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Abstract

Animating Viscoelastic Fluids

by

Tolga Gokce Goktekin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James F. O’Brien, Chair

In this thesis we describe a technique for animating the behavior of viscoelastic fluids such
as mucus, liquid soap, pudding, toothpaste, or clay, that exhibit a combination of both fluid
and solid characteristics. The technique builds upon prior Eulerian methods for animating
incompressible fluids. Our method computes viscoelastic fluid behavior by supplementing
the basic Navier–Stokes equations with additional terms for elastic body forces. These terms
can be readily computed on rectilinear grids using a staggered discretization scheme, and
the use of an Eulerian formulation easily accommodates modeling flows that undergo large
deformations with topological changes. These elastic terms require computing the material
strain throughout the fluid. Because the fluid simulations do not make use of an explicit
reference configuration, strain is computed by integrating strain rate and advecting the
results. The transition from elastic resistance to viscous flow is controlled by von Mises’
yield condition, and subsequent behavior is governed by a quasi-linear plasticity model.
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special gratitude to my wife Yeşim for her patience, perseverance and tremendous support
for helping me finish my dissertation. Through this, she has become an expert on viscoelastic
flow and she is forever scarred to look at every viscoelastic fluid with a different eye no matter
how mundane it is. She now joins me exclaiming how low or high its elastic decay rate is
every time we switch to a different shampoo.



1

Chapter 1

Introduction

A fluid that’s macromolecular
Is really quite weird — in particular
The abnormal stresses
The fluid possesses
Give rise to effects quite spectacular.

R. B. Bird

In our everyday lives we are surrounded with many different materials that behave in var-
ied and complex ways. One of the major challenges facing the computer graphics researchers
and the visual effects artist is animating these materials as realistically as possible. Over the
years numerous methods have been developed and successfully utilized for animating fluids
and solids of various scales. However these methods tend to simplify the wide ranging spec-
trum of behavior exhibited by these real life materials into two distinct idealizations: simple
Newtonian fluids and elastic solids. While this classification of solid or fluid is valid for some
materials such as water, smoke, rubber or cloth, it is insufficient for a great many others. In
fact, there is a large family of natural and artificial materials that exhibit a combination of
both fluid and solid behavior. Often referred to as viscoelastic fluids, these materials initially
respond to strain elastically like a solid, but subjected to increasingly large stresses, they flow
like a fluid. A few common examples include egg white, dough, mayonnaise, mucus, clay,
unset cement, liquid acrylic, gelatin, gels, liquid soap, and toothpaste. Like an elastic solid,
viscoelastic fluids can bounce and jiggle, but they can also flow like a fluid. For some of these
viscoelastic fluids, such as mucus or egg white, the combination of elastic and fluid behavior
is quite apparent. For others, such as liquid soap, the fluid behavior dominates due to the
lack of strong elastic forces within the fluid and differs only subtly from that of a purely
viscous fluid. Finally, other viscoelastic fluids, such as gels, dough or mayonnaise, behave
mostly elastically under simple gravity and flow only if they are subjected to substantial
stress.
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Figure 1.1: A few examples produced by our method demonstrating different behaviors of
viscoelastic fluids.

This combined fluid and elastic nature of the viscoelastic fluids gives rise to an extensive
set of interesting behaviors. A viscoelastic fluid, such as liquid shampoo, can fold on itself or
swirl as it pours down from a bottle. Mayonnaise easily spreads like a viscous fluid forced by a
knife, but holds its shape indefinitely when the force is removed, thus presenting solid behav-
ior. A hair gel flows out as bouncy chunks from its container. Yet, none of these viscoelastic
behaviors can be captured by a simulation method that is solely designed for a Newtonian
fluid or an elastic solid. In this thesis, we provide a method for animating viscoelastic fluids
which captures fundamental characteristics of viscoelastic flow (see Figure 1.1).

Viscoelastic materials owe their distinct behavior to their composition. They are primar-
ily made up of macromolecules (e.g. polymers) suspended or solved in a Newtonian fluid.
The various types of bonds within and/or between these large molecules create microscale
spring-like forces in the material. At macroscale, the aggregate of these molecular level forces
causes the material behave elastically and resist shape change, while flowing like a fluid. If
the amount of deformation in the material, measured by strain, is below a limit, called yield
point, these elastic forces dominate and cause the viscoelastic fluid behave just like an elastic
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solid. However, if the strains exceed the yield point, the material starts to flow plastically
and the elastic forces start decaying over time, with a rate called elastic decay rate. This
gradual elastic decay, also known as creep, is a fundamental property of viscoelastic fluids.
The two parameters, yield point and elastic decay rate, span the space between solid and
fluid materials. If the yield point is set to a high value or the decay rate is set to zero, the
material behaves like an elastic solid. If, however, the yield point is set to zero and the decay
rate is set to a high value, the material behaves like a fluid. Intermediate values correspond
to viscoelastic fluids.

1.1 Modeling Viscoelastic Fluids with Yielding

The study of viscoelastic behavior in mechanical engineering dates back to Maxwell’s sem-
inal work in 1867, in which he formulated the first model of a general linear viscoelastic
fluid [Maxwell, 1867]. In this formulation the elastic forces in the fluid are modeled as
springs obeying Hook’s law where the elastic forces depend linearly on the strain that builds
up in the fluid. As the fluid flows, these elastic forces decay exponentially causing creep in
the material. This simple model, often referred to as the Maxwell fluid, serves as the basic
building block in the study of viscoelastic fluids [Bird et al., 1987a]. Yet, Maxwell’s original
model and most of the subsequent extensions to it do not have a yield point that defines the
transition from elastic solid into viscoelastic flow.

The concept of plastic yielding was first introduced in early 1900s in solid mechanics
to model the behavior of metals under high stresses [Osakada, 2010]. In 1913, von Mises
formulated a yield criterion where a highly stiff elastic solid like steel transitions into a
highly viscous fluid, if the deviatoric part of the stress tensor which defines the distortion
in the material exceeds a material dependent limit [von Mises, 1913]. In fluid dynamics,
the first application of a yield criteria was formulated by Bingham to model the behavior
of suspension of finely divided solid materials in fluids such as pastes, paint and clay in
water [Bingham, 1922]. In this one-dimensional model, often referred as Bingham fluid or
viscoplastic fluid, a rigid solid transitions into a viscous fluid, if the sheer stresses exceed a
limit, called yield stress. In 1932, using von Mises’ yield criterion, Hohenemser et al. [1932]

generalized the simple Bingham model into three-dimensions. Subsequently, Oldroyd [1947]

proposed a three dimensional model which combines the von Mises’ yield criterion together
with a linear elastic solid before yielding and a viscous fluid after yielding. Over the years,
models that extended upon Bingham fluids consistently assumed that the behavior after
yield point is of a purely viscous fluid. In all these formulations the plastic flow occurs
instantaneously resulting in purely viscous flow which fails to model the notion of creep
fundamental to viscoelastic flow.

The model we present in this thesis combines von Mises’ yield criteria found in more recent
formulations of Bingham fluids with the Maxwell’s model of viscoelastic flow to animate
materials which transition from elastic solids into viscoelastic flow. In particular, we compute
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elastic forces in the fluid based on the elastic strains that develop in the material. If the
deviatoric part of the elastic strain exceeds the yield point, we start decaying the elastic
strain with plastic flow rate using Maxwell’s model. It’s important to note that our model
generalizes both Maxwell fluids and Bingham fluids. If we set the yield point to zero,
our model reduces to a Maxwell fluid. If we set the plastic flow rate to a high value, we
obtain Oldroyd’s formulation of Bingham fluids where an elastic solid transitions into purely
viscous fluid. All other combinations model wide ranging spectrum of materials that behave
elastically before yielding and flow viscoelastically afterwards.

1.2 Overview of the Proposed Method

The technique we present for simulating viscoelastic fluids builds on prior Eulerian grid–
based methods for animating incompressible fluids with free surfaces. As evidenced by their
widespread use, these methods can efficiently produce results that are realistic enough for
applications in the visual effects industry. The viscoelastic fluid behavior is simulated by
supplementing the basic Navier–Stokes equations with additional terms for elastic body
forces. These elastic forces can be readily computed on rectilinear grids using a staggered
discretization scheme, and the use of an Eulerian formulation easily accommodates modeling
flows that undergo large deformations and topological changes. These elastic terms require
computing the material strain tensor throughout the fluid. Because the fluid simulations do
not make use of an explicit reference configuration, strain is computed by integrating strain
rate and advecting the results. The transition from elastic resistance to viscoelastic flow
is controlled by a user-specified yield point parameter based on von Mises’ yield condition.
Once the strain in the fluid exceeds this point, the elastic strain starts to decay by a user-
specified rate, resulting in a quasi-linear plasticity model.

The Eulerian framework we use for simulating viscoelastic fluids consists of three parts
that work together to produce useful results. First, we store the pressure, velocity and strain
values that define the fluid’s state on a rectilinear regular grid. To avoid spurious oscillations
in the pressure and velocity fields which can lead to instability, we use the straggered grid
scheme introduced by Harlow and Welch [1965] for storing scalar pressure and vector velocity
values. Additionally, we extend their scheme to store the strain tensor field where we put the
diagonal elements of strain at cell centers and off-diagonal elements at edge centers. This 3D
staggered tensor scheme is also an extension of the 2D scheme proposed by Gerittsma [1996].

Second, we discretize and solve the two principal partial differential equations of our
system, the modified Navier–Stokes and the strain update, term-by-term on the grid using
the finite differences method. We first compute the elastic forces due elastic strain and
integrate these forces using explicit forward Euler time stepping scheme. Then, we solve the
standard Navier–Stokes equations using a series of methods introduced by Stam et al. [1999];
we advect the velocity using the semi-Lagrangian advection method, integrate viscous forces
using the implicit backward Euler scheme and impose incompressibility using the pressure
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projection method. Finally, we update the strain tensor where we advect the strain using
the Semi-Lagrangian advection method, integrate the strain rate, and, if it exceeds the yield
point, we decay the strain using explicit forward Euler scheme.

The third component of our system is the tracking of the free surface of the fluid where we
use the particle levelset surface tracking method described by Enright et al. [2004]. We first
express the fluid surface as an implicit function whose levelset at zero locates the boundary
of the fluid. This levelset function is represented using a combination of particles and signed
distance values stored on a second regular rectilinear grid. Once we compute our final
velocity, we advect these particles and the signed distance values to advance the levelset
function that defines the fluid surface.

1.3 Related Work

In the field of computer graphics, the technique described by Carlson et al. [2002] is possibly
closest in intent to the method we describe here. Like us, they were interested in modeling
materials with properties intermediate between solids and fluids using an Eulerian grid-based
fluid simulation method. However, they opt to map the continuum between fluids and solids
to varying viscosity. In their system a solid is simply a fluid with very high viscosity. This
approach ignores the elastic behavior demonstrated by many materials. Nevertheless, they
do generate nice results for highly viscous fluids, and they describe an implicit integration
method for coping with stability issues arising from very high viscosities.

Other graphics researchers have used particle-based methods for modeling highly viscous
fluids and fluids with some form of elasticity. In [Terzopoulos et al., 1989] the authors mod-
eled melting thermoelastic materials. The particles exerted cohesive, viscous, and volume-
preserving forces on their neighbors. While solid, each particle was connected to a fixed
set of neighbors using elastic springs. As the material would become more fluid-like, the
springs would weaken, and eventually disappear. By varying the elastic properties of the
materials, this method could model a range of behaviors, but without plasticity, it could not
model materials, like clay, that flow into a new configuration and then resist changes from
that configuration. Similar approaches using different particle formulations have appeared in
[Desbrun and Gascuel, 1995],[Desbrun and Cani, 1996],[Cani and Desbrun, 1997], and [Stora
et al., 1999]. The method appearing in [Desbrun and Gascuel, 1995] used elastic forces with
dynamically determined neighbors to allow behavior that is similar to plastic flow.

Perhaps the greatest limitation on the level of realism achievable by these particle meth-
ods was the relatively small number of particles used. However, as processor speeds have
increased, particle-based methods have been able to achieve increasingly impressive results.
Compelling real-time results for modestly sized systems appear in [Müller et al., 2003],
and [Premoze et al., 2003] demonstrates off-line results that are comparable to the current
best grid-based methods. Although both of these recent methods focus on strictly liquid
behavior, they could be extended along lines similar to what we propose here.
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Some methods for modeling solids have dealt with limited amounts of plastic flow.
Both [Terzopoulos and Fleischer, 1988a] and [Terzopoulos and Fleischer, 1988b] describe
transition to plastic flow based on von Mises’s yield condition, and [O’Brien et al., 2002]

used a similar plasticity model for ductile fracture behavior. We use the same yield condi-
tion of von Mises, but we do not assume that plastic flow occurs instantaneously. Instead we
use a more complex model that accommodates phenomena such as creep. Additionally, these
prior methods used Lagrangian meshes with largely fixed topology, and so they would have
encountered “tangling” difficulties, such as inverting elements, for large amounts of plastic
flow.

