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ABSTRACT OF THE THESIS 

 

Subglottal Resonances: 

Coupling Effects and Application to Automatic Speaker Identification  

by 

Gary Ka Fu Leung 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2012 

Professor Abeer Alwan, Chair 

 

Subglottal resonances (SGRs) have been extensively studied in recent years due to their 

demonstrated advantages in different applications, such as speaker height estimation and speaker 

normalization in automatic speech recognition. In the interest of studying this area in speech 

processing, the current study does not only extend the previously explored oral-subglottal 

coupling effects, but also investigates the application of speaker identification with SGRs. By 

using newly-developed tools, a more generalized analysis of the coupling effect is conducted 

with a larger database compared to previous studies. In order to demonstrate the importance of 

SGRs, exploratory speaker identification experiments with SGR features from both “ground truth” 

measurements and statistical based estimation techniques are carried out. The results show the 
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effectiveness of SGR features with preliminary analysis, and several suggestions are made to 

motivate further study.  
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CHAPTER 1. INTRODUCTION 

 

 

1.1 Motivation 

The human speech production system has been studied for decades, but most of the research 

interest in the early days was focused on the supraglottal airway system, which consists of the 

vocal tract.  In particular, acoustic properties of speech, such as fundamental frequency (F0) and 

formant frequencies (F1, F2, F3, etc.) have been well studied [6], [7]. In the recent past, several 

studies have focused on the subglottal airway system which includes the larynx, trachea, two 

main bronchi, and the bronchi tree as shown in Figure 1. Studies have shown that subglottal 

resonances (SGRs) are useful in several tasks, such as speaker normalization and adaptation for 

automatic speech recognition (ASR) [1], [8], [9], [10], [11], and speaker height estimation [4], 

[5]. Although SGRs can be measured non-invasively using an accelerometer [12] and [13], it is 

more practical if they can be estimated from speech signals. 

 Motivated by acoustical coupling between the subglottal and supraglottal systems [6], 

[12], [13], two major approaches have been developed to estimate SGRs automatically as in [4], 

[5], [8], [9], [11], [14], and [15]. One approach estimates SGRs indirectly from speech signals by 

the demonstrated boundary between [+low] and [-low] vowels by Sg1, and the boundary 

between [+back] and [-back] by Sg2. This approach has been proven to yield effective results for 

several applications [1] and [4]. The other approach focuses on direct estimation by using several 

properties of the oral-subglottal coupling effect and reinforces studies on the interactions 
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between supraglottal and subglottal systems. For example, [10] and [11] use the second formant 

frequency discontinuities and magnitude attenuations caused by the second subglottal resonance 

(Sg2) as part of the estimation method for different tasks. Although the previous studies such as 

[12] and [16] have analyzed the oral-subglottal coupling with limited-data, a more generalized 

study with a larger data set is desirable in order to further explore different properties of the 

coupling effects.   

 Studies such as [3] and [12] have shown that SGRs have relatively small intra-speaker 

variability compared to acoustic properties of the vocal tract. In other words, SGRs contain more 

speaker-specific information, which could be a desirable feature for automatic speaker 

identification. A similar argument is used in [17] for their proposed 8 acoustic parameters, which 

contain speaker-specific information and have been demonstrated to give comparable 

performance to the standard cepstral features for automatic speaker identification. In order to 

investigate this hypothesis, an exploratory study on automatic speaker identification is 

undertaken in this thesis.  

 

1.2 The roles of subglottal and supraglottal systems in speech production 

In order to understand the roles of subglottal and supraglottal systems in human speech 

production, it is helpful to start with the physical system and the corresponding mathematical 

model. Figure 2 shows a schematic diagram of a simple model proposed by [18] for simulating 

the speech production system. The subglottal system (modeled by the lungs, trachea and bronchi 

in the diagram) provides power for air to flow through the larynx and vocal tract [19]. It is the 

‘battery’ of the speech production system, and it allows the generation of different sources for 
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different languages around the world [6]. The air flows through the vocal cords to produce 

voiced or unvoiced sounds. The generated sound propagates through the supraglottal system and 

is shaped by the vocal tract to produce speech. The vibration frequency of the vocal cords is 

called the fundamental frequency (F0) while the resonance frequencies of the vocal tract tube are 

called formant frequencies (e.g. F1, F2) [19]. Although the model described here is a simplified 

version which captures only a few important components of the complicated speech production 

system, it is sufficient to serve as a basis for understanding the overall system. 

 

 

Figure 1:  An anatomical sketch of the subglottal airway, including the larynx, trachea, two 
main bronchi, and the bronchiole tree (adapted from [20]). 
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 In terms of mathematical models, the speech production system is commonly modeled by 

a linear time-invariant system as described in [19]. The excitation signal, 𝑒𝑒(𝑡𝑡), is modeled as a 

periodic signal or random signal for voiced or unvoiced speech, respectively. This source signal 

is then filtered by the vocal tract impulse response,  𝑣𝑣(𝑡𝑡) , to produce the resulting speech 

waveform, 𝑠𝑠(𝑡𝑡). The filtering process is achieved by convolution in the time domain which is 

equivalent to multiplication in frequency domain. Figure 3 demonstrates this simplified model of 

the speech production system where  𝐸𝐸(𝑗𝑗𝑗𝑗), 𝑉𝑉(𝑗𝑗𝑗𝑗) , and 𝑆𝑆(𝑗𝑗𝑗𝑗)  are the Fourier transform 

representations for the excitation, vocal tract, and resulting signals, respectively.  

 

 

Figure 2:  Schematized diagram of the speech production mechanism (adapted from [18]) 

 

 According to the acoustic theory of speech production, most speech sounds, except 

consonants, can be characterized by using an all-pole model to represent the vocal tract transfer 

function. In some cases, the effect of zeros in nasals, for example, can also be approximated by 

additional poles [21]. Although the all-pole model captures most of the characteristics of sound 
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propagating through the vocal tract, there are still some uncertainties partly due to the behavior 

of the subglottal system.  

 Studies such as [6], [12], and [13] have shown that the lower airway introduces new zero-

pole pairs, which correspond to SGRs, to the speech signal through coupling. This coupling is 

not only limited to air-only coupling when the glottis is open, but also can be achieved across the 

vocal fold tissues as described in [13].  

 

 

Figure 3:  Linear speech production model representing the source, vocal tract, and resulting 
speech signal. The figure presents temporal and spectral representations on top 
and bottom, respectively (adapted from [19]) 
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1.3 Existing Studies 

Although there is some literature on the interaction between the subglottal and supraglottal 

systems, the coupling effect between the two cavities has been somewhat ignored due to the high 

complexity of the interaction. However, this effect becomes important when formant frequencies 

approach SGR frequencies, and more studies have started looking into this issue in the last 

decade [10], [11], [12], [13], [16].  

 In particular, the two pioneering studies on coupling effects, [12] and [16], model the 

interaction between supraglottal and subglottal cavities by using coupled resonators. As shown in 

Figure 4, a circuit model is introduced by [22] to model the coupled speech production system 

with both subglottal and supraglottal systems. By following the derivation in [12], the transfer 

function of the circuit, 𝑇𝑇(𝜔𝜔), can be calculated by inverse-filtering the volume velocity at the 

lips, Um, by the output of the glottis, Uo. It is decomposed by introducing the volume velocity of 

the airflow , Uv, into the vocal tract as, 

𝑇𝑇(𝜔𝜔) =  𝑈𝑈𝑚𝑚
𝑈𝑈𝑣𝑣

 𝑈𝑈𝑣𝑣
𝑈𝑈𝑜𝑜

 . (1) 
 

The term Um/Uv can be calculated by impedance matching, and it is commonly used in [19] to 

model the vocal tract transfer function when the subglottal coupling effect is ignored. The 

additional term, Uv/Uo, is determined by solving the circuit in Figure 4 which gives    

𝑈𝑈𝑣𝑣
𝑈𝑈𝑜𝑜

=  𝑍𝑍𝑔𝑔
𝑍𝑍𝑔𝑔+𝑍𝑍𝑣𝑣+𝑍𝑍𝑙𝑙

 , (2) 
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where Zg, Zv, and Zl, are the impedances of the glottis, vocal tract and subglottal system, 

respectively. This term, Uv/Uo, characterizes the coupling effect by the subglottal system. When 

the coupling effect is ignored, the glottal impedance, Zg, is assumed to be infinite and Uv/Uo will 

be equal to 1, as expected. Otherwise, a zero will be introduced at the local maximum of Zl and a 

pole will be added at the local minimum of the sum of Zg, Zv, and Zl corresponding to each SGR. 

A more detailed derivation is presented in [12].   

 

 

Figure 4:  Equivalent circuit model of the subglottal and supraglottal systems (adapted from 
[22]). Zl is the impedance of the subglottal system, Zg is the impedance of the 
glottis, Zv is the impedance of the vocal tract, Uv is air flow into the vocal tract, 
Um is the volume velocity at the lips and the two Uo are the volume velocity 
sources.  

  



 

8 

 

Figure 5:  A spectrogram of a diphthong /ɔɪ/ spoken by a male speaker. Attenuation of the 
second formant (F2) and a discontinuity occur at 180 ms around the measured 
Sg2 at 1370Hz (adapted from [12]). 

 

 Based on this model, stimulation and analysis have been done to investigate an observed 

phenomenon as shown in Figure 5. The spectrogram shows a small frequency discontinuity and 

attenuation of the second formant (F2) around the measured Sg2.  A simulator is built and tested 

with values in the range of a common male speaker as reported by other studies. The simulated 

model with coupling clearly outperforms the model without coupling in tracking the actual F2 

path, especially by simulating the frequency jump around the second subglottal frequency region 

as shown in Figure 6. Although this simulated result demonstrates the power of the model to 

capture the coupling phenomenon, uncertainties still exist, including the vocal tract variability 

among speakers and the effect of formant amplitude attenuation [16]. 

 In order to quantify and further investigate the coupling effect, both [12] and [16] have 

defined some preliminary procedures to measure and analyze some subsets of a relatively small 
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database. In [12], 6 speakers with up to 10 diphthong tokens of /aɪ/ and /ɔɪ/ (total of 60 or less 

tokens) were examined for formant frequency jumps and amplitude attenuation around the SGR 

frequency regions. On the other hand, 14 speakers with up to 4 diphthong tokens of /ɔɪ/ (total of 

56 or less tokens) were used in [16] from the same database, which contains the ground truth 

SGR data recorded by an accelerometer simultaneously during speech recording with a 

microphone. Since the SGRs are relatively constant for a given speaker, averaged SGRs from 

both manual DFT measurement and automatic formant tracking are reported for every speaker. 

 

 

Figure 6:  Measured data of a second formant (F2) track and the simulated model with and 
without coupling effect (adapted from [12]). 

 

 There are a few major and interesting findings from the two studies. First, the 

measurements of the frequency jump and amplitude attenuation are made manually by using a 
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shifting Hamming window for consecutive frames. However, the results are sensitive to both the 

size and position of the window. By comparing both open-phase and close-phase measurements, 

the study [12] provides evidence for their proposed model which predicts greater coupling effect 

with larger glottal areas. As a result, the study [12] demonstrates that it is experimentally better 

to use open-phase measurements by centering a half pitch period sized window over the lowest 

amplitude part of the pitch period until the largest peak in the next period [12]. To further 

investigate the relationship between the oral-subglottal coupling effect and size of glottal area, 

the correlation between the coupling effect and breathiness is studied in [16]. The study uses the 

difference between the first and second harmonics (H1-H2), which is highly correlated to 

breathiness [16], from 10 tokens of each speaker to show positive correlations with both sizes of 

frequency jump and amplitude attenuation for each gender. Although a frequency jump cannot 

always be found in every utterance, the amplitude attenuation has proven to be a better cue for 

the coupling as it always exists. In addition, a weak negative correlation between the size of a 

frequency jump and the corresponding amplitude attenuation is reported by [12]; however, the 

result is not consistent with results from [16]. 

