases into domain c. These
effects are dependent on the exact network structure, and were found to be particularly
complex for larger networks.

Welfare Effects
The impact of the robust strategy on consumers is less nuanced. The consumer surplus
is calculated as the area above the market clearing price and below the demand curve,
representing the surplus value which consumers would have been willing to pay for electricity
[6]:

CS = 1
2(a− λ)>x (4.37)

The total consumer surplus for the market is shown in Figure 4.4 for competitive, Nash-
Cournot, and robust equilibria. As we assume that producers offer a fixed quantity of
power into the market, the consumer surplus is invariant to the realized inverse demand
function for a given uncertainty interval. When firms restrict their output to be robust
to low realizations of demand, prices rise above competitive levels, demand decreases, and
consumer surplus drops below the Cournot oligopoly level.

The total efficiency of the market can be measured by its net social benefit: the sum of
consumer surplus, producer profits, and merchandising surplus3 [6]. Building on (4.37), this
can be written as

NSB = CS + (λ>q − C(q)) + µ>T (4.38)

Since robust behavior restricts supply below Nash-Cournot equilibrium levels, the net
social benefit decreases monotonically [6] as shown in Figure 4.5.

3This is the rent collected by the system operator in the presence of congestion, and can be shown to be
equal to µ>T .
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Figure 4.4: Consumer surplus under a number of equilibrium models: perfect competition,
Nash-Cournot equilibrium, and Nash-Cournot robust equilibrium. When producers restrict
production to be robust to uncertainty, consumers are clearly impacted. Congestion further
reduces consumer surplus by introducing congestion charges.

Figure 4.5: Net Social Benefit (sum of consumer surplus, producer profits, and merchandising
surplus) under both robust and non-robust equilibrium.
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4.4 Conclusion
Electricity markets are particularly susceptible to non-competitive behavior, making it im-
portant to understand strategic equilibria in order to inform better market design and poli-
cies. The complicated structure of electricity networks, and the many sources of uncertainty
in supply and demand, also make it important to have scalable tools for studying the impact
of uncertainty on energy markets.

We extend a model of strategic equilibria in electricity networks to include robustness
to uncertain demand, reflecting the behavior of risk-averse generation firms. The robust
optimization model remains convex, allowing it to be scaled to large power networks. The
model is not intended to describe the optimal bidding strategies or bid curves of individual
producers, however it provides an efficient way of simulating the impact of uncertainty on
market outcomes.

Whereas robust optimization in competitive markets may reduce profits for producers,
we see that robustness with small uncertainty intervals uniformly increases profits for the
generating firms relative to Nash-Cournot equilibrium. The impact of the robust equilibrium
on consumers is uniformly negative, as firms restrict their output leading to an increase in
prices, similar to that which would be seen under collusive behavior. Thus the ”price of
robustness” is seen in a reduction of the net social benefit of the market.

Congestion affects different firms unevenly, as it simultaneously creates congestion rents
and increases market power for some generators. We show that uncertainty can affect con-
gestion patterns in robust equilibrium, with the exact relationship between generator profits
and congestion being dependent on network topology.

These results can be applied to reflect uncertainty in supply due to intermittent renew-
able electricity generation, by modeling the uncertainty in net load (demand less must-take
renewables). The results can also represent uncertainty in the forward contracts signed by
other firms, which will contract the residual supply curve in the spot market. By incorpo-
rating robustness into the strategic equilibrium, we offer additional insight that producers,
utilities, and regulators can use to understand outcomes in real markets.

4.5 Potential Improvements
While this chapter considers the general case of a generator with quadratic costs, this can
also be extended to include storage systems, renewable systems, combined solar + storage
systems, and aggregated loads. As long as the constraints on these resources can be framed
as an affine set, they can easily be integrated into the proposed form without changing the
difficulty of the convex optimization problem.

In this chapter, we have still focused on large-scale resources which are dispatched on the
transmission network. By constraining ourself to a system with a few hundred or thousand
nodes, we can use a centralized solution technique in which a single problem contains all the
constraints for the system.
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In the next chapter, we will discuss a set of tools which are being used to apply convex
optimization techniques to much larger systems in which there may be hundreds of thousands
of participants. These decentalized optimization techniques move the computation away
from a central operator and out to local nodes, which are then brought into consensus on
a global optimum. This decentralization can be coordinated through a server which acts as
an aggregator, or coordinated by peer-to-peer communication between neighbors in a fully
decentralized paradigm.

The next chapter will discuss these models in detail, as well as the security risks which
they introduce, and how they can be securely executed, using a toy model as an example.
The subsequent chapter will then expand on these techniques, applying them to coordinating
generation resources on a microgrid with renewable generation, batteries, deferrable loads,
and shapeable loads.
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Chapter 5

Fully-Decentralized Optimization and
Security

The previous chapters have considered optimization models solved on a single server or com-
puter. While simple to express and easy to implement, this centralized model of optimization
does not scale well to large numbers of constraints and variables (e.g. scheduling millions of
electric vehicles), as most solution algorithms scale super-linearly in the number of variables
(typically as O(n3)).

As distributed and fully-decentralized optimization techniques have been developed for
these large problems, smartgrid researchers have proposed moving more of the computation
power out to the grid edge- to advanced metering infrastructure (smart meters) and con-
trollable loads (smart devices). While this can allow for significant benefits in computation
speed and create robustness to communication dropouts, it turns consumer-level devices into
an important part of our cyberphysical infrastructure.

The remainder of this dissertation considers techniques and architectures for securing
these decentralized computations in a smartgrid context. As before, we focus on convex
optimization techniques, but this time using distributed or fully-decentralized optimization
tools. This chapter develops a novel attack detection strategy which can be used in both
distributed and fully-decentralized architectures, then describes architectures which can sup-
port this. The last chapter will then build on this work to implement a smartgrid control
strategy on a blockchain using smart contracts- two novel technologies which take advantage
of distributed consensus to secure computations.

5.1 Motivation
With increased computing power, convex optimization tools have gathered attention as a
fast method for solving constrained optimization problems. However, some problems are
still too large to be solved centrally- e.g. scheduling the energy consumption of millions of
electric vehicles.
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System Operator
Aggregator

Centralized Decentralized 
(Aggregator-coordinated) Fully Decentralized

Figure 5.1: Different structures for solving mathematical optimization problems, from left:
Centralized optimization, where all details of objective and constraints are held by a central
entity. Decentralized optimization (also called aggregator-coordinated optimization) where
local nodes hold local objective and constraint information, and an aggregator brings nodes
into consensus on shared constraints. Fully-decentralized optimization, where no centralized
entity exists but neighbors communicate directly with each other to achieve consensus.

In these applications, decentralized optimization techniques break the problem into a
set of subproblems which can be rapidly solved on distributed computing resources, with
an aggregator or fusion node bringing the distributed problems into consensus on a global
solution. This distribution can yield significant computational benefits, greatly speeding
computation times.

A further development on this model, fully-decentralized optimization techniques remove
the aggregator, and instead let nodes reach consensus with neighbors, in a process which
gradually brings the entire system into consensus (see Figure 5.1). This approach significantly
reduces communication requirements relative to aggregator-coordinated systems.

The potential for reducing computation time and communication burden makes these
distributed and fully-decentralized models particularly compelling in smartgrid applications,
where systems may need to scale to millions of devices. However, by moving the computation
from enterprise servers to consumer devices, significant new security weaknesses are exposed.
This chapter outlines architectures and algorithms for addressing these weaknesses.

5.2 Background Literature
The vulnerability of physical infrastructure to cyberattacks was dramatically highlighted in
2000 when the SCADA system controlling the Maroochy Water Plant in Australia was re-
motely hijacked, resulting in the release of over one million gallons of untreated sewage [111].
A decade later, the US government developed the Stuxnet worm to attack programmable
logic controllers which operated uranium enrichment centrifuges managed by the Iranian
government [112]; the Iranian government recently launched similar attacsk against targets
in Saudi Arabia [113]. A descendant of the Stuxnet worm was used more dramatically by
the Russian government to repeatedly cause widespread blackouts in the Ukranian electricity
during 2016 and 2017 [114,115]. Recent incursions into the networks of American electricity



CHAPTER 5. FULLY-DECENTRALIZED OPTIMIZATION AND SECURITY 58

Figure 5.2: Publication frequency for the topics of ‘Distributed Optimization’, ‘Cybersecu-
rity’, and the intersection of the two fields, 2010-2017. Legend captions include the total
number of publications over this period; the number of publications at the intersection is
three orders of magnitude less than each field.

operators by Russian hackers may be laying the foundation for future incursions against U.S.
infrastructure [116,117].

Against this backdrop of cyberattacks used as national security threats, President Obama
issued an Executive Order [118] and Presidential Policy Directive [119, 120] directing the
executive branch to improve cybersecurity of critical infrastructure. In the face of proven
vulnerabilities in consumer-level smart grid devices [121] it seems critical that distributed
algorithms for smartgrid controls be designed to be able to identify, localize, and mitigate
the effects of these attacks.

Prompted by these concerns, cybersecurity research has increased in recent years, as
shown in Figure 5.2. However, this research is far outpaced by the development of new
distributed optimization algorithms, and research on the intersection of the two fields - the
security of distributed optimization algorithms- is still nascent. Instead, the most cutting-
edge research on distributed optimization techniques under adversarial attacks is found not
in power systems or optimal control, but in the field of artificial intelligence.

The deployment of distributed machine learning algorithms to very large computation
networks or federated machine learning platforms (in which consumer feedback e.g. in smart-
phone apps directly trains an estimator) has led researchers to work on algorithms which can
be resilient to software crashes, network dropouts, and adversarial attacks on local nodes.
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Most of these machine learning problems are solved with consensus algorithms, in which
local nodes solve private problems and reach consensus on a global estimator through itera-
tion with a fusion node (aggregator-based model) or with their neighbors (fully-decentralized
model). Although widely used, it has been shown that arbitrary attacks by a single corrupted
node can lead consensus algorithms to fail [122,123]- making it critical to understand poten-
tial attack vectors, detection algorithms, and mitigation strategies.

As a result, research to combat these approaches has considered a number of methods
for developing techniques to allow the consensus algorithm to converge to a best estimate
under attack [122]:

• Filtering techniques remove outliers from the set of proposed updates [122,124,125], in
extreme cases using just the median estimator [126,127] in order to provide tolerance to
an attack of half of the nodes. These approaches can be computationally intensive, and
may require that the local update functions are all drawn from the same distribution-
feasible in statistical estimation, but unlikely in device scheduling.

• Nonlinear weighting schemes take advantage of all estimators, but dynamically scale
down the impact of suspicious updates. While these are guaranteed to move towards
optimum [123,128,129], they have a larger optimality gap than other techniques [130].

• Round-robin techniques seek to detect and remove attacked updates by iteratively
computing the consensus estimate with different combinations of dropped-out nodes,
and using the most stable estimate [125, 131, 132]. This is algorithmically simple but
computationally intensive, and is most feasible when the number of attackers is well-
bounded.

Additionally, [130] demonstrates the improved convergence of these algorithms when
compromised nodes can be switched off.

While many of these algorithms were developed for aggregator-coordinated machine
learning problems, many of them can be adapted to fully-decentralized structures, as in
the estimation problems studied in [129,133] and the optimization problem studied in [131].

Some of these techniques are beginning to also be deployed in smartgrid optimization
problems: [134] demonstrates the hurdle which compromised nodes create for scheduling,
much like [135] does for generalized consensus problems.

However, most research on cybersecurity in power system applications has not considered
scheduling and optimization problems, but rather state estimation in transmission networks.
Liu et al demonstrate in [136] that a single compromised node could introduce an arbitrar-
ily large estimation error, similar to the generalized results in [135]. Subsequent research
demonstrated the limitations of attack detection and mitigation strategies under a number
of centralized state estimation models [137–139].

These approaches have also been extended to distributed optimization techniques in [132],
where a round-robin ADMM method is used to identify compromised nodes; this approach is
demonstrated experimentally in [140]. Similar research has also developed fully-decentralized
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algorithms for state estimation, with [141] utilizing compressed sensing techniques to recover
an estimate of system state when noise injection is bounded, though [142] demonstrates that
these approaches still fail when a node is able to inject arbitrary noise.

Novel Contributions
This work advances prior literature by providing an attack detection algorithm for the al-
ternating direction method of multipliers, a popular optimization algorithm used for convex
optimization and consensus problems. Only requiring that the private objective functions be
convex, the attack detection algorithm works for both constrained and unconstrained prob-
lems, and both aggregator-coordinated and fully-decentralized architectures. By directly
identifying compromised nodes, we bypass many of the objections to the filtering, nonlinear
averaging, and round-robin techniques described above, and provide tool which can readily
be integrated into computational techniques such as described in [130].