Another, rather interesting, approach to combining solid and fluid behaviors appears
in [Nixon and Lobb, 2002]. They surround a fluid simulation with an elastic membrane. The
result is an object that behaves somewhat like a water balloon.

Our work builds directly on previous grid-based, Eulerian methods for animating fluids
with free surfaces. Details on these methods can be found in [Foster and Metaxas, 1996],
[Stam, 1999], [Foster and Fedkiw, 2001], and [Enright et al., 2002]. In particular, our work
essentially extends [Enright et al., 2002] to include the behavior of viscoelastic fluids.

Outside the graphics field, viscoelastic materials have been studied extensively. We refer
the reader to the texts [Fung, 1965], [Han and Reddy, 1999], and [Bird et al., 1987a] for
detailed descriptions of several different models for viscoelastic and elastoplastic materials.
Some recent examples of fluid simulation outside the graphics literature that involve elastic
forces include [Gerritsma, 1996], [Tomé et al., 2002], and [Bonito et al., 2006]. However,
none of the viscoelasticity models used in these examples include plastic yielding. A detailed
analysis of two-dimensional simulations of viscoelastic fluids on staggered rectilinear grids
appears in [Gerritsma, 1996]. The three-dimensional method we use for storing rank-two
tensor quantities on a staggered grid is a generalization of their two-dimensional method.
In [Bonito et al., 2006] a combination of rectilinear grids and finite elements are used with a
volume-of-fluid method to model three-dimensional fluids with elastic properties. They store
all quantities including vector and tensor components at cell centers. The marker-and-cell
(MAC) based method in [Tomé et al., 2002] is another example for solving viscoelastic free-
surface flows, where they address issues relating to elastic-stress based boundary conditions
at rigid-body and free-surfaces. They use a staggered grid for the velocity field, but the
tensor values are collocated at the cell centers.

1.4 Contributions

In this thesis we propose a novel method for animating viscoelastic fluids. When we design
our material models and methods to simulate them, we are making several assumptions.
First, our main goal is to provide an efficient and easy-to-use tool for the visual effects
artists to generate believable animations of a wide range of materials. Therefore, we make
no particular attempt to model a specific type of a viscoelastic fluid, nor we strive to achieve
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high levels of numerical accuracy that would be required by most engineering applications.
Second, our main focus is to animate the complex behavior on the fluid end of the solid-fluid
spectrum. Therefore, we intentionally base our method on an Eulerian based formulation.
In simulating purely elastic solids, the strain rate based formulation presented in this thesis
would cause considerable drift.

The specific contributions of this thesis to the field of computer graphics are as follows:

• It introduces a novel model for animating a material that transitions from an elastic
solid into a viscoelastic flow

• The behavior is controlled by a concise set of parameters: plastic yield point which
defines when the material transitions from elastic solid into a viscoelastic fluid, and
elastic decay rate which defines how fast the elastic forces decay over time. With the
use of these two intuitive parameters the artist can animate materials ranging from
elastic solids to viscous fluids and viscoelastic fluids in-between.

• It presents a simple and feasible add-on tool to an existing Eulerian based fluid simu-
lator Additional viscoelastic computations introduce only about %7 overhead.

• The method is flexible enough to work with various different fluid simulation techniques
(e.g. particle based methods such as Smoothed-Particle Hydrodynamics (SPH) or
hybrid particle-grid based methods such as Fluid-Implicit-Particle (FLIP)). All the
underlying fluid simulator needs to provide is the support for user-specified internal
forces and the ability to report the velocity of the fluid and the distance to the free
surface at a given point in space.

• The Eulerian framework provides a robust method for simulating large, complex de-
formations of viscoelastic fluids with topological changes.

Since its first publication in [Goktekin et al., 2004], the method presented in this thesis
has proven to be very production friendly in the visual effects industry. It was success-
fully used to animate various food effects in the Pixar Animation Studios’ Ratatouille (see
Figure 1.2) [Goktekin et al., 2007]. To our knowledge, as of this writing, our method has
been implemented in various commercial or open source Eulerian grid-based fluid simula-
tors including SideFx’s Houdini (www.sidefx.com) and Physbam (physbam.stanford.edu).
In addition, it also had been implemented in Dreamwork/PDI’s in-house fluid simulator to
animate the honey effects in Bee Movie [Ruilova, 2007].

The following chapters detail these contributions and the results obtained from their
implementation. The details of supplementing the governing equations of a fluid, the strain
integration and the plasticity model are discussed in Chapter 2. The discretization of the
resulting governing equations and details of the proposed viscoelastic fluid simulator are
detailed in Chapter 3. Finally, the results by the techniques presented here are discussed in
Chapter 4.
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Figure 1.2: A couple of viscoelastic food effects from Ratatouille: (left) A dough being
prepared in a bowl, (right) A viscoelastic sauce being poured on a dish. ©2007 Disney/Pixar.
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Chapter 2

Modeling Viscoelastic Fluids

The main characteristics of a viscolelastic fluid is the fact that at macroscale, it behaves
like a combination of an elastic solid and a simple fluid. In microscale, the mechanism
that causes the elastic behavior in a given viscoelastic fluid can vary from one material to
another. In some viscoelastic materials, called polymeric liquids, the elastic behavior is due
to the forces within or between the large, potentially tangled polymer molecules which act as
springs inside the fluid. In some other materials, called polyelectrolytes, electrostatic forces
between these large polymer molecules can cause resistance to shape change, resulting in
elastic behavior. These molecular level, microscale differences between viscoelastic fluids
may cause subtle differences in behavior that need to be captured by specific engineering
applications. Bird et al. [1987b] provide an extensive set of detailed discussions on various
viscoelasticity models motivated by some of these microscale mechanisms.

In this thesis our focus is to capture the characteristic behavior of viscoelastic fluids
at the macroscale. At this scale, regardless of the exact mechanism, all viscoelastic fluids
contain elastic forces within the fluid. This causes the fluid resist shape change as it flows
and results in the combined elastic and fluid behavior. In order to understand the behavior
of viscoelastic fluids and further define the mechanisms that transform a viscoelastic fluid
from one end of the spectrum to the other, the basic definitions of simple fluids and elastic
solids need to be reviewed.

2.1 Solids, Fluids and the In-between

The fundamental distinction between an ideal elastic solid and a simple Newtonian fluid is
how they respond to deformation caused by an external loading. An ideal elastic solid is a
material that cannot be deformed permanently. It always remembers its original shape. If it
is deformed by a load, it will go back to its original configuration upon unloading (Figure 2.1).
All of the initial deformation will be reversed. An elastic solid can possess viscosity, which
affects the speed of the recovery and the amount it oscillates around the rest configuration.
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Figure 2.1: Behavior of an elastic solid upon unloading: It oscillates and eventually recovers
its original shape.

No matter how viscous an elastic solid is, it always recovers its original shape.
A simple Newtonian fluid represents the other end of the spectrum. It represents materials

where every deformation is permanent. Fluids flow with the slightest loading until they
fully conform to the shape of their container, and they never recover their original shape
(Figure 2.2). The viscosity of a fluid only changes the rate of its flow. A fluid with high
viscosity flows slower, but it does not behave elastically.

A viscoelastic fluid has two regimes. If the amount of deformation is below a threshold,
called the plastic yield point, a viscoelastic fluid will behave just like an elastic solid and
recover its original shape upon unloading. If the deformation exceeds the plastic yield point,
some of the deformation will be recovered, but the rest will be permanent, i.e. the fluid will
deform plastically (Figure 2.3). This plastic deformation will not be instantaneous. Instead
it will grow over time at some rate, called the elastic decay rate. This behavior is called
plastic flow or creep (Figure 2.4). Along with the viscosity of the fluid, the plastic yield

Figure 2.2: Behavior of a simple fluid under load: It flows amorphously and creates a puddle
on the ground.
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Figure 2.3: Two regimes of a viscoelastic material: (top) elastic response, (bottom) plastic
flow.

point and elastic decay rate are the main material parameters that define the behavior of a
viscoelastic fluid.

2.2 Governing Equations

In continuum mechanics, the dynamics of materials are governed by three balance laws that
every material must obey: balance of linear momentum, balance of mass and balance of
angular momentum. The balance of linear momentum states that at any point in a material,
the material’s acceleration is

∂u

∂t
= − (u ·∇)u+

1

ρ
∇ · σ +

f

ρ
, (2.1)

where u is the velocity vector of the material at a point in space, ρ its density, σ the 3x3
stress tensor at that point of space, and f represents all other force vectors such as gravity.
The symbol ∇ denotes the vector of differential operators ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T.

The balance of mass states that at any point in a material, the rate in which the mass
enters is equal to the rate at which the mass leaves, which can be expressed as

∂ρ

∂t
+ ρ∇ · u = 0 . (2.2)
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Figure 2.4: Two viscoelastic bodies undergoing same deformation with different durations:
(top) Force is applied for a short time and the object recovers most of its original shape,
(bottom) Same force is applied for longer amount of time and the object recovers less of its
original shape.

For incompressible materials, where ∂ρ/∂t = 0, Equation (2.2) reduces to

∇ · u = 0 . (2.3)

Finally the balance of angular momentum requires that the stress tensor is symmetric

σ = σT . (2.4)

To drive the governing equations for a specific material, we need to define the stress as
a function of how that specific material responds to deformation. In other words, we need
to formulate the constitutive equation of that material. Since viscoelastic fluids act as a
combination of a fluid and an elastic solid, we can decompose the stress in a viscoelastic
fluid into a fluid and an elastic part

σ = σF + σE . (2.5)

The stresses in an incompressible Newtonian fluid are composed of isotropic pressure
which resists volume change in the material, and viscosity of the fluid which acts as an
internal friction to shear motion

σF = −pI + µv

(
∇u+ (∇u)T

)
, (2.6)
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where I is the 3x3 identity tensor and µv is the coefficient of viscosity of the fluid.
The stresses in a general Hookean elastic solid depend linearly on the strain and can be

formulated as
σE = Cε , (2.7)

where C is a material dependent, fourth order (i.e 3x3x3x3) coefficient tensor, and ε is
the 3x3 symmetric strain tensor. If we assume that the elastic material is isotropic, which
requires C to be symmetric in all directions, and incompressible, i.e. the material’s dilation
tr(ε) is zero, the general form in Equation (2.7) reduces to

σE = µeε , (2.8)

where µe is the elastic modulus of the material.
If we combine the constitutive equations of a Newtonian fluid in Equation (2.6) and an

elastic solid in Equation (2.8) using Equation (2.5), we obtain our constitutive equation for
an incompressible viscoelastic fluid

σ = −pI + µv

(
∇u+ (∇u)T

)
+ µeε . (2.9)

Putting this constitutive equation into the balance of linear momentum in Equation (2.1),
we obtain the equation that governs the behavior of the viscoelastic fluids. Assuming µv and
µe are homogeneous throughout the material, at any point in the fluid, the fluid’s acceleration
is

∂u

∂t
= − (u ·∇)u− ∇p

ρ
+
µv
ρ
∇2u+

µe
ρ
∇ · ε+

f

ρ
, (2.10)

subject to the constraint that the fluid is incompressible

∇ · u = 0 . (2.11)

The formula in Equation (2.10) is a modified version of the Navier–Stokes equations that
includes the additional term µe/ρ∇ · ε, which computes the macroscale elastic forces acting
on the fluid.

2.3 Elastic, Plastic, and Total Strain

The fourth term of Equation (2.10) computes the acceleration due to the elastic forces. It
requires knowing the elastic strain throughout the fluid. If we had an explicit deformation
function, then we could use its spatial derivatives to compute the strain. However, with the
Eulerian formulation we are using, there is no deformation function available. Furthermore,
the large deformation and flow experienced by the material makes tracking deformation im-
practical. Instead, we compute the strain by integrating the strain rate. In addition, because
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viscoelastic fluids are not perfectly elastic materials, we must observe rules concerning how
the elastic strain changes due to plastic yielding.