 Based on these two studies, estimation methods of the SGRs, Sg2 in particular, are 

developed in [8],[9], [10], and [11]. In order to apply SGRs to different applications, such as 

speaker normalization and adaption, these studies use the cues from frequency discontinuity and 

amplitude attenuation of diphthongs, such as /aɪ/, to estimate Sg2. When they fail to locate the 

coupling cues from an isolated vowel, especially in a monophthong, statistical approximations 

are used instead. Therefore, these estimation methods are self-reported to be unstable sometimes 

depending on the vowel content. In addition, the reliability of these estimations is tested on data 

with children’s speech only, which highlights the need for further investigation. 
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   In spite of the fact that several studies have looked into the coupling effect from both 

theoretical and practical points of view, there is room for improvement; hence, the current study 

is undertaken. For example, the data used by previous studies are relatively small, and it would 

be better to have a larger database for more reliable statistical analyses. Moreover, a more 

sophisticated procedure, as presented in [3], has been developed recently for measuring the 

SGRs from accelerometer signals. The new procedure may help improve the analysis by 

providing more precise and reliable ground truth measurements compared to the DFT-only 

method or Snack toolkit [23] used in previous studies. Moreover, more systematic methods of 

detecting glottal closure instant might be used to locate open-phase instead of searching the 

frequency spectrum manually. Finally, it would be helpful to extend the analysis of the coupling 

effect with more voice quality parameters other than H1-H2. With all these questions and 

possibilities, this study is formed and presented in the following chapters. 

 

1.4 Organization of this thesis 

The rest of the thesis is organized as follows. Chapter 2 contains an extended study of the 

properties of the coupling effects between subglottal and supraglottal systems using a large 

database. An exploratory study on speaker identification system with SGRs is presented in 

Chapter 3. Finally, Chapter 4 summarizes and concludes the thesis. 
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CHAPTER 2. ANALYSIS OF ORAL-SUBGLOTTAL 

COUPLING 

 

 

2.1 Database Used 

The WashU-UCLA corpus [24] is used for the study in this chapter. The corpus consists of 

simultaneous speech and subglottal acoustics recorded using a SHURE PG27 microphone and a 

K&K Sound HotSpot accelerometer, respectively. There are 25 male and 25 female native 

American English (AE) speakers from 18 to 25 years of age. Two separate sessions are recorded 

for each speaker. The first session consists of 21 AE ‘CVb’ words where ‘V’ has 4 

monophthongs and 3 diphthongs in conjunction with three voiced stops, /b/, /d/, and /g/ in the 

‘C’. The other session has 14 AE ‘hVd’ words where the vowel set ‘V’, includes 9 

monophthongs, 4 diphthongs and the approximant [ɹ].  The list of target vowels ‘V’, for both 

sessions is shown in Table 1. Each of the 35 words from both sessions is embedded in a 

phonetically neutral carrier phrase, ‘I said a ___ again’, and recorded 10 times for each speaker. 

Also, the target vowel in each recording is hand-labeled under careful inspection. There are 

17500 microphone recordings, which are sampled at 48 kHz and quantized at 16 bits/sample, 

with their corresponding accelerometer waveforms. In addition, the corpus includes self-reported 

height, date of birth, and gender for each speaker as a reference. Some detailed analysis of the 

distributions of the database can be found in [3] and [25]. 
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Table 1:  The list of target monophthongs, diphthongs and approximant comprised in 
WashU-UCLA corpus for both sessions 1 and 2. 

 Session 1 Session 2 

Monophthongs /i/, /ɛ/, /ɑ/, /u/  /i/, /ɪ/, /ɛ/, /æ/, /ɑ/, /ʌ/, /o/, /ʊ/, /u/ 

Diphthongs /aɪ/, /aʊ/, /ɔɪ/ /e/, /aɪ/, /aʊ/, /ɔɪ/ 

Approximant  /ɹ/ 

 

 

 For the study presented in Chapter 2, a subset of 20 speakers is selected. Table 2 shows 

the gender balanced list of selected speakers for all the analysis in this chapter. For each selected 

speaker, 20 tokens of the diphthong /ɔɪ/ from session one of the corpus are used for analyzing 

frequency jumps and amplitude attenuations because F2 always rises from low to high by 

crossing Sg2. The total number of tokens, which is 400, is comparably larger than 60 tokens used 

in previous studies. Besides, multiple Sg2 values, between 10 to 30 tokens, from each speaker 

are measured from monophthong and approximant recordings to obtain the actual Sg2. For voice 

quality parameter estimations, such as H1-H2, monophthong recordings with four specific 

vowels - /ɛ/, /æ/, /ɑ/, and /ʌ/ from both sessions are used. The four vowels are commonly used 

for voice quality parameter studies, such as [26], because their first few harmonics and formants 

are relatively well separated. In order to obtain reliable statistical representations of speaker-wise 

voice quality parameters, 90 tokens from different combinations of the four vowels for each 

speaker are processed.  
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Table 2:  The list of 20 speaker IDs selected from WashU-UCLA corpus by genders. The 
10 male and 10 female speakers are selected by preliminary inspection of the 
quality of the spectrograms.  

Male Speaker ID 11 12 15 22 38 41 43 52 53 64 

Female Speaker ID 14 16 19 24 27 32 33 36 40 59 

 

 

2.2 Measurement Methods 

This section explains the two measuring methods used in this chapter. Since one of the 

motivations of this study is to investigate the coupling effect with more sophisticated and precise 

procedures in a large database, efforts have been made to research and develop software toolkits 

to analyze SGRs. Two new tools were developed and one existing tool was applied for 

measuring the data.  

 The first tool is implemented in MATLAB according to the procedure described in both 

[3] and [5] for measuring SGRs. Since SGR measurements are obtained based on visual 

inspection of the spectral characteristics of the accelerometer waveform by adjusting many 

parameters, it is important to have an integrated tool for measuring SGRs from a large database. 

Table 3:  List of parameters used in Snack toolkit for automatic pitch (F0) extraction. 

Parameter Value 
Window Type Hamming 

Window Length 7.5 ms 
Window Shift 5 ms 

Method ESPS 
Maximum Pitch 400 Hz 
Minimum Pitch 60 Hz 
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 The Subglottal Resonance Measuring Tool (SRMT), as shown in Figure 7, is designed 

exclusively for the WashU-UCLA corpus to easily select any specific file from the pool of 17500 

recordings and the corresponding accelerometer files. A user can choose a sampling frequency 

between 6 and 10 kHz. After applying the pre-emphasis filter with a coefficient of 0.97, a 

segment with the length of an adjustable multiple of the pitch period is extracted from the labeled 

steady state in order to achieve better frequency resolution. The pitch is automatically extracted 

by using the Snack toolkit [23] with the default parameters listed in Table 3. In order to visualize 

the signals, three spectral representations, including the discrete Fourier transform (DFT) 

spectrum, the linear predictive coding (LPC) spectrum, and the estimated wideband power 

spectral density (WPSD), are computed from the segment. Figure 8 shows the spectra of a 

sample accelerometer recording analyzed using SRMT. The estimated WPSD is described 

qualitatively as the envelope of the DFT spectrum and the procedures in [27] is implemented. 

The WPSD subdivides the segment into overlapping frames with adjustable overlapping 

percentage and frame size as multiples of the detected pitch period. The overlapping percentage 

is commonly set to 80% while the frame size ranges from 0.9 to 1.1 times the detected pitch 

period. A Hamming window is applied to each subdivided frame. The WPSD eventually outputs 

the DFT of the autocorrelation averaged over all frames. On the other hand, the LPC fitting 

quality is mainly controlled by tuning the LPC order which usually ranges from 10 to 18 

depending on the sampling frequency. At the same time, the corresponding microphone signal is 

processed with the same procedures as the accelerometer signal and presented in another tab of 

the toolkit for reference purposes. Given all three spectral representations in accelerometer plots, 

SGRs are measured by choosing either the LPC spectral peak or WPSD spectral peak by visual 

inspection of their fitting to the spectral envelope, and the selected values can be saved for 
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further post processing. Although not all Sg2 are measureable for every recording, a fair number 

of tokens from monophthongs and the approximant /ɹ/, ranging from 10 to 30 per speaker, are 

obtained to calculate the speaker-wise Sg2. As shown in previous studies, the SGRs are fairly 

constant for a given speaker; hence, the speaker-wise Sg2 is calculated by averaging the 

measurements obtained from the specific speaker. 

 

 

Figure 7:  A screenshot of the Subglottal Resonance Measurement Tool. 
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Figure 8:  DFT, LPC, and WPSD spectra of the 7th accelerometer recording of the vowel /i/ 
from male speaker 12 in the WashU-UCLA corpus. The peaks (candidates of 
SGRs) are automatically marked on both LPC and WPSD spectra. 

 

 The second MATLAB implemented toolkit, the Discontinuity Tracking Tool, is used for 

visualization of formant discontinuities. As shown in Figure 9, it employs the same file selection 

features for the WashU-UCLA corpus as in the previously presented SGR measuring tool. Since 

the tool gives the formant track by collecting manual measurements for each frame, the target 

steady state portions of both microphone and accelerometer recordings are first extracted 

according to the corresponding label. These extracted signals are then processed in two separate 

stages.  
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Figure 9:  A screenshot of the Discontinuity Tracking Tool with the frame measuring stage. 

 

 During the anlysis, both microphone and accelerometer signals are first downsampled to 

either 8 or 10 kHz, depending on the high frequency noise level. In order to avoid influencing the 

amplitude of the microphone signal, the pre-emphasis filter with coefficient of 0.97 is only 

applied to the accelerometer signal. As demonstrated by previous studies, greater coupling can 

be measured when the glottis is more open in contrast with the close phase of the glottal cycle. A 

preliminary experiment with results similar to those in [12] shown that open-phase 

measurements have more prevalent frequency jumps and amplitude attenuation. Hence, open-

phase measuring procedures are implemented in the toolkit and used. In order to position the 

analysis window more systematically, the open phase of a glottal cycle is estimated by detecting 

the glottal closure instant (GCI) with an epoch extraction algorithm from [28]. The algorithm 
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filters the speech signal with a zero frequency resonator in three major steps. Firstly, it removes 

low frequency bias by differencing the speech signal s[n] as, 

x[n] = s[n] −  s[n − 1] . (3) 
 

The differenced signal from Eq. (3) is passed twice through a zero frequency resonator which is 

defined as, 

yi[n] =  −∑ akyi[n − k] +  x[n]2
k=1  , (4) 

 

where a1 = -2, a2 = 1, and i = 1,2 for two stages of the cascaded filter. Finally, the unstable 

variation in y2[n] is removed by subtracting the averaged epoch, 

y[n] =  y2[n] −  1
2N+1

∑ y2[n + m]N
m=−N , (5) 

 

where 2N + 1 is the number of samples in the averaging interval. The positive zero crossings of 

the zero frequency filtered signal, y[n], are the detected epochs. For cross verification, the 

DYPSA algorithm [29] with the implementation from [30] is used as a first pass reference track. 

