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ABSTRACT	OF	THE	DISSERTATION	

	

A	Scalable	Association	Rule	Learning	Algorithm	for	Large	Datasets	with	Focus	on	
Microarray	Datasets	

by	

Haosong	Li	

Doctor	of	Philosophy	in	Computer	Engineering	

University	of	California,	Irvine,	2020	

Professor	Phillip	Sheu,	Chair	

	

	

Many	algorithms	have	solved	the	association	rule	learning	problem.	However,	most	

of	these	algorithms	suffer	from	the	problem	of	scalability	either	because	of	tremendous	

time	complexity	or	memory	usage,	especially	when	the	dataset	is	large	and	the	minimum	

support	(minsup)	is	set	to	a	lower	number.		

Among	others,	association	rule	learning	algorithms	have	been	applied	to	microarray	

datasets	to	find	association	rules	among	genes.	With	the	development	of	microarray	

technology,	larger	datasets	have	been	generated	recently	that	challenge	the	current	

association	rule	learning	algorithms.	Specifically,	the	large	number	of	items	per	transaction	

significantly	increases	the	running	time	and	memory	consumption	of	such	tasks.		

In	this	dissertation,	we	solve	the	above	problems	by	introducing	a	new	approach	

that	follows	the	divide-and-conquer	paradigm,	which	can	exponentially	reduce	both	the	

time	complexity	and	memory	usage,	even	on	a	single	machine.	It	is	shown	from	
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comparative	experiments	that	the	proposed	heuristic	approach	has	significant	speedup	

over	existing	algorithms.	The	heuristic	approach,	with	some	modification,	efficiently	learns	

gene-disease	association	rules	and	gene-gene	association	rules	from	large-scale	microarray	

datasets.	The	rules	are	ranked	based	on	their	importance.	Our	experiments	show	our	

algorithm	outperforms	the	Apriori	algorithm	on	microarray	datasets	by	one	to	three	orders	

of	magnitude.	
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Chapter	I:	INTRODUCTION	

	

	 The	association	rule	learning	problem	has	played	a	significant	role	in	data	mining	

for	the	past	few	decades.	Association	rules	are	widely	used	in	many	fields,	including	market	

basket	analysis	[27]	and	bioinformatics	[36].	However,	the	problem	has	an	NP-hard	nature,	

meaning	it	is	challenging	to	find	the	results	within	a	reasonable	period	of	time.		

The	invention	of	the	Apriori	Algorithm	[1]	made	this	problem	computationally	

feasible	for	most	computers	on	regular-sized	datasets.	Since	then,	researchers	have	

continued	to	develop	more	scalable	algorithms.	Among	others,	FP-Growth	[20]	and	Eclat	

[45]	are	two	algorithms	developed	that	improve	the	scalability	of	the	Apriori	algorithm.	

The	increasing	popularity	of	the	Internet	in	recent	decades	has	made	big	data	

available	to	many	research	institutions	and	companies.	Their	sizes	are	so	large	that	

traditional	algorithms	may	not	be	able	to	handle	them	efficiently.	We	consider	big	data	to	

be	datasets	that,	at	least,	are	too	large	to	fit	into	the	memory	and	takes	a	very	long	

time(hours	or	even	days)	for	traditional	algorithms	to	finish	computation.	The	term	big	

data	is	thus	relevant	to	the	machine.	A	dataset	considered	to	be	big	data	on	a	PC	may	be	a	

small	dataset	on	a	powerful	high-performance	computer	(or	computing	cluster).	This	

imposes	a	challenge	to	the	association	rule	learning	problem	as	well.	Most	of	the	previously	

designed	algorithms,	including	the	Apriori	algorithm,	the	FP-Growth	algorithm,	and	the	

Eclat	algorithm,	suffer	from	the	problem	of	scalability	for	big	data.	Still,	these	algorithms	

take	an	unacceptable	amount	of	time	to	terminate	(will	be	discussed	in	the	experiments	

section).	In	addition,	the	FP-Tree	of	the	FP-Growth	algorithm,	and	the	TID	list	of	the	Eclat	

algorithm	may	not	fit	in	the	memory.		
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This	research	introduces	an	approach	that	makes	it	possible	to	mine	association	

rules	and	frequent	itemsets	for	large	datasets.	The	approach,	called	the	Scalable	

Association	Rule	Learning	(SARL)	heuristic,	follows	the	divide-and-conquer	paradigm	and	

it	vertically	divides	a	dataset	into	almost	equivalent	partitions	using	a	graph	representation	

and	the	k-way	graph	partitioning	algorithm	[2].	The	total	time	complexity	of	the	SARL	

heuristic,	including	the	overhead	of	partitioning	a	dataset,	is	up	to	2d	faster	than	that	of	the	

Apriori	algorithm,	where	d	is	the	number	of	unique	items	in	the	dataset.	The	memory	usage	

is	also	lower	than	those	of	the	current	algorithms.	Because	of	the	speedup,	our	heuristic	

may	be	applied	to	real-time	data	analysis	that	can	benefit	many	scientific	[41]	and	other	

applications	[44]	[14].		

We	also	studied	how	the	SARL	heuristic	may	be	applied	to	microarray	data.	

Microarray	technology	has	been	widely	used	in	bioinformatics.	It	efficiently	measures	gene	

expression	levels	for	a	large	number	of	genes.	Therefore,	a	huge	amount	of	data	can	be	

generated	from	microarray	datasets.	Microarray	datasets,	after	converting	to	transactional	

datasets,	usually	have	a	large	number	of	columns	(genes)	and	a	small	number	of	rows	

(assays).	Since	the	time	complexity	of	any	precise	association	rule	learning	algorithm	is	

2^d,	where	d	is	the	number	of	unique	items	(genes,	in	this	case),	such	a	large	number	of	

genes	causes	a	huge	challenge	for	all	existing	association	rule	learning	algorithms.	For	a	

large	microarray	dataset,	it	is	impractical	to	apply	these	algorithms	to	find	all	association	

rules.	

Researchers	interested	in	deriving	association	rules	from	microarray	datasets	are	

most	likely	not	to	use	every	association	rule.	Furthermore,	a	large	number	of	genes	also	

results	in	an	even	higher	number	of	association	rules.	The	computer	memory,	which	is	
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limited	compared	to	the	disk	space,	can	easily	be	used	up	to	run	a	current	association	rule	

learning	algorithm.	With	these	in	mind,	we	propose	a	modified	Scalable	Association	Rule	

Learning	(SARL)	algorithm	that	focuses	on	the	learning	speed	and	the	importance	of	rules	

derived.	

As	more	microarray	datasets	are	generated	every	day,	investigators	seeking	

potential	associations	between	genes	and	between	genes	and	diseases	need	a	tool	to	find	

candidate	rules	across	multiple	datasets	quickly.	SARL	is	such	a	tool	that	provides	scalable	

association	rule	learning	and	rule	ranking.	After	having	a	general	idea	of	candidate	rules,	

investigators	may	choose	to	run	a	more	time-costly	algorithm	that	precisely	calculate	the	

rules	on	a	few	selected	datasets.	Therefore,	by	quickly	reducing	the	scope	of	datasets	and	

giving	a	general	idea	to	the	investigator,	our	algorithm	can	reduce	the	total	time	needed	to	

find	a	target	rule	and	increases	the	success	rate.	

The	rest	of	the	dissertation	is	organized	as	follows.	In	the	related	work	section,	we	

survey	existing	association	rule	learning	algorithms	and	graph	partitioning	algorithms	as	

well	as	the	application	of	association	rule	learning	algorithms	in	microarray	datasets.	In	

our	solution	section,	we	present	the	SARL	heuristic	and	algorithm	with	examples,	formal	

descriptions,	theorems,	and	proofs.	We	also	cover	the	application	of	SARL	in	microarray	

datasets	in	this	section.	In	the	next	section,	the	experiments	and	results	are	presented,	

followed	by	conclusions	and	future	work.		
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Chapter	II:	CONTRIBUTIONS	

The	contributions	of	this	dissertation	include	the	provision	of	association	graphs	

that	represent	an	efficient	estimation	of	potential	frequent	itemsets	and	the	use	of	the	

MLkP	algorithm	to	divide	the	items	into	partitions	while	minimizing	the	loss	of	

information.	In	the	context	of	microarray	dataset,	the	rule	ranking	algorithm	calculates	the	

importance	and	ranks	the	rules,	so	the	investigator	does	not	have	to	search	through	

millions	of	rules.	We	consider	gene-disease	associations.	Each	important	association	rule	

between	genes	and	disease	can	be	identified	and	highlighted	in	the	result.	 	
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Chapter	III:	RELATED	WORK	

Association	rule	learning/frequent	itemset	mining	has	been	an	active	research	area.	

Among	others,	three	approaches	are	considered	the	most	popular	and	possibly	the	most	

efficient:	the	Apriori	algorithm,	the	FP-Growth	algorithm,	and	the	Eclat	algorithm.		

1. The Apriori Algorithm 

The	Apriori	algorithm	[1],	introduced	by	Agrawal	and	Srikant,	was	the	first	efficient	

association	rule	learning	algorithm.	It	incorporates	various	techniques	to	speed	up	the	

process	as	well	as	to	reduce	the	use	of	memory.	For	example,	the	Lk-1	×	Lk-1	method	used	

in	the	candidate	generation	process	can	reduce	the	number	of	candidates	generated,	and	

the	pruning	process	can	significantly	reduce	the	number	of	possible	candidates	at	each	

level.		

One	of	the	most	important	mechanisms	in	the	Apriori	algorithm	is	the	use	of	the	

hash	tree	data	structure.	It	uses	this	data	structure	in	the	candidate	support	counting	phase	

to	reduce	the	time	complexity	from	O(kmn)	to	O(kmT+n),	where	k	is	the	average	size	of	the	

candidate	itemset,	m	represents	the	number	of	candidates,	n	represents	the	number	of	

items	in	the	whole	dataset,	and	T	is	the	number	of	transactions.		

The	major	advantage	of	the	Apriori	algorithm	comes	from	its	memory	usage	

because	only	the	k-1	frequent	itemsets,	Lk-1,	and	the	candidates	in	level	k,	Ck,	need	to	be	

stored	in	the	memory.	It	generates	the	minimum	number	of	candidates	based	on	the	L_(k-

1)×L_(k-1)	(described	in	[1])	and	the	pruning	method,	and	it	stores	them	in	the	compact	

hash	tree	structure.	In	case	the	candidates	fill	up	the	memory	from	the	dataset	and	a	low	
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minsup	setting,	the	Apriori	algorithm	does	not	generate	all	the	candidates	to	overload	the	

memory.	Instead,	it	generates	as	many	candidates	as	the	memory	can	hold.		

2. The FP-Growth Algorithm 

The	Frequent	Pattern	Growth	algorithm	was	proposed	by	Han	et	al.	in	2000	[20].	It	

uses	a	tree-like	structure	(called	Frequent	Pattern	Tree)	instead	of	the	candidate	

generation	method	used	in	the	Apriori	algorithm	to	find	the	frequent	itemsets.	The	

candidate	generation	method	finds	the	candidates	of	the	frequent	itemsets	before	reducing	

them	to	the	actual	frequent	itemsets	through	support	counting.	

The	algorithm	first	scans	a	dataset	and	finds	the	frequent	one	itemsets.	Then,	a	

frequent	pattern	tree	is	constructed	by	scanning	the	dataset	again.	The	items	are	added	to	

the	tree	in	the	order	of	their	support.	Once	the	tree	is	completed,	the	tree	is	traversed	from	

the	bottom,	and	a	conditional	FP-Tree	is	generated.	Finally,	the	algorithm	generates	the	

frequent	itemsets	from	the	conditional	FP-Tree.	

The	FP-Growth	algorithm	is	more	scalable	than	the	Apriori	algorithm	in	most	cases	

since	it	makes	fewer	passes	and	does	not	require	candidate	generation.	However,	it	suffers	

from	memory	limitations	since	the	FP-Tree	is	fairly	complex	and	may	not	fit	in	the	memory.	

Traversing	the	complexed	FP-Tree	may	also	be	time-expensive	if	the	tree	is	not	compact	

enough.	

3. The Eclat Algorithm 

Different	from	the	Apriori	algorithm	and	the	FP-Growth	algorithm	that	work	on	

horizontal	datasets	(e.g.,	T001:	{1,	3}	T002:{1,	4}),	the	Eclat	(Equivalence	Class	Clustering	

and	bottom-up	Lattice	Traversal)	algorithm	[45]	uses	a	vertical	dataset	(e.g.	Item1:	{T001,	
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T002},	Item3:	{T001},	Item4:{T002}).	The	Eclat	algorithm	only	scans	the	dataset	once.	It	

finds	the	frequent	itemsets	by	taking	the	intersections	of	the	transaction	sets.		

The	Eclat	algorithm	takes	advantage	of	scanning	the	dataset	only	once.	However,	

when	the	dataset	is	large,	and	the	minsup	is	set	to	a	low	value,	the	TID	associated	with	each	

itemset	may	become	very	long.	In	fact,	the	results	can	be	larger	than	the	original	dataset;	

therefore,	they	may	not	fit	into	the	memory.	

4. Other Association Rule Learning Algorithms 

There	are	three	categories	of	association	rule	mining/frequent	itemset	mining	

algorithms	[10]:	Apriori-based	algorithms,	tree-based	algorithms,	and	pattern	growth	

algorithms.	The	Apriori	algorithm,	the	Eclat	algorithm,	and	the	FP-Growth	algorithm	are	

the	most	popular	algorithms	for	the	three	categories,	respectively.	

In	the	Apriori-based	algorithm	category,	proposed	by	Agrawal	and	Srikant	in	[1]	the	

AprioriTID	algorithm	is	similar	to	Apriori,	except	that	it	generates	Ck-bar	and	it	mines	the	

frequent	itemsets	from	there	instead	of	the	dataset.	The	Apriori	Hybrid	algorithm	[1]	is	a	

combination	of	the	Apriori	algorithm	and	the	AprioriTID	algorithm.	The	DHP	(direct	

hashing	and	pruning)	algorithm	[37]	uses	a	hash	function	to	distribute	the	itemsets	into	

buckets.	If	a	bucket	has	the	support	lower	than	the	minsup,	then	the	bucket	is	discarded.	

The	MR-Apriori	[31]	and	HP-Apriori	[35]	algorithms	are	distributed	versions	of	the	Apriori	

algorithm.	The	MR-Apriori	uses	the	MapReduce	model	on	the	Hadoop	platform.	They	

enable	parallel	execution	of	the	Apriori	algorithm.	

The	tree-based	algorithms,	represented	by	the	Eclat	algorithm,	find	the	frequent	

itemset	by	constructing	a	lexicographic	tree.	The	AIS	algorithm	[2]	and	the	SETM	algorithm	
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[22]	are	the	two	earliest	association	rule	mining	algorithms	in	this	category.	Reference	[1]	

shows	that	the	Apriori	algorithm	beats	them	in	running	time.	The	TreeProjection	algorithm	

[3]	counts	the	supports	of	the	frequent	itemsets	and	uses	the	nodes	of	a	lexicographic	tree	

as	the	representation	of	these	support	numbers.	The	TM	algorithm	[40]	maps	the	TID	of	

each	transaction	to	transaction	intervals	before	performing	intersections	between	these	

intervals.	

Lastly,	the	algorithms	in	the	pattern	growth	category	focus	on	frequent	patterns.	

The	P-Mine	algorithm	[7]	is	a	parallel	computing	algorithm	that	utilizes	the	VLDBMine	data	

structure	to	store	the	dataset	and	speed	up	the	distribution	of	data,	while	the	LP-Growth	

algorithm	[38]	makes	use	of	an	array-based	linear	prefix	tree	to	improve	the	memory	

efficiency.	The	Can-Mining	algorithm	[21]	finds	the	frequent	itemsets	from	a	canonical-

order	tree,	which	speeds	up	the	tree	traversal	process	when	the	number	of	frequent	

itemsets	is	low.	Finally,	the	EXTRACT	algorithm	[16]	uses	the	theory	of	Galois	lattice	to	

derive	association	rules.		

The	algorithms	discussed	above,	unfortunately,	have	scalability	problems.	The	

Apriori-based	algorithms,	represented	by	the	Apriori	algorithm,	have	to	go	through	the	

expensive	candidate	generation	and	support	counting	process.	This	causes	a	disadvantage	

in	running	time.	The	tree-based	and	the	pattern-growth	type	algorithms	often	suffer	from	

excessive	usage	of	memory.	For	example,	the	FP-Growth	algorithm	could	build	a	complex	

FP-Tree	which	does	not	fit	into	the	memory.		

We	show	the	scalability	problems	of	the	Apriori	algorithm	and	the	FP-Growth	

algorithm	in	the	experiment	part	of	this	dissertation.	Both	of	the	algorithms	take	too	long	

to	finish	for	most	of	the	tested	datasets.	The	need	for	faster,	frequent	itemset	mining	is	
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urgent	due	to	the	vastly	available	data	today.	Companies	and	institutions	have	allocated	

many	resources	in	data	mining,	and	they	need	a	time-saving,	resource-saving	solution.	In	

addition,	real-time	data	analysis	plays	an	important	role	in	government	[11],	scientific	[41],	

and	other	[44]	[14]	applications.		The	experiments	part	of	this	dissertation	shows	that	the	

current	algorithms	represented	by	the	Apriori	algorithm	and	the	FP-Growth	algorithm	are	

not	fast	enough	to	complete	real-time	data	analysis.	The	scalability	problems	of	most	

existing	association	rule	mining	algorithms	have	also	been	addressed	in	[43]	that	is	focused	

on	paralleled	computing	of	association	rules	whereas	this	dissertation	presents	a	scalable	

algorithm	that	is	suitable	for	a	single	machine	also.		

5. Graph Partitioning Algorithms 

One	of	the	key	steps	in	the	SARL	heuristic	that	we	will	introduce	shortly	is	to	

partition	the	IAG		(item	association	graph,	Section	4,	part	7)	into	k	balanced	partitions.	An	

efficient	graph	partitioning	algorithm	is	crucial	since	the	balanced	graph	partitioning	

problem	is	NP-complete	[8].	We	have	implemented	three	algorithms	and	compared	them	

for	the	partitioning	costs	and	running	times.	They	are	the	recursive	version	of	the	

Kernighan-Lin	Algorithm	[28],	the	Multilevel	k-way	Partitioning	Algorithm	(MLkP)	[25],	

and	the	recursive	version	of	the	Spectral	Partitioning	Algorithm	[33].	Other	graph	

partitioning	algorithms	include	the	Tabu	search-based	MAGP	algorithm	[18].	

