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Abstract

Life Language Processing: Deep Learning-based Language-agnostic Processing of Proteomics,
Genomics/Metagenomics, and Human Languages

by

Ehsaneddin Asgari

Doctor of Philosophy in Applied Science and Technology

and the Designated Emphasis

in

Computational Data Science and Engineering

University of California, Berkeley

Professor Mohammad R.K. Mofrad, Chair

A broad and simple definition of ‘language’ is a set of sequences constructed from a finite set
of symbols. By this definition, biological sequences, human languages, and many sequential
phenomena that exist in the world can be viewed as languages. Although this definition is
simple, it includes languages employing very complicated grammars in the creation of their
sequences of symbols. Examples are biophysical principles governing biological sequences (e.g.,
DNA, RNA, and protein sequences), as well as grammars of human languages determining the
structure of clauses and sentences. This dissertation uses a language-agnostic point of view
in the processing of both biological sequences and human languages. Two main strategies
are adopted toward this purpose, (i) character-level, or more accurately, subsequence-level
processing of languages, which allows for simple modeling of the sequence similarities based on
local information or, bag-of-subsequences, (ii) language model based representation learning
encoding contextual information of sequence elements using the neural network language
models. I propose language-agnostic and subsequence-based language processing using
the above-mentioned strategies in addressing three main research problems in proteomics,
genomics/metagenomics, and natural languages using the same point-of-view.

One of the main challenges in proteomics is that there exists a large gap between the
number of known protein sequences and known protein structures/functions. The central
question here is how to efficiently use large numbers of sequences to achieve a better
performance in the structural and functional annotation of protein sequences. Here, we
proposed subsequence-based representations of protein sequences and their language model-
based embeddings trained over a large dataset of protein sequences, which we called protein
vectors (or ProtVec). In addition, we introduced a motif discovery approach, benefiting from
probabilistic segmentation of protein sequences to find functional and structural motifs. This
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segmentation is also inferred from large protein sequence datasets. The ProtVec approach
has proved a seminal contribution in protein informatics and now is widely used for machine
learning based protein structure and function annotations. We showed in different protein
informatics tasks that bag-of-subsequences and protein embeddings are complementary
information for language-agnostic prediction of protein structures and functions, which also
achieved the state-of-the-art performance in the 2 out of 3 tasks of Critical Assessment of
protein Function Annotation (CAFA) in 2018 (CAFA 3.14). Moreover, we systematically
investigated the role of representation and deep learning architecture in protein secondary
structure prediction from the primary sequence. Publicly available tools are provided
for achieving state-of-the-art performance accuracy that can be further expanded by the
community.

One of the prominent challenges in metagenomics involves the host phenotypic charac-
terization based on the associated microbial samples. Microbial communities exist almost
on every accessible surface on earth, supporting, regulating, and even causing unwanted
conditions (e.g., diseases) to their hosts and environments. Detection of the host phenotype
and the phenotype-specific taxa from the microbial samples is the chief goal here. For instance,
identifying distinctive taxa for microbiome-related diseases is considered key to the establish-
ment of diagnosis and therapy options in precision medicine and imposes high demands on the
accuracy of microbiome analysis techniques. Here, we propose two distinct language-agnostic
subsequence-based processing methods for machine learning on 16S rRNA sequencing, cur-
rently the most cost-effective approach for sequencing of microbial communities. We propose
alignment- and reference- free methods, called MicroPheno and DiTaxa, designed for microbial
phenotype and biomarker detection, respectively. MicroPheno is a k-mer based approach
achieving the state-of-the-art performance in the host phenotype prediction from 16S rRNA
outperforming conventional OTU features. DiTaxa, substitutes standard OTU-clustering by
segmenting 16S rRNA reads into the most frequent variable-length subsequences. We com-
pared the performance of DiTaxa to the state-of-the-art methods in phenotype and biomarker
detection, using human-associated 16S rRNA samples for periodontal disease, rheumatoid
arthritis, and inflammatory bowel diseases, as well as a synthetic benchmark dataset. DiTaxa
performed competitively to MicroPheno (state-of-the-art approach) in phenotype prediction
while outperforming the OTU-based state-of-the-art approach in finding biomarkers in both
resolution and coverage evaluated over known links from literature and synthetic benchmark
datasets.

The third central problem we addressed in this dissertation is focused on human languages.
Many of 7000 world’s natural languages are low-resource and lack digitized linguistic resources.
This has put many of these human languages in danger of extinction and has motivated
developing methods for automatic creation of linguistic resources and linguistic knowledge
for low-resource languages. To address this problem via our language-agnostic point of view
(by not treating different languages differently), we develop SuperPivot for subsequence-
based linguist marker detection in parallel corpora of 1000 languages, which was the first
computational investigation for linguistic resource creation in such a scale. As an example,
SuperPivot was used to study the typology of tense in 1000 languages. Next, we utilized
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SuperPivot for the creation of the largest sentiment lexicon to date in terms of the number
of covered languages (1000+ languages) achieving macro-F1 over 0.75 on word sentiment
prediction for most evaluated languages, meaning that we enable sentiment analysis in many
low resource languages. To ensure the usability of UniSent lexica for any new domain, we
propose DomDrift, a method quantifying the semantic changes of words in the sentiment
lexicon in the new domain. Next, we extend the DomDrift method to quantifying the
semantic changes of all words in the language. We proposed a new metric for language
comparisons based on the language word embedding graphs requiring only monolingual
embeddings and word mapping between languages obtained through statistical alignment in
parallel corpora. We performed language comparison for fifty natural languages and twelve
genetic language variations of different organisms. As a result, natural languages of the
same family were clustered together. In addition, applying the same method on organisms’
genomes confirmed a high-level difference in the genetic language model of humans/animals
versus plants. This method called word embedding language divergence is a step toward
unsupervised or minimally supervised comparison of languages in their broad definition.



i

In dedication to
the kindest and the most compassionate mother, Fatimah al-Zahra (M.I.b.S.f.H),

from whom, her father, her husband, and her family I have everything and have nothing
without them.

I do not deserve it, but she blesses me with the greatest gifts and the sources of mercy
in my life, among them: (i) the love of my life, Meshkat, who inspires me, supports me,
encourages me, and has been bear with me in every single moment of life ever since I was a
first-year PhD student, (ii) my beloved parents whom I could never compensate their efforts
for me and my dear parents-in-law. They raised us with their unconditional love and support,
and tolerated the far physical distance between us at no complaint. I eagerly bend my knees
kissing their hands out of deepest respect and love. (iii) and other teachers/friends who are
enlightening what is dark in me. Thank you, my God, for all, all praise belongs to you, Lord
of the worlds, and I solely rely upon you.



ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction to language processing and deep learning 1
1.1 Language definition and the “language of life” . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to deep learning for language processing . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of character-level methods in natural language processing . . . . . . . . . . . . . . 15
1.4 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Deep language-agnostic processing of proteomics 27
2.1 Introduction and chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 K-mer based protein-vectors (ProtVec) for protein sequence embedding . . . . . . . . . . . . 31
2.3 Variable-length protein segmentation for motif mining and sequence embedding . . . . . . . 49
2.4 Deep Learning for protein secondary structure prediction . . . . . . . . . . . . . . . . . . . . 72
2.5 Summary of contributions in proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Language-agnostic processing of genomics/metagenomics 88
3.1 Introduction and chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2 K-mer based representation for microbial genome phenotype prediction . . . . . . . . . . . . 92
3.3 K-mer based representation for predicting environments and host phenotypes . . . . . . . . 99
3.4 Nucleotide-pair encoding for biomarker and phenotype detection . . . . . . . . . . . . . . . 116
3.5 Summary of contributions in genomics/metagenomics . . . . . . . . . . . . . . . . . . . . . . 140

4 Data-driven processing of human languages 142
4.1 Introduction and chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2 SuperPivot for linguistic marker detection in 1000 languages . . . . . . . . . . . . . . . . . . 146
4.3 UniSent: Universal Adaptable Sentiment Lexica for 1000+ Languages . . . . . . . . . . . . 165
4.4 Embedding-based quantitative comparison of languages . . . . . . . . . . . . . . . . . . . . 175
4.5 Summary of contributions in human language processing . . . . . . . . . . . . . . . . . . . . 187

5 Conclusions and future work 189

Bibliography 197



iii

List of Figures

1.1 MLP Neural Networks architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Convolutional neural networks architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Recurrent neural networks architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Skip-gram neural network for the training of language model-based embeddings. . . . . . . . . . 12
1.5 Natural language preprocessing pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Abstract visualization of natural language processing (NLP) task types . . . . . . . . . . . . . . 16
1.7 Models to calculate word embeddings based on characters . . . . . . . . . . . . . . . . . . . . . 18
1.8 Hierarchical RNN for part-of-speech tagging with character embeddings . . . . . . . . . . . . . . 20
1.9 Hierarchical CNN + MLP for part-of-speech tagging with character embeddings . . . . . . . . . 20
1.10 Hierarchical CNN + RNN for part-of-speech tagging with character embeddings . . . . . . . . . 21

2.1 Protein sequence splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Distributions of biochemical and biophysical properties in the ProtVec-space. . . . . . . . . . . . 41
2.3 Visualization of protein sequences using ProtVec for characterization of FGNUPs . . . . . . . . 44
2.4 Classification of FG-Nups versus PDB structured sequences. . . . . . . . . . . . . . . . . . . . . 45
2.5 The main steps of DiMotif computational workflow . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Average number of segmentation alternation in Swiss-prot . . . . . . . . . . . . . . . . . . . . . 57
2.7 Skip-gram neural network for training language model-based embedding. . . . . . . . . . . . . . 62
2.8 Clustering of integrin-binding-specific motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.9 Clustering of biofilm formation-specific motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.10 Clustering of integrin-related motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.11 Different deep learning architectures implemented and evaluated in DeepPrime2Sec . . . . . . . 78
2.12 The confusion matrices of the best performing predictor for protein secondary structure prediction 82

3.1 The computational workflow of MicroPheno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 MLP Neural Networks architecture used in the host phenotype prediction in Micropheno . . . . 106
3.3 Systematic exploration of k-mer representation parameters and different classifiers . . . . . . . . 108
3.4 Measuring (i) self-inconsistency and (ii) unrepresentativeness using bootstrapping . . . . . . . . 108
3.5 Body-sites classification confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6 Visualization of body-sites, Crohn’s disease, and ecological environments datasets . . . . . . . . 112
3.7 Computational workflow of DiTaxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.8 Measuring (i) self-inconsistency and (ii) unrepresentativeness for NPEs using bootstrapping . . 125
3.9 Taxonomy of differently expressed markers for samples from patients with periodontal disease

versus healthy patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.10 Taxonomy of differently expressed markers for new onset rheumatoid arthritis versus healthy

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.11 Taxonomy of differently expressed markers for Crohn’s disease versus healthy using DiTaxa. . . 130
3.12 Taxonomy of differently expressed markers for ulcerative colitis disease versus healthy using DiTaxa.131



iv

3.13 Taxonomy of differently expressed markers for indeterminate colitis disease versus healthy using
DiTaxa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.14 Taxonomy of differently expressed markers for psoriatric disease versus healthy using DiTaxa. . 133
3.15 Taxonomy of differently expressed markers for treated rheumatoid Arthritis versus healthy

samples using DiTaxa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.16 Heatmap of markers occurrences across samples for rheumatoid arthritis . . . . . . . . . . . . . 136
3.17 Heatmap of markers occurrences across samples for periodontal disease . . . . . . . . . . . . . . 137

4.1 Clustering of 100 pivot past tense markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2 Clustering of 100 pivot present tense markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.3 Clustering of 100 pivot future tense markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.4 Clustering of 1000+ languages based on their tense marking using their respective top markers. 161
4.5 A map of past tense based on the largest clusters of verses with particular combinations of the

past tense pivots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.6 A map of present tense based on the largest clusters of verses with particular combinations of

the past tense pivots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.7 A map of future tense based on the largest clusters of verses with particular combinations of the

past tense pivots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.8 The overview of universal adaptable sentiment lexica . . . . . . . . . . . . . . . . . . . . . . . . 167
4.9 Neighbors of the word ’sensual’ in Spanish, in the bible embedding graph versus the twitter

embedding graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.10 Data split used in the experimental setup of UniSent evaluation . . . . . . . . . . . . . . . . . . 172
4.11 Hierarchical clustering of fifty natural languages according to divergence of pair-wise distance

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.12 Visualization of word embedding language divergence in twelve different genomes . . . . . . . . 185

5.1 The overview of the contributions of life language processing project. . . . . . . . . . . . . . . . 190
5.2 Word-cloud summary of proteomics-related contributions. . . . . . . . . . . . . . . . . . . . . . 192
5.3 Word-cloud summary of genomics/metagenomics-related contributions. . . . . . . . . . . . . . . 193
5.4 Word-cloud summary of contributions in human language processing. . . . . . . . . . . . . . . . 195



v

List of Tables

2.1 Intrinsic evaluation of the continuity of ProtVec with respect to biophysical properties . . . . . 42
2.2 ProtVec performance in protein family classification tasks . . . . . . . . . . . . . . . . . . . . . 47
2.3 The performance ProtVec in FG-Nups disordered protein classification . . . . . . . . . . . . . . 48
2.4 The accuracy of sequence labeling task in intron-exon prediction, domain identification, and

secondary structure prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Comparison of DiMotif, HH-Motif, and DLocalMotif . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Evaluation of DiMotif in classification of integrin-binding proteins and biofilm formation-associated

proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7 Evaluation of DiMotif in mining of NLS patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8 Comparing k-mers, ProtVec, and ProtVecX and their combinations in protein classification . . . 70
2.9 Protein secondary structure prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.10 Contingency table for location analysis of the misclassified amino acids . . . . . . . . . . . . . . 82
2.11 Protein secondary structure prediction results on different deep learning architectures . . . . . . 83

3.1 Human infection phenotype prediction cross-validation results . . . . . . . . . . . . . . . . . . . 95
3.2 Human infection phenotype prediction test set results . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Human infection phenotype prediction phylogenetic-aware-cross-validation results . . . . . . . . 97
3.4 Human infection phenotype prediction phylogenetically-distant test set results . . . . . . . . . . 98
3.5 Body-sites and Crohn’s disease prediction using k-mer representations . . . . . . . . . . . . . . . 110
3.6 Comparison of k-mer representations and OTU features in Body-sites and Crohn’s disease prediction110
3.7 The classification results for 18 ecological environments as well as 5 organismal environments . . 111
3.8 Comparison of NPEs, OTUs, and k-mer features in classification of the disease phenotype . . . 126
3.9 DiTaxa performance over synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.10 DiTaxa performance in finding the links mentioned by literature . . . . . . . . . . . . . . . . . . 126
3.11 Comparison of a standard pipeline and DiTaxa in detecting 29 taxa with confirmed links to

periodontitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.12 Runtimes of DiTaxa and a common 16S processing pipeline for the periodontal, synthetic,

rheumatoid arthritis and IBD datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1 Top ten past, present, and future tense pivots extracted from 1163 languages. . . . . . . . . . . 152
4.2 MRR results for step 4. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3 Language family similarity prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4 UniSent evaluation in Czech, German, French, Macedonian, and Spanish . . . . . . . . . . . . . 173
4.5 UniSent evaluation over twitter emoticon dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.6 The genomic data-sets used for learning word vectors in different organisms. . . . . . . . . . . . 182



vi

Nomenclature

16S rRNA gene: The 16S rRNA gene is a highly conserved gene across bacteria and archaea
allowing for differential identification of taxon identities and relative abundances.

Accuracy metric Accuracy is an evaluation metric of the classification models defined as
the number of correct predictions over the total number of predictions.

Alignment (sequence) Sequence alignment in bioinformatics refers to vertical aligning
of similar subsequences of 2 or more biological sequences (DNA, RNA, or protein)
to immediately identify the similarities that are related functionally, structurally, or
evolutionary.

Alignment (word) A bi-part graph relating textual units (words) of a sentence in the
source language to its translation in the target language

Amino acid Monomers of ⇡ 20 types, which are the elements for the creation of protein
polymers

Annotation Annotation in datascience refers to assigning metadata to data, which can be
done manually or automatically

Biomarker “A biomarker is a biological characteristic that is objectively measured and
evaluated as an indicator of normal biological or pathological processes or a response
to a therapeutic intervention.” (Nature.com definitions)

Bootstrapping Bootstrapping refers to performing measurments using random sampling
with replacement in statistical analysis.

Classification Classification is the process of categorizing elements according to their
observed variables. In machine learning elements are data instances, and the observed
variables are data representations. In biology, the elements are different organisms, the
observed variables are their various characteristics in their genome or their behaviors,
and the categories are the taxonomic groups.
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Classifier In machine learning, classifier is a mathematical function mapping the given data
points from the input representation space to the class/label representation space.

Class In machine learning, ‘class’ refers to the part of the metadata identifying the category
of a given data instance. The automatic prediction of the ‘class’ is the goal of the
classification task.

Clustering Clustering refers to the process of grouping data points according to their
observed variables. The difference between clustering and classification is that, in clus-
tering, these groups are not pre-defined (clustering is unsupervised and classification
is supervised).

CNN See Convolutional neural network

Convolutional Neural Network Convolutional neural network (or CNN) is a category of
deep learning models that is very common in machine learning analysis of images/videos.
A convolutional layer applies trainable convolutional functions on its input.

Convolution Convolution is a mathematical operation between two function f and g, that
can be defined as (f ⇤ g)(t) ,

R1
�1 f(⌧)g(t� ⌧) d⌧ , or in a discrete case (f ⇤ g)[k] =P1

n=�1 f [n]g[k � n].

Corpus A collection of written texts usually sharing some characteristics (e.g., being in a
specific language, or being from particular authors, genres, etc.)

Crohn’s disease “Crohn’s disease is a chronic inflammatory disease of the gastrointestinal
tract, mostly affecting the ileum. The inflammation can extend through the intestinal
wall and tends to be asymmetric and in patches, with granulomas forming in some
patients. Genetic, environmental, immunological, and bacterial factors are all thought
to contribute to the disease.” (Nature.com definitions)

Dataset Dataset refers to a collection of data points usually coming together with the
metadata information in table structure.

Deep learnig Deep learning is a family of machine learning methods based on neural
networks, where the learning can be supervised, semi-supervised or supervised.

Disordered proteins A type of, or a region in proteins lacking a fixed or ordered 3D
structure.

DisProt The dataset of disordered protein sequences

Distance In data analysis, distance refers to the mathematical measurement indicating how
far are two data points. Different data types (e.g., probabilities, real vectors, etc.)
requires their proper measures of distance. Euclidean distance, KL divergence, mean
squared error are instances of the defined distances between two data objects.
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DNA “DNA (deoxyribonucleic acid) is the nucleic acid polymer that forms the genetic code
for a cell or virus. Most DNA molecules consist of two polymers (double-stranded)
of four nucleotides (A, T, C, G) that each consist of a nucleobase, the carbohydrate
deoxyribose, and a phosphate group, where the carbohydrate and phosphate make up
the backbone of the polymer. (Nature.com definitions)

Domain (language) domain refers to a specific language setting or context sharing a set
of meanings (e.g., sports domain or law domain).

Dropout (neural network) Dropout is a regularization method in neural network training,
which reduces the overfitting by dropping hidden units.

Embedding word embedding is a popular vector representation of words in the machine, in
a lower dimension than the vocabulary size of corpus (usually less than 1000). This
representation is automatically learned using a large collection of texts and facilitates
measurement of words similarities through vector similarities.

Environment Environment, in general, refers to the surroundings. In microbiology, envi-
ronments can refer to the water, soil, sediment, plant, or even animals and humans,
where the bacteria can exist.

Evaluation In machine learning, evaluation refers to the process of testing the machine
learning model against expected outputs/behaviours.

F1-score F1 is a metric for the evaluation of machine learning classification. F1 is defined
as a harmonic average of precision and recall. Micro and macro averaged F1s can
be reported (see micrometrics and macrometrics)

Family A language family refers to a group of languages having a common ancestral language.
In the biology domain, similarly, a family is a taxonomic rank.

Feature In machine learning, feature refers to a measurable property or characteristic of a
data instance that is observed and can be represented as vectors or matrices for the
machine.

Gene Gene refers to the functional sub-sequences of nucleotides in DNA or RNA.

Graph In mathematics, graph is an abstraction of data containing a set of vertices and edges
connecting them. The edges can be weighted or unweighted, directed or undirected

Integrin Integrins are transmembrane receptor proteins with a critical role in the cell
adhesion

k-mer In bioinformatics, k-mers are sub-sequences of length k within a biological sequence
(DNA, RNA, protein). In the language processing domain, k � mers are called
character n-grams.
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KL divergence The Kullback–Leibler divergence (or shortly KL divergence) is a measure
of distance between two probability distributions.

Label In machine learning, the label usually refers to the output of classification, i.e., the
category of data.

Language-agnostic Independent of any specific language or prior assumption about it.

Language “a (finite or infinite) set of sentences, each finite in length and constructed out of
a finite set of elements” (Chomsky 2002)

Layer (deep learning) A deeplearning model is usually a hierarchical model of non-linear
transformations, each of these transformations is called a layer.

Lexica A plural form of lexicon.

Lexicon Lexicon can be defined as a textual dataset, containing information about words
and their different categories.

Machine Learning Machine learning is a computer science field of study enabling the ma-
chines to make predictions/decisions without following any explicitly given instruction
set. Most of machine learning approaches infer their prediction models through given
examples in a mathematical or statistical framework.

Macro metrics Macro-metrics are a type of evaluation metrics for multi�class classification,
which takes the unweighted average of metrics for the individual classes. Thus, inde-
pendent to the class priors, we give equal importance to all classes in the evaluation.

Marker (linguistic) A marker is an easily distinguishable text unit indicating a specific
grammatical function

Metagenome Metagenome refers to the collection of the genetic material belonging to both
the host and the microorganisms (microbiome) living at an environemnt

Micro metrics Micro-metrics are a type of evaluation metrics for multi�class classification,
which takes the weighted average of metrics over all classes. Thus, classes which are
more likely have greater influence in the evaluation.

Microbiome “The microbiome comprises all of the genetic material within a microbiota (the
entire collection of microorganisms in a specific niche, such as the human gut). This
can also be referred to as the metagenome of the microbiota.” (Nature.com definitions)

Morpheme A morpheme is the smallest unit of text with meaning (dependent or freestand-
ing) that cannot be further divided.
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Motif Protein short linear motif (SLiM) sequences are short sub-sequences of usually 3 to
20 aminoacids that are presumed to have important biological functions; examples of
such patterns are cleavage sites, degradation sites, docking sites, ligand binding sites,
etc.

Multi-class (classification) Multi-class classification refers to a machinelearning classification
setting, where the model has to choose between a set of possible categories.

n-gram Refer to the definition of k �mer.

Neural network Neural networks, or more accurately Artificial Neural Networks, are
computational models or interconnected layers inspired from the human neural network
to perform specific prediction tasks.

Nucleotides Nucleotides are the basic units of nucleic acids such as DNA or RNA.

OTU Operational Taxonomic Unit or shortly OTUs are clusters of similar sequence variants
of the 16SrRNA. OTUs are used to classify groups of closely related sequences.

Parallel corpus A parallel corpus is a collection of texts, where each sentence in it is
translated into one or more other languages

Periodontal disease Periodontal disease is an inflammatory disease caused by specific
microorganisms in supporting tissues of teeth.

Phenotype Phenotype refers to the observable characteristics or traits of organisms.

Pipeline Pipeline is a sequence of data processing modules, where the output of a module
is the input to the next one, and they are connected to accomplish a particular task.

Precision In a machine learning classification task, precision for a class is defined as the
number of true positives divided by the total number of elements labeled as belonging
to the class. Micro and macro averaged precisions can be reported (see micrometrics
and macrometrics).

Primary sequence (protein) The primary sequence/structure of the protein is the linear
sequence of amino acids, which is also known as the protein sequence.

Protein Proteins are macromolecules (polymers) consisting of the chain(s) of smaller elements
(monomers) called amino acids.

Proteomics “Proteomic analysis (proteomics) refers to the systematic identification and
quantification of the complete complement of proteins (the proteome) of a biological
system (cell, tissue, organ, biological fluid, or organism) at a specific point in time.
Mass spectrometry is the [experimental] technique most often used for proteomic
analysis.” (Nature.com definitions)
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ProtVec Protein-vectors (or shortly ProtVec) are numerical representations of protein
sequences that are automatically learned. For more details please see §2.2 and 2.3.

PSSM Position-Specific Scoring Matrix or shortly PSSM refers to vector size 20 representing
the log-likelihood of the substitution of the 20 types of amino acids at that position in
the sequence in the sequencealignment.

Random forests Random Forest (RF) is an instance of machinelearning classifier ensem-
bling decision trees. In a classification problem, the outcome of many simple decision
trees (the number of trees is one of the parameters of this model) are aggregated to
choose the the most popular class.

Recall In a machine learning classification task, recall for a class is defined as the number
of true positives divided by the total number of elements that actually belong to the
class. Micro and macro averaged recalls can be reported (see micrometrics and
macrometrics).

Recurrent Neural Network Recurrent Neural Network (RNNs) are a type of neural
networks designed for modeling and prediction over sequential data. RNNs take the
temporal relation into account by adding feedback connections allowing for conditioning
on all previous time steps (for more details please see §1.2).

Reference genome Reference sequence refers to a representative set genes of a species

Representation (data) Representation refers to a form that the data on the machine is
stored and processed.

Resamples Getting samples from data with replacement.

Rheumatoid arthritis “Rheumatoid arthritis is an autoimmune disease that is character-
ized by inflammation of the joints and the subsequent destruction of cartilage and
erosion of the bone. Patients with rheumatoid arthritis are treated with drugs that
suppress the immune system.” (Nature.com definitions)

RNA “Ribonucleic acid (RNA) is a polymer of 4 nitrogenous bases of guanine (G), uracil
(U), adenine (A), and cytosine (C) with essential roles in coding, decoding, regulation
and expression of genes.

RNN See Recurrent Neural Network

Secondary structure of proteins Protein secondary structure is a 3D pattern of the local
segments of proteins.

Semantic Semantics refers to the study of meaning in languages.
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Semi-supervised learning Semi-supervised learning is the category of machine learning
approaches considered as a transition between unsupervised learning and supervised
learning. In semi-supervised learning, we benefit from both input-output example
pairs and examples without any assigned output, where usually the second set is much
larger.

Sentiment Sentiment refers to the attitude or opinion toward something. Automatic
sentiment analysis of text data is one of the crucial topics in language processing.

Sequence A chain of elements.

Sequencing (genetics) Sequencing refers to the process of determining the DNA sequence.

Sub-sequence Sub-sequence is a sequence, which is part of a longer sequence.

Subword Subword refers to parts of a word, which can be meaningful (a lemma) or without
meaning.

Supervised learning In machine learning, supervised learning refers to mapping the input
to the output (e.g., a category) based on input-output pairs of examples.

Syntax syntax refers to a set of rules governing the structure of sentences in a language.

Synthetic dataset Synthetic data refers to a type of datasets that is artificially generated,
usually for the evaluation purpose.

Taxonomy Taxonomy refers to the hierarchical grouping of organisms into categories based
on different properties, including size, shape, and gene sequences.’ (Nature.com
definitions)

Taxon A group of one or more organisms of any rank in taxonomy.

Tokenization Tokenization refers to the process of segmenting a sentence into tokens

Token A string of characters between spaces or punctuations (⇡ word).

Unsupervised learning Unupervised learning is the category of machine learning ap-
proaches drawing inference purely from the input data without having access to the
metadata.

Number Sets

R Real numbers

⌦l Embedding space of language l

Other Symbols
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[• • . . . •] In figures, represents a vector representation in the neural network

� The element-wise product

ha ,bi The inner product of vector a and b

⌦ In figures, dropout visualization in the neural network

~x Vector x

cos(~x, ~y) The cosine similarity between vectors ~x, ~y

DKL(P k Q) KL divergence between distributions P and Q

m ± � Mean ± standard deviation
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Chapter 1

Introduction to language processing and
deep learning

1.1 Language definition and the “language of life”

Noam Chomsky introduced a broad definition for language, describing it as “a (finite or
infinite) set of sentences, each finite in length and constructed out of a finite set of el-
ements” (Chomsky 2002). Obviously, this definition is not limited to natural languages.
An abstract representation of the internal dispositions of the macromolecules of life (i.e.,
nucleic acids (DNA and RNA) and proteins) satisfies this definition as well, as all of these
macromolecules are polymers constructed from a finite set of smaller molecules (Cooper et al.
2000). DNA and RNA are polymers made up of sequences of nucleotides of four distinct
types with the alphabetic representations {A, T, C, G} and {A, U, C, G}, respectively, and
proteins are polymers made up of sequences of amino acids of 20 different types represented
by alphabet characters {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y }. DNA and
RNA are informational molecules, as they carry the genetic instructions needed to make
proteins. In contrast to informational molecules, proteins are operational macromolecules, as
they contribute to the molecular machinery that carries out the functions that are essential
for life. The central dogma of molecular biology describes the relationships among DNA,
RNA, and proteins along the flow of genetic information. It states that information flows
from the DNA into the RNA in a process called ‘transcription’, and then further to proteins
through a process called ‘translation’ (Cooper et al. 2000). Even in the terminology, the

¶The contents of this chapter have partially appeared in the following publications:

1. Asgari, E., & Mofrad, M. R. (2019). Deep Genomics and Proteomics: Language Model-Based
Embedding of Biological Sequences and Their Applications in Bioinformatics. In Leveraging Biomedical

and Healthcare Data (pp. 167-181). Academic Press.

2. Adel, H. and Asgari, E. and Schütze H. (2017). Overview of Character-Based Models for Natural
Language Processing. Lecture Notes in Computer Science book series (LNCS, volume 10761), 3–16.
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presence of elements such as ‘transcription’ and ‘translation’ reflects the notion of viewing
this information representation system as the ‘language’ of life.

Linguists and computational lin-
guists consider a sentence as the out-
put of a complex generative process
controlled by certain rules (Jack-
endoff 1972). They distinguish
between syntactic and semantic
rules. Generally, syntactic rules
govern how the elements are put
together to generate well-formed
sentences, whereas semantic rules
determine the meaning of the re-
sulting sentence. Analogous to
what linguists and computational
linguists believe about the sequence
of words in a sentence, biologists
believe that protein and nucleotide
(DNA and RNA) sequences are not
merely one-dimensional strings of
symbols. These sequences encode
a lot of information about molecu-
lar structure and functions in them-
selves (Cooper et al. 2000). The
structures and functions of macro-
molecules are interesting for us as they can provide information about genotypes, phenotypes,
diseases and even treatments for diseases. Similar to the complex syntax and semantics of
natural languages, certain biophysical and biochemical “grammars” dictate the formation
of biological sequences. Thus it would be natural to adopt/develop methods in language
processing to gain a deeper understanding of how functions and information are encoded
within biological sequences, which is one of the main goals of bioinformatics (Yandell and
Majoros 2002; Searls 2002; Asgari and M. R. Mofrad 2015).

Bioinformatics and natural language processing
Since this research is at the intersection of bioinformatics and natural language processing
(NLP), we begin by defining these. Bioinformatics is defined as “conceptualizing biology in
terms of macromolecules (in the sense of physical-chemistry) and then applying informatics
techniques (derived from disciplines such as applied maths, computer science, and statistics)
to understand and organize the information associated with these molecules on a large

∗∗Noam Chomsky’s cartoon face is taken from SolissClothing’s design.

https://www.redbubble.com/people/solissclothing/works/22047396-in-noam-we-trust-noam-chomsky-design-liberal-activist-author-professor-gift-for-liberal-and-political-science-majors?p=canvas-print
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scale” (Luscombe et al. 2001). Some of the primary data types that bioinformaticians deal with
are genome sequences, macromolecular structures, the results of functional genomics, scientific
literature texts, taxonomy information and interaction networks of macromolecules (Luscombe
et al. 2001). Natural language processing can be defined as conceptualizing human languages
in terms of written texts. Similar to bioinformatics, NLP researchers use computer science and
statistical approaches to understand and manipulate texts by using machines (Chowdhury
2003), which can be very challenging because of the ambiguities that exist in natural
languages (Christopher D Manning and Schuetze 1999). Bioinformatics and NLP are research
areas that have greatly benefited from each other since their beginnings and there have been
always methodological exchanges between them. Levenshtein distance (Levenshtein 1966)
and Smith–Waterman (Waterman et al. 1976) algorithms for calculation of string or sequence
distances, the use of formal languages for expressing biological sequences (Searls 1993; Searls
2002), training language model-based embeddings for biological sequences (Asgari and M. R.
Mofrad 2015) and using state-of-the-art neural named entity recognition architecture (Lample
et al. 2016) for secondary structure prediction (Johansen et al. 2017) are some instances of
such mutual influence.



CHAPTER 1. INTRODUCTION TO LANGUAGE PROCESSING AND DEEP
LEARNING 4

1.2 Introduction to deep learning for language

processing

The Role Representation in Language Processing
Can a computer automatically comprehend a piece of English text to find documents with
similar content or automatically translate the given document to French? These types of tasks
constitute the area with which Natural Language Processing (NLP) is mainly concerned. The
purpose of NLP is to design algorithms allowing computers to understand natural languages
for performing specific tasks (e.g., information retrieval, machine translation, and sentiment
analysis). When we want to discuss a complex concept with an audience unfamiliar with
the topic, we model or represent the concept within a framework that is understandable for
the audience. The same logic applies in presenting a natural language text to a machine.
Computers are experts in dealing with numerical values, vectors, and matrices. Thus, the first
step in NLP is to vectorize natural language text for computers. Words are the conventional
input units of almost all NLP tasks. Therefore, to utilize machines for language processing,
we need to find proper vector representations of words that are interpretable by machines.
We expect such representations to preserve some indications of similarity and dissimilarity
between words. For instance, when we search a phrase in a search engine, we expect the
machine to consider words ‘formula’ and ‘equation’ to be similar and consider them dissimilar
to an irrelevant word like ‘cuisine’. Thus, we should attribute similar vector representations
to the words ‘formula’ and ‘equation’, dissimilar to the vector representation of ‘cuisine’. As a
reminder vector similarity/distance can be calculated using operations in linear algebra (e.g.,
dot product, Euclidian distance, and cosine similarity). Of course, semantic similarity is not
the only consideration we have in NLP tasks. As an example, part-of-speech tagging is one
of the routine NLP tasks, where the goal is to label words with their syntactic part-of-speech
(e.g., noun, verb, adverb, etc.). Presumably, when we want to perform part-of-speech tagging,
we desire a vector representation incorporating syntactic similarities.

The performance of NLP or in general any machine learning task largely depends on
the quality of data representation (also known as feature extraction/engineering), to the
extent that recently representation learning became an important research area in machine
learning (Bengio et al. 2013; Collobert, Weston, et al. 2011). Deep neural network algorithms
effectively allowed for the automatic encoding of data into a proper representation and intro-
duce representation learning as a new field in itself in the realm of machine learning (Bengio
et al. 2013). Recent works in the area of representation learning have proposed successful
representations of data in computer vision, speech recognition, and natural language process-
ing (Y. LeCun et al. 2015; Graves, Mohamed, et al. 2013; Mikolov, Sutskever, K. Chen, et al.
2013). Similar to the role of textual representations in NLP tasks, representation of biological
sequences is key to many bioinformatics tasks, which is facilitated by the recent advances in
deep learning (Angermueller et al. 2016).
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Ono-to-one representation versus distributed representation

The most straightforward approach to represent textual units (characters, words, or sentences)
for a machine is to utilize one element of computing (e.g., a cell in a vector) to represent
one entity, in a way that we have a one-to-one mapping from the vector representation to
the exact entities. One-to-one representation is also known as local representation. One-
hot vector encoding is an instance of such a one-to-one representation. Given a set of M
words (or any other textual unit) we can represent each word wi using a vector in the size
of M , where the vector has zeros everywhere except at the index of word i having the
value of 1, hence calling this representation “one-hot vector representation”. Although this
representation is straightforward to obtain, it has several drawbacks: (i) this representation is
not memory-efficient and not scalable when we have a large collection of textual elements, (ii)
this representation does not take the similarities into account, where the similarity of vectors is
defined based on their dot product or cosine similarity. In such a space of text representation
all word representations of distinct words are orthogonal to each other (hwi wji = 0, i 6= j
and hwi wji = 1, i = j).

An alternative to the one-hot vector representation approach is the use of distributed
representation. Distributed representations are “many-to-many”, meaning that (i) each textual
unit is represented through a weighted combination of many computing elements, (ii) each
computing element gets involved in the representation of many textual units (Geoffrey E
Hinton 1984). For an instance manually creating such a representation, one may represent
the word wi in a natural language by a vector size 2, where the first element indicates the
polarity score of the word (a real value between -1 and 1) and the second element is the
concreteness score of a word (a real value between -1 and 1) that are assigned by a team
of experts. This way, similar words (in terms of having similar polarity and concreteness
scores) would have similar representations. Distributed representations in comparison with
the one-hot vector representations are much more desired for computational tasks because
they are more memory efficient and can incorporate the similarities of textual units. In
traditional machine learning, feature engineering played a crucial role in obtaining better
performance. However, the manual designs of features/representations can be challenging,
as they require domain knowledge and sufficient human resources, which are not always
granted. Additionally, manually designed features are subject to be bias or incompleteness.
This motivates automatic feature extraction.

Machine learning tasks can significantly benefit from the automatic learning of distributed
representation. Recently, deep learning methods have achieved very high performances in
many areas, including NLP, via training end-to-end models that do not require traditional
task-specific feature engineerings. Next, I will provide a brief introduction to such models.

Introduction to neural networks models for language processing
Recently, neural networks models achieved state-of-the-art performance in many natural
language processing tasks (Collobert, Weston, et al. 2011; Devlin et al. 2018) via end-to-end



CHAPTER 1. INTRODUCTION TO LANGUAGE PROCESSING AND DEEP
LEARNING 6

learning eliminating traditional feature engineerings. Biological neural networks inspired the
design of artificial neural networks. Almost all sorts of neural networks, in an abstract view,
are multi-layered models consisting of 3 main types of layers: (i) input layer dealing with the
problem domain, (ii) intermediate layer(s) mapping the problem domain to an intermediate
distributed representation, and (iii) an output layer dealing with the solution domain. The
intermediate layers are supposed to apply non-linear transformation(s) on the input data to
prepare a proper representation before the final transformation to the target output. Finally,
given the intermediate distributed representation, the output layer provides the final outputs
of the model in the solution domain.

Order and Granularity: The input can be either viewed as a sequence of textual units or
as a bag (a set of items with repetition) of them. Despite the simplicity, the bag-of-words
model has been proven to be very successful in many text classification tasks (Arora et al.
2016). Another consideration is the choice of the atomic unit of text in the input, which is not
necessarily word and can be byte (Gillick et al. 2016), character (J. Lee et al. 2016), character
n-gram (Schütze et al. 2016), byte-pairs (Sennrich et al. 2016), morpheme (Kirchhoff et al.
2006), etc.

There exist a variety of models for the intermediate layers to encode the input data;
examples are convolutional layers (C. N. d. Santos and Gatti 2014), recurrent layers (Sutskever,
Martens, et al. 2011), capsule network (Sabour et al. 2017; W. Zhao et al. 2018), and various
combinations that different models together can make. Here, I describe the main basic models
used within the framework of this dissertation.

Multi-layer preceptron neural network

Multi-Layer-Perceptrons (MLP) also known as fully-connected feedforward neural network is
the basic neural architecture approximating function f ⇤, mapping the input vector x to the
output y through non-linear transformations parameterized with ✓:

ŷ = f(x; ✓)

The function f is called a network as this is the result of connecting multiple non-linear
layers fi’s:

f(x; ✓) = fM(. . . f3(f2(f1(x)))),

where M is the number of non-linear transformations, and each fi can be parameterized as
follows:

fi(xi; ✓i) = gi(xi
TWi + bi),

✓i = {Wi, bi}

where xi 2 RDi is the input to the ith layer and W 2 RDi⇥Di+1 is a linear transformation
from the input dimension Di to the dimension of the output of the current layer Di+1 and
bi 2 RDi+1 is the bias term in the affine transformation. The gi is a non-linear activation
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function of the ith layer.

Input and output of MLP: The MLP neural network architecture is depicted in Figure 1.1.
The other name of this network is feedforward network, as the information flow is forwarded
from the input x to the output y through fi’s. The MLP architecture is mainly designed for
bag-of-word input features, as the contextual and global structure of a sequence cannot be
easily modeled in this architecture. However, the extended versions of MLP, i.e., convolutional
and recurrent neural networks can take the sequential and global structure into account. The
MLP can be used to regress real values (regression) or to predict a category (classification); the
non-linear activation function of the last layer can be determined according to this objective.
The gi’s are commonly chosen from the following differentiable non-linear functions:

• Sigmoid (�): sigmoid function maps any given x 2 R to a value between 0 and 1:

gi = �(x) =
1

1 + e�x
,

which is usually favored as the ultimate transformation in a binary classification setting.
Considering a threshold of 0.5 on the out put of sigmoid it can be binarized for prediction
between two classes.

• Tanh: Tangent hyperbolic function is also a non-linear function that commonly used
for transfering the input x 2 R to a value between -1 and 1 and can be formulated as
follows:

gi = tanh(x) =
2

1 + e�2x
� 1 = 2�(2x)� 1,

• Rectified linear unit (ReLU): ReLU is a very simple, but in practice a very effective
non-linear transform used in neural networks. ReLU for any given input x gives an
output x if x is positive and 0 otherwise:

gi = ReLU(x) = max(x, 0).

• Softmax: In the case of multi-class classification, the softmax activation function
is used at the last layer to produce the probability vector that can be regarded as
representing posterior probabilities (Goodfellow et al. 2016).:

gi = softmax(xk) =
exp(xk)

⌃xl2xexp(xl)
.

Learning: Back-propagation algorithm and stochastic gradient decent

The forward propagation of information from input x to the predicted output y has been
discussed so far. Subsequently at the output layer we can measure the cost function J✓(y, ŷ)
based on the gold output y and the predicted output ŷ. The back-propagation algo-
rithm (Rumelhart et al. 1986) allows the backward propagation of information from the cost
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Figure 1.1. Architecture of Multi-Layer-Perceptrons (MLP) Neural Network with M
hidden layers and non-linear activation functions of gi’s on top of each linear transformation
using Wi matrices.

function J✓ calculated at the output back to the first hidden layer in the network through the
gradients over ✓1:M . Then Stochastic Gradient Descent (SGD) algorithm (Y. A. LeCun et al.
2012) is utilized to perform parameter optimization minimize the cost function using the
calculated gradient in the back-propagation. This approach of learning (the combination of
back-propagation and SGD) is not limited to the MLP, but applicable to any function whose
derivative is defined. Different variations of SGD are proposed in the literature, including
Momentum (Polyak 1964) and Adam (Kingma and Ba 2015), allowing for faster learning and
more optimal parameters. To avoid overfitting, usually earlystopping and also dropout at
hidden layers (N. Srivastava et al. 2014b) are performed. Early stopping refers to stop the
process of parameter optimization when further optimization only improves the performance
over the training and not the test data. Dropout is a simple but powerful regularization
approach for neural networks by randomly dropping out hidden units.

The loss function will be also determined based on the problem-setting. In the case of
classification, the cross-entropy is the most common loss function. Given that the gold label y
presented using one-hot representation and the output layer is defined as softmax generating
ŷ, the cost function J✓ between y and ŷ can be defined as follows:

J✓(y, ŷ) = ⌃|y|
i=1 � (yi log ŷi + (1� yi) log (1� ŷj))

Convolutional Neural Networks (CNN)

The development of Convolutional Neural Networks has been mainly inspired by the function of
human visual system containing several filters and detectors of different patterns (Fukushima
1980). Convolution operation between two given functions p and q can be defined as follows:

(p ⇤ q)[i] = ⌃M
j=�Mp[i� j].q[j],

where p ⇤ q can be regarded as a filtered version of p by function q. Convolutional layers in
the neural networks are trainable filters applied in the spatial or temporal axis of input.
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Given an input sequence of textual units (e.g., words) x0
is 2 Rd within a sentence of

length N, (N � i � 1), a 1D convolution of window size c, can be defined as follows (Y. Kim
2014):

hi = g(W Txi:(i+c�1) + b),

where xi:i+c�1 2 Rdc represents the concatenation of xi vectors, and W 2 Rdc is the convo-
lutional filter. By putting the hi’s of a sentence together (i  N � c + 1), we can generate a
new representation of sentence S = [h1, h2, . . . , hN�c+1] 2 RN�c+1.

Max-pooling: a common approach for the representation of textual data after a convolu-
tional filter is applying max� over� time filter to pick a value in S containing the maximum
value. The main idea is to capture the most critical activation during the time.

Rd

X1			X2		X3			X4 Xi	Xi+1	..	Xi+c-1 XN	

W

Xi:(i+c-1)

g

hi

WW

S	=	[	h1 h2 ... hN-c+1]...

WWW

Sliding
window	size	c

Concatenate

output	layer

input	layer

Figure 1.2. The architecture of Convolutional Neural Network (CNN) with a sliding
window size of c applied on a sequential data (text). The Xi (the input of CNN at time i)
and c� 1 of its left neighbors (Xi+1, Xi+1, . . ., Xi+c�1) are concatenated to form a single
vector Xi:(i+c�1). Subsequently, Xi:(i+c�1) through a non-linear transformation
g(W Txi:(i+c�1) + b) produces hi (the output of CNN at time i). Next, the window is shifted
to produce hi+1.

The architecture of CNN is depicted in Figure 1.2. In practice, multiple filters (multiple
W ’s) are applied to the input sequence to capture multiple views from a sequence. Since
functions applied in CNN are also differentiable, the training of CNN layer is the same as
learning of the MLP discussed above. The CNN layers allow for the integration of local
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context in specific window sizes and stacking of CNN layers on top of each-other facilitates
moving from a local context to a more global context.

Neural Sequence Modeling

Language modeling Language modeling is the task of assigning a probability P (w1, w2, . . . , wN )
to a given sequence of textual unit (words, phrases, or sentences) w1, w2, . . . , wN . Language
modeling is a very important component in many NLP applications, in particular the appli-
cations containing language generation or the evaluation of text correctness, e.g., machine
translation, auto-completion of text, chat-bot, etc. Using the chain rule, this probability can
be written as follows:

P (w1, w2, . . . , wN) = P (w1)⇥ P (w2|w1)⇥ P (w3|w1, w2)⇥ . . .⇥ P (wN |w1, . . . , wN�1)

For the simplicity of modeling in practice kth order Markov model is considered, i.e., the wt

only depends on the k preceding textual units:
P (wt|w1, . . . , wt�1) = P (wt|wt�k, . . . , wt�1),

which can be estimated by counting of n-gram of textual units, e.g., for the k = 2:

P (wt|w1, . . . , wt�1) = P (wt|wt�1, wt�1) =
count(wt�2, wt�1, wt)

count(wt�1, wt)
,

where count(wt�2, wt�1, wt) is the number of times the sequence of wt�2, wt�1, wt is observed
in the whole collection of texts. In a more broad definition, w1, . . . , wt�1 is the left context of
wt. In other words, in language modeling, we study the probability of wt given its context.
By increasing the k, the model becomes more powerful in sequence modeling. However, on
the other hand, the model becomes exponentially larger, and a larger collection for estimating
would be needed. Recurrent neural networks and distributed representation are alterna-
tive models for the sequence modeling that can be used for the language modeling task as well.

Recurrent neural network (RNN): Recurrent neural networks extend the MLP archi-
tecture for the modeling of sequential data. RNNs take the temporal relation into account
by adding feedback connections allowing for conditioning on all previous states. The RNN
architecture is depicted in Figure 1.3. Given the sequence input of {x1,x2, . . . ,xN} 2 Rdx

(e.g., sequence of words or subwords), where dx is the dimension of input text units, a single
time step in the RNN can be formulated as follows:

ht = tanh(Whhht�1 + xt
TWxh)

ŷt = softmax(ht
TWhy),

(1.1)

where the ht 2 Rdh is the hidden state of RNN at time step t, Whh 2 Rdh⇥dh determines the
contribution of the previous hidden state ht�1 in the current hidden state, and Wxh 2 Rdx⇥dh

determines the contribution of input xt in the ht. Subsequently, a transformation of ht

through Why 2 Rdh⇥dy as each time step produces the output ŷt. The output can be different
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in different problem settings. As discussed earlier in the case of multi-class classification
softmax is used and dy is the number of classes we have at the output (to be comparable
with the one-hot encoding of the labels). Since in the language modeling (prediction of the
next word/subword) the output is also limited to the list of vocabulary, the problem setting
is the same as multi-class classification and softmax is used in the last layer. Please note
that the Whh, Wxh, and Why remain constant across the time steps.

W x
h

Xt-1																				Xt																				Xt+1	
	

Whh tanh tanhtanh

ht-1 ht ht+1

W x
h

W x
h

Whh

Why Why Why

yt-1 yt yt+1

Figure 1.3. The architecture of Recurrent Neural Network (RNN) is shown around the
time step t. At each time step t, the Xt (the tth input element of the sequence) maps to a
vector in Rdh through Wxh. Next, to produce ht (the hidden state at time t), xt

TWxh vector
is added to a transformed version of ht�1 (through Whh) and a non-linear transformation
(here tanh) is applied on top, i.e., ht = tanh(Whhht�1 + xt

TWxh). ht at each step produces
the output yt through a transformation Why. Note that all W ’s (Wxh, Whh, Why) are linear
transformations shared across time steps.

The training process of an RNN is also similar to the MLP network, where we perform the
back-propagation through time (Werbos et al. 1990). Although RNNs are supposed to take
the full context of the input sequence into account, vanishing gradient (when the gradient
is very small, and the weight will not be updated anymore) can occur in their training.
Succeeding variants of RNNs, namely Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) and Gated Recurrent Unit (Chung, Gulcehre, et al. 2015) resolved this
issue and allowed for efficient training of RNNs to incorporate long term dependencies.

Language model-based representation learning
Transfer learning in machine learning refers to the use of the solution in a problem setting
(source problem) to solve a different problem (target problem). Using a neural network
trained for a specific task for another task is also an instance of transfer learning. The
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Xt

Xt-N Xt-N+1 Xt+NXt+N-1

The	left	context	of	xt The	right	context	of	xt

output	layer

input	layer

hidden	layer

Figure 1.4. Skip-gram neural network for the training of language model-based embedding.
In this network for a given word the context words are predicted.

more general the source problem, the more target problems can benefit from the pre-trained
network. Thus, an ideal scenario for a source problem would be a case with (i) enough
training instances and (ii) general purpose task; then we train a proper network on the source
problem and fine tune it for the target problem using a less number of training instances.
This way, the pre-trained network serves as a prior knowledge from the source problem to
the target problem.

Language modeling (prediction of the next word based on the given context) is an ideal
task for the purpose of transfer learning because: (i) the training of a neural language model
only requires the raw text without any meta-data or annotation (ii) language modeling
is a very general task containing information about syntax and semantics of a language.
Recently, transfer learning from the language modeling domain became very popular in NLP
and successfully obtained state-of-the-art performance in many tasks. Here we describe the
Skip-gram (Mikolov, Sutskever, K. Chen, et al. 2013), one of the most successful architecture
to obtain the text representations, which is also used within the framework of this dissertation.

The objective of Skip-gram neural network (depicted in Figure 1.4) is analogous to the
objective of the language modeling task. The difference is that the input and output are
interchanged, the Skip-gram predicts the surroundings (context) for a given textual unit.
Formally, the objective of skip-gram is to maximize the following log-likelihood:

MX

t=1

X

c2[t�N,t+N ]

log p(wc | wt), (1.2)

where N is the surrounding window size around word wt, c is the context indices around
index t, and M is the corpus size in terms of the number of available words and context
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pairs. We parameterize this probability of observing a context word wc given wt by using
word embedding:

p(wc | wt; ✓) =
evc·vtP

c02C evc0 ·vt
, (1.3)

where C denotes all existing contexts in the training data. However, iterating over all
existing contexts is computationally expensive. This issue can be efficiently addressed by
using negative sampling. In a negative sampling framework, we can rewrite Equation 1.2 as
follows:

TX

t=1

2

4
X

c2[t�N,t+N ]

log
�
1 + e�s(wt, wc)

�
+

X

wr2Nt,c

log
�
1 + es(wt, wr)

�
3

5 , (1.4)

where Nt,c denotes a set of randomly selected negative examples sampled from the
vocabulary collection as non-contexts of wt and s(wt, wc) = vt> · vc (parameterization with
the word vector vt and the context vector vc). The sub-word level Skip-gram, known as
fasttext (Bojanowski et al. 2017) improves the word representations by taking character
n-grams of the sub-words into consideration in calculating the embedding of a given word. In
the fasttext model, the scoring function will be based on the vector representation of n-grams
(e.g., 2  n  6) that exist in textual units (e.g, word), s(wt, wc) =

P
x2Swt

v>
x vc.

Motivation for sub-word levels language processing in this
dissertation
Natural language processing relies on a preprocessing pipeline, such as the one described
in (Gillick et al. 2016) and depicted in Figure 1.5. First, the document is tokenized. This
step needs language-specific tokenization tools. The token sequence is then segmented into
sentences. Afterward, the syntactic and semantic analysis is performed (usually sentence-
wise). Syntactic analysis outputs part-of-speech tags, syntactic dependencies, etc. Semantic
analysis extracts named entity tags, semantic roles, etc. The actual natural language process-
ing/understanding (NLP/NLU) task (e.g., answering questions or extracting information) uses
features from those preprocessing steps. Tokenization is a critical step in NLP that can have a
great impact on the performance of the entire pipeline. Although tokenizable words in many
languages seem to be an obvious choice of text processing unit, subword-level and character-
level language processing has recently become popular among the NLP community to address
the propagation of tokenization errors in the NLP pipeline. Since biological sequences often do
not contain even naive segmentation boundaries of functional units, this problem is even more
severe in bioinformatics. Thus, subword- and character-level language processing methods
can be beneficial for language-agnostic processing of both natural languages and biological
sequences. In section §1.3, we provide a brief survey of these new approaches organized by
different task types in NLP (Adel et al. 2017).



CHAPTER 1. INTRODUCTION TO LANGUAGE PROCESSING AND DEEP
LEARNING 14

Document
token

sequence
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Segmention into
sentences

POS tags,

 syntactic 

dependencies

Syntactic analysis
(per sentence)

Semantic
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Natural language

understanding

Sentences

NER tags,
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Figure 1.5. Natural language preprocessing pipeline. POS, part of speech. First, the
document is tokenized. The token sequence is then segmented into sentences. Afterward, the
syntactic and semantic analysis is performed (usually sentence-wise). Syntactic analysis
outputs POS tags, syntactic dependencies, etc. Semantic analysis extracts named entity tags,
semantic roles, etc. The actual natural language understanding (NLU) task (e.g., answering
questions or extracting information) uses features from those preprocessing steps.
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1.3 Overview of character-level methods in natural

language processing

In the NLP pipeline (shown in Figure 1.5), since every preprocessing step can have deficiencies,
the entire pipeline of modules is prone to subsequent errors. Usually, it is hard, inefficient or
even impossible to recover from those errors, especially when they occur during tokenization
(i.e., in the first step of the pipeline). Although tokenization is easy in many cases in English,∗
it can be very hard for other languages; for example, it is hard for Chinese because the
tokens are not separated by spaces, it is hard for German because of compounds and it is also
hard for agglutinative languages like Turkish. Therefore, character-based models have the
potential of being more robust for NLP. Furthermore, they support end-to-end approaches
for text that do not require manual definitions of features, similar to pixel-based models in
vision or acoustic signal-based approaches in speech recognition.

In the following, we will present an overview of work on character-based models for a
variety of tasks from different NLP areas.†

Subword- and character-level models for NLP
The history of character-based research in NLP is long and spans a broad array of tasks. Here,
we make an attempt to categorize the literature on character-level work into three classes based
on the way they incorporate character-level information into their computational models. The
three classes we can identify are: tokenization-based models, bag-of-n-gram models
(known as k-mers in bioinformatics domain) and end-to-end models (Schütze et al. 2016).
However, mixtures are also possible, such as tokenization-based bag-of-n-gram models or
bag-of-n-gram models trained end-to-end.

On top of categorization based on the underlying representation model, we sub-categorize
the work within each group into six abstract types of NLP tasks (if possible) to be able to
compare them more directly. Abstract definitions of the tasks also help in finding similar
tasks in bioinformatics. These task types depicted in Figure 1.6 are as follows:

1. Representation learning for character sequences: Work in this category attempts
to learn a generic representation for sequences of characters in an unsupervised fashion
on large corpora. Learning such representations has been shown to be useful for solving
downstream NLP tasks (Collobert, Weston, et al. 2011; Kocmi and Ondrej Bojar 2016;
Mikolov, Sutskever, K. Chen, et al. 2013).

2. Sequence-to-sequence generation: This category includes a variety of NLP tasks
mapping variable-length input sequences to variable-length output sequences. Tasks

∗There are also difficult cases in English, such as “Yahoo!” or “San Francisco–Los Angeles flights”.
†In our view, morpheme-based models are not true instances of character-level models because linguistically

motivated morphological segmentation is an equivalent step to tokenization, but on a different (i.e. subword)
level. We therefore do not cover much work on morphological segmentation here.
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Y The element to be predicted in the task.

When it contains index it is time specific.

Figure 1.6. Abstract visualization of natural language processing (NLP) task types: (1)
Representation learning, (2) Sequence-to-sequence generation, (3) Sequence labeling, (4)
Language modeling, (5) Information retrieval, and (6) Sequence classification.
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in this category include those that are naturally suited for character-based modeling,
such as grapheme-to-phoneme conversion (Bisani and Ney 2008; Kaplan and Kay 1994;
Sejnowski and Rosenberg 1987), transliteration (Haizhou et al. 2004; K. Knight and
Graehl 1998; Sajjad 2012), spelling normalization for historical text (Pettersson et al.
2014), or restoration of diacritics (Mihalcea and Nastase 2002). Machine translation
and question answering are other major examples of this category.

3. Sequence labeling: NLP tasks that assign a categorical label to a part of a sequence
(a character, a sequence of characters or a token) are included within this group. Part-
of-speech tagging, named entity recognition, morphological segmentation and word
alignment are instances of sequence labeling.

4. Language modeling: Another type of task for character-based modeling that has
been important for a very long time is language modeling. In 1951, Shannon (Shannon
1951) proposed a guessing game asking “How well can the next letter of a text be
predicted when the preceding N letters are known?” This is basically the task of
character-based language modeling.

5. Information retrieval: The information retrieval task is to retrieve the character
sequence that is most relevant to a given character sequence (the query) from a set of
existing character sequences.

6. Sequence classification: In this type of NLP task, a categorical label will be as-
signed to a character sequence (e.g., a document). Instances of this type are language
identification, sentiment classification, authorship attribution, topic classification and
word sense disambiguation.

Tokenization-based approaches
We group the character-level models that are based on tokenization together as a necessary
preprocessing step in the category of tokenization-based approaches. Those can be either
models with tokenized text as input or models that operate only on individual tokens (such
as studies on morphological inflection of words).

In the following paragraphs, we cover a subset of tokenization-based models that are used
for representation learning, sequence-to-sequence generation, sequence labeling, language
modeling and sequence classification tasks.

Representation learning for character sequences. Creating word representations based
on characters has attracted much attention recently. Such representations can model rare
words, complex words, out-of-vocabulary words and noisy texts. In comparison to traditional
word representation models that learn separate vectors for word types, character-level models
are more compact, as they only need vector representations for characters as well as a
compositional model.
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Figure 1.7. Models to calculate word embeddings based on characters

Various neural network architectures have been proposed for learning token representations
based on characters. Examples of such architectures are depicted in Figure 1.7 (from left to
right): averaging character embeddings, (bidirectional), recurrent neural networks (RNNs)
(with or without gates) over character embeddings and convolutional neural networks (CNNs)
over character embeddings. Studies on the general task of learning word representations from
characters include (X. Chen et al. 2015; Ling, Trancoso, et al. 2015; M.-T. Luong et al. 2013;
Vylomova et al. 2016). These character-based word representations are often combined with
word embeddings and can be integrated into a hierarchical system, such as hierarchical RNNs
(see Figure 1.8) or CNNs (see Figure 1.9) or a combination of both (see Figure 1.10) to solve
other task types. We will provide more concrete examples below.

Sequence-to-sequence generation (machine translation). Character-based machine
translation is no new topic. Using character-based methods has been a natural way to
overcome challenges like rare or out-of-vocabulary words in machine translation. Traditional
machine translation models based on characters or character n-grams have been investigated
by (Lepage and Denoual 2005; Joerg Tiedemann and Nakov 2013; Vilar et al. 2007). Neural
machine translation with character-level and subword units has become popular recently
(Costa-Jussa and Fonollosa 2016; M. Luong and Christopher D. Manning 2016; Sennrich et al.
2016; Vylomova et al. 2016). In such neural models, using a joint attention and translation
model makes joint learning of alignment and translation possible (Ling, Trancoso, et al. 2015).

Both hierarchical RNNs (Ling, Trancoso, et al. 2015; M. Luong and Christopher D.
Manning 2016) (similar to Figure 1.8) and combinations of CNNs and RNNs have been
proposed for neural machine translation (Costa-Jussa and Fonollosa 2016; Vylomova et al.
2016) (similar to Figure 1.10).
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Sequence labeling. Examples of early efforts on sequence labeling using tokenization-based
models include: bilingual character-level alignment extraction (Church 1993), unsupervised
multilingual part-of-speech induction based on characters (A. Clark 2003), part-of-speech
tagging with subword- or character-level information (Andor et al. 2016; Hardmeier 2016;
Ratnaparkhi et al. 1996), morphological segmentation and tagging (Cotterell et al. 2016;
T. Mueller et al. 2013) and identification of language inclusion with character-based features
(Alex 2005).

Recently, various hierarchical character-level neural networks have been applied to a
variety of sequence labeling tasks.

• Recurrent neural networks are used for part-of-speech tagging (depicted in Figure 1.8)
(Ling, Dyer, et al. 2015; Plank et al. 2016; Zhilin Yang et al. 2016), named entity
recognition (Lample et al. 2016; Zhilin Yang et al. 2016), chunking (Zhilin Yang et al.
2016) and generation of morphological segmentation or inflection (Cao and Rei 2016;
Faruqui et al. 2016; Kann, Cotterell, et al. 2016; Kann and Schuetze 2016a; Kann and
Schuetze 2016b; Rastogi et al. 2016; Linlin Wang et al. 2016; Yu et al. 2016). Such
hierarchical RNNs are also used for dependency parsing (Ballesteros et al. 2015). This
work has shown that morphologically rich languages benefit from character-level models
in dependency parsing.

• Convolutional neural networks are used for part-of-speech tagging (shown in Figure 1.9)
(C. N. d. Santos and Zadrozny 2014) and named entity recognition (C. N. d. Santos
and Guimaraes 2015).

• A combination of RNNs and CNNs is used, for instance, for named entity recognition
(shown in Figure 1.10) (Chiu and Nichols 2016; V et al. 2016).

Language modeling. Earlier work on subword language modeling has used morpheme-level
features for language models (Bilmes and Kirchhoff 2003; Ircing et al. 2001; Kirchhoff et al.
2006; M. Ali Basha Shaik et al. 2013; Vergyri et al. 2004). In addition, hybrid word and
n-gram language models for out-of-vocabulary words have been applied in speech recognition
(Hirsimaki et al. 2006; Kombrink et al. 2010; Parada et al. 2011; M Ali Basha Shaik et al.
2011). Furthermore, characters and character n-grams have been used as input to restricted
Boltzmann machine-based language models for machine translation (Sperr et al. 2013).

More recently, character-level neural language modeling has been proposed extensively
(Bojanowski et al. 2017; Botha and Blunsom 2014; Y. Kim et al. 2016; Ling, Dyer, et al. 2015;
Mikolov, Sutskever, Deoras, et al. 2012; M. Ali Basha Shaik et al. 2013; Sperr et al. 2013).
Although most of this work has used RNNs, some architectures combine CNNs and RNNs
(Y. Kim et al. 2016). Though most of these studies combine the output of the character model
with word embeddings, the authors of (Y. Kim et al. 2016) report that this does not help
them for their character-aware neural language model. They use convolution over character
embeddings followed by a highway network (R. K. Srivastava et al. 2015) and feed its out-
put into a long short-term memory network that predicts the next word via a softmax function.
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Figure 1.8. Hierarchical RNN for part-of-speech tagging with character embeddings as
input
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Figure 1.9. Hierarchical CNN + MLP for part-of-speech tagging with character
embeddings as input



CHAPTER 1. INTRODUCTION TO LANGUAGE PROCESSING AND DEEP
LEARNING 21

t       a       x      o      n 

max

In     biology    a    taxon    is   ...

character embedding

word embedding

IN NN DET NN VBZ

Figure 1.10. Hierarchical CNN + RNN for part-of-speech tagging with character
embeddings as input

Sequence classification. Examples of tokenization-based models that perform sequence
classification are CNNs used for sentiment classification (C. N. d. Santos and Gatti 2014)
and combinations of RNNs and CNNs used for language identification (Jaech et al. 2016).

Bag-of-n-gram Models

Character n-grams have a long history of being known as the features of specific NLP
applications, such as information retrieval. However, work has attempted to represent words
or larger input units, such as phrases, with character n-gram embeddings. These embeddings
can be within-token or cross-token (i.e., no tokenization is necessary).

Although such models learn or use character n-gram embeddings from tokenized text or
short text segments, in order to represent a piece of text, the character n-grams that occur are
usually summed without the need for tokenization. For example, the phrase “Berlin is located
in Germany” is represented by character 4-grams as follows: “Berl erli rlin lin_ in_i n_is
_is_ is_l s_lo _loc loca ocat cate ated ted_ ed_i d_in _in_ in_G n_Ge _Ger Germ erma
rman many any.” Note that the input has not been tokenized and there are n-grams spanning
token boundaries. We also include non-embedding approaches using bags-of-n-grams within
this group as they go beyond word and token representations.

In the following, we explore a subset of bag-of-n-gram models that are used for represen-
tation learning, information retrieval and sequence classification tasks.
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Representation learning for character sequences. An early study in this category of
character-based models is (Schuetze 1992). Its goal was to create corpus-based fixed-length
distributed semantic representations for text. To train k-gram embeddings, the top character
k-grams are extracted from a corpus along with their co-occurrence counts. Next, singular
value decomposition (SVD) is used to create low-dimensional k-gram embeddings, given
their cooccurrence matrix. To apply them to a piece of text, the k-grams of the text are
extracted and their corresponding embeddings are summed. The study evaluates the k-gram
embeddings in the context of word sense disambiguation.