After detecting GCIs, the size of the analyzing window is determined by an adjustable factor, 

ranging from 0.4 to 0.9 for microphone signal and 1 to 3 for accelerometer signal, of the 

averaged length between two GCIs. At the same time, both microphone and accelerometer 

signals are divided into frames with a Hamming window centered half of the window size before 

each GCI. In other words, the window approximately covers only the open phase of a glottal 

cycle. However, the proportion of the open and close phases varies from person to person, 

depending partly on the voice breathiness of the speaker; therefore, another option of manually 
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adjusting the center of the window by visual inspection of the spectra is implemented, and the 

measurements for both options are presented later in this chapter. Both the LPC spectrum of the 

microphone signal and the DFT spectra of both signals are displayed. After inspecting and 

selecting the best fitting F2 and Sg2 peaks from each frame, all parameters, including the Sg2, 

F2, A2, second formant bandwidth (B2), and ℂ, are saved for further processing. 

      By collecting data from consecutive frames (usually 10 to 15 frames), both F2 and A2 

tracks are displayed in the discontinuity tracking stage. Since the frame-wise Sg2 measurements 

from the first stage are always unstable and speaker-wise Sg2 values are sometimes used as a 

stable alternative estimate. By inspecting both F2 and A2 tracks visually, parameters, including 

frequency jump, amplitude drop, amplitude rise, and Sg2 value are measured for analysis. As 

shown in Figure 10, an F2 jump of 219 Hz is observed with an A2 drop of 16.15 dB and a rise of 

13.47 dB for this particular utterance. This example also demonstrates two commonly observed 

phenomena: A2 attenuation extends a few frames, and F2 shifts up after crossing Sg2. Although 

most of the F2 discontinuities are observable after manually adjusting some parameters, some 

measurements are subjective and some special cases will be discussed in the next section. 

 The last toolkit used in this chapter, VoiceSauce [31], is well-known toolkit for automatic 

voice quality parameter measurement developed at UCLA SPAPL. It is implemented in 

MATLAB and measures several voice quality parameters from a given speech signal. These 

parameters include (but not limited to) H1-H2, H1-A1 (the difference between the first harmonic 

and the first formant prominence), and H1-A3 (the difference between the first harmonic and the 

third formant prominence). In addition, the toolkit has a desirable feature which applies the 

magnitude correction formula from [32] to remove the influence of vocal tract resonances for 

improving the correlation between the voice quality parameters and the actual voice quality of a 
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given speaker. As the toolkit is designed for voiced and steady vowels, only the voice quality 

parameters from the steady states of the target vowels are measured here. 

 

Figure 10:  F2 and A2 tracks of the vowel /ɔɪ/ from female speaker 24. The measured frame-
wise Sg2 is very close to the speaker-wise Sg2 of 1491 Hz. A F2 jump of 219 Hz 
is observed between frame number 35 and 36 with the corresponding A2 drops 
16.15 dB from frame 35 to 36 and rises 13.47 dB from frame 36 to 37. 
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2.3 Analysis and Discussion 

Although the statistics of SGRs for all 50 speakers in the WashU-UCLA corpus have been 

reported in both[3] and [5], the study in this chapter uses only a subset of the corpus, and the 

statistics of measured Sg2 from the 20 chosen speakers are presented in Appendix A. By 

comparing with the Sg2 statistics of all 50 speakers in the corpus, intra-speaker means and 

standard deviations for the chosen speakers are evenly distributed, and their inter-speaker 

averages are very close to the full corpus values. Consequently, this subset can be claimed as 

having good Sg2 representativeness of the whole corpus while being relatively larger than the 

data used in previous studies. 

   As mentioned in the previous section, the measurements of F2 jump and A2 attenuation 

are subjective and sometimes vary with the choice of window size and window position. In some 

tokens, one or both of the jump and attenuation are non-measureable with any combination of 

controlling parameters. In order to cross verify the sensitivity of window size and position to the 

measurements, two setups, denoted by S1 and S2, have been used and the numbers of 

measurable tokens with different measuring parameters are listed in Table 4. The measurements 

in S1 are determined by using both a fixed window size controlling factor of 0.7 and a fixed 

window positioning factor of 0.35 to process every token. On the other hand, S2 applies both 

varying window size and window centering position in the interest of getting the best fitting 

spectral peaks. Although the percentages of getting measurable F2 jump is higher in S1 than that 

in S2, it can be explained by the order of the procedures that the subjective measurements on S2 

are determined with more conservative considerations after processing S1. By taking out the 

tokens without A2 attenuation from the measureable F2 jump list, the percentages of getting both 

the F2 jump and A2 attenuation in a given token for both setups are roughly the same. Although 
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A2 attenuation is claimed as a more robust cue for the coupling effect by previous studies, 

uncertainties have been found during the measuring process in the current study. There is a 

common observable phenomenon that A2 attenuation can occur across a couple of frames 

without aligning the center with the F2 jump, and there is lack of evidence to prove the 

association between the two. The possibility of such a wide spread and shifted A2 attenuation 

due to other articulatory factors, such as interdental spaces, cannot be eliminated. In order to 

improve the credibility of the measurements, A2 attenuations with such uncertainty are ignored, 

and this reduces the robustness of A2 attenuation as a cue for detecting the coupling effect in the 

current study. 

 

Table 4:  The settings and numbers of tokens for the two measuring setups used in Chapter 
2 are presented. The table shows the number of speakers (Speakers), the window 
size controlling factor (Size), the window positioning factor (Pos.), the number of 
target words (Words), the total number of tokens used for measurement (Total 
Tokens), the number of measureable F2 jump tokens (F2 Tokens), and the number 
of measureable F2 jump and A2 attenuation tokens (F2-A2 Tokens) for each setup. 
The percentages in both F2 Tokens and F2-A2 Tokens represent the ratio of the 
number of measureable tokens over the corresponding total number of tokens. 

Setup Speakers Size Pos. Words Total Tokens  F2 Tokens; % F2-A2 Tokens; % 
S1 20 0.7 0.35 2 400 385; 96% 321; 80% 
S2 20 Vary Vary 1 200 162; 81% 155; 78% 

 

 

 There are two major issues suggested by previous studies that are probably corresponding 

to some non-measureable tokens in the current study. As suggested by [9], there might be other 

factors, such as the pole-zero pairs from the interdental spaces, interacting with formants and 

SGRs in the coupling effect. The discontinuities of F2 caused by the interdental spaces occur in a 
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wide range of frequencies, and the coupling effect from SGR is predicted to be stronger than 

from interdental spaces during the open phase of the glottal cycle [33]. However, the possibility 

of other factors influencing the measurement of F2 discontinuity around Sg2 frequency cannot 

be eliminated, and further investigation of this issue is necessary. Another issue is mentioned in 

[12] that the small analyzing window, which enables capturing the discontinuity, results in poor 

frequency resolution. From Rayleigh’s criterion, an analysis window can only resolve two peaks 

that are apart from each other by at least half of main lobe width of the window. For instance, a 5 

millisecond Hamming window is used with a window size controlling factor of 0.7 to measure 

male speech with F0 of 140 Hz. Hence, the corresponding main lobe width is around 800 Hz 

with sampling frequency of 10 kHz, and this window cannot resolve peaks that are less than 400 

Hz apart. When F2 crosses Sg2, their poles can easily get closer than a few hundred hertz where 

a small window fails to resolve their peaks by giving a single smoothed peak between the two 

poles in the spectrum. Given such trade-off between time and frequency resolutions, the 

discontinuity measurements in this study can only be claimed best possible estimates. 

 Due to the uncertainties from the measuring process, only tokens with measurable both 

F2 jump and A2 attenuation, which account for 78% to 80% of the total number of tokens in the 

two setups as shown in Table 4, are used for analysis. The averaged F2 jumps and A2 

attenuations for all speakers with different setups are listed in Table 5 toTable 8. The four tables 

show the statistics of the discontinuity measurements separated by gender (from the 20 speakers 

in S1 and S2). Each table presents statistics of the measurements, including the minimum F2 

jump (Min.), the maximum F2 jump (Max.), the averaged F2 jump (F2 Avg.), the averaged A2 

drop (Drop), the averaged A2 rise (Rise), and the averaged mean between drop and rise (A2 

Avg.), from all tokens with both measureable F2 jump and A2 attenuation. Moreover, the last 
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two columns of each table give the correlation coefficient (Corr.) and the corresponding 

correlation significance (p-value) between all pairs of F2 jumps and A2 attenuations for each 

speaker. Furthermore, the last row of each table shows the correlation coefficient and the 

correlation significance of all the paired measurements from a given gender in the corresponding 

setup. Although a previous study, [12], showed a weak negative correlation between the size of 

F2 jump and the corresponding A2 attenuation for four of the six speakers in the study, a 

discrepancy is found in the current study. A positive or sometimes weak positive correlation 

between the size of F2 jump and A2 attenuation is found in majority of the speakers, including 

16 out of 20 speakers in S1 and 13 out of 20 speakers in S2. Nevertheless, the speaker-level 

correlations in both the previous and current studies are not always statistically significant. When 

all the measureable tokens are combined together, weak positive correlations of 0.34 and 0.23 for 

S1 and S2, respectively, are found with p-value less than 0.005. Although a trend of positive 

correlation is observed with the collected data, a prominent conclusion cannot be made due to 

inconsistent results in some speakers. Given the dependency between A2 attenuation and the 

time F2 passes the Sg2 introduced zero-pole pair, one might suspect that the time resolution for 

the current setup is not sufficient in certain tokens to capture the exact amplitude changes. 

Nevertheless, the trade-off between time and frequency resolution creates obstacles for the 

current study to proceed further in this regard. 
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Table 5:  The statistics of the discontinuity measurements for the 10 male speakers in S1. 
There are 160 tokens with both measureable F2 jump and A2 attenuation.  

Males F2 Jump (Hz) A2 Attenuation Average (dB) Statistics 
ID Min. Max. F2 Avg. Drop Rise A2 Avg. Corr. P-value 
11 94 266 135 4.9 7.6 6.2 0.5672 0.01410 
12 94 344 165 10.6 2.5 6.6 0.1546 0.64987 
15 125 312 183 7.3 4.7 6.0 -0.0320 0.90295 
22 125 235 169 6.8 4.5 5.6 0.6195 0.01377 
38 93 250 151 7.2 6.1 6.6 0.5317 0.03401 
41 109 218 138 4.7 2.8 3.7 0.0844 0.77417 
43 110 344 184 8.8 5.7 7.2 0.2951 0.20655 
52 140 390 220 9.2 4.7 6.9 -0.5119 0.03566 
53 132 297 172 6.9 4.3 5.6 0.5931 0.00948 
64 141 563 303 12.4 7.7 10.1 0.4074 0.14826 

Over 160 tokens from 10 male speakers 0.3791 0.00001 
 

 

Table 6:  The statistics of the discontinuity measurements for the 10 female speakers in S1. 
There are 161 tokens with both measureable F2 jump and A2 attenuation. 