The	Kernighan-Lin	algorithm	swaps	the	nodes	assigned	to	both	partitions	and	finds	

the	largest	decrease	in	the	total	cut	size.	The	Multilevel	k-way	Partitioning	algorithm	

(MLkP)	uses	coarsening-partitioning-uncoarsening/refining	steps	to	shrink	a	graph	into	a	

much	smaller	graph.	After	partitioning,	the	graph	is	rebuilt	to	restore	the	original	graph.	A	
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single	global	priority	queue	is	used	for	all	types	of	moves.	The	Spectral	Partitioning	

Algorithm	finds	splitting	of	the	values	such	that	the	vertices	in	a	graph	can	be	partitioned	

with	respect	to	the	evaluation	of	the	Fiedler	vector.	

Experiments	are	conducted	by	us	to	compare	the	three	algorithms.	The	datasets	

provided	by	Christopher	Walshaw	at	the	University	of	Greenwich	[42]	are	used.	The	

datasets	are	as	large	as	possible	while	the	partitioning	algorithms	can	finish	in	a	reasonable	

time	on	the	tested	machine.	We	also	run	experiments	on	complete	graphs	with	30	and	300	

nodes.	Each	dataset	is	tested	four	rounds	with	the	number	of	partitions	(k)	being	2,	4,	8,	

and	16.	

	  
Table	1	Results	of	the	Experiment	that	Compare	MLkP,	Kernighan-Lin,	and	Spectral	

Partitioning	Algorithms	

		

	

dataset # of nodes # of edges avg degree k METIS Time Spectral Time METIS Cost Spectral Cost KL Time KL Cost
3elt.graph 4720 13722 2.90720339 2 0.1083529 54.73113894 97 94 Timeout N/A
3elt.graph 4720 13722 2.90720339 4 0.104274511 45.01839089 220 236 Timeout N/A
3elt.graph 4720 13722 2.90720339 8 0.082687616 34.23122334 392 341 Timeout N/A
3elt.graph 4720 13722 2.90720339 16 0.084682226 27.92868638 618 602 Timeout N/A
add20.graph 2395 7462 3.11565762 2 0.041537523 3.044170141 719 80 Timeout N/A
add20.graph 2395 7462 3.11565762 4 0.069754601 5.512359381 1296 350 Timeout N/A
add20.graph 2395 7462 3.11565762 8 0.048701763 12.52986908 1874 1199 Timeout N/A
add20.graph 2395 7462 3.11565762 16 0.054409027 29.25708413 2370 1647 Timeout N/A
add32.graph 4960 9462 1.90766129 2 0.06651473 63.91381288 10 8 Timeout N/A
add32.graph 4960 9462 1.90766129 4 0.064602375 54.39832783 43 33 Timeout N/A
add32.graph 4960 9462 1.90766129 8 0.068125963 45.34366322 85 89 Timeout N/A
add32.graph 4960 9462 1.90766129 16 0.069462299 87.3277657 182 136 Timeout N/A
data.graph 2851 15093 5.293931954 2 0.075086355 19.99383068 219 115 Timeout N/A
data.graph 2851 15093 5.293931954 4 0.069795132 14.5627892 495 262 Timeout N/A
data.graph 2851 15093 5.293931954 8 0.094658613 7.923767567 713 392 Timeout N/A
data.graph 2851 15093 5.293931954 16 0.089031458 6.522737265 1349 992 Timeout N/A
uk.graph 4824 6837 1.417288557 2 0.05449748 347.5232875 26 11 Timeout N/A
uk.graph 4824 6837 1.417288557 4 0.073782206 150.0673718 57 50 Timeout N/A
uk.graph 4824 6837 1.417288557 8 0.056687832 102.6085541 107 82 Timeout N/A
uk.graph 4824 6837 1.417288557 16 0.060199022 53.14980578 181 145 Timeout N/A
Complete Graph 30 870 29 2 0.0555 0.3539 225 114 0.0068 225
Complete Graph 30 870 29 4 0.003133 0.0351 337 316 0.01329 337
Complete Graph 30 870 29 8 0.00318 0.0488 393 380 0.02685 393
Complete Graph 300 8700 29 2 0.214009 0.19758 22484 8339 3.4756 22500
Complete Graph 300 8700 29 4 0.207079 0.2026431 33741 28022 4.891045 33750
Complete Graph 300 8700 29 8 0.18528 0.19459 39372 38846 4.888 39374



	

11	
	

As	shown	in	Table	1,	the	running	times	are	highlighted	in	the	red	box.	We	can	tell	from	

average	running	time(the	last	row)	that	the	MLkP	algorithm	has	the	highest	speed	in	

general.	It	is	560	times	faster	than	the	spectral	partitioning	algorithm	and	even	faster	than	

the	recursive	Kernighan-Lin	algorithm.	The	spectral	partitioning	algorithm	has,	in	general,	

the	best	partition	quality.	It	is	1.3	times	better	than	MLkP	and	much	better	than	the	

recursive	Kernighan-Lin	algorithm.	The	recursive	Kernighan-Lin	algorithm	takes	too	long	

to	complete	all	five	datasets.	It	also	shows	serious	scalability	issues	for	complete	graphs.	

Considering	the	MLkP	algorithm	has	the	best	overall	performance,	we	choose	to	use	

this	algorithm	for	graph	partitioning	in	our	algorithm.		

6. Applications Related to Association Rule Learning Algorithms on Microarray 

Data 

Both	Apriori	and	FP-Growth	algorithms	have	been	applied	to	microarray	datasets	

[17],	according	to	[17].	The	main	challenge	for	applying	an	existing	association	rule	

algorithm	to	a	microarray	dataset	is	the	large	number	of	items	per	transaction.	Almost	all	

microarray	datasets	have	significantly	more	genes	than	assays.	The	existing	approaches	

transpose	the	microarray	dataset	into	transactional	datasets.	After	transposing	the	dataset,	

we	have	significantly	more	columns	than	rows.	This	greatly	increases	the	complexity	of	the	

existing	association	rule	algorithms	because	they	are	designed	for	datasets	with	more	rows	

than	columns.		With	the	existing	algorithms,	it	can	be	shown	that	the	FP-Growth	algorithm	

performs	slightly	(around	10%)	better	than	the	Apriori	algorithm.	However,	the	author	

points	out	that	a	more	scalable	algorithm	is	needed	to	overcome	the	time	and	space	

complexities.		
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There	are	variations	of	association	rule	learning	algorithms	on	microarray	datasets.	

The	FARMER	algorithm	[12]	finds	interesting	rule	groups	instead	of	individual	rules.	The	

algorithm	is	efficient	for	finding	some	association	rules	between	genes	and	labels.		

Huang	et	al.	propose	a	ternary	discretization	approach	[23]	that	converts	each	gene	

expression	level	to	one	of	the	three	levels:	under-expressed,	normal,	and	over-expressed.	

Compared	to	traditional	binary	classification	methods,	the	ternary	discretization	approach	

captures	the	overall	gene	expression	distribution	to	prevent	serious	information	loss.		

In	summary,	the	existing	variations	of	a	traditional	approach	such	as	Apriori	or	FP-

Growth	algorithms	have	issues	related	to	scalability	or	coverage.	The	algorithms	and	

heuristics	reported	in	this	dissertation	tolerate	certain	accuracy	for	better	scalability	so	the	

investigator	may	navigate	a	dataset	iteratively	(We	call	it	"iterative	investigation"	in	this	

dissertation)	to	converge	in	the	search	process	quickly.	

	

Other Data Mining Algorithms on Microarray Data	

In	addition	to	association	rule	learning	algorithms,	other	data	mining	algorithms	

that	address	different	problems	have	also	been	applied	to	microarray	data.		

Many	researchers	have	studied	classification	problems	on	microarray	data.	The	

most	popular	application	is	classifying	diseases	based	on	gene	expression	levels	[15].	Many	

algorithms	have	been	applied	to	solve	classification	problems.	The	most	studied	algorithms	

include	the	Bayesian	network	[46],	Support	Vector	Machine	[34],	and	k-Nearest	Neighbor	

[30].		
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These	problems	usually	take	gene	expression	levels	as	the	input	(features)	and	

predict	the	disease(s)	associated	with	an	assay.	It	can	also	be	used	to	classify	tumors	based	

on	gene	expression	levels.	
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Chapter	IV:	OUR	SOLUTION	

1. Definitions 

Below	are	some	definitions	that	we	will	use	in	our	algorithm:	

K-itemset:	an	itemset	with	k	items	

Support:	the	occurrence	of	an	item	in	the	dataset	

Minsup:	the	minimum	requirement	of	support.	The	user	usually	provides	this.	Itemsets	

with	support	<	minsup	are	eliminated.	

Confidence:	the	indication	of	robustness	of	a	rule	in	terms	of	percentage.		

Confidence(XàY)	=	support(X∪Y)/support(X)			

Minconf:	the	minimum	requirement	of	confidence.	The	user	usually	provides	this.	Rules	

with	confidence	<	minconf	are	eliminated.	

Item-Association	Graph:	a	graph	structure	that	stores	the	frequent	associations	between	

pairs	of	items.	

Balanced	K-way	Graph	Partitioning	Problem:	Divide	the	nodes	of	a	graph	into	k	parts	such	

that	each	part	has	almost	the	same	number	of	nodes	while	minimizing	the	number	of	

edges/sum	of	edge	weights	cut	off.	

E_g:	Importance	of	gene	g.	

I_r:	Importance	of	rule	r.	

	

2. A Scalable Heuristic Algorithm - SARL-Heuristic 
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The	following	is	an	outline	of	our	scalable	heuristic:	

	

Step	1:	Find	frequent	one	and	two	itemsets	using	the	Apriori	algorithm	(when	minsup	is	

high)	or	the	direct	generation	method	(when	minsup	is	low).	

Step	2:	Construct	the	item	association	graph	(IAG)	from	the	result	of	step	1.	

Step	3:	Partition	the	IAG	using	the	multilevel	k-way	partitioning	algorithm	(MLkP).	

Step	4:	Partition	the	dataset	according	to	the	result	of	step	3.	

Step	5:	Call	the	modified	Apriori	algorithm	or	the	FP-Growth	algorithm	to	mine	frequent	

itemsets	on	each	transaction	partition.		

Step	6:	Find	the	union	of	the	results	found	from	each	partition.		

Step	7:	Generate	association	rules	by	running	the	Apriori-ap-genrules	on	the	frequent	

itemsets	found	from	step	6.	

2.1 An Example 

Suppose	the	dataset	shown	in	Table	2	is	given	and	minsup	is	set	to	0.1	(or	10%,	or	

7*0.1≈1	occurrence),	and	minconf	is	set	to	0.7	(or	70%):	

 

TID Items 
T000 1, 2 
T001 1, 2, 3 
T002 4, 5 
T003 1, 4, 5 
T004 2, 3 
T005 1, 2, 3 
T006 1, 4, 5 

Table	2	Example	Dataset	1	
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First,	we	use	the	Apriori	algorithm	to	find	the	frequent	two	itemsets.	As	an	

intermediate	step,	the	Apriori	algorithm	finds	the	frequent	one-itemset	first	(shown	in	

Table	3):	

	

Frequent	Itemsets	 Support	

{1}	 5	

{2}	 4	

{3}	 3	

{4}	 3	

{5}	 3	

Table	3	Frequent	one	Itemsets	

The	frequent	two-itemsets	are	found	afterward	(shown	in	Table	4):	

	

Frequent	Itemsets	 Support	

{1,	2}	 3	

{1,	3}	 2	

{1,	4}	 2	

{1,	5}	 2	

{2,	3}	 3	

{4,	5}	 2	

Table	4	Frequent	two	Itemsets	

Next,	we	transform	the	above	frequent	two-itemsets	into	an	item	association	graph	

(IAG),	shown	in	Figure	1:	
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Figure	1	An	Item	Association	Graph	

To	construct	the	graph,	we	first	take	the	itemset	{1,	2}	with	support	3.	For	this,	we	

create	node	1	and	node	2	corresponding	to	the	two	items	in	the	itemset.	The	edge	between	

node	1	and	node	2	has	weight	3,	representing	the	support	of	the	itemset.	The	process	is	

repeated	for	every	frequent	two-itemset	found	in	the	previous	step.		

Next,	we	use	the	multilevel	k-way	partitioning	algorithm	(MLkP)	to	partition	the	

IAG.	In	this	case,	the	number	of	nodes	is	small,	so	we	only	bisect	the	graph	by	setting	k	=	2.	

The	result	is	shown	in	Figures	2	and	3.	
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Figure	2	Item	Association	Graph	Partition	1	

	

Figure	3	Item	Association	Graph	Partition	2	

The	MLkP	algorithm	divides	the	IAG	into	two	equal	or	almost	equal	sets	in	linear	

time	while	the	sum	of	the	weights	of	edges	that	are	cut	off	is	the	minimum.	

Next,	we	partition	the	dataset	according	to	the	partitions	of	the	IAG,	as	shown	in	

Tables	5	and	6.	Each	transaction	partition	has	all	the	items	from	the	corresponding	IAG	
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partition.	However,	since	the	algorithm	has	already	found	all	frequent	one	and	two	

itemsets,	a	transaction	is	not	added	to	a	transaction	partition	if	the	transaction	has	less	

than	three	items.	For	example,	T000:	{1,	2}	is	not	added	to	the	transaction	partition	1,	since	

it	only	has	two	items.		Some	items	in	the	original	dataset	may	not	appear	in	any	of	the	

transaction	partitions,	because	the	infrequent	one/two-itemsets	are	dropped	in	the	IAG.	

This	simplifies	the	subsequent	computations.	In	this	example,	however,	all	the	items	are	

kept	in	the	IAG	because	the	IAG	is	a	relatively	dense	graph.	Tables	5	and	6	show	the	

transaction	partitions:	

	

TID	 Items	

T001	 1,	2,	3	

T005	 1,	2,	3	

Table	5	Transaction	Partition	1	

TID	 Items	

None	 None	

Table	6	Transaction	Partition	2	

The	next	step	is	to	pick	the	best	algorithm	and	use	it	to	find	the	frequent	k-itemsets	

with	k	>	2.	For	this	example,	we	choose	the	modified	Apriori	algorithm	because	it	is	faster	

for	mining	small	datasets	as	it	avoids	the	process	of	finding	the	one	and	two-itemsets	again.	

The	results	from	partition	1	are	shown	in	Table	7:	

Frequent	Itemsets	 Support	

{1,	2,	3}	 2	

Table	7	Frequent	Itemsets	from	Transaction	Partition	1	
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Since	 the	 modified	 Apriori	 algorithm	 starts	 with	 three-itemsets,	 there	 are	 no	

additional	 frequent	 itemsets	 in	 the	 first	 partition.	 Table	 8	 shows	 the	 results	 found	 in	

transaction	partition	2:	

Frequent	Itemsets	 Support	

None	 N/A	

Table	8	Frequent	Itemsets	from	Transaction	Partition	2	

The	final	results	(shown	in	Table	9)	of	frequent	itemsets	are	simply	the	union	of	

Tables	3,	4,	7,	and	8:		

Frequent	Itemsets	 Support	

{1}	 5	

{2}	 4	

{3}	 3	

{4}	 3	

{5}	 3	

{1,	2}	 3	

{1,	3}	 2	

{1,	4}	 2	

{1,	5}	 2	

{2,	3}	 3	

{4,	5}	 3	

{1,	2,	3}	 2	

Table	9	Frequent	Itemset	Final	Results	
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After	running	the	Apriori-ap-genrules	algorithm,	the	association	rules	can	be	found	

in	Table	10.	

Rules	 Confidence	

{2}	à	{1}	 0.75	

{3}	à	{2}	 1	

{5}	à	{1}	 1	

{2}	à	{3}	 0.75	

{5}	à	{4}	 1	

{4}	à	{5}	 1	

{1,	3}	à	{2}	 1	

Table	10	Association	Rules	Generated	

All	frequent	itemsets	generated	by	the	SARL	heuristic	are	sound,	meaning	each	

frequent	itemset	generated	indeed	is	correct,	and	the	support	number	is	accurate.	

However,	it	is	possible	that	some	frequent	itemsets	cannot	be	found	by	the	SARL	heuristic,	

as	will	be	discussed	shortly.	In	this	example,	the	SARL	heuristic	loses	one	frequent	itemset	

{1,	4,	5}	and	two	related	rules	generated	from	{1,	4,	5}.	

