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ABSTRACT OF THE DISSERTATION

A Study of d-Density Wave States
in Strongly Correlated Electron Systems

by

Chen-Hsuan Hsu
Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Sudip Chakravarty, Chair

Particle-hole condensates in the angular momentum ℓ = 2 channel, known as d-density wave or-

ders, have been suggested to be realized in strongly correlated electron systems. In this dissertation,

we study singlet and triplet d-density wave orders with a form factor of dx2−y2 as well as a novel

topological mixed singlet-triplet d-density wave with a form factor of (iσdx2−y2+dxy), and discuss

the connections of these states to high-temperature superconductors and heavy-fermion materials.

In Chapter 2, we discuss the spin susceptibility of the singlet d-density wave, triplet d-density

wave, and spin density wave orders with hopping anisotropies. From the numerical calculation, we

find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at

low energies in agreement with the inelastic neutron scattering experiments in the pseudogap state

of the high-temperature superconductor YBa2Cu3O6.6. The vertical dispersion is a distinct feature

of all three density wave states in contrast to the superconducting state, which shows an hourglass

shape dispersion experimentally.

In Chapter 3, we explore a mixed singlet-triplet d-density wave state in a two-dimensional

square lattice, which is topologically nontrivial and exhibits quantum spin Hall effect. We also

study the bulk-edge correspondence and Lifshitz transition in the system. In Chapter 4, we show

that the skyrmions in the system carry charge 2e and can condense into a superconducting state.

The phase transition between the density wave and superconductivity likely leads to deconfined
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quantum critical points. We suggest connections of this exotic state to the hidden-order state in the

heavy-fermion compound URu2Si2.

The st-DDW model is generalized to three dimensions in Chapter 5, where we propose a novel

pairing mechanism in URu2Si2. We assume the charge 2e skyrmionic spin texture in the mixed

singlet-triplet d-density wave state fractionalizes into merons and antimerons at the deconfined

quantum critical point. The interaction between these fractional particles results in a spin-singlet

chiral d-wave superconducting state consistent with experiments. The unconventional supercon-

ductivity breaks time reversal symmetry, so we expect a polar Kerr effect at the onset of the super-

conductivity, but not in the time-reversal-invariant hidden-order state except perhaps for magnetic

impurities.
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CHAPTER 1

Introduction

1.1 Symmetry-breaking states and topological states of matter

In condensed matter systems, atoms organize themselves to form ordered states of matter at low

temperatures with properties which are fundamentally different from those of an individual atom.

Identifying these ordered phases and understanding how they are formed have been a major goal

for condensed matter physicists. While various orders are formed in numerous materials, they in

general can be classified into two categories. The first is a class of phases which can be understood

with the notion of broken symmetries invented by Landau [5, 57]. The phase transition and prop-

erties of a symmetry-breaking state can be studied in terms of a locally defined order parameter.

Examples of such states are ferromagnetism and superconductivity, and the corresponding broken

symmetries are spin-rotational symmetry and gauge symmetry, respectively. Since its discovery,

Landau’s theory of spontaneously broken symmetry has been a cornerstone of condensed matter

physics.

On the other hand, quantum Hall states, which exhibit a quantized transverse conductance in the

presence of an external magnetic field, fall into the other category beyond Landau’s scenario [99,

102]. The quantum Hall states do not break any symmetries, so physicists must take a novel

approach in order to understand them. This has led to a different classification based on the notion

of topological orders [97, 103]. The states responsible for the quantum Hall effect are characterized

by topological invariants, which are insensitive to smooth changes in the system (unless the system

undergoes a quantum phase transition) and therefore gives rise to a quantized Hall conductance.

The bulk of the two-dimensional system is insulating, and the electric current is carried by the
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gapless edge states.

In 1982, Thouless et al. analyzed the quantum Hall effect in a periodic potential, and showed

that the Hall conductance can be mapped to a topological invariant (Chern number) associated

with filled bands [97]. In 1988, Haldane constructed a honeycomb lattice model with a quantized

Hall conductance even in the absence of a net magnetic field [33]. In this model, time rever-

sal symmetry is broken by magnetic flux penetrating the unit cell of the honeycomb lattice. The

spatially inhomogeneous magnetic flux gives rise to a nonvanishing Chern number, and thus a

quantized Hall conductance. The Chern number also determines the number of the topologically

protected edge states. In 2005, Haldane’s model was generalized to the time-reversal-invariant

case [47, 48, 6]. Unlike the quantum Hall effect, where time reversal symmetry is broken, the

time-reversal-invariant states reveal quantized spin Hall conductance. These states are character-

ized by a Z2 topological invariant, which is related to the number of gapless edge states carrying

spin currents. Since then, these works have led to extensive and intensive studies on topological

insulators and topological superconductors [35, 79].

Although it appears that topological orders bear no relation to broken symmetries, this is,

strictly speaking, not necessarily true. Intriguingly, one may still construct examples where a

symmetry-breaking state has nontrivial topological properties and can even be protected by the

broken symmetry itself [80, 95, 108]. Thus, the central purpose of this dissertation is to study a

system in which topological orders and broken symmetries are intertwined and to discuss its re-

alization in strongly correlated electron systems, such as high-temperature superconductors and

heavy-fermion materials.

1.2 Exotic orders in strongly correlated electron systems

Strongly correlated electron systems are a wide class of materials in which electronic correlation

plays an important role such that the behavior of electrons cannot be interpreted as non-interacting

particles. These systems thus reveal remarkable physical properties, and exotic orders may arise in

the phase diagrams of these systems such as high-temperature superconductors and heavy-fermion

2



materials.

One example is the mysterious pseudogap state in underdoped cuprates [10]. A generic phase

diagram of high-Tc cuprates is plotted in Fig. 1.1. In undoped parent compounds, antiferromag-

netism develops below the transition temperature, Neel temperature. Doping the cuprates by

atomic substitutions or oxygen content weakens the antiferromagnetism and lowers the Neel tem-

perature. Further doping results in unconventional superconductivity with a dx2−y2 energy gap in a

dome-like regime. In the underdoped region, there is a pseudogap state above the superconducting

transition temperature. The pseudogap state possesses an energy gap with dx2−y2-wave symmetry

as the unconventional superconducting state [98]. Therefore, the pseudogap and superconduct-

ing states should be closely related, and it is important to study the pseudogap state in order to

understand the whole phase diagram.

Despite the intense theoretical and experimental efforts over the last two decades, a full un-

derstanding of the origin of the unconventional superconductivity and the nature of the pseudogap

state is still being developed. Moreover, an effective theory of such a strongly correlated system

has a multitude of coupling constants, so we can generally expect a phase diagram with multiple

broken-symmetry states. Therefore, it is intriguing to explore exotic orders in the angular mo-

mentum ℓ = 2 channel, which have d-wave characters and may be relevant to the pseudogap and

superconducting states.

Another example of mysterious exotic orders is the hidden-order state in the heavy-fermion

compound URu2Si2. A schematic pressure-temperature phase diagram of URu2Si2 is shown in

Fig. 1.2. The specific heat measurement of URu2Si2 indicates a second-order phase transition at

THO = 17.5 K under the ambient pressure. However, the order parameter of the state at THO

still remains unidentified despite its discovery nearly thirty years ago [69]. At lower tempera-

tures, a superconducting phase arises below Tc ≈ 1.5 K. Thermal conductivity and specific heat

measurements indicated that the unconventional superconductivity in the system is likely a chiral

d-wave pairing [50, 110]. Applying pressure leads to a large-moment antiferromagnetic state with

an ordering vector Q⃗0 = (0, 0, 2π
c
) as the applied pressure is higher than Px ∼ 0.7 GPa. Quan-

tum oscillation measurements showed that there is no substantial Fermi surface change from the

3
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Figure 1.1: Schematic doping-temperature phase diagram of high-Tc cuprates. AF: antiferromag-

netism; PG: pseudogap; SC: superconductivity. TN denotes the transition temperature of the an-

tiferromagnetism, Neel temperature; Tc is the superconducting transition temperature; T∗ is the

temperature at which the pseudogap state develops. xc corresponds to the optimal doping, which

is a putative quantum critical point.
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hidden-order to the large-moment antiferromagnetic state, suggesting that the translational sym-

metry in the HO state is broken with the same vector Q⃗0 [36].

From the pressure-temperature phase diagram, one can see that the superconductivity is en-

closed by the hidden-order state. This implies that these two states should be closely related to

each other. While numerous theoretical models have been proposed for the hidden-order state [87,

51, 37, 56, 18, 34, 42, 66, 26, 19, 24, 14, 100, 15, 84, 23, 43, 78, 85, 112], very few of them

attempted to explain the mechanism of the unconventional superconducting state, which is of our

central interest in Chapter 5.

1.3 d-density wave orders

Among the exotic orders which were proposed to explain the aforementioned mysterious pseudo-

gap and hidden-order states, a class of particle-hole condensates in the angular momentum ℓ = 2

channel [71] will be the primary topic in this dissertation. It has been suggested that the singlet

counterpart of the particle-hole condensate, known as singlet d-density wave (sDDW) order, is

the cause of the pseudogap [13]. (Recently it has been reported that sDDW order can be realized

in cuprates using a Fermi-liquid theory with four parameters and standard Hartree-Fock meth-

ods [58, 59].) On the other hand, its triplet counterpart, triplet d-density wave (tDDW) [73], was

proposed to be the hidden-order state in the heavy-fermion compound URu2Si2 [42, 26]. In this

dissertation, we also propose a novel mixed singlet-triplet d-density wave (st-DDW) order.

Density wave states break translational symmetry with nesting vectors, denoted by Q⃗, and the

form factor of a density wave order parameter is constrained by the ordering vector Q⃗ [71]. In

contrast to particle-particle condensates in a superconductor, density wave states are particle-hole

condensates, where the orbital wave function does not constrain the spin wave function because

there are no exchange symmetry requirements between a particle and a hole. Thus, we may assume

the most general form of the density wave order parameter in the two-fold commensurate case,

which has both singlet and triplet components,

⟨c†k+Q,αck,β⟩ = Φs
Qfs(k⃗)δαβ + Φt

Qft(k⃗)
(
N̂ · σ⃗αβ

)
, (1.1)
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TN
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Figure 1.2: Schematic pressure-temperature phase diagram of URu2Si2. PM: paramagnetism; HO:

hidden order; LMAF: large-moment antiferromagnetism; SC: superconductivity. THO: the tran-

sition temperature of the hidden-order state; Tc: the transition temperature of the superconducting

state; TN : the transition temperature of the large-moment antiferromagetic state; Pc: the transition

pressure between the hidden-order and superconducting states; Pc: the transition pressure between

the hidden-order and large-moment antiferromagnetic states. In some literatures, the critical point

Pc coincides with Px, which does not affect our main conclusion in this dissertation.
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where ck,α (c†k,α) is annihilation (creation) fermion operator with momentum k⃗ and spin α, N̂ is the

spin quantization axis, and σ⃗αβ are the Pauli matrices with spin indices α and β. Φs
Q and Φt

Q are

complex numbers, and fs(k⃗) (ft(k⃗)) is the form factor of the singlet (triplet) component. Whether

Φs
Q (Φt

Q) is real or imaginary depends on the form of fs(k⃗) (ft(k⃗)) as well as Q⃗.

Taking complex conjugate on both sides, we have

⟨c†k,βck+Q,α⟩ = (Φs
Q)

∗f ∗
s (k⃗)δ

∗
αβ + (Φt

Q)
∗f∗

t (k⃗)
(
N̂ · σ⃗∗

αβ

)
= (Φs

Q)
∗f ∗

s (k⃗)δβα + (Φt
Q)

∗f∗
t (k⃗)

(
N̂ · σ⃗βα

)
, (1.2)

where we have used δ∗αβ = δβα and σ⃗∗
αβ = σ⃗βα.

Then, we may shift k⃗ to k⃗+ Q⃗, switch α and β on both sides in the above equation, and obtain

⟨c†k+Q,αck,β⟩ = (Φs
Q)

∗f ∗
s (k⃗ + Q⃗)δαβ + (Φt

Q)
∗f ∗

t (k⃗ + Q⃗)
(
N̂ · σ⃗αβ

)
, (1.3)

where we have used the fact that k⃗ + 2Q⃗ is equivalent to k⃗ in the two-fold commensurate density

wave systems.

Equating the above equation and Eq.(1.1), we obtain the following relations:

(Φs
Q)

∗f ∗
s (k⃗ + Q⃗) = Φs

Qfs(k⃗), (1.4)

(Φt
Q)

∗f ∗
t (k⃗ + Q⃗) = Φt

Qft(k⃗). (1.5)

In a two-dimensional square lattice, we are interested in the cases where Q⃗ = (π, π) with the

lattice constants being set to unity. In Chapter 2, since we are interested in density wave orders

with a form factor of dx2−y2 as the pseudogap state, we may choose

Φs
Qfs(k) = i

W0

2
(cos kx − cos ky) , (1.6)

Φt
Qft(k) = 0 (1.7)

for the sDDW order, or

Φs
Qfs(k) = 0, (1.8)

Φt
Qft(k) = i

W0

2
(cos kx − cos ky) (1.9)
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for the tDDW order. In real space, after performing Fourier transform, we have

For sDDW order: ⟨c†j,αcl,β⟩ = i (−1)jx+jy δαβWjl, (1.10)

For tDDW order: ⟨c†j,αcl,β⟩ = i (−1)jx+jy
(
N̂ · σ⃗αβ

)
Wjl, (1.11)

where j ≡ (jx, jy) and l ≡ (lx, ly), and

Wjl =
W0

4
(δj,l±x̂ − δj,l±ŷ). (1.12)

Therefore, in real space, the order parameter of the sDDW order produces staggered circulating

charge currents whose directions alternate from one plaquette to the next. The order parameter of

the tDDW order, on the other hand, produces staggered circulating spin currents but no charge

currents (Fig. 1.3). This reminds us of the topological band insulators mentioned in Section 1.1,

where oppositely aligned edge-spins travel in opposite directions. However, the bulk of the tDDW

order is not fully gapped, but is a semimetal instead, so there is no topological protection for the

edge states.

A more interesting case is the st-DDW order. In addition to the same spin current patterns as

the tDDW state, the order parameter of the st-DDW state also produces modulations of hopping

terms due to its real singlet component as shown in Fig. 1.3. The addition of the singlet component

makes the bulk spectrum of the st-DDW order fully gapped, and the system becomes topologically

nontrivial with a quantized spin Hall conductance. Notice that the st-DDW order preserves time-

reversal invariance, analogous to time-reversal-invariant band insulators in Section 1.1.

In Chapters 3 and 4, we choose a form factor of (iσdx2−y2 + dxy) in order to study the inter-

wining between broken symmetries and nontrivial topology. To be explicit, the nesting vector is

Q⃗ = (π, π) and the form factor is

Φs
Qfs(k) = ∆0 sin kx sin ky, (1.13)

Φt
Qft(k) = i

W0

2
(cos kx − cos ky) , (1.14)

which satisfies Eqs.(1.4)-(1.5). In real space, we have

⟨c†j,αcl,β⟩ = i (−1)jx+jy
(
N̂ · σ⃗αβ

)
Wjl + (−1)jx+jyδαβ∆jl, (1.15)
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where Wjl is the same as Eq.(1.12), and

∆jl =
∆0

4
(δj,l±x̂±ŷ − δj,l±x̂∓ŷ). (1.16)

In the discussion of the hidden-order state of URu2Si2 in Chapter 5, the nesting vector is chosen

to be Q⃗ = (0, 0, 2π
c
) in a three-dimensional body-centered-tetragonal (bct) lattice in order to be

consistent with quantum oscillation experiments [36, 69]. Notice that in the bct lattice 2Q⃗ = G⃗

with a reciprocal lattice vector G⃗. The st-DDW order is assumed to be formed on the diagonal

planes in the bct lattice to account for the anisotropic spin susceptibility observed in spin torque

measurements [75, 93]. To be specific, the order parameter considered in Chapter 5 is

⟨c†k+Q,αck,β⟩ = δαβ∆k + i
(
N̂ · σ⃗αβ

)
Wk, (1.17)

with the form factors

Wk = W0 sin

(
kx′a′

2

)
sin

(
kz′c

2

)
, (1.18)

∆k =
∆0

2
[cos (kx′a′)− cos (kz′c)] , (1.19)

where the coordinate is rotated along z axis by 45◦, i.e. x′ = (x − y)/
√
2, y′ = (x + y)/

√
2, and

z′ = z. Here a′ =
√
2a is the lattice constant after the coordinate rotation.

Therefore, the order parameter of the st-DDW order has the form of (iσdx′z′ +dx′2−z′2). Gener-

alizing the model to three dimensions is necessary to explain the quantum oscillation experiments

in URu2Si2. However, the topological features of the st-DDW order which lead to a novel pair-

ing mechanism discussed in Chapter 5 are in the fully gapped diagonal planes. Therefore, we

may treat the system as a collection of quasi-two-dimensional diagonal planes, and each of them

is topologically nontrivial with a quantized spin Hall conductance. The spin current pattern and

modulation of the hopping terms are on the diagonal planes as shown in Chapter 5. Notice that

the st-DDW order preserves time reversal symmetry, and does not produce net charges, magnetic

moments or charge currents to be detected by common s-wave probes, so it is a good candidate for

a hidden-order state.
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Figure 1.3: The sDDW, tDDW and st-DDW orders on a square lattice. The black (red) arrowheads

indicate the directions of up- (down-) spins. The black and red lines indicate different signs of

modulations of the hopping along diagonal directions. Upper-left: charge current pattern of the

sDDW order. Upper-right: spin current pattern of the tDDW order. Bottom: spin current pattern

and modulation of the hopping terms of the st-DDW order.
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1.4 Contents of this dissertation

In this section, we will layout the structure of this dissertation and briefly discuss our motiva-

tions within each chapter. Notice that the notations and abbreviations for each chapter are defined

independently.

In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature

superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large

in-plane anisotropy was observed [39]. Since high-Tc superconductors have a rich phase diagram,

which hosts many possible competing orders, it is both important and interesting to examine the

properties of various density wave order parameters, which may be relevant to the pseudogap

state. In Chapter 2, we discuss in detail the spin susceptibility of the sDDW, tDDW, as well as

the more common spin density wave orders with hopping anisotropies. From numerical calcu-

lations within the framework of random phase approximation, we find nearly vertical dispersion

relations for spin excitations with anisotropic incommensurability at low energies ω ≤ 90 meV,

which are reminiscent of the experiments. At very high energies ω ≥ 165 meV, we also find

energy-dependent incommensurability. Although there are some important differences between

the three cases, unpolarized neutron measurements cannot discriminate between these alternate

possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states

in contrast to the superconducting state, which shows an hourglass shape dispersion.

The pseudogap state of high-temperature superconductors is a profound mystery. It has tan-

talizing evidence of a number of broken symmetry states, not necessarily conventional charge-

and spin-density waves. In Chapter 3, we explore a class of more exotic st-DDW order on a two-

dimensional square lattice, which is characterized by topological properties observed in recently

discovered topological insulators [35, 79]. We compute the topological invariant, spin Chern num-

ber, in momentum space, where periodic boundary conditions are imposed. We also study bulk-

edge correspondence by numerically diagonalizing the Hamiltonian with cylindrical geometry, and

find gapless states carrying spin currents on the edges. The evolution of successive Lifshitz tran-

sitions in the system is tracked as the mean-field parameters are changed. Finally, we suggest that
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these rich topological density wave states deserve closer attention not only in high-temperature

superconductors but in other correlated electron states as well.

The mixed st-DDW state admits skyrmionic textures. In Chapter 4, we show that the skyrmions

in the system carry charge 2e by following Grover and Senthil’s adiabatic argument [31]. The

skyrmions have zero spin and are bosons, so they may undergo Bose-Einstein condensate and

condense into a spin-singlet s-wave superconducting state. In addition, a charge current can be

induced by a time-dependent inhomogeneous spin texture, leading to quantized charge pumping.