A more recent study (Wieting et al. 2016) trains character n-gram embeddings in an
end-to-end fashion with a neural network. They are evaluated on word similarity, sentence
similarity and part-of-speech tagging.

Information retrieval. As mentioned before, character n-gram features are widely used in
the area of information retrieval (Cavnar 1995; A. Chen et al. 1997; Damashek 1995; De Heer
1974; McNamee and Mayfield 2004; Kettunen et al. 2010).

Sequence classification. Bag-of-n-gram models are used for language identification (Bald-
win and Lui 2010; Dunning 1994), topic labeling (Kou et al. 2015), authorship attribution
(Peng et al. 2003), word or text similarity (Bojanowski et al. 2017; Eyecioglu and B. Keller
2016; Wieting et al. 2016) and word sense disambiguation (Schuetze 1992).

End-to-end Models

Similar to bag-of-n-gram models, end-to-end models are tokenization-free. Their input is a
sequence of characters or bytes and they are directly optimized on a (task-specific) objective.
Thus they learn their own task-specific representation of the input sequences. Recently,
character-based end-to-end models have gained a lot of popularity because of the success of
neural networks.

We explore the subsets of these models that are used for sequence generation, sequence
labeling, language modeling and sequence classification tasks.

Sequence-to-sequence generation. In 2011, the authors of (Sutskever, Martens, et
al. 2011) proposed an end-to-end model for generating text. They trained RNNs with
multiplicative connections on the task of character-level language modeling. Afterwards, they
used the model to generate text and found that the model captured linguistic structure and
a large vocabulary. It produced only a few uncapitalized non-words and was able to balance
parantheses and quotes even over long distances (e.g., 30 characters). A similar study by
(Graves 2013) used a long short-term memory network to create character sequences.

Recently, character-based neural network sequence-to-sequence models have been applied
to instances of generation tasks like machine translation (Chung, K. Cho, et al. 2016; Kalch-
brenner et al. 2016; J. Lee et al. 2016; Y. Wu et al. 2016; Zhen Yang et al. 2016) (which was
previously proposed on the token level (Sutskever, Vinyals, et al. 2014)), question answering
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(Golub and X. He 2016) and speech recognition (Bahdanau et al. 2016; Chan et al. 2016;
Eyben et al. 2009; Graves and Jaitly 2014).

Sequence labeling. Character and character n-gram-based features had already been
proposed in 2003 for named entity recognition in an end-to-end manner via a hidden Markov
model (Klein et al. 2003). More recently, the authors of (Ma and Hovy 2016) proposed an end-
to-end neural network model for named entity recognition and part-of-speech tagging. An end-
to-end model has also been suggested for unsupervised, language-independent identification
of phrases or words (Gerdjikov and Schulz 2016).

A prominent example of neural end-to-end sequence labeling was recently presented
by (Gillick et al. 2016) about multilingual language processing from bytes. A window is slid
over the input sequence, which is represented by its byte string. Thus the segments in the
window can begin and end mid-word or even mid-character. The authors applied the same
model for different languages and evaluated it on part-of-speech tagging and named entity
recognition.

Language modeling. Chung, Ahn, et al. in (Chung, Ahn, et al. 2017) proposed a hier-
archical multi-scale RNN for language modeling. The model used different timescales to
encode temporal dependencies and was able to discover hierarchical structures in a character
sequence without explicit tokenization. Other studies on end-to-end language models include
(Kalchbrenner et al. 2016; Miyamoto and K. Cho 2016).

Sequence classification. Another recent end-to-end model used character-level inputs for
document classification (Y. Xiao and K. Cho 2016; Xiang Zhang and Y. LeCun 2015; Xiang
Zhang, J. Zhao, et al. 2015). To capture the long-term dependencies of the input, the authors
combined convolutional layers with recurrent layers. The model was evaluated on sentiment
analysis, ontology classification, question type classification and news categorization.

1.4 Overview of the dissertation

In a broad definition, human written/oral communications and biological sequences are both
instances of ‘language’. Many applications in our daily life motivate developing methods for
automatic processing of these languages, e.g., machine translation from a foreign language to
our mother tongue, DNA processing to identify genetic diseases or for legal purposes, protein
engineering for drug design. Within the framework of this dissertation, I develop language
processing methods for proteomics, genomics, metagenomics, and human languages. We are
interested in the data-driven models making zero or minimal prior assumptions about these
languages. Decisions on how to represent the sequential data to the machine (its granularity,
whether to consider the order or not, the proper numerical vector representation of sequence
elements, etc.) are among the first steps in any data analysis/prediction task. Here, we would
like to be data-driven, i.e., we attempt to primarily benefit from the data itself in these very
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first steps, and try to minimize the use of any prior knowledge. The ‘language-agnostic’ term
in the title refers to this point of view.

Characters and character n-grams (or in bioinformatics terminology, k-mers) have a rich
record of being used as representations for language processing applications. Nowadays,
character-based models have become increasingly popular in NLP. This development was
prompted, especially by the success and popularity of neural networks. Character-level models
could overcome the challenge of dealing with tokenization errors and provide the possibility
of enhancing or even completely replacing the traditional NLP preprocessing pipeline. Such
methods can be vital for bioinformatics research as well, where even naive segmentation of
the biological sequences is missing in many cases, and finding a proper representation of the
sequences is challenging.

This research is distinct from approaches that have suggested the modeling of biological
sequences via formal language theory (Searls 2002; Dong and Searls 1994; Muggleton et al.
2001; Searls 2013). In this dissertation, I focus on recent advances in deep learning and
representation learning (Collobert, Weston, et al. 2011; Mikolov, Sutskever, K. Chen, et al.
2013), as well as subsequence-based language processing (Sennrich et al. 2016; Schütze et al.
2016) facilitating a language-agnostic processing of biological and natural language sequences
for bioinformatics and NLP tasks, respectively. The projects carried out within the framework
of this doctoral research are presented in three main chapters categorized by their the data
type, in the areas of proteomics, genomics and metagenomics, and natural languages. A
summary of the dissertation organized by task-types is as follows.

• Task-type 1: Sequence representations and representation learning
Finding a proper way to represent data that is interpretable by machines is an important
step in any machine learning framework. The conventional method of feature extraction
has been to use domain knowledge, which usually requires human intervention and
can be expensive, either in time or money and potentially contains the errors that any
manual work may suffer from. The advent of deep neural network algorithms allowed
automatic encoding of data into a proper representation for downstream machine
learning tasks (Bengio et al. 2013). In this dissertation, I propose fixed-length and
variable-length sequence representations for proteomics and metagenomics. In addition,
I propose a language model-based representation learning for biological sequences.
In representation learning, researchers usually distinguish between two categories of
evaluations: intrinsic evaluations versus extrinsic evaluations. An intrinsic evaluation
examines the quality of the representations (e.g. comparisons of vector similarity with
human judgment about the similarity of representation) independent of any specific task,
while an extrinsic evaluation tests the strength of the representation in the downstream
tasks) (Schnabel et al. 2015). Extrinsic evaluations of the proposed representations are
within the framework of the other task-types: e.g., sequence classification, sequence
labeling, or marker detection tasks.

• Task-type 2: Sequence classifications
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Many important bioinformatics and NLP tasks can be categorized as sequence clas-
sification. The goal of sequence classification is to assign one or multiple labels out
of a finite set of possible labels to the entire sequence. Protein function prediction in
proteomics and host phenotype prediction in genomics and metagenomics are examples
of such tasks in bioinformatics. In this dissertation, I use the representations proposed
in Task-type 1 with machine learning predictive models for sequence classification tasks
in proteomics, metagenomics, and natural languages. I explore the use of both classical
classifiers (e.g., support vector machine and random forests), as well as the deep neural
network as the predictive model.

• Task-type 3: Sequence labeling
Sequence labeling is the task of assigning categorical labels to each element of a sequence.
Examples of this type are protein secondary structure prediction, gene finding, protein
domain identification, etc. Similar to Task-type 2, I use the representations from
Task-type 1 for sequence labeling tasks in proteomics (protein domain identification and
secondary structure prediction) and genomics (gene finding). For the protein secondary
structure prediction, in particular, I investigate deep learning-based prediction from the
protein primary sequence. We study the function of different representations in this
task. In addition to the role of features, we evaluate various deep learning architectures
including the following models/mechanisms and certain combinations: Bidirectional
Long Short-Term Memory (BiLSTM), convolutional neural network (CNN), highway
connections, attention mechanism, recurrent neural random fields, and gated multi-scale
CNN.

• Task-type 4: Biomarker and linguistic marker detection and analysis
“Biomarkers” is a shortened version of “biological markers”, which refer to a broad
range of characteristics that can be objectively identified as indicators of a biological
meaning (Strimbu and Tavel 2010). Examples include the genes associated with a
certain disease, genotypes identifying the underlying species, protein motifs related to
a specific function, etc. Similarly, in linguistics, a marker is a linguistic distinction
indicating a grammatical function, such as tense, aspect, and negation markers. In
a more broad sense, a marker can be an indicator of any meta-data (e.g., poetic
genres (Asgari and Chappelier 2013; Asgari, Ghassemi, et al. 2013), or even the mental
health states (Asgari, Nasiriany, et al. 2016)). In this dissertation, I present marker
detection methods for both natural language and biological sequences:

1. SuperPivot algorithm for marker detection in 1000 natural languages:
For the natural languages, I propose an algorithm called SuperPivot for automatic
extraction of linguistic markers in a parallel corpus of 1000 languages with a case
study focusing on tense and sentiment.

2. DiTaxa for detection of biomarkers from 16S rRNA metagenomics: For
metagenomics, I propose a sub-sequence-based 16S rRNA data processing method
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as a new paradigm for sequence phenotype classification and biomarker detection.
This method and the related software, called DiTaxa, substitute standard opera-
tional taxonomic unit (OTU) clustering or sequence-level analysis by segmenting
16S rRNA reads into the most frequent variable-length subsequences. These
subsequences are then used as data representation for downstream phenotype
prediction, biomarker detection, and taxonomic analysis.

3. DiMotif for detection of protein motifs in discriminative fashion: For
proteomics, I propose a general-purpose probabilistic segmentation of protein
sequences into commonly occurring variable-length subsequences and then use
the representation for discriminative motif mining.

• Task-type 5: Quantitative comparison of languages
In this dissertation, I propose a quantitative distance between genomic settings and
natural languages, based on the language model-based embedding presented (described
in Task-type 1). For the biological sequences, the embeddings can characterize sequences
in terms of the underlying biochemical and biophysical patterns. This property makes
the network of biological words (k-mers) or language words in this space an indirect
representation of the underlying language model. Considering this fact, I propose a new
quantitative measure of the distance between genomic language variations or natural
languages based on the divergence between the networks of words in different settings,
called word embedding language divergence. I perform a language comparison for the
coding regions in the genomes of 12 different organisms (four plants, six animals, and
two human subjects). The same method is used for comparing 50 natural languages,
where the mapping between words was obtained from aligned nodes in parallel corpora,
which was able to cluster similar languages together.

The above mentioned contents are organized by the data-types within the dissertation,
Chapter 2: proteomics, Chapter 3: metagenomics, and Chapter 4: human languages.
Finally, in Chapter 5, I conclude the dissertation and present potential future directions.



27

Chapter 2

Deep language-agnostic processing of
proteomics

2.1 Introduction and chapter overview

Proteins are macromolecules that are crucial elements for the structure and function of
cells with a wide array of responsibilities including structural support, intra- and inter-
cellular transport, catalytic activity, defense against bacteria and viruses, muscle contraction,
signaling and regulation. Proteins accomplish their diverse functions in interactions with
their environments, which can be other macromolecules (such as proteins, DNA, or RNA),
chemical compounds, or factors such as the pH or temperature (W. T. Clark and Radivojac
2011; Cooper et al. 2000). Proteins are polymers of small molecules called amino acids,

¶The content of this chapter is based on the following publications:

1. Asgari, E., & Mofrad, M. R. (2015). Continuous distributed representation of biological sequences for
deep proteomics and genomics. PloS one, 10(11), e0141287.

2. Asgari, E., McHardy, A. C., & Mofrad, M. R. (2019). Probabilistic variable-length segmentation of
protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX).
Scientific reports, 9(1), 3577.

3. Asgari, E., & Mofrad, M. R. (2019). Deep Genomics and Proteomics: Language Model-Based
Embedding of Biological Sequences and Their Applications in Bioinformatics. In Leveraging Biomedical
and Healthcare Data (pp. 167-181). Academic Press.

4. CAFA challenge report: Zhou, N., Jiang, Y., Bergquist, T. R., Lee, A. J., Kacsoh, B. Z., Crocker, A.
W., ... , Asgari, E., Mofrad, M. R, ... , & Davis, L. (2019). The CAFA challenge reports improved
protein function prediction and new functional annotations for hundreds of genes through experimental
screens. bioRxiv, 653105 (Submitted to the Genome Biology Journal).

5. Asgari, E., Poerner, N., McHardy A. C., & Mofrad, M. R. (2019). DeepPrime2Sec: Deep Learning for
Protein Secondary Structure Prediction from the Primary Sequences, To be submitted.
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of which there are 20 different types, represented by the characters {A, C, D, E, F, G, H,
I, K, L, M, N, P, Q, R, S, T, V, W, Y}, plus 4 letters indicating ambiguities: B instead
of {N � or � D}, J instead of {I � or � L}, Z instead of {E � or � Q}, and X as an
completely unknown amino acid. Protein sequences can be as large as chains of 10Ks amino
acids∗; meaning that the space of possible protein sequences is very large. Proteins fold to
form a particular three-dimensional structure. It has been proven that the protein’s linear
sequence can determine their tertiary structures (3D structure) (Cooper et al. 2000). The
functions of proteins are highly tied to their 3D structures. Hence, a protein sequence should
theoretically hold enough information determining its function. However, finding a mapping
from the protein primary sequence to the structure is one of the open challenges in molecular
biology (Hunter 1993; Cooper et al. 2000). The large gap between the number of known
protein sequences (UniProt database contains 116 million protein sequences to date) and the
number of known protein 3D structures (Protein Databank contains only 142K entries for
protein 3D structures to date) motivates computational methods and in particular machine
learning methods predicting structural and functional information from the protein primary
sequences. This is the central goal of this chapter. We focus on developing language processing
methods suitable for use of machine learning in the functional and structural annotation of
protein sequences using subsequence information as well as deep representation learning.

Similar to any other machine
learning framework, performing
data analysis on proteomics data re-
quires encoding of protein sequences
into vector representations (see 1.2).
The conventional method for en-
coding protein sequences has been
the use of biophysical properties
in the sequences or direct use of
amino acid compositions. Usually,
when we use biophysical properties
for sequence representation, each
amino acid is represented by its bio-
physical properties, including hy-
drophobicity, normalized Van der
Waals volume, polarity, polarizabil-
ity, charge, surface tension, sec-
ondary structure and solvent accessibility. However, there exist countless combinations
of such features to be used in a problem setting. This diversity of features makes a proper
features selection very difficult as filtering may require great domain knowledge, which is
not always available. One of the main contributions of this dissertation is proposing lan-
guage processing methods for unsupervised feature extraction from protein sequences. These

∗based on sequence lengths on UniProt
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methods take advantage of a large number of available protein sequences and subsequently
employ the extracted features for down-stream machine learning on structural and functional
annotations.

Chapter overview
The contributions of this dissertation in proteomics are in three folds (i) introducing k-mer
based distributed representation of protein sequences, (ii) data-driven segmentation of protein
sequences into variable-length sub-sequences for protein sequence embedding and motif
discovery,and (iii) deep learning for protein secondary structure prediction.

In Section §2.2, we introduce protein-vector (ProtVec) embeddings using the Skip-gram
neural networks as an unsupervised representation of protein k-mers, which are eventually
used for the representation of the protein sequences using average or summation of k-mer
vectors. We evaluate the ProtVec intrinsically and extrinsically. For the intrinsic evaluation,
we show that protein vectors are continuous in terms of different biophysical properties. For
the extrinsic evaluation, ProtVec is evaluated over classifying protein sequences obtained from
Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy
of 94% ± 0.03% is obtained outperforming existing family classification methods. In addition,
ProtVec is used to distinguish disordered proteins from structured ones. Two databases of
disordered sequences are used: the DisProt database as well as a database featuring the
disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using
support vector machine classifiers, FG-Nup sequences are distinguished from structured
Protein Data Bank (PDB) sequences with 99% accuracy, and unstructured DisProt sequences
from structured DisProt sequences with 100% accuracy. Besides, using GeneVec and ProtVec
in intron-exon prediction and protein domain identification tasks could improve the sequence
labeling accuracy from 73.84% to 74.99% and from 82.4% to 89.8%, respectively. These
results indicate that only providing sequence data, information about protein structure can
be determined with high accuracy.

In Section §2.3, we propose peptide-pair encoding (PPE), a general-purpose probabilistic
segmentation of protein sequences into commonly occurring variable-length sub-sequences.
The idea of PPE segmentation is inspired by the byte-pair encoding (BPE) text compression
algorithm, which has recently gained popularity in subword neural machine translation (Sen-
nrich et al. 2016; Kudo 2018). We modify this algorithm by adding a sampling framework
allowing for multiple ways of segmenting a sequence. PPE can be inferred over a large set of
protein sequences (e.g., Swiss-Prot database) and then applied to a set of unseen sequences.
This representation can be widely used as the input to any downstream machine learning
tasks in protein bioinformatics. In particular, here, we introduce this representation through
protein motif discovery and protein sequence embedding. (i) DiMotif: we present DiMotif
as an alignment-free discriminative motif discovery approach and evaluate the method for
finding protein motifs in different settings: (1) comparison of DiMotif with two existing
approaches on 20 distinct motif discovery problems which are experimentally verified, (2)
classification-based approach for the motifs extracted for integrins, integrin-binding proteins,
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and biofilm formation, and (3) in sequence pattern searching for nuclear localization signal.
The DiMotif, in general, obtained high recall scores, while having a comparable F1 score with
other methods in the discovery of experimentally verified motifs. Having high recall suggests
that the DiMotif can be used for short-list creation for further experimental investigations
on motifs. We n the classification-based evaluation, the extracted motifs could reliably
detect the integrins, integrin-binding, and biofilm formation-related proteins on a reserved
set of sequences with high F1 scores. Motif discovery is a biomarker finding task-type (as
defined in 1.4). (ii) ProtVecX: We extend k-mer based protein vector (ProtVec) embedding to
variable-length protein embedding using PPE sub-sequences. We show that the new method
of embedding can marginally outperform ProtVec in enzyme prediction as well as toxin
prediction tasks. In addition, we conclude that the embeddings are beneficial in protein
classification tasks when they are combined with raw k-mer features. Finally, in Section §2.5,
we conclude with the contributions of this dissertation in proteomics.

In Section §2.4, we introduce deep learning-based prediction of protein secondary structure
from the protein primary sequence. We study the function of different features in this task,
including one-hot vectors, biophysical features, protein sequence embedding (ProtVec), deep
contextualized embedding (known as ELMo), and the Position Specific Scoring Matrix (PSSM).
In addition to the role of features, we evaluate various deep learning architectures including
the following models/mechanisms and certain combinations: Bidirectional Long Short-Term
Memory (BiLSTM), convolutional neural network (CNN), highway connections, attention
mechanism, recurrent neural random fields, and gated multi-scale CNN. Our results suggest
that PSSM concatenated to one-hot vectors are the most important features for the task of
secondary structure prediction. Utilizing the CNN-BiLSTM network, we achieved an accuracy
of %69.9 and %70.4 using ensemble top-k models, for 8-class of protein secondary structure on
the CB513 dataset, the most challenging dataset for protein secondary structure prediction.
Through error analysis on the best performing model, we showed that the misclassification
is significantly more common at positions that undergo secondary structure transitions,
which is most likely due to the inaccurate assignments of the secondary structure at the
boundary regions. Notably, when ignoring amino acids at secondary structure transitions in
the evaluation, the accuracy increases to %90.3. Furthermore, the best performing model
mostly mistook similar structures for one another, indicating that the deep learning model
inferred high-level information on the secondary structure.
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2.2 K-mer based protein-vectors (ProtVec) for protein

sequence embedding

We introduce a new representation and feature extraction method for biological sequences.
Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors
(ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences,
this representation can be widely used in applications of deep learning in proteomics and
genomics. In this section, we focus on protein-vectors that can be utilized in wide array of
bioinformatics investigations such as family classification, protein visualization, structure
prediction, disordered protein identification, and protein-protein interaction prediction. In
this method, we adopt artificial neural network approaches and represent a protein sequence
with a single dense n-dimensional vector. To evaluate this method, we apply it in classification
of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families,
where an average family classification accuracy of 93% ± 0.06% is obtained, outperforming
existing family classification methods. In addition, we use ProtVec representation to predict
disordered proteins from structured proteins. Two databases of disordered sequences are used:
the DisProt database as well as a database featuring the disordered regions of nucleoporins
rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers,
FG-Nup sequences are distinguished from structured protein sequences found in Protein Data
Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated
from structured DisProt sequences with 100.0% accuracy. These results indicate that by
only providing sequence data for various proteins into this model, accurate information
about protein structure can be determined. Importantly, this model needs to be trained
only once and can then be applied to extract a comprehensive set of information regarding
proteins of interest. Moreover, this representation can be considered as pre-training for
various applications of deep learning in bioinformatics.

The importance of data representation
Can a computer automatically understand a piece of English text to find documents with
similar content or automatically translate the given document to French? These types of
tasks constitute the area with which Natural Language Processing (NLP) is mainly concerned.
The purpose of NLP is to design algorithms allowing computers to understand natural lan-
guages for performing specific tasks (e.g., information retrieval, machine translation, semantic
analysis, etc.). When we want to discuss a complex concept with an audience unfamiliar
with the topic, we model or represent the concept within a framework that is understandable
for the audience. The same logic applies in presenting a natural language text to a machine.
Computers are experts in dealing with numerical values, vectors, and matrices. Thus, the first
step in NLP is to vectorize natural language text for computers. Words are the conventional
input units of almost all NLP tasks. Therefore, to utilize machines for language processing
we need to find proper vector representations of words that are interpretable by machines.
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We expect such representations to preserve some indications of similarity and dissimilarity
between words. For instance, when we search a phrase in a search engine we expect the
machine to consider words ‘formula’ and ‘equation’ to be similar and consider them dissimilar
to an irrelevant word like ‘cuisine’. Thus, we should attribute similar vector representations
to the words ‘formula’ and ‘equation’, dissimilar to the vector representation of ‘cuisine’. As
a reminder vector similarity can be calculated using operations in linear algebra (e.g. dot
product, Euclidian distance, and cosine similarity). Of course semantic similarity is not the
only consideration we have in NLP tasks. As an example part-of-speech tagging is one of the
routine NLP tasks, where the goal is to label words with their syntactic part-of-speech (e.g.
verb, adverb, etc.). Presumably when we want to perform part-of-speech tagging we desire
a vector representation incorporating syntactic similarities. The performance of NLP or in
general any machine learning task largely depends on the quality of data representation (also
know as feature extraction/engineering), in an extend that recently representation learning
became an important research area in machine learning (Bengio et al. 2013; Collobert, Weston,
et al. 2011). The advent of deep neural network algorithms allowed automatic encoding of
data into a proper representation and introduced representation learning as a new field in
itself in the realm of machine learning (Bengio et al. 2013). Recent works in the area of repre-
sentation learning have proposed successful representations of data in computer vision, speech
recognition, and natural language processing (Y. LeCun et al. 2015; Graves, Mohamed, et al.
2013; Mikolov, Sutskever, K. Chen, et al. 2013). Similar to the role of textual representations
in NLP tasks, representation of biological sequences is key to many bioinformatics tasks,
which is facilitated by the recent advances in deep learning (Angermueller et al. 2016).

In this chapter, we propose an unsupervised data-driven distributed representation for
biological sequences. This method, called bio-vectors (BioVec) in general and more specifically
protein-vectors (ProtVec) for proteins, can be applied to a wide range of problems in
bioinformatics, such as protein visualization, protein family classification, structure prediction,
domain extraction, and interaction prediction. In this approach, each biological sequence is
embedded in an n-dimensional vector that characterizes biophysical and biochemical properties
of sequences using neural networks. In the following, we first explain how this method works
and how it is trained from 546,790 sequences of Swiss-Prot database. Subsequently, we will
analyze the biophysical and the biochemical properties of this representation qualitatively and
quantitatively. To further evaluate this feature extraction method, we apply it in classification
of 7,027 protein families of 324,018 protein sequences in Swiss-Prot. In the next step, we use
this approach for visualization and characterization of two categories of disordered sequences:
the DisProt database as well as a database of disordered regions of phenylalanine-glycine
nucleoporins (FG-Nups). Finally, we classify these protein families using support vector
machine (SVM) classifiers (Cortes and Vapnik 1995). As a key advantage of the proposed
method, the embedding needs to be trained only once and then may be used to encode
biological sequences in a given problem.
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Distributed Representation

Distributed representation has proved one of the most successful approaches in machine
learning (Geoffrey E Hinton 1984; Collobert, Weston, et al. 2011; Mikolov, Sutskever, K.
Chen, et al. 2013). The main idea in this approach is encoding and storing information
about an item within a system through establishing its interactions with other members.
Distributed representation was originally inspired by the structure of human memory, where
the items are stored in a “content-addressable” fashion. Content-based storing allows for
efficiently recalling items from partial descriptions. Since the content-addressable items
and their properties are stored within a close proximity, such a system provides a viable
infrastructure to generalize features attributed to an item.

Continuous vector representation, as a distributed representation for words, has been
recently established in natural language processing (NLP) as an efficient way to represent
semantic/syntactic units with many applications. In this model, each word is embedded in a
vector in an n-dimensional space. Similar words have close vectors, where similarity is defined
in terms of both syntax and semantic. The basic idea behind training such vectors is that the
meaning of a word is characterized by its context, i.e. neighboring words. Thus, words and
their contexts are considered to be positive training samples. Such vectors can be trained
using large amounts of textual data in a variety of ways, e.g. neural network architectures
like the Skip-gram model (Mikolov, Sutskever, K. Chen, et al. 2013).

Interesting patterns have been observed by training word vectors using Skip-gram in
natural language. Words with similar vector representations show multiple degrees of similarity.
For instance,

���!
King����!Man+

�����!
Woman resembles the closest vector to the word

����!
Queen (Mikolov,

K. Chen, et al. 2013).
In this work, we seek unique patterns in biological sequences to facilitate biophysical and

biochemical interpretations. We show how Skip-gram can be used to train a distributed
representation for biological sequences over a large set of sequences, and establish physical
and chemical interpretations for such representations. We propose this as a general-purpose
representation for protein sequences that can be used in a wide range of bioinformatics
problems, including protein family classification, protein interaction prediction, structure
prediction, motif extraction, protein visualization, and domain identification. To illustrate,
we specifically tackle visualization and protein family classification problems.

Protein Family Classification

A protein family is a set of proteins that are evolutionarily related, typically involving similar
structures or functions. The large gap between the number of known sequences versus the
amount of known functional information about sequences has motivated family (function)
identification methods based on primary sequences (Enright et al. 2002; Bork et al. 1998;
Pedruzzi et al. 2014). Protein Family Database (Pfam) is a widely used source for protein
families (Finn et al. 2013). In Pfam, a family can be classified as a “family”, “domain”, “repeat”,
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or “motif”. In this study, we utilize ProtVec to classify protein families in Swiss-Prot using
the information provided by Pfam database and we obtain a high classification accuracy.

Protein family classification based on the primary structures (sequences) has been per-
formed using classifiers such as support vector machine classifier (SVM) (C. Cai et al. 2003;
Huynen et al. 2000). Besides the primary sequence, the existing methods typically require
extensive information for feature extraction, e.g. hydrophobicity, normalized Van der Waals
volume, polarity, polarizability, charge, surface tension, secondary structure and solvent
accessibility. The reported accuracies of a previous study on family classification have been
in the range of 69.1� 99.6% for 54 protein families (C. Cai et al. 2003). In another study,
researchers used motifs from protein interactions for detecting Structural Classification of
Proteins (SCOP) (Murzin et al. 1995) families for 368 proteins, and obtained a classification
accuracy of 75% at sensitivity of 10% (Aragues et al. 2007). In contrast, our proposed
approach is trained based solely on primary sequence information, yet achieving high accuracy
when applied in classifications of protein families.

Disordered Proteins

Proteins can be fully or partially unstructured, i.e. lacking a secondary or ordered tertiary
three-dimensional structure. Due to their abundance and the critical roles they play in cell
biology, disordered proteins are considered to be an important class of proteins (Dunker
et al. 2008). Several studies have focused on disordered peptides and their functional analysis
in recent years (Dyson and Wright 2005; Sugase et al. 2007; B. He et al. 2009).

In the present work, we introduce ProtVec for the visualization and characterization of
two categories of disordered proteins: DisProt database as well as a database of disordered
regions of phenylalanine-glycine nucleoporins (FG-Nups) (Jamali et al. 2011).

DisProt is a database of experimentally identified disordered proteins that categorizes
disordered and ordered regions of a collection of proteins (Sickmeier et al. 2007). DisProt
Release 6.02 consists of 694 proteins presenting 1539 disordered, and 95 ordered regions. FG-
Nups dataset is a collection of FG-Nups disordered sequences (Ando et al. 2013). Nucleoporins
form the nuclear pore complex (NPC), the sole gateway for bidirectional transport of cargo
between the cytoplasm and the nucleus in eukaryotic cells (Azimi and M. R. Mofrad 2013).
Since FG-Nups are mostly computationally identified, only 10 sequences out of 1,138 disordered
sequences exist in Swiss-Prot. A recent study on features of FG-Nups versus DisProt showed
biophysical differences between FG-Nups and average DisProt sequences (Peyro et al. 2015).

We further propose using protein-vectors for the visualization of biological sequences.
Simplicity and biophysical interpretations encoded within ProtVec distinguishes this method
from the previous work (Procter et al. 2010; Rutherford et al. 2000). As an example, we
use ProtVec for the visualization of FG-Nups, DisProt, and structured PDB proteins. This
visualization confirms the results obtained (Peyro et al. 2015) on the biophysical features
of FG-Nups and typical disordered proteins. Furthermore, we employ ProtVec to classify
FG-Nups versus random PDB sequences as well as DisProt disordered regions versus disport
ordered regions.
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Protein secondary structure prediction

Protein structure can be described in three main levels: (i) primary structure referring to
the amino acid sequence, (ii) secondary structure referring to the structure of the local
segments of the protein categorized into 8 of secondary structures (for each amino acid), and
(ii) tertiary structure referring to the 3D structure of protein macromolecules. Protein
secondary structure prediction can be regarded as sequence labeling task type (described
in §1.4). There exist 8 possible categories (Q8 labeling scheme) of secondary structure labels
for the structure at each amino acid position: the 3-10 helix (G), alpha helix (H), pi helix
(I), turn (T), beta sheet (E), beta bridge (B), bend (S), and loop (L). A simpler labeling
scheme is Q3, where the categories are divided into three main classes: helix, strand, and
loop/coil. Finding the protein secondary structure is a step toward understanding the protein
functions, which is important for many applications including drug design. Here we evaluate
the performance of ProtVec features in secondary structure prediction by keeping the same
learning algorithm and changing the data representation.

Intron-Exon Prediction

The term genome refers to the sequence of nucleotides that contains the genetic information.
Some sections of the genome are functional in the sense that they can be translated to
proteins (exonic regions), while other sections cannot be translated to proteins (introns).
The rapid decrease in the cost of DNA sequencing and the large amounts of available data
discourage us from manually annotating different regions in the genome. In addition, finding
all of the patterns that define an intronic or exonic region is not trivial. Thus, this task
can widely benefit from data-driven methods.Different methods have been proposed ranging
from adhoc automation based on manually extracted patterns to use of Hidden Markov
Models, Support Vector Machines, and Conditional Random Fields (Bernal et al. 2007; Krogh
1997; Sonnenburg et al. 2007). Here similar to protein secondary structure prediction, we
evaluate the performance of ProtVec features in intron-exon prediction by keeping the same
learning algorithm and changing the data representation from one-hot vector representation
to ProtVec.

Protein Domain Identification

Domains in proteins refer to regions in the primary sequences that can form a specific tertiary
structure. Finding such regions is also an instance of sequence labeling. Protein domain
identification is important, as they act as fundamental units of structure and function in a
protein (Murzin et al. 1995; Cooper et al. 2000). Here we evaluate ProtVec in tyrosine kinase
protein domain identification task, similar to intron-exon and secondary structure prediction
tasks. Tyrosine kinase domain is an important domain functioning as a on/off switch for
different cellular functions.
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Methods
Protein-Space Construction

Our goal is to construct a distributed representation of biological sequences. In the training
process of word embedding in NLP, a large corpus of sentences should be fed into the training
algorithm to ensure sufficient contexts are observed. Similarly, a large corpus is needed to
train distributed representation of biological sequences. We use Swiss-Prot as a rich protein
database, which consists of 546,790 manually annotated and reviewed sequences.

The next step in training distributed representations is to break the sequences into sub
sequences (i.e. biological words). The simplest and most common technique in bioinformatics
to study sequences involves fixed-length overlapping k-mers (Ganapathiraju et al. 2002;
Srinivasan et al. 2013; Vries and X. Liu 2008). However, instead of using k-mers directly
in feature extraction, we utilize k-mer modeling for training a general purpose distributed
representation of sequences. This so-called embedding model needs to be trained only once
and may then be adopted in feature extraction part of specific problems.

In k-mer modeling of protein informatics, usually an overlapping window of 3 to 6 residues
is used. Instead of taking overlapping windows, we generate 3 lists of shifted non-overlapping
words, as shown in Fig. 2.1. Evaluating K-nearest neighbors in a 2xfold cross-validation for
different window sizes, embedding vector sizes and overlapping versus non-overlapping k-mers
showed a more consistent embedding training for a window size of 3 and the mentioned
splitting.

Original Sequence
(1)�!M (2)�!A (3)�!F SAEDV LKEY DRRRRMEAL..

Splittings
8
><

>:

1) MAF, SAE, DVL, KEY, DRR, RRM, ..
2) AFS, AED, VLK, EYD, RRR, RME, ..
3) FSA ,EDV, LKE, YDR, RRR, MEA, ..

Figure 2.1. Protein sequence splitting. In order to prepare the training data, each
protein sequence will be represented as three sequences (1,2,3) of 3-mers.

The same procedure is applied on all 546,790 sequences in Swiss-Prot, thus at the end
we obtain a corpus consisting of 546, 790⇥ 3 = 1, 640, 370 sequences of 3-mers (3-mer is a
“biological” word consisting of 3 amino acids). The next step is training the embedding based
on such data through a Skip-gram neural network. In training word vector representations,
Skip-gram attempts to maximize the probability of observed word sequences (contexts). In
other words, for a given training sequence of words we would like to find their corresponding
n-dimensional vectors maximizing the following average log probability function. Such a
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constraint allows similar words to assume a similar representation in this space.

argmax
v,v

1

N

NX

i=1

X

�cjc,j 6=0

log p(wi+j|wi)

p(wi+j|wi) =
exp (v0T

wi+j
vwi)PW

k=1 exp (v0T
wk

vwi)
,

(2.1)

where N is the length of the training sequence, 2c is the window size we consider as the
context, wi is the center of the window, W is the number of words in the dictionary and
vw and v0

w are input and output n-dimensional representations of word w, respectively. The
probability p(wi+j|wi) is defined using a softmax function. Hierarchical softmax or negative
sampling are efficient approximations of such a softmax function. In the implementation
we use (Word2Vec) (Mikolov, Sutskever, K. Chen, et al. 2013) negative sampling has been
utilized, which is considered as the state-of-the-art for training word vector representation.
Negative sampling uses the following objective function in the calculation of the word vectors:

arg max
✓

Y

(w,c)2D

p(D = 1|c, w; ✓)
Y

(w,c)2D0

p(D = 0|c, w; ✓), (2.2)

where D is the set of all word and context pairs (w,c) existing in the training data (positive
samples) and D0 is a randomly generated set of incorrect (w,c) pairs (negative samples).

p(D = 1|w, c; ✓) is the probability that (w,c) pair came from the training data and
p(D = 0|w, c; ✓) is the probability that (w, c) did not come from the training data. The term
p(D = 1|c, w; ✓) can be defined using a sigmoid function on the word vectors:

p(D = 1|w, c; ✓) =
1

1 + e�vc·vw
,

where the parameters ✓ are the word vectors we train within the optimization framework:
vc and vw 2 Rd are vector representations for the context c and the word w respectively. In
Equation 2.2, the positive samples maximize the probabilities of the observed (w,c) pairs in
the training data, while the negative samples prevent all vectors from having the same value
by disallowing some incorrect (w,c) pairs. To train the embedding vectors, we consider a
vector size of 100 and a context size of 25. Thus each 3-mer is presented as a vector of size
100.

Protein-Space Analysis

To qualitatively analyze the distribution of various biophysical and biochemical properties
within the training space, we project all 3-mer embeddings from 100-dimensional space to a
2D space using Stochastic Neighbor Embedding (Maaten and G. Hinton 2008). Mass, volume,
polarity, hydrophobicity, charge, and van der Waals volume properties were analyzed. The
data is adopted from (McGregor 2004). In addition, to quantitatively measure the continuity



CHAPTER 2. DEEP LANGUAGE-AGNOSTIC PROCESSING OF PROTEOMICS 38

of these properties in the protein-space, the best Lipschitz constant, i.e. the smallest k
satisfying is calculated:

df (fprop(w1), fprop(w2))  k ⇥ dw(w1, w2), (2.3)

where f is the scale of one of the properties of a given 3-mers (e.g., average mass, hydropho-
bicity, etc.), d is the distance metric, df is the absolute value of score differences, and dw is
Euclidian distance between two 3-mers w1 and w2. The Lipschitz constant is calculated for
the aforementioned properties.

Protein Family Classification

To evaluate the strength of the proposed representation, we set up a classification task on
protein families. Family information of 324,018 protein sequences in Swiss-Prot is extracted
from the Protein Family (Pfam) database, resulting in a total of 7,027 distinct families
for Swiss-Prot sequences. Each sequence is represented as the summation of the vector
representation of overlapping 3-mers, similar to obtaining of the sentence embedding from
the word embeddings in natural languages (Asgari and Sanaei 2017). Thus, each sequence is
presented as a vector of size 100. For each family type, the same number of instances from
Swiss-Prot are selected randomly to form the negative examples. Support vector machine
classifiers are used to evaluate the strength of ProtVec in the classification of protein families
through 10⇥fold cross-validations. We perform the classification over 7,027 protein families
consisting of 324,018 sequences. For the evaluation we report specificity (true negative rate),
sensitivity (true positive rate), and the accuracy of family classifications.

Sensitivity = TP rate =
TP

TP + FN

Specificity = 1� FP rate =
TN

FP + TN

Accuracy =
TP + TN

P + N

Visualization and Classification of Disordered Proteins

Two databases of disordered proteins are used for disordered protein prediction: DisProt
database (694 sequences) and FG-Nups dataset (1,138 sequences).

FG-Nups Characterization
To distinguish the characteristics of FG-Nups, a collection of 1,138 FG-Nups and two random
sets of 1,138 structured proteins from Protein Data Bank (PDB)() are compared. Since PDB
sequences on average have a shorter length than disordered proteins, the two sets are selected
from PDB in such a way that they have an average length of 900 residues, the same as the
average length of the disordered protein dataset. For visualization purposes, the ProtVec is
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reduced from 100 dimensions to a 2D space using Stochastic Neighbor Embedding (Maaten
and G. Hinton 2008).

We quantitatively evaluate how ProtVec can be used to distinguish between FG-Nups
versus typical PDB sequences using a support vector machine binary classifier. The positive
examples were the aforementioned 1,138 disordered FG-Nups proteins and the negative
examples (again 1,138 sequences) are selected randomly from PDB with the same average
length of disordered sequences (⇡ 900 residues). We present each protein sequence as a
summation of its ProtVecs of all 3-mers. Since the average length of structured proteins is
shorter than FG-Nups, and to avoid trivial cases, the PDB sequences are selected in a way to
maintain the same average length.

DisProt Characterization
To distinguish the characteristics of DisProt sequences, we use DisProt Release 6.02, consisting
of 694 proteins presenting 1539 disordered and 95 ordered regions, and perform the same
experiment as for FG-Nups with DisProt sequences.

Sequence labeling tasks
Variety of statistical learning methods for sequence labeling and more generally structured
prediction have been proposed in the past decade in natural language processing, computer
vision, and bioinformatics (Lafferty et al. 2001; Nowozin and Lampert 2011; Taskar et al.
2005; Daume 2006; Z. Wang et al. 2011) including recent neural sequence labeling methods
benefiting from combination of bidirectional recurrent neural network and conditional random
fields (CRF) (Lample et al. 2016), which in some cases are also combined with convolutional
neural networks (Reimers and Gurevych 2017). However, in this section for simplicity we
mainly focus on max-margin Markov network (M3Net) sequence labeling model (Taskar et al.
2005) as the emphasis is on the representation and not over the learning algorithm. M3Net
as one of the successful statistical approaches for structured prediction in machine learning.
The reason behind this choice is to benefit from the strength of graphical models in modeling
the dependencies, as well as the ability of max-margin Markov networks in incorporation of
kernels to deal with high-dimensional features, where we can use ProtVec embeddings. We
use the PyStruct implementation (A. C. Mueller and Behnke 2014) of M3Net, which uses
Block-Coordinate Frank-Wolfe optimization (Lacoste-Julien et al. 2012).

Intron-Exon Prediction: we perform intron-exon prediction using max-margin Markov
networks to evaluate performance of bio-vector data representation versus one-hot vector
representation of nucleotides. We use a dataset of 3000 DNA sequences with marked intron
and exon regions from the exon–intron database (Shepelev and Fedorov 2006). We use 80%
of the sequences for training and 20% for evaluation. The embedding are trained similar to
ProtVec over all sequences exist in the Shepelev database (Shepelev and Fedorov 2006) over
6-mers. For each position in the sequence either one-hot vector representation or average
of the 6-mers bio-vectors having overlaps with that positions are used. The label for each
position is either 0 (intron) or 1 (exon). At the end we report accuracy of labeling for both
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one-hot vector representation and bio-vectors.

Domain identification: we use a dataset of 2340 protein sequences with the tyrosine
kinase domain extracted from the SCOP database (Murzin et al. 1995). We use 80% of the
sequences for training and 20% for evaluating of the use of bio-vectors data representation
versus one-hot vectors in M3Net. Each position in the input sequence is presented as the
average of the vector representation for the previous and the next 3-mer segment. The label
for each position is either 0 (not tyrosine kinase domain) or 1 (tyrosine kinase domain). At
the end we report accuracy of labeling for both one-hot vector representation and ProtVec.

Secondary structure prediction: for protein secondary structure prediction standard
dataset cullPDB/cb513 consists of 5534/513 (train/test) sequences labeled with secondary
structure (Jian Zhou and Troyanskaya 2014) is used. Similar to intron-exon prediction at each
position, we take the average of all 3-mer vectors that position exist in. Each position in the
input sequence is presented as the average of the vector representation for the previous and
the next 3-mer segment. The label for each position is either selected from Q8 or Q3 schemes
(described in section §2.2). At the end we report accuracy of labeling for both one-hot vector
representation and ProtVec. Later in §2.4, we provide a more comprehensive study on this task.

Results
Protein-Space Analysis

Although the protein-space is trained based on only the primary sequences of proteins, it
offers several interesting biochemical and biophysical implications. In order to study these
features, we visualized the distribution of different criteria, including mass, volume, polarity,
hydrophobicity, charge, and van der Waals volume in this space. To do so, for each 3-mer we
conducted qualitative and quantitative analyses as described below.

Qualitative Analysis: In order to visualize the distribution of the aforementioned properties,
we projected all 3-mer embeddings from 100-dimensional space to a 2D space using Stochastic
Neighbor Embedding (t-SNE) (Maaten and G. Hinton 2008). In the diagrams presented in
Fig. 2.2, each point represents a 3-mer and is colored according to its scale in each property.
Interestingly, as can be seen in the figure, 3-mers with the same biophysical and biochemical
properties were grouped together. This observation suggests that the proposed embedding
not only encodes protein sequences in an efficient way that proved useful for classification
purposes, but also reveals some important physical and chemical patterns in protein sequences.

Quantitative Analysis: Although Fig. 2.2 illustrates the smoothness of protein-space with
respect to different physical and chemical meanings, we required a quantitative approach
to measure the continuity of these properties in the protein-space. To do so, we calculated
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Figure 2.2. Normalized distributions of biochemical and biophysical properties
in protein-space. In these plots, each point represents a 3-mer (a word of three residues)
and the colors indicate the scale for each property. Data points in these plots are projected
from a 100-dimensional space a 2D space using t-SNE. As it is shown words with similar
properties are automatically clustered together meaning that the properties are smoothly
distributed in this space.

the best Lipschitz constant. For all 6 properties presented in Fig. 2.2, we calculated the
minimum k. To evaluate this result we made an artificial space called “scrambled space” by
randomly shuffling the labels of 3-mers in the 100 dimensional space. Table 2.1 contains the
values of Libschitz constants for protein-space versus the “scrambled space” with respect to
different properties and also their ratio.

Normally if k = 1 the function is called a short map, and if 0  k < 1 the function is called
a contraction. The results suggest that the protein-space is on average 2-times smoother
in terms of physical and chemical properties than a random space. This quantitative result
supports our qualitative observation of the space structure in Fig.2.2, and suggests that our
training space encodes, 3-mers in an informative manner.

Protein Family Classification

In order to evaluate the strength of ProtVec, we performed classifications of 7,027 protein
families and obtained a weighted average accuracy of 93 ± 0.06%, which exhibits a more
reliable result than the existing methods. In contrast to the existing methods, our proposed
approach is trained based on primary sequence information alone.
Table 2.2 shows the sensitivity, specificity, and the accuracy for the most frequent families
in Swiss-Prot. These results suggest that structural features of proteins can be accurately
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Table 2.1. Using Lipschitz number to evaluate the continuity of ProtVec with respect to
biophysical and biochemical properties

Lipschitz Number

Property protein-SpaceThe scrambled space Ratio

Mass 0.3137 0.6605 0.4750
Volume 0.3742 0.6699 0.5586
Van Der Waal Volume 0.3629 0.6431 0.5643
Polarity 0.4757 1.2551 0.3790
Hydrophobicity 0.608 1.448 0.4203
Charge 0.8733 1.3620 0.6412

Average 0.50 1.01 0.51

predicted from the primary sequence information solely. The average accuracy for the first
1,000 (261,149 sequences), 2,000 (293,957 sequences), 3,000 (308,292 sequences), and 4,000
(316,135 sequences) frequent families were respectively 94%±0.05%,93%±0.05%, 92%±0.06%,
and 91% ± 0.08%. To compute the overall accuracy for all 7,026 families, we calculated the
weighted average accuracy, because for the families with number of instances less than 10,
the validation set are not statistically sufficient and they should have less contribution in the
overall accuracy. The weighted accuracy of all 7,027 families (weighted based on the number
of instances) was 93% ± 0.06%.

Disordered Proteins Visualization and Classification

Due to the functional importance of disordered proteins, prediction of unstructured regions of
disordered proteins and determining the sequence patterns featured in disordered regions is a
critical problem in protein bioinformatics. We evaluated the ability of ProtVec to characterize
and discern disordered protein sequences from structured sequences.
FG-Nups Characterization: In this case study, we used the FG-Nups collection of 1,138
disordered proteins containing disorder regions with a fraction of at least one third of the
sequence length. For comparison purposes, we also collected two sets of structured proteins
from Protein Data Bank (PDB).

In order to visualize each dataset, we reduced the dimensionality of the protein-space
using Stochastic Neighbor Embedding (Maaten and G. Hinton 2008; Platzer 2013) and then
generated the 2D histogram of all overlapping 3-mers occurring in each dataset. As shown in
Fig. 2.3 (see column (b)), the two random sets from structured proteins had nearly identical
patterns. However, the FG-Nups dataset exhibits a substantially different pattern. To amplify
the characteristic of disordered sequences we have also examined the histogram of disordered
regions of FG-Nups (see Fig. 2.3, column (a)).

In the next step, we quantitatively evaluated how ProtVec can be used to distinguish
between FG-Nups versus typical PDB sequences using a support vector machine binary
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classification. The positive examples were the above mentioned 1,138 disordered FG-Nups
proteins and negative examples (again 1,138 sequences) were selected randomly from PDB
with the same average length of disordered sequences (⇡ 900 residues). We represented each
protein sequence as a summation of its ProtVecs of all 3-mers. Since on average the length
of structured proteins were shorter than FG-Nups, in order to avoid trivial cases, the PDB
sequences were selected in such a way as to maintain the same average length. But still,
an accuracy of 99.81% was obtained with high sensitivity and specificity (Table 2.3). The
distribution of the classified proteins in a 2D space is shown in Fig. 2.4.

DisProt characterization: In this part, we used DisProt consisting of 694 proteins pre-
senting 1539 disordered, and 95 ordered regions. We performed the same analysis as we did
for FG-Nups with DisProt sequences (see Fig. 2.3 column (c)). Since the size of DisProt was
relatively small compared to that of the FG-Nups, the scales of columns (a),(b) were not
comparable with column (c) (see Fig. 2.3). The visualization of disordered regions of DisProt
sequences (Fig. 2.3 column (c), on top) revealed a different characteristic than FG-Nups
disordered regions (Fig. 2.3 column (a), on top). A visual comparison between Fig. 2.3 and 2.2
suggests that the FG-Nups have a significantly higher amount of hydrophobic residues and
less polar residues in their disordered regions than the experimentally identified disordered
proteins in DisProt (Peyro et al. 2015; Ando et al. 2013). Additionally, the DisProt disordered
regions versus DisProt ordered regions can be classified with 100% accuracy respectively
using SVM and ProtVec.

Sequence labeling performances

The results of the experiment for different sequence labeling tasks are provided in Table 2.4.
As the results show incorporating the embedding features can increase the accuracy of
sequence labeling in intron-exon prediction and protein domain identification tasks. However,
embedding could not improve the secondary structure prediction performance. Surprisingly,
there was no significant difference in the precision and the recall for use of one-hot vector
representation and the ProtVec. The results are also far from the state-of-the-art performance
in secondary structure prediction (Johansen et al. 2017; Jiyun Zhou et al. 2018). Thus, for
the secondary structure prediction, changing the model and the representation might help
in seeing the representation differences. In Section§2.4 we concentrate on the secondary
structure task and investigate different representations and deep learning architectures.

Conclusions

An unsupervised data-driven distributed representation, called ProtVec, was proposed for
application of machine learning approaches in biological sequences. By training this repre-
sentation solely on protein sequences, our feature extraction approach was able to capture a
diverse range of meaningful physical and chemical properties. We demonstrated that ProtVec
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Figure 2.3. Visualization of protein sequences using ProtVec can characterize
FGNUPs versus Disport disordered sequences and structured sequences.
Column (a) compares FG Nup sequences 2D histogram (at the bottom) with 2D histogram
of FG Nup disordered regions (on top). Column (b) compares 2D histogram two random sets
of structured sequences with the same average length as the FG-Nups. Column (c) compares
between 2D histogram of DisProt sequences (at the bottom) and 2D histogram of DisProt
disordered regions (on top)
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Figure 2.4. Classification of FG-Nups versus PDB structured sequences. In this
figure, each point presents a protein projected into a 2D space.

can be used as an informative and dense representation for biological sequences in protein
family classification, and obtained an average family classification accuracy of 93%.

We further proposed ProtVec as a powerful approach for protein data visualization and
showed the utility of this approach by providing an example in characterization of disordered
protein sequences vs. structured protein sequences. Our results suggest that ProtVec can
characterize protein sequences in terms of biochemical and biophysical interpretations of
the underlying patterns. In addition, this dense representation of sequences can help to
discriminate between various categories of sequences, e.g. disordered proteins. Furthermore,
we demonstrated that ProtVec was able to identify disordered sequences with an accuracy of
nearly 100%. In addition, incorporation of bio-vector representation versus one-hot vector
features in Max- margin Markov Network (M3Net) for intron-exon prediction and protein
domain identification tasks could improve the sequence labeling accuracy from 73.84% to
74.99% and from 82.4% to 89.8%, respectively.

Another advantage of this method is that embeddings could be trained once and then
used to encode biological sequences in any given problem. In general, machine learning
approaches in bioinformatics can widely benefit from bio-vectors (ProtVec and GeneVec)
representation. This representation can be considered as pre-training for various applications
of deep learning in bioinformatics. In particular, ProtVec can be used in protein interaction
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predictions, structure prediction, and protein data visualization.
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Table 2.2. Performance of protein family classification using SVM and ProtVec over some
of the most frequent families in Swiss-Prot. Families are sorted with respect to their
frequency in Swiss-Prot.

Training instances Classification Result

Family name # of positive sequences# of negative sequencesSpecificitySensitivityAccuracy

50S ribosome-binding GTPase 3,084 3,084 0.95 0.93 0.94
Helicase conserved C-terminal domain 2,518 2,518 0.83 0.80 0.82
ATP synthase alpha-beta family, nucleotide-binding domain 2,387 2,387 0.98 0.97 0.97
7 transmembrane receptor (rhodopsin family) 1,820 1,820 0.95 0.96 0.95
Amino acid kinase family 1,750 1,750 0.91 0.92 0.91
ATPase family associated with various cellular activities (AAA) 1711 1711 0.92 0.90 0.91
tRNA synthetases class I (I, L, M and V) 1,634 1,634 0.97 0.97 0.97
tRNA synthetases class II (D, K and N) 1,419 1,419 0.88 0.83 0.85
Major Facilitator Superfamily 1,303 1,303 0.95 0.97 0.96
Hsp70 protein 1,272 1,272 0.97 0.97 0.97
NADH-Ubiquinone-plastoquinone (complex I), various chains 1,251 1,251 0.97 0.97 0.97
Histidine biosynthesis protein 1,248 1,248 0.96 0.97 0.97
TCP-1-cpn60 chaperonin family 1,246 1,246 0.95 0.96 0.95
EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) 1,207 1,207 0.96 0.96 0.96
Aldehyde dehydrogenase family 1,200 1,200 0.93 0.94 0.94
Shikimate - quinate 5-dehydrogenase 1,128 1,128 0.87 0.89 0.88
GHMP kinases N terminal domain 1,120 1,120 0.88 0.92 0.90
Ribosomal protein S2 1,083 1,083 0.95 0.96 0.95
Ribosomal protein S4-S9 N-terminal domain 1,072 1,072 0.95 0.97 0.96
Ribosomal protein L16p-L10e 1,053 1,053 0.95 0.96 0.96
KOW motif 1,047 1,047 0.93 0.95 0.94
Uncharacterized protein family UPF0004 1,044 1,044 0.95 0.97 0.96
Ribosomal protein S12-S23 1,016 1,016 0.94 0.98 0.96
GHMP kinases C terminal 1,011 1,011 0.88 0.92 0.90
Ribosomal protein S14p-S29e 997 997 0.93 0.98 0.95
Ribosomal protein S11 980 980 0.96 0.98 0.97
UvrB-uvrC motif 968 968 0.94 0.96 0.95
Ribosomal protein L33 958 958 0.96 0.98 0.97
BRCA1 C Terminus (BRCT) domain 956 956 0.94 0.95 0.95
RF-1 domain 950 950 0.93 0.97 0.95
Ankyrin repeats (3 copies) 944 944 0.89 0.88 0.88
Ribosomal protein L20 932 932 0.96 0.99 0.97
RNA polymerase beta subunit 912 912 0.94 0.97 0.95
Ribosomal protein S18 908 908 0.93 0.97 0.95
ATP synthase B-B CF(0) 900 900 0.92 0.94 0.93
Peptidase family M20-M25-M40 889 889 0.92 0.93 0.93
Ribosomal protein L18e-L15 887 887 0.93 0.96 0.95
Glucose inhibited division protein A 886 886 0.95 0.96 0.95
NADH-ubiquinone-plastoquinone oxidoreductase chain 4L 885 885 0.94 0.97 0.96
lactate-malate dehydrogenase, NAD binding domain 880 880 0.92 0.94 0.93
HD domain 879 879 0.93 0.93 0.93
Ribosomal protein S10p-S20e 873 873 0.95 0.97 0.96
Pyridoxal-phosphate dependent enzyme 870 870 0.91 0.91 0.91
Ribosomal L18p-L5e family 860 860 0.93 0.96 0.94
Ribosomal protein L3 855 855 0.94 0.97 0.96
tRNA synthetases class I (M) 843 843 0.94 0.96 0.95
UbiA prenyltransferase family 841 841 0.94 0.95 0.95
Ribosomal protein L4-L1 family 841 841 0.94 0.95 0.95
Ribosomal protein S16 840 840 0.93 0.97 0.95
Ribosomal protein S13-S18 840 840 0.94 0.97 0.95
MraW methylase family 837 837 0.95 0.98 0.96
Ribosomal L32p protein family 825 825 0.94 0.97 0.95
Elongation factor TS 819 819 0.94 0.97 0.96
Tetrahydrofolate dehydrogenase-cyclohydrolase, catalytic domain 817 817 0.94 0.96 0.95
ATP synthase delta (OSCP) subunit 813 813 0.93 0.96 0.94
tRNA synthetases class I (C) catalytic domain 812 812 0.95 0.97 0.96
SecA Wing and Scaffold domain 805 805 0.95 0.97 0.96
Ribonuclease HII 795 795 0.93 0.94 0.93
Ribosomal protein L31 795 795 0.97 0.99 0.98
Ribosomal L27 protein 794 794 0.98 0.99 0.99
IPP transferase 794 794 0.93 0.95 0.94
GTP-binding protein LepA C-terminus 793 793 0.96 0.98 0.97
Ribosomal protein L17 791 791 0.92 0.96 0.94
Ribosomal protein L23 790 790 0.91 0.96 0.94
Ribosomal protein L10 781 781 0.90 0.92 0.91
Ribosomal protein L19 780 780 0.94 0.97 0.95
Ribosomal protein S20 774 774 0.95 0.97 0.96
Ribosomal protein L35 769 769 0.93 0.97 0.95
Phosphoglucomutase-phosphomannomutase, C-terminal domain 768 768 0.92 0.96 0.94
AMP-binding enzyme 767 767 0.87 0.89 0.88
Ribosomal prokaryotic L21 protein 766 766 0.93 0.96 0.95
tRNA methyl transferase 759 759 0.94 0.96 0.95
Ribosomal L29 protein 757 757 0.95 0.97 0.96
Glycosyl transferase family, a-b domain 754 754 0.90 0.91 0.91
Translation initiation factor IF-2, N-terminal region 750 750 0.96 0.98 0.97
Ribosomal L28 family 749 749 0.93 0.98 0.95
Glycosyl transferase family 4 739 739 0.96 0.98 0.97
tRNA synthetases class I (R) 736 736 0.93 0.96 0.95
Bacterial trigger factor protein (TF) C-terminus 733 733 0.95 0.96 0.95

For the first 1,000 families 261,149 261,149 0.92 0.95 0.94

For the first 2,000 families 293,957 293,957 0.90 0.96 0.93

For the first 3,000 families 308,292 308,292 0.89 0.96 0.92

For the first 4,000 families 316,135 316,135 0.87 0.96 0.91

Weighted average for all 7,027 families 324,018 324,018 0.91 0.95 0.93
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Table 2.3. The performance of FG-Nups disordered protein classification in a 10xFold
cross-validation using SVM

SensitivitySpecificityAccuracy

0.9987 0.9974 0.9981

Table 2.4. The accuracy of sequence labeling task in intron-exon prediction, domain
identification, and secondary structure prediction

Task M3Net / One hotM3Net / Embedding
Gene Prediction 73.84% 74.99%
Domain Identification 82.4% 89.8%
Secondary Structure (Q8)40.0% 40.0%
Secondary Structure (Q3)56.0% 56.0%
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2.3 Variable-length protein segmentation for motif

mining and sequence embedding

In this section, we present peptide-pair encoding (PPE), a general-purpose probabilistic
segmentation of protein sequences into commonly occurring variable-length sub-sequences.
The idea of PPE segmentation is inspired by the byte-pair encoding (BPE) text compression
algorithm, which has recently gained popularity in subword neural machine translation.
We modify this algorithm by adding a sampling framework allowing for multiple ways of
segmenting a sequence. PPE segmentation steps can be learned over a large set of protein
sequences (Swiss-Prot) or even a domain-specific dataset and then applied to a set of unseen
sequences. This representation can be widely used as the input to any downstream machine
learning tasks in protein bioinformatics. In particular, here, we introduce this representation
through protein motif discovery and protein sequence embedding. (i) DiMotif: we present
DiMotif as an alignment-free discriminative motif discovery method and evaluate the method
for finding protein motifs in three different settings: (1) comparison of DiMotif with two
existing approaches on 20 distinct motif discovery problems which are experimentally verified,
(2) classification-based approach for the motifs extracted for integrins, integrin-binding
proteins, and biofilm formation, and (3) in sequence pattern searching for nuclear localization
signal. The DiMotif, in general, obtained high recall scores, while having a comparable F1
score with other methods in the discovery of experimentally verified motifs. Having high
recall suggests that the DiMotif can be used for short-list creation for further experimental
investigations on motifs. In the classification-based evaluation, the extracted motifs could
reliably detect the integrins, integrin-binding, and biofilm formation-related proteins on a
reserved set of sequences with high F1 scores. (ii) ProtVecX: we extend k-mer based protein
vector (ProtVec) embedding to variable-length protein embedding using PPE sub-sequences.
We show that the new method of embedding can marginally outperform ProtVec in enzyme
prediction as well as toxin prediction tasks. In addition, we conclude that the embeddings
are beneficial in protein classification tasks when they are combined with raw k-mer features.

Tokenization in Human Language Processing versus Protein
Informatics
Bioinformatics and natural language processing (NLP) are research areas that have greatly
benefited from each other since their beginnings and there have been always methodological
exchanges between them. Levenshtein distance (Levenshtein 1966) and Smith–Waterman (Wa-
terman et al. 1976) algorithms for calculating string or sequence distances, the use of formal
languages for expressing biological sequences (Searls 1993; Searls 2002), training language
model-based embeddings for biological sequences (Asgari and M. R. Mofrad 2015), and
using state-of-the-art neural named entity recognition architecture (Lample et al. 2016) for
secondary structure prediction (Johansen et al. 2017) are some instances of such influences.
Similar to the complex syntax and semantic structures of natural languages, certain biophysi-
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cal and biochemical grammars dictate the formation of biological sequences. This assumption
has motivated a line of research in bioinformatics to develop and adopt language processing
methods to gain a deeper understanding of how functions and information are encoded within
biological sequences (Yandell and Majoros 2002; Searls 2002; Asgari and M. R. Mofrad 2015).
However, one of the apparent differences between biological sequences and many natural
languages is that biological sequences (DNA, RNA, and proteins) often do not contain clear
segmentation boundaries, unlike the existence of tokenizable words in many natural languages.
This uncertainty in the segmentation of sequences has made overlapping k-mers one of the
most popular representations in machine learning for all areas of bioinformatics research,
including proteomics (Grabherr et al. 2011; Asgari and M. R. Mofrad 2015), genomics (Jolma
et al. 2013; Alipanahi et al. 2015), epigenomics (Awazu 2016; Giancarlo et al. 2015), and
metagenomics (Derrick E Wood and Steven L Salzberg 2014; Asgari, Garakani, et al. 2018).
However, it is unrealistic to assume that fixed-length k-mers are units of biological sequences
and that more meaningful units need to be introduced. This means that although choosing a
fixed k value for sequence k-mers simplifies the problem of segmentation, it is an unrealistic
assumption to assume that all important part of the sequences have the same length and we
need to relax this assumption.

Although in some sequence-labeling tasks (e.g. secondary structure prediction or binding
site prediction) sequences are implicitly divided into variable-length segments as the final
output, methods to segment sequences into variable-length meaningful units as inputs of
downstream machine learning tasks are needed. In § 3.4 nucleotide pair encoding for phenotype
and biomarker detection in 16S rRNA data (Asgari, Münch, et al. 2018), which is extended
in this work for protein informatics.

Here, we propose a segmentation approach for dividing protein sequences into frequent
variable-length sub-sequences, called peptide-pair encoding (PPE). We took the idea of
PPE from byte pair encoding (BPE) algorithm, which is a text compression algorithm
introduced in 1994 (Gage 1994) that has been also used for compressed pattern matching
in genomics (L. Chen et al. 2004). Recently, BPE became a popular word segmentation
method in machine translation in NLP for vocabulary size reduction, which also allows for
open-vocabulary neural machine translation (Sennrich et al. 2016). In contrast to the use of
BPE in NLP for vocabulary size reduction, we used this idea to increase the size of symbols
from 20 amino acids to a large set of variable-length frequent sub-sequences, which are
potentially meaningful in bioinformatics tasks. In addition, as a modification to the original
algorithm, we propose a probabilistic segmentation in a sampling framework allowing for
multiple ways of segmenting a sequence into sub-sequences. In particular, we explore the use of
PPE for protein sequence motif discovery as well as training embeddings for protein sequences.

De novo motif discovery: Protein short linear motif (SLiM) sequences are short sub-
sequences of usually 3 to 20 amino acids that are presumed to have important biological
functions; examples of such patterns are cleavage sites, degradation sites, docking sites, ligand
binding sites, etc (Prytuliak 2018; Dinkel et al. 2011). Various computational methods
have been proposed for the discovery of protein motifs using protein sequence information.
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Motif discovery is distinguished from searching for already known motifs in a set of unseen
sequences (e.g., SLiMSearch (Davey et al. 2011)). Motif discovery can be done either in a
discriminative or a non-discriminative manner. Most of the existing methods are framed as
non-discriminative methods, i.e. finding overrepresented protein sub-sequences in a set of
sequences of similar phenotype (positive sequences). Examples of non-discriminative methods
are SLiMFinder (Edwards et al. 2007) (regular expression based approach), GLAM2 (Frith
et al. 2008) (simulated annealing algorithm for alignments of SLiMs), MEME (Bailey et al.
2009) (mixture model fitting by expectation-maximization), HH-MOTiF (Prytuliak, Volkmer,
et al. 2017) (retrieving short stretches of homology by comparison of Hidden Markov Models
(HMMs) of closely related orthologs). Since other randomly conserved patterns may also
exist in the positive sequences, reducing the false positive rate is a challenge for motif discov-
ery (Bingqiang Liu et al. 2017). In order to address this issue, some studies have proposed
discriminative motif discovery, i.e. using negative samples or a background set to increase
both the sensitivity and specificity of motif discovery. Some examples of discriminative motif
miners are DEME (Redhead and Bailey 2007) (using a Bayesian framework over alignment
columns), MotifHound (Kelil et al. 2014) (hypergeometric test on certain regular expressions
in the input data), DLocalMotif (Mehdi et al. 2013) (combining motif over-representation,
entropy and spatial confinement in motif scoring).

