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ABSTRACT OF THE DISSERTATION

Robust and Energy Efficient Hardware-Oriented Security

for IoT Systems and Applications

by

Hongxiang Gu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Miodrag Potkonjak, Chair

Internet of Things (IoT) is a revolutionary network that is envisioned to connect physical

entities to the cyber world. IoT technology has fundamentally changed how we interact with

our world. Worldwide spending on IoT is forecast to reach $745 Billion in 2019, and it is

expected that investments in the technology will maintain double-digit growth rate for years

to come.

Despite wide adoption and strong anticipation in the technology, two major obstacles

heavily constrained the further development in IoT, respectively security and energy chal-

lenges. From the security perspective, the entire lifecycle of an IoT device could potentially

be vulnerable to various types of attacks. Since many devices are deployed in an insecure

environment, attackers could gain unauthorized access to the exposed hardware, which in-

validates many security assumptions made in traditional security research. From the energy

perspective, many IoT devices are incapable of affording traditional cryptographical protec-

tion due to low energy and computation budget. Energy efficiency is therefore crucial for

designs and establishments of IoT.

To address IoT security problems, we explore and propose novel hardware-oriented se-

curity primitive designs and optimization techniques in this thesis. We first investigate the

vulnerabilities of physically unclonable function (PUF), a popular low power hardware se-

curity primitive used in IoT devices, through the creation of a hardware emulation platform

ii



using programmable delay lines (PDL). To address vulnerabilities in PUFs, we propose a

novel security primitive, Interconnected PUF Network (IPN), that interconnects small seg-

ments of strong PUFs in a reconfigurable network, limiting the single-bit prediction accuracy

to as low as 53.19% against a wide range of modeling attacks. We demonstrated that the

interconnections in an IPN can be optimized to maximize output randomness and stability

using our proposed evolution-strategies-based algorithm. Looking beyond PUF-based secu-

rity, we designed content-driven injective functions (CRIF) that rearrange compositions of

hardware injective functions based on previous messages, providing secure message encryp-

tion/decryption between IoT devices.

Facing the energy challenges, we propose “computing while racing” technique that re-

duces 40.4% of area overhead and 7.69% of power when implementing arbiter PUF and

arbitrary logic on field-programmable-gate-arrays (FPGAs). This is achieved through en-

coding digital signals in analog forms and achieves a high percentage of hardware sharing,

suggesting resource sharing could potentially be a promising direction for power/energy re-

duction in IoT devices.

Eventually, we propose two practical IoT applications. We first design a device anomaly

detection utilizing the inconsistency in environmentally sensitive PUF challenge-response

pairs. We show that our detector is more flexible and more power-efficient compared to state-

of-the-art system monitors. Secondly, we demonstrate that our proposal of PUF-assisted

group key management protocol securely protects IoT group communications while reducing

global energy consumption by 47.3% compared to cryptographic key management solutions.
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CHAPTER 1

Introduction

After decades of development, the Internet has connected countless computers in a global

network system, carrying a vast range of information resources and services. Researchers

and engineers in recent years have looked beyond the Internet and came to realize that our

physical world is an information system by itself. Much information can be collected and

utilized using sensors and actuators. The idea of proliferating physical entities in a new

network creates the concept of the Internet of Things (IoT) [1].

The growth in globally connected devices is now mainly driven by IoT devices on both

the consumer side and the enterprise side. By the end of the second quarter of 2018, the total

number of IoT devices globally has reached 7 billion, and this number is expected to exceed

10 billion by 2020 and 22 billion by 2025 [2]. Globally, over $745 Billion were spent in 2019,

and it is expected that the double-digit growth rate would be maintained for years to come

[3]. IoT has been envisioned to be a revolutionary network that connects physical devices

around us to perform intelligent tasks such as monitoring, communication, operation, and

optimization.

Despite the ambitious master plan behind the idea of IoT as well as its rapidly growing

speed, security challenges have always been a major concern in the process of further de-

velopment of the technology. The IoT security problems are particularly challenging due to

two seemingly irreconcilable objectives.

On the one hand, IoT requires a maximum level of security. IoT technology has enabled

a broad spectrum of applications in a variety of environments. From smart appliances in

homes to Industry 4.0 in factories, to intelligent clinical management in hospitals and smart

city systems on city streets. In almost all IoT related applications, sensitive data of large
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scale are collected, stored and transferred through IoT networks. In case of a security breach,

whether it is invasive, semi-invasive or non-invasive [4], in an IoT system, adversaries could

potentially gain private information such as identity, health-related records, business secrets,

and even military records. The compromise of IoT devices that are associated with cyber-

physical systems could be even more dangerous or even lethal in some cases. For example,

security researchers Billy Rios and Jonathan Butts have shown that it is possible to hack

into pacemakers and control the electrical impulses that are sent to the heart to regulate the

patient’s heartbeat [5].

On the other hand, security always comes with a price; it takes energy and computational

power to detect and defend against adversarial actions. Many IoT devices have highly con-

strained energy and computational budget due to harsh requirements on device size, weight,

and portability, leaving little resource to comply with the high-security requirement. Adopt-

ing conventional security approaches in IoT could consequently lead to low performance and

high maintenance cost.

In this thesis, we focus on the problem of designing and improving hardware-oriented

security subsystems in IoT to perform a variety of crucial security tasks under a highly

constrained environment. In defiance of the seemingly contradictory requirements, we show

that it is feasible to provide the highest possible level of security under the lowest energy

and computational power budget using our proposed methods.

1.1 Objectives

We believe this thesis is an adventurous exploration in three strongly correlated directions.

We intend to make our contributions in meeting three objectives, respectively from the

perspectives of security, energy, and applicability.
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1.1.1 Security Objectives

IoT is a complex system that consists of several layers of abstraction spanning in multiple

dimensions. From the physical layer of hardware sensors and controllers to the application

layer that utilizes the collected IoT data for specific tasks, security vulnerabilities could be

exploited anywhere, resulting in catastrophic compromise of the entire system. Majority of

the current attacks on IoT systems are software attacks. Software attacks on IoT are popular

because many similar security vulnerabilities are shared with other systems. In most cases,

these exploited vulnerabilities are general software security problems instead of IoT specific

issues. In recent years, the rise of IoT regime creates new attack surfaces as well as new

security challenges at the hardware level.

Hardware security is a natural starting point for research in IoT systems as hardware is

the basis of all IoT devices. Protecting IoT systems at hardware level grants system designers

great flexibility to minimize energy and area cost. Security at the hardware level also provides

a solution to the problem that classical cryptography could not resolve, presenting a new

level of protection against emerging attack methods such as side-channel attacks [6] and

physical attacks.

The security objective we claim to meet is to examine vulnerabilities in hardware security

subsystems and propose robust and secure protection to these subsystems.

1.1.2 Energy Objective

A large portion of IoT devices are compact and powered by batteries due to the high require-

ment of mobility. Therefore the energy budget for security subsystems is minimum if not

none. Devices such as smartphones, tablets, and smartwatches require daily recharging. The

high energy consumption in these devices is a major obstacle in terms of adopting advanced

security modules to the system. Devices such as wireless sensors have much lower energy

consumption but usually equipped with an ultra lightweight power source. These low power

devices are often massively deployed over a broad area; recharging or replacing the power

source is extremely costly. To reduce the cost and prolong the lifespan of each device, most
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device manufacturers leave no room for security subsystems.

All devices are in great need for energy efficient security subsystems to defend against

evolving attack techniques. In this thesis, we focus on both creating techniques that could

boost energy efficiency in existing security primitive as well as designing novel and ultra

lightweight security solutions in IoT devices and IoT applications.

1.1.3 Applicability Objective

IoT system is playing an increasingly irreplaceable role in countless numbers of applications

from home automation to city infrastructure management. Newer and more creative applica-

tions that could utilize IoT technology is booming at an enormous speed. Our applicability

objective is to explore how we could use our efficient and robust hardware-oriented security

solutions to protect and secure some of the emerging IoT-based applications.

1.2 Contributions and Organization

The dissertation is organized into three major parts, where each part explains our contri-

bution to meet security, energy and applicability objectives. Note that even though each

part focuses on its theme, the underlying logic beneath is coherent and consistent: we aim

to design energy efficient hardware-oriented security subsystem for IoT and its applications.

We analyze energy efficiency when introducing our proposed security techniques while we

also investigate the security impact on our energy efficiency improvement techniques. The

detailed organization can be viewed in Table 1.1.

The first part of the dissertation discusses low power hardware security primitives in

IoT devices. We investigate security properties in hardware security primitives using two

different approaches, respectively improving existing designs and creating novel architectures.

We first focus on security primitives based on a promising technology - PUFs. PUF is a

category of hardware functions that utilize the inevitable process variation introduced during

manufacturing to create unique mappings between inputs and outputs. Recent research on
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Security Objective
Optimization of PUFs Non-PUF-based Primitives

• Stable PUF Emulation Platform Using
Programmable Delay Lines (Chapter 2)

• Securing PUFs with Interconnection and
Reconfigurability (Chapter 3)

• Optimizing PUFs with Evolution Strate-
gies (Chapter 4)

• Content-driven Reconfigurable
Injective Functions (Chapter 5)

Energy Objective

Hardware Sharing between PUF and Digital Logic (Chapter 6)

Applicability Objective

Lightweight Environmental Anomaly Detection (Chapter 7)
PUF-based Group Key Management (Chapter 8)

Table 1.1: Organization of the dissertation chapters matched three major objectives.

PUFs indicates that PUFs mainly suffers from stability issues and vulnerabilities against

modeling attacks. To exploit vulnerability issues and stability weakness in some PUF designs,

we first propose to utilize programmable delay lines (PDL) technology to create a platform

that emulates stable arbiter PUFs with matching accuracy of 87.42% in Chapter 2. We

propose the design of interconnected PUF Network (IPN) that connects multiple small PUFs

in a network in Chapter 3 as an attempt to defend PUFs against modeling attacks. The

interconnections in IPN can be reconfigured from time to time to completely remap the input-

output pairs with low latency and low energy. We show that reconfigurable IPN is capable

of preventing adversaries from collecting sufficient training data to apply modeling attacks

and therefore providing robust security to protected hardware. The maximum single-bit

prediction accuracy is less than 53.19% against a wide range of modeling attacks. We address

the stability issues in IPN by proposing a novel mechanism that uses evolution strategies

(ES) to find the best combination of PUF segments in Chapter 4, improving randomness

and stability by 220.8% and 22.62% compared to unoptimized configuration. Taking a step

forward, we also applying similar reconfiguration ideas to non-PUF-based security primitives.
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We eventually propose Content-driven Reconfigurable Injective Function (CRIF) to conduct

lightweight encryption/decryption tasks in IoT devices and communication between them

in Chapter 5. We demonstrate that CRIF is an excellent alternative to cryptography-based

and PUF-based competitors due to stability, efficiency, and reconfigurability, especially on

IoT devices where computational power and energy are constrained. We measured CRIF

achieves at least 75.04% of power savings compared to popular AES-based schemes.

The second part of the thesis is reducing energy cost in existing security primitives. We

propose a novel technique called hardware “free riding” to significantly reduce area and

energy overhead of analog-based PUFs. While PUFs are low power and low energy on

application specific integrated circuits (ASIC), on reconfigurable hardware platforms such

as field-programmable-gate-arrays (FPGA), implementation can be costly. In Chapter 6, we

address this problem by introducing a technique that allows arbiter PUFs to be implemented

together with any arbitrary logic on the same piece of hardware on FPGA. The evaluation

shows our technique reduces 40.4% of area overhead and 7.69% of power consumption when

implementing 128-bit arbiter PUFs and eight 32-bit linear-feedback shift registers (LFSR)

on FPGAs.

Lastly, in the third part, we propose two applications that could greatly benefit from our

proposed designs and techniques introduced in the first two parts. We first present an ultra

lightweight onboard anomaly detection mechanism that has excellent potential to accurately

detect suspicious voltage and temperature changes in Chapter 7. By actively monitoring sta-

bility variations of onboard analog PUFs, our design could perform flexible, fine-grained chip

monitoring service while reducing 63% of area and 13% of power compared to sensor-based

Xilinx System Monitor. Lastly, we investigated the well-known problem of key management

in IoT systems in Chapter 8. We propose to use multistage interconnected PUF (MIPUF)

to assist the protection of key management system at both software and hardware level. Our

experimental result indicates that our design provides physical protection when compared to

Elliptic-Curve Cryptography (ECC) based solutions and reduces global energy consumption

by 47.33%.

We believe this thesis provides inspirations, insights, and tools for IoT device designers
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and application developers who seek to provide sufficient protection in heavily constrained

environments.
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CHAPTER 2

Stable PUF Emulation Platform Using Programmable

Delay Lines

2.1 Motivation

It has been widely acknowledged that physically unclonable functions (PUFs) as a type of

hardware security primitive have great potentials to be used in many applications. A PUF

is a device implementing a one-way function which takes advantage of process variation to

guarantee the property uniqueness of each piece.

Modern research has shown that some PUF designs are not as perfect as what they

seem to be. Many PUFs can be modeled using software or hardware approaches based

on characterization results. This process is generally noted as PUF emulation. Though

PUFs can be emulated, most state-of-the-art emulation techniques are both inefficient and

inaccurate due to complication in PUF architecture and unstable nature of analog systems.

Software simulations with high precision are generally slow and power-hungry, especially

for complicated PUF designs. Table 2.1 shows the time required to generate 10,000 CRPs

with a 64-bit arbiter PUF and a hardware description language (HDL) simulator. A software

simulation of PUF needs significantly more time to produce a response compared to the use

of the PUF implemented on a piece of hardware. Physically matching a PUF to a target

PUF is an alternative technique. Many studies have taken place in attempting to match two

PUFs using device aging technology [7], which require fine-grained control in laboratories.

Since aging is a unidirectional process, both overage and underage could lead to low precision

in the emulation. Thus, a highly stable operational environment is required.
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Type Latency (s)
HDL simulator 98.38
Hardware PUF 0.001

Table 2.1: Time required to generate 10,000 CRPs with a 64-bit PUF simulation using a
HDL simulator and a 64-bit FPGA-based arbiter PUF implementation.

2.2 Technical Goal and Contributions

Our technical goal is to create a new emulation platform to resolve the above issues in

standard PUF emulation techniques. The key idea is to emulate an existing PUF using

hardware to achieve low latency overhead as well as resilience against operational variations.

We achieve our goal by using the look-up table (LUT) based PDLs. We believe the highly

stable and low latency PDL serves as an ideal building block as our PUF emulation platform.

The PDL is used as a clone that shares similar delay characteristics of each segment in the

standard PUFs. By accurately emulating every single segment of the target PUF, the whole

emulation is capable of predicting the corresponding responses of the target PUF when

provided with an arbitrary challenge.

In this chapter, we first review the related literature on PUFs and PDLs. Then we give

the preliminaries of the basic PUF model we use as well as the design of PDL on FPGA.

We also provide a motivational example of our PUF emulation scheme. We then propose

a high precision PUF characterization mechanism that enables a PUF emulation platform.

Later we demonstrate in detail our PUF emulation platform in the subsequent sections.

Eventually, we provide our analysis of the reliability and accuracy of our proposed design by

presenting experimental results on Spartan-6 XC6SLX45 platforms.

2.3 Related Work

2.3.1 Physical Unclonable Function (PUF)

PUF was first proposed by Pappu et al. using mesoscopic optical systems [8]. Gassend et

al. developed the first silicon PUFs through the use of intrinsic process variation in deep
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submicron integrated circuits [9]. A variety of other types of PUFs have since been proposed,

including arbiter PUFs [9], ring oscillator PUFs [10], SRAM PUFs [11], and butterfly PUFs

[12]. Xu et al. has also propose to digitalize PUFs and create digital PUFs [13]. Another

popular robust PUF design is proposed by Maiti et al. with a selected PUF challenge-

response set [14]. More recently, PUF designs have been focusing on improving randomness

and learning-resilience, including [15] [16] [17] [18] [19]. Nozaki et al. even designs more

side-channel attack resilient PUFs using statistical tests [20].

Numerous traditional protocols can be interpreted using PUFs, ranging from the tra-

ditional security key communication and authentication [21] to more sophisticated public

key communication [22] with the vital idea of employing the high unpredictability of PUF

responses to secure the information. More recently, efforts have been made to enhance the

security and randomness of PUFs. Devadas et al. have proposed to use a syndrome coding

scheme to reduce the amount of information leakage caused by the traditional PUF key

generation system [23]. At the system level, Zheng proposed to use PUFs as an instruction

authentication tool for embedded systems [24].

PUFs have also been well studied in many novel hardware security applications. Devadas

et al. proposed to use PUFs in RFID for anti-counterfeiting applications[25]. Gu et al.

propose several low power applications based on PUF including computing-while-racing PUF

[26] and PUF-based system anomaly detector [27]. Zhang et al. proposed a PUF-FSM

binding scheme for IP-protection [28]. Xu et al. proposed an ultra-low energy PUF matching

scheme using programmable delay lines [29] and device aging [30]. Gao et al. proposed to

use SRAM PUF for key generations [31], Huang et al. proposed a PUF-based identity

verification [32]. Gope et al. also applied PUF to RFID authentication protocols [33].

Tajik et al. designed a system monitor using PUFs [34]. Aman et al. embedded PUFs in

IoT systems for mutual authentication purposes [35]. PUFs can also be used to construct

Recursive Inverse Functions(RIF) that provide fast and ultra-low energy encryption and

decryption for data protection [36].

10



2.3.2 Programmable Delay Lines (PDL)

Programmable delay lines are a series of digital delay lines with electrically programmable

and trimmable delay times [37]. Taking advantage of internal structures of LUTs, Majzoobi

et al. proposed to implement PDLs through creating and controlling delay biases on FPGAs

[38]. PDLs are used in many different applications, including bus timing adjustment [39],

programmable pulse generator at high resolution [40] and metastability characterization on

FPGA [41]. Since PDLs are usually controlled at ps-level, accurate delay measurements is

required. Tsai et al. proposed vernier delay line-based built-in delay measurement circuits

with a small area overhead and can provide high-resolution delay measurement [42]. Ray-

chowdhury et al. proposed on-chip delay estimation of segment path delays in [43]. Majzoobi

et al. designed a delay characterization circuit with clock synthesis that can measure delays

at picosecond resolution on FPGAs through probabilistic estimation[44].

2.3.3 PUF Attacks

Even though unclonability and unpredictability are the main characteristics of PUFs, previ-

ous work has shown that PUFs are vulnerable to three types of attacks: modeling attacks,

physical attacks, and side-channel attacks.

Modeling attacks are a commonly adopted approach for PUF characterization. Ruhrmair

et al. proved that arbiter PUFs are weak against machine learning attacks [45]. They further

analyzed the PUFs in the context of security protocols in [46]. Ganji et al. proved that ring

oscillator PUFs could be completely learned using a Probably Approximately Correct (PAC)

learning framework [47].

Physical attacks correspond to gate and transistor level characterization (GLC) where

delay, leakage, or some other device metrics are analyzed [48]. Tajik et al. proposed a

photonic emission analysis mechanism to characterize an arbiter PUF with extremely high

precision [49].

Side-channel attacks have also been studied in breaking existing PUF designs. Mahmoud

et al. proposed to combine modeling attacks with power side-channel attacks to better
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characterize PUFs [50].

2.3.4 PUF Emulation

Many attacks on PUF designs have enabled a large number of studies in emulating a PUF

device. Software simulation is one of the most popular methods to predict responses based

on a given challenge. All research mentioned in Section 2.3.3 adopts software simulation to

evaluate characterization accuracy. However, software simulation suffers from high latency

and high energy consumption, thus not capable of providing a lightweight real-time emulation

of a target PUF.

Another way of emulating a target PUF is through PUF matching (creating a physical

clone of a PUF). Helfmeier et al. proposed a mechanism to produce a physical clone of

an existing SRAM PUF using Focused Ion Beam circuit edit [51]. Meguerdichian et al.

proposed a method to match a PUF to another PUF using device aging techniques [7].

Creating a physical clone of a PUF using the above methods requires laboratory equipment

and environment, thus very expensive and difficult to achieve.

2.4 Preliminaries

2.4.1 PUF Model

The PUFs we intend to emulate are standard arbiter PUFs. Figure 2.1 shows the schematic

diagram of the PUF model. The basic structure of an n-bit PUF consists of n delay segments.

The four propagation delays in the ith segment are denoted as diAC , diBD, diAD and diBC

respectively. diAC and diBD are considered a delay pair, and diAD and diBC are considered as

another delay pair. The delays within each delay pair are designed to be nominally equal

to each other. After manufacturing, however, process variation causes unpredictable delay

difference within each pair. When built on an FPGA, each delay pair in each segment is

directly implemented using LUTs with the same size. Two identically designed overall paths

are generated by connecting delay components in each segment in a chain, and an arbiter is
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appended at the end of the two paths. The two paths can be modified using the control bit of

each segment. For example, in Figure 2.1, if the control bit of the ith segment is 0, then diAC

is appended to the upper segmental path and diBD appended to the lower segmental path. If

the control bit is 1, diBC is appended to the upper segmental path and diAD is appended to

the lower segmental path. The control bit decides which two delays inside a PUF segment

is appended to the PUF paths.

Ar
bi
te
r

C1 C2 Cn

A

B

C

D

dAC

dBD

dAD

d B
C

...

...

ResponseStimulus
Signal

Challenges

Segment 1 Segment 2 Segment n

Figure 2.1: The model of an n-bit arbiter PUF.

The vector consisting of all control bits is denoted as the PUF challenge. When an n-bit

challenge (c1c2 . . . cn−1cn) is provided to the PUF, two nominally identical paths are thus

configured. To retrieve a response, an impulse signal is fed into the system to excite both

paths simultaneously. Because of process variation, the signal traveling along one of the two

paths reaches the arbiter earlier, generating a corresponding arbiter output denoted as the

PUF response. For an n-bit PUF, there exist 2n challenge-response pairs.

2.4.2 PDL on FPGA

Majzoobi et al. [38] proposed a general design of PDL on FPGA platforms implemented

using a single LUT-2. Figure 2.2 shows an example PDL implemented with LUT-2 with two

selection bits S0 and S1. The propagation delay from A0 to Oi when A0 = 0 is displayed in the

blue line, and the same delay when S0 = 1 is shown in the red line. The path represented in

the red line seems longer than the path marked in blue according to the figure, representing

the propagation delay from S0 to Oi is longer when S0 = 1. This result indicates that

different input value, although completely digital, could result in a slight difference in the
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Figure 2.2: The internal structure of a 2-input LUT.

analog propagation delays. We utilize the design of the slightest asymmetry in PDL design

to emulate delay-based PUFs.

2.5 A Motivational Example

Segment	Si	

PDLai	

PDLbi	

PDLci	

Δdi	

ΔdPDLi	

Δdi-1	

ΔdPDLi-1	

Matched	PDL	
Segment	

0	
1	

Figure 2.3: An example of using PDLs to emulate a PUF.

Now we illustrate our PDL-based PUF emulation platform using a motivational example

in Figure 2.3. We assume the PUF to be emulated the same structure as we explained in the

Preliminaries section, where each PUF segment uses a user-provided control bit to configure

the competing paths within the segment. For example, if the control bit of segment i is
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zero then the delay difference between the upper and lower path ∆di = diAC − diBD; if the

control bit of segment i is one then the delay difference between the upper and lower path

would instead be ∆di = diBC − diAD. To clone segment i in the target PUF, we create three

PDLs to form an emulation segment. We carefully choose the selection bits for each PDL

so that the three PDLs (PDLia, PDL
i
b, PDL

i
c) are configured to obtain delays diA, diB and

diC respectively. Similar to segment i in the target PUF, the ith emulation segment also

takes a control bit to select which two PDL delays are appended to the path. If the control

bit is 0, PDLia and PDLib are selected, producing diPDL = dia − dib ≈ ∆di = diAC − diBD

as output delay difference; if the control bit is 1 PDLia and PDLic are selected, producing

diPDL = dia−dic ≈ ∆di = diBC−diAD in output delay difference. The same emulation process is

thus repeated for all segments of the target PUF. To summarize, the basic idea of emulating

an n-bit PUF is to configure 3n PDLs where the delays of each PDL are configured in such

a way that all delay differences produced by each PUF segment can be reproduced using

PDLs.

2.6 PUF Characterization

It is well known that standard arbiter PUFs can be characterized using statistical methods

[52]. In this section, we first propose a linear model for an arbiter PUF design. We claim

that by solving a set of linear equations constructed by measuring PUF delay differences,

we can characterize a target PUF of our choice with low overhead. The resulting model can

accurately retrieve the delay differences in each PUF segment.

2.6.1 Creating Linear Equations

Assume that the characterization target is an n-bit arbiter PUF with n segments. We use

the same notation as we declared in Figure 2.2. The ith PUF segment has 4 different delays.

The four delays are respectively diAC , diAD, diBC and diBD. The control bit of the segment

decides which pair of delays is appended to the segmental paths shown in Equation 2.1.
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Delay(Path 1), Delay(Path 2) =


diAC , d

i
BD ci = 0

diBC , d
i
AD ci = 1

(2.1)

The two paths generate one of the two possible delay differences depending on the chal-

lenge bit ci. For clarity, we denote the delay difference of the ith PUF segment to be ∆di,

defined in Equation 2.2.

∆di =


diAC − diBD ci = 0

diBC − diAD ci = 1

(2.2)

The value of ∆di can be either positive or negative. For example, when ci = 0, a positive

∆di indicates that diAC > diBD and a negative ∆di indicates that diAC < diBD.

We observe that the delay difference ∆d between the two PUF paths is merely the sum

of all segmental delay differences in the PUF. Based on this observation, we can create linear

equations if the delay difference between a pair of competing PUF paths is measured. Solving

the equations would thus provide accurate delay difference characterization for each PUF

segment.

Based on Equation 2.2, we create two variables representing the two possible delay differ-

ences in each PUF segment ∆di0 = diAC−diBD and ∆di1 = diBC−diAD. For a 64-bit PUF, there

are in total of 128 unknown variables. We also generate 10,000 random challenge vectors

and measure the final delay differences between the two nominally identical PUF paths. The

delay differences are measured using a pico-second accurate delay characterization circuit.

For N challenges, we are capable of constructing N linear equations with m unknown vari-

ables. The jth linear equation is constructed from the jth challenge vector cj = {cj1c
j
2 . . . c

j
m}.

An example of a set of 10,000 linear equations on a 64-bit arbiter PUF is shown below.
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∆d1k11
+ ∆d2k12

+ . . .+ ∆dnk1m = ∆dmeasure1

∆d1k21
+ ∆d2k22

+ . . .+ ∆dnk2m = ∆dmeasure2

. . .