We first separate the total strain into an elastic and a plastic component so that

εTot = εElc + εPlc , (2.12)

where εTot, εElc, and εPlc, are respectively the symmetric total, elastic, and plastic strain
tensors. (Outside this section elastic strain is simply denoted as ε.) The strain rate is the
time derivative of the total strain, therefore the total strain at some time t is

εTot = εTot
0 +

∫ t

0

ε̇Tot dt , (2.13)

where εTot
0 is the total strain at time t = 0 and ε̇Tot is the strain rate given by1

ε̇Tot =
∇u+ (∇u)T

2
. (2.14)

Similarly, the plastic strain is given by integrating plastic flow.

εPlc = εPlc
0 +

∫ t

0

ε̇Plc dt (2.15)

We use von Mises’ criterion for determining when plastic flow should occur. This crite-
rion depends on the elastic strain deviation ε′, which is the elastic strain with any dilation
removed2

ε′ = εElc −
Tr
(
εElc

)
3

I . (2.16)

So long as the magnitude (Frobenius norm) of the strain deviation remains below the yield
point γ, no plastic flow occurs. When the limit is exceeded, flow occurs at a rate proportional
to the amount by which he limit has been exceeded. So the flow rate for plastic strain is

ε̇Plc = α
ε′

‖ε′‖ max {0, ‖ε′‖ − γ} , (2.17)

1Note that the strain rate in Equation (2.14), also called rate of stretch tensor, only measures the rate of
the deformation in the material and vanishes for rigid body motion. Even though the closest strain metric
whose derivative yields the rate in Equation (2.14) is the geometrically linear Cauchy’s strain, the strain
computed by integrating Equation (2.14) does not create spurious strains for rigid body rotation and thus,
unlike Cauchy’s strain, is invariant under rigid body rotations. However, as we will see in Section 2.4, we
can still break the rotational invariance property, if we don’t pay special attention to how we integrate the
strain rate while advecting it through the material using our Eulerian formulation.

2This distinction is a bit pedantic here, because the fluid is incompressible and thus the dilation should
always be zero.
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Figure 2.5: This figure demonstrates some effects achieved by varying elastic decay rate α
and plastic yield point γ. Each image shows a cube of material that has been dropped onto a
hard surface inside an invisible box. The rightmost images show a low viscosity simple fluid
and an extremely viscous simple fluid for comparison. The viscoelastic examples have the
same viscosity as the low viscosity fluid. For appropriate values of α and γ, the viscoelastic
fluid actually bounces.

where α is the material’s elastic decay rate, which determines the rate of plastic flow.
Assuming that the initial total and plastic strains are both zero, Equation (2.14) and Equa-

tion (2.17) can be combined to compute the time derivative of the elastic strain, which takes
into account changes to both the total and plastic strains

ε̇Elc =
∇u+ (∇u)T

2
− α ε′

‖ε′‖ max {0, ‖ε′‖ − γ} . (2.18)

The images of a viscoelastic cube being dropped onto a hard surface are shown in Fig-
ure 2.5 to illustrate some effects generated by varying the elastic decay rate α and the plastic
yield point γ.

2.4 Advecting Strain

The formulation of the time derivative used in Equation (2.18) does not take into account
the movement of the material through space. Like velocity or any other fluid property, the
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Figure 2.6: A cube of viscoelastic material is compressed in x-direction, rotated around the
z-axis and released. The top row shows the effect of advecting the elastic strain as is. Since
the strain tensors (denoted by green circles) are simply translated during the rotation, they
cause the cube stretch to further in x and compress in y upon release. The bottom row shows
the effect of both advecting and rotating the strain; the cube recovers its original shape.

elastic strain must be advected with the fluid. To do so, the time rate of change of elastic
strain tensor must be expressed as a material derivative. The simplest method is to advect
the strain tensor just like any other scalar or vector property,

ε̇ ≡ ∂ε

∂t
+ (u · ∇)ε . (2.19)

Using this simple material derivative in Equation (2.18) yields linear viscoelasticity

∂ε

∂t
= −(u · ∇)ε+

∇u+ (∇u)T

2
− α ε′

‖ε′‖ max {0, ‖ε′‖ − γ} . (2.20)
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The material derivative in Equation (2.19) suggests that the strain tensor is simply trans-
lated along with the fluid. Suppose that a cube of viscoelastic material is compressed in the
x-direction, rotated 90 degrees around the z-axis, and released (see Figure 2.6). When the
cube is first deformed, the strain tensor encodes a compression in the x-direction and a
stretch in the y-direction (due to incompressibility). If Equation (2.20) is used to update
the strain during the rotation, the components of the strain tensor will simply be trans-
lated along the circular path as is. Upon release, it will stretch in x and compress in y,
causing it to deviate further from its original cube shape. To correct this, we must rotate
the strain tensor as we translate it along the path [Bird et al., 1987a; Mao and Yang, 2006;
Irving, 2007].

The material derivative that both translates and rotates a tensor along a path is called Jau-
man or co-rotational derivative and can be expressed as

ε̇ ≡ ∂ε

∂t
+ (u · ∇)ε+ εW −Wε , (2.21)

where W =
(
∇u− (∇u)T

)
/2 is the anti-symmetric spin tensor which computes the rate

of rotation in the material3. Using the Jauman derivative in Equation (2.18) we obtain our
final, rotationally invariant form the strain update equation,

∂ε

∂t
= −(u · ∇)ε+Wε− εW +

∇u+ (∇u)T

2
− α ε′

‖ε′‖ max {0, ‖ε′‖ − γ} . (2.23)

2.5 Imposing Incompressibility

In incompressible flows, the governing equations of the fluid do not provide an explicit
equation of state for the pressure. Therefore we cannot directly compute the pressure that
would resist volume change in the fluid. Instead, we use the pressure projection method
introduced by Chorin [1968] and adopted by Stam [1999] to provide a set of stable methods
for simulating incompressible fluids. In this method, we first compute an intermediate flow

3A tensor T is said to be invariant under rotation, if it transforms as T ′ = QTQT under a super-posed
rigid-body rotation Q. Note that, even if T is rotationally invariant, its time derivative in general is not,
since the time derivative transforms as

Ṫ ′ =
˙

QTQT = Q̇TQT +QṪQT +QTQ̇
T

= QṪQT +WQTQT −QTQTW = QṪQT +WT ′ − T ′W

Ṫ ′ −WT ′ + T ′W = QṪQT , (2.22)

where W = Q̇QT = −W T = −QQ̇T. In essence the Jauman derivative compensates for the extra terms in
the left-hand side of Equation (2.22) and in effect it rotates T using W . Therefore the Jauman derivative
is invariant under rotation.
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field that is not incompressible, and then use the continuity equation Equation (2.11) as a
constraint to compute a pressure field that would develop instantaneously to make the flow
divergence-free. Finally, we project this pressure field onto the intermediate flow field to
obtain a divergence-free velocity field.

The algorithm of the pressure projection method is based on a purely mathematical
observation, called Helmholtz-Hodge decomposition, which states that every vector field v∗

can be decomposed into a divergence-free and a curl-free part

v∗ = v + ∇φ , (2.24)

where v is a divergence-free vector field (∇ · v = 0), φ is a scalar field and ∇φ is a curl-free
vector field (∇×∇φ = 0).

If we apply the divergence operator on both sides of Equation (2.24) and rearrange the
result, we obtain the Poisson equation for φ

∇2φ = ∇ · v∗ . (2.25)

Once we solve Equation (2.25) for the scalar field φ, we can project ∇φ on v∗ to obtain
the divergence-free v using Equation (2.24)

v = v∗ −∇φ . (2.26)

We can use the above procedure to project ∇p onto some intermediate non-divergence-
free velocity field u∗ to obtain a final incompressible velocity field u. Assume we compute
all terms of Equation (2.10), except for the pressure forces as an intermediate velocity field
u∗

∂u∗

∂t
= − (u ·∇)u+

µv
ρ
∇2u+

µe
ρ
∇ · ε+

f

ρ
. (2.27)

Then we can rearrange Equation (2.10) as

∂u

∂t
+

∇p

ρ
=
∂u∗

∂t
. (2.28)

Equation (2.28) has the same form of Equation (2.24) where v∗ = ∂u∗/∂t, v = ∂u/∂t and
φ = p/ρ. Therefore we can compute p by solving the Poisson equation for pressure

1

ρ
∇2p = ∇ · ∂u

∗

∂t
, (2.29)

and project ∇p/ρ on ∂u∗/∂t, and then integrate the result to obtain the final divergence-free
velocity field u

u = u∗ −
∫

1

ρ
∇p dt . (2.30)
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2.6 Boundary Conditions

To solve our system of equations, we must satisfy a set of boundary conditions for fluid
velocity u, fluid pressure p and elastic strain ε. In this thesis we consider two types of
boundaries: solid boundaries such as walls or moving collision objects, and the free surface
boundary. At the solid boundaries, to prevent fluid entering into the colliders, the normal
component of the fluid velocity must match the normal component of velocity of the solid
boundary

u · n = ū · n , (2.31)

where n is the normal of the solid boundary and ū is the velocity of the solid collider
boundary (ū = 0 for a static wall). For the tangential component of the fluid velocity we
have two options. We can either leave it unspecified to let it flow freely on the solid surface,
called slip boundary condition, or we can set it to the tangential component of the solid
boundary velocity to make the fluid stick to the collider, called no-slip boundary condition

u · t = ū · t , (2.32)

where t is the tangent of the solid boundary. We also need to make sure that neither the
pressure gradient ∇p, by pressure projection, nor the elastic strain ε, by adding elastic
forces, cause any additional acceleration normal to the solid boundaries, i.e.

∇p · n =
∂p

∂n
= 0 , (2.33)

and
(∇ · ε) · n = 0 . (2.34)

For free surface boundaries both velocity and elastic strain must be constant across the
boundary, i.e. their rate of change normal to the free surface boundary should be zero

∂u

∂n
= 0 , (2.35)

and
∂ε

∂n
= 0 . (2.36)

Since we do not simulate the air on the other side of the free-surface we assume that the
pressure at the free surface equals the air pressure which is negligible (i.e. zero) compared
to water pressure

p = 0 . (2.37)
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2.7 Putting it all Together

To summarize, the governing equation of our model is the modified Navier–Stokes in Equa-
tion (2.10), where we add extra elastic forces depending on elastic strain. We impose incom-
pressibility using the pressure projection method, where we first solve for pressure in Equa-
tion (2.29), and then we project the pressure to obtain the final divergence free velocity
using Equation (2.30). Finally we update the elastic strain using Equation (2.23), where
we advect the strain trough the fluid and decay it, if it exceeds the plastic yield point. All
these steps are subject to the velocity, strain and pressure boundary conditions discussed
in Section 2.6. The details of the numerical methods solving these equations using Eulerian
grid based techniques are discussed in Chapter 3.
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Chapter 3

Simulation

The Eulerian framework we use for fluid simulation is based on the method described
in [Enright et al., 2002]. This framework consists of three primary components that work
together to simulate incompressible fluids with free surfaces. The first is a rectilinear grid
that stores the pressure and velocity values that define the fluid’s state. These pressure and
velocity values are stored in a staggered fashion using the MAC grid scheme introduced by
Harlow and Welch [1965]. Second the Navier–Stokes equation is discretized on this grid and
solved term-by-term using the operator splitting method described in [Stam, 1999]. The
third component is a function whose level-set at zero locates the boundaries of the fluid.
The function is represented by a combination of particles and signed surface distance values
defined on a second rectilinear grid. The free surface of the fluid is tracked by evolving the
particles and the distance values based on the motion of the fluid. Another alternative for
tracking the free surface is the semi-Lagrangian contouring method introduced by Bargteil et
al. [2006]. The semi-Lagrangian contouring method uses an explicit mesh instead of a dense
set of particles to compute and evolve the distance values, and has the additional advantage of
robustly tracking surface properties through the simulation. For completeness, in this thesis
we provide details on a simple implementation of the system described in [Enright et al., 2002]

which is summarized in the middle blue box in Figure 3.1. For a more detailed description
of this simulation methodology we refer the reader to Bridson’s excellent summary on fluid
simulation for computer graphics [Bridson, 2008].