The quantum phase transition between this st-DDW and skyrmionic superconducting condensate

likely leads to deconfined quantum critical points. We suggest connections of this exotic state to

electronic materials that are strongly correlated, such as the heavy-fermion material URu2Si2. At

the very least, we provide a concrete example in which the topological order and broken symmetry

are intertwined, which can give rise to non-BCS superconductivity.

In Chapter 5, we propose a novel pairing mechanism in the heavy-fermion material URu2Si2

(other than the Bose-Einstein condensate of skyrmions discussed in Chapter 4). In this chapter, the

st-DDW model is generalized to three dimensions and the st-DDW order is assumed to be formed

on the diagonal planes in the body-centered-tetragonal lattice. The exotic order is topologically

nontrivial and supports a charge 2e skyrmionic spin texture as shown in Chapter 4. We then

assume the skyrmions fractionalize into merons and antimerons at the deconfined quantum critical

point. The interaction between these fractional particles results in a spin-singlet chiral d-wave

superconducting state, which breaks time reversal symmetry. We expect nonzero signals of the

polar Kerr effect at the onset of the superconductivity, but not in the time-reversal-invariant hidden-

order state, except perhaps for magnetic impurities.

To make the dissertation succinct and more accessible, the details of derivations of equations

in Chapters 4 and 5 are included in Appendices A and B.
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CHAPTER 2

Spin dynamics of various density wave states

2.1 Introduction

The pseudogap state of high-temperature superconductors has been studied with numerous exper-

imental tools, yet its origin is not resolved [74]. One view proposes that the pseudogap state is

a particle-hole condensate, a density wave. Of all such states that break translational symmetry

and have strong momentum dependence of the type dx2−y2 , two candidate density wave orders

that can couple to inelastic neutron scattering have been proposed: the singlet dx2−y2-density wave

(sDDW) [13], corresponding to angular momentum ℓ = 2 but a spin singlet, and the spin density

wave order (SDW); in the general classification of density wave orders [71], the latter corresponds

to ℓ = 0 but a spin triplet. In addition to the sDDW order, its triplet counterpart [73] (iσdx2−y2 ,

or tDDW, where σ = ±1 corresponds to up- and down-spins with the ẑ axis as the axis of spin

quantization) also has interesting properties and deserves more attention [73]. Recently, Fujimoto

proposed that a triplet d-wave particle-hole condensate may be realized in the hidden-order state

of the URu2Si2 system [26], which will be the main focus in Chapters 4 and 5. Since high-Tc su-

perconductors have a rich phase diagram, which hosts many possible competing orders, it is both

important and interesting to examine the properties of various density wave order parameters of

higher angular momentum. In this chapter we discuss the three order parameters mentioned above.

Inelastic neutron scattering can directly probe magnetic excitations. The scattering cross-

section is proportional to the magnetic structure factor, which is proportional to the imaginary

part of the dynamic spin susceptibility via the fluctuation-dissipation theorem [2]. Thus, a calcula-

tion of the spin susceptibility will provide a link between theoretical models and neutron scattering
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experiments.

In particular, we want to address a recent experiment in underdoped YBa2Cu3O6.6. The most

striking aspect of this experiment is a vertical dispersion relation of the spin excitations with a large

in-plane anisotropy in the pseudogap state in contrast to the “hourglass” dispersion observed in the

superconducting state [39]. The qualitatively different behavior between the superconducting and

the pseudogap states suggests different mechanisms. Motivated by the experimental observations,

we study the spin susceptibility of the three density wave orders mentioned above with hopping

anisotropy, which breaks C4 rotational symmetry and mimics an “electron nematic” state, which

is a collective phenomenon not described by the density functional theory [52, 32, 107]. Here

we consider a phenomenological model [111], where we set the hopping terms to be anisotropic

along a and b axes, and study the energy-momentum dispersion relations of the dynamical spin

susceptibility. The explicit calculation involves random phase approximation (RPA) that has been

widely discussed in the literature; for some representative papers, see Refs. [90, 25, 89, 44].

The structure of this chapter is as follows: in Sec. 2.2, we sketch the calculation of the spin

susceptibility and discuss the numerical results of the sDDW order. In Sec. 2.3, we discuss the

numerical results of the tDDW order. In Sec. 2.4, we also discuss the numerical results of the

SDW order.

2.2 Spin susceptibility: singlet d-density wave order

In this section we set up the calculation of the spin susceptibility using sDDW as an example. In

the following sections, we will give the results of the other order parameters. To capture the in-

plane anisotropic feature of the pseudogap state in the neutron scattering experiment, we consider

the sDDW order with anisotropic hopping terms. In the momentum space, the order parameter can

be written in terms of the fermion operators as

⟨c†k+Q,αck,β⟩ ∝ iδαβWk (2.1)
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with Wk ≡ W0

2
[cos(kxa) − cos(kyb)], where a and b are lattice constants. For orthorhombic

YBa2Cu3O6.6, a and b are unequal, but the difference is very small. (a = 3.82 Å, b = 3.87 Å.)

The two-dimensional mean-field Hamiltonian will be

HsDDW =
∑
σ

∑
k

(
ϵkc

†
k,σck,σ + ϵk+Qc

†
k+Q,σck+Q,σ + iWkc

†
k,σck+Q,σ + h.c.

)
, (2.2)

where the summation is over the reduced Brillouin zone (RBZ) bounded by (kyb)± (kxa) = ±π,

Q = (π/a, π/b) is the nesting vector, and ϵk ≡ ϵ1k + ϵ2k with [77]

ϵ1k ≡ −2t [(1 + r) cos(kxa) + (1− r) cos(kyb)] , (2.3)

ϵ2k ≡ 4t′ cos(kxa) cos(kyb)− 2t′′ [(1 + r) cos(2kxa) + (1− r) cos(2kyb)]− µ. (2.4)

For r ̸= 0, we have anisotropic hopping terms which breaks fourfold rotational symmetry. Note

that although the anisotropy also modifies the next-nearest-neighbor hopping, it is simply a param-

eter and is lumped into the definition of t′ in our model. The eigenvalues of the Hamiltonian are

λk,± = ϵ2k ± Ek with Ek ≡
√
ϵ21k +W 2

k .

The one-loop spin susceptibility in the momentum and Matsubara frequency space is defined

as, N being the number of lattice sites,

χij
0 (q, q

′, iωn) = − 1

N

∫ β

0

dτeiωnτ ⟨TτS
i
q(τ)S

j
−q′⟩, (2.5)

where i, j = x, y, z, β = 1/kBT , τ is the imaginary time, Tτ is the time-ordering symbol, and the

spin operators are

Si
q ≡

∑
k,σ,σ′

c†k+q,σσ̂
i
σσ′ck,σ′ . (2.6)

Here σ̂σσ′ are the Pauli matrices with spin indices σ and σ′. We can define the longitudinal and the

transverse susceptibilities as χzz
0 (q, q′, ω) and χ+−

0 (q, q′, ω), respectively, with S±
q ≡ Sx

q ± iSy
q and

analytic continuation, iωn → ω + iδ.

In the density wave systems, the Green’s functions form matrices

Ĝσ(k, iωm) ≡

 gσ(k, k, iωm) gσ(k, k +Q, iωm)

gσ(k +Q, k, iωm) gσ(k +Q, k +Q, iωm)

 , (2.7)
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where

gσ(k, k
′, iωm) = −

∫ β

0

dτeiωmτ ⟨Tτck,σ(τ)c
†
k′,σ⟩. (2.8)

The one-loop spin susceptibility also has diagonal and off-diagonal terms

χzz
0 (q, q′, iωm) = δq,q′χ

zz

diag(q, iωm) + δq,q′+Qχ
zz

off(q, iωm), (2.9)

χ+−
0 (q, q′, iωm) = δq,q′χ

+−
diag(q, iωm) + δq,q′+Qχ

+−
off(q, iωm), (2.10)

where the subscripts “diag” and “off” refer to the diagonal and off-diagonal terms of the one-loop

spin susceptibility, respectively.

With a quadratic Hamiltonian, these terms can be written in terms of the Green’s function

matrices by applying Wick’s theorem [9] , and we have

χzz

diag(q, iωm) =
1

βN

∑
k,n,σ

Tr[Ĝσ(k + q, iϵn + iωm)Ĝσ(k, iϵn)], (2.11)

χzz

off(q, iωm) =
1

βN

∑
k,n,σ

∑
j ̸=l

[Ĝσ(k + q, iϵn + iωm)Ĝσ(k, iϵn)]jl, (2.12)

χ+−
diag(q, iωm) =

1

βN

∑
k,n

Tr[Ĝ↑(k + q, iϵn + iωm)Ĝ↓(k, iϵn)], (2.13)

χ+−
off(q, iωm) =

1

βN

∑
k,n

∑
j ̸=l

[Ĝ↑(k + q, iϵn + iωm)Ĝ↓(k, iϵn)]jl, (2.14)

where Tr is the trace, and Ĝσ(k, iϵn) can be obtained from the Hamiltonian.

For the sDDW order, the up-spin and down-spin components are identical. For σ =↑ or ↓, we

have

Ĝσ(k, iϵ) =
1

(iϵ− ϵ2k)2 − E2
k

 iϵ+ ϵ1k − ϵ2k iWk

−iWk iϵ− ϵ1k − ϵ2k

 . (2.15)

Therefore, we have

χzz
0 (q, q′, ω) = δq,q′χdiag(q, ω) + δq,q′+Qχoff(q, ω), (2.16)

χ+−
0 (q, q′, ω) =

1

2
χzz
0 (q, q′, ω), (2.17)
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where

χdiag(q, ω)

=
1

N

∑
k

(
1− ϵ1kϵ1k+q +WkWk+q

EkEk+q

)
×
[
nF (ϵ2k + Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k − Ek + ϵ2k+q − Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k + Ek + ϵ2k+q + Ek+q + iδ

]
+

1

N

∑
k

(
1 +

ϵ1kϵ1k+q +WkWk+q

EkEk+q

)
×
[
nF (ϵ2k + Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k − Ek + ϵ2k+q + Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k + Ek + ϵ2k+q − Ek+q + iδ

]
,

(2.18)

χoff(q, ω)

=
i

N

∑
k

(
−ϵ1kWk+q + ϵ1k+qWk

EkEk+q

)
×
[
−nF (ϵ2k + Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k − Ek + ϵ2k+q − Ek+q + iδ
− nF (ϵ2k − Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k + Ek + ϵ2k+q + Ek+q + iδ

+
nF (ϵ2k + Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k − Ek + ϵ2k+q + Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k + Ek + ϵ2k+q − Ek+q + iδ

]
,

(2.19)

where nF (E) is Fermi-Dirac distribution function, and δ is set to 0.06t for the numerical cal-

culation in order to obtain smooth curves. Notice that, for the sDDW order, χzz
0 (q, q′, ω) =

2χ+−
0 (q, q′, ω) because up-spin and down-spin parts of the Hamiltonian are identical.

Applying random phase approximation, we obtain the RPA susceptibility [90, 17]

χ̂zz
RPA(q, q

′, ω) =
∑
q1

χ̂zz
0 (q, q1, ω)

Î − Uχ̂zz
0 (q1, q′, ω)

(2.20)

χ̂+−
RPA(q, q

′, ω) =
∑
q1

χ̂+−
0 (q, q1, ω)

Î − Uχ̂+−
0 (q1, q′, ω)

(2.21)

where χ̂zz
0 (q, q′, ω) and χ̂+−

0 (q, q′, ω) are the 2 × 2 matrices from Eqs. (2.16) and (2.17), respec-

tively. For the numerical calculation, we compute the imaginary part of the diagonal terms of the

RPA susceptibility (q = q′).
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For unpolarized measurements, the scattering intensity I contains both the spin-flip and the

non-spin-flip channels, I ∝ (χzz + 2χ+−)/3. However, we will present the longitudinal and

transverse susceptibilities separately so that it can provide more information about the polarized

neutron scattering experiments, which may be achieved in the future.

For illustrative purposes, we set t = 0.15 eV, t′ = 0.32t, t′′ = 0.1t′ [3, 77, 28, 27], W0 = U =

0.65t, r = −0.1 [111], and kBT = 0.05t. The chemical potential is set to µ = −0.805t in order to

obtain a hole doping level of nh ≈ 10.07%, approximately the doping level in the experiment [39].

Other similar choices of the parameters will not change the conclusions.

In Fig. 2.1, the constant energy cuts of the imaginary part of the transverse spin susceptibility

along a∗ axis for ω ≤ 0.6t are plotted. The results along b∗ axis are similar and are not shown here.

Away from Q = (π/a, π/b), the magnetic excitations are peaked at the incommensurate positions

(qxa, qyb) = (π ± δa, π) and (π, π ± δb), where we define the incommensurability δa and δb along

a∗ and b∗ axes, respectively. From the numerical results, one finds that δa and δb are weakly energy

dependent, similar to the inelastic neutron scattering experiment [39]. Furthermore, a prominent

anisotropy in the incommensurability δb < δa can be seen. With the hopping anisotropy r = −0.1,

we obtain δa ≈ (0.30±0.01)π and δb ≈ (0.235±0.015)π, which gives δb/δa ≈ 0.78, which would

be again similar to δb/δa ≈ 0.6 reported in the neutron scattering experiments [39].

One may further adjust the parameters of this model to fit the experimental data, but that is

not the goal of this work. We have varied the chemical potential, µ, to check how the dispersion

relations vary with hole doping; results for different doping levels are qualitatively similar. In

the doping range 8% ≤ nh ≤ 20%, there are always weakly energy-dependent incommensurate

excitations, and the incommensurability δa and δb increase with increasing doping level nh as

shown in Fig. 2.2.

Note that hopping anisotropy is not necessary for the existence of the nearly vertical disper-

sions. To demonstrate this, the numerical results with isotropic hopping are plotted in Fig. 2.3.

Here r is set to 0, µ = −0.806t, and the hole doping level is nh = 10.03%. All the other parameters

are the same as in Fig. 2.1. One can still find nearly vertical dispersions with incommensurability

δa ≈ (0.255± 0.015)π even without the hopping anisotropy [45].
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Figure 2.1: Constant energy cuts of Imχ+−
RPA(q, ω) along a∗ axis when qy = π/b and

0.1t ≤ ω ≤ 0.6t for the sDDW order. The weakly energy-dependent incommensurate peak posi-

tions are marked with red dashed lines. The results of Imχzz
RPA(q, ω) are similar and omitted.
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Figure 2.2: Doping-dependence of incommensurability δa and δb. Here µ is adjusted to obtain

different doping levels, and all the other parameters are the same as in Fig. 2.1.
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Figure 2.3: Constant energy cuts of Imχ+−
RPA(q, ω) along a∗ axis when qy = π/b for the sDDW

order without anisotropies. Here r = 0, µ = −0.806t, and all the other parameters are the same as

in Fig. 2.1.
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The neutron scattering experiments show vertical dispersions in the energy range 30 meV ≤

ω ≤ 60 meV [39], and the numerical results exhibit a nearly vertical dispersions up to ω ≤ 0.6t =

90 meV with the chosen parameters, which are similar to experiments. It is interesting to see how

the excitation peaks evolve at higher energies, so in Fig. 2.4 we present the numerical results along

the a∗ axis for 0.7t ≤ ω ≤ 1.4t, where all the parameters are the same as in Fig. 2.1 except for the

energy ω. The results along b∗ axis are again so similar that they are not shown here. In Fig. 2.4,

one finds that the high energy spin excitations are strongly energy dependent. The incommensurate

peaks move toward q = Q in the range 0.7t ≤ ω ≤ 0.9t, and eventually disappear at ω ≈ 1.0t,

where the intensity around q = Q is enhanced. When ω ≈ 1.1t, a central peak emerges at the

commensurate position q = Q. As the energies are further increased, the central peak splits into

two peaks deviating fromQ with incommensurability δ′a and δ′b, which are marked by dashed lines.

Unlike the low-energy incommensurability δa and δb, δ′a and δ′b are energy dependent and increase

with increasing energies. Note that to observe δ′a and δ′b, the neutron scattering experiment needs

to be performed with very high energies (ω ≥ 1.1t = 165 meV), or perhaps high-energy resonant

inelastic x-ray scattering can be of use [60].

The reason for the unusual vertical dispersions at low energies and a different behavior at high

energies can be understood by examining the imaginary part of Eq. (2.18). In this equation, the first

two terms are interband contribution arising from the scattering from the upper band (ϵ2k +Ek) to

the lower band (ϵ2k+q −Ek+q), and the scattering from the lower band (ϵ2k−Ek) to the upper band

(ϵ2k+q + Ek+q). The last two terms, on the other hand, are intraband scattering. For the purpose

of illustration, an example of the band structure and the scattering process is plotted in Fig. 2.5,

where the interband and intraband scattering are shown with arrows.

The interband and intraband terms of Eq. (2.18) for 0.1t ≤ ω ≤ 0.6t are plotted in Fig. 2.6

and Fig. 2.7, respectively. The results for higher energies 0.7t ≤ ω ≤ 1.4t are not shown because

they are very similar. From Fig. 2.6 and Fig. 2.7, one finds that the intensity near q = Q is mainly

from the contribution of the interband terms, whereas the contribution of the intraband terms arise

when q is away from Q. From Eq. (2.18), we can see that at q = Q, the intraband terms vanish

and only the interband terms contribute, leading to magnetic excitations peaked around ω ≈ 1.1t.
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0.7t ≤ ω ≤ 1.4t for the sDDW order. The energy-dependent incommensurate peak positions
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scattering, and the brown line is the chemical potential µ. The parameters are the same as in

Fig. 2.1.
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In the vicinity of q = Q, interband terms still dominate, and we may expand them to first order in

δq ≡ |q −Q| and obtain

−π
N

∑
k

[nF (ϵ2k ± Ek)− nF (ϵ2k+q ∓ Ek+q)] δ(ω − ϵ2k ∓ Ek + ϵ2k+q ∓ Ek+q)

≃ π

N

∑
k

[
nF (ϵ2k ∓ Ek)− nF (ϵ2k ± Ek) + ▽⃗k(ϵ2k ∓ Ek) · δq

∂nF (E)

∂E

∣∣∣∣
E=ϵ2k∓Ek

]
×δ(ω ∓ 2Ek + ▽⃗k(ϵ2k ∓ Ek) · δq), (2.22)

which will be peaked at δq = (±2Ek−ω)/
[
▽⃗k(ϵ2k ∓ Ek)

]
. However, for low energies, the energy

conservation condition cannot be satisfied unless Ek is very small, which diminishes the difference

between the Fermi functions and thus suppresses the intensity. Therefore, there is no enhanced

peak in the vicinity of q = Q for low energies. For higher energies, the energy conservation factor

will be satisfied, and the intensity at the incommensurate positions (δ′a and δ′b) will be enhanced

and the excitation peaks can be seen as ω ? 1.1t in Fig. 2.4.

In contrast, away from q = Q, the intraband terms dominate. The peak positions of the energy

conservation factor, δ(ω − ϵ2k ∓ Ek + ϵ2k+q ± Ek+q), move away from Q with increasing ω. On

the other hand, the coherence factor [1 + (ϵ1kϵ1k+q +WkWk+q)/(EkEk+q)] vanishes at q = Q and

develops with increasing |q − Q|. For the chosen parameters, the energy dependence of these

two opposite effects almost cancels out in the energy range 0 ≤ ω ≤ 0.6t, leading to the weakly

energy-dependent positions of local maxima (δa and δb) as in Fig. 2.7. Such a dispersionless feature

is sensitive to the parameters because it depends on whether the contribution of the intraband

terms overcomes that of the interband terms away from Q. The nature of the excitation peaks

due to the interband terms is distinct from the intraband terms. The dominant contribution of the

interband terms are determined by the energy conservation factor and the Fermi functions, leading

to sharper excitation peaks at (π± δ′a, π) and (π, π± δ′b), whereas the intraband terms also depend

on the coherence factor, resulting in relatively broadened local maxima instead of sharp peaks at

(π ± δa, π) and (π, π ± δb).
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Figure 2.6: Constant energy cuts of the interband terms of Imχdiag(q, ω) in Eq. (2.18) along a∗

axis when qy = π/b for 0.1t ≤ ω ≤ 0.6t.