∆d1kN1
+ ∆d2kN2

+ . . .+ ∆dnkNm = ∆dmeasureN

N = 10, 000,m = 64

kji =


0 cji = 0

1 cji = 1

We split the 10,000 equations into 10 sets and apply a linear equation solver to find the

least square solutions to solve for a close approximate of delay differences in each segment

for each set. We take the average solution for each variable to be the delay difference value.

2.6.2 Improving Characterization Accuracy

PUF as a security primitive has suffered from stability issues. An unstable CRP might

alter the corresponding linear equation and eventually lead to a large error rate in the delay

characterization result. A stable CRP, on the other hand, is less likely to modify the linear

equation, making the solutions more consistent. To improve characterization accuracy, we

propose to create linear equations based on only stable CRPs.

Table 2.2 shows the CRP distribution of a 64-bit arbiter PUF. Overall, 87.94% of the

responses are stable when provided with the same challenge. We define stable CRPs as

CRPs that inverts its response with probability less than 10% when providing the same

challenge 1,000 times. 63.5% of 10,000 challenges provides stable responses. By creating

linear equations based on only stable CRPs, we believe the characterization accuracy can be

improved.
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Type Bit inversion rate range Frequency
Stable ≤ 10% 63.5%
Mostly Stable 10% - 30% 32.2%
Unpredictable bit inversion > 30% 5.3%

Table 2.2: CRP distribution of a 64-bit arbiter PUF. 10,000 randomly selected challenges
were fed into the PUF and the bit inversion rate is calculated over 1,000 measurement of
responses.

2.7 PUF Emulation - PDL Evaluation

In this section, we evaluate the delay characteristics, process variation effect, and stability

properties of PDL to examine the feasibility of using PDL to emulate an arbiter PUF.

2.7.1 Delay Measurement Setup

To measure and verify the delay of PDL on the FPGA we use the circuit describe by Majzoobi

et al. [38]. The delay characterization circuit is shown in Figure 2.4. We assumes the clock-

to-Q delay at the launch FF is tclk2Q, the clock skew between the launch and sample flip-flops

(FFs) is tskew, the clock pulse width is denoted as T and the time that a signal propagate

through Circuit Under Test (CUT) and reach the sample FF from the moment the launch

FF is clocked is denoted as tp = tCUT + tclk2Q − tskew. Noted in our experiment the CUT

is essentially PDL segments connected in chains using the configurations to adjust its delay

characteristics.

The pulse generator sweeps through different frequencies and calculates the approximate

delay from the frequency of the clock signal that causes the timing error probability to be

50%. The measurement is valid because as we sweep the frequency of the function generated

from the pulse generator T and makes it approach tp, the sample FF enters a metastable

state because of the setup and hold time violations, and its output becomes nondeterministic.

The probability that the metastable state resolves to a 0 or 1 is a function of how close T is

to tp. The metastable state resolves to a 1 with a probability of 0.5 indicate that T = tCUT .

Through careful adjustment of the pulse frequency at high resolution, the circuit could

achieve pico-second resolution in delay measurements.
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Figure 2.4: Delay characterization circuit.

2.7.2 Delay Measurement Results

Average delay of each LUT are measured and calculated under 25 ◦C operating temperature,

1.2V FPGA core voltage. The results are shown in Figure 2.5. Figure 2.5a shows the delay

difference between any pair of configuration bits. Figure 2.5b shows the absolute value of the

delay difference between any pair of configuration bits and Figure 2.5c shows the Hamming

distance heatmap between each pair.

The largest difference is 13 ps, which occurs between 00000 and 11111, located at location

(x,y) = (0,31) and location (31,0) in Figure 2.5a and 2.5b. The diagonal line in both figures

from the lower left corner to the upper right corner is all 0s because we are comparing each

configuration bit to itself.

We notice that some patterns shown in Figure 2.5b can be observed in Figure 2.5c.

The upper left and the lower right corner of both heatmaps are very similar, indicating

that if two configuration vectors have a large delay difference in PDL, these two vectors

also have a large Hamming distance. We believe this is an accurate observation because

large Hamming distance indicates that the corresponding internal signal paths share very

few common routes. Consequently, it is more likely to generate a higher delay difference.

However, note that sharing a few common routes does not always indicate a large delay

difference. Two very distinct signal paths might produce a small delay difference. Thus, we

also see many patterns in the Hamming difference heatmap are not observable in Figure 2.5b
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(a) (b) (c)(a) Delay difference between any pair of config-
uration bits. Delay difference unit measured in
ps.

(a) (b) (c)(b) Absolute value of delay difference between any
pair of configuration bits. Delay difference unit
measured in ps.

(a) (b) (c)(c) Hamming distance between all pairs of config-
uration bits.

Figure 2.5: Delay Measurement Results
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2.7.3 Process Variation

We have run experiments on three difference FPGA boards to test the effect of process

variation. For each board, we implemented PDL on five different locations with the same

design. All PDLs are provided 00000 and 11111 as configuration bits. The average delays of

PDL on three boards are compared and presented in Table 2.3 indicating process variation

leading to approximately 1.6% of fluctuation. However, the delay differences stay relatively

stable, with variation less than 3ps. Thus, we believe it is safe to assume process variation

has limited impact on PDL when implemented on similar hardware, especially when the size

of PDL is relatively small.

00000 (ns) 11111 (ns) Difference (ns)
FPGA 1 0.555 0.568 0.013
FPGA 2 0.553 0.564 0.011
FPGA 3 0.546 0.556 0.010

Table 2.3: Delay measurement results on three FPGAs (XC6SLX45).

2.7.4 Stability

Ideally, any pair of configuration bits ci, cj (ci 6= cj) should produce a pair of delays with a

non-zero delay difference when applied to two PDLs, and the delay difference should remain

stable. However, this is not always true in reality. PDL is a timing-based scheme. Thus, it

is sensitive to environmental changes. Also, the environmental impact on delays may not be

equal for each path inside the PDL. Non-uniform impact on delays thus leads to instability

in pairwise delay differences.

As an example, Figure 2.6 illustrates two possible outcomes of temperature variations for

two PDL paths. Figure 2.6a shows a scenario where path 2 is more sensitive to temperature

than path 1. At lower temperature t1, the delay on PDL path 1 dt1Path1 is larger than the

delay on PDL path 2 dt1Path2 (∆d1 = dt1Path1 − dt1Path2 > 0). However, when the temperature

increases to t2, delay on path 2 increases at a faster rate, and at a point the delay on path

2 is greater than the delay on path 1 (∆d2 = dt2Path1 − dt2Path2 < 0). We intend to avoid this
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Figure 2.6: Signal propagation delay of PDL vs. temperature of two PDL paths

scenario because this type of instability results in sign inversion of delay differences, creating

a significant error with a relatively large probability. Figure 2.6b shows an almost ideal

scenario where the sign of delay differences between path 3 and path 4 (∆d3 and ∆d4) does

not change as the temperature varies from t1 to t2. Also, ∆d3 ≈ ∆d4, which means that the

delay difference value stays relatively stable as well. Stable delay difference, in turn, leads

to low error rate in emulation results.

Similar to PUFs, PDL is primarily affected by temperature and voltage. To analyze how

PDL behaviors can vary, we test PDL in different environmental settings. Our experimental

results show that PDL is capable of producing relatively stable delay differences in normal

conditions. All delay measurements are done on a chain of four PDLs using the delay

characterization circuit. The PDL chain is connected serially as shown in Figure 2.7. All

delays are measured from the signal-in port to the signal-out port.

PDL1 PDL2 PDL3 PDL4

Configuration 
[19:15]

Configuration 
[14:10]

Configuration 
[9:5]

Configuration 
[4:0]

Signal-in Signal-out

Figure 2.7: PDL chain used for stability tests.
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2.7.4.1 Temperature

We evaluate the delays of PDL for 20,000 different configuration bits on a chain of four PDLs

at five different temperatures within the allowed operating temperature range (0 ∼ 85 ◦C).

The delays are measured using the delay characterization circuit as described in Figure 2.4.

We adjust the temperature by placing the FPGA device in a temperature controlled chamber.

To evaluate the delay characteristic variations as core temperature changes, we first collected

delay measurements for 10,000 PDLs on FPGA. Then, we observe the stability of PDL

in different temperatures through constructing 10,000 delay pairs (reference temperature

vs. tested temperature) and calculate the delay ratio between each pair. Ideally, if the

temperature impact on the PDL chain is uniform over all PDL paths, we should observe

those delay ratios stay unchanged as we adjust the temperature. We set the delay ratios

measured at 25 ◦C as our reference and compare all delay ratios at different temperatures

with it.

Figure 2.8: Delay characteristic variation under different temperature settings.

Figure 2.8 indicates the delay characteristic changes as core temperature varies. The

average delay slightly decreases by 6.89%, while the variance in delays increases by 4.25% as

temperature increase from 5 ◦C to 85 ◦C.

Figure 2.9 shows the comparison results in four different temperature settings: 5 ◦C,
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(a) Delay pair ratios
25 ◦C vs. 5 ◦C.

(b) Delay pair ratios
25 ◦C vs. 45 ◦C.

(c) Delay pair ratios
25 ◦C vs. 65 ◦C.

(d) Delay pair ratios
25 ◦C vs. 85 ◦C.

Figure 2.9: Delay ratio stability over 4 different temperature settings, VCCINT fixed at
1.2V. Red line: linear regression result. Green line: degree-2 quadratic regression result.

45 ◦C, 65 ◦C and 85 ◦C. Each blue point represents a specific delay ratio between two config-

uration vectors, where the x coordinate is the ratio calculated in the reference temperature

and the y coordinate is the ratio calculated in the test temperature. The black line in

each subgraph indicates the result of a perfectly stable PDL. Linear regression (red line)

and degree-2 quadratic regression (green line) were performed on the collected data. The

degree-2 quadratic regressions in all four settings are very close to straight lines, indicating

a linear relationship between the x-axis and the y-axis. To quantify the stability of PDL in

all temperature settings, we evaluate the slope, intercept, and standard error of all linear

regression results in Table 2.4.

In general, at 5 ◦C and 45 ◦C, the regression slope is very close to 1, the intercept is close

to 0, and the standard error is almost negligible, meaning the impact of temperature change
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Temperature Slope Intercept std err
5 ◦C 0.9795 0.0200 0.0027
45 ◦C 0.9813 0.0186 0.0030
65 ◦C 0.6304 0.3696 0.0075
85 ◦C 0.4450 0.5550 0.0093

Table 2.4: Linear regression results on PDL temperature stability evaluation.

is mostly uniform over all PDL paths so that the delay difference stays relatively stable.

At higher temperatures 65 ◦C and 85 ◦C, the regression slopes are respectively 0.6304 and

0.4450, far from 1, indicating some paths are much more sensitive to the temperatures than

others. This result means at very high temperature the PDL-based emulation segment result

has a much higher probability of being inconsistent with the results collected at 25 ◦C. In our

emulation platform design, we assume that the temperature varies at most 20 ◦C from the

room temperature. Thus, it is safe to claim that PDL is stable against reasonable thermal

fluctuation.

2.7.4.2 Voltage

Similar to the evaluation of thermal variations, we investigate the voltage variation impact

on PDL. Our experimental platform Spartan-6 does not contain a freely tunable DC-DC

converter in the power module, thus adjusting core voltage cannot be done internally. More-

over, the manufacturer of our experimental platform has a fairly stringent requirement on

FPGA core voltage (VCCINT = 1.2V), making it very difficult and risky to directly apply

an adjustable external power source to the FPGA core. Fortunately, Spartan-6 provides an

extended performance mode that applies to VCCINT = 1.26V. We first evaluate the changes

in delay characteristics as we change the VCCINT in Figure 2.10. We observe that the av-

erage delay slightly decreases by 11.19%, while the variance in delays decreases by 19.46%

as VCCINT increase from 1.2V to 1.26V.

We also evaluate the delay ratio between 10,000 PDL delay pairs in both normal mode

and extended performance mode. The result is shown in Figure 2.11.

Figure 2.11 shows that by increasing the FPGA core voltage from 1.2V to 1.26V, the im-

25



Figure 2.10: Delay characteristic variation under two VCCINT settings.

Figure 2.11: Delay ratio stability when increasing FPGA core voltage from 1.2V to 1.26V,
operating temperature fixed to 25 ◦C. Red line shows linear regression result, green line
shows degree-2 quadratic regression result.

pact on each path is relatively stable and consistent. Also, both linear and degree-2 quadratic

regression were performed and the results are plotted in the figure. The quadratic regression

result (green line) is almost flat, indicating that a linear model is a better representation

of the data. The linear regression result (red line) indicates that the delay pair ratios stay

mostly stable as we increase the voltage. Linear regression has a slope of 0.9754, intercept of
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0.02463, and standard error of 0.0027, very close to the ideal result (black line). Based on the

results, we claim it is safe to assume that the PDL delay ratio stays relatively stable against

minor changes in voltage and the impact of voltage variation is uniform over all paths.

Also, it is interesting to notice that less variance is observed on both ends of the plot.

This phenomenon is also observed in temperature variation experiments. When the delay

ratios are further away from 1, meaning the delay differences are larger, the PDL is less likely

to behave differently when the environment changes.

2.8 PUF Emulation - Design

In this section, we discuss a PDL-based hardware emulation of a characterized PUF. We

first propose a segmental emulation approach that emulates each segment in the PUF. Later

we propose a method to scale the delay difference by a factor in the new emulation platform

while maintaining the challenge-response relationship. Lastly, we introduce a method to find

the scaling factor that maximizes emulation accuracy.

2.8.1 Perfect Segmental Emulation

The goal of perfect segmental emulation is to create an exact “clone” for each segment in

the PUF so that when connecting all emulation segments together, an accurate emulation

of the entire PUF is then constructed.

After the characterization process of a PUF, delay differences for each segment is re-

trieved. We use three PDL to create an emulation segment Ei with three different delays diA,

diB and diC to emulate the ith segment of the PUF. We program the control bits of each PDL

so that the three delays are capable of producing two delay differences ∆di1 and ∆di2 that

are identical to the two delay differences the ith PUF segment generates. The segmental

emulation is described in Equation 2.3 and 2.4.

∆di1 = dia − dib (2.3)
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∆di2 = dia − dic (2.4)

If we can guarantee the validity of Equation 2.3 and 2.4, then it is safe to claim that Ei

now behaves the same way the ith PUF segment behaves.

Control	bit	

PDLai	

PDLbi	

PDLci	

ΔdPDLi	
0	
1	

A	

B	

C	

D	

Figure 2.12: Internal design of the ith emulation segment Ei.

Figure 2.12 shows the internal structure of the ith emulation segment Ei. PDLia is

configured to have delay of dia, PDL
i
b is configured to have delay of dib and PDLic is configured

to have delay of dic. The entire segment takes a control bit to select a pair of PDL delays to

generate the desired delay difference: ∆di1 or ∆di2.

2.8.2 Delay Difference Scaling

Perfect segmental emulation guarantees the correctness of the emulation; however, it is chal-

lenging to implement. The delay difference characterization results we eventually obtained

are relatively small, sometimes even less than the PDL resolution of 1 ps. Thus, it is not

possible to create a perfect clone (with the same delays) of a PUF segment using PDL on

an FPGA platform.

We observe that an accurate emulation can be created without a perfect segmental emu-

lation. The PUF response does not depend on actual delay value, but instead the sign of the

difference between competing for path delays. We can multiply the real delay difference by

any positive factor α, and the sign of the difference between path delays should remain the
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same. If d(p)− d(p′) > 0, then αd(p)− αd(p′) > 0 for α > 0. Delay difference scaling allows

adjustments of delays in each PDL so that accurate emulation can still be achieved. Note

once a suitable scaling factor α has been decided, this value should be applied consistently

to all emulation segments to ensure the correctness of the sign of final delay difference.

2.8.3 Scaling Factor

A PDL is able to create a delay dPDL that falls within a specific range [dmin, dmax]. This

range usually covers delay difference from 1-100 ps depending on the FPGA platform. Before

emulating a target PUF, all emulation segments should agree on a minimum delay difference

of ∆dminPDL. ∆dminPDL should not be less than the PDL resolution because a small delay difference

would lead to the domination of process variation and measurement errors over actual PDL

path difference, resulting in unpredictable and inaccurate results in the emulation.

The minimum delay difference can be used to identify the smallest scaling factor of αmin.

We define minimum scaling factor in Equation 2.5.

αmin =
∆dminPDL

∆dminPUF

(2.5)

Similarly, the maximum scaling factor αmax should be the ratio of largest delay difference

obtainable by two PDL and the largest delay difference in the characterization result as

shown in Equation 2.6.

αmax =
∆dmaxPDL

∆dminPUF

(2.6)

An ideal scaling factor α should be in the range [αmin, αmax]. Our experimental results

in Figure 2.9 and 2.11 show that a large delay difference usually results in better stability

against environmental changes. A larger scaling factor creates larger delay differences; thus,

in turn, making emulation more stable. Though a large scaling factor is favored for stability,

in theory, all scaling factors should provide the same emulation accuracy.
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2.9 Emulation Improvement

The newly created emulation should be able to predict a large number of CRPs of the target

PUF. However, basic segment-by-segment emulation fails to consider many unpredictable

factors. In this section, we provide two techniques that could potentially benefit our emu-

lation scheme in terms of overhead and accuracy. We first explore a mechanism to emulate

every two segments in the PUF to reduce the total number of PDLs required for the emu-

lation. We then propose to use multiple PDL emulations to vote for a prediction result to

eliminate process variation effects and environmental noise.

2.9.1 Two-Segment Emulation

Originally each PUF segment generates two delay differences ∆dia and ∆dib, so three PDLs

are sufficient to emulate one PUF segment. To emulate an n-bit PUF, we require as many as

3n PDLs. However, when treating every two PUF segments as a group, the new group now

generates four different delay differences: ∆dia + ∆di+1
a , ∆dib + ∆di+1

a , ∆dib + ∆di+1
a and ∆dib

+ ∆di+1
b . Now in order to emulate these four delay differences, five PDLs are needed. To

emulate an n-bit PUF, only 5n
2

PDLs are needed, saving n
2

PDLs comparing to one-to-one

emulation scheme.

2.9.2 Output Voting

As shown in Section 2.7.4, PDLs are sensitive to environmental changes. Even though we

scaled the delay difference to a relatively large number to reduce the effects of environmen-

tal change, some errors are inevitable. Moreover, hardware malfunctions could also lead to

incorrect emulation results. To eliminate the errors, we propose to create multiple emula-

tions of the same PUF. When provided with a challenge, multiple emulations vote for the

corresponding response, and we adopt the most-voted response as the correct output. The

emulation process and the scaling factor for all emulation copies should be identical. If the

majority of emulation copies produces a response r, it is more likely that r is the correct
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response.

2.10 Experimental Results

We implement our PDL-based PUF emulation on Spartan-6 XC6SLX45 FPGAs. When

applying the same challenge vector to both the target PUF and the PDL-based emulation, the

probability that the original PUF (running at 25 ◦C and 1.2V) and the emulation generate the

same response is defined as emulation accuracy or prediction accuracy. PUF responses

are collected 10 times to rule out unstable CRPs.

2.10.1 Characterization Accuracy

Our characterization approach provides highly accurate delay characterization at the segment

level. We first test the precision of our results by solving 10 sets of linear equations generated

from random CRPs, we then characterize the PUF by solving 10 sets of linear equations

obtained from only stable CRPs. The results for the delay differences in the first 8 PUF

segments are shown in Figure 2.13.

Both characterizations provide very similar results. However, the variance for each vari-

able solution is different. For all obtained delay differences from random CRPs, the average

variance is 0.0145 ps, 64.77% greater than the average variance of solutions obtained from

only stable CRPs (0.0088 ps). This variance difference shows that characterizing using only

stable CRPs provide much better accuracy.

2.10.2 Baseline Emulation

The target PUF we intend to emulate is a 64-bit arbiter PUF. We first collect a set of 100,000

randomly selected CRPs to run the characterization. We then collect a set of 100,000 stable

CRPs and characterize the PUF only on stable CRPs. We create a software simulation using

characterization result on both datasets.

Based on the two PUF characterization results, we also emulate the PUF using PDLs
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Figure 2.13: Characterization results obtained from solving 10 sets of linear equations gen-
erated from random and stable CRPs. Boxes indicates 95% confidence interval.

without emulation improvement techniques (baseline emulation). For the baseline emulation,

we calculated the scaling factor range to be between 3 and 8. Based on our observation in

Section 2.8.3, we take the maximum value within the range 8 to be our scaling factor.

We measure the PUF prediction accuracy for both simulation and PDL-based emula-

tion. For simulation and emulation based on random CRP characterization, the accuracy is

measured by providing newly generated 100,000 random challenges to both the target PUF

and its emulation. For simulation and emulation based on stable CRPs, the accuracy is

calculated as the successful prediction rate on newly generated stable challenges.

Table 2.5 shows the prediction accuracy using both software simulation and PDL-based

emulation. Both random CRP characterization and stable CRP characterization were ap-

plied. Using stable CRP as the characterization dataset improves the software simulation

accuracy by 5.19%, for a corresponding characterization accuracy of 5.19%. Characteriza-

tion only on stable CRPs improves the emulation accuracy by 5.07% as well. Experimental
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results also show that our PDL-based emulation scheme loses approximately 5% accuracy

compared to software simulation.

Dataset Simulation Emulation
Random CRP 85.93±1.76% 80.72±2.27%
Stable CRP 91.12±1.49% 85.79±1.78%

Table 2.5: PUF prediction accuracy for software simulation and PDL-based hardware emu-
lation using random CRP characterization data and stable CRP characterization data. The
emulation accuracy is shown in the format of 95% confidence interval.

2.10.3 Improved Emulation

We measure the delay, area, and energy consumption for both the baseline and two-segment

PDL-based PUF emulation on a 64-bit PUF. The results are shown in Table 2.6. two-

segment emulation saves 16.67% LUTs, 47.01% in maximum delay, and 11.84% in terms of

energy consumption.

Type Baseline Two-Segment
LUTs 192 160
Slices 96 80
Max Delay (ns) 37.84 20.05
Energy (µJ) 3.04× 10−4 2.68× 10−4

Table 2.6: Overhead of Baseline and two-Segement PDL-based emulation of a 64-bit PUF.

We then apply an emulation voting mechanism. We create three identical PDL-based

emulation copies, and we always take the response generated by the majority party as the

output. We combined the two techniques and evaluated the overall PUF prediction accuracy.

Dataset Baseline Two-segment Voting Combined
Random 80.72±2.27% 80.97±1.92% 82.72±0.91% 83.15±1.79%
Stable 85.79±1.78% 86.09±2.06% 87.22±0.62% 87.42±1.59%

Table 2.7: PUF prediction accuracy for baseline emulation, two-segment emulation, and
voting. All emulation accuracy results are shown in the format of 95% confidence interval.

Table 2.7 shows our evaluation results. On average two-segment emulation does not

affect the emulation accuracy while saving overall area, delay, and energy overhead. The
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voting mechanism, on the other hand, produces approximately 2% and 1.43% improvement

for random and stable datasets. By combining the two techniques, we achieve approximately

2.43% improvement on a random CRP dataset and 1.63% on a stable CRP dataset.

2.10.4 Emulation Stability

We evaluated the stability of PDL in different temperature and voltage settings. We first

apply 50 randomly generated challenges to the PDL-based emulation scheme. Each challenge

is applied 1,000 times, and we observe the rate of output consistency. Our evaluation results

show that on average 98.45% of the produced responses stay stable where the target PUF

has only 87.94% of the responses stays consistent.

We then measure the emulation accuracy comparing to original PUF in different envi-

ronmental settings to show that our PDL-based emulation scheme is stable against more

substantial environmental variations.

Environment Accuracy
25 ◦C, 1.2V 85.79±1.78%
5 ◦C, 1.2V 84.17±2.55%
45 ◦C, 1.2V 83.78±3.36%
25 ◦C, 1.26V 82.42±2.05%

Table 2.8: Baseline emulation accuracy in different environments. Characterization done
using 10 sets of stable CRPs. All emulation accuracy results are shown in the format of 95%
confidence interval.

Table 2.8 shows the resulting accuracy slightly decreases by 1.62% and 2.01% when

adjusting the temperature by 20 ◦C in normal mode (VCCINT =1.2V). When controlling

the operating temperature to be consistent, by increasing the voltage to 1.26V, emulation

accuracy decreases by 3.37%. However, in general, the accuracy is still maintained at a high

level; thus, our proposed emulation scheme is stable against large environmental changes.
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2.10.5 Latency Overhead

We compare our design with both PUF simulations using HDL simulators and pure statistical

simulations regarding latency when predicting 10,000 CRPs. The results are shown in Table

2.9. The comparison indicates that our design is 9644x faster than HDL simulators and 827x

faster than software simulations while maintaining competitive prediction accuracy.

Type Latency(s)
HDL Simulation 96.44
Statistical Simulation 0.827
PDL-based Emulation 0.001

Table 2.9: Average latency comparison in generating 10,000 CRPs using software HDL
simulator, pure software simulation, and PDL-based emulation.

2.11 Chapter Conclusion

In this chapter, we proposed a fast, compact and low energy PUF emulation platform using

programmable delay lines on FPGA. Our core idea is to characterize an arbiter PUF and

emulate the delay difference of each PUF segment using PDL. The PDLs are configured

such that the emulation has almost the same challenge-response mapping function. We

also evaluated the stability properties of our emulation platform and demonstrated that our

design and implementation is robust against environmental variation. Furthermore, we have

proposed two techniques that are capable of reducing overhead and increasing emulation

accuracy. Experimental results show that our design is 827x faster than software simulation

while providing comparable accuracy.

35



CHAPTER 3

Securing PUFs with Interconnection and

Reconfigurability

3.1 Motivation

As of today, the amount of private information stored on and flows between electronic devices

is unimaginable. Adversaries are highly motivated to attack these electronics because of the

potential benefits they can gain from the stolen personal information. Secure and robust

protection of electronics, as a result, is essential for any individual who seeks security and

privacy.

Physical Unclonable Functions (PUFs) came to the stage when traditional cryptography

failed to stand its ground against physical attacks, side-channel attacks, and API attacks. A

PUF, different from traditional key-based cryptographic systems, does not require a secret

binary key; instead, the physical entity itself serves as the key. One huge advantage of a

PUF-based system is that the secret key hidden within the physical body is designed to

be unclonable since it utilizes uncontrollable, nanoscale process variations. The complex

structure of a PUF makes the output much harder to be predicted or derived comparing to

those digital systems that stores secret keys in non-volatile memories.

Strong PUFs is a major subtype of PUFs. Like all PUFs, a strong PUF implements a

complex function that maps some challenges to some responses. A PUF is considered as a

strong PUF if it is capable of meeting all the following requirements:

• Unclonability. Unclonability is the most fundamental feature of a PUF. A specific

strong PUF cannot be physically cloned or replicated by anyone. Even the manufac-
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turer who produces the PUF should not be able to manufacture a copy of the PUF

that implements the same mapping function between challenges and responses.