Females F2 Jump (Hz) A2 Attenuation Average (dB) Statistics 
ID Min. Max. F2 Avg. Drop Rise A2 Avg. Corr. P-value 
14 63 375 157 7.3 4.0 5.6 0.5372 0.01771 
16 62 250 131 6.2 3.9 5.1 0.6819 0.00362 
19 187 437 226 10.9 4.9 7.9 0.1075 0.67105 
24 94 344 205 11.4 8.4 9.9 -0.0365 0.90147 
27 125 234 181 4.0 4.1 4.0 -0.0784 0.75702 
32 125 312 243 13.1 4.8 9.0 0.1775 0.52674 
33 94 281 149 5.4 4.8 5.1 0.2860 0.24992 
36 110 187 142 12.4 6.5 9.5 0.6666 0.01791 
40 125 313 209 8.3 3.4 5.8 0.6783 0.00388 
59 125 219 184 8.0 5.5 6.7 0.1447 0.60690 

Over 161 tokens from 10 female speakers 0.3135 0.00005 
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Table 7:  The statistics of the discontinuity measurements for the 10 male speakers in S2. 
There are 80 tokens with both measureable F2 jump and A2 attenuation. 

Males F2 Jump (Hz) A2 Attenuation Average (dB) Statistics 
ID Min. Max. F2 Avg. Drop Rise A2 Avg. Corr. P-value 
11 125 438 257 11.5 9.1 10.3 0.7882 0.03525 
12 125 250 198 17.7 6.5 12.1 0.4388 0.38400 
15 78 422 272 12.5 7.9 10.2 0.0586 0.90067 
22 140 453 297 7.3 3.1 5.2 0.6803 0.09261 
38 141 266 200 10.2 7.1 8.6 -0.2170 0.54705 
41 141 297 206 8.3 6.8 7.5 0.3876 0.44774 
43 187 328 233 12.3 7.1 9.7 0.0281 0.94726 
52 187 391 267 7.8 4.5 6.2 0.2126 0.58292 
53 171 297 207 10.4 4.8 7.6 -0.2624 0.56968 
64 219 500 373 12.0 6.2 9.1 -0.1473 0.72776 

Over 80 tokens from 10 male speakers 0.1791 0.12420 
 

 

Table 8:  The statistics of the discontinuity measurements for the 10 female speakers in S2. 
There are 75 tokens with both measureable F2 jump and A2 attenuation. 

Females F2 Jump (Hz) A2 Attenuation Average (dB) Statistics 
ID Min. Max. F2 Avg. Drop Rise A2 Avg. Corr. P-value 
14 125 281 192 7.5 3.1 5.3 -0.0241 0.95913 
16 125 250 179 9.4 4.2 6.8 -0.2213 0.63351 
19 218 469 313 12.3 7.8 10.1 0.0634 0.86182 
24 156 375 263 12.1 9.0 10.5 0.3831 0.39632 
27 156 297 222 5.1 3.8 4.5 0.1567 0.66557 
32 219 344 281 12.2 5.1 8.7 -0.0002 0.99957 
33 156 344 228 5.6 5.0 5.3 -0.1418 0.76167 
36 187 375 228 12.7 4.5 8.6 0.2110 0.64971 
40 187 281 250 8.3 3.3 5.8 0.1877 0.72179 
59 187 281 226 8.5 7.2 7.8 0.2598 0.49956 

Over 75 tokens from 10 female speakers 0.30646 0.00570 
 

 

2.3.1 Correlation with H1-H2 

 Another focus of the study in this chapter is the investigation of the correlation between 

voice quality parameters and the Sg2 coupling effect. It is natural to study such correlation due to 
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the dependency between oral-subglottal coupling and glottal area. From the physiological point 

of view [34], a speaker with breathier voice has a larger open quotient (OQ), which is the 

proportion of a glottal cycle during which the glottis is open. One would expect to observe 

greater coupling from a breathier speaker, and the OQ is highly correlated to the amplitude of the 

first harmonic relative to that of the second (H1-H2) [26]. In addition to the investigation of the 

correlation between H1-H2 and subglottal coupling, two more voice quality parameters are 

explored, including the amplitude of the first harmonic relative to that of the first-formant 

prominence (H1-A1) and the amplitude of the first harmonic relative to that of the third-formant 

spectral peak (H1-A3). Both parameters are commonly used for voice quality measurement 

where H1-A1 is correlated with the presence of a posterior glottal chink, and H1-A3 reflects the 

source spectral tilt. However, the results in both H1-A1 and H1-A3 cases are inconclusive, and 

their analysis can be found in Appendix B.  

  All voice quality parameters are measured from a large number of tokens for each 

speaker by using VoiceSause [31]. Each token generates 3 voice quality parameters by averaging 

the multi-point measurements over time. After eliminating the outlier tokens by inspecting their 

F0 tracking contours, the three speaker-wise voice quality parameters are calculated by 

averaging over all tokens for a given speaker. In order to validate the credibility of the voice 

quality parameters, three subsets of data, V1, V2, and V3 from a given speaker are used 

separately to generate the speaker-wise parameters. In V1, the speaker-wise parameters are 

generated by averaging multi-point measurements from 90 tokens of the vowels /æ/, /ɑ/, and /ʌ/ 

for a given speaker while V2 uses the same number of tokens from the vowels /ɛ/, /æ/, and /ɑ/. 

Although the voice quality parameter measuring toolkit is designed to give meaningful results 

with steady monophthong vowels only, the last subset of data, V3, which contains the extracted 
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steady-state portion from the same diphthong tokens, /ɔɪ/, as in discontinuity measurements, is 

also processed by the toolkit for exploratory experiments. The correlation coefficients between 

the size of the F2 jump and different voice quality parameters with the three subsets of data are 

presented in Table 9 and Table 10. The tables show the inter-speaker correlation coefficients 

between the size of F2 jump and H1-H2. The (*) in Table 9 indicates the use of harmonic 

magnitude correction formula to reduce the influence of vocal tract resonances [32]. The 

correlation coefficients with different setups and voice quality parameters are relatively 

consistent across V1 and V2 regardless of the use of harmonic magnitude correction formula. 

However, small disagreements shown in V3 as expected due to the unreliable tracking algorithm 

from the voice quality measuring tool on diphthongs. Nevertheless, the three subsets of data 

provide a cross validating framework to explore the relationships between the size of jump and 

H1-H2. 

Table 9:  Correlation coefficients between the size of F2 jump and H1-H2 with correction 
formula to reduce the influence of vocal tract resonances. 

 
S1 - F2 Jump S2 - F2 Jump 

Male Female Male Female 
V1 H1*-H2* 0.52 0.47 0.43 0.47 
V2 H1*-H2* 0.51 0.42 0.45 0.37 
V3 H1*-H2* 0.40 0.57 0.41 0.32 

 

 

Table 10:  Correlation coefficients between the size of F2 jump and H1-H2 without using 
any correction formula. 

 
S1 - F2 Jump S2 - F2 Jump 

Male Female Male Female 
V1 H1-H2 0.54 0.41 0.50 0.40 
V2 H1-H2 0.49 0.38 0.40 0.34 
V3 H1-H2 0.34 0.18 0.30 0.10 
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 Based on the observation that the measured F2 jumps for female have higher mean and 

larger variation than those for male speakers as shown in Figure 11, results in this chapter are 

reported with respect to gender. This observation confirms the hypothesis that the size of the 

frequency jump is correlated with the breathiness of a given speaker because studies, such as [26] 

and [35], have shown that females are generally breathier than males with a higher mean and 

variance of voice quality parameters. Moreover, both V1 and V2 confirm the hypothesis and 

previous study [16] that positive correlations, ranged from 0.40 to 0.54 for males and 0.37 to 

0.47 for females, can be found between H1-H2 and the size of the jump across S1 and S2. In 

spite of the slightly weaker correlation results and unstable parameter measurements from V3, 

results consistently show positive correlations. The numerical values of these correlation 

coefficients may change with more precise measurement methods for both voice parameters and 

F2 jump, but the consistently positive correlation trend provides a possible evidence to support 

the hypothesis that the frequency discontinuity is mainly contributed by the oral-subglottal 

coupling through the glottis. To further study the interactions between oral-subglottal coupling 

and articulatory coupling, such as the interdental space, a corpus with both accelerometer 

recording and magnetic resonance imaging (MRI), for subglottal resonances and articulatory 

features, respectively, with synchronized microphone speech signals is necessary.  
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Figure 11:  The boxplot of the size of F2 jump from tokens with both frequency jump and 
amplitude attenuation in S1 by gender. The bottom and top of the box are the 25th 
and 75th percentile, respectively, and the band near the middle of the box is the 
median. 

  

2.4 Summary 

In this chapter, we revisited and extended an investigation on the SGR coupling effect. The 

current study does not only use a larger corpus than previous studies, but also defines more 

accurate procedures for measuring the SGR coupling effect. Two new tools are developed for 

data measurement. All discontinuity measurements are determined by using open-phase 

procedures due to the prevalent F2 jump and A2 attenuation observed in a preliminary 

experiment and previous studies. The results can be grouped in two parts. 

 The first part is the correlation between the size of the F2 jump and A2 attenuation. 

Although the current study demonstrates a trend of positive correlation between the two which is 
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in contrast with previous studies, there is lack of evidence to support a strong conclusion. 

Additional synchronized MRI data and better time-frequency analysis methods could be helpful 

to solve this problem. Preliminary experiments with wavelet and Wigner distribution analysis 

methods are explored but without success, and further investigation is necessary. The second part 

of the study analyzes the relationships between H1-H2 and the size of F2 jump with validation 

from different measurement setups. All results in this part confirm the positive correlation 

between the two measures, which is also consistent with a previous study. This correlation 

provides evidence to support the claim of contribution to formant discontinuity from subglottal 

cavity. However, a more concrete conclusion cannot be made unless, again, a speech corpus with 

both MRI and accelerometer synchronized signals is available. 

 All in all, the study in this chapter reinforces the previously proposed model of oral-

subglottal coupling effect and develops specific tools for future studies. 
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CHAPTER 3. SPEAKER IDENTIFICATION USING 

SUBGLOTTAL RESONANCES 

 

 

3.1 Introduction to Speaker Identification Systems 

Since ancient time, humans have been looking for ways to confirm the identities of each other 

for different purposes. In modern times, almost everyone uses some form of authentication 

methods such as passwords and signatures, but these methods are relatively easy to be stolen, 

forged, or forgotten. As a result, biometric recognition systems by using cues, including 

fingerprint, voice, face, retina, DNA and so on, come into play with various advantages as 

discussed in [36]. Among all these measures, voice is the easiest one to capture by machines 

because only a microphone is required. Moreover, it contains both physical and behavioral 

characteristics of each individual speaker. The physical characteristics come from the inter-

speaker variations in sizes and constructions of speech production organs, such as vocal tract, 

larynx, and nasal cavity. On the other hand, speaking rhythm, intonation, and accent are 

considered as behavioral characteristics. With these properties, researchers have been 

continuously working on both speaker identification and speaker verification systems. Some 

classical and recent techniques for these systems have been presented in several tutorials and 

survey publications, including but not limited to [37], [38], [39], and [40]. Although there are 

different techniques and applications associated with identification and verification systems, both 

of them require discriminative features from speech signals. As mentioned in previous chapters, 
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SGRs have relatively small within-speaker variability. These criteria make SGRs ideal 

candidates for discriminating speakers using speech, but an easy and reliable measurement or 

estimation method, which will be presented in next section, is necessary. The goal of this chapter 

is to explore the possible role of SGRs in speaker identification.  