2.3 Triplet d-density wave order

We now consider the tDDW order, and choose the spin quantization axis to be the z axis without

any loss of generality, that is,

⟨c†k+Q,αck,β⟩ ∝ i(d̂ · σ⃗αβ)Wk = i(ẑ · σ⃗αβ)Wk. (2.23)

The tDDW mean-field Hamiltonian is therefore

HtDDW =
∑
σ

∑
k

(
ϵkc

†
k,σck,σ + ϵk+Qc

†
k+Q,σck+Q,σ + iσWkc

†
k,σck+Q,σ + h.c.

)
, (2.24)

which has the same eigenvalues as the sDDW Hamiltonian.

For the tDDW order, the Green’s function matrices become

Ĝσ(k, iϵ) =
1

(iϵ− ϵ2k)2 − E2
k

 iϵ+ ϵ1k − ϵ2k iσWk

−iσWk iϵ− ϵ1k − ϵ2k

 , (2.25)
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where σ = +1 for up-spin and σ = −1 for down-spin, and the spin susceptibility will become

χzz
0 (q, q′, ω) = δq,q′χ

zz

diag(q, ω), (2.26)

χ+−
0 (q, q′, ω) = δq,q′χ

+−
diag(q, ω) + δq,q′+Qχ

+−
off(q, ω), (2.27)

where χzz

diag(q, ω) is the same as χdiag(q, ω) in Eq. (2.18),

χ+−
diag(q, ω)

=
1

2N

∑
k

(
1− ϵ1kϵ1k+q −WkWk+q

EkEk+q

)
×
[
nF (ϵ2k + Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k − Ek + ϵ2k+q − Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k + Ek + ϵ2k+q + Ek+q + iδ

]
+

1

2N

∑
k

(
1 +

ϵ1kϵ1k+q −WkWk+q

EkEk+q

)
×
[
nF (ϵ2k + Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k − Ek + ϵ2k+q + Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k + Ek + ϵ2k+q − Ek+q + iδ

]
,

(2.28)

and

χ+−
off(q, ω)

=
−i
2N

∑
k

(
ϵ1kWk+q + ϵ1k+qWk

EkEk+q

)
×
[
−nF (ϵ2k + Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k − Ek + ϵ2k+q − Ek+q + iδ
− nF (ϵ2k − Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k + Ek + ϵ2k+q + Ek+q + iδ

+
nF (ϵ2k + Ek)− nF (ϵ2k+q + Ek+q)

ω − ϵ2k − Ek + ϵ2k+q + Ek+q + iδ
+
nF (ϵ2k − Ek)− nF (ϵ2k+q − Ek+q)

ω − ϵ2k + Ek + ϵ2k+q − Ek+q + iδ

]
.

(2.29)

The RPA susceptibility of the tDDW order will be

χzz
RPA(q, q

′, ω) =
χzz
0 (q, q′, ω)

1− Uχzz
0 (q, q′, ω)

(2.30)

χ̂+−
RPA(q, q

′, ω) =
∑
q1

χ̂+−
0 (q, q1, ω)

Î − Uχ̂+−
0 (q1, q′, ω)

, (2.31)

where χzz
0 (q, q′, ω) is from Eq. (2.26) and χ̂+−

0 (q, q′, ω) is a 2× 2 matrix from Eq. (2.27).
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The constant energy cuts of the imaginary part of the spin susceptibility of the tDDW order

along a∗ axis are shown in Fig. 2.8. The hopping anisotropy r is set to 0 for simplicity and

the parameters are the same as in Fig. 2.3. The longitudinal susceptibility behaves similar to

the sDDW order, whereas the transverse susceptibility is significantly different in the vicinity of

q = Q. In comparison with the sDDW order, the intensity of Imχ+−
RPA(q, ω) of the tDDW order

is suppressed in the vicinity of q = Q. The intensity exhibits a V-shaped curve around q = Q at

ω = 0.1t, which evolves gradually to a U-shaped curve at ω = 0.6t. Here we can also see the nearly

vertical dispersion of the incommensurate spin excitations δa ≈ (0.255± 0.015)π. Notice that for

unpolarized measurements, with I ∝ (χzz + 2χ+−)/3, there will still be the vertical dispersion

away from q = Q.

The difference between the sDDW and tDDW order is that in χ+−
diag(q, ω) of the tDDW or-

der, Eq. (2.28), the WkWk+q term of the coherence factor changes sign and reduces the interband

contribution. As a result, the intensity in the vicinity of q = Q is suppressed. The significant

difference between the transverse and the longitudinal susceptibilities should permit one to dis-

tinguish the singlet and the triplet orders in spin-polarized measurements. On the other hand, the

sign change of WkWk+q does not affect the intraband terms as much as the interband terms, so the

nearly vertical dispersions due to the intraband contribution can still be seen away from q = Q.

2.4 Spin density wave order

Finally, we also consider the SDW order, which has the order parameter

⟨c†k+Q,αck,β⟩ ∝ (ẑ · σ⃗αβ)∆s. (2.32)

The SDW mean-field Hamiltonian will be

HSDW =
∑
σ

∑
k

(
ϵkc

†
k,σck,σ + ϵk+Qc

†
k+Q,σck+Q,σ + σ∆sc

†
k,σck+Q,σ + h.c.

)
, (2.33)

where the eigenvalues now become λSk,± = ϵ2k ± ES
k with ES

k ≡
√
ϵ21k +∆2

s.

29



0.8 1.0 1.2 1.4
qxa�Π

0.5

1.0

1.5

2.0

2.5

3.0

ImΧRPA
zz Hqx,qy=

Π

b
,ΩL

Ω=0.6t

Ω=0.5t

Ω=0.4t

Ω=0.3t

Ω=0.2t

Ω=0.1t

0.8 1.0 1.2 1.4
qxa�Π

0.1

0.2

0.3

0.4

0.5

ImΧRPA
+-
Hqx,qy=

Π

b
,ΩL

Ω=0.6t

Ω=0.5t

Ω=0.4t

Ω=0.3t

Ω=0.2t

Ω=0.1t

Figure 2.8: Constant energy cuts of Imχzz
RPA(q, ω) (upper) and Imχ+−

RPA(q, ω) (lower) for the

tDDW order along a∗ axis when qy = π/b. The parameters are the same as in Fig. 2.3.
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For the SDW order, the Green’s function matrices become

Ĝσ(k, iϵ) =
1

(iϵ− ϵ2k)2 − (ES
k )

2

 iϵ+ ϵ1k − ϵ2k σ∆s

σ∆s iϵ− ϵ1k − ϵ2k

 . (2.34)

The longitudinal and transverse spin susceptibility are

χzz
0 (q, q′, ω) = δq,q′χ

zz

diag(q, ω), (2.35)

χ+−
0 (q, q′, ω) = δq,q′χ

+−
diag(q, ω) + δq,q′+Qχ

+−
off(q, ω), (2.36)

where χzz

diag(q, ω), χ
+−
diag(q, ω), and χ+−

off(q, ω) now become

χzz

diag(q, ω)

=
1

N

∑
k

(
1− ϵ1kϵ1k+q +∆2

s

ES
kE

S
k+q

)

×

[
nF (ϵ2k + ES

k )− nF (ϵ2k+q − ES
k+q)

ω − ϵ2k − ES
k + ϵ2k+q − ES

k+q + iδ
+
nF (ϵ2k − ES

k )− nF (ϵ2k+q + ES
k+q)

ω − ϵ2k + ES
k + ϵ2k+q + ES

k+q + iδ

]

+
1

N

∑
k

(
1 +

ϵ1kϵ1k+q +∆2
s

ES
kE

S
k+q

)

×

[
nF (ϵ2k + ES

k )− nF (ϵ2k+q + ES
k+q)

ω − ϵ2k − ES
k + ϵ2k+q + ES

k+q + iδ
+
nF (ϵ2k − ES

k )− nF (ϵ2k+q − ES
k+q)

ω − ϵ2k + ES
k + ϵ2k+q − ES

k+q + iδ

]
,

(2.37)

χ+−
diag(q, ω)

=
1

2N

∑
k

(
1− ϵ1kϵ1k+q −∆2

s

ES
kE

S
k+q

)

×

[
nF (ϵ2k + ES

k )− nF (ϵ2k+q − ES
k+q)

ω − ϵ2k − ES
k + ϵ2k+q − ES

k+q + iδ
+
nF (ϵ2k − ES

k )− nF (ϵ2k+q + ES
k+q)

ω − ϵ2k + ES
k + ϵ2k+q + ES

k+q + iδ

]

+
1

2N

∑
k

(
1 +

ϵ1kϵ1k+q −∆2
s

ES
kE

S
k+q

)

×

[
nF (ϵ2k + ES

k )− nF (ϵ2k+q + ES
k+q)

ω − ϵ2k − ES
k + ϵ2k+q + ES

k+q + iδ
+
nF (ϵ2k − ES

k )− nF (ϵ2k+q − ES
k+q)

ω − ϵ2k + ES
k + ϵ2k+q − ES

k+q + iδ

]
,

(2.38)
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and

χ+−
off(q, ω)

=
∆s

2N

∑
k

[(
−ES

k + ES
k+q

ES
kE

S
k+q

)
nF (ϵ2k + ES

k )− nF (ϵ2k+q + ES
k+q)

ω + ϵ2k + ES
k − ϵ2k+q − ES

k+q + iδ

+

(
ES

k − ES
k+q

ES
kE

S
k+q

)
nF (ϵ2k − ES

k )− nF (ϵ2k+q − ES
k+q)

ω + ϵ2k − ES
k − ϵ2k+q + ES

k+q + iδ

+

(
ES

k + ES
k+q

ES
kE

S
k+q

)
nF (ϵ2k + ES

k )− nF (ϵ2k+q − ES
k+q)

ω + ϵ2k + ES
k − ϵ2k+q + ES

k+q + iδ

−

(
ES

k + ES
k+q

ES
kE

S
k+q

)
nF (ϵ2k − ES

k )− nF (ϵ2k+q + ES
k+q)

ω + ϵ2k − ES
k − ϵ2k+q − ES

k+q + iδ

]
. (2.39)

The RPA susceptibility of the SDW order is in the same form as the tDDW order in Eqs. (2.30)

and (2.31).

The constant energy cuts of Imχzz
RPA(q, ω) and Imχ+−

RPA(q, ω) for the SDW order along a∗ axis

are plotted in Fig. 2.9. Here we set the SDW gap to be ∆s = 0.65t and µ = −1.026t. The hole

doping level is nh = 10.02%. The results are interesting: Imχzz
RPA(q, ω) and Imχ+−

RPA(q, ω) for

SDW order seem to be ‘interchanged’ in comparison with those for the tDDW order in Fig. 2.8. In

addition to this interchange, there is also a difference in the intensity around q = Q between tDDW

and SDW, which could be observed if spin-polarized experiments with high resolution could be

achieved, although one cannot be sure because of the non-universal nature of this difference. Away

from q = Q, we can also see the vertical dispersions of the incommensurate spin excitations with

δa ≈ 0.28π. Again, for unpolarized measurements, there will still be the vertical dispersion away

from q = Q.

To understand the swap of the susceptibilities between tDDW and SDW, we should compare

Eq. (2.18) and Eq. (2.28) for the tDDW with Eq. (2.37) and Eq. (2.38) for the SDW; we can see that

at q = Q, WkWk+q = −W 2
k in tDDW, and this leads to a minus sign, while ∆2

s in SDW does not.

Therefore, the form of the coherence factors of SDW is opposite to tDDW in the vicinity of q = Q.

As a result, the intensity of Imχ+−
RPA(q, ω) for SDW in the vicinity of q = Q is enhanced due to

the dominant interband contribution, whereas the intensity of Imχzz
RPA(q, ω) is suppressed in the

vicinity of q = Q. Thus, the difference in coherence factors leads to the “interchanging” behavior
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between tDDW and SDW; the different momentum dependence of the order parameters also leads

to distinct momentum dependence around q = Q. Away from q = Q, on the other hand, both

Imχ+−
RPA(q, ω) and Imχzz

RPA(q, ω) show vertical dispersion relations due to intraband contributions.

2.5 Conclusion

In conclusion, we have attempted to provide an explanation of a recent neutron scattering mea-

surement in an underdoped high-temperature superconductor, which points to the fact that the

pseudogap state is not a continuation of the superconducting state below Tc. The salient feature is

a vertical dispersion seen above Tc in the spin excitations, as opposed to an hourglass shape disper-

sion seen below Tc. We have also explicitly checked that the consistency with experiments does not

require any fine tuning of the parameter. In fact, as demonstrated, the vertical dispersion observed

in our calculation does not require a-b anisotropy (see Fig. 2.3); of course, on phenomenological

grounds, anisotropy should be included, as it has been included here. Note that our peaks appear

to be sharper than those observed in experiments.

Although couched in the language of Hartree-Fock theory augmented by RPA, a thorough

analysis of the properties of various alternate order parameters should be a useful guide. We

also checked a band structure to contain electron pockets as well, but the robust aspects of the

conclusions were unchanged. The vertical dispersion feature appears to persist in the doping range

8% ≤ nh ≤ 20%. At higher energies, we find energy-dependent incommensurability due to

the interband contributions. We also contrast the spin dynamics of the tDDW and SDW orders,

which exhibit different features around q = Q, which could, in principle, allow one to identify the

spin nature of the underlying phase in a spin-polarized neutron scattering experiment with high

resolution. The transverse and the longitudinal spin dynamics are interchanged between SDW

and tDDW. In principle, a whole class of higher angular momentum particle-hole condensates are

possible. Experimental evidence of these order parameters should be a major step forward. The

tDDW is such an unconventional hidden order that its discovery would be of great importance.

Note that tDDW is even invariant under time reversal.
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Figure 2.9: Constant energy cuts of Imχzz
RPA(q, ω) (upper) and Imχ+−

RPA(q, ω) (lower) for the

SDW order along a∗ axis when qy = π/b. Here ∆s = 0.65t, µ = −1.026t, and the other parameters

are the same as in Fig. 2.8.

34



CHAPTER 3

Topology of the mixed singlet-triplet d-density wave state

3.1 Introduction

In a recent paper, Nayak [71] provided an elegant classification of density wave states of nonzero

angular momentum. The surprise is that given the roster of the multitude of such states, so few are

experimentally observed. Of these, the angular momentum ℓ = 2, spin singlet has taken on a spe-

cial significance in the context of pseudogaps in cuprate high-temperature superconductors [13]. It

breaks translational symmetry and gives rise to a momentum-dependent dx2−y2 gap. The so called

singlet d-density wave (sDDW) order does not modulate charge or spin, but produces staggered

circulating charge currents from plaquette to plaquette much like an antiferromagnet. In its pristine

form, in the half-filled limit, that is, for one electron per site, the Fermi surface of sDDW consists

of four Dirac points and is therefore a semimetal. This broken symmetry state has inspired much

effort in characterizing the pseudogap as a phase with an order parameter distinct from a fluctuating

superconducting order parameter.

Presently, it appears from many experiments that the pseudogap may be susceptible to a host of

possible competing orders [105, 62, 1, 16, 29, 8]. Thus it is important and interesting to explore an

order parameter closely related to the sDDW, which retains many of its primary signatures, such as

the broken translational symmetry or a particle-hole condensate of higher angular momentum. In

particular we consider a density wave of nonzero angular momentum of mixed singlet and triplet

varieties such that in the half-filled limit, it is a gapped insulator. Unlike the semimetallic sDDW,

it has a nonvanishing quantized spin Hall effect for a range of values of the chemical potential.

This is in fact a topological Mott insulator [80] because it is the electron-electron interaction that

35



is necessary for it to be realized. Further addition of charge carriers, doping, leads to Lifshitz

transitions destroying the quantization but not the very existence of the spin Hall effect.

It is remarkable that such an unconventional broken symmetry, possibly relevant to high-

temperature superconductors, belongs to the same class of recently discussed novel state of matter

known as topological insulators; in fact, our work is to some extent motivated by these recent devel-

opments [35, 79]. We wish to emphasize that the undoped parent compounds of high-temperature

superconductors are proven to be antiferromagnets with sizeable moments and the spin density

wave transforms according to ℓ = 0 [11]. The proposed topological density wave should therefore

be relevant at larger doping that perhaps originates from a nearby insulating state. In no way is this

different from the original suggestion of the sDDW order.

It has been known that triplet iσdx2−y2 order parameter corresponds to staggered circulating

spin currents around a square plaquette [73], wherein the oppositely aligned spins circulate in

opposite directions, as shown in Fig. 3.1. This reminds us of topological band insulators where

oppositely aligned edge-spins travel in opposite directions. However, there is no topological pro-

tection because the bulk is not gapped, but is a semimetal instead. A more interesting case is the

order parameter (iσdx2−y2 +dxy), where σ = ±1 for up and down spins, with the quantization axis

along ẑ. Such a mixed singlet-triplet d-density wave (st-DDW) state not only satisfies time-reversal

invariance but is also fully gapped, analogous to time-reversal-invariant band insulators discovered

recently [47, 48]. A singlet chiral (idx2−y2 + dxy) density wave that breaks macroscopic time-

reversal symmetry was employed to deduce a possible polar Kerr effect and an anomalous Nernst

effect [96, 113, 53, 54] in the pseudogap phase of the cuprates. Another topological state with a

different symmetry of the order parameter was discussed in Ref. [83].

As to topological properties of superfluids, we refer to the book by Volovik [101]. Supercon-

ductors are particle-particle condensates, and, as such, the orbital wave function constrains the spin

wave function because of the exchange symmetry. What we are discussing here are particle-hole

condensates, and there is no exchange requirement between a particle and a hole. Thus, the orbital

wave function cannot constrain the spin wave function. Thus an orbital wave function with even

parity can come in both spin-singlet and -triplet varieties.
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The plan of this chapter is as follows. Section 3.2 is divided into three parts. Section 3.2.1

discusses the topological aspects in the absence of magnetic field, while Sec. 3.2.2 contains results

for a perpendicular magnetic field. Section 3.2.3 consists of a thorough discussion of the bulk-edge

correspondence that follows from topological considerations. In Sec. 3.3, we discuss Fermi surface

reconstruction via a Lifshitz transition as the system is doped. In Sec. 3.4, possible experimental

detection schemes are suggested. The symmetry of the order parameter that we have introduced

is such that the necessary experimental techniques are more subtle than the detection of more

common broken symmetries, such as spin- or charge-density waves.

!

!

!

!

!

! !
!

Figure 3.1: Triplet iσdx2−y2 density wave in the absence of an external magnetic field. The current

pattern of each spin species on an elementary plaquette is shown. The state is a semimetal. On the

other hand, iσdx2−y2 + dxy can be fully gapped for a range of chemical potential. An example is

shown in Fig. 3.2.
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3.2 Order parameter topology

3.2.1 Zero external magnetic field

The order parameter that we consider is

⟨c†k+Q,σck,σ′⟩ = [Φµ(k)τµ]σσ′ , (3.1)

where c†k,σ(ck,σ) is the Fermion creation (annihilation) operator with momentum k and spin com-

ponent σ; µ = 0, · · · 3; τ1, τ2, and τ3 are the standard Pauli matrices and τ0 = I is the identity

matrix. The nesting vector Q⃗ = (π/a, π/a). We choose the components of the order parameter to

be

Φ3(k) ∝ i
W0

2
(cos kx − cos ky) ≡ iWk (3.2)

Φ0(k) ∝ ∆0 sin kx sin ky ≡ ∆k. (3.3)

and the remaining components are set to zero. The right-hand side is written in terms of the

gap parameters and the conversion involves suitable coupling constants, which we do not need to

specify in a non-self-consistent Hartree-Fock theory. The lattice spacing a is set to unity.