• Unpredictability. Predicting the response of a random challenge should be extremely

difficult, even if the attacker is capable of obtaining a large number of CRPs.

• Determination difficulty. A strong PUF cannot be fully measured or determined within

a reasonable amount of time. A PUF with a small challenge-response mapping set does

not meet this requirement since all mappings can be recorded given enough time (hours,

days or weeks). In most cases, this requirement is equivalent to a large set of possible

challenges and limited read-out frequency.

Several strong PUFs have been proposed and studied in the past, yet none have been

proven to be secure enough to hold all three requirements. The rise of machine learning

technology provides adversaries with a powerful weapon that is capable of creating a model

of the function a PUF implements. A mathematical model is a software program that is

capable of predicting the corresponding responses of a PUF when provided with random

challenges with high probability. Such a mathematical model can be easily established by

learning from a small subset of CRPs.

3.2 Technical Goals and Contributions

In this chapter, we intend to address this problem. We propose a reconfigurable intercon-

nected PUF network structure that is capable of providing sufficient robustness and resilient

against different types of machine learning attacks. Essentially the idea is to create a network

structure that interconnects multiple PUFs so that the system is so complex that current ma-

chine learning attack methods are unable to accurately predict the responses given arbitrary

challenges in a reasonable amount of time. The proposed design is capable of reconfiguring

itself so that challenge-response mappings completely alter. The reconfiguration of an IPN

forces an adversary to restart the attack to learn a new mapping function.

To the best of our knowledge, we make the following contribution in this chapter:

37



• We have proposed a network structure that interconnects multiple PUFs. By doing

so, we significantly increase the system complexity as well as breaking the linearity so

that the interconnected PUF network shows high resilience against current machine

learning attack.

• Our interconnected PUF network is compatible with any strong PUF. In this work, we

simulated and implemented interconnected PUF network with only delay-based PUFs

and some well-known variations, however, the whole framework can be easily extended

to other strong PUFs such as Bitline PUF and current mirror PUF.

• We have tested our interconnected PUF network against different algorithms, with and

without the reconfiguration functionality. We show that the sample complexity of an

IPN is significantly larger than the state-of-the-art delay-based PUF and its variants.

Modeling an IPN requires a much larger training set as well as much longer time. We

are the first to propose to reconfigure a PUF-based system before an adversary could

collect the theoretical lower bound of the sample complexity.

• Our reconfigurable PUF network design can be reconfigured during runtime with much

lower latency and overhead comparing to other reconfigurable PUF design such as [53].

3.3 Related Work

3.3.1 Modeling Attack

PUFs are vulnerable to modeling attacks. Early works on modeling attack targeting PUFs

were focused on standard arbiter PUFs [54] [55]. Later on Rhrmair et al. presented modeling

attack results on multiple commonly seen PUFs, including APUFs, XOR PUFs, feed-forward

PUFs. The proved that all investigated PUFs are vulnerable to machine learning attacks

[56]. Vijayakumar et al. later presented more detailed insights on applying different machine

learning attacks to popular PUFs and why simple PUF structures are weak against modeling

attacks [57]. Our results show that the proposed IPN structure provides sufficient resilience

against modeling attacks proposed in the above papers.
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The rise of deep neural networks has imposed new challenges to arbiter PUFs and vari-

ants. A deep neural network is capable of training a model that simulates the function a

PUF implements with high accuracy within a short period of time. Yashiro et al. con-

ducted a security evaluation of authentication systems using arbiter PUFs and concluded

that an arbiter PUF and its variants are vulnerable against deep learning attack [58]. In

this chapter, we show that an IPN provides high resilience against deep learning attack. The

complexity of an IPN is significantly larger than other PUF-based systems so that a deep

neural network can easily fall into overfitting problems when attempting to model an IPN.

The reconfiguration functionality provides additional protection by changing the mapping

function regularly.

3.4 Preliminaries

3.4.1 Strong PUF Model

An IPN can use any strong PUF as fundamental building blocks. We use standard delay-

based arbiter PUFs as an illustrative example for simplicity considerations. An n-bit APUF

takes an n-bit vector as a challenge and produces a 1-bit response as output. The challenge is

provided to configure two nominally identically paths. Each challenge bit controls whether

a pair of paths should swap positions within a PUF segment. An impulse signal is fed

into the system to excite both paths simultaneously to retrieve a response. Because of the

uncontrollable, nanoscale process variation, the signal traveling along one of the two paths

reaches the arbiter earlier, generating corresponding output.

Assuming an arbiter PUF implements a function F that maps a set of n-bit challenges

C to corresponding response set R. We assume no delays on the connection wires and all

delays are contributed by the APUF segments. Given a specific challenge c ∈ C, the ith

APUF segment generates a pair of delays with delay difference of ∆dci . The corresponding

response r ∈ R can be mathematically represented as Equation chap3:eq:stable:
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F (c) = r =


0 if

∑n
i=1 ∆dci > 0

1 if
∑n

i=1 ∆dci < 0

(3.1)

3.4.2 IPN

3.4.2.1 IPN Node

An IPN consists of nodes and edges. A node consists of multiple arbiter PUFs of the same

length. We define an n-bit IPN node of size m consists of m n-bit APUFs. If m = n, a node

is denoted as a homogeneous node, otherwise it is denoted as a heterogeneous node. The size

of a node is the total number of arbiter PUFs running in parallel, and the length of a node is

the number of segments of each arbiter PUF in the node. A demonstrative diagram of a node

is shown in Figure 3.1. An IPN node takes an n-bit vector as the challenge and generates

m 1-bit responses. All APUFs within the same IPN node share the same challenges.

n-bit PUF P0

n-bit PUF P1

n-bit PUF P2

n-bit PUF P2

...

n-bit

Challenge

m-bit
Responsem

Figure 3.1: An IPN node of size m and length n. If m = n, the node is homogenous,
otherwise it is heterogenous.

3.4.2.2 IPN Edge

An IPN node connects to other nodes through edges. To achieve reconfigurability, an edge

is essentially designed to be a shuffler that takes the output from the previous node, shuffles

the order and feed them to the next node. The design of a shuffler is based on a crossbar

switch like architecture that redirects inputs to outputs. An conceptual illustration is shown
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in Figure 3.2. Each intersection of the crossbar is a tri-state buffer that controls how the

inputs can be routed to each output. A configuration vector is used to configure how the

connections between two nodes are shuffled, and each bit is used to switch each tri-state

buffer. For example, if an edge is an n-bit shuffler that directs the i-th bit of the input to

the j-th output bit, the tri-state buffer at the intersection of the i-th and the j-th bar is thus

set. All output port numbers are represented in the binary form. Note that our design of

the shuffler is non-blocking; thus conflicts are acceptable, though a large number of conflicts

could weaken the unpredictability of IPN. Starvation would also not be a problem as the

previous input would be buffered and applied in case of output starvation.

Using our design of the shuffler, the connections between nodes can be reconfigured easily

by changing the configuration vector. We define a configuration of an IPN as a collection of

all configuration vectors for all shufflers in the IPN.
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r3
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Outputs
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Figure 3.2: A conceptual illustration of a crossbar switch like shuffler.

41



3.4.2.3 IPN Chain

A simple network can be constructed by connecting IPN nodes using to form a chain. All

IPN nodes are connected through IPN edges. An edge from nodei to nodei+1 indicates that

the output of nodei is fed into a shuffler, then connects to all APUFs in nodei+1. Thus, each

APUF in nodei+1 depends on the outputs of all APUFs in nodei.

3.4.2.4 More Complex Connections

IPN nodes can be connected in more complex manners. IPN supports not only one-to-one

but also one-to-many, many-to-one and many-to-many connections between nodes.

One-to-many connections can be used to increase the output length as multiple nodes

take the output of a specific node as input. The n-bit output of node0 is used as input for

two n-bit homogenous nodes node1 and node2, eventually generating a 2n-bit response.

We borrow the idea of XOR PUFs to use logic like AND, OR or XOR to create many-

to-one connections in IPNs. Many-to-one connections can be used to break the linearity and

to increase system entropy. node0 and node1 takes the same input and generates two sets

of corresponding outputs. A logic operation such as XOR is applied to the outputs, and

the result is then taken by node2 as input. Many-to-one connections are expensive since

the input/output length ratio is significantly larger than that of a one-to-one connection,

resulting in requiring more PUF segments to build.

A many-to-many connection is a mixture of both one-to-many and many-to-many con-

nections. The XORed result of both node0 and node1 outputs is fed to both node2 and node3

as input. A many-to-many connection provides additional nonlinearity without sacrificing

the output size.

The combination of one-to-one, one-to-many, many-to-one and many-to-many connec-

tions enables the possibility of creating larger and more complicated IPN, providing addi-

tional resilience and robustness against various attacks.

42



3.4.3 IPN Parameters

IPN nodes, edges and different connections provide tremendous freedom in constructing a

network. In this section, we intend to define some parameters associated with IPN structures.

3.4.3.1 Network Depth

We define the depth of an IPN as the length of the shortest path from an input node to an

output node. An IPN with greater depth theoretically creates more dependency within the

network, making the entire structure not differentiable so that machine learning techniques

based on differentiable models (e.g., Support Vector Machine) inefficient. Also, a deeper

IPN has multiple layers of dependency and requires more PUF segments, which increases

the system complexity and makes it more difficult to predict. The concept of levels in an

IPN is strongly associated with depth. The level of an IPN node is defined by one plus the

smallest number of connections between the node and the root node.

3.4.3.2 Network Width

We define the width of an IPN as the maximum number of nodes that shares the same

input. According to our design, a wider IPN would have more many-to-one or many-to-

many connections comparing to the slimmer topology. A wide IPN has more nonlinearity

since many-to-one, and many-to-many connections require nonlinear logics such as AND,

OR and XOR.

3.5 Attacks models

In this section, we first discuss the security assumptions we make in this chapter. We then

briefly explain some conventional modeling/characterization techniques on PUFs that have

been proven to be effective in state-of-the-art PUF-based systems. We later investigate

some newly proposed modeling methods including deep-learning-based attacks and autoML

modeling.
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3.5.1 Assumptions

We consider the same assumption for controlled PUFs [59] that physical attacks on the

control logic (which in our case is the reconfiguration logic) are more likely to alter or even

destroy the PUF itself. The adversary has physical access to the PUF and its public CRP

interface, as it is common in the established PUF attack model. The adversary can thus

repeat CRP measurements at will in order to gain output stability.

3.5.2 Logistic Regressions

Logistic regression is proven to be effective against conventional delay-based arbiter PUFs

and variations such as XOR PUFs and lightweight secure PUFs. Logistic regression-based

PUF attacks use a weight vector ~w to encode the internal parameters within the PUF system.

The conditional probability can be represented using sigmoid acting on the PUF function f

as shown below. c is a challenge, and r is the corresponding response.

p(c, r|~w) = sigmoid(rf(~w))

For a training set τ , the goal of the regression is to find a weight vector ~w so that the

likelihood of observing this set is maximized, which is equivalent to minimizing the negative

log-likelihood shown in Equation 3.2.

~̂w = arg min~w−logL(τ, ~w) =
∑

(c,r)∈τ

−log sigmoid(rf(~w)) (3.2)

Different from general logistic regression problems, the optimal parameter vector ~̂w can

not be analyzed analytically, the only option is to optimize iteratively. For the purpose of

attacking a single-bit output PUF, the problem can be tackled by transforming it to a binary

logistic regression problem and use iteratively reweighted least squares (IRLS) to minimize

the Log-likelihood of a Bernoulli distributed process using Newton’s method. Other options

includes using optimization methods such as gradient decent and RProp etc. The above
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optimization methods requires gradient information represented in Equation 3.3:

∇L(τ, ~w) =
∑

(c,r)∈τ

r(sigmoid(rf(c, ~w))− 1)∇f(c, ~w)) (3.3)

3.5.3 Evolution Strategies

Evolution strategies is a commonly seen attack method on PUF-based systems. Evolution

strategies is a different type of machine learning algorithms that performs random search

intelligently. Inspired by evolutional adaption to environments, the evolution strategies

method always choose the best candidates from randomly generated models and further

develops on them. In the case of modeling a PUF-based system, one instantiation of inter-

nal delay parameters is denoted as an individual, and all instantiations together are called

the population. The population of each selection is called a generation and each selected

individual is allowed to produce offsprings by randomly mutating the instantiation of delay

parameters. The selection is performed based on how well an individual instantiation is

capable of reproducing the correct CRPs (fitness).

Fitness evaluation over the entire training set is expensive and slow. We borrowed the

mini-batch idea from stochastic gradient descent to select only a subset of training CRPs for

fitness evaluation purposes.

3.5.4 Multilayer perceptron

The development of deep neural network has made tasks that were once believed undoable

possible. From speech recognition to image captions, deep neural networks have made mirac-

ulous progress and is still improving. It is not surprising that adversaries use artificial neu-

ral networks to model a PUF-based system. A multilayer perceptron (MLP) is a type of

feedforward artificial neural network. An MLP consists of at least three layers of nodes,

respectively input layer, the output layer, and hidden layers. Each node within an MLP

is a neuron that uses a nonlinear activation function. MLP learns a model by iteratively

changing the connection weights based on the error between the output and ground truth.
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This type of supervised learning using MLP is carried out through back-propagation using

gradient descent.

For PUF attacking purpose, predicting PUF output is essentially a classification problem.

MLP is more advantageous comparing to logistic regression methods in terms of capability

to learn non-linear models.

3.5.5 Other Machine Learning Algorithms

As conventional attacks on PUFs depend on attackers to manually choose a model and hyper-

parameters, the results of modeling attack might not be optimal concerning both prediction

accuracy and speed. AutoML is a new concept that focuses on progressive automation of

machine learning. AutoML aims to create an automated process that intelligently performs

architecture search over a wide range of machine learning algorithms and choose the one that

best fits the data and the task including naive Bayes classifiers, decision trees, etc. AutoML

is also capable of performing hyperparameter optimization that aims to find the best-suited

hyperparameters for a given model. We choose to use auto-sklearn to search for an algorithm

along with corresponding hyperparameters to predict the behavior of an IPN [60].

3.6 Reconfiguration

IPNs benefit from the complex structure so that it requires much larger training set and

longer training time to model. We propose to reconfigure the entire network from time to

time by changing the connections between IPN nodes so that any obtained knowledge on

the IPN would be invalidated. Essentially, we are running a race with adversaries. Before

one can finish modeling an IPN or collect enough training set, we reconfigure it so that the

input-output mapping alters and the attacker would need to remodel the new IPN.
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3.6.1 Reconfigure Timing

We can initiate a reconfiguration either before an attacker could collect sufficient number

of CRP or before an attacker can finish modeling. However, since the speed of the attack

process is affected by many factors on the adversarial side that we have no control of, we

believe limiting the total number of generated CRPs is more secure and feasible. Thus, we

intend to find a lower bound for the size of the training set of IPN.

Sufficient size of the training set is also known as the sample complexity. We consider

models of all PUF-based system mentioned in this chapter as a binary function that takes a

challenge and generates a 1-bit output of either 0 or 1. Vapnik-Chervonenkis theory suggests

that a PUF-based system can be learned with a finite sample complexity and the minimum

required training size (N) follow the Equation 3.4:

N = O(
V C(H) + ln(1

δ
)

ε
) (3.4)

where VC(H) is the Vapnik-Chervonenkis dimension of the function H implemented by

the attacked PUF-based system, δ is the failure probability and ε is the learning error.

For arbiter PUF, the VC-dimension is the total number of stages, meaning for a k-bit

arbiter PUF, V C(H) = k. Rhrmair et al. derived the VC-dimension for XOR PUFs as

V C(H) = k · l where k is the number of stages in each arbiter PUF and l is the total number

of XORs. For Feed-forward PUFs, V C(H) = k+ l can be used to describe the model better

where k is the total number of stages and l is the total number of feed-forward loops.

The sample space of an IPN on the other hand largely depends on the topology of the

network. We have to be conservative in terms of finding a uniform lower bound for all

topologies. The depth of the network conceptually is very similar to Feed-forward loops

in Feed-forward PUFs, whereas the width of the network can be analogized to the size of

XOR PUFs. Equation 3.5 describe a sample size lower bound in terms of the IPN model

parameters, where m is the depth of the IPN network, and n is the width of the network. To

be noted that we assume every single path within the network to be of width n and depth
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m.

N ∼
(m · k +m) · n+ ln(1

δ
)

ε
(3.5)

For each IPN structure, we derive a empirical formula based on equation 3.5 by assuming

a linear y = ax + b relationship. The derived formula failed to match with the evolution

strategies result due to the random nature of evolution strategies. The data points we

collected from evolution strategies show a super-linear relationship between N and ε. Thus,

we adopt the method proposed by Rhrmair et al. and modify the relationship to equation

3.6 when applying evolution strategies to match the superlinear relationship. c is a constant

between 0 and 1.

N ∼
(m · k +m) · n+ ln(1

δ
)

εc
(3.6)

An IPN-based system requires much larger training set comparing to standard arbiter

PUFs, XOR PUFs and Feed-forward PUFs of the same size. This can be observed when com-

paring equation 3.5 to the lower bounds proposed in [56]. The conclusion is also confirmed

by our experimental results shown in Section 3.5.

3.6.2 Reconfiguration Logic

The reconfiguration is performed by reconfiguring interconnections between IPN nodes. Since

each edge is controlled by a shuffler, the interconnect can be reconfigured by changing the

configuration vectors in the shufflers.

We use a counter to count how many CRPs have already been generated, and we compare

it with a predefined threshold. To be more conservative, we set a reconfiguration threshold

Θ to a number that is smaller than the theoretical lower bound of sufficient CRPs using

equation 3.7. Instead of assuming the network has the maximum width n on every level

(Equation 3.5), we assume every single path within the network to be of minimum width n′

and depth m. Once Θ has been reached, a random number generator generates a new set of
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configuration vectors, and feed them to the IPN shufflers.

Θ =
m · k · n′ + ln(1

δ
)

ε
(3.7)

3.6.3 Protecting Reconfiguration Logic

The configuration vectors are essential in such a way that an adversary could potentially

use the information to collectively train a model over different sets of samples even if each

sample size is intentionally limited below our calculated lower bound. An intuitive idea is

to store all configuration vectors in non-volatile memories that lay below PUF delay wires

so that damaging any one of those wires would change the PUF, rendering the adversary’s

attack useless [59]. However, in our reconfiguration logic, a new set of configuration vectors

are provided by a random number generator or the user, which is not secure if the adversary

has physical access to the device as we described in our assumption. We take a step forward

by securing these configuration vectors using existing IPN nodes in the system so that the

real interconnection remains hidden. We propose to encrypt the user-provided configuration

vector to an IPN node in the previous level. The configuration vectors for all shufflers

between level i and i+ 1 depend on the encrypted result of the user provided configuration

bits using the IPN nodes from level 1 to level i−1, for i > 1. To note that we use IPN nodes

in the previous levels to encrypt shuffler configurations to reduce the correlation between

the output of an IPN node and it’s immediate shufflers. An illustrative example is shown in

Figure 3.3.

Figure 3.3: Encrypting random configuration logic using existing IPN nodes. Kj is the
configuration vector encrypted by a chain of nodes from node1 to nodej

All shufflers within an IPN are initialized at the beginning of the reconfiguration process.
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The random or user provided configuration vectors are passed to the nodes in the first level

propagate along the network to configure the remaining shufflers in the later levels. The

shufflers between the first and second layer have a non-reconfigurable static connection. The

attacker, even with physical access to the IPN device, cannot obtain information on actual

configurations in shufflers since without characterize each IPN nodes. On the other hand,

since the attacker cannot obtain enough training data given a specific configuration without

knowledge of real configuration vectors in each shuffler.

3.7 Evaluation Results

In this section, we apply all the attack techniques we introduced in Section 3.5.

Our evaluation is conducted on both simulated models as well as implementations on a

Xilinx Virtex-5 XC5VLX50T FPGA. Our simulation assumes a Gaussian distribution in all

delays and no error in contrast to real distribution and real errors in the implementation. As a

comparison, we compare different IPN setups along with standard arbiter PUFs, XOR PUFs,

and feed-forward PUFs. For fairness considerations, we maintain the total number of PUF

segments used in both simulation and implementation the same over different structures.

Since we intend to prove that an IPN structure itself is more resilient against machine

learning attacks, meaning it is much harder to predict using a machine learning model, we

provided all PUF-based system discussed in this section with the same number of challenge-

response pairs as well as same run-time/iterations. Our main focus is on single bit prediction

rate even though IPN generates multi-bit outputs. To be noted that the modeling of both

simulation and actual FPGA implementation was performed offline, meaning the training

set and the test set of CRPs were collected before modeling. Querying the IPN is not allowed

during the modeling process.

3.7.1 Logistic Regressions

In our security evaluation of IPN using logistic regression, we use standard gradient descent,

IRLS, and RProp as the optimization method. In an attempt to model a simple IPN with
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reconfiguration functionality disabled, the difference between all three optimization method

is negligible.

We maintain the total number of PUF segments used in all settings to be around 1,024.

For all architecture except standard arbiter PUF, the training set contains 30,000 CRPs, and

the running time is set to unlimited. For each setting, we run 100 times and the simulated

results showed in figure 3.4 is chosen from the best of 100 runs.

Figure 3.4: Best results in 100 logistic regression attacks using 30,000 CRP training set on
five PUF-based systems. Error vs. iterations.

We observe that after around 20,000 iterations, the error for all five structures converges.

Logistic regression attack is capable of successfully predicting 1024-bit standard arbiter PUF

and 256-bit 4-XOR PUF with 99% accuracy. The simplest standard arbiter PUF architec-

ture compromises immediately after the attack begins, where the 4-XOR PUF eventually

converges after around 17,000 iterations.

IPN of depth 4 and width 1 provides better resilience against logistic regression comparing

to IPN of width 4 and depth 2, and this result is observed in all 100 runs. IPN of width 4 and

depth 2 on the other hand, shows the very similar result with a forward arbiter PUF with

1024 stages and 64 feed-forward loops. All three cases were allowed to run until time-out at

100,000 iterations, which roughly takes 7 days for each run.
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Based on the result, we believe it is safe to conclude on two observations. (1) Feed-

Forward loops provide excellent resilience against logistic regressions because the internal

dependency introduced by feed-forward loops makes the model of the whole architecture

no longer differentiable. Any attack methods that take advantage of linear separable or

differentiable models would be inefficient or not work at all. (2) A deeper IPN provides

better protection against logistic regression attack. The multiple layers of dependencies

make the system even more complicated so that gradient information is of no help regarding

modeling such a system.

3.7.2 Evolution Strategies

In our security evaluation of IPN using evolution strategies, we use both canonical versions,

respectively (µ/ρ, λ)−ES and (µ/ρ+λ)−ES with and without the mini-batch style of fitness

evaluation method implemented based on [61]. The difference between the two versions of

evolution strategies is that (µ/ρ + λ) − ES takes the parent population into consideration

during selection process where (µ/ρ, λ) − ES only selects from the offspring population.

Both canonical versions of evolution strategies were applied to all investigated PUF-based

systems, each with 100 runs. The best results among the 100 runs are shown in figure 3.5.

IPN of width 4 and depth 2 is the most difficult for evolutional strategies attack to tackle,

while the 1,024-bit arbiter PUF with and without feed-forward loops performs the worst. A

general trend for all curves in figure 3.5 is that the speed of progress is slowing down. The

probability of observing a huge decline regarding errors dramatically decreases as the total

number of generations increase. We can observe that for IPN of width 4 depth 2, the curve

is almost flat after 30,000 generations.

Based on the result, we believe it is safe to conclude on two observations. (1) Nonlinear

logic functions like XORs dramatically increase the difficulty for evolution strategies attack

models, whereas feed-forward loop provides limited additional complexity against evolution

strategies. (2) A wider IPN provides better protection against evolution strategies attack.

This conclusion is not surprising as a wider IPN introduces more XORs which provides much
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Figure 3.5: Evolution strategies attack result using 30,000 CRP training set on five PUF-
based systems.. Error vs. iterations.

more nonlinearity. Despite the nonlinearity introduced by XORs, we still observe that an

IPN of width 1 and depth 4 still performs better than 256-bit 4-XOR PUF when provided

with the same training set.

3.7.3 Multilayer perceptron

In our security evaluation of IPN using MLP, we reform the task as a binary classification

problem. We experiment with different network configuration parameters implemented using

Keras [62]. After some experiment, the following setup showed in Table 3.1 provides the best

results and speed.

Layers Layer type Units Activation
1 Dense m1 ReLu
... Dense ... ReLu
n Dense mn ReLu
n+1 Dense 2 Softmax

Table 3.1: MLP parameters when modeling IPN. n is the depth of the network and mi is
the total number of PUF segments on the i-th level.

The loss function used is binary cross entropy and we use Adam as the optimizer. We
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set the number of epochs to a constant of 100 so that we have a total number of CRPs/100

as our batch size.

Comparing to logistic regression and evolution strategies, an MLP does not necessarily

require details in PUF architecture; instead, it treats the entire PUF as a black box and

learns the function based on only input and output. Table 3.2 shows the result of applying

MLP modeling to all discussed PUF systems.

Architecture Training Acc. Test Acc.
IPN depth 4 width 1 99.93% 50.18%
IPN depth 2 width 4 99.77% 50.33%
256-bit 4-XOR PUF 99.73% 96.02%
1024-bit arbiter PUF 99.99% 98.28%
1024-bit 64-ff PUF 99.99% 95.68%

Table 3.2: Deep neural network attack results.

MLP with the structure described in section 3.5 is capable of fitting 30,000 CPRs with

above 99% training accuracy, and can predict 256-bit 4-XOR PUF, 1024-bit arbiter PUF and

1024-bit 66-ff PUF with above 95% test accuracy. However, it ran into an overfitting problem

when modeling IPNs. After attempting various overfitting prevention techniques including

regularization layers and dropouts, we conclude that the root of the overfitting problem is

insufficient training samples. IPNs is more complicated comparing to other PUF systems.

Thus, given a non-sufficient training dataset, the overfitting problem is more severe. When

provided with a much larger dataset (5,000,000 CRPs in simulation), the test accuracy can

be boosted to 86.49% for IPN with depth 4 width 1 and 78.01% for IPN of depth 2 width

4. When applying the same training set, the test accuracy converges at 54.77% and 62.54%

respectively, much lower than MLP attack results.