	

2.2 Formal Description of the SARL Heuristic 

SARL(dataset,	minsup,	minconf,	k,	threshold):	

#	if	dataset	is	smaller	than	the	threshold(explained	later),	then	use	direct_gen	algorithm	to	

get	frequent	one	and	two	itemsets	

if	size(dataset)	<=	threshold:	
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	 results,	two_itemsets	=	direct_gen(dataset)	

	

#	otherwise,	use	modified	Apriori	

else:	

results,	two_itemsets	=	mod1-Apriori(dataset)	

	

#	build	IAG	from	two	itemsets	

graph	=	build_IAG(two_itemsets)	

	

#	partition	IAG	with	METIS	that	implements	MLkP	algorithm	

partitions	=	METIS.partition(k,	graph)	

	

#	partition	dataset	into	smaller	parts	

parts	=	partition-dataset(partitions)	

	

#	repartition	if	some	partitions	cannot	fit	into	the	memory	

while	partition	size	>	memory	size:	

	 k+=1	

partitions	=	METIS.partition(k,	graph)	

	 parts	=	partition-dataset(partitions)	

	

#	compute	3+	frequent	itemsets	

for	part	in	parts:	
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#	when	part	is	small,	use	Apriori	

	 if	size(part)	<	threshold/k:	

	 	 results	+=	mod2-Apriori(part,	minsup,	two_itemsets)			

	 #	when	part	is	large,	use	FP-Growth(defined	in	[20])	

	 else:	

	 	 results	+=	FP-Growth(part,	minsup)	

	

#	generate	rules	with	Apriori-gen(defined	in	[1])	

rules	=	Apriori-gen(results,	minconf)	

	

direct_gen(dataset,	minsup):	

#	count	the	support	of	all	one	itemsets	and	store	in	C1	

C1	=	{}	

for	transaction	in	dataset:	

	 for	item	in	transaction:	

	 	 if	item	not	in	C1:	

	 	 	 add	item	to	C1		

item.counter	=	1	

	 	 else:	

	 	 	 item.counter	+=	1	

	

#	eliminate	those	itemsets	with	support	<	minsup	and	store	in	L1	

L1	=	{}	
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for	candidate	in	C1:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L1	

	

#	compute	support	of	all	two	itemsets	

C2	=	{}	

for	trans	in	dataset:	

	 #	for	each	two-item	pair	in	a	transaction	

	 for	comb	in	combinations(trans,	2):	

	 	 if	comb	not	in	C2:	

	 	 	 add	comb	to	C2		

comb.counter	=	1	

	 	 else:	

	 	 	 comb.counter	+=	1	

	

#	eliminate	those	two	itemsets	with	support	<	minsup		

L2	=	{}	

for	candidate	in	C2:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L1	

	

	

mod1-Apriori(dataset,	minsup):	
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#	count	the	support	of	all	one	itemsets	and	store	in	C1	

C1	=	{}	

for	transaction	in	dataset:	

	 for	item	in	transaction:	

	 	 if	item	not	in	C1:	

	 	 	 add	item	to	C1		

item.counter	=	1	

	 	 else:	

	 	 	 item.counter	+=	1	

#	eliminate	those	itemsets	with	support	<	minsup	and	store	in	L1	

L1	=	{}	

for	candidate	in	C1:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L1	

	

#	generate	two-itemset	candidates	from	L1	and	store	in	C2	

C2	=	{}	

for	itemset1	in	L1:	

	 for	itemset2	in	L1:	

	 	 if	itemset1	!=	itemset2:	

	 	 	 add	itemset1	U	itemset2	to	C2	

for	transaction	in	dateset:	

	 for	candidate	in	C2:	
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	 	 if	candidate.issubset(transaction):	

	 	 	 candidate.counter	+=	1	

	

#	eliminate	those	two-itemsets	with	support	<	minsup	and	store	in	L2	

L2	=	{}	

for	candidate	in	C2:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L2	

return	L1,	L2	

	

build_IAG(itemsets):	

for	itemset	in	itemsets:	

	 graph.add_node(itemset[0])	

graph.add_node(itemset[0])	

graph.add_edge(itemset[0],	itemset[1],	weight	+=	1)	

return	graph	

	

partition-dataset(partitions,	dataset):	

for	transaction	in	dataset:	

	 for	partition	in	partitions:	

	 	 intersect	=	parition	intersect	transaction	

	 	 if	len(inersect)	>	2:	

add	intersect	to	dataset_partition_i	
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return	transaction	partition	names	

	

mod2-Apriori(dataset,	minsup,	two_itemsets):	

#	generate	frequent	three-itemsets	based	on	two_itemsets	

results	=	[]	

Lk	=	{}	

Ck	=	apriori-gen(two_itemsets)	#	apriori-gen	is	defined	in	[1]	

for	transaction	in	dataset:	

	 Ct	=	subset(Ck,	t)	

	 for	c	in	Ct:	

	 	 c.count	+=	1	

for	c	in	Ck:	

	 if	c.count	>=	minsup:	

	 	 Lk.add(c)	

result.append(Lk)	

	

#	generate	frequent	3+	itemsets	

while	Lk-1	!=	{}:	

	 Lk	=	{}	

	 Ck	=	apriori-gen(two_itemsets)	

for	transaction	in	dataset:	

	 	 Ct	=	subset(Ck,	t)	

	 	 for	c	in	Ct:	
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	 	 	 c.count	+=	1	

for	c	in	Ck:	

	 	 if	c.count	>=	minsup:	

	 	 	 Lk.add(c)	

result.append(Lk)	

return	results	

	

2.2.1 Finding Frequent 2 Itemsets using the Apriori Algorithm or dirct_gen 

algorithm 

The	first	step	of	the	SARL	heuristic	is	to	find	the	frequent		2	itemsets	efficiently.	

Although	the	Apriori	algorithm	has	scalability	issues	for	very	large	datasets,	it	

provides	a	fast	and	convenient	feature	to	extract	intermediate	results	and	a	tolerable	speed	

for	the	first	two	passes.	

The	Apriori	algorithm	finds	frequent	itemset	Lk	for	each	k,	and	each	Lk	is	stored	

separately.	We	run	the	Apriori	algorithm	until	it	finds	L2,	the	frequent	two-itemset.	It	first	

tries	to	find	the	frequent	one	itemsets	by	traversing	the	dataset	and	count	the	occurrence	

of	each	unique	item.	If	the	number	of	occurrences	of	an	item	is	less	than	the	minsup	

provided	by	the	user,	that	item	is	eliminated	from	the	list	of	frequent	one-itemset.	The	

frequent	two	itemsets	are	discovered	based	on	the	frequent	one	itemsets.	The	algorithm	

generates	C2,	the	candidate	sets	for	the	frequent	two	itemsets,	using	Lk-1	×	Lk-1:	

𝑖𝑛𝑠𝑒𝑟𝑡	𝑖𝑛𝑡𝑜	𝐶! 	

𝑠𝑒𝑙𝑒𝑐𝑡	𝑝. 𝑖𝑡𝑒𝑚", 𝑝. 𝑖𝑡𝑒𝑚#, … , 𝑝. 𝑖𝑡𝑒𝑚!$", 𝑞. 𝑖𝑡𝑒𝑚!$"	
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𝑓𝑟𝑜𝑚	𝐿!$"	𝑝, 𝐿!$"	𝑞	

𝑤ℎ𝑒𝑟𝑒	𝑝. 𝑖𝑡𝑒𝑚" = 𝑞. 𝑖𝑡𝑒𝑚", … , 𝑝. 𝑖𝑡𝑒𝑚!$# = 𝑞. 𝑖𝑡𝑒𝑚!$#, 𝑝. 𝑖𝑡𝑒𝑚!$" < 𝑞. 𝑖𝑡𝑒𝑚!$";	

	

This	method	generates	a	minimum	number	of	candidates	from	the	frequent	one	

itemsets	so	that	we	can	have	fewer	candidates	to	consider	in	the	support	counting	phase.		

The	Apriori	algorithm	also	predicts	and	eliminates	some	infrequent	itemsets	before	

support	counting	by	implementing	the	Apriori	principle	in	the	pruning	step.	If	an	item	in	C2	

is	not	in	L1,	which	means	that	the	item	is	infrequent,	so	all	the	two	itemsets	that	include	

this	item	are	dropped.	We	modify	the	Apriori	algorithm,	so	it	terminates	after	L2		is	found.		

Another	method	to	find	frequent	one	and	two	itemsets	are	through	direct	counting	

and	generation.	The	algorithm	to	find	frequent	one	itemsets	is	the	same	as	the	Apriori	

algorithm.	To	find	frequent	two	itemsets,	we	can	simply	find	all	two-item	pairs	in	each	

transaction	and	count	the	occurrence	of	them.	The	advantage	of	this	algorithm	is	that	it	

does	not	require	candidate	generation	from	L1,	and	avoids	much	unnecessary	membership	

testing	during	support	counting.	However,	this	method	is	not	efficient	on	large	datasets	

since	it	does	not	use	pruning	and	saves	all	two	itemsets.	

In	the	SARL	heuristic,	we	ask	the	user	for	a	threshold	of	the	dataset	size.	If	the	

dataset	is	larger	than	the	threshold,	the	SARL	heuristic	will	use	the	modified	Apriori	

algorithm.	Otherwise,	it	will	use	the	direct_gen	algorithm	to	compute	the	frequent	one	and	

two	itemsets.	
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2.2.2 Construction of the Item Association Graph 

The	item	association	graph	G	is	constructed	based	on	the	two	itemsets	generated	by	

the	Apriori	algorithm.	G	is	an	undirected,	weighted	graph.	A	node	Vi	is	created	for	each	

unique	item	i	in	the	two	itemsets	T	with	the	maximum	item	number	being	n.	

	

	 {𝑉} = {⋃ 𝑉%&
%'( |𝑖 ∈ |𝑇|}						

	

The	edges	E	in	graph	G	are	formed	for	each	itemset	in	T:	

	

	
{𝐸} = { A 𝐸%)

&

%'(,)'(

|{𝑖, 𝑗} ∈ 𝑇}	

	

	

The	weight	of	each	edge	𝐸%) 	is	equal	to	the	support	of	itemset	{i,	j}	in	T:	

	

	 𝑊D𝐸%)E = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝑖, 𝑗})	|	{𝑖, 𝑗} ∈ 𝑇	

	

2.3 Partition the IAG using the Multilevel k-way Partitioning algorithm (MLkP) 

The	Multilevel	k-way	partitioning	(MLkP)	algorithm	[25]	is	an	efficient	graph	

partitioning	algorithm.	The	time	complexity	is	O(E),	where	E	is	the	number	of	edges	in	the	

graph,	and	the	maximum	load	imbalance	is	limited	to	3%.	
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The	general	idea	of	MLkP	is	to	shrink	(coarsen)	the	original	graph	into	a	smaller	

graph,	then	partition	the	smaller	graph	using	an	improved	version	of	the	KL/FM	algorithm.	

Lastly,	it	restores	(uncoarsen)	the	partitioned	graph	to	a	larger,	partitioned	graph.		

METIS	is	a	software	developed	by	Karypis	at	the	University	of	Minnesota	[26].	It	

includes	an	implementation	of	the	MLkP	algorithm	that	takes	a	graph	as	the	input	and	

outputs	groups	of	nodes	separated	after	the	partition.		

2.3.1 Transaction Partitioning 

Based	 on	 the	 results	 of	 the	 MLkP	 algorithm	 that	 divide	 the	 items	 into	 groups	 P1,	

P2,…,Pm,	we	 can	partition	 the	 transactions	 into	 the	 same	number	of	 groups,	where	 each	

group	D_i		contains	only	the	items	in	partition	P_i.	For	a	transaction	to	be	included	in	D_i,	it	

must	have	all	the	items	from	partition	P_i.	If	a	transaction	includes	more	items	than	the	items	

from	partition	P_i,	only	the	items	in	P_i	that	are	included	in	the	transaction	are	added	to	D_i.	

That	 is,	 only	 a	 part	 of	 the	 transaction	 is	 added	 to	 D_i.	 As	 a	 result,	 each	 transaction	 in	 a	

transaction	 partition	 must	 be	 a	 subset	 of	 the	 corresponding	 transaction	 in	 the	 original	

dataset.	 If	 a	 transaction	 has	 less	 than	 three	 items,	 the	 transaction	 is	 not	 added.	 This	 is	

because	we	have	already	mined	the	one	and	two	itemsets,	and	are	only	interested	in	itemsets	

that	 have	 3	 or	 more	 items.	 This	 optimization	 helps	 to	 reduce	 the	 size	 of	 transaction	

partitions.		

	

	
𝐷% = {A𝑇)

&

)'"

|(𝑇) → S+ 	∩ 𝑃%|𝑆) ∈ 𝐷)}	
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In	the	above,	D_i	is	transaction	partition	i,	T_j	is	the	transactions	to	be	added	to	partition	i,		

S_j	is	the	jth	transaction	in	the	original	dataset,	P_i	is	the	item	partition	i,	and	D	is	the	

original	dataset.	

Since	the	number	of	unique	items	in	each	partition	is	less	than	or	equal	to	

&,-./0	23	&24/5	%&	678
!

	rather	than	929:;	&,-./0	23	,&%<,/	%9/-5
!

,	the	size	of	each	partition	should	

be	small	compared	to	the	original	dataset.	In	rare	cases,	if	the	size	of	a	transaction	partition	

is	greater	than	the	memory	size,	the	SARL	heuristic	can	partition	the	IAG	and	the	

transactions	again	with	𝑘	incremented	by	1.	This	guarantees	that	each	partition	fits	into	the	

memory.	

2.3.2 Selecting an Algorithm on Transaction Partitions 

One	of	the	benefits	that	come	with	our	solution	is	that	the	association	rule	learning	

on	each	transaction	partition	can	be	optimized	by	using	an	algorithm	that	best	fits	the	

partition.		

During	the	association	rule	learning	on	the	partitioned	datasets,	we	have	three	

candidates	that	are	considered	efficient:	the	Apriori	algorithm,	the	FP-Growth	algorithm,	

and	the	Eclat	algorithm.		

Since	the	modified	Apriori	algorithm	has	already	computed	the	one	itemsets	and	

two	itemsets	during	the	preparation	phase,	the	candidate	generation	feature	of	the	Apriori	

algorithm	is	handy	in	this	case.	We	modify	the	Apriori	algorithm	to	skip	the	frequent	

one/two	itemsets	finding	stages	and	start	with	the	frequent	three	itemsets	from	the	

transaction	partitions.	This	modification	is	particularly	helpful	when	the	minsup	is	set	to	a	
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high	value	so	that	the	expected	number	of	itemsets	is	limited	after	the	two	itemsets	are	

found.	

We	can	estimate	the	expected	number	of	itemsets	from	the	average	transaction	

length	of	each	transaction	partition.	A	higher	average	transaction	length	indicates	a	higher	

possibility	of	the	presence	of	a	long	“tail”	in	the	result.	Results	with	long	tails	have	itemsets	

with	considerable	maximum	lengths,	while	results	with	short	tails	only	contain	itemsets	

with	small	maximum	lengths.	A	dataset	with	an	expected	long	tail	means	the	association	

rule	learning	algorithm	does	not	terminate	soon	after	the	two	itemsets	are	found.	

The	average	transaction	length	provides	a	fast	and	straightforward	reference	for	

selecting	the	best	algorithm	for	each	transaction	partition.	If	the	average	transaction	length	

is	low,	the	Apriori	algorithm	can	be	the	right	choice,	as	the	modified	Apriori	algorithm	

continues	from	the	two	itemsets	that	the	preparation	phase	has	already	calculated.	If	the	

average	transaction	length	is	high,	we	can	take	advantage	of	the	scalability	of	the	FP-

Growth	algorithm.	We	omit	the	Eclat	algorithm	because	the	FP-Growth	and	the	Eclat	

algorithms	do	not	have	the	same	advantage	provided	by	the	modified	Apriori	algorithm,	of	

which	the	algorithm	can	start	with	the	two	itemsets.	In	addition,	studies	[24]	show	that	the	

Eclat	algorithm	is	slightly	less	scalable	than	the	FP-Growth	algorithm.	

Next,	the	selected	algorithm	is	used	to	find	the	frequent	local	itemsets	from	the	

given	transaction	partition.	After	the	algorithm	terminates,	a	simple	union	is	performed	on	

the	frequent	itemsets	found	from	each	partition.	Finally,	Apriori-ap-genrule	is	used	to	

derive	the	rules	from	the	frequent	itemsets.	This	step	is	relatively	simple.	
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2.4 Time Complexity and Space Complexity 

The	theoretical	time	and	space	complexity	of	the	Apriori	algorithm	is	𝑂(24)	where	d	

is	the	number	of	unique	items	in	the	dataset.		

2.4.1 Time Complexity  

The	theoretical	time	complexity	of	the	SARL	heuristic	consists	of	the	complexity	of	

several	parts:	

2.4.2 2-itemsets generation  

Finding	frequent	2-itemsets	requires	finding	1-itemsets	first.	This	step	is	simply	

𝑂(𝑛)	as	the	algorithm	traverses	the	dataset	once.	Next,	the	candidate	generation	for	2-

itemsets	takes	𝑂(𝑑#)	where	d	is	the	number	of	unique	items	in	the	dataset.	Finally,	the	

support	checking	requires	𝑂(𝑛 + 𝑑#𝑇)	where	T	is	the	number	of	transactions	in	the	

dataset.	Therefore,	the	time	complexity	of	this	step	is	𝑂(𝑑#𝑇 + 𝑛).	

2.4.3 IAG construction 

Since	each	edge	in	the	IAG	is	a	representation	of	a	frequent	two-itemset,	and	the	

maximum	number	of	two-itemsets	is	4
!=4
#
,	the	maximum	number	of	edges	in	IAG	is	also	

4!=4
#
.	Therefore,	constructing	the	IAG	takes	𝑂(𝑑 + 4!=4

#
)	or	𝑂(𝑑#).	

2.4.4 IAG partition 

The	time	complexity	of	the	IAG	partition	process	is	equal	to	the	time	complexity	of	

the	MLkP	algorithm,	which	is	𝑂(𝐸)	or	𝑂(𝑑#).		
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2.4.5 Transaction partition 

The	dataset	is	traversed	once	to	assign	items	into	different	partitions.	Hence	the	

time	complexity	is	O(n).	

2.4.6 Running a selected algorithm 

The	algorithm	selection	requires	the	calculation	of	the	average	transaction	width	of	

each	transaction	partition.	The	time	complexity	of	this	is	𝑂(𝑘𝑛),	where	k	is	the	number	of	

partitions.	

If	the	modified	Apriori	algorithm	is	selected,	the	theoretical	time	complexity	for	

each	partition	is	𝑂(2".(?4/!)	where	the	coefficient	1.03	comes	from	the	3%	maximum	

imbalance	of	the	partitions	caused	by	the	MLkP	algorithm.	The	total	running	time	for	all	the	

partitions	is	𝑂 T𝑘 ∗ 2
".$%&
' V → 𝑂(2

".$%&
' ),	and	the	total	time	complexity	of	the	SARL	algorithm,	

when	the	modified	Apriori	algorithm	is	selected,	is	𝑂 T𝑑#𝑇 + 𝑛 + 𝑑# + 𝑑# + 𝑛 + 2
".$%&
' V →

𝑂(𝑑#𝑇 + 𝑛 + 2
".$%&
' ).	Assume	𝑛 ≫ 𝑑,	and	2

".$%&
' ≫ 𝑛,	the	time	complexity	can	be	simplified	to	

𝑂(2
".$%&
' ).	Compared	with	the	time	complexity	of	the	Apriori	algorithm,	the	SARL	is	

𝑂X #&

#
".$%&
'
Y → 𝑂(2

'(".$%
' 4)	times	faster	than	the	Apriori	algorithm.	The	exponential	speedup	

comes	from	the	smaller	number	of	unique	items	in	each	transaction	partition.	The	

algorithm	that	is	chosen	to	mine	frequent	itemsets	from	the	transaction	partitions	only	

needs	to	consider	a	portion	of	all	the	items	for	each	partition.	
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2.4.7 Space Complexity  

Like	time	complexity,	the	space	complexity	of	the	SARL	heuristic	consists	of	the	

complexity	of	several	parts:		

2.4.8 2-itemsets generation  

Finding	the	frequent	two	itemsets	requires	finding	the	one	itemsets	first.	This	step	is	

𝑂(𝑑),	where	d	is	the	number	of	unique	items	in	the	dataset,	as	we	need	to	keep	at	most	d	

items	in	the	memory.	Next,	the	candidate	generation	step	for	the	2-itemsets	takes	𝑂(𝑑#)	

space	for	at	most	4(4$")
#

	frequent	2-itemsets	as	candidates.	Finally,	the	support	checking	

requires	another	𝑂(𝑑#)	space	to	store	the	support	numbers.	Hence,	this	step	requires	

𝑂(𝑑#)	space.	

