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Visual data are what make our daily life fun. Often times, we consume those data cre-

ated by experts in related fields, e.g., appreciating artworks drawn by famous painters or

watching movies shot by professional directors. How about creating the desired data that

show our own feelings, ideas and creativity by ourselves? This comes to the Visual Syn-

thesis, which is the process of synthesizing new data or altering existing data. However,

attempts from large amounts of non-experts often end up deviating from the manifold of

real natural data, leading to unrealistic results with undesired artifacts. The goal of all re-

search work in this thesis is to develop effective computational models to preserve visual

realism and facilitate more stunning creations. We mainly develop data-driven approaches

by learning from large amounts of existing created visual data and explore effective models

so that they can generalize to enormous unseen target data. Essentially, visual synthesis

is working on manipulating different factors that form the final observed data, such as

structure, style, content, motion and so on. Along this direction, we mainly explore four

synthesis tasks for various image and video editing scenarios, including structure enhance-

ment, style transfer, content filling and motion prediction.

Chapter 3 describes a joint filtering method on enhancing the sharpness of low-quality

structures in images. Chapter 4 presents how to alter the style of an image with another

xx



brand new style. We propose a universal style transfer algorithm that works for arbitrary

style inputs. Chapter 5 focuses on how to fill in the missing content in images in order to

remove occlusions. We aim at the face completion which is more challenging as it often

requires generating semantically new pixels for the missing key components. In Chapter 6,

we present a novel algorithm on how to generate pixel-level future frames in multiple time

steps given one still image. This represents an important step towards simulating similar

preplay activities that might constitute an automatic prediction mechanism in human visual

cortex.
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Chapter 1

Introduction

1.1 Overview

The visual data (e.g., images, videos) are what make make our daily life fun. Without

them, we would see nothing but a news feed full of text. The old saying “A picture is

worth a thousand words” also demonstrates that a complex idea can be conveyed with just

a single picture which conveys its meaning or essence more effectively than a description

does. Therefore instead of passively watching created data by experts, each one of non-

expert users actively has the desire to manipulate and edit their own data based on different

preferences and requirements. This makes an effective computation model in high demand

to simplify the user’s editing process. As shown in Figure 1.1, the computer generated

results should agree with the user’s intention. A deeper interpretation is that the editing

results should not deviate from the manifold of real natural data, which are expected to be

as realistic as possible without any artifacts. This motivates us to develop powerful editing

tools to enable everyone’s creation.

In essential, visual synthesis focuses on manipulating different factors that form an

image. Figure 1.2 shows an example of real editing case. Given an target input image

in (a), the user may not care about detailed local structures (e.g., those on sky and sea)

1
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Figure 1.1: We target on developing effective computational models to enable the visual

synthesis that faithfully reflects people’s (especially for non-expert users) ideas in mind.

(a) Target (b) Structure (c) Style (d) Content (e) Motion

Figure 1.2: Manipulating different factors of an image in visual synthesis.

but lines of the parachute are important structures to preserve. Thus an image smoothing

model should come up with a kind of selective smoothing ability to help users achieve the

goal in (b). Another user may want to change the style of the background so that the pilot

looks like flying over the arctic regions. We provide an image stylization tool to stylize the

sea with the snow-like feel in (c). In addition, there is a undesirable white small content

on left and we automatically remove it in (d) with a seamless result. Finally, to turn the

image to a vivid GIF version, the user may want the sea to have a flowing-like motion by

simply indicating a directional path in (e). Will this also be possible?



3

Based on such a real editing case, we accordingly explore four synthesis tasks in this

thesis, including structure enhancement, style transfer, content filling and motion predic-

tion. Those four factors, i.e., the structure, style, content and motion, are among the most

basic and important factors that constitute the final observed data. We mainly develop

data-driven approaches by learning from large amounts of existing created visual data and

explore effective models so that they can generalize to enormous unseen target data.

1.2 Dissertation Outline

In Chapter 2, we conduct a thorough literature review that relates to the visual synthesis

on different factors and beyond. Chapter 3-6 describe the main technical details, experi-

mental results and in-depth analysis on how to manipulate four factors, i.e., the structure,

style, content and motion.

More specifically, in Chapter 3, we propose a learning-based approach for construct-

ing joint filters based on Convolutional Neural Networks. The proposed algorithm can

selectively transfer salient structures that are consistent with both the guidance and target

images. In Chapter 4, we present a universal style transfer algorithm that does not require

learning for each individual style. We integrate the whitening and coloring transforms

in the feed-forward passes to match the statistical distributions and correlations between

content and style. In Chapter 5, we propose an effective face completion algorithm us-

ing a deep generative model that incorporates the adversarial learning. We demonstrate

that our model is able to deal with a large area of missing pixels in arbitrary shapes and

generate realistic face completion results. In Chapter 6, we study the problem of generat-

ing consecutive multiple future frames and formulate the multi-frame prediction task as a

multiple time step flow (multi-flow) prediction phase followed by a flow-to-frame synthe-

sis phase. We conduct extensive experiments on different types of motion to validate its

effectiveness.

We summarize the contributions and highlight three future directions to explore in
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Chapter 7.



Chapter 2

Literature Review

2.1 Structure Enhancement

The structure enhancement is the procedure of improving the sharpness of structures

in low-quality target images. Joint image filtering is a typical task for enhancement in

the field of computer vision. The basic idea is to leverage a reference image as a prior

and transfer the structural information to the target image for image enhancement. Those

filters can be categorized into two main classes based on explicit filter construction or

global optimization of data fidelity and regularization terms.

Explicit joint filters compute the filtered output as a weighted average of neighboring

pixels in the target image. The bilateral filters [110, 140, 61, 74, 148, 5] and guided

filters [46] are representative algorithms in this class. The filter weights, however, depend

solely on the local structure of the guidance image. Therefore, erroneous or extraneous

structures may be transferred to the target image due to the lack of consistency constraints.

In contrast, our model considers the contents of both images based on feature maps and

enforces consistency implicitly through learning from examples.

Numerous approaches formulate joint filtering based on a global optimization frame-

work. The objective function typically consists of two terms: data fidelity and regulariza-

5
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tion terms. The data fidelity term ensures that the filtering output is close to the input target

image. These techniques differ from each other mainly in the regularization term that en-

courages the output to have a similar structure with the guidance image. The regularization

term can be defined according to texture derivatives [20], mid-level representations [88]

such as segmentation and saliency, filtering outputs [44], or mutual structures shared by

the target and guidance image [100]. However, global optimization based methods rely

on hand-designed objective functions that may not reflect the complexities of natural im-

ages. Furthermore, these approaches involve iterative optimization and are often time-

consuming. In contrast, our method learns how to selectively transfer important details

directly from the RGB/depth data. Although the training process is time-consuming, the

learned model is efficient during run-time.

Learning-based image filters. With significant success in high-level vision tasks [63],

substantial efforts have been made to construct image filters using learning algorithms and

CNNs. For example, the conventional bilateral filter can be improved by replacing the

predefined filter weights with those learned from a large amount of data [55, 39]. In the

context of joint depth upsampling, Tai et al. [54] use a multi-scale guidance strategy to

improve upsampling performance. Gu et al. [43] adjust the original guidance dynamically

to account for the iterative updates of the filtering results. However, these methods [54, 43]

are limited to the application of depth map upsampling. In contrast, our goal is to construct

a generic joint filter for various applications using target/guidance image pairs in different

visual domains.

Deep models for low-level vision. In addition to filtering, deep learning models have also

been applied to other low-level vision and computational photography tasks. Examples

include image denoising [9], raindrop removal [28], image super-resolution [23], image

deblurring [147] and optical flow estimation [91]. Existing deep learning models for low-

level vision use either one input image [23, 9, 28, 134] or two images in the same domain

[91]. In contrast, our network can accommodate two streams of inputs by heterogeneous
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domains, e.g., RGB/NIR, flash/non-flash, RGD/Depth, intensity/color. Our network ar-

chitecture bears some resemblance to that in Dosovitskiy et al. [91]. The main difference

is that the merging layer used in [91] is a correlation operator while our model integrates

the inputs through concatenating the feature responses. Furthermore, we adopt residual

learning by introducing skip connections.

2.2 Style Transfer

Style transfer is the technique of recomposing a content image in the style of another

style image for image synthesis. Existing style transfer methods are mostly example-

based [48, 104, 103, 33, 72]. The image analogy method [48] aims to determine the

relationship between a pair of images and then apply it to stylize other images. As it

is based on finding dense correspondence, analogy-based approaches [104, 103, 33, 72]

often require that a pair of image depicts the same type of scene. Therefore these methods

do not scale to the setting of arbitrary style images well.

Recently, Gatys et al. [35, 36] proposed an algorithm for arbitrary stylization based

on matching the correlations (Gram matrix) between deep features extracted by a trained

network classifier within an iterative optimization framework. Numerous methods have

since been developed to address different aspects including speed [114, 70, 56], qual-

ity [115, 69, 130, 129], user control [37], diversity [116, 141], semantics understand-

ing [33, 11] and photorealism [80]. It is worth mentioning that one of the major drawbacks

of [35, 36] is the inefficiency due to the optimization process. The improvement of effi-

ciency in [114, 70, 56] is realized by formulating the stylization as learning a feed-forward

image transformation network. However, these methods are limited by the requirement of

training one network per style due to the lack of generalization in network design.

Most recently, a number of methods have been proposed to empower a single net-

work to transfer multiple styles, including a model that conditioned on binary selection

units [141], a network that learns a set of new filters for every new style [13], and a novel
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conditional normalization layer that learns normalization parameters for each style [27].

To achieve arbitrary style transfer, Chen et al. [14] first propose to swap the content fea-

ture with the closest style feature locally. Meanwhile, inspired by [27], two following

work [127, 40] turn to learn a general mapping from the style image to style parameters.

One closest related work [53] directly adjusts the content feature to match the mean and

variance of the style feature. However, the generalization ability of the learned models on

unseen styles is still limited.

Different from the existing methods, our approach performs style transfer efficiently

in a feed-forward manner while achieving generalization and visual quality on arbitrary

styles. Our approach is closely related to [53], where content feature in a particular

(higher) layer is adaptively instance normalized by the mean and variance of style fea-

ture. This step can be viewed as a sub-optimal approximation of the WCT operation,

thereby leading to less effective results on both training and unseen styles. Moreover, our

encoder-decoder network is trained solely based on image reconstruction, while [53] re-

quires learning such a module particularly for stylization task. We evaluate the proposed

algorithm with existing approaches extensively on both style transfer and texture synthesis

tasks and present in-depth analysis.

2.3 Content Filling

Content filling, also known as completion or inpainting, refers to fill the missing or

masked regions in images with plausibly synthesized contents. It has been studied in

numerous contexts, e.g., inpainting, texture synthesis, and sparse signal recovery. Since

a thorough literature review is beyond the scope of this work, and we discuss the most

representative methods to put our work in proper context.

An early inpainting method [7] exploits a diffusion equation to iteratively propagate

low-level features from known regions to unknown areas along the mask boundaries.

While it performs well on inpainting, it is limited to deal with small and homogeneous



9

regions. Another method has been developed to further improve inpainting results by in-

troducing texture synthesis [8]. In [153], the patch prior is learned to restore images with

missing pixels. Recently Ren et al. [97] learn a convolutional network for inpainting. The

performance of image completion is significantly improved by an efficient patch matching

algorithm [4] for nonparametric texture synthesis. While it performs well when similar

patches can be found, it is likely to fail when the source image does not contain sufficient

amount of data to fill in the unknown regions. We note this typically occurs in object com-

pletion as each part is likely to be unique and no plausible patches for the missing region

can be found. Although this problem can be alleviated by using an external database [45],

the ensuing issue is the need to learn high-level representation of one specific object class

for patch match.

Wright et al. [131] cast image completion as the task for recovering sparse signals

from inputs. By solving a sparse linear system, an image can be recovered from some

corrupted input. However, this algorithm requires the images to be highly-structured (i.e.,

data points are assumed to lie in a low-dimensional subspace), e.g., well-aligned face

images. In contrast, our algorithm performs completion without strict constraints.

Image generation. Vincent et al. [120] introduce denoising autoencoders that learn to

reconstruct clean signals from corrupted inputs. In [26], Dosovitskiy et al. demonstrate

that an object image can be reconstructed by inverting deep convolutional network features

(e.g., VGG [105]) through a decoder network. Kingma et al. [59] propose variational au-

toencoders (VAEs) which regularize encoders by imposing prior over the latent units such

that images can be generated by sampling from or interpolating latent units. However, the

generated images by a VAE are usually blurry due to its training objective based on pixel-

wise Gaussian likelihood. Larsen et al. [65] improve a VAE by adding a discriminator for

adversarial training which stems from the generative adversarial networks (GANs) [42]

and demonstrate more realistic images can be generated.

The most recent work proposed by Deepak et al. [89] applies an autoencoder and in-
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tegrates learning visual representations with image completion. However, this approach

emphasizes more on unsupervised learning of representations than image completion. In

essence, this is a chicken-and-egg problem. Despite the promising results on object de-

tection, it is still not entirely clear if image completion can provide sufficient supervision

signals for learning high-level features. On the other hand, semantic labels or segmenta-

tions are likely to be useful for improving the completion results, especially on a certain

object category. With the goal of achieving high-quality image completion, we propose

to use an additional semantic parsing network to regularize the generative networks. Our

model deals with severe image corruption (large region with missing pixels), and develops

a combined reconstruction, adversarial and parsing loss for face completion.

2.4 Motion Prediction

Action prediction. The macroscopic analysis of prediction based on the given frame(s)

can be predicting what event is going to happen [144, 64, 50], trajectory paths [60], or rec-

ognizing the type of human activities [122, 126]. Some of early methods are supervised,

requiring labels (e.g., bounding boxes) of the moving object. Later approaches [126] real-

ize the unsupervised way of prediction by relying on the context of scenes. However, these

approaches usually only provide coarse predictions of how the future will evolve and are

unable to tell richer information except for an action (or event) label.

Pixel-level frame prediction. Recent prediction methods move to the microcosmic

analysis of more detailed information in the future. This is directly reflected by requir-

ing the pixel-level generation of future frames in multiple time steps. With the develop-

ment of deep neural networks, especially when recursive modules are extensively used,

predicting realistic future frames has dominated. Much progress has been made in the

generated quality of future outputs by designing different network structures [109, 87, 83]

or using different learning techniques, including adversarial loss [123, 71], motion/content
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separation [118, 113, 19], and transformation parameters [32, 124].

Our work also aims at accurate frame predictions but the specific setting is to model

the uncertainties of multi-frame prediction given a single still image as input. In terms

of multi-frame predictions on still images, the closest work to ours are [12, 119]. How-

ever, [12] only predicts the pose information and the proposed model is deterministic. The

work in [119] also estimates pose first and then uses an image-analogy strategy to gener-

ate frames. But their pose generation step relies on observing multiple frames. Moreover,

both approaches employ the recursive module (e.g., recurrent neural networks) for con-

secutive predictions which may overemphasize on learning the temporal information only.

Instead, we use the 3D convolutional layer [111] which takes a volume as input. Since

both spatial and temporal information are encoded together, the 3D convolution can gen-

erally capture correlations between the spatial and temporal dimension of signals, thereby

rendering distinctive spatial-temporal features [111]. In addition, both [12, 119] focus on

human dynamics while our work targets on both articulated objects and dynamic textures.

In terms of modeling future uncertainties, two methods [136, 125] are closely related.

However, Xue et al. [136] only model the uncertainty in the next one-step prediction. If we

iteratively run the one-step prediction model for multi-step predictions, the frame quality

will degrade fast through error accumulations, due to the lack of temporal relationships

modeling between frames. Though Walker et al. [125] could keep forecasting over the

course of one second, instead of predicting real future frames, it only predicts the dense

trajectory of pixels. Also such a trajectory-supervised modeling requires laborious human

labeling. Different from these methods, our approach integrates the multi-frame prediction

and uncertainty modeling in one model.



Chapter 3

Deep Joint Image Filtering

Joint image filters can leverage the guidance image as a prior and transfer the structural

details from the guidance image to the target image for suppressing noise or enhancing

spatial resolution. Existing methods rely on various kinds of explicit filter construction or

hand-designed objective functions. It is thus difficult to understand, improve, and accel-

erate them in a coherent framework. In this work, we propose a learning-based approach

to construct a joint filter based on Convolutional Neural Networks. In contrast to exist-

ing methods that consider only the guidance image, our method can selectively transfer

salient structures that are consistent in both the guidance and target images. We show that

the model trained on a certain type of data, e.g., RGB and depth images, generalizes well

for other modalities, e.g., Flash/Non-Flash and RGB/NIR images. We validate the effec-

tiveness of the proposed joint filter through extensive comparisons with state-of-the-art

methods.

12
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3.1 Introduction

Image filtering with guidance signals, known as joint or guided filtering, has been suc-

cessfully applied to numerous computer vision and computer graphics tasks, such as depth

map enhancement [140, 88, 31], joint upsampling [61, 140], cross-modality noise reduc-

tion [137, 46, 100], and structure-texture separation [135, 148]. The wide applicability of

joint filters can be attributed to the adaptability in handling visual signals in various image

domains and modalities, as shown in Figure 3.1. For a target image, the guidance image

can either be the target image itself [110, 46], high-resolution RGB images [46, 88, 31],

images from different sensing modalities [29, 38, 137], or filter outputs from previous

iterations [148]. The basic idea behind joint image filtering is that we can transfer the

important structural details contained in the guidance image to the target image. The main

goal of joint filtering is to enhance the degraded target image due to noise or low spatial

resolution while avoiding transferring extraneous structures that do not originally exist in

the target image, e.g., texture-copying artifacts.

Several approaches have been developed to transfer structures in the guidance image to

the target image. One category of algorithms is to construct joint filters for specific tasks.

For example, the bilateral filtering algorithm [110] constructs spatially-varying filters that

reflect local image structures (e.g., smooth regions, edges, textures) in the guidance image.

Such filters can then be applied to the target image for edge-aware smoothing [110] or joint

upsampling [61]. On the other hand, the guided image filter [46] assumes a locally linear

model over the guidance image for filtering. However, these filters share one common

drawback. That is, the filter construction considers only the information contained in the

guidance image and remains fixed (i.e., static guidance). When the local structures in the

guidance and target images are not consistent, these methods may transfer incorrect or

extraneous contents to the target image.

To address this issue, recent efforts focus on considering the common structures ex-

isting in both the target and guidance images [148, 44, 100]. These frameworks typically
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Depth map Saliency map Chromaticity map Flash/Non-Flash

upsampling upsampling upsampling noise reduction

Figure 3.1: Sample applications of joint image filtering. The target/guidance pair (top)

can be various types of cross-modality visual data. With the help of the guidance image,

important structures can be transferred to the degraded target image to help enhance the

spatial resolution or suppress noises (bottom). The guidance image can either be high-

resolution RGB images or images from different sensing modalities.

build on iterative methods for minimizing global objective functions. The guidance sig-

nals are updated at each iteration (i.e., dynamic guidance) towards preserving the mutually

consistent structures while suppressing contents that are not commonly shared in both im-

ages. However, these global optimization based methods often use hand-crafted objective

functions that may not reflect natural image priors well and typically require a heavy com-

putational load.

In this work, we propose a learning-based joint filter based on Convolutional Neural

Networks (CNNs). We propose a network architecture that consists of three sub-networks

and a skip connection, as shown in Figure 3.2. The first two sub-networks CNNT and

CNNG extract informative features from both the target and guidance images. These fea-

ture responses are then concatenated as inputs for the network CNNF to selectively transfer
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common structures. As the target input and output images are largely similar, we introduce

a skip connection, together with the output of CNNF to reconstruct the filtered output. In

other words, we enforce the network to focus on learning the residuals between the de-

graded target and the ground truth images. We train the network using large quantities of

RGB/depth data and learn all the network parameters simultaneously without stage-wise

training.