 In a speaker identification system, as shown in Figure 12, an individual is identified from 

a known pool of people. Generally speaking, there are two stages, training and identification. In 

the training stage, selected features are extracted from enrolling utterances for all speakers in the 

identifying pool to build corresponding models for each speaker individually. This stage is 

usually performed under the supervision of a professional operator and can be carried out offline 

before deploying the system. With all trained models for each speaker, the system progresses to 

the identifying stage. In the second stage, the same selected features are extracted from speech of 

an unknown incoming speaker, and the speaker is identified by comparing the features against all 

trained models individually. If the unknown speaker is restricted to be one of the trained speakers, 

the system is considered as close-set identification; otherwise, it is an open-set system, which is 

not the focus of this study. In addition, speaker identification systems can be divided into the 

text-dependent and text-independent types. Although text-dependent systems usually perform 

better, the current study is restricted to text-independent type for exploratory purposes. In order 

to evaluate the performance of any speaker identification system, identification rate, which is the 

percentage of correctly identified speakers over the total number of speakers to be identified, is 

used in the current study; however, the complementary evaluation metric, namely identification 

error rate, is used in some other studies [17].  
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 Over the last few decades, many features, such as short-term spectral features and 

prosodic features, have been studied for speaker identification. Among all these features, Mel-

frequency cepstral coefficients (MFCCs) [41] are the most popular due to their close 

approximation to human auditory system and robust performance on different speech processing 

tasks, including speech recognition and speaker recognition. Although MFCCs achieve good 

performance on speaker identification tasks [42] , [43], speaker information is implicitly 

embodied in the feature. Therefore, the current study explores the effect of adding additional 

features with explicit speaker information embodied, such as SGRs, in addition to the MFCCs 

for speaker identification.  

Figure 12:  Block diagram of a speaker identification system. 
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 In order to compute MFCCs, the Fast Fourier Transform (FFT) magnitude spectrum, 

which is composed using a 512-point FFT, is first calculated for each frame of the input 

utterance. The computed spectra are processed by a Mel-frequency filterbank. The following 

formula relates linear frequency f (Hz) and Mel frequency ν: 

ν =  2595 × log10 �1 + f
700
� , (7) 

 

The last step in computing MFCCs is applying discrete cosine transform to the log magnitude of 

the Mel-frequency filtered signal as: 

mfccm [n] =  1
R
∑ log Sm [r] × cos �2π

R
�r + 1

2
� n�R

r=1 . (8) 
 

In Eq. 8, Sm[r] is the magnitude of the mth frame and rth mel-filterbank output. The MFCCs are 

computed for n = 1, 2 … N where N is the number of cepstral coefficients to be retained and R is 

the number of filters, and they are set to 13 and 26, respectively, in the current study. The zeroth 

coefficient is normally excluded in the 13-dimensional feature vector because it represents the 

averaged logarithmic power which has minimal speaker information [40]. Finally, the first and 

second order temporal derivatives of the feature vector, which are commonly called the delta and 

delta-delta features, are usually attached to the computed MFCCs in order to capture dynamic 

information. This makes the final dimension of the feature vector 39 for each frame (13 MFCCs, 

deltas, and delta-deltas). 

 After extracting the features from available training utterances of a given speaker, a 

model representing the speaker, regardless of the speech content, has to be constructed. This 

study uses the most commonly used paradigm for text-independent speaker identification, 
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namely the Gaussian Mixture Model (GMM).  It was first demonstrated by [42] and [43] that 

GMMs can be used for speaker identification, and many studies have investigated the extensions 

of the paradigm since then. Using the same notation as in [42], the Gaussian mixture density, 

denoted by λ, is a weighted sum of M component densities for a given speaker as described in 

Figure 13. It is formulated by, 

p(x�⃗  | λ) =  ∑ pibi(x�⃗ ) M
i=1 , (9) 

 

where x�⃗  is the feature matrix with each column representing the D-dimensional feature vector 

extracted from each frame.  The pi and bi for i = 1, 2 … M are the mixture weights and 

component densities, respectively. The ith component density is defined by a D-variate Gaussian 

function as, 

bi(x�⃗ ) =  1
(2π)D /2|∑i |1/2 exp �− 1

2
(x�⃗ − μ�⃗ i)′ ∑ (x�⃗ − μ�⃗ i)−1

i � , (10) 
 

while μ�⃗ i  and ∑i  are mean vector and covariance matrix, respectively. Moreover, the mixture 

weights of all M component densities should sum up to unity. A common notation to denote the 

mean vectors, covariance matrices and mixture weights from all component densities is,  

λ =  �pi, μ�⃗ i ,∑i� , i = 1, 2, … , M . (11) 
 

There is an important reason for the popularity of GMMs in speaker identification, and that is the 

expectation-maximization (EM) algorithm [44]. The algorithm is basically an iterative procedure 

to estimate an optimal set of parameters, but it guarantees monotonic convergence to the 

parameters in a small number of iterations. In addition, there are a few more reasons behind the 
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success of GMMs in speaker identification, but they are not the main focus of this study, and the 

interested reader is referred to studies such as [42] and [43] for more details.  

 

 

Figure 13:  A Gaussian mixture density from M weighted sum of Gaussian densities. The pi 
and bi for i = 1,2 … M are the mixture weights and component densities, 
respectively (adapted from [42]).  

 

 After collecting all trained GMM models, λ1, λ2, … , λS, for the pool of S speakers, an 

unknown speaker can be identified by searching for the model which gives the maximum a-

posteriori probability. As presented in [42], this can be reduced to a Maximum Log Likelihood 

problem as, 

 

S� = arg  max1≤k≤S ∑ log  p(x�⃗ t| λk)T
t=1  , (12) 
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where S� is the identified speaker and p( x�⃗ t| λk) is calculated using Eq. 9.  

 The basic building blocks of the most popular speaker identification system have been 

presented. Although there are more advanced versions of this system, this basic but robust 

backbone system is adequate for the current exploratory study to investigate the role of SGRs in 

speaker identification. The standard GMM implementation from the Statistics Toolbox of 

MATLAB is used for constructing the speaker models in the training stage and calculating the 

negative log-likelihood in the identification stage. In order to proceed further, a fundamental and 

important issue, which is an easy and reliable estimating algorithm of SGRs from microphone 

signal, has to be explored. The next section considers this issue and presents a solution. 

 

3.2 Automatic Estimation of the First and Second Subglottal Resonances 

As discussed in previous chapters, there are two major approaches for estimating SGRs from 

microphone signals. The first approach directly estimates SGRs by detecting their interactions 

with formant frequencies. In particular, existing techniques, including [10] and [11], estimate 

Sg2 and third subglottal resonance (Sg3) by detecting frequency jumps and amplitude 

attenuations in isolated vowels. However, the previous chapter has shown several uncertainties 

of the coupling effect, such as influence from inter-dental cavity, that make the estimation 

unstable. Besides, this approach only works for some specific isolated vowels, which is not a 

good property for text-independent speaker identification or any other speech content 

independent task. In addition, this direct estimation approach has very limited extendibility 
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because it is not designed for estimating the first subglottal resonance (Sg1) and it heavily relies 

on the accuracy of the formant tracking algorithm. As a result, the second approach, which 

indirectly estimates SGRs from speech signals by using correlations with vowel boundaries, is 

used in this chapter to extract SGRs for speaker identification. The methods presented in this 

section contain some portions of co-authored works in both [1] and [5].    

 The indirect estimation approach is motivated by the findings from [6] which defines 

vowel boundaries from SGRs. In particular, Sg1 creates a boundary between [+low] and [-low] 

vowels, and Sg2 acts similarly for [+back] and [-back] vowels. Although [13] has proposed a 

possible boundary between tense and lax [-back] vowels by Sg3, further evaluation is necessary 

and Sg3 estimation method based on such relationship has not yet been developed. However, a 

strong correlation is observed between Sg2 and Sg3 for adults so that study in [5] estimates Sg3 

from Sg2 by a first-order linear regression model with r-squared (r2) value of 0.8427 as, 

𝑆𝑆𝑔𝑔3 = 1.079 × 𝑆𝑆𝑔𝑔2 + 763.676 . (13) 

 

Despite the proven robustness of this estimation model, such estimated Sg3 is not evaluated in 

the current study of speaker identification because of its strong dependence on the estimation of 

Sg2.   

 By following the well-studied boundary definition for [+back] and [-back] vowels, the 

estimation method of Sg2 is first developed by using the correlation between the vocal tract-

based and Sg2-based measures of vowel backness. In [45], the Bark difference between F3 (third 

formant) and F2 (second formant), denoted by B32 , is used to separate [+back] and [-back] 

vowels at a boundary value of 3 Bark. This boundary is regarded as vocal tract based measure 
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since both F2 and F3 can be measured from microphone signals. The Bark value can be obtained 

from Hertz by using the formula from [46] as: 

z =  26.81×f
1960+f

−  0.53, (14) 
 

where f is frequency in Hertz and z is the converted Bark value. Based on the motivation of 

dividing the vowel space into Bark sclae, [-back] and [+back] vowels are shown to be separable 

by the Bark difference between F2 and Sg2, denoted by B2,s2 , at roughly 1 Bark. Therefore, B2,s2 

is proven to be a reliable Sg2-based measure of vowel backness and can be computed from both 

the  microphone and accelerometer signals. Although a regression model with r2 value of 0.8905 

can be built to correlate B32 with B2,s2 , two speaker-related features, F0 and F3, are added to the 

model to reduce inter-speaker variability. The final regression model presented in [5] for 

estimating Sg2 from adults has r2 value of 0.9713 is: 

B2,s2 = 0.001(B32)3 + 0.009(B32)2 − 1.083(B32)  
          + 0.002(F3) − 0.007(F0) − 0.019 . (15) 

 

This is a trained linear regression model, denoted by M2a , with B2,s2 as the dependent variable, 

and B32
3 ,  B32

2 ,  B32, F3, and F0 as the independent variables.  

 With a similar strategy and the observation of the boundary between [+low] and [-low] 

vowels formed by Sg1, another regression model is built. Instead of B32 and B2,s2 , the Bark 

difference between F3 and F1, denoted by B31, and the Bark difference between F1 and Sg1, 

denoted by B1,s1 , are used. By the same argument as in the previous model, F0 and F3 are used 

to compensate for inter-speaker variability. The resulting regression model for estimating Sg1 

from adults speech has r2 value of 0.9724: 
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B1,s1 = 0.001(B31)3 − 0.024(B31)2 − 0.737(B31)  
          + 0.002(F3) − 0.007(F0) + 3.903 . (16) 

 

Sg1 from adults speech is estimated by this trained linear regression model, denoted by M1a , 

with B1,s1 as the dependent variable, and B31
3 ,  B31

2 ,  B31, F3, and F0 as the independent variables. 

 In order to explore the possibility of applying children’s SGRs to speaker identification, a 

similar indirect estimation approach for children from [1] is used. For simplicity, the linear 

regression models for predicting Sg1 and Sg2 for children are denoted by M1c and M2c , 

respectively in the current study. Model M1c is trained with B1,s1 as the dependent variable, and 

B10 (the Bark different between F1 and F0) and F3 as independent variables. Similarly, M2c is 

trained with B2,s2 as the dependent variable, and  B32
2  , B32 , F3 and F0 as the independent 

variables. However, children have a large acoustic variability mainly because of their growing 

vocal tract length. As a result, each of the models M1c and M2c is split into two models based on 

the averaged F3, which is highly correlated with vocal-tract length. The two split models trained 

with recordings from children who have an average F3 less than 3300 Hz are denoted 

by M1c
l  and  M2c

l  , while the other pair of models is denoted by  M1c
g and  M2c

g  for children with 

averaged F3 greater than or equal to 3300 Hz. The boundary value of 3300 Hz is empirically 

chosen according to the distribution of averaged F3 values from 25 children, and the interested 

reader is referred to [1] for more details. 