In the absence of an external magnetic field, the st-DDW Hamiltonian is

Hst-DDW − µN =
∑
k

Ψ†
kAkΨk, (3.4)

where the summation is over the reduced Brillouin zone (RBZ) bounded by ky ± kx = ±π, and

the spinor, Ψ†
k, is defined as (c†k,↑, c

†
k+Q,↑, c

†
k,↓, c

†
k+Q,↓). The chemical potential is subtracted for

convenience, N being the number of particles. The matrix Ak is

Ak =


ϵk − µ ∆k + iWk 0 0

∆k − iWk ϵk+Q − µ 0 0

0 0 ϵk − µ ∆k − iWk

0 0 ∆k + iWk ϵk+Q − µ

 , (3.5)

with a generic set of band parameters,

ϵk = ϵ1k + ϵ2k (3.6)

ϵ1k = −2t(cos kx + cos ky), ϵ2k = 4t′ cos kx cos ky. (3.7)
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We may choose t = 0.15 eV, renormalized by about a factor of 2 from band calculations [3, 77,

28, 27], t′ = 0.3t, and W0 ∼ −∆0 ∼ t ∼ J , where J is the antiferromagnetic exchange constant

in high-temperature superconductors, for the purpose of illustration. Each of the two 2× 2 blocks

can be written in terms of two-component spinors, ψk,σ = (ck,σ, ck+Q,σ)
T , σ = ±1 ≡ (↑, ↓); for

example, for the up spin block we have

H↑ =
∑
k

ψ†
k,↑
[
(ϵ2k − µ)τ 0 + ϵ1kτ

3 +∆kτ
1 −Wkτ

2
]
ψk,↑. (3.8)

The eigenvalues (± refers to the upper and the lower bands, respectively)

λk,± = ϵ2k − µ± Ek, Ek =
√
ϵ21k +W 2

k +∆2
k. (3.9)

are plotted in Fig. 3.2.

Figure 3.2: Energy spectra λk,± + µ of the st-DDW state. Here, for illustration, we have chosen

W0 = t, ∆0 = −t and the band parameters, as described in the text. For the chemical potential µ

anywhere within the spectral gap, the system is exactly half-filled and is a Mott insulator, unlike

the semimetallic sDDW at half-filling.

Since up- and down-spin components are decoupled, the Chern number for each component
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can be computed separately. Note that while the (ϵ2k−µ) term is present in the eigenvalues, it does

not enter the eigenvectors, because the identity matrix commutes with the Pauli matrices. After

diagonalizing the Hamiltonian, we can obtain the eigenvectors

|Φσ,±(k)⟩ = (u±e
iσθk/2, v±e

−iσθk/2)T, (3.10)

where

u2± =
1

2

(
1± ϵ1k

Ek

)
, (3.11)

v2± =
1

2

(
1∓ ϵ1k

Ek

)
, (3.12)

θk = arctan

(
Wk

∆k

)
+ πΘ(−∆k), (3.13)

where Θ(x) is Heaviside step function.

To compute the Berry phase of the eigenstates, we define the Berry curvature, Ω⃗σ,± as

Ω⃗σ,± ≡ i▽⃗k × ⟨Φσ,±(k)|▽⃗k|Φσ,±(k)⟩ (3.14)

Substituting the eigenstates into the above equation, the Berry curvature can be written as

Ω⃗σ,± = i▽⃗k ×
[
(u2± − v2±)▽⃗k

(
iσ
θk
2

)]
. (3.15)

Since u±, v±, and θk only depend on kx and ky, only the z component, Ωσ,±, is nonzero, which

is given by

Ωσ,± = ∓σ
2

[
∂

∂kx

(
ϵ1k
Ek

)
∂θk
∂ky

− ∂

∂ky

(
ϵ1k
Ek

)
∂θk
∂kx

]

= ±σ 1

2E3
k

∣∣∣∣∣∣∣∣∣∣∣∣

∆k Wk ϵ1k

∂∆k

∂kx

∂Wk

∂kx

∂ϵ1k
∂kx

∂∆k

∂ky

∂Wk

∂ky

∂ϵ1k
∂ky

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.16)

From the above determinant, we can see that the Berry curvature will be zero if one of ∆k and

Wk is zero, so we need a mixing of the dx2−y2 and dxy components to have a nontrivial topological

invariant.
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If we define the unit vector n̂σ ≡ h⃗σ/|⃗hσ| with the pseudospin vector h⃗σ = (∆k,−σWk, ϵ1),

the Berry curvature can be written as

Ωσ,± = ∓1

2
n̂σ ·

(
∂n̂σ

∂kx
× ∂n̂σ

∂ky

)
. (3.17)

Now we will show that the Chern number for a general two by two Hamiltonian, which can

be written in terms of the pseudospin vector (e.g. h⃗σ in this case), is quantized [81]. The Chern

number, which is the Berry phase divided by 2π, can be written as

Nσ,± =

∫
RBZ

d2k

2π
Ωσ,±

= ∓
∫

RBZ

d2k

4π
n̂σ ·

(
∂n̂σ

∂kx
× ∂n̂σ

∂ky

)
. (3.18)

Since n̂σ is a unit vector with three components, it can be parametrized with two variables, the

polar angle and azimuthal angle; that is,

n̂σ = (sin θσ cosϕσ, sin θσ sinϕσ, cos θσ), (3.19)

where θσ ∈ [0, π) and ϕσ ∈ [0, 2π). By utilizing the chain rule, we obtain

Nσ,± = ∓ 1

4π

∫
RBZ

d2k n̂σ ·
[(

∂n̂σ

∂θσ

∂θσ
∂kx

+
∂n̂σ

∂ϕσ

∂ϕσ

∂kx

)
×
(
∂n̂σ

∂θσ

∂θσ
∂ky

+
∂n̂σ

∂ϕσ

∂ϕσ

∂ky

)]
= ∓ 1

4π

∫
RBZ

d2k n̂σ ·
(
∂n̂σ

∂θσ
× ∂n̂σ

∂ϕσ

)(
∂θσ
∂kx

∂ϕσ

∂ky
− ∂θσ
∂ky

∂ϕσ

∂kx

)
= ∓ 1

4π

∫
int
dθσdϕσ n̂σ ·

(
∂n̂σ

∂θσ
× ∂n̂σ

∂ϕσ

)
, (3.20)

where in the last step we change the integral from k-space to the internal space of n̂σ, and we also

use the Jacobian of the change of variables from (kx, ky) to (θσ, ϕσ); in other words,

dθσdϕσ = dkxdky

∣∣∣∣∣∣
∂θσ
∂kx

∂θσ
∂ky

∂ϕσ

∂kx

∂ϕσ

∂ky

∣∣∣∣∣∣ . (3.21)

To proceed, we may use the following relations.

∂n̂σ

∂θσ
= θ̂σ, (3.22)

∂n̂σ

∂ϕσ

= sin θσ ϕ̂σ. (3.23)
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Therefore,

Nσ,± = ∓ 1

4π

∫
int
dθσdϕσ sin θσ

= ∓ 1

4π

∫
int
dΩint

σ , (3.24)

where dΩint
σ is the differential solid angle in the internal (pseudospin) space. Since the above

integral is the solid angle spanned by the unit vector n̂σ, which is a multiple of 4π,Nσ,± is therefore

an integer.

For the st-DDW Hamiltonian, the Chern numbers are

Nσ,± = ±σ
∫

RBZ

d2k

2π

tW0∆0

E3
k

(sin2 ky + sin2 kx cos
2 ky)

=

 ±σ, if tW0∆0 ̸= 0,

0, if tW0∆0 = 0.
(3.25)

We can focus on the lower band as long as there is a gap between the upper and the lower

bands. Then,

Ntotal = N↑,− +N↓,− = 0, (3.26)

Nspin = N↑,− −N↓,− = (−1)− 1 = −2, (3.27)

irrespective of the magnitudes of the dimensionful parameters. Note, however, that the Chern

numbers vanish unless both ∆0 and W0 are nonvanishing. The quantization holds for a range of

chemical potential µ, as can be seen from Fig. 3.2.

For the fully gapped case, there will be a quantized spin Hall conductance associated with the

eigenstates. The ratio of the dimensions of the quantized spin Hall conductance to the quantized

Hall conductance should be the same as the ratio of the spin to the charge carried by a particle,

since in two dimensions for both quantities the scale dependence Ld−2 cancels, that is,

[σ
spin
xy ]

[σxy]
=

~
2

e
. (3.28)

So, the quantized spin Hall conductance will be

σ
spin
xy = −e

2

h

~
2e
Nspin =

e

2π
(3.29)
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The eigenstates, |Ψσ,±(k)⟩, are also the eigenstates of S2 and Sz with eigenvalues S2 = 3
4

and

Sz = −σ
2
. Since the spin SU(2) is broken by the triplet component of the st-DDW order, one

might wonder if the Goldstone modes not contained in the Hartree-Fock picture may not ruin the

quantization. If SU(2) is broken down to U(1), then there is still a quantum number corresponding

to, say Sz, which is transported by the edge currents in the system. More succinctly, as long as

time-reversal symmetry is preserved, we will still have Kramers degeneracy in our Hartree-Fock

state, and therefore the edge modes will remain protected.

3.2.2 Nonzero external magnetic field

In an infinitesimal external magnetic field, H⃗ , there will be a spin flop transition in the absence of

explicit spin-orbit coupling, as shown in Fig. 3.3. We can assume H⃗ = Hẑ and the spins quantized

along the x̂ direction without any loss of generality. Then the Hamiltonian now becomes

Hst-DDW =
∑
k

Ψ†
kAkΨk (3.30)

As before, the summation is over the RBZ, and the spinor is the same. The matrix Ak is now

Ak =


ϵk,↑ 0 0 ∆k + iWk

0 ϵk+Q,↑ −∆k − iWk 0

0 −∆k + iWk ϵk,↓ 0

∆k − iWk 0 0 ϵk+Q,↓

 , (3.31)

where ϵk,σ = ϵk + σ gµBH
2

= ϵk + σγ. Although the spin-up and -down components are coupled,

particles with momentum k and spin up only couple to holes with momentum k + Q and spin

down, and vice versa. Therefore, by redefining the spinor, Ψ
′†
k ≡ (c†k,↑, c

†
k+Q,↓, c

†
k,↓, c

†
k+Q,↑), the

Hamiltonian can still be expressed as a block diagonal matrix: Hst-DDW =
∑

k Ψ
′†
kA

′

kΨ
′

k. The

Chern numbers for each subblock, i = 1, 2, can be calculated as before. Therefore, defining ηi = +

1 or -1 for i = 1 or 2, we obtain Ek,i = [(ϵ1k + ηiγ)
2 +W 2

k +∆2
k]

1/2, and the Berry curvature

Ωi,± = ∓ 1

2E3
k,i

h⃗i · (
∂h⃗i
∂kx

× ∂h⃗i
∂ky

), (3.32)
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Figure 3.3: Spins are flopped perpendicular to the applied magnetic field H⃗ = Hẑ. Contrast with

Fig. 3.1.
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where h⃗i = (ηi∆k,−Wk, ϵ1+ ηiγ). Performing a surface integration of the Berry curvature we get

Ni,± =

∫
RBZ

d2k

2π
Ωi,±

= ±ηitW0∆0

∫
RBZ

d2k

2πE3
k,i

[
sin2 ky + sin2 kx cos

2 ky

−ηiγ
4t

(cos kx sin
2 ky + sin2 kx cos ky)

]
. (3.33)

The ± refers to the upper and the lower band, respectively. The integral does not depend on the

external field, nor on the magnitude of the parameters t, W0, and ∆0. The Chern numbers are

Ni,± = ±ηi, (3.34)

Ntotal = N1,− +N2,− = 0, (3.35)

Nspin = N1,− −N2,− = −2, (3.36)

Once again the spin Hall conductance is quantized, but the charge quantum Hall effect vanishes.

The flopped spins carry the same current as before. The corresponding spin Hall conductance, as

long as the gap survives, is

σ
spin
xy =

e

2π
. (3.37)

The eigenstates, |Φi,±(k)⟩, are the eigenstates of S2 with eigenvalues S2 = 3
4
, but not eigenstates

of Sz because of the mixing of up and down spins.

3.2.3 Bulk-edge correspondence

For the st-DDW order, the bulk-edge correspondence can be studied by open boundary condition

in the x direction but periodic boundary condition in the y direction, that is, by cutting open the

torus. The edge modes, if they exist, will reside on the ends of the cylinder. The cut then leads to

a Hamiltonian

Hcylinder =
∑
ky ,i,j

Ψ†
i,ky
Aij(ky)Ψj,ky , (3.38)

45



where the spinor is Ψi,ky = (ci,ky↑ci,ky+π↑, ci,ky↓ci,ky+π↓)
T , and Aij(ky) is a 4N × 4N matrix

parametrized by the wave vector ky, which is given by

Aij(ky) =


Tij(ky) Sij,↑(ky) 0 0

S†
ij,↑(ky) Tij(ky + π) 0 0

0 0 Tij(ky) Sij,↓(ky)

0 0 S†
ij,↓(ky) Tij(ky + π)

 , (3.39)

where Tij(ky) and Sij,σ(ky) are N ×N matrices,

Tij(ky) =



−µ− 2t cos ky −t+ 2t′ cos ky 0 · · · · · ·

−t+ 2t′ cos ky −µ− 2t cos ky −t+ 2t′ cos ky · · · · · ·

0 −t+ 2t′ cos ky −µ− 2t cos ky −t+ 2t′ cos ky · · ·
...

...
...

. . . −t+ 2t′ cos ky

−t+ 2t′ cos ky −µ− 2t cos ky


(3.40)

and

Sij,σ(ky) = iσ
W0

4



−2 cos ky −1 0 · · ·

1 2 cos ky 1 · · ·

0 −1 −2 cos ky −1 · · ·
...

...
... . . . (−1)N−1

(−1)N (−1)N2 cos ky



+i
∆0

2
sin ky



0 1 0 · · ·

1 0 −1 · · ·

0 −1 0 1 · · ·
...

...
... . . . (−1)N

(−1)N 0


. (3.41)

The corresponding one-dimensional system with N sites depends on the band structure and the

order parameters defined above.

The eigenvalue spectra are shown in Fig 3.4. The spectra, degenerate for up and down spins,

are plotted in the range 0 ≤ ky ≤ π (ky < 0 can be obtained by reflection). To find the edge states,
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we choose the chemical potential in the gap. In Fig. 3.4, we put µ = −0.075 eV for the purpose

of illustration. There are two edge states with positive group velocity, one with up spin and the

other with down spin. Let them be ψ>,↑ and ψ>,↓, respectively. There are also two edge modes

with negative group velocity denoted as ψ<,↑ and ψ<,↓ for up spin and down spin, respectively. By

explicitly computing the support of each of these wave functions, we have verified that electrons

in states ψ>,↓ and ψ<,↑ are localized near the left edge of the system whereas those in states ψ<,↓

and ψ>,↑ are localized near the right edge. The localization length of these states is essentially a

lattice spacing; an example is shown in Fig 3.4.

It is interesting to see how this spectra compare with the one where periodic boundary con-

ditions are applied in both x and y directions. After diagonalizing the Hamiltonian, we plot the

spectra for a fixed value of ky for all values of the energies. The results are shown in Fig. 3.5,

which are essentially identical to Fig. 3.4, except that the edge states are missing.

3.3 Fermi surface and Lifshitz transition

It is interesting to track the evolution of successive Lifshitz transitions as we change the parameters.

At first, when we lower the chemical potential, four hole pockets will open up in the full Brillouin

zone, as shown in Fig. 3.6, and the corresponding spin Hall effect will lose its quantization but

not the effect itself. However, in mean-field theory this cannot continue indefinitely with the nodal

or the antinodal gaps fixed, so the parameters W0 and ∆0 will also decrease and will lead to a

further opening of two electron pockets in the full Brillouin zone, as shown in Fig. 3.6. Ultimately,

when the doping is increased further, the large Fermi surface will emerge as a further Lifshitz

transition. There is good evidence that such Lifshitz transitions indeed occur in high-temperature

superconductors [61, 22, 21].
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Figure 3.4: (a) Spectrum of the st-DDW state on a cylinder. Parameters are t = 0.15 eV,

t′ = 0.3t, µ = −0.075 eV, W0 = t, and ∆0 = −t. The subscripts L and R to the spins cor-

respond to left and right modes. (b) The probability density for positive group velocity for L and

R spins for a lattice of N = 100 sites.
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Figure 3.5: The bulk spectra for fixed values of ky with the same parameters, as in Fig. 3.4.
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Figure 3.6: Region plots (left) of the first Brillouin zone and energy spectrum (right) along the

triangular route indicated by the green arrows. Here, for illustration, we have chosen t = 0.15 eV

and t′ = 0.3t. Top: as W0 = t and ∆0 = −t, and µ = −0.075 eV, the spectrum is fully

gapped. Middle: when µ is lowered to −0.16 eV, the hole pockets open up at (π/2, π/2) and

symmetry-related points. Bottom: W0 = 0.05t and ∆0 = −0.5t decrease, leading to the opening

of two electron pockets at (π, 0) and symmetry-related points with enlarged hole pockets.
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3.4 Experimental detection

While there are many speculations about the nature of the pseudogap, they largely fall into two

categories: 1) it is a crossover between a Mott insulator and a Fermi liquid, without any sharp, co-

herent excitations, and 2) it reflects a broken symmetry, with quasiparticles due to a reconstructed

Fermi surface that, despite strong correlations in the system, can behave in many ways as weakly

interacting particles. The resolution of this dichotomy will ultimately be settled by experiments,

which, to date, have shown some support for both. In the absence of a definitive evidence one way

or the other, we have adopted the second perspective (to some extent motivated by recent quan-

tum oscillation experiments [61, 22]) to see what consequences there may be of having a broken

symmetry phase with sufficiently hidden order, in particular one that has striking similarities to

topological insulators.

A prime characteristic of a broken symmetry is that deep in the broken symmetry phase, an

effective mean-field, or a Hartree-Fock Hamiltonian, suffices in discussing the properties of matter,

and the symmetries alone determine the excitation spectra and the collective modes. It is only in the

proximity of quantum critical points that such a description breaks down, but that is not the subject

of discussion here. Moreover, those properties that are determined by symmetries alone should

be robust and can be understood in the weak-coupling limit, simplifying our task of exploring

correlated electron systems.

The mixed st-DDW order parameters considered here are even more hidden than the corre-

sponding sDDW. Not only do they not modulate charge or spin, but as long as spin-orbit coupling

is absent, they are also invisible to elastic neutron scattering because there is no associated stag-

gered magnetic field, as in an sDDW.

Inelastic neutron scattering can detect its signature in terms of a spin gap at low energies in

the longitudinal susceptibility and signatures in the transverse susceptibility of quasi-Goldstone

modes, and even onset of a finite frequency resonance mode. Recall that at any finite tempera-

tures SU(2) symmetry cannot be spontaneously broken in two dimensions; interlayer coupling is

necessary to stabilize it. Thus the scale of symmetry breaking must be considerably smaller than
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t ∼ J , and the signature must be sought at higher energies. It could be a challenge to disentangle

the signal from inelastic spin-density-wave excitations. On the other hand since the quasiparticle

excitations are essentially identical to the sDDW, the quantum oscillation properties will be sim-

ilar [12, 61, 22, 28, 27], except perhaps those in a tilted field [28, 82]. The essence of this order

parameters is modulation of spin current and kinetic energy. So, it will require probes that can

detect higher-order correlation functions, such as the two-magnon Raman scattering. In the pres-

ence of modest spin-orbit coupling, it may be possible to find small shifts of nuclear quadrupolar

frequency (NQR). The modulation of the kinetic energy arising from the dxy component, in par-

ticular staggered modulation of t′, may lead to anomalies in the propagation of ultrasound [7] at

a temperature where such an order is formed, presumably at the pseudogap temperature T ∗. The

detection of the unique features of the proposed order parameter, the spin Hall effect and edge

currents, would be even more challenging.

The effects of nonmagnetic impurities on the mixed st-DDW state studied here are rather subtle.