3.7.4 Other Machine Learning Algorithms

AutoML is still under development, yet it provides promising results compared to MLP

attacks in terms of modeling PUF-based systems. We provided only raw CRPs to the auto-

sklearn module, and the results for all tested architectures are shown in Table 3.3.
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Architecture Best algo. Test Acc.
IPN depth 4 width 1 Decision tree 64.87%
IPN depth 2 width 4 Decision tree 67.27%
256-bit 4-XOR PUF K-NN. 83.88%
1024-bit arbiter PUF Multinominal NB 89.55%
1024-bit 64-ff PUF Multinominal NB 72.33%

Table 3.3: Auto-sklearn modeling results on raw CRPs.

In general, the best classifiers for IPNs are decision-tree classifiers, which is capable of

predicting over 65% of CRPs in the test set. XOR PUFs, arbiter PUFs, and Feed-forward

PUFs are much easier to model since auto-sklearn is capable of finding a classifier (such as

K-nearest neighbor or multinominal naive Bayes classifiers) that successfully predicts the

test set CRPs with accuracy over 70%.

3.7.5 Implementations on FPGA

Two differences distinguish a simulated PUF-based system and real implementations. (1)

The delays located within a PUF implementation do not necessarily follow a certain distri-

bution, whereas in simulations we assume a Gaussian or uniform distribution for all delays

in the PUFs. (2) Real-world implementations suffer from stability issues. Since PUFs are

extremely sensitive to environmental factors such as temperature and voltage, the response

generated by the same PUF might not be consistent when providing the same challenge

multiple times.

We repeated all experiments on data collected from FPGA implementations of all dis-

cussed architecture. The best results of both simulation and implementation are shown in

Table 3.4.

Based on the log provided by Xilinx System Monitor, the largest variations in the core

temperature and the core voltage are 2◦C and 2.78% respectively during the entire CRP

collection process. The environmental variations lead to 10.96% of CRPs being unstable in

the training set. By applying ECC on IPN, the amount of instability drops significantly to

3.67%. The stability issue along with random delays in the hardware reduces the prediction
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accuracy in almost all cases. MLP and autoML models suffer the most from the instability

in the training set while the reduction in evolution strategies attacks are minimal.

Regardless of network depth and width, IPN stays robust against all proposed attacks,

while XOR PUF and Feed-forward PUF can be modeled using different machine learning

algorithms. Standard arbiter PUF, on the other hand, can be accurately modeled by all

attack methods.

3.7.6 Implementation Result

We implemented a 64-bit reconfigurable IPN of depth 4 and width 4 (as shown in Figure

3.6) on a Xilinx Virtex-5 board. According to our derived formula on the sample complexity

of IPNs, the sufficient number of CRPs required to predict a single bit response with 95%

accuracy is 716,703 CRPs. We set the reconfiguration threshold to 358,350 CRPs, and

we collected 1,000,000 CPRs (with duplications) as our training set. Table 3.5 shows the

prediction accuracy of 10,000 test challenges with and without reconfiguration functionality.

IPN	
Node0	

IPN	
Node1	

IPN	
Node2	

IPN	
Node3	

S0	

S1	

S2	

S3	

IPN	
Node4	

IPN	
Node5	

IPN	
Node6	

S4	 S5	

16	

16	

16	

16	

16	
W
idth	=	4	

Depth	=	4	

Figure 3.6: A 16-bit IPN network with four nodes on the first level, and has 4 levels.

We excluded Auto-sklearn from our experiment as it is extremely slow when handling

very-large data. We observe that without reconfiguration enabled, no attack can reach the

theoretical 95% of accuracy. We believe that in addition to the complexity of the IPN

structure, the instability in the implemented PUFs increases the difficulty to accurately

modeling an IPN. When reconfigurability is enabled, MLP performs the best due to its
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Attack Method w/out Reconfig. with Reconfig.
Logistic Regression 64.62% 53.19%
Evolution Strategies 72.13% 49.99%
MLP 80.64% 51.89%

Table 3.5: Prediction accuracy of three attack methods. Results collected from a 100,000
test set. Logistic regression: 14 days; evolution strategies: 250,000 generations, 14 days;
MLP: 18 hours.

Resource With Reconfig. Without Reconfig.
LUTs 2,102 2,001
Occupied Slices 1,227 1,157
Flip-flops 1,525 1,399

Table 3.6: Area overhead for implementing a IPN shown in Figure 3.6.

ability to quickly adapt to the new labels. Evolution strategies perform the worst because at

each IPN reconfiguration all selected populations need to re-adapt the new fitness function

and the algorithm has to learn from scratch again.

The area overhead for implementing the IPN with and without reconfiguration function-

ality is shown in Table 3.6. The reconfiguration mechanism uses additional 5.04% additional

hardware; in return, it provides efficiently reduces the prediction rate by 11.43% at worst

and 30.65% at best. If all our assumption holds, modeling a large IPN with reconfigurability

is practically impossible.

3.8 Chapter Conclusion

We have carefully studied an interconnected PUF network structure that connects PUFs

to build a network in this chapter. Our simulation and implemented results show that

the IPN has a complex structure so that it enables itself to stay robust against not only

traditional PUF modeling methods like logistic regression and evolution strategies but also

to the state-of-the-art methods like deep neural networks and autoML.

To eliminate the possibility of being modeled with a large training set, we propose to

make an IPN reconfigurable by shuffling the interconnections between IPN nodes. Before an
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adversary can collect sufficient CRP sets for training purposes, the IPN reconfigures itself

so that the attacker would not be able to obtain enough information on the IPN. To avoid

storing the configuration vectors, we propose to use another set of PUFs to protect the

configuration vectors. Our experimental results indicate that no investigated attack could

accurately model an IPN. The single bit prediction accuracy for all attacks, when provided

with a training set larger than the theoretical lower bound and 14 days of time, is as low as

53.19% in the worst case scenario.
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CHAPTER 4

Optimizing PUFs with Evolution Strategies

4.1 Motivation

Security primitives and protocols are essential to embedded systems. Classical cryptography-

based primitives rest on the concept of secret keys, under the assumption that the secret key

can be securely preserved or completely hidden from adversaries. However, such security

assumption cannot be guaranteed in reality. Various physical attacks including but not

limited to invasive probing, side-channel attacks easily lead to secret key leakage and system

compromise.

The physically unclonable function (PUF) as a unique hardware cryptographic primitive

has the natural advantage of being resilient against secret key leakage. On the one hand,

PUFs do not require storage of secret keys in the digital form, but instead in the form of

nanoscale physical structure so that traditional attacks are inefficient; on the other hand,

PUFs depend on uncontrollable process variations during the manufacturing process so that

duplicating a PUF is nominally impossible.

APUF is a popular type of PUF which utilizes delay differences in transistors to produce

chip-unique outputs. Theoretically, random delay variations in hardware allow APUFs to

generate highly random outputs. In practice, however, high randomness cannot be achieved

without a randomness booster because the unpredictable and uncontrollable nature of pro-

cess variation creates unbalanced delay path routing in APUFs. Unbalanced delay paths

potentially lead to symptoms such as unequal 0/1 frequencies in the outputs, repeated pat-

terns, etc., which greatly compromises the security properties of APUFs. Two main causes

lie at the root of the problems: (1) Some parts of the APUF generate extremely large delay
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differences between two delay paths. The delay difference is so large that it dominates over

the entire APUF so that it is more likely for the output of the APUF to be in favor of a

specific delay path. (2) During the manufacturing and aging process of the hardware [63],

certain bias can be introduced to the system that alters the behavior of the APUF, leading

to randomness problems.

APUFs outputs are also relatively unstable when environmental factors, such as supply

voltage and temperature, vary. As Zhou et al. reported when measuring and evaluating 1

million CRPs in arbiter PUFs, only 79.8% of CRPs are stable for a single bit [64], making the

adoption of arbiter PUFs in any applicable security applications unreliable. The instability

of APUF output is usually induced by small delay differences between a pair of delay path

segments. As slight variations in environmental factors change transistor delays in a non-

uniform manner, small delay differences could be easily altered. These small delay differences

could easily add up and result in inverted outputs.

4.2 Technical Goals and Contributions

To overcome the limitations and to realize the full potential of APUFs as a basis for the

security of lightweight systems, we propose to explore an optimal method to connect APUFs

so that we can significantly improve or even overcome the natural weakness of APUFs. In

this chapter, we utilize the IPN structure that interconnects APUFs in a network introduced

in the previous chapter. We observe that a subset of all connection configurations inside an

IPN could generate outputs that meet specific randomness or stability requirements. To

our best knowledge, our work is the first effort to optimize the security properties of arbiter

PUFs utilizing the IPN structure. In this chapter, we make three contributions:

• We show that different connections in an IPN could result in different output quality. A

good configuration could enable an IPN to generate highly random and stable outputs

that meet specific user requirement.

• We have proposed an evolution strategy method that is capable of effectively finding
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a network configuration generates outputs with high randomness. Our experimental

results show that our ES algorithm improves NIST randomness passing rate by 220.8%

comparing to an unoptimized configuration and outperforms standard search algorithm

an average of 8.5% with faster speed.

• We show that an optimized IPN provides highly stable outputs.

4.3 Related Work

4.3.1 PUF Randomness

Many attempts have been made to improve PUF randomness in the literature. O'Donnell

from MIT proposed to use PUF as a hardware random number generator (RNG) [65]. Direct

use of PUF generates outputs with mediocre randomness. Thus they proposed to use Von

Neumann correction to enhance the randomness. Maiti et al. proposed to combine a delay-

based PUF and jitter-based RNGs, where a delay-based PUF can be used to extract chip-

unique signatures and volatile secret keys, and the RNGs are used for generating random

padding bits and initialization vectors [66]. All past efforts use additional random boosters

to help to improve the randomness of PUF whereas our work improves output randomness

by configuring the connection of PUFs without any external resources.

4.3.2 PUF Stability

The stability problem of arbiter PUFs has been well recognized for decades. As Zhou et

al. pointed out in the study of 1 trillion CRPs, instability is a huge weakness in multiple

variations of APUFs [64]. Stable CRPs in a no XOR single-bit PUF (0.8∼1.0V, 0∼60 ◦C)

only count as low as 80% of entire CRP space where a 10-XOR APUF has only 0.0028%

of all CPRs being stable over a study of 1 million CRPs. A large number of new APUF

designs that address the stability problems have been proposed in the past decades such as

[67] [68] [12]. However, most of these PUFs are weak PUFs with a small number of possible

CRPs and require an external output stabilizer or error correction code to ensure the output
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stability [69]. Dodis et al proposed to use fuzzy extractors and large helper data to achieve

extremely low error (10−9) [70]. Pedersen et al. proposed to use the predetermined syndrome

of a PUF stored in non-volatile memory to stabilize PUF outputs [71]. Most recently, Yan

et al. proposed a novel mechanism to extract stable mappings of PUFs without the help

of error correction and is able to tolerate 0.08% of errors in outputs [72]. In this chapter,

we take a different approach to eliminate as many unstable segments as possible by actively

searching for an interconnection that provides the best stability in APUFs.

4.4 Preliminaries

4.4.1 APUF Model

We propose to construct an IPN using standard delay-based APUFs as building blocks. An

n-bit APUF takes an n-bit challenge as input and produces a 1-bit response as output. An n-

bit vector (challenge) is provided to configure two nominally identically paths are generated

along the APUF. Each challenge bit controls whether the pair of paths should swap positions

within a PUF segment. To retrieve a response, an impulse signal is fed into the system to

excite both paths simultaneously. Because of the uncontrollable process variation, the signal

traveling along one of the two paths will reach the arbiter earlier, generating corresponding

output.

Assuming an APUF maps a set of n-bit challenges C to corresponding response set R.

We assume no delays on the connection wires and all delays are contributed by the APUF

segments. Given a specific challenge c ∈ C, the ith APUF segment generates a pair of delays

with delay difference of ∆dci . The corresponding response r ∈ R can be mathematically

represented as Equation 4.1:

r =


0 if

∑n
i=1 ∆dci > 0

1 if
∑n

i=1 ∆dci < 0

(4.1)
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4.4.2 IPN

We have introduced IPN in the previous chapter, and as described, an IPN consists of nodes

and edges. We make no modifications to the shufflers previously introduced; however, in

this chapter, we assume that all IPNs nodes are homogeneous.An n-bit IPN node of size m

consists of m n-bit APUFs. If m = n, a node is denoted as a homogeneous node, otherwise it

is denoted as a heterogeneous node. The size of an IPN node is the total number of APUFs

running in parallel. A demonstrative diagram of an n-bit homogenous node is shown in figure

4.1. An IPN node takes an n-bit vector as the challenge and generates n 1-bit responses.

All APUFs within the same IPN node share the same challenges.

n-bit PUF P0

n-bit PUF P1

n-bit PUF P2

n-bit PUF P2

...

Challenge
n-bit

Response
n-bit

n PUFs

Figure 4.1: An n-bit homogenous node.

4.5 IPN Randomness

An IPN with direct connections, similar to a standard APUF, does not provide results that

meet randomness requirements. Take 0/1 frequency requirement for example. If the jth

APUF in nodei has much larger probability of producing a ”1” as output, all jth segment

in nodei+1 would prefer one delay path over another. If unfortunately, an affected segment

generates dominating a delay difference, the 0/1 frequency balance of the APUF in nodei+1

that contains such segment could be damaged.

To avoid such damage, we first propose to use brute force random search method to try

out different connections until an acceptable one is found. We propose to append a shuffler
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between every two IPN nodes to shuffle the input-output mapping as shown in figure 4.2.

Each shuffler uses a configuration vector to map each output bit from the previous nodes to

each input bit of the next node. Here, we define a configuration of an IPN as a collection of

all configuration vectors for all shufflers in the IPN. A good configuration is defined as a set of

configuration vectors that enables the IPN output to meet certain randomness requirement.

...
...

Sh
u
ffler

...
...

Sh
u
ffler

......

Sh
u
ffler

...Challenges Responses
n-bitn-bit

Figure 4.2: An example of a simple IPN chain with shuffled connection between nodes.

We ran simulations on 100 different IPN instances with the simple IPN chain structure.

Each IPN has two 32-bit homogenous nodes. We use multiple tests from NIST test suite [73]

as our randomness scoring function. Each test is modified to show the quality of IPN output

regarding a specific randomness property. For a given configuration, a sample of 10,000

bits is collected before evaluating it using the randomness scoring function. The maximum

number of configurations to test on each IPN instance is set to 100. Table 4.1 shows the

success ratio of passing a specific random test of all IPN instances.

Test Direct connection 100 Configs.
Frequency Test 32% 89%
Run Test 14% 76%
Linear Complexity 98% 100%
Approx. Entropy 1% 15%

Table 4.1: Success ratio of passing a NIST test for 100 IPN instances with two 32-bit
homogenous nodes. The maximum number of configurations allowed for each IPN is 100,
each configuration collects 10,000-bit result.

The result shows that allowing exploration of multiple IPN configurations significantly

increase the chance that an IPN is capable of passing a specific randomness test. This result is

intuitive and straightforward since delay characteristics in APUFs are unpredictable, certain

combinations of such APUFs provide better randomness results than others. For an IPN,

having the opportunity to explore more configurations naturally increase the chances of
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finding an arrangement of APUFs that provides highly random results.

4.6 IPN Stability

Stability is an essential factor of IPN, especially because all APUF segments are intercon-

nected in an IPN. Therefore, a single bit change in the first few nodes could cause significant

avalanche effect to the final output of IPN. We also ran simulations with the simple IPN

chain structure. We model the relationship between transistor delays and environmental

variations according to equation 4.2 described in [74]. Here, ktp is the delay-fitting param-

eter, CL is the sum of the intrinsic capacitance and the load capacitance, Vdd is the supply

voltage, n is the subthreshold slope, µ is the mobility, Cox is the oxide capacitance, L is the

effective channel length, W is the gate width, φ is the thermal voltage (φ = kT
q

), kfit is a

model-fitting parameter and IC represents the inversion coefficient. We fixed all parameters

as derived from a curve-fitting Spectre simulation results for a 65-nm CMOS technology

as described in [74] except Vdd and φ. We simulate voltage and temperature variations by

sample the value of Vdd and φ from a normal distribution where the mean and the variance

is collected from real chip measurement.

tp =
ktp · CL · VDD

2 · n · µ · Cox · WL · φ
2
t

· kfit
IC

(4.2)

We run our simulation on a single PUF, a 10-XOR APUF and a four-node IPN chain

with 1 million CRPs and we obtained 24.232%, 99.985% and 64.312% of unstable CRPs.

The first two observations are extremely similar to the results reported by [64].

4.7 IPN Optimization Algorithms

Knowing that exploration for a good configuration could greatly improve the possibility

for an IPN instance to pass a random test, we thus propose two algorithms to configure a

given IPN so that it can produce outputs that meet certain randomness requirements in this

66



section.

4.7.1 Random Search

Based on our observation in section 4.5, we first formally propose a random search algorithm

as our baseline method in Algorithm 1.

Protocol 1 Random Search in IPN

Require: (1) An IPN with n nodes and n− 1 shufflers. (2) A set of configuration vectors
V = {V1, V2, ..., Vn−1} that configures each shuffler. (3) A randomness scoring function
f(x) where x is a sampled binary string of size s. (4) A passing threshold Θ. (5) Total
number of iterations L.

Ensure: A set of configuration vectors V = {V1, V2, ..., Vn−1} that enables IPN to produce
outputs that passes f(x). If no such set of vectors can be found in L iterations, returns
nothing.
while L > 0 do

Sample a binary string x of size s using IPN.
if f(x) < Θ then

for each Vi in V do
Randomly shuffles Vi

end for
else

return V
end if
L = L− 1.

end while
If no configuration is found in L iterations, return nothing.

The random search algorithm is a simple brute force algorithm that explores many con-

figurations until a good configuration is found. If no good configuration can be discovered

after a large number of iterations, the possibility of finding such configuration is assumed

to be low. It is also possible that dominating segments or hardware biases in some APUFs

make it impossible to construct a desired IPN. Thus, an upper bound is set as the maximum

number of iterations allowed. If no desired configurations are found after the maximum

number of iterations, the algorithm returns nothing.
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4.7.2 Evolution Strategy

Random search shows significant improvement comparing to direct connection. However, the

searching process is entirely random so that the speed of finding a good configuration is based

on luck. Here we present an ES algorithm that does not necessarily test a completely different

configuration when randomness objective is not achieved, but instead, reconfigures only a

portion of the configuration based on how well current configuration performs. The essential

idea is not to recreate a new set of configuration vectors but to improve on the current

configuration. The ES algorithm is based on the observation that minor modification on a

fair configuration vector sometimes leads to better or even excellent results. The detailed

algorithm is described in Protocol 2.

The ES algorithm, like random search, uses a random configuration as a start. A swap

ratio index is used to determine what portion of the configuration should be shuffled to

achieve the desired randomness goal. If the result keeps improving, we gradually decrease

the swap ratio to make as few modifications as possible at each iteration so that past progress

could be preserved. If the results are worsening, we increase the swap ratio, and in an extreme

case, randomly shuffles all configuration vectors.

A key feature of our ES algorithm is the backtracking mechanism. If a shuffler config-

uration vector V already generates a fair result that is only slightly below expectation, we

expect minimum modification could provide sufficient results. If multiple modifications to

configuration vector V leads to decrease in the randomness score, we conclude that it is

unlikely that slight modification to V provides desired results, so we backtrack to V and

increases the swap ratio to 1.

4.8 Experimental Results on Randomness Improvement

We use the following experimental setup to study the impact of the maximum number of

iterations, IPN node size, IPN chain length, and IPN connection methods. 1,000 different

IPN instances were simulated. For each configuration, we collected 10, 000 bits of results.
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Protocol 2 Evolution Strategy in IPN

Require: (1) An IPN with n nodes and n− 1 shufflers. (2) A set of configuration vectors
V = {V1, V2, ..., Vn−1} that configures each shuffler. (3) A randomness scoring function
f(x) where x is a sampled binary string of size s. (4) A scoring function threshold Θ
and a near-passing threshold θ < Θ (5) A swap ratio α ∈ (0, 1], initially, α = 1. (6) A
backtracking counter β = 0 and a backtracking threshold λ. (7) Total number of iterations
L.

Ensure: A set of configuration vectors V = {V1, V2, ..., Vn−1} that enables IPN to produce
outputs that passes f(x). If no such set of vectors can be found in L iterations, returns
nothing.
while L > 0 do

Sample a binary string x of size s using IPN.
if f(x) < Θ then

if f(x) > θ then
Decrease the swap ratio α, α > 0.
Save f(x) and V as f ′(x) and V ′.

else
if f ′(x) > θ then
β = β + 1

end if
Increase the swap ratio α, α ≤ 1.

end if
if β > λ then
V backtrack to V ′

β = 0, α = 1
else

for each Vi in V do
Select 1

2
α|Vi| connections in Vi, swap connections with another 1

2
α|Vi| connections.

end for
end if

else
return V

end if
L = L− 1.

end while
If no configuration is found in L iterations, return nothing.

The scoring function is a weighted composite function of results obtained from the NIST test

suite [73], Diehard-1997 [75], Diehard-2009 [76] and Soto [77]. The result is normalized to

[0,1]. We conduct our experiments with all NIST tests, but we only show the run test result

since it accurately represents the majority of the NIST test. For ES algorithm, the scoring

function pass threshold Θ is set at 0.99 and the near-pass threshold θ is set at 0.9. The
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backtracking threshold λ is set at 10% of the maximum number of iteration. An instance

passes the test if it achieves a score of at least Θ = 0.99.

4.8.1 Number of Iterations

Intuitively, both random search and ES algorithm greatly benefit from a large number of

iterations. For random search, more iterations provide a greater chance of finding a network

configuration that could pass a given randomness test. For ES, more iterations grant more

opportunities to improve from a mediocre configuration.

We conduct our experiment with five different maximum numbers of iterations, respec-

tively 10, 50, 100, 500 and 1,000. For 1,000 IPN instances with two 32-bit homogenous

nodes, the trace of the growing possibility of successfully discovering a configuration that is

capable of passing the scoring function threshold is shown in Figure 4.3.

Max # of iterations Random Search ES
10 48.2% 44.6%
50 57.5% 68.6%
100 76.0% 82.8%
500 88.8% 89.5%
1,000 89.7% 92.1%

Table 4.2: Success ratio of passing NIST run test for 1,000 IPNs. Each configuration collects
10,000-bit result.

When the maximum number of iterations is small, random search shows better results.

We believe that this is caused by the design of backtracking in the ES algorithm. A small

number of iterations leads to frequent backtracking activity, which essentially provides no

room for improvements in any configuration and many iterations are wasted on the back-

tracking process. As the number of iterations increases, ES outperforms random search.

When the total number of iteration is 50, ES is capable of finding 11.1% more good config-

urations comparing to random search. As we increase the maximum number of iterations

from 500 to 1,000, the results for both random search and ES gradually converge. The addi-

tional iterations not only provide very limited improvements in both algorithms but also fail

to differentiate the efficiency between them. This is because a sufficient number of APUF
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(a) Max number of iterations: 10. (b) Max number of iterations: 50.

(c) Max number of iterations: 100. (d) Max number of iterations: 500.

(e) Max number of iterations: 1,000.

Figure 4.3: Cumulative percentage of 1,000 IPN instances that pass the NIST run test:
random search vs. ES using various numbers of maximum iterations. IPN has a chain
structure of two 32-bit homogenous nodes. Scoring function threshold: 99%, near-passing
threshold: 90%, backtracking threshold set at 10% of maximum number of iteration. Results
collected from 1,000 sets of IPNs.
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Figure 4.4: Percentage of 1,000 IPN instances that pass the NIST run test. Maximum
iterations are set to 10,50,100,500 and 1000. Each configuration collects 10,000-bit result.

combinations have already been tested. According to the experimental result, the sufficient

number of APUF combinations is less or close to 500; more iterations would result in very

limited improvement.

In addition to finding more desired configurations, we also observe that the ES method use

less time in discovering a near-optimal configuration when compared to random searches.

Figure 4.4 shows the relationship between cumulative random test passing rate and the

iteration number at which a proper configuration is found. At any given passing rate, the

iteration number at which a proper configuration is found is lower for ES method comparing

to random search method. At any given iteration, the ES method also presents a higher

passing rate as well.

Based on the experiment result we can conclude that when the maximum number of

iterations is too low, random search provides a higher chance of finding a good configuration.

When the maximum number of iterations is too high, both ES and random search method can

discover a similar number of proper configurations. When the maximum number of iterations

is neither too high or too low, the ES method not only finds more desired configurations but

also finds them faster.
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4.8.2 IPN Node Size

The total number of possible configurations of a shuffler between every two IPN nodes

depends on the size of the node. Two n-bit homogenous nodes can form a total of n!

different configurations. We conduct both random search and ES on four different node sizes

to observe if both algorithms perform consistently over different node sizes.

We maintain a similar experimental setup as described above except we fixed the maxi-

mum number of iterations to 100. We vary the node size for both homogenous nodes: 16-bit,

32-bit, 64-bit, and 128-bit. The success ratio of passing NIST run test for 1,000 IPNs with

different node size is shown in Figure 4.5.

Figure 4.5: Percentage of 1,000 IPN instances that pass the NIST run test with different
node sizes. Each configuration collects 10,000-bit result.

Interestingly both random search and ES show lower success ratio of passing NIST run

test as the nodes size increases. An explanation for such phenomenon is that the search

space is getting larger and larger, respectively 16!, 32!, 64! and 128! configurations. Since

we fix the number of the maximum number of iterations allowed to 100, the proportion of

explored configurations drops extremely rapidly. The decrease in the proportion of explored

configuration would certainly lead to a reduction in the probability of finding a proper

configuration.
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4.8.3 IPN Structure

We now evaluate the performance of two algorithms on larger IPNs and more complex

architecture.

4.8.3.1 Larger IPN

As the size of IPN chain grows, the search space for all configurations grows significantly

as well. We first simulated larger IPN chains with three, four, five and six homogeneous

nodes and applied both random search algorithm and ES algorithm on the network. The

experiment was conducted on 1,000 IPN instances for each case. The size of each node is set

to be 32-bit, and the maximum number of iterations is fixed to 100.

Figure 4.6: Percentage of 1,000 IPN instances that pass the NIST run test with different
IPN chain lengths. Each configuration collects 10,000-bit result.

Figure 4.6 shows the experimental result of five different IPN chain length. We observe

that as the IPN chain gains more length, both random search and ES methods results in a

slight drop in passing ratio. The reason is similar to the situation explained in section 4.8.2.

The additional IPN nodes increase the configuration search space, leading to a significant

drop in the possibility of finding a proper configuration. Despite the drop in test success

ratio, ES method outperforms random search by 16.8%, 17.8%, 18.2% 18.4% and 22.5%
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respectively in five different IPN settings.

4.8.3.2 Other IPN Connections

In an IPN chain, each node forms a one-to-one connection with another node. We now

investigate more complex network that contains one-to-many, many-to-one and many-to-

many connections.