In developing this, this paper provides the following novel contributions to existing liter-
ature:

• Outline a taxonomy of attack vectors for decentralized optimization algorithms

• Detail attack detection, localization, and mitigation techinques for the alternating
direction method of multipliers

• Demonstrate and verify an algorithm for detecting noise-injection attacks in the alter-
nating direction method of multipliers

• Outline the unique security challenges of fully-decentralized optimization

• Describe potential architectures for security in fully-decentralized optimization

5.3 Outline
In the remaining sections of this work, we outline a taxonomy of methods by which an
attacker may seek to compromise a decentralized optimization algorithm, and briefly discuss
challenges to detection, localization, and mitigation.

We then develop an algorithm for detecting noise-injection attacks in convex optimization
problems solved with ADMM, and present results for a set of simulations with randomly-
generated quadratic programs (QPs).

We extend this by considering the unique security challenges presented by fully-decentralized
optimization algorithms. We conclude by outlining architectures which can be used to over-
come the weaknesses inherent in fully-decentralized architectures.
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5.4 Mathematical Background and Notation

Notation
Without loss of generality, we focus on an aggregator-coordinated system with two nodes
which compute the x-update and z-update steps in a decentralized optimization problem.
Also without loss of generality, we will consider an attack in which the x-update node has
been compromised, and use the following notation:

• A,B Constraint matrices in ADMM binding constraint

• c, d Linear cost vectors

• f(x), g(z) generalized objective functions

• H Hessian

• i, j iterates

• k iterate limit

• m,n Number of dimensions of z and x variables respectively

• p Number of binding constraints

• P,Q quadratic cost functions in sample problems

• r, s dimensions in Hessian

• u Scaled dual variable

• w combined variable for centralized solution

• x, z Optimization variables

• y Unscaled dual variable

• X ,Z The private constraints, knowable only to the compute nodes and not publicly
shared

• x?k The unattacked update, solving xk := argminx∈X f(x)+ ρ
2‖Ax+Bzk−1−c+uk−1

z ‖2
2

• x̃k The attacked signal provided by the z node

• x?k The variable update received by the z-update node, of unknown validity

• x̂k A best response created by the z-update node which has received a signal perceived
as being an attack
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Decentralized Optimization
In general, decentralized optimization problems can be cast as:

x∗, y∗ = argminx,z W (x, z))
s.t. x, z ∈ W

Where x and z further satisfy local problems:

x∗ = argminx f(x, z∗)
x ∈ X

z∗ = argminx g(z, x∗)
z ∈ Z

We focus in this discussion on iterative methods, where updates xk = argminx∈X f(x, zk−1),
zk = argminz∈Z g(z, xk−1) solve local updates in an algorithm which converges to a global
solution, i.e. xk → x∗, zk → z∗ as k →∞.

In addition to computational benefits, this architecture is also advantageous when the
local objective functions f(x), g(z) or local constraint sets x ∈ X , z ∈ Z contain private
information which can not be directly shared with other participants or the aggregator. In
this scenario, the updates xk, zk do not directly reveal private information, yet still allow
the system to converge to the global optimum. This is common in markets and scheduling
problems, where participants have private constraints or utility functions which they do not
wish to share for economic or security reasons.

Additionally, we assume that some information about the private constraint set is publicly
knowable, creating a superset which contains the private constraint set: X ⊂ Xpub, Z ⊂
Zpub. Note that as all variable updates are in the private constraint set, they must also be
in the public set: xk ∈ X ∈ Xpub.

The Alternating Direction Method of Multipliers
Although any distributed optimization algorithm may be subject to cyberattack, we specif-
ically consider the Alternating Direction Method of Multipliers (or ADMM) algorithm re-
viewed in [4], which has gained popularity due to its simple formulation and guarantees of
convergence for convex problems. The ADMM algorithm is used to decompose a problem
with separable objective and constraints:
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min
x,z

f(x) + g(z) (5.1)

s.t. Ax+Bz = c (5.2)
x ∈ X (5.3)
z ∈ Z (5.4)

Note that only equation 5.2 links x and z.
Adding a penalty term for violations of the linking constraint, we can create an augmented

Lagrangean defined in the domain {x ∈ X , z ∈ Z}:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22
The standard ADMM algorithm can then be expressed with respect to this augmented

Lagrangean Lρ(·) as:

xk+1 := argminx∈X Lρ(x, zk, yk)
zk+1 := argminz∈Z Lρ(xk+1, z, yk)
yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

or in scaled form:

xk+1 := argminx∈X f(x) + ρ

2‖Ax+Bzk − c+ uk‖2
2 (5.5)

zk+1 := argminz∈Z g(z) + ρ

2‖Ax
k+1 +Bz − c+ uk‖2

2 (5.6)

uk+1 := uk + Axk+1 +Bzk+1 − c (5.7)

The iterations stop when:

• The primal residual rk = Axk + Bzk − c has a magnitude below a threshold εpri, i.e.
||rk||2 ≤ εpri

• The dual residual sk = ρATB(zk − zk−1) has a magnitude below a threshold εdual, i.e.
||sk||2 ≤ εdual

As described in [4] the ADMM iterations will converge to the optimal value of the objec-
tive function, and the primal and dual residuals will converge to zero.

In this ADMM formulation, we refer to the “aggregator” (or “fusion node”) as the agent
responsible for updating u. The aggregator:

1. receives updates from the x-update and z-update steps,

2. computes the u-update

3. broadcasts the updated value of u to the nodes responsible for computing the x- and
z-updates.
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Consensus problems

ADMM has become a popular tool for solving consensus problems in both machine learning
and power systems engineering, as both fields deal with problems where computation may
be spread across thousands (or millions) of nodes. In a consensus problem, local variables xi
and objective functions fi(xi), i ∈ {1, . . . , N} are united by the constraint that at optimality,
the local variables mirror the global variable z:

min
x,z

N∑
i=1

fi(xi)d

s.t. xi = z, i = 1, . . . , N
Collected, the ADMM form of this is:

xk+1 := argminxi∈X〉
fi(xi) + ykTi (xi − zk) + ρ

2 ||xi − z
k||22

zk+1 := 1
N

N∑
i=1

xk+1
i + (1/ρ)yki

yk+1 := yki + ρ(xk+1
i − zk+1)

Note that this structure generalizes minibatch stochastic gradient descent, in which the
local objectives are the gradients of the local estimators.

As this consensus algorithm is a specific example of ADMM, results for the general
ADMM problem will also apply to the ADMM consensus algorithm. For clarity, in this
paper we will continue to refer to x- and z-update nodes, even though a consensus problem
may have thousands or millions of x-nodes and a single z-update (aggregator) node. Despite
this difference in scale, the results we derive for the general 2-node system will still be
applicable to the consensus problem.

We will also note that consensus problems are of particular interest in many power system
and machine learning problems, as well as in fully-decentralized optimization problems, which
include consensus networks.

5.5 Attack Vectors in Decentralized Optimization
When local problems contain private information, the central coordinator can only check
x, z ∈ W and cannot directly verify that the updates x?k, z?k in fact solve the private
optimization problems. In this scenario, a malicious node may submit a distorted update x̃k
in order to mislead the central coordinator with the goal of creating a sub-optimal solution,
an infeasible solution, or prevent convergence of the iterative algorithm.

In this section, we briefly outline potential attack vectors and methods for addressing
them. Of these attacks, the most generalizable but difficult to identify is zero-mean noise
injection, which we consider in detail below. These attack vectors can be combined, but
detection and mitigation efforts will usually address these separately.
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Sub-optimal solution

The compromised node solves a modified objective function f̃(x) resulting in f(xk) < f̃(xk)
and consequently W (x̃k, zk) > W (xk, zk) as k → ∞. As this does not change the problem
structure (e.g. convexity, private constraints), it is difficult to discern from an equivalent
problem with slightly modified characteristics, e.g. different consumer preferences. This
makes attack prevention a matter of appropriately structuring game-theoretic incentives to
avoid malicious distortion. As such, we do not consider this in greater detail here.

Infeasible Private Constraints

An attacked node may replace the constraints x ∈ X with a modified constraint set x ∈ X̃
in order to result in an update which is not feasible x̃k 6∈ X , as shown in Figure 5.3. This
leads the system to converge to a point which does not reflect actual conditions, e.g. a
schedule which is not operationally feasible or a machine learning estimator distorted by
false data. Because these constraints may arise from stochastic processes (user preferences,
input data) the aggregator cannot directly discern an attack from an unattacked update with
different underlying data. As a result, defenses from this attack are limited to cases where
the aggregator can bound the support of the problem, i.e. a publicly knowable constraint set
Xpub. In this scenario, attacks can be detected when updates lie out of the support region,
and the effect of the attack can be mitigated by projecting the update back onto the support
region.

Infeasible Linking Constraint

Knowing that a solution to the master problem must satisfy Ax + Bz = c, an attacker
may present an update which it knows to be unreachable with these constraints, i.e. 6
∃z ∈ {Z|Ax̃k + Bz = c}. In this case, convergence stops as the primal residual rk =
||Axk +Bzk − c||22 remains nonzero. This attack relies on th attacker knowing some bounds
on the set reachable by its neighbor Z ⊂ Zpub in order to shape this attack. Similar to above,
detection relies on the same knowledge of the public constraint set, and mitigation relies on
projecting the attacked signal back onto the feasible space. If the aggregator has knowledge
of the public constraints Zpub, then detection and mitigation can easily be implemented at
the aggregator level for each signal.

Non-Convergence

An attacker may add a noise term which varies with each iteration, i.e. x̃i = x?i + δ(i).
When the noise term is larger than the rate of convergence of the problem, this results in a
persistent residual which remains above the convergence tolerance, as shown in Figure 5.4.
We examine in detail the case where the noise is unbiased (zero-mean). When the noise is
biased, the problem can be considered a combination of a zero-mean noise injection attack
and one of the attacks described above, and addressed accordingly.
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X̃

Xpub

Xx∗

x̃∗x̃∗

x̂∗

(a) Attacked system in which detec-
tion and (limited) mitigation is pos-
sible, as X ⊂ Xpub ⊂ X̃ .

Xpub

Xpub

X̃
Xx∗

x̃∗

(b) Attacked system in which detec-
tion and mitigation is not possible, as
the distorted constraint set is a sub-
set of the publicly known bounds on
the constraints, X ⊂ X̃ ⊂ Xpub.

Figure 5.3: Graphical example of how an attacker may distort the constraint set from X to
X̃ to create an optimum outside of the truly feasible set, and the limited ability to mitigate
these impacts by projecting onto a publicly knowable constraint set Xpub.

Figure 5.4: Plot of local residuals in a 3-node system under noise-injection attack. Injection
of noise prevents problem convergence at nodes across the network.
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5.6 Developing a Detection Algorithm for
Noise-Injection Attacks

Because the ADMM algorithm relies on private actors computing x− and z−updates, these
actors can distort the prolem by providing inaccurate updates, with the goal of creating a
suboptimal or infeasible solution or preventing convergence. We study the case of distorting
the x-update through injection of zero-mean noise, which is intended to prevent convergence
of the algorithm. The new update becomes:

xi+1 := argminx∈X f(x) + ρ

2‖Ax+Bzi − c+ ui‖2
2 + δ(i)

Where δ(i) is a noise term which changes on each iteration. The z-actor or the system aggre-
gator is challenged to identify the attack and take preventative actions before convergence
is prevented.

Attack Detection Overview
We play the part of the aggregator or z-actor, and wish to detect an attack of x, using the
values of the xi, zi, ui, i = 1 . . . k iterates. We rely on a priori knowledge that f(x) must be
convex, we trust the computations of zi, and we can verify the ui values directly by using
the other iterates.

We will detect attacks by assessing the convexity of f(x) implied by the xi iterates,
without being able to directly assess f(x).

To do this, we will use the z− and u-update values to evaluate the local gradient of f(x),
then use these local gradients to construct a finite-differences approximation of the Hessian
of f(x). Testing whether this Hessian is symmetric positive semi-definite will then allow us
to test the convexity of the x-updates; this is visualized in Figure 5.5. Given our a priori
knowledge that f(x) must be convex, any updates which result in a nonconvex Hessian must
represent an attack.

The algorithm progresses in three steps:

• Assess gradient

• Construct Hessian

• Evaluate eigenvalues of Hessian

Assess Gradient

We rely on the proof of ADMM convergence1 provided by [4], and while we focus on the
x-update the same approach can be used for security checks conducted by the x-update node.