 By using these trained regression models, frame-level Sg1 and Sg2 can be estimated, but 

speaker-level SGR values are instead used as the final estimation results. It is meaningful to use 

speaker-level SGR values for different applications because SGRs are roughly constant within a 

given speaker as discussed before. Moreover, it is practical to estimate SGRs from continuous 
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speech, but existing automatic formant frequencies and F0 tracking algorithms do not always 

yield reliable results, especially around the transition regions between voiced and unvoiced 

sounds. In other words, these frame-level SGR estimates with continuous speech are very 

sensitive to measurement errors, but this problem can be minimized by averaging frame-level 

estimates to get more accurate speaker-level SGR values. Although all regression models are 

trained by steady-state vowels, the speaker-level SGR estimates are evaluated on both isolated 

vowels and continuous speech to have reasonable high accuracy as presented in both [1] and [5]. 

In addition, the resulting estimates have been demonstrated to be helpful for both speaker height 

estimation in adults and speaker normalization on children’s speech. The goal of the remaining 

sections of this chapter is to explore the role of SGRs in speaker identification by using the 

presented estimation method for both adults and children. 
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3.3 Databases Used 

In order to have a multidimensional investigation of SGRs in speaker identification, three speech 

corpuses are used in this chapter, including the WashU-UCLA corpus, the TIMIT database [47], 

and the CID database [48].  

 The WashU-UCLA corpus, as presented in Section 2.1, is used for preliminary 

experiments because “ground truth” SGR values can be measured from the synchronized 

accelerometer recordings while SGR estimation method has to be used in other databases. With 

the “ground truth” SGR values, one can expect to estimate a theoretical upper bound of 

performance of speaker identification with SGRs as features. However, this corpus is not 

designed to support speaker identification research. For instance, it has only 50 speakers, which 

is relatively small compared to other standard speaker identification databases, but the balanced 

gender distribution enables a fair exploratory investigation on the role of SGRs to speaker 

identification across gender. Moreover, the corpus is recorded under ideal conditions with the 

same microphone, and all the 35 recorded words from two sessions of the corpus are embedded 

in a phonetically neutral carrier phrase. In other words, the corpus contains limited variability in 

several aspects, such as microphone variability, intersession variability, and phonetic variability, 

but it is sufficient and helpful for an exploratory study in the current chapter.  

 In order to generalize the study with a more commonly used database for speaker 

identification, the TIMIT database is used. The database contains 10 recorded utterances from 

each of the 630 speakers (438 males and 192 females) in 8 major dialect regions of the United 

States. The 10 sentences from each speaker include 2 dialect-specific (SA) sentences, 3 

phonetically-diverse (SI) sentences and 5 phonetically-compact (SX) sentences. The utterances 
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are recorded in a clean studio environment with a fixed wideband headset in one session. The 

recordings are sampled at 16 kHz and quantized at 16 bits/sample. This database has rich 

phonetic variability with relatively large number of speakers. Although this database is not 

recommended for evaluating speaker recognition systems primarily due to the ideal recording 

conditions [49], it is widely available and remains one of the popular databases used for 

exploratory investigation of speaker identification systems [40]. The speaker identification 

performance with this database is expected to be higher than extemporaneous speech because of 

the limited variability [50].   

 To further extend the current study to children’s speech, the MIC recordings, which are 

acquired by using high-fidelity recording equipment, from the CID database are used. Since the 

SGR estimation method for children’s speech presented in the last section is developed for 

children from 8 to 17 years of age, only the subset of children with the same age range from the 

database is used. There are 323 children in this subset including 179 males and 144 females. 

Each speaker has recorded 49 utterances on average (15946 utterances in total) with minimum 

imitation, and all the recordings are sampled at 16 kHz. All speakers are asked to read a list of 

sentences (details can be found in [48]). As expected, acoustic variations in children’s speech is 

higher than adults. The interested reader is referred to [51] for detailed analyses of the duration, 

formant, and pitch in the database. Although the database is not designed for speaker 

identification, it is commonly used for investigation in different speech applications with 

children, such as in [52] and [53], and the number of children is sufficiently large for the 

exploratory study on speaker identification in the current chapter. 
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3.4 Methods 

The identification rate (IR) is adopted as the performance measure for all experiments in the 

current chapter and can be calculated as, 

IR =
Total number of correctly identified tokens

Total number of tested tokens
 × 100 . (17) 

 

Since the “ground truth” SGR values can only be obtained from the WashU-UCLA corpus, SGR 

estimates from presented methods are used for all experiments with both TIMIT and CID 

databases. 

 

3.4.1 Pilot Experiment  

As a pilot experiment, the SGR features are first evaluated using the WashU-UCLA corpus with 

“ground truth” SGR values measured from accelerometer signals. All the measurements are 

acquired by using the Subglottal Resonance Measuring Tool presented in Section 2.3, and 

speaker-level SGR values are calculated by averaging over multiple utterances. Since the one of 

the goals of this study is to explore the effect of appending SGRs to MFCCs as discussed in 

Section 3.1, different ways of combining speaker-level SGR values and frame-level MFCCs are 

evaluated. Although the ideal method is to measure the corresponding frame-level SGR values 

and append them to MFCCs, this is not quite possible for all recordings due to both the unstable 

quality and unknown formant-SGR interactions in some utterances. On the other hand, adding 

speaker-level SGR values solely to MFCCs is violating the structure of GMM and loses the 

ability to account for within-speaker SGR variability. In order to address these challenges, 
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random variations from different ranges are attached to speaker-level SGR values to create 

simulated frame-level SGR values. The ranges are set to different multiples (from 1 to 3 in the 

current study) of the within speaker standard deviations (SDs) for different SGRs as reported in 

[5]. Although speaker information can be embodied in any frame of a given utterance, such as 

vowel information from voiced frames and speech pausing information from non-speech frames, 

the presented SGR estimation method only relies on information from voiced frames. In order to 

have a fair comparison, only voiced frames, which are extracted using the Snack Toolkit with 

default settings, are used in the pilot experiment. Each utterance from the WashU-UCLA corpus 

is around 4 to 5 seconds long, with roughly 25% being voiced frames. Since the corpus does not 

have well-defined train and test sets, utterances are partitioned manually. In the training set, 1 

sentence from each of 4 specific target vowel sets (/i/, /æ/, /ɑ/, /u/) in session 2 of the corpus are 

selected for every speaker, and 3 sets of data are evaluated for cross-validation purpose . For 

example, the set with sentence identification 3 (SID 3) is constructed by selecting the third 

sentence from each of the 4 specific vowel sets. In other words, each speaker model is trained 

with 18 seconds long utterance or, equivalently, 4.5 seconds of voiced speech on average. The 

widely used 39-diemensional MFCCs (with delta and delta-delta) are used as baseline, and the 

simulated frame-level SGRs are evaluated by appending them to MFCCs. After testing with 

different model orders, 32-mixture GMM model is empirically chosen for all experiments in the 

current study for a consistent comparison among different settings. In the testing stage, 10 

sentences are randomly selected from session 1 of the corpus for each speaker (total of 500 

sentences for 50 speakers) in order to get better inter-session variability. The selected sentences 

are tested individually with all the trained models, and the identification decision is made based 

on maximum a-posteriori probability as discussed in Section 3.1.  
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3.4.2 Experiments with TIMIT and CID databases 

To the author’s knowledge, the most common baseline on the TIMIT database is achieved by a 

slightly different MFCC feature set compared to the commonly used 39 dimensional MFCCs as 

in [17] and [40]. The new MFCC feature set, which is first introduced in [54] and evaluated on 

the TIMIT database by [50] and [55], uses all coefficients from a 24 channel Mel frequency-

spaced filter except the zeroth cepstral coefficient to get a final 23 dimensional feature vector. 

Although temporal derivatives, such as delta and delta-delta, are commonly used to help 

identifying speaking styles and durations, they are not included in the 23 dimensional MFCCs. 

One of the possible explanations is that recordings from the TIMIT database have limited 

variability in both speaking styles and durations due to the designed speech content recorded 

under studio condition. Furthermore, environmental compensation for removing time-invariant 

channel effects, such as cepstral mean normalization, is not used because the database does not 

contain acoustic noise and microphone variability. The commonly used partitioning method 

selects 8 sentences, including 2 SA, 3 SI and 3 SX sentences (approximately 24 seconds), from 

each speaker to train the models while the remaining 2 SX sentences (approximately 3 seconds 

each) are tested individually. In order to compare situations with limited training data, 

experiments with the same testing configuration but different number of training data are 

evaluated. In the case of 5 training sentences, 3 SI and 2 SA sentences are selected while only 3 

SI sentences are used in the case of 3 training sentences.  

 To extend the study in children’s speech, the 23 dimensional MFCCs are evaluated on the 

CID database. Since children have both large inter-speaker and intra-speaker variation in 

pronunciation duration, the lengths of recorded utterances in the CID database have high 

variations. In order to maintain both phonetic variability and duration of training data, utterances 
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are randomly chosen with a minimum total duration of selected utterances to train a model for a 

given speaker. For example, in order to get a minimum of 4 seconds of speech for training, 

variable numbers of utterances ranging between 1 and 4 are selected while 3 of the remaining 

sentences are randomly selected to test the trained models individually. The number of testing 

sentences is fixed to 3 for all experiments on the CID database in order to reduce the 

experimental variability.  

 

3.5 Results and Discussion 

This section will present and discuss the results of experiments with different databases. The 

appended SGR features contribute differently in each of the cases, but the general advantage of 

using the features can be observed throughout the discussion. 

 

3.5.1 Pilot Experiment: WashU-UCLA corpus 

The results of all pilot experiments from the WashU-UCLA corpus are presented in Table 11 to 

Table 13 for different SGRs and ranges of variation. 

 Since Sg1 is influenced by the interferences from the lower harmonics and Sg3 is 

attenuated by the low-pass nature of the skin when acquiring accelerometer signals, Sg2 is 

relatively easier to measure and performs the best as a single SGR feature when appended to 

MFCCs in the pilot experiment. The IR improves from 69.9% to 86.8% by adding simulated 

frame-level Sg2 with 1 SD-ranged random variations as shown in Table 11. As expected, the 

performance decreases as the range of random variation increases because the simulated frame-
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level Sg2 values are more deviated from the “ground truth” speaker-level value, and the wide 

spread variation increases the probability of getting Sg2 values overlapped between speakers. 

Meanwhile, the within speaker Sg2 standard deviation is 32 Hz and the corresponding average 

root mean squared error (RMSE) of the presented estimation method is 61 Hz. Hence, the IRs 

with 3 SD ranged random variations approximately account for variations from both within 

speaker standard deviation and estimation error. Along the line of simulating the estimation error 

from “ground truth” Sg2, one might expect to get smaller SGR estimation error in the training 

stage with 4 sentences than in the testing stage with only 1 sentence. In order to simulate this 

scenario, an experiment with mismatched ranges of random variations during training and testing 

stages is evaluated, and the corresponding IRs are presented in the last column of Table 11. In all 

cases, the additional Sg2 feature improves IR by different amounts and suggests further 

exploration. 