2.4.9 IAG construction 

Since	each	edge	in	the	IAG	is	a	representation	of	a	frequent	two-itemset,	and	the	

maximum	size	of	the	two-itemsets	is	4
!=4
#
,	the	maximum	number	of	edges	in	IAG	is	also	

4!=4
#
.	Therefore,	storing	the	IAG	takes	𝑂(𝑑#)	space.	This	𝑑#space	occupation	only	occurs	

when	every	unique	item	in	the	dataset	is	included	frequent	two-itemsets	with	every	other	

unique	item	in	the	dataset.	In	most	cases,	the	actual	space	required	to	store	IAG	is	smaller	

than	the	memory	size.		

In	rare	cases,	if	the	IAG	cannot	fit	into	the	memory,	then	the	Apriori	algorithm	and	

FP-Growth	algorithm	must	have	memory	issues,	too.	For	the	Apriori	algorithm,	all	frequent	

two-itemsets	must	be	stored	in	the	memory	to	generate	the	candidates	in	the	next	level,	
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and	the	size	of	frequent	two-itemsets	is	similar	to	the	IAG.	FP-Tree	must	be	stored	in	the	

memory	for	the	FP-Growth	algorithm.	The	space	complexity	of	the	FP-Tree	is	also	𝑂(𝑑#)	,	

however,	all	unique	items	need	to	be	stored	in	the	tree	while	only	the	unique	items	in	the	

frequent	two-itemsets	need	to	be	stored	in	the	IAG.	Therefore,	IAG	has	a	lower	space	

complexity	than	the	FP-Tree.		

2.4.10 IAG partition 

The	space	complexity	of	the	IAG	partition	is	equal	to	the	space	complexity	of	the	

MLkP	algorithm,	which	is	𝑂(𝐸)	or	𝑂(𝑑#).		

2.4.11 Transaction partition 

The	dataset	is	traversed	once	to	assign	items	into	different	partitions.	We	can	

assume	each	partition	can	fit	into	the	memory.	Therefore,	the	space	complexity	is	𝑂(&
!
).	

2.4.12 Selecting and running the selected algorithm 

The	algorithm	selection	requires	the	calculation	of	the	average	transaction	width	of	

each	transaction	partition.	The	space	complexity	of	this	is	O(𝑘) 	= 𝑂(1)	,	where	k	is	the	

number	of	partitions.	

If	the	modified	Apriori	algorithm	is	selected,	the	theoretical	space	complexity	for	

each	partition	is	𝑂 T2
".$%&
' V,	where	the	coefficient	1.03	comes	from	the	default	3%	maximum	

imbalance	of	partitions	caused	by	the	MLkP	algorithm.	The	total	space	complexity	for	all	

partitions	is	therefore	𝑂 T𝑘 ∗ 2
".$%&
' V → 𝑂(2

".$%&
' ),	and	the	total	space	complexity	of	the	SARL	
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heuristic,	when	the	modified	Apriori	algorithm	is	selected,	is	𝑂 T(3 − 1) ∗ 𝑑# + &
!
+

2
".$%&
' V → 𝑂(𝑑# + &

!
+ 2

".$%&
' ).	Assume	&

!
≫ 𝑑,	and	2

".$%&
' ≫ &

!
,	the	space	complexity	can	be	

simplified	to	𝑂(2
".$%&
' ).	Compared	with	the	space	complexity	of	the	Apriori	algorithm,	SARL	

uses	only	𝑂 X#
".$%&
'

#&
Y → 𝑂 T2

".$%('
' 4V → 𝑜( "

#
'(".$%

' &
)	space	comparing	to	the	Apriori	algorithm.	

The	exponential	reduction	of	space	usage	comes	from	the	smaller	number	of	unique	items	

in	each	transaction	partition.	If	the	modified	Apriori	is	chosen	to	mine	frequent	itemsets	

from	the	transaction	partitions,	it	only	generates	a	smaller	number	of	candidates	for	each	

transaction	partition,	since	it	does	not	consider	items	in	other	partitions.	

2.5 Error Bound 

The	SARL	heuristic	sacrifices	some	precision	to	obtain	the	speed	up.	However,	every	

frequent	itemset	found	by	the	algorithm	is	correct,	and	the	support	associated	with	each	

frequent	itemset	is	also	correct.	The	heuristic	may	miss	some	trivial	frequent	itemsets,	i.e.,	

the	itemsets	with	low	support.	During	the	IAG	partition	phase,	the	MLkP	algorithm	makes	

cuts	on	the	IAG	to	minimize	the	sum	of	the	weights	of	the	edges	that	are	cut	off.	This	feature	

helps	to	prevent	large	weights	from	cut	off,	while	some	trivial,	small-weight	(support)	

edges	may	be	lost.	

In	the	most	(extreme)	case,	when	every	transaction	has	all	the	items	and	minsup	is	

set	to	0,	we	can	calculate	the	error	bound.	In	this	case,	the	IAG	is	a	complete	graph,	and	the	

fraction	of	the	edges	cut	off	by	the	MLkP	algorithm	is		
&∗D&$)'E

F
= (!$")&

!(&$")
	.	When	n	is	very	

large,	the	fraction	is	approximately	!$"
!
.	In	this	case,	we	can	set	k	as	low	as	2	to	still	
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maintain	50%	coverage	for	the	frequent	three	or	more	itemsets.	The	calculation	of	frequent	

one	and	two	itemsets	is	always	accurate	because	they	are	calculated	using	the	Apriori	

algorithm	or	the	direct-generate	algorithm.	

The	error	rate	should	be	significantly	lower	in	more	practical	cases.	However,	it	is	

difficult	to	estimate	such	an	error	rate	considering	it	is	affected	by	many	factors	such	as	the	

closeness	of	groups	of	items	(i.e.,	does	an	item	appear	with	only	a	small	number	of	other	

items?),	the	choice	of	minsup,	and	the	max	length	of	the	frequent	itemsets.	We	can	make	a	

rough	estimation	by	introducing	a	parameter	𝑃2,9 ,	the	ratio	of	the	edges	cut	off	in	the	IAG.	

𝑃2,9 =
F*+,
F,-,./

.	This	parameter	is	determined	by	the	characteristics	of	a	dataset,	the	minsup	

choice,	and	the	number	of	partitions	we	choose.	𝑃2,9	is	also	a	rough	estimation	of	the	error	

rate	for	the	frequent	two	or	more	itemsets.	Assume	the	ratio	of	the	frequent	two	or	more	

itemsets	found	is	𝑃-,		

	

	 𝑃- =
#	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡	2 + 	𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠
#	𝑡𝑜𝑡𝑎𝑙	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡	𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠	

	

	

	

	

then	the	total	error	bound	can	be	computed	as		

	

	 𝐸𝑟𝑟𝑜𝑟929:; = 𝑃- ∗ 𝑃2,9	
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2.6 Initial Selection of Number of Partitions, k 

The	selection	of	k	determines	the	speed	and	accuracy	of	the	SARL	heuristic.	A	larger	

k	usually	means	faster	speed	and	lower	accuracy,	and	vice	versa.	Depending	on	the	size	of	

the	dataset	and	the	application,	k	=	2,	3,	or	4	are	some	balanced	choices.	In	rare	cases,	the	

heuristic	will	increase	the	k	value	if	any	transaction	partition	cannot	fit	into	the	memory	

based	on	the	current	setting	of	k.	

2.7 Benefits of Having Datasets Fit into the Memory 

According	to	Section	4,	Part	8,	the	transaction	partitions	are	guaranteed	to	be	small	

enough	to	fit	into	the	memory.	Therefore,	any	operations	performed	on	these	in-memory	

datasets	should	be	faster	than	before.	For	example,	the	Apriori	algorithm	makes	the	

number	of	passes	on	the	dataset	equal	to	the	maximum	length	of	frequent	itemsets.	Each	of	

these	passes	requires	reading	the	dataset	from	the	disk.	With	our	solution,	the	SARL	

heuristic	makes	at	most	two	passes	to	the	dataset.	The	first	pass	is	to	generate	the	frequent	

one	and	two	itemsets,	and	in	the	second	pass,	the	algorithm	brings	a	fraction	of	the	dataset	

into	the	memory.	All	further	passes	are	made	directly	in	the	memory,	resulting	in	speedup.		

We	do	not	analyze	the	communication	cost	between	the	main	memory	and	the	hard	

disk	quantitatively	in	this	dissertation.	Due	to	the	nature	of	our	divide-and-conquer	

approach,	we	do	not	implement	any	additional	swapping	mechanism,	so	each	partition	is	

only	brought	into	the	memory	once.	Therefore,	such	cost	should	be	no	larger	than	the	

Apriori	algorithm.	
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2.8 Theorems and Proofs 

Theorem	1:	Soundness	-	All	frequent	itemsets	and	association	rules	generated	by	the	

SARL	algorithm	are	correct.	

Proof:		

Assume	the	SARL	heuristic	generates	an	incorrect	frequent	itemset.	We	can	assume	

the	correctness	of	the	Apriori	algorithm	and	the	FP-growth	algorithm.	Therefore,	there	

must	be	an	error	in	transaction	partitioning.	There	could	be	two	possible	types	of	error	in	

transaction	partitioning:		

(Possibility	1)	The	support	of	some	itemsets	is	higher	or	lower	than	it	should	be.	

(Possibility	2)	Some	transactions	include	additional	items	or	lose	some	items.	

Assume	the	first	possibility	is	true.	We	divide	the	dataset	vertically	(item-wise)	

during	the	transaction	partitioning	phase.	Since	every	item	in	the	original	dataset	D	that	

belongs	to	𝑃% 	must	be	added	to	𝐷% ,	all	unique	items	in	a	transaction	partition	must	appear	in	

the	same	number	of	transactions	as	the	original	dataset.	Hence,	the	support	of	each	itemset	

should	be	the	same	as	the	original	dataset.	This	conflicts	with	the	first	possibility:	the	

support	of	some	itemsets	is	higher	or	lower	than	it	should	be.	

Assume	the	second	possibility	is	true.	During	the	transaction	partitioning	phase,	

each	transaction	in	the	original	dataset	may	be	assigned	to	a	transaction	partition,	or	it	may	

be	split	into	different	disjoint	parts.	Therefore,	each	transaction	in	a	transaction	partition	

must	be	a	subset	of	the	corresponding	transaction	in	the	original	dataset,	and	this	process	

cannot	add	any	new	items	into	any	transactions.	If	some	items	are	lost	during	the	

transaction	partitioning	phase,	the	results	may	have	incorrect	supports.	However,	we	know	

that	the	union	of	the	unique	items	in	each	transaction	partition	is	equal	to	the	unique	items	
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of	the	frequent	two-itemsets,	since	the	IAG	partitioning	cuts	off	some	edges	of	IAG	but	not	

the	nodes.	According	to	the	Apriori	principle,	a	three-itemset	can	be	frequent	if	and	only	if	

all	its	two-item	subsets	are	frequent.	This	means	that	the	unique	items	of	three	or	more	

frequent	itemsets	must	be	a	subset	of	the	unique	items	of	frequent	two-itemsets.	Hence,	we	

have	

	

	
∀𝑛 ≥ 3, 𝐼! ⊆	 𝐼" =	*𝑃#

$

#%&

	

	

where	𝐼&	is	the	unique	items	of	frequent	n-itemsets,	𝑃) 	is	the	unique	items	of	transaction	

partition	j,	and	m	is	the	number	of	transaction	partitions.	Therefore,	all	items	needed	by	the	

frequent	three	(or	higher)	itemsets	are	present	in	the	transaction	partitions.	Hence,	we	find	

a	contradiction	between	our	algorithm	and	the	second	possibility.	

In	summary,	since	both	possibilities	are	proved	to	be	false,	the	SARL	heuristic	is	

sound.	▄	

Theorem	2:	Computing	the	frequent	two	itemsets	is	considered	relatively	trivial	

compared	to	computing	the	frequent	three	or	more	itemsets.	

Proof:	

If	the	computation	of	the	frequent	two	itemsets	takes	more	than	half	of	the	total	

computation	time,	we	may	say	computing	frequent	two	itemsets	is	not	trivial.		

To	characterize	the	distribution	of	frequent	itemsets	is	relatively	difficult	due	to	the	

challenges	in	modeling	the	data.	We	develop	a	mathematical	model	to	simulate	the	
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characteristics	of	any	dataset.	The	relationships	of	all	the	frequent	itemsets	can	be	depicted	

using	an	itemset	lattice	diagram	shown	below:	

	

Figure	4	An	Itemset	Lattice	

Figure	4	shows	the	case	when	every	itemset	has	a	support	greater	than	minsup.	

However,	in	most	cases,	each	layer	will	have	some	itemsets	being	removed	due	to	either	

one	of	the	two	reasons:	the	anti-monotone	property	of	the	Apriori	principle	or	the	lack	of	

support	(i.e.,	support	<	minsup).	To	model	the	former,	we	apply	the	anti-monotone	

property	to	the	itemset	lattice.	The	anti-monotone	property	is	as	follows:	

	

	 ∀𝑋, 𝑌 ∈ 𝐽: (𝑋 ⊂ 𝑌) → 𝑓(𝑌) ≤ 𝑓(𝑋)	
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where	if	𝐽 = 26 ,	I	being	a	set	of	items,	X	is	a	subset	of	Y,	then	the	measure	f	must	be	anti-

monotone.	Applying	this	property	to	the	lattice,	we	can	have	the	following	explanation:	if	

an	itemset	is	infrequent,	then	all	of	its	supersets	must	also	be	infrequent.		

	

Figure	5	An	Example	of	Pruning	

For	example,	in	Figure	5,	if	{1,	3}	is	infrequent,	then	{1,	2,	3},	{1,	3,	4},	and	{1,	2,	3,	4}	

are	all	infrequent.	To	model	this	property,	we	can	imagine	that	each	infrequent	itemset	in	

the	same	layer	causes	some	supersets	in	the	next	layer	to	be	infrequent.	The	first	

infrequent	itemset	results	in	n-k+1	infrequent	itemsets	in	the	next	layer,	where	n	is	the	
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number	of	unique	items	in	the	dataset,	and	k	is	the	current	layer	number	or	the	number	of	

items	in	each	itemset	of	the	current	layer.	We	know	that	each	layer	has	𝐶!&	itemsets	if	none	

of	them	is	infrequent.	Then	the	next	layer	will	have	𝐶!="& total	itemsets.	Since	n-k+1	is	the	

number	of	current	infrequent	itemsets	in	the	next	layer,		&$!="
G'0"
) 	is	the	current	fraction	of	

frequent	itemsets	over	all	the	itemsets	in	the	next	layer.	Therefore,	1 − (&$!=")
G'0"
) 	is	the	

probability	of	having	a	frequent	itemset	in	the	next	layer	if	we	randomly	choose	an	itemset,	

and	the	second	infrequent	itemset	should	cause	T1 − (&$!=")
G'0"
) V ∗ (𝑛 − 𝑘 + 1)	infrequent	

itemsets	in	the	next	layer.	For	the	same	reason,	the	third	infrequent	itemset	in	the	current	

layer	should	cause	

	h1 −
(&$!=")=H"$()('0")

3'
) I∗(&$!=")

G'0"
) i ∗ (𝑛 − 𝑘 + 1)	infrequent	itemsets	in	the	next	layer.	We	

can	now	estimate	the	number	of	infrequent	itemsets	I	in	the	next	layer	using	the	number	of	

infrequent	itemsets	in	the	current	layer:	

𝐼! =	 (𝑛 − 𝑘 + 1) + T1 −
(&$!=")
G'0"
) V ∗ (𝑛 − 𝑘 + 1) + h1 −

(&$!=")=H"$()('0")
3'
) I∗(&$!=")

G'0"
) i ∗

(𝑛 − 𝑘 + 1) +⋯																																

	

The	remaining	frequent	itemsets	in	layer	k,	considering	the	above	estimation	of	the	

influence	of	the	Apriori	principle,	is	𝐶!& − 𝐼!$".	Let	us	assume	the	probability	p	that	an	

itemset	to	be	frequent,	assuming	its	parent	is	frequent.	We	can	have	the	final	estimated	

number	of	frequent	itemsets	for	layer	k:	
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	 𝑓! = (𝐶!& − 𝐼!$") ∗ 𝑝! 	

	

	

For	n	=	200,	p	=	0.8,	0.6,	0.4,	0.2,	0.1,	we	can	estimate	the	number	of	two,	three,	and	

more	itemsets	as	shown	in	Table	11:	

	

Table	11	Estimation	of	the	Number	of	Itemsets	

For	n	=	2000,	p	=	0.8,	0.6,	0.4,	0.2,	0.1,	we	can	estimate	the	number	of	two,	three,	and	

more	itemsets	as	shown	in	Table	12:	

	

Table	12	Estimation	of	the	Number	of	Itemsets	for	Larger	Datasets	

The	above	model	with	examples	shows	that	the	number	of	two	itemsets	is,	on	

average,	less	than	only	10%	of	the	number	of	three	or	more	itemsets.	This	means	that	only	

less	than	10%	of	all	computation	power	is	consumed	by	the	two	itemsets.	Thus,	our	

algorithm	speeds	up	the	costly	part,	the	part	that	mines	three	or	more	itemsets.	▄	

	

p # two itemsets # three itemsets # four itemsets 2/(3+4)
0.8 12736 228346 972761 0.010603552
0.6 7164 41585 714273 0.009477971
0.4 3184 6761 30960 0.084409215
0.2 796 589 1898 0.320064335
0.1 199 67 118 1.075675676

p # two itemsets # three itemsets 2/3
0.8 1279360 231482728 0.005527
0.6 719640 42159431 0.017069
0.4 319840 6855578 0.046654
0.2 79960 597871 0.133741
0.1 19990 68301 0.292675
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Theorem	3:	Consider	a	value	of	minsup	such	that	the	fraction	of	frequent	one	itemset	

over	the	total	number	of	unique	items,	d,	denoted	by	f,	is	less	than	(1	-	the	maximum	

imbalance	rate),	where	the	maximum	imbalance	rate	is	usually	set	to	3%	based	on	

the	MLkP	algorithm.	If	the	partition	by	MLkP	is	k-way,	then	each	partition	contains	

less	than	d/k	unique	items,	where	d	is	the	total	unique	items	in	the	original	dataset.	

As	a	consequence,	the	complexity	of	each	partition	can	be	reduced.	