1specifically building on the Proof of Inequality A2 on pg 108 of [4]
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Figure 5.5: Conceptualization of the attack detection process for a n = 2 toy problem.
Although the validator cannot directly assess the private objective function f(x1, x2) (shown
in red-blue gradient), they are provided with a sequence of iterates xk, and can to use a subset
of these for the detection algorithm, shown here as (x1, x2) points with f(x) = 0 due to the
unknown objective value. Using information from the sequence of iterates, the validator
can then assess the implied gradient of f(x) at each of these points. Finally, from these
gradients, the validator can estimate the Hessian, and use this to evaluate the convexity of the
(unknown) objective function. This can be conceptualized as a local quadratic approximation
of the objective function at the reference point, shown in blue-green.

The gradient of f(x) evaluated at xi is found as:

0 ∈ ∂Lρ(xi, zi−1, ui−1)
0 ∈ ∂f(xi) + AT + ρAT (Axi +Bzi−1 − c)
0 ∈ ∂f(xi) + AT (yi − ρB(zi − zi−1))

∂f(xi) = −AT (yi − ρB(zi − zi−1))
∂f(xi) = −AT (ρui − ρB(zi − zi−1))

where the last equality simply uses the scaled dual variable.
We will interchangeably use the notation f(xi) and f(x)|xi to both indicate the definite

evaluation of f(x) at the point xi. The iterates i = 1, . . . , k thus give us a sequence of
gradient evaluations at points xi, i = 1, . . . , k. From this sequence of gradients, we wish to
construct the Hessian.
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Figure 5.6: Visualization of the relationship between the iterates xi, xj, the function surface
f(x), and the gradient evaluations ∂f(x)|i, ∂f(x)|j. While the function surface f(x) and its
Hessian cannot be directly evaluated, the change in gradient evaluations between xi and xj

can be used to derive an approximation of the Hessian.

Construct Hessian

We wish to construct the Hessian matrix

H =



∂

∂2x1
f(x) ∂

∂x1∂x2
f(x) . . .

∂

∂x1∂xn
f(x)

∂

∂x2∂x1
f(x) ∂

∂2x2
f(x) . . .

∂

∂x2∂xn
f(x)

... ... . . . . . .
∂

∂xn∂x1
f(x) ∂

∂xn∂x2
f(x) . . .

∂

∂2xn
f(x)


To construct the Hessian, we utilize information gained from the gradient evaluations at

each of the iterates to compute a numeric approximation of the local Hessian, using a Taylor
series expansion of the Hessian around that point.

Example: 2-Dimension Case

For clarity, we begin with a two-dimensional case, i.e. xi = [xi1, xi2]T and visualized in Figure
5.6. We will consider two points xi and xj, and will note the dimensions of these points
using the subscripts 1 and 2.

In this case, the change in gradient from point xi to xj can be approximated using the
following difference equations:
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∂

∂x1
f(x)|xj = ∂

∂x1
f(x)|xi + ∂

∂2x1
f(x)|xi(xj1 − xi1) + ∂

∂x1∂x2
f(x)|xi(xj2 − xi2)

∂

∂x2
f(x)|xj = ∂

∂x2
f(x)|xi + ∂

∂2x2
f(x)|xi(xj2 − xi2) + ∂

∂x2∂x1
f(x)|xi(xj1 − xi1)

This is visualized in Figure 5.6, where ∆x1 = (xj1 − xi1) and ∆x1 = (xj1 − xi1).
From the previous step, we can directly evaluate the gradient terms

∂

∂xr
f(x)|xk

, r ∈ 1, 2, k ∈ i, j

and wish to solve for the second-order terms, which will become the entries in the Hessian
matrix. However, we have n2 unknown second-order terms but only n equations, making
this system underdefined. In order to have a fully-defined system, we need another set of
difference equations, found by considering the difference with respect to another point k.
Using the notation (x1)|kj = xk1 − xj1 and ∂

∂x1
f(x)|kj = ∂

∂x1
f(x)|k − ∂

∂x1
f(x)|j we can now

rearrange the problem into the matrix equation
−→
G = D

−→
H

or for the 2-D case:

∂

∂x1
f(x)|kj

∂

∂x2
f(x)|kj

∂

∂x1
f(x)|ki

∂

∂x2
f(x)|ki


=


(x1)|kj (x2)|kj 0 0

0 0 (x1)|kj (x2)|kj
(x1)|ki (x2)|ki 0 0

0 0 (x1)|ki (x2)|ki





∂

∂2x1
f(x)

∂

∂x1∂x2
f(x)

∂

∂x2∂x1
f(x)

∂

∂2x2
f(x)


In this form, where −→G collects the changes in gradient evaluations induced by each

difference equation, the matrix D arranges the difference in coordinates at the evaluated
iterates, and −→H unstacks the entries of the Hessian matrix H.

The entries of the Hessian matrix can then be found as −→H = D−1−→G or for the 2-D case:

∂

∂2x1
f(x)

∂

∂x1∂x2
f(x)

∂

∂x2∂x1
f(x)

∂

∂2x2
f(x)


=


(x1)|kj (x2)|kj 0 0

0 0 (x1)|kj (x2)|kj
(x1)|ki (x2)|ki 0 0

0 0 (x1)|ki (x2)|ki


−1



∂

∂x1
f(x)|kj

∂

∂x2
f(x)|kj

∂

∂x1
f(x)|ki

∂

∂x2
f(x)|ki
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Expanding to n dimensions

Generalized to r, s ∈ l dimensions (where l ≤ n), this becomes:

∂

∂xr
f(x)|xj = ∂

∂xr
f(x)|xi +

l∑
s=1

∂

∂xr∂xs
f(x)|xi(xjs − xis)

As there are n dimensions in x, there are a total of n2 unknown terms in the Hessian 2

. As each new point xj has n dimensions, it adds a new set of n difference equations. In
order to fully define the set of equations for computing the Hessian, we need to collect a
total of n+ 1 linearly independent points (reference point plus differences with n points) to
solve for the n2 terms in H. As computing the gradient utilizes values from two iterates, this
means that for a problem with n dimensions, the detection algorithm can be conducted on
iterations n+ 2 and beyond.

In the following, we index dimensions by 1, 2, . . . , n and points by a, b, . . . , k where k

is used as the reference point. The vector −→G is thus composed by stacking the gradient
evaluations:

−→
G =



∂

∂x1
f(x)|ka

∂

∂x2
f(x)|ka

...

∂

∂xn
f(x)|ka

...

∂

∂x1
f(x)|kk−1

∂

∂x2
f(x)|kk−1

...

∂

∂xn
f(x)|kk−1


2or n(n + 1)/2 if we utilize the fact that the Hessian is symmetric, i.e. that ∂

∂x1∂x2
= ∂

∂x2∂x1
. For

simplicity, we will not take advantage of symmetry in this manuscript, though this symmetry can be utilized
to accelerate the solution time of the algorithm.
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Figure 5.7: The introduction of noise shifts the gradients computed using the above algo-
rithm, shown here as shifting the unattacked (gray) vector to a new (attacked, red) position.
It can be readily seen that a sufficient displacement will cause the estimated curvature (Hes-
sian) to become nonconvex, as shown by the inferred surface represented in Subfigure (b).
To avoid detection, an attacker would thus need to use a very small injected signal, but this
would not be sufficient to stop convergence and the attack would fail.

The matrix D is composed of a stack of n block-diagonal matrices, each of which is the
Kronecker product of the n-dimensional identity matrix and a set of coordinate differences
from x-iterates. Each block of this is n× n2, producing D ∈ Rn2×n2 :

D =


In ⊗ (xk − xa)T
In ⊗ (xk − xb)T

...
In ⊗ (xk − xk−1)T


We solve for the Hessian elements by computing −→H = D−1−→G as before.

Assess Convexity

For f(x) to be convex, the Hessian must be positive semi-definite, i.e. λmin(H) ≥ 0 where
λmin(H) is the least eigenvalue of H.

After solving for a local approximation of the Hessian as above, the eigenvalues of the
Hessian are evaluated. If the Hessian is not found to be positive semi-definite, the x-actor
must be injecting noise into his updates, as shown in Figure 5.7.

Misclassifications

As attack detection can be viewed as a classification problem, it may be subject to two
possible errors, depicted in Figure 5.8.
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Figure 5.8: Depiction of misclassification errors in the noise detection algorithm. In weakly
convex regions of a function, numeric conditioning errors can lead to false positives (subfigure
a), whereas problems which have a very strong gradient may converge before the noise
detection algorithm is able to identify the injection of noise into the algorithm (subfigure b).
In both cases, the algorithm for selecting points used to assess the gradient can lead to more
accurate assessment of the Hessian, reducing misclassification errors.

• False Positives (Type 1 errors): These occur when an attack is detected, even though
no attack took place. This can occur when numeric issues create a slight local non-
convexity during solution iterations, even though the underlying objective function is
in fact convex. These numeric issues can result from the x-update, y-update, gradient
calculation, or Hessian calculation, but are aggravated when the algorithm is close to
the objective function and the system of equations used to generate the Hessian is
poorly conditioned.

• False Negatives (Type 2 errors): In this type of error the algorithm fails to detect an
attack, because the magnitude of the attack was not sufficient to create a non-convexity
at the tested points. A small number of false positives are unavoidable: some attacks
are not able to prevent convergence within a small number of iterations, and the attack
detection algorithms may never be able to collect enough points to detect an attack. For
problems that converge with a moderate number of iterations under attack, there may
not be a combination of iterate points which result in a nonconvex Hessian. For other
cases, lowering the false negative rate requires testing a variety of point combinations in
order to maximize the likelihood of finding a point where the finite-difference Hessian
estimate is nonconvex.

5.7 Simulation and Results
To verify the effectiveness of this problem under a variety of conditions, we simulate a large
number of sample problems (both attacked and unattacked) and evaluate the effectiveness
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of the attack detection algorithm.
We have chosen to consider quadratic programs (QPs): they are widely used in power

systems research (e.g. optimal power flow [141], optimal dispatch [10,143]), subsume the set
of linear programming problems, and yet offer many computational benefits (efficient off-
the-shelf solvers, easy analytic solutions, easily visualized). In the future, we would like to
extend this to other classes of convex problems (e.g. SOCP, SDP), but simulating hundreds
of those problems would be computationally burdensome.

Problem: Random Quadratic Programs
We consider unconstrained quadratic programs of the form

min x, z xTPx+ cTx+ zTQz + dT z

s.t. Ax+Bz = c

For simplicity, we examine problems where c = 0 and A and B have a single non-zero
value per row, as described below. This can be thought of as consensus problems where
some cost information is private.

Problem Generation

Problems are generated randomly as follows:

1. The size of the problem is determined by randomly choosing the magnitudes m,n, p.
The user defines a maximum size maxdim and n and m are drawn as integers on
the uniform distribution [1, maxdim]. The number of consensus constraints p is then
randomly chosen by drawing an integer on the interval [1,min(m,n)].

2. The problem will then be characterized by:

• Variables x ∈ Rn, z ∈ Rm,
• Cost terms P ∈ Rn×n, Q ∈ Rm×m, c ∈ Rn, d ∈ Rm,
• Constraint matrices A ∈ Rp×n, B ∈ Rp×m

3. Quadratic cost matrices P and Q are created by first randomly composing LP ∈
Rn×n, LQ ∈ Rm×m with entries drawn randomly from the uniform distribution on
[−S, S]. P and Q are then constructed to be symmetric positive semi-definite by
construction as P = (LP )TLP , Q = (LQ)TLQ. To confirm that these are positive
semi-definite, the eigenvalues are computed and checked to be greater than 0.

4. c and d are generated by randomly drawing values from [−S2, S2], resulting in entries
that are the same magnitude as those in P and Q.

5. A is composed as A = [0 ∈ R(n−p)×(n−p), I ∈ Rp×p] and B is composed as B = [I ∈
Rp×p, 0 ∈ R(m−p)×(m−p)]
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Solution Method
We consider the case where consensus is desired between two actors who do not want to
share information about their cost information P, c and Q, d. In this scenario, ADMM is a
well-suited tool for achieving optimality without compromising privacy.

For this problem, the ADMM algorithm can be stated as:

xk+1 = argminx xTPx+ cTx+ ρ

2 ||Ax+Bzk − c+ uk||22

zk+1 = argminz zTQz + dT z + ρ

2 ||Bz + Axk+1 − c+ uk||22
uk+1 = uk + Axk+1 +Bxk+1 − c

The x-update and z-update steps constitute unconstrained QPs, and can be solved an-
alytically as described in Appendix A.1.These analytic update steps were used to avoid
rounding issues resulting from using an iterative numeric solver.

Attack Implementation
Attack was simulated by multiplying the optimal x-update values by a vector with entries
randomly selected from +10%,−10% at each iteration. It was found that choosing uniformly
distributed zero-centered noise was not sufficient to prevent convergence, as small-magnitude
noise entires allow the algorithm to converge faster than the attacker is able to delay con-
vergence.