Figure 4.7: Percentage of 1,000 IPN instances that pass the NIST run test with different
IPN structure. Each configuration collects 10,000-bit result.

Figure 4.7 shows the run test passing rate for one-to-one, one-to-many, many-to-one and

many to many connections. We define the depth of the IPN as the smallest number of edges

required from the input of the network to the output and all nodes at the same depth is

denoted as a level. We fix the depths for all four different types of connections to 2 and the

maximum number of iterations to 100. We observe that varies types of connections have

little impact on the passing rate for both algorithms. A one-to-many connection is equivalent

to two independent IPN chains where both random search and ES applies uniformly and

independently on them. A many-to-one connection, on the other hand, is equivalent to one

IPN chain since the XOR operation combines all nodes on the same level conceptually. A

many-to-many connection is a combination of both one-to-many and many-to-one connec-
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tion, thus can be abstract to IPN chains as well. In terms of applying both random search

and ES algorithms, the type of connection does not affect the output randomness. The ES

approach provides better output compared to random search over all four types of network

connections.

4.8.4 NIST Test Results

Both random search and ES can handle multiple randomness tests at the same time. A large

scoring function G(x) with N tests can be created by calculating weighted sum of all tests

as shown in Equation 4.3, where each test transforms to a scoring function fi(x).

NIST statistical test suite is commonly used to evaluate different aspects of the random-

ness of a binary string [73]. NIST test suite contains 15 different tests, so we created a

overall scoring function G(x) using Equation 4.3 where fi(x) corresponds to each individual

test and N is set to 15. All scoring function outputs are normalized to [0, 1]. The passing

threshold for G(x) should be no less than the passing ratio of the highest threshold for all

fi(x). In our experiment we set the passing ratio for all fi(x) and G(x) to be 0.99. We

evaluate both random search and ES methods on 1,000 IPN chain instances with two 32-bit

homogeneous nodes.

G(x) =
N∑
i=1

1

N
fi(x) (4.3)

Table 4.3 shows our experimental results for each test in the NIST suite as well as the

overall passing rate. The overall passing rate is calculated as the possibility of passing all

15 tests. ES outperforms unoptimized configuration by an average of 220.8% and random

search by an average of 21.86% in all test cases.

Both random search and ES algorithms have exploited the potential in generating highly

random outputs in APUFs. By configuring the connections between IPN nodes, both algo-

rithms seek to find the best combination of APUFs so that randomness problems caused by

hardware and structural factors can be fixed and compensated.
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Statistical test Unoptimized Rand. ES
Freq. 36.4% 88.4% 94.8%
Block Freq. 28.5% 82.5% 92.6%
Runs 15.7% 76.0% 82.8%
Longest Runs 13.6% 67.8% 81.1%
Binary Rank 54.5% 99.0% 99.5%
FFT 44.8% 89.7% 92.1%
Aperiodic 6.9% 14.6% 85.0%
Periodic 9.5% 15.4% 95.1%
Maurer 32.8% 79.2% 88.1%
Lin Complex. 85.0% 99.7% 100.0%
Serial 69.4% 80.2% 95.5%
Cusum 44.4% 86.4% 93.7%
Excursions 47.3% 88.4% 94.8%
Variant 37.9% 89.4% 92.7%

Table 4.3: Percentage of 1,000 IPN instances that pass the NIST test suite. The IPN has
two 32-bit homogenous nodes. Each configuration collects 10,000-bit result, the maximum
number of iterations is set to 1,000.

4.9 Experimental Results on Stability Improvement

We reuse the experimental setup in section 4.8 to improve the stability of IPN. Here we

define stability as the possibility of observing a stable response over repeated observation

of 100 times when provided a single challenge. We conduct our experiments on 1,000 IPN

instances of IPN chains and complex IPNs. The result is presented in figure 4.8.

The complex IPN is constructed using a mixture of one-to-one, one-to-many and many-

to-one connections. We fix the total number of IPN nodes to be four in IPN chains and a

total number of levels in complex IPN to be four. We observe that both ES and random

search approach significantly boosts the stability. Specifically, our ES approach outperforms

random search in both IPN nodes and complex IPN as shown in Figure 4.8a and Figure 4.8b

respectively. We noticed that the advantage of ES algorithm is greater as the number of

many-to-one connections increases. An intuitive explanation is that as complex connections

provide more stable candidates comparing to direct connections. Despite the significant

improvement (130.3% in IPN chains and 167.74% in complex IPNs when comparing to

random non-optimized IPNs, 22.62% in IPN chains and 25.38% in complex IPNs when
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(a) IPN chain of 4 levels.

(b) Complex IPN of 4 levels.

Figure 4.8: Stability of 1,000 IPN instances of IPN chains and complex IPNs. Each IPN
node is a 32-bit homogenous node. Both the IPN chain and complex IPN has 4 levels.
Complex IPNs uses a mixture of one-to-one, one-to-many and many-to-one connections.
Environmental variance: 0.8∼1.0V, 0∼60 ◦C.

comparing to baseline random search algorithm), additional error correction code might still

be required to generate highly stable outputs for stability sensitive tasks for large IPN.
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4.10 Chapter Conclusion

We have proposed a novel optimization algorithm on a type of PUF structure that inter-

connects APUFs to build a network in this chapter. We show that by configuring the

interconnected network using our proposed evolution strategy algorithm, IPN is capable

of overcoming randomness problems in APUFs as well as showing significant improvement

in stability. Our proposed ES method outperforms the baseline method (random search) in

both speed and quality. The advantage of our ES algorithm remains consistent over different

IPN settings.

Our experimental results indicate that our ES algorithm outperforms unoptimized con-

figuration by an average of 220.8% and standard search algorithm an average of 21.86% in

all NIST randomness tests. We also observe that our method is also capable of improving

output stability by 22.62% in IPN chains and 25.38% in more complexed IPNs.
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CHAPTER 5

Content-driven Reconfigurable Injective Functions

5.1 Motivation

In the world of computer architectural design, cryptography provides the basis of many con-

ventional security approaches. While the statement remains true, the rise of IoT technology

has imposed challenges to the status of conventional security. The compact size and limited

resources of many IoT devices cannot afford expensive cryptographic computations. Also,

conventional cryptographic protection does not provide defense against attacks at the physi-

cal level. As more and more devices are deployed in untrusted environments, attackers could

potentially gain valuable secrets through side-channel information. Thus, the need for low

power, compact and side-channel attack resilient security primitives are highly desired in the

era of IoT.

5.2 Technical Goals and Contributions

Facing these challenges, we propose an ultra-lightweight hardware-based security primitive:

Content-driven Reconfigurable Injective Function (CRIF). A CRIF is a hardware function

that maps an input to an output distinctively, and this mapping can be reconfigured using

contents of historical data while preserving the distinctness of the function. We claim that

the mathematical property of CRIF enables many security applications such as encryption

and decryption operations. We believe that CRIF as a security primitive is advantageous

for security tasks on energy and computation constrained devices compared to conventional

cryptographic primitives in the following three aspects.
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1. CRIF provides security at multiple layers. Unlike many cryptographic methods, CRIF

does not hide a specific secret key in the implementation, similar to [78]. Thus, popular

attacks at the physical level such as side-channel attack are incompetent.

2. CRIF is reconfigurable. The mapping between inputs and outputs can be rewired

from time to time depending on historical secret message contents. Replay attacks and

modeling attacks are extremely inefficient against reconfigurable systems.

3. Hardware implementation of CRIF is simple and energy efficient. CRIF can be ef-

ficiently implemented using a network of Lookup Tables (LUTs) on FPGA with a

low area overhead. When performing tasks such as encryption or decryption, CRIF

achieves at least 75.04% power savings comparing to some modern AES-based schemes.

5.3 Preliminary

5.3.1 Injective Functions

As the name suggests, the fundamental building blocks of CRIF are injective functions.

Injective functions or one-to-one functions are a set of mathematical functions that maps

every element in its domain to at most one corresponding element in it’s co-domain. An

injective function is mathematically denoted as shown in Equation 5.1. In the context of this

chapter, we assume X and Y are finite domain set and finite codomain set of the injective

function f . To be more specific, the distinctness property in injective functions is defined as

Equation 5.2.

f : X 7→ Y (5.1)

∀a, b ∈ X, f(a) = f(b) =⇒ a = b (5.2)
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5.3.2 Properties of Injective Functions

Injective functions have many useful properties for security tasks, among which we utilize

two of them to build CRIF.

First, the composition of injective functions remains injective. If function f and g are

injective, then function h = f ◦ g is injective. The property provides the basis of our

reconfigurable design as we can composite multiple injective functions in different ways to

create different input-output mappings without compromising the injective property.

Second, Injective functions can be made invertible. When the codomain of an injective

function f : X 7→ Y is replaced by its actual range J = f(X), the function became bijective

(invertible). We show that by using bijective function f , either by itself or with it’s clone

f ′ = f , efficient and secure encryption/decryption can be implemented as f−1(f(X)) = X.

5.4 Related Work

Security primitives are low-level algorithms that are used to build security protocols or secu-

rity systems [79]. Traditional security primitives are purely cryptographic involving compli-

cated mathematical operations [80]. However, these standard mathematics-based primitives

are too costly to be used in lightweight mobile IoT devices.

5.4.1 PUF-based Security Primitives

Facing the challenges introduced by energy constraints, the rise of low power hardware

primitives has provided new visions for security researchers. Physically unclonable functions

(PUF), as a type of newly proposed low power hardware functions, have provided the basis

of many energy efficient security primitives. PUF-based designs such as public PUF [81]

and NanoPUF [82] have been proven to be adaptable and energy efficient in numerous

security tasks with an emphasis on physical attack resilience and low power. However, PUF-

based security primitives often suffer from stability issues and vulnerability against modeling

attacks. Our design of CRIF, however, does not depend on noisy analog signals, therefore is
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much more stable than PUF-based schemes. The reconfigurable nature of CRIF also renders

modeling attack useless.

5.4.2 Efficient Implementation of Classical Cryptography

The advancement in efficient arithmetic circuits made energy-efficient hardware-based imple-

mentation of classic cryptography possible. Many hardware implementations of low power

AES [83] [84] [85], RSA [86] [87] and elliptic curve cryptography(ECC) [88] [89] are proposed

and adopted. Even though the energy efficiency of these cryptographic modules has been

significantly improved, we show that our CRIF design is still more advantageous in terms of

area and energy overhead.

5.5 Architecture

In this section, we formally introduce the hardware architecture of CRIF. We first show

the implementation of our overall architecture. We then propose the LUT-based invertible

injective function design. Lastly, we introduce our content-driven reconfiguration mechanism.

5.5.1 Overall Structure of CRIF

Since the composite of injective functions remains injective, we propose to connect multiple

injective functions in a layer-by-layer network structure to increase overall complexity. Figure

5.1 displays the overall architecture of CRIF.

A typical CRIF takes an n-bit input and generates an n-bit output. A CRIF has a

layered structure where each layer consists of a constant number of k-bit LUT-based injective

functions. Multiple layers stacks on top of each other, meaning the output of the previous

layer is used as the input of the next layer. We denote the total number of layers stacked

together as the depth of CRIF and the number of LUT-based injective functions per layer

as the width of CRIF.

To increase system complexity, we propose to insert a shuffler between every two layers.
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Figure 5.1: Overall architecture of our proposed CRIF.

The i-th shuffler SFi locates between the i-th layer Layeri and i+ 1-th layer Layeri+1. SFi

takes the output of Layeri and shuffle the order. The shuffling order solely depends on an

m-bit configuration vector. Noted that the shuffle operation only changes the order of the

input; the output length and bit frequency remain identical as the input. The shuffled input

is then fed to Layeri+1.

5.5.2 Injective Function

Injective functions, as the building block of CRIF, enforces one-to-one mapping from input

x to output y and vice versa. The mapping from y to x should also be one-to-one to ensure

the uniqueness of the inverse function. We propose to use LUTs to implement our injective

functions.

To illustrate the design of our LUT-based injective functions, we show a motivational

example in Figure 5.2. Figure 5.2a demonstrate the implementation of forward injective

function fforward : X 7→ Y using four LUTs where X and Y are 4-bit vectors. The corre-

sponding backward function fbackward : Y 7→ X is shown in Figure 5.2b. The memory cells in

each LUTs in fforward is carefully replaced so that requirements specified in Equation 5.2 is
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(a) Forward injective function fforward = X 7→ Y .

(b) Backward injective function fbackward = Y 7→
X.

Figure 5.2: A pair of four bit forward and backward injective function implemented using
LUTs.

fforward
X Y

x0 x1 x2 x3 y0 y1 y2 y3
0 0 0 0 0 1 1 1
0 0 0 1 1 1 0 1
0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 1
0 1 1 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0
1 0 0 1 1 1 0 0
1 0 1 0 0 1 1 0
1 0 1 1 0 1 0 1
1 1 0 0 1 1 1 0
1 1 0 1 0 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

fbackward
X Y

y0 y1 y2 y3 x0 x1 x2 x3
0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 1
0 0 1 0 1 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 0 1 1 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 0 1 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1
1 1 0 1 0 0 0 1
1 1 1 0 1 1 0 0
1 1 1 1 0 1 1 1

Table 5.1: Corresponding mappings for fforward and fbackward.
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met. We then reverse the mapping implemented in fforward to construct fbackward such that

fbackward(fforward(X)) = X. An example of the described forward and backward mapping is

shown in Table 5.1.

When a specific forward mapping is known, the assignment of memory cell values in the

backward CRIF is straightforward. For example, in fbackward, when Y = 0101, the corre-

sponding values for X is 1111, thus we assign the memory location 5 in LUT4, LUT5, LUT6

and LUT7 to 1. Using this method, we assign all 16 memory cells in LUT0, LUT1, LUT2 and

LUT3 to 0111000101001011, 1100001101111000, 1000010110101011 and 1101010100010110

correspondingly. Similarly, memory cells in LUT4, LUT5, LUT6 and LUT7 are thus as-

signed to 0110011000111010, 1101100000110011, 0000111011110001 and 0101010001101101

respectively.

5.5.3 Content-driven Reconfiguration

In the case where a security primitive enforces a static one-to-one mapping, an attacker

could exploit the internal structure of the primitive via techniques such as frequency attacks

if enough data is collected. In addition, many existing attacks (e.g., modeling attack) are

developed to compromise security primitives through statistical simulation. Facing these

challenges, we propose to remap the input-output pairs using reconfiguration. Our design of

configurable shufflers inserted between two layers allows convenient and low-cost remapping

of CRIF. When a shuffler SFi (residing between Layeri and Layeri+1) changes the way it

shuffles, the injective function layer Layeri+1 would receive a different input and therefore

generates a different output. This effect would propagate until the last layer, resulting in a

completely different output.

While many existing reconfigurable security applications propose to perform arbitrary

reconfigurations [90] [91], we propose to use the hashed historical contents as configurations

for all shufflers in CRIF. Our reconfiguration mechanism is particularly beneficial for encryp-

tion/decryption tasks as it forms a dependency chain between not only current output but

also all previous inputs. If an attacker intends to steal the current input message, he/she
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needs to obtain all historical decrypted input messages, which significantly increases the

effort the attacker needs to make to steal a protected message.

5.5.4 Backward CRIF

Note that CRIF always comes in pairs, though we label all injective functions as fforward in

Figure 5.1, the backward CRIF maintains the identical architecture as the forward CRIF.

The backward CRIF can be easily constructed by replacing all fforwards with corresponding

fbackwards as described in section 5.5.2. Note that the configuration for shufflers in the

backward CRIF needs to be inverted to maintain the invertibility of CRIF.

5.6 Security Protocol

The mathematical properties and the reconfigurability of CRIF make it a great choice for

encryption/decryption tasks. In this section, we introduce a CRIF-based protocol for secure

two-party communications.

5.6.1 Assumptions

We assume the there are two parties participating in the protocol, respectively a sensor,

and an IoT hub. The communication is bidirectional, meaning messages can be arbitrarily

transmitted between the two parties. We assume the communication channel between the

sensor and the hub is insecure, meaning an attacker could eavesdrop the channel without

being noticed. We also assume that all actions are taken before the IoT deployment is

secure; no attacker is allowed to interfere or monitor the CRIF initialization process. Lastly,

we assume that the memory used to store the shuffler configurations is only secure before

the first message delivery.
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5.6.2 Protocol description

Protocol 3 explains how CRIF-based message encryption and decryption works in a two-

party communication scenario. Before the first message delivery between two parties, a

pair of forward and backward CRIFs are initialized such that both forward CRIF pair are

identical and both backward CRIF are identical. Both parties also agree on an initial shuffler

configuration seed δ0 and a hashing function h. The hash of the configuration seed 0 is used

as the first configuration for both forward CRIF at both parties, while it’s inversion is used to

configure both parties’ backward CRIF. Both the encryption and decryption process can be

divided into four steps, respectively decrypting the new configuration from the seed, apply

the new configuration, encrypt/decrypt the private message and update configuration seed.

Noted that the seed stored in the memory is an encrypted message, it does not compromise

the security of CRIF when stored in an insecure memory. Even if the attacker gains the

reading privilege of the insecure memory, he/she would not be able to decrypt it to obtain

the real configuration. The real configuration in our protocol design is the hash of a historical

unencrypted message. Without the correct configuration, it is impossible to model the CRIF

function.

We claim our design is safe and robust because of two reasons. First, even though the

current configuration depends on previous private messages, we never store any plaintext in-

formation in the system. Secondly, current decryption relies on the decryption of a historical

configuration, which in turn depends on a more dated historical configuration. This chain-

like dependency significantly increases the complexity of the work required to compromise

the protocol.

5.7 Security Analysis

We analysis the security properties of our proposed CRIF in this section. We first conduct

tests to examine the statistical tests of CRIF including randomness, avalanche effect, and

bit-wise correlation. We then apply three modeling attacks to show the modeling attack
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Protocol 3 CRIF-based Two Party Communication

Preliminary:
A sensor S possesses a forward CRIF FSf and a backward CRIF FSb .
An IoT hub H possesses a forward CRIF FHf and a backward CRIF FHb .
Both S and H obtains a hash function h.

Initialization:
Injective functions in FSf and FHf are identical.
Injective functions in FSb and FHb are identical.
Both S and H stores the same initial configuration seed δ0 for shufflers.

CRIF-based message Encryption and decryption
Message encryption at time τ ≥ 1

1. S uses FSb to decrypt the stored configuration seed δτ−1 to ∆τ−1.
2. S uses h(∆τ−1) as the configuration vector to configure FSf .
3. S uses FSf to encrypt msgτorig to msgτenc. S sends msgτenc to H.
4. S updates the configuration seed to δτ = msgτenc.

Message decryption at time τ ≥ 1
1. H receives msgτenc.
2. H uses FHb to decrypt the stored configuration seed δτ−1 to ∆τ−1.
3. H uses h(∆τ−1) as the configuration vector to configure FHb .
4. H uses FHb to decrypt msgτenc to msgτorig.
5. H updates the configuration seed to δτ = msgτenc.

resilience of CRIF. All analysis is conducted on 100 instances of randomly initialized 64-bit

CRIF with 4 layers on a Xilinx Spartan-6 LX45 FPGA.

5.7.1 Statistical Analysis

5.7.1.1 Randomness

The output randomness of CRIF is a strong indication of how predictable CRIF output is.

We use the statistical test suite provided by National Institute of Standards and Technology

(NIST)[73] to validate the output randomness of CRIF.

We first collect bit streams by recursively feed CRIF output back to the input to eliminate

the randomness introduced by an external source. The implementation reconfigures itself

based on previous input as explained in the previous section. A total number of 64,000,000

bits were collected and separated into one hundred bit-streams. Table 5.2 shows the NIST

test suite result of CRIF. Our CRIF successfully passes all tests with p-value significantly
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Statistical Test p-value Avg. success rate
Frequency 0.738818 99%

Block Frequency (m=128) 0.319084 99%
Cusum-Forward 0.657933 99%
Cusum-Reverse 0.419021 100%

Runs 0.419021 98%
Longest Runs of Ones 0.350485 100%

Rank 0.574903 100%
Spectral DFT 0.779188 98%

Non-overlapping Templates (m = 9) 0.699313* 98.8%*
Overlapping Templates (m = 9) 0.289667 99%

Universal 0.109188 100%
Approximate Entropy (m = 10) 0.058984 99.5%*

Rand. Excursions - 100%
Rand. Excursions Variant - 100%

Serial (m = 16) 0.275709 99%
Linear Complexity (M = 500) 0.637119 99%

Table 5.2: The average success ratio for the NIST statistical test suite. 100 bitstreams of
100,000 bits are passed to each test. The test passes for p-value≥ σ, where σ is 0.05. Asterisk
sign (*) indicates the average case for all templates.

above the 0.05 threshold, proving our CRIF output is highly random.

5.7.1.2 Bit-wise Correlation

Apart from output randomness, we also study the bit-wise correlations in CRIF shown in

Figure 5.3. Low correlation in input-output or output-output bits indicates high difficulty in

modeling a CRIF. We first investigate the correlation between each bit in CRIF input and

each bit in CRIF output. For the convenience of observation, we generate a heatmap for

the conditional probability of an output bit Oj given a specific input bit Ii, shown in Figure

5.3a. A conditional probability P (Oj|Ii) = 1 indicates output bit Oj stays consistent with

input bit Ii and a conditional probability P (Oj|Ii) = 0 indicates output bit Oj is negatively

correlated with input bit Ii. We expect P (Oj|Ii) = 0.5 indicates no correlation between input

bit Ii and output bit Oi. Our result shows that the average conditional probability between

any CRIF input-output bit pair is 0.5032 with a maximum value of 0.5112 and a minimum

value of 0.4821. We then study the correlation between each pair of bits in CRIF output.
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Figure 5.3: Statistical analysis on 64-bit CRIF implementations (depth = 4).

Similarly we calculate the conditional probability P (Oj|Oi) of any output bit Oi and output

bit Oj. The result is shown ins Figure 5.3b. A white diagonal line shows that P (Oj|Oi) = 1

when i = j. We expect P (Oj|Oi) = 0.5, i 6= j indicates no correlation between any pair of

bits in the CRIF output. The average conditional probability between any output-output

bit pair is 0.4996 with a maximum value of 0.5077 and a minimum value of 0.4908.

5.7.1.3 Avalanche Effect

The avalanche effect is a desirable property in cryptographic algorithms. An algorithm

with good avalanche effect indicates that a slight change in the input causes a dramatic

change in the output. On the one hand, good avalanche effect makes output prediction from

input extremely difficult; on the other hand, good avalanche effect makes sure that little

about the input can be inferred from the output. We propose to use the Hamming distance

distribution between outputs when a single bit is flipped in the input to infer how good

CRIF’s avalanche effect is. In an ideal case, a single bit flip in a CRIF should flip half of the

output bits on average. We conduct such an experiment and show our result in Figure 5.4.

The hamming distances indicate a normal distribution with a mean of 31.273 and variance

of 20.508, showing an excellent avalanche effect in CRIF.
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Figure 5.4: Hamming distance distribution for avalanche effect testing measured on a 64-bit
CRIF implementations (depth = 4).

5.7.2 Statistical Modeling

Aside from randomness, correlation and avalanche tests, we also test our design under three

powerful machine learning algorithms to estimate how robust CRIF stands against modeling

attack. The three machine learning algorithms we select are logistic regression (LR), support

vector machine (SVM) and multilayer perceptron (MLP). Instead of training a multi-bit

model we simplified the problem to single bit prediction. If all methods failed to achieve

accurate single bit prediction, then it is impossible to create an accurate multi-bit model.

We transform the single bit prediction to an equivalent binary classification problem to

create train suitable machine learning models. We believe the prediction accuracy provides

valuable insight in modeling attack resiliency. Our training set size for all three methods is

maintained at least 15% of the input space, which is 2input size. We conduct experiments on

multiple setting including varying the size of each injective functions in CRIF, adjusting the

width and depth of CRIF and also enable/disable our content-driven reconfigurability.
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5.7.2.1 Single Output Bit Prediction

We first study if we could create a model that could accurately predict a single output bit

from inputs. An accuracy of 100% or 0% indicates that the model successfully models the

function the CRIF implements, while a50% accuracy suggests that the algorithm failed to

do so. This experiment is an extension to the bit-wise correlation study conducted above.

The detailed result is shown in Table 5.3.

5.7.2.2 Single Input Bit Prediction

We then look into the reverse problem of how accurate can a statistical model predicts

an input bit from the CRIF output. This experiment is equivalent to train a model that

simulates the backward CRIF and is a direct indication of the encryption complexity. A

prediction accuracy rate of 50% suggests that CRIF system is complex enough to stand

resilient to statistical modeling whereas a high (≥ 80%) or low (≤ 20%) accuracy suggests

that CRIF architecture is simple enough to be modeled. The detailed result is shown in

Table 5.4.

5.7.2.3 Discussion

We conclude from the results that no machine learning algorithm we adopted is capable of

accurately predict single bit input or single bit output, as all prediction accuracy is under

75%, meaning a prediction accuracy for a 32-bit message is below 0.1% even in the worst

case scenario.

We also observe that three factors have a significant impact on the output prediction

accuracy, respectively CRIF depth, CRIF width and injective function size at each layer. All

three factors have a direct negative correlation with prediction accuracy, indicating deeper,

wider and larger injective functions makes statistical modeling significantly more difficult.

Among these three major factors, we believe that depth is the most important one. When

we fix the total number of injective functions, we observe that deeper but narrower CRIF
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outperform wider but shallower CRIF in against all three modeling methods. Note that our

content-driven reconfiguration mechanism significantly improves CRIF’s modeling attack

resiliency, providing the most resilient CRIF marked in dark gray in Figure 5.3 and Figure

5.4. The prediction accuracy on a 2-layered 4× 4 CRIF with reconfigurability is as low as 4

layered 8× 8 CRIF without reconfigurability, proving our mechanism to be successful.

5.8 Overhead Analysis

We implemented the hardware support for CRIF-based communication protocol on Xilinx

Spartan-6 LX45 FPGAs to measure the area and power. In our implementation, we use a

128-bit CRIF with 4 layers. Each layer has sixteen 8-bit injective functions implemented

using MUXs and LUTs. The hash function we use to generate the configuration is an

efficient SHA-1 FPGA implementation described in [92]. Table 5.5 shows the area and

power overhead break down of our implementation. We observe that the majority of the

area and power overhead comes from the efficient SHA-1 hash function we use, our CRIF

design only occupies 23.17% of the overall area and 37.71% of the overall power consumption.

A much more lightweight hash function could further reduce our overhead.

Our design CRIF SHA-1 [92] Overall
Flip-flops 162 1,151 1,588

Slice LUTs 512 1,590 2,209
Block RAMs 0 0 3
Power(mW ) 19.80 30.42 52.50

Table 5.5: FPGA resource and power characteristics of the hardware support for CRIF-based
encryption/decryption scheme. Power measured for scheme running at 5 Mhz.