Proof:		

Assume	that	given	f	<	100%	-	3%	or	f	<	97%,	and	a	transaction	partition	has	𝑑% ≥

𝑑/𝑘	unique	items.	According	to	our	algorithm,	since	𝑑% ≥ 𝑑/𝑘,	a	partition	in	the	IAG	must	

have	more	than	or	equal	to	d/k	nodes.	As	we	assumed	earlier,	the	maximum	imbalance	rate	

for	the	MLkP	algorithm	is	set	to	3%,	then	the	number	of	nodes	n	in	the	IAG	can	be	

calculated	as	4
!
∗ 0.97 ∗ 𝑘 ≤ 	𝑛 ≤ 4

!
∗ 1.03 ∗ 𝑘	𝑜𝑟	0.97𝑑 ≤ 𝑛 ≤ 1.03𝑑.	Since	n	cannot	be	more	

than	the	total	number	of	unique	items,	0.97𝑑 ≤ 𝑛 ≤ 𝑑.	However,	we	know	f	<	97%	or	f	*d<	

0.97d,	and	𝑛 ≤ 𝑓 ∗ 𝑑	since	some	frequent	one	itemsets	may	not	appear	in	any	frequent	two	

itemsets,	so	𝑛 ≤ 𝑓 ∗ 𝑑 < 0.97𝑑	and	𝑛 < 0.97𝑑.	This	contradicts		0.97𝑑 ≤ 𝑛 ≤ 𝑑.	Therefore,	

the	assumption	𝑑% ≥ 𝑑/𝑘	is	false,	and	the	reverse,	𝑑% <
4
!
,	must	be	true.	▄	

3. Scalable Precise Algorithm, SARL-Precise 

3.1 An Example 

The	following	example	aims	to	show	the	motivation	for	the	development	of	the	

SARL-Precise	algorithm.		
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Suppose	the	same	dataset	discussed	earlier,	as	shown	in	Table	13,	is	given	and	

minsup	is	set	to	0.1	(or	10%,	or	7 ∗ 0.1 ≈ 	1		occurrences),	and	minconf	is	set	to	0.7	(or	

70%):	

TID Items 
T000 1, 2 
T001 1, 2, 3 
T002 4, 5 
T003 1, 4, 5 
T004 2, 3 
T005 1, 2, 3 
T006 1, 4, 5 

Table	13	Example	Dataset	

First,	we	use	the	Apriori	algorithm	to	find	frequent	two-itemsets.	As	an	intermediate	

step,	the	Apriori	algorithm	finds	frequent	one	itemset,	as	shown	in	Table	14:	

 

Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

Table	14	Frequent	One	Itemsets	

The	frequent	two-itemsets	are	found	afterward,	as	shown	in	Table	15:	

 

Frequent 
Itemsets 

Support 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
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{4, 5} 2 
Table	15	Frequent	Two	Itemsets	

Next,	we	transform	the	above	frequent	two-itemsets	into	an	item	association	graph,	

as	shown	in	Figure	6.	

 
Figure	6	Item	Association	Graph	Example	

To	construct	the	graph,	we	take	itemset	{1,	2}	with	support	3,	create	node	1	and	

node	2	that	correspond	to	the	two	items	in	the	itemset.	The	edge	between	node	1	and	node	

2	has	weight	3,	representing	the	support	of	the	itemset.	The	process	is	repeated	for	every	

frequent	two-itemset	found	in	the	previous	step.	

Next,	we	use	the	multilevel	k-way	partitioning	algorithm	(MLkP)	to	partition	the	

IAG.	In	this	case,	the	number	of	nodes	is	small,	so	we	only	bisect	the	graph	by	setting	k	=	2.		
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Figure	7	Item	Association	Graph	Partition	1	

 
Figure	8	Item	Association	Graph	Partition	2	
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The	MLkP	algorithm	divides	the	IAG	into	two	equal	or	almost	equal	sets	in	linear	

time	while	the	sum	of	the	weights	of	edges	cut	off	is	the	minimum.	The	results	are	shown	in	

Figure	7	and	Figure	8.	

Next,	we	partition	the	dataset	according	to	the	partitions	of	the	IAG,	as	shown	in	

Tables	16	and	17.	Each	transaction	partition	has	all	the	items	from	the	corresponding	IAG	

partition.	However,	since	the	algorithm	has	already	found	all	frequent	one	and	two	

itemsets,	a	transaction	will	not	be	added	to	a	transaction	partition	if	the	transaction	has	

fewer	than	three	items.	For	example,	T000:	{1,	2}	is	not	added	to	the	transaction	partition	

1,	since	it	only	has	two	items.		Some	items	in	the	original	dataset	may	not	be	included	in	

any	of	the	transaction	partitions,	because	the	infrequent	one/two-itemsets	are	dropped	in	

the	IAG.	This	simplifies	the	subsequent	computations.	In	this	example,	however,	all	the	

items	are	kept	in	the	IAG	because	the	IAG	is	a	relatively	dense	graph.	Figures	16	and	17	

show	the	transaction	partitions.	 	 	

TID Items 
T001 1, 2, 3 
T005 1, 2, 3 

Table	16	Transaction	Partition	1 

TID Items 
None None 

Table	17	Transaction	Partition	2 

Note	that	there	is	no	transaction	in	partition	2.	This	is	because	partition	2	has	only	

two	unique	items,	it	is	not	possible	to	mine	any	frequent	three	itemsets	from	this	partition.	

Therefore,	partition	2	is	discarded.	
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In	this	step,	TID	T003	and	T006	are	marked	as	divided	transactions,	because	they	

have	elements	that	are	divided	between	two	different	IAG	partitions.	The	first	partition	is	

not	enough	to	discover	the	potential	frequent	itemset	{1,	4,	5}.	

To	avoid	the	loss	of	the	divided	transactions,	in	the	scalable	precise	algorithm,	a	

bridge	transaction	partition	is	constructed	based	on	the	divided	transactions	from	the	last	

step,	as	shown	in	Table	18.		

TID Items 
T003 1, 4, 5 
T006 1, 4, 5 

Table	18	Bridge	Transaction	Partition 

According	to	the	algorithm,	the	above	bridge	transaction	partition	is	converted	into	

an	IAG	and	then	bisected	by	the	MLkP	algorithm.	The	results	are	two	partitions,	[1,	4]	and	

[5].	At	the	same	time,	similar	to	the	previous	step,	both	transactions	are	marked	as	divided	

and	will	be	added	to	the	next	bridge	partition.	The	following	(Table	19	and	20)	are	two	

small	bridge	partitions	generated	from	the	first	bridge.	They	are	both	empty	because	none	

of	them	contains	any	transactions	of	three	items	or	more.		

TID Items 
None None 

Table	19	Partition	1	of	The	Bridge	

	

TID Items 
None None 

Table	20	Partition	2	of	The	Bridge	

From	the	above	two	partitions,	a	second	bridge(shown	in	Table	21)	is	derived	using	

the	generate-bridge	function.		
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TID Items 
T003 1, 4, 5 
T006 1, 4, 5 

Table	21	The	Second	Bridge 
	

The	second	bridge	has	the	same	size	as	the	first	bridge,	so	we	can	stop	here	and	

discard	the	second	bridge.		

The	next	step	is	to	pick	the	best	algorithm	and	use	it	to	find	the	frequent	k-itemsets	

with	k	>	2.	For	this	example,	we	choose	the	modified	Apriori	algorithm	because	it	is	faster	

for	mining	small	datasets,	and	it	avoids	the	process	of	finding	the	frequent	one	and	two	

itemsets	again.	The	results	from	partition	1	are	shown	in	Table	22:	

Frequent 
Itemsets 

Support 

{1, 2, 3} 2 
Table	22	Frequent	Itemsets	from	Transaction	Partition	1 

Since	the	modified	Apriori	algorithm	starts	at	finding	three-itemsets,	there	are	no	

additional	frequent	itemsets	in	the	second	partition,	as	shown	in	Table	23.	

Frequent 
Itemsets 

Support 

None N/A 
Table	23	Frequent	Itemsets	from	Transaction	Partition	2 

Table	24	shows	the	frequent	itemset	found	in	the	bridge	transaction	partition.	

Frequent 
Itemsets 

Support 

{1, 4, 5} 2 
Table	24	Frequent	Itemsets	from	Bridge	Transaction	Partition 

We	can	compute	the	final	result	by	taking	the	union	of	the	frequent	itemsets	from	

Tables	14,	15,	22,	23,	and	24.	The	support	of	each	frequent	itemset	is	the	maximum	support	

among	the	results	of	all	partitions.	
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Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
{4, 5} 3 

{1, 2, 3} 2 
{1, 4, 5} 2 

Table	25	Frequent	Itemset	Final	Results 

After	running	the	Apriori-ap-genrules	algorithm,	the	rules	shown	in	Table	26	can	be	

discovered.	

Rules Confidence 
{2} à {1} 0.75 
{3} à {2} 1 
{5} à {1} 1 
{2} à {3}  0.75 
{5} à {4} 1 
{4} à {5} 1 

{1, 3} à {2} 1 
{1, 4} à {5} 1 
{1, 5} à {4} 1 

Table	26	Generated	Association	Rules	

Comparing	the	result	with	the	result	of	the	Apriori	algorithm,	the	algorithm	is	sound	

and	complete.	Every	frequent	itemset	and	rule	is	correct,	and	it	finds	all	frequent	itemsets	

as	well	as	all	the	rules.	
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3.2 Concise Description of the SARL-Precise Algorithm 

Step	1:	Find	itemsets	with	size	one	and	two	using	the	Apriori	algorithm	or	direct	

generation	algorithm.	

Step	2:	Construct	the	item	association	graph(IAG)	from	the	result	of	step	1.	

Step	3:	Partition	the	IAG	using	multilevel	k-way		partitioning	algorithm(MLkP)		

Step	4:	Partition	the	database	according	to	the	result	of	step	3,	mark	those	transactions	

required	to	be	assigned	to	the	bridge	partition	

Step	5:	Construct	the	bridge	partition	using	the	result	from	step	4.	Recursively	reduce	the	

bridge	partition	into	smaller	partitions.	

Step	5:	Choose	an	algorithm	to	mine	frequent	itemset	on	each	database	partition	based	on	

the	characteristic	of	different	algorithms.	

Step	6:	Summarize	the	result.	For	each	frequent	itemset	found	in	any	partition,	choose	the	

highest	support	among	all	partitions.		

3.3 Another Example 

This	example	shows	how	the	SARL	algorithm	works	on	a	slightly	more	complex	

dataset,	shown	in	Table	27,	which	requires	more	recursions	for	bridge	generation.		

	

TID Items 

T000 1, 2, 4 
T001 2, 4, 5 
T002 2, 3, 4 
T003 1 
T004 1, 2, 3 
T005 2, 3, 5 
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T006 1, 3, 4 
T007 2, 3, 5 
T008 2, 3 

Table	27	Another	Example	Dataset	

Let	us	run	the	SARL	algorithm.	Firstly,	the	modified	Apriori	algorithm	is	used	to	find	

frequent	one	and	two	itemsets.	The	results	are	shown	in	Tables	28	and	29.	

Frequent 
Itemsets 

Support 

{1} 4 
{2} 7 
{3} 6 
{4} 4 
{5} 3 

Table	28	Frequent	One	Itemsets	
	

Frequent 
Itemsets 

Support 

{1, 2} 2 
{1, 3} 2 
{1, 4} 2 
{2, 3} 5 
{2, 4} 3 
{2, 5} 3 
{3, 4} 2 
{3, 5} 2 

Table	29	Frequent	Two	Itemsets	

Similar	to	the	previous	examples,	the	IAG	is	constructed	according	to	the	frequent	

two	itemsets	found	above,	as	shown	in	Figure	9.	
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Figure	9	IAG	for	Example	2	

The	MLkP	algorithm	divides	the	IAG	into	two	partitions,	as	shown	in	Figure	10	and	

Figure	11:	
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Figure	10	IAG	Partition	1	

	

Figure	11	IAG	Partition	2	
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Next,	the	SARL algorithm	divides	the	original	dataset	into	two	transaction	partitions,	

as	shown	in	Table	30	and	Table	31,	according	to	the	two	IAG	partitions	above	with	the	

same	method discussed	in	the	previous	example: 

TID Items 
None None 

Table	30	Transaction	Partition	1	

TID Items 
T005 2, 3, 5 
T007 2, 3, 5 

Table	31	Transaction	Partition	2	

In	this	process,	we	mark	each	divided	transaction	and	put	its	TID	into	a	list	if	that	

transaction	has	three	or	more	items:	[T000,	T001,	T002,	T004,	T006]		

Next,	the	first	bridge	partition	is	constructed	with	the	transactions	in	the	list	above,	

as	shown	in	Table	32.	

TID Items 
T000 1, 2, 4 
T001 2, 4, 5 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Table	32	The	First	Bridge	Partition	

Now,	the	first	bridge	partition	is	treated	as	the	original	dataset	to	generate	an	IAG,	

partitioned	by	the	MLkP	algorithm	([1,3]	and	[2,	4,	5]),	and	generates	two	small	bridge	

partitions,	as	shown	in	Table	33	and	Table	34:	

TID Items 
None None 

Table	33	Small	Bridge	Partition	1	
	

TID Items 



	

60	
	

T001 2, 4, 5 
Table	34	Small	Bridge	Partition	2	

A	second	bridge	partition	can	be	built	during	this	process,	as	shown	in	Table	35:	

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Table	35	The	Second	Bridge	Partition	

Comparing	to	the	previous	bridge,	the	second	bridge	has	one	fewer	transaction	and	

one	fewer	unique	item.	Therefore,	we	have	a	reduced	bridge	partition.	Since	the	

decomposition	is	lossless,	the	first	bridge	can	be	safely	discarded.	

If	we	repeat	this	process	one	more	time,	the	IAG	partitions	are	[1,2]	and	[3,	4].	Then	

we	can	obtain	two	empty	bridge	partitions	and	the	bridge	partition	shown	in	Table	36.	

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Table	36	The	Third	Bridge	Partition	

This	third	bridge	partition	is	the	same	partition	as	the	second	one.	Therefore,	we	

can	discard	this	one.	In	summary,	we	have	losslessly	transformed	the	original	dataset	into	

the	partitions	shown	in	Tables	37,	38,	and	39.	

TID Items 
T005 2, 3, 5 
T007 2, 3, 5 

Table	37	The	Transaction	Partition	1	
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TID Items 
T001 2, 4, 5 

Table	38	The	Transaction	Partition	2	

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Table	39	The	Second	Bridge	Partition	

After	running	the	modified	Apriori	algorithm	on	each	of	the	partitions.	We	can	find	

the	frequent	itemset	shown	in	Table	40:	

Frequent 
Itemsets 

Support 

{2, 3, 5} 2 
Table	40	Frequent	Itemsets	Found	

The	example	shown	above	has	only	one	frequent	three	itemset.	However,	according	

to	Theorem	2,	given	a	low	minsup	and	a	large	dataset,	there	should	be	more	frequent	three	

or	more	itemsets	than	frequent	two	itemsets.	

We	can	find	the	union	of	all	frequent	itemsets	to	compute	the	final	result,	as	shown	

in	Table	41.	The	support	of	each	frequent	itemset	is	the	maximum	of	those	across	the	

results	from	all	partitions	for	the	same	itemset.	

Frequent 
Itemsets 

Support 

{1} 4 
{2} 7 
{3} 6 
{4} 4 
{5} 3 

{1, 2} 2 
{1, 3} 2 
{1, 4} 2 
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{2, 3} 5 
{2, 4} 3 
{2, 5} 3 
{3, 4} 2 
{3, 5} 2 

{2, 3, 5} 2 
Table	41	Final	Frequent	Itemsets	

By	running	the	Apriori-ap-genrules	algorithm,	the	rules	shown	in	Table	42	can	be	

found.	

Rules Confidence 
{2} à {3} 0.71 
{3} à {2} 0.83 
{5} à {2} 1 
{4} à {2} 0.75 

{3, 5} à {2} 1 
Table	42	Association	Rules	

Again,	both	frequent	itemsets	and	association	rules	found	by	the	SARL	algorithm	are	

sound	and	complete.		

3.4 Formalized Algorithm 

Following	is	the	pseudo-code	for	the	SARL-Precise	Algorithm.	

3.4.1 Pseudo Code 

SARL_Precise:	

bridges	=	[]	

results,	two_itemset	=	mod1-Apriori(dataset)	

graph	=	build_IAG(two_itemset)	

partitions	=	METIS.partition(k,	graph)	

files,	div_index	=	partition-dataset(dataset,	partitions)	
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bridges	=	generate-bridge(files,	div_index,	k,	dataset,	0,	infinity)	

files	+=	bridges	

for	file	in	files:	

	 results	+=	mod2-Apriori(file)		#when	files	are	small	

	 results	+=	FP-Growth(file)	#when	files	are	large	

rules	=	Apriori-gen(results)	

	

mod1-Apriori(dataset):	

C1	=	{}	

for	transaction	in	dataset:	

	 for	item	in	transaction:	

	 	 if	item	not	in	C1:	

	 	 	 add	item	to	C1		

item.counter	=	1	

	 	 else:	

	 	 	 item.counter	+=	1	

L1	=	{}	

for	candidate	in	C1:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L1	

C2	=	{}	

for	itemset1	in	L1:	

	 for	itemset2	in	L1:	
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	 	 if	itemset1	!=	itemset2:	

	 	 	 add	itemset1	U	itemset2	to	C2	

for	transaction	in	dateset:	

	 for	candidate	in	C2:	

	 	 if	candidate.issubset(transaction):	

	 	 	 candidate.counter	+=	1	

L2	=	{}	

for	candidate	in	C2:	

	 if	candidate.counter	>=	minsup:	

	 	 add	candidate	to	L2	

return	L1,	L2	

	

build_IAG(itemsets):	

for	itemset	in	itemsets:	

	 graph.add_node(itemset[0])	

graph.add_node(itemset[0])	

graph.add_edge(itemset[0],	itemset[1],	weight	+=	1)	

return	graph	

	

partition-dataset(dataset,	partitions):	

div_index	=	[]	

for	transaction	in	dataset:	

	 for	partition	in	partitions:	



	

65	
	

	 	 intersect	=	parition	intersect	transaction	

	 if	len(intersect)	<	len(transaction):	

	 	 				div_index.append(TID_of_transaction)		

																			elif	len(intersect)	>	2:	

add	intersect	to	dataset_partition_i	

return	dataset_partition_names,	div_index	

	

generate-bridge(div_index,	k,	dataset,	i,	last_len):	

	 count	=	0	

for	TID	in	div_index:	

	 	 bridge_i.	add	(dataset[TID])	

	 	 count+=1	

	 if	count	==	last_len:	

	 	 return	bridge_i	

	 else:	 	

	 	 dataset	=	bridge_i	

	 	 results,	two_itemsets	=	mod1-Apriori(dataset)	

	 	 graph	=	build_IAG(two_itemset)	

	 	 partitions	=	METIS.partition(k,	graph)	

	 	 temp_files,	div_index	=	partition-dataset(dataset,	partitions)	

	 	 return	generate-bridge(	div_index,	k,	dataset,	i+1,	count),	temp_files	
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3.4.2 Recursively Generating Bridge Transaction Partitions 

The	bridge	dataset	and	their	partitions	are	necessary	to	achieve	a	precise	

calculation	of	frequent	three	or	more	itemsets.	The	main	purpose	of	deriving	them	is	to	

reconsider	all	potential	errors,	so	the	SARL	algorithm	does	not	miss	any	frequent	itemsets.		