Motif databases: General-purpose or specialized datasets are dedicated to maintaining a
set of experimentally verified motifs from various resources (e.g., gene ontology). ELM (Dinkel
et al. 2011) as a general-purpose dataset of SLiM, and NLSdb (Bernhofer et al. 2017) as a
specialized database for nuclear-specific motifs is instances of such efforts. Evaluation of
mined motifs can be also subjective. Since the extracted motifs do not always exactly match
the experimental motifs, residue-level or site-level evaluations have been proposed (Prytuliak,
Volkmer, et al. 2017; Prytuliak, Pfeiffer, et al. 2018). Despite great efforts in this area,
computational motif mining has remained a challenging task and the state-of-the-art de novo
approaches have reported relatively low precision and recall scores, especially at the residue
level (Prytuliak, Volkmer, et al. 2017).

Protein embedding: Word embedding has been one of the revolutionary concepts in NLP
over the recent years and has been shown to be one of the most effective representations
in NLP (Collobert, Weston, et al. 2011; Tang et al. 2014; Levy and Goldberg 2014). In
particular, Skip-gram neural networks combined with negative sampling (Mikolov, Sutskever,
K. Chen, et al. 2013) has resulted in the state-of-the-art performance in a broad range of
NLP tasks (Levy and Goldberg 2014). Recently, we introduced k-mer-based embedding of
biological sequences using Skip-gram neural network and negative sampling (Asgari and
M. R. Mofrad 2015), which became popular for protein feature extraction and has been
extended for various classifications of biological sequences (Asgari and M. R. K. Mofrad 2016;
Islam et al. 2017; Min et al. 2017; S. Kim et al. 2018; Jaeger et al. 2018; Du et al. 2018;
Hamid and Friedberg 2018).

In this work, inspired by unsupervised word segmentation in NLP, we propose a general-
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purpose segmentation of protein sequences in frequent variable-length sub-sequences called
PPE, as a new representation for machine learning tasks. This segmentation is trained once
over large protein sequences (Swiss-Prot) and then is applied to a given set of sequences. In
this section, we use this representation for developing a protein motif discovery framework as
well as protein sequence embedding.

(i) DiMotif : We suggest a discriminative and alignment-free approach for motif discovery
that is capable of finding co-occurred motifs. We do not use sequence alignment; instead, we
propose the use of general-purpose segmentation of positive and negative input sequences
into PPE sequence segments. Subsequently, we use statistical tests to identify the significant
discriminative features associated with the positive class, which are our ultimate output
motifs. Being alignment-free makes DiMotif, in particular, a favorable choice for the settings
where the positive sequences are not necessarily homologous sequences. In the end, we create
sets of multi-part motifs using information theoretic measures on the occurrence patterns
of motifs on the positive set. We evaluate DiMotif in the detection of the motifs related
to 20 types of experimentally verified motifs and also for searching experimentally verified
nuclear localization signal (NLS) motifs. The DiMotif achieved a high recall and a reasonable
F1 in comparison with the competitive approaches. In addition, we evaluate a shortlist
of extracted motifs on the classification of reserved sequences of the same phenotype for
integrins, integrin-binding proteins, and biofilm formation proteins, where the phenotype has
been detected with a high F1 score. However, a detailed analysis of the motifs and their
biophysical properties are beyond the scope of this study, as the main focus is on introducing
the method.

(ii) ProtVecX: We extend our previously proposed protein vector embedding (Protvec) (As-
gari and M. R. Mofrad 2015) trained on k-mer segments of the protein sequences to a method
of training them on variable-length segments of protein sequences, called ProtVecX. We
evaluate our embedding via three protein classification tasks: (i) toxin prediction (binary
classification), (ii) subcellular location prediction (four-way classification), and (iii) prediction
of enzyme proteins versus non-enzymes (binary classification). We show that concatenation
of the raw k-mer distributions with the embedding representations can improve the sequence
classification performance over the use of either of k-mers only or embeddings only. In
addition, combining of ProtVecX with k-mer occurrence can marginally outperform the use
of our originally proposed ProtVec embedding together with k-mer occurrences in toxin and
enzyme prediction tasks.
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Material and Methods
Datasets

Motif discovery datasets

ELM dataset: The eukaryotic linear motif dataset (ELM) is a commonly used resource of
experimentally verified SLiMs. The ELM dataset is usually served as the gold standard for the
evaluations of de novo motif discovery approaches. Due to the long run-time of DLocalMotif
(one of the competitive methods) on large datasets, we perform the evaluation on a subset
of ELM. In order to cover a variety of settings, we perform the evaluation on 20 motif
discovery problems of 5 different motif types: (i) targeting site (TRG), (ii) post-translational
modification sites (MOD), (iii) ligand binding sites (LIG), (iv) docking sites (DOC), and
(v) degradation sites (DEG). From each category we randomly select 4 sub-types, which
are as distinctive as possible (based on the text similarities in their title). Since the ELM
dataset only provides a few accession IDs for each motif sub-types, to obtain more data for
the domain-specific segmentation, we expand the positive set using NCBI BLAST. Since
our method (DiMotif) and DLocalMotif are both instances of discriminative motif discovery
methods, we have to create a background/negative as well. For this purpose, we randomly
select sequences from UniRef50 ending up with a dataset 10 times larger than the whole ELM
sequence dataset. Then for each motif type, we calculate the sequence 3-mer representation
distance between those randomly selected sequences and the positive set. Subsequently,
we sample from the randomly selected sequences based on the cosine distance distribution
(considering the same size for the positive and the negative classes). This way the farther
sequences from the positive set are more likely to be selected in the background or negative set.

Integrin-binding proteins: We extract two positive and negative lists for integrin-binding
proteins using the gene ontology (GO) annotation in the UniProt database (U. Consortium
2016). For the positive class, we select all proteins annotated with the GO term GO:0005178
(integrin-binding). Removing all redundant sequences results in 2966 protein sequences. We
then use 10% of sequences as a reserved set for evaluation and 90% for motif discovery and
training purposes. For the negative class, we select a list of proteins sequences which are
annotated with the GO term GO:0005515 (protein binding), but they are annotated neither
as integrin-binding proteins (GO:0005178) nor the integrin complex (GO:0008305). Since the
resulting set are still large, we limit the selection to reviewed Swiss-Prot sequences and filtered
redundant sequences, resulting in 20,117 protein sequences, where 25% of these sequences
(5029 sequences) are considered as the negative instances for training and validation, and
297 randomly selected instances (equal to 10% of the positive reserved set) as the negative
instances for the negative part of the reserved set.

Integrin proteins: We extract a list of integrin proteins from the UniProt database by
selecting entries annotated with the GO term GO:8305 (integrin complex) that also have
integrin as part of their entry name. Removing the redundant sequences results in 112
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positive sequences. For the negative sequences, we select sequences which are annotated
for transmembrane signaling receptor activity (to be similar to integrins) (GO:4888) but
which are neither the integrin complex (GO:8305) nor integrin-binding proteins (GO:0005178).
Selection of reviewed Swiss-Prot sequences and removal of redundant proteins results in 1155
negative samples. We use 10% of both the positive and negative sequences as the reserved
set for evaluation and 90% for motif discovery and training purposes.

Biofilm formation: Similar to integrin-binding proteins, positive and negative lists for
biofilm formation are extracted via their GO annotation in UniProt (U. Consortium 2016).
For the positive class, we select all proteins annotated with the GO term GO:0042710] (biofilm
formation). Removing all redundant sequences results in 1450 protein sequences. For the
negative class, we select a list of protein sequences annotated within the parent node of
biofilm formation in the GO database that is classified as being for a multi-organism cellular
process (GO:44764) but not biofilm formation. Since the number of resulting sequences
is large, we limit the selection to reviewed Swiss-Prot sequences and filter the redundant
sequences, resulting in 1626 protein sequences. Again, we use 10% of both the positive and
negative sequences as a reserved set for evaluation and 90% for motif discovery and training
purposes.

Nuclear localization signals: We use the NLSdb dataset containing nuclear export signals
and NLS along with experimentally annotated nuclear and non-nuclear proteins (Bernhofer
et al. 2017). By using NLSdb annotations from nuclear proteins, we extract a list of proteins
experimentally verified to have NLS, ending up with a list of 416 protein sequences. For
the negative class, we use the protein sequences in NLSdb annotated as being non-nuclear
proteins. NLSdb also contains a list of 3254 experimentally verified motifs, which we use for
evaluation purposes.

Protein classification datasets

Sub-cellular location of eukaryotic proteins: The first dataset we use for protein clas-
sification is the TargetP 4-classes dataset of sub-cellular locations. The 4 classes in this
dataset are (i) 371 mitochondrial proteins, (ii) 715 pathway or signal peptides, (iii) 1214
nuclear proteins, and (iv) 438 cytosolic protein sequences (Emanuelsson et al. 2007), where
the redundant proteins are removed.

Toxin prediction: The second dataset we use is the toxin dataset provided by ToxClas-
sifier (Gacesa et al. 2016). The positive set contains 8093 protein sequences annotated in
Tox-Prot as being animal toxins and venoms (Jungo and Bairoch 2005). For the negative
class, we choose the ‘Hard’ setting of ToxClassifier (Gacesa et al. 2016), where the negative
instances are 7043 protein sequences in UniProt which are not annotated in Tox-Prot but are
similar to Tox-Prot sequences to some extent.
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Enzyme detection: On the third we use an enzyme classification dataset. We download
two lists of enzyme and non-enzyme proteins (22,168 protein sequences per class) provided
by the ‘NEW’ dataset of Deepre (Y. Li et al. 2017).

Peptide-pair encoding

PPE training

The input to the PPE algorithm is a set of sequences and the output would be segmented
sequences and segmentation operations, an ordered list of amino acid merging operations to
be applied for segmenting new sequences. At the beginning of the algorithm, we treat each
sequence as a list of amino acids. As detailed in Algorithm 1, we then search for the most
frequently occurring pair of adjacent amino acids in all input sequences. In the next step,
the select pairs of amino acids are replaced by the merged version of the selected pair as a
new symbol (a short peptide). This process is continued until we could not find a frequent
pattern or we reach a certain vocabulary size (Algorithm 1).

In order to train a general-purpose segmentation of protein sequences, we train the
segmentation over the most recent version of the Swiss-Prot database (Boutet et al. 2016),
which contained 557,012 protein sequences (step (i) in Figure 2.5). We continue the merging
steps for T iterations of Algorithm 1, which ensures that we capture the motifs present with
a minimum frequency f in all Swiss-Prot sequences (we set the threshold to a minimum of
f = 10 times, resulting in T ⇡ 1 million iterations). Subsequently, the merging operations
can be applied to any given protein sequences as a general-purpose splitter. Although there
exist larger sequence datasets than Swiss-Prot (e.g., UniProt and RefSeq), we decided to
use the Swiss-Prot database, due to the high quality, and as computational requirements
were less demanding. Principally, PPE segmentations can be generated from any database of
interested, given enough time and computational resources.

Monte Carlo PPE segmentation

The PPE algorithm for a given vocabulary size (which is analogous to the number of merging
steps in the training) divides a protein sequence into a unique sequence of sub-sequences.
Further merging steps result in enlargement of sub-sequences, which results in having fewer
sub-sequences. Such variations can be viewed as multiple valid schemes of sequence segmen-
tation. For certain tasks, it might be useful to consider a protein sequence as a chain of
residues and, in some cases, as a chain of large protein domains. Thus, sticking to a single
segmentation scheme will result in ignoring important information for the task of interest. In
order to address this issue, we propose a sampling framework for estimating the segmentation
of a sequence in a probabilistic manner. We sample from the space of possible segmentations
for both motif discovery and embedding creation.

Different segmentation schemes for a sequence can be obtained by a varying number of
merging steps (N) in the PPE algorithm. However, since the algorithm is trained over a
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Figure 2.5. The main steps of DiMotif computational workflow: (i) The PPE segmentation steps
can be learned from Swiss-Prot or a domain-specific set of sequences. (ii) These operations are then
applied to positive and negative sequences and segment them into smaller sub-sequences. This
means that all part of sequences are used till this part. A two-sided and FDR corrected �2 test is
then applied to find the sub-sequences (potential motifs) which are significantly related to the
positive class, with a threshold p-value < 0.05. We rank the motifs based on their significance and
retrieve the top-k (in the evaluation on the ELM dataset kmax = 30). (iii) The motifs, their
structural and biophysical properties, and their co-occurrence information will be used for
visualization.
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Data: Seqs = Set of Swiss-Prot protein sequences, f = minimum number of sequences
containing the newly emerged symbol

Result: S = Divided sequences into variable sub-sequences, Merge_opt = merging
operations

Sym = {A, H, K, T, E, C, V, N, W, Y, F, Q, G, P, D, L, S, R, M, I};
S = list of Seqs, where each sequence is a list of symbols 2 Sym;
Merge_opt = stack();
SymbFreq = mapping symbol pairs in S to their frequencies;
fcurrent = max frequency in SymbFreq;
while f < fcurrent do

sym1, sym2 = argmax (SymbFreq);
S = merge all consecutive sym1 & sym2 into < sym1, sym2 > in S;
Sym.push(< sym1, sym2 >);
Merge_opt.push(sym1, sym2);
update(SymbFreq);
currentf = max frequency in SymbFreq;

end
Algorithm 1: Adapted Byte-pair algorithm (BPE) for segmentation of protein sequences

10000 110000 210000 310000 410000 510000 610000 710000 810000 910000
Merging steps

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

av
er

ag
e

nu
m

b
er

of
al

te
rn

at
iv

e
se

gm
en

ta
ti
on

s
fo

r
10

00
se

qu
en

ce
s

Figure 2.6. Average number of segmentation alternation per merging steps for 1000
Swiss-prot sequences.
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large number of sequences, a single merging step will not necessarily affect all sequences, and
as we go further with merging steps, fewer sequences are affected by the newly introduced
symbol. We estimate the probability density function of possible segmentation schemes with
respect to N by averaging the segmentation alternatives over 1000 random sequences in
Swiss-Prot for N 2 [10000, 1000000], with a step size of 10000. For each N , we count the
average number of introduced symbols relative to the previous step; the average is shown in
Figure 2.6. We use this distribution to draw samples from the vocabulary sizes that affected
more sequences (i.e. those introducing more alternative segmentation schemes). To estimate
this empirical distribution with a theoretical distribution, we fit a variety of distributions
(Gaussian; Laplacian; and Alpha, Beta, and Gamma distributions) using maximum likelihood
and found the Alpha that fitted the empirical distribution the best. Subsequently, we use
the fitted Alpha distribution to draw segmentation samples from a sequence in a Monte
Carlo scheme. Consider �i,j as the l1 normalized “bag-of-word” representations in sequence i,
using the jth sample from the fitted Alpha distribution. Thus, if we have M samples, the
“bag-of-sub-sequences” representation of the sequence i can be estimated as �i = 1

M

PM
j �i,j .

For detecting sequence motifs, we represented each sequence as an average over the count
distribution of M samples of segmentation (M=100) drawn from the Alpha distribution. The
alternative is to use only the vocabulary size (e.g., the median of Alpha), referred to as the
non-probabilistic segmentation in this section.

DiMotif protein sequence motif discovery

Our proposed method for motif detection, called DiMotif, finds motifs in a discriminative
setting over PPE features (step (ii) in Figure 2.5). We segment all the sequences in the
datasets (ignoring their labels or their membership of the train or the test set) with the
learned PPE segmentation steps from Swiss-Prot (§2.3) (general-purpose segmentation) or
with the learned PPE segmentation steps from a set of positive sequences (domain-specific
segmentation). After segmentation, each sequence is represented as bag-of-PPE units. We
use a two-sided and FDR corrected �2 test to identify significant discriminative features
between the positive and the negative (or background) sets. We discard insignificant motifs
using a threshold for the p-value of < 0.05. Since we are looking for sequence motifs related
to the positive class, we exclude motifs related to the negative class.

Evaluation on ELM dataset: We compare the DiMotif performance with two recent
motif discovery tools: (i) HH-Motif (Prytuliak, Volkmer, et al. 2017) as an instance of
non-discriminative methods and (ii) DLocalMotif (Mehdi et al. 2013) as an instance of
discriminative approaches. We evaluate the performances over the 20 problem settings related
to 5 types of motifs in the ELM database. We measure precision and recall of the above
methods for detection of the experimentally verified motifs (as true positive). From each
method, we use the maximum top 30 retrieved motifs ranked based on their scores. Since
finding exact matches are very unlikely and the motifs are only correct to some extent. We
report precision and recall for different thresholds on motif sequence matching (50% and
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70%). Then we calculate the average precision, recall, and F1 on these different settings. In
order to investigate the performance of general-purpose versus domain-specific segmentations
in DiMotif, once we used Swiss-Prot segmentation and once we learned the segmentation
steps from the set of positive sequences and for both used the probabilistic segmentation
schemes.

Classification-based evaluation of integrins, integrin-binding proteins, and biofilm
formation motifs: In order to evaluate the obtained motifs, we train linear support vector
machine classifiers over the training instances but only use motifs related to the positive class
among the top 1000 motifs as well as a short list of features. Next, we test the predictive model
on a reserved test set. Since the training and testing sets are disjoint, the classification results
are indications of motif discovery quality. We use both probabilistic and non-probabilistic
segmentation methods to obtain PPE representations of the sequences. We report the preci-
sion, recall, and F1 of each classifier’s performance. The average sequence similarities for
the top hits between positive samples in the test set and the train set for integrins, integrin
binding, and biofilm formation were 35.50±14.41, 40.47±18.15, and 40.13±8.76 respectively.
In addition, the average sequence similarities for the best hits for integrins, integrin binding,
and biofilm formation were 83.96±11.96, 91.64±11.37, and 71.75±15.79 respectively.

NLS motifs search: In the case of NLS motifs, we use the list of 3254 experimentally or
manually verified motifs from NLSdb. Thus, in order to evaluate our extracted motifs, we
directly compare our motifs with those found in earlier verification. As we cannot evaluate
any true positive other than NLSdb this task can be considered as a motif search task. Since
for long motifs, finding exact matches is challenging, we report three metrics, the number
of motifs with at least three consecutive amino acid overlaps, the number of sequences in
the baseline that had a hit with more than 70% overlap (A to B and B to A), and finally
the number of exact matches. In addition to Swiss-Prot-based segmentation, in order to see
the effect of a specialized segmentation, we also train PPE segmentation over a set of 8421
nuclear protein sequences provided by NLSdb (Bernhofer et al. 2017) and perform the same
evaluation.

Kulback-Leibler divergence to find multi-part motifs

As discussed in§ 2.3, protein motifs can be multi-part patterns, which is ignored by many
motif-finding methods. In order to connect the separated parts, we propose to calculate the
symmetric Kullback–Leibler (KL) divergence (Kullback and Leibler 1951) between motifs
based on their co-occurrences in the positive sequences as follows:

DKLsym(MpkMq) =
NX

i

Mp(i) log
Mp(i)

Mq(i)
+ Mq(i) log

Mq(i)

Mp(i)
, (2.4)

where Mp and Mq are, respectively, the normalized occurrence distributions of motif p
and motif q across all positive samples and N is the number of positive sequences. Next,
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we use the condition of (DKLsym = 0) to find co-occurring motifs splitting the motifs into
equivalence classes. Each equivalent class indicates a multi-part or a single-part motif. Since
we considered a “bag of motifs" assumption, the parts of multi-part motifs are allowed to be
far from each other in the primary sequence.

Secondary structure assignment

Using the trained segmentation over the Swiss-Prot sequences, we segment all 385,937 pro-
tein sequences in the current version of the PDB (Rose et al. 2016), where their secondary
structure was provided. By segmenting all secondary structures at the same positions as the
corresponding sequences, we obtain a mapping from each sequence segment to all its possible
secondary structures in the PDB. We use this information in coloring in the visualization of
motifs (see the visualizations in §2.3).

Motif visualization: For visualization purposes DiMotif clusters motifs based on their co-
occurrences in the positive class by using hierarchical clustering over the pairwise symmetric
KL divergence. The motifs are then colored based on the most frequent secondary structure
they assume in the sequences in the Protein Data Bank (PDB) (step (iii) in Figure 2.5). For
each motif, it visualizes their mean molecular weight, mean flexibility (Vihinen et al. 1994),
mean instability (Guruprasad et al. 1990), mean surface accessibility (Emini et al. 1985),
mean kd hydrophobicity (Kyte and Doolittle 1982), and mean hydrophilicity (Hopp and
Woods 1981) with standardized scores (zero mean and unit variance), where the dark blue is
the lowest and the dark red is the highest possible value (see the visualizations in §2.3).

ProtVecX: Extended variable-length protein vector embeddings
We trained the embedding on segmented sequences obtained from Monte Carlo sampling
segmentation on the most recent version of the Swiss-Prot database (Boutet et al. 2016),
which contains 557,012 protein sequences. Since this embedding is the extended version
of ProtVec (a brief introduction to the ProtVec is provided in the Supp. §1), we call it
ProtVecX. As explained in §2.3 we segment each sequence with the vocabulary size samples
drawn from an Alpha distribution. This ensures that we consider multiple ways of segmenting
sequences during the embedding training. Subsequently, we train a Skip-gram neural network
for embedding on the segmented sequences (Mikolov, Sutskever, K. Chen, et al. 2013). The
Skip-gram neural network is analogous to language modeling, which predicts the surroundings
(context) for a given textual unit (shown in Figure 2.7). The Skip-gram’s objective is to
maximize the following log-likelihood:

MX

t=1

X

c2[t�N,t+N ]

log p(wc | wt), (2.5)
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where N is the surrounding window size around word wt, c is the context indices around
index t, and M is the corpus size in terms of the number of available words and context
pairs. We parameterize this probability of observing a context word wc given wt by using
word embedding:

p(wc | wt; ✓) =
evc·vtP

c02C evc0 ·vt
, (2.6)

where C denotes all existing contexts in the training data. However, iterating over all
existing contexts is computationally expensive. This issue can be efficiently addressed by
using negative sampling. In a negative sampling framework, we can rewrite Equation 2.5 as
follows:

TX

t=1

2

4
X

c2[t�N,t+N ]

log
�
1 + e�s(wt, wc)

�
+

X

wr2Nt,c

log
�
1 + es(wt, wr)

�
3

5 , (2.7)

where Nt,c denotes a set of randomly selected negative examples sampled from the
vocabulary collection as non-contexts of wt and s(wt, wc) = vt> · vc (parameterization with
the word vector vt and the context vector vc). For training embeddings on PPE units, we
used the sub-word level Skip-gram, known as fasttext (Bojanowski et al. 2017). Fasttext
embedding improves the word representations by taking character k-mers of the sub-words
into consideration in calculating the embedding of a given word. For instance, if we take the
PPE unit fggagvg and k = 3 as an example, it will be represented by the following character
3-mers and the whole word, where ‘<’ and ‘>’ denote the start and the end of a PPE unit:

Sfggagvg={‘<fg’, ‘fgg’, ‘gga’, ‘gag’, ‘agv’, ‘gvg’, ‘vg>’, ‘<fggagvg>’}

In the fasttext model, the scoring function will be based on the vector representation of k-mers
(2  k  6) that exist in textual units (PPE units in this case), s(wt, wc) =

P
x2Swt

v>
x vc.

We used a vector dimension of 500 for the embedding (vt’s) and a window size of 20 (the
vector size and the window size have been selected based on a systematic exploration of
parameters in protein classification tasks). A k-mer-based ProtVec of the same vector size
and the same window size trained on Swiss-Prot is used for comparison.

Embedding-based classification

For the classification, we use a Multi-Layer-Perceptrons (MLP) neural network architecture
with five hidden layers using Rectified Linear Unit (ReLU) as the nonlinear activation function.
We use the softmax activation function at the last layer to produce the probability vector that
could be regarded as representing posterior probabilities. To avoid overfitting, we perform
early stopping and also use dropout at hidden layers. As baseline representations, we use
k-mers, ProtVec (Asgari and M. R. Mofrad 2015), ProtVecX, and their combinations. For
both ProtVec and ProtVecX, the embedding of a sequence is calculated as the summation of
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Figure 2.7. Skip-gram neural network for training language model-based embedding. In
this framework the inputs are the segmented sequences and the network is trained to predict
the surroundings PPE units.

its k-mers or PPE unit vectors. We evaluate these representation in three protein classification
tasks: (i) toxin prediction (binary classification) with the ‘Hard’ setting in the ToxClassifier
database (Gacesa et al. 2016), (ii) subcellular location prediction (four-way classification)
using the dataset provided by TargetP (Emanuelsson et al. 2007), and (iii) prediction of
enzyme proteins versus non-enzymes (binary classification) using the NEW dataset (Y. Li
et al. 2017). We report macro- precision, recall, and F-1 score. Macro averaging computes
the metrics for each class separately and then simply averages over classes. This metric gives
equal importance to all categories. In particular, we are interested in macro-F1, which makes
a trade-off between precision and recall in addition to treating all classes equally.

Results
Sequence motifs and evaluation results

Detection of experimentally verified motifs in the ELM dataset A comparison of
DiMotif with two existing motif discovery tools, HH-Motif (non-discriminative) and DLocal-
Motif (discriminative), is provided in Table 2.5. Since the discovered motifs only partially
match the experimentally verified motifs, we measured precision, recall, and F1 scores for two
minimum ratios of 50% and 70% sequence matching between the computationally discovered
and the experimentally verified motifs (two sets of rows in Table 2.5 for two minimum
sequence matching ratios). DiMotif was used with two different schemes of segmentation: (i)
general-purpose segmentation (based-on Swiss-Prot) and (ii) domain-specific segmentation
(learned over the sequences in the positive class). Overall, HH-Motif achieved the best F1
scores of 0.39 for 50% sequence matching and F1 of 0.24 for 70% sequence matching. The
domain-specific DiMotif obtained F1 of 0.30 for 50% sequence matching and F1 of 0.07 for
70% sequence matching. The general-purpose DiMotif obtained F1 of 0.24 for 50% sequence
matching and F1 of 0.05 for 70% sequence matching, while DLocalMotif obtained F1 of 0.16
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HH-MOTIF DiMotif (Domain-specific) DiMotif (SWISS-Prot-based) DLocalMotif
Motif discovery setting PrecisionRecallF1 score PrecisionRecall F1 score PrecisionRecall F1 score PrecisionRecallF1 score
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DEG APCC KENBOX 2 0.80 1.00 0.89 0.07 0.94 0.13 0.26 1.00 0.41 0.23 0.81 0.36
DEG CRL4 CDT2 1 0.60 1.00 0.75 0.23 0.83 0.36 0.00 0.00 0.00 0.00 0.00 0.00
DEG Kelch KLHL3 1 0.00 0.00 0.00 0.03 1.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00
DEG SPOP SBC 1 0.00 0.00 0.00 0.03 0.14 0.05 0.20 0.71 0.31 0.07 0.86 0.13
DOC AGCK PIF 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DOC MAPK 2 0.59 1.00 0.74 0.17 1.00 0.29 0.33 1.00 0.50 0.00 0.00 0.00
DOC PIKK 1 0.33 0.50 0.40 0.17 1.00 0.29 0.10 0.75 0.18 0.00 0.00 0.00
DOC USP7 MATH 1 0.00 0.00 0.00 0.30 0.60 0.40 0.20 0.60 0.30 0.00 0.00 0.00
LIG 14-3-3 2 0.08 0.28 0.13 0.30 1.00 0.46 0.17 0.43 0.24 0.10 0.43 0.16
LIG Mtr4 Air2 1 0.00 0.00 0.00 0.13 1.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00
LIG SH2 STAT5 0.29 0.38 0.33 0.47 1.00 0.64 0.30 1.00 0.46 0.00 0.00 0.00
LIG TYR ITIM 0.25 0.17 0.20 0.27 0.83 0.41 0.17 0.50 0.25 0.27 0.67 0.38
MOD CDK 1 0.30 0.70 0.42 0.20 0.90 0.33 0.30 0.90 0.45 0.53 0.80 0.64
MOD NEK2 1 0.33 0.66 0.44 0.17 1.00 0.29 0.04 0.33 0.07 0.00 0.00 0.00
MOD SPalmitoyl 4 1.00 1.00 1.00 0.17 1.00 0.29 0.14 1.00 0.25 0.53 1.00 0.69
MOD SUMO rev 2 0.17 0.05 0.08 0.37 0.79 0.50 0.37 0.53 0.44 0.30 0.21 0.25
TRG AP2beta CARGO 1 0.50 1.00 0.67 0.10 0.50 0.17 0.05 0.75 0.09 0.03 0.25 0.05
TRG ER KDEL 1 0.60 1.00 0.75 0.37 1.00 0.54 0.43 1.00 0.60 0.23 0.20 0.21
TRG LysEnd APsAcLL 3 1.00 1.00 1.00 0.20 1.00 0.33 0.17 1.00 0.29 0.00 0.00 0.00
TRG NES CRM1 1 0.08 0.06 0.07 0.17 0.56 0.26 0.00 0.00 0.00 0.00 0.00 0.00
Macro-Averaged Metrics 0.35 0.49 0.39 0.20 0.80 0.30 0.16 0.57 0.24 0.11 0.26 0.16
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DEG APCC KENBOX 2 0.52 0.88 0.65 0.03 0.94 0.06 0.10 0.38 0.16 0.03 0.06 0.04
DEG CRL4 CDT2 1 0.52 1.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEG Kelch KLHL3 1 0.00 0.00 0.00 0.03 0.50 0.06 0.00 0.00 0.00 0.00 0.00 0.00
DEG SPOP SBC 1 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.71 0.27 0.00 0.00 0.00
DOC AGCK PIF 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DOC MAPK 2 0.24 1.00 0.39 0.07 1.00 0.13 0.07 0.00 0.00 0.00 0.00 0.00
DOC PIKK 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DOC USP7 MATH 1 0.00 0.00 0.00 0.03 0.10 0.05 0.13 0.30 0.18 0.00 0.00 0.00
LIG 14-3-3 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LIG Mtr4 Air2 1 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00
LIG SH2 STAT5 0.00 0.00 0.00 0.13 0.50 0.21 0.13 0.25 0.17 0.00 0.00 0.00
LIG TYR ITIM 0.00 0.00 0.00 0.03 0.16 0.05 0.00 0.00 0.00 0.13 0.33 0.19
MOD CDK 1 0.30 0.20 0.24 0.03 0.30 0.05 0.00 0.00 0.00 0.07 0.20 0.10
MOD NEK2 1 0.00 0.00 0.00 0.03 0.33 0.05 0.00 0.00 0.00 0.00 0.00 0.00
MOD SPalmitoyl 4 1.00 1.00 1.00 0.30 0.20 0.24 0.00 0.00 0.00 0.13 0.40 0.20
MOD SUMO rev 2 0.00 0.00 0.00 0.10 0.16 0.12 0.03 0.05 0.04 0.00 0.00 0.00
TRG AP2beta CARGO 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TRG ER KDEL 1 0.60 1.00 0.75 0.13 0.80 0.22 0.13 0.80 0.22 0.23 0.20 0.21
TRG LysEnd APsAcLL 3 1.00 1.00 1.00 0.03 0.33 0.05 0.00 0.00 0.00 0.00 0.00 0.00
TRG NES CRM1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macro-Averaged Metrics 0.21 0.30 0.24 0.05 0.32 0.07 0.04 0.12 0.05 0.03 0.06 0.04

Table 2.5. Comparison of DiMotif, HH-Motif, and DLocalMotif (four sets of columns)
performances in detection of experimentally verified motifs in the ELM dataset. Two
versions of DiMotif were used: (i) using Swiss-Prot segmentation and (ii) using a domain
specific segmentation. The performances are reported for 50% and 70% ratios of sequence
matching (two sets of rows) between the verified and the discovered motifs.

for 50% sequence matching and F1 of 0.04 for 70% sequence matching. The domain-specific
DiMotif achieved the maximum recall of 0.80 for 50% sequence matching and F1 of 0.32
for 70% sequence matching. Having high recall suggests that the DiMotif can be used for
short-list creation for further experimental investigations on motifs.
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Table 2.6. Evaluation of protein sequence motifs mined via PPE motif discovery for
classification of integrin-binding proteins and biofilm formation-associated proteins. Support
Vector Machine classifiers are tuned and evaluated in a stratified 10-fold cross-validation
setting and then tested on a separate reserved dataset.

Dataset Probabilistic SegmentationRepresentation 10-fold cross-validation Performance on the test set
PrecisionRecall F1 PrecisionRecall F1

Integrin-Binding
True top 1000 (998 positive) 0.88 0.85 0.87 0.91 0.85 0.88

top-100 (100 positive) 0.73 0.66 0.69 0.84 0.67 0.75

False top 1000 (982 positive) 0.91 0.87 0.89 0.93 0.86 0.89
top-100 (100 positive) 0.73 0.68 0.70 0.84 0.67 0.75

Integrins
True top 1000 (1000 positive) 0.94 0.76 0.84 1 0.75 0.86

top-100 (100 positive) 0.91 0.82 0.86 0.83 0.83 0.83

False top 1000 (996 positive) 0.96 0.82 0.89 1 0.83 0.91
top-100 (100 positive) 0.88 0.83 0.86 0.9 0.75 0.82

Biofilm formation
True top-1000 (103 positive) 0.89 0.67 0.76 0.82 0.56 0.72

top-500 (48 positive) 0.81 0.71 0.76 0.76 0.71 0.73

False top 1000 (53 positive) 0.79 0.67 0.73 0.74 0.66 0.70
top-500 (26 positive) 0.78 0.67 0.72 0.73 0.65 0.69

Classification-based evaluation of integrins, integrin-binding, and biofilm forma-
tion motifs: The performances of machine learning classifiers in phenotype prediction
using the extracted motifs as features are provided in Table 2.6 evaluated in both 10-fold
cross-validation scheme, as well as in classifying unseen reserved sequences. Both probabilistic
and non-probabilistic segmentation methods have been used to obtain PPE motifs. However,
from the top extracted motifs only motifs associated with the positive class are used as
features (representation column). For each classification setting, we report precision, recall,
and F1 scores. The trained classifiers over the extracted motifs associated with the positive
class could reliably predict the reserved integrins, integrin-binding proteins, and biofilm
formation proteins with F1 scores of 0.89, 0.89, and 0.75 respectively. As described in §2.3
the sequences with certain degrees of redundancy were already removed and the training
data and the reserved sets do not overlap. Thus, being able to predict the phenotype over
the reserved sets with high F1 scores shows the quality of motifs extracted by DiMotif. This
confirms that the extracted motifs are specific and inclusive enough to detect the phenotype
of interest among an unseen set of sequences.

For integrin and biofilm formation, the probabilistic segmentation helps in predictions of
the reserved dataset. This suggests that multiple views of segmenting sequences allows the
statistical feature selection model to be more inclusive in observing possible motifs. Picking a
smaller fraction of positive class motifs still resulted in a high F1 for the test sets. For biofilm
formation, the probabilistic segmentation improved the classification F1 score from 0.72 to
0.73 when only 48 motifs were used, where single segmentation even using more features
obtained an F1 score of 0.70 (Table 2.6). This classification result suggests that the only 48
motifs mined from the training set are enough to detect bioform formation proteins in the
test set. Thus, such a combination can be a good representative of biofilm formation motifs.
Literature-based evaluation of NLS motifs: Since NLSdb provided us with an extensive
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Table 2.7. Evaluation of the significant nuclear localization signal (NLS) patterns against
3254 experimentally identified motifs. The results are provided for both general purpose and
domain-specific segmentation of sequences.

PPE training dataset Probabilistic Segmentation Medium overlap: Overlapping hits (> 3)Large overlap: > 70% sequence overlapNumber of exact matches
Swiss-Prot (General purpose)True 3253 337 37
Swiss-Prot (General purpose)False 3162 107 15

Nuclear (Domain-specific) True 3253 381 42
Nuclear (Domain-specific) False 3198 137 21

list of experimentally verified NLS motifs, we evaluated the extracted motifs by measuring
their overlap with NLSdb instead of using a classification-based evaluation. However, as
discussed in §2.3 such a comparison can be very challenging. One reason is that different
methods and technologies vary in their resolutions in specifying the motif boundaries. In
addition, the motifs extracted by the computational methods may also contain some de-
grees of false negatives and false positives. Thus, instead of reporting exact matches in
the experimentally verified set, we report how many of 3254 motifs in NLSdb are verified
by our approach using three different degrees of similarity (medium overlap, large overlap,
and exact match). The performance of DiMotif for both probabilistic segmentation and
non-probabilistic segmentation are provided in Table 2.7. In order to investigate the perfor-
mance of phenotype-specific versus general purpose segmentation, we also report the results
based on segmentation that is learned from nuclear proteins, in addition to Swiss-Prot based
segmentation (which is supposed to general purpose). Training the segmentation on nuclear
proteins resulted in slightly better, but still competitive to the general-purpose Swiss-Prot
segmentation. This result shows that the segmentation steps learned from Swiss-Prot can
be considered as a general segmentation, which is important for low resource settings, i.e.
the problem setting that the number of positive samples is relatively small. Similar to
integrins and biofilm formation related proteins, the probabilistic segmentation has been
more successful in detecting experimentally verified NLS motifs as well (Table 2.7).

DiMotif Visualization: The top extracted motifs are visualized using DiMotif software
and are provided for interested readers, related to integrin-binding proteins (Figure 2.8),
biofilm formation (Figure 2.9), and integrin complexes (Figure 2.10). In these visualizations,
motifs are clustered according to their co-occurrences within the positive set, i.e. if two
motifs tend to occur together (not necessarily close in the linear chain) in these hierarchical
clustering they are in a close proximity. In addition, each motif is colored based on the
most frequent secondary structure that this motif can assume in all existing PDB structures
(described in §2.3), the blue background shows loop, hydrogen bound or irregular structures,
the yellow background shows �-sheet or �-bridge conformations, and red background shows
helical structures. Furthermore, to facilitate the interpretation of the found motifs, DiMotif
provides a heatmap representation of biophysical properties related to each motif, namely
molecular weight, flexibility, instability, surface accessibility, kd hydrophobicity, and mean
hydrophilicity with standardized scores (zero mean and unit variance) the dark blue is
the lowest and the dark red is the highest possible value. Normalized scores allow for an
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easier visual comparison. For instance, interestingly in most cases in the trees (Figure 2.8,
Figure 2.9, and Figure 2.10), the neighbor motifs (co-occurring motifs) agree in their frequent
secondary structures. Furthermore, some neighbor motifs agree in some provided biophysical
properties. Such information can assist biologists and biophysicists to make hypotheses about
the underlying motifs and mechanisms for further experiments. A detailed serious biophysical
investigation of the extracted motifs is beyond the scope of this study. However, as an example,
for integrin-binding proteins, the RGD motif, the most well-known integrin-binding motif
was among the most significant motifs in our approach (Guan and Hynes 1990; Ruoslahti
1996; Plow, T. A. Haas, et al. 2000). Other known integrin-binding motifs were also among
the most significant ones, such as RLD (Ruoslahti 1996), KGD (the binding site for the
↵II�3 integrins (Plow, Pierschbacher, et al. 1985)), GPR (the binding site for ↵x�2 (Plow,
T. A. Haas, et al. 2000)), LDT (the binding site for ↵4�7 (Plow, T. A. Haas, et al. 2000)),
QIDS (the binding site for ↵4�1 (Plow, T. A. Haas, et al. 2000)), DLLEL (the binding site
for ↵v�6 (Plow, T. A. Haas, et al. 2000)), [tldv,rldvv,gldvs] (similar motifs to LDV, the
binding site for ↵4�1 (Guan and Hynes 1990)), rgds (Kapp et al. 2017), as well as the PEG
motif (Ochsenhirt et al. 2006).

Results of protein classification tasks using embedding
Protein classification results for venom toxins, subcellular location, and enzyme predictions
using deep MLP neural network on top of different combinations of features are provided in
Table 2.8. In all these three tasks, combining the embeddings with raw k-mer distributions
improves the classification performances (Table 2.8). This result suggests that k-mers
can be more specific than embeddings for protein classification. However, embeddings can
provide complementary information to the k-mers and improve the classification performances.
Combining 3-mers with either ProtVecX or ProtVec embedding performed very competitively;
even for sub-cellular prediction tasks, ProtVec performs slightly better. However, combining
3-mers with ProtVecX resulted in higher F1 scores for enzyme classification and toxin
protein prediction. In § ProtVec 2.2 as well as other embedding-based protein classification
studies (Hamid and Friedberg 2018), embeddings have been used as the only representation.
The presented results in Table 2.8 suggest that (i) k-mer representation is a tough-to-beat
baseline in protein classification problems. (ii) The k-mer baseline alone outperforms ProtVec
embeddings in many tasks. (iii) The ProtVec and ProtVecX embeddings only have added
value when they are combined with the raw k-mer representations.

Conclusions
We proposed a new unsupervised method of feature extraction from protein sequences. Instead
of fixed-length k-mers, we segmented sequences into the most frequent variable-length sub-
sequences, inspired by BPE, a data compression algorithm. These sub-sequences were then
used as features for downstream machine learning tasks. As a modification to the original BPE
algorithm, we defined a probabilistic segmentation by sampling from the space of possible
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 Mostly participates in loop, hydrogen bonded turn, irregular structure   
 Mostly participates in beta bridge or beta sheet   
 Mostly participates in helix   

--- Properties vector order ↓  Mean molecular weight of amino acids   

 Mean flexibility of amino acids   

 Mean DIWV instability index of sequence   
 Mean surface accessibility of amino acids   
 Mean KD hydrophobicity   
 Mean hydrophilicity of amino acids   

Force	topology	is	enabled!
Branch	lengths	do	not	represent	real	values.Figure 2.8. Clustering of integrin-binding-specific motifs based on their occurrence in the
annotation proteins. This tree diagram illustrates the hierarchical relationships among
sequence motifs. On top of the tree structure, the colors visualize different metadata exist
for each sequence motif. Each motif is colored based on the most frequent secondary
structure it assumes in the Protein Data Bank (PDB) structure out of all PDB sequences.
For each motif the biophysical properties are provided in a heatmap visualization, which
shows from outer ring to inner ring: the mean molecular weight, mean flexibility, mean
instability, mean surface accessibility, mean kd hydrophobicity, and mean hydrophilicity with
standardized scores (zero mean and unit variance), where the dark blue is the lowest and the
dark red is the highest possible value. Motifs are clustered based on their co-occurrences in
the integrin-binding proteins. Zooming in the electronic version is possible for a better see of
the details.
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 Mostly participates in loop, hydrogen bonded turn, irregular structure   
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--- Properties vector order ↓  Mean molecular weight of amino acids   

 Mean flexibility of amino acids   

 Mean DIWV instability index of sequence   
 Mean surface accessibility of amino acids   
 Mean KD hydrophobicity   
 Mean hydrophilicity of amino acids   

Force	topology	is	enabled!
Branch	lengths	do	not	represent	real	values.Figure 2.9. Clustering of biofilm formation-specific motifs based on their occurrence in the
annotation proteins. Each motif is colored based on the most frequent secondary structure it
assumes in the Protein Data Bank (PDB) structure out of all PDB sequences. For each
motif the biophysical properties are provided in a heatmap visualization, which shows from
outer ring to inner ring: the mean molecular weight, mean flexibility, mean instability, mean
surface accessibility, mean kd hydrophobicity, and mean hydrophilicity with standardized
scores (zero mean and unit variance), where the dark blue is the lowest and the dark red is
the highest possible value. Motifs are clustered based on their co-occurrences in the biofilm
formation proteins. Zooming in the electronic version is possible for a better see of the
details.
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 Mostly participates in loop, hydrogen bonded turn, irregular structure   
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--- Properties vector order ↓  Mean molecular weight of amino acids   
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Force	topology	is	enabled!
Branch	lengths	do	not	represent	real	values.Figure 2.10. Clustering of integrin-related motifs based on their occurrence in the
annotation proteins. Each motif is colored based on the most frequent secondary structure it
assumes in the Protein Data Bank (PDB) structure out of all PDB sequences. For each
motif the biophysical properties are provided in a heatmap visualization, which shows from
outer ring to inner ring: the mean molecular weight, mean flexibility, mean instability, mean
surface accessibility, mean kd hydrophobicity, and mean hydrophilicity with standardized
scores (zero mean and unit variance), where the dark blue is the lowest and the dark red is
the highest possible value. Motifs are clustered based on their co-occurrences in the integrin
proteins. Zooming in the electronic version is possible for a better see of the details.
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Table 2.8. Comparing k-mers, ProtVec, and ProtVecX and their combinations in protein
classification tasks. Deep MLP neural network has been used as the classifier.

Dataset Representation 5 fold cross-validation
macro-Precisionmacro-Recallmacro-F1

Venom toxin prediction

3-mer 0.89 0.89 0.89
ProtVec 0.88 0.88 0.88
ProtVecX 0.88 0.88 0.88
3-mer + ProtVec 0.90 0.89 0.89
3-mer + ProtVecX 0.90 0.90 0.90

Subcellular location prediction

3-mer 0.65 0.59 0.60
ProtVec 0.60 0.57 0.58
ProtVecX 0.57 0.57 0.57
3-mer + ProtVec 0.68 0.60 0.62
3-mer + ProtVecX 0.66 0.60 0.61

Enzyme prediction

3-mer 0.70 0.73 0.71
ProtVec 0.68 0.70 0.69
ProtVecX 0.69 0.71 0.70
3-mer + ProtVec 0.70 0.73 0.71
3-mer + ProtVecX 0.71 0.73 0.72

vocabulary sizes. This allows for considering multiple ways of segmenting a sequence into
sub-sequences. The main purpose of this work was to introduce a variable-length segmentation
of sequences, similar to word tokenization in natural languages. In particular, we introduced
(i) DiMotif as an alignment-free discriminative protein sequence motif miner, as well as (ii)
ProtVecX, a variable-length extension of protein sequence embedding.

We compared DiMotif against two recent existing tools for motif discovery: HH-Motif as
an instance of non-discrminative methods, and DLocalMotif as an instance of discriminative
methods. We compared the performances in the detection of 20 distinct sub-types of
experimentally verified motifs. HH-Motif comparing HMMs of orthologs for retrieving SLiMs,
achieved the best average F1 and the DiMotif with domain-specific segmentation achieved
the second best F1. DiMotif achieved the highest recall, making it an ideal tool for finding a
list of candidates for further experimental verification. Furthermore, we evaluated DiMotif
by extracting motifs related to (i) integrins, (ii) integrin-binding proteins, and (iii) biofilm
formation. We showed that the extracted motifs could reliably detect reserved sequences of
the same phenotypes, as indicated by their high F1 scores. We also showed that DiMotif
could reasonably detect experimentally identified motifs related to nuclear localization signals.
By using KL divergence between the distribution of motifs in the positive sequences, DiMotif
is capable of outputting multi-part motifs. A detailed biophysical interpretation of the
motifs is beyond the scope of this work. However, the tree visualization of DiMotif as a tool
can help biologists to come up with hypotheses about the motifs for further experiments.
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In addition, although homologous sequences in Swiss-Prot have indirectly contributed in
DiMotif segmentation scheme, unlike conventional motif discovery algorithms, DiMotif does
not directly use multiple sequence alignment information. Thus, it can be widely used in
cases motifs need to be found from a set of non-homologous sequences.

We proposed ProtVecX embedding trained on sub-sequences in the Swiss-Prot database.
We demonstrated that combining the raw k-mer distributions with the embedding repre-
sentations can improve the sequence classification performance compared with using either
k-mers only or embeddings only. In addition, combining ProtVecX with k-mer occurrences
outperformed ProtVec embedding combined with k-mer occurrences for toxin and enzyme
prediction tasks. Our results suggest that the recent works in the literature including our
previously proposed ProtVec missed serving k-mer representation as a baseline, which is a
tough-to-beat baseline. We show that embedding can be used as complementary information
to the raw k-mer distribution and their added value is expressed when they are combined
with k-mer features.

In this section, we briefly touched motif discovery and protein classification tasks as
use cases of peptide pair encoding representation. However, the application of this work is
not limited to motif discovery or embedding training, and we expect this representation to
be widely used in bioinformatics tasks as general purpose variable-length representation of
protein sequences.
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2.4 Deep Learning for protein secondary structure

prediction

In this section, we investigate deep learning-based prediction of protein secondary structure
from the protein primary sequence. We study the function of different features in this task,
including one-hot vectors, biophysical features, protein sequence embedding (ProtVec), deep
contextualized embedding (known as ELMo), and the Position Specific Scoring Matrix (PSSM).
In addition to the role of features, we evaluate various deep learning architectures including
the following models/mechanisms and certain combinations: Bidirectional Long Short-Term
Memory (BiLSTM), convolutional neural network (CNN), highway connections, attention
mechanism, recurrent neural random fields, and gated multi-scale CNN. Our results suggest
that PSSM concatenated to one-hot vectors are the most important features for the task of
secondary structure prediction. Utilizing the CNN-BiLSTM network, we achieved an accuracy
of 69.9% and 70.4% using ensemble top-k models, for 8-class of protein secondary structure on
the CB513 dataset, the most challenging dataset for protein secondary structure prediction.
Through error analysis on the best performing model, we showed that the misclassification
is significantly more common at positions that undergo secondary structure transitions,
which is most likely due to the inaccurate assignments of the secondary structure at the
boundary regions. Notably, when ignoring amino acids at secondary structure transitions
in the evaluation, the accuracy increases to 90.3%. Furthermore, the best performing
model mostly mistook similar structures for one another, indicating that the deep learning
model inferred high-level information on the secondary structure. The developed software
called DeepPrime2Sec and the used datasets and representations are available for further
investigations and use by the community at http://github.com/ehsanasgari/deepPrime2Sec.

What is the Protein Secondary Structure?
As discussed in 2.1, protein are important elements for the structure and function of cells.
Although a protein sequence should theoretically hold enough information determining its
function, finding a mapping from the protein primary sequence to the structure is still one
of the open challenges in molecular biology (Hunter 1993; Cooper et al. 2000). The large
gap between the number of known protein sequences and the number of known protein 3D
structures motivates computational methods and in particular machine learning methods
predicting structural information from the protein primary sequences. Protein structure can
be described at three main levels: (i) primary structure referring to a linear sequence of
amino acids, (ii) secondary structure referring to the structure of the local segments of
the protein sequence categorized into 8 of secondary structures, and (ii) tertiary structure
referring to the 3D structure of protein macromolecules. In this work, we focused on predicting
protein secondary structure from the primary sequences.

Protein secondary structure prediction can be viewed as a sequence labeling machine
learning task type, i.e. assigning a categorical label yt 2 Y to each element of a sequence



CHAPTER 2. DEEP LANGUAGE-AGNOSTIC PROCESSING OF PROTEOMICS 73

of input elements, xt 2 X, where t indicates the position in the sequence. There exist eight
possible secondary structure categories (Q8 labeling) for each amino acid at position t in the
sequence: the 3-10 helix (G), ↵ helix (H), ⇡ helix (I), turn (T), � sheet (E), � bridge (B),
bend (S), and loop (L). A simpler labeling scheme is Q3, where the categories are divided into
three main classes: helix, strand, and loop/coil. Finding the protein secondary structure is an
important step toward the understanding of the protein folding and subsequently its structure
and function (Y. Zhou and Karplus 1999; Ozkan et al. 2007). Thus, it can be vital for a
variety of protein informatics problem settings, e.g., protein sequence alignment (H. Zhou and
Y. Zhou 2005; X. Deng and Cheng 2011), identification of disease-causing mutations (Folkman
et al. 2015), and protein function annotation (Taherzadeh et al. 2016).

Secondary structure prediction is one of the primary tasks in protein informatics (Y. Yang
et al. 2016). Traditional protein secondary structure prediction include rule-based (Chou and
Fasman 1974) methods as well as machine learning approaches using amino acid context-
based (Finkelstein and Ptitsyn 1971) and evolution/alignment-based representations (Zvelebil
et al. 1987; Hua and Sun 2001). Recently, with the popularity of neural network approaches,
similar to many machine learning prediction tasks, different neural network architectures have
been proposed for the protein secondary structure prediction from the primary sequences. To
the best of our knowledge, all of these architectures have been mainly used on top of a set of
fixed features (PSSM and one-hot vector) and mostly on a fixed predictive model in each
work. The most challenging dataset for this task has been the 8-way secondary structure
prediction using the CullPDB dataset as training and CB513 as the test set (Sonderby
and Winther 2014). Different deep learning architectures proposed for this task includes:
(i) deep Convolutional Generative Stochastic Network, obtaining a test accuracy of 66.4%
(Jian Zhou and Troyanskaya 2014), (ii) Long Short-Term Memory (LSTM) recurrent neural
network, obtaining test accuracy of 67.4% (Sonderby and Winther 2014), (iii) Convolutional
neural fields achieving a test accuracy of 68.3% (S. Wang et al. 2016), (iv) bi-directional
LSTM with/without conditional random field (CRF) (Johansen et al. 2017; Jurtz et al. 2017),
obtaining a test accuracy of 69.4% and 68.5% respectively, (v) gated Multi-scale convolutional
neural network (multi-scale CNN) (Jiyun Zhou et al. 2018) with a test accuracy of 69.3%
and 70.3%.

The main contributions of the present chapter are 4-fold, namely (i) we provide a systematic
comparison of representations that can be used for the secondary structure prediction task.
(ii) We provide a comparison of several important deep learning architectures for this task in
order to find the best performing model. (iii) we provide the community with a framework
for advancing deep learning techniques in the area of secondary structure prediction, called
DeepPrime2Sec (iv) We perform a detailed analysis of the location and classes of errors.

We first implement one of the state-of-the-art neural architecture for sequence labeling
tasks in different domains (e.g., proteomics (Jurtz et al. 2017), natural language process-
ing (Lample et al. 2016)). Subsequently, we investigate the role of different features in the
performance of protein secondary structure prediction. In particular, we utilize five sets of
features and their combinations: (i) one-hot vector representation, (ii) biophysical scores of
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amino acids, (iii) amino-acid protein vectors, (iv) recently introduced contextualized embed-
dings, and (v) Position-Specific Scoring Matrix (PSSM). Secondly, for the best feature set in
the preceding step, we investigate the performance of different deep learning architectures
for the task of secondary structure, including convolutional-recurrent neural network (with
and without conditional random field layer), highway connections, attention mechanism, and
multi-scale CNN models. Our results confirm that PSSM is the most informative feature for
the protein secondary structure, and other features only result in slight improvements when
they are combined with PSSM. Error analysis indicates that errors are mostly occurring at
positions were transitions between successive secondary structure elements occur. We provide
the Prime2Sec code for further investigations.

Materials and Methods
Datasets

Secondary structure prediction dataset: Several benchmark datasets exist in the lit-
erature of protein secondary structure prediction. The most challenging dataset based on
the maximum achieved accuracy using machine learning approaches is the CullPDB dataset,
which consists of 5,534 protein sequences (CullPDB-train) for training and 513 non-redundant
sequences (CB513) for test purpose (Jian Zhou and Troyanskaya 2014), in which sequences
with more than 25% sequence identity to training data entries were removed from the
validation set.

The label for each position is selected from the Q8 scheme (explained in § 2.4). We used
as performance metric accuracy, which is the most common metric for the evaluation of
protein secondary structure predictors over the filtered CB513. Accuracy can be defined as
the ratio of correctly predicted secondary structures in amino acid level.

UniRef50 dataset for ELMo training: We use UniRef50 collection as the training data
to learn the contextualized embeddings. The primary purpose of using this dataset instead
of the whole Swiss-Prot or UniProt has been to avoid having redundant sequences in the test
set. We use 90% of sequences for training and 10% for test purpose.

Swiss-Prot for ProtVec training: As we proposed in (Asgari and M. R. Mofrad 2015) for
the training of ProtVec embedding, we use the whole Swiss-Prot dataset containing 600Kpro-
tein sequences.

Approach

First, to investigate the effect of different representations on secondary structure prediction
performance, we fix the predictive model and investigate the accuracy under representation
changes. For this purpose, we re-implement the state-of-the-art architecture for sequence
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labeling tasks, i.e., convolutional bidirectional LSTM model (Johansen et al. 2017). The
general architecture used for secondary structure in this paper is illustrated in 2.11 (a).
Secondly, we examine the impact of several deep learning architectures on top of the best
feature set obtained in the first step. Thirdly, we create an ensemble predictor on the best
performing models. Finally, we present an error analysis of the misclassification locations
and confusing secondary structure categories. The experiment steps are detailed as follows.

Investigation on the contribution of features in protein secondary structure
prediction

We experiment on five sets of protein features to understand what are essential features for
the task of protein secondary structure prediction. Although in 1999, PSSM was reported
as an important feature to the secondary structure prediction (Jones 1999), this was still
unclear whether recently introduced distributed representations can outperform PSSM in
such a task. For a systematic comparison, the features detailed as follows are used:

• One-hot vector representation (length: 21): vector representation indicating
which amino acid exists at each specific position, where each index in the vector
indicates the presence or absence of that amino acid.

• ProtVec embedding (length: 50): representation trained using Skip-gram neural
network on protein amino acid sequences(Asgari and M. R. Mofrad 2015), detailed in
§2.4. The only difference would be character-level training instead of n-gram based
training.

• Contextualized embedding (length: 300) : we use the contextualized embedding
of the amino acids trained in the course of language modeling(Peters et al. 2018), known
as ELMo, as a new feature for the secondary structure task. Contextualized embedding
is the concatenation of the hidden states of a deep bidirectional language model. The
main difference between ProtVec embedding and ELMO embedding is that the ProtVec
embedding for a given amino acid or amino acid k-mer is fixed and the representation
would be the same in different sequences. However, the contextualized embedding, as it
is clear from its name, is an embedding of word changing based on its context. We train
ELMo embedding of amino acids using UniRef50 dataset in the dimension size of 300.

• Position Specific Scoring Matrix (PSSM) features (length: 21): PSSM is
amino acid substitution scores calculated on protein multiple sequence alignment of
homolog sequences for each given position in the protein sequence.

• Biophysical features (length: 16) For each amino acid we create a normalized vector
of their biophysical properties, e.g., flexibility (Vihinen et al. 1994), instability (Gu-
ruprasad et al. 1990), surface accessibility (Emini et al. 1985), kd-hydrophobicity (Kyte
and Doolittle 1982), hydrophilicity (Hopp and Woods 1981), and etc.
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Feature combinations: We start from using single features and then greedily use the best
combinations. Since the PSSM features have a significant contribution in improving the
accuracy, we select then for every combination of length two feature sets and more. We
perform an extensive parameter tuning of the network hyper-parameters (LSTM size, CNN
filter sizes, etc.) for each feature combination.

Data augmentation for the best set of features: as later will the reader will see in the
results, the combinations of one-hot and PSSM lead to the best performance on the test set.
Since PSSM has information about the possible substitution of amino acids in the homolog
sequences and homologous sequences are likely to have similar functions and structures, we
come up with the idea of generating more data points using PSSM feature (based on most
possible mutations) and test it as a data-augmentation policy. This way, we produce ten
possible samples from each training instance by changing the amino acid (or more accurately
keeping PSSM the same and change the one-hot by sampling from PSSM vector).

Deep learning models for protein secondary structure prediction

In addition to investigation on the relevant features, we use different deep learning architectures
on top of the selected feature in §2.4 and examine the role of architecture for the protein
secondary structure prediction. In a general notation, each sequence labeling task can be
viewed as assigning a sequence of labels Y = (y1, y2, . . . , yT ) to the chain of elements in
a given input sequence X = (x1, x2, . . . , xT ). Using neural architectures, we look for Y⇤

maximizing P✓(Y|X). P✓ is parameterized using a softmax function:

P (Y|X) =
exp (S(X,Y))P
Y0 exp (S(X,Y0))

,

where S is a score function computed through a neural network relating the input X to the
output Y. The difference between different models is in the neural architecture parametrizing
the S. We study the use of various deep learning architectures to produce S described as
follows.

(a) CNN-BiLSTM Model: As the CNN-BiLSTM model is illustrated in Figure 2.11 (a),
firstly convolutional filters of different window sizes are applied on the input features, creating
feature maps of different neighborhoods. Then the feature maps are concatenated. The
resulting vector encodes the representation of different context sizes around each amino acid
in the protein sequence. Batch normalization is used to increase the stability of training (Ioffe
and Szegedy 2015). Subsequently, a fully-connected neural network projects the result into a
dense vector. In order to avoid over-fitting, dropout is used (N. Srivastava et al. 2014a). Up
to this point we encoded a sequence of amino acid features vectors X = (x1, x2, . . . , xT ) into
a dense vector V = (v1,v2, . . . ,vT ) using a convolutional and feedforward neural network,
which is enriched on local information at each position t. However, vt does not encode global
information about the sequence. A long Short-term Memory Network (LSTM) (Hochreiter
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and Schmidhuber 1997), which is designed to capture long-range dependencies, encodes the
sequence information. The LSTM creates an encoding

�!
ht of the left context of the protein

at position t. Since both left and right contexts can be crucial for the global structure
of proteins, we use a bi-directional LSTM (or shortly BiLSTM network). The Bi-LSTM
encodes each position into a representation of left and right contexts ht = [

�!
ht;
 �
ht]. Uti-

lizing feedforward layers (with dropout) on top of ht, we create a vector � with a length
of the number of possible target labels (|Y | = 8). �t can be regarded as S(xt, y). Apply-
ing a softmax function on the score vector S, the label with the maximum value in S is chosen.

(b) CNN-BiLSTM with Highway Connections: the importance of PSSM features in
the secondary structure prediction motivates a more direct application of this representation
in the last layer as a highway connection (K. He et al. 2016). We concatenated the output of
BiLSTM ht with the highway connection to batch-normalized PSSM feature.

(c) CNN-BiLSTM with Conditional Random Field (CRF) layer: in some natural
language processing sequence labeling tasks where there is a complex dependency between
neighbor labels, e.g., named entity recognition tasks, using a conditional random field layer on
top of the recurrent neural network enhances the prediction power by adding constraints to the
final predicted labels (Lample et al. 2016). A similar idea has been applied in (Johansen et al.
2017) to the protein secondary structure prediction. In this model, instead of parametrizing
the S only with the output of the Bi-LSTM model, we use a CRF layer to consider the
transition probability between neighboring labels as well:

S(X,Y) =
X

t

log �(yt, xt) + log (yt�1 ! yt),

where � comes from the output of the BiLSTM and the subsequent feedforward layer and
the  (yt�1 ! yt) is the potential function in the CRF model.

d) CNN-BiLSTM with Attention layer: another approach for defining S is to write it
as the weighted average of all LSTM hidden states. This way, we would allow the model to
benefit from the weighted long-term dependencies (global context of the current amino acid).
The modification is shown in Figure 2.11 (d):

htj = tanh(hT
t Wt + hT

j Wc + bt)

etj = �(hT
tjW + b)

atj =
exp(etj)P
j2T exp(etj)

ct =
X

j2T

atjhtj

St = ReLU(cTt Ws + bs)
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Figure 2.11. Different deep learning architectures implemented and evaluated in
DeepPrime2Sec are provided as follows: (a) CNN-BiLSTM, The central neural architecture
we used for protein secondary structure; (b) The modification of the model (a) with adding
highway connection to the CNN-BiLSTM for a more direct use of PSSM features; (c) The
modification of the model (a) by adding a CRF layer to consider label consistency in the
prediction; (d) The modification of the model (a) by adding an attention layer to the output
of LSTM for considering a more global context; (e) Solely using convolutional layer (f)
Multiscale convolutional neural network benefiting from a gating mechanism (as proposed in
(Jiyun Zhou et al. 2018)).
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where ht,j is the contribution of each previous and future LSTM steps in the current state,
and at,j is the normalized step’s contributions (attention weight), which is used to weight the
LSTM h0

xs . The final encoding for the time t would be ct instead of ht. Finally a non-linear
transformation of ct creates a vector in size of the targets (8 classes) representing the score
function S.

(e) CNN: An alternative architecture for this task would be the pure use of the convolutional
neural network on the sequence axis (the order in the sequence) to capture local information
for prediction on the secondary structure.

(f) Multiscale-CNN with a highway connection: we implemented one of the state-
of-the-art architectures proposed in (Jiyun Zhou et al. 2018) as part of DeepPrime2Sec,
which uses a gated version of stacked CNNs. The ultimate output of each convolutional layer
would be a gated version of its input and the convolutional result as depicted in Figure 2.11 (f):

ot = zt ⇤ ct + (1� zt) ⇤ ot�1

zt = �(oTt�1Wz + b)

o0 = input,

where ct is the result of the tth convolutional layer, ot is the out of gating between the
previous and the current convolutions. In the first layer, O0 is the same as the input layer.
Ensemble of the best models: similar to previous work, to improve this performance
further using “Wisdom of Crowds principle”, we produced an ensemble classifier on the top-k
classifiers (k=5,10,20,50,100) and predict on the test set by voting.

Results
Results on the role of features in secondary structure prediction

Single features: The performance of protein secondary structure prediction using different
combinations of features is provided in Table 2.9. When we used single feature sets, PSSM
features performed substantially better than other features. Even recent deep learning-based
representations were far behind. PSSM is amino acid substitution scores calculated on protein
multiple sequence alignment of homolog sequences for each given position in the protein
sequence. This result confirms that evolution has very important information for defining the
protein structure. One-hot vector encoding performed similar to other amino-acid embedding
approaches (ELMo, ProtVec, and biophysical features). The reason behind can be that the
one-hot vectors and protein embeddings are acting complementary to each-other; one-hot
vector representation increases the precision about the specific residue at position t, while
embedding blurs this information by providing information about the context of this amino
acid. Among the embedding methods, ELMo embedding worked marginally better than
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other approaches, as it has information about long-term past and future of the sequence,
i.e., having information on a more the global context) in comparison to ProtVec, which only
includes information about a local context within a certain context size.

Combination of features: The second set of rows in Table 2.9 shows the combinations of
features with PSSM (the best performing feature) starting from combinations of two types up
to five feature types. We also optimized the hyperparameters (network sizes and parameters).
The combination of one-hot and PSSM turned out to be the most effective representation,
while using combination of features did not substantially improve the accuracy further. A
reason could be that the PSSM implicitly already includes information about the biophysical
and contextual features, at least as much as needed for the protein secondary structure pre-
diction, more than other embedding approaches. Further tuning of the convolution window
sizes resulted in the accuracy of 69.9% (Table 2.9).