We expect such disorder to couple only weakly to spin currents. Generically, disorder will couple

differently to the iσdx2−y2 and dxy components since each breaks a different symmetry. However,

by breaking both the point group and lattice translation symmetries, disorder can enable mixing

with (generally incommensurate) density wave states in other angular momentum channels. For

example, at the level of Landau theory, we expect terms in the free energy proportional to the

product of quadratic powers of the component order parameters, which would be proportional to

the impurity concentration, thus inducing spin- or charge-density waves. As long as spin rotational

symmetry is preserved in the normal state, the phase transition into the iσdx2−y2 state can remain

sharp.

From the standpoint of topological order at zero temperature, the effects of weak disorder are

somewhat simpler. Since the density wave phase considered here is a gapped phase with topologi-

cal order that is protected by time reversal symmetry, it remains robust against weak nonmagnetic

disorder [35, 79]. Thus, the phase can still be described in terms of its topology at zero temperature,

a feature which it shares with topological band insulators.

Lastly, we remark that in the presence of magnetic impurities, the phase is not sharply defined,
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either as a broken symmetry or in terms of its underlying topology.

In terms of microscopic models beyond the phenomenology discussed here, it is almost certain

that correlated hopping processes will play a key role [72]. Finally, since dx2−y2 and dxy are

two distinct irreducible representations on a square lattice, generically they will each have their

own transition temperatures, as dictated by Landau theory. The development of the dxy order

parameter would be at a higher temperature compared to the triplet component, which breaks

SU(2) and therefore requires interlayer coupling. Thus it follows that when applied to cuprates

there must be two transitions in the pseudogap regime. Since the topological phase studied here

arises from spontaneous symmetry breaking, it can support charged skyrmion textures in analogy

with Ref. [31]. The properties of such textures will be the topic of Chapters 4 and 5.
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CHAPTER 4

Charge-2e skyrmion condensate in a hidden-order state

4.1 Introduction

It has become very much in vogue to argue that topological aspects of condensed matter bear no

relation to broken symmetries [79, 35]. In a strict sense this need not be so [80, 95, 108]. One can

construct examples where a broken-symmetry state has interesting topological properties and can

even be protected by the broken symmetry itself. An interesting example of a mixed singlet-triplet

d-density wave (st-DDW) and its possible relevance to one of the many competing phases in the

high-temperature cuprate phase diagram was demonstrated in Chapter 3, where it was found that

the system exhibits the quantized spin Hall effect even without any explicit spin-orbit coupling.

In particular, we considered a density wave of nonzero angular momentum (ℓ = 2) of a mixed

singlet and triplet varieties such that in the half-filled limit, it is a gapped insulator. Unlike the

semimetallic singlet d-density wave (sDDW) [13], the spin Hall effect is quantized for a range

of chemical potential. The state is a topological Mott insulator [80, 95, 108] because it originates

from electron-electron interaction that leads to a broken symmetry. The addition of charge carriers,

doping, results in Lifshitz transitions destroying the quantization but not the very existence of the

spin Hall effect [41]. It is remarkable that such an unconventional broken symmetry, possibly

relevant to high-temperature superconductors, has an intimate similarity to topological insulators,

which have been explored recently [35, 79].

In this chapter we illustrate another remarkable aspect of the mixed st-DDW order: we show

that the system exhibits charge-2e skyrmions, which can condense into a remarkable superconduct-

ing state. As we shall discuss, such a mixed st-DDW system, and the resulting superconductivity is
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potentially relevant to the hidden-order (HO) state in the heavy-fermion compound URu2Si2 [69].

An early attempt at such a non-BCS mechanism of superconductivity was made by Wieg-

mann [104], as an extension of Fröhlich mechanism to higher dimensions. More recently, several

interesting papers have led to discussions of superconductivity in single- and bilayer graphenes.

Grover and Senthil [31] have provided a mechanism in which electrons hopping on a honeycomb

lattice can lead to a charge-2e skyrmionic condensate, possibly relevant to single layer graphene.

To a certain degree we follow their formalism; see also the earlier work in Ref. [94] of charge-e

skyrmions in a quantum Hall ferromagnet. As to bilayer graphene, a charge-4e skyrmionic con-

densate has been suggested by Lu and Herbut [64] and Moon [67].

The difference between our present work and the more recent papers on graphene is an un-

usual spontaneously broken symmetry leading to superconductivity and not the noninteracting band

structure of a material. We also point out possible implications for the mysterious HO state in

URu2Si2, in particular for its superconductivity. In terms of theoretical work, we have provided

explicit calculations of the angular momentum of the condensate, an intriguing quantized charge

pumping, a derivation of the nonlinear σ model on which the existence of skyrmions rests, and a

full analysis of the spin-orbit coupling, correcting mistakes in a seminal work [73]. In addition,

we have gone beyond the adiabatic approximation, as in Ref. [31], thus fully confirming our final

results.

It is appropriate to comment on what we mean by “hidden order.” An order parameter can

often be inferred from its macroscopic consequences in terms of certain generalized rigidities.

Sometimes its direct microscopic signature is difficult to detect: a direct determination of super-

conducting order requires a subtle Josephson effect [46], and even antiferromagnetic order requires

microscopic neutron scattering probes. Density wave states of higher angular momentum, such as

the mixed st-DDW, are even harder to detect. They do not lead to a net charge density wave or

spin density wave to be detected by common s-wave probes. It is further undetectable because it

does not even break time-reversal invariance. A discussion of possible experimental detections of

particle-hole condensates of higher angular momentum was given in Ref. [71]. Thus, it is fair to

conclude that the state we consider here is a good candidate for a hidden order.
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It is also necessary to remark on the realization of particle-hole condensates of higher angular

momentum. An effective low energy theory of a strongly correlated system is bound to have a

multitude of coupling constants, perhaps hierarchically arranged. In such cases, we can generally

expect a phase diagram with a multitude of broken-symmetry states. It is a profound mystery as

to why nontrivial examples are so few and far between. A partial reason could be, as stated above,

that these states are unresponsive to common s-wave probes employed in condensed matter physics

and therefore appear to be hidden [13].

The next question is whether these low-energy effective Hamiltonians are contrived. If so, it

would be of little value to pursue them. However, simple Hartree-Fock analyses have shown that

they certainly are not: an onsite repulsion U , a nearest neighbor interaction V , and an exchange

interaction J are sufficient in a single-band model [71, 73, 42]; see also more recent papers by

Laughlin [58, 59].

The structure of this chapter is as follows: in Sec. 4.2, we construct the low-energy effective

action of the mixed st-DDW system. In Sec. 4.3, we compute the charge and the spin of a skyrmion

and verify that the skyrmions in this system are bosons, which can lead to a superconducting phase

transition. In Sec. 4.4, we compute the angular momentum of a skyrmion. In Sec. 4.5, we study

the charge pumping due to a time-dependent inhomogeneous spin texture that is interesting in its

own right. In Sec. 4.6 we discuss mainly the problem of URu2Si2. In Appendix A, the derivation

of the nonlinear σ model and the details of computing the Chern-Simons coefficients and charge

pumping are provided.

4.2 Effective action

In momentum space the mixed st-DDW order parameter is [c and c† are fermonic annihilation and

creation operators, respectively, Q = (π, π), and the lattice constant is set to unity]

⟨c†k+Q,αck,β⟩ ∝ i(σ⃗ · N̂)αβWk + δαβ∆k, (4.1)
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where N̂ is a unit vector, σ⃗ are the Pauli matrices acting on spin indices, and the form factors

Wk ≡ W0

2
(cos kx − cos ky), (4.2)

∆k ≡ ∆0 sin kx sin ky, (4.3)

correspond to the dx2−y2 and dxy density wave, respectively [71]. It is not necessary that dxy and

dx2−y2 transitions be close to each other, nor are they required to be close in energy [41].

If we choose the spin quantization axis to be ẑ, the up spins represent circulating spin currents

corresponding to the order parameter (idx2−y2 + dxy) and the down spins to (−idx2−y2 + dxy). So,

there are net circulating spin currents alternating from one plaquette to the next but no circulating

charge currents. By the choice of the quantization axis we have explicitly broken SU(2) symmetry,

but not U(1), and the coset space of the order parameter S2 ≡ SU(2)/U(1). Such a state can

admit skyrmions in two dimensions, ignoring the possibility of hedgehog configurations in (2+ 1)

dimensions. See the derivation of the nonlinear σ model in Appendix A.1.

The mean-field Hamiltonian is

H =
∑
k,α,β

ψ†
k,α

[
δαβ(τ

zϵk + τx∆k)− (σ⃗ · N̂)αβτ
yWk

]
ψkβ, (4.4)

where the summation is over the reduced Brillouin zone (RBZ) bounded by ky ± kx = ±π, the

spinor is ψ†
k,α ≡ (c†k,α, c

†
k+Q,α), and ϵk ≡ −2t(cos kx + cos ky); addition of longer ranged hopping

will not change our conclusions [41]. Here τ i (i = x, y, z) are Pauli matrices acting on the two-

component spinor. It is not necessary but convenient to construct a low-energy effective field

theory. For this we expand around the points K1 ≡ (π
2
, π
2
) and K2 ≡ (−π

2
, π
2
), which would

have been the two distinct nodal points in the absence of the dxy term, and K3 ≡ (0, π), which

would have been the nodal point in the absence of the dx2−y2 term. This allows us to develop an

effective low-energy theory by separating the fast modes from the slow modes. After that we make

a sequence of transformations for simplicity: (1) transform the Hamiltonian to the real space, which

allows us to formulate the skyrmion problem; (2) perform a π/2 rotation along the τ y-direction,

which allows us to match to the notation of Ref. [73] for the convenience of the reader; (3) label

ψKi+q,α by ψiα, since Ki is now a redundant notation; (4) construct the imaginary-time effective
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action, with the definition ψ̄ ≡ −iψ†τ z. Finally, after suppressing the spin indices, and with the

definitions γ0 ≡ τ z, γx ≡ τ y, and γy ≡ −τx, we obtain the effective action in a more compact

notation:

S =
∑
j=1,2

∫
d3x ψ̄j

[
−iγ0∂τ − 2itγx(ηj∂x + ∂y) + i

W0

2
(σ⃗ · N̂)γy(−ηj∂x + ∂y) + iηj∆0

]
ψj

+

∫
d3xψ̄3

[
−iγ0∂τ −W0(σ⃗ · N̂)γy

]
ψ3, (4.5)

where η1 = 1 and η2 = −1. There is no spatial derivative in the ψ3 terms since the expansion of

the dx2−y2 gap around the nodal point K3 = (0, π) is

WK3+q =
W0

2
(2− q2x

2
−
q2y
2

+ · · ·), (4.6)

where the second- (and higher-) order derivative terms are dropped when linearizing the action. In

other words, the dx2−y2 term behaves as a mass term at the K3 point.

4.3 The charge and spin of a skyrmion

First we will compute the charge of the skyrmions in the system by following Grover and Senthil’s

adiabatic argument [31]. Consider the action around K1 = (π
2
, π
2
) when the order parameter is

uniform (say, N̂ = ẑ). The results for K2 = (−π
2
, π
2
) and K3 = (0, π) follow identically. In

Chapter 3 we showed that the nontrivial topology leads to a quantized spin Hall conductance in

the st-DDW state as long as the system is fully gapped [41]. The spin quantum Hall effect implies

that the external gauge fields Ac and As couple to charge and spin currents, respectively. In the

presence of these external gauge fields, we add minimal coupling in the action by

1

i
∂µ = pµ → pµ + Ac

µ +
σz

2
As

µ. (4.7)

Then the action is

S1[A
c, As] =

∫
d3x ψ̄1

[
−iγ0∂τ + γ0

(
Ac

τ +
σz

2
As

τ

)
− 2itγx(∂x + ∂y)

+2tγx
(
Ac

x +
σz

2
As

x + Ac
y +

σz

2
As

y

)
+ i

W0

2
σzγy(−∂x + ∂y)

−W0

2
σzγy(−Ac

x −
σz

2
As

x + Ac
y +

σz

2
As

y) + i∆0

]
ψ1, (4.8)
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where we set e = ~ = 1. The nonvanishing transverse spin conductance implies that the low-

energy effective action for the gauge fields is given by

Seff =
i

2π

∫
d3xϵµνλAc

µ∂νA
s
λ, (4.9)

and the charge current is induced by the spin gauge field

jcµ =
1

2π
ϵµνλ∂νA

s
λ. (4.10)

Consider now a static configuration of the N̂ field with unit Pontryagin index in the polar

coordinate (r, θ):

N̂(r, θ) = [sinα(r) cos θ, sinα(r) sin θ, cosα(r)] (4.11)

with the boundary conditions α(r = 0) = 0 and α(r → ∞) = π. Performing a unitary transfor-

mation at all points in space such that U †(σ⃗ · N̂)U = σz, and defining ψ = Uψ′, and ψ̄ = ψ̄′U †,

we obtain

S1 =

∫
d3x ψ̄′

1

[
−iγ0∂τ − 2itγx(∂x + ∂y) + i

W0

2
σzγy(−∂x + ∂y) + i∆0

]
ψ′
1

+

∫
d3x ψ̄′

1

[
−iγ0(U †∂τU)− 2itγx(U †∂xU + U †∂yU)

+i
W0

2
σzγy(−U †∂xU + U †∂yU)

]
ψ′
1 (4.12)

To proceed, we write down the explicit form for U(r, θ), which is

U(r, θ) =

 cos α(r)
2

− sin α(r)
2
e−iθ

sin α(r)
2
eiθ cos α(r)

2

 . (4.13)

In the far-field limit, U †∂xU = (−i sin θ
r

)σz, and U †∂yU = ( i cos θ
r

)σz; substituting into Eq. (4.12)

and introducing fµ = −iU †∂µU , we get

S1 =

∫
d3x ψ̄′

1

[
−iγ0∂τ − 2itγx(∂x + ∂y) + i

W0

2
σzγy(−∂x + ∂y) + i∆0

]
ψ′
1

+

∫
d3x ψ̄′

1

[
2tγx(fx + fy) +

W0

2
σzγy(fx − fy)

]
ψ′
1 (4.14)

Equating the above equation and Eq. (4.8), we obtain, in the far-field limit,

Ac
x = Ac

y = 0; As
x = −2 sin θ

r
; As

y =
2 cos θ

r
. (4.15)
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In other words, the process of tuning the order parameter from σz to
(
σ̂ · N̂(r, θ)

)
is equivalent

to adding an external spin gauge field

A⃗s = −2 sin θ

r
x̂+

2 cos θ

r
ŷ =

2

r
θ̂. (4.16)

The total flux of this gauge field is clearly 4π. Suppose we adiabatically construct the skyrmion

configuration N̂(r, θ) from the ground state ẑ in a very long time period τp → ∞. During the

process, we effectively thread a spin gauge flux of 4π. The transverse spin Hall conductance

implies that a radial current jcr will be induced by the 4π spin gauge flux of A⃗s(t), which is now

time dependent: A⃗s(t = 0) = 0 and A⃗s(t = τp) = A⃗s, that is,

jcr(t) = − 1

2π
∂tA

s
θ(t). (4.17)

As a result, charge will be transferred from the center to the boundary, and the total charge trans-

ferred is

Qc =

∫ τp

0

dt

∫ 2π

0

rdθjcr(t) = −2. (4.18)

Therefore, after restoring the unit of charge to e, we obtain a skyrmion with charge 2e; its spin is

0.

It is important to verify the adiabatic result by a different method. This can be done by a

computation of the Chern number [106]. The charge and spin of the skyrmions are associated

with the coefficients of the Chern-Simons terms by the following relations: Qskyrmion = C2e and

Sskyrmion = C1
~
2
, where C1 and C2 are

C1 =
ϵµνλ
24π2

Tr
[∫

d3kG
∂G−1

∂kµ
G
∂G−1

∂kν
G
∂G−1

∂kλ

]
, (4.19)

C2 =
ϵµνλ
24π2

Tr
[∫

d3k(σ⃗ · ẑ)G∂G
−1

∂kµ
G
∂G−1

∂kν
G
∂G−1

∂kλ

]
, (4.20)

where G is the Green’s function matrix and the trace Tr is taken over the spin index and other

discrete indices.

If the Green’s function matrix is diagonal in the spin index, then the Chern-Simons coefficients

for up and down spins can be computed separately:

N (Gσ) =
ϵµνλ
24π2

Tr
[∫

d3kGσ
∂G−1

σ

∂kµ
Gσ

∂G−1
σ

∂kν
Gσ

∂G−1
σ

∂kλ

]
, (4.21)
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and C1 = N (G↑) +N (G↓), C2 = N (G↑)−N (G↓). Furthermore, it can be shown (see Appendix

A.2) that for

G−1
σ = iωÎ − τ̂ · h⃗σ (4.22)

with h⃗σ being the Anderson’s pseudospin vector [4] of the Hamiltonian, the Chern-Simons coeffi-

cient for spin σ can be written as

N (Gσ) = −
∫
d2k

4π
ĥσ ·

∂ĥσ
∂kx

× ∂ĥσ
∂ky

, (4.23)

where ĥσ ≡ h⃗σ/|⃗hσ| is the unit vector of h⃗σ. Here C1 and C2 are the total Chern number and the

spin Chern number Nspin defined in Chapter 3, respectively [41]. For the st-DDW system, we

have h⃗σ ≡ (∆k,−σWk, ϵk). Explicitly, C1 = −1+1 = 0 and C2 = −1− 1 = −2; thus the results

are the same as above.

Because a skyrmion in the system carries integer spin, it obeys bosonic statistics and may

undergo Bose-Einstein condensate. As a result, the charge-2e skyrmion condensate will lead to a

superconducting phase transition. But what about its orbital angular momentum? In the following

section, we will prove that it is zero resulting in an s-wave singlet state. This is a bit surprising

given the original d-wave form factor.

4.4 The angular momentum of a skyrmion

To compute the angular momentum carried by a skyrmion in the system, we consider the angular

momentum density due to the electromagnetic field. For a static spin texture it is clearly zero,

because E⃗ = 0. For a time-dependent texture it is little harder to prove. Consider the spin texture

N̂(r, θ, t) with

Nx(r, θ, t) = sinα(r, t) cos β(θ, t), (4.24)

Ny(r, θ, t) = sinα(r, t) sin β(θ, t), (4.25)

Nz(r, t) = cosα(r, t), (4.26)
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where α(r, t) and β(θ, t) are smooth functions, and α(r, t) satisfies the boundary conditions α(r =

0, t) = 0 and α(r → ∞, t) = π for any t, and ∂α(r,t)
∂r

|r→∞ = ∂α(r,t)
∂t

|r→∞ = 0 in the far-field limit.

The unitary matrix is now time dependent. After a little algebra, we obtain the time-dependent

gauge fields in the far-field limit to be

As
x(r, θ, t) =

−2 sin θ

r

∂β(θ, t)

∂θ
, (4.27)

As
y(r, θ, t) =

2 cos θ

r

∂β(θ, t)

∂θ
. (4.28)

So, Φ(θ, t) = As
t(θ, t) = 2∂β(θ,t)

∂t
and A⃗s(r, θ, t) = As

x(r, θ, t)x̂+A
s
y(r, θ, t)ŷ = As

θ(r, θ, t)θ̂, where

As
θ(r, θ, t) =

2

r

∂β(θ, t)

∂θ
. (4.29)

Therefore, the electric field will have a nonzero θ̂ component, E⃗ = Eθθ̂, and the magnetic field

will have a nonzero ẑ component, B⃗ = Bz ẑ, where

Eθ = −1

r

∂As
t(θ, t)

∂θ
− ∂As

θ(r, t)

∂t
= −4

r

∂2β(θ, t)

∂θ∂t
(4.30)

Bz =
∂As

θ(r, t)

∂r
= − 2

r2
∂β(θ, t)

∂θ
. (4.31)

As a result, the angular momentum density still vanishes,

L⃗field =
1

4πc
r⃗ × (Eθθ̂ ×Bz ẑ) = 0. (4.32)

It is possible that superconductivity with nonzero angular momentum may be realized when the

interaction between particles is included, which will be the topic of Chapter 5. It would be inter-

esting to explore what other kinds of quantum numbers are carried by the topological textures in

the model we have studied.