We also compare our scheme horizontally with efficient AES designs on FPGAs as shown

in Table 5.6. All power data are measured and verified based on the result reported in [93].

Even though all three compared designs are optimized for high throughput and high speed

instead of low power, they are still widely adopted. Our design achieves 75.04%, 77.70%,

and 84.01% power reduction respectively. On energy constrained IoT devices, where the

data transmission is small in size and infrequent, our design is more suitable for the security
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tasks.

CRIF-based design [94] [95] DOR[96]
Power(mW ) 52.50 210.38 235.45 172.43

Table 5.6: Power comparison with other power efficient AES design on FPGA. Power mea-
sured for scheme running at 5 Mhz.

5.9 Chapter Conclusion

We present a compact and low power security primitive, CRIF, for message encryption/decryption

tasks on IoTs. We show that our design of CRIF is secure as it shows excellent security

properties in output randomness, bit-wise correlations and avalanche effect. We have also

demonstrated that the content-driven reconfigurability significantly increases the system

complexity, rendering popular statistical modeling useless. Lastly, our implementation of

the hardware support for our proposed CRIF-based security protocol shows that our de-

sign is small and low power, achieving at least 75.04% power savings compared to popular

AES-based schemes.

96



CHAPTER 6

Hardware Sharing between PUF and Digital Logic

6.1 Motivation

There are two major concerns for modern logic designs: power and security. The prevailing

portable devices such as mobile phones, tablets, and laptops impose high requirements on the

low power design and applications due to the highly constrained power supply. Protecting

mobile devices is more challenging than securing non-portable devices not only because of the

emergence of novel attack methods such as malicious mobile software, mobile phone trojans,

and even electromagnetic side-channel attacks, but also due to the fact that traditional

security approaches usually demand high power cost, and thus are not applicable to mobile

devices due to limited power supply. Therefore, the desire for lightweight security primitives

is stronger than ever.

A PUF, as a unique type of hardware security primitive, has excellent low power, high

speed, and unclonablity properties. An individual PUF is a piece of hardware implementing

a one-way function which takes advantage of the inevitable process variation to guarantee

uniqueness of the function. The input-output mapping function of an individual PUF is

deterministic but unpredictable, due to the fact that process variation is not predictable.

As a hardware security primitive, PUF employs lower overhead comparing to traditional

software-based cryptographic approaches. More importantly, a PUF itself is unclonable

which provides protection at the physical level.

However, PUFs suffer from significant drawbacks as well. Two of the most critical con-

cerns are related to output throughput and randomness. As an example, an arbiter PUF

has an n-bit challenge vector and only a single output bit. When used to encrypt and de-
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crypt messages in real applications, n is usually set to be at least 64, in which case the ratio

between the PUF output and the PUF input is 1 : 64 or lower. The other concern is asso-

ciated with the randomness of PUF outputs. The unpredictable and uncontrollable nature

of process variation creates unbalanced delay path routing in PUFs. The frequency of 0s

and 1s in the outputs are usually not equal which compromises the security of PUFs. Other

randomness problems such as repeated patterns in outputs and strong PUF input-output

correlations can also be observed in some implementations.

6.2 Technical Goals and Contributions

We propose a novel PUF design which avoids the above PUF problems while keeping it

low-delay, low-power and physically unclonable. We focus specifically on arbiter PUFs. Our

design is motivated by the following observation. Traditional arbiter PUFs focus on the

analog properties of circuits, for example, delays in the case of arbiter PUFs. Two signals

are sent as inputs to the two paths of the PUF, and depending on which path has a longer

delay, one signal arrives at the arbiter first, thus producing a 1 or 0 accordingly. However,

the PUF circuit itself is capable of serving beyond racing delay signals; it can also be used

to convey meaningful digital information. In arbiter PUFs, each delay component is made

of transistors/gates. Therefore, when connecting these gates in a particular manner, the

overall design can compute specific functions.

Our key idea is to use the same piece of hardware to compute digital logic while racing

analog signals at the same time. With only small extra area overhead, our circuit design

generates two types of outputs, respectively analog outputs from the PUF, and digital out-

puts from the digital logic. Moreover, both outputs are generated in the same clock cycle.

By combining the above two outputs, we expect to keep the unclonability of PUFs while

gaining the advantage of digital circuits.

The digital portion of the circuit can be designed to implement any functionality. In our

design, we have specifically chosen leap-forward linear feedback shift registers (leap-forward

LFSRs) for the following reasons. First, a leap-forward LFSR is a pseudo-random number
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generator; by combining PUF outputs with leap forward LFSR outputs (e.g., XOR the

two outputs), the combined result will be highly random. Second, a leap-forward LFSR

generates large outputs in a compact area; thus, without introducing extra hardware or

delay, the output throughput is highly boosted.

To summarize our contributions, we propose a power efficient PUF design by combing

traditional arbiter PUFs with leap forward LFSRs. Our design only introduces a small area

overhead as the arbiter PUF, and the leap forward LFSR share a majority of hardware and

signal resources. With a single execution of the circuit, both outputs are generated simulta-

neously. By combining the arbiter PUF outputs with the leap forward LFSR outputs, the

system gains higher throughput as well as better randomness. Our design and implemen-

tation is based on, but not limited to, FPGA platforms. We have described our detailed

implementation in Section 6.7.

6.3 Desiderata

Our work is the first effort to take advantage of both analog properties as well as digital

properties of a circuit to create a security primitive. The analog properties are used to build

an arbiter PUF while the digital properties are realized by creating a leap-forward LFSR.

Before discussing our detailed design and implementation, we identify the architectural,

operational, and security desiderata of our work.

• In terms of architecture, we have created a “one circuit, two outputs” design. The PUF

portion and the LFSR portion of our designed circuit share almost the same hardware

resources, consequently, it saves area and lowers the power consumption.

• In terms of operation, our design achieves high throughput by employing only small

delay since the digital outputs and the analog outputs are generated in the same clock

cycle without timing overhead.

• In terms of security, by combining the arbiter PUF output with the LFSR output, the

final system output has kept the unclonability of the original PUF while the randomness
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is enhanced from LFSR.

6.4 Related Work

6.4.1 Hardware Random Number Generators

Random number generators are widely used in many security applications. James has re-

viewed a majority of commonly used random number generators [97]. In the past, random

number generation was mostly done by software. However, as hardware systems become

cheaper, faster, and more lightweight, it is feasible and more power efficient to implement

the random number generators directly in hardware. A number of HRNGs are proposed

based on different technologies. Intel has developed HRNGs for use in cryptographic appli-

cations [98]. The work by Petrie et al. has applied noise as a random seed to create HRNGs

[99]. Additionally, an FPGA-based HRNG is proposed by Kohlbrenner and Gaj by using

the intrinsic jitter contained in digital circuits[100]. Using PUFs to build an HRNG was

first proposed by O’Donnell from MIT [65]. Our work implements the design of leap-forward

LFSRs which is an extension of the standard LFSR by allowing all shifts in the standard

design to be applied in a single clock cycle [101].

6.5 Preliminaries

6.5.1 PUF Model

The PUFs we use for signal racing are standard arbiter PUFs. Figure 6.1 shows the schematic

diagram of the PUF model. The basic structure of an n-bit PUF consists of n delay segments.

The two propagation delays in the ith segment are denoted as d0i and d1i respectively. The two

delays are designed to be nominally equal to each other, but after manufacturing, the effect

of process variation will cause unpredictable delay difference between them. When built on

an FPGA, the upper delay and the lower delay in each segment are directly implemented

using LUTs with the same size. Two identically designed paths are generated by connecting
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delay components from each segment, and an arbiter is placed at the end of the two paths.

The two paths can be modified using the control bit of each segment. When the control

bit is 0, the two paths will not shuffle. When the control bit is 1, the two paths swap. For

example, in Figure 6.1, if the control bit of the ith segment is 0, then d0i stays with the upper

path and d1i stays with the lower path. However, if the control bit is 1, d0i shuffles to the

lower path and d1i shuffles to the upper path. Note that when the shuffling happens, all the

delays that connect prior to d0i (d
1
i ) will be shuffled at the same time.
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Figure 6.1: The model of arbiter PUFs with an n-bit challenge.

The vector consisting of all control bits is denoted as the PUF challenge. When an

n-bit challenge (c1c2...cn−1cn) is provided to the PUF, two identically designed paths are

generated. To retrieve a response, an impulse signal is fed into the system to excite both

paths simultaneously. Because of process variation, the signal traveling along one of the two

paths will reach the arbiter earlier, generating a corresponding arbiter output denoted as the

PUF response.

6.5.2 Leap-Forward LFSR

An LFSR is a commonly seen pseudo-random number generator (PRNG). The leap-forward

LFSR method utilizes only one LFSR and shifts out several bits. This method is based

on the observation that an LFSR is a linear system and the register state is expressed as

Q(i+ 1) = A ∗Q(i). Q(i+ 1) and Q(i) are the initial values at (i+ 1)th and ith steps; A is

the transition matrix.

To calculate the content in shift registers after k steps, the equation transforms into:
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Q(i + 1) = Ak ∗ Q(i). We can compute Ak and determine the XOR structure accordingly.

The new circuit leaps k steps in one clock cycle while the circuit uses identical shift registers.

D QD Q

D QD Q

D QD Q

D QD Q

q3

q2

q1

q0

Figure 6.2: A 4-bit leap forward LFSR example.

To illustrate the idea, Chu et al. proposed a motivational example of a 4-bit leap-forward

LFSR [101]. The derived new transitional matrix A4 is calculated from A, which is obtained

from a single-bit LFSR random number generator.

A =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1


, A4 =



1 0 0 1

1 1 0 1

1 1 1 1

1 1 1 0


After performing the operations, we can derive the feedback equation for each signal as

Equation 6.1 - 6.4:

q0 next = q0 ⊕ q3 (6.1)

q1 next = q0 ⊕ q1 ⊕ q3 (6.2)

q2 next = q0 ⊕ q1 ⊕ q2 ⊕ q3 (6.3)
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q3 next = q0 ⊕ q1 ⊕ q1 (6.4)

The corresponding block diagram is shown in Figure 6.2, requiring 4 flip-flops and 5 XOR

gates.

Note that the final transition matrix depends only on the initial transition matrix, thus,

different initialization values in shift registers will lead to a different number of XOR logic

required in a multi-bit leap-forward LFSR. A 64-bit leap-forward LFSR takes at most 125

XOR gates to build.

6.6 Architecture

6.6.1 Observations

We observed some opportunities that can be taken to further improve a conventional FPGA-

based arbiter PUF implementation.

6.6.1.1 Signal Encoding

In a conventional arbiter PUF implementation, the pair of racing clock signals clki1 and clki2

after the ith segment is always synchronous with the original input signals clkorig1 and clkorig2 .

One observation is that the synchronization is not strictly enforced, as long as clki1 and clki2

are in phase, the arbiter appended at the end of the PUF is able to accurately catch the

faster signal. This observation enables us to encode racing signals to digital signals. For

example, if clki1 and clkorig1 are in phase, we encode clki1 as a 0 and if they are in antiphase

we encode it as a 1.

6.6.1.2 LUT Utilization

FPGA implementation of arbiter PUFs utilizes LUT6 2 to race signals. A LUT6 2 is a 6-

input, 2-output look-up table that is able to act as two LUT5s that shares the same inputs
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or just a single LUT6 depending on the control bit. Among the six inputs bits, the control

bit (most significant bit) is set to 1 in order to transform the LUT6 2 into two LUT5s. The

second most significant bit is usually used as a selection bit that decides the traveling path

inside the LUT. This bit serves as a challenge bit of the arbiter PUF. The next two bits are

fixed to constant 1s. The two least significant bits are used to take two racing clock signals.

We observe that a conventional arbiter PUF implementation does not fully utilize all the

possible resources of LUT6 2. If we allow anti-phased signals between PUF segments, we

could change the 3rd and 4th bits from static 1s to user-defined values. The conventional

design of enforcing two static bits is equivalent to leaving a LUT2 unused for every LUT6 2

in the delay chain.

6.6.2 Overall Design

We propose producing logical output and signal racing results simultaneously on the same

hardware. Our design takes a pair of impulse signals as input, and because of process

variation, two racing signals do not arrive at the finish line (arbiter) at the same time.

Meanwhile, logical computations are performed based on the logical input and the result is

carried on the bypassing racing signals using an encoding. Thus, we generate two outputs,

each of which is completely uncorrelated. Consequently, an advantage of our design is that

we are able to reduce overall power and area by sharing hardware and wires.

We propose to load leap-forward LFSRs on top of a conventional arbiter PUF as shown

in Figure 6.3. The arbiter PUF and multiple LFSRs share the same hardware but generate

different outputs. The arbiter PUF takes PUF challenges to configure internal paths for the

delay signals to race. Meanwhile, leap-forward LFSRs are designed on top of the arbiter

PUF to generate digital random numbers.

Eventually, the leap-forward LFSR output and the arbiter PUF response are combined

using a post process module (in our case we use XORs and a Von Neumann corrector). The

final output leverages advantages from both sources: it inherits high throughput and high

randomness from leap-forward LFSRs and physical unclonablity from arbiter PUFs.
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Figure 6.3: High level illustration of proposed design.

6.7 Implementation

We utilize LUT6 2 on FPGAs to demonstrate the feasibility of our design. Figure 6.5 shows

our overall implementation. Our design maintains the LUT chain structure and some LUT

input pin assignments from the conventional arbiter PUF implementation. However, the

third and fourth input bit of each LUT6 2 are no longer restricted to constant 1s. Instead,

they are now open to any user-defined values. We use these two bits along with unconstrained

initialization vector (INIT) bits to implement an additional XOR gate on top of the LUT6 2.

We then use these XOR gates to implement leap-forward LFSRs. The output of the XOR

gate is encoded from the racing signal using a flip-flop. Depending on if the signal is in phase

or antiphase with the clock signal, the result of the XOR gate is encoded as 0 or 1.

6.7.1 Implementation of Arbiter PUF

The arbiter PUF retains the same structure as a conventional FPGA-based design. Each

LUT6 2 implements a single segment of an arbiter PUF. We have made modifications to

the implementation to allow racing signals to carry additional digital information. Note that

our modification still maintains signal synchronization by keeping two racing signals in phase
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throughout the racing process.

LUT6_2 LUT6_2

Figure 6.4: The two output signals from LUT6 2 are required to be in phase, but can be
inverted simultaneously.
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D Q Logical output

Logic inputs

Challenge bit

Arbiter Response

...

LUT6_2 LUT6_2

D Q Logical output D Q Logical output

Figure 6.5: Overall implementation using LUT6 2 on FPGA.

6.7.1.1 Allowing Antiphase Signals

In our design, we no longer require signals traveling between LUTs to be synchronous with

the clock signal. Figure 6.4 shows a possible scenario where the signals are inverted after

traveling through the first LUT and inverted again after the second LUT. Our encoding

scheme (in-phase encoded as 0 and antiphase encoded as 1) allows us to carry computational

output on racing signals that are traveling through the arbiter PUF chain.

Additional constraints on the INIT value of LUTs need to be applied to allow such

functionality. All INIT values must fulfill both requirements below:

• The most significant 32 bits must be mirrored to the least significant 32 bits in units

of 4 bits. For example, the mirror image of 1100 1010 would be 1010 1100.

• INIT [4k] ⊕ INIT [4k + 3] = 1 for k (k ∈ {0, 1, ..., 15}). The value of INIT [4k] and

INIT [4k + 3] are decided by the computational logic.

The first constraint is applied to guarantee the upper and lower LUT5s within the LUT6 2

to be the same, thus creating theoretically identical racing paths. The second constraint
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is enforced to create racing paths that signals can propagate through. These constraints

together guarantee that the two outputs of each LUT6 2 are two in-phase clock signals

instead of static outputs or out of phase signal pairs. All bits that are not restricted by the

rules can be customized to program arbitrary logic.

6.7.1.2 Arbiter

The arbiter used to capture the faster-racing signal is as simple as a SR latch. However,

since we allow the signals to be inverted, the phase of the final output of each chain now

relies on the implemented logic instead of staying unchanged. Whether the racing signals at

the “doorstep” of the arbiter are in phase with the clock signal or not, our original SR latch-

based arbiter is still able to produce the correct result. Thus, the original PUF functionality

is not compromised.

6.7.2 Implementation of leap-forward LFSRs

Leap-forward LFSRs are implemented using XOR gates and flip-flops. A 64-bit leap-forward

LFSR requires only 64 flip-flops and 125 XOR gates. However, the wiring complexity of a

64-bit leap-forward LFSR is nontrivial. As the size of leap-forward LFSRs grows, the wiring

complexity grows dramatically. To avoid the wiring overhead, we implement multiple 64-bit

leap-forward LFSRs on top of our arbiter PUF design.

6.7.2.1 XOR Gates

According to our modification on the arbiter PUF design, it is possible to implement an

additional XOR gate on the LUT6 2. Table 6.1 shows the rules needed to implement the

XOR logic in addition to the constraints described in section 6.7.1.1. For example, a valid

assignment of INIT[31:0] is 8518C3EA, the mirrored INIT[63:31] would be AE3C9158.

The XOR results are then encoded according to rules described in section 6.6.1.1. The

two outputs of LUT6 2 are guaranteed to be identical based on the constraints we set, so

the XOR result can be retrieved by encoding either of them.
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Position in INIT[0:31] Init value
0,7,11,12,16,23,27,28 0
3,4,8,15,19,20,24,31 1
Other -

Table 6.1: INIT value rules for implementing XOR gates.

6.7.2.2 Flip-Flops

The flip-flops serve two purposes. First they are used to extract digital information from

the racing signal. Second, they are used to store the results of leap-forward LFSRs. In our

implementation, we reuse some flip-flops for both purposes to save area and power. Each

leap-forward LFSR requires at most 125 flip-flops.

6.7.3 Post Process

64 LUT6 2s and an SR latch are needed to implement a 64-bit arbiter PUF while a 64-

bit leap-forward LSFR implementation uses 125 XOR gates and 125 flip-flops. This means

that we can load four 64-bit leap forward LSFRs on top of eight 64-bit arbiter PUFs. The

throughput ratio of arbiter PUF and LFSR is then 1:32 (8 : 4× 64). We claim that simple

XOR operations to combine both outputs provide sufficient randomness. The XOR operation

is done between the concatenation of all leap forward LFSR outputs (4×64bits), and a string

consists of self-concatenation of arbiter PUF outputs (32 times, which makes it 8× 32bits).

By combining the two outputs, we are able to boost the system throughput by 32× compared

to conventional eight 64-bit arbiter PUFs. Note that the randomness can be further improved

by applying Von Neumann correction on the arbiter PUF results before the XOR operations.

Randomness is evaluated in section 6.8.2.

6.8 Experimental Results

In our implementation, we combine leap-forward LFSRs with an arbiter PUF by sharing

hardware and wires. Our motivation is to create a security primitive that inherits the

advantages of both while staying free of their drawbacks. We carefully evaluate area, power
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and output randomness of our proposed implementation in this section.

6.8.1 Area and power

We claim that by sharing hardware and signals, we are able to utilize area and power more

efficiently. To evaluate our design, we implement four 64-bit leap forward LFSRs and eight

64-bit arbiter PUFs using the same hardware resources on a Spartan-6 XC6SLX45 FPGA.

In each clock cycle, our design generates 256-bit post-processed output. We compare our

design with standalone leap-forward LFSRs and arbiter PUFs that generate the same output

throughput (256 bits). We have also compared our hardware sharing design with non-sharing

designs on four 64-bit leap forward LFSRs and eight 64-bit arbiter PUFs. The comparison

result is shown in Table 6.2.

Our design LFSR PUF Non-share
Throughput 256+8 256 256 256+8
Flip-flops 532 256 512 320
LUTs 544 250 16,384 764
Slices 288 135 8192 402
Unclonable yes no yes -
Power(mW ) 6.92 3.39 117 7.38
Power/bit 0.026 0.013 0.457 0.028

Table 6.2: FPGA resource and power characteristics: our design (four 64-bit leap forward
LFSRs loaded on eight 64-bit arbiter PUFs) vs. four standalone 64-bit leap forward LFSRs
vs. 256 64-bit arbiter PUFs vs. four 64-bit leap forward LFSR and eight 64-bit arbiter PUFs
that do not share hardware resources. Power per bit unit: mW/bit.

Even though we spend more power and area than leap-forward LFSRs, our design gains

the advantage of physical unclonability. When compared to arbiter PUFs, we have reduced

LUT cost by 30.1× and reduced power by 16.9×.

When compared to four independent 64-bit leap-forward LFSRs and eight 64-bit arbiter

PUFs that do not share hardware as shown in the last column of Table 6.2, our design also

does better in terms of both area and power.

The result shows that our design uses more flip-flops compared to the non-sharing scheme.

This is due to the fact in order to capture the digital information on the racing signals we
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use additional flip-flops for signal encoding. However, we are able to save 40.4% of LUTs

and 39.58% of occupied slices. Considering flip-flops are much smaller than LUTs in size on

FPGA, we claim our design improves in terms of area.

As of power consumption, our sharing scheme reduces overall power consumption and

power per bit by 7.69% comparing to the non-sharing scheme. This number is relatively

small considering the large area improvement. This is caused by the larger number of flip-

flops used in the implementation. Flip-flops tend to dissipate more switching power than

LUTs while in our sharing scheme the majority of shared hardware resources are LUTs.

Figure 6.6: NIST Statistical Test Suite success ratio, one thousand 10,000 bit-streams are
passed to each test. The test passes for p-value ≥ σ, where σ is 0.05. The black line indicates
a threshold of success ratio of 96%. All test results below this line are considered test failure.
Arbiter PUF results without Von Neumann correction have success rate below 5% in most
tests, thus are not shown in the figure.

6.8.2 Randomness

We quantify the statistical randomness of our design by applying the industry-standard Na-

tional Institute of Standards and Technology (NIST) Statistical Test Suite to post-processed
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outputs [73]. An output stream is generated in such a way that the output of the system in

the current clock cycle is fed back to the design as a challenge in the next clock cycle. We

repeat this stream production process until all output bits (1, 000 × 10, 000) are collected.

Figure 6.6 displays the lowest success ratio of outputs generated by leap forward LFSRs, ar-

biter PUFs with Von Neumann correction, and our design. Three conclusions can be drawn

from the figure:

• The output of our design shows excellent randomness, passing all tests in the test suite.

• Our results is at least as random as leap-forward LFSRs.

• Our results outperform arbiter PUF and Von Neumann correction in block frequency

and approximate entropy. In all, our proposed method provides better randomness

while maintaining physical unclonability.

6.9 Chapter Conclusion

We propose a mechanism to combine signal racing and logic computation through signal and

hardware sharing. Employing such a mechanism greatly reduces the area overhead and power

consumption. We illustrate our idea by combining leap-forward LFSRs and arbiter PUFs on

a Spartan-6 FPGA. The evaluation shows that our sharing design saves 40.4% LUTs while

achieving 7.69% of power improvement compared to the non-sharing scheme. Our design

maintains the physical unclonability inherited from arbiter PUFs while, as suggested by

NIST statistical test suite, achieving much better randomness. We conclude that by racing

signals and computing logical operations simultaneously, we are able to create a power- and

area-efficient PUF design with unclonability and high randomness.
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CHAPTER 7

Lightweight Environmental Anomaly Detection

7.1 Motivation

The massive deployment of mobile reconfigurable devices has imposed a high-reliability re-

quirement. It has become necessary that these devices should operate reliably irrespective

of the change in the external operating environment. In order to monitor the reliability of

these mobile reconfigurable devices, measurement of physical operating parameters like on-

chip power supply voltages and die temperatures are desired in many situations. An alarm

should be raised whenever the reliability is compromised due to the abnormal or extreme op-

erating environment. Environmental abnormalities are dangerous because, on the one hand,

sudden change in the environment could indicate faulty hardware (circuit short) or logic

failure (excessive switching); on the other hand, abrupt variation could also be caused by a

variety of physical attack methods, putting the integrity of the operation and the intellec-

tual property embedded in the hardware at the fringe of danger. In both cases, notification

of such changes is desired to avoid further damage. Conventionally, detection of abnormal

variations requires on-chip temperature and voltage sensors. However, sensor-based monitor

system has its drawbacks such as relatively high power consumption and low sample rate. As

a matter of fact, many low-end reconfigurable devices like the Internet of Things (IoT) nodes

do not have such sensors embedded. Thus, a low cost, high accuracy abnormal environment

detection method is desired to monitor mobile devices without the help of temperature and

voltage sensors.

APUF, a unique type of hardware security primitive that has been used in many se-

curity applications, has excellent properties include low power and high speed. However,
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APUFs suffer from the notorious reputation of instability and environmental sensitivity.

Challenge-response mapping for a specific APUF is usually not stable: the mapping changes

as environmental factors varies. A slight change in temperature and voltage could lead to

the unpredictable remapping of many CRP. Several APUF-based security applications in-

tend to minimize the impact introduced by instability using stable CRP selection or error

correction code (ECC). While considerable efforts are seeking to eliminate the problem, we

see the environmentally sensitive nature of an APUF as an opportunity. The instability

due to environmental changes can be exploited to detect abnormalities during the operation

cycle of protected hardware.

7.2 Technical Goals and Contributions

We propose to use an APUF as an environmental anomaly detector. The core design idea

is based on the observation that changes in an APUF’s challenge-response mapping imply

a highly probable variation in operating voltage or temperature. We propose to monitor

the remapping activity of only ESCRPs instead to save additional energy and latency. Our

design is advantageous comparing to current sensor-based system monitors for the following

three reasons:

• Implementation is flexible. Detection of environmental variation is not a must for all

applications. Sensors, once embedded, occupy space and drain power regardless of

application needs. Our detection framework, however, can be implemented or removed

easily on reconfigurable hardware depending on user’s demand.

• High sample frequency. Many modern reconfigurable devices such as Xilinx Virtex

family have system monitors that provide information on both internal voltage VC-

CINT and core temperature. The problem with these sensor-based system monitors

is that the sampling frequency is relatively low. Many abnormalities only affect the

device for a few clock cycles, the current system monitor sample rates on Xilinx Vir-

tex devices (200kHz maximum) fails to detect these variations. Our APUF-based

113



framework is capable of sampling at a much higher frequency (around 10 Mhz in our

implementation).

• Low power and compact size. Our detection framework requires only a single APUF

to detect abnormalities, which grants us a huge advantage in terms of area and power.

After careful off-line ESC seed generation and alarm threshold calibrations, the system

provides comparable detection rates with state-of-the-art detection mechanism.

To our best knowledge, our work is the first effort to take advantage of environmental

sensitivity in APUF CRP-mappings to accurately detect abnormal environmental variations.