A set of 10,000 QPs was simulated without attack, and were found to converge in a
median of 63 iterations, with a mode of 16 iterations and a maximum value of 216 iterations.
When simulated with the attack described above, convergence was significantly hindered on
the same QPs: 86% were not able to converge in 300 iterations, and 87% do not converge
in 500 iterations. The 14% of QPs which converge in less than 300 iterations were found
to behave similarly to the unattacked QPs, likely due to a set of costs which are strongly
convergent even in the presence of attack.

The distribution of the iterations until convergence for both the unattacked and attacked
QPs is depicted in Figure 5.9.

Attack Detection Implementation
We implement the algorithm described above. As we initially consider p ≤ 2, we need to
complete at least 4 iterations in order to create two sets of difference equations.

To improve conditioning, for iteration i we consider the difference equations with i and
the reference point, and compare with iteration 2 and iteration bi/2c. Using the i, i−1, i−2
iterates was found to result in poor conditioning and a very high (17%) false positive rate,
though a slightly lower false negative rate.

To ensure that we can solve for the values of the Hessian entries, we check that the
difference vectors are not collinear.
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Figure 5.9: Convergence results for 10,000 QPs, simulated both with and without noise-
injection attack. Without attack, all simulations converge in less than 300 iterations. Under
attack, 86% of problems do not converge in 500 iterations (at which time calculation was
stopped).

Table 5.1: Results for a simulation of attack detection. 500 quadratic programs were gener-
ated without attack, and false positives (upper right quadrant) were identified. An additional
500 quadratic programs were generated with simulated attack, and false negatives measured.

(a) Results, total number of simulations

Attacked Unattacked
Attack Detected 479 0
No Attack Detected 21 500
Total 500 500

(b) Results, simulation error rate

Attacked Unattacked
Attack Detected 0.958 0
No Attack Detected 0.042 1.0
Total 1.0 1.0

Results
We show results for 1000 simulated problems, of which 500 were attacked and 500 were
unattacked. The results are presented as a confusion matrix in Table 5.1 which shows both
accurate classifications and misclassifications. The number of problems of each type is shown
in Table 5.1(a); the same results are shown in proportional form in 5.1(b).
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We consider two types of errors: Type 1 (false positive, upper right quadrant) errors,
and Type 2 (false negative, bottom leftquadrant ) errors. The experimental results were
compared when computing the local update with both numeric solvers and with an analytic
solution; both approaches were found to give comparable results.

The choice of iterates used to compute the difference equations was found to have a
significant impact on the results: as only n+1 points are needed but k iterates are available,
there are k!

(n+1)!(k−n−1)! possible choices for points to use, assuming that the most recent point
is chosen as a base. A naive approach in which the n + 1 most recent iterates were used
was found to result in poor numeric conditioning and a large number of Type 1 errors; the
results presented here select the n + 1 iterates to be evenly spaced between iterate 2 and
iterate k.

5.8 Limitations
This algorithm has been tested with constrained and unconstrained QPs of relatively small
dimension, and in development was also tested with linear programs. We have not explored
other problem types (e.g. second-order cone programs, semi-definite programs) where the
Hessian may change over the iterates. We also have not expressly addressed the theoretical
implications of using this on strongly-convex problems (e.g. problems which can be bounded
below by a QP) compared with weakly-convex problems.

High-Dimensional Problems
We have previously assumed that n + 1 iterates are needed to assess the validity of the
x-update step. Where n is large, collecting sufficient iterates may be costly in time or
computation resources. Further, the problem may converge before n+1 iterates are collected
(not a problem if the goal is to prevent convergence-stopping attacks) and the ability to
choose

We consider two scenarios: one where the full set of x-update variables are made public,
and one where only the variables associated with the linking constraint are made public.

All x-variables are public

When all x-variables are made public, the gradient is constructed as:

A ∈ Rp×n

xpub ∈ Rn

(zi − zi−1) ∈ Rm

(yi − ρB(zi − zi−1) ∈ Rp

−AT (yi − ρB(zi − zi−1)) ∈ Rn
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The resulting gradient contains all x-dimensions, but will be rank deficient, having span
Rp and nullspace n− p In this case, each new point gives us n new dimensions, but we also
seek to determine the Hessian in n dimensions and n2 unknowns. We thus need to gather
n+ 1 points.

Only linking dimensions are public

If only linking dimensions are public, the gradient is constructed as:

A ∈ Rp×p

xpub ∈ Rp

−AT (yi − ρB(zi − zi−1)) ∈ Rp

In this case, the gradient estimate fully spans the linking dimensions, and each new point
gives us p new equations. We seek the Hessian in p dimensions and p2 unknowns, thus
needing to gather p+ 1 datapoints.

Either way, we only are able to assess nonconvexity in the linking dimensions, and are
unsure of activity in the other dimensions.

5.9 Extensions

Reducing Error Rates
As described above, the false positive and false negative rates can be reduced by tuning the
algorithm:

• Reducing False Positives: As previously described, false positives result from poor
numeric conditioning in computing the Hessian from the system of difference equations.
Reducing these errors requires testing the condition number of the system of equations,
and potentially also testing the condition number of the resulting Hessian estimate-
both topics which have not been explored here.

• Reducing False Negatives: False negatives occur when the tested set of points do not
indicate a non-convexity; this is most likely to occur when the magnitude of attack
is small relative to the curvature of the x-update function. Reducing this error rate
requires testing a variety of combinations of points in order to maximize the likelihood
of finding a point where magnitude of the attack is large relative to the local curvature
of the function.

Improving Algorithmic Efficiency
We have not explored opportunities to improve the efficiency of the algorithm, but highlight
three opportunities here:
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• Exploiting symmetry in Hessian: We have treated the Hessian as having n2 un-
knowns, but as it is symmetric there are actually only n(n+ 1)/2 independent terms.
Exploiting this structure would mean that only d(n + 1)/2e + 1 points are needed,
but also requires pruning the equation set to avoid over-determining the system of
equations.

• Exploiting problem-specific structure of Hessian: For quadratic programs, the
Hessian matrix is constant throughout the problem, meaning that the difference equa-
tions do not need to be constructed with respect to a single point, but rather can
be constructed using all combinations of points. In this case, we need to only use j
iterates such that

(
j
2

)
> d(n + 1)/2e + 1, allowing the algorithm to be started faster,

and allowing for more robust checking in the case of poor conditioning.

• Choosing point set: If the Hessian is computed multiple times per iteration to
reduce error rates as described above, choosing the iterates wisely can improve numeric
conditioning and reduce the need for extra computations. This has not been explored.

5.10 Extension: Fully-decentralized optimization
As the central information hub, the aggregator in a decentralized optimization problem must
be trusted to provide fair updates to all the nodes. When the aggregator and the local nodes
have the same incentives -e.g. they are all computing resources owned by the same entity-
this is unlikely to present a conflict of interests.

However, when the aggregator has different incentives than the compute nodes, the local
nodes may not trust the central aggregator- e.g. if the aggregator can extract additional
profits by acting as a market maker. Further, aggregator-based decentralized computation is
subject to several other weaknesses: it requires a high communication overhead by coordinat-
ing message-passing between all nodes (a significant hurdle for highly distributed systems like
energy devices), and introduces a central point of failure in the case of communication/power
outage or cyberattack.

To address these issues with aggregator-coordinated decentralized optimization, fully-
decentralized algorithms have been developed which take advantage of problem structure
to achieve consensus between nodes which directly share constraints, rather than passing
information from all nodes to a centralized aggregator [144].
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Figure 5.10: Fully-decentralized optimization problem structure, highlighting two nodes and
noting how this can be indefinitely expanded with the addition of further upstream and
downstream nodes. Each node holds private information on its own objective function,
constraints, and dual variable (e.g. ukx), and accepts updates from its immediate neighbors.

Fully-Decentralized ADMM
As an example, the ADMM algorithm from above can be expressed in fully-decentralized
form by introducing local copies ux and uz of the penalty variables:

xk+1 := argminx∈X f(x) + ρ

2‖Ax+Bzk − c+ ukx‖2
2 (5.8)

zk+1 := argminz∈Z g(z) + ρ

2‖Ax
k+1 +Bz − c+ ukz‖2

2 (5.9)

uk+1
x := ukx + Axk+1 +Bzk+1 − c (5.10)
uk+1
z := ukz + Axk+1 +Bzk+1 − c (5.11)

Under restrictions described in [144], this can be shown to have the same convergence
and optimality guarantees as conventional aggregator-based systems.

In systems where nodes are very sparsely connected, this can produce a significant reduc-
tion in communication overhead- e.g. in power systems we may seek an optimum amongst
millions of nodes, but each node is only connected to its parent and one or two downstream
nodes. Rather than requiring that an aggregator handle millions of connections, nodes pass
messages with their neighbors, ultimately bringing the full system into optimum. For exam-
ples of this approach applied to power systems, see e.g. [145–147].

5.11 Attack Vectors in Fully-Decentralized
Optimization

As nodes in a fully-decentralized network are only connected with their neighbors, they must
assess whether updates represent the true state of the network, or whether the neighbor has
been compromised and the update is spurious. The following sections highlight the unique
challenges of detecting, localizing, and mitigating attacks in a fully-decentralized system, as
shown graphically in Figure 5.11.
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wk = argminw[
Lρ(h(w), xk, ukw)]

xk = argminx[
Lρ(f(x), wk, zk, ukx)]

zk = argminz[
Lρ(g(z), x?k, ukz)]

wk

xk

x?k

zk

(a)

wk = argminw[
Lρ(h(w), x̃k, ukw)]

x̃k 6= argminx[
Lρ(f(x), wk, zk, ukx)]

zk = argminz[
Lρ(g(z), x?k, ukz)]

wk

x̃k

x?k

zk

(b)

w̃k 6= argminw[
Lρ(h(w), xk, ukw)]

xk = argminx[
Lρ(f(x), w̃k, zk, ukx)]

zk = argminz[
Lρ(g(z), x?k, ukz)]

w̃k

xk

x?k

zk

(c)

Figure 5.11: Potential attack scenarios in a fully-decentralized optimization scenario, where
the z-update node is attempting to establish the veracity of a received update x?k. Without
knowing details of the private objective functions f(x), h(w) and constraints x ∈ X , w ∈ W it
is difficult to detect and localize (or mitigate) an attack. The z-update node is not generally
able to determine the difference between the unattacked scenario shown in (a), an attack by
the immediate upstream neighbor x̃k as in (b), and an attack by a node further upstream
such as w̃k as shown in (c).
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Attack Vector: Private Infeasibility Attack
In Section 5.5, we highlighted how a malicious node may distort its private constraints to
shift the equilibrium out of the operationally feasible region.

This attack is not identifiable in a fully-decentralized system, as a node can not in general
discern between the update corrupted by its immediate neighbor

x?k ?= argminx∈X̃Lρ(x, zk−1, wk−1, uk−1
x )

and a best response from a neighbor in reaction to a corrupted signal from the upstream
h(w) node:

x?k ?= argminx∈XLρ(x, zk−1, w̃k−1, uk−1
x )

Alternately, on seeing x?k ∈ {Xpub|zk−1} it is necessary to know wk in order to assess
whether the problem is truly feasible given the full state of the system, x?k ?

∈ {X |wk−1, zk−1}
(this can be extended to more complex system architectures with more upstream/downstream
nodes).

However, in a fully-decentralized system, w is not generally visible to x and so it is not
possible for the z-update node to assess whether x?k ∈ {Xpub|wk}.

This means that detection, localization, and mitigation are all not possible in a con-
ventional fully-decentralized system, as a global information layer is needed to assess the
feasibility of the received updates, identify nodes which may be causing infeasibility, and
construct a best response.

Attack vector: Infeasible Linking Constraint
Similarly, on receiving an update x?k which would violate the linking constraint {Ax?k+Bz =
c|z ∈ Z} the z-update node is not able to discern between an infeasible update created by
a neighboring node:

x?k ?= x?k + εk

and an infeasible signal resulting from a malicious upstream/downstream node:

x?k ?= argminx∈XLρ(x, zk−1, w̃k−1, uk−1
x ) = argminx∈XLρ(zk−1, z, w?k−1 + ε, uk−1

x )

However, if information on public constraints Zpub,Xpub is knowable to all participants,
these constraints can be integrated into the local optimization problems as additional (pub-
licly known) constraints, converting the update step from

xk+1 = argminx∈XLρ(x, zk, uk)

to
xk+1 = argminx∈X ,x∈{Zpub|AT x+BT zk−c}Lρ(x, zk, uk)

This would mean that any update which violates this constraint must be the result of a
malicious node, and the problem can be localized.
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Attack Mitigation

If a feasible solution exists, it must satisfy the constraints:

x? ∈ Z ⊂ Xpub

z? ∈ Z ⊂ Zpub

ATx? +BT z? = c

Therefore, at each step we can project any iterate onto the feasible set described by the
constraints above:

x̂k = argminz∈{Z|AT x+BT z=c}||x?k − z||22
In an unattacked case this projection simply accelerates convergence of the standard ADMM
algorithm.