Our algorithm differs from existing methods in that the proposed joint image filter is

purely data-driven. This allows the network to handle complicated scenarios that may be

difficult to capture through hand-crafted objective functions. While the network is trained

using the RGB/depth data, the network learns how to selectively transfer structures by

leveraging the prior from the guidance image, rather than predicting specific values. As a

result, the learned network generalizes well for handling images in various domains and

modalities.

We make the following contributions in this work:

• We propose a learning-based framework for constructing a generic joint image fil-

ter. Our network takes both the target and guidance images into consideration and

naturally handles the inconsistent structure problem. Using the learned joint image

filter for depth upsampling, we demonstrate the state-of-the-art performance on the

NYU v2 [85] and SUN RGB-D [108] dataset and achieve competitive performance

on the Middlebury dataset [98, 49].

• We show that the model trained on a certain type of data (e.g., RGB/depth) general-

izes well to handle image data in a variety of domains.

A preliminary version of this work was presented earlier in [143]. In this work, we

significantly extend our work and summarize the main differences as follows. First, we

propose an improved network architecture for joint image filtering. Instead of directly

predicting filtered pixel values (as in [143]), we predict a residual image by adding a skip

connection from the input target image to the output (Figure 3.2). As the residual learn-
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Figure 3.2: Network architecture for joint image filter. The proposed deep joint image filter

model consists of three major components. Each component is a three-layer network. In

addition, we introduce a skip connection so that the network CNNF learns to predict the

residuals between the input target image and the desired ground truth output.

ing alleviates the need for restoring specific target image contents (which complicates the

learning process), we show significant improvement in transferring accurate details from

the guidance to the target image. Second, in [143], we train the model only using an

RGB/depth dataset and then evaluate its generalization ability on other domains. In this

work, we show that the model trained using an RGB/flow dataset also generalizes well

on other visual domains. This demonstrates that our network design is insensitive to the

modality of the training data. Third, we evaluate our approach on various joint image

filter applications, compare against several state-of-the-art joint image filters (including

concurrent work [54, 5]), and conduct a detailed ablation study by analyzing the perfor-

mance of all methods under different hyper-parameter settings (e.g., filter number, filter

size, network depth).
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3.2 Learning Joint Image Filters

In this section, we introduce a learning-based joint image filter based on CNNs. We

first present the network design (Section 3.2.1) and skip connection (Section 3.2.2). Next,

we describe the network training process (Section 3.2.3) and visualize the guidance map

generated by the network (Section 3.2.4).

Our CNN model consists of three sub-networks: the target network CNNT, the guid-

ance network CNNG, and the filter network CNNF as shown in Figure 3.2. First, the

sub-network CNNT takes the target image as input and extracts a feature map. Second,

similar to CNNT, the sub-network CNNG extracts a feature map from the guidance im-

age. Third, the sub-network CNNF takes the concatenated feature responses from the

sub-networks CNNT and CNNG as input and generates the residual, i.e., the difference

between the degraded target image and ground truth. By adding the target input through

the skip connection, we obtain the final joint filtering result. Here, the main roles of the two

sub-networks CNNT and CNNG are to serve as non-linear feature extractors that capture

the local structural details in the respective target and guidance images. The sub-network

CNNF can be viewed as a non-linear regression function that maps the feature responses

from both target and guidance images to the desired residuals. Note that the informa-

tion from target and guidance images is simultaneously considered when predicting the

final filtered result. Such a design allows us to selectively transfer structures and avoid

texture-copying artifacts.

3.2.1 Network architecture design

To design a joint filter using CNNs, a straightforward implementation is to concate-

nate the target and guidance images together and directly train a generic CNN similar to

the filter network CNNF. While in theory, we can train a generic CNN to approximate

the desired function for joint filtering, our empirical results show that such a network gen-

erates poor results. Figure 3.3(c)-(d) shows an example of joint depth upsampling using
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(a) Ground truth (b) Bicubic upsampling, 5.82 (c) 3-layer CNNF, 4.05

(d) 3-layer CNNF R, 3.96 (e) 4-layer CNNF R, 3.91 (f) Our network, 2.62

Figure 3.3: Comparison of network design. Joint depth upsampling (8×) results of using

different network architectures. (a) GT depth map (inset: guidance image). (b) Bicubic

upsampling. (c)-(e) Results from the straightforward implementation using CNNF and

CNNF R. (f) Our results. Note the difference on the bed corner and curtain. The numbers

are the RMSE metric based on the GT in (a).

the network CNNF and its residual-based variant CNNF R. The main structures (e.g., the

bed corner) contained in the guidance image are not well transferred to the target depth

image, thereby resulting in blurry boundaries. In addition, inconsistent texture structures

in the guidance image (e.g., the stripe pattern of the curtain on the wall) are also incor-

rectly copied to the target image. A potential approach that may improve the results is

to adjust the architecture of CNNF, such as increasing the network depth or using larger

filter sizes. However, as shown in Figure 3.3(e), these variants do not show notable im-

provement. Blurry boundaries and the texture-copying problem still occur. We note that

similar observations have also been reported in [24], which indicate that the effectiveness

of deeper structures for low-level tasks is not as apparent as that shown in high-level tasks
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(e.g., image classification).

We attribute the limitation of using a generic network for joint filtering to the fact that

the original RGB guidance image fails to provide direct and effective guidance as it mixes

a variety of information (e.g., texture, intensity, and edges). To validate this intuition, we

show in Figure 3.4 one example where we replace the original RGB guidance image with

its edge map extracted using [22]. Compared to the results guided by the RGB image

(Figure 3.4(d)), the upsampled image using the edge map guidance (Figure 3.4(e)) shows

substantial improvement in preserving the sharp edges.

Based on the above observation, we introduce two sub-networks CNNT and CNNG to

first construct two separate processing streams for the two images before concatenation.

With the proposed architecture, we constrain the network to extract effective features from

both images separately first and then fuse them at a later stage to generate the final fil-

tering output. This differs from conventional joint filters where the guidance information

is mainly computed from the pixel-level intensity/color differences in the local neighbor-

hoods. As our models are jointly trained in an end-to-end fashion, our result (Figure 3.4(f))

shows further improvements over that of using the edge guided filtering (Figure 3.4(e)).

In this work, we adopt a three-layer structure for each sub-network as shown in Fig-

ure 3.2. Given M training image samples {ITi , IGi , I
gt
i }Mi=1, we learn the network parame-

ters by minimizing the sum of the squared losses:

‖Igt − Φ(IT , IG)‖22 , (3.1)

where Φ denotes the joint image filtering operator. In addition, IT , IG, and Igt denote the

target image, the guidance image and the ground truth output, respectively.

3.2.2 Skip connection

As the goal of the joint image filter is to leverage the signals from the guidance image

to enhance the degraded target image, the input target image and the desired output share

the same low-resolution frequency components. We thus introduce a skip connection to
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(a) GT depth (b) Guidance (c) Bicubic

(d) RGB guided (e) Edge guided (f) Ours

Figure 3.4: Comparison of different types of guidance. Joint depth upsampling (8×)

results using different types of guidance images. Both (d) and (e) are trained using the

CNNF network. Our method generates sharper boundary of the sculpture (left) and the

cone (middle).

enforce the network to focus on learning the residuals rather than predicting the actual

pixel values. With the skip connection, the network does not need to learn the identity

mapping function from the input target image to the desired output in order to preserve

the low-frequency contents. Instead, the network learns to predict the sparse residuals

in important regions (e.g., object contours). In Figure 3.5, we show an example of the

predicted residuals, which highlights the estimated difference between the target input

(Figure 3.5(a)) and the ground truth (Figure 3.5(d)). Quantitative results in Table 3.1

show that with the skip connection, the proposed algorithm obtains notable improvements

over [143].
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(a) Target input (b) Residual output (c) Filtering output (d) Ground truth

Figure 3.5: Residual prediction. Joint depth upsampling results (8×) of using our network

with a skip connection. The filtering output (c) is the summation of (a) the target input and

(b) the predicted output.

3.2.3 Network training

Since the target and guidance image pair can be from various modalities (e.g., RGB/depth,

RGB/NIR), it is infeasible and costly to collect large datasets and train one network for

each type of data pair separately. The goal of our network training, however, is not predict-

ing specific pixel values in one particular modality. Instead, we aim to train the network so

that it can selectively transfer structures by leveraging the prior from the guidance image.

Hence, we only need to train the network with only one type of image data and then apply

the network to other domains.

To demonstrate that the proposed method is insensitive to the training data modality,

we train the network with either the RGB/depth dataset [85] or RGB/flow dataset [10]. We

conduct a cross-dataset evaluation (training with one type and evaluate on the other) and

show the exemplary results in Figure 3.6. Figure 3.6 (a)-(d) shows the upsampled depth

maps using models trained with different domains of image data. The flow model refers

to the one trained with RGB/flow data for flow map upsampling, while the depth model

is trained with RGB/depth data for depth map upsampling. In Figure 3.6(c), we apply the

flow model to upsample the degraded depth map and show competitive results obtained by

the depth model (Figure 3.6(d)). Similar observations on flow map upsampling are also

found in Figure 3.6 (e)-(h). Both the models trained with the flow and depth data achieve
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(a) Target input depth (b) GT depth (e) Target input flow (f) GT flow

(c) Upsample by (d) Upsample by (g) Upsample by (h) Upsample by

flow model depth model depth model flow model

3.54 3.36 5.63 5.35

Figure 3.6: Effect of training data modalities. (a)-(d) Joint depth map upsampling (8×).

The model trained with RGB/flow data generates similar results when compared with the

model trained with RGB/depth data. (e)-(h) Joint flow map upsampling (8×). (g) The

model trained with RGB/depth data and (h) The model trained with RGB/flow data. The

numbers are the RMSE metric comparing against the GT.

similar performance. More filtering results are shown in Section 3.3, where we evaluate

the model with different image data from various domains. More quantitative results are

presented in Table 3.1.

3.2.4 What has the network learned?

Selective transferring. Using the learned guidance model CNNG alone to transfer details

may sometimes be erroneous. In particular, the structures extracted from the guidance

image may not exist in the target image. The top and middle rows of Figure 3.7 show

typical responses at the first layer of CNNT and CNNG. These two sub-networks show
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CNNT

CNNG

CNNF

Figure 3.7: Visualization of feature responses. Sample feature responses of the input in

Figure 3.9(a) at the first layer of CNNT (top) and CNNG (middle), and the second layer

of CNNF (bottom). For each subnetwork, we select five feature channels and visualize the

responses through the colormap. The corresponding colorbar is shown in the rightmost.

Note that with the help of CNNF, inconsistent structures (e.g., the window on the wall)

are correctly suppressed.

strong responses to edges from the target and guidance images respectively. Note that

there are inconsistent structures in the guidance and target images, e.g., the window on the

wall. The bottom row of Figure 3.7 shows sample responses at the second layer of CNNF.

We observe that the sub-network CNNF suppresses inconsistent details.

We present another example in Figure 3.8. We note that the ground truth depth map of

the selected region is smooth. However, due to the high contrast patterns on the mat in the

guidance image, several methods, e.g., [61, 88], incorrectly transfer the mat structure to

the upsampled depth map. The reason is that these methods [61, 88] rely only on structures

in the guidance image. The problem, commonly known as texture-copying artifacts, often

occurs when the texture in the guidance image has strong color contrast. With the help
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(a) Guidance (b) Ground truth (c) JBU [61]

RMSE 3.64

(d) Park [88] (e) DJF [143] (f) Ours

4.84 3.24 2.95

Figure 3.8: Selective transfer. Comparisons of different joint upsampling methods on han-

dling the texture-copying issue. The carpet on the floor contains grid-like texture structures

that may be incorrectly transferred to the target image. The numbers are the RMSE metric

comparing against the GT.

of the CNNF, our method successfully blocks the texture structure in the guidance image

(Figure 3.8(f)).

Output of CNNG. In Figure 3.9(c), we show the learned guidance from CNNG using two

examples from the NYU v2 dataset [85]. In general, the learned guidance appears to be

similar to an edge map highlighting the salient structures in the guidance image. We show

edge detection results from [22] in Figure 3.9(d). Both results show strong responses to

the main structures, but the guidance map generated by CNNG appears to detect sharper

boundaries while suppressing responses to small-scale textures, e.g., the wall in the first

example. The result suggests that using only CNNF (Figure 3.3(c)) does not perform well

due to lack of the salient feature extraction step from the sub-network CNNG.

To demonstrate the effectiveness of the skip connection, we compare the learned guid-

ance without and with the skip connection in Figure 3.9(b) and (c). Adding the skip con-
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(a) Guidance (b) Learned guidance (c) Our learned guidance (d) Edge map [22]

(inset: GT depth) w/o skip connection w/ skip connection

Figure 3.9: Visualization of the learned guidance map. Comparison between the learned

guidance feature maps from CNNG and edge maps from [22]. The network CNNG is

capable of extracting informative, salient structures from the guidance image for content

transfer. Furthermore, with the skip connection, the learned guidance maps in (c) are

cleaner than that in (b) by suppressing inconsistent structures (edges on the window and

wall) in the target/guidance pair.

nection helps suppress more inconsistent structures (e.g., edges on the bed, wall, table) in

the target/guidance pair, and consequently the residual-based model effectively alleviates

texture-copying artifacts.

3.2.5 Relationship to prior work

The proposed framework is closely related to weighted-average, optimization-based,

and CNN-based models. In each layer of the network, the convolutional filters also per-

form the weighted-average process. In this context, our filter is similar to the weighted-

average filters. The key difference is that the weights in this work are learned from data

while those of the weighted-average filters [110, 61] are pre-defined based on color or gra-
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dient features. The proposed network plays a similar role in the fidelity and regularization

terms defined in the optimization-based joint filters. Specifically, the training objective

in (3.1) corresponds to the fidelity term of the weighted-average filters [110, 61] as it en-

courages the output to be as close to the ground truth as possible. The skip connection

implicitly serves as the regularization term by enforcing adjacent pixels to share similar

values (e.g., depth) as it directly bypasses the low-quality target input to the output of the

network. For CNN-based models, our network architecture can be viewed as a unified

model for different tasks. For example, if we remove CNNG and use only CNNT and

CNNF, the resulting network architecture resembles an image restoration model, e.g., SR-

CNN [23]. On the other hand, in cases of removing CNNT, the remaining CNNG and

CNNF can be viewed as one using CNNs for depth prediction [18].

3.3 Experimental Results

In this section, we demonstrate the effectiveness and applicability of our approach

through a broad range of joint image filtering tasks, including joint image upsampling,

texture-structure separation, and cross-modality image restoration. The source code and

datasets will be made available to the public. More results can be found at http://

vllab1.ucmerced.edu/˜yli62/DJF_residual/.

Network training. To train our network, we randomly collect 160,000 training patch pairs

of 32× 32 pixels from 1,000 RGB and depth images in the NYU v2 dataset [85]. Images

in the NYU dataset are absolute depth maps captured in complicated indoor scenarios.

We train two models for two different tasks: (1) joint image upsampling and (2) noise

reduction. For the upsampling task, we obtain each low-quality target image from down-

sampling the ground-truth image (with scale factors of 4×, 8×, 16×) using the nearest

neighbor interpolation. For the noise reduction task, we generate the low-quality target

image by adding Gaussian noise to each of the ground-truth depth maps with zero mean

and variance of 1e-3. We use the MatConvNet toolbox [3] to train our joint filters.
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Testing. Using RGB/depth data for training, our model takes a 1-channel target image

(depth map) and a 3-channel guidance image (RGB) as inputs. However, the trained model

can be applied to other data types in addition to RGB/depth images with simple modifica-

tions. For the multi-channel target images, we apply the trained model independently for

each channel. For the single-channel guidance images, we replicate it three times to create

the 3-channel guidance image.

3.3.1 Depth map upsampling

Datasets. We present quantitative performance evaluation on joint depth upsampling us-

ing three benchmark datasets where the corresponding high-resolution RGB images are

available:

• Middlebury dataset [98, 49]: We collect 30 images from 2001-2006 datasets with

the missing depth values provided by Lu et al. [79].

• NYU v2 dataset [85]: As we use the 1,000 images in this dataset for training, we

use the rest of 449 images for testing.

• SUN RGB-D [108]: We use a random subset of 2,000 high-quality RGB/depth im-

age pairs from the 3,784 pairs captured by the Kinect v2 sensor. These images are

captured from a variety of complicated indoor scenes.

Note that the data in [85, 108] are absolute depth maps representing the physical dis-

tances in meters to the observer. However, the data in [98, 49] are relative depth maps

(disparity), which measure the distance between two corresponding points in a scene un-

der two different views. Each disparity value denotes the number of shifted pixels.
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Table 3.1: Quantitative comparisons on depth upsampling. Comparisons with the state-of-

the-art methods in terms of RMSE. The depth values are scaled to the range [0, 255] for the

Middlebury [98, 49], and SUN RGB-D [108] datasets. For the NYU v2 dataset [85], the

depth values are measured in centimeters. Note that the depth maps in the SUN RGB-D

dataset may contain missing regions due to the limitation of depth sensors. We ignore

these pixels in calculating the RMSE. Numbers in bold indicate the best performance and

underscored numbers indicate the second best. The mean of RMSE values are shown in

each entry.

Middlebury [98, 49] NYU v2 [85] SUN RGB-D [108]

4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic 4.44 7.58 11.87 8.16 14.22 22.32 2.09 3.45 5.48

MRF [20] 4.26 7.43 11.80 7.84 13.98 22.20 1.99 3.38 5.45

GF [46] 4.01 7.22 11.70 7.32 13.62 22.03 1.91 3.31 5.41

JBU [61] 2.44 3.81 6.13 4.07 8.29 13.35 1.37 2.01 3.15

TGV [31] 3.39 5.41 12.03 6.98 11.23 28.13 1.94 3.01 5.87

Park [88] 2.82 4.08 7.26 5.21 9.56 18.10 1.78 2.76 4.77

Ham [44] 3.14 5.03 8.83 5.27 12.31 19.24 1.67 2.60 4.36

DMSG [54] 1.79 3.39 5.87 3.48 6.07 10.27 1.30 1.80 2.81

FBS [5] 2.58 4.19 7.30 4.29 8.94 14.59 1.58 2.27 3.76

Ours-flow 2.31 3.95 6.34 4.42 7.32 11.62 1.36 1.91 2.90

DJF [143] 2.14 3.77 6.12 3.54 6.20 10.21 1.28 1.81 2.78

Ours 1.98 3.61 6.07 3.38 5.86 10.11 1.27 1.77 2.75

Evaluated methods. We compare our model against several state-of-the-art joint image

filters for depth map upsampling. The JBU [61], GF [46], Ham [44] and FBS [5] methods

are generic joint image upsampling. On the other hand, the MRF [20], TGV [31], Park [88]
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Table 3.2: Run-time performance comparisons. Average run-time of depth map upsam-

pling algorithms on images of size 640× 480 pixels.

MRF GF JBU TGV Park Ham DMSG FBS Ours (CPU/GPU)

Time (s) 0.76 0.08 5.64 68.21 45.79 8.62 0.71 0.34 1.31/0.07

and DMSG [54], algorithms are designed specifically for image-guided depth upsampling.

Using the experimental protocols for evaluating the joint depth upsampling algorithms [88,

31, 44], we obtain the low-resolution target image from the ground-truth depth map using

the nearest-neighbor downsampling method.