7.3 Related Work

7.3.1 System Monitor

Many efforts have been made to monitor the physical parameters of a reconfigurable system.

Xilinx has embedded its System Monitor in its recent FPGA products [102]. The System

Monitor function is built around a 10-bit Analog-to-Digital Converter (ADC) and a number

of on-chip sensors. The sensors are used to measure FPGA physical operating parameters like

on-chip power supply voltages and die temperatures. However, Xilinx System monitor has

a relatively low sample rate. Many variations occur within a few clock cycles and the 200k

sample rate is not enough to detect short variations. Le Masle and Luk introduced a ring

oscillator-based attack detection system that monitors the core power of a circuit through

observing the behavior of embedded ring-oscillators. The system reports any suspicious

drop in internal voltage and handles the threat accordingly [103]. Even though the ring

oscillator-based power monitor framework is capable of detecting abnormalities at a much

higher sample rate, it is also much larger in size. Despite the existing studies, our proposed

APUF-based anomaly detection framework is capable of achieving a high sample rate while

remaining simple, compact and low power.
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7.4 Preliminaries

7.4.1 Unstable APUF

Again the PUF we use in our anomaly detection framework is standard delay-based APUFs.

An n-bit APUF takes an n-bit challenge as input and produces a 1-bit response as output.

When an n-bit challenge is provided to the APUF, two identically designed paths are gener-

ated along a chain of multiplexer pairs. Each challenge bit controls whether the pair of paths

should swap positions. A pair of multiplexers is denoted as an APUF segment. To retrieve

a response, an impulse signal is fed into the system to excite both paths simultaneously.

Because of the uncontrollable process variation, the signal traveling along one of the two

paths will reach the arbiter earlier, generating a corresponding arbiter output.

Assuming an APUF maps challenges C to corresponding responses R. The APUF has n

segments meaning all challenges C are n-bit long. We assume no delays on the connection

wires and all delays are contributed by the APUF segments. Given a specific challenge c ∈ C,

the ith APUF segments generates a pair of delays with delay difference of ∆dci . In a stable

environment, the corresponding response r ∈ R can be mathematically represented as:

r =


0 if

∑n
i=1 ∆dci > 0

1 if
∑n

i=1 ∆dci < 0

(7.1)

In real life, however, environmental variations change the delay difference in each APUF

segment. For simplicity purposes, we assume that a minor change in environmental would

change the delay difference in the ith segment by ∆dei where ∆dei ∈ [−e, e], e is the maximum

change each delay difference could be altered in a normal operational environment. ∆dei is a

function of temperature t and voltage v. Due to on-chip temperature and voltage gradient,

t, v are different from segment to segment. When provided with a specific challenge c ∈ C,

the response r ∈ R can be mathematically represented by

115



r =


0 if

∑n
i=1 ∆dci + ∆dei > 0

1 if
∑n

i=1 ∆dci + ∆dei < 0

(7.2)

Noted that our anomaly detection framework is not limited to only standard APUF,

many other delay-based PUFs like ring oscillator PUFs serve our need as well. However,

APUF is more environmentally sensitive, more compact and low power comparing to ring

oscillator-based PUFs, so in this work, our design and implementation are entirely based on

the above APUF structure.

7.5 CRP Environmental Sensitivity

Physical properties of transistors vary as environment changes, thus a large number of APUF

CRPs are sensitive to fluctuations in physical parameters. In this section, we first discuss cor-

relations between CRP consistencies and physical parameters in the operating environment.

We then present a method to collect a set of ESCRP with a strong correlation with environ-

mental parameters. We intend to show that the CRP inconsistency in APUFs can serve as a

good indicator of environment variations. We define CRP inconsistency as the probability

for a corresponding response being inverted when the challenge remains unchanged.

7.5.1 Environmental Variation

Operating environment is a general concept that includes all on and off-chip physical condi-

tions during the process of operation. Humidity, room temperature, supply power all play

an important role during the process of logic operations on a reconfigurable device. In this

chapter, we mainly focus on studying on-chip voltage and temperature. We carefully examine

the core temperature and voltage levels in a reconfigurable platform and their relationship

with the on-chip APUF CRP inconsistency.
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7.5.1.1 Core Temperature vs. CRP inconsistency

Core temperature can be fluctuated by many factors including but not limited to circuit

switching activity, room temperature, heat sink efficiency, etc. A sudden, unintended and

significant increase or decrease in the core temperature is defined as temperature anomaly.

Temperature abnormalities could result in circuit behavior alternation, hardware malfunction

or even physical damage. APUF serves as an excellent temperature anomaly detector because

transistor delays are sensitive to temperature. Change in transistor delays potentially invert

the signal racing results between two delay paths in an APUF.

We first randomly selected 1,000,000 64-bit binary strings as our test challenge set. Each

challenge within the test challenge set is repeatedly fed to the 64-bit APUF implemented on

a Virtex-5 FPGA. We adopt the majority voting scheme to decide on a standard response.

For a challenge C, if a majority of the corresponding responses is R, the tuple (C,R) is

recorded as the reference CRP. All reference CRPs are stored in a dictionary DictCRP . Core

temperature is being sampled and recorded simultaneously using on-chip sensors. A set of

100 challenges were being evaluated between every two sensor samples. Each set is being

evaluated for 1,000 samples until being replaced by a new set of 100 challenges. The result

is shown in Figure 7.1.

Figure 7.1a shows a snippet of our experiment. The blue line is the core temperature

gathered from the built-in SYSMON hard macro. The red line is the average inconsistency

of a set of 100 test CRPs. After the 50th sample, we intentionally increase the core temper-

ature by 5 ◦C using excessive switching circuits [104]. An intuitive conclusion can be drawn

from the figure that the pattern of both core temperature (blue line) and average CRP in-

consistency (red line) are correlated. Analysis of the entire CRP test set shows that the CRP

inconsistency and collected core temperature are correlated with a correlation coefficient of

0.7461. When the core temperature increases, a rise in CRP inconsistency occurs. The

inconsistency falls back as the core temperature recovers. The 5 ◦C increment in the core

temperature leads to approximately 13.5% increment in CRP inconsistency.

However, the CRP test set is chosen at random in our experiment; a large number of
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(a) Core temperature(◦C) vs. average APUF
CRP inconsistency(%) for a set of 100 randomly
selected challenges.

(b) VCCINT(V) vs. average APUF CRP incon-
sistency(%) for for a set of 100 randomly selected
challenges.

Figure 7.1: A snippet of core environment change vs. inconsistency of randomly selected
APUF CRPs. The y-axis on the left is core temperature corresponding to the blue line, the
y-axis on the right is the average CRP inconsistency corresponding to the red line.

stable and ultra unstable CRPs were included. Stable CRPs are always consistent regardless

of the increment in the core temperature, thus greatly reduces the environmental sensitivity

of the APUF. Ultra unstable CRPs on the other hand always provide near 50% inconsistency,

which adds additional noise to our evaluation.
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7.5.1.2 Core Voltage vs. CRP inconsistency

Core supply voltage inside a reconfigurable device is not static. In most cases, core supply

voltage VCCINT varies in a tolerable range. Many events could lead to abnormal varia-

tions in VCCINT: simple power analysis(SPA) could lead to an abnormal decrease in the

VCCINT since power measurement tool introduces additional resistance to the power rail;

Electrostatic discharge(ESD) could lead to abnormal increment on VCCINT, etc. APUF

serves as a good VCCINT detector because a slight variation in supply power results in the

remapping of some CRP in APUF, thus by actively monitoring the mapping of APUF CRP

inconsistency, variations in internal supply power can be detected through calculation on

CRP inconsistency.

We produce a SPA scenario that results in a sudden decrease in VCCINT. The experiment

Virtex-5 board uses a power module(TI TPS54620) to provide power to FPGA core with the

internal supply voltage(VCCINT). The power module is essentially a buck converter that

generates output voltage 0.8V < Vout < 15V. Figure 7.2 shows a simplified diagram of the

module modified by us. We produce a SPA attack by adding an additional switch resistor to

modify VCCINT directly through the power module. VCCINT can be instantly decreased

by opening the switch SW to add a resistor RSW into the circuit. The output voltage of the

power module before opening the switch SW can be calculated using equation 7.3. When

mimicking the probe insertion, we open the switch SW , and the output voltage VCCINT

can thus be calculated using equation 7.4.

VCCINT =
R1 · Vref
R2

+ Vref (7.3)

VCCINT =
(Rsw +R1) · Vref

R2

+ Vref (7.4)

Xilinx Virtex-5 allows VCCINT to vary as much as 5% [105]. We use three configurations

of RSW . The replacement of resistors is capable of changing the VCCINT by 2.08%, 4.26%,

and 5.37%. We apply the same evaluation as the previous experiment on the same 1,000,000
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Figure 7.2: VCCINT Power Module, when switch SW is open resistor RSW is inserted into
the power rail.

randomly selected test challenges and observe the relationship between CRP inconsistency

and VCCINT. A visualized result for CRP inconsistency for a sudden change of 5.37%

in VCCINT is shown in figure 7.1b. After the 150th voltage sensor sample, the switch is

opened so that VCCINT decreased from 0.986V to 0.935V. We observe that the average CRP

inconsistency increased from 23% to roughly 41% inconsistency, which later drops back to

22% as we closed the switch and restored VCCINT to 0.986V.

7.5.2 Environmentally Sensitive CRP

The above evaluation above shows that CRP inconsistency in an APUF is correlated with

core temperature and supply voltage. However, the correlation is not strong enough to meet

our application needs. After review the whole CRP set, we conclude that not all CRPs are

equally sensitive to the environment. Based on the notation given in equation 7.1 and 7.2,

we define stable, ultra unstable and ESCRPs as below.

A stable challenge produces consistent response regardless of operating environment. A

stable CRP appears if one or more segments dominate over all remaining segments so that

the final delay difference is sufficiently large enough to overcome delay variations. Stable

challenges can be defined in Equation 7.5.

|
n∑
i

(∆dci)|>
n∑
i

|∆dei | for all possible ∆de (7.5)
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so that the APUF generate the same response regardless of environmental variation. Our

APUF implementation shows that roughly 30% of CRPs are stable.

An ultra unstable challenge on the other hand creates two paths with near zero delay

difference. This can be represented by Equation 7.6:

n∑
i=1

∆dci + ∆dei ≈ 0 for ∆de ∈ [−e, e] (7.6)

With the given challenge, there is a near 50% probability that the corresponding response

would be a 1 or a 0. Our APUF implementation shows that roughly 5-10% of CRPs are

ultra unstable.

To be an indicator of environmental changes, we are primarily interested in searching for

environmentally sensitive challenges(ESCs) that neither produces a stable nor completely

unpredictable response. An ideal ESC should at least fulfill the following two conditions

described in Equation 7.7 and 7.8:

1.

|
n∑
i

(∆dci)|<
n∑
i

|∆dei | for ∆de ∈ [−e, e] (7.7)

when so that no dominating segment group exists in the APUF, and environmental

variations could possibly invert the response.

2.
n∑
i=1

∆dci + ∆dei ≈ 0 for ∆de ∈ [−e, e] (7.8)

At a given environment the response is stable in a normal operating environment.

In addition to the previous two requirements, an ideal ESC should be able to obtain an

inverted response when the environment varies to an abnormal range:

3.
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sign(
n∑
i=1

∆dci + ∆dei ) = −sign(
n∑
i=1

∆dci + ∆de′i )

for ∆de ∈ [−e, e] and ∆de′i > e or ∆de′i < −e.

(7.9)

In our experiment, we defined normal operating environment as: 1. core temperature

T = 30.5± 5 ◦C, 2. VCCINT = 1± 0.5V . From the 1,000,000 test challenge set, we observe

that no challenge fulfills all three requirements for ESCs. Non-uniform physical properties

over the chip makes qualifying both equation 7.8 and 7.9 extremely difficult. We relaxed

the requirement on these two conditions by 30% meaning allowing at most 30% violations in

both equations. Thus we are able to collect 10,000 qualified CRPs out of a 1,000,000 random

challenge set. We repeated the evaluation with only these challenges again, and a snippet of

the result can be seen in figure 7.3.

Figure 7.3a shows that the CRP inconsistency of the ESCRPs (red line) dramatically

increases when the core temperature (blue line) is intentionally increased through circuit

switching. The correlation coefficient between CRP inconsistency and core temperature in-

creased from 0.7461 to 0.8722, much higher comparing to using a random challenge set.

The average CRP inconsistency increased from 23% to roughly 79.8% inconsistency when

we increase the core temperature to 37.5 ◦C, which later drops back to 22% as switching

circuits cool down. A similar observation can be made in Figure 7.3b as we close the switch

and change VCCINT instantly. The average inconsistency of the selected CRPs instantly

changed to over 80%. Comparing to randomly selected CRPs, these sensitive CRPs response

much faster and dramatic because stable CRPs have been eliminated. We conclude that ES-

CRPs are much efficient and environmentally sensitive when using APUF as environmental

variation indicator.
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(a) Core temperature(◦C) vs. APUF CRP incon-
sistency(%) for a set of 100 ESCs.

(b) VCCINT(Volt) vs. APUF CRP inconsis-
tency(%) for a set of 100 ESCs.

Figure 7.3: Core environment change leads to variations in inconsistencies of ESCRP. The
y-axis on the left is core temperature corresponding to the blue line, the y-axis on the right
is the average CRP inconsistency corresponding to the red line.

7.5.3 ESC Set Generation

APUFs serve as a good environmental variation detector when ESCs are applied. Since

ESCs are different from APUF to APUF, and there is no general pattern in them, acquiring

a large set of ESCs at run time is no trivial task.

We present an efficient, two-step method to collect such a large set of ESCs. We first do a

random search to collect a single ESC seed using evolution strategies (described in Protocol

4). Evolution strategies method is inspired by the evolutionary adaptation of a population
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of individuals to certain environmental conditions. When applying evolution strategies on

ESC generation, one individual in the population is a specific challenge vector and mutation

on an individual is defined as randomly flipping multiple bits. The environmental fitness of

the individual is determined by the consistency of the corresponding PUF response under a

small environmental variation benchmark where environmental factors vary beyond tolerable

range using switching circuit/power rail resistor. The tolerable range is defined by the user

based on the nature of the application. The pseudocode of ESC exploration is described in

Protocol 4)

Protocol 4 Explore ESC seed

Require: (1) Number of candidates in the parent generation µ. (2) Number of candidate
solutions generated from the parent generation λ. (3) Expected ESC set size κ (4) A
fitness evaluation function EvaluatePopulation(). (5) A mutation rate τ . (6) Maximum
number of generations M .

Ensure: A set of ESCs Sbest.
Population ← InitializePopulation(µ).
EvaluatePopulation(Population)
Sbest ← GetBest(Population, κ)
while i < M do

Children ← ∅
for j = 0 to λ do
Parentj = GetParent(Population, j)
Sj ← Mutate(Parentj, τ)
Children ← Sj

end for
EvaluatePopulation(Children)
Sbest ← GetBest(Population+Sbest, κ)
Population ← SelectBest(Population, Children, µ)
i = i+ 1.

end while
Return(Sbest)

We observe that when inverting a small number of bits in an ESC seed, the new challenge

is most likely to stay environmentally sensitive due to the fact that nearby transistor process

variations are somewhat correlated. We thus generate more ESCs by randomly inverting a

small number of bits in the ESC seed (described in Protocol 5).
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Protocol 5 Generate ESC set

Create empty challenge set ESC, define the number of the size of the ESC set m, and a
growth index i. An ESC seed esc is taken as an input
Count = 0
while Count < m do

for k in range(i) do
Randomly flips k bits in esc to obtain ckCount
Add ckCount to ESC

end for
Count += 1

end while

7.6 The Detection Framework

7.6.1 System Design

Figure 7.4 shows a high-level implementation of APUF-based anomaly detector on FPGA

platforms. The detector consists of three major modules.

The challenge querier is used to generate challenges, and feed them into the APUF

at run-time. Before the actual run-time detection, a calibration process generates an ESC

seed off-line using Protocol 4. The challenge querier generates a set of ESCs using Protocol

5 at run-time. A random number generator embedded inside of the challenge querier decides

at each clock cycle which bits should be inverted. The challenge querier is placed at the

furthest end of the logic blocks to minimize errors.

The APUF process the same challenge multiple times and send all generated responses

to the response verifier module. The APUF itself resides immediately next to the logic being

monitored to achieve the best accuracy.

The response verifier calculates the CRP inconsistency by counting the frequency of

response inversion, and raise an alarm if the inconsistency exceeds a user-defined threshold.

Since all ESCs are correlated, the 0 and 1 distribution are also very similar, thus a single

counter is enough for counting and recording bit inversions. The alarm threshold is recom-

mended to be set to the selected ESC’s fulfillment rate of equation 7.8 and 7.9, however it is

adjustable as the definition of the normal operational environment may be subject to change
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based on user requirement. The response verifier is placed at the furthest end of the logic

blocks to minimize errors.

Monitored Logic APUF

Challenge Querier & 
Response Verifier

Memory

Empty Logic Block

Interconnection

I/O Cell

Figure 7.4: APUF-based anomaly detection framework on FPGA.

7.6.2 Experimental Results

In this section, we carefully evaluate our anomaly detection framework.

Our experiments are conducted on two Genesys boards. The Genesys board has a Virtex-

5 LX50 FPGA. The system is tested with the implementation of an RSA-1024 and an AES-

128 crypto-system [106]. A mixture of 1,000 abnormal core temperature and VCCINT was

applied during a 10-hour long operation. In our setting, an anomaly in core temperature

is defined as a variation of over 5 ◦C and an anomaly in VCCINT is defined as a variation

of over 5%. We generated three distinctive challenge sets, respectively 1,000 random chal-
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SYSMON[102] Our Design(Virtex-5) [103](Spartan-6) Our Design(Spartan-6)
Sample rate 200kHz 200kHz 8MHz 8MHz
LUTs 251 92 3300 49
Flip-flops 139 69 unknown 57
Slices 63 36 825 22
Power(mW) 653 569 1953(estimated) 29

Table 7.1: FPGA resource and power characteristics: Virtex-5 SYSMON vs. our design on
Virtex-5 vs. RO-based on-chip power monitor vs. our design on Spartan-6. ADC and analog
sensor area and power are not included in calculation.

lenges(RC), a single ESC seed, and 1,000 ESCs derived from the ESC seed. The ESC seed

is generated based on our requirement on core temperature and VCCINT, which in our case

is our definition of the normal range of temperature and VCCINT defined above. The alarm

threshold is set to raise an alarm when CRP inconsistency reaches 40% for 1,000 random

challenges, 70% for both single ESC seed and 1,000 ESCs case. A UART core is used to

monitor the real-time CRP inconsistency and communicates with RSA/AES cores. The

results are displayed in Table 7.2.

Circuit 1,000 RC Single ESC 1,000 ESC
AES-128 69.4/0.7 98.1/5.9 100/2.1
RSA-512 78.4/3.0 100/3.9 100/1.1

Table 7.2: anomaly detection: true positive rate (%)/false positive rate(%) using 1,000
random challenges vs. single ESC vs. 1,000 ESCs as challenge set per sample. APUFs are
placed immediately besides the monitored circuit. A mixture of 1,000 abnormal temperature
and VCCINT were applied to the protected circuit.

We observe that 1,000 ESC challenge set provides the best detection rate while random

CRPs provides the worst. ESCs benefit from the elimination of stable and ultra unstable

challenges. With a good ESC seed, we are capable of achieving a true positive rate of 100%

with 1,000 generated ESCs at run-time, while the false positive rate is as low as 1.1%.

7.6.3 Area and Power

We compare our design’s area and power overhead with both Xilinx System Monitor [102]

and ring oscillator-based power monitor[103]. Since Xilinx System Monitor only supports
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Virtex family product and Le Masle’s ring oscillator-based power monitor was originally

implemented on Spartan-6 LX45, we implement our design on both platforms for compar-

ison purposes. The sample rate for Virtex-5 implementations is fixed to 200kHz while the

implantation on Spartan-6 devices has a sample rate of 8MHz. The FPGA resource and

power characteristics for Xilinx System Monitor, ring oscillator-based power monitor and

our design are shown in table 7.1.

Our design uses 63% less FPGA area comparing to Xilinx System Monitor logics while

achieving 13% of power savings. To be noted that we do not include the area and power

of both analog sensor and ADC in the SYSMON hard macro in our calculation due to lack

of information. The actual saving is expected to be more. Comparing to Le Masle’s ring

oscillator-based power monitor, our design is 98.4% smaller. Since APUF does not impose

high switching activities like ring oscillators, our design consumes only 1.5% of the power.

7.7 Chapter Conclusion

In conclusion, we discovered that APUF CRP inconsistency is highly correlated with the

core temperature and voltage on reconfigurable platforms. Based on the observation we

designed a framework to utilize the environmental sensitivity of APUFs to detect suspicious

operational environment variations. We propose to apply only ESCs on a given APUF to

efficiently and accurately detect environmental abnormalities. When integrated with an

AES-128 and an RSA-1024 implementation, our framework is capable of detecting 100%

of applied abnormalities with a false positive rate as low as 1.1%. Our design provides

competitive detection rate with both sensor-based Xilinx System Monitor and Le Masle’s

ring oscillator-based power monitor while reducing 63% and 98.4% of area as well as 13%

and 98.5% of power.
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CHAPTER 8

Efficient and Secure Group Key Management in IoT

using Multistage Interconnected PUF

8.1 Motivation

Internet of Things (IoT) has been envisioned to be a revolutionary network that connects

physical devices around us to perform intelligent tasks such as monitoring, communication,

operation, and optimization. The advancement in IoT technology has enabled a wide spec-

trum of applications in a variety of environments to measure the various environmental

parameters [107]. While IoT technology has greatly improved the efficiency and quality of

our lives and works, various security challenges have become a major concern and doubt

for further adoption of the technology. Security improvement in IoT system has become an

increasingly popular topic in both academia and industry due to its urgency and profitabil-

ity. In this chapter, we are particularly interested in efficient and secure key management

schemes in group communications in an IoT setting.

8.2 Technical Goals and Contributions

Group communication through multicast/broadcast enables direct communication with the

whole group, which is more efficient when compared to an equivalent unicast-based solution.

Securing group communications consists of providing confidentiality, authenticity, and in-

tegrity of messages exchanged within the group [108]. Among all security problems in IoT,

group key management is one of the fundamentals in securing group communications. A

group key essentially is a secret key shared by all members of a group so that all group
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communication packages are encrypted before they are being transmitted using this group

key. An unauthorized user may receive group communication packages due to a network er-

ror or intentional interception; however, without the right group key, the illegal user cannot

decrypt the received packages [109].

Group key management schemes in IP networks, though have been studied for decades,

cannot be directly applied to IoT as IoT devices are heavily constrained by the limited

resource and energy capacity. Limited resources impose new challenges regarding storage and

computation requirements, meaning each node is incapable of storing a large key database

or conduct heavy cryptographic computation. The energy constraint additionally requires

key verification and computation procedures to be energy efficient.

For the above two reasons, physically unclonable functions (PUFs), a type of low-power

security primitive with unclonable and unpredictable properties, naturally appears as an

ideal solution to the problem. In this chapter, we propose to apply a novel low power

PUF structure called Multistage Interconnected PUF (MIPUF) to the domain of group key

management in IoT. We believe the low power and unclonable, unpredictable nature of

MIPUF not only improves the security of group key management protocols but also meet

the tighter energy requirements on IoT nodes. Our design of interconnection reconfiguration

in MIPUF is robust and secure against modeling attacks by changing the challenge-response

mapping. The group key is stored and managed by a new set of PUF functions every

time we reconfigure the MIPUF in every IoT device, creating an additional layer of security

and protection. We also show that our key management scheme including key distribution,

key storage and rekeying is resilient against a wide range of attacks. Lastly, we show that

our group key management protocol is power and energy efficient. Our simulation results

show that we are 47.33% more energy efficient comparing to state-of-the-art ECC-based key

management schemes.
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8.3 Related Work

Numerous group key management frameworks have been proposed historically including but

not limited to VersaKey, GKMP[110] [111]. Several efforts have been made in creating effi-

cient group key management protocols for group communications in IoT and wireless sensor

networks (WSN) to meet the energy and computation constraints. Kung et al. proposed

GroupIt to address the scalability problem in GKMP [112]. Zhu et al. proposed an efficient

security mechanism for large-scale distributed sensor networks [113]. Roman et al. ana-

lyzed the applicability of public-key cryptography based protocols and link-layer oriented

key management systems (KMS) in IoT settings [114]. Abdallah et al. proposed a novel

efficient and scalable key management mechanism for wireless sensor networks and proposed

to reduce power and energy consumption by using ECC [115]. Parrilla et al. proposed an

ECC-AES co-processor to handle security tasks in IoT group management [116]. Kandi et al.

specifically focus on rekeying schemes in IoT key management [117]. Gebremichael proposed

to use One-way Accumulator to handle key establishment [118] while Ferrari suggests more

efficient key establishment methods in [119]. Lastly, Lei et al. suggest that blockchain tech-

nology is also applicable to IoT group key management in [120]. All work listed above utilize

expensive cryptographic primitives to secure their group key management protocols without

investigating the possibility of utilizing some novel low-power hardware security primitives

to meet the energy requirements.

Recently, PUFs, as a popular type of low-power security primitive, have been proposed to

be used in a number of key management subtasks in IoT settings [121]. Gu et al. proposed

multiple PUF architectures that provide compatibility to secure authentication. [122] [29]

[26]. Mukhopadhyay proposed a novel device authentication method that takes advantage of

the unclonable property of PUFs [123]. Rahman proposed an RO-PUF-based key generation

scheme that is aging resilient [124]. Most recently Huang et al. investigated a key distribution

protocol assisted using ring oscillator PUFs (ROPUFs)[125] which significantly reduces the

storage overhead and latency for securely distributing secret keys. Unfortunately, these works

only focus on a specific subtask of key management and fail to provide detailed security or
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overhead analysis. We differentiate ourselves by design a novel PUF architecture that can be

applied to the entire key management lifecycle including key distribution, key storage and

rekeying in IoT. We have also performed a security and overhead analysis to prove that our

work is both secure and efficient.

Besides ECC and

8.4 Multistage Interconnected PUF

In this section, we propose a novel PUF structure called Multistage Interconnected PUF

(MIPUF). We borrow the idea of multistage interconnection networks (MINs) from com-

puter networks field. MINs allow the processing elements (PEs) to be interconnected using

Switching Elements (SEs) such that the interconnection provides high configurability and

speed with low cost. We propose to use such a structure to interconnect PUFs so that the

interconnected PUFs can be configured easily. The interconnected PUFs significantly in-

crease the system complexity as well as break the linearity, resulting in increased difficulty

in modeling the system. The configurability also allows the challenge-response pairs (CRPs)

of the network to be remapped from time to time, protecting the system from modeling

attacks.