Data augmentation: Although augmenting the dataset by keeping the PSSM and gener-
ating more one-hots made the training dataset 10x larger; the performance could not be
improved further 2.9. Next, we generate ten instances from each test instance and used the
best model to predict 10 secondary structures for each position, based on the augmented test
set and take the majority vote. This idea also did not boost performance. We conclude that
the most important feature to this task is the PSSM, and we need to find a way to perform
augmentation on this feature for further performance improvements.

Results on comparison of deep learning architectures in protein secondary
structure prediction

The results on secondary structure prediction for different deep learning architectures using
the best feature set (i.e., the combination of PSSM and one-hot representation, see §2.4) is
provided in Table 2.11. Using only BiLSTM and only CNN, we could achieve accuracies of
67.1% and 68.1%, respectively. Combination of CNN and BiLSTM led to the best observed
accuracy of 69.9%. Adding the CRF layer, attention layer, and the highway connection
did not further improve the performance. From this, we may conclude that the LSTM
hidden states stored sufficient information, ensuring to provide a logical sequence of labels.
The previously reported performances on the CB513 are also provided in Table 2.11. The
CNN-BiLSTM architecture outperformed all, except for the CNNH_PSS model. Based on
the provided implementation and descriptions in the (Jiyun Zhou et al. 2018), we attempted
to reproduce the architecture and the results in the DeepPrime2Sec. However, using this
architecture, we could not obtain better accuracy than 66.9%.

Ensemble predictor: To further improve this performance, we produced an ensemble
classifier on top-k classifiers (k=5,10,20,50,100) resulting in the accuracy of 70.4 (Table 2.9)
outperforming the 70.3 the state-of-the-art performance (Jiyun Zhou et al. 2018).
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Table 2.9. Protein secondary structure prediction results using (i) different feature types,
(ii) their combinations, (iii) extensively tuned hyperparameters for the best feature sets, (iv)
the data augmentation are presented.
Representation Convolution filters LSTM input/hidden/output CB513 Q8 accuracy

(i) Single Features
Biophysical features (16D) [3, 5, 7], 16x 400 - 800 - 400 0.573
ELMo embedding (300D) [3, 5, 7], 128x 400 - 800 - 400 0.577
ProtVec embedding (50D) [3, 5, 7], 128x 400 - 800 - 400 0.573
PSSM (21D) [3, 5, 7], 128x 400 - 800 - 400 0.694
One-hot (21D) [3, 5, 7], 16x 200 - 400 - 200 0.575

(ii) Combinations of top features
Biophysical features & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.697
ELMo & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
ProtVec embedding & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.696
One-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.698
Biophysical features & ELMo & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
Biophysical features & ProtVec embedding & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.694
Biophysical features & one-hot & PSSM [3, 5, 7], 256x 2000 - 1000 - 2000 0.699
ELMo & ProtVec embedding & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
ELMo & one-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.692
ProtVec embedding & one-hot & PSSM [3, 5, 7], 128x 400 - 800 - 400 0.694
Biophysical features & ELMo & ProtVec embedding & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.69
Biophysical features & ELMo & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.693
Biophysical features & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.694
ELMo & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.692
Biophysical features & ELMo & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.692

(iii) Parameter tuning for the selected features
One-hot & PSSM [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.699

(iv) Data augmentation for the selected parameter setting
Augmented one-hot & PSSM in training [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.692
Augmented one-hot & PSSM in testing [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.68

Location analysis of misclassified amino acids: Predicting the secondary structure of
amino acids at the transition points (transition between two distinct secondary structure)
can be tricky. We had the hypothesis that transition positions may have a larger chance of
misclassification, as even the ground-truth quality can be lower in these states (Y. Yang et al.
2016). To study the effect of amino acid position in the misclassifications, we performed
statistical tests to determine whether the misclassification event is dependent or independent
of locating to the boundaries of the secondary structures in the CB513 target labels. We
performed both �2 and log-likelihood ratio (i.e., the G-test) tests and found that the misclas-
sification highly depends on being at the transition location (the p-values on both �2- and G-
tests were ⇡ 0). The underlying contingency table is shown in Table 2.10. Surprisingly, if
we omit amino-acids at the borders from the evaluation, the Q8 accuracy would increase to
%90.3.

A categorical analysis of the misclassified amino acids: The confusion matrix and l1
normalized confusion matrix for the best performing model using the combination of PSSM
and one-hot vector in CNN-BiLSTM architecture are presented in Figure 2.12 (a) and (b)
respectively. Since the protein secondary structure problem setting is relatively imbalanced,
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Table 2.10. Contingency table for location analysis of the misclassified amino acids
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True #
22615

#
3002

False #
31156

#
27992

the normalized confusion matrix in Figure 2.12 (b) can more clearly show which classes are
relatively confused with each other. The most common secondary structure classes of the
alpha helix (H), loop (L), beta sheet (E) were predicted accurately. The classes of bend (B),
turn (T) were considerably confused with loop (L), which makes sense, as these classes are
similar to each-other and loop (L) is the most frequent one among them. As expected based
on structural similarities, bend (S), turn (T), and loop (L) as well as 3-10 helix (G) and
alpha helix (H) were also highly confused.
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(a) Confusion matrix of the best protein
secondary structure prediction model
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protein secondary structure prediction model

Figure 2.12. The confusion matrices of the best performing predictor for protein secondary
structure prediction on the test data (on CB513) are provided. Figure (a) shows the
standard confusion matrix. However, since the secondary structures are not balanced, for
better visualization class confusions, we have l1 normalized the rows in figure (b).

Discussions and Conclusion
We studied the machine learning-based protein secondary structure prediction approaches
from the protein primary sequence. We focused on finding an optimal representation and
deep learning predictive model for this task. The most challenging dataset for this task
to-date is Q8 (8 classes) on CullPDB/CB513 dataset, where the dissimilarity of training and
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Table 2.11. Protein secondary structure prediction results on different deep learning
architectures implemented in DeepPrime2Sec, on top of the combination of PSSM and
one-hot representation and the ensemble of their top-k models are shown and compared to
the state-of-the-art approaches on the CB513 test set.

DeepPrime2Sec Neural networks Q8 accuracy - CB513
CNN 68.1%
BiLSTM 67.5%
CNN-BiLSTM 69.9%
CNN-BiLSTM-CRF 69.0%
CNN-BiLSTM with highway connection 69.6%
CNN-BiLSTM with attention layer 69.2%
Muliscale CNN with highway connection 66.9%

Ensemble of top neural networks/features
Ensemble of 5 neural networks 70.3%
Ensemble of 10 neural networks 70.2%
Ensemble of 20 neural networks 70.3%
Ensemble of 50 neural networks 70.3%
Ensemble of 100 neural networks 70.4%
Previously reported performances in the literature
Zhou & Troyanskaya (Jian Zhou and Troyanskaya 2014) 2014 (CNN) 66.7%
Sønderby & Winther (Sonderby and Winther 2014) 2014 (LSTM) 67.4%
Wang et al (S. Wang et al. 2016) 2016 (Convolutional neural fields) 68.3%
Johansen et al (Johansen et al. 2017) 2017 (biRNN-CRF) 69.4%
Johansen et al (Johansen et al. 2017) 2017 (biRNN) 68.5%
Zhou et al (Jiyun Zhou et al. 2018) 2018 (Multi-scale CNN) 69.3%
Zhou et al (Jiyun Zhou et al. 2018) 2018 (Multi-scale CNN) 70.3%

test set is ensured. We investigated (i) different protein sequence representations including
one-hot vectors, biophysical features, protein sequence embedding (ProtVec), deep amino
acid contextualized embedding (ELMo), and the Position Specific Scoring Matrix (PSSM),
(ii) different deep-learning architectures including convolutional neural networks (CNN),
recurrent neural networks (in particular Bi-LSTM), use of highway connection, attention
mechanism, and multi-scale CNN (). We show that PSSM and its combination with one-hot
vectors achieves the best performance in protein secondary structure prediction. The best
performing model was the CNN-BiLSTM architecture, which captures both local and global
sequence features essential for proteins secondary structure. We explored data augmentation
of one-hot vector based on the PSSM, which was not successful. A future direction could be
exploring possible data augmentation schemes of PSSM features.

DeepPrime2Sec provides the community with a deep learning tool specialized for the
protein secondary structure prediction covering different architectures. The BiLSTM-CRF
architecture performs competitive to the other existing approach in the literature, and the
ensemble of the best performing model in Prime2Sec marginally outperforms the existing
methods.

In addition, we performed error analysis on the most accurate model based on the location
of misclassified amino acids as well as the confusion matrix analysis. Strikingly, misclassified
secondary structures were significantly correlated with locating at the structural transitions.
Such a correlation is most likely due to the inaccurate assignment of the secondary structure
at the boundaries in ground-truth (Y. Yang et al. 2016). By ignoring the boundary amino
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acids from the evaluation, the Q8 accuracy would increase for an extra %20, i.e., %90.3.
Analysis of the confusion matrix furthermore indicates that similar secondary structures are
highly confusing (helices: H and G as well as unstructured regions: S, T, and L) showing
that the model can learn high-level information about the secondary structures. Even if the
exact secondary structure was not predicted, the predicted structure is similar to the target
structure.
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2.5 Summary of contributions in proteomics

We conclude the proteomics chapter with a summary of contributions of this dissertation in
protein informatics:

• Introducing a language model based distributed representation of protein sequences
(ProtVec)

• The probabilistic variable-length segmentation of protein sequences for both motif
mining and extension of the ProtVec to variable-length embeddings

• Providing state-of-the-art protein secondary structure predictor from the primary
sequences through a comprehensive investigation on the role of representations and
deep learning architectures in this task.

Distributed representation of protein sequences
The large gap between the number of known protein sequences (raw data) versus the number of
known functions/structures associated with these sequences (meta-data) motivates developing
methods that can obtain prior knowledge from the existing raw sequences to infer information
about structure and function of protein sequences. Continuous vector representations of words
known as word vectors have recently become popular in natural language processing (NLP) as
an efficient unsupervised approach to represent semantic and syntactic units of text helping in
the NLP tasks (e.g., machine translation, parsing, part-of-speech tagging, information retrieval,
etc.). Inspired by this idea, we proposed distributed vector representations of biological
sequence segments (k-mers), called bio-vector in general and ProtVec for proteins, using the
skip-gram neural network. We proposed an intrinsic evaluation of ProtVec by measuring
the continuity of the underlying biophysical properties (e.g., average mass, hydrophobicity,
charge, and etc.) using the best Lipschitz constant. In addition to intrinsic evaluations, for
extrinsic evaluations, we evaluated ProtVec representation in the classification of 324,018
protein sequences belonging to 7,027 protein families, where an average family classification
accuracy of 93% ± 0.06% was obtained. In addition, incorporation of this representation
versus one-hot vector features in Max-margin Markov Network (M3Net) for intron-exon
prediction and domain identification tasks could improve the sequence labeling accuracy from
73.84% to 74.99% and from 82.4% to 89.8%, respectively.

To the best of our knowledge, for the first time, we introduced language model-based
embedding of biological sequences. In particular, we used it for unsupervised feature extraction
from protein sequences for down-stream machine learning on protein structural and functional
annotation. ProtVec has been used and extended for variety of tasks in bioinformatics,
where we can only cite a subset of such papers (Wan and J. Zeng 2016; Islam et al. 2017;
Hamid and Friedberg 2018; K. K. Yang et al. 2018; Jaeger et al. 2018; Du et al. 2018; A.
Dutta et al. 2018; Y. Xu et al. 2018; Öztürk et al. 2018). In addition to contributions of
ProtVec in bioinformatics, similar approaches later were introduced for subword embedding in
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NLP (Schütze et al. 2016; Kocmi and Ondrej Bojar 2016), where some were directly inspired
by ProtVec work (Schütze et al. 2016).

We extended ProtVec embedding to ProtVecX (extended ProtVec) trained on sub-
sequences in the Swiss-Prot database (detailed in Section §2.3). We demonstrated that
combining the raw k-mer distributions with the embedding representations (either of ProtVec
to ProtVecX) can improve the sequence classification performance compared with using either
k-mers only or embeddings only. In addition, combining ProtVecX with k-mer occurrences
outperformed ProtVec embedding combined with k-mer occurrences for toxin and enzyme
prediction tasks. These results suggest that embedding can be used as complementary
information to the raw k-mer distribution and their added value is expressed when they are
combined with k-mer features. Using the same representation (the combination of embeddings
and k-mer features) as an input to a deep neural network, we achieved the first and the third
places in two out of three protein classification tasks in the Critical Assessment of protein
Function Annotation (CAFA) in 2018 (CAFA 3.14) (N. Zhou et al. 2019).

Probabilistic variable-length segmentation of protein sequences
One of the obvious differences between biological sequences and many natural languages
is that biological sequences (DNA, RNA, and proteins) often do not contain clear segmen-
tation boundaries of the sequence segments. This difference makes the fixed length k-mer
subsequences the common unsupervised approach in bag-of-word representation of biological
sequences, including proteins. However, these fixed-length k-mers can be arbitrary units
without any biological implication. Thus, more meaningful units need to be introduced.
We proposed a new unsupervised method for segmentation of protein sequences. Instead of
fixed-length k-mers, we segmented sequences into the commonly occurring variable-length
sub-sequences, inspired by BPE, a data compression algorithm. These sub-sequences were
then used as input features to the learning algorithm. As a modification to the original BPE
algorithm, we defined a probabilistic segmentation by sampling from the space of possible
vocabulary sizes. This probabilistic segmentation allows for considering multiple ways of seg-
menting a sequence into sub-sequences. This idea can be widely used in different applications
of protein informatics. In particular, we used it for (i) alignment-free discriminative protein
sequence motif discovery method, called DiMotif, as well as (ii) variable-length extension of
protein sequence embedding called ProtVecX.

We compared DiMotif against two existing tools for motif discovery: HH-Motif as an
instance of non-discrminative methods, and DLocalMotif as an instance of discriminative
methods. We compared the performances in the detection of 20 distinct sub-types of
experimentally verified motifs. HH-Motif comparing HMMs of orthologs for retrieving SLiMs,
achieved the best average F1 and the DiMotif with domain-specific segmentation achieved
the second best F1. DiMotif achieved the highest recall, making it an ideal tool for finding a
list of candidates for further experimental verification. In addition, we evaluated DiMotif
by extracting motifs related to (i) integrins, (ii) integrin-binding proteins, and (iii) biofilm
formation. We showed that the extracted motifs could reliably detect reserved sequences of
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the same phenotypes, as indicated by their high F1 scores. We also showed that DiMotif
could detect experimentally verified motifs related to nuclear localization signals. By using
KL divergence between the distribution of motifs in the positive sequences, DiMotif is capable
of outputting multi-part motifs. DiMotif segmentation can be inferred once from Swiss-Prot
dataset and then be used to extract the motif in a given discriminative motif mining problem
setting. Unlike the existing alignment-based motif discovery methods, the input sequences
to DiMotif do not need to be necessarily homologous sequences. Thus, it can be utilized in
cases motifs need to be found from a set of non-homologous sequences.

Deep learning for protein secondary structure prediction
We studied the machine learning-based protein secondary structure prediction approaches
from the protein primary sequence. We focused on finding an optimal representation and deep
learning predictive model for this task, over the most challenging dataset for this task to-date,
i.e., Q8 (8-way classification) on CullPDB/CB513 dataset, where the similar sequences to
the training samples are removed from the test set.

We investigated (i) different protein sequence representations including one-hot vectors,
biophysical features, protein sequence embedding (ProtVec), deep amino acid contextualized
embedding (ELMo), and the Position Specific Scoring Matrix (PSSM), (ii) different deep-
learning architectures including convolutional neural networks (CNN), recurrent neural
networks (in particular Bi-LSTM), use of highway connection, attention mechanism, and
multi-scale CNN (Jiyun Zhou et al. 2018). We showed that PSSM and its combination
with one-hot vectors achieve the best performance in protein secondary structure prediction.
The best performing model was the CNN-BiLSTM architecture, which captures both local
and global sequence features essential for proteins secondary structure. Our tool, called
DeepPrime2Sec provides the community with a specialized framework for the protein secondary
structure prediction covering different architectures. The BiLSTM-CRF architecture performs
competitive to the other existing approach in the literature, and the ensemble of the best
performing model in Prime2Sec marginally outperforms the existing methods. Also, we
performed error analysis on the most accurate model based on the location of misclassified
amino acids as well as the confusion matrix analysis. Strikingly, misclassified secondary
structures were significantly correlated with locating at the structural transitions. Such a
correlation is most likely due to the inaccurate assignment of the secondary structure at the
boundaries in ground-truth (Y. Yang et al. 2016). By ignoring the boundary amino acids
from the evaluation, the Q8 accuracy would increase for an extra %20, i.e., %90.3. Analysis
of the confusion matrix furthermore indicates that similar secondary structures are highly
confusing (helices: H and G as well as unstructured regions: S, T, and L) showing that the
model can learn high-level information about the secondary structures.
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Chapter 3

Language-agnostic processing of
genomics/metagenomics

3.1 Introduction and chapter overview

Microbial communities exist on every accessible surface on earth and have important functions
relevant to supporting, regulating, and in some cases causing unwanted conditions (e.g.,
diseases) in their hosts/environments, ranging from organismal environments, such as the
human body, to ecological environments, such as soil and water (R. Martin et al. 2014). These
communities typically consist of a variety of microorganisms, including eukaryotes, archaea,
bacteria, and viruses. Due to differences in nutrient availability and environmental conditions,
microbial communities from different environments have widely varying taxonomic structures
and compositions (Costello et al. 2009; Pinto et al. 2012; Moran 2015; Sunagawa et al. 2015;
Fierer 2017; Eck et al. 2017; Duvallet et al. 2017).

The human microbiota refers to all microorganisms living in close association with the
human body. It is now widely believed that changes in our microbiota correlate with nu-
merous diseases, raising the possibility that manipulation of these communities may be
used to treat diseases. The microbiota (particularly the intestinal microbiota) is known to
play important roles in healthy humans, including: (i) prevention of pathogen growth, (ii)
education and regulation of the host immune system, and (iii) providing energy substrates
to the host (Lynch and Pedersen 2016). Consequently, dysbiosis of the human microbiota

¶The content of this chapter is based on the following publications:

1. Asgari, E., Garakani, K., McHardy, A. C., & Mofrad, M. R. (2018). MicroPheno: Predicting
environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation
of shallow sub-samples. Bioinformatics, 34(13), i32-i42, https://doi.org/10.1093/bioinformatics/bty296.

2. Asgari, E., Münch, P. C., Lesker, T. R., McHardy, A. C., & Mofrad, M. R. (2018). DiTaxa: Nucleotide-
pair encoding of 16S rRNA for host phenotype and biomarker detection. Bioinformatics, bty954,
https://doi.org/10.1093/bioinformatics/bty954.
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can promote diseases, including asthma (Marsland et al. 2013; Arrieta et al. 2015), irritable
bowel syndrome (Saulnier et al. 2011; I. Cho and Blaser 2012), Clostridium difficile infec-
tion (Cammarota et al. 2014), chronic periodontitis (Z. L. Deng et al. 2017; Jorth et al. 2014),
cutaneous leishmaniasis (Gimblet et al. 2017), obesity (Turnbaugh et al. 2008; Ridaura et al.
2013), chronic kidney disease (Ramezani and Raj 2014), Ulcerative colitis (Michail et al.
2012), and Crohn’s disease (Gevers et al. 2014; Pascal et al. 2017). For instance, the human
microbiota appears to play a particularly important role in the development of Crohn’s
disease, an inflammatory bowel disease (IBD), with a prevalence of approximately 40 per
100,000 and 200 per 100,000 in children and adults, respectively (Kappelman et al. 2007).
The role of human microbiota in human health motivates developing methods for inferring
relationships between microbial taxa or functions associated with certain host phenotypes.
Similarly, environmental microbial communities also serve important functions, such as
nutrient cycling (Gilbert and Neufeld 2014). For instance, the microbiota living in the ocean
account for half of the primary production on Earth (Moran 2015). The soil microbiome
surrounding the root of plants impacts plant fertility and growth (Chaparro et al. 2012).
Such studies are called metagenomic studies, as they deal with the collective genomes of
microorganisms from environmental samples for inferring the microbial diversity and certain
characteristics of the environments of interest. Metagenomics is a relatively new area of
research in microbiology and is becoming increasingly important (R. Martin et al. 2014).

The starting point of many
metagenomic studies is either 16S
rRNA gene amplicon or shotgun
metagenome sequencing of environ-
mental samples (Pollock et al. 2018).
16S rRNA gene sequencing has sev-
eral disadvantages in comparison
with shotgun metagenomics, such
as its inability to resolve functions,
and accordingly functional varia-
tions within individual taxa (Poret-
sky et al. 2014; Ranjan et al. 2016;
Cottier et al. 2018; Pollock et al.
2018). However, due to its low
cost, 16S rRNA amplicon sequenc-
ing is still the most popular data
type generated in microbiome stud-
ies (Hamady and R. Knight 2009;
Pollock et al. 2018). The 16S rRNA
gene is highly conserved across bacteria and archaea, includes both conserved regions, against
which universal species-independent PCR primers can be directed, and nine hypervariable
regions (V1-V9), which allow differential identification of taxon identities and relative abun-
dances (Janda and Abbott 2007). After sequencing, the obtained data are usually processed
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with bioinformatics software such as QIIME (Caporaso et al. 2010; Lawley and Tannock
2017), Mothur (Schloss et al. 2009), or Usearch (Robert C. Edgar et al. 2011)] and clustered
into groups of closely related sequences, referred to as Operational Taxonomic Units (OTUs).

Three main strategies for creating OTUs have been developed: in the de novo OTU
clustering scheme, input sequences are aligned against one another and OTU clusters created
based on a user-specified percent identity cutoff (in practice mostly 97%) without comparisons
to reference databases. The implementation of the de novo strategy is difficult to parallelize
and therefore limited to small-scale datasets. Variations of this method, such as sub-sample
open-reference OTU picking (Rideout et al. 2014) or centroid-based greedy clustering
approaches (W. Li and Godzik 2006) accelerate this process and enable their application to
larger datasets. Alternatively, in closed-reference OTU clustering, input reads are aligned to
a set of cluster centroids defined in a reference database (containing clusters of previously
identified OTUs) and will be reported as an OTU, if they align at a given threshold. This
strategy will not report OTUs for novel taxa that are not part of the reference database,
though. An advantage is the usual high quality of taxonomic assignments of the reference
database, which can be used for taxonomic assignment of the OTUs from the community
of interest. Finally, the open-reference OTU clustering scheme combines de novo and
closed-reference picking, where input sequences are aligned against a reference database
(such as Greengenes (DeSantis et al. 2006)) and sequences that fail to match the reference
are subsequently clustered de novo in a serial process (Rideout et al. 2014)). Individual
algorithms for OTU clustering, post- and pre-processing have been combined to pipelines
such as mothur (Schloss et al. 2009), QIIME (Caporaso et al. 2010; Lawley and Tannock
2017), USEARCH (Robert C. Edgar et al. 2011) and LotuS (Hildebrand et al. 2014).

Although OTU clustering has simplified 16S rRNA processing by substituting the analysis
of millions of reads by analysis of only thousands of OTUs, it still has several disadvantages:
OTUs do not necessarily represent meaningful taxonomic units, such as e.g. species, and
sequencing errors may inflate diversity estimates by orders of magnitude (Kunin et al. 2010).
To prevent diversity overestimates, OTU based approaches require a highly stringent quality
control and relaxed clustering at < 97% similarity. While this approach limits the inflation
of OTUs by potential sequencing errors, it comes at the expense of taxonomic resolution
and may combine organisms with distinct biological properties and capabilities into a single
OTU. A further disadvantage is that OTU calling requires extensive sequence alignment
efforts. All of the above mentioned OTU-picking strategies involve sequence alignments either
to the reference genomes or to the sample sequences, which is computationally expensive
and cannot be easily extended to further samples. It was shown that OTUs were generally
ecologically consistent across habitats, but observed OTU content can differ substantially
between clustering methods (T. S. B. Schmidt et al. 2014). Since the number of obtained
OTUs and their content is dependent on the pipeline and the parameter settings, reproducing
the same analysis is difficult (Y. He et al. 2015). An alternative solution is the analysis of
individual 16S rRNA gene sequence (Callahan et al. 2016; Amir et al. 2017; Nearing et al.
2018), which is computationally challenging, as each 16S rRNA sample may contain 10,000s
of sequences. The main focus of this chapter is developing OTU-free methods for processing
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of 16S rRNA sequencing.

Chapter overview
We begin this chapter with a genomic phenotype prediction problem setting and show that
language-agnostic k-mer representations of microbial genomes can be more effective than
expensive genomic sequence events in the detection of the phenotype of interest. Next,
we extend the setting to the metagenomics. In Section §3.3 In Section §3.3, we introduce
MicroPheno, a reference- and alignment-free approach for predicting environments and host
phenotypes from 16S rRNA gene sequencing based on sequence k-mer representations that
benefit from a bootstrapping framework for investigating the sufficiency of shallow sub-
samples. Deep learning methods, as well as classical approaches, were explored for predicting
environments and host phenotypes. MicroPheno is the state-of-the-art approach for the
host phenotype prediction outperforming costly OTU features. Although MicroPheno could
outperform OTU features in phenotype prediction, short k-mers cannot be easily used as
taxa distinctive biomarkers and OTU features remained the state-of-the-art in biomarker
detection (Segata, Izard, et al. 2011). In Section §3.4, we propose DiTaxa, an alignment-
and reference- free, subsequence based paradigm for processing of 16S rRNA microbiome
data for phenotype and biomarker detection. The main distinction of this approach from
existing methods is substituting standard OTU-clustering (Robert C Edgar 2013) or sequence-
level analysis (Callahan et al. 2016) by segmenting 16S rRNA reads into the most frequent
variable-length subsequences of a dataset. we compare the performance of DiTaxa to the
state-of-the-art methods using human-associated 16S rRNA samples for periodontal disease,
rheumatoid arthritis, and inflammatory bowel diseases, as well as a synthetic benchmark
dataset. We show that DiTaxa improved the state-of-the-art performance in biomarker
detection over 16S rRNA data while performing competitively to the k-mer based state-of-the-
art approach in phenotype prediction. Finally, in Section §3.5, we conclude with a summary
of contributions this dissertation has had in metagenomics.
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3.2 K-mer based representation for microbial genome

phenotype prediction

Before facing the complexity of metagenomics, we investigate the strength of language-agnostic
representations in the prediction of microbial phenotypes in a single genomics setting. In
particular, we attempt to predict infection-causing strains of Klebsiella pneumoniae, which
contains several loci that are related to virulence.

Genome representations
In a typical genotype-phenotype association scenario, the genomic DNAs of clinical microbial
isolates of different phenotypes are sequenced into reads. Subsequently, the trimmed reads
are assembled using genome assemblers, and then the assembled genomes are annotated
using genome annotators. Next, the genes are clustered into gene families. Presence/absence
of these genes (GPA) is one of the features used in the machine learning classification of
genomes. The GPA features aside, single-nucleotide polymorphism (SNPs) are also extracted
using variant calling pipelines and are the other features in the classification. Often the
transcriptional profiles are also included as part of features (gene expression profiles). In
fact, many of these processes are language-aware and much domain knowledge other than
DNA/RNA sequences are needed (e.g. mappings to the references). Here, we would like to
investigate whether sequence information alone would be sufficient for a machine learning-
based prediction of the phenotype of interest. An alternative to the extraction of genomic
events is to use directly sequence features. Frequency of overlapping k-mers in the sequences is
a simple but effective representation for many bioinformatics tasks. Since for the detection of
genomic events (e.g., GPA and SNPs) the domain knowledge is explicitly used (e.g., reference
genomes or gene families) we consider them as language-dependent methods, while k-mer
representation is completely language agnostic and use no other information than the genome
sequence. Variety of predictive models are used for the machine learning-based prediction
of microbial phenotypes, including support vector machine, random forests, deep neural
networks, based on the problem setting and the number of training samples (Khaledi et al.
2019).

Method
Dataset

The dataset we use for this experiment is the Klebsiella pneumoniae dataset of sequencing
reads belong to 178 isolates collected from six countries available at European Nucleotide
Archive∗. For these isolates, the binary clinical phenotype of human carriage status versus

∗https://www.ebi.ac.uk/ena/data/view/PRJEB2111



CHAPTER 3. LANGUAGE-AGNOSTIC PROCESSING OF
GENOMICS/METAGENOMICS 93

human infection (including invasive infections) is provided. 142 Klebsiella pneumoniae isolates
are associated with the’human infection’ phenotype and 36 of them with ’human carriage’.

Representation Creation

Language-aware genomic events: The isolate reads obtained from European Nucleotide
Archive, were assembled with SPAdes, v.3.0.1 (Bankevich et al. 2012). We annotate the
assembled genomes via Prokka (v1.12) (Seemann 2014). Next, we cluster the gene sequences
into gene families using Roary (Page et al. 2015). Subsequently, MAFFT is used to infer
multiple sequence alignments (Katoh and Standley 2013). Next, MSA2VCF∗ for indels is
utilized. Reads were mapped to the reference using Stampy (Lunter and Goodson 2011),
followed by SNPs detection with SAMtools (H. Li et al. 2009). We distinguish between
synonymous (not causing a change in the amino acid) versus non-synonymous SNPs (changing
the amino acid).

K-mer representation: we generate overlapping k-mer frequency distributions from the
sequenced isolates. the k value of 6 was chosen which is relatively small, in comparison
with other k-mer representations in the literature (Aun et al. 2018). As discussed in §2.3,
k-mer representations are popular in machine learning for all areas of bioinformatics research,
including proteomics (Grabherr et al. 2011; Asgari and M. R. Mofrad 2015), genomics (Jolma
et al. 2013; Alipanahi et al. 2015), epigenomics (Awazu 2016; Giancarlo et al. 2015), and
metagenomics (Derrick E Wood and Steven L Salzberg 2014; Asgari, Garakani, et al. 2018).
The reason behind introducing redundancy of overlapping k-mers is the uncertainty exists in
the segmentation of the biological sequences.

Machine learning classifier

For the predictive modeling we utilize support vector machine (SVM) classifier (Cortes and
Vapnik 1995) with a linear kernel, random forests (RF) (Cutler et al. 2012), and logistic
regression (LR) (Cramer 2002). The size of the dataset is not large enough for proper training
of neural network architectures. We use 80% of the data in cross-validation (cv) and the
remaining 20% for test purpose. Two separate scenarios of splitting the test set and the
cross-validation folds are defined: (i) a completely random splitting and (ii) a challenging
setting where the cross-validation folds and the test set are all phylogenetically distant.
We perform hyperparameter tuning of the classifiers optimizing for the F1-score in 10-fold
cross-validation setting. The RF classifier are optimized for the macro F1-score over different
hyperparameters, including (i) the number of decision trees in the ensemble, (ii) the number
of features for computing the best node split, (iii) the function to measure the quality of
a split and (iv) the minimum number of samples required to split a node. The logistic
regression and the linear SVM are optimized for the macro F1-score over (i) the C parameter
(inverse to the regularization strength) and (ii) class weights (to be uniform over all classes

∗https://github.com/lindenb/jvarkit/
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or proportional to the class frequencies). Subsequently, we evaluate the optimized classifier
on the test set.

Results
We provide the results on the phylogenetically-informed split of cross-validation folds and the
test set, separate from the random split. The classification results on prediction of bacterial
phenotype to be ‘human infection’ versus ‘human carriage’ using random split is shown in
Tables 3.2 and 3.2 respectively for the cross-validation and the test set. The classification
performance on prediction of bacterial phenotype to be ‘human infection’ versus ‘human
carriage’ using phylogenetically-aware split is shown in Tables 3.4 and 3.4 respectively for
the cross-validation and the test set. The most important set of results for us would be the
performance on the test set when the test set is phylogenetically distant from the training,
i.e., Table 3.4. For selection of the best results we look at the maco-F1 score as it is the
average of F1 for both positive and negative class and both classes are considered equally in
this evaluation metric.

Interestingly, 6-mer, while being the least computationally expensive feature and language-
agnostic, achieved the best macro-F1 of 84% and the F1 of 91%. The choice of classifier is
highly dependent on the feature used. For the 6-mer SVM is the best performing classifier,
while using GPA features, LR has been the best choice.

Conclusions
We showed that the language-agnostic features, i.e., k-mers can perform equal or even better
than representation requiring domain knowledge and reference sequences to produce. In
the case of human infection phenotype prediction for Klebsiella pneumoniae strains, the
short k-mer (k=6) could achieve the best macro-F1 score in a challenging setting where
both cross-validation folds and the test set were supposed to phylogenetically distant. The
main disadvantage of short k-mers is that the most discriminative features cannot easily
be mapped to functional units in comparison with GPA and SNPs, which are genomic
events that are easier to track. In the next sections, we extend the k-mer representation
for metagenomics setting (§3.3). Next, in §3.4, we provide a sub-sequence-based language-
agnostic representation that having high predictive power aside, can also be mapped to
certain taxonomic categories.
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Table 3.1. Human infection phenotype prediction cross-validation results for Klebsiella
pneumoniae strains

Accuracy Precision Recall F1 macro-F1
Feature Classifier

6-mer LR 0.85 0.95 0.85 0.90 0.80
RF 0.80 0.85 0.90 0.88 0.68

SVM 0.87 0.96 0.87 0.91 0.83
GPA LR 0.74 0.79 0.91 0.85 0.53

RF 0.76 0.78 0.96 0.86 0.46
SVM 0.72 0.80 0.85 0.82 0.55

GPA 6-mer LR 0.73 0.80 0.87 0.83 0.56
RF 0.81 0.85 0.92 0.88 0.68

SVM 0.70 0.79 0.84 0.82 0.53
GPA non_syn_SNP LR 0.74 0.83 0.83 0.83 0.62

RF 0.77 0.79 0.97 0.87 0.49
SVM 0.72 0.82 0.82 0.82 0.60

GPA syn_SNP LR 0.76 0.80 0.92 0.86 0.56
RF 0.77 0.78 0.97 0.87 0.46

SVM 0.72 0.80 0.87 0.83 0.54
non_syn_SNP LR 0.72 0.82 0.82 0.82 0.58

RF 0.77 0.78 0.97 0.87 0.46
SVM 0.69 0.78 0.83 0.81 0.51

non_syn_SNP 6-mer LR 0.72 0.82 0.82 0.82 0.58
RF 0.79 0.85 0.89 0.87 0.68

SVM 0.72 0.81 0.84 0.82 0.56
non_syn_SNP syn_SNP LR 0.78 0.78 0.99 0.88 0.47

RF 0.77 0.78 0.98 0.87 0.43
SVM 0.78 0.78 0.99 0.88 0.47

syn_SNP LR 0.74 0.79 0.91 0.85 0.53
RF 0.77 0.78 0.97 0.87 0.46

SVM 0.76 0.79 0.94 0.86 0.52
syn_SNP 6-mer LR 0.75 0.79 0.92 0.85 0.53

RF 0.81 0.85 0.92 0.88 0.68
SVM 0.76 0.79 0.94 0.86 0.52
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Table 3.2. Human infection phenotype prediction test set results for Klebsiella pneumoniae
strains

Accuracy Precision Recall F1 macro-F1
Feature Classifier

6-mer LR 0.94 0.93 1.00 0.97 0.91
RF 0.94 0.93 1.00 0.97 0.91

SVM 0.94 0.93 1.00 0.97 0.91
GPA LR 0.67 0.75 0.86 0.80 0.40

RF 0.78 0.78 1.00 0.88 0.44
SVM 0.67 0.75 0.86 0.80 0.40

GPA 6-mer LR 0.67 0.75 0.86 0.80 0.40
RF 0.94 0.93 1.00 0.97 0.91

SVM 0.61 0.73 0.79 0.76 0.38
GPA non_syn_SNP LR 0.67 0.75 0.86 0.80 0.40

RF 0.78 0.78 1.00 0.88 0.44
SVM 0.67 0.75 0.86 0.80 0.40

GPA syn_SNP LR 0.72 0.80 0.86 0.83 0.56
RF 0.78 0.78 1.00 0.88 0.44

SVM 0.61 0.73 0.79 0.76 0.38
non_syn_SNP LR 0.67 0.79 0.79 0.79 0.52

RF 0.72 0.76 0.93 0.84 0.42
SVM 0.72 0.80 0.86 0.83 0.56

non_syn_SNP 6-mer LR 0.67 0.79 0.79 0.79 0.52
RF 0.94 0.93 1.00 0.97 0.91

SVM 0.67 0.75 0.86 0.80 0.40
non_syn_SNP syn_SNP LR 0.67 0.75 0.86 0.80 0.40

RF 0.78 0.78 1.00 0.88 0.44
SVM 0.72 0.76 0.93 0.84 0.42

syn_SNP LR 0.67 0.75 0.86 0.80 0.40
RF 0.78 0.78 1.00 0.88 0.44

SVM 0.67 0.75 0.86 0.80 0.40
syn_SNP 6-mer LR 0.67 0.75 0.86 0.80 0.40

RF 0.94 0.93 1.00 0.97 0.91
SVM 0.67 0.75 0.86 0.80 0.40
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Table 3.3. Human infection phenotype prediction phylogenetic-aware-cross-validation
results for Klebsiella pneumoniae strains

Accuracy Precision Recall F1 macro-F1
Feature Classifier

6-mer LR 0.87 0.97 0.86 0.91 0.84
RF 0.83 0.90 0.86 0.88 0.77

SVM 0.87 0.97 0.86 0.91 0.84
GPA LR 0.78 0.86 0.85 0.85 0.70

RF 0.76 0.76 0.98 0.86 0.43
SVM 0.77 0.77 1.00 0.87 0.43

GPA 6-mer LR 0.78 0.86 0.85 0.85 0.70
RF 0.86 0.91 0.91 0.91 0.80

SVM 0.77 0.77 1.00 0.87 0.43
GPA non_syn_SNP LR 0.76 0.85 0.83 0.84 0.66

RF 0.71 0.76 0.91 0.83 0.45
SVM 0.76 0.84 0.85 0.84 0.65

GPA syn_SNP LR 0.81 0.89 0.86 0.88 0.75
RF 0.71 0.76 0.91 0.83 0.45

SVM 0.79 0.91 0.80 0.85 0.74
non_syn_SNP LR 0.78 0.90 0.80 0.85 0.72

RF 0.71 0.77 0.89 0.83 0.48
SVM 0.77 0.90 0.79 0.84 0.71

non_syn_SNP 6-mer LR 0.78 0.90 0.80 0.85 0.72
RF 0.87 0.92 0.91 0.92 0.82

SVM 0.77 0.90 0.79 0.84 0.71
non_syn_SNP syn_SNP LR 0.78 0.90 0.80 0.85 0.72

RF 0.72 0.77 0.91 0.83 0.49
SVM 0.76 0.89 0.77 0.83 0.70

syn_SNP LR 0.76 0.89 0.77 0.83 0.70
RF 0.71 0.76 0.91 0.83 0.45

SVM 0.76 0.89 0.77 0.83 0.70
syn_SNP 6-mer LR 0.76 0.89 0.77 0.83 0.70

RF 0.87 0.90 0.94 0.92 0.81
SVM 0.76 0.89 0.77 0.83 0.70
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Table 3.4. Human infection phenotype prediction phylogenetically-distant test set results
for Klebsiella pneumoniae strains

Accuracy Precision Recall F1 macro-F1
Feature Classifier

6-mer LR 0.88 0.94 0.89 0.92 0.86
RF 0.88 0.90 0.95 0.92 0.85

SVM 0.90 0.94 0.92 0.93 0.88
GPA LR 0.65 0.81 0.68 0.74 0.60

RF 0.76 0.78 0.95 0.85 0.63
SVM 0.69 0.71 0.95 0.81 0.41

GPA 6-mer LR 0.65 0.81 0.68 0.74 0.60
RF 0.86 0.89 0.92 0.91 0.82

SVM 0.69 0.71 0.95 0.81 0.41
GPA non_syn_SNP LR 0.65 0.83 0.65 0.73 0.61

RF 0.67 0.73 0.86 0.79 0.49
SVM 0.69 0.82 0.73 0.77 0.64

GPA syn_SNP LR 0.67 0.83 0.68 0.75 0.63
RF 0.67 0.73 0.86 0.79 0.49

SVM 0.55 0.85 0.46 0.60 0.54
non_syn_SNP LR 0.63 0.91 0.54 0.68 0.62

RF 0.69 0.74 0.86 0.80 0.54
SVM 0.63 0.91 0.54 0.68 0.62

non_syn_SNP 6-mer LR 0.63 0.91 0.54 0.68 0.62
RF 0.90 0.92 0.95 0.93 0.87

SVM 0.63 0.91 0.54 0.68 0.62
non_syn_SNP syn_SNP LR 0.63 0.95 0.51 0.67 0.62

RF 0.67 0.73 0.86 0.79 0.49
SVM 0.63 0.95 0.51 0.67 0.62

syn_SNP LR 0.61 0.84 0.57 0.68 0.59
RF 0.67 0.73 0.86 0.79 0.49

SVM 0.61 0.84 0.57 0.68 0.59
syn_SNP 6-mer LR 0.61 0.84 0.57 0.68 0.59

RF 0.84 0.89 0.89 0.89 0.80
SVM 0.61 0.84 0.57 0.68 0.59
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3.3 K-mer based representation for predicting

environments and host phenotypes

Microbial communities play important roles in the function and maintenance of various
biosystems, ranging from the human body to the environment. A major challenge in
microbiome research is the classification of microbial communities of different environments or
host phenotypes. The most common and cost-effective approach for such studies to date is 16S
rRNA gene sequencing. Recent falls in sequencing costs have increased the demand for simple,
efficient, and accurate methods for rapid detection or diagnosis with proved applications
in medicine, agriculture, and forensic science. We describe a reference- and alignment-free
approach for predicting environments and host phenotypes from 16S rRNA gene sequencing
based on k-mer representations that benefits from a bootstrapping framework for investigating
the sufficiency of shallow sub-samples. Deep learning methods as well as classical approaches
were explored for predicting environments and host phenotypes. K-mer distribution of shallow
sub-samples outperformed Operational Taxonomic Unit (OTU) features in the tasks of body-
site identification and Crohn’s disease prediction. Aside from being more accurate, using
k-mer features in shallow sub-samples allows (i) skipping computationally costly sequence
alignments required in OTU-picking, and (ii) provided a proof of concept for the sufficiency of
shallow and short-length 16S rRNA sequencing for phenotype prediction. In addition, k-mer
features predicted representative 16S rRNA gene sequences of 18 ecological environments, and
5 organismal environments with high macro-F1 scores of 0.88 and 0.87. For large datasets,
deep learning outperformed classical methods such as Random Forest and SVM.

Machine learning for 16S rRNA Gene Sequence Analysis
Popular main machine learning tasks over 16S rRNA gene sequencing data are taxonomic
classification, host phenotype prediction, as well as biomarker detection. Several recent
studies predicted the environment or host phenotypes using 16S gene sequencing data for
body-sites (Knights et al. 2011; Statnikov et al. 2013), disease state (X. Xu et al. 2016; Eck et
al. 2017; Duvallet et al. 2017), ecological environment quality status prediction (Cordier et al.
2017), and subject prediction for forensic science (Fierer et al. 2010; Schmedes et al. 2018). In
all, OTUs served as the main input feature for the down stream machine learning algorithms.
Random Forest and then, ranking second, linear Support Vector Machine (SVM) classifiers
were reported as the most effective classification approaches in these studies (Statnikov et al.
2013; Pasolli et al. 2016; Carrieri et al. 2016; Duvallet et al. 2017).

Related prior work on body-site classification (Knights et al. 2011; Statnikov et al. 2013)
used the following datasets: Costello Body Habitat (CBH - 6 classes), Costello Skin Sites
(CSS - 12 classes) (Costello et al. 2009), and Pei Body Site (PBS - 4 classes ) (Statnikov et al.
2013). An extensive comparison of classifiers for body-site classification over CBH, CSS, and
PBS on top of OTU features has been performed by Statnikov et al (Statnikov et al. 2013).
The best accuracy levels measured by relative classifier information (RCI) achieved by using
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OTU features are reported as 0.784, 0.681, and 0.647 for CBH, CSS, and RCI respectively.
Due to the insufficiency of the number of samples (on average 57 samples per class for
CBH, CSS, and PBS) as well as the unavailability of raw sequences for some of the datasets
mentioned above, instead of using the same dataset we replicate the state-of-the-art approach
suggested in (Statnikov et al. 2013), i.e. Random Forest and SVM over OTU features for a
larger dataset (Human Microbiome Project dataset). We then compare OTU features with
k-mer representations. Working on a larger dataset allows for a more meaningful investigation
and better training for deep learning approaches.

Detecting disease status based on 16S gene sequencing is becoming more and more popular,
with applications in the prediction of Psoriasis (151 samples for 3 classes - Best accuracy:
0.225), IBD (patients: 49 samples, healthy:59 - Best AUC:0.95) (X. Xu et al. 2016), (patients:
91 samples, healthy: 58 samples - Best AUC:0.92) (Eck et al. 2017). Similar to body-site
classification datasets, the datasets used for disease prediction were also relatively small.
In this paper, we use the Crohn’s disease dataset (Gevers et al. 2014) with 1359 samples
(patients: 731 samples, negative class: 628 samples) for evaluating our proposed method and
then compare it with the use of OTU features.

We focus on machine learning approaches for classification of environments or host
phenotypes of 16S rRNA gene sequencing data, which is the most popular and cost-effective
sequencing method for the characterization of microbiome to date (Pasolli et al. 2016; Pollock
et al. 2018). Studies on the use of machine learning for predicting microbial phenotype
instead of environments/host phenotype (Dutilh et al. 2013; Ross et al. 2013), as well as
predictions based on shotgun metagenome and whole-genome microbial sequencing are beyond
the scope of this paper, although we believe that one may easily adapt the proposed approach
to shotgun metagenomics, similar to the study by Cui et al. on IBD prediction (Cui and
Xuegong Zhang 2013).

Recently, deep learning methods became popular in various applications of machine
learning in bioinformatics (Asgari and M. R. Mofrad 2015; Min et al. 2016) and in particular
in microbiome research (Ditzler et al. 2015). However, to the best of our knowledge, this is
the first study exploring environment and host phenotype prediction from 16S rRNA gene
sequencing data with deep learning approaches.

16S rRNA gene sequence representations

OTU representation

As reviewed in §3.3, prior machine learning works on environment/host phenotype prediction
have been mainly using OTU representations as the input features to the learning algorithm.
Although there exist non-OTU based pipelines for 16S rRNA sequence analysis (e.g. DADA-
2 (Callahan et al. 2016)), almost all popular 16S rRNA sequence processing pipelines cluster
sequences into OTUs based on their sequence similarities, utilizing a variety of algorithms (N.-P.
Nguyen et al. 2016; Lawley and Tannock 2017). QIIME allows OTU-picking using three
different strategies: (i) closed-reference OTU-picking: sequences are compared against
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a marker gene database (e.g., Greengenes (D. McDonald et al. 2012) or SILVA (Quast
et al. 2013)) to be clustered into OTUs and then the sequences different from the reference
genomes beyond a certain sequence identity threshold are discarded. (ii) open-reference
OTU-picking: the remaining sequences after a closed-reference calling go through a de novo
clustering. This allows for using the whole sequences as well as capturing sequences belonging
to new communities, which are absent in the reference databases (Rideout et al. 2014). (iii)
pure de novo OTU-picking: sequences (or reads) are only compared among themselves
and no reference database is used. The third strategy is more appropriate for novel species
absent in the current reference. Although OTU clustering reduces the analysis of millions
of reads to working with only thousands of OTUs and simplifies the subsequent phylogeny
estimation and multiple sequence alignment, OTU representations have several shortcomings:
(i) All three OTU-picking strategies involve massive amounts of sequence alignments either
to the reference genomes (in closed/opened-reference strategies) or to the sequences present
in the sample (in open-reference and de novo strategies) which makes them very expensive (Y.
Cai et al. 2017) in comparison with reference-free/alignment-free representations. (ii) Overall
sequence similarity is not a proper condition for grouping sequences and OTUs can be
phylogenetically incoherent. For instance, a single mutation between two sequences is mostly
ignored by OTU-picking algorithms. However, if the mutation does not occur within the
sample, it might be a signal for assigning a new group. In addition, several mutations within
a group most likely are not going to be tolerated by OTU-picking algorithms. However,
having the same ratio across samples may suggest that the mutated sequences belong to the
same group (Koeppel and M. Wu 2013; N.-P. Nguyen et al. 2016). (iii) The number of OTUs
and even their contents are very sensitive to the pipeline and parameters, and this makes
them difficult to reproduce (Y. He et al. 2015).

k-mer representations

k-mer count vectors have been shown to be suitable input features for performing machine
learning on biological sequences for a variety of bioinformatics tasks (Marçais and Kingsford
2011). In particular, k-mer count features have been used for taxonomic classifications of
microbial 16S and metagenome datasets (McHardy et al. 2007; Patil et al. 2011; Derrick E.
Wood and Steven L. Salzberg 2014; Kawulok and Deorowicz 2015; Menzel and Krogh 2015;
Vervier et al. 2016). However, to the best of our knowledge, k-mer features have not been
explored for phenotypical and environmental characterizations of 16S rRNA sequence data.

In this paper we propose using k-mer representations of shallow sub-samples for predicting
environments and host phenotypes from 16S rRNA sequences. Our approach is fast, reference-
free and alignment-free, while contributing to building accurate classifiers outperforming
conventional OTU features in body-site identification and Crohn’s disease classification. We
propose a bootstrapping framework to investigate the sufficiency of shallow sub-samples
for the prediction of the phenotype of interest, which proves the sufficiency of short-length
and shallow sequencing of 16S rRNA. In addition, we explore deep learning methods as
well as classical approaches for classification. Furthermore, we demonstrate the value of
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PCA, t-SNE, and supervised deep representation learning for visualization of microbial
samples/sequences of different phenotypes. We also show that k-mer features can be used
to predict representative 16S rRNA gene sequences from 18 ecological environments and 5
organismal environments with high macro-F1s.

Material and Methods
Datasets

Body-site identification

We employ the 16S rRNA gene sequence dataset provided by the NIH Human Microbiome
Project (HMP) (Peterson et al. 2009; Huttenhower and Human Microbiome Project Con-
sortium 2012)∗. In particular, we use processed, annotated 16S rRNA gene sequences of up
to 300 healthy individuals, each sampled at 4 major body-sites (oral, airways, gut, vagina)
and up to three time points. For each major body-site, a number of sub-sites were sampled.
We focus on 5 body sub-sites: anterior nares (nasal) with 295 samples, saliva (oral) with
299 samples, stool (gut) with 325 samples, posterior fornix (urogenital) with 136 samples,
and mid vagina (urogenital) with 137 samples, in total 1192 samples. These body-sites
are selected to represent differing levels of spatial and biological proximity to one another,
based on relevance to pertinent human health conditions potentially influenced by the human
microbiome. To compare k-mer based approach with state-of-the-art OTU features, we collect
the closed-reference OTU representations of the same samples in HMP (Huttenhower and
Human Microbiome Project Consortium 2012) † obtained using the QIIME pipeline (Rideout
et al. 2014).

Crohn’s disease prediction

For the classification of Crohn’s disease, we use the 16S rRNA dataset described in (Gevers
et al. 2014)‡, which is currently the largest pediatric Crohn’s disease dataset available. This
dataset includes annotated 16S rRNA gene sequence data for 731 pediatric ( 17 years
old) patients with Crohn’s disease and 628 samples verified as healthy or diagnosed with
other diseases, making a total of 1359 samples. Sequencing here was targeted towards
the V4 hypervariable region of the 16S rRNA gene. Similar to the body-site dataset, to
compare the k-mer based approach with the approach based on OTU features, we collect
the OTU representations of the same samples from Qiita repository § obtained using QIIME
pipeline (Rideout et al. 2014).

∗Available at http://hmpdacc.org/HM16STR/
†Available at https://qiita.ucsd.edu/study/descriptipn/1928
‡Available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
§Available at https://qiita.ucsd.edu/study/description/1939
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Predicting the environment for representative 16S rRNA gene sequences

MetaMetaDB provides a comprehensive dataset of representative 16S rRNA sequences of
various ecological and organismal environments, collected from existing 16S rRNA databases
spanning almost 181 million raw sequences. In the MetaMetaDB pipeline, low-quality nu-
cleotides, adapters, ambiguous sequences, homopolymers, duplicates, and reads shorter than
200bp, as well as chimeras have been removed and 16S rRNA sequences were clustered
with 97% identity, generating 1,241,213 representative 16S rRNA sequences marked by their
environment (C. C. Yang and Iwasaki 2014). MetaMetaDB divides its ecological environ-
ments into 34 categories and its organismal environments into 28 categories. We create three
datasets, which are subsets of MetaMetaDB, to investigate the discriminative power of k-mers
in predicting microbial habitats. Since the sequences in MetaMetaDB were already filtered
and semi-identical sequences removed, OTU-picking would not be required, as it would result
in an almost one-to-one mapping between the sequences and OTUs (we verified this using
QIIME).

Ecological environment prediction: MetaMetaDB is imbalanced in terms of the number
of representative sequences per environment. For this study, we pick the ecological envi-
ronments with more than 10,000 samples, ending up wicorresponding toth 18 classes of
ecological environments: activated sludge, ant fungus garden, aquatic, bioreactor, bioreactor
sludge, compost, food, food fermentation, freshwater, freshwater sediment, groundwater, hot
springs, hydrocarbon, marine, marine sediment, rhizosphere, sediment, and soil ∗. We make
two datasets out of the sequences in these environments by stratified sampling: ECO-18K
containing 1000 randomly selected instances per class (a total of 18K sequences) and ECO-
180K, which is 10 times larger than ECO-18K, i.e. contains 10,000 randomly selected
instances per class (a total of 180K sequences).

Organismal environment prediction: from the organismal environments in MetaMetaDB
we select a subset containing gut microbiomes of 5 different organisms (bovine gut, chicken
gut, human gut, mouse gut, termite gut) and down-sampled each class to the size of the
smallest class by stratified sampling, resulting in 620 samples per class and a total of 3100
sequences. We call this dataset 5GUTS-3100.

MicroPheno computational workflow

We describe using deep learning and classical methods for classification of the environments
or host phenotypes of microbial communities using k-mer frequency representations obtained
from shallow sub-sampling of 16S rRNA gene sequences. We propose a bootstrapping frame-
work to confirm the sufficiency of using a small portion of the sequences within a 16S rRNA
sample for determining the underlying phenotype. The MicroPheno computational workflow
has the following steps (Figure 3.1): (i) to find the proper size N for the sample, such that it

∗Datasets and descriptions are available at http://mmdb.aori.u-tokyo.ac.jp/download.html
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Figure 3.1. The components and the data flow in the MicroPheno computational workflow.

stays representative of the data and produces a stable k-mer profile, the 16S rRNA sequences
go through a bootstrapping phase. (ii) Afterwards, the sub-sampled sequences are used to
find the best value for k for classification, to produce the k-mer representations of the samples.
(iii) The k-mer representations are used for classification with Deep Neural Networks (DNN),
Random Forest (RF), and Linear SVM. (iv) Finally, the k-mer representations as well as the
supervised representations trained using DNNs are used for visualization of the 16S rRNA
gene sequences or samples. In what follows, these steps are explained in detail.

Bootstrapping: Confirming the sufficiency of only a small portion of 16S rRNA sequences
for environment or host phenotype classification is important because (i) sub-sampling reduces
the preprocessing run-time, and (ii) more importantly, it proves that even a shallow 16S rRNA
sequencing is enough. We propose a resampling framework to give us quantitative measures
for finding the proper sampling size. Let ✓k(Xi) be the normalized k-mer distribution of Xi,
a set of sequences in the ith 16S rRNA sample. We investigate whether only a portion of Xi,
which we represent as exij, i.e. jth resample of Xi with sample size N, would be sufficient for
producing a proper representation of Xi. To quantitatively find a sufficient sample size for Xi

we propose the following criteria in a resampling scheme. (i) Self-consistency: resamples
for a given size N from Xi produce consistent ✓k(exij)’s, i.e. resamples should have similar
representations. (ii) Representativeness: resamples for a given size N from Xi produce
✓k(exij)’s similar to ✓k(Xi), i.e. similar to the case where all sequences are used.

We quantitatively define self-inconsistency and unrepresentativeness and seek parameter
values that minimize them. We measure the self-inconsistency (D̄S) of the resamples’
representations by calculating the average Kullback Leibler divergence among normalized
k-mer distributions for NR resamples (here NR=10) with sequences of size N from the ith

16S rRNA sample:
D̄Si(N, k, NR) =

1

NR(NR � 1)

X

8p,q
(p 6=q)2{1,2,··· ,NR}

DKL(✓k(exip), ✓k(exiq)),

where |fxil| = N ; 8l 2 {1, 2, · · · , NR}. We calculate the average of the values of D̄Si(N, k, NR)
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over the M different 16S rRNA samples:

D̄S(N, k, NR) =
1

M

MX

i=1

D̄Si(N, k, NR).

We measure the unrepresentativeness (D̄R) of the resamples by calculating the average
Kullback Leibler divergence between normalized k-mer distributions for NR resamples (NR=10)
with size N and using all the sequences in Xi for the ith 16S rRNA sample:

D̄Ri(N, k, NR) =
1

NR

X

8p2{1,2,··· ,NR}

DKL(✓k(exip), ✓k(Xi)),

where |fxil| = N ; 8l 2 {1, 2, · · · , NR}. We calculate the average over D̄Ri(N, k)’s for the M
16S rRNA samples:

D̄R(N, k, NR) =
1

M

MX

i=1

D̄Ri(N, k, NR).

For the experiments on body-site and the dataset for Crohn’s disease, we measure self-
inconsistency D̄S and unrepresentativeness D̄R for NR = 10 and M = 10 for any 8 � k � 3
with sampling sizes ranging from 20 to 10000. Each point in Figure 3.4 represents the average
of 100 (M ⇥NR) resamples belonging to M randomly selected 16S rRNA samples, each of
which is resampled NR = 10 times. Since in the ecological and organismal datasets each
sample is a single sequence, the bootstrapping step is skipped.

k-mer representation: We propose using the l1 normalized k-mer distribution of 16S
rRNA sequences as input features for machine learning classification algorithms as well as
visualization. Normalizing the representation allows for having a consistent representation,
even when the sampling size is changed. For each k-value we pick a sampling size that
gives us a self-consistent and representative representation measured by D̄S(N, k, NR) and
D̄R(N, k, NR), respectively, as explained above.

Classification: Random Forests and linear SVM are the state-of-the-art classical approaches
for categorical prediction on 16S rRNA sequences (Statnikov et al. 2013; Pasolli et al. 2016;
Duvallet et al. 2017) and in general for many machine learning problems in bioinformatics (Ol-
son et al. 2017). These two approaches, which are respectively instances of non-linear and
linear classifiers, are both adopted in this study. In addition to these classical approaches, we
also evaluate the performance of deep Neural Network classifiers in predicting environments
and host phenotypes.

We evaluate and tune the model parameter in a stratified 10 fold cross-validation scheme.
To ensure optimizing for both precision and recall, we optimize the classifiers for the harmonic
mean of precision and recall, i.e. F1. In particular, to give equal importance to the classi-
fication categories, specifically when we have imbalanced classes, we use macro-F1, which
is the average of F1’s over categories. Finally the evaluation metrics are averaged over the
folds and the standard deviation is also reported. We provide both micro and macro metrics
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which are averaged over instances and over categories, respectively.

Classical learning algorithms: We use a one-versus-rest strategy for multi-class linear SVM (Suykens
and Vandewalle 1999) and tune parameter C, the penalty term for regularization. Random
Forest (Breiman 2001) classifiers are tuned for (i) the number of decision trees in the ensemble,
(ii) the number of features for computing the best node split, and (iii) the function to measure
the quality of a split.

Deep learning: We use the Multi-Layer-Perceptrons (MLP) Neural Network architecture with
several hidden layers using Rectified Linear Unit (ReLU) as the nonlinear activation function.
We use the softmax activation function at the last layer to produce the probability vector that
can be regarded as representing posterior probabilities (Goodfellow et al. 2016). To avoid
overfitting, we perform early stopping and also use dropout at hidden layers (N. Srivastava
et al. 2014b). A schematic visualization of our Neural Networks is depicted in Figure 3.2.
Our objective is minimizing the loss, i.e. cross entropy between output and the one-hot vector
representation of the target class. The error (the distance between the output and the target)
is used to update the network parameters via a Back-propagation algorithm using Adaptive
Moment Estimation (Adam) as the optimizer (Kingma and Ba 2015). We start with a single
hidden layer and incrementally increase the number of layers with systematic exploration of
the number of hidden units and dropout rates to find a proper architecture. We stop adding
layers when increasing the number of layers does not result in achieving a higher macro-F1
anymore. In addition, for the visualization of samples we use the output of the (n � 1)th

hidden layer. Later in the results DNN-nL is a short form for a MLP Neural Network with n
layers.

Figure 3.2. General architecture of the MLP Neural Networks that have been used in this
study for multi-class classification of environment and host phenotypes.

Visualization: To project 16S rRNA sequencing samples to 2D for visualization purposes,
we explore Principal Component Analysis (PCA) (Jolliffe and Jolliffe 1986) as well as t-
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Distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and G E Hinton
2008), as instances of respectively linear and non-linear dimensionality reduction methods.
In addition, we explore the use of supervised deep representation learning in visualization of
data (Bengio et al. 2013), i.e. we visualize the activation function of the last hidden layer of
the Neural Network trained for prediction of environments or host phenotypes to be compared
with unsupervised methods. The visualizations helps in obtaining a better understanding on
how samples are distributed in a high dimensional space and how neural networks can obtain
a transformation that separates different categories. More details on visualization methods
are provided as supplementary materials.

Implementations: MicroPheno uses implementations of Random Forest, SVM, t-SNE, and
PCA in the Python library scikit-learn (Pedregosa and Varoquaux 2011) and Deep Neural
Networks are implemented in the Keras∗ deep learning framework using the TensorFlow
back-end.

Results

In this section, the results are organized based on datasets. As discussed in Section 3.3,
we have several choices in each step in the computational workflow: choosing the value of
k in k-mer, the sampling rate, and the classifiers. To explore the parameter space more
systematically, we followed the steps demonstrated in Figure 3.3. (i) In the first step, for
each value of 8 � k � 3, we pick a stable sample size based on the output of bootstrapping.
(ii) We perform the classification task using tuned Random Forest for different k values and
their selected sampling sizes based on boostrapping. We selected Random Forest, because
we found it easy to tune and because it oftentimes outperforms linear SVM (Statnikov et al.
2013; Olson et al. 2017). (iii) As the third step, for a selected k, we investigate the role
of sampling size (N) in classification. (iv) Finally, we compare different classifiers for the
selected k and N. We also compare the performance of our proposed k-mer features with that
of OTU features in classification tasks.

Body-site identification and Crohn’s disease prediction

(i) Bootstrapping for sampling rate selection for k-mers: Higher k values require
higher sampling rates to produce self-consistent and representative representations (Figure 3.4
for body-site dataset). As the structure of the curve for Crohn’s disease dataset is similar
to the body-site dataset, to avoid redundancy, the figure for Crohn’s disease is provided as
supplementary material. For each k, we consider a certain threshold on D̄S and D̄R, to ensure
selecting a sampling size resulting in self-consistent and representative representations.

(ii) Classification for different values of k with a sampling size selected based on
the output of bootstrapping: Interestingly, using only 3-mer features with a very low

∗https://keras.io/
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Figure 3.3. Steps we take to explore parameters for the representations and how we choose
the classifier for prediction of the phenotype of interest in this study
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(i) Self-inconsistency D̄S, with respect to resample size (N)
demonstrated for different k values in the body-site dataset
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(ii) Unrepresentativeness D̄R, with respect to resample size (N)
demonstrated for different k values in the body-site dataset
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Figure 3.4. Measuring (i) self-inconsistency (D̄S), and (ii) unrepresentativeness (D̄R) for
the body-site dataset. Each point represents an average of 100 resamples belonging to 10
randomly selected 16S rRNA samples. Higher k values require higher sampling rates to
produce self-consistent and representative samples.

sampling rate (⇡20/15000=0.0013) provides a relatively high performance for 5-way body-site
classification (Table 3.5). The value of macro-F1 increases with the value of k from 3 to 6,
but increasing k further than that does not have any additional effect on macro-F1 (Table 3.5,
body-site dataset, step (ii)). For Crohn’s disease Choosing k=6 with a sampling size of
2000 (⇡2,000/38,000 = 0.05) provided a macro-F1 of 0.75 which is the minimum k with top
performance (Table 3.5, Crohn’s disease dataset, step (ii)).

(iii) Exploring the sampling size (N) for a selected k-mer: For a selected k-value
(k=6), using the Random Forest classifier for different sampling sizes is presented in Table 3.5,
step (iii) for the body-site and Crohn’s disease datasets. Body-site classification: the
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Figure 3.5. The confusion matrix for the classification of 5 major body-sites,
using Random Forest classifier in a 10xfold cross-validation scheme. The presented
body-sites are saliva (o: oral), mid-vagina (u: urogenital), anterior nares (n: nasal), stool (g:
gut), and posterior fornix (u: urogenital).

results suggest that changing the sampling size from 0.6% to 100% of the sequences will
not change the classification results substantially, suggesting that in body-site identification,
a very shallow sub-sampling of the sequences is sufficient for a reliable prediction. Using
more sequences does not necessarily increase the discriminative power and may even result in
over-fitting. We selected a sampling size of 5000 for 6-mers (the sampling size with the highest
macro-F1 and the minimum standard deviation) for comparison between classifiers in the next
step. Crohn’s disease dataset: increasing the sampling size from 100 (100/38000=0.003)
to 5000 (5000/38000=0.13) increased the macro-F1 from 0.7 to 0.75. However, using all
sequences instead of 0.13 of them in each sample, did not increase the discriminative power
(Table 3.5).

(iv) Comparison of classifiers for the selected N, k: In the body-site prediction task,
the Random Forest classifier obtained the top macro-F1 (0.84) for this 5-way classification
(Table 3.5, step (iv)). The confusion matrix in Figure 3.5 shows that the most difficult decision
for the classifier is to distinguish between mid vagina and posterior fornix, both of which
are urogenital body-sites. As shown in the last row of Table 3.5, combining the urogenital
body-sites increases the macro-F1 to 0.99 ± 0.01 using the Neural Network. Similarly for the
Crohn’s disease prediction dataset, the Random Forest classifier obtained the top macro-F1
(0.75) for this binary classification (Table 3.5, step (iv)).