Quantitative comparisons. Table 3.1 shows the quantitative results in terms of the root

mean squared errors (RMSE). For other methods, we use the default parameters in the

original implementations. The proposed algorithm performs well against the state-of-

the-art methods across all three datasets. The extensive evaluations on absolute depth

datasets [85, 108] demonstrate the effectiveness of our algorithm in handling complicated

real-world indoor scenes. Furthermore, we compare the average run-time of different

methods on the NYU v2 dataset in Table 3.2. We carry out all the experiments on the

same machine with an Intel i7 3.6GHz CPU and 16GB RAM. We report the running time

of our model in either CPU or GPU mode (GTX 745). Among all the evaluated methods,

the proposed algorithm is efficient while delivering high-quality upsampling results.

The concurrent DMSG method by Tai et al. [54] outperforms the proposed algorithm

on the Middlebury dataset. This can be attributed to several reasons. First, Tai et al. [54]

leverage multi-scale guidance data while we use only single scale signals. The multi-

scale design requires more network parameters to learn. For example, the model size

of the upsampling model (8×) in [54] is 1,822 KB compared to our model size of 526

KB. Second, the model in [54] is trained on a small collection of relative depth maps (82

images) [98, 49].
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(a) Guidance (b) GT (c) JBU [61] (d) TGV [31] (e) Park [88] (f) DJF[143] (g) Ours

RMSE 4.27 5.62 4.72 3.07 2.93

(a) Guidance (b) GT (c) JBU [61] (d) TGV [31] (e) Park [88] (f) DJF[143] (g) Ours

RMSE 4.98 7.24 6.24 3.80 3.68

(a) Guidance (b) GT (c) JBU [61] (d) TGV [31] (e) Park [88] (f) DJF[143] (g) Ours

RMSE 11.84 16.05 12.67 7.98 7.57

(a) Guidance (b) GT (c) JBU [61] (d) TGV [31] (e) Park [88] (f) DJF[143] (g) Ours

RMSE 9.47 16.23 14.18 7.98 7.74

Figure 3.10: Qualitative comparisons on depth upsampling. Comparisons against existing

depth upsampling algorithms for a scaling factor of 8×. The numbers (in centimeter) are

the RMSE metric comparing against the GT in (b).

In contrast, our model is trained on a large dataset (1000 images) of absolute depth
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maps [85]. For fair comparisons using absolute depth maps, we re-train the model of [54]

with the same dataset [85] based on our own implementation. Table 3.1 shows that the

performance of both [54] and our previous work DJF [143] on absolute depth datasets [85,

108] achieve similar performance. While the method in [54] also uses the similar strategy

of predicting residuals, we demonstrate that the proposed algorithm achieves improved

results with fewer parameters, suggesting the practical applicability of our model to real-

world applications. Another important difference is that the model in [54] is designed only

for depth upsampling. Our approach, on the other hand, can be applied to generic joint

image filtering tasks.

Effects of skip connection. We validate the contribution of the introduced skip connec-

tion by comparing the DJF [143] method and proposed algorithm (bottom two rows of

Table 3.1). In Section 3.4, we show that it is difficult to gain further improvement by

simply modifying network parameters, such as the filter size, filter number, and network

depth. However, with the skip connection, the proposed algorithm obtains significant

performance improvement. The performance gain can be explained by that using skip

connection alleviates the issues that the network only learns the appearance of the target

input images, and helps the network focus on learning the residuals instead.

Effects of training modality. To validate the effect of training with different modali-

ties, we compare our model with a variant that is trained with RGB/flow data (denoted as

Ours-flow). We randomly select 1,000 RGB/flow image pairs from the Sintel dataset [10]

and collect 80,000 training patch pairs of 32×32 pixels. We use either x-component or

y-component of the optical flow as our target image. During the testing phase, we apply

the trained model independently for each channel of the target image. Although the model

Ours-flow is trained with the RGB/flow data for optical flow upsampling, Ours-flow per-

forms favorably on the task of depth upsampling against our final model (Ours) trained

with the RGB/depth data, as shown in Table 3.1.

Visual comparisons. We show four examples for qualitative comparisons in Figure 3.10.
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It is worth noticing that the proposed joint filter selectively transfers salient structures in

the guidance image while avoiding texture-copying artifacts (see the green boxes). The

GF [46] method does not recover the degraded boundary well under a large upsampling

factor (e.g., 8×). The JBU [61], TGV [31] and Park [88] approaches are agnostic to

structural consistency between the target and guidance images, and thus transfer erroneous

details. In contrast, the results of our algorithm are smoother, sharper and more accurate

with respect to the ground truth.

3.3.2 Joint image upsampling

Numerous computational photography applications require obtaining a solution map

(e.g., chromaticity, saliency, disparity, labels) over the pixel grid. However, it is often time-

consuming or memory-intensive to compute the high-resolution solution maps directly. An

alternative is to first obtain a low-res solution map over the downsampled pixel grids and

then upsample the low-resolution solution map back to the original resolution with a joint

image upsampling algorithm. Such a pipeline requires the upsampling method to restore

well image degradation caused by downsampling and avoid the inconsistency issues. In

what follows, we demonstrate the use of the learned joint image filters for colorization

and saliency as examples. Note that in the following applications we use the same model

trained with RGB/depth data and evaluate on other image modalities without retraining

the network using data in the new domains.

For the colorization task, we first compute the chromaticity map on the downsampled

(4×) image using the user-specified color scribbles [67]. We then use the original high-

resolution intensity image as the guidance image to jointly upsample the low-resolution

chromaticity map. Figure 3.11 shows that our model is able to achieve visually pleasing

results with fewer color bleeding artifacts and efficiently. Our results are visually similar

to the direct solutions on the high-resolution intensity images (Figure 3.11(b)).
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(a) Scribbles (b) Levin [67] (c) GF [46] (d) Ham [44] (e) DJF [143] (f) Ours

RMSE 5.94 6.28 5.57 5.38

(a) Scribbles (b) Levin [67] (c) GF [46] (d) Ham [44] (e) DJF [143] (f) Ours

RMSE 5.94 6.28 5.57 5.38

Time (s) 8.20 1.50 28.8 2.80 2.82

Figure 3.11: Colorization upsampling. Joint image upsampling applied to colorization.

We also list the runtime for the colorization upsampling process for each method. The

close-up areas show that our joint upsampling results (f) have fewer color bleeding ar-

tifacts when compared with other competing algorithms (c-e). Our visual results (f) are

comparable with the results computed using the full resolution image in (b). The RMSE

metric comparing against the GT in (b) are presented. The average RMSE over all test

images are shown in Table 3.3.
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(a) Low-res saliency (b) GF [46] (c) Ham [44] (d) DJF [143] (e) Ours

F-measure 0.722 0.716 0.737 0.748

(a) Low-res saliency (b) GF [46] (c) Ham [44] (d) DJF [143] (e) Ours

F-measure 0.758 0.747 0.772 0.779

Figure 3.12: Saliency map upsampling. Visual comparisons of saliency map upsampling

results (10×). (a) Low-res saliency map obtained from the downsampled RGB image

(inset: guidance image). The numbers are the F-measure metric comparing against the

GT. The average F-measure over all test images are shown in Table 3.3.

The quantitative comparisons are presented in the first row of Table 3.3. We use the

direct solution of [67] on the high-resolution image as ground truth and compute the RMSE

over seven test images in [67]. Table 3.3 shows that our method performs well with the

lowest error. Note that our pipeline (low-res result + joint upsampling) is nearly three

times faster (2.82 seconds) than directly running the colorization algorithm [67] on the

original pixel grid to obtain the high-resolution result (8.20 seconds). Note that for fair

comparisons, all run-time results are obtained based on the CPU mode.

For saliency detection, we first compute the saliency map on the downsampled (10×)

image using the manifold method by Yang et al. [138]. We then use the original high-

resolution intensity image as guidance to upsample the low-resolution saliency map. Fig-

ure 3.12 shows the saliency detection results by the state-of-the-art methods and proposed

algorithm. Overall, the proposed algorithm generates sharper edges than other alterna-
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Table 3.3: Quantitative comparisons of different upsampling methods on difference solu-

tion maps.

Bicubic GF [46] Ham [44] DJF [143] Ours

RMSE 6.01 5.74 6.31 5.48 5.40

F-measure 0.759 0.766 0.763 0.778 0.781

tives. In addition, we present quantitative evaluation using the ASD benchmark dataset [1]

which consists of 1,000 images with manually labeled ground truth. Table 3.3 shows

the comparison between different upsampling methods and our approach in terms of F-

measure [82]. The experimental results demonstrate that the proposed algorithm performs

favorably against the state-of-the-art methods.

3.3.3 Structure-texture separation

We apply our model trained for noise reduction to the task of structure-texture sepa-

ration. Here we use the target image itself as the guidance. We adopt a similar strategy

as in the rolling guidance filter (RGF) [148] to remove small-scale textures, i.e., using the

output of the previous iteration as the input of the current iteration.

We use the inverse halftoning task as an example. A halftoned image is generated

by the reprographic technique that simulates continuous tone imagery using various dot

patterns [62], as shown in Figure 3.13(a). The goal of inverse halftoning is to remove

these dots while preserving the main structures. We compare our results with those from

the RGF [148], Xu [135], DJF [143] and the method by Kopf [62] for halftoned images

reconstruction. Since there exists no ground truth data, we use the results from Kopf [62]

as the pseudo ground truth as it is specifically designed for reconstructing halftoned im-

ages and achieves the best visual quality. For [148, 135], we carefully select the param-

eters (listed in Figure 3.13) for the optimal results by considering both removing the dot
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(a) Input (b) Kopf [62] (c) RGF [148] (d) Xu [135] (e) DJF [143] (f) Ours

RMSE 7.14 7.30 7.07 6.91

(a) Input (b) Kopf [62] (c) RGF [148] (d) Xu [135] (e) DJF [143] (f) Ours

RMSE 16.88 16.62 17.86 17.24

Figure 3.13: Inverse halftoning. For each method, we carefully select the parameters for

the optimal results. (c) σs = 2, σr = 0.05, iter = 4. (d) λ = 0.005, σ = 1. (e)-(f) top:

iter = 2, bottom: iter = 3. Since there is no GT, we regard the result of [62] in (b) as the

GT because it is an algorithm specifically designed for reconstructing halftoned images.

The numbers are the RMSE values computed with respect to (b).

patterns and keeping the sharp edges intact. We use the same high-resolution test im-

ages from [62] and present two zoomed-in patch examples in Figure 3.13 for illustration,

where one (top) is with small-scale dots and another one (bottom) is with large-scale dots.

For the DJF [143] and proposed method, we show the results of running two iterations

in the first row and three iterations in the second row of Figure 3.13(e)-(f). Our model

achieves better results on removing small-scale dots but worse results on removing large-

scale dots compared with the methods in [148, 135]. However, in order to get the best

results, both [148, 135] require values computed with respect to optimal parameters for

different inputs. Our model (trained on RGB/depth only) is not expected to consistently

achieve the best performance but able to generalize well for comparable results on the

inverse halftoning task without tuning parameters.
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Noisy RGB Guided NIR Noisy Non-Flash Guided Flash

Restoration [137] GF [46], 7.81 Restoration [137] GF [46], 8.96

DJF [143], 7.44 Ours, 7.19 DJF [143], 8.49 Ours, 8.22

Figure 3.14: Cross-modality filtering for noise reduction. Left: Results of noise reduction

using RGB/NIR image pairs (Target: RGB, Guidance: NIR). Right: Results of noise

reduction using flash/non-flash image pairs (Target: Non-Flash, Guidance: Flash). The

numbers are the RMSE metric comparing against the result of [137].

3.3.4 Cross-modality filtering for noise reduction

Here, we demonstrate that our model can handle various visual domains through two

noise reduction applications using RGB/NIR and flash/non-flash image pairs. Figure 3.14

(left) show sample results on joint image denoising with the NIR guidance image. The fil-

tering results by our method are comparable to those of the state-of-the-art technique [137].

For flash/non-flash image pairs, we aim to merge the ambient qualities of the no-flash im-

age with the high-frequency details of the flash image. Guided by a flash image, the

filtering result of our method is comparable to that of [137] (Figure 3.14 (right)).
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Table 3.4: Quantitative results (RMSE in centimeters for 8×) of using different filter num-

bers in each sub-network. We apply the same parameters to three sub-networks. Top:

without the skip connection, Bottom: with the skip connection.

n1 = 256 n1 = 128 n1 = 96 n1 = 64

n2 = 128, n2 = 64 n2 = 48 n2 = 32

6.40 6.44 6.32 6.35

5.82 5.84 5.90 5.97

3.4 Discussions

In this section, we first analyze the effects of the performance under different hyper-

parameter settings using the network architecture in Figure 3.2. Then, we discuss several

limitations of the proposed algorithm. To validate the design choices, we vary the filter

number n, filter size f , and depth d of each sub-network. We use the same training process

as described in Section 3.3 and evaluate different models on the NYU v2 dataset [85] for

8× upsampling in terms of RMSE.

3.4.1 Filter number

We first analyze the effects of the number of filters (n1, n2) in first two layers of each

sub-network. The quantitative results are shown in Table 3.4. In the setting of without the

skip connection (top row), we observe that larger filter number may not always result in

performance improvements because it increases the difficulty of training the network. The

results suggest that the performance of such network design is somewhat saturated with

the sufficient number of filters. In order to get further improvements, we need to adjust the

network design or the learning objectives, rather than simply modifying hyper-parameters.

Such a hypothesis is supported by the setting of with the skip connection, where we add

a skip connection to the entire network and reformulate the network as learning residual
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functions. The bottom row of Table 3.4 shows that the filter number do yield progressive

improvements when it is increased. This is in accordance with the observation in [47, 58]

where residual learning is more effective for training the network with larger capacity.

However, a larger network also slows down the training process and may only provide

marginal performance improvements. Consequently, the selected hyper-parameters of our

method (shown in Figure 3.2) strike a good balance between accuracy and computational

efficiency.

Furthermore, we discuss the effects of the output channels (n3) of CNNT and CNNG

and show the results in Table 3.5. Intuitively, using multi-dimensional features may im-

prove the model capacity and therefore its performance. However, our experimental results

indicate that using multi-dimensional feature maps only slows down the training process

without clear performance gain, for both without and with the skip connection settings.

Therefore, we set the output feature maps extracted from the target and guidance images

as one single channel (n3 = 1).

3.4.2 Filter size

We examine the network sensitivity to the spatial support of the filters. With all the

other experimental settings kept the same, we gradually increase the filter size fi (i=1, 2,

3) in different layers and show the corresponding performance in Table 3.6.

Starting from using small filter sizes (f1 = 5, f2 = 1, f3 = 3), we observe a steady

trend of improvements when increasing the filter sizes. This is because smaller filters will

restrict the network to focus on detailed local smooth regions that provide little information

for restoration. In contrast, a reasonably large filter size can cover richer structural cues

that lead to better results. However, when we further enlarge the filter size (e.g.., up to

f1 = 11, f2 = 3, f3 = 7), we do not see additional performance gain. We attribute this

to the increasing difficulty of network training because larger filter sizes indicate more

number of parameters to be learned. Consequently, we choose the filter size f1 = 9,
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Table 3.5: Quantitative results (RMSE in centimeters for 8×) of using different filter num-

bers in the 3rd layer of CNNT and CNNG. Top: without the skip connection, Bottom:

with the skip connection.

n3 = 1 n3 = 16 n3 = 32 n3 = 64

6.20 6.40 6.24 6.34

5.86 6.11 5.93 6.02

Table 3.6: Quantitative results (RMSE in centimeters for 8×) of using different filter sizes

in each sub-network. Top: without the skip connection, Bottom: w/ the skip connection.

f1 = 11 f1 = 9 f1 = 9 f1 = 7 f1 = 5

f2 = 3 f2 = 3 f2 = 1 f2 = 1 f2 = 1

f3 = 7 f3 = 7 f3 = 5 f3 = 5 f3 = 3

6.28 6.40 6.20 6.47 6.62

5.93 6.05 5.86 6.06 6.24

f2 = 1, and f3 = 5 as a good trade-off between the efficiency and performance.

3.4.3 Network depth

As suggested in [24] that the number of layers does not play a significant role in non-

residual based models for low-level tasks, we focus on evaluating the residual-based model

(with the skip connection) with different network depth. First, we analyze whether using

one generic but deeper residual-based CNNF R network can improve the performance.

We gradually increase the depth from 3 to 8 and show the results in Table 3.7. Overall,

the performance of the CNNF R network improves with a deeper network. However, the

performance quickly reaches the point of diminishing returns after d is larger than 4.
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Table 3.7: Quantitative evaluation (RMSE in centimeters for 8×) when using residual-

based CNNF R only under different network depth d.

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 Ours

6.31 6.25 6.22 6.20 6.17 6.16 5.86

Table 3.8: Quantitative evaluation of our model by increasing the number of layers (the

depth d) used in each subnetwork.

d = 2 d = 3 d = 4 d = 5

RMSE / cm 5.99 5.86 5.77 5.73

Model size / MB 0.48 0.53 5.0 11.4

Next, we evaluate our model (three subnetworks) by increasing the network depth.

We simultaneously increase the depth d of each subnetwork from 2 to 5 and show the

corresponding results in Table 3.8. We observe that equipped with the skip connection

a deeper network generally leads to better performance. This is in accordance with the

observation in [58] where a 20-layer deep residual net is used for image super-resolution.

However, in our case with three subnetworks, the deeper network also induces fast growth

of model size as well as longer training time. We find the performance improvement is

incremental when d is varied from 3 to 5. Thus, we set d to 3 as a trade-off between model

size and performance.

3.4.4 Merging layer

As shown in Figure 3.2, the CNNT and CNNG are merged at the output (third) layer.

Here we further analyze the effect of merging CNNT and CNNG at different layers. We

fix the whole network depth as 6 and analyze different combinations of network depth
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Table 3.9: Quantitative evaluation of different combinations of network depth of CNNT

(CNNG) and CNNF.

CNNT/CNNG − CNNF 0/0 – 6 2/2 – 4 3/3 – 3 4/4 – 2

RMSE / cm 6.13 5.95 5.86 6.03

of CNNT, CNNG and CNNF. We gradually increase the depth of CNNT and CNNG

while decreasing the depth of CNNF (in order to maintain the overall network depth).

For example, 0/0 − 6 (Table 3.9) indicates that we directly stack the target and guidance

image and applying a 6-layer CNNF only. The evaluation results of different models are

shown in Table 3.9. Overall, deeper target/guidance networks (CNNT and CNNG) result in

sizable performance improvement resulting from effective feature extractions. However,

as the CNNF becomes shallower, the performance degrades again. This indicates that

neither the CNNT (CNNG) nor the CNNF should be too shallow. Therefore, we chose the

combination of 3/3− 3 for best performance.

3.4.5 Limitations

We note that in some images, our model fails to transfer small-scale details from the

guidance map. In such cases, our model incorrectly treats certain small-scale details as

noise. This can be explained by the fact that our training data is based on depth images

that are mostly smooth and does not contain many spatial details.

Figure 3.15 shows two examples of a flash/non-flash pair for noise reduction. There

are several spotty textures on the porcelain in the guided flash image that should have

been preserved when filtering the noisy non-flash image. Similarly, our method is not

able to effectively transfer the small-scale strip textures on the carpet to the target image.

Compared with the method by Georg et al. [38] (Figure 3.15(b) and (d)) that is designed

specifically for flash/non-flash images, our filter treats these small-scale details as noise
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(a) Input (b) Georg et al. [38] (c) Ours

Figure 3.15: Failure cases. Detailed small-scale textures (yellow rectangle) in the guidance

image are over-smoothed by our filter.

and tends to over-smooth the contents. We will collect more training data from other

domains (e.g., flash/non-flash) to address the over-smoothing problem in our future work.