To augment the fluid simulator described above with viscoelastic behavior, we first dis-
cretize the elastic strain tensor on the computational grid. We extend the MAC grid scheme
for staggering tensors on the grid. Then at every time-step n we compute the elastic forces
due to elastic strain, i.e fne = µe∇ · εn, and pass the elastic forces to the fluid simulator as
additional body forces as show in Equation (2.10). Finally at the end of the time-step the
elastic strain is updated by solving Equation (2.23) using the new divergence-free velocity
field un+1 we obtained from the fluid simulator. These two additions are shown in orange
boxes in Figure 3.1. Next we discuss the details of our staggered grid scheme and provide
details on each step of our algorithm in Figure 3.1 for simulating viscoelastic fluids.
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Calculate Elastic Forces

Solve Navier-Stokes in Equation (3.10)

Update Free Surface

Update Elastic Strain using Equation (3.20)

fn
e ← ElasticForces(�n)

�n+1 ← UpdateStrain(�n, un+1)

fn
e = µe∇ · �n

u(1) ← AdvectVelocity(un)
u(2) ← AddForces(u(1))
u(3) ← Diffuse(u(2))
un+1 ← PressureProject(pn, u(3))

Φn+1 ← SurfaceTrack(Φn, un+1)

Figure 3.1: Algorithm for each time-step n of our method: We first compute elastic forces
and pass them to an Eulerian based fluid simulator. The fluid simulator solves the Navier–
Stokes equations using the elastic forces as additional body forces, and tracks the surface.
We then use the newly computed incompressible velocity to update the elastic strain tensor.
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Figure 3.2: The staggered MAC grid scheme: The rectilinear grid is divided into cells which
have a dimension of δx, δy and δz in x, y and z directions, respectively. The location of
each cell center is identified by an integer triple (i,j,k). The scalar pressure p is stored at the
cell center. The components of the velocity vector u are staggered where each component is
stored at the corresponding face center. The superscript on each value denotes its location
on the grid.

3.1 Choosing a Grid

To simulate viscoelastic fluids using the algorithm outlined in Figure 3.1, we first discretize
our computational domain into a rectilinear grid. We store the scalar pressure, velocity vector
and strain tensor values that define the fluid’s state on this grid, and compute their values
by numerically solving Equations (2.10), (2.29), (2.30) and (2.23) using the symmetrical,
unbiased, second order accurate central finite differences. To avoid the instability problems
caused by the decoupling of the scalar pressure and velocity vector fields that plague the
collocated schemes, we use the staggered MAC grid scheme originally described by Harlow
and Welch [1965]. In this scheme the pressure p and the components of the velocity vector u
are stored in a staggered fashion on the grid as show in Figure 3.2. The key observation in
this scheme is that when we discretize the gradient of a scalar field (e.g. ∇p), the components
of the resulting vector field are computed exactly where the components of the velocity are
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Figure 3.3: Components of ∇p are computed on the grid using central finite differences.
Each component is computed on the corresponding face center.

stored. Similarly when we discretize the divergence of a vector field (e.g. ∇ ·u) the resulting
scalar field is computed exactly where the scalar pressure values are stored. Therefore the
staggered MAC grid scheme provides a strong coupling between all pressure and velocity
components when we solve Equations (2.29) and (2.30). To demonstrate this in more detail,
using the central differences, we can discretize ∇p as

(∇p)
i- 1

2
,j,k

x =

(
pi,j,k − pi-1,j,k

)
δx

(∇p)
i,j- 1

2
,k

y =

(
pi,j,k − pi,j-1,k

)
δy

(∇p)
i,j,k- 1

2
z =

(
pi,j,k − pi,j,k-1

)
δz

(3.1)

Note that the components of ∇p are computed at the midpoints between two cell centers
which correspond to the center of the faces between them, exactly where the velocity com-
ponents are defined as shown in Figure 3.3. Similarly divergence of the velocity vector ∇ ·u
can be discretized as

(∇ · u)i,j,k =
u
i+ 1

2
,j,k

x − ui-
1
2
,j,k

x

δx
+
u
i,j+ 1

2
,k

y − ui,j-
1
2
,k

y

δy
+
u
i,j,k+ 1

2
z − ui,j,k-

1
2

z

δz
. (3.2)

Note the scalar value ∇ · u is computed at the midpoint between the velocity components
at face centers which correspond to the center of the cell where the scalar pressure values
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are stored as shown in Figure 3.4.
In addition to the scalar pressure and the velocity vector fields, we need to extend the

classic MAC grid scheme to store the strain tensor field on the grid. In Equation (2.23) we
use the tensor field ∇u to update the elastic strain. Using the observation above, to create
a strong coupling between velocity and strain tensor, components of the elastic strain tensor
need to be defined exactly where the components of the ∇u are computed. Using the central
finite differences, we discretize ∇u on the grid as

(∇u)i,j,kxx =
u
i+ 1

2
,j,k

x − ui-
1
2
,j,k

x

δx

(∇u)
i- 1

2
,j- 1

2
,k

xy =
u
i- 1

2
,j,k

x − ui-
1
2
,j-1,k

x

δy

(∇u)
i- 1

2
,j,k- 1

2
xz =

u
i- 1

2
,j,k

x − ui-
1
2
,j,k-1

x

δz

(∇u)
i- 1

2
,j- 1

2
,k

yx =
u
i,j- 1

2
,k

y − ui-1,j-
1
2
,k

y

δx

(∇u)i,j,kyy =
u
i,j+ 1

2
,k

y − ui,j-
1
2
,k

y

δy

(∇u)
i,j- 1

2
,k- 1

2
yz =

u
i,j- 1

2
,k

y − ui,j-
1
2
,k-1

y

δz

(∇u)
i- 1

2
,j,k- 1

2
zx =

u
i,j,k- 1

2
z − ui-1,j,k-

1
2

z

δx

(∇u)
i,j- 1

2
,k- 1

2
zy =

u
i,j,k- 1

2
z − ui,j-1,k-

1
2

z

δy

(∇u)i,j,kzz =
u
i,j,k+ 1

2
z − ui,j,k-

1
2

z

δz

(3.3)

Note that the diagonal components of ∇u are located at cell centers and off-diagonal
components are located on the corresponding edge centers (see Figure 3.5). This leads to
the final staggered tensor scheme for storing the symmetric elastic strain shown in Figure 3.6
which is a generalization of the 2D scheme described in [Gerritsma, 1996].

In addition to the computational grid described above, we also maintain a separate grid to
store the scalar signed distance Φ values we use to track the surface as discussed in Section 3.4.
This grid has a higher resolution and is staggered with respect to the computational grid,
so that every cell center, face center, edge center and corner on the computational domain
is a cell center in the Φ grid and thus has a signed distance value associated with it as
shown in Figure 3.9. For each pressure, velocity and strain tensor component, we use its
corresponding Φ value to decide if it is free to be computed by the simulator or if it needs to
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Figure 3.4: The scalar value ∇ · u is computed at the cell center on the grid using central
finite differences.

be set as a boundary condition. Every pressure, velocity and strain component which has a
negative Φ value, i.e inside the fluid, is labeled as free. All the others are labeled non-free
and are used to set the boundary conditions as discussed in Section 3.6.

3.2 Computing Elastic Forces

The first step of our method for simulating viscoelastic fluids is to compute the elastic forces
f e due to elastic strain ε for the current time-step n as

fne = µe∇ · εn (3.4)

Using the central finite differences, we can discretize Equation (3.4) on the staggered grid
as
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(3.5)

Note that due to the staggering of the elastic strain, the components of the vector field ∇ · ε
are computed on the face centers, exactly where the velocity components are defined as shown



27

-1

1

u
i,j,k- 1

2
z

u
i,j,k+ 1

2
z

u
i- 1

2 ,j,k
x
-1 1

u
i+ 1

2 ,j,k
x

u
i,j- 1

2 ,k
y

-1

1

u
i,j+ 1

2 ,k
y

(∇u)i,j,kxx
(∇u)i,j,kyy

(∇u)i,j,kzz

-1 1
u

i,j- 1
2 ,k

yu
i-1,j- 1

2 ,k
y (∇u)

i- 1
2
,j- 1

2
,k

yx

-1 1

u
i-1,j,k- 1

2
z u

i,j,k- 1
2

z

(∇u)
i- 1

2 ,j,k- 1
2

zx

-1

1

(∇u)
i- 1

2
,j- 1

2
,k

xy

u
i- 1

2 ,j,k
x

u
i- 1

2 ,j-1,k
x

-1

1

u
i- 1

2 ,j,k-1
x

u
i- 1

2 ,j,k
x

(∇u)
i- 1

2 ,j,k- 1
2

xz

-1

1
u

i,j- 1
2 ,k

y

u
i,j- 1

2 ,k-1
y

(∇u)
i,j- 1

2 ,k- 1
2

yz

-1

1
u

i,j,k- 1
2

z

(∇u)
i,j- 1

2 ,k- 1
2

zy

u
i,j-1,k- 1

2
z

Figure 3.5: Components of the tensor ∇u computed on the grid using central finite differ-
ences. Diagonal components are computed at the cell centers (top row) and the off-diagonal
components are computed on edge centers (bottom rows).

in Figure 3.7. Therefore the acceleration due to the elastic forces can be integrated directly
into the velocity field without the need of extra interpolation. The details of computing the
elastic forces on the entire grid are provided in Algorithm 1.
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3.3 Solving Navier–Stokes

The Navier–Stokes equation in Equation (2.10) is composed of multiple terms that represent
different types of PDEs. Since each one of these terms have different requirements, there
is no single numerical method that works best for all of them. For example, the nonlinear
advection term can become unstable under direct solution methods and can be best solved
by a method of characteristics such as the semi-Lagrangian advection. Additionally, while
it would be stable enough to time integrate the gravity and the elastic force terms using
an explicit integration scheme, the stiff viscous forces are best solved by an implicit time
integration scheme. Finally, to impose the incompressibility condition in Equation (2.11),
we first need to compute a pressure field and then project the pressure gradient onto an
intermediate velocity field to obtain the final divergence-free velocity. Therefore, instead
of solving Equation (2.10) directly as a whole, we employ the operator splitting method
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Figure 3.7: The stencils used to compute the x, y and z components of the divergence of
a staggered tensor field on the grid. Resulting is a vector field defined on the face centers
exactly where the velocity components are defined.

introduced by Stam [1999] where we split Equation (2.10) and solve each term separately
using the best method suited for that term.

At each time-step n, we first advect the velocity un to obtain an intermediate velocity
u(1)

∂u(1)

∂t
= − (un ·∇)un . (3.6)

Second we add the user defined body forces and the elastic forces to obtain another inter-
mediate velocity u(2)

∂u(2)

∂t
=

1

ρ
(f + fe) (3.7)

Next we integrate viscous forces into u(2) to obtain our next intermediate velocity field u(2)

∂u(3)

∂t
=
µv
ρ
∇2u(2) (3.8)

Since u(3) is not guaranteed to be divergence-free, we solve for pressure pn

∇2pn = ρ∇ · ∂u
(3)

∂t
, (3.9)
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and project it on the intermediate velocity field u(3) to obtain the final divergence-free
velocity un+1

un+1 = u(3) −
∫

1

ρ
∇p dt . (3.10)

The top level algorithm for solving the Navier–Stokes equations using operator splitting
is shown in Figure 3.1. The details of the methods we use for solving each step outlined
above are discussed below.

3.3.1 Advecting Velocity

One of the first methods developed for solving the nonlinear advection term in Equation (3.6)
is the direct solution method described in [Harlow and Welch, 1965] which was adopted by
Foster et al. [1996] to simulate fluids for computer graphics. In this method, Equation (3.6)
is discretized on the grid using central finite differences, and integrated in time using the
forward Euler method. However, since every grid point only uses its immediate neighbors
to compute the properties moving through the grid, any property value that moves more
than the size of its compact neighborhood (a single cell size, i.e. max ‖δx, δy, δz‖) in a given
time-step δt, cannot be resolved by this method. This imposes a rather strict limit on the
time-step, such that

δt <
max ‖δx, δy, δz‖

umax
, (3.11)

where umax is the maximum velocity anywhere in the fluid. Moreover, it can be shown that
using central finite differences and forward Euler method to solve the advection equation is
unconditionally unstable, no matter how small the time step is (the above limit only assures
that the method is accurate within a given time-step) [Bridson, 2008].