4.5 Quantized charge pumping

In Sec.4.3, we considered a static spin texture and obtained charge-2e skyrmions in the system. If

we consider a time-dependent spin texture, which has a smooth variation in one spatial direction,

say, ŷ, and is uniform in the other, x̂, charge will be pumped from one side of the system to the
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other along x̂ [109]. This charge pumping effect can be understood from the effective gauge action,

which is

Seff[A
c
µ, A

s
µ] =

C2

4π

∫
d3xϵµνλAc

µ∂νA
s
λ, (4.33)

where the integral is over the real time, t, instead of the imaginary time, τ . Therefore, the charge

current induced by the spin gauge field will be

jcµ =
δSeff[A

c
µ, A

s
µ]

δAc
µ

=
C2

4π
ϵµνλ∂νA

s
λ =

C2

8π
ϵµνλF s

νλ, (4.34)

where we define the spin gauge flux F s
µν ≡ ∂µA

s
ν − ∂νA

s
µ. After some straightforward algebra (see

Appendix A.3), the spin gauge flux can be written in terms of the N̂ vector,

F s
µν = N̂ · [(∂µN̂)× (∂νN̂)]. (4.35)

As a result, even in the absence of an external electromagnetic field, a charge current may be

induced by a time-dependent inhomogeneous spin texture because

jcµ =
C2

8π
ϵµνλN̂ · [(∂νN̂)× (∂λN̂)]. (4.36)

To demonstrate the charge response induced by the spin texture, we consider the following

configuration with unit Pontryagin index,

N̂(y, t) = [sin θ(t) cosϕ(y), sin θ(t) sinϕ(y), cos θ(t)] , (4.37)

where θ(t) and ϕ(y) are smooth functions of t and y, respectively, with boundary conditions θ(t =

0) = 0, θ(t = τp) = π, and ϕ(y → ±∞) = ±π. Therefore, we have an induced charge current

along the x̂ direction,

jcx =
C2

8π
ϵxνλN̂ · [(∂νN̂)× (∂λN̂)]

=
C2

4π
N̂ · [(∂yN̂)× (∂tN̂)]. (4.38)

Interestingly, we can show that the pumped charge is quantized,

Qpumped =

∫ τp

0

dt

∫ ∞

−∞
dy jcx
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=
C2

4π

∫ τp

0

dt

∫ ∞

−∞
dy N̂ · [(∂yN̂)× (∂tN̂)]

=
C2

4π

∫ π

0

dθ

∫ π

−π

dϕ N̂ · [(∂θN̂)× (∂ϕN̂)]

= C2, (4.39)

where we have used that, for the spin texture with unit Pontryagin index,∫ π

0

dθ

∫ π

−π

dϕ N̂ · [(∂θN̂)× (∂ϕN̂)] = 4π. (4.40)

After restoring the unit of charge, we have Qpumped = C2 e. So far we have considered the spin

texture with unit Pontryagin index. If the spin texture is generalized to a general Pontryagin index,

NP , then the pumped charge will be Qpumped = C2NP e.

How could we observe this charge pumping experimentally? We need to control the direction

of the N̂ vector so that it can be the time-dependent inhomogeneous spin texture discussed above.

In topological chiral magnets [109], the N̂ vector is the net ferromagnetic moment, which aligns

along the external magnetic field, so one can apply a time-dependent magnetic field H⃗(t) = H(t)x̂

coupling to the N̂ vector and control the magnitude of x̂ component of N̂ .

In the mixed st-DDW, however, the situation is more complicated. In the presence of an ex-

ternal magnetic field, there will be a spin-flop transition and the N̂ vector will lie in the plane

perpendicular to the external field [73]. In other words, we cannot fully control the direction of N̂

with a time-dependent magnetic field. Therefore, it would be a challenge to measure the pumped

charges in the system.

Nevertheless, the charge pumping effect provides, at least, a different conceptual approach to

probe the topological properties of the system in addition to the quantized spin Hall conductance.

For the quantum spin Hall effect, a spin current is induced by the external electric field [41],

whereas for the charge pumping effect, a charge current will be induced by the spin texture. It

would, of course, be interesting if one can manipulate the N̂ vector experimentally because a

charge current is easier to detect than a spin current.
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4.6 Discussion and application to the HO state in URu2Si2

There are two points that we have glossed over. The first is rather simple: in the ordered phase

at T = 0, there are also Goldstone modes that can be easily seen by integrating out the fermions

resulting in a nonlinear σ model involving N̂ , the form of which is entirely determined by sym-

metry. These do not lead to any interesting physics, such as charge-2e skyrmions that condense

into a superconducting state. At finite temperatures they could lead to a renormalized classical be-

havior [11]. The second point is more subtle: we have assumed that the hedgehog configurations

are absent. This would require, as pointed out by Grover and Senthil [31], that the energy of the

skyrmion (especially in the limit ∆0 → 0) is smaller than individual pairs of electrons, a question

that is likely to be model dependent. If this assumption is correct, however, the transition from the

mixed st-DDW state to the superconducting state will correspond to a deconfined quantum critical

point, which otherwise would have been a first-order transition, as in Landau theory [92, 91, 55].

We suggest that the superconducting phase driven by the skyrmion condensate may be real-

ized in the URu2Si2, which hosts an exotic HO phase, with broken translational symmetry below

THO ≈ 17.5 K and a superconducting phase below Tc ≈ 1.5 K [69]. Recently, Fujimoto [26]

proposed a triplet d density wave with the order parameter ⟨c†k,1,αck+Q0,2,β⟩ = d⃗(k) · σ⃗αβ with

d⃗(k) = i(∆1 sin
(kx−ky)√

2
sin kz, 0, 0) to describe this state [26]; here 1 and 2 refer to two different

bands andQ0 = (0, 0, 1) is the nesting vector; even the earlier work in Ref. [42] involving circulat-

ing spin current is not entirely unrelated. The order parameter considered in Ref. [26] is different

but a close cousin of the order parameter considered in our work; the circulating staggered spin

currents in Ref. [26] lie on the diagonal planes instead and the crucial dxy part is missing there.

As mentioned in Sec. 4.2, the mixed st-DDW gives rise to net circulating spin currents alternating

from one plaquette to the next in the square lattice. Notice that the coefficient of the dxy compo-

nent is real, so in the tight-binding model the presence of the dxy term affects the kinetic energy,

but does not produce any charge current or spin current. As a result, the addition of the singlet

dxy component in the present work modulates only the next-nearest-neighbor hopping, and the

spin current patterns remain unaffected. As mentioned above the spin currents lie on the diagonal
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planes in the three-dimensional lattice. For the purpose of illustration, in Fig. 4.1 we plot the spin

current pattern due to the order parameter in Ref. [26]. On each diagonal plane, there are two

copies of the staggered circulating spin current patterns. Each of them is the same as the one in the

mixed st-DDW system because, as explained above, the dxy component has no effect on the spin

current pattern.

That the currents are in the diagonal planes instead of being square planar is conceptually not

important, but is necessary to explain the nematicity observed in the experiments [75]. We now

discuss the role of spin-orbit coupling before making our final comments.

x

y

z

Figure 4.1: The spin current pattern due to the order parameter in Ref. [26]. The U atoms are

marked by the dots. The directions of the spin currents are marked by the arrows. Black and blue

colors indicate two independent sets of staggered circulating spin current patterns. The Ru and Si

atoms are not shown for clarity.
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4.6.1 Spin-orbit coupling

It will be shown below that the order of magnitude of the spin-orbit energy is

ESO ≈
[
(N̂ · ẑ)2 − 1

](Λ2
0

W

)(
W0

W

)2
[
1 +O

(
W0

W

)2
]
, (4.41)

correcting a mistake in Ref. [73]. Here Λ0 is the strength of the spin-orbit coupling, given by

HSO =
∑
k

c†kαΛ⃗(k) · σ⃗αβckβ, (4.42)

where Λ⃗(k) = Λ0√
2
[x̂ sin ky − ŷ sin kx]. In the presence of spin-orbit coupling, the Hamiltonian is

Htotal

= H+HSO

=
∑
k

Ψ†
k


ϵk ∆k + iNzWk Λx(k)− iΛy(k) iWk(Nx − iNy)

∆k − iNzWk −ϵk −iWk(Nx − iNy) −Λx(k) + iΛy(k)

Λx(k) + iΛy(k) iWk(Nx + iNy) ϵk ∆k − iNzWk

−iWk(Nx + iNy) −Λx(k)− iΛy(k) ∆k + iNzWk −ϵk


Ψk,

(4.43)

where Ψ†
k is the four-component spinor (c†k,↑, c

†
k+Q,↑, c

†
k,↓, c

†
k+Q,↓). In the absence of spin-orbit

coupling, the eigenvalues are ±E0k with E0k =
√
ϵ2k +W 2

k +∆2
k. On the other hand, when spin-

orbit coupling is present, the eigenvalues of the upper and lower bands now become λup,± = Ek,±,

λlow,± = −Ek,±, respectively, where

Ek,± =

√
ϵ2k +W 2

k +∆2
k + Λ2

k ± 2
[
(ϵ2k +W 2

k )Λ
2
k −W 2

k (N̂ · Λ⃗k)2
] 1

2
(4.44)

with Λ2
k ≡ |Λ⃗k|2 = Λ2

x(k) + Λ2
y(k). When the dxy component is absent, ∆k = 0, and the results of

Ref. [73] are recovered. Consider the following two cases separately.

4.6.1.1 N̂ ∥ ẑ

Since the chemical potential is at the midgap, we can focus on the lower bands. When N̂ = ẑ, we

have N̂ · Λ⃗k = 0 and

λzlow,± = −
√
E2

0k + Λ2
k ± 2 [E2

0kΛ
2
k]

1
2
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= −E0k ∓ |Λ⃗k| (4.45)

Assuming that Λ0 ≪ W0,∆0 ≪ W with the electronic bandwidth W = 8t, the change in the

ground-state energy will be

ESO =
∑
k

[
(λzlow,+

+ λzlow,−)− 2(−E0k)
]

=
∑
k

[
(−E0k − |Λ⃗k| − E0k + |Λ⃗k|) + 2E0k

]
= 0 (4.46)

4.6.1.2 N̂ ⊥ ẑ

When N̂ lies in xy-plane, we have N̂ · Λ⃗k = |Λ⃗k| cosϕk, where ϕk is the angle between N̂ and Λ⃗k,

and

cosϕk =
N̂ · Λ⃗k

|Λ⃗k|
=
NxΛx(k) +NyΛy(k)√

Λ2
x(k) + Λ2

y(k)
. (4.47)

The eigenvalues of the lower bands are now

λxylow,±
= −

√
E2

0k + Λ2
k ± 2 [E2

0kΛ
2
k −W 2

kΛ
2
k cos

2 ϕk]
1
2

≈ −E0k ∓ (1− 1

2

W 2
k

E2
0k

)|Λ⃗k| −
1

2

W 2
k

E0k

Λ2
k

E2
0k

[
1 +O(

W 2
k

E2
0k

)

]
, (4.48)

where we have used cos2 ϕk ≈ O(1). Notice that the signs of the second-order terms for λxylow,+
and

λxylow,−
are both negative, leading to the net change in the ground state energy, which is opposite

to the N̂ = ẑ case. Assuming that Λ0 ≪ W0,∆0 ≪ W , the change in the ground-state energy per

lattice site will be

ESO =
∑
k

[
(λxylow,+

+ λxylow,−
)− 2(−E0k)

]
≈ −

∑
k

Λ2
kW

2
k

E3
0k

[
1 +O

(
W 2

k

E2
0k

)]

= −Λ2
0

W

(
W0

W

)2
[
1 +O

(
W0

W

)2
]
< 0, (4.49)

Therefore, N̂ vector should lie in the xy plane in the presence of spin-orbit interaction and the

result stated above follows.
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As large as the spin-orbit coupling may be for U atoms, ESO is still a small energy scale.

However, if other anisotropies are absent, the order parameter would be in the XY plane, resulting

in vortices; exchange anisotropy can also result in an easy-axis anisotropy, in which case spin

textures could be Ising domain walls that can trap electrons. Although skyrmions are finite-energy

solutions, vortices cost infinite energy unless they are bound in pairs. We speculate that charge 2e-

skyrmionic condensation is a more likely scenario, but the crossover in the texture is an interesting

topic for further research.

The following remarks about URu2Si2 are relevant: in both magnetic field-temperature (H-T )

and pressure-temperature (P -T ) phase diagrams, the superconducting phase is enclosed within the

HO phase [69]. This implies that the superconducting phase is closely related to the HO phase,

and is probably induced by it. Throughout our calculation, ignoring of course skyrmions, we have

assumed that the system is half-filled. The lower band is filled and the upper band is empty, and

the topological invariant is quantized. If this is not the case, then there will be no quantized spin

Hall conductance, but an induced superconducting phase from charge 2e-skyrmionic condensa-

tion; doping will result in conducting midgap states, as in polyacetylene [38]. Of course, such a

topological superconducting phase is very sensitive to disorder. Indeed, this may be supported by

the destruction of the HO and superconducting phases with 4% Rh substitution on the Ru site [69].

To summarize, we can find a rationale for a HO phase enclosing a superconducting phase at lower

temperatures.
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CHAPTER 5

Chiral d-wave superconductivity in URu2Si2

5.1 Introduction

The identity of the order parameter in URu2Si2 (URS) [69], a heavy-fermion material, below the so

called hidden-order (HO) transition at THO = 17.5 K is unknown despite its discovery more than a

quarter century ago [87, 51, 37, 56, 18, 34, 42, 66, 26, 19, 24, 14, 100, 15, 84, 23, 43, 78, 85, 112].

Buried deep inside this phase lies a much less explored unconventional superconducting (SC) state

at a temperature Tc ∼ 1.5 K [76, 65, 88, 20, 69]. It is natural that there must be an intimate relation

between the two. It is our central interest to explore this connection and to provide a mechanism

for the unconventional SC state. We posit that an intriguing density wave state, termed mixed

singlet-triplet d-density wave (st-DDW) [41, 40], is responsible for the HO. This state has no net

charge or spin modulations and does not break time reversal symmetry (TRS). Thus, it is natu-

rally impervious to common experimental probes. However, it does have topological order with a

quantized spin Hall conductance [41]. We then construct a global phase diagram in which there is

a deconfined quantum critical point (QCP) [92, 91], which is ultimately responsible for the basic

mechanism of superconductivity. The skyrmionic spin texture in this density wave state fraction-

alizes into fermonic merons and antimerons [92], which results in two copies of unconventional

chiral d-wave BCS superconductors [50, 110]. The deconfinement takes place only at the QCP. On

one side of it merons and antimerons are paired to form skyrmions, but on the other side merons

pairs with merons, and similarly for antimerons. The resulting SC state breaks TRS, which can be

directly detected by polar Kerr effect (PKE) measurements [49]; in contrast, the HO state which

does not break TRS should not exhibit PKE except perhaps for impurity effects. Determination of

the density wave state posited here is also possible through two-magnon Raman scattering, nuclear

70



quadrupolar resonance, or the skyrmions themselves. In a more general context, our work reflects

the rich possibilities of emergent behavior in condensed matter systems.

Density wave states of higher angular momenta are intriguing objects [71]. They are particle-

hole condensates in contrast to particle-particle condensates in a superconductor. Because there

are no exchange requirements between a particle and a hole, the orbital wave function cannot con-

strain the spin wave function. Of particular interest is the angular momentum ℓ = 2: its singlet

counterpart has been suggested to be the cause of the pseudogap in high-temperature superconduc-

tors [13]. Physically, it reflects staggered circulating charge currents in a two-dimensional square

lattice. The triplet counterpart consists of circulating staggered spin current but not charge current.

An attempt was made to relate it to the HO phase of URS to explain the observed anisotropic

magnetic susceptibility [26, 75, 93]. While this is an interesting idea, so far it has not been able to

provide a mechanism for superconductivity, which must be related to the HO state.

In contrast, we consider a mixed st-DDW, which mixes the triplet and the singlet density waves

in the ℓ = 2 channel; see Refs. [41, 40] for details. In Chapter 4, skyrmions are introduced as

spin textures in the st-DDW state. They are shown to have zero angular momentum, charge 2e

bosons, and therefore one could only predict an s-wave BEC condensate. However, available

experiments [50, 110] show that the superconductivity is not s-wave, but chiral d-wave, breaking

TRS. In this chapter we propose a totally new unconventional pairing mechanism arising from the

fractionalization of skyrmions into merons and antimerons. The mechanism resolves the paradox

that skyrmions may have zero angular momentum, but the superconductivity can be a chiral d-

wave condensate. We also predict PKE at the onset of the superconductivity, but not in the HO

state, which does not break TRS.

5.2 Nontrivial topology and charge 2e skyrmions

URS has a body-centered-tetragonal structure, and the order parameter and the band structure must

be consistent with it; see Fig. 5.1. We consider the tight-binding model with the URS crystal struc-

ture [84] and the st-DDW order on the diagonal planes, which leads to the observed anisotropic
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magnetic susceptibility. This model is merely a low-energy effective Hamiltonian, which is suf-

ficient to illustrate our mechanism of superconductivity, but clearly cannot capture all aspects of

URS:

H0 =
∑
k,σ

(
ϵ
(1)
k c†1σ,kc1σ,k + ϵ

(2)
k c†2σ,kc2σ,k

)
+
∑
k

(
Ckc

†
1+,kc2+,k + C∗

kc
†
1−,kc2−,k + H.c.

)
+
∑
k

(
Dkc

†
1+,kc2−,k −D∗

kc
†
1−,kc2+,k + H.c.

)
, (5.1)

where c†ασ,k is the creation operator of 5f electron with band index α = 1, 2 and spin index σ = ±,

and the band structure is

ϵ
(α)
k ≡ 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
+ 2t′α [cos(kxa) + cos(kya)]

+4t′′α cos(kxa) cos(kya)− µ+ sgn(α)
∆12

2
, (5.2)

where sgn(α) = ±1 for α = 1, 2, respectively. Here a and c are the lattice constants. t, t′α, and

t′′α are the hopping amplitudes along the body diagonals, in-plane axes, and in-plane diagonals,

respectively. ∆12 is the crystal-field splitting and µ is the chemical potential. Notice that t, t′α, and

t′′α describe the hopping terms of the 5f electrons between the U atoms, and our conclusion holds

as long as t is nonzero (See below and Appendix B). As in Ref. [84], we will take Ck = 0. Dk is

related to the hybridization due to the Ru atoms, and has the form

Dk ≡ 4t12

[
sin

(
kxa+ kya

2

)
− i sin

(
kxa− kya

2

)]
sin

(
kzc

2

)
(5.3)

Then the st-DDW order parameter is defined to be

⟨c†ασ,k+Qcασ′,k⟩ = δσσ′∆k + i(σ⃗ · N̂)σσ′Wk, (5.4)

where σ and σ′ are spin indices and the nesting vector is Q⃗ = 2π
c
ẑ, consistent with the fact that

quantum oscillation frequencies are hardly changed between HO and the large-moment antiferro-

magnetic phase (LMAF) [70, 36]; Wk and ∆k are the form factors for the triplet and the singlet

components of the density wave order,

Wk = W0 sin

(
kxa− kya

2

)
sin

(
kzc

2

)
, (5.5)
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and

∆k =
∆0

2
[cos (kxa− kya)− cos (kzc)] . (5.6)

We have checked that the inclusion of the hybridization, t12, barely alters the ground-state

energy. To be explicit, we found the change in the ground-state energy per lattice site is

∆Ehyb ≈ −|t12|2

W

(
W0

W

)2

, (5.7)

where W = 8t is the bandwidth. ∆Ehyb is much smaller than W0 and ∆0 because
(
W0

W

)2 ≈ 0.01.