3.5 Conclusions

In this work, we present a learning-based approach for joint filtering based on convo-

lutional neural networks. Instead of relying only on the guidance image, we design two

sub-networks CNNT and CNNG to extract informative features from both the target and

guidance images. These feature maps are then concatenated as inputs for the network

CNNF to selectively transfer salient structures from the guidance image to the target im-

age while suppressing structures that are not consistent in both images. While we train

our network on one type of data (RGB/depth or RGB/flow), our model generalizes well

on handling images in various modalities, e.g., RGB/NIR and flash/non-Flash image pairs.
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We show that the proposed algorithm is computationally efficient and performs favorably

against the state-of-the-art techniques on a wide variety of computer vision and compu-

tational photography applications, including cross-modal denoising, joint image upsam-

pling, and texture-structure separation.



Chapter 4

Universal Style Transfer

Universal style transfer aims to transfer arbitrary visual styles to content images. Ex-

isting feed-forward based methods, while enjoying the inference efficiency, are mainly

limited by inability of generalizing to unseen styles or compromised visual quality. In

this work, we present a simple yet effective method that tackles these limitations without

training on any pre-defined styles. The key ingredient of our method is a pair of fea-

ture transforms, whitening and coloring, that are embedded to an image reconstruction

network. The whitening and coloring transforms reflect a direct matching of feature co-

variance of the content image to a given style image, which shares similar spirits with the

optimization of Gram matrix based cost in neural style transfer. We demonstrate the ef-

fectiveness of our algorithm by generating high-quality stylized images with comparisons

to a number of recent methods. We also analyze our method by visualizing the whitened

features and synthesizing textures via simple feature coloring.

45
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4.1 Introduction

Style transfer is an important image editing task which enables the creation of new

artistic works. Given a pair of examples, i.e., the content and style image, it aims to syn-

thesize an image that preserves some notion of the content but carries characteristics of the

style. The key challenge is how to extract effective representations of the style and then

match it in the content image. The seminal work by Gatys et al. [35, 36] show that the cor-

relation between features, i.e., Gram matrix or covariance matrix (shown to be as effective

as Gram matrix in [141]), extracted by a trained deep neural network has remarkable abil-

ity of capturing visual styles. Since then, significant efforts have been made to synthesize

stylized images by minimizing Gram/covariance matrices based loss functions, through

either iterative optimization [36] or trained feed-forward networks [114, 56, 141, 13, 27].

Despite the recent rapid progress, these existing works often trade off between general-

ization, quality and efficiency, which means that optimization-based methods can handle

arbitrary styles with pleasing visual quality but at the expense of high computational costs,

while feed-forward approaches can be executed efficiently but are limited to a fixed num-

ber of styles or compromised visual quality.

By far, the problem of universal style transfer remains a daunting task as it is chal-

lenging to develop neural networks that achieve generalization, quality and efficiency at

the same time. The main issue is how to properly and effectively apply the extracted style

characteristics (feature correlations) to content images in a style-agnostic manner.

In this work, we propose a simple yet effective method for universal style transfer,

which enjoys the style-agnostic generalization ability with marginally compromised visual

quality and execution efficiency. The transfer task is formulated as image reconstruction

processes, with the content features being transformed at intermediate layers with regard to

the statistics of the style features, in the midst of feed-forward passes. In each intermediate

layer, our main goal is to transform the extracted content features such that they exhibit

the same statistical characteristics as the style features of the same layer and we found that
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the classic signal whitening and coloring transforms (WCTs) on those features are able to

achieve this goal in an almost effortless manner.

In this work, we first employ the VGG-19 network [105] as the feature extractor (en-

coder), and train a symmetric decoder to invert the VGG-19 features to the original image,

which is essentially the image reconstruction task (Figure 4.1(a)). Once trained, both the

encoder and the decoder are fixed through all the experiments. To perform style transfer,

we apply WCT to one layer of content features such that its covariance matrix matches that

of style features, as shown in Figure 4.1(b). The transformed features are then fed forward

into the downstream decoder layers to obtain the stylized image. In addition to this single-

level stylization, we further develop a multi-level stylization pipeline, as depicted in Fig-

ure 4.1(c), where we apply WCT sequentially to multiple feature layers. The multi-level

algorithm generates stylized images with greater visual quality, which are comparable or

even better with much less computational costs. We also introduce a control parameter

that defines the degree of style transfer so that the users can choose the balance between

stylization and content preservation. The entire procedure of our algorithm only requires

learning the image reconstruction decoder with no style images involved. So when given

a new style, we simply need to extract its feature covariance matrices and apply them to

the content features via WCT. Note that this learning-free scheme is fundamentally dif-

ferent from existing feed-forward networks that require learning with pre-defined styles

and fine-tuning for new styles. Therefore, our approach is able to achieve style transfer

universally.

The main contributions of this work are summarized as follows:

• We propose to use feature transforms, i.e., whitening and coloring, to directly match

content feature statistics to those of a style image in the deep feature space.

• We couple the feature transforms with a pre-trained general encoder-decoder net-

work, such that the transferring process can be implemented by simple feed-forward

operations.



48

VGG 

Relu_X_1

Recons

DecoderX

VGG 

Relu_X_1

Recons

DecoderX

Whitening &  Coloring 

Transform (WCT)

Output

C S VGG

Relu_5_1

 Recons

Decoder5
WCT

VGG

Relu_4_1

 Recons

Decoder4

VGG

Relu_3_1

 Recons

Decoder3

VGG

Relu_2_1

 Recons

Decoder2

VGG

Relu_1_1

 Recons

Decoder1

WCT

WCT

WCT

WCT Output

C

S

S

S

S

S

I5

I4

I3

I2

I1

(a) Reconstruction (b) Single-level stylization (c) Multi-level stylization

Figure 4.1: Universal style transfer pipeline. (a) We first pre-train five decoder networks

DecoderX (X=1,2,...,5) through image reconstruction to invert different levels of VGG

features. (b) With both VGG and DecoderX fixed, and given the content image C and

style image S, our method performs the style transfer through whitening and coloring

transforms. (c) We extend single-level to multi-level stylization in order to match the

statistics of the style at all levels. The result obtained by matching higher level statistics

of the style is treated as the new content to continue to match lower-level information of

the style.

• We demonstrate the effectiveness of our method for universal style transfer with

high-quality visual results, and also show its application to universal texture synthe-

sis.

4.2 Proposed Algorithm

We formulate style transfer as an image reconstruction process coupled with feature

transformation, i.e., whitening and coloring. The reconstruction part is responsible for in-

verting features back to the RGB space and the feature transformation matches the statis-

tics of a content image to a style image.
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4.2.1 Reconstruction decoder

We construct an auto-encoder network for general image reconstruction. We employ

the VGG-19 [105] as the encoder, fix it and train a decoder network simply for inverting

VGG features to the original image, as shown in Figure 4.1(a). The decoder is designed

as being symmetrical to that of VGG-19 network (up to Relu X 1 layer), with the nearest

neighbor upsampling layer used for enlarging feature maps. To evaluate with features

extracted at different layers, we select feature maps at five layers of the VGG-19, i.e.,

Relu X 1 (X=1,2,3,4,5), and train five decoders accordingly. The pixel reconstruction

loss [25] and feature loss [56, 25] are employed for reconstructing an input image,

L = ‖Io − Ii‖22+λ‖Φ(Io)− Φ(Ii)‖22 , (4.1)

where Ii, Io are the input image and reconstruction output, and Φ is the VGG encoder that

extracts the Relu X 1 features. In addition, λ is the weight to balance the two losses. After

training, the decoder is fixed (i.e., will not be fine-tuned) and used as a feature inverter.

4.2.2 Whitening and coloring transforms

Given a pair of content image Ic and style image Is, we first extract their vectorized

VGG feature maps fc ∈ <C×HcWc and fs ∈ <C×HsWs at a certain layer (e.g., Relu 4 1),

where Hc, Wc (Hs, Ws) are the height and width of the content (style) feature, and C is

the number of channels. The decoder will reconstruct the original image Ic if fc is directly

fed into it. We next propose to use a whitening and coloring transform to adjust fc with

respect to the statistics of fs. The goal of WCT is to directly transform the fc to match the

covariance matrix of fs. It consists of two steps, i.e., whitening and coloring transform.

Whitening transform. Before whitening, we first center fc by subtracting its mean vec-

tor mc. Then we transform fc linearly as in (4.2) so that we obtain f̂c such that the feature
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Figure 4.2: Inverting whitened features. We invert the whitened VGG Relu 4 1 feature as

an example. Left: original images, Right: inverted results (pixel intensities are rescaled

for better visualization). The whitened features still maintain global content structures.

maps are uncorrelated (f̂cf̂c
>

= I),

f̂c = Ec D
− 1

2
c E>c fc , (4.2)

where Dc is a diagonal matrix with the eigenvalues of the covariance matrix fc f
>
c ∈

<C×C , and Ec is the corresponding orthogonal matrix of eigenvectors, satisfying fc f>c =

EcDcE
>
c .

To validate what is encoded in the whitened feature f̂c, we invert it to the RGB space

with our previous decoder trained for reconstruction only. Figure 4.2 shows two visualiza-

tion examples, which indicate that the whitened features still maintain global structures of

the image contents, but greatly help remove other information related to styles. We note

especially that, for the Starry night example on right, the detailed stroke patterns across

the original image are gone. In other words, the whitening step helps peel off the style

from an input image while preserving the global content structure. The outcome of this

operation is ready to be transformed with the target style.

Coloring transform. We first center fs by subtracting its mean vectorms, and then carry

out the coloring transform [51], which is essentially the inverse of the whitening step to

transform f̂c linearly as in (4.3) such that we obtain f̂cs which has the desired correlations

between its feature maps (f̂cs f̂cs
>

= fs f
>
s ),

f̂cs = Es D
1
2
s E

>
s f̂c , (4.3)
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(a) Style (b) Content (c) HM (d) WCT (e) Style (f) Content (g) HM (h) WCT

Figure 4.3: Comparisons between different feature transform strategies. Results are ob-

tained by our multi-level stylization framework in order to match all levels of information

of the style.

where Ds is a diagonal matrix with the eigenvalues of the covariance matrix fs f
>
s ∈

<C×C , and Es is the corresponding orthogonal matrix of eigenvectors. Finally we re-

center the f̂cs with the mean vector ms of the style, i.e., f̂cs = f̂cs +ms.

To demonstrate the effectiveness of WCT, we compare it with a commonly used feature

adjustment technique, i.e., histogram matching (HM), in Figure 4.3. The channel-wise his-

togram matching [41] method determines a mapping function such that the mapped fc has

the same cumulative histogram as fs. In Figure 4.3, it is clear that the HM method helps

transfer the global color of the style image well but fails to capture salient visual patterns,

e.g., patterns are broken into pieces and local structures are misrepresented. In contrast,

our WCT captures patterns that reflect the style image better. This can be explained by

that the HM method does not consider the correlations between features channels, which

are exactly what the covariance matrix is designed for.

After the WCT, we may blend f̂cs with the content feature fc as in (4.4) before feeding

it to the decoder in order to provide user controls on the strength of stylization effects:

f̂cs = α f̂cs + (1− α) fc , (4.4)

where α serves as the style weight for users to control the transfer effect.
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(a) Style (b) Relu 1 1 (c) Relu 2 1 (d) Relu 3 1 (e) Relu 4 1 (f) Relu 5 1

Figure 4.4: Single-level stylization using different VGG features. The content image is

from Figure 4.2.

(a) I5 (b) I4 (c) I1 (d) Fine-to-coarse

Figure 4.5: (a)-(c) Intermediate results of our coarse-to-fine multi-level stylization frame-

work in Figure 4.1(c). The style and content images are from Figure 4.4. I1 is the final

output of our multi-level pipeline. (d) Reversed fine-to-coarse multi-level pipeline.

4.2.3 Multi-level coarse-to-fine stylization

Based on the single-level stylization framework shown in Figure 4.1(b), we use dif-

ferent layers of VGG features Relu X 1 (X=1,2,...,5) and show the corresponding stylized

results in Figure 4.4. It clearly shows that the higher layer features capture more compli-

cated local structures, while lower layer features carry more low-level information (e.g.,

colors). This can be explained by the increasing size of receptive field and feature com-

plexity in the network hierarchy. Therefore, it is advantageous to use features at all five

layers to fully capture the characteristics of a style from low to high levels.

Figure 4.1(c) shows our multi-level stylization pipeline. We start by applying the WCT
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Table 4.1: Differences between our approach and other methods.

Chen et al. [14] Huang et al. [53] TNet [114] DeepArt [36] Ours

Arbitrary
√ √

×
√ √

Efficient
√ √ √

×
√

Learning-free × × ×
√ √

on Relu 5 1 features to obtain a coarse stylized result and regard it as the new content

image to further adjust features in lower layers. An example of intermediate results are

shown in Figure 4.5. We show the intermediate results I5, I4, I1 with obvious differences,

which indicates that the higher layer features first capture salient patterns of the style and

lower layer features further improve details. If we reverse feature processing order (i.e.,

fine-to-coarse layers) by starting with Relu 1 1, low-level information cannot be preserved

after manipulating higher level features, as shown in Figure 4.5(d).

4.3 Experimental Results

4.3.1 Decoder training

For the multi-level stylization approach, we separately train five reconstruction de-

coders for features at the VGG-19 Relu X 1 (X=1,2,...,5) layer. It is trained on the Mi-

crosoft COCO dataset [73] and the weight λ to balance two losses in (4.1) is set as 1.

4.3.2 Style transfer

To demonstrate the effectiveness of the proposed algorithm, we list the differences with

existing methods in Table 4.1 and present stylized results in Figure 4.6.
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(a) Style (b) [14] (c) [53] (d) [114] (e) [36] (f) Ours

Figure 4.6: Results from different style transfer methods. The content images are from

Figure 4.2-4.3. We evaluate various styles including paintings, abstract styles, and styles

with obvious patterns.

The optimization-based work of [36] handles arbitrary styles but is likely to encounter
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Style scale = 256 scale = 768 α = 0.4 α = 0.6 α = 1.0

Figure 4.7: Controlling the stylization on the scale and weight.

unexpected local minima issues (e.g., 5th and 6th row of Figure 4.6(e)). Although the

method [114] greatly improves the stylization speed, it trades off quality and generality

for efficiency, which generates repetitive patterns that overlay with the image contents

(Figure 4.6(d)). Closest to our work on generalization are the recent methods [14, 53],

but the quality of the stylized results are less appealing. The work of [14] replaces the

content feature with the most similar style feature based on patch similarity and hence has

limited capability, i.e., the content is strictly preserved while style is not well reflected with

only low-level information (e.g., colors) transferred, as shown in Figure 4.6(b). In [53],

the content feature is simply adjusted to have the same mean and variance with the style

feature, which is not effective in capturing high-level representations of the style. Even

learned with a set of training styles, it does not generalize well on unseen styles. Results in

Figure 4.6(c) indicate that the method in [53] is not effective at capturing and synthesizing

salient style patterns, especially for complicated styles where there are rich local structures

and non-smooth regions.

Figure 4.6(f) shows the stylized results of our approach. Without learning any style,

our method is able to capture visually salient patterns in style images (e.g., the brick wall

on the 6th row). Moreover, key components in the content images (e.g., bridge, eye,

mouth) are also well stylized in our results, while other methods only transfer patterns to

relatively smooth regions (e.g., sky, face). The models and code are available at https:

//github.com/Yijunmaverick/UniversalStyleTransfer.

In addition, we quantitatively evaluate different methods by computing the covariance
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Table 4.2: Quantitative comparisons between different stylization methods in terms of the

covariance matrix difference (Ls), user preference and run-time, tested on images of size

256× 256 and a 12GB TITAN X.

Chen et al. [14] Huang et al. [53] TNet [114] Gatys et al. [36] Ours

log(Ls) 7.4 7.0 6.8 6.7 6.3

Preference/% 15.7 24.9 12.7 16.4 30.3

Time/sec 2.1 0.20 0.18 21.2 0.83

(a) Content (b) Different masks and styles (c) Our result

Figure 4.8: Spatial control in transferring, which enables users to edit the content with

different styles.

matrix difference (Ls) on all five levels of VGG features between stylized results and

the given style image. We randomly select 10 content images from [73] and 40 style

images from [57], compute the averaged difference over all styles, and show the results in

Table 4.5 (1st row). Quantitative results show that we generate stylized results with lower

Ls, i.e., closer to the statistics of the style.

User study. Evaluating artistic style transfer has been an open question in the commu-

nity. Since the qualitative assessment is highly subjective, we conduct a user study to

evaluate 5 methods shown in Figure 4.6. We use 5 content images and 30 style images,

and generate 150 results based on each content/style pair for each method. We randomly

select 15 style images for each subject to evaluate. We display stylized images by 5 com-
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pared methods side-by-side on a webpage in random order. Each subject is asked to vote

his/her ONE favorite result for each style. We finally collect the feedback from 80 sub-

jects of totally 1,200 votes and show the percentage of the votes each method received in

Table 4.5 (2nd row). The study shows that our method receives the most votes for better

stylized results. It can be an interesting direction to develop evaluation metrics based on

human visual perception for general image synthesis problems.

Efficiency. In Table 4.5 (3rd row), we also compare our approach with other methods in

terms of efficiency. The method by Gatys et al. [36] is slow due to loops of optimization

and usually requires at least 500 iterations to generate good results. The methods [114]

and [53] are efficient as the scheme is based on one feed-forward pass with a trained

network. The approach [14] is feed-forward based but relatively slower as the feature

swapping operation needs to be carried out for thousands of patches. Our approach is

also efficient but a little bit slower than [114, 53] because we have a eigenvalue decom-

position step in WCT. But note that the computational cost on this step will not increase

along with the image size because the the dimension of covariance matrix only depends

on filter numbers (or channels), which is at most 512 (Relu 5 1). Currently the decompo-

sition step is implemented based on CPU. Our future work includes more efficient GPU

implementations of the proposed algorithm.

User Controls. Given a content/style pair, our approach is not only as simple as a one-

click transferring, but also flexible enough to accommodate different requirements from

users by providing different controls on the stylization, including the scale, weight and

spatial control. The style input on different scales will lead to different extracted statis-

tics due to the fixed receptive field of the network. Therefore the scale control is easily

achieved by adjusting the style image size. In the middle of Figure 4.7, we show two ex-

amples where the brick can be transferred in either small or large scale. The weight control

refers to controlling the balance between stylization and content preservation. As shown
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Figure 4.9: Texture synthesis. In each panel, Left: original textures, Right: our synthesized

results. Texture images are mostly from the Describable Textures Dataset (DTD) [16].

on right of Figure 4.7, our method enjoys this flexibility in simple feed-forward passes by

simply adjusting the style weight α in (4.4). However in [36] and [114], to obtain visual

results of different weight settings, a new round of time-consuming optimization or model

training is needed. Moreover, our blending directly works on deep feature space before

inversion/reconstruction, which is fundamentally different from [36, 114] where the blend-

ing is formulated as the weighted sum of the content and style losses that may not always

lead to a good balance point.

The spatial control is also highly desired when users want to edit an image with dif-

ferent styles transferred on different parts of the image. Figure 4.8 shows an example of

spatially controlling the stylization. A set of masks M (Figure 4.8(b)) is additionally re-

quired as input to indicate the spatial correspondence between content regions and styles.

By replacing the content feature fc in (4.3) with M � fc where � is a simple mask-out

operation, we are able to stylize the specified region only.

4.3.3 Texture synthesis

By setting the content image as a random noise image (e.g., Gaussian noise), our styl-

ization framework can be easily applied to texture synthesis. An alternative is to directly

initialize the f̂c in (4.3) to be white noise. Both approaches achieve similar results. Fig-
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Texture s1 Texture s2 β = 0.75 β = 0.5 β = 0.25 β = 0.5

Figure 4.10: Interpolation between two texture examples. Left: original textures, Middle:

our interpolation results, Right: interpolated results of [36]. β controls the weight of

interpolation.

ure 4.9 shows a few examples of the synthesized textures. We empirically find that it is

better to run the multi-level pipeline for a few times (e.g., 3) to get more visually pleasing

results.