To avoid these limitations we use the unconditionally stable semi-Lagrangian advection
method introduced by Stam [Stam, 1999]. The fundamental idea behind this method is the
fact that in an incompressible fluid each particle traces a unique path, called a characteristic.
In a Lagrangian formulation, solving the advection equation is as simple as moving each
particle along its characteristics. However, in an Eulerian formulation we are trying to
compute values of properties we are interested in at fixed points on the grid. Since each
particle traces a unique path, at any point in time for any point on the grid there will be
a unique particle that will end up at that point. Therefore, if we can find that particle by
going backwards in time, we can find the value of any property we are interested in. We can
use this procedure to advect any property, including the velocity. For example, to advect
the x-component of the velocity we start from the center of an x-face xi- 1

2
,j,k, trace a path

back to a point xf and use the x-component of the velocity at xf , i.e. ux(xf ) as the new

x-component of the velocity at the grid point xi- 1
2
,j,k (see Figure 3.8). To trace the path of
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Figure 3.8: Basic steps of the semi-Lagrangian algorithm for advecting the x-component of
the velocity (shown in 2D for simplicity). Starting from an x-face center xi- 1

2
,j,k, we trace back

to a point xf . We interpolate the x-component of the velocity at xf using the x-component
of the velocities at x1,x2,x3 and x4, and use it to set the new x-component of the velocity
at xi- 1

2
,j,k.

a particle we use the second order Runge-Kutta time integration method

xmid = xi- 1
2
,j,k − δt

2
u(xi- 1

2
,j,k)

xf = xi- 1
2
,j,k − δt u(xmid) . (3.12)

Once we find the position xf of the particle, we compute its velocity u(xf ) using tri-linear in-
terpolation on the grid. Finally, we use x-component of this new velocity as the x-component
of the final advected velocity

u(1)x (xc) = ux(xf ) . (3.13)
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We repeat this process to compute every component of u(1). The final algorithm for advecting
the velocity is shown in Algorithm 2.

3.3.2 Adding Forces

In the next step we integrate the user defined body forces and the elastic forces we computed
in Section 3.2. In our implementation, we only consider gravity forces as body forces f = ρg,
where g is the gravity vector. Using explicit time integration for both gravity and elastic
forces, we get

u(2) = u(1) + δt

(
g +

1

ρ
fe

)
. (3.14)

Discretizing Equation (3.14) on the grid we obtain

(ux
(2))i-

1
2
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2
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ρ
fex
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fey
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fez
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2

) (3.15)

The details of adding the gravity and elastic forces on the entire grid is provided in Algo-
rithm 3. We should note that, as reported by Irving [2007], using the simple explicit scheme
above for integrating elastic forces poses the following restriction on the time-step δt

δt < δx

√
ρ

µe
. (3.16)

Therefore using our method for simulating very stiff materials would require small time-
steps. Note that we are interested in simulating the fluid end of the spectrum where either
µe is low and/or the elastic strain is decaying exponentially over time. Therefore in practice,
the use of explicit integration does not force us to take small time-steps.

3.3.3 Viscosity

Next we compute the viscous forces which act as internal friction to shear flow. In effect,
viscosity in a fluid causes the velocity to dissipate and is formulated by a diffusion equation

∂u

δt
=
µv
ρ
∇2u . (3.17)

For fluids with high viscosity the viscous forces can be fairly stiff. This makes the use of
explicit time integration impractical. Therefore, we use the implicit method described in
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Stam [1999] to solve Equation (3.17). Using the implicit backward Euler time integration
scheme, integration of the viscous forces can be formulated as

u(3) − u(2)

δt
=
µv
ρ
∇2u(3) , (3.18)

which can be rearranged as (
I − δtµv

ρ
∇2

)
u(3) = u(2) . (3.19)

In order to solve Equation (3.19) we need to discretize the Laplacian operator ∇2 ≡∇ ·∇
on the grid. Applying the central finite differences on each component of the vector ∇2u,
we obtain
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Using the discretization in Equation (3.20), Equation (3.19) can be expressed as a set of
three linear systems, one for each component of u(3)

Kvux
(3) = ux

(2)

Kvuy
(3) = uy

(2)

Kvuz
(3) = uz

(2)

(3.21)

where Kv =
(
I − δtµv

ρ
∇2
)

. We solve each of these systems separately using the conjugate

gradient method best described in [Shewchuk, 1994]. However, instead of assembling Kv as
a separate matrix, we perform the matrix multiplication on the grid using a set of special
functions detailed in Algorithm 5. Instead of Kv, we use these multiplication functions in
our implementation of the conjugate gradient algorithm (see Algorithm 4). The final details
of integrating viscous forces are provided in Algorithm 6.
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3.3.4 Pressure Projection

None of the terms we solved so far operated under the constraint that the velocity field we
computed must be divergence-free. Therefore, even though we started with a divergence-free
velocity field un at the beginning of the time-step n, the last velocity field we computed u(3)

is not necessarily incompressible. We need to solve the pressure Poisson equation in Equa-
tion (2.29), to obtain the pressure that would make the flow incompressible, and then,
using Equation (2.26) we must project the gradient of that pressure onto u(3) to obtain our
final divergence-free velocity field un+1.

Integrating Equation (2.29) in time and rearranging it, we obtain

∇2pn =
ρ

δt
∇ · u(3) . (3.22)

Using the centered finite differences we can discretize ∇2p as
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− 2
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1
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2
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+
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1
2

z

δz
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Using the spatial discretizations in Equations (3.23) and (3.24), we can formulate Equa-
tion (3.22) as a linear system

Kpp
n = bp . (3.25)

We again perform the multiplication of Kpp on the grid and use the conjugate gradient
algorithm to solve Equation (3.25) (see Algorithm 7).

Finally we time integrate Equation (2.26) and project ∇pn on u(3) to obtain divergence-
free un+1

un+1 = u(3) − δt

ρ
∇pn . (3.26)

The details of the pressure projection step are provided in Algorithm 8.

3.4 Surface Tracking

The free surface of the fluid is tracked by using the particle level-set method described in
Enright et al. [2002], but with the substantially faster, though less accurate, method detailed
in Enright et al. [2004]. In level-set methods the surface S is defined by an implicit function
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Φ(x) whose zero level-set, i.e. Φ(x) = 0, represents the surface. Any function would do, but
using a signed distance function where

Φ(x) =


min
p∈S
‖x− p‖, if x is outside the fluid

0, if x is on the surface S

−min
p∈S
‖x− p‖, if x is inside the fluid

(3.27)

has certain advantages. First, a signed distance function is smooth everywhere, except the
medial axes, and can be differentiated. Second, ∇Φ(x) is the unit normal to the sur-
face at any point x on the surface. Additionally, for any point x in space, away from the
surface, ∇Φ(x) is the direction to the closest point p on the surface to the point x. In
fact, the closest surface point p for any given point x in space can be easily computed by
p = x− Φ(x)‖∇Φ(x)‖.

To represent the level-set in our simulation we discretize the distance values Φ on a
separate grid. Enright et al. [2004] note that the method is susceptible to volume loss, and
we found this behavior to be problematic for some of our examples that involve fixed, small
amounts of fluid. We were able to ameliorate this problem somewhat by using a level-set
grid with twice the fluid grid’s resolution, and that is staggered with respect to the fluid grid
as shown in Figure 3.9. This scheme places level-set grid centers on the cell centers, face
centers, edge centers, and nodes of the fluid grid. In addition to helping to prevent volume
loss by locating level-set values where velocity boundary constraints are enforced, the higher
resolution also benefits the rendered surfaces.

Once the signed distance function Φ(x) is initialized on the grid given the initial state,
the surface can be tracked by advecting the distance values on the grid by solving

∂Φ

∂t
+ u ·∇Φ = 0 (3.28)

We again use the semi-Lagrangian advection algorithm to advect Φ values on the grid.
However, simply advecting the Φ values can cause dissipation in time. Moreover, since
Φ(x) does not have a reliable derivative near medial axes, relying on the grid Φ alone
can cause problems in areas with high curvature. To fix this, Enright et al. [2002; 2004]

maintain a dense set of particles in a narrow band of three cells on both sides of the surface,
and use these particles to correct the surface in these problem areas. To do this, after
Φ values get advected, the particles are moved forward along the velocity field using the
path trace algorithm in Algorithm 2. In smooth areas the particles on both sides of the
surface tend to stay on their side and agree where the surface is. However, in problem areas
positive particles escape to the negative side and negative particles escape to the positive
side of the fluid. The distance values of these escaped particles are then used to correct the
errors in the grid Φ values. Since after the advection and the error-correction the resulting
Φ field is not guaranteed to be a signed distance field, the fast marching extrapolation
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Figure 3.9: The grid for storing the signed distance Φ values (in black). This signed distance
grid has higher resolution and is staggered with respect to the computational grid (in red),
so that every cell center, face center, edge center and corner on the computational domain
is a cell center in the Φ grid and thus has a signed distance value associated with it.

method discussed in Section 3.6 is used to reinitialize signed distance Φ values away from
the surface. After the reinitialization step, the location of the zero level-set may change.
Therefore the error-correction step is repeated again. Finally the particles are reseeded
and reinitialized using the new surface location, if necessary. The high level algorithm
of the particle leve-set method for tracking the surface is provided in Algorithm 9. For
complete set of details on each step of this method we refer the reader to Enright et al. [2002;
2004] and Osher et al. [2003].
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3.5 Updating Strain

At the end of each time step, after the divergence-free velocity field un+1 is computed by
the fluid simulator, the strain needs to be updated by solving Equation (2.23). Using the
forward Euler method, Equation (2.23) can be integrated as

εn+1 − εn
δt

= − (un+1 · ∇)εn (3.29a)

− εn ·W n+1 +W n+1 · εn (3.29b)

+
(
∇un+1 +

(∇un+1
)T)

/2 (3.29c)

− α ε′n

‖ε′n‖ max
(
0, ‖ε′n‖ − γ

)
(3.29d)

First, like velocity or any other fluid property, the elastic strain must be moved with the
fluid in Equation (3.29a). Therefore, each component of the strain tensor is advected us-
ing the semi-Lagrangian advection scheme described in Section 3.3.1. In order to avoid
the artifacts discussed in Section 2.4, εn must be rotated by the spin tensor W n+1 =(
∇un+1 − (∇un+1)

T
)
/2 in Equation (3.29b). Using the discretization of the velocity gra-

dient in Equation (3.3) the skew-symmetric spin tensor W n+1 can be computed as
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Computing the rotation term in Equation (3.29b) requires multiplication of two rank-two
tensors εn and W n+1 which can be somewhat inefficient for generalized rank-two tensors on
a staggered grid (see [Gerritsma, 1996] for a 2-D case). However since εn and W n+1 are
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symmetric and skew-symmetric respectively, computation of An = W n+1 · εn − εn ·W n+1

can be simplified as
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Note that not all the elements of εn and W n+1 are defined where they are needed to

compute the elements of An. For example A
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Another, simpler alternative is to reconstruct all components of both εn and W n+1 at the
cell centers, computing An there and redistributing the off-diagonal components back to
the edge centers. However this scheme uses an additional ring of tensor values and causes
additional smoothing of An.

Next the strain rate Dn+1 =
(
∇un+1 + (∇un+1)

T
)
/2 is integrated into the strain
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in Equation (3.29c) which can be computed as
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Finally the strain is decayed in Equation (3.29d) based on decay rate α and plastic
limit γ. Note that as we did in computing Equation (3.29b), Equation (3.29d) needs to
be computed for each component separately. Therefore, in order to compute the Frobenius
norm ‖ε′n‖ = [(ε′nxx)

2 + (ε′nyy)
2 + (ε′nzz)

2 + 2(ε′nxy)
2 + 2(ε′nxz)

2 + 2(ε′nyz)
2]

1
2 , which needs all of the

components of ε′ to be present, missing components need to be interpolated as needed by
averaging the surrounding values. The details of updating the strain solving Equation (3.29)
are provided in Algorithms 10-14.

3.6 Setting Boundary Conditions

To impose the boundary conditions, at the beginning of every sub-step of the simulation
explained above, we go through the set of non-free cell centers, faces and edges, and set
their values to boundary values specified in Section 2.6. To resolve the solid boundaries, we
voxelize the colliders at each time-step on the computational grid by labeling every cell that
is inside the collider as a SOLID cell. We also label all the faces between the fluid and the
solids as a WALL face. The velocity component at the WALL faces is set to the velocity of
the collider to satisfy Equation (2.31). The tangential components of the velocity parallel to
the WALL face inside the SOLID cell are set to the corresponding tangential components of
the velocity of the fluid across the WALL face as shown in Figure 3.10. If no-slip boundary
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ūx

ūy

ūz

Figure 3.10: Imposing velocity boundary conditions on face aligned solid walls (shaded gray).
Velocity component on the WALL face is set to solid collider velocity ū. Velocity components
tangent to solid face are set to the corresponding velocity component on the other side of
the face (+ for slip, − for no-slip).

condition is chosen, the tangential boundary velocities are multiplied by -1 so that the net
tangential velocity at the WALL face is zero1. Setting the velocity boundary conditions at the
free surface is more involved, because the surface is not necessarily aligned with the grid faces.
To satisfy the boundary condition in Equation (2.35) we need to ensure that the velocity
components stay constant across the fluid’s surface. We achieve this by extrapolating the
velocity away from the surface by setting each component to the closest one on the surface
of the fluid. We use the efficient fast marching method described in [Enright et al., 2002;
2004] to extrapolate the velocity components into a narrow band of cells across the surface.
The details of setting the velocity boundary conditions and the velocity extrapolation are
provided in Algorithm 15 and Algorithm 16, respectively.