8.4.1 Processing Elements (PEs)

We name the PE in a MIPUF a MIPUF node. A MUPUF node is the most fundamental

building block of the network. A MIPUF node is a single or a group of strong PUFs that

take an n-bit challenge and generate an m-bit response. A strong PUF is defined as a

PUF that supports a large number of CRPs and there exists a number of implementation.

For the sake of implementation easiness, our implementation of a MIPUF node consists of

m n-bit arbiter PUFs running in parallel and sharing the same pulse signal and challenge

vector. Even though arbiter PUFs are known to be weak against various modeling attack,

our experimental results show that multistage interconnection significantly improves the

resilience against them. In this chapter, we merely use MIPUF node implemented with
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arbiter PUFs as an illustrative example and a proof of concept. Security properties of MIPUF

implemented using more advanced strong PUFs such as LRR-DPUF [126] are expected to

exceed our collected results.

8.4.2 Switching Elements (SEs)

Similar to the concept of SEs in computer networks, the SE in MIPUF serves as a way to

route and switch signals. In our implementation, an SE is a set of multiplexers that switch

or not switch n signals based on a configuration bit. In our case, we use SEs to connect

the response of a previous MIPUF node to the next node as the new challenge. The SEs

between two nodes are controlled by a configuration vector.

8.4.3 Multistage Interconnection

Multistage interconnection networks find a balance between the cost and configurability. We

believe a blocking multistage connection is the most cost-efficient for MIPUF implementation

and provides sufficient configurability. A blocking multistage connection cannot realize all

possible connections between inputs and outputs since a connection between one free input

to another free output is blocked by an existing connection in a network; however, it is much

cheaper to implement. While there are different interconnection styles such as Clos [127], we

propose to implement a blocking interconnection in a MIPUF in an Omega network style [128]

which consists of 2×2 SEs. Each input has a dedicated connection to an output, providing

2N different switchings and having a complexity of O(N log(N)) for an N×N connection

between two MIPUF nodes. An example of such interconnection is shown in Figure 8.1. To

be noted that we do not allow port rearrangement in MIPUF, each input should be routed

to a unique output and each output should be directed from a unique input given a specific

configuration.
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Figure 8.1: Network structure in Omega network style. rki−1 indicates the k-th response
(output) bit of the (i− 1)-th MIPUF node, cki indicates the k-th challenge (input) bit of the
i-th MIPUF node.

8.4.4 Protecting Network Configuration

The signal routing between any two MIPUF nodes is controlled by a configuration vector.

We propose to secure the configuration vectors using existing MIPUF nodes in the system so

that the real interconnection configuration remains hidden. The configuration vector for the

interconnection between node i and i+1 depends on the encrypted result of the user provided

configuration bits using the nodes from node 1 to node i− 1, for i > 1. To note that we use

MIPUF nodes in the previous levels to encrypt SE configurations to reduce the correlation

between the output of a node and it’s immediate SEs. The user provided configuration is

passed to the SEs between the first two nodes and propagate along the network to configure

the remaining SEs connected to the later nodes. An attacker or even the user who provided

the configuration, cannot obtain information on the real interconnection between MIPUF

nodes without characterizing each node. Besides, we also significantly reduce the number

of bits a user needs to provide. In a key management protocol, our proposed method could

also significantly reduce the communication cost.
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8.4.5 Security Evaluation of MIPUF

8.4.5.1 Uniqueness and Reliability

Two most important properties of PUFs are uniqueness and reliability. Uniqueness means

that the responses for a specific PUF design implemented on different devices should be sig-

nificantly different when provided with the same challenge. Reliability indicates the response

should be stable enough when repeating the same challenge on the same device. Since our

design of MIPUF depends on existing PUF implementations, our focus is that our multistage

interconnection does not compromise the security properties of the PUF implementation we

depend on. We modify the definition of uniqueness and reliability as follows.

• Inter-configuration variation (uniqueness). How many MIPUF output bits are different

between two different configurations of the same MIPUF? Ideally, this variation should

be 50%.

• Intra-configuration variation (reliability). How many MIPUF output bits differs when

re-generated again from a MIPUF with a specific configuration? Ideally, this variation

should be 0%.

We directly compare these two metrics with intra-chip variation and inter-chip variation

metrics in regular PUF evaluations. As a proof of concept, we compare our arbiter PUF

based MIPUF implemented using arbiter PUFs with regular FPGA-based arbiter PUFs

implemented on five different FPGAs. The results are collected from the Xilinx Spartan-6

XC6SLX45 platform using the implementation described in [24].

Figure 8.2a illustrate the probability distribution of the inter-configuration variation of

a MIPUF. The x-axis is the number of output bits that are different between two different

interconnection configurations; the y-axis is the probability. The bars show experimental

results collected on 1,225 pairs of outputs collected from 50 different configurations. Our

experiment results (47.9%) is very close to the ideal case of 50%. Our results even show a

slight improvement comparing to the inter-chip variation of arbiter PUFs implemented on

FPGAs (47.0%).

135



(a) Inter-configuration variation for MIPUF is 47.9% (Avg = 30.7 bits / 64 bits).

(b) Intra-configuration variation for MIPUF with fuzzy extractor is 2.67% (Avg = 1.71 bits /
64 bits). Environment range from 20 ◦C, 0.95V to 65 ◦C, 1.2V.

Figure 8.2: Inter-configuration and intra-configuration variation of a MIPUF with four nodes.
Each node is implemented using 64 32-bit arbiter PUFs. The interconnection between nodes
is designed in a blocking fashion as shown in Figure 8.1.

We calculated a 35.37% intra-configuration variation when no error correction is applied.

Consider the intra-chip variation of 64 128-bit arbiter PUFs implemented on five different

FPGAs is only as little as 2.90%, MIPUF is very unstable without error correction. The

reason is simple and intuitive, as all MIPUF nodes are connected in such a way that each

node takes the output of the previous node as the input, an error in the first node could result

in avalanche effect in intra-configuration variation. Thus, we propose to use a lightweight

fuzzy extractor between every MIPUF node as an error correction mechanism [129], and

the resulting intra-variation is significantly reduced to 2.67%. Since a MIPUF with n nodes

requires n clock cycles to generate the result, the fuzzy extractors can be shared for all node

outputs.

Figure 8.2b illustrates the probability distribution of the intra-configuration variation

of the same MIPUF implemented using arbiter PUFs and 32-bit of help data in the fuzzy
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extractor. The environments parameters ranging from 20 ◦C, 0.95V to 65 ◦C, 1.2V. The

bars show experimental results collected on 50,000 different random interconnections. Each

configuration is performed on 10,000 challenges and repeated 20 times. Noted that the

major contributors to the intra-configuration variation are two extremely rare (< 0.5%) case

of Hamming distance greater than 40, in this case, a blacklist mechanism could be applied

to improve stability. With the help of larger helper data, existing literature proves that the

unreliability could be significantly reduced to 10−9 [129].

Our measurements are conducted on analog PUF which are unreliable by nature. In

real-world applications digital PUFs, which is as stable as SRAM, are more suitable for

applications with extremely high-reliability requirements at the cost of higher power con-

sumption.

8.4.5.2 Resilience Against Modeling Attack

Several PUF-based systems are vulnerable to a variety of modeling attacks [56] [130] [131]

[132] [133] [134] [135]. We observed that MIPUF significantly boost modeling attack re-

silience by increasing the system complexity and breaking the system linearity. Table 8.1

shows the best prediction accuracy on MIPUF vs. a variety of PUFs implemented on FPGA

using attack approaches described in [56] and [58]. We observe that all prediction accuracies

for a single-bit in MIPUF outperforms other designs and are all close to the ideal case of

50%. Noted that the evaluated MIPUF in this section has only four nodes. We have shown

in Chapter 3 that deeper and wider interconnections between PUF systems would result in

lower modeling attack accuracy, which eventually converges to 50%.

In addition to high resilience against modeling attacks, MIPUF also allows cheap and

fast reconfiguration. Frequent reconfiguration of MIPUF renders modeling attacks almost

impossible. We investigate this topic in more detail in Section 8.4.5.2.
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Architecture LR ES DL
MIPUF - 4 nodes 51.33% 59.18% 50.59%
256-bit 4-XOR PUF 97.21% 76.02% 78.42%
1024-bit arbiter PUF 96.57% 98.28% 88.98%
1024-bit 64-ff PUF 58.29% 95.68% 87.70%

Table 8.1: Best single-bit prediction accuracy on different PUF architectures using logis-
tic regression (LR), evolution strategies (ES) and deep learning (DL) attacks out of 100
runs. Each attack uses 100,000 CRPs. Total number of arbiter PUF segments used in all
architectures are fixed to 1,024.

8.5 Group Key Management

In this section we show that we can utilize the MIPUF structure to securely establish a group

key management protocol with three major components, respectively key distribution, key

storage and rekeying. Key distribution is the process to securely deliver the shared secret key

to every authorized group member. After the group key has been successfully distributed,

the most important task would be to securely store the secret key so that the user could

easily access the key when needed, but an adversarial is forbid to peek or tamper with the

secret key. Lastly, rekeying allows a group to renew or replace the group key from time to

time.

To illustrate our protocol, we first define an IoT model consists of a control unit with

higher computational power and multiple IoT device/nodes that are constraint by both

computational power and battery life. Each IoT node embeds a MIPUF, a hardware hashing

function and a very compact AES implementation.

8.5.1 Key Distribution

According to the model described above, a well-designed group key distribution protocol is

proposed. The protocol is shown in Protocol 6. For each node, a group key can be delivered

securely with an exchange of two messages.
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Protocol 6 Group Key Distribution Protocol

• Input: A list of group member in group G = {N0 · · ·Nn} ⊆ N n being the total number
of IoT nodes in the group. A random group key keyg.

• Goal: Securely deliver keyg to all Ni ∈ G.

1. Preliminary Phase

(a) Before the deployment of an IoT node, the control unit assigns a unique ID (Ni)
to it. Initially the node derives the interconnection configuration γi = H(Ni) from
Ni and generates a CRP (cγii , rγii ) using the MIPUF Fi where rγii = Fγii (cγii ).

(b) The control unit securely store the tuple (γi, c
γi
i , rγii ) in the database, and node

Ni securely stores cγii and γi.

2. Key Delivery Phase

(a) When a group G is formed, the control unit first check if all group members exists
based on the unique ID. If not, the protocol is aborted.

(b) For IoT node Ni ∈ G, the control unit generates a random new configuration γ′i.

(c) For IoT node Ni ∈ G, a group key hint pi = rγii ⊗ keyg and a new configuration
hint fi = rγii ⊗ γ′i are generated.

(d) An encrypted message msgki containing pi and fi is transmitted using unicast to
each group member Ni ∈ G. msgki = {Erγii (Ni‖pi‖fi)‖H(Ni‖cγii )}, “‖” indicates
the concatenation operation, E is the encryption operation using AES and H is a
hashing operation.

3. CRP update Phase

(a) Upon receiving msgki , IoT node Ni first decrypts the message using rγii :
Dr

γi
i

(Erγii (Ni‖pi‖fi)), D being the AES decryption operation. Ni verifies the va-

lidity of the message by comparing the hash H(Ni‖cγii ). If there exists a mismatch
in the hash, report error to the control unit.

(b) The group key keyg and the new interconnection γ′i are derived from pi and fi
decrypted from the decrypted msgki .

(c) Ni generates a new CRP (c
γ′i
i , r

γ′i
i ) where c

γ′i
i = H(cγii ), r

γ′i
i = Fγ

′
i
i (c

γ′i
i ). Ni sends an

encrypted message msgui = Erγii (Ni‖c
γ′i
i ‖r

γ′i
i ) back to the control unit.

(d) The control unit decrypt msgui using rγi and updates the database by replacing

the tuple (γi, c
γi
i , rγii )with(γ′i, c

γ′i
i , r

γ′i
i ). If the control unit has not received an

update message msgui after some predefined timeout or c
γ′i
i = H(cγii ), an abort is

called.
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8.5.2 Key Storage

After the key distribution, the group key can be extracted from the MIPUF when the

correct challenge and interconnection configuration are provided. Unlike other crypto-based

key management systems, we do not directly store the group key in the memory. Instead,

the group key is extracted on the fly from the group key hint pi. We believe this approach

is secure because an attacker can only obtain the real group key if he has access to both

the storage (containing pi, fi and cγii ) and the MIPUF (Fγi , compromising either the storage

or the MIPUF does not compromise the security of the whole design. Also, the group key

is only used upon receiving or transmitting group messages, thus storing the real key using

low-power MIPUF is also highly energy efficient.

8.5.3 Rekeying

Group keys need to be regenerated, redistributed or updated whenever there is a dynamic

change to the group to preserve security. One important motivation to rekey is that groups

are not always static. When a member leaves the group, it should not be able to decrypt

future group communications (forward security); when a new member joins, it should not

be able to decrypt past group communications (backward security). Group key should

also be completely rekeyed when potential leakage is detected for security considerations.

Here we discuss all three possible cases.

8.5.3.1 New Member Joins the Group

Without loss of generality, we assume a new IoT node Nα intend to join a group G, Nα /∈ G.

For efficiency considerations, redistributing a new key to all group members is expensive

and inefficient. Instead, we propose to use the current secret to encrypt the new group

key and this process is leakage free. Specifically, the control unit sends out a message

msgjoin = {Ekeyg(key′g)} to ∀Ni ∈ G. The existing group members calculate and store the

new group key hint p′i = rγii ⊗ key′g and deletes key′g upon receiving and decrypting msgjoini .

The new member will have to complete the whole key distribution process described in
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Section 8.5.1. Backward security is preserved using this method since the new member has

no information about the old group key.

8.5.3.2 Existing Member Leaves the Group

Removing an existing member from the group is more complicated than adding a new mem-

ber. Here we propose to divide group G into m subgroups gj ⊂ G = {g1···gm}, 1 ≤ j ≤ m. All

nodes in the same subgroup share the same interconnection configuration γgj . Again, without

losing the generality, we assume an IoT node Nβ ∈ gj ⊂ G intend to leave the subgroup where

all members in the subgroup use the same MIPUF interconnection configuration γj. The

control node first multicast/broadcast m−1 messages msgleavei = {Eγi(key′g‖H(γi)} contain-

ing the new key to all the subgroups encrypted using the configuration γi, i 6= j, 1 ≤ i ≤ m.

Upon receiving the message, each node first decrypts the message using its own configuration

γi and check if H(γi) matches the one in the decrypted msgleavei . If so then the decrypted

new group key key′g is valid, otherwise, discard the message. No member of gj including the

leaving node have any knowledge of the configurations of other subgroups, thus incapable of

decrypting the message correctly. The control unit should then perform unicast communi-

cations to all members of gj by distributing the new group key key′g and a new configuration

γ′j to replace γj.

8.5.3.3 Complete Rekeying

MIPUF can still be modeled if a significantly large enough set of CRPs is collected. However,

MIPUF can be reconfigured to neutralize modeling attacks by completely remap the input-

output mapping. We propose to perform a full rekeying once the total number of CRPs

generated exceeds a calculated sample complexity lower bound that equals to the sufficient

training set size to break the MIPUF. Equation 8.1 describe a sample size lower bound

in terms of the IPN model parameters, where m is the number of nodes in MIPUF and

n is the maximum number of PUFs in a MIPUF node. k = V C(F) where VC is the

Vapnik-Chervonenkis-dimension and F is the largest single PUF in MIPUF. δ is the failure
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probability and ε is the learning error.

Sample complexity ∼
(m · k +m) · n+ ln(1

δ
)

ε
(8.1)

8.6 Evaluation

8.6.1 Security Analysis

We make the following assumptions for our security analysis. The physical security of the

MIPUF is secured; however, an attacker is allowed to query the CRPs as much as needed.

The wireless channels used for communication are not secured after the initial preliminary

phase. The hash function and compact AES on each node are secure. The control unit key

database is secure. We summarize our security analysis against several popular attacks as

below:

Eavesdropping Attack: During the key distributing and rekeying process, all messages

containing γi, c
γi
i , rγii or keyg are encrypted by AES. Thus eavesdropping attack is invalid.

Man-in-the-middle Attack: Before updating the new CRP in 3c in Protocol 6, the

new challenge is a one-way hash of the previous challenge which is checked by the control

unit, thus rendering the attack useless.

Replay Attack: Neither the IoT node nor the control unit would be able to correctly

decrypt a message encrypted using a previous response since old responses are discarded after

the update.Thus the hash check in 3a, 3d in Protocol 6 would fail during key distribution.

Forward security in the rekeying process is designed to protect the system from such attacks.

Impersonation Attack: Based on our assumption, the preliminary phase is secure thus

the initial key and MIPUF configuration are secured. Also, the modeling attack resilience

and the reconfigurability of MIPUF prevents an attacker to impersonate an IoT node even

if we allow him to query the CRPs.

Comparing to other designs (e.g. ECC-based scheme) our group key management scheme

enjoys at least the same level of security while adding an additional level of security at the
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physical level utilizing the unclonability properties of MIPUF.

8.6.2 Overhead Evaluation

In this section we assume that there are N nodes in the group and the group is split into

M subgroups. The MIPUF we use in each IoT nodes takes an a-bit challenge, a b-bit

configuration vector and generates a c-bit output (assuming b ≥ c ). Node ID is a l-bit

vector. The hash function hashes any input to an a-bit string. The group key has length of

c-bits. The random number generator cost ER units of energy per operation. The energy

consumption of MIPUF, hash function, random number generator, XOR operation and the

very compact AES are EP , EH , ER, EX and EA.

Communication Cost: The length of messages: msgk
i , msgu

i , msgjoin and msgleave
i

are: a + b + c + l, a + c + l, a+c and a+c. Thus the total number of messages need to

be sent for key distribution and node join/leave rekeying are: N, 3 and (2N
M -2) + (M-1).

For node leave rekeying, minimum cost is achieved when M =
√
N .

Storage Overhead: The control unit stores the Node ID, CRPs and the current config-

uration of all nodes; thus the storage overhead at the control unit is N ·(a+b+2c+l) bits.

Each IoT node stores the Node ID, current challenge, current configuration and the group

key hint which has a storage overhead of a+b+c+l bits.

Energy Cost: The control unit spends 2EA+ 2EH + 2ER+ 2EX units of energy to

distribute the group key to one node. Each node spends 2EA+2EH +EP +2ER to receive

the key and update the CRP. During member join rekeying, the control units spends EA+ER

units of energy to update the group key to existing members and 2EA+2EH +2ER+2EX

to the new member. The new node spends 2EA+2EH +EP +2EX and old members spend

EA+EX units of energy respectively. During member leave rekeying, the control unit spends

(M−1)·(EA+EH +ER) units of energy to update the group key to existing members that

are not in the same subgroup as the leaving node and ( N
M
−1)·(2EA+2EH +2ER+2EX)

to the update all members in the same subgroup. All members that are in and not in the

same subgroup as the leaving node spends (M − 1) · (EA + EH + ER) and EA + EH
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units of energy.

We compare our global energy consumption to two other key management protocols:

Localized Encryption and authentication protocol (LEAP) [113] and Elliptic Curve Public

Key Cryptography (ECPKC) [115] in simulation using the parameters described in [115] for

a fair comparison. The energy consumption parameters for our design are estimated from our

implementation described in Section 8.6.3. The comparison for simulated results for global

energy consumption for three key management schemes can be seen in Figure 8.3. LEAP

uses significantly much more energy than both ECPKC and our proposed scheme as it grows

quadratically. The global energy consumption of both ECPKC and our proposed scheme

grows linearly. Since our proposed design uses low-power MIPUF instead of energy-hungry

ECC to achieve power efficiency. We observe that our proposed scheme uses about 47.33%

less energy for key distribution.

Figure 8.3: Simulated global energy consumption (J) vs. total number of IoT nodes under
the settings introduced in [115].
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8.6.3 Implementation Results

We implemented our key management hardware support for IoT nodes on Xilinx Spartan-6

LX45 FPGAs to measure the area and power. Our implementation consists of a MIPUF

with three nodes each consists of 128 32-bit Arbiter PUFs. The fuzzy extractor, the hash

function and the AES module are implemented based on [129] [92] and [136] accordingly.

Table 8.2 shows the area and power overhead break down of our implementation. Our

hardware support design is 4.3× smaller and 4.2× power efficient comparing to state-of-the-

art ECC design on FPGA. Our MIPUF seems to be more expensive due to FPGA-based

arbiter PUF implementations are known to be inefficient. The overhead of MIPUF and the

hardware support are expected to be significantly reduced if implemented on ASIC. We are

also expected to see further improvement if MIPUF is built using more efficient and advanced

strong PUFs.

Our design MIPUF SHA-1 AES Overall Efficient ECC alone [137]
LUTs 3,717 1,151 598 4,553 16,090

Flip-flops 7,028 1,590 501 9,219 3,747
Slices 1,626 544 222 3,401 11,777

Block RAMs 0 0 3 3 0
Power(mW ) 123.7 30.4 16.2 175.7 515.9

Table 8.2: FPGA resource and power characteristics of the hardware support of our proposed
key management scheme implemented on Spartan-6 FPGA.

8.6.4 Impact on IoT Design

According to Singelée et al. [138], the communication energy cost should be the major

component in the total energy budget. We believe that power and energy per bit are good

indications of how low energy security modules should be. Table 8.3 shows that the numbers

vary by different standards

In our key management protocol, the MIPUF needs to be executed whenever there is

a message needs to be transferred or received. Regardless of the size of the message, the

execution of MIPUF is only performed once. The total amount of MIPUF energy consumed
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Wireless Throughput Freq. Power Energy/bit
TX RX TX RX

(kbps) (Ghz) (mW) (mW) (nJ/bit) (nJ/bit)
802.11G[139] 54,000 2.4 2,300 1,900 42.59 35.19
Zigbee[140] 250 2.4 46.44 33.30 185.76 133.20

Bluetooth Classic[141] 2,100 2.4 99.90 67.50 47.57 32.14
BLE[142] 1,000 2.4 48.90 39.20 48.00 39.20

Table 8.3: Performance and energy comparison of different wireless standards in IoT.

is measured at as low as 17nJ per MIPUF bit, which is 64.58% lower than the 48 nJ/bit of

the most energy efficient wireless standard - Bluetooth Low Energy (BLE). In addition, we

expect the power and energy consumption to further drop by at least 10× when implemented

on ASIC [143]. We estimated that if MIPUF is implemented on ASIC and the key length

is 255-bit (commonly used in Curve25519 [144]), the total amount of energy consumed per

transaction is at most 433.48 nJ, and this amount of energy is 108× lower than the minimum

Bluetooth 4.0 transaction of 45,000 nJ on a 1.5V battery [145]. We claim that it is safe to

conclude that our key management design is indeed low power, low energy and applicable

to real-world IoT device designs.

8.7 Chapter Conclusions

In this chapter, we first proposed a novel PUF structure: MIPUF that is both secure and

reconfigurable. We showcased the uniqueness, reliability, modeling attack resilience and

reconfigurability of MIPUF. We then proposed a group key management scheme in IoT

consists of key distribution, key storage and rekeying based on MIPUF. Security and overhead

analysis on the scheme show that our design is not only secure against multiple attack

methods but also low power. Our simulation result indicates that our proposed scheme

spends 47.33% less energy compared to the state-of-the-art crypto-based scheme ECPKC

[115] since we use low-power and energy efficient MIPUF instead of power-hungry ECC.
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CHAPTER 9

Concluding Remarks

Decades of development in IoT technology has already turned ”connect everything” from

a motivational slogan and an inspiring vision to reality. What comes alongside with IoT

prosperity are also challenges and opportunities in infrastructure, device design, and appli-

cations at multiple levels. In this thesis, we sought to make exploration in a critical but

often overlooked aspect of IoT research: hardware security. While many traditional security

approaches and mechanisms seem applicable on IoT, the compact and energy constrained

nature of IoT devices greatly challenges the compatibility of these existing methods. Modern

IoT devices require low-power, small area, reliable and low maintenance security subsystems

to protect and the sensitive information that are collected, stored or flowed through them.

At the beginning of this thesis, we established three objectives, respectively the security

objectives, the energy objectives, and the applicability objectives. To meet these objectives,

we focus on proposing new security primitives and protocols, applying energy reduction

techniques and designing secure and low-power security applications throughout the entire

thesis.

When addressing the security objectives, we first studied a promising low-power hard-

ware security primitive - PUF. We first conduct a thorough evaluation of analog PUF and

its variations by creating a stable emulation platform. We exposed the randomness and

reliability problems in analog PUFs and proved that we could create a stable clone of an

analog PUF with at least 87.42% of accuracy. Realizing the vulnerability against modeling

attack and the environmentally sensitive problem of many PUF designs, we propose two

solutions to resolve the issue. The first one is enhancing modeling attack resilience through

PUF interconnection and reconfiguration. Interconnecting smaller PUFs dramatically boosts
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the system complexity and linearity, increasing the difficulty of accurate statistical modeling

by several magnitudes. Besides, we propose to reconfigure the interconnection whenever

the total number of CRPs generated by PUF exceeds the lower bound of the sampling

complexity. This approach guarantees that no attacker could collect sufficient amount of

training data, resulting in less than 53.19% of single-bit prediction accuracy against a wide

range of modeling attacks. The second solution we propose to address PUF’s weakness is

to optimize PUF connections using evolution strategies. We observed that different PUF

connections often lead to different output randomness and stability. Utilizing our proposed

evolution strategies algorithm, we could quickly find a near-optimal connection that achieves

220.8% improvement in output randomness and 22.62% improvement in reliability. Aside

from PUFs, we also proposed content-driven reconfigurable injective functions that achieve

secure encryption/decryption between IoT devices with 75.04% power savings comparing to

cryptographic approaches.

In an attempt to meet the energy objectives, we propose the idea of logic free-riding. We

modified the current PUF implementation on FPGA platforms and allowed an arbitrary logic

to share the hardware with an existing PUF implementation through signal phase encoding,

saving 40.4% of area and 7.69% of power.

Lastly, to meet the applicability objectives, we introduced two novel security applica-

tions. The first application is a PUF-based anomaly detection device that reports suspicious

environmental variations inferred from changes in environmentally sensitive CRPs. Com-

pared to commercialized Xilinx SYSMON, our design uses 63% less FPGA area and 13%

of power, detecting 100% of applied abnormalities with a false positive rate as low as 1.1%.

The second application utilized MIPUF to provide a robust, secure and low-power solu-

tion to all process in the group key management process. Our simulation result indicates

that our proposed scheme spends 47.33% less global energy compared to the state-of-the-art

crypto-based scheme while providing additional protection at the hardware level.

Though challenges remain in the domain of hardware-oriented IoT security, we have

made our contribution towards a more robust and energy efficient hardware security system

in IoT.
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