Therefore, the inclusion of the hybridization will not affect our conclusion. Furthermore, it has

also been pointed out that the Fermi surface does not depend strongly on t12 [84], so t12 will be

neglected in the following discussion. In addition, the inclusion of the explicit spin-orbit coupling

in the two-dimensional st-DDW model has been analyzed in Ref. [40], and it has been shown that

the change in the ground-state energy per lattice site is

∆ESO ≈ [(N̂ · ẑ)2 − 1]
Λ2

0

W

(
W0

W

)2
[
1 +O

(
W0

W

)2
]
. (5.8)

Here Λ0 is the strength of the spin-orbit coupling, given by

HSO =
∑
k

c†kαΛ⃗(k) · σ⃗αβckβ, (5.9)

where Λ⃗(k) = Λ0√
2
[x̂ sin ky−ŷ sin kx]. Although Λ0 ≈ W for U atoms, ∆ESO is still a small energy

scale because of the small factor
(
W0

W

)2. Therefore, the charge-2e skyrmionic texture that we

invoke below is unlikely to be affected by the explicit spin-orbit coupling, which will be neglected

in the discussion. Notice that the order parameter itself cannot be factorized into spin and orbital

parts, so it requires spin-orbit interaction to be realized. In other words, the spin-orbit interaction

is present in the model even though we do not include it in the Hamiltonian explicitly.

At the mean-field level, we can choose the N̂ vector to be uniform and perpendicular to the

diagonal planes (x + y = constant). The real space picture of the order parameter form factors

are shown in Fig. 5.1. Note that this is different from Ref. [26], where there are two copies of

spin current patterns on the diagonal planes and the singlet component is missing [40]. The spin

currents are unaffected by the singlet component, as that only produces modulations of the bare
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Figure 5.1: Left: the crystal structure of the URS material. The modulated hopping and spin

current patterns are on the diagonal planes (x + y = constant), which is highlighted with the pink

color. The black points indicate the positions of the U atoms. The black arrows indicate three

primitive vectors, ax̂, aŷ and cẑ. The blue arrows indicate three vectors for the rotated coordinate:

a′x̂′, a′ŷ′ and cẑ′. Here x̂′ = (x̂−ŷ)√
2

, ŷ′ = (x̂+ŷ)√
2

, ẑ′ = ẑ, and a′ =
√
2a. Right: the spin current

patterns and hopping modulations on the diagonal planes. The arrows indicate the directions of

the circulating spin currents due to the triplet component of the mixed st-DDW order. The red

and black dashed lines indicate different signs of the modulated hopping terms due to the singlet

component of the mixed st-DDW order. The Ru and Si atoms are not shown for clarity.
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kinetic energy. Thus, we obtain similar anisotropic susceptibilities, as in Ref. [26]. However,

∆0 has an important consequence on the basic nature of the HO state. One of the experimental

signatures of the HO state is a jump in the specific heat ∆C
T

≈ 270 mJ/mol-K2 at THO, followed by

an exponential drop below THO, which can be fitted with a gap of ≈ 11 meV [76]. The specific heat

for the mixed st-DDW state also exhibits a similar exponential behavior when we consider the fully

gapped ky′a′ = π plane; see Fig. 5.1 for the rotation of the coordinate axes. This implies that the

specific heat reflects primarily the quasi-two-dimensional part of the spectrum, which justifies that

it is a good approximation to consider the system as a collection of quasi-two-dimensional diagonal

planes, with low carrier concentration. With the gap parameters of W0 = 14 meV and ∆0 = 13

meV, we obtained the exponential drop C(T ) ∝ e−
∆
T , which is consistent with experiments, except

for lower temperature linear behavior due to the fact that the three-dimensional Fermi surface is

only partially gapped. Importantly, our basic mechanism of superconductivity depends on the

quantized spin Hall effect on the diagonal planes, which is absent if ∆0 = 0 (cf. below).

A useful way to proceed is to sketch a proposed phase diagram in which we introduce a quan-

tum parameter λ in addition to the physical parameters pressure P and temperature T as shown in

Fig. 5.2. λ controls the skyrmion gap W0(λ) such that W0(λ < λc) = 0 and W0(λ > λc) ̸= 0.

A skyrmion, which is a distinct spin texture in the st-DDW, is shown in Fig. 5.3. We must em-

phasize that the hedgehog configurations are assumed to be suppressed because the particle-hole

excitations are of much higher energy [31]. Therefore the skyrmion number is conserved in the

two-dimensional diagonal planes. The state at T = 0, P = 0 is connected, as is the entire SC state,

by continuity from the second order phase transition between the SC and the quantum spin Hall

insulator (QSHI); λc is a deconfined quantum critical point [31]. This critical point is described by

the field theory of merons and antimerons, fractional particles that emerge at λc, but are not present

in either side of it. λ can be computed from a suitable microscopic Hamiltonian; for instance, λ

may be a function of the on-site Coulomb interaction, U , the nearest neighbor direct interaction,

V , and the exchange interaction, J , in the extended Hubbard model [42].

The eigenvalues and the eigenvectors of the mean-field Hamiltonian can be used to compute
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Figure 5.2: The proposed phase diagram with the quantum parameter (λ), pressure (P ), and tem-

perature (T ) axes. Here λ is a tuning parameter such that the skyrmion gap W0(λ < λc) = 0

and W0(λ > λc) ̸= 0. λc is a deconfined quantum critical point between the QSHI and SC as

T = P = 0. THO and Tc are the HO and SC transition temperatures as P = λ = 0, respectively.

Along the P axis, Pc indicates the phase transition between the HO and SC states, while Px indi-

cates the phase transition between the HO and LMAF states. In some literatures Pc coincides with

Px, which does not affect our main conclusion. In addition, there should be phase boundaries in

the λ-P and λ-T planes, which are not relevant to this work.
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Figure 5.3: The merons ψ†
+,σ(r⃗) and ψ†

−,σ(r⃗). ψ
†
+,σ(r⃗) creates a meron with N̂(r → 0) = ŷ′ and

N̂(r → ∞) = (x′,0,z′)
r

; ψ†
−,σ(r⃗) creates a meron with N̂(r → 0) = −ŷ′ and N̂(r → ∞) = (x′,0,z′)

r
.

Each meron above is half a skyrmion. A composite of a meron ψ†
+,σ(r⃗) and an antimeron ψ−,σ′(r⃗)

makes one skyrmion [92].
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the Berry curvature, Ω⃗σ,±, for the upper and the lower bands (±),

Ω⃗σ,± ≡ ▽⃗k × ⟨Φσ,±(k)|i▽⃗k|Φσ,±(k)⟩, (5.10)

where |Φσ,±(k)⟩ are the corresponding eigenstates. The Berry curvature is necessary for the com-

putation of the physical charge and flux carried by the skyrmions. Notice that although a two-band

tight-binding model is considered here, the Berry curvature for these two bands are identical be-

cause the t′, t′′ and ∆12 terms commute with the Hamiltonian and do not enter the eigenvectors.

Therefore, the band index α and the crystal-field splitting ∆12 can be dropped. Since the mixed

st-DDW order is on the diagonal planes, one finds that the nonzero contribution to the Berry phase

arises from the component of the Berry curvature perpendicular to the diagonal planes. The result

does not depend on the details of the band parameters as long as t,W0, and ∆0 are all nonzero (See

Appendix B). In other words, we need a mixing of the triplet and the singlet density wave orders

in order to have nontrivial topology. As in the two-dimensional model discussed in Chapters 3 and

4, the total Chern number is zero, but the spin Chern number is nonzero. Therefore, the topology

of the system is nontrivial, and there will be a quantized spin Hall conductance on the x′z′ planes,

σ
spin
x′z′ = e

2π
. Because of this the charge current corresponds to a physical charge (See Appendix

B). Then, the skyrmionic spin texture can be constructed on the x′z′ plane, and one can find that

the skyrmions in the system carry physical flux 4π, as in Refs. [31, 40]. As a skyrmion is adiabat-

ically threaded through the system, a net charge of −2e is displaced to the boundary at infinity; by

charge neutrality of the total system, the skyrmion should have physical charge 2e and flux 4π.

5.3 chiral d-wave pairing

A skyrmion is a composite of a meron with a flux of 2π and charge e, and an antimeron with a

flux of −2π and charge −e, as shown in Fig. 5.3. In the HO phase, the fractional particles are

confined in skyrmions while in the SC phase they are bound into Cooper pairs (See Fig. 5.4). Let

ψ†
s,σ(r⃗) be the creation operator of a meron at r⃗, where s = ± labels the flux of ±2π and the spin

index σ =↑ and ↓ for up and down spin, respectively. Pairing of ⟨ψ†
s,σ(r⃗)ψ

†
s′,σ′(r⃗′)⟩ thus results in

a charge 2e superconductivity for s = s′. Motivated by experiments [50], we will be interested in
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Figure 5.4: Deconfinement and pairing of the merons and antimerons. The up (down) arrows

indicate a flux of 2π(−2π). The solid (open) circles indicate merons (antimerons). The dashed

lines indicate the confinement and pairing. The colors are associated with the meron texture in

Fig. 5.3. The spins of the merons are not shown for simplicity. Left: in the HO phase, merons and

antimerons are confined in skyrmions. Middle: at the critical point, the merons and antimerons are

deconfined. Right: in the SC phase, the merons and antimerons are separately confined again into

Cooper pairs.

the spin-singlet pairing, so we will set σ = −σ′. Here we assume that the length scale of a meron

is much smaller than the distance between the merons, so we can treat them as point particles.

The interaction Hamiltonian can be described by the coupling between the charge current j⃗(r⃗)

and the gauge field A⃗(r⃗), which is associated with the flux of the merons and antimerons, Hint =∫
d2rj⃗(r⃗) · A⃗(r⃗). Notice that we will set ~ = c = 1 for simplicity. With the continuity equation

for the charge and current densities of the merons and antimerons, and assuming that the kinetic

energy of the particles is ϵk = k2

2m
with the effective mass m, we may write the interaction in terms

of the ψs,σ(r⃗) operators. This immediately leads to the spin-singlet pairing Hamiltonian in the

momentum space

Hint =
∑
k⃗,⃗k′

∑
s

Vk′kψ
†
k′,s,↑ψ

†
−k′,s,↓ψ−k,s,↓ψk,s,↑, (5.11)

where Vk′k ≡ 4πi
m

(k⃗×k⃗′)y′

|⃗k−k⃗′|2
. Hint clearly breaks TRS, so we expect the SC state to break TRS as

well.

The interaction is similar to the one discussed in the half-filled Landau level problem [30] as

well as the one proposed in the context of the hole-doped cuprates [68], though there are significant
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differences as well. In Ref. [30], the flux attached to a particle is πϵ instead of 2π so that fractional

statistics could be studied by varying ϵ. The particles considered there were spinless fermions,

so an odd-parity pairing state was obtained. Furthermore, the interaction (5.11) is different from

the one in Ref. [68] because we express ρ(r⃗) =
∑

s,σ(se)ψ
†
s,σ(r⃗)ψs,σ(r⃗) and

(
▽⃗× A⃗(r⃗)

)
y′

=

2π
e

∑
s,σ sψ

†
s,σ(r⃗)ψs,σ(r⃗) differently. In Ref. [68], the resulting interaction depends on the sign of

s, so the s = ± part leads to a (dx2−y2 ∓ idxy) superconductivity, respectively. As a result, the

addition of these two components gives a dx2−y2 superconductivity in cuprates, but not a chiral

state.

In Eq. (5.11) we can see that the s = + and s = − parts in our case are two independent

copies. With the kinetic energy term, the total Hamiltonian is

Htotal =
∑
k⃗,s,σ

ξkψ
†
k,s,σψk,s,σ +Hint (5.12)

where ξk = ϵk−ϵF with the Fermi energy ϵF . Defining the gap ∆sc
k ≡ −

∑
k′ Vkk′⟨ψ−k′,↓ψk′,↑⟩, the

gap equation can be obtained within the mean-field approximation. At zero temperature, it gives

∆sc
k = −

∑
k′

Vkk′
∆sc

k′

2
√
ξ2k′ + |∆sc

k′ |2
. (5.13)

As mentioned above, a similar gap equation has been analyzed in Refs. [30, 68]. For ℓ wave

pairing, the solution will be ∆sc
k = |∆sc

k |e−iℓϕk , where ϕk denotes the direction of the wave vector,

and we will choose it to be the angle between k⃗ and k⃗′. The magnitude of the gap can be written as

|∆sc
k | =

 ∆sc
F

(
k
kF

)l
, for k ≤ kF

∆sc
F

(
kF
k

)l
, for k ≥ kF

(5.14)

with the Fermi wave vector kF and ∆sc
F = |∆sc

kF
|. The gap equation can be solved numerically.

For ℓ = 1, 2, 3, 4 · · ·, ∆sc
F /ϵF = 0.9160, 0.4058, 0.2644, 0.1968 · · ·. Since we have spin singlet

pairing, the dominant channel will be ℓ = 2. Hence the SC gap in the continuum limit will be

∆sc
k ∝ [(k2x′ − k2z′)− 2ikx′kz′ ] . In the lattice, the gap can be written as

∆sc
k ∝

{
[cos (kxa− kya)− cos (kzc)] + 4i sin

(
kxa− kya

2

)
sin

(
kzc

2

)}
(5.15)

80



with the original coordinate. Notice that in order to compare the lattice to the continuum case, one

needs to rescale the anisotropic lattice constants a′ and c in the diagonal planes; i.e. to rescale the

pink rectangles in Fig. 5.1 into squares. Within a numerical prefactor the gap is proportional to

the Fermi energy ϵF of merons because there are no other available scales. Thus, the knowledge

of the T = 0 gap from experiments determines ϵF , a microscopic calculation of which would be

exceedingly difficult.

5.4 Discussion

Notice that the meron-antimeron pair which constitutes a skyrmion is not the same as the meron-

meron Cooper pair as shown in Fig. 5.4. This is the reason why a skyrmion has zero angular

momentum [40] while a Cooper pair formed by the merons may have nonzero angular momen-

tum. Our theory is consistent with quantum oscillation measurements, carried out at milliKelvin

temperature and high enough field to destroy the SC state, once the three-dimensional character

of the structure is taken into account. Of course our simple band structure cannot correctly obtain

all the observed frequencies [24]. In three dimensions, we predict point nodes, in agreement with

the specific heat measurements [110], but not line nodes, as inferred from the thermal conductivity

measurements [50]. Clearly there is room for many future improvements, but the prediction of po-

lar Kerr rotation [49] should establish the nature of the SC state, a chiral d-wave superconductor, a

condensate made out of fractionalized particles. This is now confirmed in the latest measurements

of Kapitulnik and his collaborators in the SC state, but not in the HO state except for impurity

effects (A. Kapitulnik, private communication). A less direct measurement of broken TRS was

recently presented in Ref. [63].
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APPENDIX A

The derivations of equations in Chapter 4

A.1 Derivation of the nonlinear σ model

To derive the nonlinear σ model, we compute the effective action by integrating out fermions. We

start with the action S =
∑3

j=1 Sj , where

Sj ≡
∫
d3xψ̄j

[
G−1

j

]
ψj, (A.1)

with G−1
j ≡ G−1

0,j + Σj .

For j = 1, 2, we have

G−1
0,j ≡ −iσ0τ z∂τ − 2itσ0τ y(ηj∂x + ∂y), (A.2)

Σj ≡ iηj∆0σ
0τ 0 − i

W0

2
(σ⃗ · N̂)τx(−ηj∂x + ∂y), (A.3)

and for j = 3, we have

G−1
0,3 ≡ −iσ0τ z∂τ , (A.4)

Σ3 ≡ W0(σ⃗ · N̂)τx. (A.5)

The effective action will be Seff =
∑3

j=1 Seff,j with

Seff,j = − ln

[∫
Dψ̄jDψje

−Sj

]
= − ln

[
det |G−1

j |
]
, (A.6)

where the fermion operators can be integrated out easily since the Hamiltonian has only bilinear

fermion operator terms. Using the mathematical identity ln det |A| = tr lnA with tr being the
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trace, we have

Seff,j = −tr lnG−1
0,j [1 +G0,jΣj]

= −tr lnG−1
0,j − tr [G0,jΣj] +

1

2
tr [G0,jΣjG0,jΣj] + · · · , (A.7)

where we have used ln(1 + x) = x− x2

2
+ · · ·.

The zeroth-order term is the effective action for free particles and the first-order term vanishes,

so our goal is to compute the second-order terms:

S
(2)

eff,j ≡ 1

2
tr [G0,jΣjG0,jΣj]

=
1

2

∫
dτ

∫
dτ ′
∫
d2x

∫
d2x′Tr [G0,j(x, τ ; x

′, τ ′)Σj(x
′, τ ′)G0,j(x

′, τ ′;x, τ)Σj(x, τ)]

=
1

2

∑
k̃,q̃

Tr
[
G0,j(k̃)Σj(q̃)G0,j(k̃ + q̃)Σj(−q̃)

]
, (A.8)

where k̃ ≡ (k0, kx, ky), q̃ ≡ (q0, qx, qy), and G0,j(k̃) can be obtained by inverting Eqs.(A.2) and

(A.4). Here Tr is the trace over discrete indices.

Putting all together, taking long-wavelength limit (q̃ → 0) and keeping only terms up to the

second-order derivative, we have, for j = 1, 2,

S
(2)

eff,j ≈
[
−∆2

0 + (
W0

2
)2(−ηjqx + qy)

2(N̂q̃ · N̂−q̃)

]
, (A.9)

where terms which are odd in k̃ and q̃ are dropped.

Using the relation
∑

q̃ fq̃f−q̃ =
∫
dτd2x|f(x⃗, τ)|2, we obtain

S
(2)

eff,1 + S
(2)

eff,2 ≈ 1

g1

∫
dτd2x

[∣∣∣∂XN̂ ∣∣∣2 + ∣∣∣∂Y N̂ ∣∣∣2] , (A.10)

where the constant terms are dropped, (X, Y ) is the coordinate after a π/4 rotation, and

1

g1
≡

∑
k̃

−W 2
0

2(k20 + 4t2(kx + ky)2)
(A.11)

Similarly, for j = 3, we obtain

S
(2)

eff,j ≈ −2
∑
k̃,q̃

W 2
0

k20
(
q0
k0

)2(N̂q̃ · N̂−q̃)

=
1

g3

∫
dτd2x

∣∣∣∂τ N̂ ∣∣∣2 , (A.12)
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where

1

g3
≡

∑
k̃

2W 2
0

k40
. (A.13)

Therefore, we obtain the nonlinear σ model,

Seff ≈ 1

g

∫
dτd2x

∣∣∣∂µN̂ ∣∣∣2 , (A.14)

where the constant terms and higher-order terms are dropped, and it is rescaled in order to obtain

a familiar form.