The solid boundary condition for pressure p in Equation (2.33) is satisfied by setting
the pressure values at SOLID cell centers to the ones of the fluid across the WALL faces as
shown in Figure 3.11. We set the pressure value to zero for all of the remaining non-free cell
centers as specified in Equation (2.37) (see Algorithm 17).

To satisfy the solid boundary condition for elastic strain ε specified in Equation (2.34), we
first set the cell centered values εxx, εyy and εzz inside the SOLID cell to those on the fluid cell
across the WALL face. Then we set the off-diagonal components εxy, εxz and εyz at the edges

1For simplicity, in our current implementation, we only record the normal component of the collider
velocities and set the tangential components to zero
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Figure 3.11: Imposing pressure boundary conditions on face aligned solid walls (shaded
gray). Cell centered pressure value inside the solid cell is set to the one in the fluid cell
across the WALL face.

of the WALL face to zero as shown in Figure 3.12. The free surface boundary condition for
ε in Equation (2.36) is satisfied by extrapolating all the components of ε across the surface
using the fast marching method. The details of setting the strain boundary conditions and
the strain extrapolation are provided in Algorithm 18 and Algorithm 19 respectively.

Note that even though the semi-Lagrangian advection method described in Section 3.3.1
is unconditionally stable, extrapolating the velocity and strain components in a narrow band
still poses a constraint on the the time-step. To avoid tracing out of the extrapolated region
and risking grabbing an incorrect value for the velocity and the strain, the time-step δt needs
to be limited to

δt < λ
max ‖δx, δy, δz‖

umax
, (3.33)

where λ is the width of the extrapolation region (λ = 5 in our implementation).
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Figure 3.12: Imposing viscoelastic boundary conditions on face aligned solid walls (shaded
gray). Cell centered values εxx, εyy and εzz inside the solid cell are set to those in the fluid
cell and edge centered components that lie on the wall are set to zero.
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Chapter 4

Results and Discussion

We have implemented the method we described in this thesis for modeling viscoelas-
tic behavior and used it to generate several example animations. Most of these exam-
ples were selected to illustrate some interesting aspect of viscoelastic fluid behavior. All
of the examples shown in this thesis also appear on an accompanying video located at
http://graphics.eecs.berkeley.edu/papers/Goktekin-AMF-2004-08, which also contains ad-
ditional examples.

Figures 4.1 and 4.2 show several splashes that are generated when a fluid sphere is hurled
into a tank containing the same material. The motion of the pure fluid example differs
substantially from the viscoelastic examples. Additionally, the surfaces of the viscoelastic
examples retain evidence of the impact even after motion has stopped. Figure 4.3 shows
jets of different fluids sprayed into a closed container. Again, the behavior of simple and
viscoelastic fluids differ substantially.

Figures 4.4 and 4.5 illustrate some of the variation in viscoelastic fluid behaviors. In
Figure 4.4, fluid draining from a tank forms a thin stream that forms a spiral pattern as it
piles. The examples in Figure 4.5 billow up around the downward stream, create a folding
pattern, and break apart into gobs. A simply viscous fluid would merely flow out to fill the
container.

The drip examples in Figures 4.7 and 4.8 show the behavior of a gob of material that has
been stuck to the underside of a horizontal surface. The effect of shape memory created by
the elastic forces can be seen in these images. Some of the images in Figure 2.5 show similar
behavior that occurs when cubes of different materials are dropped onto a hard surface. The
examples with high yield strain, i.e. large γ, behave like deformable solids and bounce.

As shown in Figure 4.9, the method can also model highly deformable, sticky objects that
interact with each other. When the spheres collide, their level-set surfaces merge so that they
adhere. The fluid retains its momentum, generating the resulting spinning and stretching
motion. Close examination shows that the spheres slightly anticipate their collision. This
error occurs because the surfaces begin to interact through shared ghost cells.

The images in Figure 4.6 are still images from an animation we produced using this sim-
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Figure 4.1: A sequence of images showing a splash in a viscoelastic fluid.
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Figure 4.2: These images, along with the ones shown in Figure 4.1, show how splash behavior
is affected by elasticity. The upper-left image shows a fluid example. As expected, the
Worthington column moves in the direction of the impact. In the viscoelastic examples,
the column rises vertically (upper-right) or actually rises back toward the impact direction
(lower-left). The lower-right image shows a fluid with both elasticity and high viscosity.

ulation method. These examples demonstrate viscoelastic fluids interacting with interesting
geometry.

All of the images were rendered with a standard Newton-iteration based ray marching
algorithm implemented in the open source renderer Pixie developed by Okan Arikan.

Some of our examples suffer from noticeable volume loss. This occurs because, while
the particle level-set method does a nice job modeling moderately thick volumes of fluids,
very thin surfaces, or strands, still have a tendency to vanish. These effects are particularly
noticeable visually when the fluid is moving in orderly fashion, as opposed to splashing about
chaotically. It is difficult to say if this behavior is a deficiency in our implementation or a
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Figure 4.3: Examples of fluid being sprayed into a container. The way different fluids flow
or pile in the container varies significantly.

Figure 4.4: A sequence of images showing a viscoelastic fluid draining from a tank. The
stream spirals in a fashion characteristic of viscoelastic fluids.

limitation of the surface tracking method.
The speed of this simulation method is approximately the same with and without the
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addition of elastic forces. For example, one of the falling cube examples on a 403 grid requires
about half an hour of computation per second of animation on a single 3 GHz Pentium 4
processor. We are using an explicit integration method for the viscous and elastic forces, so
very high viscous or elastic coefficients would probably cause stability problems and force
smaller time steps. If it became an issue, that difficulty could be ameliorated somewhat with
an implicit integration scheme.

The material can be made to adhere to or slip off of boundary surfaces by adjusting the
velocity or pressure constraints enforced along closed boundaries. However, in our current
implementation all fluids will stick to each other because different surface components merge
when they collide. For the fluids we show in our examples, this behavior is a desirable
feature. However, for non-sticky materials, like cold gelatin, it would be undesirable.

To a large extent, our method for incorporating elastoplastic terms does not depend on
the underlying fluid simulation method, and one could easily adapt the method to other fluid
simulation techniques such as Smoothed-Particle Hydrodynamics (SPH) or Fluid-Implicit-
Particle (FLIP). Furthermore, we found that once we already had a working fluid simulation,
adding the elastoplastic terms was fairly easy.

In addition to combining fluid and solid properties, there are many ways in which real
materials differ from an ideal solid or fluid. For example, solids may exhibit nonlinear stress-
to-strain relations, and fluids may exhibit time, pressure, or strain-rate dependent viscosity.
These same deviations from the idealized model can occur for viscoelastic fluids. Useful
modeling of some materials, such as biological tissues, can require complex constitutive
relations. However, many graphics applications have been well served by simple elastic
and simple viscous relations, and we have found them useful for viscoelastic fluids as well.
For applications where more complex relations are called for, we note that our method for

Figure 4.5: These additional examples of viscoelastic fluids draining from a tank show a
range of different behaviors.
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including elastic forces in a Eulerian fluid simulation are largely independent of the employed
constitutive relations.

Finally, we note that while the method we present can model a wide range of phenomena,
many real materials can demonstrate behaviors not captured by this model. Biological
fluids, such as blood, can exhibit many interesting effects that arise from their microscopic
structure. Even relatively simple polymer suspensions can demonstrate behavior that can
only be roughly captured with this model.

Figure 4.6: Images from the animation Gratuitous Goop, which was produced using the
methods described in this paper and appeared in the SIGGRAPH 2004 Electronic Theater.
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Figure 4.7: A sequence of images showing a viscoelastic fluid dripping off of a surface to
which it has adhered.

Figure 4.8: Other drip examples. The first is highly elastic and falls off as a single blob.
The second does the same as well, but splats because it is less rigid. The final example
demonstrates a characteristic swirling behavior.

Figure 4.9: Two sticky spheres being thrown into each other so that they adhere together.
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Appendix A

Algorithms

Algorithm 1 Computing fne = µe∇ · εn on the grid

procedure ElasticForces(ε)
ApplyStrainBC(ε)
for all free x-face (i- 1

2
,j,k) do

(fe)
i- 1

2
,j,k

x ← µe(
ε
i,j,k
xx −ε

i-1,j,k
xx

δx
+

ε
i- 1

2
,j+ 1

2
,k

xy −ε
i- 1

2
,j- 1

2
,k

xy

δy
+ ε

i- 1
2
,j,k+ 1

2
xz −ε

i- 1
2
,j,k- 1

2
xz

δz
)

end for
for all free y-face (i,j- 1

2
,k) do

(fe)
i,j- 1

2
,k

y ← µe(
ε
i+ 1

2
,j- 1

2
,k

xy −ε
i- 1

2
,j- 1

2
,k

xy

δx
+

ε
i,j,k
yy −ε

i,j-1,k
yy

δy
+

ε
i,j- 1

2
,k+ 1

2
yz −ε

i,j- 1
2
,k- 1

2
yz

δz
)

end for
for all free z-face (i,j,k- 1

2
) do

(fe)
i,j,k- 1

2
z ← µe(

ε
i+ 1

2
,j,k- 1

2
xz −ε

i- 1
2
,j,k- 1

2
xz

δx
+

ε
i,j+ 1

2
,k- 1

2
yz −ε

i,j- 1
2
,k- 1

2
yz

δy
+ ε

i,j,k
zz −ε

i,j,k−1
zz

δz
)

end for
return fe

end procedure
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Algorithm 2 Advecting the velocity using the Semi-Lagrangian advection method

procedure PathTrace(x, u)
xmid ← x+ δt

2
u

xf ← x− δtu(xmid)
return xf

end procedure

procedure AdvectVelocity(u)
ApplyVelocityBC(u)
û← u
for all free x-face (i- 1

2
,j,k) do

us ← −u(xi- 1
2
,j,k)

xf ← PathTrace(xi- 1
2
,j,k,us)

ûx ← ux(xf )
end for
for all free y-face (i,j- 1

2
,k) do

us ← −u(xi,j- 1
2
,k)

xf ← PathTrace(xi,j- 1
2
,k,us)

ûy ← uy(xf )
end for
for all free z-face (i,j,k- 1

2
) do

us ← −u(xi,j,k- 1
2 )

xf ← PathTrace(xi,j,k- 1
2 ,us)

ûz ← uz(xf )
end for
return û

end procedure
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Algorithm 3 Adding gravity and elastic forces

procedure AddForces(u)
û← u
for all free x-face (i- 1

2
,j,k) do

û
i- 1

2
,j,k

x ← u
i- 1

2
,j,k

x + δt
(
gx + 1

ρ
fex

i- 1
2
,j,k
)

end for
for all free y-face (i,j- 1

2
,k) do

û
i,j- 1

2
,k

y ← u
i,j- 1

2
,k

y + δt
(
gy + 1

ρ
fey

i,j- 1
2
,k
)

end for
for all free z-face (i,j,k- 1

2
) do

û
i,j,k- 1

2
z ← u

i,j,k- 1
2

z + δt
(
gz + 1

ρ
fez

i,j,k- 1
2

)
end for
return û

end procedure

Algorithm 4 Conjugate Gradient Algorithm

// Solves Ax = b given max iteration imax and error tolerance ε
procedure ConjugateGradient(MultAx, x, b, imax, ε)

i← 0
r ← b−MultAx(A,x)
d← r
δnew ← rTr
δ0 ← δnew
while i < imax and δnew > ε2δ0 do
q ←MultAx(A,d)
α = δnew

dTq
x← x+ αd
r ← r − αq
δold ← δnew
δnew ← rTr
β ← δnew

δold
d← r + βd
i← i+ 1

end while
return x

end procedure
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Algorithm 5 Computing û =
(
I − δtµv