In the case of attack, projection creates a x̂k ∈ {Z|ATx + BT z = c} which is the best
response to the attack x̃k. While this best response will in general be suboptimal, it is
feasible and will let the primal residual r = Axk + Bzk − c converge to zero even in the
presence of attack.

Attack Vector: Zero-Mean Noise Injection
Because it is only dependent on local information (its own history and updates received from
the neighbors), each node in a fully-decentralized network is able to carry out the detection
strategy outlined in Section 5.6 for identifying the presence of a noise-injection attack.

However, in a fully-decentralized network the node would be challenged to identify
whether the noise injection attack originates from an immediate neighbor, or from an up-
stream node.

Specifically, if h(w) represents the problem solved by the upstream node, the z-update
node cannot differentiate between x?k ?= x?k+δ(k) and x?k ?= argminx∈XLρ(x, zk−1, w̃k−1, uk−1) =
argminx∈XLρ(x, zk−1, w?k−1 + δ(k − 1), uk−1)

5.12 Summary of Security Challenges
Table 5.2(a) highlights the feasibility of achieving these goals in conventional aggregator-
coordinated optimization, and Table 5.2(b) shows the same capabilities in a fully-decentralized
system. We close by exploring approaches for reaching these goals in a fully-decentralized
environment.

Architectures for Security
Although aggregator-based systems present some security and trust issues, the aggregator
is able to take advantage of global information to check the validity of each node’s updates,
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Table 5.2: Security Issues in aggregator-coordinated and fully-decentralized systems

(a) Detection Feasibility on Aggregator-Coordinated System

Detect Localize Mitigate
Private Infeasibility X X X
Linking Infeasibility X X
Noise Injection X X

(b) Detection Feasibility on Fully-Decentralized System

Detect Localize Mitigate
Private Infeasibility
Linking Infeasibility X X
Noise Injection X

enabling detection, localization, and mitigation strategies which are not available in the
fully-decentralized system.

However, if the fully-decentralized system is augmented with a global information layer,
the same security checks become possible in a fully-decentralized environment. In this sec-
tion, we briefly discuss information architectures which could allow a fully-decentralized
system to take advantage of the security benefits of an aggregator-coordinated system.

A number of different architectures might provide this security:

1. A centralized database held by a trusted authority, with security checks computed by
each node

2. A fully-connected network with securely signed messages, in which each node maintains
a database of message history

3. A partially-connected network with bypass connections to allow nodes to bypass suspect
neighbors

4. A decentralized peer-to-peer database with message histories, with security checks
computed by each node

5. A blockchain used as a decentralized database to store the message histories, with
smart contracts used to compute security checks in a decentralized manner.

Option 1 presents trust and monopoly distortion issues described above, in addition to a
high communication overhead. Option 2 requires high computational overhead and will fail
if there are dropouts in communication with part of the network; Option 3 has gained some
attention as a way to approach this while not requiring the same degree of communication
redundancy. The decentralized database in Option 4 is appealing, but requires a method for
reconciling different versions of the database which might be proposed by different neighbors.
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Figure 5.12: Potential architectures for allowing security checks for fully-decentralized opti-
mization algorithms.
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Figure 5.13: Illustration of how a blockchain-based network provides comparable security to
an aggregator-coordinated architecture

Further, both Option 1 and Option 4 do not guarantee that each node conducts the same
security checks.

By contrast, blockchains are decentralized databases which rely on securely signed mes-
sages and a consensus mechanism that simultaneously guarantees consistency across the
network and provides secure timestamping. Smart contracts build on this architecture by
guaranteeing the execution of simple computational functions as part of the consensus mech-
anism, thus guaranteeing consistent execution of security checks.

Figure 5.13 conceptually shows how a blockchain-based system enables the same type
of security checks as are offered by an aggregator system, by providing a cryptographically
secured global information layer with guaranteed execution of the security checks outlined
above.
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5.13 Potential Improvements
Fully-decentralized optimization models are appealing for their computational efficiency, pri-
vacy preservation, low communication overhead, and robustness to communication dropouts.
However, this chapter shows that they are also vulnerable to attacks in which a node is com-
promised and deliberately broadcasts false information, leading the network away from the
true optimum.

This chapter identifies techniques for securing these decentralized optimization problems,
and highlights the need for a global information layer which can check that the updates
provided by each node are feasible given the state of the network.

One technology for providing this global information layer is a blockchain, an emerg-
ing technology for decentralized computation and data storage which can achieve trustless
concensus between nodes.

This trustlessness can not only improve security, but also allow decentralized optimization
models to be used in scenarios where each party has incentives to cheat- for instance by
allowing competitors to collaborate on a statistical estimation problem.

The next chapter applies these techniques along with the previous building blocks to
create a model for secure fully-decentralized optimiation of energy dispatch on a microgrid.
This scalable model computes energy prices endogenously, schedules flexible resources to
minimize costs, and provides security checks through a blockchain and smart contract.
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Chapter 6

Blockchains and Energy Control

The previous chapters have introduced flexible energy resources, optimization models, power
flow models, and security paradigms in computation networks. This penultimate chapter ties
together these different tools, exploring how large fleets of distributed energy resources can
be controlled with a fully-decentralized optimization algorithm which is secured through
smart contracts on a blockchain.

6.1 Introduction and Motivation
The energy production landscape is being reshaped by distributed energy resources (DERs)
— photovoltaic panels, electric vehicles, smart appliances, and battery storage systems,
which provide low-voltage energy services and are often remotely controllable as part of the
Internet of Things. When used intelligently, these DERs can reduce cost, improve reliability,
and integrate renewable resources in the electric grid — features which have led regulators to
introduce policies promoting their adoption [148,149]. However, these new technologies raise
two challenges: a technical challenge of coordinating large numbers of distributed devices,
and an economic and regulatory challenge of incentivizing appropriate participation in energy
services. In this paper, we present a framework for addressing both of these challenges.

Economic hurdle: Decentralized Energy Markets
Currently, payments for DER services must be negotiated with electric utilities, monopo-
lies who may be invested in preserving conventional generation systems. As a result, the
deployment of DERs has often been met with animosity by utilities, which may bar the
participation of DERs or seek monopoly rents in return for access to the distribution infras-
tructure [150,151].

Local distribution markets for energy services have been proposed as a means of efficiently
incentivizing and dispatching DERs, much as is done at the transmission scale [152, 153].
However, such a local distribution market would need to address both the monopoly incentive
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f(x), x ∈ X g(z), z ∈ Z upstream
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Figure 6.1: Sample problem structure, with arrows showing shared variables. Additional con-
nections to upstream and downstream nodes may also be considered. The node computing
g(z), z ∈ Z has been compromised.

issues highlighted above, and also the abuses of market power observed in wholesale energy
markets [154, 155]. These issues would be particularly pertinent in microgrid operation,
which may not benefit from the scrutiny given to a larger utility [156].

Technical challenge: Coordinating large decentralized fleets
Historically, electricity generation has been scheduled by central authorities or independent
system operators, charged with ensuring that network constraints are met. However, these
centralized optimization algorithms do not scale to large numbers generating units, and
thus the deployment of large fleets of DERs has led to interest in decentralized optimization
techniques. In these decentralized optimization models, the problem is broken into a set of
small local problems which can be rapidly solved on distributed computing resources, with
an aggregator bringing the local problems into consensus on a globally optimal solution.

These algorithms map readily to the architecture of the power network, where local
parties have private information on consumption schedules and resource constraints, but
need to achieve consensus on shared constraints such as power flow on the network.

Electricity distribution networks can be very large but are very sparsely connected: each
node is connected to a single parent and a small number of children. In this environment,
requiring all nodes to be connected to an aggregator creates a high communication burden;
to reduce communication requirements fully decentralized models have been developed which
remove the need for an aggregator by achieving consensus between neighboring nodes [147].

However, these approaches require trust between all nodes: without the presence of an
aggregator, individual nodes must fully rely on their neighbors to pass correct information.
In these fully-decentralized models, a compromised node is able to stall convergence on the
network, or lead the system to an infeasible region, as discussed in [157].

Proposed solution: Smart Contracts
We leverage an emerging technology to address both the security and economic trust issues
outlined above: blockchains and smart contracts. Despite extensive use in financial applica-
tions to achieve consensus between non-trusting parties [158], blockchains have seen limited
deployment in the energy space [159] and have not been considered for coordinating DERs
to manage network constraints [160].
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Figure 6.2: Symbolic representation of the data in a blockchain, showing blocks B0 to Bt+1

with detail of block Bt. Blocks are linked by their cryptographic hashes Υ(Bt), securing the
contents from alteration and allowing transparent auditing of system history. Messages M t

i

contain information about changes to the system state, such as energy transfers or payments.

We examine how a blockchain architecture can be used to distribute the aggregator’s role
across all devices on a microgrid network. This integrated architecture is demonstrated on
a blockchain platform controlling a microgrid simulation, and demonstrates how to address
incentive issues while respecting operational constraints.

We structure the remainder of the paper as follows: Section 6.2 provides a brief overview
of blockchains and smart contracts. Section 6.3 provides a survey of previous literature on
dispatch of DERs in microgrids, decentralized optimization techniques, and blockchain use in
energy applications. Section 6.4 presents the formulation of the optimal power flow problem
with DERs and its ADMM equivalent, and Section 6.5 describes the algorithm for utilizing
a blockchain for securing our decentralized problem. We present results from a simulation
network, discuss limitations, and conclude by highlighting additional research opportunities.

6.2 Blockchains and smart contracts
Blockchains are an emerging technology for decentralized computation and data storage,
secured by a combination of cryptographic signatures and a distributed consensus mecha-
nism. Participants on the blockchain network are able to come to universal agreement on
the system state σt at each time step t, even in the presence of cyberattacks, communica-
tion dropouts, and participants joining/departing the network. This is in stark contrast to
conventional architectures where a central coordinator defines the state of the system, but
may be subject to attack or malfeasance.

The general architecture of blockchains is described in [161] and illustrated in Fig. 6.2.
Participants on the peer-to-peer network broadcast messages M t

i , i ∈ (1, . . . ,Nm). These
messages contain commands which affect the state of the system (control actions, account
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withdrawals, etc), and the feasibility of each message can be checked by each node using a
validation function π(σt−1,M t

i ).
Participants listen to the network and collect a set of messages into the contents of the

next block Bt. A block header H is formed which contains the timestamp, a concise crypto-
graphic hash Υ(Bt−1) of the contents of the previous block, and the results of a verification
test that is computationally or economically difficult to forge. The new block is broadcast to
the network, where its validity is checked and nodes reach consensus on the updated state of
the system σt = Π(σt−1, Bt). The utility of blockchains can be significantly expanded when
the state transition function Π(·) can execute computer code embedded in the transmissions
Mi. These smart contracts can be transparently inspected and audited, and are guaranteed
to be faithfully executed on the network.

Recursively linking the contents of blocks, verifying new blocks with peer-to-peer consen-
sus, and using cryptographic signatures to verify communication are the pillars of blockchain
architecture. Together, they provide an immutable and robust representation of system
state- without requiring the intervention of a trusted central authority. While this archi-
tecture introduces some computational overhead, it offers immutability, transparency, and
verifiability which can make the system well suited for coordination between parties who do
not trust each other. We refer the reader to [8,158,160] for additional details on the security,
architecture, and applications of blockchains and smart contracts.

6.3 Prior Literature
This work draws on three bodies of research: control of distributed energy resources, the
economics and regulation of microgrids, and research on blockchains and smart contracts.
We provide a brief summary of relevant literature from each domain.

DER Control
Microgrids are electricity networks which can be controlled autonomously, and may operate
in both grid-connected and self-sufficient modes [162]. Without the benefit of a large bal-
ancing territory, loads and generation must be coordinated carefully and the role of DERs
becomes particularly important. Surveys of approaches to microgrid management can be
found in [163,164].

Conventionally, generation resources have been centrally controlled by a utility or system
operator — but these centralized approaches do not scale well to large numbers of DERs, and
recent research has focused on decentralized algorithms with low computational overhead.
Decentralized algorithms have been explored for coordinating electric vehicles [143, 165],
smart inverters [166], and for fleets of diverse DERs [146,147,167].

Constraints on network voltage and power power flows can become significant at high
DER penetrations, and decentralized models for power flow in distribution systems have
been explored in [145, 168, 169]. As the underlying AC optimal power flow problem (OPF)
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Figure 6.3: Comparison of an efficient market in which the optimal quantity Q∗ is cleared at
price P (Q∗), and a market operated by a monopoly who is able to charge separate prices for
generation and consumption. In this model, the monopoly restricts output toQM , purchasing
energy at C(QM) and charging consumers P (QM).

problem is nonconvex, each of these examines different assumptions or relaxations which
grant computational tractability.