The visualizations of body-site as well as Crohn’s disease samples obtained through using
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Table 3.5. The results for classification of major body-sites as well as Crohn’s
disease prediction using k-mer representations. The set of rows matches the steps (ii
to iv) mentioned in Figure 3.3, i.e k-mer selection, N (sample size) selection, and finally
selection of the classifier. The classifiers (Random Forest, Support Vector Machine and
Neural Network classifiers) are tuned and evaluated in a stratified 10xfold cross-validation
setting. The last row shows the Neural Network’s performance in the classification of
body-sites when the urogenital body-sites are combined.

Dataset StepRepresentationResample size Classifier Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

Body-site (⇡15000 reads/sample) (ii)

3-mers 20

RF

0.84 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03
4-mers 100 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.77 ± 0.03 0.77 ± 0.03 0.77 ± 0.03
5-mers 500 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
6-mers 2000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.04 0.84 ± 0.05
7-mers 5000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.05 0.85 ± 0.05
8-mers 8000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.05 0.84 ± 0.05 0.84 ± 0.05

Crohn’s disease (⇡38000 reads/sample) (ii)

3-mers 20

RF

0.62 ± 0.05 0.62 ± 0.05 0.62 ± 0.05 0.62 ± 0.05 0.61 ± 0.05 0.61 ± 0.05
4-mers 100 0.7 ± 0.05 0.7 ± 0.05 0.7 ± 0.05 0.69 ± 0.05 0.69 ± 0.05 0.69 ± 0.05
5-mers 500 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05
6-mers 2000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
7-mers 5000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
8-mers 8000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

Body-site (iii) 6-mers

100

RF

0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.82 ± 0.04 0.82 ± 0.03 0.81 ± 0.03
1000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04
2000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.04 0.84 ± 0.05
5000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.04
10000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.05

All sequences 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.84 ± 0.05 0.84 ± 0.04 0.84 ± 0.05

Crohn’s disease (iii) 6-mers

100

RF

0.71 ± 0.04 0.71 ± 0.04 0.71 ± 0.04 0.71 ± 0.04 0.7 ± 0.04 0.7 ± 0.04
1000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
2000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
5000 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
10000 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.05 0.75 ± 0.04 0.75 ± 0.05

All sequences 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.05 0.75 ± 0.04 0.75 ± 0.05

Body-site (iv) 6-mers 5000
RF 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.04

SVM 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.76 ± 0.06 0.76 ± 0.03 0.74 ± 0.04
DNN-5L 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.79 ± 0.02 0.79 ± 0.03 0.79 ± 0.02

Crohn’s disease (iv) 6-mers 5000
RF 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.67 ± 0.04 0.67 ± 0.04
DNN-7L 0.7 ± 0.02 0.7 ± 0.02 0.7 ± 0.02 0.7 ± 0.03 0.7 ± 0.02 0.7 ± 0.03

Body-site - 6-mers 5000 DNN-4L (4 classes) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Table 3.6. Comparison of k-mers and OTU features in body-site classification
as well as the detection of the Crohn’s disease phenotype. For this comparison,
Random Forest classifier (as an instance of non-linear classifiers) and linear SVM (as an
instance of linear classifiers) have been used. The classifiers are tuned and evaluated in a
stratified 10xfold cross-validation setting.

Dataset Features ClassifiersMicro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

Body-site
6-mer features (size: 4096) RF 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.040.84 ± 0.040.84 ± 0.04

SVM 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.76 ± 0.06 0.76 ± 0.03 0.74 ± 0.04

OTU features (size: 20589)RF 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.83 ± 0.03 0.83 ± 0.03 0.83 ± 0.03
SVM 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.77 ± 0.05 0.78 ± 0.04 0.76 ± 0.04

Crohn’s disease
6-mer features (size: 4096) RF 0.76 ± 0.040.76 ± 0.040.76 ± 0.04 0.76 ± 0.040.75 ± 0.040.75 ± 0.04

SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.67 ± 0.04 0.67 ± 0.04

OTU features (size: 9511) RF 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04
SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04
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Table 3.7. The results for the task of selecting between 18 ecological
environments as well as 5 organismal environments belonging to 5 organisms’
gut. The classifiers (Random Forest, Support Vector Machine and Neural Network
classifiers) are tuned and evaluated in a stratified 10xfold cross-validation setting in three
datasets ECO-18K, 5GUTS-3100, and ECO-180K. The step column refers to the steps in
Figure 3.3.
StepRepresentation Dataset ClassifierMicro-metrics (averaged over samples) Macro-metrics (averaged over classes)

Precision Recall F1 Precision Recall F1

(ii)

3-mers

ECO-18K RF

0.6 ± 0.01 0.6 ± 0.01 0.6 ± 0.01 0.63 ± 0.02 0.6 ± 0.01 0.57 ± 0.01
4-mers 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.7 ± 0.01 0.67 ± 0.01 0.65 ± 0.01
5-mers 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.72 ± 0.01 0.71 ± 0.01
6-mers 0.75 ± 0.010.75 ± 0.010.75 ± 0.01 0.76 ± 0.010.75 ± 0.010.73 ± 0.01
7-mers 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.74 ± 0.01 0.73 ± 0.01
8-mers 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.72 ± 0.01 0.71 ± 0.01

(ii)

3-mers

5GUTS-3100 RF

0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.79 ± 0.02
4-mers 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
5-mers 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.85 ± 0.02
6-mers 0.87 ± 0.010.87 ± 0.010.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.010.87 ± 0.01
7-mers 0.87 ± 0.010.87 ± 0.010.87 ± 0.01 0.88 ± 0.020.87 ± 0.010.87 ± 0.01
8-mers 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.86 ± 0.01

(iv) 6-mers ECO-18K
RF 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.73 ± 0.01

SVM 0.79 ± 0.010.79 ± 0.010.79 ± 0.01 0.79 ± 0.010.79 ± 0.010.79 ± 0.01
DNN-3L 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01

(iv) 6-mers 5GUTS-3100
RF 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

SVM 0.88 ± 0.020.88 ± 0.020.88 ± 0.02 0.89 ± 0.010.88 ± 0.020.88 ± 0.02
DNN-5L 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

(iv) 6-mers
ECO-180K RF 0.83 ± 0.0 0.83 ± 0.0 0.83 ± 0.0 0.84 ± 0.0 0.83 ± 0.0 0.83 ± 0.0

(10x larger) SVM 0.86 ± 0.0 0.86 ± 0.0 0.86 ± 0.0 0.87 ± 0.01 0.86 ± 0.0 0.86 ± 0.0
DNN-5L 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0

PCA, t-SNE over raw k-mer representations, and t-SNE on the activation function of the last
layer of the trained Neural Networks are presented in Figure 3.6 (a,b). These results suggest
that supervised training of representations using Neural Networks provides a non-linear trans-
formation of data that can discriminate between dissimilar environments and host phenotypes.

Comparison of k-mer and OTU features in prediction: For a comparison between
OTU features and k-mer representations in body-site identification and Crohn’s disease
prediction, the Random Forest classifier (as an instance of non-linear classifier) and linear
SVM (as an instance of linear classifier) were tuned and evaluated in a stratified 10xfold
cross-validation setting. Our results suggest that for both k-mer features and OTUs, Random
Forest is the best choice (Table 3.6). In addition, with almost 1

5 (body-site dataset) and
1
2 (Crohn’s disease dataset) of the size of OTU features and in spite of being considerably
less expensive to calculate, k-mers marginally outperforms OTU features in both body-site
identification and Crohn’s disease classification.
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(c) Visualization of 18 ecological microbial environments

Figure 3.6. Visualization of (a) body-site, (b) Crohn’s disease, (c) ecological
environments datasets using different projection methods: (i) PCA over 6-mer
distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with
unsupervised training, (iii) visualization of the activation function of the last layer of the
trained Neural Network (projected to 2D using t-SNE).
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Ecological and organismal environment prediction

(ii) Classification for different values of k: As stated before, for the ecological and
organismal datasets we do not need to perform resampling, as we classify single, representative
16S rRNA sequences for the environment of interest. We thus can skip steps (i) and (iii)
(Figure 3.3). Step (ii) in Table 3.7 shows the effect of k in the performance of the classification
of the 18 ecological environments for the ECO-18K dataset and 5 organismal environments
for 5GUTS-3100. Ecological environments: using k=6 provides the best classification
performance, with a macro-F1 of 0.73 which is relatively high for a 18-way classification (has
a mere 0.06 chance of randomly being assigned correctly for balanced dataset). Organismal
environments: the results show that k=6 and 7 provide a high classification macro-F1 of
0.87 for 5 classes (0.2 chance of randomly occurring).

(iv) Comparison of classifiers for the selected k: For selected values of k, the results
of the environment prediction with the Random Forest, SVM, and Neural Network classifiers
are provided (Table 3.7, step (iv), ECO-18K and 5GUTS-3100 datasets). The SVM classifier
obtained the top macro-F1s of 0.79 and 0.88 respectively for 18-way and 5-way classifications.

To see the effect of increasing the number of data points in classification performance
we repeat the classifier comparison (step iv) for the ECO-180K dataset. The results are
summarized in Table 3.7-ECO-18K dataset, showing that feeding more training instances
results in better training for the deep learning approach, which outperformed the SVM and
achieved a macro-F1 of 0.88, which is very high for a 18-way classification task. In training
the Neural Networks for the ECO-18K dataset, increasing the number of hidden layers from
3 to more did not help result in improvements. However, using the ECO-180K dataset, which
is 10 times larger, allowed us to train a deeper network and increased the macro-F1 by 5
percent going from 3 layers to 5 layers. Increasing the number of layers further did not result
in any improvements.

Neural Network Visualization: Visualizations of representative 16S rRNA gene sequences
in 18 ecological environments obtained through using PCA, t-SNE, and t-SNE on the
activation function of the last layer of the trained Neural Network are presented in Figure 3.6
(c). For ease of visualization, we randomly picked 100 samples per class. These results
suggest that supervised training of representations using Neural Networks provides a non-
linear transformation of data containing information about high-level similarities between
environments in the sub-plot on the right (scatter plot (iii)), where such structures appeared
in the visualization only when more hidden layers were used: (i) On the left, the environments
containing water are clustered in a dense neighborhood: marine, aquatic, freshwater, hot
springs, bioreactor sludge (described in the source: “Bioreactor sludge is usually the sludge
inside the bioreactor that treats waste-water.”), groundwater, and, surprisingly, rhizosphere
(an environment where plants, soil, water, microorganisms, and nutrients meet and interact).
(ii) In the middle, environments labeled related to sediment are found: sediment, freshwater
sediment, marine sediment, and soil. (iii) Environments containing food, like food, food
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fermentation, and compost are at the bottom of the plot.

Discussion and Conclusion

In this work, MicroPheno, a new approach for predicting environments and host phenotypes
on 16S rRNA gene sequencing has been presented, which uses k-mer representations of shallow
sub-samples. We conclude with discussing the results of this study in three parts: (1) the use
of k-mers versus OTUs, (2) the benefits of shallow sub-sampling, and (3) classical methods
versus the deep learning approach.
K-mers versus OTUs: To evaluate MicroPheno, we compared k-mer representations with
OTU features in tasks of body-site identification and Crohn’s disease classification. We
replicated the state-of-the-art approach, i.e. Random Forest over OTU features, on datasets
larger than those that were previously explored. We showed that k-mer features outperform
conventional OTUs, while having several advantages over OTUs: (i) The k-mer representations
are easy to compute at no computational cost for any type of alignment to references or tasks
of finding pair-wise sequence similarity within samples as in OTU-picking pipelines. Just to
get an idea of the computational efficiency of k-mer calculation in comparison with OTUs,
note that 6-mer distribution calculations have been ⇡13 times and ⇡20 faster than going
through the OTU picking pipelines respectively for the Crohn’s disease dataset and the Human
Microbiome Project dataset; using the same number of threads. More details are provided
in the supplementary material. (ii) Taxonomy-independent analysis is often the preferred
approach for amplicon sequencing when the samples contain unknown taxa. k-mer features
can be used without making assumptions about the taxonomy. However, OTU-picking
pipelines make assumptions about the taxonomy as discussed in §3.3; therefore they can even
be phylogenetically incoherent. (iii) The k-mer distribution is a well-defined representation,
while OTUs are sensitive to the pipeline and the parameters. (iv) Sequence similarities are
naturally incorporated in the k-mer representations for the downstream learning algorithm,
while with grouping sequences into certain categories, sequence similarities between OTUs
are ignored.

The main disadvantage of k-mer features over OTUs is that using short k-mers makes it
more difficult to trace the relevant taxa to the phenotype of interest. When such an analysis
is needed, using OTUs or increasing the size of k would be an alternative solution. However,
as long as prediction is concerned, using a k-mer representation seems to be the best choice
for an accurate and rapid detection/diagnosis over 16S rRNA sequencing samples.

Shallow sub-sampling: We proposed a bootstrapping framework to investigate the consis-
tency and representativeness of k-mer distributions for different sampling rates. Our results
suggest that, depending on the k-mer size, even very low sub-sampling rates (0.001 to 0.1, for
k between 3 to 7) not only can provide a consistent representation, but can also result in better
predictions while possibly avoiding overfitting. Setting aside the saving in preprocessing time
as a natural benefit of sampling, this result also suggests that at least for similar phenotypes
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of interest, shallow sequencing of the microbial community is sufficient for accurate prediction.

Classical classifiers versus deep learning: We studied the use of deep learning methods
as well as classic machine learning approaches for distinguishing among human body-sites,
diagnosis of Crohn’s disease, and predicting the environments from representative 16S gene
sequences. Studying the role of dataset size in the classification of ecological environments
showed that for large datasets (in our experiments 10K samples per class) using deep learning
provides us with more accurate predictions. However, when the number of samples is not large
enough, Random Forests performed better on both OTUs and k-mer features. In addition, we
observed that for classification over representative sequences as opposed to samples (pool of
sequences), the SVM outperformed the Random Forest classifier. Another advantage of using
deep learning in classification was that supervised training of a proper representation of data
results in a more discriminative representation for the downstream visualization compared to
the unsupervised methods (PCA and t-SNE on the raw k-mer distributions). For body-site
identification and even more clearly in ecological environment classification, the model was
able to extract more high-level similarities between the environments.
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3.4 Nucleotide-pair encoding for biomarker and

phenotype detection

Identifying combinations of taxa distinctive for microbiome-associated diseases is considered
key to the establishment of diagnosis and therapy options in precision medicine and imposes
high demands on accuracy of microbiome analysis techniques. We propose subsequence based
16S rRNA data analysis, as a new paradigm for microbiome phenotype classification and
biomarker detection. This method and software called DiTaxa substitutes standard OTU-
clustering or sequence-level analysis by segmenting 16S rRNA reads into the most frequent
variable-length subsequences. These subsequences are then used as data representation
for downstream phenotype prediction, biomarker detection and taxonomic analysis. Our
proposed sequence segmentation called nucleotide-pair encoding (NPE) is an unsupervised
data-driven segmentation inspired by Byte-pair encoding, a data compression algorithm.
The identified subsequences represent commonly occurring sequence portions, which we
found to be distinctive for taxa at varying evolutionary distances and highly informative for
predicting host phenotypes. We compared the performance of DiTaxa to the state-of-the-art
methods in disease phenotype prediction and biomarker detection, using human-associated
16S rRNA samples for periodontal disease, rheumatoid arthritis and inflammatory bowel
diseases, as well as a synthetic benchmark dataset. DiTaxa identified 17 out of 29 taxa with
confirmed links to periodontitis (recall= 0.59), relative to 3 out of 29 taxa (recall= 0.10) by
the state-of-the-art method. On synthetic benchmark data, DiTaxa obtained full precision
and recall in biomarker detection, compared to 0.91 and 0.90, respectively. In addition,
machine-learning classifiers trained to predict host disease phenotypes based on the NPE
representation performed competitively to the state-of-the art using OTUs or k-mers. For
the rheumatoid arthritis dataset, DiTaxa substantially outperformed OTU features with a
macro-F1 score of 0.76 compared to 0.65. Due to the alignment- and reference free nature,
DiTaxa can efficiently run on large datasets. The full analysis of a large 16S rRNA dataset
of 1359 samples required ⇡1.5 hours on 20 cores, while the standard pipeline needed ⇡6.5
hours in the same setting.

16S rRNA Gene Sequence Representations for Biomarker Detection
Popular machine learning tasks over 16S rRNA gene sequencing data are taxonomic classifica-
tion, host phenotype prediction, as well as biomarker detection. Although k-mer features and
some other non-OTU features have been also used (Asgari, Garakani, et al. 2018; Callahan
et al. 2016), the most common representation of 16S rRNA gene sequences is based on
OTUs. Random Forest was reported as the most effective classification approach for several
diseases (Statnikov et al. 2013; Carrieri et al. 2016; Duvallet et al. 2017; Eck et al. 2017;
Asgari, Garakani, et al. 2018). Recently, we have shown that using k-mer representations of
shallow-subsamples is computationally inexpensive (being reference- and alignment-free) and
marginally outperforms OTUs in host phenotype and environment classification tasks (Asgari,
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Garakani, et al. 2018). However, a disadvantage of k-mer features is that short k-mers cannot
easily be mapped to a taxonomy to obtain taxonomic biomarkers. Microbiome studies often
aim to identify OTUs, taxa, or clades that differ in their abundance across two or more subsets
of the input samples (e.g. between diseased and healthy states), here referred as biomarker
discovery (Kuczynski et al. 2010; Donovan H Parks and Beiko 2012). Identifying these
biological informative taxa that are enriched in only a subset of phenotypes (e.g. diseased
subjects or patients that better respond to a certain treatment) is a challenging task, in
particular for metagenomic samples, because of their high-dimensionality, sequencing errors,
as well as other systematic biases, such as the presence of chimeric sequences (Kunin et al.
2010). One prominent biomarker example is the over-representation of the Firmicutes phylum
in obese individuals compared to lean controls (R. E. Ley et al. 2005; R. Ley et al. 2006;
Turnbaugh et al. 2008). In case the over-representations are causal for the aetiology of the
diseases, detection of such biomarkers might have potential therapeutic implications if disease
progression can be reversed by targeting over-expressed causative species using emerging
technologies such as CRISPR/Cas9 or phage-based targeting (Mimee et al. 2015; Sheth
et al. 2016; Fuente-Nuñez and Lu 2017). This is also true for biomarkers that are inversely
related to disease progression, such as the over-representation of Akkermansia muciniphila
in individuals with a healthier metabolic status and better clinical outcome after caloric
restriction (Dao et al. 2016). For many other diseases where a microbiological component is
expected, such (combinations) of biomarkers yet have to be found. Even when the biomarkers
fail to be causal, they may enable prediction of the disease state or disease sub-types, or
suggest suitable therapies in personalized medical interventions.

Different methods have been developed to identify OTU-based biomarkers (Paulson et al.
2013). The most widely used method is linear discriminant analysis effect size (LEfSe), which
has a particular focus on high-dimensional class comparison for metagenomic analysis and
determines features (such as taxa, OTUs, genes or clades) most likely to explain differences
between two or more classes from relative OTU abundances (Segata, Izard, et al. 2011). This
method uses the non-parametric factorial Kruskal-Wallis (KW) sum rank test (Kruskal and
Wallis 1952). Several other with similar functionality exist that use different statistical tests
over sample profiles based on OTU features, such as STAMP (Donovan H. Parks et al. 2014),
MetaStats (Segata, Izard, et al. 2011) and MetagenomeSeq (Paulson et al. 2013)).

In this paper, we propose DiTaxa, an alignment- and reference- free, subsequence based
paradigm for processing of 16S rRNA microbiome data for phenotype and biomarker detection.
DiTaxa substitutes standard OTU-clustering by segmenting 16S rRNA sequences into variable
length subsequences. The obtained subsequences are then used as data representation for
downstream phenotype and biomarker detection. We show that DiTaxa outperforms the
state-of-the-art approach in biomarker detection for synthetic and a number of disease-related
datasets. In addition, DiTaxa performs competitively with the k-mer based state-of-the-art
approach, outperforming OTU-features, in phenotype prediction.
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Material and Methods
Datasets

Inflammatory Bowel Diseases

We use the largest pediatric Crohn’s disease dataset available to date, described in (Gevers
et al. 2014)∗, which covers different types of Inflammatory Bowel Diseases (IBD) (The same
as Crohn’s disease dataset presented in Section §3.3). This is a dataset of 1359 labeled 16S
rRNA samples from 731 pediatric ( 17 years old) patients diagnosed with Crohn’s disease
(CD), 219 with ulcerative colitis (UC), 73 with indeterminate colitis (IC), and 336 samples
verified as healthy. Sequencing was targeted towards the V4 hypervariable region of the 16S
rRNA gene. We downloaded OTU representations of the samples from Qiita repository †

obtained using QIIME pipeline (Rideout et al. 2014).

Rheumatoid arthritis

We downloaded read data (454 platform) of the 16S rRNA gene sequences of V1 and V2
rRNA for 114 fecal DNA samples of a rheumatoid arthritis (RA) study (Scher, Sczesnak,
et al. 2013) from SRA (ID: SRP023463). OTU clustering was performed based on filtered
reads (365.7k, 23.0%) of which 140,382 were unique and 119,217 singletons and resulted in
949 OTUs based on 97% identity. The OTU clustering pipeline is detailed in §3.4.

Periodontal disease

We use the data provided by Jorth, et al. (Jorth et al. 2014) to differentiate between healthy
and diseased periodontal microbiota‡. This dataset consists of microbial samples collected
from subgingival plaques from 10 healthy and 10 patients diagnosed with periodontitis.
Sequencing was targeted towards the (V 4� V 5) hypervariable region of the 16S rRNA gene.
Similar to the RA dataset, we obtain the OTU features using the clustering pipeline detailed
in §3.4.

Synthetic dataset

To evaluate DiTaxa in a known setting, we generated a dataset with synthetic samples using
Grinder v. 0.5.3 (Angly et al. 2012) based on 1000 V4 regions of different genera of Green-genes
(GG) sequences (DeSantis et al. 2006). V4 regions were extracted from the Green-genes 13.8
databases using the forward and reverse primer sequences GTGCCAGC[AC]GCCGCGGTAA
and ATTAGA[AT]ACCC[CGT][AGT]GTAGTCC. To generate 16S rRNA datasets, the
lengthbias parameter was set to zero and the unidirectional parameter was set to one. To
cover the full V4 region, the amplicon read length distribution was set to 300 and the fold

∗Available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
†Available at https://qiita.ucsd.edu/study/description/1939
‡Downloaded from http://datadryad.org/resource/doi:10.5061/dryad.d41v4
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coverage of the input reference sequence was set to 30. We specified the percent of reads in
the amplicon libraries that should be chimeric sequences to 10%. We used default parameters
for the specification of the chimera distribution resulting in 89% bimeras, 11% trimeras
and 0.3% quadmeras. Sequencing errors were introduced in the reads, at positions that
follow a uniform model using the default ratio of substitutions to the number of indels (4
substitutions for each indel). Two sets of samples were created, denoted as case and control
samples with an average number of sequences in both groups of 29,204 reads. While in the
control set all 1000 genera were set to the same abundance (mean abundance set to 0.1%,
500 randomly selected GG V4 sequences (corresponding to unique genera) were enriched at
equal levels in the case dataset (µ of non-selected genera set to 0.05%; µ of selected genera
set to 0.15;). For both, the control and the case settings, 100 samples were generated, each
with variations under the normal distribution (� = 0.02). We processed the synthetic dataset
using a standard pipeline consisting of USEARCH and UPARSE and generated 1,041 OTUs
at 97% identity similarity, detailed in §3.4.

Nucleotide-pair Encoding

The idea of Nucleotide-pair Encoding (NPE) is inspired by the Byte Pair Encoding (BPE)
algorithm, a simple universal text compression scheme (Gage 1994; Shibata et al. 1999),
which has been also used for compressed pattern matching in genomics (L. Chen et al. 2004).
Although BPE had lost its popularity for a long time in compression, only recently it again
became popular, but for a different reason, i.e. word segmentation in machine translation
in natural language processing (NLP). BPE became a common approach for a data-driven
unsupervised segmentation of words into their frequent subwords, which facilitate open
vocabulary neural network machine translation and improve the quality of translation by
reducing the vocabulary size (Sennrich et al. 2016; Kudo 2018). In this work, we adapt the
BPE algorithm for splitting biological sequences into frequent variable length subsequences
called Nucleotide-pair Encoding (NPE). We propose NPE as general purpose segmentation
for the biological sequence (DNA, RNA, and proteins). In contrast to the use of BPE in
NLP for vocabulary size reduction, we use this method to increase the size of symbols from 4
nucleotides to a large set of variable length biomarkers.

The input to NPE is a set of sequences. We treat each sequence as a list of characters
(nucleotides in the case of 16S rRNA gene sequences). The algorithm finds the most frequently
occurring pair of adjacent symbols in the sequences. On the next, we replace all instances of
the selected pair with a new subsequence (merged pair as a new symbol). The algorithm
repeats this process until reaching a certain vocabulary size or when no more frequently
occurring pairs of symbols available. The obtained merging operations can be inferred once
from a large set of sequences in an offline manner and then applied to an unseen set of
sequences. A simple pseudo-code of NPE is provided in Algorithm 2.
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Data: Seqs = Set of 16S sequences from all samples, V = vocabulary size
Result: S = Divided sequences into variable subsequences, Merge_opt = merging

operations
Sym = {A, T, C, G};
S = list of Seqs, where each sequence is list of symbols 2 Sym;
Merge_opt = stack();
SymbFreq = mapping symbol pairs in S to their frequencies;
while |Sym| <V do

sym1, sym2 = argmax (SymbFreq);
S = merge all consecutive sym1 & sym2 into < sym1, sym2 > in S;
Sym.push(< sym1, sym2 >);
Merge_opt.push(sym1, sym2);
update(SymbFreq) ; // For efficiency purpose we only update the symbol
pairs that overlap with occurrences of the affected pairs

end
Algorithm 2: Adapted Byte-pair algorithm (BPE) for segmentation of DNA sequences
(NPE)

Standard 16S rRNA gene processing workflow

To evaluate the performance of DiTaxa against the state-of-the-art, we used a standard 16S
rRNA gene processing workflow employed in previous studies on 16S rRNA data (Taft et al.
2014; Lin Wang et al. 2016; Bindels et al. 2016). Note that throughout this paper “the
standard pipeline (STDP)” refers to this workflow:

1. Obtained 16S rRNA gene sequencing reads are quality controlled and clustered using the
Usearch 8.1 software package ∗, where quality filtering is done with fastq_filter(�fastq_maxee1).

2. The OTU clusters and representative sequences are determined using the UPARSE algo-
rithm (derep_fulllength : minuniquesize2; cluster_otus : otu_radius_pct3) (Robert
C Edgar 2013).

3. The next step is taxonomy assignment using the EZtaxon database (Yoon et al. 2017)
as the reference database, and the decision is made by RDP Classifier (Q. Wang et al.
2007).

4. The OTU absolute abundance table and mapping file are used for statistical analyses
in LDA Effect Size (LEfSe) (Segata, Izard, et al. 2011).

∗http://www.drive5.com/usearch/
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Figure 3.7. Computational workflow of DiTaxa, DiTaxa has three main components: (i)
NPE representation, (ii) Phenotype prediction, (ii) Biomarker detection and taxonomic
analysis. The purple boxes denote the outputs of the approach.

DiTaxa computational workflow

The DiTaxa computational workflow has three main components; (i) NPE representation
creation, (ii) phenotype prediction, and (iii) biomarker detection and taxonomic analysis
(shown in Figure 3.7). In this section, these components are described in details.

NPE representation

The first component of DiTaxa is the NPE representation creation. The 16S rRNA gene
sequences aggregated from all samples from all phenotypes go through the NPE algorithm 2
for training segmentation operations. Then the segmentation will be applied on sequences to
segment sequences into variable length subsequences. We pick the vocabulary size large enough
to obtain discriminative 16S rRNA subsequences considered as biomarkers. Each sample will
be presented as a count distribution of its subsequences. We propose a bootstrapping scheme
to investigate the sufficiency of shallow sub-samples to produce proper representation.

In a previous study, using a bootstrapping framework we showed that shallow sub-samples
of 16S rRNA gene sequences are sufficient to produce a proper k-mer presentation of data for
phenotype prediction (Asgari, Garakani, et al. 2018). Similarly, here we use bootstrapping to
investigate sufficiency and consistency of NPE representation, when only a small portion of
the sequences are used. This has two important implications, first, sub-sampling reduces the
preprocessing run-time, second, it shows that even a shallow 16S rRNA sequencing is enough
for the phenotype prediction. We use a resampling framework to find a proper sampling size.
Let ✓#npe(Xi) be the normalized NPE (with vocabulary size of #npe) distribution of Xi, a
set of sequences in the ith 16S rRNA sample. We investigate whether only a portion of Xi,
which we represent as exij, i.e. jth resample of Xi with sample size N, would be sufficient for
producing a proper representation of Xi. To find a sufficient sample size for Xi quantita-
tively, we propose the following formulation in a resampling scheme. (i) Self-consistency:
resamples for a given size N from Xi produce consistent ✓#npe(exij)’s, i.e. resamples should
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have similar representations.(ii) Representativeness: resamples for a given size N from Xi

produce ✓#npe(exij)’s similar to ✓#npe(Xi), i.e. similar to the case where all sequences are used.
As presented in (Asgari, Garakani, et al. 2018), we measure the self-inconsistency (D̄S) of
the resamples’ representations by calculating the average Kullback Leibler divergence among
normalized NPE distributions for NR resamples (here NR=10) with sequences of size N from
the ith 16S rRNA sample:

D̄Si(N, #npe, NR) =
1

NR(NR � 1)

X

8p,q
(p 6=q)2{1,2,··· ,NR}

DKL(✓#npe(exip), ✓#npe(exiq)),

where |fxil| = N ; 8l 2 {1, 2, · · · , NR}. We calculate the average of the values of
D̄Si(N,#npe , NR) over the M different 16S rRNA samples:

D̄S(N,#npe , NR) =
1

M

MX

i=1

D̄Si(N,#npe , NR).

We measure the unrepresentativeness (D̄R) of the resamples by calculating the average
Kullback Leibler divergence between normalized NPE distributions for NR resamples (NR=10)
with size N and using all the sequences in Xi for the ith 16S rRNA sample:

D̄Ri(N,#npe , NR) =
1

NR

X

8p2{1,2,··· ,NR}

DKL(✓#npe(exip), ✓#npe(Xi)),

where |fxil| = N ; 8l 2 {1, 2, · · · , NR}. We calculate the average over D̄Ri(N, k)’s for the M
16S rRNA samples:

D̄R(N,#npe , NR) =
1

M

MX

i=1

D̄Ri(N,#npe , NR).

For the experiments on the datasets presented in §3.4, we measure self-inconsistency D̄S and
unrepresentativeness D̄R for NR = 10 and M = 10 for #npe 2 {10000, 20000, 50000} with
sampling sizes ranging from 20 to 20000.

As shown in Figure 3.7, the obtained NPE representation in the first component will be
then used for two main use cases, i.e. phenotype prediction and biomarker detection.

Phenotype prediction

We used Random Forest (RF) classifiers (Breiman 2001), which have shown a superior perfor-
mance over deep neural network (deep multi-layer perceptron) and support vector machine
(SVM) classifiers in phenotype classification for the size of datasets we use here (Asgari,
Garakani, et al. 2018; Statnikov et al. 2013). However, the provided implementation provides
deep learning and SVM classifiers as well. For the disease phenotype prediction, Random
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Forest classifiers were tuned for (i) the number of decision trees in the ensemble, (ii) the
number of features for computing the best node split, and (iii) the function to measure
the quality of a split. We evaluate and tune the model parameter using stratified 10 fold
cross-validation and optimize the classifiers for the harmonic mean of precision and recall, i.e.
the F1-score, as a trade-off between precision and recall. We provide both micro- and macro-
F1 metrics, which are averaged over instances and over categories, respectively.

We performed phenotype classification for a synthetic dataset (binary classification of 100
case samples and 100 control samples), a Crohn’s disease dataset (binary classification of
731 Crohn’s disease samples from 628 control or other diseases), and a Rheumatoid Arthritis
(RA) dataset (44 RA disease subjects versus 70 control/treated/Psoriatic arthritis subjects).
In order to evaluate the performance of NPE representation, we compare the classification
performance of RFs over NPE features versus using OTUs, as well as k-mer features, which are
considered as state-of-the-art approaches for disease phenotype prediction (Asgari, Garakani,
et al. 2018; Statnikov et al. 2013).

Biomarker detection and taxonomic analysis

The designed steps in DiTaxa for detection of differently expressed markers in the phenotype
of interest are shown in the light purple background in Figure 3.7:

1. The first step is finding discriminative markers between two phenotype states using
false discovery rate corrected two-sided �2 test over the median-adjusted presence of
markers in the samples. Thus if a marker is presented within a sample at least as
frequent as the median frequency across samples, we consider it as present, otherwise
as absent. We discard insignificant markers using a threshold for the p-value of < 0.05.
For the multi-phenotype case, a one-versus-all policy is used. In addition, markers
shorter than a certain threshold (< 50bps) will be discarded to ensure the markers are
specific enough for a downstream taxonomic assignment.

2. The filtered markers go through a local BLAST (Camacho et al. 2009) with EzBioCloud
database as a local reference dataset (Yoon et al. 2017), covering 62,362 quality con-
trolled reference sequences. We assign the taxon corresponding to the Lowest Common
Ancestor (LCA) of the taxa annotated for the best hits of a marker in a reference
taxonomy. The markers that cannot be aligned to the references will be marked as
‘Novel’ markers.

3. In the third step, we remove redundant markers based on their co-occurrence information
using symmetric Kullback–Leibler divergence (Kullback and Leibler 1951):

DKLsym(PmkPn) =
X

i

Pm(i) log
Pm(i)

Pn(i)
+ Pn(i) log

Pn(i)

Pm(i)
,



CHAPTER 3. LANGUAGE-AGNOSTIC PROCESSING OF
GENOMICS/METAGENOMICS 124

where Pm and Pn are respectively normalized frequency distributions of mth and nth

markers across all samples. Using (DKLsym = 0) to find identical markers, split the
set of markers into equivalence classes. Subsequently, from each class we pick only
one representative marker with the most specific taxonomy level, which its taxonomy
information is confirmed by the majority of markers within the class. The selected
markers at this step are our final set of biomarkers.

4. Our approach has three main outputs, first, a taxonomic tree for significant discrimina-
tive biomarkers, where identified taxa to the positive and negative class are colored
according to their phenotype (red for positive class and blue for negative class). The
DiTaxa implementation for taxonomic tree generation uses a Phylophlan-based back-
end (Segata, Boernigen, et al. 2013). Second, a heatmap of top biomarkers occurrences
in samples, where the rows denote markers and the columns are samples is generated.
Such a heatmap allows biologists to obtain a detailed overview of markers’ occur-
rences across samples (e.g., Figure 3.16 and Figure 3.17). The heatmap shows number
of distinctive sequences hit by each biomarker in different samples and stars in the
heatmap denote hitting unique sequences, which cannot be analyzed by OTU clustering
approaches. The third output is a list of novel markers for further analysis of the
potential novel organisms.

To compare the performance of our approach with a standard workflow (defined in §3.4)
for real datasets, we used the scientific literature as the ground-truth. We extracted a list of
organisms which are experimentally identified by previous studies to be associated with or
cause periodontal disease. Then we evaluate the recall for DiTaxa and the standard workflow
in the detection of the confirmed organisms.

To quantify the performance of DiTaxa in a known synthetic setting versus the standard
pipeline, we generated two high-dimensional synthetic datasets denoted as ‘case’ and ‘control’,
as described in §3.4. The description of the standard pipeline is provided in §3.4 generating
a list of significant differently expressed OTUs for both phenotypes. We then compare the
significantly enriched OTU sequences (FDR corrected P values < 0.05, LEfSe) and significant
(FDR < 0.05) subsequences determined by DiTaxa as biomarkers with the ground-truth
16S V4 region using global nucleotide alignment with blastn v. 2.7.1+ with parameters
“�perc_identity100 � ungapped”. We quantified the number of false positives (FP), true
positives (TP), false negatives (FN) and true negatives (TN) based on the presence of
significant alignments of potential biomarkers sequences (OTU or DiTaxa markers) to each
of the 500 differentially expressed GG 16S regions. TPs were calculated as the number of
GG sequences (n = 500) with at least one marker hit from the positive marker list. FNs
were calculated using case GG sequences (n = 500) without at least one marker hit from
the marker collection found to be significantly enriched in the case set. TNs are the number
of control GG sequences (n = 500) with at least one marker hit from the marker list that
are significant in the control set. FPs were quantified as the number of low abundant GG
sequences (n = 500) without at least one marker hit from the set of markers found in the



CHAPTER 3. LANGUAGE-AGNOSTIC PROCESSING OF
GENOMICS/METAGENOMICS 125

0 2500 5000 7500 10000 12500 15000 17500 20000

Resample size (N)

0

20

40

60

80

100

D̄
S
(N

,#
n
pe

)

(i) Self-inconsistency D̄S, with respect to sample size (N)
demonstrated for di�erent #npe in the rheumatoid arthritis dataset

#npe = 10000

#npe = 20000

#npe = 50000

0 2500 5000 7500 10000 12500 15000 17500 20000

Resample size (N)

0.0

0.2

0.4

0.6

0.8

1.0

D̄
R
(N

,#
n
pe

)

(ii) Unrepresentativeness D̄R, with respect to sample size (N)
demonstrated for di�erent #npe in the rheumatoid arthritis dataset
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Figure 3.8. Measuring (i) self-inconsistency (D̄S), and (ii) unrepresentativeness (D̄R) for
the arthritis disease dataset. Each point represents an average of 100 resamples belonging to
10 randomly selected 16S rRNA samples. Higher vocabulary size require higher sampling
rates to produce self-consistent and representative samples.

control sample. Recall was calculated as TP/(TP + FN) while precision was calculated as
TP/(TP + FP ).

Results
Phenotype prediction

Bootstrapping for sample size selection

We picked a stable sample size for each NPE vocabulary size based on the output of
bootstrapping in phenotype prediction. Each point in Figure 3.8 represents the average of 100
(M ⇥NR) resamples belonging to M randomly selected 16S rRNA samples, each of which is
resampled NR = 10 times. As shown in Figure 3.8, a larger vocabulary size require higher
sampling rates to produce self-consistent and representative representations. As the structure
of the curve does not vary a lot from dataset to dataset, to avoid redundancy, we only show
the bootstrapping results for the rheumatoid arthritis dataset.

The classification results for different NPE vocabulary sizes on the synthetic, Crohn’s
disease, and rheumatoid arthritis datasets using RF classifiers are presented in Table 3.8. All
methods could reliably predict the affected cases in the synthetic dataset without any error.
For the Crohn’s disease dataset k-mers with the MicroPheno approach (Asgari, Garakani,
et al. 2018) achieved a slightly better prediction performance while using NPE and OTU
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Table 3.8. Results for NPEs, OTUs, and k-mer features in performing phenotype
classification over the synthetic, rheumatoid arthritis, and Crohn’s disease datasets in a
10-fold cross-validation framework using random forest classifiers.

Dataset RepresentationClassifierFeature-sizeResample sizeMicro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

Synthetic NPE RF
10000 5000 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
20000 10000 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
50000 All sequences 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

6-mer 4096 5000 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
OTU 1041 - 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Crohn’s disease

NPE
RF

10000 5000 0.74 ± 0.040.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.040.73 ± 0.04 0.73 ± 0.04
20000 10000 0.75 ± 0.040.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.040.74 ± 0.04 0.74 ± 0.04
50000 All sequences 0.74 ± 0.040.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.040.74 ± 0.04 0.74 ± 0.04

6-mer 4096 5000 0.76 ± 0.040.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.040.75 ± 0.04 0.75 ± 0.04
OTU 9511 - 0.74 ± 0.040.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.040.74 ± 0.04 0.74 ± 0.04

Rheumatoid Arthritis NPE RF
10000 5000 0.78 ± 0.1 0.78 ± 0.1 0.78 ± 0.1 0.78 ± 0.110.76 ± 0.13 0.76 ± 0.12
20000 10000 0.78 ± 0.090.78 ± 0.09 0.78 ± 0.09 0.78 ± 0.110.76 ± 0.11 0.75 ± 0.11
50000 All sequences 0.78 ± 0.1 0.78 ± 0.1 0.78 ± 0.1 0.79 ± 0.110.76 ± 0.13 0.75 ± 0.12

6-mer 4096 5000 0.78 ± 0.1 0.78 ± 0.1 0.78 ± 0.1 0.78 ± 0.120.76 ± 0.12 0.76 ± 0.12
OTU 949 - 0.69 ± 0.120.69 ± 0.12 0.69 ± 0.12 0.73 ± 0.160.65 ± 0.12 0.65 ± 0.11

features achieved the same macro-F1 of 0.74. In rheumatoid arthritis prediction, NPE and
k-mers achieved a macro-F1 of 0.76, outperforming the use of OTU features by 11 percent.
Changes in sample size did not substantially affect the prediction performance, suggesting
sufficiency of shallow sub-samples in phenotype prediction using the NPE representation
(Table 3.8).

Biomarker detection and taxonomic analysis

Marker detection results for synthetic data

In the biomarker detection for the synthetic dataset, DiTaxa did not report erroneous (neither
FN nor FP) biomarkers, which resulted in a recall and precision value of 1. In comparison,
the biomarkers detected with a standard pipeline, using OTU clustering and LEfSe, included
51 false negative and 47 false positive instances, resulting in a recall and precision value
of 0.898 and 0.905, respectively (Table 3.9). This evaluation demonstrated the superiority
of DiTaxa for biomarker discovery compared to OTU-based approaches in both recall and
precision.

Table 3.9. The results of DiTaxa and the
standard pipeline (STDP) in marker detection
for the synthetic dataset.

MethodPrecisionRecall F1
DiTaxa 1 1 1
STDP 0.905 0.898 0.901

Table 3.10. The results of DiTaxa
and the standard pipeline (STDP) in
marker detection in comparison with
literature of periodontal disease.
MethodTrue Positive CountRecall
DiTaxa 13 out of 29 0.59
STDP 3 out of 29 0.10
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Biomarker detection results for periodontal disease

We next assessed the performance of DiTaxa and a standard pipeline (STDP; section 3.4) in
detecting otherwise confirmed taxa for periodontal disease (Table 3.11). DiTaxa performed
better in the detection of relevant taxa (Table 3.10). Of 29 taxa identified as relevant in
other studies, 17 were detected by DiTaxa, while the standard approach detected only 3
from the same dataset. Notably, experimentally verified taxa shown to alter the disease
phenotype in mouse models, Fusobacterium nucleatum (Polak et al. 2009) and Porphyromonas
gingivalis (Kimura et al. 2000; Polak et al. 2009; Hajishengallis et al. 2011), were only detected
by DiTaxa. Since periodontitis is a polymicrobial disease and the oral biofilms are extremely
diverse (Perez-Chaparro et al. 2014), detecting all relevant taxa confirmed by the literature
from a single dataset is not feasible. For instance, A. actinomycetemcomitans is specifically
associated with juvenile aggressive periodontists in Moroccan population, which can be hardly
found in the population from Turkey (Jorth et al. 2014). However, relative comparison of
recall for different methods on the same dataset is still meaningful. A higher recall of DiTaxa
in confirming the literature links, in comparison with a standard pipeline shows that DiTqxa
can be more accurate in detecting disease-specific biomarkers. A detailed comparison of the
predicted taxa with different methods and taxa with confirmed links by the literature is also
shown in Figure 3.9. The red color shows the disease associated taxa found by DiTaxa and
the blue color indicates the up-regulated taxonomy in the healthy samples. The up-regulated
organisms found by standard pipeline are colored in yellow and down-regulated organisms
are colored to green. The intersection of DiTaxa and the standard approach is colored in
orange for up-regulation and cyan denotes for the consensus of methods in down-regulation.

Taxonomy of discriminative biomarkers for rheumatoid arthritis

Comparative taxonomic visualization of detected differentially expressed markers for DiTaxa
and a common workflow are shown in Figure 3.10 for samples from patients with untreated
rheumatoid arthritis (new onset RA) versus healthy individuals. Taxa predicted by DiTaxa
for samples from patients with untreated rheumatoid arthritis (new onset RA) versus healthy
individuals had Prevotella copri as the most significantly ranked, which was confirmed
based on shotgun metagenome analysis and in mouse experiments (Scher, Sczesnak, et al.
2013), while the standard workflow only predicted the genus of this taxon as relevant (Scher,
Sczesnak, et al. 2013). DiTaxa also predicted Prevotella stercorea as implicated in new onset
RA.

The DiTaxa results for patient samples from several other diseases versus healthy indi-
viduals are provided in Figure 3.11 (for CD versus healthy), Figure 3.13 (for indeterminate
colitis versus healthy), Figure 3.12 (for ulcerative colitis versus healthy), Figure 3.15 (for
treated rheumatoid arthritis versus healthy), Figure 3.14 (for psoriatic versus healthy).
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mouse model other studiesDiTaxa: up-regulated in disease
STDP: down-regulated in disease
Agreement in up-regulation in disease

Confirmed links by the literature using different technologies and experimentsExtracted links using computational methods: DiTaxa and standard pipeline (STDP)
DiTaxa: down-regulated in disease

STDP: down-regulated in disease
Agreement in down-regulation in disease

Figure 3.9. Taxonomy of differently expressed markers for samples from patients with
periodontal disease versus healthy patients. This tree diagram illustrates the hierarchical
relationships among the detected organisms. On top of the tree structure, the colors
visualize different metadata exist for each organism. The red color shows the disease
associated taxa found by DiTaxa and the blue color indicates the up-regulated taxonomy in
the healthy samples. The up-regulated organisms found by standard pipeline (STDP) are
colored in yellow and down-regulated organisms are colored to green. The intersection of
DiTaxa and the standard approach is colored in orange for up-regulation and cyan denotes
for the consensus of methods in down-regulation. When two methods disagree the organism
is colored in gray. The node size is proportional to the number of markers confirming the
taxa and the border boldness is proportional to the negative log of the markers’ p-value. The
taxa names are only provided for the nodes that are either confirmed by the literature or the
nodes denoting agreements of DiTaxa and STDP. Zooming in the electronic version is
possible for a better see of the details.
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DiTaxa: up-regulated in disease

STDP: down-regulated in disease

Agreement in up-regulation in disease

DiTaxa: down-regulated in disease

STDP: down-regulated in disease

Agreement in down-regulation in disease

Disagreements of DiTaxa and STDP

Figure 3.10. Taxonomy of differently expressed markers for new onset rheumatoid arthritis
versus healthy samples. The red color shows the disease-associated taxa found by DiTaxa
and the blue color denotes the up-regulated taxa in the samples from healthy individuals.
The up-regulated organisms found by the standard pipeline are colored in yellow and
down-regulated organisms are colored green. The agreements of DiTaxa and the standard
approach are colored in orange for up-regulation and cyan denotes the consensus of both
methods in down-regulated taxa. When the two methods disagree, the taxon is colored in
gray. The node size is proportional to the number of markers confirming the taxa and the
border boldness is proportional to the negative log of the markers’ p-value. Zooming in the
electronic version is possible for a better see of the details.
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Up-regulated in disease Down-regulated in disease

Figure 3.11. Taxonomy of differently expressed markers for Crohn’s disease versus healthy
using DiTaxa. The red color shows the disease associated taxa found by DiTaxa and the blue
color shows the up-regulated taxonomy in the healthy samples. Zooming in the electronic
version is possible for a better see of the details.
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Up-regulated in disease Down-regulated in disease

Figure 3.12. Taxonomy of differently expressed markers for ulcerative colitis disease versus
healthy using DiTaxa. The red color shows the disease associated taxa found by DiTaxa and
the blue color shows the up-regulated taxonomy in the healthy samples. Zooming in the
electronic version is possible for a better see of the details.
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Up-regulated in disease Down-regulated in disease

Figure 3.13. Taxonomy of differently expressed markers for indeterminate colitis disease
versus healthy using DiTaxa. The red color shows the disease associated taxa found by
DiTaxa and the blue color shows the up-regulated taxonomy in the healthy samples.
Zooming in the electronic version is possible for a better see of the details.
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Up-regulated in disease Down-regulated in disease

Figure 3.14. Taxonomy of differently expressed markers for psoriatric disease versus
healthy using DiTaxa. The red color shows the disease associated taxa found by DiTaxa and
the blue color shows the up-regulated taxonomy in the healthy samples. Zooming in the
electronic version is possible for a better see of the details.
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Up-regulated in disease Down-regulated in disease

Figure 3.15. Taxonomy of differently expressed markers for treated rheumatoid Arthritis
versus healthy samples using DiTaxa. The red color shows the treated associated taxa found
by DiTaxa and the blue shows the up-regulated taxonomy in the healthy samples. Zooming
in the electronic version is possible for a better see of the details.
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Table 3.11. Comparison of a standard pipeline (STDP) and DiTaxa performance in
detecting 29 taxa with confirmed links to periodontitis. The upwards arrow denotes
upregulation in the diesease group compared to samples from healthy subjects. A checkmark
denotes presence of marker by DiTaxa method.

Literature information Detection results
Genus Species DirectionDescription and reference DiTaxa STDP

Actinomyces n.a. # 16S rRNA sequencing of supragingival plaque samples, t-test (Bo Liu et al. 2012),
Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) not foundnot found

Aggregatibacter A. actinomycetemcomitans " Used for mixed infections for murine back abscess model (Oz and Puleo 2011) not foundnot found
Anaeroglobus n.a. " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) not foundnot found
Corynebacteriumn.a. # Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) not foundnot found
Campylobacter C. gracilis " 16S rRNA sequencing (Teles et al. 2013) X not found
Campylobacter C. rectus " 16S rRNA sequencing (Teles et al. 2013) not foundnot found
Campylobacter C. showae " 16S rRNA sequencing (Teles et al. 2013) not foundnot found
Dialister n.a. " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) not foundnot found
Eubacterium E. nodatum " 16S rRNA sequencing (Teles et al. 2013) X not found
Fusobacterium F. nucleatum " Mouse model (Polak et al. 2009), Whole genomic DNA probes of subgingival plaque samples (Socransky et al. 1998), and dot blot hybridization (Schlafer et al. 2010) X not found
Fusobacterium F. periodonticum " microbial co-localization in images of subgingival biofilm species (Schillinger et al. 2012) not foundnot found
Gamella n.a. # 16S study of plague samples from healthy individuals (Aas et al. 2005) not foundnot found

Granulicatella n.a. # 16S study of plague samples from healthy individuals (Aas et al. 2005),
Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) not foundnot found

Leptotrichia n.a. " 16S rRNA sequencing of supragingival plaque samples, t-test (Bo Liu et al. 2012) X not found

Neisseria n.a. #, " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) (#),
Whole genomic DNA probes of subgingival plaque samples(Ximenez-Fyvie et al. 2000)(") X(") not found

Parvimonas P. micra " 16S rRNA sequencing (Perez-Chaparro et al. 2014) X not found
Porphyromonas n.a. " Mouse model (Hajishengallis et al. 2011) and Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) X not found

Porphyromonas P. gingivalis " Mouse model (Kimura et al. 2000; Polak et al. 2009), Whole genomic DNA probes of subgingival plaque samples(Socransky et al. 1998),
Used for monomicrobial infections for murine back abscess model (Oz and Puleo 2011) X not found

Prevotella n.a. " 16S rRNA sequencing of supragingival plaque samples, t-test (Bo Liu et al. 2012),
Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) X not found

Prevotella P. intermedia " Whole genomic DNA probes of subgingival plaque samples (Socransky et al. 1998) and dot blot hybridization (Schlafer et al. 2010) X not found
Prevotella P. nigrescens " 16S rRNA sequencing (Teles et al. 2013) not foundnot found
Schwartzia n.a. " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) X X
Selenomonas n.a. " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) X X
Streptococcus n.a. # 16S rRNA sequencing of supragingival plaque samples, t-test (Bo Liu et al. 2012),

16S study of plague samples from healthy individuals (Aas et al. 2005) X not found

Streptococcus S. constellatus " 16S rRNA sequencing of supragingival plaque samples, t-test (Abusleme et al. 2013) X not found
Tannerella T. forsythia " Whole genomic DNA probes of subgingival plaque samples (Socransky et al. 1998), 16S rRNA squencing (Ledder et al. 2007) X not found
Treponema n.a. " Periodontal disease vs. healthy control gingiva, t-tests (Scher, Ubeda, et al. 2012) X X
Treponema T. denticola " Whole genomic DNA probes of subgingival plaque samples (Socransky et al. 1998), nested PCR(Perez-Chaparro et al. 2014) X not found
Veillonella n.a. # 16S study of plague samples from healthy individuals (Aas et al. 2005) not foundnot found

Biomarker heatmaps

Visualization of the occurrence pattern of the identified biomarkers is another output of DiTaxa.
Examples of such a visualization for rheumatoid arthritis (Figure 3.16) and periodontal disease
(Figure 3.17) are provided. The rows represent inferred biomarker sequences and are sorted
based on the taxonomic marker assignments. The columns represent patient samples and
are sorted firstly based on their phenotype and secondly based on their pattern similarity.
‘Novel’ organisms are shown in the top rows, denoting the markers that could not be aligned
to any reference sequence and are therefore potentially novel taxa. The cell colors on the
heatmap show the percentage of distinct marker sequences matching a biomarker per sample
on a log scale. Markers targeting a single 16S sequence only are marked by a star.

The plots clearly show the varying “generality” of the inferred marker sequences, with some
matching only to unique 1S sequences, and others found across larger numbers, indicating
representation of different levels of evolutionary relatedness of the underlying targeted
organisms. For instance, of the inferred markers assigned Prevotella copri, while some
markers match multiple distinct 16S genes across patient samples, indicating the presence
of strain-level diversity evident from 16S within this species, while other markers targeting
predominantly single 16S copies across patients samples within this species, indicating the
existence of disease-associated subspecies diversity, that can be discovered with this technique.
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Samples
"

tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtgggggaccgttcctctcagaacccctacctgatcgtcgccttgg
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtggggggaccttcctctcagaacccctactgatcgtagccttgg
tgctgcctcccgtaggagtttggaccgtgtctcagttccgatgtgggggaccttcctctcagaacccctactgatcgtcgccttgg

tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgcgggggaccttcctctcagaaccccta
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtgggggaccttcctctcagaacccctactgatcgccgccttgg

ttccaatgtgggggaccttcctctcagaacccctactgatcgtcgccttgg
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtgggggaccttcctctcagagccccta

tgctgcctcccgtaggagtttgggccgtgtctcagttccaatgtgggggaccttcctctcagaacccctactgatcgtcgccttgg
tgctgcctcccgtaggagtttggaccgtgtctcagctccaatgtgggggaccttcctctcagaacccctactgatcgtcgccttgg
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtggggaccttcctctcagaacccctactgatcgtcgccttgg

tgctgcctcccgtaggagtttggaccgtgtctcagttccaatggtgggggaccttcctctcacgaacccctactgatcgtcgccttgg
"

tgctgcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgaa
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtgggggaccttcctctcagaacccctgtccatcg
tgctgcctcccgtaggagtctggtccgtgtctcagttccaatgtgggggaccttcctctcagaacccctatccatcg

"
atgaccgaaattctttaatagttctaccatgcggaagaactatgccatcgggtattaatctttctttcgaaaggctatccccgagtcatcggcaggttggatacgtgttactcacccgtgcgccggtcgccatcaaacttagcaagctaagttca

aaggcttggtgggccgttaccccgccaacaacctaatggaacgcatccccatcgatgaccgaaaattctttaatag
aaggcttggtgggccgttaccccgccaacaacctaatggaacgcatccccatcgatgaccgaaattcttttaatag

tcgggtattaatctttctttcgaaaggctatccccgagtaaagggcaggttggatacgtgttactcacccgtgcgccggtcgcca
tcggcaggttggatacgtgttactcacccgtgcgccggtcgccatcaaacttagcaagctaagttca

"
atgtcttggtgggccgttaccccgccaacaaactaatggaacgcatccccatcggttatcgaaattctttaatag

"
ctgcctaatggaacgcatccccatcctctaccgaaattctttaataacaaaaccagg

taaagggcaggttggatacgtgttactcacccgtgcgccggtcgccagcggtgtattgctacaccctg
caggttggatacgtgttactcacccgtgcgccggtcgccagcggtgtattgctacaccctg

"
tcgggtattaatctttctttcgaaaggctatccccgagttatcggcaggttggatacgtgttactcacccgtgcgccggtcgccatctccagtttgcaagcaaactgaa

"
aaggcttggtgggccgttaccccgccaacaacctaatggaacgcatccccatcgatgaccgaaattctttaatagttctaccatgcggaagaactatgccatcgggtattaatctttctttcgaaaggctatccccgagtcatcggcaggttggatacgtgttactcacccgtgcgccggtcgccatcaacttagcaagctaagttca

aaggcttggtgggccgttaccccgccaacaacctaatggaacgcatccccatcgatgaccgaaattctttaatagttctaccatgcggaagaactatgccatcgggtattaatctttctttcgaaaggctatccccgagtcatcggcaggttggatacgtgttactcacccgtgcgccggtcgccatcttcag
"

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
aatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg
"

cccatcaaaagcaagctttcgatgtcgttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn
tcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatggg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttca

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccc

tgctgcctcccgtaggagtttggaccgtgtctcagctccaatgtgggggaccttcctctcagaaccccta
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnn

tcattgggcattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtgggggaccttcctctcagaacccta

tgggccgttaccccgccaacaagctaatcagacgcatcccccatccatcaccgataaatctttaatccctt
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctcct

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggtta

ttgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg

cccatcaaaagcaagctttcgatgtcgtttcccctcgaccttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctag

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaacgtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttattcccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

cccatcaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatcttttaatctctt

tcagatgtcttctagagatatcattgggtattagtcttactttcgtcaagg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnn

tcagatgtcttctagagatatcattgggtattagtcttacttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatcccc

ttgagtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttca

cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnn

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtgg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatcc

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnn
caagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgttcc
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt

tcattgggcattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnn

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagctaggatcaaactctgactgag
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcg

tcattgggtattagtcttactttcgcaaggttatccccaacgtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatcccc

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtcggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttacccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaacgtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctttcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttac

tcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcattggatattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcttaccttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
ctgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctcct

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnn
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnnn
ttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcggctggcaaggcgcatagnnnn
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctag

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgccatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn

tcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn

tcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttaccccgccaacaagctaatcggacgcatccccatccatcaccgataaatctttaatctctt

caaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnn

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccc
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttacccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgcca

ttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn

atatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttca

ttactccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatc

cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatcccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnn

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaggtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
ctatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

ttatccccaacgtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaacctctt

caagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctag
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcg
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggtaggttggatacgcgttactcacccgtgcgccggtcgacg
agatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgg
tcagatgccttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnnnn

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataagtcttta
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctg

tcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaa

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
tccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg
caagctaatcagacgcatccccatccatcaccgataaatctttaatctcct

ttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn
cccatcaaaagcaagctttcgatgtcgtttccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttca
cccatcaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnn
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaa

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctcttccag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

cccatcaaaagcaagctttcgatgtcgtttccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn
tcagatgtcttctagagatatcattgggtattagccttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtggggggaccttcctctcagaacccctactgatcgttgccttgg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatcccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctccttcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatacaaactctgactgag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcggctggcaaggcgcatagnnn
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc

ctgatcgtagccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatccctt
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcgccgataaatctttaatctctt

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccc
tcagatgtcttctagagacgtcattgggtattagtcttactttcgtcaagg

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag
cctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc

tattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg

tcagatgtcttctagagatatcattggggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
ctaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

ttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaaatctttaatctctt

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcc

ttatccccaacgtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcg

caaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctg

cccatcaaaagcaagctttcgatgtcgttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn

cccatcaaaagcaagctttcgatgtcgttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatcc

tccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaaatctctt
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtggg

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttca
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnn

ctgatcgttgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcagatgtcttctagagatatcattgggtattagtcttaccttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

aatgtgggggaccttcctctcagaacccctactgatcgttgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatcttta

cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaaactctgactgagcgggctggcaaggcgcatag
ttcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

cccatcaaaagcaagctttcgatgtcgtttccctcgacttgcatgtgttaagcctgtagctag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtgatgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcactg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag

cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnnn
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatg

atgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatcccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcaccccgtgcgccggtcgacg

tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaaatc
cccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagg

tattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaag

tgggcccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctcct
cctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccagg
tcagatgtcttctagagatatcattggggtattagtcttactttcgcaaggtta

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttactccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn

cccatcaaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag
tgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctccttcagatgtcttctagagacgtcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgg

caagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacg
tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcctatcggaagcaagcttccaatatcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatc

tcagatgtcttctagagatatcattgggtattagtcttactttcgcaaggttatccccaagtggtgggcaggttggatacgcgttactcacccgtgcgccggtcgacgcccatcaaaagcaagctttcgatgtcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcggctggcaaggcgcatagnn
tgggccgttaccccgccaacaagctaatcagacgcatcccccatccatcaccgataaatctttaatctctt

cccatcaaaagcaagctttcgatgtcgtttccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn
"

tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtggggaccttcctctcagaacccctactgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
tgctgcctcccgtaggagtttggaccgtgtctcagttccaatgtggggggaccttcctctcagaacccctactgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt

ttccaatgtgggggaccttcctctcagaacccctactgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
aatgtgggggaccttcctctcagaacccctactgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt

ctgatcgtcgccttggtgggccgttaccccgccaacaagctaatcagacgcatccccatccatcaccgataaatctttaatctctt
"

ttttcaacccggagagatgcctctccgaatattatggggaattagtaccaatttctcagtgttatgcccctgttataggtaggttacatacgcgttacgcacccgtgcgccggtcg
"

tgctgcctcccgtaggagtctggtccgtgtctcagtaccagtgtgggggttaacctctcagtccccctatgtatcgtcgccttggtgagccgttaccccaccaactagctaatacaacgcatgcccatctctaaccatcggaattttcaaccataaaagatgccttctatgatattatggggtattagtaccaatttctcagtgttatccccctgttaaaggtaggttgcatacgcgttacgcacccgtgcgccggtcgccaccatagatattgctatccattatgctgcccctcgacttgcatgtgttaagcctgccgctagcgttcatcctgagccaggatc
"

ttatccccccgcacaggggcaggttacctatgtattactcacccgttcgccac
ttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccac

"
tgagccgttacctcaccaactagctaatacaacgcaggtccatctcttagtgatgcaattgcacc

"
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgttcaccctctcaggccggctactgatcgtcgctttgg

atcagacgcgggtccatctcataccaccggagtttttcacacggcatcatgcgatgctgtgcgcttatgcggtattagcag
tttgtcgaagatgccttcaacaaatgacatgcggtattagtcacgttttcacatgattatccctctgtatgaggcaggttgcccacacgttactcacccgtccgccgctaagata

tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgttcaccctctcaggccggctatggatcgtcgccttggtaggccgttaccctgccaactagctaatccaacgcgggtccatctcacaccgataaatcttttccgtccgggccatgcggccctagcgggttatgcggtattagcggtcgtttccaactgttatccccctgtgtgaggcaggttacccacgcgttactcacccgtccgccactaagtca
tcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcgatcaggaatccatccgaaaacttcatctcgatcg

tcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcaccagcaaaatcacccgaaggatca
ctgatcgtcgccttggtgggccgttaccccaccaaccagctaatcagacgcgggtccatctcataccaccggagtttttcacaccgtaccatgtggtactgtgcgcttatgcggtattagcag

tcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcaatcaggaatccatccgaaaacttcatctcgatcg
"

tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccggtcgccctctcaggccggctactgatcgtcggtttggtgggccgttaccccgccaactgcctaatcagacgcgggccca
ttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccac

ccgtttccggctgttatcccccggtatggggcaggttccccacgcgttactcacccgtccgccactcagtca
atcagacgcgggtccatctcataccaccggagtttttcactctgtaccatgcggtactgtgtgcttatgcggtattagcagtcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcatttcaa

"
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgttcactctctcaagccggctactgatcgtcgccttggtgagccgttacctcaccaaccagctaatcagacgcgggtccatcctgtaccaccggagtttttacccctgcaccatgcggtgctgtggtcttatgcggtattagcagtcatttctgactgttatccccctgtacagggcaggttacccacgcgttactcacccgtccgccactcagtctacaaaacgtcaattccgaagaagatcagttaagcagcttcgttcgacttgcatgtgttaagcacgccgccagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag

"
tcatttctgactgttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccactaggaacaagctatttccaccgaag

tcatttctgactgttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccactagg
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccgtccaccctctcaggccggctatggatcgtcgctttggtaggccgttaccctgccaactggctaatccaacgcgggtccatctcacaccaccggagtttttcacactggatcatgcaatcccgtgcgcttatgcggtattagcagtcatttctgactgttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccactaggattataacgacttcaaccgaagtctctgtcaaaataatccccg

tcatttctgactgttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccactaggaacaagctatttccaccgaagcttccataaaatgttccccg
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccgtccaccctctcaggccggctatggatcgtcgctttggtaggccgttaccctgccaactggctaatccaacgcgggtccatctcacaccaccggagtttttcacactggatcatgcaatcccgtgcgcttatgcggtattagcag

"
tggatcgtcgctttggtaggccgttaccctgccaactggctaatccaacgcgggtccatctcacaccaccggagtttttcaca

tcatttctgactgttatcccccagtgtgaggcaggttacccacgcgttactcacccgtccgccactagaaac
"

ttatcccccagtgtgaggcaggttatccacgcgttactcacccgtccgccactcagtcaa
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccggtcaccctctcaggtcggctactgatcgtcgctttggtgggccgttaccccgccaactggctaatcagacgcggatccatctcacaccaccggagtt

"
tcatttctaactgttgtcccccagtacaaggcaggttacccacgcgttactcacccgtccgccactcagtcaattcaacttccatccgaaaacttccg