Our method is also able to synthesize the interpolated result of two textures. Given

two texture examples s1 and s2, we first perform the WCT on the input noise and get

transformed features ˆfcs1 and ˆfcs2 respectively. Then we blend these two features f̂cs = β
ˆfcs1 + (1-β) ˆfcs2 and feed the combined feature into the decoder to generate mixed effects.

Note that our interpolation directly works on deep feature space. By contrast, the method

in [36] generates the interpolation by matching the weighted sum of Gram matrices of two

textures at the loss end. Figure 4.10 shows that the result by [36] is simply overlaid by two

textures while our method generates new textural effects, e.g., bricks in the stripe shape.

One important aspect in texture synthesis is diversity. By sampling different noise

images, our method can generate diverse synthesized results for each texture. While [114]

can generate different results driven by the input noise, the learned networks are very likely

to be trapped in local optima. In other words, the noise is marginalized out and thus fails

to drive the network to generate large visual variations. In contrast, our approach explains

each input noise better because the network is unlikely to absorb the variations in input

noise since it is never trained for learning textures. We compare the diverse outputs of our

model with [114] in Figure 4.11. Note that the common diagonal layout is shared across
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Texture TNet [114] Ours

Figure 4.11: Comparisons of diverse synthesized results between TNet [114] and our

model.

different results of [114], which causes unsatisfying visual experiences. The comparison

shows that our method achieves diversity in a more natural and flexible manner.

4.4 Extension to Photo Style

Photorealistic style transfer aims at changing style of a photo to that of a reference

photo. For a faithful stylization, content of the photo should remain the same. Further-

more, the output photo should look like a real photo as it were captured by a camera. Fig-

ure 4.12 shows two photorealistic image stylization examples. The WCT performs well

for artistic image stylization. However it generates structural artifacts (e.g., distortions

on object boundaries) for photorealistic image stylization (Figure 4.14(c)). The proposed

PhotoWCT is designed to suppress these structural artifacts.

4.4.1 PhotoWCT

Our PhotoWCT design is motivated by the observation that the max-pooling operation

in the WCT reduces spatial information in feature maps. Simply upsampling feature maps

in the decoder fails to recover detailed structures of the input image. That is, we need
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(a) Style (b) Content (c) Gatys et al. [36] (d) Luan et al. [80] (e) Ours

Figure 4.12: Given a style photo (a) and a content photo (b), photorealistic image styl-

ization aims at transferring style of the style photo to the content photo as shown in (c),

(d) and (e). Comparing with existing methods [36, 80], the output photos computed by

our method are stylized more consistently and with fewer artifacts. Moreover, our method

runs an order of magnitude faster.

to pass the lost spatial information to the decoder to facilitate reconstructing these fine

details. Inspired by the success of the unpooling layer [150, 145, 86] in preserving spatial

information, the PhotoWCT replaces the upsampling layers in the WCT with unpooling

layers. Figure 4.13 illustrates the network architecture difference between the WCT and

the proposed PhotoWCT.

Figure 4.14(c) and (d) compare the stylization results of the WCT and PhotoWCT.

As highlighted in close-ups, the straight lines along the building boundary in the content

image becomes zigzagged in the WCT stylization result but remains straight in the Pho-

toWCT result. The PhotoWCT-stylized image has much fewer structural artifacts. We also

perform a user study in the experiment section to quantitatively verify that the PhotoWCT

generally leads to better stylization effects than the WCT.
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IC YPC PS

(a) WCT

YIC PC PS

(b) PhotoWCT

Convolution Max pooling Upsampling Unpooling Max pooling mask

… … … …

Figure 4.13: The PhotoWCT and WCT share the same encoder architecture and projection

steps. In the PhotoWCT, we replace the upsampling layers (pink) with unpooling layers

(green). Note that the unpooling layer is used together with the pooling mask (yellow)

which records where carries the maximum over each max pooling region in the corre-

sponding pooling layer [150].

4.4.2 Photorealistic Smoothing

The PhotoWCT-stylized result (Figure 4.14(d)) still looks less like a photo since se-

mantically similar regions are often stylized inconsistently. As shown in Figure 4.14,

when applying the PhotoWCT to stylize the day-time photo using the night-time photo,

the stylized sky region would be more photorealistic if it were uniformly dark blue instead

of partly dark and partly light blue. It is based on this observation, we employ the pixel

affinities in the content photo to smooth the PhotoWCT-stylized result.

We aim to achieve two goals in the smoothing step. First, pixels with similar content in

a local neighborhood should be stylized similarly. Second, the output should not deviate

significantly from the PhotoWCT result in order to maintain the global stylization effects.

We first represent all pixels as nodes in a graph and define an affinity matrix W = {wij} ∈
RN×N (N is the number of pixels) to describe pixel similarities. We define a smoothness

term and a fitting term that model these two goals in the following optimization problem:

argmin
r

1

2
(
N∑

i,j=1

wij‖
ri√
dii
− rj√

djj
‖2+λ

N∑
i=1

‖ri − yi‖2), (4.5)

where yi is the pixel color in the PhotoWCT-stylized result Y and ri is the pixel color in
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the desired smoothed output R. The variable dii =
∑

j wij is the diagonal element in the

degree matrix D of W , i.e., D = diag{d11, d22, ..., dNN}. In (4.5), λ controls the balance

of the two terms.

(a) Style (b) Content

(c) WCT [142] (d) PhotoWCT

(e) WCT + smoothing (f) PhotoWCT + smoothing

Figure 4.14: The stylization output generated by the PhotoWCT better preserves local

structures in the content images, which is important for the image smoothing step as shown

in (e) and (f).

Our formulation is motivated by the graph-based ranking algorithms [151, 138]. In the
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(a) Style (b) Content (c) PhotoWCT (Ours)

(d) MattingAff (e) GaussianAff σ = 1 (f) GaussianAff σ = 0.1

Figure 4.15: Smoothing with different affinities. To refine the PhotoWCT result in (c), it is

hard to find an optimal σ for the Gaussian Affinity that performs globally well as shown in

(e)-(f). In contrast, using the Matting Affinity can simultaneously smooth different regions

well as shown in (d).

ranking algorithms, Y is a binary input where each element indicates if a specific item is a

query (yi = 1 if yi is a query and yi = 0 otherwise). The optimal solution R is the ranking

values of all the items based on their pairwise affinities. In our method, we set Y as the

PhotoWCT-stylized result. The optimal solution R is the smoothed version of Y based on

the pairwise pixel affinities, which encourages consistent stylization within semantically

similar regions. The above optimization problem is a simple quadratic problem with a

closed-form solution, which is given by

R∗ = (1− α)(I − αS)−1Y, (4.6)

where I is the identity matrix, α = 1
1+λ

and S is the normalized Laplacian matrix com-
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puted from IC , i.e., S = D−
1
2WD−

1
2 ∈ RN×N . As the constructed graph is often sparsely

connected (i.e., most elements in W are zero), the inverse operation in (4.6) can be com-

puted efficiently. With the closed-form solution, the smoothing step can be written as a

function mapping given by:

R∗ = F2(Y, IC) = (1− α)(I − αS)−1Y. (4.7)

Affinity. The affinity matrix W is computed using the content photo based on an 8-

connected image graph assumption. While several choices of affinity metrics exist, a

popular one is to define the affinity (denoted as GaussianAff) as wij = e−‖Ii−Ij‖
2/σ2

where Ii, Ij are the RGB values of adjacent pixels i, j and σ is a global scaling hyper-

parameter [101]. However, it is difficult to determine the σ value in practice. It often

results in either over-smoothing the entire photo (Figure 4.15(e)) or stylizing the photo

inconsistently (Figure 4.15(f)). To avoid selecting one global scaling hyper-parameter, we

resort to the matting affinity [68, 146] (denoted as MattingAff) where the affinity between

two pixels is based on means and variances of pixels in a local window. Figure 4.15(d)

shows that the matting affinity is able to simultaneously smooth different regions well.

WCT plus Smoothing. We note that the smoothing step can also remove structural ar-

tifacts in the WCT as shown in Figure 4.14(e). However, it leads to unsatisfactory styliza-

tion. The main reason is that the content photo and the WCT result are severely misaligned

due to spatial distortions. For example, a stylized pixel of the building in the WCT result

may correspond to a pixel of the sky in the content photo. Consequently this causes wrong

queries in Y for the smoothing step. This shows why we need to use the PhotoWCT to

remove distortions first. Figure 4.14(f) shows that the combination of PhotoWCT and

smoothing leads to better photorealism while still maintaining faithful stylization.
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4.4.3 Results

In the section, we will first discuss the implementation details. We will then present

visual and user study evaluation results. Finally, we will analyze various design choices

and run-time of the proposed algorithm.

Implementation details. We use the layers from conv1 1 to conv4 1 in the VGG-19

network [105] for the encoder E . The encoder weights are given by ImageNet-pretrained

weights. The decoder D is the inverse of the encoder. We train the decoder by minimizing

the sum of the L2 reconstruction loss and perceptual loss [56] using the Microsoft COCO

dataset [73]. We adopt the multi-level stylization strategy proposed in the WCT [142]

where we apply the PhotoWCT to VGG features in different layers.

Similar to the state-of-the-art methods [37, 80], our algorithm can leverage semantic la-

bel maps for obtaining better stylization results when they are available. When performing

PhotoWCT stylization, for each semantic label, we compute a pair of projection matrices

PC and PS using the features from the image regions with the same label in the content

and style photos, respectively. The pair is then used to stylize these image regions. With

a semantic label map, content and style matching can be performed more accurately. We

note that the proposed algorithm does not need precise semantic label maps for obtaining

good stylization results. Finally, we also use the efficient filtering step described in Luan

et al. [80] for post-processing.

Visual comparison. We compare the proposed algorithm to two categories of stylization

algorithms: photorealistic and artistic. The evaluated photorealistic stylization algorithms

include Reinhard et al. [96], Pitié et al. [92], and Luan et al. [80]. Both Reinhard et

al. [96] and Pitié et al. [92] represent classical techniques that are based on color statistics

matching, while Luan et al. [80] is based on neural style transfer [36]. On the other

hand, the set of evaluated artistic stylization algorithms include Gatys et al.[36], Huang et

al.[53], and the WCT [142]. They all utilize deep networks.
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Style Content Reinhard et al. [96]

Pitié et al. [92] Luan et al. [80] Ours

Style Content Reinhard et al. [96]

Pitié et al. [92] Luan et al. [80] Ours

Figure 4.16: Visual comparisons with photorealistic stylization methods. In addition to

color transfer, our method also synthesizes patterns in the style photos (e.g., the dark cloud

in the top example, the snow at the bottom example).

Figure 4.16 shows visual results of the evaluated photorealistic stylization algorithms.
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(a) Style (b) Content (c) Gatys et al. [36]

(d) Huang et al. [53] (e) Li et al. [142] (f) Ours

Figure 4.17: Visual comparison with artistic stylization algorithms. Note the structural

distortions on object boundaries (e.g., building) and detailed edges (e.g., sea, cloud) gen-

erated by the competing stylization methods.

Overall, the images generated by the proposed algorithm exhibit better stylization effects.

While both Reinhard et al. [96] and Pitié et al. [92] change colors of the content photos,

they fail to transfer the style. We argue that photorealistic stylization cannot be purely

achieved via color transfer. It requires adding new patterns that represent the style photo

to the content photo. For example, in the third example of Figure 4.16 (bottom), our

algorithm not only changes the color of ground regions to white but also synthesizes the

snow patterns as they appear in the style photo. The method of Luan et al. [80] achieves

good stylization effects at first glance. However, a closer look reveals that the generated

photos contain noticeable artifacts, e.g., the irregular brightness on buildings and trees.

Several semantically similar regions are stylized inconsistently.

Figure 4.17 shows the visual comparison between the proposed algorithm and artistic

stylization algorithms. Although the other evaluated algorithms are able to transfer the

style well, they render noticeable structural artifacts and inconsistent stylizations across
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the images. In contrast, our method produces more photorealistic results.

User studies. We resort to user studies for performance evaluation since photorealistic

image stylization is a highly subjective task. Our benchmark dataset consists of a set of

25 content–style pairs provided by Luan et al. [80]. We use the Amazon Mechanical Turk

(AMT) platform for evaluation. In each question, we show the AMT workers a content–

style pair and the stylized results from the evaluated algorithms displayed in random order.

The AMT workers (lifetime Human Intelligent Task approval rate greater than 98%) are

asked to select a stylized result based on the instructions. Each question is answered by

10 different workers. Hence, the performance score for each study is computed based on

250 questions. We compute the average number of times the images from an algorithm is

selected, which is used as the preference score of the algorithm.

We conduct two user studies. In one study, we ask the AMT workers to select which

stylized photo better carries the target style. In the other study, we ask the workers to select

which stylized photo looks more like a real photo (containing fewer artifacts). Through

the studies, we would like to answer which algorithm better stylizes content images and

which renders better photorealistic outputs.

In Table 4.3, we compare the proposed algorithm to Luan et al. [80], which is the

current state-of-the-art. The results show that 63.1% of the users prefer the stylization

results generated by our algorithm and 73.5% regard our output photos as more photore-

alistic. We also compare our algorithm to the classical algorithm of Pitié et al. [92]. From

Table 4.3, our results are as photorealistic as those computed by the classical algorithm

(which simply performs color matching), and 55.2% of the users consider our stylization

results better.

Table 4.4 compares our algorithm with the artistic stylization algorithms for user pref-

erence scores. We find our algorithm achieves a score of 56.4% and 65.6% for the styl-

ization effect and photorealism, which are significantly better than the other algorithms.

The artistic stylization algorithms do not perform well since they are not designed for the
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Table 4.3: User preference: proposed vs. Luan et al. and proposed vs. Pitié et al.

Luan et al. [80] / proposed Pitié et al. [92] / proposed

Better stylization 36.9% / 63.1% 44.8% / 55.2%

Fewer artifacts 26.5% / 73.5% 48.8% / 51.2%

Table 4.4: User preference: proposed versus artistic stylization algorithms.

Gatys et al. [36] Huang et al. [53] Li et al. [142] proposed

Better stylization 19.2% 8.4% 16.0% 56.4%

Fewer artifacts 21.6% 6.0% 6.8% 65.6%

photorealistic stylization task.

WCT versus PhotoWCT. We compare the proposed algorithm with a variant where

the PhotoWCT step is replaced by the WCT [142]. Again, we conduct two user studies

on stylization effects and photorealism as described earlier. The result shows that the

proposed algorithm is favored over its variant for better stylization 83.6% of the times and

favored for better photorealism 83.2% of the times.

Sensitivity analysis on λ. In the photorealistic smoothing step, the λ balances between

the smoothness term and fitting term in (4.5). A smaller λ renders smoother results, while

a larger λ renders results that are more faithful to the queries (the PhotoWCT result). Fig-

ure 4.18 shows results of using different λ values. In general, decreasing λ helps remove

artifacts and hence improves photorealism. However, if λ is too small, the output image

tends to be over-smoothed. In order to find the optimal λ, we perform a grid search. We

use the similarity between the boundary maps extracted from stylized and original content

photos as the criteria since object boundaries should remain the same despite the styliza-

tion [17]. We employ the HED method [133] for boundary detection and use two standard
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Figure 4.18: Visualization of effects of using different λ values in the photorealistic

smoothing step. We show the edge maps of different stylization results (inset) at bot-

tom and compare them with the edge map of the content in terms of the ODS and OIS

metric (rightmost).

boundary detection metrics: ODS and OIS. A higher ODS or OIS score means a styl-

ized photo better preserves the content in the original photo. The average scores over the

benchmark dataset are shown on the rightmost of Figure 4.18. Based on the results, we

use λ = 10−4 in all the experiments.

Alternative smoothing techniques. In Figure 4.19, we compare our photorealistic smooth-

ing step with two alternative approaches. In the first approach, we use the PhotoWCT-

stylized photo as the initial solution for solving the second optimization problem in the

method of Luan et al. [80]. The result is shown in Figure 4.19(b). This approach leads

to noticeable artifacts as the road color is distorted. In the second approach, we use the

method of Mechrez et al. [84], which refines stylized results by matching the gradients
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(a) PhotoWCT (b) Luan et al. [80] (c) Mechrez et al. [84] (d) proposed

Figure 4.19: Comparison between using our photorealistic smoothing step and other re-

finement methods (b)-(d).

in the output photo to those in the content photo. As shown in Figure 4.19(c), we find

this approach performs well for removing structural distortions on boundaries but does not

remove visual artifacts. In contrast, our method (Figure 4.19(d)) generates more photore-

alistic results with an efficient closed-form solution.

Run-time. In Table 4.5, we compare the run-time of the proposed algorithm to that of the

state-of-the-art [80]. We note that while our algorithm has a closed-form solution, Luan

et al. [80] rely on non-convex optimization. To stylize a photo, Luan et al. [80] solve two

non-convex optimization problems sequentially where the solution to the first optimization

problem is used as an initial solution to solve the second optimization problem. We report

the total run-time required for obtaining the final stylization results. We resize the content

images in the benchmark dataset to different sizes and report the average run-time for each

image size. The experiment is conducted on a PC with an NVIDIA Titan X Pascal GPU.

To stylize images of 1024×512 resolution, our algorithm takes 13.16 seconds, which is 49

times faster than 650.45 seconds achieved by Luan et al. [80].

In Table 4.5, we also report the run-time of each step in our algorithm. We find the

smoothing step takes most of the computation time, since it involves inverting the sparse

matrixW in (4.6) using the LU decomposition. By employing efficient LU-decomposition

algorithms developed for large sparse matrices, the complexity can be roughly determined

by the number of non-zero entries in the matrices only. In our case, since each pixel is
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Table 4.5: Run-time comparison. We compute the average run time (in seconds) of the

evaluated algorithms across various image resolutions.

Image resolution Luan et al.[80] proposed PhotoWCT smoothing approx

256×128 79.61 0.96 0.40 0.56 0.41

512×256 186.52 2.95 0.42 2.53 0.47

768×384 380.82 7.05 0.53 6.52 0.55

1024×512 650.45 13.16 0.56 12.60 0.64

Table 4.6: User preference score comparison: comparing approx (the fast approxima-

tion of the proposed algorithm) to the proposed algorithm as well as other photorealistic

stylization algorithms.

proposed/approx Luan et al. [80]/approx Pitié et al. [92]/approx

Better stylization 59.6% / 40.4 36.4 / 63.6% 46.0 / 54.0%

Fewer artifacts 52.8% / 47.2 20.8 / 79.2% 46.8 / 53.2%

only connected to its neighbors (e.g., 3×3 window), the number of non-zero values in W

grows linearly with the image size.

For further speed-up, we can approximate the smoothing step using guided image fil-

tering [46], which can smooth the PhotoWCT output based on the content photo. We will

refer to this version of our algorithm approx. Although approximating the smoothing

step with guided image filtering results in slightly degraded performance as comparing

to the original algorithm, it leads to a large speed gain as shown in Table 4.5. To stylize

images of 1024×512 resolution, approx only takes 0.64 seconds, which is 1,016 times

faster than 650.45 seconds achieved by Luan et al. [80]. To quantify the performance

degradation due to the approximation, we conduct additional user studies comparing the

proposed algorithm and its approximation. We use the same evaluation protocol as de-

scribed above. The results are shown in Table 4.6. In general, the stylization results
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rendered by approx are less preferred by the users as compared to those generated by the

full algorithm. However, the results from approx are still preferred over other methods

in terms of both stylization effects and photorealism.