Microgrids and Monopoly Economics
In prior literature, DERs are compensated for providing energy services by an aggregator or
a utility: a central authority who is trusted to act fairly in scheduling generators, satisfying
loads, and rendering payments.

Like conventional electrical utilities, a microgrid operator faces a set of competing de-
mands: minimizing consumer costs, investing in reliability and long-term capacity, and pro-
viding a return for shareholders [170]. Even without owning any assets, such a monopoly
aggregator can have strong incentives to shift the market away from a cost-minimizing equi-
librium and towards a profit-maximizing monopoly outcome, as shown in Figure 6.3. These
conflicts of interest are typically controlled through regulatory intervention, where auditors
scrutinize market outcomes and regulate customer fees [34].

However, when regulatory efforts are expensive, a small degree of market inefficiency
may be less burdensome than regulatory costs [171]. This can create distrust between the
microgrid operator and producers/consumers, who cannot assess whether their bills reflect
monopoly profits or justified costs [148,156].

This trust issue is already visible in the integration of rooftop photovoltaic systems in
distribution networks [150,151], and can be expected to be a greater problem in microgrids
if regulatory scrutiny cannot be efficiently implemented for small systems — for example, if
regulation has a high fixed cost (such as for retaining auditors) [171].
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Figure 6.4: Conceptual models of the decentralized optimization involved in blockchain con-
sensus networks, decentralized optimization problems, and our (novel) combined paradigm.

Blockchains and Energy
Blockchain research is still a new field, with most existing work focused on security and
scalability [158, 160] and few applications for controlling physical devices [8, 172]. Although
blockchains rely on a distributed consensus mechanism to provide security, the parallels with
decentralized consensus algorithms in engineering control and optimization research have not
yet been explored.

While blockchains have been discussed for use in coordinating DERs in transactive energy
markets [5, 173], these works have not considered physical constraints on DER operation –
instead treating DERs as idealized financial assets [174–176]. In reality, any coordination
system must consider the DER’s own constraints as well as the constraints of the distribution
network. Prior literature has not considered methods for addressing these constraints in
blockchain applications.

Novel Contributions
With this background, we see blockchains and smart contracts holding unexplored potential
for eliminating trust issues with microgrid operators, and as a natural platform for coordi-
nating the decentralized optimization schemes described above. The following contributions
extend prior literature, creating the novel optimization paradigm found in Fig 6.4:

• Distributed optimal power flow algorithm with batteries, shapable loads, and deferrable
loads

• Recovery of distributed locational marginal prices from a decentralized OPF problem

• Use of a blockchain for coordinating devices with operational constraints

• Use of a blockchain to facilitate the aggregator step of a decentralized optimization
algorithm
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6.4 Optimal Dispatch Formulation
We consider a microgrid with a dispatchable central generator, uncontrolled plug loads, non-
dispatchable renewable energy resources, shapable loads (e.g. electric vehicles), deferrable
loads (e.g. appliances), and batteries. We consider a day-ahead scheduling problem, with
the objective of minimizing cost of energy provision subject to the operational constraints
of the DERs and of the distribution network.

Note that in formulating the equations our variables are italicized, constants are non-
italicized, and sets are denoted by calligraphy.

Network Model
The distribution network is modeled as an undirected radial graph G(N , E), consisting of a
set of nodes N and a set of distribution lines (a.k.a. edges) E connecting these nodes. Using
the notation described in [177], we index the nodes in N by i = 0, 1, . . . , n, where node 0
represents the root node (substation) and other nodes in N represent branch nodes. We also
denote a line in E by the pair (i, j) of nodes it connects where j is closer to the feeder 0. We
call j the parent of i, denoted by π(i), and call i the child of j. Denote the child set of j as
δ(j) := {i : (i, j) ∈ E}. Thus a link (i, j) can be denoted as (i, π(i)).

For each line (i, π(i)) ∈ E , let zi = ri + ixi be the impedance of the line, let Ii be the
complex current flowing from nodes i to π(i), and Si = Pi+iQi be the complex power flowing
from nodes i to π(i). On each node i ∈ N , let Vi be the complex voltage, and si = pi + iqi
be the net complex power injection. We assume the complex voltage V0 at the substation
node is given and fixed. We define li := |Ii|2, vi := |Vi|2.

We model power flow on the network using the branch flow equations, first proposed
in [178], which reflect a balanced single-phase radial network.

pi = Pi −
∑
k∈δ(i)

Pk + rili, i = 0, . . . , n (6.1a)

qi = Qi −
∑
k∈δ(i)

Qk + xili, i = 0, . . . , n (6.1b)

vi = vπ(i) + 2(riPi + xiQi)− (r2
i + x2

i )li, i = 1, . . . , n (6.1c)

li = P 2
i +Q2

i

vi
, i = 1, . . . , n (6.1d)

where S0 = 0 + i0 at the slack bus. Equations in (6.1) define a system in the variables
(P,Q, l, v) := (Pi, Qi, li, vi, ∀ i ∈ N ), which do not include phase angles of voltages and
currents. Given (P,Q, l, v), phase angles can be uniquely determined for radial networks
[179].

The final equation (6.1d) forms a non-convex set. It is relaxed to an inequality, which
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yields a second-order cone constraint:

li ≥
P 2
i +Q2

i

vi
⇐⇒

∥∥∥∥∥∥∥
2Pi
2Qi

li − vi

∥∥∥∥∥∥∥
2

≤ li + vi (6.2)

In addition to the power flow equations, we also consider constraints on voltage magnitude
on the network. These typically bound voltage within ±5% of a nominal voltage.

vi ≤ vi ≤ vi, i = 1, . . . , n (6.3)

Controllable DERs
We consider a set of energy resources with complex injections/withdrawals s placed at nodes
i throughout the microgrid network, denoted as follows:

sgi Dispatchable generators sui Uncontrollable loads
sri Renewable generators sdi Deferrable loads
sbi Stationary batteries ssi Shapable loads

The net complex injection at a node i in period t is

si(t) = sgi (t)− sli(t), i = 0, . . . , n (6.4)

where
sli(t) = sui (t) + sdi (t) + ssi (t)− sbi(t)− sri (t) (6.5)

Dispatchable generators (e.g. microturbines, diesel generators, fuel cells) are considered to
have quadratic increasing cost, which may be time-varying:

Ci,t(sgi (t)) = αi,tsgi (t)
2 + βi,ts

g
i (t) + γi,t (6.6)

Power injection from renewable generators is considered to be deterministic and have no
marginal cost Ci,t(sri (t)) = 0. Power withdrawals due to uncontrollable loads (lights, plug
loads) are considered deterministic, inflexible, and inelastic. We do not model thermostati-
cally controlled loads or smart inverters, though those can be added to the formulation using
the approaches in [180] and [145] respectively.

Stationary batteries are modeled as dispatchable loads which can be controlled to with-
draw power (sbi < 0) or inject power (sbi > 0). We assume charging efficiency ηi,in, and
discharging efficiency ηi,out. We assume that the battery should not undergo a net discharge
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of more than ε over the course of the dispatch period.

∀t = 1 . . .T :
sbi(t) = dbi(t)− cbi(t) (6.7a)
0 ≤ cbi(t) ≤ Pb

i,charge (6.7b)
0 ≤ dbi(t) ≤ Pb

i,discharge (6.7c)
Eb,min ≤ Eb(t) ≤ Eb,max (6.7d)
Eb
i (t) = Eb

i (t− 1) + cbi(t)∆tηi,in − d
b
i(k)∆t/ηi,out (6.7e)

(1 + ε)Eb
i (1) ≤ Eb

i (T) ≤ (1− ε)Eb
i (1) (6.7f)

Shapable loads (e.g. electric vehicles with continuous charging levels, continuously vari-
able fans) are modeled as having net energy demand Es

i,demand, and must be charged between
times ti,startby and ti,endby:

Ps
i,min ≤ ss(t) ≤ Ps

i,max ∀t = 1 . . .T (6.8a)
T∑
t=1

ss(t) = Es
i,demand (6.8b)

ssi (t) = 0 ∀t = 1, . . . , ti,startby (6.8c)
ssi (t) = 0 ∀t = ti,endby, . . . ,T (6.8d)

Deferrable loads are considered to have some flexibility in their start time, but a defined
load profile l(τ) ∀ τ = 1, . . . , L once started (e.g. appliances, manufacturing equipment).
Following on the work in [146], we model the minimal starting time of the load as an arrival
process a(t), and the actual starting time as a departure process d(t), where each of these
variables takes the value 0 until the time of the request arrival/departure, at which point it
takes the value 1. If the device can be started at most ζ time steps after the arrival request,
we can formulate the constraints on our decision variable d(t) as

∀t = 1 . . .T :
0 ≤ di(t− 1) ≤ di(t) ≤ ai(t) (6.9a)
ai(t− ζ) ≤ d(t) (6.9b)
di(t) ∈ (0, 1) (6.9c)

Following [146] to formulate a matrix Φ which convolves the departure process d(t) into
a power consumption profile sd = Φd, we can relax the binary constraint to allow scheduling
to be expressed as a linear problem.

Optimal Power Flow
We consider the problem of maximizing social welfare in the network over a day, which
amounts to scheduling the controllable loads to minimize generation cost, while respecting
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network constraints. This problem is commonly known as economic dispatch, one of a family
of optimal power flow (OPF) problems. It is formulated as follows:

min
T∑
t=1

n∑
i=1

Ci,t(sgi (t)) (6.10a)

s.t. (6.1a), (6.1b), (6.1c), (6.2), (6.3), (6.4), t = 1, . . . ,T (6.10b)
(6.7)i, (6.8)i, (6.9)i, i = 1, . . . , n (6.10c)

over sgi (t) ∈ [sgi , s
g
i ], i = 0, . . . , n, t = 1, . . . ,T

(Pi, Qi, li, vi)(t), i = 1, . . . , n, t = 1, . . . ,T

where constraints (6.7)i, (6.8)i, (6.9)i, are specific to each node i = 1, . . . , n, depending on
the resources at that node.

In order to compensate the DER operators for their services and charge consumers for
withdrawals, we want to compute nodal clearing prices, known as distributed locational
marginal prices (DLMPs). The DLMP at a node represents the marginal cost to supply
an additional unit of real power at that node. We denote the DLMP at node i as λi, and
they can be found as the dual variables associated with the real power balance constraint
(6.1a). As described in [177], the DLMP can be decomposed into contributions from energy,
line losses, and voltage congestion.

Decomposition with ADMM
The Alternating Direction Method of Multipliers (ADMM) has gained popularity as a tool
for decomposing difficult convex optimization problems into a set of simpler subproblems,
coordinated through an aggregator step [4]. While convergence may be slow, the simplicity
of the aggregator step and the guarantee of global optimality make the algorithm compelling
for DER coordination. For examples of ADMM applications in various models of optimal
dispatch problems, see [145,147,169,181].

In the canonical ADMM problem, we consider a minimization problem with separable
objectives and constraints in vectors x and z:

min
x,z

f(x) + g(z)

s. to: x ∈ Kx, z ∈ Kz
Ax+Bz = c

We can form the augmented Lagrangian:

Lρ(x, z, ξ) := f(x) + g(z) + ξ>(Ax+Bz − c) + ρ

2‖Ax+Bz − c‖2
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This then decomposes into the general form of ADMM:

xk+1 = arg min
x∈Kx

Lρ(x, zk, ξk) (6.11a)

zk+1 = arg min
z∈Kz

Lρ(xk+1, z, ξk) (6.11b)

ξk+1 = ξk + ρ(Axk+1 +Bzk+1 − c) (6.11c)

When decomposing a problem into subproblems for solution with ADMM, it is useful
to think of x and z in the above as local and global variables respectively. Local variables
only pertain to their respective subproblems, whereas global variables couple subproblems
together and must be agreed upon at the global optimum, reaching a distributed consensus
among subproblems. An intuitive way to formulate this is to give each subproblem its own
copy of any coupling variables, and then try and make these copies agree.