"
ttccgaggaccacatgcggtattagtcatcgtttccaatgattattccccagtacagggcaggttgcccacacgttactcacccgtccgccactaag

tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgatcaccctctcaggtcggctactgatcgtcgccttggtgggctgttatctcaccaactagctaatcagatgcgggcccatcctgtaccgaataaatcctttcttcctcagaagatgccttccgaggaccacatgcggtattagtcatcgtttccaatgattattccccagtacagggcaggttgcccacacgttactcacccgtccgccactaag
attattccccagtacagggcaggttgcccacacgttactcacccgtccgccactaag

"
atcagacgcgggtccatcttgtaccaccggagtttttcacactgtatcatgcgatactgtgcgcttatgcggtattagcag

tcgtttccaactgttatccccctgtataaggcaggttacccacgcgttactcacccgtccgccactcagtcacc
"

atcagacgcgggtccatcttataccaccggagtttttcacactgtatcatgcgataccgtgcgcttatgcggtattagcagtcgtttccaactgttatccccctgtataaggcaggttacccacgcgttactcacccgtccgccactcagtccatccaagtgcaagcactcagatgtcttcg
"

tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccggtcgccctctcaggccggctactgatcgtcggtttggtgggccgttaccccgccaactgcctaatcagacgcgggcccatcccataccaccggagtttttcacaccgagccatgcagctctgtgcgcttatgcggtattagcagccgtttccagctgttatcccccggtatggggcaggtcacccacgcgttactcacccgtccgccgctcagtcaactgaaaatcatccgaagaatcaattcagccgcttcgctcgacttgcatgtgttaagcacgccgccagcgttcatcctgagccaggatcaaactctgactgag
"

caggttacccacgcgttactcacccgtccgccactcagtcataaaagacttcaaaccgaagtaatccg
"

tcatttctaactgttatccccctgtacgaggcaggttacccacgcgttactcacccgtccgccgctcagtcacaatcctcttcatccgaagaatctaagcaaagtg
atcagacgcgggtccatctcataccaccggagtttttacccccgcaccatgcggtgctgtggtcttatgcggtattagcagtcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcacaatcctcttcatccgaagaatctaagcaaagtg

ctgatcgtcgccttggtaagccgttaccttaccaactagctaatcagacgcgggtccatctcataccaccggagtttttacccccgcaccatgcggtgctgtggtcttatgcggtattagcagtcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcacaatcctcttcatccgaagaatctaagcaaagtg
tcatttctaactgttatccccctgtatgaggcaggttacccacgcgttactcacccgtccgccgctcagtcacaatcctcttcatccgaagaa

atcagacgcgggtccatctcataccaccggagtttttacccccgcaccatgcggtgctgtggtcttatgcggtattagcag
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccggtcaccctctcaggtcggctactgatcgtcgccttggtaagccgttaccttaccaactagctaatcagacgcgggtccatctcataccaccggagtttttacccccgcaccatgcggtgctgtggtcttatgcggtattagcag

"
tgctgcctcccgtaggagtctgggccgtatctcagtcccaatgtggccgttcaacctctcagtccggctactgatcgtcgacttggtaggccgttaccccaccaactatcta
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccgttcaacctctcagtccggctaccgatcgttgccttggtgggccgttacctcaccaactagcta

"
cggattgctcctttcccatctcgcagatgcctgcaaaatgctctatgcggtattagcaccggtttcccgatg

cagacttggtaggccgttaccctaccaactatctaatcagacatgagcccatctccagg
caagtttccctgtgttatccccctgtaaaaggcagattgcccacgcgttactcacccgtccgccgctaag

ctgatcgtcgccttggtgggccgttacctcaccaactagctaatcagacgcgggctcc
"

atcggacgcgagcccatctttcagcggattgctcctttggttgcaggggcatgtgcccccgcaacatcatgcggtattagcagccgtttccggctg
"

tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccgttcaacctctcagtccggctaccgatcgtcgccttggtaggcctttaccccaccaactagctaatcggacgcgagtccatctttcagcggattgctcctttggtactgctaccatgcggtaactgtacgttatgcggtattagcgttcttttcagaacgttattcccctctgaaaggcaggttactcacgcgttactcacccgtccgccac
"

ctcaagaaagcaagctctctctcgctcgttcgacttgcatgtgttaggcgcgccgccagcgttcgtcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnn
atcggacgcgaggccatctcaaagcggattgctccttttccctctggtcgatgccgacccgtgggcttatgcggtattagcagtcgtttccaactgttgtccccctntttgaggcaggttcctcacgcgttactcacccgttcgccactcg

"
ttactcaccagtccgccactgtcctctaaatcagttgtccgaaaactccgtcattagattctcgttcgacttgcatgtgttaagcacgccgccagcgttcgtcctgagccaggatcaaactctgactgag

tgcgtcatgcggtattagcagtcgtttccaactgttgtccccctnttcaaggcaggttcctcacgcgttactcacccgtccgccactttcctcta
"

ttactcaccagtccgccactaagcattcccttcctttggccgaaacctcattcaggggtgctccg
"

ccgtgtctcagtcccaatgtggccggtcaacctctcagtccggctactgatcgtcgcctaggtgggccgttaccccgcctactagcta
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccggccaacctctcagtccggctactgatcgtcgcctaggtgggccgttaccccgcctactagcta

tcatgcggtattagcacagctttcgttgtgttattccccactccgaggcaggttcctcacgcgttactcacccgtccgccactaag
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccggtcaacctctcagtccggctactgatcgtcgcctaggtgggccgttaccccgcctactagcta

caaccagggccatgcgacccagttgcattatgcggtattagcagctgtttccagctg
atcagacgcgaggccatctcagagcgataaatctttgacagtcagagtcatgcgacccaactgtatcatgcggtattagcacagctttcgttgtgttattccccactccgaggcaggttcctcacgcgttactcacccgtccgccactaag

atcagacgcgaggccatctcagagcgataaatctttggcagtcagagtcatgcgacccaactgca
aacctctcagtccggctactgatcgtcgacttggtgggccgttaccccgccaactatctaatcagacgcgagtccatctcagagcgataaatctttgata

"
ttatgcggtattagcacaattttcactgtgttattccccactccaaggcaggttcctcacgcgttactcacccgtccgccactaagtaaccttatcaattggacgaatcctctttcaaaggcactccg

"
tccaaggcaggttcctcacgcgttactcacccgtccgccactaggtaactcaatccgttggacgaatcctccgtcatgagcaccccg

atcagacgcgaggccatctcagagcgataaatctttggcagtcagagccatgcgacccaactgcattatgcggtattagcactcctttcggagtgttattcccc
"

tcatgcggtattagcagtcgtttccaactgttgtcccccactgaaaggcaggttcctcacgcgttactcacccgttcgccactaagtaaagtcccgaagggcttta
"

atcagacgtgagcccatctctcagcggattgctcctttgacatccaggtgatgcca
cgcattactcacccgttcgccactaagtcatctaggctccttgaccgaaatctcagagcttcgag

"
tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccgatcaacctctcagtccggctaccaatcgttgccatggtgggccgttacctcaccatctagctaattggacgcgaatccatcctgaagcgaattgctccttttccccctgagccatgcggctctgtgggcttatgcggtattagcagtcgtttccaactgttgtcccc

"
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgnacaggggcaggttacctatgtattactcacccgttcgccac

atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttactcccc
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatccccccgcacaggggcaggttacctatgtattactcacccgttcgccactcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgag

atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccactcatcttccgaagaagattcgttcgacttgcatgtattaggcacgccgccag
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccactcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgag

atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccc
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccactcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn

atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccac
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacagggg

atgcgccataggtccatccctgcgctatccccgaaaggatatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatcccccgcacaggggcaggttacctatgtattactcacccgttcgccactcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgag
atatttggcatgagctccatgcggtgctcatggctatgcggtattagcaggagtttcctcctgttatccccccgcacaggggcaggttacctatgtattactcacccgttcgccac

"
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgttcatcctctcagaccggctactgatcatcgccttggtag

"
ttgtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagctta

tagaggccatctttcacgctcccgtcatgcgataggagcgtcacatccggtattagcatccctttcggaatgttgtccccgtctaaagggcaggttgcctacgcgttactcacccgttcgccactaaaaattgaaccgaagctcaatt
"

cctacgcgttactcacccgttcgccactaagaattctaccgaaataaaattctccgttcgacttgcatgtgttaggcacgccgccag
accggctactgatcatcgccttggtagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg

ttactcacccgttcgccactaagaattctaccgaaataaaattctccgttcgacttgcatgtgttaggcacgccgccag
atcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg

cctacgcgttactcacccgttcgccactaagaattctaccgaataaattctccgttcgacttgcatgtgttaggcacgccgccag
cctacgcgttactcacccgttcgccactaagaattctaccgaaataaattctccgttcgacttgcatgtgttaggcacgccgccag

tagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg
ctgatcatcgccttggtagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg

cacgatgatcacatccggtattagcactcctttcggaatgttgtccccgtctaaagggcaggttgcctacgcgttactcacccgttcgccactaagaattctaccgaaataaaattctccgttcgacttgcatgtgttaggcacgccgccag
cacgatgatcacatccggtattagcactcctttcggaatgttgtccccgtctaaagggcaggttg

cacgatgatcacatccggtattagcactcctttcggaatgttgtccccgtctaaagggcaggttgcctacgcgttactcacccgttcgccactaagaattctaccgaaataaattctccgttcgacttgcatgtgttaggcacgccgccag
atgatcacatccggtattagcactcctttcggaatgttgtccccgtctaaaggg

tgctgcctcccgtaggagtttggaccgtgtctcagtcccaatgtggccgttcatcctctcagaccggctactgatcatcgccttggtagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg
taagaattctaccgaaataaaattctccgttcgacttgcatgtgttaggcacgccgccag

cctacgcgttactcacccgttcgccactaagaattctaccgaaataaaattctccg
tgctgcctcccgtaggagtttgggccgtgtctcagtcccaatgtggccgttcatcctctcagaccggctactgatcatcgccttggtagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg

ccgttcatcctctcagaccggctactgatcatcgccttggtagtccgttacactaccaactagctaatcagacgcaggcccatcctttagcgatagcttacttgtagaggccatctttcttcatcctgccatgcgg
cctacgcgttactcacccgttcgccactaagaattctaaccgaaataaaattctccgttcgacttgcatgtgttaggcacgccgccag

cctacgcgttactcacccgttcgccactaagaattctaccgaaataaaattctccgttcgacttgcatgtgttagg
"

atcagacgcaaacccctcttcaggcgatagcttacaagtagaggccaccctttcttcc
tcatgcgacctaaggaacgtattcggtattagcagtcgtttccgtctgttgtccccatcctgaaggcaggttgtttacgtg

tcaccaactacctaatcagacgcaaacccctcttcaggcgatagcttacaagtagaggccaccctttcttcc
ctgatcgtcggcttggtgggccgttacctcaccaactacctaatcagacgcaaacccctcttcaggcgatagcttacaagtagaggccaccctttcttcctaaagtcatgcgacctaaggaacgtattcggtattagcagtcgtttccgtctgttgtccccatcctgaaggcaggttgtttacgtgttactcacccgtttgccactagatttgaaagaagcaagcttccttctcctctcg

ttactcacccgtttgccactagatttgaaagaagcaagcttccttctcctctcg
tgctgcctcccgtaggagtctggaccgtgtctcagttccagtgtggccgttcatcctctcagaccggctactgatcgtcggcttggtgggccgttacctcaccaactaccta

taaagtcatgcgacctaaggaacgtattcggtattagcagtcgtttccgtctgttgtccccatcctgaaggcaggttgtttacgtgttactcacccgtttgccactagatttgaaagaagcaagcttccttctcctctcg
"

ccgccaggagcaagctcccgcgctgccgttcgacttgcatgtgtaaggcatgccgccagcgttcaatctgagccaggatc
ccgccaggagcaagctcccgcgctgccgttcgacttgcatgtgtaaggcatgccgccagcgttcaatctgagccaggatcaaactctgactgag

ccgccaggagcaagctcccgcgctgccgttcgacttgcatgtgtaaggcatgccgccag
"

attcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgag
attcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn

tcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn
tcatctctaaaagagattcgttcgacttgcatgtattaggcacgccgccagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn

"
tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnn

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatag
tcgtttccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcgacttgcatgcgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnn
ttactcacccgttcgcaactcatccaagaagagcaagctcctctcttcagcgttctacttgcatgtattagg

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagn
tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnn

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnn
tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnnnnnnn

tcgtttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgagcgggctggcaaggcgcatagnnn
aagcaagcttctcttctctcgttcgacttgcatgtgttaagcgtgccgccagcgttcgtcctgagccaggatcaaactctgactgag

tcgttcccctcgacttgcatgtgttaagcctgtagctagcgttcatcctgagccaggatcaaactctgactgag
"

tgctgcctcccgtaggagtctgggccgtgtctcagtcccaatgtggccggcc
ttcgacttgcatgtcttatgtgcgccgccagtcgtttatcctgagccaggatc

tccgttcgacttgcatgtgttaggcacgcccgccagcgttcgtcctgagcaggatcaaactctgactgag
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Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Anaerostipes;Anaerostipes-hadrus-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia;Blautia-glucerasea-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Clostridium-g24-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Clostridium-g24;Clostridium-symbiosum-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Clostridium-g7;Clostridium-lactatifermentans-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Eubacterium-g4-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Eubacterium-g7-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Fusicatenibacter;Fusicatenibacter-saccharivorans-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Lachnospira;Lactobacillus-rogosae-

Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Ruminococcus-g4;Ruminococcus-torques-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae+

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Anaerotruncus;Anaerotruncus-colihominis-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Caproiciproducens-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Faecalibacterium+

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Oscillibacter+

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Oscillibacter-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Pseudoflavonifractor-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Pseudoflavonifractor;ADDX-s-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Pseudoflavonifractor;Flavonifractor-plautii-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Sporobacter+

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Sporobacter-

Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Subdoligranulum+

Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Catenibacterium;Catenibacterium-mitsuokai+

Bacteria;Firmicutes;Negativicutes;Acidaminococcales;Acidaminococcaceae-

Bacteria;Firmicutes;Negativicutes;Acidaminococcales;Acidaminococcaceae;Phascolarctobacterium-

Bacteria;Firmicutes;Negativicutes;Acidaminococcales;Acidaminococcaceae;Phascolarctobacterium;Phascolarctobacterium-faecium-

Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister+

Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae+

Bacteria;Tenericutes;Mollicutes;Acholeplasmatales;Acholeplasmataceae;Acholeplasma;Acholeplasma-palmae+

NOVEL+

NOVEL-

0.0
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Figure 3.16. Heatmap of markers occurrences across samples for rheumatoid arthritis. The
rows represent inferred biomarker sequences and are sorted based on the taxonomic marker
assignments. The columns represent patient samples and are sorted firstly based on their
phenotype and secondly based on their pattern similarity. ‘Novel’ organisms are shown in
the top rows, denoting the markers that could not be aligned to any reference sequence and
are therefore potentially novel taxa. The cell colors on the heatmap show the percentage of
distinct marker sequences matching a biomarker per sample on a log scale. Markers
targeting a single 16S sequence only are marked by a star. Zooming in the electronic version
is possible for a better see of the details.
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Samples
"

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtagggg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaag

"
cattgtaccatagcgccactgacattgatgctcgaaggtgcgggaatcaaacaggattagataccctggtagtccgcacagtaaacga

"
tgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctg
caggattagataccctggtaggccacgcagtaaacgatgattactaggagtttgcgata

taggggaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagcgtgggtatcgaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtggg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagtt

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgggata
caggattagataccctggtagtccccgcagtaaacgatgattactaggagtttgcgata

cgaaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgatcactcgctcttggcgatatgctgtcaggggccaagcgaaagcgttaagtgatccacctggggagtacggccgcaaggctg
taagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcggta
cagggttagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgata

tagagtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
"

ttgcctttgaaactgtggtacttgagtgtaaaagaggtaggcggaatgtgttg
"

tacggaggatgcaagcgttatccggatttattgggtttaaagggtgcgtaggcggtattacaagtcaggggtgaaatcttggtgcttaacattaaaattgcctttgaaactgtggtacttgagtgtaaaagaggtaggcggaatgtgttgtgtagcggtgaaatgcatatataacacagaaccccga
tacggaggatgcaagcgttatccggatttattgggtttaaagggtgcgtaggcggtattacaagtcaggggtgaaatcttggtgcttaacattaaaattgcctttgaaactgtggtacttgagtgtaaaagaggtaggcggaatgtgttgtgtagcggtgaaatgcatagatataacacagaaccccgattgcgaaggcagcttactatcatacaactgacgctgatgcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactagctgttagcgatatactgttagtggctaagcgaaagcgataagtaatccacctggggagtacggtcgcaagaatg

"
cgggcggaattcgtggtgtagcggtgaaatgcatagatatcacgaggaactccgattgcgaaggcagcttgccatactgcgactgacactgaagcacgaaggcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatataccgtcaagcttccacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

agtctaggcgaaagcgataagtattccacctggggagtacgccggcaacggtg
"

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaagcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactagatttttg
tgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagata

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactg
tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcgaggg

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaagcacgaaagcgtgggcatcaaa
ctgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtg

tcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaagcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactaga
tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaggca

tgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagata
tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatacata

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcga
aatgtgtggtgtagcggtgaaatgcatagatatcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaagcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactagatttttgcgatatagtgtaagagtctaagcgaaagcgataagtattccacctggggagtacgccggcaacggtg

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatgtg
tggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcatagata

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcacatatcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctgacactgaagcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactagatttttgcgatatagtgtaagagtctaagcgaaagcgataagtattccacctggggagtacgccggcaacggtg
tcacacagaacgccgattgcgaaggcagcgtaccaggctccgtctggcactgaagcacgaaagcgtggggatcaaa

tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggttgcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtg
tacggaggatacgagcgttatccggaattattgggtttaaagggtgcgtaggtggcgtattaagtcagtggtgaaaagctgcagctcaactgtagtcttgccgttgaaactgatatgctagagaggagacgaggtatgcggaatgtgtggtgtagcggtgaaatgcacagata

"
caggattagataccctggtagtccacgcagtaaacgaggattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagggtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccccggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

cagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
cagtaaacgatgattactaggagtttgcgagatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

ctaggggtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgata

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttagg
caggattagatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

ctgacactgaagcacgcaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaaagatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtggaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
caggattagatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtggaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgttaagcaatccacctggggagtacgccggcaacggtg
tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtctgcgg
tagtgtaagctctacagcgaaagcgttaagtaatccgccgggggagtacgccggcaacggtg

cagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggatttgataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

tggttactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctccacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
cagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
ctggcactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtggaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcggtatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagattccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggatttgataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccgg

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttacgaaggcataactgacactgaagcacgaaagcgtgggtatcaaa
tgattaataggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtt
cgatttagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattaggtaccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagccctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagcttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcaataaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

ctgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
cagggttagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggatttgattccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcggtaaagtg
caggattagacaccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tgactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcaggaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaag
cggtatagtggaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

aggcaaaactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccatgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaactatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

ctgacactgaagcacgaaggcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaccgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtaggccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagggtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggatttgatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgcaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctcaacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattaggttccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctctacagcgaaggcgttaagtaatccacctggggagtacgccggcaacggtg

tgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
ctaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

cagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccccgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

cgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagcgtggggatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagattccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctctacagcgaaagcgttaaataatccacctggggagtacgccggcaacggtg

caggattagattccctggtaggccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattaggtaccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgttaagtaagccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatcca

cgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagcgggggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgaaactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgctaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgggatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaatggtg

agcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagggtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
cagtaaaagatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

cgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
tgattactaggagtttgcgatatagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagcacgaaagcgtgggtatcaaaaaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagtgtaagctctacggcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagcacggaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgggggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

aggcgtaactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggagtagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

cagtaaacgatgattactaggagtttgcgatatagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

tagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtgcgccggcaacggtg
cagtaaacgatgattactaggagtttgggatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tggtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
ctgacactgaagtacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

caggattagataccctggtagcccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
cagtaaacgatgattactaggagtttgggatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgagatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
"

tacggaggatgcgagcgttatccggatttattgggtttaaagggcgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatgga
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggca

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgatgaaattgccgttgaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcaaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatgga
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaaagca

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaaagatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaagg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagatgccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggagtgcg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctattaagtcagtggtgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttacta

tgaaagtttgtcgctcaacgataaaattgccgttgaaactggtggtcttgagtatggatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggcataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
"

tacggaggatgcgagcgttatccggatttattgggtttaaagggcgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtataga
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgcaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttg
tgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagta
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgggggtatcaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccg
cgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtaatccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtctg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagaga
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatataga

tgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcggggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcataga

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgatgaaattgccgttgaaa
tagagatcacgcagaactccgattgcgaaggcagcttactaaggtaaaactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagcgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactg

ctccgattgcgaaagcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgagggcagcttacta

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgata
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggaatttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggcgaaa

tgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataa

tgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagattccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
cgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaaacg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaaggttg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtttcaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcg

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtaacaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgata

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcctactaaggtataactgacactgaagcacgaaagcgtgggtatcaaa
tgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgctcaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcacaga

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtactccggcaacggtg
ctggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtggtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tgaagtaggcggaatgcggggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtaggccacgcagtaaacgatgattactaggagtttgcgata
tgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaa
tacggagggtgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcgcgaaagcgtgggtatcaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtgtcaaa

ctggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctcgacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggactagataccctggtagtccacg

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccgcctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcataaagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtttagcggtgaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagcaaacga

tgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagattccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagcttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcggggtgtagcggtgaaatgca
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtagggggaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtgggcggaatgcg
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagga

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtggtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacggaagcgtgggtatcaaa
tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataagattgccgttgaaa

tacggaggatgcgagcgttatccggatttattgggtttaaagggtgcgtaggtgggctgttaagtccgcggtgaaagtttgtcgcttaacgataaaattgccgttgaaactggtagtcttgagtatagatgaagtaggcggaatgcgtcgtgtagcggtgaaatgcatagagatcacgcagaactccgattgcgaaggcagcttactaaggtataactgacactgaagcacgaaagcgtgggtatcaaacaggattagataccctggtagtccacgcagtaaacgatgattactaggagtttgcgatatagtgtaagctctacagcgaaagcgttaagtaatccacctggggagtacgccggcaacggtg
"

tacggaaggtccgggtgttatccggatttattgggtttaaagggagcgtagg
"

tcgagttgtccagcgaaagcgttaagtattccgcctggggagtacgccggcaacggtg
caggattagattccctggtagtccgcacggtaaacgatgaatactcgcagttcgg

tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggcggattattaagtcagtggtgaaagacggtggctcaaccatcgttagccattgaaactggtagtcttgagtgcagacagggatgctggaactcgtggtgtagcggtgaaatgcttagatatcacgatgaactccgatcgcgaaggcaggtgtccgggctgcaactgacgctgaggct
ttggccagcgaaagcgttaagtattccacctggggagtacgccggcaacggtg

tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggcggattattaagtcagtggtgaaagacggtggctcaaccatcgttagccattgaaactggtagtcttgagtgcagacagggatgctggaactcgtggtgtagcggtgaaatgcttagatatcacgatgaactccgatcgcgaaggcaggtgtccgggctgcaactgacgctgaggctcgaaagtgtgggtatcaaacaggattagataccctggtaggccacacagtaaacgatgtatactcgcggtttg
agttgtccagcgaaagcgttaagtattccacctggggagtacgccggcaacggtg

tcgagttgtccagcgaaagcgttaagtattccacctggggagtacgccggcaacggtg
"

ctggtagtccacacagtaaacgatgtatactcgcggtttgcgatagacagtaagccgccaagcgaaagcattaagtataccacctggggagtacgccggcaacggtg
"

ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggagcgggtatcgaa
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaacaggattagattccctggtagtccgcacggtaaacgatgaatactcgcagttcgg

ccggttaggtcgagttgtccagcgaaagcgttaagtattccacctggggagtacgccggcaacggtg
ttcagggggtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaa
tggttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

caggattagataccctggtagtccgcacggtaaacgatgaatactcgcagttcggccgtttaggtcgagttgtccagcgaaagcgttaagtattccgcctggggagtacgccggcaacggtg
tcctgtagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctg
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaa

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtattgaa
ctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

ttgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcc
ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatc

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtggagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa
tggcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaacaggattagataccctggtagtccgcacggtaaacgatgaatactcgcagttcgg
ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacggtgaggctcgaaggtgcgggtatcgaa

caactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaa
ttcagggtggagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

caggattagataccctggtagtccgcacggtaaacgatgaatactcgcagttcggccgtttagg
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcaggg

ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcggggatcgaa
ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccgg

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagta
tgcttatatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

caggattagataccctggtagtccgcacggtaaacgatgaatactcgcagttcggccgtttaggtcgagttggccagcgaaagcgttaagtattccacctggggagtacgccggcaacggtg
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactc

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcggggatcgaa
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgggaaggcag

ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcggaactgacgctgaggctcgaaggtgcgggtatcgaa
ttcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgggaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcagctgttaaatatcagagcccaactctgttatgcagttgaaactatatttcttgagtacgcacagggatggcggaattcagggtgtagcggtgaaa
cggaattcagggtgtagcggtgaaatgcttagatatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa

tatcctgaagaactccgatcgcgaaggcagccatccggagcgtaactgacgctgaggctcgaaggtgcgggtatcgaa
tacggaaggtccgggcgttatccggaattattgggtttaaagggagcgcaggcgggagtataagtcag

"
tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggtgtagcggtgaaatgcttagatatcacggagaa

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaa
tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggctggatattaagtgtgttgtgaaatgtagacgctcaacgtctgacttgcagcgcatactggtttccttgagtacgcacaacgttggcggaattcgtcgtgtagcggtgaaatgcttagatatgacgaagaactccgattgcgaaggcagctgacgggagcgcaactgacgcttaagctcgaaggtgcgggtatcaaa

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggtgtagcggtgaaatgcttagatatcacgaagaactccgattgcgaaggcagcttactgtagcgcaactgacgctgatgctcgaaagcgtggggatcgaacaggattagataccctggtagtccacg
tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggtgtagcggtgaaatgcttagatatcacgaagaactccgattgcgaaggcagcttactgtagcgcaactgacgctgatgctcgaaagcgggggtatcgaacaggattagataccctggtagtccacg

tacggaaggttctggcgttatccggatttattgggtttaaagggagcgtaggccg
ccggtggcctagcgaaagcgttaagcatcccacctggggagtacgccggcaacggtg

cggtaaacgatggatgctcgttgtcggcctttgtggtcggtgaccaagcgaaagcgttaagcatccca
tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggggtagcggtgaaatgcttagatatcacgaagaactccgattgcgaaggcagcttactgtagcgcaactgacgctgatgctcgaaagcgtgggtatcgaa

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggtgtagcggtgaaatgcttagatatcacgaagaactccgattgcgaaggcagcttactgtagcgcaactgacgctgatgctcgaaagcgtgggtatcgaacaggattagattccctggtaggccacg
agcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcg

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtgggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcg
ctgacgctgatgctcgaaagcgggggtatcgaacaggattagataccctggtagtccacg

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgccccttaagcgtgttgtgaaatgcgggtgctcaacatccgacttgcagcgcgaactggggggcttgagtgcgccgaaagtaggcggaattcgtggtgtagcggtgaaatgcttagatatcacgaagaactccgattgcggaggcagcttactgtagcgcaactgacgctgatgctcgaaagcgtgggtatcgaa
"

tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggctggaga
tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggctggagattaagtgtgttgtgaaatgtagacgctcaa

"
tctgggcggccaagcgaaagcgttaagtatcccacctggggagtacgccggcaacggtg

"
tacggaaggtccaggcgttatccggatttattgggtttaaagggagtgtaggcggtctgttaagcgtgttgtgaaatttaggtgctcaacatctaccttgcagcgcgaactggcggacttgagtgcacgcaacgtatgcggaattcatggtgtagcggtgaaatgcttagatatcatgacgaactccgattgcgaaggcagcgtacgggagtgttactgacgcttaagctcgaaggtgcggggatcgaacaggattagataccctggtagtccgcacggtaaacgatggatgcccgctgttagcgcctggcgttagcggctaagcgaaagcattaagcatcccacctggggagtacgccggcaacggtg

"
tacggaaggtccaggcgttatccggatttattgggtttaaagggagcgtaggctggagattaagtgtgttgtgaaatgtagacgctcaacgtctgaattgcagcgcatactggtttccttgagtacgcacaacgttggcggaattcgtcgtgtagcggtgaaatgcttagatatgacgaagaactccgattgcgaaggcagctgacgggagcgcaa

"
tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggccgtggattaagcgtgttgtgaaatgcaggtgctcaacgtctgcactgcagcgcgaactggtccacttgagtgtgcacaacgcaggcggaattcgtcg

"
tgggtttggtgaccaagtgaaaacgttaagcatcccacctggggagtacgccggcaacggtg

caggattagataccctggtagtccacgcggtaaacgatggatgctcgttgtcaggcctttgggtttggtgaccaagtgaaaacgttaagcatcccacctggggagtacgccggcaacggtg
"

tacggaaggtccgggcgttatccggatttattgggtttaaagggagcgtaggctgtctattaagcgtgttgtgaaatttaccggctcaaccgg
"

ctgacgctgggggacgaaagcgtggggagcgaacaggattagattccctggtagtccacgctgtaaacga
"

caggattagatgccctggtagtccacgctgtaaacgatggatactagctgtttgg
cgaaagggtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttggg

agtggctaagcgaaagtgataagtatcccaccgggggagtacgcacgcaagtgtg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggctgg

cgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttggg
"

tacggagggtgcaagcgttatccggacttattgggtttaaagggtccgtaggcgggttattaagtcagtggtgaaatctcatagctcaactatgaaactgccattgatactgatagtcttgagtatatttgaagtagctggaataagtagtgtagcggtgaaatgcatagatattacttagaacaccaatagcgaaggcaggttactaagatatta
ctgacgctgagggacgagagcgtagggagcgaacaggattagataccctggtagtctacgctgtaaacgatgctaactcgtttttggtatttaggtatcagagactaagcgaaagtgataagttagccacctggggagtacgctcgcaagagtg

tgctaactcgtttttggtatttaggtatcagagactaagcgaaagtgataagttagccacctggggagtacgctcgcaagagtg
"

cggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttc
tgcttagatattacacagaacaccgatagcgaaggcatattactaacaattaattgacgctgatgga

tcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccga
tcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaa

caggattagataccctggtagtccacgctgtaaaagatggatactagctgtttgggcgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgagaggtt

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacaggacaccga
caggattagataccctggttgtccacgctgtaaacgatggatactagctgtttggacgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatacctgtgaagttc
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaaaaa

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcgaaggcaggggactaacagaaaa
tgggtgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaaggcatattactaacaa

cagggttagataccctggtagtccacgctgtaaacgatggatactagctgtttggacgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacccagaacaccga

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggctggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccga
agattacacagaacaccgatagcgaaggcatattactaacaattgattgacgctgatgga

ctgtaaacgatggatactagctgtttggacgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacggtcgcaagaatg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtag

aggcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg
cgaaagcgtggggggcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttgggcgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggct
tacggaggatgcgagcgttattcgggatcattgggtttaaagggtctgtaggcggg

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttgggatg
tgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccga

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgaatgcggagg
tggatactagctgtttggacgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaacaattgattgacgctgatggacgaaagcggggggggcgaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcg

tggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaagggatattactaacaa
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaggtcagggg

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaacaattgattgacgctggtgga
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgagtatctgtgaagttc

caggattaggtaccctggtagtccacgctgtaaacgatggatactagctgtttggacgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg
ctgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccga

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaaggg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaacaattggttgacgctgatgga

caggattaggtaccctggtaggccacgctgtaaacgatggatactagctgtttgggcgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg
cgggagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacccagaacaccgatagcgaaggcatattactaacaattgattgacgctgatggacgaaagcgtggggagcgaa
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgagg

tggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaaggcatattactaacaattaattgacgctgatgga
tagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaacaattgattgacgctgatggacgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttgggcgcgagtttgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaatcgttcagctcaactgagcaactgcctttgaaactgttagtcttgaatagttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagagattacacagaacaccgatagcgaaggcatattactaaaaattgattgacgctgatggacgaaagcgtggggagcgaa
"

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctgataagtcagaggtgaaagcgcttagctcaactaagcaactgcctttgaaactgtcagtcttgaatgattgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaagggatattactaacaa
"

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagaga
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcgggggcaggggactaacagacgattgacgctgagagacgaaagcgtggggagcgaa

ctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacgaaagcgtggggagcgaa
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttgg

ctaacagacgattgacgctgagagacgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttggagtaatttgagtggctaagcgaaagtgataagtatcccacctggggagtacgcacgcaagtgtg
caggattagataccctggtagtccacgctgtaaactatggatactagctgtttggagtaatttgagtggctaagcgaaagtgataagtatcccacctggggagtacgcacgcaagtgtg

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacggaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttggagtaatttgagtggctaagcgaaagtgataagtatcccacctggggagtacgcacgcaagtgtg
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacgcaagcgtggggagcgaa

tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctg
tacggaggatgcgagcgttattcggaatcattgggtttaaagggtctgtaggcgggctattaagtcaggggtgaaaggtttcagcttaactgagaaattgcctttgatactggtagtcttgaatatctgtgaagttcttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgattgcggaggcaggggactaacagacgattgacgctgagagacgaaagcggggggagcgaa

caggattagataccctggtagtccacgctggaaacgatggatactagctgtttggagtaatttgagtggctaagcgaaagtgataagtatcccacctggggagtacgcacgcaagtgtg
"

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttaggtattacacagaacaccgatagcgaaggcatattactaacaa
tacggagggtgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaa

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgagatgcttagatattacacagaacaccgatagcgaaggcatattactaacaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgaaagcgaaggcatattactaacaattaattgacgctgatggacgaaagcgtggggagcgaa

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgttaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaaggcatattactaacaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaa

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggccaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagctctcagctcaactgagcaactgcctttgaaactgttagtcttgaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcaggggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaa

ttaattgacgctgatggacgaaagcgtggggagcgaacaggattagattccctggtagtccacgctgtaaacgatggatactagctgtttggttgttaagactg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaaggcatattactaacaattaattgacgctgatggacgaaagcgtggggagcgaacaggattagataccctggtagtccacgctgtaaaagatggatactagctgtttgg

cgaaagggtggggagcgaacaggattagataccctggtagtccacgctgtaaacgatggatactagctgtttggttgtaagactgagtggctaagcgaaagtgataagtatcccacctggggagtacgcacgcaagtgtg
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggtta

tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagaacaccgatagcgaaggcatattactaacaattaattgacgctgatggacgaaagcggggggggcgaa
tacggaggatgcgagcgttatccggaatcattgggtttaaagggtccgtaggcgggctaataagtcagaggtgaaagcgctcagctcaactgagcaactgcctttgaaactgttagtcttgaatggttgtgaagtagttggaatgtgtagtgtagcggtgaaatgcttagatattacacagagcaccgatagcgaaggcatattactaacaa

"
tttggggtaatctgagtggctaagcgaaagtgataagtatcccacctggggagtacgttcgcaagaatg

"
gacgtagggagcaagcgttgtccggaattactgggcgtaaagagctcgtaggcgggatcgtaagtcttagagtaaatctcacggctcaactgtggggccttctgagatactgcgattcttgaggatgtcagaggaaagtggaattcccggtgtagcggtgaaatgcgtagatatcgggaggaacaccagtggcgaaggcggctttctgggacattcctgacgctgaggagcgaaagcgtggggagcaaa

"
tgccggagttaacgcaataagtatcccgcctggggagtacggtcgcaagactg

"
caggattaggtgccctggtagtccacgccgtaaacgatgagtgctaagtgttagggggtttccgccccttagtgctgcagctaacgcattaagcactccgcctggggagtacgaccgcaaggttg

cggcagctaacgcattaagcactccgcctggggagtacgaccgcaaggttg
agtgccgcagctaacgcattaagcactccgcctggggagtacgaccgcaaggttg

ccgtaaacgatgagtgctaagtgttagggggtttccgccccttagtgctgcagctaacgcattaagcactccgcctggggagtacgaccgcaaggttg
"

tacgtaggtggcaagcgttatccggaattattgggcgtaaagcgcgcgtaggcggttttttaagtctgatgtgaaagcccacggctcaaccgtggagggtcattggaaactggaaaacttgagtgcagaagaggaaagtggaattccatgtgtagcggtgaaatgcgcagagatatggaggaacaccagtggcgaaggcgactttctggtctgtaactgacgctgatgtgcgaaagcgtggggatcaaa
tacgtaggtggcaagcgttatccggaattattgggcgtaaagcgcgcgtaggcggttttttaagtctgatgtgaaagcccacggctcaaccgtggagggtcattgg

tacgtaggtggcaagcgttatccggaattattgggcgtaaagcgcgcgtaggcggttttttaagtctgatgtgaaagcccacggctcaaccgtggagggtcattggaaactggaaaacttgagtgcagaagaggaaagtggaattccatgtgtagcggtgaaatgcgcagagatatggaggaacaccagtggcgaaggcgactttctggtctgtaactgacgctgatgtgcgaaagcggggggatcaaa
"

tgagtgctaagtgttggagggtttccgcccttcagtgctgcagttaacgcattaagcactccgcctggggagtacgaccgcaaggttg
"

tacgtaggtcccgagcgttgtccggatttattgggcgtaaagcgagcgcaggcggtttgataagtctgaagttaaaggctgtggctcaaccatagttcgctttggaaactgtcaaacttgagtgcagaaggggagagtggaattccatgtgtagcggtgaaatgcgtagatatatggaggaacaccggtggcgaaagcggctctctggtctgtaactgacgctgaggct
tgagtgctaggtgttaggccctttccggggcttagtgccgcagctaacgcattaagcactccgcctggggagtacgaccgcaaggttg

"
tacgtaggtcccgagcgttgtccggatttattgggcgtaaagcgagcgcaggcggttagataagtctgaagtgaaaggcagtggctcaaccattgtaggctttggaaactgtttaacttgagtgcagaaggggagagtggaattccatgtgtagcggtgaaatgcgtagatatatggaggaacaccggtggcgaaagcggctctctggtctgtaactgacgctgaggctcgaaagcgtggggagcgaa

"
cggggccgcagctaacgcattaagtactccgcctggggagtacgcacgcaagtgtg

"
tacgtagggggcaagcgttatccggaattactgggtgtaaagggagcgtagacgg

"
tgggtagcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactaggtgtcgggtggcaaagccattcggtgccggcgcaaacgcaataagtattccacctggggagtacgttcgcaagaatg

tacgtagggggcaagcgttatccggaattactgggtgtaaagggagcgtagacggttaaacaagtctgaagtgaaatgccggggctcaaccccggagctgctttgggaactgtagaactggagtgtcggaggggtaagcggaattcccagtgtagcggtgaaatgcgtagatattgggaggaacaccgggggcgaaggcggcttactggacgacaactgacgttgaggctcgaaggcgtgggtagcaaa
caagtctgaagtgaaatgccggggctcaaccccggagctgctttgggaactgtagaactgg

aggaacaccggcggcgaaggcggcttactggacgacaactgacgttgaggctcgaaggcgggggtagcaaacaggattagataccctggtagtccacgcagtaaacgatgaatactaggtgtcggg
tacgtagggggcaagcgttatccggaattactgggtgtaaagggagcgtagacggttaaacaagtctgaagtgaaatgccggggctcaaccccggagctgctttgggaactgtagaactggagtgtcgggggggtaagcggaa

"
tacgtagggggcaagcgttatccggatttactgggtgtaaagggagcgtagacggtactgcaagtctggagtgaaacccgtggg

tacgtagggggcaagcgttatccggatttactgggtgtaaagggagcgtagacggtactg
ctcaacctgcggcatgctttggaaactgtggtactggagtgtcggagaggtaagcggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacacctggggcgaaggcggcttactggacgatta

aggcgaagcctttcggtgccgtcgcaaacgcaataagtattccacctggggagtacgttcgcaagaatg
"

cgtaaagagtatgtaggtggttaagtaagcgtagggtttaaggcgacagcccaactgtcgtatgccccgcgaactgtttaacttgagtacaggaggggaaggcggaattcctagtgtagcggtgaaatgcgtagatattaggaggaacaccagtggcgaaggcggccttctggactgtaactgacactgagata
tacgtagggggcgagcgttatccggaattactgggcgtaaagagtatgtaggtggttaagtaagcgtagggtttaaggcgacagcccaactgtcgtatgccccgcgaactgtttaacttgagtacaggaggggaaggcggaattcctagtgtagcggtgaaatgcgtagatattaggaggaacaccagtggcgaaggggg

tacgtagggggcgagcgttatccggaattactgggcgtaaagagtatgtaggtggttaagtaagcgtagggtttaaggcgacagcccaactgtcgtatgccccgcgaactgtttaacttgagtacagggggggaaggcggaattcctagtgtagcggtgaaatgcgtagatattaggaggaacaccagtggcgaaggcggccttctggactgtaactgacactgagata
ttaggaggaacaccagtggcgaaggcggccttctggactgtaactgacactgagata

cttgagtacaggaggggaaggcggaattcctagtgtagcggtgaaatgcgtagatattaggaggaacaccagtggcgaaggcggccttctggactgtaactgacactgagata
"

tagatattagggggaacatcagcggcgaaggcggctttctggactgcaactgacactgaggta
tacggagggggcaagcgttatccggaattattgggcgtaaagggtacgtaggtggccttttaagcgtagggtataaggcaatggctcaaccattgttcgccctatgaactggaaggcttgagtgcaggagaggaaagcggaattcctagtgtagcggtggaatgcatagatattaggaggaacatcagcggcgaaggcggctttctggactgcaactgacactgaggta

"
tcgggggttacccccctcggtgccgcagctaacgcattaagtactccgcctggggagtacgcacgcaagtgtg

tacgtagggggctagcgttatccggatttactgggcgtaaagggtgcgtaggtggtccttcaagtcggtggttaaaggctacggctcaaccgtagtaagccgccgaaactggaggacttgagtgcaggagaggaaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaggaacaccagtagcgaagggggctttctggactgcaactgacactgaggcacgaaagcgtgggtagcaaa
"

cccctcctgtgccggagttaacgcaataagtatcccgcctggggagtacggtcgcaagactg
tacgtaggtggcgagcgttgtccggaatgattgggcgtaaagggagcgcaggtgggacggtaagtccttcttaaaagcgtggggctcagccccatgaagggaaggaaacta

agcgcaggtgggacggtaagtccgtcttaaaaggcaggggctcagcccctgtaagggatggaaactatcgttcttgag
"

ctttctggactgtaactgacgctgaggctcgaaagccaggggagcgaacgggattagataccccggtagtcctggccgtaaacgatgaatgctaggtgtaggaggtatcgacccctcctgtgccggagttaacgcaataagcattccgcctggggagtacggtcgcaagactg
cgaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacgatgaatgctaggtgtaggaggtatcgacccctcctgtgccggagttaacgcaataagcattccgcctggggagtacggtcgcaagactg

"
tacgtaggtggcgagcgttgtccggaattattgggcgtaaagggagcgcaggcggacatataagtccatcttaaaagtgcggggctcaaccccgtgaggggatggaaactgtatgccttgagtgcaggagaggaaagcggaattcccagtgtagcggtgaaatgcgtagatattgggaggaacaccagtggcgaaggcgg

taagtccatcttaaaagtgcggggctcaaccccgtgaggggatggaaactgtatgc
tacgtaggtggcgagcgttgtccggaattattgggcgtaaagggagcgcaggcggacatataagtccatcttaaaagtgcggggctcaaccccgtgaggggatggaaactgtatgccttgagtgcaggagaggaaagcggaattcccagtgtagcggtgaaatgcgtagatattgggaggaacaccagtggcgaaggcggctttctggactgtaactgacgctgaggctcgaaagccaggggagcgaacgggattagataccccggtagtcctggccgtaaacgatgaatgctaggtgtaggaggtatcgacccctcctgtgccggagttaacgcaataagcattccgcctggggagtacggtcgcaagactg

tacgtaggtggcgagcgttgtccggaattattgggcgtaaagggagcgcaggcggacata
tacgtaggtggcgagcgttgtccggaattattgggcgtaaagggagcgcaggcggacatataagtccatcttaaaagtgcggggctcaaccccgtgaggggatggaaactgtatgccttgagtgcaggagaggaaagcggaattcccagtgtagcggtgaaatgcgtagatattgggaggaacaccagtggcgaaggggg

"
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggtacgcagg

"
tgagtgttaggtgtctggagtaaatctgggtgccgcagctaacgcattaaacactccgcctggggagtacgcacgcaagtgtg

cgaaagcgtgggtagcaaacaggattagataccctggtagtccacgccgtaaacgatgagtgttaggtgtctggagtcaaatctgggtgccgcagcaaacgcattaaacactccgcctggggagtacgcacgcaagtgtg
tacgtaaggaccgagcgttgtccggaatcattgggcgtaaagggtacgtaggcggctagaaaagttagaagtcaaaggctatagctcaactatagtaagcttctaaaactatttagcttgagaaatggaagggaaagtggaattcctagtgtagcggtggaatgcgcagatattaggaagaataccggtggcgaaggcgactttctggccattatctgacgctgaggta

"
aggaataccagtagcgaaggcgactttctggacacaaactgacgctgaggtacgaaagcgtggggagcaaacaggattagataccctggtagtccacgctgtaaacgatgaatgctaggtgtcgggagtcaaatctcggtgccgaagttaacacattaagcattccgcctggggagtacggtggcaacactg

"
tacgtatggggcgagcgttgtccggaattattgggcgtaaagggtacgtaggcggttttttaagtcaggtgtgaaagcgtgaggcttaacctcattaagcacttgaaactggaagacttgagtgaaggagaggaaagtggaattcctagtgtagcggtgaaatgcgtagatattagggggaataccggtggcgaaggcgactttctggacttttactgacgctcaggta
tacgtatggggcgagcgttgtccggaattattgggcgtaaagggtacgtaggcggttttttaagtcaggtgtgaaagcgtgaggcttaacctcattaagcacttgaaactggaagacttgagtgaaggaggggaaagtggaattcctagtgtagcggtgaaatgcgtagatattaggaggaataccggtggcgaaggcgactttctggacttttactgacgctcaggta

"
cgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgagtgctaggtatcggaataattcggtgccgcagttaacacattaagcactccgcctggggagtacgtgcgcaagcatg

tcggtgccgcagttaacacaataagcactccgcctggggagtacgtgcgcaagcatg
tacgtagggggctagcgttgtccggaatcactgggcgtaaagggttcgcaggcggaaatgcaagtcagatgtaaaaggcagtagcttaactactgtaagcatttgaaactgcatatcttgagaagagtagaggtaagtggaatttttagtgtagcggtgaaatgcgtagatattaaaa

agaataccgggggcgaaggcgacttactgggctcattctgacgctgaggaa
tacgtagggggctagcgttgtccggaatcactgggcgtaaagggttcgcaggcggaaatgcaagtcagatgtaaaaggcagtagcttaactactgtaagcatttgaaactgcatatcttgagaagagtagaggtaagtggaatttttagtgtagcggtgaaatgcgtagatattaaaaagaataccggtggcgaaggcgacttactgggctcattctgacgctgaggaa

"
ctagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaa

ctaggtgttgggagtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
caggattagataccctggcagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
caggattagataccctggtagtccacgctgtaaacgaggattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

tgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
aggtgaaattcgtatatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

ctagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtacata
caggagtagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
caggattagatgccctggtaggccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
caggagtagatgccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggttgtta
tacgtatgtcacaagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatgtaagtctgatgtgaaaatgcagagctcaactctgtattgcgttggaaactgtgtaa

ctagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtatata
tacgtatgtcacaagcgttatccggatttattgggcgtaaagcgcgtctagggtta

ctaggtgttggggctcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
caggattagatcccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

cctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
tgattactaggtggtgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

"
tacgtatgtcacaagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatgtaagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgcatgactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctaaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgccgtaaacgatgatta

tgtaagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgcatgactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctaaagcgcgaaagcgggggtagcaaa
"

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactagagagg
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaaccatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcatgg
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccgcgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactc
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagatgcc

cggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaa
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggacaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaa

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtatata
cggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataa

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagattccctggtagtccacgctgtaaacgatgatta
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataag
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtaggccacg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtctagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtacatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaa

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaga
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtggatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaa

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattaggtgccctggtagtccacg
tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaagttcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacgctgtaaacgatgattactaggtgttgggggtcgaacctcagcgcccaagcaaacgcgataagtaatccgcctggggagtacgtacgcaagtatg

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatataagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtataactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctgaagcgcgaaagcgtgggtagcaaacaggattagatgccctggtagtccacgctgtaaacga
"

tacgtatgtcacgagcgttatccggatttattgggcgtaaagcgcgtctaggtggttatgtaagtctgatgtgaaaatgcagggctcaactctgtattgcgttggaaactgtgtaactagagtactggagaggtaagcggaactacaagtgtagaggtgaaattcgtagatatttgtaggaatgccgatggggaagccagcttactggacagatactgacgctaaagcgcgaaagcgggggtagcaaa
"

tacgtatgtcgcaagcgttatccggaattattgggcataaagggcatctaggcggccctataagtctagggtgaaaacctgcggctcaaccgcaggcctgccccggaaactatagggctggagtactggagaggtggacggaa
tacgtatgtcgcgagcgttatccggaattattgggcataaagggcatctaggcggcctgacaagtcaggggtgaaaacctgcggctcaaccgcaggcctgcctttgaaactgtgaggctggagta

cgggattagataccctggtagtcccagccgtaaacgatgattactgggtgtgggcatgaagagtgtccgtgccgaagcaaatgcgataagtaatccgcctggggagtacggccgcaaggctg
caggattagatacccgggtagtcccagccgtaaacgatgattactgggtgtgggcatgaagagtgtccgtgccgaagcaaatgcgataagtaatccgcctggggagtacggccgcaaggctg

"
cctggctagagtgctggagaggtggacggaactgcacgagtagaggtgaaattcgtagatatgtgcaggaatgccgatgatgaagatagttcactggacggcaactgacgctga

"
cggttatgtaagacagatgtgaaatccccgggctcaacctgggaactgcatttgtgactgca

"
ccctaaacgatgtatactagttgttgcttcgctagtcgaggcagtaaagca

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccttagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaa
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaa

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaactgacgctaatgcg
ctgacgctaatgcgtgaaagcgtggggagcaaacaggatttgataccctggtagtccacg

ccctaaacgatgtatactagttgttgcttcggtggtcgaggcagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta
cagtaaagcacctaacggattaagtatgccgcctggggagtacggtcgcaagatta

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtttagggg
ctgacgctaatgcgtgaaagcgtggggagaaaacaggattagataccctggtagtccacg

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttggg
aggcagtaaggcacctaacggattaagtataccgcctggggagtacggtcgcaagatta

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaactgacgctaatgcgtgaaagcgtggggagcaaacaggatttgataccctggtagtccacg
ctgacgctaatgcgtgaaagcgtggggagcaaacaggtttagattccctggtagtccacgccctaaacgatgtatactagttgttgcttcgctagtcgaggcagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccg
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaag

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaactgacgctaatgcgtgaaagcgtggggagcaaacaggattagattccctggtagtccacg
ccctaaacgatgtatactagttgttgcttcggtggtcgaggcagtaatgca

ctgacgctaatgcgtgaaagcgtggggagcaaacaggattagattccctggtagtccacgccctaaacgatgtatactagttgttgcttcgctagtcgaggcagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaactgacgctaatgcgtgaaagcgtggggagcaaacaggattagattccctggtagtccccg

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagta
cagtaatgaacctaacggattaagtatgccgcctggggagtacggtcgcaagatta

ccctaaacgatgtatactagttgttgcttcggtagtcgaggcagtaaggcacctaacggattaagtatgccgcctggggagtacggtcgcaagatta
ccctaaacgatgtatactagttgttgctaaggtggtcttggcagtaatgcacctaacggattaagtatgccgcctggggagtacggtcgcaagatta

cggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaa
ctagttgttgcttcgctagtcgaggcagtaatgcacctaacggattaagtataccg

ccctaaacgatgtatactagttgttgcttcggtagtcgaggcagtaaagcacctaacggattaagtatgccgcctggggagtacggtcgcaagatta
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaagcgatctgctggaacttaactgacgctaatgcgtgaaagcgtggggagcaaacaggattagataccctggtaggccacg

tcgagggagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta
ccctaaacgatgtatactagttgttgcttcggtagtcgaggcagtaatgcacctaacggattaagtatgccgcctggggagtacggtcgcaagatta

ctagtcttggcagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtctagggg

ctgacgctaatgcgtgaaagcggggggagaaaacaggattagataccctggtagtccacg
caggattagatcccctggtagtccacgccctaaacgatgtatactagttgttgcttcgctagtcgaggcagtaatgcacctaacggattaagtataccgcctggggagtacggtcgcaagatta

cagtaaggcacctaacggattaagtataccgcctggggagtacggtcgcaagatta
"

tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatcctatggcttaaccatagaactgcttgggaaactggtaatctagagtgagggagaggcagatggaattggtggtgtaggggtaaaatccg
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatcctatggcttaaccatagaactgcttgggaaactggtaatctagagtgagggagaggcagatggaattggtggtgtaggggtaaaatccgtagagatcaccaggaatacccattgcgaaggcgatctgctggaactcaactgacgctaatgcgtgaaagcgtggggagcaaacaggattagataccctggtagtccacg
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatcctatggcttaaccatagaactgcttgggaaactggtaatctagagtgagggagaggcagatggaattggtggtgtaggggtaaaatccgtagagatcaccaggaatacccattgcgaaggcgatctgctggaactcaactgacgctaatgcgtgaaagcggggggagcaaacaggattagataccctggtagtccacg

"
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatccaa

"
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagatatcaagaagaatacctattgcgaaggcgatctgctggaacttaactgacgctaatgcgtgaaagcggggggagcaaa

ccctaaacgatgtataccggttgttgctgtgctggtcacggcagtaatccacctaacggattaagtataccgcctggggagtacggtcgcaagatta
tacggagggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtctcttgtgaaatctaacggcttaaccgttaaactgcttgggaaactgataatctagagtaagggagaggcagatggaattcttggtgtaggggtaaaatccgtagatatcaagaagaatacctattgcgaaggcgatctgctggaacttaactgacgctaatgcgtgaaagcgtggggagcaaacaggattagataccctggtagtccacg

"
cgatctgctggaacctaactgacgctgaggcgtgaaagcgtgggtagcaaa

tacggggggtgcaagcgttactcggaatcactgggcgtaaaggacgcgtaggcggattatcaagtcttttgtgaaatctagtggcttaaccactaaactgcttaggaaactgatagtctagagtaggggagaggtagatggaattcttggtgtaggggtaaaatccgtagagatcaagaagaatacccattgcgaaag
"

ctcggtgccgcagctaacgcattaagttgaccgcctggggagtacggccgcaaggttg
"

tacggagggtgcaagcgttattcggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccagtgtagcagtgaaatgcgtagatattggaaggaacaccgatggcgaaggcagctttctgggtcgata
tacggagggtgcaagcgttattcggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccag

tacggagggtgcaagcgttattcggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccagtgtagcagtgaaatgcgtggatattggaaggaacaccgatggcgaaggcagctttctgggtcgatactgacgctcatgtg
tacggagggtgcaagcgttattcggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccagtgtagcagtgaaatgcgtagatattggaaggaacaccga

cggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccagtgtagcagtgaaatgcgtagatattggaaggaacaccgatggcgaaggcagctttctgggtcgatactgacgctcatgtg
ctaggcgtcgggttgtatagactcggtgccgcagctaacgcattaagttgaccgcctggggagtacggccgcaaggttg

tacggagggtgcaagcgttattcggaattactgggcgtaaagcgcacgcaggcggctacctaagtcagatgtgaaagccccgggcttaacctgggaactgcatttgaaactgggtggctagagtatgaaagaggaaagcggaatttccagtgtagcagtgaaatgcgtagatattggaaggaacaccgatggcgaaggcagctttctgggtcgatactgacggtcatgtg
cgaaagcgtggggagcaaacaggattaggtaccctggtagtccacgccctaaacgatgtcaactaggcgtcgggttgtatagactcggtgccgcagctaacgcattaagttgaccgcctggggagtacggccgcaaggttg

"
tacagagggtgcgagcgttaatcggaattactgggcgtaaagcgcgcgtaggcggcttttcaagtcgattgtgaaatccccgggctcaacctgggaactgcagtcgagactgtctagctagagtatgggagagggaagtggaatttcaggtgtagcggtgaaatgcgtagatatctgaaggaacatcagtggcgaaagcgacttcctggaccaatactgacgctcatgtg

tacagagggtgcgagcgttaatcggaattactgggcgtaaagcgcgcgtaggcggcttttcaagtcgattgtgaaatccccggg
tacagagggtgcgagcgttaatcggaattactgggcgtaaagcgcgcgtaggcggcttttcaagtcgattgtgaaatccccgggctcaacctgggaactgcagtcgagactgtctagctagagtatgggagagggaagtggaatttcaggtgtagcggtgaaatgcgtagatatctgaaggaacatcagtggcgaaagcgacttcctggaccaatactgacgctcatgtgcgaaagcggggggagcaaa

cgaaagcgtggggagcaaacaggattagatgccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg
cgaaagcgtggggagcaaacaggattagataccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg
cgaaagcgtggggggcaaacaggattagataccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg
cgaaagcgtggggagcaaacaggattagatcccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg
cgaaagcggggggagcaaacaggattagataccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg

"
ctcaacctgggaactgcagtcgagactgtctagctagagtatgggagagggaagtggaatttcaggtgtagcggtgaaatgcgtagatatctgaaggaacatcagtggcgaaagcgacttcctggaccaatactgacgctcatgtgcgaaagcgtggggagcaaacaggattagataccctggtagtccacgccataaacgatgagaactggatgtcggaggggtctgcccttcggtgtcgtagctaacgcgttaagttctccgcctggggagtacggccgcaaggttg

"
cgaaagggtggggatcgaacaggattagataccctggtagtccacactgtaaacgatgtacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg

cacgtaaggggcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggctatgtaagcctgatgtgaaatcctggggcttaaccctagaatagcattgggtactgtatagcttgaattacggaagggaaactggaattccaagtgtaggggtggaatctgtagatatttggaagaacaccggtggcgaaggcgggtttctggccgataattgacgctgagatgcgaaagtgtggggatcgaacaggattagatgccctggtagtccaca
ttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgca

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgcagg
cgaaagtgtggggatcgaacaggattagataccctggtagtccacactgtaaacgatgtacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtgccgcctggggagtatgcccgcaagggtg

ctgtaaactatgtacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg
cttgaattacggaagggaaactggaattccaagtgtaggggtggaatctgtagatatttggaagaacaccgggggcgaggg

cttgaattacggaagggaaactggaattccaagtgtaggggtggaatctgtagatatttggaagaacaccggtggcgaaggcgggtttctggccgataattgacgctgagatgcgaaagtgtggggatcgag
cgaaagtgtggggatcgaacaggattagattccctggtagtccacactgtaaacgatgtacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg

cgaaggtgcggggagcaaacaggattagataccctggtagtccgcacagtcaacgatgtgcactagatgtctgtccacgaggatgggtgtcaaagcaaacgcgataagtgcaccgcctggggagtatgcccgcaagggtg
cttgaattacggaagggaaactggaattccaagtgtaggggtggaatctgtagatatttggaagaacaccggtggcgaaggcgggtttctggccgataattgacgctgagatgcgaaagtgtgggca

ccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
cttgaattacggaagggaaactggaattccaagtgtaggggtggaatctgtacatatttggaagaacaccggtggcgaaggcgggtttctggccgataattgacgctgagatg

cgaaagtgtgggcatcgaacaggattagataccctggtagtccacactgtaaacgatgtacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg
ttccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcagg

caagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagta
cgaaagtgtggggatcgaacaggattagataccctggtagtccacactgtaaacgatggacactaggtgttggggcaagagcttcagtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg
cgaaggtgcggggagcaaacaggattagataccctggtaggccgcacagtcaacgatgtgcactagatgtctgtccacgaggatgggtgtcaaagcaaacgcgataagtgcaccgcctggggagtatgcccgcaagggtg

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtagg
cttgaattacggaagggaaactggaattccaagtgtaggggtggaatctttagatatttggaagaacaccggtggcgaaggcgggtttctggccgataattgacgctgagatg

caagagcttcagtgccaaagcaaacgcgataagcgtaccgcctggggagtatgcccgcaagggtg
"

catgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactg
caggattagataccctggtaggccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
caggattagataccctggtagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg

tctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
caggattagataccctggtaggccgcaccgtaaacgatgtacactaggtgtctgggataacagctgggtgccaaagcaaacgtgataagtgtgccgcctggggagtatgcccgcaagggtg

ccgatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgcagatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtaga

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgcagatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaa
caggattagataccctgggagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgcagatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgca
cgaaagtgcggggagcgaacaggattagataccctggtagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg

ttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtaggccgcaccgtaaacgatgtacactaggtgtctgggataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
tgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgccgatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctggggtgcgaaagtgcggggagcgaa
taggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactg

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgccgatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgcaccgtaaacgatgtacactaggtg
cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaa

cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgccgatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaa
cacgtaaggtgcgagcgttgttcggaattattgggcgtaaagggcatgtaggcggataggcaagcttggtgtgaaatgttacagcttaactgtgagacagcattgagaactgcagatcttgaattactgaagggtaaccagaattccacgtgtaggggtgaaatctgtagatatgtggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaa

tggaagaataccaatggcgaaggcaggttaccggcagataattgacgctgaggtgcgaaagtgcggggagcgaacaggattagataccctggtagtccgcaccgtaaacgatgtacactaggtgtctggcataacagctgggtgccaaagcaaacgtgataagtgtaccgcctggggagtatgcccgcaagggtg
"

cagtcaacaatgtacactcggtgtccggccaagaggctgggtgccaaagcaaacgcgataagtgtaccgcctggggagtatgcccgcaagggtg
cacgtaagttgcgagcgttgttcggaattattgggcgtaaagggcatctaggcggtcattcaagcttggtgtgaaataccggggcttaactccggggctgcattgagaactggatgactggagtcactgaagggcaaccagaattccaggtgtaggggtgaaatctgtagatatctggaagaataccaatggcgaaggcaggttaccggcagatgactgacgctgaagtgcgaaggtgcggggagcaaa

"
ccgcaggtaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcggg
ccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
ccgcagttaacgcgatgagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggccg
"

caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaa
tgtagcggttaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg
tgtagtggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg
caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcgg

"
tgaatgctaggtgtgcgagcggggatgttggtgtgccgcaggtaacgcgataagcattccgcctggggagtacggtcgcaagattg

ctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcggggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttagcgcgataagcattccgcctggggagtacggtcgcaagattg

tgaatgctgggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacgg

aggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
cgggattggataccccggtagtcctggccgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tgcgagcggggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
ccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcggagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcttagatattgggaagaacatcggtggcgaaggcgacttg
cgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

cggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccgg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtttagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg
tgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacgg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtggaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg
ttgggaagaacatcgggggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagccgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagatgccccggtagtcctggctgtaaacga

cgggattagataccccggtggtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctggggtgcgaaagccagggtagcaaa

tgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcgg

ctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgggccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggggaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacga

ctggacggtaactgacgctgaggtgggaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaatccccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg

tagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaagg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtggata
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaga

tggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
ttggtgtgccgcagttaacgcgataagcactccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtacatattgggaagaacatcggtggcgaaggcgacttg
agactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg

tgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgaaaagcattccgcctggggagtacggtcgcaagattg
tgaatgctaggtgtgcgggcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccg
tgaatgctaggtgtgcgagcatagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

ccggtagtcctggctgtaaacgatgaatgctgggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggtaagtggaa

ctggacggtaactgacgctggggtgcgaaagccagggtagcgaacgggattggatacc
cgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacgg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtaggcctgg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacgggaa
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcggcttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacga

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtggttcaagtcagctgtaaaaggatgcggcttaaccg
cggggttagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

aatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggggaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtgccggagagg
ttagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

cgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacggtgaggtgcgaaagccagggtagcgaa

tgaatgctaggtgtgcgagcagagatgttggtgcgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
cacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggccgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

ctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tgcgagcggagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

taaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgctccaagtcagctgtaaaaggatgcggcttaaccg

ttggtgtgccgcaggtaacgcgataagcattccgcctggggagtacggtcgcaagattg
ccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagttgtaaa
ctgacgctggggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggacggtaactgaagctgaggtgcgaaagccagggtagcgaa

ctggacggtaactgacgctgaggtgcgaaagccagggtagcgaacggggttagataccccggtagtcctggctgtaaacga
ctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg

cagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
cacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgcttcaagtcagctgtaaaaggatgcggcttaaccgtgttatgcagttgagactgaggtgctggagtaccggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttg

"
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggggaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaa
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcgggggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctggggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacga
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacggggttagatgcc
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggttgtgattcaagtcagctgtaaaaggatgcggcttaaccg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattggggagaacatcggtggcgaaggcgacttg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccag

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaag

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttagccg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctggggtgcgaaagccagggtagcaaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggatagg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcgggggcgaaggcgacttgctggccagtaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaa
cgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtg
cgaaggccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctgg
tgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

aggtgggaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagata

ctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagatgccccggtagtcctggctgtaaacga

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcggagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
ctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagggatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacggga

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccaggg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagggg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcag

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgcaag
tgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctggggtgcgaaagccagggtagcaaa

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcg
caagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacga

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccaggaactgacgctgaggtgcgaaagccagggtagcaaa
cgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggggagg
aggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcgg
tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcggttgaaactggatgactggagtgctggagagg

tacgtagggggcgagcgttgtccggaattactgggcgtaaagggcacgcaggctgtgattcaagtcagctgtaaaaggatgcggcttaaccgtgtttagcagttgaaactggatgactggagtgctggagaggcaagtggaattcccagtgtagcggtgaaatgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacg
tgcgtagatattgggaagaacatcggtggcgaaggcgacttgctggccagtaactgacgctgaggtgcgaaagccagggtagcaaacgggattagataccccggtagtcctggctgtaaacgatgaatgctaggtgtgcgagcagagatgttggtgtgccgcagttaacgcgataagcattccgcctggggagtacggtcgcaagattg