The	algorithm	is	greedy	and	defined	recursively.	In	each	recursion,	it	first	finds	all	

divided	transactions	that	were	labeled	during	the	transaction	partition	step,	and	they	are	

added	to	the	bridge	partition.	The	divided	transactions	were	labeled	so	that	there	is	no	

need	to	make	a	whole	pass	of	the	dataset	again	to	check	if	a	transaction	is	divided.	Then,	it	

calculates	the	number	of	transactions	in	the	bridge	partition	and	compares	it	to	the	

previous,	undivided	bridge	partition.	If	the	current	bridge	partition	has	the	same	number	of	

transactions	as	the	previous	one,	that	means	the	current	reduction	does	not	reduce	the	size	

of	the	bridge	partition	any	further.	The	algorithm	discards	the	current	bridge	partitions.	On	

the	other	hand,	if	the	total	number	of	transactions	in	the	new	bridge	partition	is	less	than	

that	of	the	previous	bridge	partition,	then	the	algorithm	divides	the	bridge	partition	again.	

Some	additional	transaction	partitions	are	generated	through	this	process.	

However,	calculating	frequent	itemsets	in	these	smaller	partitions	are	relatively	simple	

since	they	are	small	enough	to	fit	into	the	memory	and	contain	fewer	unique	items	than	

their	parent	bridge	partition.	Reducing	the	size	of	the	bridge	partition	could	result	in	an	

exponential	reduction	in	the	complexity	of	finding	frequent	itemsets,	as	we	analyzed	

earlier.		
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3.5 Analysis 

The	time	and	the	space	complexities	of	the	SARL-Precise	algorithm,	when	the	

modified	Apriori	algorithm	is	chosen,	are	the	same	as	those	of	the	Apriori	algorithm.	That	

is,	𝑶(𝟐𝒅)	for	both	time	and	space	complexities.	From	our	previous	analysis,	the	SARL-

Heuristic	algorithm	has	a	complexity	of	𝑶(𝟐
𝟏.𝟎𝟑𝒅
𝒌 )	for	both	time	and	space.	In	the	most	

extreme	case,	every	transaction	of	the	original	dataset	is	divided,	then	the	bridge	partition	

will	be	the	same	as	the	original	dataset,	and	the	total	time	complexity	will	be	𝑶T𝟐
𝟏.𝟎𝟑𝒅
𝒌 V +

𝑶(𝟐𝒅)	=	𝑶(𝟐𝒅).	Similarly,	the	total	space	complexity	is	also	𝑶(𝟐𝒅).	However,	the	SARL-

Precise	algorithm	runs	faster	than	the	Apriori	algorithm	in	most	cases.	This	is	because	the	

MLkP	algorithm	finds	the	sub-optimized	solution	to	cut	the	minimum	number	of	

transactions.	Thus,	the	size	of	the	bridge	is	usually	much	smaller	than	the	original	dataset.		

3.5.1 Theorems and Proofs 

Theorem	5:	Each	decomposition	of	a	bridge	partition	or	the	original	dataset	is	

lossless.	

Proof:	

After	dividing	the	original	dataset	into	two	transaction	partitions,	there	are	two	

possibilities	for	each	transaction	of	the	original	dataset.	Each	transaction	T	must	be	either	

divided	and	assigned	to	different	partitions	or	assigned	to	a	single	partition	as	a	whole.	For	

the	latter	case,	all	existing	subsets	of	T,	including	duplications	of	T,	must	also	be	assigned	

into	the	same	partition.	We	can	say	that	partition	contains	the	complete	information	for	

any	itemsets	that	are	subsets	of	T.	Therefore,	both	the	Apriori	algorithm	and	the	FP-growth	
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algorithm	will	get	the	same	support	for	frequent	itemsets	that	are	subsets	of	T.	If	a	frequent	

itemset	F	is	a	subset	of	any	transaction	T,	T	being	a	transaction	completely(i.e.	all	items	in	

the	transaction	are	assigned)	assigned	to	𝑃% 	,	this	will	be	the	latter	case.	

		 As	for	the	former	case,	the	bridge	partition	B	includes	all	divided	transactions.	If	a	

frequent	itemset	F	is	not	a	subset	of	any	transaction	T,	T	being	a	transaction	completely	

assigned	to	𝑃% 	,	then	all	transactions	K	that	are	supersets	of	F	must	be	assigned	to	B.		The	

former	case	can	be	described	as,		

𝐹 ⊂ 	 t𝑇	|	𝑇 ∈ 𝑃% 	∧
(∀𝑡 ⊂ 𝑇) ∈ 𝑃% 		

𝐾	|	𝐾 ∈ 𝐵	 ∧ (∀𝑘 ⊂ 𝐾) ∈ 𝐵 		

Therefore,	for	each	frequent	itemset	F,	all	transactions	that	contain	any	supersets	of	

F	are	assigned	to	only	one	partition.	So	all	support	numbers	are	guaranteed	to	be	the	same	

as	the	ones	before	decomposition.		

For	the	same	reasons,	all	subsequent	decompositions	are	performed	on	the	bridge	

partitions	and	are	lossless	as	well.	

4. SARL, An Application to Microarray Datasets 

4.1 Data Preprocessing 

4.1.2 Dataset Reduction 

It	may	not	be	very	useful	for	a	large	dataset	with	hundreds	of	thousands	of	genes	to	

find	rules	that	cover	all	the	genes.	Since	we	may	be	only	interested	in	over-expressed	and	

under-expressed	genes	and	all	diseases,	normally	expressed	genes	could	be	eliminated	

from	our	dataset.	We	can	also	adjust	the	threshold	of	over-expressed	and	under-expressed	

genes	to	classify	fewer	genes	as	over/under-expressed	ones.	
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A	common	approach	is	the	following	method	that	converts	the	gene	expression	

levels	into	log-scale	values	[39].		

First,	we	arbitrarily	pick	a	reference	assay	and	calculate	the	relative	expression	

levels	based	on	the	reference	assay.	Assuming	the	absolute	gene	expression	levels	of	the	

reference	assay	is	𝐸0", 𝐸0#…𝐸0&,	we	can	calculate	the	relative	gene	expression	levels	for	

another	assay	A	as:	𝑅7", 𝑅7#…𝑅7& =
F9"
F:"

, F9!
F:!

…	 F9)
F:)

	where	𝐸7", 𝐸7#…𝐸7&	are	absolute	gene	

expression	levels	for	assay	A.	We	can	use	the	above	method	to	calculate	the	relative	gene	

expression	levels	for	all	other	assays.	

Next,	the	relative	gene	expression	levels	are	used	to	find	the	log-scale	gene	

expression	levels.	For	each	assay	A,	the	log-scale	gene	expression	levels	are	calculated	as:	

	𝐿7", 𝐿7#…𝐿7& = log# 𝑅7" , log# 𝑅7#…	log# 𝑅7&		

In	the	end,	a	user-defined	threshold	ℎ	is	used	to	filter	out	some	normally	expressed	

expression	levels.	A	lower	ℎ	value	means	more	gene	expression	levels	are	kept,	and	the	

computation	time	is	longer.	This	step	can	dramatically	reduce	the	size	of	the	dataset	while	

keeping	valuable	information.	

4.1.3 Converting into Transactional Datasets 

Microarray	datasets	are	matrices	of	data.	Each	row	of	a	matrix	represents	a	gene,	

while	each	column	represents	an	assay.	However,	to	perform	association	rule	learning,	we	

need	to	convert	microarray	datasets	into	transactional	datasets.	Each	row	is	an	assay	in	a	

transactional	dataset,	and	each	"transaction"	has	a	different	number	of	genes.	

Our	algorithm	transposes	the	matrix	that	we	obtain	from	the	earlier	steps.	Next,	

each	log-scale	gene	expression	level	is	converted	into	a	ternary	item	[23].	If	the	level	
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exceeds	the	positive	threshold,	an	item	+𝐺	replaces	the	corresponding	expression	level	

where	G	is	the	gene	number.	Likewise,	if	the	log-scale	expression	level	is	less	than	the	

negative	threshold,	it	will	be	replaced	by	−𝐺.	

For	example,	if	we	have	an	assay	that	has	genes	G1,	G2,	and	G3	with	log-scale	

expression	levels	{-100,	10,	300},	respectively.	Assuming	the	thresholds	are	-50	and	+50,	

we	convert	the	expression	levels	into	{-G1,	+G3}.	G2	is	not	included	in	the	above	

transaction	because	its	expression	level	is	not	significant.	

	

4.1.4 Extracting Disease Information 

We	introduce	disease	information	to	the	transactional	dataset	so	that	our	

association	rule	learning	algorithm	can	derive	gene-disease	association	rules.	The	prior	

approaches	do	not	address	disease	information.	To	find	association	rules	that	involve	genes	

and	diseases,	we	need	to	convert	the	disease	information	associated	with	each	assay	into	

an	item.	

First,	the	disease	information	is	extracted	from	the	sample	information.	A	disease,	in	

this	case,	can	be	a	specific	disease	or	"normal."	If	the	disease	information	is	provided,	our	

algorithm	will	copy	the	disease	name	as	an	item	name	to	the	corresponding	

assay(transaction).	Therefore,	for	each	transaction,	there	are	one	or	more	gene	items	and	a	

disease	item.	

For	example,	an	assay	is	labeled	as	"Tumor"	in	the	original	dataset	and	calculated	in	

the	above	steps	to	have	items	{-G1,	+G3}.	The	algorithm	will	add	"Tumor"	to	the	transaction	

to	have	{-G1,	+G3,	"Tumor"}.		
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4.1.5 Calculating Gene Importance 

An	important	aspect	of	association	rule	ranking	is	evaluating	the	importance	of	each	

gene.	The	following	is	our	approach	for	calculating	gene	importance,	of	which	the	

importance	of	a	gene	can	be	viewed	as	the	average	degree	of	over/under	expression	in	the	

dataset.	We	also	want	to	consider	+𝐺	and	−𝐺	individually	since	they	are	considered	

different	items	in	the	transformed	dataset.	We	define	the	gene	importance	for	gene	g,	𝐸K,	as	

below:	

𝐸K = 	}
∑ D𝐾) − 𝐾KE-
)'"

#

𝑚 	

In	the	above,	𝐾) 	is	the	average	gene	expression	level	of	gene	j,	𝐾K	is	the	average	gene	

expression	level	for	gene	g.	𝐸K	is	the	RMS	deviation	of	gene	g,	related	to	all	other	genes.	If	

the	deviation	is	high,	the	expression	level	of	a	gene	is	outstanding,	and	we	can	say	it	is	

important.	

For	example,	if	the	average	gene	expression	level	of	all	the	genes	is	20,	and	we	

calculate	that	gene	G1	has	an	average	expression	level	of	100,	while	G2	has	an	average	

expression	level	of	2.	Then	𝐸K	for	G1	and	G2	are	80	and	18,	respectively.	Therefore,	G1	

should	be	ranked	above	G2.	

	

4.2 An Example 
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Table	43	Microarray	Dataset	

Suppose	the	microarray	dataset	in	Table	43	is	given,	and	minsup	is	set	to	0.2	(or	

20%,	or	8 ∗ 0.2 ≈ 2	occurrences),	and	minconf	is	set	to	0.7	(or	70%).	We	select	assay	8	as	

the	reference	assay	then	calculate	the	relative	expression	levels.	The	results	are	shown	in	

Table	44.	

	

Table	44	Relative	Expression	Levels	

Next,	we	calculate	the	log-scale	gene	expression	levels	by	taking	log	base	2:	log(𝑥, 2)	

where	x	is	the	relative	expression	level.	The	results	are	shown	in	Table	45.	

	

Table	45	Log-scale	Expression	Levels	

Then	we	normalize	the	expression	levels	by	applying	a	threshold	to	the	log-scale	

expression	levels.	Here,	we	choose	the	threshold	to	be	1,	meaning	all	log-scale	expression	

Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6 Assay 7 Assay 8
Gene 1 0.11 0.03 1.51 0.34 10.21 0.01 0.28 1.33
Gene 2 5.23 5.78 1.37 1.44 7.65 21.35 1.98 1.28
Gene 3 1.32 4.89 1.05 1.37 8.45 17.56 1.79 1.79
Gene 4 1.56 0.97 0.05 0.12 1.02 1.34 0.19 1.12
Gene 5 6.33 1.28 0.15 0.53 1.02 2.15 0.34 0.98
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levels	that	are	above	1	or	below	-1	are	set	to	1	and	-1,	respectively.	Levels	between	-1	and	1	

are	set	to	0.	The	results	are	shown	in	Table	46.	

	

Table	46	Normalized	Expression	Levels	

Next,	we	transpose	the	matrix	to	prepare	it	for	the	transactional	dataset.	Each	row	is	

now	an	assay	and	each	column	is	a	gene.	The	results	are	shown	in	Table	47.	

	

Table	47	Transposed	Matrix	

Finally,	we	convert	the	transposed	matrix	to	a	transactional	dataset,	shown	in	Table	

48,	each	expression	level	that	equals	-1	or	1	is	transformed	into	an	item.	In	Table	48,	the	

items	of	each	transaction	include	the	genes	that	are	over-expressed	(denoted	by	a	+	

symbol)	and	genes	that	are	under-expressed	(denoted	by	a	-	symbol).	For	example,	a	

transaction	with	TID	T000	is	an	assay	that	contains	three	significantly	(over	or	under)	
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expressed	genes,	gene	1	(under-expressed),	gene	2	(over-expressed),	and	gene	5	(over-

expressed).	

	

TID	 Items	

T000	 -1,	+2,	+5	

T001	 -1,	+2,	+3	

T002	 -4,	-5	

T003	 -1,	-4,	-5	

T004	 +1,	+2,	+3	

T005	 -1,	+2,	+3	

T006	 -1,	-4,	-5	

Table	48	Transactional	Dataset	

Now,	we	use	the	Apriori	algorithm	to	find	the	frequent	two	itemsets.	As	an	

intermediate	step,	the	Apriori	algorithm	finds	the	frequent	one-itemset	first	(shown	in	

Table	49):	

	

Frequent	

Itemsets	

Support	

{-1}	 5	

{+2}	 4	

{+3}	 3	

{-4}	 3	
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{-5}	 3	

Table	49	Frequent	One	Itemsets	

The	frequent	two-itemsets	are	found	afterward	(shown	in	Table	50):	

Frequent	

Itemsets	

Support	

{-1,	+2}	 3	

{-1,	+3}	 2	

{-1,	-4}	 2	

{-1,	-5}	 2	

{+2,	+3}	 3	

{-4,	-5}	 2	

Table	50	Frequent	Two	Itemsets	

Next,	we	transform	the	above	frequent	two-itemsets	into	an	item	association	graph	

(IAG),	shown	in	Figure	12:	
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Figure	12	An	Item	Association	Graph	

To	construct	the	graph,	we	first	take	the	itemset	{-1,	+2}	with	support	3.	For	this,	we	

create	node	-1	and	node	+2	corresponding	to	the	two	items	in	the	itemset.	The	edge	

between	node	-1	and	node	+2	has	weight	3,	representing	the	support	of	the	itemset.	The	

process	is	repeated	for	every	frequent	two-itemset	found	in	the	previous	step.		

Subsequently,	we	use	the	multilevel	k-way	partitioning	algorithm	(MLkP)	to	

partition	the	IAG.	In	this	case,	the	number	of	nodes	is	small,	so	we	only	bisect	the	graph	by	

setting	k	=	2.	The	result	is	shown	in	Figures	13	and	14.	

	

Figure	13	Item	Association	Graph	Partition	1	
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Figure	14	Item	Association	Graph	Partition	2	

The	MLkP	algorithm	divides	the	IAG	into	two	equal	or	almost	equal	sets	in	linear	

time	while	the	sum	of	the	weights	of	edges	that	are	cut	off	is	the	minimum.	

Next,	we	partition	the	dataset	according	to	the	partitions	of	the	IAG,	as	shown	in	

Tables	51	and	52.	Each	transaction	partition	has	all	the	items	from	the	corresponding	IAG	

partition.	However,	since	the	algorithm	has	already	found	all	the	frequent	one	and	two	

itemsets,	a	transaction	is	not	added	to	a	transaction	partition	if	the	transaction	has	less	

than	three	items.	For	example,	T000:	{-1,	+2}	is	not	added	to	the	transaction	partition	1,	

since	it	only	has	two	items.		Some	items	in	the	original	dataset	may	not	appear	in	any	of	the	

transaction	partitions,	because	the	infrequent	one/two-itemsets	are	dropped	in	the	IAG.	

This	simplifies	the	subsequent	computations.	In	this	example,	however,	all	the	items	are	

kept	in	the	IAG	because	the	IAG	is	a	relatively	dense	graph.	Tables	51	and	52	show	the	

transaction	partitions:	

TID	 Items	
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T001	 -1,+	2,	+3	

T005	 -1,	+2,	+3	

Table	51	Transaction	Partition	1	

TID	 Items	

None	 None	

Table	52	Transaction	Partition	2	

The	next	step	is	to	pick	the	best	algorithm	and	use	it	to	find	the	frequent	k-itemsets	

with	k	>	2.	For	this	example,	we	choose	the	modified	Apriori	algorithm	because	it	is	faster	

for	mining	small	datasets	as	it	avoids	the	process	of	finding	the	one	and	two-itemsets	again.	

The	results	from	partition	1	are	shown	in	Table	53:	

Frequent	

Itemsets	

Support	

{-1,	+2,	+3}	 2	

Table	53	Frequent	Itemsets	from	Transaction	Partition	1	

Since	the	modified	Apriori	algorithm	starts	with	three-itemsets,	there	are	no	

additional	frequent	itemsets	in	the	first	partition.	Table	54	shows	the	results	found	in	

transaction	partition	2:	

Frequent	

Itemsets	

Support	

None	 N/A	

Table	54	Frequent	Itemsets	from	Transaction	Partition	2	

The	final	results	(shown	in	Table	55)	of	frequent	itemsets	are	simply	the	union	of	

Tables	49,	50	and	53:		
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Frequent	

Itemsets	

Support	

{-1}	 5	

{+2}	 4	

{+3}	 3	

{-4}	 3	

{-5}	 3	

{-1,	+2}	 3	

{-1,	+3}	 2	

{-1,	-4}	 2	

{-1,	-5}	 2	

{+2,	+3}	 3	

{-4,	-5}	 2	

{-1,	+2,	

+3}	

2	

Table	55	Frequent	Itemset	Final	Results	

After	running	the	Apriori-ap-genrules	algorithm,	the	association	rules	can	be	found	

in	Table	56.	