4.5 Concluding Remarks

In this work, we propose a universal style transfer algorithm that does not require learn-

ing for each individual style. By unfolding the image generation process via training an

auto-encoder for image reconstruction, we integrate the whitening and coloring transforms

in the feed-forward passes to match the statistical distributions and correlations between

the intermediate features of content and style. We also present a multi-level stylization

pipeline, which takes all level of information of a style into account, for improved results.

In addition, the proposed approach is shown to be equally effective for texture synthesis.

Experimental results demonstrate that the proposed algorithm achieves favorable perfor-

mance against the state-of-the-art methods in generalizing to arbitrary styles.



Chapter 5

Generative Face Completion

In this work, we propose an effective face completion algorithm using a deep genera-

tive model. Different from well-studied background completion, the face completion task

is more challenging as it often requires to generate semantically new pixels for the missing

key components (e.g., eyes and mouths) that contain large appearance variations. Unlike

existing nonparametric algorithms that search for patches to synthesize, our algorithm di-

rectly generates contents for missing regions based on a neural network. The model is

trained with a combination of a reconstruction loss, two adversarial losses and a semantic

parsing loss, which ensures pixel faithfulness and local-global contents consistency. With

extensive experimental results, we demonstrate qualitatively and quantitatively that our

model is able to deal with a large area of missing pixels in arbitrary shapes and generate

realistic face completion results.

75
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5.1 Introduction

Image completion, as a common image editing operation, aims to fill the missing or

masked regions in images with plausibly synthesized contents. The generated contents

can either be as accurate as the original, or simply fit well within the context such that the

completed image appears to be visually realistic. Most existing completion algorithms [4,

52] rely on low-level cues to search for patches from known regions of the same image

and synthesize the contents that locally appear similarly to the matched patches. These

approaches are all fundamentally constrained to copy existing patterns and structures from

the known regions. The copy-and-paste strategy performs particularly well for background

completion (e.g., grass, sky, and mountain) by removing foreground objects and filling the

unknown regions with similar pattens from backgrounds.

However, the assumption of similar patterns can be found in the same image does not

hold for filling missing parts of an object image (e.g., face). Many object parts contain

unique patterns, which cannot be matched to other patches within the input image, as

shown in Figure 5.1(b). An alternative is to use external databases as references [45].

Although similar patches or images may be found, the unique patterns of objects that

involve semantic representation are not well modeled, since both low-level [4] and mid-

level [52] visual cues of the known regions are not sufficient to infer semantically valid

contents in missing regions.

In this work, we propose an effective object completion algorithm using a deep genera-

tive model. The input is first masked with noise pixels on randomly selected square region,

and then fed into an autoencoder [121]. While the encoder maps the masked input to hid-

den representations, the decoder generates a filled image as its output. We regularize the

training process of the generative model by introducing two adversarial losses [42]: a lo-

cal loss for the missing region to ensure the generated contents are semantically coherent,

and a global one for the entire image to render more realistic and visually pleasing results.

In addition, we also propose a face parsing network [75, 106, 66] as an additional loss to
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(a) (b) (c)

Figure 5.1: Face completion results. In each row from left to right: (a) original image (128

× 128 pixels). (b) masked input. (c) completion results by our method. In the top row, the

face is masked by a square. In the bottom row we show a real example where the mouth

region is occluded by the microphone.

regularize the generation procedure and enforce a more reasonable and consistent result

with contexts. This generative model allows fast feed-forward image completion without

requiring an external databases as reference. For concreteness, we apply the proposed

object completion algorithm on face images.

The main contributions of this work are summarized as follows. First, we propose a

deep generative completion model that consists of an encoding-decoding generator and

two adversarial discriminators to synthesize the missing contents from random noise. Sec-

ond, we tackle the challenging face completion task and show the proposed model is able

to generate semantically valid patterns based on learned representations of this object class.

Third, we demonstrate the effectiveness of semantic parsing in generation, which renders
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Encoder

(conv+pooling)

Decoder

(conv+unpooling)

FC FC

Real/Fake?

Real/Fake?

Parsing network (fixed)

Global discriminator

Local discriminator

GT parsing 

Figure 5.2: Network architecture. It consists of one generator, two discriminators and a

parsing network. The generator takes the masked image as input and outputs the generated

image. We replace pixels in the non-mask region of the generated image with original pix-

els. Two discriminators are learned to distinguish the synthesize contents in the mask and

whole generated image as real and fake. The parsing network, which is a pretrained model

and remains fixed, is to further ensure the new generated contents more photo-realistic and

encourage consistency between new and old pixels. Note that only the generator is needed

during the testing.

the completion results that look both more plausible and consistent with surrounding con-

texts.

5.2 Proposed Algorithm

In this section, we describe the proposed model for object completion. Given a masked

image, our goal is to synthesize the missing contents that are both semantically consistent

with the whole object and visually realistic. Figure 5.2 shows the proposed network that

consists of one generator, two discriminators, and a parsing network.
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5.2.1 Generator

The generator G is designed as an autoencoder to construct new contents given input

images with missing regions. The masked (or corrupted) input, along with the filled noise,

is first mapped to hidden representations through the encoder. Unlike the original GAN

model [42] which directly starts from a noise vector, the hidden representations obtained

from the encoder capture more variations and relationships between unknown and known

regions, which are then fed into the decoder for generating contents.

We use the architecture from “conv1” to “pool3” of the VGG-19 [105] network, stack

two more convolution layers and one more pooling layer on top of that, and add a fully-

connected layer after that as the encoder. The decoder is symmetric to the encoder with

unpooling layers.

5.2.2 Discriminator

The generator can be trained to fill the masked region or missing pixels with small

reconstruction errors. However, it does not ensure that the filled region is visually realistic

and coherent. As shown in Figure 5.3(c), the generated pixels are quite blurry and only

capture the coarse shape of missing face components. To encourage more photo-realistic

results, we adopt a discriminatorD that serves as a binary classifier to distinguish between

real and fake images. The goal of this discriminator is to help improve the quality of

synthesized results such that the trained discriminator is fooled by unrealistic images.

We first propose a local D for the missing region which determines whether the syn-

thesized contents in the missing region are real or not. Compared with Figure 5.3(c), the

network with local D (shown in Figure 5.3(d)) begins to help generate details of missing

contents with sharper boundaries. It encourages the generated object parts to be semanti-

cally valid. However, its limitations are also obvious due to the locality. First, the local loss

can neither regularize the global structure of a face, nor guarantee the statistical consis-

tency within and outside the masked regions. Second, while the generated new pixels are
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(a) Original (b) Input (c) M1 (d) M2 (e) M3 (f) M4 (g) M5

Figure 5.3: Completion results under different settings of our model. (c) M1: Lr. (d) M2:

Lr+La1 . (e) M3: Lr+La1 +La2 . (f) M4: Lr+La1 +La2 +Lp. The result in (f) shows the

most realistic and plausible completed content. It can be further improved through post-

processing techniques such as (g) M5: M4 + Poisson blending [90] to eliminate subtle

color difference along mask boundaries.

conditioned on their surrounding contexts, a local D can hardly generate a direct impact

outside the masked regions during the back propagation, due to the unpooling structure of

the decoder. Consequently, the inconsistency of pixel values along region boundaries is

obvious.

Therefore, we introduce another global D to determine the faithfulness of an entire

image. The fundamental idea is that the newly generated contents should not only be

realistic, but also consistent to the surrounding contexts. From Figure 5.3(e), the network

with additional global D greatly alleviates the inconsistent issue and further enforce the

generated contents to be more realistic. We note that the architecture of two discriminators

are similar to [93].

5.2.3 Semantic Regularization

With a generator and two discriminators, our model can be regarded as a variation

of the original GAN [42] model that is conditioned on contexts (e.g., non-mask regions).
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However as a bottleneck, the GAN model tends to generate independent facial components

that are likely not suitable to the original subjects with respect to facial expressions and

parts shapes, as shown in Figure 5.3(e). The top one is with big weird eyes and the bottom

one contains two asymmetric eyes. Furthermore, we find the global D is not effective in

ensuring the consistency of fine details in the generated image. For example, if only one

eye is masked, the generated eye does not fit well with another unmasked one. We show

another two examples in Figure 5.4(c) where the generated eye is obviously asymmetric to

the unmasked one although the generated eye itself is already realistic. Both cases indicate

that more regularization is needed to encourage the generated faces to have similar high-

level distributions with the real faces.

Therefore we introduce a semantic parsing network to further enhance the harmony of

the generated contents and existing pixels. The parsing network is an autoencoder which

bears some resemblance to the semantic segmentation method [139]. The parsing result

of the generated image is compared with the one of the original image. As such, the

generator is forced to learn where to generate features with more natural shape and size.

In Figure 5.3(e)-(f) and Figure 5.4(c)-(d), we show the generated images between models

without and with the smenatic regularization.

5.2.4 Objective Function

We first introduce a reconstruction loss Lr to the generator, which is the L2 distance

between the network output and the original image. With the Lr only, the generated con-

tents tend to be blurry and smooth as shown in Figure 5.3(c). The reason is that since the

L2 loss penalizes outliers heavily, and the network is encouraged to smooth across various

hypotheses to avoid large penalties.

By using two discriminators, we employ the adversarial loss which is a reflection of

how the generator can maximally fool the discriminator and how well the discriminator
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(a) original (b) masked input (c) w/o parsing (d) w/ parsing

Figure 5.4: Comparison between the result of models without and with the parsing regu-

larization.

can distinguish between real and fake. It is defined as

(5.1)Lai = min
G

max
D
Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))],

where pdata(x) and pz(z) represent the distributions of noise variables z and real data

x. The two discriminative networks {a1, a2} share the same definition of the loss func-

tion. The only difference is that the local discriminator only provides training signals

(loss gradients) for the missing region while the global discriminator back-propagates loss

gradients across the entire image.

In the parsing network, the loss Lp is the simple pixel-wise softmax loss [78, 139]. The

overall loss function is defined by

L = Lr + λ1La1 + λ2La2 + λ3Lp, (5.2)

where λl, λ2 and λ3 are the weights to balance the effects of different losses.
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5.2.5 Training Neural Networks

To effectively train our network, we use the curriculum strategy [6] by gradually in-

creasing the difficulty level and network scale. The training process is scheduled in three

stages. First, we train the network using the reconstruction loss to obtain blurry contents.

Second, we fine-tune the network with the local adversarial loss. The global adversarial

loss and semantic regularization are incorporated at the last stage, as shown in Figure 5.3.

Each stage prepares features for the next one to improve, and hence greatly increases the

effectiveness and efficiency of network training. For example, in Figure 5.3, the recon-

struction stage (c) restores the rough shape of the missing eye although the contents are

blurry. Then local adversarial stage (d) then generates more details to make the eye region

visually realistic, and the global adversarial stage (e) refines the whole image to ensure that

the appearance is consist around the boundary of the mask. The semantic regularization

(f) finally further enforces more consistency between components and let the generated

result to be closer to the actual face. When training with the adversarial loss, we use a

method similar to [93] especially to avoid the case when the discriminator is too strong at

the beginning of the training process.

5.3 Experimental Results

We carry out extensive experiments to demonstrate the ability of our model to synthe-

size the missing contents on face images. The hyper-parameters (e.g., learning rate) for the

network training are set as suggested in [128]. To balance the effects of different losses,

we use λl = 300, λ2 = 300 and λ3 = 0.005 in our experiments.

5.3.1 Datasets

We use the CelebA [76] dataset to learn and evaluate our model. It consists of 202,599

face images and each face image is cropped, roughly aligned by the position of two eyes,
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Figure 5.5: Face completion results on the CelebA [76] test dataset. In each panel from

left to right: original images, masked inputs, our completion results.

and rescaled to 128×128×3 pixels. We follow the standard split with 162,770 images for

training, 19,867 for validation and 19,962 for testing. We set the mask size as 64× 64 for

training to guarantee that at least one essential facial component is missing. If the mask

only covers smooth regions with a small mask size, it will not drive the model to learn

semantic representations. To avoid over-fitting, we do data augmentation that includes

flipping, shift, rotation (+/- 15 degrees) and scaling. During the training process, the size

of the mask is fixed but the position is randomly selected. As such, the model is forced to

learn the whole object in an holistic manner instead of a certain part only.

5.3.2 Face Parsing

Since face images in the CelebA [76] dataset do not have segment labels, we use the

Helen face dataset [66] to train a face parsing network for regularization. The Helen

dataset consists of 2,330 images and each face has 11 segment labels covering every main

component of the face (e.g., hair, eyebrows, eyes) labelled by [106]. We roughly crop the
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face in each image with the size of 128×128 first and then feed it into the parsing network

to predict the label for each pixel. Our parsing network bears some resemblance to the

semantic segmentation method [139] and we mainly modify its last layer with 11 outputs.

We use the standard training/testing split and obtain a parsing model, which achieves the

f-score of 0.851 with overall facial components on the Helen test dataset, compared to

the state-of-the-art multi-objective based model [75], with the corresponding f-score of

0.854. This model can be further improved with more careful hyperparameter tuning but

is currently sufficient to improve the quality of face completion.

Once the parsing network is trained, it remains fixed in our generation framework. We

first use the network on the CelebA training set to obtain the parsing results of originally

unmasked faces as the ground truth, and compare them with the parsing on generated

faces during training. The parsing loss is eventually back-propagated to the generator

to regularize face completion. The proposed semantic regularization can be regarded as

measuring the distance in feature space where the sensitivity to local image statistics can

be achieved [25].

5.3.3 Face Completion

Qualitative results. Figure 5.5 shows our face completion results on the CelebA test

dataset. In each test image, the mask covers at least one key facial components. The third

column of each panel shows our completion results are visually realistic and pleasing.

Note that during the testing, the mask does not need to be restricted as a 64 × 64 square

mask, but the number of total masked pixels is suggested to be no more than 64×64 pixels.

We show typical examples with one big mask covering at least two face components (e.g.,

eyes, mouths, eyebrows, hair, noses) in the first two rows. We specifically present more

results on eye regions since they can better reflect how realistic of the newly generated

faces are, with the proposed algorithm. Overall, the algorithm can successfully complete

the images with faces in side views, or partially/completely corrupted by the masks with
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Figure 5.6: Face part completion. In each panel, left: masked input, right: our completion

result.

different shapes and sizes.

We present a few examples in the third row where the real occlusion (e.g., wearing

glasses) occurs. As sometimes whether a region in the image is occluded or not is subjec-

tive, we give this option for users to assign the occluded regions through drawing masks.

The results clearly show that our model is able to restore the partially masked eyeglasses,

or remove the whole eyeglasses or just the frames by filling in realistic eyes and eyebrows.

In the last row, we present examples with multiple, randomly drawn masks, which are

closer to real-world application scenarios. Figure 5.6 presents completion results where

different key parts (e.g., eyes, nose, and mouth) of the same input face image are masked.

It shows that our completion results are consistent and realistic regardless of the mask

shapes and locations.

Quantitative results. In addition to the visual results, we also perform quantitative eval-

uation using three metrics on the CelebA test dataset (19,962 images). The first one is the

peak signal-to-noise ratio (PSNR) which directly measures the difference in pixel values.

The second one is the structural similarity index (SSIM) that estimates the holistic simi-

larity between two images. Lastly we use the identity distance measured by the OpenFace

toolbox [2] to determine the high-level semantic similarity of two faces. These three met-
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(a) O1 (b) O2 (c) O3 (d) O4 (e) O5 (f) O6

Figure 5.7: Simulate face occlusions happened in real scenario with different masks O1-

O6. From left to right: left half, right half, two eyes, left eye, right eye, and lower half.

rics are computed between the completion results obtained by different methods and the

original face images. The results are shown in Table 5.1-5.3. Specifically, the stepwise

contribution of each component is shown from the 2nd to the 5th column of each table,

where M1-M5 correspond to five different settings of our own model in Figure 5.3 and

O1-O6 are six different masks for evaluation as shown in Figure 5.7.

We then compare our model with the ContextEncoder [89] (CE). Since the CE model

is originally not trained for faces, we retrain the CE model on the CelebA dataset for

fair comparisons. As the evaluated masks O1-O6 are not in the image center, we use the

inpaintRandom version of their code and mask 25% pixels masked in each image. Finally

we also replace the non-mask region of the output with original pixels. The comparison

between our model (M4) and CE in 5th and 6th column show that our model performs

generally better than the CE model, especially on large masks (e.g., O1-O3, O6). In the

last column, we show that the poisson blending [90] can further improve the performance.

Note that we obtain relatively higher PSNR and SSIM values when using the recon-

struction loss (M1) only but it does not imply better qualitative results, as shown in Fig-

ure 5.3(c). These two metrics simply favor smooth and blurry results. We note that the

model M1 performs poorly as it hardly recovers anything and is unlikely to preserve the

identity well, as shown in Table 5.3.
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Table 5.1: Quantitative evaluations in terms of SSIM at six different masks O1-O6. Higher

values are better.

M1 M2 M3 M4 CE M5

O1 0.798 0.753 0.782 0.804 0.772 0.824

O2 0.805 0.763 0.787 0.808 0.774 0.826

O3 0.723 0.675 0.708 0.731 0.719 0.759

O4 0.747 0.701 0.741 0.759 0.754 0.789

O5 0.751 0.706 0.732 0.755 0.757 0.784

O6 0.807 0.764 0.808 0.824 0.818 0.841

Table 5.2: Quantitative evaluations in terms of PSNR at six different masks O1-O6.

Higher values are better.

M1 M2 M3 M4 CE M5

O1 18.9 17.8 18.9 19.4 18.6 20.0

O2 18.7 17.9 18.7 19.3 18.4 19.8

O3 17.9 17.2 17.7 18.3 17.9 18.8

O4 18.6 17.7 18.5 19.1 19.0 19.7

O5 18.7 17.6 18.4 18.9 19.1 19.5

O6 18.8 17.3 19.0 19.7 19.3 20.2

5.3.4 Face recognition

The identity distance in Table 5.3 partly reveals the network ability of preserving the

identity information. In order to test to what extent the face identity can be preserved

across its different examples, we evaluate our completion results in the task of face recog-

nition. Note that this task simulates occluded face recognition, which is still an open

problem in computer vision. Given a probe face example, the goal of recognition is to find

an example from the gallery set that belongs to the same identity. We randomly split the
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Table 5.3: Quantitative evaluations in terms of identity distance at six different masks

O1-O6. Lower values are better.

M1 M2 M3 M4 CE M5

O1 0.763 0.775 0.694 0.602 0.701 0.534

O2 1.05 1.02 0.894 0.838 0.908 0.752

O3 0.781 0.693 0.674 0.571 0.561 0.549

O4 0.310 0.307 0.265 0.238 0.236 0.212

O5 0.344 0.321 0.297 0.256 0.251 0.231

O6 0.732 0.714 0.593 0.576 0.585 0.541

CelebA [76] test dataset into the gallery and probe set, to make sure that each identity has

roughly the same amount of images in each set. Finally, we obtain the gallery and probe

set with roughly 10,000 images respectively, covering about 1,000 identities.

We apply six masking types (O1-O6) for each probe image, as shown in Figure 5.7.

The probe images are new faces restored by the generator. These six masking types, to

some extent, simulate the occlusions that possibly occurs in real scenarios. For example,

masking two eyes mainly refers to the occlusion by glasses and masking lower half face

matches the case of wearing the scarf. Each completed probe image is matched against

those in the gallery, and top ranked matches can be analyzed to measure recognition per-

formance. We use the OpenFace [2] toolbox to find top K nearest matches based on the

identity distance and report the average top K recognition accuracy over all probe images

in Figure 5.8.