ρ
∇2
)
u foreach component on the Grid

procedure ComputeKUx(ux)

for all free u
i- 1

2
,j,k

x do

û
i- 1

2
,j,k

x ← −µv
ρ
δt

(
u
i- 3

2
,j,k

x +u
i+ 1

2
,j,k

x

δx2
+ u

i- 1
2
,j-1,k

x +u
i- 1

2
,j+1,k

x

δy2
+ u

i- 1
2
,j,k-1

x +u
i- 1

2
,j,k+1

x

δz2

)
û
i- 1

2
,j,k

x ← û
i- 1

2
,j,k

x +
(

1 + 2µv
ρ
δt
(

1
δx2

+ 1
δy2

+ 1
δz2

)
u
i- 1

2
,j,k

x )
)

end for
return ûx

end procedure
procedure ComputeKUy(uy)

for all free u
i,j- 1

2
,k

y do

û
i,j- 1

2
,k

y ← −µv
ρ
δt

(
u
i-1,j- 1

2
,k

y +u
i+1,j- 1

2
,k

y

δx2
+

u
i,j- 3

2
,k

y +u
i,j+ 1

2
,k

y

δy2
+

u
i,j- 1

2
,k-1

y +u
i,j- 1

2
,k+1

y

δz2

)
û
i,j- 1

2
,k

y ← û
i,j- 1

2
,k

y +
(

1 + 2
(

1
δx2

+ 1
δy2

+ 1
δz2

)
u
i,j- 1

2
,k

y

)
end for
return ûy

end procedure
procedure ComputeKUz(uz)

for all free u
i,j,k- 1

2
z do

û
i,j,k- 1

2
z ← −µv

ρ
δt

(
u
i-1,j,k- 1

2
z +u

i+1,j,k- 1
2

z

δx2
+ u

i,j-1,k- 1
2

z +u
i,j+1,k- 1

2
z

δy2
+ u

i,j,k- 3
2

z +u
i,j,k+ 1

2
z

δz2

)
û
i,j,k- 1

2
z ← û

i,j,k- 1
2

z +
(

1 + 2µv
ρ
δt
(

1
δx2

+ 1
δy2

+ 1
δz2

)
u
i,j,k- 1

2
z

)
end for
return ûz

end procedure

Algorithm 6 Solving the Viscosity

procedure Diffuse(u)
ApplyVelocityBC(u)
û← u
ûx ← ConguateGradient(ComputeKUx(), ûx,ux, imax, ε)
ûy ← ConguateGradient(ComputeKUy(), ûy,uy, imax, ε)
ûz ← ConguateGradient(ComputeKUz(), ûz,uz, imax, ε)
return û

end procedure
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Algorithm 7 Solving the Pressure Poisson equation

procedure ComputeKp(p)
for all free pi,j,k do

p̂i,j,k ← pi-1,j,k+pi+1,j,k

δx2
+ pi,j-1,k+pi,j+1,k

δy2
+ pi,j,k-1+pi,j,k+1

δz2
− 2

(
1
δx2

+ 1
δy2

+ 1
δz2

)
pi,j,k

end for
return p̂

end procedure
procedure ComputeDivU(u)

for all free pi,j,k do

bi,j,k ← ρ
δt

(u
i+ 1

2
,j,k

x −u
i- 1

2
,j,k

x

δx
+

u
i,j+ 1

2
,k

y −u
i,j- 1

2
,k

y

δy
+ u

i,j,k+ 1
2

z −u
i,j,k- 1

2
z

δz
)

end for
return b

end procedure
procedure SolvePPE(p, u)

p̂← p
b← ComputeDivU(u)
p̂← ConguateGradient(ComputeKp(), p̂, b, imax, ε)
return p̂

end procedure
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Algorithm 8 Pressure Project u to obtain divergence free û

procedure Project(p,u)

for all free u
i- 1

2
,j,k

x do

ûi- 1
2
,j,k ← ui- 1

2
,j,k − δt

ρ

(pi,j,k−pi-1,j,k)
δx

end for
for all free u

i,j- 1
2
,k

y do

ûi,j- 1
2
,k ← ui,j- 1

2
,k − δt

ρ

(pi,j,k−pi,j-1,k)
δy

end for
for all free u

i,j,k- 1
2

z do

ûi,j,k- 1
2 ← ui,j,k- 1

2 − δt
ρ

(pi,j,k−pi,j,k-1)
δz

end for
end procedure
procedure PressureProject(p,u)

ApplyVelocityBC(u)
ApplyPressureBC(p)
p̂← SolvePPE(p,u)
û← Project(p̂,u)
return û

end procedure

Algorithm 9 Tracking the surface using the particle level-set method

procedure SurfaceTrack(Φ,u)
Φ(1) ← Advect(u,Φ)
P (1) ← PathTraceParticles(P )
Φ(2) ← ErrorCorrect(Φ(1), P (1))
Φ(3) ← Extrapolate(Φ(2))
Φ(4) ← ErrorCorrect(Φ(3), P (1))
P ← ReseedParticles(Φ(4), P (1))
return Φ(4)

end procedure
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Algorithm 10 Advecting the strain using the Semi-Lagrangian advection method

procedure AdvectStrain(ε,u)
ApplyStrainBC(ε)
ε̂← ε
for all free cell center (i,j,k) do
us ← −u(xi,j,k)
xf ← PathTrace(xi,j,k,us)
ε̂i,j,kxx ← ε̂xx(xf )
ε̂i,j,kyy ← ε̂yy(xf )
ε̂i,j,kzz ← ε̂zz(xf )

end for
for all free xy-edge (i- 1

2
,j- 1

2
,k) do

us ← −u(xi- 1
2
,j- 1

2
,k)

xf ← PathTrace(xi- 1
2
,j- 1

2
,k,us)

ε̂
i- 1

2
,j- 1

2
,k

xy ← ε̂xy(xf )
end for
for all free xz-edge (i- 1

2
,j,k- 1

2
) do

us ← −u(xi- 1
2
,j,k- 1

2 )

xf ← PathTrace(xi- 1
2
,j,k- 1

2 ,us)

ε̂
i- 1

2
,j,k- 1

2
xz ← ε̂xz(xf )

end for
for all free yz-edge (i,j- 1

2
,k- 1

2
) do

us ← −u(xi,j- 1
2
,k- 1

2 )

xf ← PathTrace(xi,j- 1
2
,k- 1

2 ,us)

ε̂
i,j- 1

2
,k- 1

2
yz ← ε̂yz(xf )

end for
return ε̂

end procedure
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Algorithm 11 Rotating the strain

procedure ComputeW(u)
for all free cell center (i,j,k) do

W i,j,k
xx ,W i,j,k

yy ,W i,j,k
zz ← 0

end for
for all free xy-edge (i- 1

2
,j- 1

2
,k) do

W
i- 1

2
,j- 1

2
,k

xy ← u
i- 1

2
,j,k

x −u
i- 1

2
,j-1,k

x

2δy
− u

i,j- 1
2
,k

y −u
i-1,j- 1

2
,k

y

2δx

end for
for all free xz-edge (i- 1

2
,j,k- 1

2
) do

W
i- 1

2
,j,k- 1

2
xz ← u

i- 1
2
,j,k

x −u
i- 1

2
,j,k-1

x

2δz
− u

i,j,k- 1
2

z −u
i-1,j,k- 1

2
z

2δx

end for
for all free yz-edge (i,j- 1

2
,k- 1

2
) do

W
i,j- 1

2
,k- 1

2
yz ← u

i,j- 1
2
,k

y −u
i,j- 1

2
,k-1

y

2δz
− u

i,j,k- 1
2

z −u
i,j-1,k- 1

2
z

2δy

end for
return W

end procedure
procedure RotateStrain(ε,u)

ApplyStrainBC(ε)
ε̂← ε
W ← ComputeW(u)
for all free cell center (i,j,k) do

ε̂i,j,kxx ← 2δt(εxy(x
i,j,k)Wxy(x

i,j,k) + εxz(x
i,j,k)Wxz(x

i,j,k))
ε̂i,j,kyy ← −2δt(εxy(x

i,j,k)Wxy(x
i,j,k)− εyz(xi,j,k)Wyz(x

i,j,k))
ε̂i,j,kzz ← −2δt(εxz(x

i,j,k)Wxz(x
i,j,k) + εyz(x

i,j,k)Wyz(x
i,j,k))

end for
for all free xy-edge (i- 1

2
,j- 1

2
,k) do

ε̂xy ← δt(−εxx(xi- 1
2
,j- 1

2
,k)W

i- 1
2
,j- 1

2
,k

xy + εxz(x
i- 1

2
,j- 1

2
,k)Wyz(x

i- 1
2
,j- 1

2
,k)

+W
i- 1

2
,j- 1

2
,k

xy εyy(x
i- 1

2
,j- 1

2
,k) +Wxz(x

i- 1
2
,j- 1

2
,k)εyz(x

i- 1
2
,j- 1

2
,k))

end for
for all free xz-edge (i- 1

2
,j,k- 1

2
) do

ε̂xz ← δt(−εxx(xi- 1
2
,j,k- 1

2 )W
i- 1

2
,j,k- 1

2
xz − εxy(xi- 1

2
,j,k- 1

2 )Wyz(x
i- 1

2
,j,k- 1

2 )

+Wxy(x
i- 1

2
,j,k- 1

2 )εyz(x
i- 1

2
,j,k- 1

2 ) +W
i- 1

2
,j,k- 1

2
xz εzz(x

i- 1
2
,j,k- 1

2 ))
end for
for all free yz-edge (i,j- 1

2
,k- 1

2
) do

ε̂yz ← δt(−εxy(xi,j- 1
2
,k- 1

2 )Wxz(x
i,j- 1

2
,k- 1

2 )− εyy(xi,j- 1
2
,k- 1

2 )W
i,j- 1

2
,k- 1

2
yz

−Wxy(x
i,j- 1

2
,k- 1

2 )εxz(x
i,j- 1

2
,k- 1

2 ) +W
i,j- 1

2
,k- 1

2
yz εzz(x

i,j- 1
2
,k- 1

2 ))
end for
return ε̂

end procedure
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Algorithm 12 Computing strain rate and strain deviation

procedure ComputeD(u)
for all free cell center (i,j,k) do

Di,j,k
xx ← u

i+ 1
2
,j,k

x −u
i- 1

2
,j,k

x

δx

Di,j,k
yy ← u

i,j+ 1
2
,k

y −u
i,j- 1

2
,k

y

δy

Di,j,k
zz ← u

i,j,k+ 1
2

z −u
i,j,k- 1

2
z

δz

end for
for all free xy-edge (i- 1

2
,j- 1

2
,k) do

D
i- 1

2
,j- 1

2
,k

xy ← u
i- 1

2
,j,k

x −u
i- 1

2
,j-1,k

x

2δy
+

u
i,j- 1

2
,k

y −u
i-1,j- 1

2
,k

y

2δx

end for
for all free xz-edge (i- 1

2
,j,k- 1

2
) do

D
i- 1

2
,j,k- 1

2
xz ← u

i- 1
2
,j,k

x −u
i- 1

2
,j,k-1

x

2δz
+ u

i,j,k- 1
2

z −u
i-1,j,k- 1

2
z

2δx

end for
for all free yz-edge (i,j- 1

2
,k- 1

2
) do

D
i,j- 1

2
,k- 1

2
yz ← u

i,j- 1
2
,k

y −u
i,j- 1

2
,k-1

y

2δz
+ u

i,j,k- 1
2

z −u
i,j-1,k- 1

2
z

2δy

end for
return D

end procedure
procedure ComputeStrainDeviation(ε)
ε̂← ε
for all free cell center (i,j,k) do

dilationE ← ε
i,j,k
xx +ε

i,j,k
yy +ε

i,j,k
zz

3

ε̂i,j,kxx ← εxx − dilationE
ε̂i,j,kyy ← εyy − dilationE
ε̂i,j,kzz ← εyy − dilationE

end for
return ε̂

end procedure
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Algorithm 13 Integrating the strain rate and decaying the strain

procedure DecayStrain(ε,u)
ApplyStrainBC(ε)
ε̂← ε
D ← ComputeD(u)
ε′ ← ComputeStrainDeviation(ε)
for all free cell center (i,j,k) do

fNorm← [(ε′i,j,kxx )2+(ε′i,j,kyy )2+(ε′i,j,kzz )2+2(ε′xy(x
i,j,k))2+2(ε′xz(x

i,j,k))2+2(ε′yz(x
i,j,k))2]

1
2

ε̂i,j,kxx ← δt(Di,j,k
xx − α

fNorm
ε′i,j,kxx max (0, fNorm− λ))

ε̂i,j,kyy ← δt(Di,j,k
yy − α

fNorm
ε′i,j,kyy max (0, fNorm− λ))

ε̂i,j,kzz ← δt(Di,j,k
zz − α

fNorm
ε′i,j,kzz max (0, fNorm− λ))

end for
for all free xy-edge (i- 1

2
,j- 1

2
,k) do

fNorm← [(ε′xx(x
i- 1

2
,j- 1

2
,k))2 + (ε′yy(x

i- 1
2
,j- 1

2
,k))2 + (ε′zz(x

i- 1
2
,j- 1

2
,k))2

+2(ε
′i- 1

2
,j- 1

2
,k

xy )2 + 2(ε′xz(x
i- 1

2
,j- 1

2
,k))2 + 2(ε′yz(x

i- 1
2
,j- 1

2
,k))2]