Rules	 Confidence	

{+2}	à	{-1}	 0.75	

{+3}	à	{+2}	 1	

{-5}	à	{-1}	 1	
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{+2}	à	{+3}	 0.75	

{-5}	à	{-4}	 1	

{-4}	à	{-5}	 1	

{-1,	+3}	à	{+2}	 1	

Table	56	Association	Rules	Generated	

All	the	frequent	itemsets	generated	by	the	SARL	heuristic	are	sound,	meaning	each	

frequent	itemset	generated	indeed	is	correct,	and	the	support	number	is	accurate.	

However,	it	is	possible	that	some	frequent	itemsets	cannot	be	found	by	the	SARL	heuristic,	

as	will	be	discussed	shortly.	In	this	example,	the	SARL	heuristic	loses	one	frequent	itemset	

{-1,	-4,	-5}	and	two	related	rules	generated	from	{-1,	-4,	-5}.	

4.3 The SARL(Scalable Association Rule Learning) Heuristic 

We	introduced	the	SARL	heuristic	earlier	in	this	dissertation.	SARL	is	a	highly	

scalable	heuristic	algorithm	for	association	rule	learning	problems	on	horizontal	

transactional	datasets.	In	this	section,	a	modified	version	of	SARL	serves	as	the	core	of	our	

algorithm.	A	summary	of	the	SARL	heuristic	is	shown	below.	A	more	detailed	and	formal	

description,	including	the	pseudo-code,	can	be	found	in	the	earlier	sections	of	this	

dissertation.		

The	Apriori	algorithm	or	the	direct	counting	and	generation	algorithm	is	used	to	

generate	frequent	one	and	two	itemsets,	depending	on	the	size	of	the	dataset.		Apriori	is	

faster	on	very	large	datasets,	where	the	direct	counting	and	generation	algorithm	is	faster	

on	small	and	medium-sized	datasets.	SARL	then	builds	the	item	association	graph	(IAG)	

based	on	the	frequent	two	itemsets.	Each	frequent	two	itemset	is	converted	into	an	edge	on	
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the	IAG,	and	each	item	in	the	itemset	is	converted	into	a	node.	Then,	the	MLkP	algorithm	is	

used	to	partition	the	IAG	into	k	subgraphs.	The	dataset	is	partitioned	based	on	the	

subgraphs.	Each	partition	of	the	dataset	should	contain	all	the	items	(nodes)	of	a	subgraph	

of	the	IAG	across	all	the	transactions	of	the	datasets.	During	this	process,	some	transactions	

may	end	up	undivided,	and	all	the	possible	frequent	itemsets	related	to	these	transactions	

will	be	preserved	in	later	stages.	Next,	the	Apriori	algorithm	or	the	FP-Growth	algorithm	is	

selected	based	on	an	analysis	of	the	dataset	to	ensure	the	most	efficient	execution.	Finally,	

SARL	calls	the	selected	algorithm	on	each	dataset	partition	to	complete	the	computation.	If	

the	Apriori	algorithm	is	selected,	SARL	will	call	the	modified	Apriori	that	starts	from	the	

frequent	three	itemsets	computation	to	avoid	any	redundant	work.		

The	SARL	heuristic	divides	the	dataset	into	k	partitions.	The	size	of	each	partition	

should	be	smaller	than	"
!
	×		size	of	the	dataset	because	the	dataset	is	partitioned	according	

to	IAG,	and	the	number	of	items	(nodes)	in	the	IAG	should	be	smaller	than	the	number	of	

unique	items	in	the	dataset.	A	more	detailed	explanation	can	be	found	in	the	Transaction	

Partitioning	section	of	the	Appendix	section.	This	indicates	that	each	dataset	partition	can	

always	fit	into	the	memory.	All	later	steps	of	the	SARL	heuristic	significantly	benefit	from	

processing	the	dataset	in	the	memory	rather	than	on	the	disk.	

4.4 Ranking of Association Rules 

Considering	the	nature	of	microarray	datasets,	the	number	of	unique	items	(genes)	

is	usually	large.	This	leads	to	a	tremendous	number	of	association	rules.	Therefore,	it	is	

necessary	to	rank	the	association	rules	by	their	importance	so	that	the	results	can	be	easily	
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used.	The	goal	of	this	study	aims	to	help	scientists	explore	and	validate	new	association	

rules	more	efficiently.		

To	achieve	the	goal,	we	introduce	the	following	measurement	of	the	importance	of	

rule	r:	xà	y:	

𝐼0 = 𝐿0 × (
∑𝐸K0
𝑛 + 𝐵0)	

where	𝐿0 =
L2&3(0)
MNO	(0)

,	and	𝐸K =	�
∑ QR;$R<S=
;>"

!

-
			

In	the	above,	𝐼0 	is	the	importance	of	the	rule,	𝐿0 	is	the	lift	of	the	rule	𝑟,	n	is	the	

number	of	unique	genes	included	in	rule	r,	𝐸K0 	is	the	RMS	deviation	of	the	expression	level		

of	gene	g	that	is	included	in	rule	r,	𝐾) 	is	the	gene	expression	level	of	gene	j,	where	j	

represents	all	other	genes;	𝐾Kis	the	gene	expression	level	for	gene	g,	and	𝐵0 	is	the	bias	

applied	to	this	rule.	The	bias	should	be	positive	if	a	disease	is	in	the	rule.		

The	intuition	here	is	to	emphasize	three	factors	that	are	related	to	the	importance	of	

an	association	rule.	The	first	is	the	lift	of	a	rule	[32].	A	higher	lift	indicates	the	rule	has	a	

higher	response	compared	to	the	other	rules.	If	the	lift	value	is	large,	then	the	antecedent	

and	the	consequent	of	the	rule	are	more	dependent	on	each	other,	and	this	further	

indicates	a	high	significance	of	the	rule.	The	second	factor	is	the	average	significance	of	

each	gene	included	in	the	rule.	If	all	or	most	of	the	genes	are	significant,	then	the	rule	is	

likely	to	be	more	important.	When	we	convert	the	microarray	dataset	into	a	transactional	

dataset,	the	absolute	gene	expression	levels	are	converted	into	relative	expression	levels,	

and	some	information	related	to	the	absolute	levels	is	missing.	Here,	we	reconsider	the	

influence	of	the	absolute	gene	expression	levels	and	calculate	the	average	significance	of	a	

gene-based	on	it.	𝐸K,	the	deviation	of	the	average	absolute	gene	expression	level,	is	
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calculated	by	taking	the	difference	of	the	average	absolute	gene	expression	levels	of	all	

genes	and	the	average	absolute	gene	expression	level	of	gene	g.	The	significance	of	a	rule	

contributed	by	its	genes	is	then	calculated	by	taking	the	average	of	each	𝐸K	that	is	included	

in	rule	r.	

For	example,	assuming	the	rule	𝐺1 → 𝐺2	is	an	association	rule	found	by	the	SARL	

heuristic.	Genes	1,	2,	and	3	have	expression	levels	of	10,	8,	and	5,	respectively.		The	rule	has	

confidence	of	0.7	and	support	of	10.	Then	we	can	calculate	𝐿0 =
L2&3(0)
MNO	(T)

= 0.07,	𝐸" =

	�(R!$R")!=(R%$R")!

#
	=	3.8,	𝐸# =	�

(R%$R!)!=(R"$R!)!

#
	=	2.5.	Since	the	rule	does	not	involve	a	

disease,	bias	is	set	to	0.	Hence,	𝐼0 = 𝐿0 × �
∑F<9
&

+ 𝐵0� = 0.07	 × �?.U=#.V
#

+ 0� = 0.22	.		

We	incorporate	the	three	most	important	measurements	in	the	ranking	of	the	rules.	

The	lift	measurement	generally	addresses	the	ranking	of	the	significance	of	each	rule,	the	

average	gene	significance	traces	back	to	the	microarray	dataset	and	considers	the	

importance	of	each	gene,	and	the	bias	𝐵0 	highlights	the	rules	that	involve	disease	

information.		
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Chapter	V:	EXPERIMENTS	AND	RESULTS	

We	design	and	conduct	experiments	on	both	small	and	large	datasets	to	

demonstrate	the	scalability	of	our	algorithm.	The	experiments	are	performed	on	a	

computer	with	the	following	settings:	

OS:	Ubuntu	64-bit	running	on	a	virtual	machine	

CPU:	Intel	Core	i7-4720HQ	

Memory:	8192MB	allocated	to	the	virtual	machine	

Disk:	5400RPM,	64MB	Cache,	6.0Gb/s,	SSHD,	8GB	flash	memory	

Programming	Language:	Python	3.7	

	

The	datasets	[19]	we	use	include	Bible	[17],	T10I4D100K	[19],	and	T40I10D100K	[19].	The	

details	of	each	dataset	will	be	discussed	later.	

For	each	of	these	datasets,	we	test	the	SARL	heuristic	with	various	settings	for	the	

FP-Growth	and	the	Apriori	algorithms	on	different	values	of	minsup.	The	various	settings	of	

the	SARL	heuristic	are	as	follows:	

2ap:	k	=	2,	Apriori-based		

2fp:	k	=	2,	FP-Growth-based		

4ap:	k	=	4,	Apriori-based		

4fp:	k	=	4,	FP-Growth-based		

	

The	Bible	Dataset	

The	Bible	dataset	has	the	following	metrics:	

Number	of	unique	items:	13905	
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Number	of	transactions:	36396	

Average	transaction	width:	21.6	

File	size:	5.4	MB	

This	is	a	small	to	medium-sized	dataset.	The	experiments	are	done	repeatedly	for	minsup	of	

50%,	40%,	30%,	20%,	and	10%.	The	time	limit	for	each	experiment	is	set	to	800	seconds	

for	each	of	the	experiments.	The	results	are	shown	in	Table	57:	

	

Table	57	Running	Times	of	Different	Algorithms	on	the	Bible	Dataset	

	

Figure	15	Running	Times	of	Different	Algorithms	on	the	Bible	Dataset	
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According	to	Figure	15,	the	two-partition,	Apriori-based	SARL	heuristic	scales	the	

best	for	this	dataset	regardless	of	the	minsup	value.	It	is	2	to	2.5	times	faster	than	the	

Apriori	algorithm.	The	FP-Growth	algorithm	reaches	the	800-second	time	limit	for	all	test	

cases.	It	is	possible	that	the	number	of	unique	items	in	this	dataset	is	large;	therefore	the	

FP-tree	cannot	fit	into	the	memory.	As	a	result,	the	FP-growth	algorithm	does	not	perform	

well	here.	All	other	three	settings	of	the	SARL	heuristic	outperform	the	Apriori	algorithm.	

Comparing	to	the	FP-growth	algorithm	and	the	Apriori	algorithm,	the	SARL	heuristic	is	

more	scalable	with	all	values	set	for	minsup.	

	

Table	58	Accuracy	of	the	SARL	Algorithm	on	the	Bible	Dataset	
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Figure	16	Accuracy	of	Different	Configurations	of	SARL	Heuristic	on	the	Bible	Dataset.	

As	we	proved	earlier,	all	the	frequent	itemsets	found	by	the	SARL	heuristic	are	

accurate,	with	the	correct	support.	This	is	important	because	we	need	the	accurate	support	

to	calculate	the	confidence	of	the	rules.	The	SARL	heuristic	may	miss	some	frequent	

itemsets	with	a	lower	support.	Here,	we	calculate	the	accuracy	=	

WNXYZ[	\]	][Z^NZW_	`_ZXMZ_M	]\NWa	Yb	cdef	
&,-./0	23	30/<,/&9	%9/-5/95	32,&4	.T	7g0%20%

.	The	accuracy	of	the	SARL	heuristic	drops	on	the	

Bible	dataset	when	the	value	of	minsup	is	low.	From	Table	58	and	Figure	16,	both	settings	

of	the	four-partition	SARL	heuristic	achieve	100%	accuracy	from	the	minsup	range	of	50%	

to	30%.	This	is	because	the	MLkP	algorithm	is	able	to	find	a	perfect	or	almost	perfect	cut	on	

the	IAG	so	that	there	are	no	inter-partition	frequent	itemsets	for	this	range.	When	100%	

accuracy	is	achieved,	the	SARL	heuristic	discovers	not	just	the	one	and	two	frequent	

itemsets,	but	also	the	three	or	higher	frequent	itemsets.	As	for	the	two-partition	SARL	
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heuristic	settings,	the	accuracy	starts	at	73.91%	at	50%	minsup	and	drops	to	39.8%	at	10%	

minsup.	

	

The	T10I4D100K	Dataset	

The	second	dataset	we	have	tested	is	T10I4D100K.	It	has	the	following	statistics:	

Number	of	unique	items:	870	

Average	size	of	transactions:	10	

Number	of	transactions:	100000	

File	size:	4MB	

The	algorithms	are	tested	on	T10I4D100K	for	minsup	of	10%,	4%,	1%,	0.7%,	and	

0.4%.	This	dataset	has	a	medium	size	(for	this	environment),	so	the	time	limit	is	set	to	300	

seconds	for	each	of	the	experiments.		

Table	59	and	Figure	17	shows	the	results	for	T10I4D100K:	

	

Table	59	T10I4D100K	Running	Times	
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Figure	17	Running	Times	of	Different	Algorithms	on	the	T10I4D100K	Dataset	

From	Figure	17,	the	Apriori	algorithm	has	an	average	performance	for	the	initial	

minsup	of	10%	and	4%.	However,	it	quickly	reaches	the	maximum	running	time	after	that	

and	unable	to	finish	the	task	in	time	for	all	subsequent	settings	of	minsup.	The	FP-Growth	

algorithm	has	a	better	performance.	It	is	the	fastest	for	a	higher	value	of	minsup	of	10%	and	

4%,	but	it	jumps	to	almost	300	seconds	for	1%	and	0.7%,	before	timeout	at	0.4%.	All	

settings	of	the	SARL	heuristic	outperform	the	Apriori	and	the	FP-Growth	algorithm	for	

middle	and	low	settings	of	minsup.	It	is	8.6	to	13.8	times	faster	than	the	FP-Growth	

algorithm	on	minsup	=	1%	and	0.7%.		The	SARL	heuristic	is	slightly	slower	at	a	high	minsup	

of	10%,	and	they	are	tied	with	the	Apriori	but	slightly	slower	than	FP-Growth	at	a	minsup	of	

4%.		
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Table	60	Accuracy	of	SARL	Heuristic	on	T10I4D100K	

	

Figure	18	Accuracy	of	SARL	Heuristic	on	T10I4D100K	

The	accuracy	of	the	SARL	heuristic	is	high	on	the	T10I4D100K	dataset.	As	shown	in	

Table	60	and	Figure	18,	all	four	settings	of	the	SARL	heuristic	achieve	100%	accuracy	for	

the	values	of	minsup	from	10%	to	0.4%.	This	is	because,	for	a	high	minsup,	the	number	of	

frequent	three	or	more	itemsets	for	this	dataset	is	small	comparing	to	frequent	two	

itemsets,	and	the	mining	of	the	one	and	two	frequent	itemsets	is	accurate.	For	low	minsup	

values,	the	MLkP	algorithm	successfully	finds	a	perfect	or	almost	perfect	cut	on	the	IAG,	so	

the	results	are	accurate.	
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The	T40I10D100K	Dataset	

The	dataset	T40I10D100K	has	the	following	statistics:		

Number	of	unique	items:	942	

Average	size	of	transactions:	40	

Average	size	of	the	maximal	potentially	large	itemsets:10	

Number	of	transactions:100000	

File	size:	about	15	MB	

This	relatively	large-size	dataset	was	tested	on	minsup	values	of	20%,	10%,	7%,	and	

4%.	The	maximum	running	time	was	set	to	300	seconds	each	for	the	experiments.	

Table	61	shows	the	results	of	the	experiments:	

	

	

Table	61	Running	Times	of	Different	Algorithms	on	the	T40I10D100K	Dataset	
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Figure	19	Running	Times	of	Different	Algorithms	on	the	T40I10D100K	Dataset	
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The	results	of	the	experiments	(shown	in	Table	61	and	Figure	19)	show	an	obvious	

distinction	between	the	scalability	of	different	algorithms.	All	settings	of	the	SARL	heuristic	

demonstrate	high	scalability.	Almost	all	settings	of	the	SARL	heuristic	have	stable	running	

time	throughout	the	entire	range	of	minsup.	Surprisingly,	the	Apriori	algorithm	performs	

better	than	the	FP-Growth	algorithm	with	a	minsup	between	20%	and	7%.	However,	it	is	

still	unable	to	terminate	within	the	time	limit	for	minsup	=	4%.	Lastly,	the	FP-Growth	

algorithm	does	not	scale	very	well	on	this	dataset.	It	fails	to	terminate	within	the	given	time	

for	both	7%	and	4%	of	minsup.	

	

Table	62	Accuracy	of	SARL	Heuristic	on	T40I10D100K	Dataset	

	

	

Figure	20	Accuracy	of	SARL	Heuristic	on	T40I10D100K	Dataset	
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The	accuracy	of	the	SARL	heuristic	on	the	T40I10D100K	dataset	is	the	same	as	the	

T10I4D100K	dataset.	Table	62	and	Figure	20	show	that	the	SARL	heuristic	has	100%	

accuracy	based	on	similar	reasons	as	we	explained	above	in	the	analysis	of	the	

T10I4D100K	experiment	results.	

	 Another	set	of	experiments	was	done	on	three	datasets.	In	this	set	of	experiments,	

we	compare	both	SARL-heuristic	and	SARL-precise	with	other	algorithms.	The	datasets	

[19]	we	use	include	Mushroom	[13],	T10I4D100K	[19],	and	T40I10D100K	[19].	The	details	

of	each	dataset	will	be	covered	later.	

For	each	of	these	datasets,	we	tested	the	SARL	algorithm	with	various	settings	for	

the	FP-Growth	and	the	Apriori	algorithms	on	different	values	of	minsup.	The	various	

settings	of	the	SARL	algorithm	are	as	follows:	

2apF:	k	=	2,	Apriori-based,	heuristic	mode.		

2apT:	k	=	2,	Apriori-based,	precise	mode.		

2fpF:	k	=	2,	FP-Growth-based,	heuristic	mode.		

2fpT:	k	=	2,	FP-Growth-based,	precise	mode.		

4apF:	k	=	4,	Apriori-based,	heuristic	mode.		

4apT:	k	=	4,	Apriori-based,	precise	mode.		