The economic dispatch problem of (6.10) can be reformulated in this way by forming
an individual subproblem at each node, whose solutions are made to coincide at the global
optimum through copied local coupling variables. Each subproblem has its own copy of the
relevant global coupling variable, and consensus on their value is achieved among subprob-
lems through the ADMM algorithm. The subproblem of node i takes the following form,
where for clarity we have omitted the time index from each nodal variable.

min
T∑
t=1

Ci,t(sgi (t)) (6.12a)

s.t. pi = Pi −
∑
k∈δ(i)

Pk + rili, t = 1, . . . , T (6.12b)

qi = Qi −
∑
k∈δ(i)

Qk + xili, t = 1, . . . , T (6.12c)

vi = vπ(i) + 2(riPi + xiQi)− (r2
i + x2

i )li, t = 1, . . . , T (6.12d)

li ≥
P 2
i +Q2

i

vi
(6.12e)

(6.7)i, (6.8)i, (6.9)i (6.12f)
over sgi ∈ [sgi , s

g
i ], sbi , sdi , ssi

(Pi, Qi, li, vi), (Pδ(i), Qδ(i), vπ(i))

We first define a set of global variables z := [P>, Q>, v>]> ∈ R3n, a set of private local
variable xi := [sgi , sbi , sdi , ssi , li]>, and a set of coupling local variables x̃i = [P>i , Q>i , v>i , P>δ(i), Q>δ(i), v>π(i)]>.
We see that each subproblem i is coupled to other subproblems through the coupling local
variables x̃i, each of which is a selection of the components of the global variable z. Using
notation from [4], the mapping from local variable indices into the global variable index
can be written as g = G(i, j), which means that local variable component (x̃i)j corresponds
to global variable component zk. Achieving consensus between the local variables and the
global variable means that

(x̃i)j = zG(i,j),∀i, j (6.13)
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We can equivalently define a selection matrix Bi, such that, z̃i = Biz, and at the optimum

x̃i −Biz = x̃i − z̃i = 0 (6.14)

At each iteration k, each node i, receives z̃ki from the central aggregator, and solves

min
T∑
t=1

Ci,t(si,t) + ξk>i (x̃i − z̃ki ) + ρ

2‖x̃i − z̃
k
i ‖2

2

s.t. (6.12)
over xi, x̃i

(6.15)

The node then sends its new x̃k+1
i to the central aggregator, who computes the following

update for each individual global variable zk+1
g

zk+1
g := 1

ρ
ξki + 1

kg

∑
G(i,j)=g

(x̃k+1
i )j (6.16)

where kg is the number of local variable entries that correspond to global variable entry zg.
The update can be thought of as taking the average of all local copies of the global variable.
The central aggregator then updates ξki as

ξk+1
i = ξki + ρ(x̃k+1

i − z̃k+1
i ) (6.17)

We define the stopping criteria using the following residuals

rki = x̃ki − z̃ki , sk = zk − zk−1 (6.18)

Defining rk := [rk1 , . . . , rkn], the algorithm is determined to have converged when the both the
following conditions are met

‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual (6.19)

where εpri, εdual are suitably defined tolerances, and can be set using methods described
in [4].

Fully-decentralized Decomposition
This approach can be extended using the fully-decentralized ADMM structure described
in [144], which has been used in [146] and elsewhere for modeling a fully-decentralized ADMM
model for control of energy resources in a distribution network.

As we consider radial distribution networks with no loops, we can create a bipartite
labeling, where each node is an x-node surrounded by z-nodes, or vica versa. As discussed
in [144] this is used for ordering our updates and creating a guarantee of convergence.
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Rather than receiving a global variable estimate z from the aggregator, each x-node
receives variable updates from its parent π(i) and children δ(i), which we can collect into a
variable representing all of its neighbors’ estimates, zi. At optimality, the local local shared
variables must match the neighbors’ estimates, creating the linking constraint xi = zi.

The full-decentralized ADMM algorithm can then proceed as a set of updates conducted
at each of the x-nodes:

xk+1
i = arg min

xi∈Kxi

Lρ(xi, zki , uki ) (6.20)

Note that this is the same as the x-update step in 6.11 and 6.15, but using the local
coupling variables zi and a local penalty term ui computed by each node, rather than a
global penalty computed by the aggregator.

These updated estimates for the x-nodes are then broadcast to neighbors, which will all
be z-nodes thanks to the bipartite labeling. The z-update then proceeds as:

zk+1
i = arg min

zi∈Kzi

Lρ(xk+1
i , zi, u

k
i ) (6.21)

Finally, each node updates a local penalty ui for deviations from the linking constraints.

uk+1
i = uki + ρ(xk+1 − zk+1) (6.22)

As in the aggregator-coordinated problem, the iterates are halted when the dual and pri-
mal residuals are below the acceptable threshold. In implementation, the fully-decentralized
version was found converge significantly faster than the aggregator-secured system.

6.5 Blockchains and ADMM
We have formulated an optimal scheduling program for distributed energy resources through
a decentralized algorithm. However, this only addresses part of the microgrid operation
problem, and still has notable weaknesses:

• The aggregation step is not guaranteed against cyberattack or tampering by partici-
pants

• Individual DERs/consumers cannot verify that they are being paid/billed at fair prices

• Payments for actual generation/consumption will still be handled by a central utility



CHAPTER 6. BLOCKCHAINS AND ENERGY CONTROL 100

repeat
Pi: Private Optimization, compute locally

Gather private constraints
Compute x̃i and send to smart contract S1

S1: Security Smart Contract, on blockchain
Check x̃i for feasibility
If attack detected, flag node i & adjust x̃i
Update u
if ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual then

Compute final schedule and clearing prices
Send schedule to S2

end
until ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual

Mi: Each Smart Meter
Record energy consumption
Send time-stamped & signed consumption to S2

...time progresses
S2: Billing contract, on blockchain

Compare schedule from S1 with meter readings
Compute penalties, payments, and charges
Transfer payments between accounts

Algorithm 1: Computational elements in the microgrid control system. Function Pi is executed
locally by each device participating in the market. The results are passed to the smart contract S1,
which serves as publicly verifiable ADMM aggregation step. Pi and S1 iterate back and forth until
ADMM converges, at which point the schedule is saved to the billing smart contract S2. Smart meters
send trusted meter readings to S2, which computes payments and automatically transfers funds from
consumers to generators.

As an alternative, we propose to leverage the benefits of a blockchain architecture to
create a fully peer-to-peer system which guarantees both operational feasibility and fair
payments to all parties while taking full advantage of the decentralized structure of the
problem, as discussed in [157].

As discussed in Section 6.2, blockchains provide a method for providing a transparent,
trustless platform for data storage and computation. This makes a blockchain the perfect
platform for conducting the aggregation step of ADMM, allowing all participants to audit the
progress of the algorithm, the accuracy of the solution, and the veracity of their scheduled
commitments. Further, ADMM is a natural fit for implementation on a blockchain, as it
guarantees convergence yet has a computationally cheap aggregation step (minimizing the
burden of verification).

Algorithm 1 provides an outline of the sequence of events in our proposed blockchain-
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Figure 6.5: The 55-bus sample microgrid test feeder used in the simulation, with a micro-
turbine placed at Bus 1 and DERs randomly distributed throughout the network.

based system. In it, we use the blockchain to (i) track the progress of variable updates, (ii)
compute security checks on the proposed variable updates, (iii) store the resulting sched-
ule, and (iv) compute payments and penalties for actual generation/consumption. Any
participant can verify that the schedule maximizes social benefit while respecting network
constraints, removing the possibility of monopolistic price manipulation.

This immutable record can also become the basis for reckoning payments if smart meters
send consumption data to a billing contract S2 which computes credits and debits for each
node in the network and securely saves the updated account balance to the blockchain. Paired
with a cryptocurrency as discussed in [158], this can form a complete payment system —
removing the need for a utility or microgrid operator to handle scheduling and billing.

6.6 Implementation: Test network
We implement the proposed algorithm on a simulated Southern California Edison 55-bus test
network shown in Fig. 6.5 with parameters described in [182]. Bus 1 is used as the reference
bus, and is equipped with a large microturbine generator with quadratic cost function (this
could also represent a connection to a utility grid). Each node has a deterministic load
profile, created by adding a uniform random variable to the average uncontrollable load
signal seen in Figure 6.6. We randomly placed solar arrays at 60% of the buses, and assume
a deterministic solar generation profile. We place deferrable loads at 70% of the buses,
with earliest start times randomly distributed between hours 7:00-11:00; these represent
appliances and industrial equipment. Shapable loads are also randomly placed at 70% of
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Figure 6.6: Schedule of commitments generated by the ADMM algorithm and stored to
the smart contract. Positive values of power indicate real power consumption, and negative
values indicate generation/injections.

the buses, with net energy demand generated from a uniform random variable that is up
to 10 times the peak power consumption of the uncontrollable loads; these are intended to
represent electric vehicle loads. The time constraints are randomly generated such that the
shapable loads begin self-scheduling as early as 10:00, and can continue to draw power as
late as hour 24:00. Batteries are placed at each bus, with a power capacity of 50% of peak
controllable load at the bus, and with a 4 hour energy storage capacity.

We use a private Ethereum Homestead blockchain test network [183], and Python/CVXpy
[184] to run the private optimization problems. Remote procedure calls through EthJsonRpc
allow the Python scripts to communicate with the smart contracts.

Results and Discussion
The ADMM algorithm converged in 204 iterations, using ρ = 100, εpri = 10−3, εdual = 0.1,
with each iteration taking at most 1.2s to compute. The optimal cost of the distributed
solution was 0.4% larger than the welfare-maximizing centralized OPF solution.

The average power consumption across all nodes is shown in Fig. 6.6. The power con-
sumption profiles of individual nodes primarily differ in the temporal constraints, size of sha-
pable load, and presence or absence of solar. The deferrable and shapable loads self-schedule
to coincide with solar generation, while the battery charges and discharges to smooth net
load.

The impacts of network topology can be seen in the voltage of each bus, shown in Figure
6.7. Since there are no current flow constraints, at optimality the upper voltage limit at the
generator bus (#1) becomes the binding constraint; the voltages at each of the other buses
decrease with distance from the feeder due to line effects (the critical link between bus 4 and
20 can be clearly seen). General trends in voltage over the course of the day are visible, with
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Figure 6.7: Voltage magnitude at each of the buses on the test network, for each hour in the
simulation. Voltages vary based on local injections, and variations in time can be seen due
to the impacts of local DER scheduling.

a significant drop in hour 18 when the setting sun and peaking uncontrollable load leads to
a spike in net load throughout the network. Upon closer inspection, the impacts of DER
scheduling are also visible at some buses (e.g. 38, 48.49) as appliances and EVs switch on
and off.

The distributed marginal prices are not shown here for brevity, but can be easily calcu-
lated from the net load supplied by the central generator (other resources are inframarginal).
We found very little variation in DLMPs between buses (variance of <1% of hourly DLMP),
reflecting a lack of binding line constraints on this small network.

Security and attacks
To understand the potential vulnerabilities of a fully-decentralized ADMM algorithm, we
consider two attack vectors, similar to those described in [157]:

• Convergence-stalling attack

• Operational infeasibility attack

To simulate an attack, we randomly designated 20% of the nodes as attackers, and
examined system performance under the attack. We compare system performance in three
scenarios: the original unattacked system, the attacked system without security checks, and
the attacked system with security checks provided through a smart contract on the Ethereum
blockchain as described above.

In the first attack mode, a compromised node broadcasts updates which are known to
be infeasible for its neighbors, i.e. zk ∈ {z 6= x∀x ∈ X}. By presenting these updates, the
attacker prevents convergence of the primal residual, arbitrarily delaying the system and
preventing a schedule from being issued by smart contract S1. To simulate this, attacked
nodes broadcast a voltage estimate of 0.90, outside of the allowable range of [0.95, 1.05]. In
the unsecured system, the unattacked nodes are unable to achieve primal feasibility of the
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Figure 6.8: Convergence of the fully-decentralized ADMM algorithm under 3 modes of op-
eration: normal operation (no compromised nodes), under the presence of attack from a
node which is conducting a convergence-stalling attack, and under attack but secured with
blockchain-based security checks.

coupling constraint Aix̃i = Bizi, and the primal residual remains outside of the convergence
tolerance. This is shown in Figure 6.8, which shows the average value of the primal residual
across all nodes in the network over the iterations of the ADMM protocol.

In the blockchain-secured system, the smart contract S1 checks that all variable updates
are feasible, and projects any infeasible (i.e. attacked) updates onto the known feasible set
for the shared variables. This allows us to guarantee that the secured system can achieve
convergence even in the face of attack. The blockchain-secured system is found to converge
at the same rate as the original unattacked system, as the smart contracts lets us guarantee
that all updates are feasible.

The second attack mode considers a compromised node which solves a private problem in
which the private constraints have been modified to result in an optimum which is outside
the original constraint set, i.e. xi 6∈ Kxi

. In a fully-decentralized system, this attack may
not be detectable by individual nodes, as bounds on the feasible set Kxi

may be dependent
on the upstream/downstream conditions of the node- in our case, the y are dependent on
the upstream state of power flows in the system.