1
2

ε̂
i- 1

2
,j- 1

2
,k

xy ← δt(D
i- 1

2
,j- 1

2
,k

xy − α
fNorm

ε
′i- 1

2
,j- 1

2
,k

xy max (0, fNorm− λ))
end for
for all free xz-edge (i- 1

2
,j,k- 1

2
) do

fNorm← [(ε′xx(x
i- 1

2
,j,k- 1

2 ))2 + (ε′yy(x
i- 1

2
,j,k- 1

2 ))2 + (ε′zz(x
i- 1

2
,j,k- 1

2 ))2

+2(ε′xy(x
i- 1

2
,j,k- 1

2 ))2 + 2(ε
′i- 1

2
,j,k- 1

2
xz )2 + 2(ε′yz(x

i- 1
2
,j,k- 1

2 ))2]
1
2

ε̂
i- 1

2
,j,k- 1

2
xz ← δt(D

i- 1
2
,j,k- 1

2
xz − α

fNorm
ε
′i- 1

2
,j,k- 1

2
xz max (0, fNorm− λ))

end for
for all free yz-edge (i,j- 1

2
,k- 1

2
) do

fNorm← [(ε′xx(x
i,j- 1

2
,k- 1

2 ))2 + (ε′yy(x
i,j- 1

2
,k- 1

2 ))2 + (ε′zz(x
i,j- 1

2
,k- 1

2 ))2

+2(ε′xy(x
i,j- 1

2
,k- 1

2 ))2 + 2(ε′xz(x
i,j- 1

2
,k- 1

2 ))2 + 2(ε
′i,j- 1

2
,k- 1

2
yz )2]

1
2

ε̂
i,j- 1

2
,k- 1

2
yz ← δt(D

i,j- 1
2
,k- 1

2
yz − α

fNorm
ε
′i,j- 1

2
,k- 1

2
yz max (0, fNorm− λ))

end for
return ε̂

end procedure

Algorithm 14 Updating the elastic strain

procedure UpdateStrain(ε,u)
ε(1) ← AdvectStrain(ε,u)
ε(2) ← RotateStrain(ε(1),u)
ε(3) ← DecayStrain(ε(2),u)
return ε(3)

end procedure
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Algorithm 15 Apply Velocity Boundary Conditions

procedure ApplyVelocityBC(u)
ExtrapolateVelocity(u)
for all SOLID cell (i,j,k) do

if x-face (i- 1
2
,j,k) is a WALL then

u
i- 1

2
,j,k

x ← ū
i- 1

2
,j,k

x

if SLIP then
u
i,j- 1

2
,k

y ← u
i-1,j- 1

2
,k

y

u
i,j,k- 1

2
z ← u

i-1,j,k- 1
2

z

else
u
i,j- 1

2
,k

y ← −ui-1,j-
1
2
,k

y

u
i,j,k- 1

2
z ← −ui-1,j,k-

1
2

z

end if
end if
if y-face (i,j- 1

2
,k) is a WALL then

u
i,j- 1

2
,k

y ← ū
i,j- 1

2
,k

y

if SLIP then
u
i- 1

2
,j,k

x ← u
i- 1

2
,j-1,k

x

u
i,j,k- 1

2
z ← u

i,j-1,k- 1
2

z

else
u
i- 1

2
,j,k

x ← −ui-
1
2
,j-1,k

x

u
i,j,k- 1

2
z ← −ui,j-1,k-

1
2

z

end if
end if
if z-face (i,j,k- 1

2
) is a WALL then

u
i,j,k- 1

2
z ← ū

i,j,k- 1
2

z

if SLIP then
u
i- 1

2
,j,k

x ← u
i- 1

2
,j,k-1

x

u
i,j- 1

2
,k

y ← u
i,j- 1

2
,k-1

y

else
u
i- 1

2
,j,k

x ← u
i- 1

2
,j,k-1

x

u
i,j- 1

2
,k

y ← u
i,j- 1

2
,k-1

y

end if
end if

end for
end procedure
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Algorithm 16 Extrapolate velocity across the fluid surface

procedure ExtrapolateVelocity(u)
bandWidth← 5 max(δx, δy, δz)

Mark all free u
i- 1

2
,j,k

x , u
i,j- 1

2
,k

y and u
i,j,k- 1

2
z KNOWN

uxList, uyList, uzList← Empty

Add all non-free (u
i- 1

2
,j,k

x ,Φ(xi- 1
2
,j,k)) with Φ(xi- 1

2
,j,k) ≤ bandWidth to uxList

Add all non-free (u
i,j- 1

2
,k

y ,Φ(xi,j- 1
2
,k)) with Φ(xi,j- 1

2
,k) ≤ bandWidth to uyList

Add all non-free (u
i,j,k- 1

2
z ,Φ(xi,j,k- 1

2 )) with Φ(xi,j,k- 1
2 ) ≤ bandWidth to uzList

Sort all uxList, uyList and uzList by Φ
while uxList is not Empty do

summedWeight← 0
(ux,Φ)← First element in uxList
for all KNOWN x-face neighbors ûx of ux do

ux ← ux + (Φ− Φ̂)ûx
summedWeight← summedWeight+ (Φ− Φ̂)

end for
ux ← ux/summedWeight
Remove ux from uxList and mark it KNOWN

end while
while uyList is not Empty do

summedWeight← 0
(uy,Φ)← First element in uyList
for all KNOWN y-face neighbors ûy of uy do

uy ← uy + (Φ− Φ̂)ûy
summedWeight← summedWeight+ (Φ− Φ̂)

end for
uy ← uy/summedWeight
Remove uy from uyList and mark it KNOWN

end while
while uzList is not Empty do

summedWeight← 0
(uz,Φ)← First element in uzList
for all KNOWN z-face neighbors ûz of uz do

uz ← uz + (Φ− Φ̂)ûz
summedWeight← summedWeight+ (Φ− Φ̂)

end for
uz ← uz/summedWeight
Remove uz from uzList and mark it KNOWN

end while
end procedure



67

Algorithm 17 Apply Pressure Boundary Conditions

procedure ApplyPressureBC(u)
for all non-free cell (i,j,k) do

pi,j,k ← 0
numSummed← 0
if x-face (i- 1

2
,j,k) is a WALL then

pi,j,k ← pi,j,k + pi-1,j,k

numSummed← numSummed+ 1
end if
if y-face (i,j- 1

2
,k) is a WALL then

pi,j,k ← pi,j,k + pi,j-1,k

numSummed← numSummed+ 1
end if
if z-face (i,j,k- 1

2
) is a WALL then

pi,j,k ← pi,j,k + pi,j,k-1

numSummed← numSummed+ 1
end if
if numSummed > 0 then

pi,j,k ← pi,j,k/numSummed
end if

end for
end procedure
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Algorithm 18 Apply Strain Boundary Conditions

procedure ApplyStrainBC(ε)
ExtrapolateStrain(ε)
for all non-free cell (i,j,k) do

εi,j,kxx ← 0
εi,j,kyy ← 0
εi,j,kzz ← 0
if x-face (i- 1

2
,j,k) is a WALL then

εi,j,kxx ← εi,j,kxx + εi-1,j,kxx

εi,j,kyy ← εi,j,kyy + εi-1,j,kyy

εi,j,kzz ← εi,j,kzz + εi-1,j,kzz

numSummed← numSummed+ 1

ε
i- 1

2
,j- 1

2
,k

xy ← 0

ε
i- 1

2
,j,k- 1

2
xz ← 0

end if
if y-face (i,j- 1

2
,k) is a WALL then

εi,j,kxx ← εi,j,kxx + εi,j-1,kxx

εi,j,kyy ← εi,j,kyy + εi,j-1,kyy

εi,j,kzz ← εi,j,kzz + εi,j-1,kzz

numSummed← numSummed+ 1

ε
i- 1

2
,j- 1

2
,k

xy ← 0

ε
i,j- 1

2
,k- 1

2
yz ← 0

end if
if z-face (i,j,k- 1

2
) is a WALL then

εi,j,kxx ← εi,j,kxx + εi,j,k-1xx

εi,j,kyy ← εi,j,kyy + εi,j,k-1yy

εi,j,kzz ← εi,j,kzz + εi,j,k-1zz

numSummed← numSummed+ 1

ε
i- 1

2
,j,k- 1

2
xz ← 0

ε
i,j- 1

2
,k- 1

2
yz ← 0

end if
if numSummed > 0 then

εi,j,kxx ← εi,j,kxx /numSummed
εi,j,kyy ← εi,j,kyy /numSummed
εi,j,kzz ← εi,j,kzz /numSummed

end if
end for

end procedure
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Algorithm 19 Extrapolate strain tensor across the fluid surface

procedure ExtrapolateStrain(ε)
bandWidth← 5 max{δx, δy, δz}
Mark all free εi,j,kxx , ε

i,j,k
yy , ε

i,j,k
zz , ε

i- 1
2
,j- 1

2
,k

xy , ε
i- 1

2
,j,k- 1

2
xz , ε

i,j- 1
2
,k- 1

2
yz KNOWN

εxxList, εyyList, εzzList, εxyList, εxzList, εyzList,← Empty
Add all non-free (εi,j,kxx ,Φ(xi,j,k)) with Φ(xi,j,k) ≤ bandWidth to εxxList
Add all non-free (εi,j,kyy ,Φ(xi,j,k)) with Φ(xi,j,k) ≤ bandWidth to εyyList
Add all non-free (εi,j,kzz ,Φ(xi,j,k)) with Φ(xi,j,k) ≤ bandWidth to εzzList

Add all non-free (ε
i- 1

2
,j- 1

2
,k

xy ,Φ(xi- 1
2
,j- 1

2
,k)) with Φ(xi- 1

2
,j- 1

2
,k) ≤ bandWidth to εxyList

Add all non-free (ε
i- 1

2
,j,k- 1

2
xz ,Φ(xi- 1

2
,j,k- 1

2 )) with Φ(xi- 1
2
,j,k- 1

2 ) ≤ bandWidth to εxzList

Add all non-free (ε
i,j- 1

2
,k- 1

2
yz ,Φ(xi,j- 1

2
,k- 1

2 )) with Φ(xi,j- 1
2
,k- 1

2 ) ≤ bandWidth to εyzList
Sort all εxxList, εyyList, εzzList, εxyList, εxzList and εyzList by Φ
while εxxList is not Empty do

(εxx,Φ)← First element in εxxList
(εyy,Φ)← First element in εyyList
(εzz,Φ)← First element in εzzList
summedWeight← 0
for all KNOWN cell center neighbors ε̂xx of εxx, ε̂yy of εyy and ε̂zz of εzz do

εxx ← εxx + (Φ− Φ̂)ε̂xx
εyy ← εyy + (Φ− Φ̂)ε̂yy
εzz ← εzz + (Φ− Φ̂)ε̂zz
summedWeight← summedWeight+ (Φ− Φ̂)

end for
εxx ← εxx/summedWeight
εyy ← εyy/summedWeight
εzz ← εzz/summedWeight
Remove εxx from εxxList and mark it KNOWN
Remove εyy from εyyList and mark it KNOWN
Remove εzz from εzzList and mark it KNOWN

end while
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Algorithm 19 Extrapolate strain tensor across the fluid surface (contin’d)

while εxyList is not Empty do
summedWeight← 0
(εxy,Φ)← First element in εxyList
for all KNOWN edge neighbors ε̂xy of εxy do

εxy ← εxy + (Φ− Φ̂)ε̂xy
summedWeight← summedWeight+ (Φ− Φ̂)

end for
εxy ← εxy/summedWeight
Remove εxy from εxyList and mark it KNOWN

end while
while εxzList is not Empty do

summedWeight← 0
(εxz,Φ)← First element in εxzList
for all KNOWN edge neighbors ε̂xz of εxz do

εxz ← εxz + (Φ− Φ̂)ε̂xz
summedWeight← summedWeight+ (Φ− Φ̂)

end for
εxz ← εxz/summedWeight
Remove εxz from εxzList and mark it KNOWN

end while
while εyzList is not Empty do

summedWeight← 0
(εyz,Φ)← First element in εyzList
for all KNOWN edge neighbors ε̂yz of εyz do

εyz ← εyz + (Φ− Φ̂)ε̂yz
summedWeight← summedWeight+ (Φ− Φ̂)

end for
εyz ← εyz/summedWeight
Remove εyz from εyzList and mark it KNOWN

end while
end procedure