We carry out experiments with four variations of the probe image: the original one, the

completed one by simply filling random noise, by our reconstruction based model M1 and

by our final model M5. The recognition performance using original probe faces is regarded

as the upper bound. Figure 5.8 shows that using the completed probe by our model M5

(green) achieves the closest performance to the upper bound (blue). Although there is

still a large gap between the performance of our M5 based recognition and the upper
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(a) Top1 (b) Top3 (c) Top5

Figure 5.8: Recognition accuracy comparisons on masked (or occluded) faces. Given a

masked probe face, we first complete it and then use it to search examples of the same

identity in the gallery. We report the Top1, Top3, and Top5 recognition accuracy of three

different completion methods. The accuracy by using the original unmasked probe face

(blue) is treated as the standard to compare.

bound, especially when the mask is large (e.g., O1, O2), the proposed algorithm makes

significant improvement with the completion results compared with that by either noise

filling or the reconstruction loss (Lr). We consider the identity-preserving completion to

be an interesting direction to pursue.

5.3.5 Limitation

Although our model is able to generate semantically plausible and visually pleasing

contents, it has some limitations. The faces in the CelebA dataset are roughly cropped

and aligned [76]. We implement various data augmentation to improve the robustness of

learning, but find our model still cannot handle some unaligned faces well. We show one

failure case in the first row of Figure 5.9. The unpleasant synthesized contents indicate that

the network does not recognize the position/orientation of the face and its corresponding

components. This issue can be alleviated with 3D data augmentation.

In addition, our model does not fully exploit the spatial correlations between adjacent

pixels as shown in the second row of Figure 5.9. The proposed model fails to recover the
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Figure 5.9: Model limitations. Left: our model fails to generate the eye for an unaligned

face. Right: it is still hard to generate the semantic part with right attributes (e.g., red

lipsticks).

correct color of the lip, which is originally painted with red lipsticks. In our future work,

we plan to investigate the usage of pixel-level recurrent neural network (PixelRNN [117])

to address this issue.

5.4 Conclusion

We propose a deep generative network for face completion. The network is based on

a GAN, with an autoencoder as the generator, two adversarial loss functions (local and

global) and a semantic regularization as the discriminators. The proposed model can suc-

cessfully synthesize semantically valid and visually plausible contents for the missing fa-

cial key parts from random noise. Both qualitative and quantitative experiments show that

our model generates the completion results of high perceptual quality and is quite flexible

to handle a variety of maskings or occlusions (e.g., different positions, sizes, shapes).



Chapter 6

Flow-Grounded Video Prediction from

Still Images

Existing video prediction methods mainly rely on observing multiple historical frames

or focus on predicting the next one-frame. In this work, we study the problem of generating

consecutive multiple future frames by observing one single still image only. We formulate

the multi-frame prediction task as a multiple time step flow (multi-flow) prediction phase

followed by a flow-to-frame synthesis phase. The multi-flow prediction is modeled in a

variational probabilistic manner with spatial-temporal relationships learned through 3D

convolutions. The flow-to-frame synthesis is modeled as a generative process in order

to keep the predicted results lying closer to the manifold shape of real video sequence.

Such a two-phase design prevents the model from directly looking at the high-dimensional

pixel space of the frame sequence and is demonstrated to be more effective in predicting

better and diverse results. Extensive experimental results on videos with different types of

motion show that the proposed algorithm performs favorably against existing methods in

terms of quality, diversity and human perceptual evaluation.

92
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6.1 Introduction

Part of our visual world constantly experiences situations that require us to forecast

what will happen over time by observing one still image from a single moment. Studies

in neuroscience show that this preplay activity might constitute an automatic prediction

mechanism in human visual cortex [30]. Given the great progress in artificial intelligence,

researchers also begin to let machines learn to perform such a predictive activity for various

applications. For example in Figure 6.1(top), from a snapshot by the surveillance camera,

the system is expected to predict the man’s next action which could be used for safety

precautions. Another application in computational photography is turning still images

into vivid cinemagraphs for aesthetic effects, as shown in Figure 6.1(bottom).

In this work, we mainly study how to generate pixel-level future frames in multiple

time steps given one still image. A number of existing prediction models [83, 102, 118, 19]

are under the assumption of observing a short video sequence (>1 frame). Since multiple

historical frames explicitly exhibit obvious motion cues, most of them use deterministic

models to render a fixed future sequence. In contrast, our single-image based prediction

task, without any motion information provided, implies that there are obvious uncertain-

ties existed in both spatial and temporal domains. Therefore we propose a probabilistic

model based on a conditional variational autoencoder (cVAE) to model the uncertainty.

Our probabilistic model has two unique features. First, it is a 3D-cVAE model, i.e., the

autoencoder is designed in a spatial-temporal architecture with 3D convolution layers. The

3D convolutional layer [111], which takes a volume as input, is able to capture correla-

tions between the spatial and temporal dimension of signals, thereby rendering distinctive

spatial-temporal features for better predictions. Second, the output of our model is opti-

cal flows which characterize the spatial layout of how pixels are going to move step by

step. Different from other methods that predict trajectories [125], frame differences [136]

or frame pixels [19], the flow is a more natural and general representation of motions. It

serves as a relatively low-dimensional reflection of high-level structures and can be ob-
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Figure 6.1: Multi-step future sequences generated by our algorithm (t=1∼8) conditioned

on one single still image (t=0). Images are of size 128×128. For better view, each se-

quence shown in the work is animated as a video in the supplementary material.
tained in an unsupervised manner.

With the predicted flows, we next formulate the full frame synthesis as a generation

problem. Due to the existence of occlusions, flow-based pixel-copying operations (e.g.,

warping) are obviously ineffective here. The model should be capable of “imagining” the

appearance of future frames and removing the unnecessary parts in the previous frame at

the same time. Therefore we propose a generative model Flow2rgb to generate pixel-level

future frames. Such a model is non-trivial and is demonstrated to be effective in keep-

ing the generated sequence staying close to the manifold of real sequences (Figure 6.5).

Overall, we formulate the multi-frame prediction task as a multiple time step flow pre-

diction phase followed by a flow-to-frame generation phase. Such a two-phase design

prevents the model from directly looking at the high-dimensional pixel space of the frame

sequence and is demonstrated to be more effective in predicting better results. During the

testing, by drawing different samples from the learned latent distribution, our approach

can also predict diverse future sequences.

The main contributions of this work are summarized as follows:

• We propose a spatial-temporal conditional VAE model (3D-cVAE) to predict future

flows in multiple time steps. The diversity in predictions is realized by drawing

different samples from the learned distribution.
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Figure 6.2: Architecture of the proposed multi-step prediction network. It consists of a

3D-cVAE (left) for predicting consecutive flows and a Flow2rgb model to generate future

frame pixels (right). During the testing, the encoder (blue rectangle) of 3D-cVAE is no

longer used and we directly sample points from the distribution for predictions.

• We present a generative model that learns to generate the pixel-level appearance of

future frames based on predicted flows.

• We demonstrate the effectiveness of our method for predicting sequences that con-

tain both articulated (e.g., humans) objects and dynamic textures (e.g., clouds).

6.2 Proposed Algorithm

We formulate the video prediction as two phases: flow prediction and flow-to-frame

generation. The flow prediction phase, triggered by a noise, directly predicts a set of

consecutive flow maps conditioned on the observed first frame. Then the flow-to-frame

phase iteratively synthesizes future frames with the previous frame and the corresponding

predicted flow map, starting from the first given frame and first predicted flow map.
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6.2.1 Flow prediction

Figure 6.2(left) illustrates the architecture of our proposed model for predicting con-

secutive optical flows. Formally, our model is a conditional variational autoencoder [59,

107] with a spatial-temporal convolutional architecture (3D-cVAE). Given a sequence

X = {xi}M0 with x0 as the starting frame, we denote the set of consecutive optical flows

between adjacent frames in X as F = {fi}M−10 . The network is trained to map the obser-

vation F (conditioned on x0) to the latent variable z which are likely to reproduce the F .

In order to avoid training a deterministic model, we produces a distribution over z values,

which we sample from before the decoding. Such a variational distribution qφ(z|x0, F ),

known as the recognition model in [107], is assumed to be trained to follow a Gaussian

distribution pz(z). Given a sampled z, the decoder decodes the flow F from the conditional

distribution pθ(F |x0, z). Therefore the whole objective of network training is to maximize

the variational lower-bound [59] of the following negative log-likelihood function:

L(x0, F ; θ, φ) ≈ −DKL(qφ(z|x0, F )||pz(z)) +
1

L

L∑
1

log pθ(F |x0, z), (6.1)

where DKL is the Kullback-Leibler (K-L) divergence and L is the number of samples.

Maximizing the term at rightmost in (6.1) is equivalent to minimizing the L1 distance

between the predicted flow and the observed flow. Hence the loss L consists of a flow

reconstruction loss and a K-L divergence loss.

Different from traditional cVAE models [107, 136, 125], our 3D-cVAE model employs

the 3D convolution (purple blocks in Figure 6.2) which is demonstrated to be well-suited

for spatial-temporal feature learning [111, 123]. In terms of network architecture, the 3D

convolutional network outputs multiple (a volume of) flow maps instead of one, which

can be used to predict multiple future frames. More importantly, the spatial-temporal re-

lationship between adjacent flows are implicitly modeled during the training due to the

3D convolution operations, ensuring that the predicted motions are continuous and rea-

sonable over time. In order to let the variational distribution qφ(z|x0, F ) conditioned on
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Figure 6.3: Examples of our multi-step flow prediction. During the testing, by simply

sampling a noise from N ∼ (0, 1), we obtain a set of consecutive flows that describe the

future motion field in multiple time steps. Note that since we have a warp operation in

the later flow-to-frame step (Section 6.2.2) and the backward warping will not result in

holes in results, we predict the backward flow in this step, i.e., the motion from xt+1 to

xt. This is just for convenience and we empirically do not find obvious difference between

predicting forward and backward flows.

the starting frame, we stack x0 with each flow map fi in F as the encoder input. Mean-

while, learning the conditional distribution pθ(F |x0, z) for flow reconstruction also needs

to be conditioned on x0 in the latent space. Therefore, we propose an image encoder (pink

blocks in Figure 6.2) to first map x0 to a latent vector that has the same dimension as z.

Inspired by the image analogy work [95], we use a conditioning strategy of combining the

multiplication and addition operation, as shown in Figure 6.2(left). After we obtain the

flow sequence for the future, we proceed to generate the pixel-level full frames.

6.2.2 Frame generation

Given the flow information, a common way to obtain the next frame is warping or pixel

copying [152]. However, due to the existence of occlusions, the result is often left with

unnecessary pixels inherited from the previous frame. The frame interpolation work [77]

predicts a mask indicating where to copy pixels from previous and next frame. But they
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Figure 6.4: Comparisons between our Flow2rgb model and warping operation, given the

first frame and all precomputed flows (between adjacent ground truth frames). Starting

from the first frame and first flow, we iteratively run warping or the proposed Flow2rgb

model based on the previous result and next flow to obtain the sequence. Top: ground

truth, Middle: warping results, Bottom: our results.

require at least two frames to infer the occluded parts. Since we only observe one image,

it is straightforward to formulate this step as a generation process, meaning that this model

can “imagine” the appearance of next frame according to the flow and starting frame.

The architecture of the proposed frame generation model Flow2rgb is shown in Fig-

ure 6.2(right). Given the input xt and its optical flow ft that represents the motion of next

time step, the network is trained to generate the next frame xt+1. Since two adjacent frames

often share similar information (especially in the static background regions), in order to let

the network focus on learning the difference of two frames, we first warp the xt based on

the flow to get a coarse estimation x̃t+1. Then we design a Siamese-like [15] network with

the warped frame and the flow as two streams of input. The frame and flow encoders (blue

and green blocks) borrow the same architecture of the VGG-19 up to the Relu 4 1 layer,

and the decoder (yellow blocks) is designed as being symmetrical to the encoder with the

nearest neighbor upsampling layer used for enlarging feature maps. We train the model
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Table 1

X1 Y1 xue_x xue_y our_x our_y

54.4649952592179 21.1414268267712 54.4636043650236 21.1412396610459 54.4634622303278 21.1412161575902

54.3101264992865 20.4160742697703 54.9195803570394 20.2013873017974 54.1987493086496 20.1515786137480

53.5074448770407 19.7469704357537 55.3320183192422 19.1393443450701 53.3093435914578 19.3236067796240

51.4662167330743 17.9114619259911 20.3912435198290 -27.1690754062714 50.9962244934632 17.2713635854036

50.0716328618036 16.9616808825137 19.5942840420808 -26.7641667007551 50.2704992068020 16.2917603698675

49.0861683800854 16.8916160967479 18.9247475853370 -26.2136905739414 50.0882395623476 16.3170926797926

48.0416145471949 16.5744638737415 18.4604507959712 -26.0327590203906 47.8048452977169 16.1741646518062

46.4527076074834 16.1091587770226 17.9124437487217 -25.5361317481273 46.1450418822380 15.8749297996338

45.4892263160239 15.8314593342077 17.7176381020926 -25.2337216960983 45.3269022017091 15.6505991728770

45.0938662265933 15.2475807670204 17.6131277110304 -24.8578252727302 44.9296199117638 15.3993142209651

46.0659256782546 14.6673506792333 17.2964286786577 -25.0776229403856 45.9359133970830 14.6571768253409

47.3670807581935 14.1857808856041 16.8603298109825 -25.6204508225690 46.7786792518279 14.4608866604371

48.2710290717222 14.1593169238863 16.6512453785457 -25.7170199358940 48.6397378635039 14.4515938431088

48.9609271444167 14.1793214154914 16.5954729400559 -25.4626169643814 49.1416247086902 14.6766450886784

50.0031093647367 14.4285946158281 16.4894999301862 -24.8032840790172 49.7694802065111 14.8673375032182

50.6327608995194 14.4287585954208 16.4867049848897 -24.3751018677550 50.2866267296719 14.6902522056942

51.5496942533800 14.3661873922628 16.1244171303353 -24.0846842044833 50.9333365128268 14.5840030364409

52.9271564582596 14.0231575961818 15.5798618254860 -23.8631505651765 52.3744358191732 14.1520350580516

53.4846073117535 13.7317141119007 15.3289072040605 -23.7922288217968 53.3068167688295 13.8474421189964

53.4336605116720 14.2980912147921 14.6106992831209 -23.5656478471849 53.3378252983592 14.2437777474666

48.7284484842496 22.1714073401117 14.4627401992316 -23.4852592011344 48.8745041278057 22.1554525735630

48.5490951622099 22.7063734516092 14.0536877539194 -23.3945206943298 48.8574206681972 22.7746135783479

48.3649904673510 23.4677408681972 13.1947464275547 -23.3480770503953 48.8578616091817 23.5157399292243

48.0138833201599 24.2243184962174 12.5564689868296 -23.3009566772851 48.6000811045549 24.4893189799673

47.6711128887021 24.6928570119826 12.1391736229880 -23.1387576759037 48.2989751031838 25.0578417671459

47.3762124634871 25.3416828482674 12.4986262050173 -22.6169978688364 47.8078794716424 25.9852475288183

47.2155002188454 26.2860006708473 12.9017501123014 -22.3954996002533 47.2181540574693 27.1353237296778

46.9828653518356 27.8465412814504 12.8940908463369 -22.4756000323598 47.0369731623509 27.8313453227499

47.4455584539793 27.8918221302475 12.6565599921533 -22.1048072645826 47.2858632251703 27.8051486727170

48.3250206463253 27.2478783046567 11.8619707474809 -22.4363868770526 47.9616683453429 27.4132485146107

49.2789830255682 26.4354789461868 11.3229649690898 -22.8477401630704 48.8503851483035 26.3130571867343

50.0501479798420 25.6598432689267 10.9874574594888 -22.8551307616427 49.3770107334008 25.5614285675271

50.9150798508123 24.8825357537688 10.6035355032475 -23.2354461740241 49.9598086568765 25.0504119102636

51.8739081390534 24.3350120179788 10.7981942374889 -23.3317060129903 51.3896099037467 24.5152700318347

53.2118935486715 22.8734952316915 11.4549454959850 -23.3574984666959 53.0068871697088 23.4868634847835

53.9739996099777 21.9260098588733 11.3729015977898 -23.6043456143098 54.1271458542861 22.5300148348168
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Table 1

X1 Y1 xue_x xue_y our_x our_y

42.5653917287099 50.9135638175928 42.5653827791001 50.9138981761302 42.5653849125088 50.9139225799985

41.8071398102260 50.3584591335760 40.5303323278485 50.9355709180340 40.9270557569678 49.7198978032488

43.0003861931814 50.4782793501954 39.6912652221161 51.3800329216669 40.6524436952426 49.1977226788416

42.8139078419690 49.8402933000368 -3.07981213480900 31.6802771825549 40.4708261643763 48.5495929441449

41.6318123873213 49.0708432044711 -2.36797654895980 31.6076831073118 38.0827015299867 46.9975086122364

42.5939158382408 46.7334687990455 -1.57347179612244 31.6423331076788 38.2019551348468 47.0787960885450

43.3455267716364 44.4597166288370 -1.25906940256985 31.5620984650711 41.7017525899735 43.8076559853289

43.9268697885937 42.7734938750139 -0.51795287817835
2

31.8878736640679 42.6086443756682 42.3080162649338

45.1103036287449 41.5349402902891 -0.22347204352236
7

31.9435514111107 43.9275340220555 40.3635886489058

44.9326688025909 40.5478382343734 -0.16146453733503
2

32.3308373245430 44.1104341506406 40.1193328152824

42.5418770246677 41.0527432473457 0.27501507526140
4

31.9247306531585 42.6935485503287 41.1026307713158

40.5672177747894 41.7373562842324 0.70233513938296
0

31.3229923594383 41.8689990272741 42.1080703666304

39.8373013865615 42.2017484436506 0.95493861521325
5

30.9278136932890 39.6603950281019 43.6382874456413

39.0696661219237 42.6807288644859 1.07381406535860 30.9576238745912 39.2520768708470 44.0903184498528

37.9053616465510 43.9433038275950 1.20369541979915 31.4537509801508 38.6910307513601 44.3245533289955

37.0029707641911 44.2312200057294 1.17026545949626 32.0486677820270 38.2176333990806 44.3868252089046

35.6654297138998 44.5871690078636 1.45580187520531 32.4021877253777 37.3195297232470 44.7405538694854

34.3337414114023 44.8425334595289 2.28729156057836 32.7838969284357 35.2137076538919 44.8524808273402

33.6870381160016 44.8903171727339 2.35082664248822 32.5150757098249 34.0346102554883 44.4731065074892

34.3090499332752 44.8997005170628 2.71274930954209 32.1800454983339 34.9386520325096 44.6729624919141

36.1079656302348 44.4646272932574 2.92745958690308 32.2810078619626 36.9006864878997 44.9331079993532

36.8912062074195 43.8853957240609 3.20659362550411 32.3826721935753 37.5259095708676 45.4085046657754

37.7080999509266 43.4312867952740 3.87015057741615 32.5425176809375 38.1423348044960 45.4639301339261

38.9942907390670 42.1768672011435 4.61141849925991 32.7337056229740 40.4527896352233 43.8559565539370

39.4750469872928 41.8493834588086 4.92689891371932 32.9233030407200 40.7722222771855 43.6713291499272

40.2332743594278 41.5000621534002 4.69788111811509 33.7179416355270 41.4281658325722 43.1922326485170

41.1883657063395 41.1885919764697 4.59822749270645 34.0986988375541 43.1099044131422 41.2516737766622

44.9951812551700 40.5777328141284 4.43467605955162 33.9301815681360 44.3541754611001 40.4073359053494

45.0786383559835 41.5621491271522 4.41873519584769 33.8968656248337 44.1794643896532 41.0728072209183

44.0311013415008 42.7544741252239 5.25772803190629 33.6249430690157 43.5329887185238 41.7218627377810

43.2654550827688 44.3158695371581 5.72406208856113 33.3227174927954 41.5289102378274 43.4390404044627

42.6187278555772 46.3039751632381 6.14373208575984 33.3820020194724 41.4682723602619 44.6567994511606

42.4819818663114 48.8661521329081 6.56804936474290 33.0306922095343 41.4250940336825 45.1959099644858

42.8130257678712 49.5888600690330 6.40079162976460 33.0831444348266 41.7193295784641 48.1127124731976

43.0355257894010 50.4679155259988 6.17929897703126 32.5621248748630 41.7374720412536 48.4988662960303

42.1412241340150 50.2292814961689 6.03808191319264 32.3389914307021 41.2586595314958 49.3066248174580
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Figure 6.5: Visualization of sequence (a chair turning around) manifold in deep feature

space. Staring from the same frame, each predicted frame of three sequences is visualized

as a 2-D point by applying t-SNE [81] on its deep features. The moving average is shown

as lines to imply the shape (or trending) of the manifold. For example in (a), the GT ro-

tating chair (blue) follows a “8” like manifold in pool5 feature space, which our predicted

sequence (yellow) follows closely but the warping sequence (green) deviates much further.

using a pixel reconstruction loss and a feature loss [56, 25] as shown below:

L = ‖x̂t+1 − xt+1‖2+
5∑

K=1

λ‖ΦK(x̂t+1)− ΦK(xt+1)‖2 , (6.2)

where x̂t+1, xt+1 are the network output and ground truth (GT), and ΦK is the VGG-

19 [105] encoder that extracts the Relu K 1 features. λ is the weight to balance the two

losses. This model is learned in an unsupervised manner without human labels. Note that

this is a one-step flow-to-frame model. Since we predict multi-step flows in the flow pre-

diction stage, starting with the first given frame, we iteratively run this model to generate

the following frame based on the next flow and previous generated frame.