We simulate this second attack mode by introducing ‘phantom’ generation capacity at
each of the attacked nodes. The attacked nodes thus replace Equation 6.4 with

si(t) = sgi (t) + spi − sli(t), i = 0, . . . , n (6.23)

where spi is the phantom generation, which is assumed to be three times the peak uncontrol-
lable load, spi = k ∗ max(sui ), k = 3. Detecting this attack requires being able to compare
the promised net injection si(t) with known bounds on the node’s injection capacity Si and
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Figure 6.9: Scheduled voltage magnitude at each of the buses on the test network at each hour
in the simulation, under three operating scenarios: normal operation (no nodes attacked),
attacked by a malicious node which solves a privately infeasible problem, and a blockchain-
secured algorithm. The security checks enabled by the blockchain system allow the network
to reach a safe equilibrium in the presence of attack.

projecting the proposed update onto the feasible set Si if an attack is detected. This is
not feasible in a fully-decentralized system, as computing si(t) requires sharing knowledge
between all of a node’s neighbors.

In the unsecured system, the attacked nodes then pass their shared variables to upstream
and downstream nodes, leading the system to an operating schedule which is dependent on
this phantom generation capacity. In operation, this could lead to violations of line flow
or nodal voltage constraints, as the system struggles to make up for the missing generation
capacity. We note that this is only one of many possible ways that the private constraints
might be attacked- other attack modes might be to overstate/understate the power demand
of deferrable and shapable loads or shift expected load times.

While convergence is not affected under this mode of attack, the operational performance
will be impacted. We simulate this by taking the scheduled generation sent to S2, and
simulating performance of the system under this schedule. Imbalances from the schedule can
result in nodal voltage violations, possible violation of line flow constraints (not considered
here), or increased costs from importing additional power to the microgrid.

Figure 6.9 shows the nodal voltages which are expected in the unattacked, attacked, and
the attacked but blockchain-secured scenarios. We see significant voltage deviations under
the attacked scenario, pushing the system towards violation of the nodal voltage constraints.
Under the blockchain-secured scenario, the system arrives at a schedule which mitigates these
deviations, within the bounds possible given the limited public knowledge on the constraint
set Si. For a more detailed discussion of the capabilities and weaknesses of the blockchain-
based security system, see [157].



CHAPTER 6. BLOCKCHAINS AND ENERGY CONTROL 106

6.7 Limitations
The communication overhead required for ADMM and the verification delay required for a
blockchain may limit this approach to use for day-ahead scheduling, while secondary and
tertiary control is served by conventional approaches. We envision a blockchain-based eco-
nomic scheduling layer (described here) operating in tandem with a real-time control layer
operating at much faster time scales to address real-time imbalances.

As formulated, the local optimization problem holds the device constraints, thus preserv-
ing a degree of privacy for the energy consumers. However, the common variables include the
expected energy schedules, and the blockchain publicly holds the commitments and delivered
power information, effectively making smart meter data public knowledge. This may be a
barrier for deployment in some applications, but we expect that in isolated microgrids and
grid extension projects this condition would be acceptable. We are exploring the potential
of using zero-knowledge proofs [185] as a method for creating data confidentiality while still
preserving guarantees of convergence and optimality.

While the ADMM and D-ADMM algorithms offer guarantees of convergence, waiting for
variable updates to be registered on the blockchain introduces an additional delay into each
iteration. On the Ethereum network, default block formation time is set to be approximately
15s, creating a limit on the total speed in which an operating schedule can be formulated
(100 iterations would take at least 25 minutes). The parameters of the blockchain can be
adjusted to increase block creation rate [186], but this must be balanced with the latency in
the rest of the network to prevent forks in the blockchain.

While this paper envisions each building’s smart meter acting as a computational node in
the blockchain network, alternate configurations may use devices, feeders, or substations as
nodes. In each of these implementations, we assume that the network topology is fully known
by all parties, and have not considered changes in line impedances (e.g. due to temperature
changes) or in topology (e.g. due to outages).

This paper relies on previous work for proofs of the security, transparency, and robustness
of blockchain-based systems (see e.g. [161,186]), and in future work we will explore the specific
security concerns of the microgrid system outlined here.

6.8 Conclusions
We have shown how decentralized consensus techniques and blockchains can be used both
to coordinate the scheduling of distributed energy resources on a microgrid, and to guaran-
tee fair payments without requiring a utility or centralized microgrid aggregator. By using
ADMM, we decompose our problem into a structure that naturally lends itself to a blockchain
implementation, and show how blockchains and smart contracts can provide a natural solu-
tion for the trust, security, reliability, and immutability requirements of microgrid operation.
We show the results are equivalent to a welfare-maximizing centralized dispatch with per-
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fect insight into device constraints, yet avoid the risk of monopoly price manipulation and
privacy concerns.

The proposed architecture can be improved with contributions from active areas of con-
trol research: addressing stochastic/uncertain data through model predictive control and
robust optimization, examining resilience to network interruptions, utilizing fully distributed
ADMM between nodes to reduce communication overhead, and developing fault detection
algorithms to identify fraud and changes in system architecture.

While this is the first paper (to our knowledge) to examine the integration of blockchain
with distributed optimization of energy systems, we expect that many other applications
are possible, both within the energy sector and in other engineering realms. Blockchain’s
distributed consensus mechanism has proven itself in the finance world by guaranteeing
robust, trustless, and transparent execution; we highlight similar benefits for controlling
physical devices. We see blockchains and smart contracts as a key technology that enables
distributed optimization amongst non-trusting entities, at all scales of operation.

6.9 Potential Improvements
While this demonstration culminates our research, it should not be viewed as the canonical
or definitive example in this space. This new framework for blockchain-secured decentralized
optimization can be applied to a wide variety of constrained optimization problems both in
the energy management space and beyond, preserving the flexibility of the underlying convex
optimization tools.

Many extensions to the model proposed here are possible, and could extend the variety
of devices which can be integrated, the structure of the energy market and the network
flow model, and improve convergence time. Additional research in the blockchain structure
would be helpful to improve scalability to larger networks, create resilience to sharding and
local blackouts, and reduce the network communication requirements and time to achieve
consensus on the network state.

From discussions with utilities and industry leaders in the blockchain-energy space, we
would expect that this approach will be most valuable in markets with high energy prices,
high penetration of intermittent renewables and controllable energy loads, distribution con-
straints, and a restructured retail market for electricity. Wider adoption is not expected in
the next 3-5 years.



108

Chapter 7

Conclusion

This dissertation has brought together tools from the fields of optimization theory, economics,
power systems, and cybersecurity to develop a new framework for secure fully-decentralized
computing in constrained systems. We have gradually introduced relevant tools over the
preceding chapters to create a toolkit with which the reader can launch into additional
research that can improve the operation of energy markets and particularly the integration
of decentralized energy resources.

While we conclude our discussion with a blockchain-secured microgrid optimization model
that ties together the different topics of the research, this should not be viewed as the
canonical or definitive example in this space. This new framework for blockchain-secured
decentralized optimization can be applied to a wide variety of constrained optimization
problems both in the energy management space and beyond, preserving the flexibility of the
underlying convex optimization tools.

Given the challenges of using smart contracts to verify that physical operations have
been carried out as promised (e.g. that power was generated, and that hardware was not
hacked), it is quite likely that this framework will see earlier deployment in machine learning
or statistical estimation tasks between untrusting parties. However, by first proving that
this system is feasible for systems with more complicated constraint sets, we hope to pave
the path for future deployments in the energy space.

As blockchain technology evolves, we see great potential for unifying the decentralized
consensus model used for blockchain security with the decentralized consensus models being
explored in power system optimization. Additional research may focus on proving the scal-
ability, convergence, and speed of these systems, particularly in an environment where full
network information (e.g. network topology, circuit breaker status) is not readily obtained.
This research should provide good fodder for future exploration.
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[55] B. P. Lechêne, M. Cowell, A. Pierre, J. W. Evans, P. K. Wright, and A. C. Arias,
“Organic solar cells and fully printed super-capacitors optimized for indoor light energy
harvesting,” Nano Energy, vol. 26, pp. 631–640, Aug. 2016.

[56] D. Lee, G. Dulai, and V. Karanassios, “ Survey of energy harvesting and energy
scavenging approaches for on-site powering of wireless sensor- and microinstrument-
networks,” SPIE Defense, pp. 87280S–87280S–9, May 2013.

[57] V. Srinivasan and J. Weidner, “Mathematical Modeling of Electrochemical Capaci-
tors,” Journal of The Electrochemical Society, vol. 146, pp. 1650–1658, Nov. 1999.

[58] Y. V. Makarov, P. Du, M. C. W. Kintner-Meyer, C. Jin, and H. F. Illian, “Sizing
energy storage to accommodate high penetration of variable energy resources,” IEEE
Transactions on Sustainable Energy, vol. 3, no. 1, pp. 34–40, 2012.

[59] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, “Estimating the value of electric-
ity storage in PJM: Arbitrage and some welfare effects,” Energy Economics, vol. 31,
pp. 269–277, mar 2009.

[60] H. Mohsenian-Rad, “Coordinated Price-Maker Operation of Large Energy Storage
Units in Nodal Energy Markets,” IEEE Transactions on Power Systems, 2015.

[61] Department of Energy, “DOE Global Energy Storage Database.”

[62] M. Korpaas, A. T. Holen, and R. Hildrum, “Operation and sizing of energy storage
for wind power plants in a market system,” International Journal of Electrical Power
& Energy Systems, vol. 25, pp. 599–606, oct 2003.

[63] E. D. Castronuovo and J. a. P. Lopes, “Optimal operation and hydro storage sizing
of a wind-hydro power plant,” International Journal of Electrical Power and Energy
System, vol. 26, no. 10, pp. 771–778, 2004.

[64] T. K. a. Brekken, A. Yokochi, A. V. Jouanne, Z. Z. Yen, H. M. Hapke, and D. a.
Halamay, “Optimal energy storage sizing and control for wind power applications,”
IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp. 69–77, 2011.

[65] Y. Ru, J. Kleissl, and S. Martinez, “Storage Size Determination for Grid-Connected
Photovoltaic Systems,” IEEE Transactions on Sustainable Energy, pp. 1–14, 2012.



BIBLIOGRAPHY 114

[66] S. H. Madaeni, R. Sioshansi, and P. Denholm, “How thermal energy storage enhances
the economic viability of concentrating solar power,” Proceedings of the IEEE, vol. 10,
pp. 335–347, 2012.

[67] E. Drury, P. Denholm, and R. Sioshansi, “The value of compressed air energy storage
in energy and reserve markets,” Energy, vol. 36, no. 8, pp. 4945–4973, 2011.

[68] X. Xi, R. Sioshansi, and V. Marano, “A stochastic dynamic programming model for
co-optimization of distributed energy storage,” Energy Systems, vol. 5, pp. 475–505,
2013.

[69] California Independent System Operator, “Open Access Same-time Information Sys-
tem (OASIS).”
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Appendix A

Decentralized Security- Analytic
Solution

A.1 Analytic Solution Notes
The x-update step is an unconstrained quadratic program, and can be solved analytically.
For clarity, we let γ = Bzk + uk and proceed as:

xk+1 = argminx xTPx+ cTx+ ρ

2 ||Ax+ γ||22

xk+1 = argminx xTPx+ cTx+ ρ

2(Ax+ γ)T (Ax+ γ)

xk+1 = argminx xTPx+ cTx+ ρ

2(xTATAx+ 2γTAx+ γTγ)

0 = ∂

∂x

(
xTPx+ cTx+ ρ

2(xTATAx+ 2γTAx+ γTγ)
)

0 = 2Px+ c+ ρATAx+ ργTA

0 = (2P + ρATA)x+ c+ ργTA

x = (2P + ρATA)−1(−c− ργTA)

Similarly, the z-update step can be solved analytically by letting µ = Axk+1− c+uk and
following a similar process to find:

zk+1 = (2Q+ ρBTB)−1(−d− ρµTB)

These analytic solutions are used in our implementation to avoid inaccuracies induced
from a numeric solution.

Comparison with Central Solution
Because the problem is an unconstrained QP and entries with consensus between a subset
of variables, a centralized solution can be computed by composing the cost matrices into a
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single quadratic problem which can be solved analytically. This is shown here for the case
where c = 0 and A and B are composed as described above, but also can be computed for
other A,B.

We break P and Q into sub-matrices dependent on the number of consensus constraints
p, where P11, Q00 ∈ Rp×p and the other dimensions follow accordingly.

P =
[
P00 P01
P10 P11

]

Q =
[
Q00 Q01
Q10 Q11

]

Π =

 P00 P01 0
P10 P11 +Q00 Q10
0 Q10 Q11


Similarly, the c and d vectors can be combined as

κ =

 c0
c1 + d0
d1


The problem can then be expressed as an unconstrained minimization problem:

minw wTΠw + κTw

which is solved by w∗ = −1
2(ΠT )−1κ

This central solution was used only for verification.
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