 Motivated by the performance improvements achieved by attaching Sg2 to MFCCs, Sg1 

and Sg3 are appended in two stages on top of Sg2. The first three columns of Table 12 show the 

resulting IRs by appending both Sg1 and Sg2 with different ranges of random variations to 

MFCCs. The additional Sg1 gives about 2% to 3% improvements on top of the achievement by 

Sg2 while Sg3 adds another 2% to 3% jump as shown in the last three columns of Table 12. The 

final averaged IR by using all 3 SGRs with 1 SD random variation is 92.1%. Although there is a 

22.2% absolute improvement over the baseline with MFCCs, this is the ideal scenario without 

considering the SGR estimation error in practical applications. 
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Table 11:  The IR on the WashU-UCLA corpus with 39 dimensional MFCCs and different 
variations of additional "ground truth" Sg2 as features. The SG2_1SD , for 
example, represents random variation within 1 SD of Sg2 is used to create the 
simulated frame-level Sg2 values. The last column presents the IR with 
mismatched ranges of variation in train and test stage.  

SID MFCC_39 MFCC_39 + 
SG2_1SD 

MFCC_39 + 
SG2_2SD 

MFCC_39 + 
SG2_3SD 

MFCC_39 + 
SG2Train_1SD + 

SG2Test_3SD 
3 73.4% 88.6% 84.2% 81.2% 85.6% 
6 68.8% 86.2% 80.1% 79.6% 83.4% 
8 67.6% 85.6% 80.1% 77.8% 81.8% 

Average 69.9% 86.8% 81.4% 79.5% 83.6% 
 

 

Table 12:  The IR on the WashU-UCLA corpus with 39 dimensional MFCCs and different 
variations of additional "ground truth" SGRs as features. The SG123_1SD, for 
example, represents random variations within 1 SD of Sg1, Sg2 and Sg3 are used 
to create the simulated frame-level SGR values.  

SID 
MFCC_39 

+ 
SG12_1SD 

MFCC_39 
+ 

SG12_2SD 

MFCC_39 
+ 

SG12_3SD 

MFCC_39 
+ 

SG123_1SD 

MFCC_39 
+ 

SG123_2SD 

MFCC_39 
+ 

SG123_3SD 
3 90.0% 84.0% 83.8% 93.8% 86.4% 83.6% 
6 87.6% 85.0% 79.4% 92.4% 84.8% 84.6% 
8 89.6% 84.2% 81.2% 90.0% 84.0% 84.8% 

Average 89.1% 84.4% 81.5% 92.1% 85.1% 84.3% 
 

 

 In order to verify the claim that the IRs with 3 SD-ranged random variation simulates the 

IRs with estimation errors in practical situations, experiments are carried out by replacing the 

“ground truth” Sg1 and Sg2 values by estimated Sg1 and Sg2 values. In addition, the previously 

determined within-speaker SD values, which are used to guide the range of frame-level random 

variations, are replaced by standard deviation from the actual frame-level estimates. Following 
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the discussion in Section 3.2, only Sg1 and Sg2 estimations are evaluated because the best 

available Sg3 estimation method solely relies on the estimation of Sg2 without additional 

speaker specific information. The results are presented in Table 13 with two different approaches 

for calculating the estimated speaker-level SGR values. Although arithmetic mean of all frame-

level estimates is used to obtain speaker-level SGR values in previous studies, another approach 

using the median instead of mean is evaluated in the current study because median is sometimes 

less sensitive to outliers. The results of both approaches are very close to each other that imply 

the frame-level SGR estimates are more likely to be Gaussian distributed. By comparing the 

results from estimated SGR and “ground truth” SGR with 3 SD random variations, they are off 

by about 6% which suggests the variations from estimation errors are larger than expected. 

Nevertheless, the averaged IR with estimated Sg1 and Sg2 is still 4.2% (from 69.9% to 75.7%) 

better than the baseline; however, this result can be biased because WashU-UCLA corpus is used 

to evaluate the pilot experiments and train the presented estimation methods. Therefore, an 

extended study on a commonly evaluated database for speaker identification is undertaken. 

 

Table 13:  The IR on the WashU-UCLA corpus with 39 dimensional MFCCs and additional 
estimated Sg1 and Sg2 with random variations within 1 SD from the estimates 
attached as features. The IR, with speaker-level estimate calculated by either 
averaging or taking median from the frame-wise estimations, is shown in column 
2 and 3, respectively. 

SID MFCC_39 + 
SG12_Est_Mean_1SD 

MFCC_39 + 
SG12_Est_Med_1SD 

3 79.6% 79.6% 
6 75.8% 73.6% 
8 70.4% 74.0% 

Average 75.3% 75.7% 
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3.5.2 Adults: TIMIT database 

The IR by using the popular TIMIT database is expected to be higher than experiments with 

extemporaneous speech due to the near ideal recording condition. By evaluating the optimized 

23 dimensional MFCC feature with the TIMIT database, an IR of 99.37%, which matches the 

results from [50] and [55], is achieved by training models with 8 sentences. Although the number 

of identifying speakers has been shown by [50] to have negligible influence on speaker 

identification performance, the amount of training data always remains a concern to statistical 

classifiers. In order to compare situations with limited training data, baseline experiments with 

the same testing configuration and different amount of training data are evaluated. The IR with 

models trained by 5 sentences is 97.78%, and the more interesting case with only 3 sentences has 

an IR of 84.68% as shown in Table 14. The performance with 3 training sentences is not good 

enough because commercial applications of biometric identification require at least 98% 

accuracy [36]. 

 

Table 14:  IRs on the TIMIT database with different number of training sentences from 
adults. The number of testing sentences are fixed to 2 for all cases and the 
sentences are tested individually. 

Num. of Training Sentences Num. of Testing Sentences 
(Individually) 

IR 

8 2 99.37 % 
5 2 97.78 % 
3 2 84.68 % 

 

 

 Since the identification performance for both experiments with 8 and 5 training sentences 

are sufficient for commercial applications, SGR features with standard deviations from speaker-
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level estimates are evaluated with baseline MFCCs for 3 training sentences. The same estimation 

procedure for simulating frame-level SGR values as in the pilot experiment is used, and the 

speaker-level SGR values are calculated by the mean of frame-level SGR estimates. The 

resulting IRs of attached Sg1 and Sg2 with 1 SD random variations are 84.60% and 83.02% , 

respectively. These results are just comparable to the baseline performance without advantages 

as in the pilot experiments, and the features with Sg1 give better performance than that with Sg2. 

One of the possible explanations of these results is that the estimation method is biased in the 

pilot experiment as discussed previously, and the SGR estimation accuracy is not sufficient to 

discriminate a large number of speakers. The reported Sg1 and Sg2 inter-speaker ranges for 

American English speakers are 230 Hz and 393 Hz across genders, respectively. By taking the 

number of enrolled speakers and estimation errors into account, their SGR values are heavily 

overlapped which makes the features less discriminative. Moreover, the RMSE and the mean-

relative standard deviation (MSD), which is used to quantify the consistency of estimation, for 

Sg1 is 25 Hz and 1.6 % compared to 61 Hz and 1.2 % for Sg2. The ratio between the RMSE and 

range of SGRs for Sg1 and Sg2 are about 0.11 and 0.16, respectively. Therefore, the estimation 

of Sg1 clearly has smaller error with higher consistency than that of Sg2, and these advantages 

probably account for the higher identification performance. In addition, SGRs theoretically do 

not exist for the non-speech portions of an utterance, and silence frames usually degrade the 

training of speaker models as discussed by [40]. However, the well-known MFCC baseline for 

the TIMIT database trains models with all frames from an utterance as reported by [55]. In order 

to explore the problem with silence, speech frames are extracted from the TIMIT database by 

using the provided word boundaries from a dynamic string alignment program. The baseline 

result with only speech frames drops 4.97 % (from 84.68% to 79.71%) as shown in Table 15, but 
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the additional Sg1 features with different ranges of random variations consistently give small 

improvements instead of degradations as in the experiments with both speech and non-speech 

frames. These experiments with only speech frames are theoretically more meaningful than the 

experiments with all frames because SGRs are naturally present only in speech portions of an 

utterance, but the degradation between baseline results remains an issue. One of the possible 

explanations is that the TIMIT database contains only reading sentences that are recorded 

consecutively in a single session for each speaker. Hence, the durations of silences from each 

utterance may contain similar patterns for a given speaker and help speaker identification as a 

discriminative feature. Nevertheless, Sg1 shows advantages in a more meaningful experimental 

setup, but further exploration is necessary. 
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Table 15:  IRs on the TIMIT database with only speech frames extracted from given word 
boundaries. The numbers of adult training and testing sentences are fixed to 3 and 
2, respectively. The baseline feature is the 23 dimensional MFCCs and additional 
Sg1 with different ranges of random variations are evaluated.  

Num. of Training  
Sentences 

Num. of Testing  
Sentences (Individually) Features IR 

3 2 Speech Frames + 
MFCC_23 79.71 % 

3 2 
Speech Frames + 

MFCC_23 + 
Sg1_1SD 

80.03 % 

3 2 
Speech Frames + 

MFCC_23 + 
Sg1_2SD 

79.78 % 

3 2 
Speech Frames + 

MFCC_23 + 
Sg1_3SD 

80.32 % 

 

 

3.5.2 Children’s Speech: CID database 

 In order to further investigate the argument that estimated SGRs are close together in the 

inter-speaker SGR ranges in the TIMIT database, experiments are undertaken with children’s 

speech from the CID database because children have higher SGR inter-speaker variations than 

adults. By combining the reported SGRs from both [1] and [2], the Sg1 and Sg2 inter-speaker 

ranges for children between 8 to 17 years old are 351 Hz and 847 Hz, respectively. With these 

higher than adult ranges and less crowded speaker space (only 323 children in the CID database 

are evaluated), the SGRs are expected to help speaker identification to a greater extent. With 

minimum 4 seconds of training speech, the baseline result with 23 dimensional MFCCs and 

exploratory results with appended SGR features are presented in Table 16. There is a 1.86% 

improvement achieved by the additional Sg1 feature with 1 SD ranged random variation as 

expected, but degradation is observed in the case with Sg2 feature. The results of appending Sg1, 
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Sg2 and Sg3 together are ignored due further degradations. These observations can be possibly 

justified by the high RMSE, which is 144 Hz and more than double to that of adults, for 

estimating Sg2 with children’s speech. In the interest of verifying the advantage of using Sg1 

feature, another set of experiments with minimum 6 seconds of training speech is tested. The 

new baseline IR increases by 5.37% to 93.81% with the additional training data, and the Sg1 

feature further improves the accuracy by an extra 0.82% to 94.63%. These consistently 

improving performances with children by appending Sg1 feature give evidence that the possible 

limiting factor of speaker identification is the overlapping of speakers in SGR inter-speaker 

ranges. 

 

Table 16:  IRs on the CID database with minimum 4 seconds of training speech. The 
baseline result is shown in the first row, and IRs with additional SGR features are 
presented for comparison. 