"
cgaaagcggggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgatcattagtcggtgggagccactgacgcagctaacgcattaaatgatccgcctgagtagtatgctcgcaagagtg
cgaaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgatcattagtcggtgggggccactgacgcagctaacgcattaaatgatccgcctgagtagtatgctcgcaagagtg
cgaaagggtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgatcattagtcggtgggagccactgacgcagctaacgcattaaatgatccgcctgagtagtatgctcgcaagagtg

tgatcattagtcggtgggggccactgacgcagctaacgcattaaatgatccgcctgagtagtatgctcgcaagagtg
"

ttcccagtgtagcggtgaaatgcgtagatattggggggaacaccagtggcgaaggggg
cgaaagccaggggagcgaacgggattagataccccggtagtcctggccgtaaacgatggatactaggtgtaggaggtatcga

tttttagtgagttgttccattctttagctcctagacctttagcagcaaggtccatatctgactttttgttaacgtatttagccacatagaaaccaacagccatataactggtagctttaagcggctcacctttagcatcaacaggccacaaccaaccagaacgtgaaaaagcgtcctgcggg
ttgctgccgtcattgcttattatgttcatcccgtcaacattcaaacggcctgtctcatcatggaaggcgctgaatttacggaaaacattattaatggcgtcgagcgtccggttaaagccgctgaattgttcgcgtttaccttgcgtgtacgcgcaggaaacactgacgttcttactgacgcagaagaaaacgtgcgtcaaaaa

ctacaggtagcgttgaccctaattttggtcgtcgggtacgcaatcgccgccagttaaatagcttgcaaaatacgtggccttatggttacagtatgcccatcgcagttcgctacacgcaggacgctttttcacgttctgg
ctctaatctctgggcatctggctatgatgttgatggaactgaccaaacgtcgttaggccagttttctggtcgtgttcaacagacctataaacattctgtgccgcgtttctttgttcctgagcatggcactatgt

tgattatcttgctgctgcatttcctgagcttaatgcttgggagcgtgctggtgctgatgcttcctctgctggtatggttgacgccgga
cctttagcatcaacaggccacaaccaaccagaacgtgaaaaagcgtcctgcgtgtagcgaactgcgatgggcatactgtaaccataaggccacg

ttcccagtgtagcggtgaaatgcgtagatattgggaggaacaccagtggcgaaggcgg
tcagttccatcaacatcatagccagatgcccagagattagagcgcatgacaagtaaaggacggttgtcagcgtcataagaggttttacctccaaatgaagaaataacatcatggtaacgctgcatgaagtaatcacgttcttggtcagtatgcaaattagcataagcagcttgcagacccataatgtcaatagatgtggtagaagtcgtcatttggcgagaaagctcagtctcaggaggaagcggagcagtccaaatgtttttgagatggcagcaacggaaaccataacgagcatcatcttgattaagctcattagggttagcctcggtacggtcaggcatcca

cagcaagaaccatacgaccaatatcacgaaaatagtcacgcaaagcattgggattatcataaaacgcctctaatcgggcgtcag
tggttggtttatcgtttttgacactctcacgttggctgacgaccgattagaggcgttttatgataatcccaatgctttgcgtgactattttcgtgatattggtcgtatggttcttgctgccgagggtcgcaaggctaatgattcacacgccgactgctatcagtatttttgtgtgcctgagtatggtacagctaatggccgtcttcatttccatgcggtgcactttatgcggacacttc

ctccttctgttgataagcaagcatctcattttgtgcatatacctggtctttcg
"

tgatgagtcgaaaaattatcttgataaagcaggaattactactgcttgtttacgaattaaatcgaagtggactgctggcggaaaatg
cctgtaggaagtgtccgcatacagtgcaccgcatggaaatgaagacggccattagctgtaccatactcaggcacacaaaaatactgatagcagtcggcgtgtgaatcattagccttgcgaccctcgg

aggcggtcaaaaagccgcctccggtggcattcaaggtgatgtgcttgctaccgataacaatactgtaggcatgggtgatgctggtattaaatctgccattcaaggctctaatgttcctaaccctgatgaggccgtccctagttttgtttctggtgctatggctaaagctggtaaaggacttcttgaagg
ttgtggcctgttgatgctaaaggtgagccgcttaaagctaccagttatatggctgttggtttctatgtggctaaatacgttaacaaaaagtcagatatggg

agaaaattcgacctatccttgcgcagctcgagaagctcttactttgcgacctttcgccatcaactaacgattctgtcaaaaactgacgcg
ctgggttacgacgcgacgccgttcaaccagatcttgaagcagaacgcaaaaagagagatgagattgaggctgggaaaagttactgtagccgacgttttggcggcgcaacctgtgacgacaaatctgctcaaatttatgcgcgcttcgataaaaatga

tagcaaggccacgacgcaatggagaaagacggagagcgccaacggcgtccatctcgaaggag
aggatattcgcgatgagtataattaccccaaaaagaaaggtattaaggatgagtgttcaagattgctggaggcctccactatgaaatcgcgtagagg

taccgatattgctggcgaccctgttttgtatggcaacttgccgccgcgtgaaatttctatgaaggatgttttccgttctggtgattcgtctaagaagtttaagattgctgagggtcagtggtatcgttatgcgccttcgtatgtttctcctgcttatcaccttcttgaaggcttcccattcattcaggaaccgccttctggtgatttgcaagaacgcgtactta
agtgccccgcatggaaatgaagacggccattagctgtaccatactcaggcacacaaaaatactgatagcagtcggcgtgtgaatcattagccttgcgaccctcgg

caaaaaatttagggtcggcatcaaaagcaatatcagcaccaacagaaacaa
gtatggttcttgctgccgagggtcgcaaggctaatgattcacacgccgactgctatcagtatttttgtgtgcctgagtatggtacagctaatggccgtcttcatttccatgcggtgcactttatgcggacacttcctacaggtagcgttgaccctaattttggtcgtcgggtacgcaatcgccgccagttaaatagcttgcaaaatacgtggccttatggttacagtatgcccatcgcagttcgctacacgcaggacgctttttcacgttctggttggttgtggcctgttgatgctaaaggtgagccgcttaaagctaccagttatatgg

ccacgtattttgcaagctatttaactggcggcgattgcgtacccgacgaccaaaattagggtcaacgctacctgtaggaagtgtccgcataaagtgcaccgcatggaaatgaagacggccattagctgtaccatactcaggcacacaaaaatactgatagcagtcggcgtgtgaatcattagccttgcgaccctcgg
ttgcatactgaccaagaacgtgattacttcatgcagcgttaccatgatgttatttcttcatttggaggtaaaacctcttatgacgctgacaaccgtcctttacttgtcatgcg

cctgattagcggcgttgacagatggatccatctgaatgcaatgaagaaaaccaccattaccagcattaaccgtcaaactatcaaaatataacgttgacgatgtagctttaggtgtctgtaaaacaggtgccgaagaagctggagtaa
tattttgcaagctatttaactggcggcgattgcgtacccgacgaccaaaattagggtcaacgctacctgtaggaagtgtccgcataaagtgcaccgcatggaaatgaagacggccattagctg

tcttgattaagctcattagggttagcctcggtacggtcaggcatccacggcgctttaaaataggtgttatagatattcaaataaccctgaaacaaatgcttagggattttattggtatcagggttaatcgtgccaagaaaagcggcatggtcaatataaccagtagtgttaa
catcgtcaacgttatattttgatagtttgacggttaatgctggtaatggtggttttcttcattgcattcagatggatacatctgtcaacgccgctaatcaggttgtttctgttggtgctgatattg

caaataatctctttaataacctgattcagcgaaaccaatccgcggcatttagtagcggtaaagttagaccaaaccatgaaaccaacataaacattattgcccggcgtacggggaaggacgtcaa
cccatgcctacagtattgttatcggtagcaagcacatcaccttgaatgccaccggaggcggctttttgaccgcctccaaacaatttagacatggcgccaccagcaagagcagaagcaataccgccagcaatagcaccaaacataaa

cctgtaggaagtgtccgcataaagtgcaccgcatggaaatgaagacggccattagctgtaccatactcaggcaca
agaaacgcggcacagaatgtttataggtctgttgaacacgaccagaaaactggcctaacgacgtttgg

ctcgacgccattaataatgttttccgtaaattcagcgccttccatgatgagacaggccgtttgaatgttga
ttagagaacgagaagacggttacgcagttttgccgcaagctggctgctgaacgccctctta

tgatttcgattttctgacgagtaacaaagtttggattgctactgaccgctctcg
gttcttggtcagtatgcaaattagcataagcagcttgcagacccataatgtcaatagatgtggtagaagtcgtcatttggcgagaaagctcagtctcaggaggaagcggagcagtccaaatgtttttgagatggcagcaacggaaaccataacgagcatcatcttgattaagctcattagggttagcctcggtacggtcaggcatccacggcgctttaaaatagttgttatagatattcaaataaccctgaaacaaatgcttagggattttattggtatcagggttaatcgtgccaagaaaagcggcatggtcaatataaccagtagtgttaa

cagtcgggagaggagtggcattaacaccatccttcatgaacttaatccactgttcaccataaacgtgacgatgagggacataaaaagtaaaaatgtctacagtagagtcaatagcaaggccacggcgcaatggagaaagacggagagcgccaacggcgtccatctcgaaggag
ttctgcgtcagtaagaacgtcagtgtttcctgcgcgtacacgcaaggtaaacgcgaacaattcagcggctttaaccggacgctcgacgccattaataatgttttccgtaaattcagcgccttccatgatgagacaggccgtttgaatgttgacgggatgaacataataagcaatgacggcagcaataaactcaacaggagcaggaaagcgagggtatcctacaaagtccagcgtaccataaacgcaagcctcaacgcagcgacgagcacgagagcgg

tcagttccatcaacatcatagccagatgcccagagattagagcgcatgacaagtaaagg
caaataatctctttaataacctgattcagcgaaaccaatccgcggcatttagtagcgggaaagttagaccaaaccatgaaaccaacataaacattattgcccggcgtacggggaaggacgtcaa

agggttaggaacattagagccttgaatggcagatttaataccagcatcacccatgcctacagtattgttatcggtagcaagcacatcaccttgaatgccaccggaggcggctttttgaccgcctccaaacaatttagacatggcgccaccagcaagagcagaagcaataccgccagcaatagcaccaaacataaatcacctcacttaagtggctggagacaaataatctctttaataacctgattcagcgaaaccaatccgcggcatttagtagcggtaaagttagaccaaaccatgaaaccaacataaacattattgcccggcgtacggggaaggacgtcaa
ttttattggtatcagggttaatcgtgccaagaaaagcggcatggtcaatataaccagtagtgttaacagtcgggagaggagtggcattaacaccatccttcatgaacttaatccactgttcaccataaacgtgacgatgagggacataaaaagtaaaaatgtctacagtagagtcaatagcaaggccacgacgcaatggagaaagacggagagcgccaacggcgtccatctcgaaggag

ttggaccggcgcaagacggaccagagcgaaagcatttgccaagaatgttttcattaatcaagaacgaaagtcggaggttcgaagacgatcagataccgtcgtagttccgaccataaacgatgccga
taataagcaatgacggcagcaataaactcaacaggagcaggaaagcgagggtatcctacaaagtccagcgtaccataaacgcaagcctcaacgcagcgacgagcacgagagcggtcagtagcaatccaaactttgttactcgtcagaaaatcgaaatcatcttcggttaaatccaaaacggcagaagcctgaatgagcttaatagaggccaaagcggtctggaaacgtacggattgttcagtaa

agtggtcggcagattgcgataaacggtcacattaaatttaacctgactattccactgcaacaactgaacggactggaaacactggtcataatcatggtggcgaataagtacgcgttcttgcaaatcaccagaaggcggttcctgaatgaatgggaagccttcaagaaggtgataagcaggagaaacatacgaaggcgcataacgataccactgaccctcagcaatcttaaacttcttagacgaatcaccagaacggaaaacatccttcatagaaatttcacgcggcggcaagttgccatacaaaacagggtcg
tgggaagccttcaagaaggtgataagcaggagaaacatacgaaggcgcataacgataccactgaccctcagcaatcttaaacttcttagacgaaacaccagaacggaaaa

tttggaggcggtcaaaaagccgcctccggtggcattcaaggtgatgtgcttgctaccgataacaatactgtaggcatgggtgatgctggtattaaatctgccattcaaggctctaatgttcctaaccctgatgaggccgtccctagttttgtttctggtgctatggctaaagctggtaaaggacttcttgaaggtacgttgcaggctggcacttctgccgtttctgataagttgcttgatttggttggacttggtggcaagtctgccgctgataaaggaaaggatactcgtgattatcttgctgctgcatttcctgag
ccgcggttctattttgttggttttcggaactgaggccatgattaagagggacggccgggggcattcgtattgcgccgctagaggtgaaattc

caagagtaaacatagtgccatgctcaggaacaaagaaacgcggcacagaatgtttataggtctgttgaacacgaccagaaaactggcctaacgacgtttggtcagttccatcaacatcatagccagatgcccagagattagagcgcatgacaagtaaaggacggttgtcagcgtcataagaggttttacctccaaatgaagaaataacatcatggtaacgctgcatgaagtaatcacgttcttggtcagtatgcaaattagcataagcagcttgcagacccataatgtcaatagatgtggtagaagtcgtcatttggcgagaaagct
ctgttcaaccactaataggtaagaaatcatgagtcaagttactgaacaatccgtacgtttccagaccgctttggcctctattaagctcattcaggcttctgccgttttggatttaaccgaaga

cttcccaagaagctgttcagaatcagaatgagccgcaacttcgggatgaaaa
taccttaacgctaaaggtgctttgacttataccgatattgctggcgaccctgttttgtatggcaacttgccgccgcgtgaaatttctatgaaggatgttttccgttctggtgattcgtctaagaagtttaagattgctgagggtcagtggtatcgttatgcgccttcgtatgtttctcctgcttatcaccttcttgaaggcttcccattcattcaggaaccgccttctggtgatttgcaagaacgcgtacttattcgccaccatgattatgaccagtgtttccagtccgttcagttgttgcagtggaatagtcaggttaaatttaatgtga

tcttgattaagctcattagggttagcctcggtacggtcaggcatccacggcgctttaaaatag
tctgagtccgatgctgttcaaccactaataggtaagaaatcatgagtcaagttactgaacaatccgtacgtttccagaccgctttggcctctattaagctcattcaggcttctgccgttttg

catcagaaatatccgaaagtgttaacttctgcgtcatggaagcgataaaactctgcaggttggatacgccaatcatttttatcgaagcgcgcataaatttgagcagatttgtcgtcacaggttgcgccgccaaaacgtcggctacagtaa
ccactgaccaaatcaaagaaatgactcgcaaggttagtgctgaggttgacttagttcatcagcaaacgcagaa

cttcatgcagcgttaccatgctgttatttcttcatttggaggtaaaacctcttatgacgctgacaaccgtcctttacttgtcatgcg
ccagcaatatcggtataagtcaaagcacctttagcgttaaggtactgaatctctttagtcgcagtaggcggaaaacgaacaagcgcaagagtaaacatagtgccatgctcaggaacaaagaaacgcggcacagaatgtttataggtctgttgaacac

tccatgcggtgcactttatgcggacacttcctacaggtagcgttgaccctaattttggtcgtcgggtacgcaatcgccgccagttaaatagcttgcaaaatacgtggccttatggttacagtatgcccatcgcagttcgctacacgcaggacgctttttcacgttctggttggttgtggcctgttgatgctaaaggtgagccgcttaaagctaccagttatatggctgttggtttctatgtggctaaatacgttaacaaaaagtcagatatggaccttgctgctaaaggtctaggagctaaagaatggaacaactcactaaaaaccaagctgtcgcta
tatgccgcatgacctttcccatcttggcttccttgctggtcagattggtcgtcttattaccatttcaactactccggttatcgctggcgactccttcgagatggg

tgccggttggatacgccaatcatttttatcgaagcgcgcataaatttgagcagatttgtcgtcacaggttgcgccgccaaaacgtcggctacagtaa
ttttcgtgatattggtcgtatggttcttgctgccgagggtcgcaaggctaatgattcacacgccgactgctatcagtatttttgtgtgcctgagtatggtacagctaatggccg

cctgtaggaagtgtccgcataaagtgcaccgcatggaaatgaagacggccattagctgtaccata
tattctggcgtgaagtcgccgactgaatgccagcaatctctttttgagtctcat

aggatattcgcgatgagtataattaccccaaaaagaaaggtattaaggatgagtgttcaagattgctggaggcctccactatgaaatcgcgtagaggctttgctattcagcgtttgatgaatgcaatgcgacaggctcatgctgatggttggtttatcgtttttgacactctcacgttggctgacgaccgattagaggcgttttatgataa
ccgcagctaacgcattaagcactccgcctggggagtacggccgcaaggttg

ccagcaatatcggtataagtcaaagcacctttagcgttaaggtactgaatctctttagtcgcagtaggcggaaaacgaacaa
atttaacctgactattccactgcaacaactgaacggactggaaacactggtcataatcatggtggcgaataagtacgcgttcttgcaaatcaccagaaggcggttcctgaatgaatgggaagccttcaagaaggtgataagcaggagaaacatacgaaggcgcataacgataccactgaccctcagcaatcttaaacttcttagacgaatcaccagaacggaaaacatccttcatagaaatttcacgcggcggcaagttgccatacaaaacagggtcg
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Figure 3.17. Heatmap of markers occurrences across samples for periodontal disease. The
rows represent inferred biomarker sequences and are sorted based on the taxonomic marker
assignments. The columns represent patient samples and are sorted firstly based on their
phenotype and secondly based on their pattern similarity. ‘Novel’ organisms are shown in
the top rows, denoting the markers that could not be aligned to any reference sequence and
are therefore potentially novel taxa. The cell colors on the heatmap show the percentage of
distinct marker sequences matching a biomarker per sample on a log scale. Markers
targeting a single 16S sequence only are marked by a star. Zooming in the electronic version
is possible for a better see of the details.
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Table 3.12. Runtimes of DiTaxa and a common 16S processing pipeline for the periodontal,
synthetic, rheumatoid arthritis and IBD datasets. The (k) sign denotes steps that are
parallelized and run on multiple cores (here 20 cores). STDP stands for standard pipeline,
using OTU clustering and LEfSe for marker detection.

Dataset Number of samples Segmentation or clustering Representation Creation Biomarker detection Total
DiTaxa STDP (k) DiTaxa (k) STDP DiTaxa(k) STDP (k) DiTaxa STDP

Periodontal dataset 20 3,37 min 0,34 min 1,84 min 0,43 min 1,58 min 0,10 min 6,79 min 0,87 min
Rheumatoid Arthritis dataset 114 23,86 min 1,33 min 0,61 min 5,10 min 1,73 min 0,11 min 26,19 min 6,54 min

Synthetic dataset 200 19 min 0.81 min 1,8 min 0,78 min 1,76 min 0,55 min 22,56 min 2,14 min
IBD dataset 1359 82,05 min 23,52 min 9,13 min 5,66 min 2,75 min 356,48 min 93,93 min385,66 min

Runtime analysis

To assess computational efficiency, we compared the runtimes of DiTaxa versus the standard
workflow (Table 3.12). For both DiTaxa and the standard workflow 20 cores were used in
computations. Workflow parts that could be parallelized for both pipelines are denoted with
“k” in Table 3.12. The bottleneck for DiTaxa computation is the segmentation training,
which cannot be parallelized. However, the segmentation needs to be trained only once for a
dataset and then any combinations of phenotype analysis can use the trained segmentation
and the subsequent representation. Although the standard pipeline for datasets of less than
200 samples has been few minutes faster than DiTaxa, DiTaxa can run faster for the dataset
of 1359 samples (total of 93,93 min), while the standard pipeline tool 385,66 min using the
same computational setting.

Discussion and conclusions
We describe DiTaxa, a method implementing a new paradigm for host disease status prediction
and biomarker detection from 16S rRNA amplicon data. The main distinction of this
approach from existing methods is substituting standard OTU-clustering (Robert C Edgar
2013) or sequence-level analysis (Callahan et al. 2016) by segmenting 16S rRNA reads
into the most frequent variable-length subsequences of a dataset. The proposed sequence
segmentation, called Nucleotide-pair Encoding, is an unsupervised approach inspired by
Byte-pair Encoding, a data compression algorithm that recently became popular in deep
natural language processing. The identified subsequences represent commonly occurring
sequence portions, which we found to be distinctive for taxa at varying evolutionary distances
and highly informative for predicting host disease phenotypes. We compared the performance
of DiTaxa to the state-of-the-art in disease phenotype prediction and biomarker detection,
using human 16S datasets from metagenomic samples of periodontal, rheumatoid arthritis,
and inflammatory bowel diseases, as well as a synthetic benchmark dataset. DiTaxa identified
17 of 29 taxa with confirmed links to periodontitis (recall= 0.59), while the OTU-based
approach could only detect 3 of 29 organisms (recall= 0.10). In addition, we show that for
the rheumatoid arthritis dataset, machine-learning classifiers trained to predict host disease
phenotypes based on the NPE representation substantially outperformed OTU features
(macro-F1 =0.76 compared to 0.65) and performed competitively for Crohn’s disease and
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synthetic datasets. Taxa predicted by DiTaxa for samples from patients with untreated
rheumatoid arthritis (new onset RA) versus healthy individuals had Prevotella copri as the
most significantly ranked, which was confirmed based on shotgun metagenomic analysis
and in mouse experiments (Scher, Sczesnak, et al. 2013), while the standard workflow only
predicted the genus of this taxon as relevant (Scher, Sczesnak, et al. 2013). Due to the
alignment- and reference free nature, DiTaxa can efficiently run on large datasets. The full
analysis of a large 16S rRNA dataset of 1359 samples required ⇡1.5 hours, where the standard
pipeline took ⇡6.5 hours with the same number of cores (20 cores). Although on smaller
datasets the conventional workflow was faster than DiTaxa, the run-time difference of less
than 30 minutes for those settings is worth the performance gain in phenotype prediction and
biomarker detection. The applications of NPE representation are not limited to 16S rRNA
data and it can be also applied to shotgun metagenomics or any other biological sequences
to infer intrinsic features from data, instead of using parameter-dependent representations.
Taken together, DiTaxa seems to provide a better solution for biomarker and phenotype
detection than OTU-based methods. It thus could contribute to a better understanding of
the microbial organisms associated with microbiome-related diseases and the development of
personalized diagnostics and therapy procedures.
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3.5 Summary of contributions in

genomics/metagenomics

We start the investigation on the use of language-agnostic representations in a genomics
setting by proposing short k-mers as computationally inexpensive while being effective in
the phenotype prediction in comparision with conventional gene presence/absence and SNPs
features. However, the main focus of our contribution has been on metagenomics, which
is a more complex problem setting. Accurately resolving taxon-host disease relationships
is required to elucidate the underlying functional mechanisms of taxon-host interactions
in microbiome-linked diseases and to establish diagnosis and therapy options in precision
medicine. As a result, accurate detection of disease phenotype and disease-associated
biomarkers are among prominent problems in microbial informatics. Although shotgun
metagenomic sequencing provides a better resolution in taxonomic assignment, 16S rRNA
amplicon data, due to its low cost is still the most used data type in microbiome studies to
date (Pollock et al. 2018). After 16S rRNA sequencing, reads are typically clustered based on
their sequence similarity to each other and the resulting clusters are referred to as operational
taxonomic units (OTUs) having several disadvantages in the taxonomic assignment. An
alternative solution is the analysis of individual 16S rRNA gene sequences (Callahan et al.
2016; Amir et al. 2017; Nearing et al. 2018), which is computationally challenging. In order
to address accurate identifying the host phenotype/environment as well as the distinctive
taxa for microbiome related diseases or phenotype. We proposed two OTU free solutions
within the framework of this dissertation that are the state-of-the-art approaches to date:
(i) MicroPheno for accurate and rapid microbial host-phenotype/environment prediction
as well as (ii) DiTaxa for accurate phenotype and biomarker prediction. In both, we
proposed a bootstrapping framework to investigate the sufficiency of shallow subsamples for
a proper representation of the environmental sample. Sufficiency of shallow subsamples of
16S rRNA sequences for the environment or host phenotype prediction is important because
(i) sub-sampling reduces the preprocessing run-time, and (ii) more importantly, it proves that
even a shallow 16S rRNA sequencing (which is even more cost-effective) is enough.

MicroPheno: k-mer based host phenotype prediction
We proposed MicroPheno, a k-mer based host phenotype prediction method from 16S
rRNA, which outperformed the state-of-the-art OTU features in phenotype detection (Asgari,
Garakani, et al. 2018) in body-sites prediction, as well as identification of Crohn’s and
Rheumatoid Arthritis diseases. The k-mer representations are easy to compute at no
computational cost for any type of sequence alignment as needed in OTU-picking pipelines.
Although MicroPheno could outperform OTU features in phenotype prediction, short k-mers
cannot be easily used as taxa distinctive biomarkers, where the OTU features are used in the
state-of-the-art approach for biomarker detection (Segata, Izard, et al. 2011). This motivated
me to develop an OTU-free approach for accurate biomarker detection resulted in DiTaxa.
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DiTaxa: Nucleotide-pair encoding based host phenotype and
biomarker detection
We proposed DiTaxa, an alignment- and reference- free, subsequence based paradigm for
processing of 16S rRNA microbiome data for phenotype and biomarker detection. The
main distinction of this approach from existing methods is substituting standard OTU-
clustering (Robert C Edgar 2013) or sequence-level analysis (Callahan et al. 2016) by
segmenting 16S rRNA reads into the most frequent variable-length subsequences of a dataset.
We compared the performance of DiTaxa to the state-of-the-art methods using human-
associated 16S rRNA samples for periodontal disease, rheumatoid arthritis, and inflammatory
bowel diseases, as well as a synthetic benchmark dataset. We show that NPE based approach
improved the state-of-the-art performance in biomarker detection over 16S rRNA data
while performing competitively to the k-mer based state-of-the-art approach in phenotype
prediction.

To conclude, in some use-cases in applied metagenomics only detection of the host
phenotype or the environment is concerned, e.g., rapid detection of soil fertility in agriculture
or criminal identification in forensic sciences. However, in some other use-cases, e.g. finding
distinctive taxa for microbiome-related diseases, detection of the disease-related taxonomy
is also important for diagnosis and therapy options in precision medicine. For the first
scenario, we proposed MicroPheno achieving the state-of-the-art performance in phenotype
detection, and for the latter, we proposed DiTaxa achieving the state-of-the-art performance
in biomarker detection, while outperforming OTUs and performing competitively to the
MicroPheno in the host phenotype predictions. Implementations of both MicroPheno and
DiTaxa are available on the llp.berkeley.edu under Apache 2 Licenses.
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Chapter 4

Data-driven processing of human
languages

4.1 Introduction and chapter overview

Language technologies permeate our everyday life through the web search, translation,
online shopping, email writing, spell checking systems, etc. The existence of such language
technologies for a language highly depends on the existence of the underlying computational
linguistic resources. Computational linguistic resources such as machine-readable lexicons,
part-of-speech-taggers, and dependency parsers are available for at most a few hundred
languages meaning that the majority of the 7000 languages of the world are low-resource. Many
EU and US programs are designed to address this issue (Cieri et al. 2016). Multilingualism is
one of the fundamental values of the global culture, which is challenged in the digital age
by the gap between advances in language technologies for English versus other low-resource
languages. Lack of technological support for such low-resource languages, as a result of
having limited linguistic resources, reduces their use over time and puts them in danger of
extinction. Even “small” languages are important for the preservation of the common heritage
of humankind and cultural diversity; this can potentially benefit everybody. In addition,
certain low-resource languages such as Fulani are spoken by millions and are politically and

¶The content of this chapter is based on the following publications:

1. Asgari, E., Braune, F., Roth, B., Ringlstetter, C., & Mofrad, M. R. (2019). UniSent: Universal
Adaptable Sentiment Lexica for 1000+ Languages. arXiv preprint arXiv:1904.09678.. Under Review.

2. Asgari, E., & Mofrad, M. R. (2016). Comparing fifty natural languages and twelve genetic languages
using word embedding language divergence (weld) as a quantitative measure of language distance. In

Proceedings of the NAACL-HLT Workshop on Multilingual and Cross-lingual Methods in NLP.

3. Asgari, E., & Schütze, H. (2017). Past, present, future: A computational investigation of the typology
of tense in 1000 languages. Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing.
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economically important; e.g., to manage a sudden refugee crisis, natural language processing
(NLP) tools would be of great benefit. Thus, providing computational linguistic resources
for low-resource languages is important economically, politically, and culturally. Linguistic
resources for low-resource languages either can be collected using manual annotation, which
is challenging and costly and needs to be done in a collaborative framework, e.g.,∗UniMorph
Project to obtain morphological resources for even low-resource languages; or an alternative
method to the manual efforts is using parallel corpora, i.e. corpora containing pairs of
translated sentences. NLP has a rich literature in using language-agnostic statistical methods
based on noisy channel models (Brown et al. 1993; Dyer et al. 2013) for linking words to
their translations when parallel sentences are given. The linguistic annotations then from a
high-resource language can be projected to the low-resource languages via such alignment
links (Yarowsky et al. 2001) and generate linguistic resources for the low-resource languages
semi-automatically and almost without any prior knowledge about the low-resource languages.
The second approach is what we use here.

In the previous chapters on pro-
teomics and metagenomics, we kept
a language-agnostic point of view
about the biological sequences. We
proposed data-driven representa-
tions of DNA and protein sequences
based on either their chains of
monomers or their underlying prob-
abilistic language models. In this
chapter, we keep the same point of
view about natural languages, as-
suming we have almost no linguis-
tic knowledge about many of the
world’s languages, except for one
or only a few of them, which is not
very unrealistic in terms of available
computational linguistic resources.
We develop language-agnostic meth-
ods to create linguistic knowledge
about low-resource languages using parallel corpora. Parallel corpora are already available
for many world languages through resources, e.g., bible translations in more than 1000
languages (Mayer and Cysouw 2014).

∗http://unimorph.org
∗∗Noam Chomsky’s cartoon face is taken from jjmccullough’s design.

https://www.deviantart.com/jjmccullough/art/Noam-Chomsky-31058795
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Chapter overview
As discussed in section §4.1, our main motivation in this part of the dissertation is to develop
language-agnostic methods for creating linguistic knowledge and resources for low-resource
languages. The contributions of this chapter in natural language processing are in three
folds: (i) SuperPivot for linguistic marker detection in 1000 languages with the case study of
tense, (ii) using SuperPivot we create sentiment lexicon for 1000+ languages along with a
domain adaptation algorithm, and (iii) word embedding language divergence as a quantitative
measure of language distance for language setting comparisons.

SuperPivot for linguistic marker detection in 1000 languages
We propose SuperPivot, a computational method for analysis of low-resource languages
exist in a superparallel corpus, i.e., in a corpus that contains an order of magnitude more
languages than parallel corpora currently in use. We produce analysis results for the example
of “tense” for more than 1000 languages, which is to the best of our knowledge the largest
cross-lingual computational study performed to date. We show that SuperPivot performs
well for the cross-lingual analysis of the linguistic phenomenon of tense. We extend the
existing methodology for leveraging parallel corpora for typological analysis by overcoming
a limiting assumption of earlier linguistic work (Cysouw 2014). SuperPivot only requires
that a linguistic feature is overtly marked in a few of thousands of languages as opposed to
requiring that it be marked in all languages under investigation. This method is an instance
of marker detection task-type defined in section §1.4. In addition, we investigate language
family prediction using the occurrence patterns of the extracted markers for the linguistic
feature of interest.

UniSent: Universal Adaptable Sentiment Lexica for 1000+
Languages
In this chapter, we introduce UniSent universal sentiment lexica for 1000+ languages (Asgari,
Braune, et al. 2019). Sentiment lexica are vital for sentiment analysis in the absence of
document-level annotations, a common scenario for low-resource languages. To the best of our
knowledge, UniSent is the largest sentiment resource to date in terms of the number of covered
languages, including many low resource ones. In this work, we use SuperPivot and a massively
parallel Bible corpus to project sentiment information from English to other languages for
sentiment analysis on Twitter data. We introduce a method called DomDrift to mitigate the
huge domain mismatch between Bible and Twitter by a confidence weighting scheme that
uses domain-specific embeddings to compare the nearest neighbors for a candidate sentiment
word in the source (Bible) and target (Twitter) domain. We evaluate the quality of UniSent
in a subset of languages for which manually created ground truth was available, Macedonian,
Czech, German, Spanish, and French. We show that the quality of UniSent is comparable to
manually created sentiment resources when it is used as the sentiment seed for the task of
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word sentiment prediction on top of embedding representations. Furthermore, we show that
emoticon sentiments could be reliably predicted in the Twitter domain using only UniSent
and monolingual embeddings in German, Spanish, French, and Italian.

Embedding-based quantitative comparison of languages
We introduce a new measure of distance between languages based on word embedding,
called word embedding language divergence (WELD). WELD is defined as the divergence
between the unified similarity distribution of embedding graphs between languages. WELD
only requires monolingual embeddings and the mapping function between natural language
words in different languages. Such mapping is obtained using statistical alignment over
parallel corpora. Using such a measure, we perform language comparison for fifty languages
and twelve genetic language variations of different organisms. Using parallel corpora and
monolingual embeddings a high-level similarity of languages within the same families could
be detected. Furthermore, applying the same method to organisms’ genomes confirms a high-
level difference in the genetic language model of humans/animals versus plants. The proposed
method is a step toward defining a quantitative measure of similarity between languages,
with applications in language classification, genre identification, dialect identification, and
evaluation of translations with no more assumptions than the raw data and linking between
the textual units, which can be obtained through statistical alignment in parallel corpora.
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4.2 SuperPivot for linguistic marker detection in 1000

languages

We present SuperPivot, an analysis method for low-resource languages that occur in a
superparallel corpus, i.e., in a corpus that contains an order of magnitude more languages
than parallel corpora currently in use. We show that SuperPivot performs well for the
crosslingual analysis of the linguistic phenomenon of tense. We produce analysis results for
more than 1000 languages, conducting – to the best of our knowledge – the largest crosslingual
computational study performed to date. We extend existing methodology for leveraging
parallel corpora for typological analysis by overcoming a limiting assumption of earlier work:
We only require that a linguistic feature is overtly marked in a few of thousands of languages
as opposed to requiring that it be marked in all languages under investigation.

Linguistic Marker Projection
Significant linguistic resources such as machine-readable lexicons and part-of-speech (POS)
taggers are available for at most a few hundred languages. This means that the majority of the
languages of the world are low-resource. Low-resource languages like Fulani are spoken by tens
of millions of people and are politically and economically important; e.g., to manage a sudden
refugee crisis, NLP tools would be of great benefit. Even “small” languages are important
for the preservation of the common heritage of humankind that includes natural remedies
and linguistic and cultural diversity that can potentially enrich everybody. Thus, developing
analysis methods for low-resource languages is one of the most important challenges of NLP
today.

We address this challenge by proposing a new method for analyzing what we call super-
parallel corpora, corpora that are by an order of magnitude more parallel than corpora that
have been available in NLP to date. The corpus we work with in this section is the Parallel
Bible Corpus (PBC) that consists of translations of the New Testament in 1169 languages.
Given that no NLP analysis tools are available for most of these 1169 languages, how can we
extract the rich information that is potentially hidden in such superparallel corpora? The
method we propose is based on two hypotheses.

H1 Existence of overt encoding. For any important linguistic distinction f that is
frequently encoded across languages in the world, there are a few languages that encode f
overtly on the surface.
H2 Overt-to-overt and overt-to-non-overt projection. For a language l that encodes
f , a projection of f from the “overt languages” to l in the superparallel corpus will identify
the encoding that l uses for f , both in cases in which the encoding that l uses is overt and in
cases in which the encoding that l uses is non-overt. Based on these two hypotheses, our
method proceeds in 5 steps.
1. Selection of a linguistic feature. We select a linguistic feature f of interest. Running
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example: We select past tense as feature f .

2. Heuristic search for head pivot. Through a heuristic search, we find a language lh

that contains a head pivot ph that is highly correlated with the linguistic feature of interest.
Running example: “ti” in Seychelles Creole (CRS). CRS “ti” meets our requirements for

a head pivot well as will be verified empirically in §4.2. First, “ti” is a surface marker: it
is easily identifable through whitespace tokenization and it is not ambiguous, e.g., it does
not have a second meaning apart from being a grammatical marker. Second, "ti" is a good
marker for past tense in terms of both “precision” and “recall”. CRS has mandatory past
tense marking (as opposed to languages in which tense marking is facultative) and "ti" is
highly correlated with the general notion of past tense.

This does not mean that every clause that a linguist would regard as past tense is marked
with “ti” in CRS. For example, some tense-aspect configurations that are similar to English
present perfect are marked with "in" in CRS, not with "ti" (e.g., ENG “has commanded” is
translated as “in ordonn”).

Our goal is not to find a head language and a head pivot that is a perfect marker of f .
Such a head pivot probably does not exist; or, more precisely, linguistic features are not
completely rigorously defined. In a sense, one of the significant contributions of this work is
that we provide more rigorous definitions of past tense across languages; e.g., "ti" in CRS is
one such rigorous definition of past tense and it automatically extends (through projection)
to 1000 languages in the superparallel corpus.

3. Projection of head pivot to larger pivot set. Based on an alignment of the head
language to the other languages in the superparallel corpus, we project the head pivot to all
other languages and search for highly correlated surface markers, i.e., we search for additional
pivots in other languages. This projection to more pivots achieves three goals. First, it makes
the method more robust. Relying on a single pivot would result in many errors due to the
inherent noisiness of linguistic data and because several components we use (e.g., alignment
of the languages in the superparallel corpus) are imperfect. Second, as we discussed above,
the head pivot does not necessarily have high “recall”; our example was that CRS “ti” is not
applied to certain clauses that would be translated using present perfect in English. Thus,
moving to a larger pivot set increases recall. Third, as we will see below, the pivot set can be
leveraged to create a fine-grained map of the linguistic feature. Consider clauses referring
to eventualities in the past that English speakers would render in past progressive, present
perfect and simple past tense. Our hope is that the pivot set will cover these distinctions, i.e.,
one of the pivots marks past progressive, but not present prefect and simple past, another
pivot marks present perfect, but not the other two and so on. It is beyond the scope of this
dissertation to verify that we can produce such an analysis for all linguistic features, but a
promising example of this type of map, including distinctions like progressive and perfective
aspect, is given in §4.2.

Running example: We compute the correlation of “ti” with words in other languages
and select the 100 highest correlated words as pivots. Examples of pivots we find this way
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are Torres Strait Creole “bin” (from English “been”) and Tzotzil “laj”. “laj” is a perfective
marker, e.g., “Laj meltzaj -uk” ‘LAJ be-made subj’ means “It’s done being built” (Aissen 1987).

4. Projection of pivot set to all languages. Now that we have a large pivot set, we
project the pivots to all other languages to search for linguistic devices that express the
linguistic feature f . Up to this point, we have made the assumption that it is easy to segment
text in all languages into pieces of a size that is not too small (individual characters of the
Latin alphabet would be too small) and not too large (entire sentences as tokens would be
too large). Segmentation on standard delimiters is a good approximation for the majority of
languages – but not for all: it undersegments some (e.g., the polysynthetic language Inuit)
and oversegments others (e.g., languages that use punctuation marks as regular characters).

For this reason, we do not employ tokenization in this step. Rather we search for character
n-grams (2  n  6) to find linguistic devices that express f . This implementation of the
search procedure is a limitation – there are many linguistic devices that cannot be found
using it, e.g., templates in templatic morphology. We leave addressing this for future work
(§4.2).

Running example: We find “-ed” for English and “-te” for German as surface features that
are highly correlated with the 100 past tense pivots.

5. Linguistic analysis. The result of the previous steps is a superparallel corpus that is
richly annotated with information about linguistic feature f . This structure can be exploited
for the analysis of a single language li that may be the focus of a linguistic investigation.
Starting with the character n-grams that were found in the step “projection of pivot set to all
languages”, we can explore their use and function, e.g, for the mined n-gram “-ed” in English
(assuming English is the language li and it is unfamiliar to us). Many of the other 1000
languages provide annotations of linguistic feature f for li: both the languages that are part
of the pivot set (e.g., Tzotzil “laj”) and the mined n-grams in other languages that we may
have some knowledge of (e.g., “-te” in German).

We can also use the structure we have generated for typological analysis across languages
following the work of Michael Cysouw. He has pioneered a new methodology for typology
((Cysouw 2014), §4.2). We do not contribute any innovations to typology in this section,
but our method is a significant advancement computationally over Cysouw’s work because
we overcome many of his limiting assumptions. Most importantly, our method scales to
thousands of languages as we demonstrate below whereas Cysouw worked on a few dozen.

Running example: We sketch the type of analysis that our new method makes possible
in §4.2. The above steps “1. heuristic search for head pivot” and “2. projection of head
pivot to larger pivot set” are based on H1: we assume the existence of overt coding in a
subset of languages. The above steps “2. projection of head pivot to larger pivot set” and “3.
projection of pivot set to all languages” are based on H2: we assume that overt-to-overt
and overt-to-non-overt projection is possible. In the rest of the section, we will refer to
the method that consists of steps 1 to 5 as SuperPivot : “linguistic analysis of SUPERparallel
corpora using surface PIVOTs”.
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We make three contributions. (i) Our basic hypotheses are H1 and H2. (H1) For an
important linguistic feature, there exist a few languages that mark it overtly and easily
recognizably. (H2) It is possible to project overt markers to overt and non-overt markers
in other languages. Based on these two hypotheses we design SuperPivot, a new method
for analyzing highly parallel corpora, and show that it performs well for the crosslingual
analysis of the linguistic phenomenon of tense. (ii) Given a superparallel corpus, SuperPivot
can be used for the analysis of any low-resource language represented in that corpus. In the
supplementary material, we present results of our analysis for three tenses (past, present,
future) for 1163∗ languages. An evaluation of accuracy is presented in Table 4.2. (iii) We
extend Michael Cysouw’s pioneering work on typological analysis using parallel corpora by
overcoming several limiting factors. The most important is that Cysouw’s method is only
applicable if markers of the relevant linguistic feature are recognizable on the surface in all
languages. In contrast, we only assume that markers of the relevant linguistic feature are
recognizable on the surface in a small number of languages.

SuperPivot: Description of method
1. Selection of a linguistic feature. The linguistic feature of interest f is selected by
the person who performs a SuperPivot analysis, i.e., by a linguist, NLP researcher or data
scientist. Henceforth, we will refer to this person as the linguist.

In this section, f 2 F = {past, present, future}.

2. Heuristic search for head pivot. There are several ways for finding the head language
and the head pivot. Perhaps the linguist knows a language that has a good head pivot. Or
she is a trained typologist and can find the head pivot by consulting the typological literature.

In this section, we use our knowledge of English and an alignment from English to all
other languages to find head pivots. (See below for details on alignment.) We define a “query”
in English and search for words that are highly correlated to the query in other languages.
For future tense, the query is simply the word “will”, so we search for words in other languages
that are highly correlated with “will”. For present tense, the query is the union of “is”, “are”
and “am”. So we search for words in other languages that are highly correlated with the
“merger” of these three words. For past tense, we POS tag the English part of PBC and
merge all words tagged as past tense into one past tense word.† We then search for words in
other languages that are highly correlated with this artificial past tense word.

As an additional constraint, we do not select the most highly correlated word as the
head pivot, but the most highly correlated word in a Creole language. Our rationale is that
Creole languages are more regular than other languages because they are young and have not
accumulated “historical baggage” that may make computational analysis more difficult.

∗We exclude six of the 1169 languages because they do not share enough verses with the rest.
†Past tense is defined as tags BED, BED*, BEDZ, BEDZ*, DOD*, VBD, DOD. We use NLTK (Bird

2006).
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Table 4.1 lists the three head pivots for F .

3. Projection of head pivot to larger pivot set. We first use fast_align (Dyer et al.
2013) to align the head language to all other languages in the corpus. This alignment is on
the word level.

We compute a score for each word in each language based on the number of times it
is aligned to the head pivot, the number of times it is aligned to another word and the
total frequencies of head pivot and word. We use �2 (Casella and Berger 2008) as the score
throughout this section. Finally, we select the k words as pivots that have the highest
association score with the head pivot.

We impose the constraint that we only select one pivot per language. So as we go down
the list, we skip pivots from languages for which we already have found a pivot. We set
k = 100 in this section. Table 4.1 gives the top 10 pivots.

4. Projection of pivot set to all languages. As discussed above, the process so far has
been based on tokenization. To be able to find markers that cannot be easily detected on the
surface (like “-ed” in English), we identify non-tokenization-based character n-gram features
in step 4.

The immediate challenge is that without tokens, we have no alignment between the
languages anymore. We could simply assume that the occurrence of a pivot has scope over
the entire verse. But this is clearly inadequate, e.g., for the sentence “I arrived yesterday, I
am staying today, and I will leave tomorrow”, it is incorrect to say that it is marked as past
tense (or future tense) in its entirety. Fortunately, the verses in the New Testament mostly
have a simple structure that limits the variation in where a particular piece of content occurs
in the verse. We therefore make the assumption that a particular relative position in language
l1 (e.g., the character at relative position 0.62) is aligned with the same relative position in l2
(i.e., the character at relative position 0.62). This is likely to work for a simple example like
“I arrived yesterday, I am staying today, and I will leave tomorrow” across languages.

In our analysis of errors, we found many cases where this assumption breaks down. A
well-known problematic phenomenon for our method is the difference between, say, VSO and
SOV languages: the first class puts the verb at the beginning, the second at the end. However,
keep in mind that we accumulate evidence over k = 100 pivots and then compute aggregate
statistics over the entire corpus. As our evaluation below shows, the “linear alignment”
assumption does not seem to do much harm given the general robustness of our method.

One design element that increases robustness is that we find the two positions in each verse
that are most highly (resp. least highly) correlated with the linguistic feature f . Specifically,
we compute the relative position x of each pivot that occurs in the verse and apply a Gaussian
filter (� = 6 where the unit of length is the character), i.e., we set p(x) ⇡ 0.066 (0.066 is the
density of a Gaussian with � = 6 at x = 0) and center a bell curve around x. The total score
for a position x is then the sum of the filter values at x summed over all occurring pivots.
Finally, we select the positions xmin and xmax with lowest and highest values for each verse.
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�2 is then computed based on the number of times a character n-gram occurs in a window
of size w around xmax (positive count) and in a window of size w around xmin (negative
count). Verses in which no pivot occurs are used for the negative count in their entirety. The
top-ranked character n-grams are then output for analysis by the linguist. We set w = 20.
5. Linguistic analysis. We now have created a structure that contains rich information
about the linguistic feature: for each verse we have relative positions of pivots that can be
projected across languages. We also have maximum positions within a verse that allow us to
pinpoint the most likely place in the vicinity of which linguistic feature f is marked in all
languages. This structure can be used for the analysis of individual low-resource languages
as well as for typological analysis. We will give an example of such an analysis in §4.2.
6. Hierarchical clusterings of markers and languages. As an additional evaluation,
we worked on hierarchical clusterings of past, present and future pivots. As detailed in §4.2.4,
we represent each verse by a vector of length 100 showing which pivot markers are used to
express this verse. The other way of looking at these data is that for each marker we have
an occurrence distribution over verses and we may exploit these data to demonstrate the
distance between markers. For the purpose of comparing two markers, we propose calculation
of the Jensen-Shannon divergence between the normalized occurrence distribution over verses:

Dmpi ,mpj
= JSD(m̂pi , m̂pj),

where m̂pi and m̂pi , are the normalized occurrence distributions over verses. We compare the
obtained distance between markers with genetic distance of their corresponding languages
using WALS information (Dryer et al. 2005). For visualization purposes, we perform Un-
weighted Pair Group Method with Arithmetic Mean (UPGMA) hierarchical clustering on the
pairwise distance matrix of the marker for each tense separately (Johnson 1967).

In addition to clustering of pivot markers for each tense separately, we performed the
same comparison for all top markers of 1107 languages∗ and take the average distances of
languages in past, present, and future marking. This allows us to compare the average tense
behavior of languages.

Dli,lj =
1

3
(JSDpast + JSDpresent + JSDfuture),

Data, experiments and results
Data

We use a New Testament subset of the Parallel Bible Corpus (PBS) (Mayer and Cysouw 2014)
that consists of 1556 translations of the the Bible in 1169 unique languages. We consider two
languages to be different if they have different ISO 639-3 codes.

The translations are aligned on the verse level. However, many translations do not have
complete coverage, so that most verses are not present in at least one translation. One reason
for this is that sometimes several consecutive verses are merged, so that one verse contains
material that is in reality not part of it and the merged verses may then be missing from the

∗We exclude languages that have fewer than 7000 verses in common with the pivot language to ensure
quality of marker.
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past present future
code language pivotcode language pivot code language pivot

head pivotsCRS Seychelles C. ti PAP Papiamentu ta TPI Tok Pisin bai
GUX GourmanchÃ©ma den NOB Norwegian BokmÃ¥l er LID Nyindrou kameh
MAW Mampruli daa HIF Fiji Hindi hei GUL Sea Island C. gwine
GFK Patpatar ga AFR Afrikaans is TGP Tangoa pa
YAL Yalunka yi DAN Danish er BUK Bugawac oc
TOH Gitonga di SWE Swedish är BIS Bislama bambae
DGI Northern Dagara t◆ EPO Esperanto estasPIS Pijin bae
BUM Bulu (Cameroon) nga ELL Greek ✏◆́⌫↵◆APE Bukiyip eke
TCS Torres Strait C. bin HIN Hindi haai HWC Hawaiian C. goin
NDZ Ndogo gi◆̀ NAQ Khoekhoe ra NHR Nharo gha

Table 4.1. Top ten past, present, and future tense pivots extracted from 1163 languages. C.
= Creole

translation. Thus, there is a trade-off between number of parallel translations and number of
verses they have in common. Although some preprocessing was done by the authors of the
resource, many translations are not preprocessed. For example, Japanese is not tokenized.
We also observed some incorrectness and sparseness in the metadata. One example is that
one Fijian translation (see §4.2) is tagged fij_hindi, but it is Fijian, not Fiji Hindi.

We use the 7958 verses with the best coverage across languages.

Experiments

1. Selection of a linguistic feature. We conduct three experiments for the linguistic
features past tense, present tense and future tense.
2. Heuristic search for head pivot. We use the queries described in §4.2 for finding
the following three head pivots. (i) Past tense head pivot: “ti” in Seychellois Creole (CRS)
(McWhorter 2005). (ii) Present tense head pivot: “ta” in Papiamentu (PAP) (Andersen 1990).
(iii) Future tense head pivot: “bai” in Tok Pisin (TPI) (Traugott 1978; Sankoff 1990).
3. Projection of head pivot to larger pivot set. Using the method described in §4.2,
we project each head pivot to a set of k = 100 pivots. Table 4.1 gives the top 10 pivots for
each tense.
4. Projection of pivot set to all languages. Using the method described in §4.2, we
compute highly correlated character n-gram features, 2  n  6, for all 1163 languages.
See §4.2 for the last step of SuperPivot: 5. Linguistic analysis.

Evaluation

We rank n-gram features and retain the top 10, for each linguistic feature, for each language
and for each n-gram size. We process 1556 translations. Thus, in total, we extract 1556⇥5⇥10
n-grams.

Table 4.2 shows Mean Reciprocal Rank (MRR) for 10 languages. The rank for a particular
ranking of n-grams is the first n-gram that is highly correlated with the relevant tense; e.g.,
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language past present future all
Arabic 1.00 0.39 0.77 0.72
Chinese 0.00 0.00 0.87 0.29
English 1.00 1.00 1.00 1.00
French 1.00 1.00 1.00 1.00
German 1.00 1.00 1.00 1.00
Italian 1.00 1.00 1.00 1.00
Persian 0.77 1.00 1.00 0.92
Polish 1.00 1.00 0.58 0.86
Russian 0.90 0.50 0.62 0.67
Spanish 1.00 1.00 1.00 1.00
all 0.88 0.79 0.88 0.85

Table 4.2. MRR results for step 4. See text for details.

character subsequences of the name “Paulus” are evaluated as incorrect, the subsequence “-ed”
in English as correct for past. MRR is averaged over all n-gram sizes, 2  n  6. Chinese
has consistent tense marking only for future, so results are poor. Russian and Polish perform
poorly because their central grammatical category is aspect, not tense. The poor performance
on Arabic is due to the limits of character n-gram features for a “templatic” language.

During this evaluation, we noticed a surprising amount of variation within translations
of one language; e.g., top-ranked n-grams for some German translations include names like
“Paulus”. We suspect that for literal translations, linear alignment (§4.2) yields good n-grams.
But many translations are free, e.g., they change the sequence of clauses. This deteriorates
mined n-grams. See §4.2.
Hierarchical clusterings of markers. Hierarchical clusterings of past, present and future
pivots using JSD between the normalized occurrence distribution over verses are shown in
Figure 4.1, Figure 4.2, and Figure 4.3 for past, present, and future tenses respectively. In
addition to markers clusterings, the average tense behavior clustering of 1107 languages
is depicted in Figure 4.4. In these figures languages are colored based on their language
families using WALS (Dryer et al. 2005), languages without family information on WALS
are uncolored. We observed that most of pivot past and future markers belong to Niger
Congo family and present markers are mostly within Indo-European family. It can be seen
that in many cases languages with the same family behave accordingly in tense marking.
For instance, in past tense marking Oto-Manguean languages use almost the same marker
of ni with small writing variations (Figure 4.1). Although TezoatlÃ¡n Mixtec did not have
a record on WALS, since its marker is the same as other Oto-Manguean languages and
works almost identical to ni in Oto-Manguean languages, we may guess this language is also
Oto-Manguean, which turned out to be true when we performed further searches.∗ There
were many of such cases for which we could guess the family of language based on their tense
marking similarities in Figure 4.1, Figure 4.2 and Figure 4.3.

∗https://www.ethnologue.com/language/mxb
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avg tense past present future
( 696
1107 lang. - 103 fam.) ( 55

100 lang. - 15 fam.) ( 70
100 lang. - 17 fam.) ( 44

100 lang. - 16 fam.)
accuracy 0.93 0.55 0.81 0.58
precision 0.36 0.18 0.75 0.16
recall 0.01 0.59 0.37 0.61
TNR 0.99 0.55 0.96 0.58
Table 4.3. Language family similarity prediction results based on coordinated marking of
verses. Only languages with records on WALS are included in this evaluation. TNR: true
negative rate.

We use normalized JSD (0  JSD  1) for comparison of each pair of languages/markers;
this allows us to investigate whether a simple threshold of 0.5 accurately predicts whether two
languages are genetically related or not. The results are summarized in Table 4.3. Although
the average tense marking divergence has a low recall, it expresses a high precision of 0.36,
where the random chance is 1

103 ⇡ 0.01. Thus, it means that if divergence of tense marking is
low the languages are very likely to be genetically related. This conclusion is supported by
Figure 4.4 where many small clusters of nodes have the same color. This suggests that our
method may help in completion of WALS.

A map of past tense
To illustrate the potential of our method we select five out of the 100 past tense pivots that
give rise to large clusters of distinct combinations. Starting with CRS, we find other pivots
that “split” the set of verses that contain the CRS past tense pivot “ti” into two parts that
have about the same size. This gives us two sets. We now look for a pivot that splits one of
these two sets about evenly and so on. After iterating four times, we arrive at five pivots:
CRS “ti”, Fijian (FIJ) “qai”, Hawaiian Creole (HWC) “wen”, Torres Strait Creole (TCS) “bin”
and Tzotzil (TZO) “laj”.

Figure 4.5 shows a t-SNE (Maaten and G. Hinton 2008) visualization of the large clusters
of combinations that are found for these five languages, including one cluster of verses that
do not contain any of the five pivots.

This figure is a map of past tense for all 1163 languages, not just for CRS, FIJ, HWC,
TCS and TZO: once the interpretation of a particular cluster has been established based on
CRS, FIJ, HWC, TCS and TZO, we can investigate this cluster in the 1164 other languages
by looking at the verses that are members of this cluster. This methodology supports the
empirical investigation of questions like “how is progressive past tense expressed in language
X”? We just need to look up the cluster(s) that correspond to progressive past tense, look up
the verses that are members and retrieve the text of these verses in language X.

To give the reader a flavor of the distinctions that are reflected in these clusters, we now
list phenomena that are characteristic of verses that contain only one of the five pivots; these
phenomena identify properties of one language that the other four do not have.
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Figure 4.1. Clustering of 100 pivot past tense markers. This tree diagram illustrates the
hierarchical relationships among the markers. On top of the tree structure, the colors
visualize the language family of the markers. Each node is colored based on its family
information. Languages with no record on WALS remained white. This clustering is based
on JSD of markers in marking 5960 verses in bible. We observed that most of pivot past and
future markers belong to Niger Congo family and present markers are mostly within
Indo-European family. It can be seen that in many cases languages with the same family
behave accordingly in tense marking. For instance, in past tense marking Oto-Manguean
languages use almost the same marker of ni with small writing variations (Figure 4.1).
Although TezoatlÃ¡n Mixtec did not have a record on WALS, since its marker is the same as
other Oto-Manguean languages and works almost identical to ni in Oto-Manguean
languages, we may guess this language is also Oto-Manguean, which turned out to be true
when we performed further searches. Zooming in the electronic version is possible for a
better see of the details.

CRS “ti”. CRS has a set of markers that can be systematically combined, in particular, a
progressive marker “pe” that can be combined with the past tense marker “ti”. As a result, past
progressive sentences in CRS are generally marked with “ti”. Example: “43004031 Meanwhile,
the disciples were urging Jesus, ‘Rabbi, eat something.” ’ “crs_bible 43004031 Pandan sa
letan, bann disip ti pe sipliy Zezi, ‘Met! Manz en pe.” ’

The other four languages do not consistently use the pivot for marking the past progressive;
e.g., HWC uses “was begging” in 43004031 (instead of “wen”) and TCS uses “kip tok strongwan”
‘keep talking strongly’ in 43004031 (instead of “bin”).
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Figure 4.2. Clustering of 100 pivot present tense markers. Each node is colored based on
its family information. Languages with no record on WALS remained white. This clustering
is based on JSD of markers in marking 6590 verses in bible. It can be seen that in many
cases languages with the same family behave accordingly in tense marking. Zooming in the
electronic version is possible for a better see of the details.

FIJ “qai”. This pivot means “and then”. It is highly correlated with past tense in the New
Testament because most sequential descriptions of events are descriptions of past events. But
there are also some non-past sequences. Example: “eng_newliving 44009016 And I will show
him how much he must suffer for my name’s sake.” “fij_hindi 44009016 Au na qai vakatakila
vua na levu ni ka e na sota kaya e na vukuqu.” This verse is future tense, but it continues a
temporal sequence (it starts in the preceding verse) and therefore FIJ uses “qai”. The pivots
of the other four languages are not general markers of temporal sequentiality, so they are not
used for the future.

HWC “wen”. HWC is less explicit than the other four languages in some respects and
more explicit in others. It is less explicit in that not all sentences in a sequence of past
tense sentences need to be marked explicitly with “wen”, resulting in some sentences that
are indistinguishable from present tense. On the other hand, we found many cases of noun
phrases in the other four languages that refer implicitly to the past, but are translated as a
verb with explicit past tense marking in HWC. Examples: “hwc_2000 40026046 Da guy who
wen set me up . . . ” ‘the guy who WEN set me up’, “eng_newliving 40026046 . . . my betrayer
. . . ”; “hwc_2000 43008005 . . . Moses wen tell us in da Rules . . . ” ‘Moses WEN tell us in the
rules’, “eng_newliving 43008005 The law of Moses says . . . ”; “hwc_2000 47006012 We wen
give you guys our love . . . ”, “eng_newliving 47006012 There is no lack of love on our part
. . . ”. In these cases, the other four languages (and English too) use a noun phrase with no
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Figure 4.3. Clustering of 100 pivot future tense markers. Each node is colored based on
its family information. Languages with no record on WALS remained white. This clustering
is based on JSD of markers in marking 5733 verses in bible. It can be seen that in many
cases languages with the same family behave accordingly in tense marking. Zooming in the
electronic version is possible for a better see of the details.

tense marking that is translated as a tense-marked clause in HWC.
While preparing this analysis, we realized that HWC “wen” unfortunately does not meet

one of the criteria we set out for pivots: it is not unambiguous. In addition to being a past
tense marker (derived from standard English “went”), it can also be a conjunction, derived
from “when”. This ambiguity is the cause for some noise in the clusters marked for presence
of HWC “wen” in the figure.

TCS “bin”. Conditionals is one pattern we found in verses that are marked with TCS “bin”,
but are not marked for past tense in the other four languages. Example: “tcs_bible 46015046
Wanem i bin kam pas i da nomal bodi ane den da spiritbodi i bin kam apta.” ‘what came
first is the normal body and then the spirit body came after’, “eng_newliving 46015046
What comes first is the natural body, then the spiritual body comes later.” Apparently, “bin”
also has a modal aspect in TCS: generic statements that do not refer to specific events are
rendered using “bin” in TCS whereas the other four languages (and also English) use the
default unmarked tense, i.e., present tense.

TZO “laj”. This pivot indicates perfective aspect. The other four past tense pivots are
not perfective markers, so that there are verses that are marked with “laj”, but not marked
with the past tense pivots of the other four languages. Example: “tzo_huixtan 40010042
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. . . ja’ch-ac’bat bendiciÃ3n yu’un hech laj spas . . . ” (literally “a blessing . . . LAJ make”),
“eng_newliving 40010042 . . . you will surely be rewarded.” Perfective aspect and past are
correlated in the real world since most events that are viewed as simple wholes are in the
past. But future events can also be viewed this way as the example shows.

Similar maps for present and future tenses are presented in the Figure 4.6 and Figure 4.7.

Related work
Our work is inspired by (Cysouw 2014; Cysouw and Waelchli 2007); see also (Dahl 2007;
Waelchli 2010). Cysouw creates maps like Figure 4.5 by manually identifying occurrences of
the proper noun “Bible” in a parallel corpus of Jehovah’s Witnesses’ texts. Areas of the map
correspond to semantic roles, e.g., the Bible as actor (it tells you to do something) or as object
(it was printed). This is a definition of semantic roles that is complementary to and different
from prior typological research because it is empirically grounded in real language use across
a large number of languages. It allows typologists to investigate traditional questions from a
radically new perspective.

The field of typology is important for both theoretical (Greenberg 1960; Whaley 1996;
Croft 2002) and computational (Heiden et al. 2000; Santaholma 2007; Bender 2009; Bender
2011) linguistics. Typology is concerned with all areas of linguistics: morphology (Song
2014), syntax (Comrie 1989; Croft 2001; Croft and Poole 2008; Song 2014), semantic roles
(Hartmann et al. 2014; Cysouw 2014), semantics (Koptjevskaja-Tamm et al. 2007; Dahl
2014; Waelchli and Cysouw 2012; Sharma 2009) etc. Typological information is important
for many NLP tasks including discourse analysis (J. Myhill and Myhill 1992), information
retrieval (Pirkola 2001), POS tagging (Bohnet and Nivre 2012), parsing (Bohnet and Nivre
2012; R. T. McDonald et al. 2013), machine translation (Hajic et al. 2000; Kunchukuttan
and Bhattacharyya 2016) and morphology (Bohnet, Nivre, et al. 2013).
Tense is a central phenomenon in linguistics and the languages of the world differ greatly in
whether and how they express tense (Traugott 1978; Bybee and Dahl 1989; Dahl 2000; Dahl
1985; D. Santos 2004; Dahl 2007; D. Santos 2004; Dahl 2014).
Low resource. Even resources with the widest coverage like World Atlas of Linguistic
Structures (WALS) (Dryer et al. 2005) have little information for hundreds of languages.
Many researchers have taken advantage of parallel information for extracting linguistic
knowledge in low-resource settings (Resnik et al. 1997; Resnik 2004; Mihalcea and Simard
2005; Mayer and Cysouw 2014; Christodouloupoulos and Steedman 2015; Lison and JOerg
Tiedemann 2016).

Parallel corpora and annotation projection
In general, parallel corpora are a resource of immense importance in natural language
processing at least since (Brown et al. 1993)’s work on machine translation and they are
widely used. In addition to machine translation, other applications include typology (Asgari
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and M. R. K. Mofrad 2016; Malaviya et al. 2017) and paraphrase mining (Bannard and
Callison-Burch 2005).

Annotation projection is a specific use of parallel corpora: a set of labels that is available
for L1 is projected to L2 via alignment links within the parallel corpus. L1 labels can either
be obtained through manual annotation or through an analysis module that may be available
for L1, but not for L2. We interpret label here broadly, including, e.g., part of speech labels,
morphological tags and segmentation boundaries, sense labels, mood labels, event labels,
syntactic analysis and coreference. We can only cite a small subset of papers using annotation
projection published in the last two decades: (T. McEnery and Richard Xiao 1999), (Ide
2000), (Yarowsky et al. 2001), (RZ Xiao and A. McEnery 2002), (Diab and Resnik 2002),
(Hwa et al. 2005), (Mukerjee et al. 2006), (Pado and Lapata 2005), (Das and Petrov 2011),
(Souza and Orasan 2011), (Nordrum 2015), (Marasovic and Frank 2016) and (Agic et al.
2016).

Of particular relevance is work that projects tense: (Spreyer and Frank 2008), (Xue et al.
2013), (Loaiciga et al. 2014), (Y. Zhang and Xue 2014) and (Friedrich and Gateva 2017).

In contrast to this previous work, the labels we project in this section are not the result
of human annotation nor the result of the annotation computed by an NLP analysis module.
Instead we interpret words in L1 as annotation labels (words like CRS “ti” and TZO “laj”)
and project these word annotation labels to another language L2.

Discussion
Our motivation is not to develop a method that can then be applied to many other corpora.
Rather, our motivation is that many of the more than 1000 languages in the Parallel Bible
Corpus are low-resource and that providing a method for creating the first richly annotated
corpus (through the projection of annotation we propose) for many of these languages is a
significant contribution.

The original motivation for our approach is provided by the work of the typologist Michael
Cysouw. He created the same type of annotation as we, but he produced it manually whereas
we use automatic methods. But the structure of the annotation and its use in linguistic
analysis is the same as what we provide.

The basic idea of the utility of the final outcome of SuperPivot is that the 1163 languages
all richly annotate each other. As long as there are a few among the 1163 languages that
have a clear marker for linguistic feature f , then this marker can be projected to all other
languages to richly annotate them. For any linguistic feature, there is a good chance that a
few languages clearly mark it. Of course, this small subset of languages will be different for
every linguistic feature.