4fpF:	k	=	4,	FP-Growth-based,	heuristic	mode.		

4fpT:	k	=	4,	FP-Growth-based,	precise	mode.		

The	Mushroom	Dataset	

The	mushroom	dataset	has	the	following	metrics:	

Number	of	unique	items:	119	

Number	of	transactions:	8124	
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Average	transaction	width:	23	

File	size:	558	KB	

This	is	a	small	dataset	considering	its	size.	However,	the	complexity	of	mining	

frequent	itemsets	is	non-trivial	due	to	its	large	average	transaction	width.	The	experiments	

was	done	repeatedly	for	minsup	of	20%,	10%,	7%,	4%,	1%,	0.7%,	0.4%,	and	0.1%.	The	time	

limit	for	each	experiment	was	set	to	400	seconds	for	each	of	the	80	experiments.	The	

results	are	shown	in	Figure	21:	

 
Table	63	Experiments	from	the	Mushroom	Dataset	

 
Figure	21	Mushroom	Dataset	Test	Results	

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
20 79.2578 62.78268 54.88132 126.1449 29.18472 13.04025 94.26079
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7 354.9317 113.5315 165.1814 17.03973 368.4053
4 161.2162 44.68621
1 362.2856 39.26179
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According	to	Figure	21,	the	results	show	that	the	four-partition,	FP-Growth-based,	

heuristic	SARL	algorithm	scales	the	best	for	this	dataset	regardless	of	the	minsup	value.	It	is	

6	to	20.8	times	faster	than	the	FP-Growth	algorithm	when	the	FP-Growth	algorithm	does	

not	exceed	the	time	limit.	Although	it	does	not	cover	all	frequent	itemsets	or	association	

rules,	depending	on	the	application,	this	could	be	a	great	tradeoff.	The	two-partition,	FP-

Growth-based,	heuristic	SARL	algorithm	is	the	second-best	in	terms	of	running	time.	It	has	

a	higher	accuracy	with	acceptable	running	time	except	for	the	test	with	0.1%	minsup.	Two	

precise,	FP-Growth	based	SARL	algorithms	mostly	outperform	the	FP-Growth	and	the	

Apriori	algorithms.	The	Apriori	algorithm	does	not	perform	well	on	this	dataset,	and	it	does	

not	terminate	for	any	of	the	experiments.	The	average	transaction	width	might	have	a	high	

impact	on	the	performance	of	the	Apriori	algorithm.			

The	second	dataset	we	have	tested	is	T10I4D100K.	It	has	the	following	statistics:	

Number	of	unique	items:	870	

The	average	size	of	transactions:	10	

The	average	size	of	the	maximal	potentially	large	itemsets:	4	

Number	of	transactions:	100000	

File	size:	4MB	

The	algorithms	were	tested	on	T10I4D100K	for	minsup	of	10%,	4%,	1%,	0.7%,	and	

0.4%.	This	dataset	has	a	medium	size	(for	this	environment),	so	the	time	limit	is	set	to	300	

seconds	for	each	of	the	50	experiments.		

Table	64	shows	the	results	for	T10I4D100K:	
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Table	64	T10I4D100K	Test	Results	

 

 
Figure	22	T10I4D100K	Test	Results	

 

From	Figure	22,	the	Apriori	algorithm	has	an	average	performance	for	the	initial	

minsup	of	10%	and	4%.	However,	it	quickly	reached	the	maximum	running	time	after	that	

and	unable	to	finish	the	task	in	time	for	all	subsequent	minsup.	The	FP-Growth	has	a	better	

performance.	It	was	the	fastest	for	higher	minsup	of	10%	and	4%,	but	jumped	to	almost	

300	seconds	for	1%	and	0.7%,	before	having	timeout	at	0.4%.	All	settings	of	the	SARL	

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
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algorithm	outperform	the	Apriori	and	the	FP-Growth	algorithm	for	middle	and	low	minsup.	

The	SARL	algorithm	is	slightly	slower	at	a	high	minsup	of	10%,	and	they	were	tied	with	the	

Apriori	but	was	slightly	slower	than	FP-Growth	at	minsup	of	4%.		

The	dataset	T40I10D100K	has	the	following	statistics:		

Number	of	unique	items:	942	

The	average	size	of	transactions:	40	

The	average	size	of	the	maximal	potentially	large	itemsets:10	

Number	of	transactions:100000	

File	size:	about	15	MB	

This	relatively	large-size	dataset	was	tested	on	minsup	values	of	20%,	10%,	7%,	and	

4%.	The	maximum	running	time	was	set	to	300	seconds	each	for	a	total	of	40	experiments.	

Table	65	shows	the	results	of	the	experiments:	

 
Table	65	T40I10D100K	Test	Results	

 

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
20 8.736294 229.0365 267.8287 235.9384 235.0602 232.3693 229.7591 231.474 232.7452 23.49573
10 228.2672 226.3674 226.8315 226.7898 239.0484 237.0974 233.1036 230.0035 158.8888

7 236.5143 247.8587 233.9087 235.3071 253.1851 238.6583
4 241.4238 256.5347 252.5584 242.9868 256.7242 241.8205
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Figure	23	T40I10D100K	Test	Results	

The	results	of	the	experiments(shown	in	Table	65	and	Figure	23)	show	an	obvious	

distinction	between	the	scalability	of	different	algorithms.	All	settings	of	the	SARL	

algorithm	demonstrates	very	high	scalability.	Almost	all	settings	of	the	SARL	algorithm	had	

stable	running	time	throughout	the	entire	range	of	minsup.	Surprisingly,	the	Apriori	

algorithm	performs	better	than	the	FP-Growth	algorithm	with	minsup	between	20%	and	

7%.	However,	it	is	still	unable	to	terminate	within	the	time	limit	for	minsup	=	4%.	Lastly,	

the	FP-Growth	algorithm	does	not	scale	very	well	on	this	dataset.	It	failed	to	terminate	

within	the	given	time	for	both	7%	and	4%	of	minsup.	
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We	have	designed	and	conducted	experiments	on	small	and	large	microarray	

datasets	to	demonstrate	the	scalability	and	accuracy	of	our	algorithm.	The	experiments	are	

based	on	the	following	configuration:	

OS:	macOS	Big	Sur	

CPU:	Apple	M1	

Memory:	8	GB	

Disk:	256	GB,	SSD	

Programming	Language:	Python	3.7	

	

All	three	datasets	are	downloaded	from	ArrayExpress	[6].	We	test	the	SARL	

algorithm	on	each	of	the	datasets	with	various	minsup	configurations.	Here,	minsup	refers	

to	the	minimum	number	of	occurrences	rather	than	the	percentage	of	that.	

1.	E-MTAB-9030	-	microRNA	profiling	of	muscular	dystrophies	dataset	

The	dataset	has	the	following	metrics:	

File	size:	4	KB	

Number	of	genes:	29	

Number	of	assays:	15	

This	is	a	relatively	small	dataset.		The	experiments	are	done	repeatedly	for	minsup	

of	5,	4,	3,	The	results	are	shown	in	Table	66.	
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Table	66	Experiment	Results	of	Dataset	E-MTAB-9030

	

Figure	24	Experiment	Results	of	Dataset	E-MTAB-9030	as	a	Chart	

According	to	Figure	24,	the	SARL	heuristic	runs	faster	than	the	Apriori	algorithm	on	

all	minsup	configurations.	We	can	see	the	running	time	becomes	larger	as	the	minsup	goes	

down.					For	the	test	case	where	minsup	is	2,	the	SARL	algorithm	performs	26	times	faster	

than	the	Apriori	algorithm.	

Figure	25	shows	the	accuracy	of	the	SARL	heuristic	is	between	0.62	and	0.67.	The	

accuracy	is	calculated	based	on	the	100	most	important	frequent	itemsets.	The	results	are	

62%	to	67%	accurate	based	on	the	association	rules	derived	by	the	Apriori	algorithm	with	

the	100	most	important	frequent	itemsets.	It	seems	the	accuracy	may	be	acceptable	

considering	the	purpose	of	this	research	and	the	speedup,	i.e.,	to	have	a	computational	tool	

that	can	more	quickly	derive	the	important	associations	among	genes	for	iterative	

investigation.		
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Figure	25	SARL	Heuristic	Accuracy	on	Dataset	E-MTAB-9030	

2.	E-MTAB-8615	

-	Molecular	characterisation	of	TP53	mutated	squamous	cell	carcinomas	of	the	lung	

identifies	BIRC5	as	a	putative	target	for	therapy	

	

The	dataset	has	the	following	metrics:	

File	size:	73.4	MB	

Number	of	genes:	58202	

Number	of	assays:	209	

This	dataset	is	larger	than	the	previous	one.	Traditionally,	finding	association	rules	

with	the	Apriori	algorithm	on	the	full	dataset	will	take	an	extremely	long	time.		

The	result	of	the	experiment	is	shown	in	Table	67.	
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Table	67	Experiment	Results	on	E-MTAB-8615	Dataset

	

Figure	26	Experiment	Results	as	a	Graph	on	E-MTAB-8615	Dataset	
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Figure	27	SARL	Heuristic	Accuracy	

	

According	to	Figure	26,	the	SARL	heuristic	performs	similarly	comparing	to	the	

Apriori	algorithm	on	a	minsup	range	between	10	to	3,	and	both	algorithms	can	finish	

within	2	seconds.	This	is	because	the	SARL	heuristic	has	a	small	overhead,	and	the	size	of	

the	processed	data	is	very	small	on	these	minsup	configurations.	However,	when	it	comes	

to	minsup	=	2,	the	SARL	heuristic	outperforms	the	Apriori	algorithm	by	a	large	margin.		The	

SARL	heuristic	finished	the	task	in	less	than	45	seconds	comparing	to	279	seconds	for	

Apriori.	Figure	27	shows	that	the	SARL	heuristic	has	100%	accuracy	across	all	minsup	

configurations.		We	believe	the	SARL	heuristic	performs	better	than	the	Apriori	algorithm	

overall	on	this	dataset	because	it	achieves	the	same	goal	with	a	fraction	of	time.		
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3.	E-MTAB-6703	-	A	microarray	meta-dataset	of	breast	cancer	

The	dataset	has	the	following	metrics:	

File	size:	780.2	MB	

Number	of	genes:	20546	

Number	of	assays:	2302	

This	dataset	is	about	ten	times	larger	than	the	second	dataset.	However,	based	on	

the	purpose	of	this	research,	we	believe	the	total	number	of	rules	generated	from	the	

previous	dataset	is	already	overwhelmingly	large.	Therefore,	we	also	reduced	this	dataset	

based	on	the	method	mentioned	in	this	dissertation	to	speed	up	the	calculation.	

The	experiment	results	are	shown	in	Table	68.	

	

Table	68	Experiment	Results	for	E-MTAB-6703	Dataset

SARL Apriori
5 0.023450851 0.011446238
4 0.01734972 0.019985914
3 0.0338943 1.446111679
2 0.142143965 99.75626707
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Figure	28	Experiment	Results	as	a	Graph	for	E-MTAB-6703	

	

	

Figure	29	SARL	Accuracy	for	E-MTAB-6703	
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From	Figure	28,	we	can	find	a	similar	performance	result	as	the	previous	datasets,	

but	the	SARL	performs	better	for	the	larger	dataset.	The	SARL	heuristic	is	700	times	faster	

than	the	Apriori	algorithm	on	minsup	=	2.		More	surprisingly,	according	to	Figure	29,	SARL	

is	accurate	on	all	minsup	configurations.	
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Chapter	VI:	CONCLUSIONS	AND	FUTURE	WORK	

In	this	research,	we	have	proposed	a	scalable,	highly	parallelizable	association	rule	

mining	heuristic		algorithm	(the	SARL	algorithm).	The	contributions	include	the	use	of	the	

divide-and-conquer	method	to	speed	up	complex	computations,	the	use	of	an	item	

association	graph	that	provides	an	efficient	estimation	of	potential	frequent	itemsets,	and	

the	use	of	the	MLkP	algorithm	to	divide	the	items	into	partitions	while	minimizing	the	loss	

of	information.	We	have	shown	the	scalability	of	the	SARL	heuristic	through	a	series	of	

experiments.	The	results	indicate	that	the	SARL	heuristic	has	better	scalability,	with	high	

accuracy,		than	both	the	Apriori	and	the	FP-Growth	algorithms	in	most	cases.	

We	also	covered	an	application	of	SARL	for	microarray	datasets.	The	SARL	heuristic	

algorithm	utilizes	the	ternary	discretization	method,	divide	and	conquer	paradigm,	graph	

theory,	and	graph	partitioning	algorithm	to	significantly	speed	up	the	association	rule	

learning	process	compared	to	traditional	algorithms.	The	algorithm	also	shows	space	

efficiency.	The	rule	ranking	algorithm	based	on	the	importance	saves	time	for	researchers	

by	showing	the	most	important	rules	first.	The	rules	found	and	ranked	by	the	SARL	

heuristic	cover	both	inter-genes	rules	and	gene-disease	rules.	We	compared	our	algorithm	

with	Apriori,	the	most	commonly	used	association	rule	learning	algorithm,	through	a	series	

of	experiments.	The	results	show	that	our	algorithm	has	a	significant	speedup	while	still	

maintains	high	accuracy.		

As	discussed,	the	proposed	heuristic	is	limited	by	the	space	requirement	that	the	

memory	should	be	large	enough	to	accommodate	the	IAG	(proportional	to	d^2	where	d	is	
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the	number	of	unique	items	in	the	transactions)	which	we	think	may	be	a	reasonable	

assumption	in	practice.	

In	the	future,	we	plan	to	extend	our	work	with	the	following	tasks:		

	 Develop	a	parallel	version	of	the	SARL	heuristic	and	its	implementation:	The	

transaction	partitions	can	be	considered	as	independent	datasets,	and	we	can	easily	run	

the	modified	Apriori	algorithm	or	FP-Growth	algorithm	on	each	of	the	transaction	

partitions	in	parallel	and	then	merge	the	results	(frequent	three	or	higher	itemsets)	

together	along	with	the	frequent	one	and	two	itemsets	to	obtain	the	total	frequent	itemsets.	

Each	parallel	processor	does	not	need	to	communicate	with	others	during	the	computation	

since	all	the	information	needed	is	already	included	in	the	local	dataset.	This	would	result	

in	maximum	utilization	of	each	processor.	

	

	 Study	how	different	characteristics	of	the	datasets	influence	the	performance	

of	the	SARL	heuristic:	Although	we	know	that	the	SARL	heuristic	has	excellent	

performance	for	most	datasets,	the	exact	speed	and	accuracy	of	the	SARL	heuristic	are	still	

unpredictable.	We	think	by	applying	some	statistical	measurements	on	the	dataset,	it	is	

possible	to	estimate	the	accuracy	and	speed	of	the	SARL	heuristic	roughly.	This	will	help	

the	user	to	determine	if	using	the	SARL	heuristic	is	beneficial	enough	compared	to	other	

accurate	algorithms.	
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Incremental	Learning	on	Multiple	Datasets:	Nowadays,	new	microarray	datasets	

are	added	to	databases	around	the	world	on	a	daily	basis.	Among	them,	some	of	them	focus	

on	the	same	sets	of	genes,	and	others	may	have	overlapping	gene	components.	This	brings	

an	interesting	question:	can	we	learn	association	rules	across	multiple	microarray	datasets	

to	get	a	larger	number	of	more	convincing	rules?	The	answer	is	yes.	It	is	possible	and	quite	

useful	to	learn	association	rules	from	multiple	datasets.	In	fact,	a	prominent	advantage	of	

the	SARL	algorithm	is	the	ability	to	do	incremental	learning	across	multiple	datasets.		

Assume	we	already	examined	and	ran	the	SARL	algorithm	to	learn	association	rules	

on	datasets	A,	which	includes	genes	G1,	G2,	and	G3.	Now,	a	dataset	B	is	added	with	genes	

G1,	G2,	G3,	and	G4.	We	can	extend	the	association	rules	from	dataset	A	on	G1,	G2,	and	G3	in	

dataset	B.	G4	is	removed	from	B	since	we	cannot	associate	G4	to	dataset	A.	Firstly,	we	

compare	the	reference	conditions	(assays)	between	datasets	A	and	B	and	find	a	coefficient	

for	each	gene	expression	level:	

𝑐1 =
𝐴1
𝐵1	

𝑐2 =
𝐴2
𝐵2	

𝑐3 =
𝐴3
𝐵3	

A1	through	A3	are	expression	levels	of	reference	condition	in	dataset	A,	B1	through	

B3	are	expression	levels	of	reference	condition	in	dataset	B.	c1,	c2,	and	c3	are	coefficients	

we	want	to	find.	

Next,	all	expression	levels	in	dataset	B	are	divided	by	the	corresponding	coefficient:	
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𝐸%
𝑐%
→	𝐸% 	

Where	𝐸% 	is	gene	expression	level	with	gene	number	𝑖,	and	𝑐% 	is	the	coefficient	found	in	the	

previous	step	for	gene	𝑖.	Now,	expression	levels	in	dataset	B	are	adjusted	for	the	differences	

in	experimental	conditions,	we	then	are	ready	to	run	the	SARL	algorithm	on	dataset	B.	

The	following	is	an	example	of	combining	two	datasets:	

	

 
Assay	1	 Assay	2	

G1	 5	 7	

G2	 6	 2	

G3	 3	 1	

Table	69	Dataset	A	

 
Assay	1	 Assay	2	

G1	 5	 2	

G2	 3	 5	

G3	 8	 7	

G4	 3	 5	

 	 	

Table	70	Dataset	B	

According	to	Table	69	and	Table	70,	assuming	Assay2	is	selected	to	be	the	reference	

condition	in	both	datasets.	We	may	calculate	c1,	c2,	and	c3	as:	

c1	=	7/2	=	3.5	
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c2	=	2/5	=	0.4	

c3	=	1/7	=	0.14	

After	dividing	all	the	expression	levels	in	dataset	B	by	the	corresponding	coefficient	

we	have	a	combined	dataset	(shown	in	Table	71):	

	
Assay	1	 Assay	2	 Assay	3	

G1	 5	 7	 1.43	

G2	 6	 2	 7.5	

G3	 3	 1	 57.14	

Table	71	The	Combined	Dataset	

	

The	process	of	learning	association	rules	on	datasets	A	and	B	combined	is	simple.	

We	run	the	SARL	algorithm	on	the	normalized	dataset	B	until	all	support	values	are	found.	

We	can	then	merge	the	support	values	found	for	dataset	B	with	the	support	values	found	

for	dataset	A.	After	eliminating	infrequent	itemsets	based	on	the	new	minsup	value,	we	can	

generate	the	association	rules.	
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