Minimum total duration  
of training sentences 

Num. of Testing 
Sentences (Individually) Features IR 

> 4 seconds 3 MFCC_23 88.44 % 

> 4 seconds 3 MFCC_23 + 
Sg1_1SD 90.30 % 

> 4 seconds 3 MFCC_23 + 
Sg2_1SD 84.52 % 

 

 

 To further investigate the effects of estimation errors to speaker identification, another set 

of experiments by training models with only voiced frames from minimum 8 seconds of speech 

is evaluated, and the results are shown in Table 17. The voiced frames, which account for less 

than half of the total number of frames, are selected by using the Snack Toolkit [23]. The 

baseline IR with equivalently less than 4 seconds of frames drops about 2.78%, but the additional 
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Sg1 feature improves the accuracy by 2.37% which is higher than the improvement from the set 

of experiments with minimum 4 seconds of utterances. This encouraging improvement is 

meaningful because the speaker-level SGR estimates are determined by using F0, F1 and F3 

from only voiced frames as discussed previously. In order to show the advantage of using SGR 

instead of acoustic measures, the IR with models trained by appending extracted frame-level F0, 

F1 and F3 directly to the baseline MFCCs instead of Sg1 is presented in Table 17. Although Sg1 

is estimated from the same acoustic measurements, the appended F0, F1 and F3 degrade the 

performance by 0.83% from the baseline instead of improving as with the SGR feature.  

 

Table 17:  IRs on the CID database with voiced frames from minimum 8 seconds of training 
speech. The baseline result is shown in the first row, and the IR with additional 
Sg1 features follows. The last row shows result with additional acoustic features, 
including F0, F1 and F3.   

Minimum total duration  
of training sentences 

Num. of Testing 
Sentences 

(Individually) 
Features IR 

> 8 seconds 3 Voiced Frames +  
MFCC_23 85.66 % 

> 8 seconds 3 
Voiced Frames +  

MFCC_23 + 
Sg1_1SD 

88.03 % 

> 8 seconds 3 
Voiced Frames +  

MFCC_23 + 
F013 

84.83 % 

 

 

3.5 Summary 

The exploratory study presented in this chapter is the first of its kind to examine the possible role 

of SGRs in speaker identification. Although this study uses the basic GMM classifier which was 
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proposed for speaker identification over a decade ago, it remains the most popular approach in 

the literature today due to its reliable performance. By using the “ground truth” SGRs in the pilot 

experiments, strong improvements can be observed which motivate the rest of the study. 

However, additional variations from estimation errors reduce the improvement for the WashU-

UCLA database. In order to extend and verify the study, the features are evaluated with 630 

speakers from the well-known TIMIT database; however, the SGR features unexpectedly give 

small degradation to the performance. This result might be explained by the heavily overlapped 

SGRs with estimation errors in the limited inter-speaker ranges. For a more meaningful setup, 

evaluations for SGR features with only speech frames, excluding silence frames, show better 

performance, but the overlapping problem remains a challenge. To further explore this limitation, 

children’s speech, which have higher inter-speaker SGR ranges, from the CID database are used 

for evaluation. Although the estimation error is higher for children’s speech, the speaker 

identification performance is improved by the additional Sg1 feature, and this result supports the 

claim that the limiting factor in speaker identification with SGR features is the crowding of 

SGRs in the inter-speaker ranges. Nevertheless, more accurate SGR estimations can reduce the 

overlapping of these features and help the performance approach the theoretical upper limit as 

presented in the pilot experiments.  

 Since this is an exploratory study, a simple and straight forward method is used to append 

SGR features to the well-known baseline MFCC features. The current appending method is 

sensitive to estimation errors, and the best available estimation methods are not designed for 

determining frame-level SGRs. Therefore, some further investigations on both estimating and 

appending SGR features are necessary. A possible suggestion for future work will be combining 

short-term cepstral features and the SGRs as long-term features by incorporating different kinds 
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of classifiers. This idea is inspired by studies on speaker age classification which utilize the 

advantages from both long-term and short-term features, and similar feature characteristics have 

been observed in the current study. For instance, MFCCs are categorized as short-term feature 

which contain more phonetic information of an utterance while long-term features, such as pitch, 

jitter and shimmer, carry more paralinguistic information as discussed in [56]. Since SGRs do 

not vary too much with the content of speech, modeling them as long-term features might be 

more meaningful and support-vector-machine (SVM) would be a better classifier for these 

features. In addition, SGRs can be possibly combined with other features with speaker-specific 

information, such as the set of acoustic parameters proposed by [17], because they do not 

directly contain overlapped information. With all these possibilities and the demonstrated 

advantages throughout the exploratory study, further investigations on speaker identification 

with SGR features are highly motivated. 
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CHAPTER 4. SUMMARY 

 

 

The current study presents two interesting topics on subglottal resonances in speech processing. 

The first topic presented in Chapter 2 extends previous studies on the oral-subglottal coupling 

effect, and Chapter 3 investigates an unexplored topic of speaker identification with SGRs.  

 In order to explore the coupling effect in detail, more sophisticated tools are developed. 

The new tools do not only enable proper measurements of F2 discontinuities for the presented 

study, but also contain useful features for future explorations. In the interest of examining and 

extending the previous studies, measurements are acquired from a recently collected and 

relatively larger corpus than has been used. Part of the analysis on the collected data matches the 

results from previous studies, but conclusive results cannot be obtained due to several observed 

uncertainties. This skepticism arises from both time-frequency resolution trade-off and uncertain 

influences from articulatory coupling. Nevertheless, the study provides cues for correlations 

between voice quality parameters and F2 discontinuities, but further investigation is required.

 In order to motivate studies on SGRs by introducing possible applications, an exploratory 

study on speaker identification with SGR features is presented. Since existing SGR direct 

estimation methods rely on unstable cues from oral-subglottal coupling, a more reliable indirect 

estimation method by utilizing statistical relationships between SGRs and vowel boundaries is 

used. This estimation method has been successfully applied to different applications, such as 

speaker height estimation and speaker normalization on ASR, but it is designed for speaker-level 

estimates while the most popular speaker identification approach takes advantages from frame-
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level features. Moreover, a modified version of this estimation method for children’s speech is 

also presented in order to increase the extendibility of the current study. For exploratory 

purposes, a straight forward method by appending statistically bounded random variations to the 

speaker-level estimates is developed to simulate frame-level SGR values. The same appending 

method is applied to the “ground truth” speaker-wise SGR measurements to simulate frame-level 

SGRs, and the pilot experiments with these simulated features attached to baseline cepstral 

features demonstrate significant improvements. However, results with estimated speaker-wise 

SGRs show some drawbacks which are possibly caused by the overlapping of SGR values in the 

inter-speaker ranges. This explanation is supported by the better identification performances on 

children’s speech because children have relatively wider inter-speaker SGR ranges. Although 

this simple appending method may not be the best for the SGR features, it is good enough for 

this exploratory study to demonstrate the speaker discriminative ability of SGRs. The 

identification performance is expected to be higher as in the pilot experiments with more 

accurate SGRs estimation methods in the future. In addition, some possible and sophisticated 

classification models, such as a hybrid model combining GMM and SVM for cepstral and SGR 

features, respectively, are suggested at the end of Chapter 3 to motivate further explorations.  

 This is the end of the current study, but it is also the beginning of all the possibilities 

discussed throughout the chapters.  
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APPENDIX 

A. The Sg2 measurements for the 20 speakers in Chapter 2 

Speaker-wise statistics of Sg2 measurements collected for analysis in Chapter 2 are presented 

below. The 10 male speakers are listed on the left table while the 10 female speakers are on the 

right hand-side table. The intra-speaker Sg2 measurement statistics including minimum (Min), 

maximum (Max), mean (𝑆𝑆𝑔𝑔2�����), and standard deviation (SD) are all in Hertz (Hz). Inter-speaker 

averages are reported at the bottom of the table. 

 

Table 18:  The Sg2 measurements for the 20 speakers in Chapter 2 separated by gender. 

Males Sg2 (Hz)    Females Sg2 (Hz) 
ID Min Max 𝑆𝑆𝑔𝑔2����� SD    ID Min Max 𝑆𝑆𝑔𝑔2����� SD 
11 1203 1391 1280 44    14 1492 1586 1530 27 
12 1357 1416 1385 13    16 1484 1586 1538 30 
15 1201 1326 1252 32    19 1508 1594 1547 29 
22 1270 1346 1311 27    24 1453 1516 1491 17 
38 1270 1355 1326 28    27 1328 1539 1413 51 
41 1201 1230 1217 11    32 1551 1613 1583 21 
43 1230 1354 1298 37    33 1320 1445 1382 29 
52 1234 1313 1286 25    36 1484 1574 1541 25 
53 1178 1301 1235 42    40 1465 1563 1510 33 
64 1258 1434 1335 39    59 1514 1660 1592 39 

Avg. 1240 1347 1293 30    Avg. 1460 1568 1513 30 
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B. Correlation between discontinuities and voice quality parameters 

The correlation coefficients between the size of the F2 jump and different voice quality 

parameters with the three subsets of data are presented in Table 19 and Table 20. The tables 

show the inter-speaker correlation coefficients between the size of F2 jump and H1-H2. The (*) 

in Table 19 indicates the use of harmonic magnitude correction formula to reduce the influence 

of vocal tract resonances [32]. 

 

Table 19:  Correlation coefficients between the size of F2 jump and two voice quality 
parameters  with correction formula to reduce the influence of vocal tract 
resonances. 

 
S1 - F2 Jump S2 - F2 Jump 

Male Female Male Female 

V1 
H1*-A1* 0.04 0.01 -0.06 0.01 
H1*-A3* -0.07 0.63 0.07 0.57 

V2 
H1*-A1* -0.13 0.21 -0.18 0.07 
H1*-A3* -0.02 0.67 0.05 0.63 

V3 
H1*-A1* 0.39 0.61 0.03 0.29 
H1*-A3* 0.25 0.53 0.31 0.60 

 

Table 20:  Correlation coefficients between the size of F2 jump and two voice quality 
parameters  without using any correction formula. 

 
S1 - F2 Jump S2 - F2 Jump 

Male Female Male Female 

V1 
H1-A1 0.14 0.43 0.03 0.24 
H1-A3 -0.15 0.44 -0.04 0.39 

V2 
H1-H2 0.49 0.38 0.40 0.34 
H1-A3 -0.24 0.45 -0.16 0.40 

V3 
H1-A1 0.44 0.72 0.16 0.38 
H1-A3 0.01 0.79 -0.06 0.45 
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 Both H1-A1 and H1-A3 can be viewed as measures of the spectral slope. Besides, studies 

such as [57], have demonstrated the relationship between spectral slope and glottis air leakage. 

Although positive correlations are observed between the H1-A3 with the size of the F2 jump for 

females across different setups, the results are inconclusive due to the inconsistent findings from 

male speech. Such correlation differences between the two genders may be caused by gender-

related breathiness as described in Chapter 2. For the correlations with H1-A1, no consistent 

results are found for a conclusion. By the same argument of the dependency of oral-subglottal 

coupling effect on the glottal area as presented in Chapter 2, stronger coupling should be 

observed during the close phase from a speaker with posterior glottal chink. In other words, 

speakers with a posterior glottal chink should have smaller F2 jump size differences between 

open and close phase measurements. Since H1-A1 is correlated with the presence of a posterior 

glottal chink, its correlation with the frequency jump size difference between open and closed 

phase measurements can be interesting. 

 Although the correlation between the size of F2 jump and H1-A3 is positive for female 

speech, the result is not convincing due to both the reliability concern for high pitch speakers and 

the inconsistent results with male speakers. Moreover, the H1-A1 study also gives inconclusive 

results, but a hypothesis with the comparison between open and close phase measurements is 

suggested for future work. The analysis on A2 attenuation is not presented in detail due to the 

uncertainties of the A2 measurements with the developed procedure. However, improved ways 

for quantifying the amplitude attenuation, such as an amplitude only study by increasing time 

resolution around the frequency jump region, can be investigated to get a better overall picture of 

the oral-subglottal coupling effect. 
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