We show the effectiveness of our Flow2rgb model in Figure 6.4 with an example of

chair rotating sequence [132]. To verify the frame generation phase alone, we assume that

the flows are already available (computed by [94]). Then given the first frame and future
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flows, the second row of Figure 6.4 shows the iterative warping results where the chair

legs are repeatedly copied in future frames as the warping is unable to depict the right

appearance of chair in difference views. In contrast, our model iteratively generates the

occluded parts and removed unnecessary parts in the previous frame according to the flow

at each time step. As claimed in [132], the deep embeddings of objects under consecu-

tively changing views often follow certain manifold in feature space. If we interpret this

changing view as a type of rotating motion, our predicted results for different views also

needs to stay close to the manifold shape of the GT sequence. We demonstrate this by

extracting the VGG-19 [105] features of each predicted frame, mapping it to a 2-D point

through t-SNE [81], and visualizing it in Figure 6.5. It clearly shows that our predictions

(in yellow) follows closely with the manifold of the GT sequence, while the warping drives

the predictions to deviate from the GT further and further.

6.3 Experimental Results

In this section, we first discuss the experimental settings and implementation details.

We then present qualitative and quantitative comparisons between the proposed algorithm

and several competing algorithms. Finally, we analyze the diversity issue in uncertainty

modeling. The source code will be made available to the public, and more results can be

found in the supplementary material.

Datasets. We mainly evaluate our algorithm on three datasets. The first one is the KTH

dataset [99] which is a human action video dataset that consists of six types of action and

totally 600 videos. It represents the movement of articulated objects. Same as in [118, 19],

we use person 1-16 for training and 17-25 for testing. We also collect another two datasets

from online websites, i.e., the WavingFlag and FloatingCloud. These two datasets rep-

resents dynamic texture videos where motions may bring the shape changes on dynamic

patterns. The WavingFlag dataset contains 341 videos of 80K+ frames and the Floating-
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Cloud dataset has 415 videos of 150K+ frames in total. In each dataset, we randomly split

all videos into the training (4/5) and testing (1/5) set. We do not take the camera motion

into considerations and thus all videos in three datasets are stabilized.

Implementation details. Given the starting frame x0, our algorithm predicts the future

in next M = 16 time steps. Each frame is resized to 128×128 in experiments. Similar

to [126, 34], we employ an existing optical flow estimator SPyNet [94] to obtain flows

between GT frames for training the 3D-cVAE. As described in Section 6.2.1, we stack x0
with each flow map fi in F . Thus during the training, the input cube to the 3D-cVAE is

of size 16 × 5 × 128 × 128 where 5 = 2 + 3 (2-channel flow and 3-channel RGB). The

dimension of the latent variable z in the bottle neck is set as 2000. The detailed network

architecture can be found in the supplementary material. Another important factor for a

successful network training is to normalize the flow roughly to (0,1) before feeding it into

the network, ensuring pixel values of both flows and RGB frames are within the similar

range. Since the Flow2rgb model can be an independent module for motion transfer with

known flows, we train the 3D-cVAE and Flow2rgb model separately in experiments.

Evaluations. Different prediction algorithms have their unique settings and assump-

tions. For example, Mathieu et al. [83] requires four frames stacked together as the input.

Villegas et al. [118] ask for feeding the image difference (at least two frames). Their

following work [119], though based on one frame, additionally needs multiple historical

human pose maps to start the prediction. For fair comparisons, we mainly select predic-

tion methods [19, 136] that accept one single image as the only input to compare. The

work of [19] represents the typical recursive prediction pipeline, which builds upon a

fully-connected long short-term memory (FC-LSTM) layer for predictions. Their model

is originally trained and tested by observing multiple frames. Here we change their setting

to one-frame observance in order to be consistent with our setting. The work of [136]

is the typical one-step prediction method based on one given frame. To get multi-frame
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Figure 6.6: Visual comparisons of different prediction algorithms. Top left: the starting

frame. From top to bottom in example: GT, Denton et al. [19], Xue et al. [136], Ours.
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predictions, we train their model and iteratively test it to get the next prediction based on

the previous prediction.

In Figure 6.6, we provide a visual comparison between the proposed algorithm and [19,

136]. In [19], a pre-trained and disentangled pose embedding is employed to keep predict-

ing the pose of the next frame through a FC-LSTM module. For articulated objects, the

pose is often compact and in low dimensions, which is relatively easier to handle with a

single LSTM module. However, for dynamic textures (e.g., flag, cloud) where all pixels

are likely to move, the global pose becomes complex and is no longer a low-dimensional

structure representation. Therefore the capacity of recursive models is not enough to cap-

ture the spatial and temporal variation trend at the same time. The first two examples in

Figure 6.6 show that the flag and cloud in predicted frames are nearly static. Meanwhile,

the pose only describes the static structure of the object in the current frame and cannot

tell as much information as the flow about the next-step motion. In the third example of

Figure 6.6, it is obvious that the human is walking to the right. But the results of [19] show

that the human is going in a reverse direction. Moreover, since they directly predict frame

pixels and use the reconstruction loss only, their results are relatively blurry. In [136], as

they only predict the next one frame, the motion is often clear in the second frame. But af-

ter we keep predicting the following frame using the previous predicted frame, the motion

gradually disappears and the quality of results degrades fast during a few steps. Moreover,

they choose to predict the image difference which only shows global image changes but

does not capture how each pixel will move to its corresponding one in the next frame. In

contrast, our results show more continuous and reasonable motion, reflected by better gen-

erated full frames. For example, in the first flag example, the starting frame indicates that

the fold on top right will disappear and the fold at bottom left will bring bigger folds. Our

predicted sequence presents the similar dynamics as what happens in the GT sequence,

which makes it look more realistic. Please see the animated results in the supplementary

material for better view.
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Figure 6.7: Quantitative evaluations of different prediction algorithms. We start from the

per-pixel metrics (e.g., RMSE) and gradually take human perception into consideration.

Our results are demonstrated to be visually more similar to the GT sequence and achieves

the best performance under metrics (b)-(d).
We also quantitatively evaluate these prediction methods using three different metrics,

i.e., the root-mean-square error (RMSE), perceptual similarity [149], and user preference.

The RMSE is the classic per-pixel metric which measures the spatial correspondence with-

out considering any high-level semantics and is often easily favored by smooth results.

Based on this observation, the recent work of [149] proposes a perceptual similarity met-

ric by using deep network embeddings. It is demonstrated to agree with human percep-
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tions better. Lastly, we directly ask the feedback from users by conducting user studies to

understand their preference towards the predicted results by different algorithms.

We start with the traditional RMSE to compute the difference between predicted se-

quence and GT sequence frame-by-frame and show the result in Figure 6.7(a). To under-

stand how effective these prediction methods are, we design a simple baseline by copying

the given frame as multi-step predictions. However, we do not observe obvious differ-

ence among all these methods. While the prediction from one single image is originally

ambiguous, the GT sequence can be regarded as just one possibility of the future. The

trending of motion may be similar but the resulted images can be significantly different in

pixel-level. But the RMSE metric is actually very sensitive to the pixel spatial mismatch.

Similar observations are also found in [19, 149]. That is why all these methods, when

comparing with the GT sequence, shows the similar RMSE results. Therefore, instead of

measuring the RMSE on frames, we turn to measure the RMSE on optical flows because

the optical flow represents whether the motion field is predicted similarly or not. Here

we do not include the naive copying approach as there are no flows in its sequence. We

compute the flow maps between adjacent frames of the GT sequence and other predicted

sequences using the SPyNet [94] and show the RMSE results in Figure 6.7(b). Now the

difference becomes more clear and our method achieves the lowest RMSE results, mean-

ing that our prediction is the closest to the GT in terms of the predicted motions.

However, the evaluation of prediction results still need to take human perception into

consideration in order to determine whether sequences look as realistic as the GT se-

quence. Therefore we turn to the perceptual similarity metric [149]. We use the Alex-

Net [63] for feature extraction and measure the similarity between predicted sequence and

GT sequence frame-by-frame. Since this metric is obtained by computing feature dis-

tances, we denote it as perceptual dissimilarity so that small values means being more

similar. The results in Figure 6.7(c) show that the proposed method outperforms other

algorithms with an even larger margin than that in Figure 6.7(b), which means that the

predicted sequence of our method is perceptually more similar to the GT sequence.
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Figure 6.8: Given a still image, by sampling different noise in the latent space, our algo-

rithm synthesizes different future outcomes (top and bottom) to account for the intrinsic

uncertainties. In the middle row, we show the difference of two generated sequences

frame-by-frame. Note that the diversity is not reflected by pixel intensities. The difference

sequence shows that the shape of flag and cloud changes in different way. We highlight

two regions in the last column.

Finally, we conduct the user study to get the feedback from human subjects on judg-

ing different predicted results. We prepare 30 starting frames (10 from each dataset) and

generated 30 sequences (16-frame) for each method. For each subject, we randomly select

15 sets of sequences predicted by three methods. For each starting frame, the three pre-

dicted sequences are displayed side-by-side in random order. Here we do not include the
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under different noise of predictions under different noise

Figure 6.9: Comparisons between [136] and the proposed algorithm on uncertainty model-

ing given the same starting frame. By drawing different samples, the generated predictions

by our method exhibits more diversities while still being more similar (closer) to the GT

sequence. In (b), we zoom in the distribution of different predicted sequences in the middle

to show the diversity clearly.

naive copying approach as the static prediction is not assumed to be a kind of future in this

work. Each subject is asked to vote one sequence that looks most realistic for each starting

frame. We finally collect 900 votes from 60 users and report the results (in percentage)

in Figure 6.7(d). The study results clearly show that the proposed method receives the

most votes for more realistic predictions among all three categories. Both Figure 6.7(c)

and (d) indicate that the proposed method performs favorably against [19, 136] in terms of

perceptual quality.

Diversity. Both [136] and the proposed method model the uncertainty in predictions, but

are different in one-step [136] or multi-step uncertainties. By drawing different samples,

we evaluate how the quality of predictions is affected by the noise input and how diverse
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the predicted sequences are. While [136] uses a noise vector of 3200 dimensions and we

use that of 2000 dimensions, the noise inputs of two models are not exactly the same but

they are all sampled from N(0, 1). We sample 10 noise inputs for each method, while

ensuring that the two sets of noise inputs have the similar mean and standard deviation.

Then we obtain 10 sequences for each method, and compare them with the GT sequence.

Figure 6.9(a) shows the mean and standard deviation of the perceptual metric over each

method’s 10 predictions when compared with the GT frame-by-frame. Under different

noise inputs, our method keeps generating better sequences that are more similar to the GT.

Meanwhile, the results of our algorithm show larger deviation, which implies that there

are more diversities in our predictions. To further verify this, we show the embeddings of

generated sequences in Figure 6.9(b). For each sequence, we extract the VGG-19 [105]

features (e.g., fc6 layer) of each frame, stack them as one vector, and map it to a 2-D point

through t-SNE [81]. Figure 6.9(b) shows that our 10 predictions are much closer to the

GT sequence while being scattered to be different from each other. In contrast, the 10

predictions of [136] huddle together and are far from the GT. The findings in Figure 6.9(a)

and (b) consistently tell that the proposed algorithm generates more realistic and diverse

future predictions.

Bringing still images to life. Unlike previous video prediction methods [118, 119, 125]

that mainly focus on humans for action recognition, our algorithm is more general towards

bringing elements in the still image to life, i.e., turning a still image into a vivid GIF for

aesthetic effects. It can be an effective tool for video editing.

In Figure 6.10(a), we show a example of turning a photo into a vivid sequence. We

mask out the sky region, apply our model trained on the FloatingCloud dataset and gener-

ate the effect of clouds floating in the sky. This could further benefit existing sky editing

methods [112]. Moreover, if we replace our flow prediction with known flows from a

reference sequence, our flow-to-frame model Flow2rgb becomes a global motion style

transfer model. Figure 6.10(b) shows such an example of transferring the referenced mo-
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t=0 (a)

t=0 (b)

Figure 6.10: Potential application of our algorithm in video editing. (a) Motion prediction

and frame generation. (b) Motion transfer from a reference sequence.

tion (top) of a waving flag to another still flag image (bottom left). We recommend the

readers to look at these two video applications in the supplementary materials. As the

current random sampling strategy for flow predictions is uncontrollable, future work may

include introducing more interactions from users to control detailed motions.

6.4 Conclusions

In this work, we propose a video prediction algorithm that synthesizes a set of likely

future frames in multiple time steps from one single still image. Instead of directly esti-

mating the high-dimensional future frame space, we choose to decompose this task into a

flow prediction phase and a flow-grounded frame generation phase. The flow prediction

models the future uncertainty and spatial-temporal relationship in a 3D-cVAE model. The

frame generation step helps prevent the manifold shape of predicted sequences from stray-

ing off the manifold of real sequences. We demonstrate the effectiveness of the proposed

algorithm on both human action videos and dynamic texture videos.



Chapter 7

Conclusion and Future Work

7.1 Summary

Regarding this topic of visual synthesis, we have investigated four different tasks, in-

cluding structure enhancement, style transfer, content filling and motion prediction. We

have made several key contributions towards constructing effective computational models

to preserve visual realism and facilitate more stunning creations.

Chapter 3 presents a learning-based approach for joint filtering based on convolu-

tional neural networks. Instead of relying only on the guidance image, we design two

sub-networks to extract informative features from both the target and guidance images.

We show that the proposed algorithm is computationally efficient and performs favorably

against the state-of-the-art techniques on a wide variety of computer vision and compu-

tational photography applications, including cross-modal denoising, joint image upsam-

pling, and texture-structure separation.

Chapter 4 presents a universal style transfer algorithm that does not require learning

for each individual style. By unfolding the image generation process via training an auto-

encoder for image reconstruction, we integrate the whitening and coloring transforms in

the feed-forward passes to match the statistical distributions and correlations between the

110
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intermediate features of content and style. Experimental results demonstrate that the pro-

posed algorithm achieves favorable performance against the state-of-the-art methods in

generalizing to arbitrary artistic and photo styles.

In Chapter 5, we propose a deep generative network for face completion. The net-

work is based on a GAN, with an autoencoder as the generator, two adversarial loss func-

tions (local and global) and a semantic regularization as the discriminators. The proposed

model can successfully synthesize semantically valid and visually plausible contents for

the missing facial key parts from random noise. Both qualitative and quantitative experi-

ments show that our model generates the completion results of high perceptual quality and

is quite flexible to handle a variety of maskings or occlusions.

Finally in Chapter 6, we present a video prediction algorithm that synthesizes a set

of likely future frames in multiple time steps from one single still image. Instead of di-

rectly estimating the high-dimensional future frame space, we choose to decompose this

task into a flow prediction phase and a flow-grounded frame generation phase. The flow

prediction models the future uncertainty and spatial-temporal relationship in a 3D-cVAE

model. The frame generation step helps prevent the manifold shape of predicted sequences

from straying off the manifold of real sequences. We demonstrate the effectiveness of the

proposed algorithm on both human action videos and dynamic texture videos.

7.2 Future Work

The task of synthesis is far from being solved. Even for just one visual factor, it

contains different levels of manipulation. In addition, there is still a gap between the

computer-generated results and creations from artists or designers. A more general ques-

tion is that whether the computer can create art. Based on the current achievements, we

present three directions for future investigation.



112

Figure 7.1: The more challenging non-texture style to transfer.

7.2.1 Non-Texture Style Transfer

Manipulating the style is the core part of this thesis. While all proposed methods create

amazing results, they are still only about the “texture”. However, the style of an image can

be reflected in different ways. As shown in Figure 7.1(a)-(b), the style is mostly about

shape in face caricatures while in drawings the style focuses more on strokes or brushes.

The concept of style is even hard to articulate when it comes to connect with the artist

himself (Figure 7.1(c)). It is relatively unlikely to expect using just one model to learn or

transfer those challenging styles. If we carefully observe the creation process of an artist

or a painter, their drawing usually have clear steps, such as abstraction, generalization,

exaggeration, and details. A better way is to use the procedural modeling to approximate

the human behavior instead of finishing everything in one step with computers. Another

long-term goal of this direction is to provide more fine-grained control to neural-network

stylization algorithms. Existing learning-based methods do not provide much control over

style except by changing the training input. We desire to facilitate users’ creations rather

than totally separate them from being involved.
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7.2.2 Disentangling Visual Factors

Though we successfully realize to manipulate four visual factors (i.e., structure, style,

content and motion) for the synthesis, we do not truly disentangle them from the observed

data. Learning disentangled representations of those factors are important to understand

how visual data is formed and can be generated. In addition, it is also useful for cross-

domain scenarios if we could figure out the factors that are either domain-invariant or

domain-variant. What the existing synthesis techniques could contribute is that we are able

to synthesize large amounts of new data that are very likely to serve as the training data

for learning disentangled representations. For example, it is unlikely to collect thousands

of Picasso artworks but we can use the universal style transfer technique to turn any photo

into Picasso-style version. Some recent work [19] already start exploring this direction

with the adversarial learning.

7.2.3 Unsupervised Representation Learning via Visual Synthesis

In the classical supervised tasks (e.g., classification), it usually requires a large amount

of labeled data and is thus labor intensive. It is often expected to learn unsupervised

visual representations [21, 89, 121] with large amount of unlabeled data that could help

boost the supervised performance. The visual synthesis, which is usually self-supervised,

exactly provides the possibility of learning good representations by synthesizing realistic

results. Take the content filling as example. It is argued that doing well on this task

requires the model to learn powerful representations about objects and their parts, which

can be then transferred to related supervised tasks (e.g., object classification). Given a

large, unlabeled image collection, we randomly remove several regions from objects in

each image and train a CNN to fill in the missing regions. The input image itself serves

as the label to facilitate the training. Especially for completing the objects rather than

the background, this will greatly increase the difficulty of network learning but only in this

way will the network be possibly pushed to learn more effective features. While the current
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performance of unsupervised representation learning is still far behind that of supervised

learning, we have a long way to go exploring different kinds of synthesis tasks that could

contribute to the general representation learning.
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[89] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context en-
coders: Feature learning by inpainting. In CVPR, 2016.
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