Thus, even for extremely resource-poor languages for which at present no annotated
resources exist, SuperPivot will make available richly annotated corpora that should advance
linguistic research on these languages.
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Conclusion
We presented SuperPivot, an analysis method for low-resource languages that occur in a
superparallel corpus, i.e., in a corpus that contains an order of magnitude more languages
than parallel corpora currently in use. We showed that SuperPivot performs well for the
crosslingual analysis of the linguistic phenomenon of tense. We produced analysis results for
more than 1000 languages, conducting – to the best of our knowledge – the largest crosslingual
computational study performed to date. We extended existing methodology for leveraging
parallel corpora for typological analysis by overcoming a limiting assumption of earlier work.
We only require that a linguistic feature is overtly marked in a few of thousands of languages
as opposed to requiring that it be marked in all languages under investigation.

Future directions
There are at least two future directions that seem promising to us.

• Creating a common map of tense along the lines of Figure 4.5, but unifying the three
tenses

• Addressing shortcomings of the way we compute alignments: (i) generalizing character n-
grams to more general features, so that templates in templatic morphology, reduplication
and other more complex manifestations of linguistic features can be captured; (ii) use
n-gram features of different lengths to account for differences among languages, e.g.,
shorter ones for Chinese, longer ones for English; (iii) segmenting verses into clauses
and performing alignment not on the verse level (which caused many errors in our
experiments), but on the clause level instead; (iv) using global information more
effectively, e.g., by extracting alignment features from automatically induced bi- or
multilingual lexicons.
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Figure 4.4. Clustering of 1107 languages based on the average Jensen-Shannon divergence
in past, present, and future marking of their respective top markers. Each node is colored
based on its family information. Languages with no record on WALS remained white. It can
be seen that many small clusters of nodes have the same color, which together with our
quantitative evaluation supports that if divergence of tense marking is low the languages are
very likely to be genetically related. Zooming in the electronic version is possible for a better
see of the details.
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Figure 4.5. A map of past tense based on the largest clusters of verses with particular
combinations of the past tense pivots from Seychellois Creole (CRS), Fijian (FIJ), Hawaiian
Creole (HWC), Torres Strait Creole (TCS) and Tzotzil (TZO). For each of the five
languages, we present a subfigure that highlights the subset of verse clusters that are marked
by the pivot of that language. The sixth subfigure highlights verses not marked by any of
the five pivots.



CHAPTER 4. DATA-DRIVEN PROCESSING OF HUMAN LANGUAGES 163

Figure 4.6. A map of present tense based on the largest clusters of verses with particular
combinations of the past tense pivots from Papiamento (PAP), Waima (RRO), Afrikaans
(ARF), Urdu (URD) and Icelandic (ISL). For each of the five languages, we present a
subfigure that highlights the subset of verse clusters that are marked by the pivot of that
language. The sixth subfigure highlights verses not marked by any of the five pivots.
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Figure 4.7. A map of future tense based on the largest clusters of verses with particular
combinations of the past tense pivots from Bwanabwana (TTE), Tok Pisin (TPI), QuichÃ©
(QUC), Malay (MSA) and Maskelynes (KLV). For each of the five languages, we present a
subfigure that highlights the subset of verse clusters that are marked by the pivot of that
language. The sixth subfigure highlights verses not marked by any of the five pivots.
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4.3 UniSent: Universal Adaptable Sentiment Lexica for

1000+ Languages

Language technologies permeate our everyday life through web search, translation, online
shopping, email writing, spell checking systems etc. The existence of such technologies highly
depends on the existence of the underlying computational linguistic resources for a language.
Computational linguistic resources such as machine-readable lexica, part-of-speech-taggers
and dependency parsers are available for at most a few hundred languages. This means that
the majority of the 7000 languages of the world are low-resource. This gap between advances
in language technologies for English versus other languages endangers multilingualism in
the digital age. Languages with lack of technological support (as a result of having limited
resources) are less used over time and eventually get in danger of extinction. Many EU and
US programs are designed to address this issue (Cieri et al. 2016). The rationale of these
projects is that even “small” languages are important for the preservation of the common
heritage of humankind and cultural diversity which benefits everybody. In addition, certain
low-resource languages can be also politically and economically important.

Large amount of text available on the web and applications in marketing (Bollen et al.
2011), social science (Hopkins and King 2010), political science (H. Wang et al. 2012; Wong
et al. 2016) motivates sentiment analysis of news, blogs, social networks, reviews, opinions,
and recommendations. However, sentiment analysis requires either word or document level
sentiment annotations. Typically, these are available only for a limited number of languages,
preventing accurate sentiment classification in low resource setups. In these scenarios
sentiment lexica are important game changers because in many cases end-to-end sentiment
classification is not feasible due to a lack of document level annotations (Jurafsky and J. H.
Martin 2014).

Recently, embedding-based approaches for supervised or semi-supervised word sentiment
inference became popular allowing for lexicon vocabulary expansion and implicit domain
adaptation (Rothe et al. 2016; W. L. Hamilton et al. 2016). Although using the embed-
ding space as representation in word sentiment classification sufficiently addresses domain
adaptation in many cases, it can be improved in situations where the domain shift for some
words from the lexicon seeds in the source vocabulary (e.g Bible∗) to the target vocabulary
(e.g. Twitter) is large. For instance, in Biblical texts, the Spanish word sensual has the
connotation of sin which has a negative polarity. But in the Twitter domain, the same word
is associated with sexy, which has a positive polarity. In cases where the classifier using the
embedding space fails to capture this shift, enhancing the model via mitigation of the domain
mismatches is required.

Contributions: We release the first sentiment lexicon covering 1000+ languages and
achieving macro-F1 over 0.75 on word sentiment prediction for most evaluated languages,

∗Massively parallel corpora mainly exist in the Bible domain and for a smaller text size for the universal
declaration of human rights (Emerson et al. 2014) .
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meaning that we enable sentiment analysis in many low resource languages. The creation
of UniSent requires only a sentiment lexicon in one language (e.g. English) and a small,
but massively parallel corpus in a specific domain. We evaluate UniSent for word sentiment
classification of Macedonian, Czech, German, Spanish, French against manually assigned
sentiment polarities and show that its quality is comparable to the use of manually created
resources, which is a great evidence that UniSent works well also for low-resource languages
where we do not have resources for evaluation. Secondly, we evaluated UniSent w.r.t. the
classification of emoticon sentiments in the Twitter domain, where macro-F1 of 0.79, 0.76,
0.74, and 0.76 were obtained for German, Italian, French, and Spanish respectively.

To ensure the usability of our lexica for any new domain, we propose DomDrift, a method
requiring only a pretrained embedding space in the target domain, which is relatively a cheap
resource to obtain. By comparing the source and target embedding graphs DomDrift quantifies
the semantic changes of words in the sentiment lexicon in the new domain. This measure can
hence be used to weight words in the sentiment lexicon for downstream supervised or semi-
supervised sentiment analysis models. We show that on top of implicit domain adaptation,
using target domain embeddings, the incorporation of domain drift scores improves sentiment
classification for French, Spanish, and Macedonian.

Related Work
Several research efforts tackled the automatic creation of sentiment lexica for a multitude of
languages, but these efforts resulted in the creation of resources for at most 136 languages (Y.
Chen and Skiena 2014) or in lexicon covering a very specific low-resource language (Afli
et al. 2017; Darwich et al. 2017). Moreover, these approaches heavily rely on linguistic
resources, such as WordNet or fully trained machine translation systems, which limit them to
the languages where these are available. An alternative to our approach in lexicon creation
for sentiment is using minimal bilingual supervision (Hangya et al. 2018; Barnes et al.
2018a; Barnes et al. 2018b) to create document-level annotations for end-to-end sentiment
classifications of documents. Later approaches only work in an end-to-end fashion and do
not allow to directly create sentiment lexica.

The annotation projection to create UniSent sentiment lexica is inspired by SuperPivot
introduced in (Asgari and Schütze 2017) for the typological analysis of tense in 1000 languages.
(Agic et al. 2016) also use massively parallel corpora to project POS tags and dependency
relations across languages. In contrast to these studies, here we perform parallel projection
on sentiment information for resource creation and not for typological analysis. In addition,
we propose a method called DomDrift to mitigate the huge domain mismatch between Bible
and target domain via an embedding-based confidence weighting scheme.

Methods
In the next sections, we describe (i) the main resources required for UniSent and (ii) the
steps of its creation and adaptation to new domains. The overview of these steps is also
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depicted in Figure 4.8.

UniSent Required Resources

Super-parallel corpus: The dataset we will work with is the Parallel Bible Corpus (PBC).
PBC consists of translations of the New Testament in 1242 languages covering an order of
magnitude more languages than any other parallel corpus currently in use in natural language
processing research (Mayer and Cysouw 2014).

Initial sentiment seeds: We use a high-quality English sentiment lexicon called WKWSCI
(Khoo and Johnkhan 2018) as a resource to be projected on other languages.

UniSent and DomDrift

Our contributions are two-fold (i) creation of UniSent using a cross-lingual projection of
sentiment polarities, which needs to be done only once (ii) introducing DomDrift a novel
method for adapting UniSent to any newly observed domain by measuring the domain-drift
of words in the new domain. The first part needs a sentiment lexicon in one language (here
WKWSCI for English) as well as a massively parallel corpus (PBC). For the second part,
only a pre-trained embedding space in the target domain is required. In the next sections, we
illustrate our method by creating UniSent for one example language (for better readability).
The described steps are however repeated for each of the 1000+ languages composing UniSent.
The steps are detailed next and illustrated in Figure 4.8.

source
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Parallel
corpora in

target
languages

word
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High-quality
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Figure 4.8. The overview of universal adaptable sentiment lexica. The approach can be
divided into two main steps: (a) UniSent creation using SuperPivot method, (b) DomDrift
for measurement of word domain drifts.
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(i) UniSent creation using cross-lingual projection of sentiment polarities: We
project sentiment polarities from English (source language) to a target language in the parallel
corpus using SuperPivot (Asgari and Schütze 2017). This method projects annotations across
1000+ languages via an alignment graph generated using FastAlign (Dyer et al. 2013) on the
PBC corpus. In the FastAlign word alignment pairs (wsource, wtarget), we replace the source
words with their sentiment labels from WKWSCI (where available). Subsequently, we search
for the words in the target language that are highly correlated with each of the sentiment
labels (positive or negative). We use FDR corrected two-sided �2 (Casella and Berger 2008)
score to find these sentiment seeds. We denote the vocabulary of the target language in the
parallel corpus by Vlt,ds , where lt is the target language and ds the source domain (here the
domain of the parallel corpus, i.e. biblical domain).∗ This first step generates, in each target
language, pairs (wlt,ds , y), where wlt,ds 2 Vlt,ds is a word in the target language and source
domain and y is a highly correlated sentiment annotation with wlt,ds . Vocabulary Vlt,ds is
limited to the words in the parallel corpus †. Because most existing super-parallel corpora
are from the Bible (Mayer and Cysouw 2014), Vlt,ds besides of being limited in size has the
major drawback of originating from a very specific domain. To overcome this limitation, we
define a method to measure domain drifts. In addition, we leverage word embeddings as
used in (Rothe et al. 2016) to propagate the annotations y to words of a larger vocabulary
than Vlt,ds . The overview of UniSent creation is depicted in Figure 4.8.a. The UniSent lexica
and a complete list of 1242 unique languages‡ covered by UniSent along with their language
family information are provided in the supplementary material.

(ii) DomDrift: unsupervised measurement of domain drift: Word embeddings
trained with an unsupervised language modeling objective (e.g., skip-gram) are known to
preserve the syntactic and the semantic word similarities in the embedding space (Mikolov,
Sutskever, K. Chen, et al. 2013; Pennington et al. 2014). Domain changes will certainly impact
the neighborhoods in the embedding space. Thus a comparison of words relative distances in
two embedding spaces can be used to measure their degree of domain shift (Kulkarni et al.
2015; Asgari and M. R. K. Mofrad 2016). The main purpose of DomDrift is to identify words
in the sentiment lexicon having a domain shift in the target domain by comparison of their
neighbors in the embedding spaces.
DomDrift quantifies the domain drift of a given word in the sentiment lexicon regardless
of its label, only by comparison of neighbors in the source and target domains’ embedding
spaces ⌦lt,ds : Vlt,ds �! Rhs , and ⌦lt,dt : Vlt,dt �! Rht , where hs, ht are the sizes of the source
and target embedding spaces. DomDrift quantifies word domain drift as follows:

(i) In each embedding space, we compute, for each word wlt,dx in the UniSent lexicon, the
distance distribution P (wlt,dx ,w⌦s,t) of word wlt,dx with all other words in intersection

∗We call this domain source domain because it will be adapted to a target domain in the subsequent
steps.

†Because we use this corpus for the cross-lingual projection
‡We consider two languages different if they have different ISO 639-3 codes
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of source and target embedding spaces, i.e. 8 wj 2 w⌦s,t . For this, we take the l1
normalized cosine distance of the representation of wlt,dx with all other words in the
embedding space. This distribution can be regarded as word profile in the domain x
(source or target):

Pi(wlt,dx ,w⌦s,t) =
1� cos(���!wlt,dx ,

�!wi)P
j[1� cos(���!wlt,dx ,

�!wj)]
,

where wi, wj 2 ⌦s,t and �!wk is the embedding representation of word wk 2 ⌦s,t in domain
x (source or target). We use w⌦s,t so that the word profiles in the source and target
domains are comparable, i.e. they have the same elements.

(ii) We compute, for each word wlt,dx a shift weight between vocabularies Vlt,ds and Vlt,dt

of source and target spaces. This is done by comparing, for each word in the UniSent
lexica, its profile in the source P (wlt,ds ,w⌦s,t) and target domain P (wlt,dt ,w⌦s,t) using
the Kullback-Leibler divergence.

More formally for a word w0 its domain drift (�w0) between the source and the target
domains can be calculated as follows.

�w0 = DKL(P (w0
lt,ds ,w⌦s,t)kP (w0

lt,dt ,w⌦s,t))

The steps of DomDrift are illustrated in Figure 4.8.b. As also depicted in the figure,
the calculated weights enhance the universal sentiment lexica resulting in a final adaptable
version (Adaptable UniSent), e.g. the weights will be used to reduce the influence of huge
domain mismatches in a confidence weighting scheme. In Figure 4.9 we illustrate an example
of domain drift and explain the workings of our weighting method in §4.3. Once we computed
our shift weights, they can be used in any semi-supervised or supervised approach (e.g.,
sample weights in the logistic regression model).

Source embedding ⌦lt,ds : In order to generate ⌦lt,ds , the only necessary resource is the
monolingual text of PBC in the target language (source domain). For embedding creation,
we use fasttext (Bojanowski et al. 2017) which leverages subword information within the
skip-gram architecture.

Target embedding ⌦lt,dt : For generation of ⌦lt,dt , we require a monolingual text collection
in the target domain to train the embedding space. An alternative is to use pretrained
embeddings in the domain of interest (e.g. Twitter or News). In particular, in our experiments,
we use skip-gram embeddings, pretrained on Wikipedia for French, Macedonian, Spanish,
Czech, and German (Conneau et al. 2017), as well as German, Italian, French, and Spanish
monolingual pretrained embeddings on Twitter, provided by (Deriu et al. 2017; Cieliebak
et al. 2017).
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(b) Twitter embedding graph(a) Bible embedding graph 
Figure 4.9. Neighbors of the word ’sensual’ in Spanish, in the bible embedding graph (a)
and the twitter embedding graph (b). Our unsupervised drift weighting method found this
word in Spanish to be the most changing word from bible context to the twitter context.
Looking more closely at the neighbors, the word sensual in the biblical context has been
associated with negative sentiment of sins. However, in the twitter domain, it has a positive
sentiment. This example shows how our unsupervised method can improve the quality of
sentiment lexica.

Word sentiment classification for the evaluation of sentiment lexica

In order to evaluate UniSent, we use it as seed lexicon for word sentiment classification
on top of embedding features. Different methods can be used to predict the sentiment of
words in the target domain using embedding spaces. These include supervised methods e.g.,
UltraDense (Rothe et al. 2016), linear classifiers and regressors (e.g. SVM, SVR, and logistic
regression) or semi-supervised methods, e.g. SentProp (W. L. Hamilton et al. 2016). In this
section, we use logistic regression for the classification model. Using the language model
based embedding space as the representation has two major benefits: First, the semantic
continuity of the embedding space allows for propagation of sentiment labels to a larger
vocabulary. This enables the annotation of further word pairs (wlt,dt , ŷ), where wlt,dt 2 Vlt,dt

is a vocabulary of arbitrary size in the target domain. Secondly, using embeddings trained
in a specific domain result in the implicit incorporation of semantic structures specific to
the target domain (which are reflected in the embedding space), i.e. an implicit domain
adaptation.
UniSent versus confidence weighted UniSent: For the word sentiment classification
we train a logistic regression classifier with the annotated pairs of (wlt,dt , y) represented in
the target embedding space. In order to incorporate the drift weights, we treat the weights



CHAPTER 4. DATA-DRIVEN PROCESSING OF HUMAN LANGUAGES 171

coming from DomDrift as sample weights in the logistic regression model, i.e. (wlt,dt , y, sw)’s
are the training instances to the logistic regression classifier, where sw = 1

�w
, is the seed

weight calculated as the inverse of DomDrift score. Our evaluation in section §4.3 shows that
this (simple) method is very effective and creates accurate resources. In the hyper-parameter
tuning for logistic regression we also fine tune the exponent of this weight.

Experiments and Evaluation
Experimental Setup

Select Gold Standard Data As gold standard sentiment lexica for the evaluation of
UniSent, we select manually created lexica in Czech (Veselovská and Ondřej Bojar 2013),
German (Waltinger 2010), French (Abdaoui et al. 2014), Macedonian (Jovanoski et al. 2016),
and Spanish (Perez-Rosas et al. 2012). These lexica contain general domain words (as opposed
to Twitter or Bible). As gold standard for Twitter we use the emoticon dataset in (Wiebe
et al. 2005; Hogenboom et al. 2013) and perform emoticon sentiment prediction for different
languages.

Train-test split

In order to evaluate the UniSent, here we create train-test split for training and testing the
seeds created in the projection step (see Section § 4.3). We first split UniSent and our gold
standard lexica as illustrated in Figure 4.10. In order to design a fair evaluation, we form our
training and test sets as follows:
(i) UniSent-Train-Lexicon: For the evaluation of the UniSent, we use words in UniSent as
sentiment seeds for training in the target domain; for this purpose, we use words w 2 A [ C
(Figure 4.10).
(ii) Manual-Train-Lexicon: In order to obtain an upper bound for the UniSent performance,
we compare the use of UniSent-Train-Lexicon against the use of words in the gold standard
lexicon as sentiment seeds for the training in the target domain. For this purpose, we use
words w 2 B [ C (Figure 4.10).
(iii) Test-Lexicon: we randomly exclude a set of words in the {Manual-Train-Lexicon
[B}. In the selection of the sampling size, we make sure that UniSent� Train� Lexicon
and Manual � Train � Lexicon would contain approximately the same number of words
(Figure 4.10).

Evaluation

As discussed in §4.3, we use the (manually created) English sentiment lexicon (WKWSCI)
in (Khoo and Johnkhan 2018) as a resource to be projected to over 1000+ languages. We
project positive and negative sentiments to create positive and negative sentiment lexica for
each language.
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Target 
embedding space

Source
embedding space

UniSent
Lexicon

Ground truth
lexicon

A C B

Test set

Figure 4.10. Data split used in the experimental setup of UniSent evaluation: Set (C) is
the intersection of the target embedding space words (Wikipedia or Twitter) and the UniSent
lexicon as well as the manually created lexicon. Set (A) is the intersection of the target
embedding space words and the UniSent lexicon, excluding set (C). Set (B) is the intersection
of the target embedding space words and the manually created lexicon, excluding set (C).

Our evaluation of this work is two-fold. On the one hand, we evaluate the overall quality
of UniSent by comparing it against our manually created gold standard datasets in the
Wikipedia domain. Second, we investigate the influence of DomDrift w.r.t. the adaptation of
UniSent for Wikipedia and Twitter domains.
(i) Evaluation of UniSent vs. manually created lexica: We compare the application of
Unisent for the word sentiment classification task against the manually created lexica in the
following cases: (i) choice of the most frequent sentiment, (ii) use of manually created lexicon
as sentiment seeds. We use the train and test seed lexica as discussed in 4.3 for training and
testing of the logistic regression on top of target embedding features. We also include the
sentiment classification results using the confidence weighted version of UniSent, where the
shift between the vocabularies of the Bible and Wikipedia are calculated by DomDrift and
are used as sample weights in the logistic regression model.
(ii) Comparison of UniSent vs. confidence weighted UniSent in the Twitter
domain for emoticon prediction: To show that our adaptation method also works well
on domains like Twitter, we propose a second evaluation in which we use UniSent together
with DomDrift to predict the sentiment of emoticons in Twitter. Since emoticons are almost
language independent, we could use the same resource for the evaluation of German, Italian,
French, and Spanish, where their monolingual pretrained embeddings are available for these
languages (Deriu et al. 2017; Cieliebak et al. 2017). In the adaptation step, we compute the
shift between the vocabularies of Bible and Twitter. We use the UniSent seeds for training a
logistic regression model on Twitter embedding and evaluate the classifier for the Emoticon
sentiment prediction. We perform this evaluation for German, Italian, French, and Spanish,
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where Twitter pretrained embedding is available.

Table 4.4. We evaluate UniSent against the gold standard datasets in Czech, German,
French, Macedonian, and Spanish. The two last columns report the accuracy and macro-F1
(averaged F1 over positive and negative classes) of Unisent before and after the application
of the drift weighting step. The two first columns report the performance of the baseline and
manually created lexicon. Note that the baseline is constantly considering the majority label.

Language Freq. sentiment baselinetarget-language-specific
Manual Lexicon

(projection)
UniSent Lexicon

(projection)
Confidence Weighted UniSent Lexicon

acc acc macro-F1 acc macro-F1 acc macro-F1

French 0.62 0.84 0.83 0.73 0.72 0.74 0.74
Macedonian 0.70 0.86 0.84 0.80 0.77 0.81 0.78

Spanish 0.64 0.82 0.80 0.78 0.76 0.80 0.77
Czech 0.62 0.87 0.87 0.82 0.81 0.79 0.78

German 0.52 0.87 0.87 0.82 0.81 0.81 0.80

Table 4.5. We evaluate UniSent using twitter emoticon dataset. We use monolingual
Twitter embeddings in German, Italian, French, and Spanish. The two last columns report
the accuracy and macro-F1 (averaged F1 over positive and negative classes) of Unisent
before and after the application of the drift weighting step.

LanguageFreq. sentiment baseline (projection)
UniSent Lexicon

(projection)
Confidence Weighted UniSent Lexicon

acc acc macro-F1 acc macro-F1

French 0.62 0.73 0.73 0.75 0.74
Spanish 0.62 0.73 0.73 0.76 0.76
German 0.62 0.80 0.79 0.80 0.79
Italian 0.62 0.76 0.76 0.75 0.75

Results

The evaluation results are reported in Tables 4.4 and 4.5. Table 4.4 compares UniSent and
its confidence weighted version to the manually created lexica in Czech, German, French,
Macedonian, and Spanish as well as a naive baseline of choosing the most frequent sentiment.
For all evaluated languages, accuracy as well as macro-F1 are close to 0.8, showing that
UniSent is a high-quality resource performing close enough to manually created seeds and
clearly better than the most frequent sentiment baseline. Since in this evaluation the presented
languages did not have any further advantage than having a manually created lexicon for
evaluation, we can assume that UniSent would work within the same range of accuracy for
any of the low-resource languages as long as a monolingual embedding (which is also cheap to
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obtain for low-resource languages) can be available for the target domain. Our drift weighting
method brings gains in several languages: French, Macedonian, and Spanish.

In Table 4.5 we compare the quality of UniSent in prediction of the gold standard emoticon
sentiments in the Twitter domain. The results show that (i) UniSent clearly outperforms
the baseline of the most frequent sentiment label and (ii) our domain adaptation technique
brings small improvements for French and Spanish.

In order to illustrate the function of DomDrift we visualized the embedding space of
biblical domain and twitter domain for the word achieving the highest drift score in Spanish,
i.e., word sensual (Figure 4.9). The neighborhood of this word in both domains is shown
in the figure. In Biblical texts, this word has the connotation of sin which has a negative
polarity. But in the Twitter domain, the same word is associated with sexy, which has a
positive polarity. This example shows that for certain pairs of domains and languages use of
DomDrift weights in the use of sentiment lexicon can improve the performance of sentiment
analysis.

Discussion and Conclusion
In this work, we introduced UniSent universal sentiment lexica for 1000+ languages, which
is to the best of our knowledge, the largest sentiment resource to date in terms of the
number of covered languages, including many low resource ones. Although UniSent is created
based on a specific domain (bible), our evaluation of UniSent on Czech, German, French,
Macedonian, and Spanish showed that it can achieve macro-F1 scores ⇡0.8 in word sentiment
classification, which is comparable to the use of manually annotated resources. Given that
many of covered languages in UniSent are very low-resource, UniSent can be regarded
among the only computational linguistic resources available for those low-resource languages
making sentiment analysis possible in such low-resource setups. In addition, through accurate
prediction of Twitter emoticon sentiment for German, Italian, French, and Spanish, we showed
that UniSent can be even used in a very different target domain and still performs quite well
in sentiment analysis.

Furthermore, we proposed DomDrift, a method to quantify domain drift for words
in the UniSent given an embedding space in the target domain. DomDrift compares the
neighborhood of the word in the embedding spaces of source and target domains. Incorporation
of DomDrift scores in the use of UniSent for sentiment classification outperformed vanilla
UniSent in French, Spanish, and Macedonian in the Wikipedia domain and French and
Spanish in the twitter domain. Not further improving the results for German, Czech and
Italian languages might be because of the sufficiency of the target embedding usage for
domain adaptation (Jurafsky and J. H. Martin 2014) in those. On the other hand, the fact
that Spanish and French performances improved on both Wikipedia and Twitter domains
when DomDrift is used, might show that the necessity of DomDrift can be related to certain
property of the target language, which can be further explored as future work.
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4.4 Embedding-based quantitative comparison of

languages

We introduce a new measure of distance between languages based on word embedding, called
word embedding language divergence (WELD). WELD is defined as divergence between
unified similarity distribution of words between languages. Using such a measure, we perform
language comparison for fifty natural languages and twelve genetic languages. Our natural
language dataset is a collection of sentence-aligned parallel corpora from bible translations
for fifty languages spanning a variety of language families. Although we use parallel corpora,
which guarantees having the same content in all languages, interestingly in many cases
languages within the same family cluster together. In addition to natural languages, we
perform language comparison for the coding regions in the genomes of 12 different organisms
(4 plants, 6 animals, and two human subjects). Our result confirms a significant high-level
difference in the genetic language model of humans/animals versus plants. The proposed
method is a step toward defining a quantitative measure of similarity between languages,
with applications in languages classification, genre identification, dialect identification, and
evaluation of translations.

Computational Comparison of Human Languages
Classification of language varieties is one of the prominent problems in linguistics (Smith
2016). The term language variety can refer to different styles, dialects, or even a distinct
language (Marjorie and Rees-Miller 2001). It has been a longstanding argument that strictly
quantitative methods can be applied to determine the degree of similarity or dissimilarity
between languages (Kroeber and Chretien 1937; Sankaran et al. 1950; Kramsky 1959; A.
McMahon and R. McMahon 2003). The methods proposed in the 1990’s and early 2000’
mostly relied on utilization of intensive linguistic resources. For instance, similarity between
two languages was defined based on the number of common cognates or phonological patterns
according to a manually extracted list (Kroeber and Chretien 1937; A. McMahon and R.
McMahon 2003). Such an approach, of course, is not easily extensible to problems involving
new languages. Recently, statistical methods have been proposed to automatically detect
cognates (Berg-Kirkpatrick and Klein 2010; D. Hall and Klein 2010; Bouchard-Cote et al.
2013; Ciobanu and Dinu 2014) and subsequently compare languages based on the number of
common cognates (Ciobanu and Dinu 2014).

In this section our aim is to define a quantitative measure of distance between languages.
Such a metric should reasonably take both syntactic and semantic variability of languages into
account. A measure of distance between languages can have various applications including
quantitative genetic/typological language classification, styles and genres identification, and
translation evaluation. In addition, comparing the biological languages generating the genome
in different organisms can potentially shed light on important biological facts.
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Problem Definition

Our goal is to be able to provide a quantitative estimate of distance for any two given
languages. In our framework, we define a language as a weighted graph ⌦L(V, e), where V
is a set of vertices (words), and e : (V ⇥ V ) ! < is a weight function mapping a pair of
words to their similarity value. Then our goal of approximating the distance between the two
languages L and L0 can be transferred to the approximation of the distance between ⌦L(V, e)
and ⌦L0(V 0, e0). In order to approach such a problem firstly we need to address the following
questions:

• What is a proper weight function e estimating a similarity measure between words
wi, wj 2 V in a language L?

• How can we relate words in V to words in V 0?

• And finally, how can we measure a distance between languages ⌦L and ⌦L0 , which
means D(⌦L, ⌦L0)?

In the following section we explain how researchers have addressed the above mentioned
questions until now.

Word similarity within a language

The main aim of word similarity methods is to measure how similar pairs of words are to
each-other, semantically and syntactically (Han et al. 2013). Such a problem has a wide
range of applications in information retrieval, automatic speech recognition, word sense
disambiguation, and machine translation (Collobert and Weston 2008; Glorot et al. 2011;
Mikolov, Yih, et al. 2013; Turney, Pantel, et al. 2010; Resnik 1999; Schwenk 2007).

Various methods have been proposed to measure word similarity, including thesaurus
and taxonomy-based approaches, data-driven methods, and hybrid techniques (Miller 1995;
Mohammad and Hirst 2006; Mikolov, K. Chen, et al. 2013; Han et al. 2013). Taxonomy-based
methods are not easily extensible as they usually require extensive human intervention for
creation and maintenance (Han et al. 2013). One of the main advantages of data-driven
methods is that they can be employed even for domains with shortage of manually annotated
data.

Almost all of the data-driven methods such as matrix factorization (W. Xu et al. 2003),
word embedding (Mikolov, K. Chen, et al. 2013), topic models (Blei 2012), and mutual
information (Collobert, Weston, et al. 2011). The main idea in distributed representation
is characterizing words by the company they keep (Geoffrey E Hinton 1984; Firth 1975;
Collobert, Weston, et al. 2011).

Recently, continuous vector representations known as word vectors have become popular
in natural language processing (NLP) as an efficient approach to represent semantic/syntactic
units (Mikolov, K. Chen, et al. 2013; Collobert, Weston, et al. 2011). Word vectors are
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trained in the course of training a language model neural network from large amounts of
textual data (words and their contexts) (Mikolov, K. Chen, et al. 2013). More precisely,
word representations are the outputs of the last hidden layer in a trained neural network for
language modeling. Thus, word vectors are supposed to encode the most relevant features
to language modeling by observing various samples. In this representation similar words
have closer vectors, where similarity is defined in terms of both syntax and semantics. By
training word vectors over large corpora of natural languages, interesting patterns have been
observed. Words with similar vector representations display multiple types of similarity. For
instance,

���!
King����!Man+

�����!
Woman is the closest vector to that of the word

����!
Queen (an instance

of semantic regularities) and
���!
quick �

����!
quickly ⇡

��!
slow �

����!
slowly (an instance of syntactic

regularities). A recent work has proposed the use of word vectors to detect linguistic changes
within the same language over time (Kulkarni et al. 2015). The fact that various degrees
of similarity were captured by such a representation convinced us to use it as a notion of
proximity for words.

Word alignment

As we discussed in section 4.4, in order to compare graphs ⌦L and ⌦0
L, we need to have a

unified definition of words (vertices). Thus, we need to find a mapping function from the
words in V to the words in V 0. Obviously when two languages have the same vocabulary set
this step can be skipped, which is the case when we perform within-language genres analysis
or linguistic drifts study (Stamatatos et al. 2000; Kulkarni et al. 2015), or even when we
compare biological languages (DNA or protein languages) for different species (Asgari and
M. R. Mofrad 2015). However, when our goal is to compare distributional similarity of words
for two different languages, such as French and German, we need to find a mapping from
words in French to German words.

Finding a word mapping function between two languages can be achieved using a dictionary
or using statistical word alignment in parallel corpora (Franz Josef Och and Ney 2003;
Lardilleux and Lepage 2009). Statistical word alignment is a vital component in any statistical
machine translation pipeline (Fraser and Marcu 2007). Various methods/tools has been
proposed for word alignment, such as GIZA++ (F. Och 2003) and Anymalign (Lardilleux and
Lepage 2009), which are able to extract high quality word alignments from sentence-aligned
multilingual parallel corpora.

One of the data resources we use in this project is a large collection of sentence-aligned
parallel corpora we extract from bible translations in fifty languages. Thus, in order to
find a word mapping function among all these languages we used statistical word alignment
techniques and in particular Anymalign (Lardilleux and Lepage 2009), which can process any
number of languages at once.
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Network Analysis of Languages

The rather intuitive approach of treating languages as networks of words has been proposed
and explored in the last decade by a number of researchers (Cancho and Sole 2001; HaiTao Liu
and Cong 2013; Cong and Haitao Liu 2014; Gao et al. 2014). In these works, human languages,
like many other aspects of human behavior, are modeled as complex networks (Costa et al.
2011), where the nodes are essentially the words of the language and the weights on the edges
are calculated based on the co-occurrences of the words (HaiTao Liu and Cong 2013; Cancho
and Sole 2001; Gao et al. 2014). Clustering of 14 languages based on various parameters of a
complex network such as average degree, average path length, clustering coefficient, network
centralization, diameter, and network heterogeneity has been done by (HaiTao Liu and Cong
2013). A similar approach is suggested by (Gao et al. 2014) for analysis of the complexity
of six languages. Although, all of the above mentioned methods have presented promising
results about similarity and regularity of languages, to our understanding they need the
following improvements:

Measure of word similarity: Considering co-occurrences as a measure of similarity
between nodes, which is the basis of the above mentioned complex network methods, is a
naive estimate of similarity, (HaiTao Liu and Cong 2013; Cancho and Sole 2001; Gao et al.
2014). The most trivial cases are synonyms, which we expect to be marked as the most
similar words to each other. However, since they can only be used interchangeably with each
other in the same sentences, their co-occurrences rate is very low. Thus, raw co-occurrence is
not necessarily a good indicator of similarity.

Independent vs. joint analysis: Previous methods have compared the parameters
of language graphs independently, except for some relatively small networks of words for
illustration (HaiTao Liu and Cong 2013; Cancho and Sole 2001; Gao et al. 2014). However,
two languages may have similar settings of the edges but for completely different concepts.
Thus, a systematic way for joint comparison of these networks is essential.

Language collection: The previous analysis was performed on a relatively small number
of languages. For instance in (HaiTao Liu and Cong 2013), fourteen languages were studied
where twelve of them were from the Slavic family of languages, and (Gao et al. 2014) studied
six languages. Clearly, studying more languages from a broader set of language families would
be more indicative.

Our Contributions
In this section, we suggest a heuristic method toward a quantitative measure of distance
between languages. We propose divergence between unified similarity distribution of words
as a quantitative measure of distance between languages.

Measure of word similarity: We use cosine similarity between word vectors as the
metric of word similarities, which has been shown to take into account both syntactic and
semantic similarities (Mikolov, K. Chen, et al. 2013). Thus, in the weighted language graph
⌦L(V, e), the weight function e : (V ⇥ V )! < is defined by word-vector cosine similarities
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between pairs of words. Although word vectors are calculated based on co-occurrences of
words within sliding windows, they are capable of attributing a reasonable degree of similarity
to close words that do not co-occur.

Joint analysis of language graphs: By having word vector proximity as a measure of
word similarity, we can represent each language as a joint similarity distribution of its words.
Unlike the methods mentioned in section 4.4 which focused on network properties and did not
consider a mapping function between nodes across various languages, we propose performing
node alignment between different languages (Lardilleux and Lepage 2009). Consequently,
calculation of Jensen-Shannon divergence between unified similarity distributions of the
languages can provide us with a measure of distance between languages.

Language collection: In this study we perform language comparison for fifty natural
languages and twelve genetic language.

Natural languages: We extracted a collection of sentence-aligned parallel corpora from
bible translations for fifty languages spanning a variety of language families including Indo-
European (Germanic, Italic, Slavic, Indo-Iranian), Austronesian, Sino-Tibetan, Altaic, Uralic,
Afro-Asiatic, etc. This set of languages is relatively large and diverse in comparison with
the corpora that have been used in previous studies (HaiTao Liu and Cong 2013; Gao et al.
2014). We calculated the Jensen-Shannon divergence between joint similarity distributions
for fifty language graphs consisting of 4,097 sets of aligned words in all these fifty languages.
Using the mentioned divergence we performed cluster analysis of languages. Interestingly
in many cases languages within the same family clustered together. In some cases, a lower
degree of divergence from the source language despite belonging to different language families
was indicative of a consistent translation.

Genetic languages: Nature uses certain languages to generate biological sequences such as
DNA, RNA, and proteins. Biological organisms use sophisticated languages to convey infor-
mation within and between cells, much like humans adopt languages to communicate (Yandell
and Majoros 2002; Searls 2002). Inspired by this conceptual analogy, we use our languages
comparison method for comparison of genetic languages in different organisms. Genome
refers to a sequence of nucleotides containing our genetic information. Some parts of our
genome are coded in a way that can be translated to proteins (exonic regions), while some
regions cannot be translated into proteins (introns) (Saxonov et al. 2000). In this study, we
perform language comparison of coding regions in 12 different species (4 plants, 6 animals,
and two human subjects). Our language comparison method is able to assign a reasonable
relative distance between species.

Methods
As we discussed in 4.4, we transfer the problem of finding a measure of distance between
languages L and L0 to finding the distance between their language graphs ⌦L(V, e) and
⌦L0(V 0, e0).

Word Embedding: We define the edge weight function e : (V ⇥ V ) ! < to be the
cosine similarity between word vectors.
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Alignment: When two languages have different words, in order to find a mapping
between the words in V and V 0 we can perform statistical word alignment on parallel corpora.

Divergence Calculation: Calculating Jensen-Shannon divergence between joint sim-
ilarity distributions of the languages can provide us with a notion of distance between
languages.

Our language comparison method has three components. Firstly, we need to learn word
vectors from large amounts of data in an unsupervised manner for both of the languages we
are going to compare. Secondly, we need to find a mapping function for the words and finally
we need to calculate the divergence between languages. In the following section we explain
each step aligned with the experiment we perform on both natural languages and genetic
languages.

Learning Word Embedding

Word embedding can be trained in various frameworks (e.g. non-negative matrix factorization
and neural network methods (Mikolov, Yih, et al. 2013; Levy and Goldberg 2014)). Neural
network word embedding trained in the course of language modeling is shown to capture
interesting syntactic and semantic regularities in the data (Mikolov, Yih, et al. 2013; Mikolov,
K. Chen, et al. 2013). Such word embedding known as word vectors need to be trained
from a large number of training examples, which are basically words and their corresponding
contexts. In this project, in particular we use an implementation of the skip-gram neural
network (Mikolov, Sutskever, K. Chen, et al. 2013).

In training word vector representations, the skip-gram neural network attempts to maxi-
mize the average probability of contexts for given words in the training data:

argmax
v,v0

1

N

NX

i=1

X

�cjc,j 6=0

log p(wi+j|wi)

p(wi+j|wi) =
exp (v0T

wi+j
vwi)PW

k=1 exp (v0T
wk

vwi)
,

(4.1)

where N is the length of the training, 2c is the window size we consider as the context,
wi is the center of the window, W is the number of words in the dictionary and vw and v0

w

are the n-dimensional word representation and context representation of word w, respectively.
At the end of the training the average of vw and v0

w will be considered as the word vector for
w. The probability p(wi+j|wi) is defined using a softmax function. In the implementation
we use (Word2Vec) (Mikolov, Sutskever, K. Chen, et al. 2013) negative sampling has been
utilized, which is considered as the state-of-the-art for training word vector representation.
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Natural Languages Data

For the purpose of language classification we need parallel corpora that are translated into
a large number of languages, so that we can find the alignments using statistical methods.
Recently, a massive parallel corpus based on 100 translations of the Bible has been created in
XML format (Christodouloupoulos and Steedman 2015), which we choose as the database for
this project. In order to make sure that we have a large enough corpus for learning word
vectors, we pick the languages for which translations of both the Old Testament and the
New Testament are available. From among those languages we pick the ones containing all
the verses in the Hebrew version (which is the source language for most of the data) and
finally we end up with almost 50 languages, containing 24,785 aligned verses. For Thai,
Japanese, and Chinese we use the tokenized versions in the database (Christodouloupoulos
and Steedman 2015). In addition, before feeding the skip-gram neural network we remove all
punctuation.

In our experiment, we use the word2vec implementation of skip-gram (Mikolov, Sutskever,
K. Chen, et al. 2013). We set the dimension of word vectors d to 100, and the window size c
to 10 and we sub-sample the frequent words by the ratio 1

103 .

Genetic Languages Data

In order to compare the various genetic languages we use the IntronExon database that
contains coding and non-coding regions of genomes for a number of organisms (Shepelev and
Fedorov 2006). From this database we extract a data-set of coding regions (CR) from 12
organisms consisting of 4 plants (arabidopsis, populus, moss, and rice), 6 animals (sea-urchin,
chicken, cow, dog, mouse, and rat), and two human subjects. The number of coding regions
we have in the training data for each organism is summarized in Table 4.6. The next step is
splitting each sequence to a number of words. Since the genome is composed of the four DNA
nucleotides A,T,G and C, if we split the sequences in the character level the language network
would be very small. We thus split each sequence into n-grams (n = 3, 4, 5, 6), which is a
common range of n-grams in bioinformatics(Ganapathiraju et al. 2002; Mantegna et al. 1995).
As suggested by(Asgari and M. R. Mofrad 2015) we split the sequence into non-overlapping
n-grams, but we consider all possible ways of splitting for each sequence.

We train the word vectors for each setting of n-grams and organisms separately, again
using skip-gram neural network implementation (Mikolov, Sutskever, K. Chen, et al. 2013).
We set the dimension of word vectors d to 100, and window size of c to 40. In addition, we
sub-sample the frequent words by the ratio 10�3.

Word Alignment

The next step is to find a mapping between the nodes in ⌦L(V, e) and ⌦L0(V 0, e0). Obviously
in case of quantitative comparison of styles within the same language we do not need to find
an alignment between the nodes in V and V 0. However, when we are comparing two distinct
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Organisms # of CR# of 3-grams
Arabidopsis 17982442,618,288
Populus 13184428,478,304
Moss 16799938,471,771
Rice 12972634,507,116
Sea-urchin 14345727,974,115
Chicken 18776134,735,785
Cow 19646643,222,520
Dog 38114770,512,195
Mouse 21527434,874,388
Rat 19098941,635,602
Human 1 31939186,874,352
Human 2 30387277,791,232

Table 4.6. The genome data-sets used for learning word vectors in different organisms.
The number of coding regions and the total occurrences of 3-grams are presented. Clearly,
the total number of all n-grams (n=3,4,5,6) is almost the same.

languages we need to find a mapping from the words in language L to the words in language
L0.

Word Alignment for Natural Languages

As we mentioned in section 4.4, our parallel corpora contain texts in fifty languages from a
variety of language families. We decided to use statistical word alignments because we already
have parallel corpora for these languages and therefore performing statistical alignment
is straightforward. In addition, using statistical alignment we hope to see evidences of
consistent/inconsistent translations.

We use an implementation of Anymalign (Lardilleux and Lepage 2009), which is designed
to extract high quality word alignments from sentence-aligned multilingual parallel corpora.
Although Anymalign is capable of performing alignments in several languages at the same
time, our empirical observation was that performing alignments for all languages against a
single language and then finding the global alignment through that alignment is faster and
results in better alignments. We thus align all translations with the Hebrew version. To
ensure the quality of alignments we apply a high threshold on the score of alignments. In a
final step, we combine the results and end up with a set of 4,097 multilingual alignments.
Hence we have a mapping from any of the 4,097 words in one language to one in any other
given language, where the Hebrew words are unique, but not necessarily the others.

Genetic Languages Alignment

In genetic language comparison, since the n-grams are generated from the same nucleotides
(A,T,C,G), no alignment is needed and V would be the same as V 0.
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Calculation of Language Divergence

In section 4.4 we explained how to make language graphs ⌦L(V, e) and ⌦L0(V 0, e0). Then in
section 4.4 we proposed a statistical alignment method to find the mapping function between
the nodes in V and V 0. Having achieved the mapping between the words in V and the words
in V 0, the next step is comparison of e and e0.

In comparing language graphs what is more crucial is the relative similarities of words.
Intuitively we know that the relative similarities of words vary in different languages due to
syntactic and semantic differences. Hence, we decided to use the divergence between relative
similarities of words as a heuristic measure of the distance between two languages. To do
so, firstly we normalize the relative word vector similarities within each language. Then,
knowing the mapping between words in V and V 0 we unify the coordinates of the normalized
similarity distributions. Finally, we calculate the Jensen-Shannon divergence between the
normalized and unified similarity distributions of two languages:

DL,L0 = JSD(ê, ê0),

where ê and ê0 are normalized and unified similarity distributions of word pairs in ⌦L(V, e)
and ⌦L0(V 0, e0) respectively.

Natural Languages Graphs

For the purpose of language classification we need to find pairwise distances between all
of the fifty languages we have in our corpora. Using the mapping function obtained from
statistical alignments of Bible translations, we produce the normalized and unified similarity
distributions of word pairs ˆe(k) for language L(k). Therefore to compute the quantitative
distance between two languages L(i) and L(j) we calculate DLi,Lj = JSD( ˆe(i), ˆe(j)).

Consequently, we calculate a quantitative distance between each pair of languages. In
a final step, for visualization purposes, we perform Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) hierarchical clustering on the pairwise distance matrix of
languages (Johnson 1967).

Genetic Languages Graphs

The same approach as carried out for natural languages is applied to genetic languages
corpora. Pairwise distances of genetic languages were calculated using Jensen-Shannon
divergence between normalized and unified similarity distributions of word pairs for each pair
of languages.

We calculate the pairwise distance matrix of languages for each n-gram separately to
verify which length of DNA segment is more discriminative between different species.
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Figure 4.11. Hierarchical clustering of fifty natural languages according to divergence of
joint distance distribution of 4097 aligned words in bible parallel corpora. Subsequently we
use colors to show the ground-truth about family of languages. For Indo-European languages
we use different symbols to distinguish various sub-families of Indo-European languages. We
observe that the obtained clustering reasonably discriminates between various families and
subfamilies.

Results

Classification of Natural Languages
The result of the UPGMA hierarchical clustering of languages is shown in Figure 4.11. As
shown in this figure, many languages are clustered together according to their family and
sub-family. Many Indo-European languages (shown in green) and Austronesian languages
(shown in pink) are within a close proximity. Even the proximity between languages within a
sub-family are preserved with our measure of language distance. For instance, Romanian,
Spanish, French, Italian, and Portuguese, all of which belong to the Italic sub-family of
Indo-European languages, are in the same cluster. Similarly, the Austronesian langauges
Cebuano, Tagalog, and Maori as well as Malagasy and Indonesian are grouped together.

Although the clustering based on word embedding language divergence matches the
genetic/typological classification of languages in many cases, for some pairs of languages
their distance in the clustering does not make any genetic or topological sense. For instance,
we expected Arabic and Somali as Afro-Asiatic languages to be within a close proximity
with Hebrew. However, Hebrew is matched with Norwegian, a Germanic Indo-European
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Figure 4.12. Visualization of word embedding language divergence in twelve different
genomes belonging to 12 organisms for various n-gram segments. Our results indicate that
evolutionarily closer species have higher proximity in the syntax and semantics of their
genomes.

language. After further investigations and comparing word neighbors for several cases in
these languages, it turns out that the Norwegian bible translation highly matches Hebrew
because of being a consistent and high-quality translation. In this translation, synonym
were not used interchangeably and language usage stays more faithful to the structure of the
Hebrew text.

Divergence between Genetic Languages

The pairwise distance matrix of the twelve genetic languages for n-grams (n = 3, 4, 5, 6) is
shown in Figure 4.12. Our results confirm that evolutionarily closer species have a reasonably
higher level of proximity in their language models. We can observe in Figure 4.12, that as we
increase the number of n-grams the distinction between animal/human genome and plant
genome increases.

Conclusion
In this section, we proposed Word Embedding Language Divergence (WELD) as a new
heuristic measure of distance between languages. Consequently we performed language
comparison for fifty natural languages and twelve genetic languages. Our natural language
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dataset was a collection of sentence-aligned parallel corpora from bible translations for fifty
languages spanning a variety of language families. We calculated our word embedding
language divergence for 4,097 sets of aligned words in all these fifty languages. Using the
mentioned divergence we performed cluster analysis of languages.

The corpora for all of the languages but one consisted of translated text instead of original
text in those languages. This means many of the potential relations between words such as
collocations and culturally influenced semantic connotations did not have the full chance
to contribute to the measured language distances. This can potentially make it harder for
the algorithm to detect related languages. In spite of this, however in many cases languages
within the same family/sub-family clustered together. In some cases, a lower degree of
divergence from the source language despite belonging to different language families was
indicative of a consistent translation. This suggests that this method can be a step toward
defining a quantitative measure of similarity between languages, with applications in languages
classification, genres identification, dialect identification, and evaluation of translations.

In addition to the natural language data-set, we performed language comparison of n-
grams in coding regions of the genome in 12 different species (4 plants, 6 animals, and two
human subjects). Our language comparison method confirmed that evolutionarily closer
species are closer in terms of genetic language models. Interestingly, as we increase the
number of n-grams the distinction between genetic language in animals/human versus plants
increases. This can be regarded as indicative of a high-level diversity between the genetic
languages in plants versus animals.
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4.5 Summary of contributions in human language

processing

In this chapter, we introduced three computational frameworks for language-agnostic pro-
cessing of human languages toward the goal of linguistic knowledge or resource creation for
low-resource languages. Firstly, we introduced SuperPivot for linguistic marking detection
in parallel settings and the typological analysis of tense in 1000+ languages. Secondly,
SuperPivot we created a universal sentiment lexicon of 1000+ languages, which is to the
best of our knowledge, the largest sentiment resource to date in terms of the number of
covered languages, including many low resource ones. We proposed DomDrift, a method
to quantify domain drift for words in the UniSent given an embedding space in the target
domain, which makes UniSent adaptable to any target domain. Thirdly, we introduced
a quantitative comparison of languages and language variations based on the underlying
probabilistic language model reduced to language embedding graphs.

We introduced SuperPivot for subsequence based linguistic marker detection in more than
1000 languages without making any strong-assumption about the studied languages. The
basic idea of SuperPivot SuperPivot is that the parallel corpora of 1000 languages, all richly
annotate each other. As long as there are a few among the 1000 languages that have a clear
marker for linguistic feature f , then this marker can be projected to all other languages to
richly annotate them. For any linguistic feature, there is a good chance that a few languages
clearly mark it. Of course, this small subset of languages will be different for every linguistic
feature. However, the motivation of SuperPivot is not to develop a method that can then
be applied to many other corpora. Rather, the motivation is that many of the more than
1000 languages in the Parallel Bible Corpus are low-resource and that providing a method for
creating the first richly annotated corpus (through the projection of annotation we propose)
for many of these languages is a significant contribution. Even for extremely resource-poor
languages for which at present no annotated resources exist, SuperPivot will make available
richly annotated corpora that should advance linguistic research on these languages.

We introduced UniSent universal sentiment lexica for 1000+ languages. Although UniSent
is created based on a specific domain (bible), our evaluation of UniSent on Czech, German,
French, Macedonian, and Spanish showed that it can achieve macro-F1 scores ⇡0.8 in word
sentiment classification, which is comparable to the use of manually annotated resources.
Given that many of covered languages in UniSent are very low-resource, UniSent can be
regarded among the only computational linguistic resources available for those low-resource
languages making sentiment analysis possible in such low-resource setups. Furthermore,
through accurate prediction of Twitter emoticon sentiment for German, Italian, French, and
Spanish, we showed that UniSent can be even used in a very different target domain and
still performs quite well in sentiment analysis. Next, we proposed DomDrift, a method to
quantify domain drift for words in the UniSent given an embedding space in the target
domain. DomDrift compares the neighborhood of the word in the embedding spaces of
source and target domains. Incorporation of DomDrift scores in the use of UniSent for
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sentiment classification outperformed vanilla UniSent in French, Spanish, and Macedonian in
the Wikipedia domain and French and Spanish in the twitter domain.

We proposed word embedding language divergence, as a new method for comparison of
languages based on their word embedding graphs. Word embedding language divergence can
be regarded as an extension of DomDrift comparing the neighborhood of all words in the
embedding spaces of two languages simultaneously. Since this method is language-agnostic it
can be used on any type of languages, even biological sequences. We showed that applying
this method using monolingual embedding and statistical alignments on parallel corpora
can be used for estimation of the language phylogenetic tree. On genome sequences since
the lexical units are the same in the language variations, only monolingual embeddings are
sufficient to quantify their distances. This method is an alternative method to the alignment
based comparison of genomes, where high-level similarity of genomes is compared with each
other instead of their point-wise differences (mutations).
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Chapter 5

Conclusions and future work

In this dissertation, titled “Life Language Processing”, I investigated deep learning-based
and language-agnostic processing of proteomics, genomics, metagenomics, and human lan-
guages through five different task types (where applicable): (i) sequence representations and
representation learning, (ii) sequence classifications, (iii) sequence labeling, (iv) biomarker
and linguistic marker detection and analysis, and (v) quantitative comparison of languages.
The same insight and spirit of methods developed for three central problems in proteomics,
genomics & metagenomics, and language processing:

1. Proteomics: How to efficiently use a large amount of existing protein primary sequences
to achieve a better performance in the structural and functional annotation of protein
sequences and to reduce the gap between the number of known protein sequences and
known protein tertiary structures and functions?

2. Genomics/metagenomics: How to detect the host phenotype and the phenotype-
specific taxa from the microbial samples? (which has applications in the establishment of
diagnosis and therapy options in precision medicine, forensic sciences, and agriculture.)

3. Human languages: How to create linguistic knowledge and linguistic resources
automatically for low-resource languages with zero/minimal language-dependent as-
sumptions?

Next, I conclude the dissertation with the summary of work in the areas of Proteomics,
Genomics/metagenomics, and Human languages. In each part, the future directions
will be also discussed. Figure 5.1 summarizes the task-types and applications covered in this
dissertation in these three areas.
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Figure 5.1. The contributions of life language processing project in proteomics,
genomics/metagenomics, and human languages are presented. Different language processing
task-types are specified for each area. The task-types are connected to the specific
applications covered in this thesis.

1. Summary of life language processing for proteomics and the
future directions
A word-cloud summary of proteomics-related contributions is shown in Figure 5.2. In
proteomics, for the first time, we introduced a language-model based representation of protein
sequences over sequence k-mers, called protein-vector or ProtVec. ProtVec representation,
which is inspired by word embedding in NLP (Mikolov, Sutskever, K. Chen, et al. 2013), can
be efficiently trained over large protein sequence datasets (Swiss-Prot) once and then be used
as feature representation in down-stream machine learning tasks. We intrinsically evaluated
ProtVec by measuring the continuity of this representation with respect to different biophysical
properties and showed that this space preserves the biophysical similarity of protein k-mers.
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For extrinsic evaluations, we showed that ProtVec and its variable-length extension, ProtVecX,
could boost the performance of learning algorithms in protein informatics for the ultimate
goal of functional and structural annotation of protein sequences, which is one the key open
question in the molecular biology. In particular, we evaluated protein vectors for different
protein functional and structural annotation tasks including protein family classification,
disordered protein prediction, protein domain identification, secondary structure prediction,
sub-cellular location prediction, identification of toxin proteins, and enzyme prediction, where
combination of k-mers and protein vectors showed the most success in such machine learning
predictions. Combination of embeddings and k-mers as input features to the multilayer
perceptron neural networks brought us the first and the third places in two out of three
protein classification tasks in the Critical Assessment of protein Function Annotation (CAFA)
in 2018 (CAFA 3.14) (N. Zhou et al. 2019). Recently, ProtVec has been used and extended
for variety of tasks in bioinformatics, where we only cite a subset of such papers (Wan and
J. Zeng 2016; Islam et al. 2017; Hamid and Friedberg 2018; K. K. Yang et al. 2018; Jaeger
et al. 2018; Du et al. 2018; A. Dutta et al. 2018; Y. Xu et al. 2018; Öztürk et al. 2018). In
addition to ProtVec’s contributions in bioinformatics, similar approaches afterwards were
introduced for subword embedding in NLP inspired by ProtVec work (Schütze et al. 2016).

In addition, we introduced general purpose probabilistic variable length segmentation of
protein sequences to replace k-mer based representation of protein sequences into unsupervised
peptide-pair encoding units. This representation can be widely used in protein informatics.
In particular, we proposed it for protein motif mining and the above-mentioned extension of
ProtVec (ProtVecX). We presented DiMotif as an alignment-free discriminative motif mining
method evaluated for finding protein motifs. The significant motifs extracted could reliably
detect the integrins, integrin-binding, and biofilm formation-related proteins on a reserved set
of sequences with high F1 scores. In addition, DiMotif could detect experimentally verified
motifs related to nuclear localization signals with a reasonable overlap.

Furthermore, we investigated the deep learning-based protein secondary structure pre-
diction approaches from the protein primary sequence. We focused on finding an optimal
representation and deep learning predictive model for this task. The most challenging dataset
for this task to-date is Q8 (8 classes) on CullPDB/CB513 dataset, where the dissimilarity of
training and test set is ensured. We investigated (i) different protein sequence representations
including one-hot vectors, biophysical features, protein sequence embedding (ProtVec), deep
amino acid contextualized embedding (ELMo), and the Position Specific Scoring Matrix
(PSSM), (ii) different deep-learning architectures including convolutional neural networks
(CNN), recurrent neural networks (in particular Bi-LSTM), use of highway connection, at-
tention mechanism, and multi-scale CNN (Jiyun Zhou et al. 2018). We showed that PSSM
and its combination with one-hot vectors achieve the best performance in protein secondary
structure prediction. The best performing model was the CNN-BiLSTM architecture, which
captures both local and global sequence features essential for proteins secondary structure.
Moreover, we performed error analysis on the most accurate model based on the location of
misclassified amino acids as well as the confusion matrix analysis. Interestingly, misclassified
secondary structures were significantly correlated with locating at the structural transitions.
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Figure 5.2. Semi-automatically generated word-cloud of the proteomics-related
contributions of the dissertation.
The background images is taken from
http://blog.bitsathy.ac.in/ribosomes-the-protein-makers-now-produces-polymers.

Such a correlation is most likely due to the inaccurate assignment of the secondary structure
at the boundaries in ground-truth (Y. Yang et al. 2016). By ignoring the boundary amino
acids from the evaluation, the Q8 accuracy would increase for an extra %20, i.e., %90.3.
Analysis of the confusion matrix furthermore indicates that similar secondary structures are
highly confusing (helices: H and G as well as unstructured regions: S, T, and L) showing
that the model can learn high-level information about the secondary structures.

Future directions of life language processing in proteomics:

Functional annotation: The use of protein embeddings for functional and structural anno-
tations of sequences may be expanded to a more broad range of protein functions (e.g., the
hierarchy of labels in the whole gene ontology (G. O. Consortium 2018)) and a side outcome
would be a supervised tuned representation of proteins for the functional annotation. A
systematic comparison of different deep neural network in the protein functional annotation
can be also a future direction. Moreover, a serious biophysical interpretation of the extracted
motifs by DiMotif for nuclear localization signals, biofilm formation, and integrins/integrin
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Figure 5.3. Semi-automatically generated word-cloud of the
genomics/metagenomics-related contributions of the dissertation.
The background image is taken from https://www.welovesolo.com/funny-bacteria-cartoon-styles-vector-01/.

binding proteins have still remained elusive for a future study.

Structure prediction: One potential future direction for structure prediction is the predic-
tion of PDB 3D structures (Rose et al. 2016) from the primary sequences. Recently, there has
been great progress in this direction (AlQuraishi 2019). The precision of secondary structure
datasets needs to be improved to avoid the significant errors we observe at the label transition
locations. We explored data augmentation of one-hot vector based on the protein secondary
structure prediction, which was not successful. A future direction could be exploring possible
data augmentation schemes for the Position-Specific-Scoring-Matrix (PSSM) features.

2. Summary of life language processing for genomics/metagenomics
and the future directions
A word-cloud summary of proteomics-related contributions is shown in Figure 5.3. Accurately
resolving taxon-host disease relationships is required to elucidate the underlying functional
mechanisms of taxon-host interactions in microbiome-linked diseases and establishing diag-
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nosis and therapy options in precision medicine. As a result, accurate detection of disease
phenotype and disease-associated biomarkers are among prominent problems in microbial
informatics. Although shotgun metagenomic sequencing provides a better resolution in
taxonomic assignment, 16S rRNA amplicon data, due to its low cost is still the most used
data type in microbiome studies to date (Pollock et al. 2018). After 16S rRNA sequencing,
reads are typically clustered based on their sequence similarity to each other, and the resulting
clusters are referred to as operational taxonomic units (OTUs) having several disadvantages
in the taxonomic assignment (detailed in Section §3.3). An alternative solution is the analysis
of individual 16S rRNA gene sequence (Callahan et al. 2016; Amir et al. 2017; Nearing et al.
2018), which is computationally challenging, as each 16S rRNA sample may contain 10,000s
of sequences. Here, we proposed two OTU-free 16S processing computational methods, one
designed for rapid and accurate phenotype prediction, called MicroPheno, and the other,
DiTaxa, which is targeted accurate phenotype and biomarker detection to find the phenotype-
specific taxa as well. We proposed a bootstrapping framework to investigate the sufficiency
of shallow subsamples in phenotype and biomarker detection, which is important for reducing
the computational overhead as well as the cost of sequencing technology, i.e., not to proceed
with unnecessary deep sequencing, which is more expensive.

Before metagenomics setting, in the prediction of ‘infection-causing’ strains of Klebsiella
pneumoniae we showed that the k-mer based approaches can provide us with powerful
phenotype predictors outperforming expensive genomic features. Next, we extend the k-mer
based approach for the metagenomics setting (in MicroPheno) and subsequently, we extended
the fixed length k-mers in metagenomics to variable length subsequences (in DiTaxa). Another
genomics application covered in this thesis is the task of exonic region prediction discussed
in §2.2, where the bio-vectors helped in more accurate labeling of exonic regions.

MicroPheno is a reference- and alignment-free method for predicting environments and
host phenotypes from 16S rRNA gene sequencing based on k-mer representations. Deep
learning methods, as well as classical approaches, were explored for predicting environments
and host phenotypes. K-mer distribution of shallow sub-samples outperformed Operational
Taxonomic Unit (OTU) features in the tasks of body-site identification and Crohn’s disease
prediction. In addition, k-mer features predicted representative 16S rRNA gene sequences of
18 ecological environments and 5 organismal environments with high macro-F1 scores of 0.88
and 0.87.

DiTaxa is an alignment- and reference- free subsequence based 16S rRNA data processing,
as a new paradigm for microbiome phenotype and biomarker detection. DiTaxa substituted
standard OTU-clustering by segmenting 16S rRNA reads into the most frequent variable-length
subsequences called nucleotide-pair encoding inspired from BPE, a data compression algorithm.
We compared the performance of DiTaxa to the state-of-the-art methods in phenotype and
biomarker detection, using human-associated 16S rRNA samples for periodontal disease,
rheumatoid arthritis, and inflammatory bowel diseases, as well as a synthetic benchmark
dataset. DiTaxa improved biomarker detection from microbial 16S rRNA datasets, in terms of
accuracy, taxonomic resolution and computational efficiency over known links from literature
and synthetic benchmark datasets, while performing competitively to the state-of-the-art
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Figure 5.4. Semi-automatically generated word-cloud of the contributions in human
language processing.
The background image is taken from
https://pasarelapr.com/images/language-world-map/language-world-map-2.png.

approach in phenotype prediction.
and als the genomics application - AMR prediction using NPE representation.

Future directions of life language processing in genomics/metagenomics

Shotgun metagenome analysis: Principally, applications of the NPE representation are
not limited to 16S rRNA data but could include biomarker-discovery in genomics (e.g.,
antimicrobial resistance analysis), or from shotgun metagenome data, or other biological
sequences, instead of using parameter-dependent clustering representations such as gene
family assignments. Thus, the insights and methodology of DiTaxa may be expanded for
genomics and shotgun metagenome data as well.

Cancer genomics: Cancer bioinformatics is another route for the expansion of life language
processing project. The Cancer Genome Atlas (TCGA) (Tomczak et al. 2015) is an excellent
data resource for this research containing petabytes of genomic and proteomic data to-date
spanning more than thirty cancer types. The molecular characteristics-based diagnosis and
treatment prediction are among problem settings that can be investigated within the life
language processing framework.
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3. Summary of life language processing for human languages and
the future directions
A word-cloud summary of contributions in human language processing is shown in Figure 5.4. I
introduced SuperPivot and word embedding based language divergence (WELD) for language-
agnostic processing of natural languages, for linguistic marker detection and quantitative
comparison of languages respectively. To the best of our knowledge, SuperPivot was the
first large cross-lingual computational study performed on 1000 languages. SuperPivot only
requires that a linguistic feature is overtly marked in a few of thousands of languages as
opposed to requiring that it be marked in all languages under investigation. We showed that
SuperPivot performed well on typological analysis of tense in 1000 languages. Subsequently,
we used SuperPivot for the creation of UniSent, the largest sentiment resource to date in
terms of the number of covered languages, including many low resource ones. Using DomDrift,
a method to quantify domain drift for words in the UniSent given an embedding space in the
target domain, we ensure domain adaptability of the UniSent. Next, we the domain shift
measure in DomDrift and extend it for the whole embedding graph. We introduced word
embedding language divergence, as a new method to quantify the high-level similarity of
languages using their embedding graphs.

Future directions of life language processing for human languages

SuperPivot: SuperPivot at least has several potential future directions: (i) expanding
the work for other linguistic markers; (ii) Addressing shortcomings of the way we compute
alignments by developing a new method specific to the setting of bible parallel corpus,
which is a very specific setting (many parallel languages, but languages are characteristically
low-resource) in comparison with a usual scenario that thousands of parallel sentences exist
only for a few languages.

Comparison of language/language-variations: The insight of word embedding language
divergence may be expanded as an alternative approach for phylogenetic clustering of
organisms. In addition, this method can be further developed for comparison and analysis of
languages in the bible parallel corpora of 1000+ languages.
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