A.2 Chern-Simons coefficients

In this appendix we are going to prove that

N (Gσ) =
ϵµνλ
24π2

Tr
[∫

d3kGσ
∂G−1

σ

∂kµ
Gσ

∂G−1
σ

∂kν
Gσ

∂G−1
σ

∂kλ

]
= −

∫
d2k

4π
ĥσ ·

∂ĥσ
∂kx

× ∂ĥσ
∂ky

. (A.15)

We start by taking (µ, ν, λ) to be (0, x, y), and obtain

Gσ
∂G−1

σ

∂ω
=

1

(iω)2 − |⃗hσ|2
[
(iωÎ + τ̂ · h⃗σ) · (iÎ)

]
=

1

(iω)2 − |⃗hσ|2
(−ωÎ + iτ̂ · h⃗σ), (A.16)

and

Gσ
∂G−1

σ

∂kx
=

1

(iω)2 − |⃗hσ|2
[
iωÎ + τ̂ · h⃗σ

](
−τ̂ · ∂h⃗σ

∂kx

)

=
−1

(iω)2 − |⃗hσ|2

[(
h⃗σ ·

∂h⃗σ
∂kx

)
Î + iτ̂ ·

(
ω
∂h⃗σ
∂kx

+ h⃗σ ×
∂h⃗σ
∂kx

)]
, (A.17)

where we have used the matrix identity (τ̂ · a⃗)(τ̂ · b⃗) = (⃗a · b⃗)Î + iτ̂ · (⃗a× b⃗). Similarly,

Gσ
∂G−1

σ

∂ky
=

−1

(iω)2 − |⃗hσ|2

[(
h⃗σ ·

∂h⃗σ
∂ky

)
Î + iτ̂ ·

(
ω
∂h⃗σ
∂ky

+ h⃗σ ×
∂h⃗σ
∂ky

)]
. (A.18)
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Therefore,

Gσ
∂G−1

σ

∂kx
Gσ

∂G−1
σ

∂ky

=
1

((iω)2 − |⃗hσ|2)2

{(
h⃗σ ·

∂h⃗σ
∂kx

)(
h⃗σ ·

∂h⃗σ
∂ky

)
Î

+iτ̂ ·

[(
h⃗σ ·

∂h⃗σ
∂kx

)(
ω
∂h⃗σ
∂ky

+ h⃗σ ×
∂h⃗σ
∂ky

)

+

(
h⃗σ ·

∂h⃗σ
∂ky

)(
ω
∂h⃗σ
∂kx

+ h⃗σ ×
∂h⃗σ
∂kx

)]

−

[
τ̂ ·

(
ω
∂h⃗σ
∂kx

+ h⃗σ ×
∂h⃗σ
∂kx

)][
τ̂ ·

(
ω
∂h⃗σ
∂ky

+ h⃗σ ×
∂h⃗σ
∂ky

)]}
(A.19)

Since we are going to multiply it with the antisymmetric tensor ϵµνλ, the terms which are

symmetric under (x↔ y) will vanish. Therefore, only the last term in the braces contributes,[
τ̂ ·

(
ω
∂h⃗σ
∂kx

+ h⃗σ ×
∂h⃗σ
∂kx

)][
τ̂ ·

(
ω
∂h⃗σ
∂ky

+ h⃗σ ×
∂h⃗σ
∂ky

)]

= iτ̂ ·

[
ω2

(
∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
+ ωh⃗σ

(
∂h⃗σ
∂kx

· ∂h⃗σ
∂ky

)
− ω

∂h⃗σ
∂ky

(
h⃗σ ·

∂h⃗σ
∂kx

)

−ωh⃗σ

(
∂h⃗σ
∂kx

· ∂h⃗σ
∂ky

)
+ ω

∂h⃗σ
∂kx

(
h⃗σ ·

∂h⃗σ
∂ky

)
+

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
h⃗σ

]
, (A.20)

where we used the following mathematical identities:

a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · b⃗), (⃗a× b⃗)× (⃗a× c⃗) = [⃗a · (⃗b× c⃗)]⃗a.

Therefore, after combining with ϵ0xy and taking the trace, we have

ϵ0xyTr
[
Gσ

∂G−1
σ

∂ω
Gσ

∂G−1
σ

∂kx
Gσ

∂G−1
σ

∂ky

]
=

−1

[(iω)2 − |⃗hσ|2]3
Tr

(
−iωτ̂ ·

[
ω2

(
∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
+

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
h⃗σ

]

−(τ̂ · h⃗σ)

{
τ̂ ·

[
ω2

(
∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
+

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
h⃗σ

]})

=
2

[(iω)2 − |⃗hσ|2]3

{
h⃗σ ·

[
ω2

(
∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
+

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
h⃗σ

]}
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=
−2

[(iω)2 − |⃗hσ|2]2

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)
, (A.21)

where we have used the fact that Pauli matrices are traceless, so the only contribution will be the

term proportional to Î .

We have six nonzero terms because of the ϵµνλ tensor, so

N (Gσ) = −2× 6

24π2

∫
d3k

1

[(iω)2 − |⃗hσ|2]2

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)

= −
∫
d2k

4π

1

|⃗hσ|3

(
h⃗σ ·

∂h⃗σ
∂kx

× ∂h⃗σ
∂ky

)

= −
∫
d2k

4π
ĥσ ·

∂ĥσ
∂kx

× ∂ĥσ
∂ky

, (A.22)

where the energy integral was done by computing the residue of the second-order pole.

A.3 Spin gauge flux F s
µν in terms of N̂

In the main text, we obtain the spin gauge field to be

fµ =
σz

2
As

µ, (A.23)

where fµ = −iU †∂µU . Therefore, we can write the spin gauge field in terms of the unitary matrix,

As
µ = Tr

[
σz · σ

z

2
As

µ

]
= Tr [σzfµ] = −iTr

[
σzU †∂µU

]
, (A.24)

and we have

F s
µν = ∂µA

s
ν − ∂νA

s
µ = −iTr

[
σz(∂µU

†)(∂νU)− σz(∂νU
†)(∂µU)

]
. (A.25)

Assume that the spin texture has a general form

N̂(x⃗, t) = [sin θ(x⃗, t) cosϕ(x⃗, t), sin θ(x⃗, t) sinϕ(x⃗, t), cos θ(x⃗, t)] , (A.26)

where θ(x⃗, t) and ϕ(x⃗, t) can be any smooth function of position and time. Then, we have the

unitary matrix

U(x⃗, t) =

 cos θ(x⃗,t)
2

− sin θ(x⃗,t)
2
e−iϕ(x⃗,t)

sin θ(x⃗,t)
2
eiϕ(x⃗,t) cos θ(x⃗,t)

2

 , (A.27)
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∂µU
†(x⃗, t) =

 −1
2
sin θ

2
∂µθ e−iϕ(1

2
cos θ

2
∂µθ − i sin θ

2
∂µϕ)

eiϕ(−1
2
cos θ

2
∂µθ − i sin θ

2
∂µϕ) −1

2
sin θ

2
∂µθ

 , (A.28)

and

∂νU(x⃗, t) =

 −1
2
sin θ

2
∂νθ e−iϕ(−1

2
cos θ

2
∂νθ + i sin θ

2
∂νϕ)

eiϕ(1
2
cos θ

2
∂νθ + i sin θ

2
∂νϕ) −1

2
sin θ

2
∂νθ

 , (A.29)

where we have suppressed the arguments of θ(x⃗, t) and ϕ(x⃗, t).

Therefore, we can calculate the product of the last two matrices, and express the spin gauge

flux as

F s
µν = −i

[
i

2
sin θ(∂µθ∂νϕ− ∂νθ∂µϕ)

]
× 2 = sin θ (∂µθ∂νϕ− ∂νθ∂µϕ) . (A.30)

In addition, we can also write N̂ · (∂µN̂ × ∂νN̂) in terms of θ(x⃗, t) and ϕ(x⃗, t),

N̂ · (∂µN̂ × ∂νN̂)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sin θ(x⃗, t) cosϕ(x⃗, t) sin θ(x⃗, t) sinϕ(x⃗, t) cos θ(x⃗, t)

[cos θ(x⃗, t) cosϕ(x⃗, t)∂µθ(x⃗, t) [cos θ(x⃗, t) sinϕ(x⃗, t)∂µθ(x⃗, t) − sin θ(x⃗, t)∂µθ(x⃗, t)

− sin θ(x⃗, t) sinϕ(x⃗, t)∂µϕ(x⃗, t)] + sin θ(x⃗, t) cosϕ(x⃗, t)∂µϕ(x⃗, t)]

[cos θ(x⃗, t) cosϕ(x⃗, t)∂νθ(x⃗, t) [cos θ(x⃗, t) sinϕ(x⃗, t)∂νθ(x⃗, t) − sin θ(x⃗, t)∂νθ(x⃗, t)

− sin θ(x⃗, t) sinϕ(x⃗, t)∂νϕ(x⃗, t)] + sin θ(x⃗, t) cosϕ(x⃗, t)∂νϕ(x⃗, t)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

= sin θ (∂µθ∂νϕ− ∂νθ∂µϕ) , (A.31)

where, again, we suppressed the arguments of θ(x⃗, t) and ϕ(x⃗, t). Finally, we obtain

F s
µν = N̂ · (∂µN̂ × ∂νN̂). (A.32)
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APPENDIX B

Some details of Chapter 5

B.1 Mean-field Hamiltonian

The mean-field Hamiltonian with the mixed st-DDW order is

H =
∑
k

Ψ†
kAkΨk, (B.1)

where the summation is over the reduced Brillouin zone (RBZ). The spinor, Ψ†
k, is defined in terms

of the fermion operators (c†k,↑, c
†
k+Q,↑, c

†
k,↓, c

†
k+Q,↓) and the matrix Ak is

Ak =


ϵk − µ ∆k + iWk 0 0

∆k − iWk ϵk+Q − µ 0 0

0 0 ϵk − µ ∆k − iWk

0 0 ∆k + iWk ϵk+Q − µ

 , (B.2)

where µ is the chemical potential and the nesting vector is Q⃗ = 2π
c
ẑ. Here the form factors Wk,

∆k, and the band structure ϵk are

ϵk ≡ 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
2t′ [cos(kxa) + cos(kya)]

+4t′′ cos(kxa) cos(kya), (B.3)

Wk ≡ W0 sin

(
kxa− kya

2

)
sin

(
kzc

2

)
, (B.4)

∆k ≡ ∆0

2
[cos (kxa− kya)− cos (kzc)] , (B.5)

where t, t′, and t′′ are the hopping amplitudes along the body diagonals, in-plane axes, and in-

plane diagonals, respectively. Notice that although a two-band tight-binding model is considered
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in Ref. [84], the Berry curvature for these two bands are the same because the t′, t′′ and ∆12 terms

commute with the Hamiltonian. Therefore, for simplicity the band index α and the crystal-field

splitting ∆12 have been dropped.

The eigenvalues of the Hamiltonian are

λk,± = ϵ2k − µ± Ek, (B.6)

where Ek =
√
ϵ21k +W 2

k +∆2
k, the +(−) sign indicates the upper (lower) band, and

ϵ1k ≡ ϵk − ϵk+Q

2
= 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
, (B.7)

ϵ2k ≡ ϵk + ϵk+Q

2
= 2t′ [cos(kxa) + cos(kya)] + 4t′′ cos(kxa) cos(kya) (B.8)

B.2 Topological invariant

The topology of the system can be studied by computing the Berry phase of the eigenstates, and

we define the Berry curvature, Ω⃗σ,±, as

Ω⃗σ,± ≡ ▽⃗k × ⟨Φσ,±(k)|i▽⃗k|Φσ,±(k)⟩, (B.9)

where |Φσ,±(k)⟩ are the corresponding eigenstates. The Berry phase will be the integral of the

Berry curvature over the reduced Brillouin zone (RBZ).

Since the mixed st-DDW order is on the diagonal planes, one may expect that the nonzero

contribution to Berry phase arises from the component of the Berry curvature perpendicular to the

diagonal planes. This is indeed the case, and in order to simplify the calculation, we first rotate the

coordinate along z axis by 45◦, i.e. x′ = (x−y)√
2

, y′=(x+y)√
2

, and z′ = z.

ϵ1k = 4t

[
cos

(
kx′a′

2

)
+ cos

(
ky′a

′

2

)]
cos

(
kz′c

2

)
, (B.10)

ϵ2k = 4t′ cos

(
kx′a′

2

)
cos

(
ky′a

′

2

)
+ 2t′′ [cos (kx′a′) + cos (ky′a

′)] , (B.11)

Wk = W0 sin

(
kx′a′

2

)
sin

(
kz′c

2

)
, (B.12)

∆k =
∆0

2
[cos (kx′a′)− cos (kz′c)] , (B.13)
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where a′ =
√
2a. The crystal structure is shown in Fig. 5.1 in Chapter 5, where we can find the

primitive vectors in the rotated coordinate are a′

2
(x̂′+ ŷ′), a′

2
(−x̂′+ ŷ′) and cẑ′. Therefore, the RBZ

is bounded by |kx′a′ ± ky′a
′| = 2π and |kz′c| = π. The spin-current patterns are now in the x′z′

planes (y′ = constant). We choose the spin quantization axis to be y′ axis, so σ = ±1 means the

spin is along ±ŷ′ direction.We will see below the nonzero contribution to the Berry phase is only

from the y′ component.

The Hamiltonian can be written as

H =
∑
k,σ

(c†k,σ, c
†
k+Q,σ)

(
ϵ2kτ

0 + h⃗σ · τ⃗
) ck,σ

ck+Q,σ

 , (B.14)

where τ 0 is 2 × 2 identity matrix and τ⃗ are the Pauli matrices acting on the two-component spinor.

Here the pseudospin vector is defined as h⃗σ ≡ (∆k,−σWk, ϵ1k). We have shown that the Berry

curvature can be written in terms of the pseudospin vector h⃗σ [41]. The x′, y′ and z′ components

of the Berry curvature have the following forms,

(Ωσ,±)x′ = ∓ 1

2E3
k

h⃗σ ·

(
∂h⃗σ
∂ky′

× ∂h⃗σ
∂kz′

)
, (B.15)

(Ωσ,±)y′ = ∓ 1

2E3
k

h⃗σ ·

(
∂h⃗σ
∂kz′

× ∂h⃗σ
∂kx′

)
, (B.16)

(Ωσ,±)z′ = ∓ 1

2E3
k

h⃗σ ·

(
∂h⃗σ
∂kx′

× ∂h⃗σ
∂ky′

)
. (B.17)

Notice that the Berry curvature does not depend on the t′, t′′ terms. To be explicit, we have

(Ωσ,±)x′ = ∓(−σ)
2E3

k

∣∣∣∣∣∣∣∣∣∣∣∣

∆k Wk ϵ1k

∂∆k

∂ky′
∂Wk

∂ky′
∂ϵ1k
∂ky′

∂∆k

∂kz′
∂Wk

∂kz′
∂ϵ1k
∂kz′

∣∣∣∣∣∣∣∣∣∣∣∣
= ±σtW0∆0a

′c

4E3
k

sin

(
kx′a′

2

)
sin

(
ky′a

′

2

)
cos2

(
kz′c

2

)
× [−2 + cos (kx′a′) + cos (kz′c)] (B.18)
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For the y′ component, we have

(Ωσ,±)y′ = ∓(−σ)
2E3

k

∣∣∣∣∣∣∣∣∣∣∣∣

∆k Wk ϵ1k

∂∆k

∂kz′
∂Wk

∂kz′
∂ϵ1k
∂kz′

∂∆k

∂kx′
∂Wk

∂kx′
∂ϵ1k
∂kx′

∣∣∣∣∣∣∣∣∣∣∣∣
= ±σtW0∆0a

′c

8E3
k

[2− cos (kx′a′)− cos (kz′c)]

×
{
2 + cos (kx′a′) + cos (kz′c) + cos

(
kx′a′

2

)
cos

(
ky′a

′

2

)
[3 + cos (kz′c)]

}
(B.19)

For the z′ component, we have

(Ωσ,±)z′ = ∓(−σ)
2E3

k

∣∣∣∣∣∣∣∣∣∣∣∣

∆k Wk ϵ1k

∂∆k

∂kx′
∂Wk

∂kx′
∂ϵ1k
∂kx′

∂∆k

∂ky′
∂Wk

∂ky′
∂ϵ1k
∂ky′

∣∣∣∣∣∣∣∣∣∣∣∣
= ±σtW0∆0a

′2

8E3
k

cos

(
kx′a′

2

)
sin

(
ky′a

′

2

)
sin (kz′c) [−2 + cos (kx′a′) + cos (kz′c)]

(B.20)

Although (Ωσ,±)x′ and (Ωσ,±)z′ are nonzero, their integrals over the RBZ are zero. In other

words, because of the planar structure of the order parameter, the Berry curvature and the topology

will be similar to the two-dimensional model [41]. Under time reversal, the ky′a′ = π plane

maps onto the ky′a′ = −π plane, which is equivalent to the ky′a′ = π plane because there is a

reflection symmetry under ky′ ↔ −ky′ . Therefore, the ky′a′ = π plane maps onto itself under

time reversal, so there is a topological invariant associated with the ky′a′ = π plane [86]. On

the other hand, the ky′a′ = 0 plane, which also maps onto itself under time reversal, is not fully

gapped, so topological invariant is not well defined on this plane. In addition, for ky′a′ = π, the

spectrum is fully gapped, which leads to an exponential behavior of the specific heat consistent

with experiments and therefore implies that the relevant physics is on the ky′a′ = π plane.
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For the y′ component, we thus project the Berry curvature to the ky′a′ = π plane and perform

the integral. The Chern number for each band will be

Nσ,± =
1

2π

∫ π
a′

− π
a′

dkx′

∫ π
c

−π
c

dkz′(Ωσ,±)y′ = ±σ, (B.21)

where the last integral was performed using Mathematica and the result does not depend on the

details of the band parameters as long as t,W0, and ∆0 are all nonzero. Therefore, the topology

of the system is nontrivial, and there will be a quantized spin Hall conductance on the x′z′ planes,

σ
spin
x′z′ = e

2π
. Then, the skyrmionic spin texture can be constructed on the x′z′ plane, and one can

find that the skyrmions in the system carry charge 2e as in Refs. [31, 40].

B.3 Skyrmions in the system

B.3.1 Low-energy action

As mentioned above, because of the planar structure of the order parameter, the interesting physics,

such as the spin current patterns and the quantized spin Hall conductance, will be on the diagonal

x′z′ planes (y′ = constant). So we may project the system onto the x′z′ planes to construct the

linearized low-energy action. Again, the spin quantization axis is along y′ axis, which is perpen-

dicular to the x′z′ planes.

Defining the spinor ψ†
k,α ≡ (c†k,α, c

†
k+Q,α) (not to be confused with the meron operator in Chap-

ter 5), the Hamiltonian can be written as

H =
∑
α,β

∑
k

ψ†
k,α

[
δαβτ

zϵ1k + δαβτ
x∆k − (σ⃗ · N̂)αβτ

yWk

]
ψk,β, (B.22)

where τ i (i = x, y, z) are Pauli matrices acting on the two-component spinor. For simplicity we

have set t′ = t′′ = µ = 0 and ky′a′ = π, so

ϵ1k = 4t cos

(
kx′a′

2

)
cos

(
kz′c

2

)
, (B.23)

Wk = W0 sin

(
kx′a′

2

)
sin

(
kz′c

2

)
, (B.24)

∆k =
∆0

2
[cos (kx′a′)− cos (kz′c)] (B.25)
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We can construct the low-energy effective model by linearizing the action around the following

points,

K⃗1 ≡ π

c
ẑ′, (B.26)

K⃗2 ≡ π

a′
x̂′, (B.27)

K⃗3 ≡ π

a′
x̂′ +

π

c
ẑ′, (B.28)

where K⃗1 and K⃗2 are the nodal points in the absence of the singlet component (∆0 = 0), and K⃗3

is the nodal point in the absence of triplet component (W0 = 0).

Therefore, the linearized low-energy action will be

S =

∫
d3x

{
ψ†
1

[
−∂τ + 2tτ zc(

1

i
∂z′)− τx∆0 + (σ⃗ · N̂)τ y

W0

2
a′(

1

i
∂x′)

]
ψ1

+ψ†
2

[
−∂τ + 2tτ za′(

1

i
∂x′) + τx∆0 + (σ⃗ · N̂)τ y

W0

2
c(
1

i
∂z′)

]
ψ2

+ψ†
3

[
−∂τ + (σ⃗ · N̂)τ yW0

]
ψ3

}
, (B.29)

where we have introduced the imaginary time i∂t = −∂τ .

Notice that there is no spatial derivative in the ψ3 term since the expansion of the form factor

Wk around the nodal point K3 is

WK3+q =W0(1−
q2x′a′2

8
− q2z′c

2

8
+ · · ·), (B.30)

where the second- (and higher-) order derivative terms are dropped when linearizing the action. In

other words, the Wk term behaves as a mass term at the K3 point.

B.3.2 The charges of the skyrmions: an adiabatic argument

We will compute the charge of skyrmions in the system by the adiabatic argument [31]. Consider

the action around K⃗1 when the order parameter is uniform (say, N̂ = ŷ′). The results for K⃗2 and

K⃗3 follow identically.

S1 =

∫
d3xψ†

1

[
−∂τ + 2tτ zc(

1

i
∂z′)− τx∆0 + σy′τ y

W0

2
a′(

1

i
∂x′)

]
ψ1 (B.31)
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As mentioned above, the spin quantization axis is now along y′ axis, so σ = ±1 means the spin

is along ±ŷ′ direction, and the Pauli spin matrices are

σx′
=

 0 −i

i 0

 ; σy′ =

 1 0

0 −1

 ; σz′ =

 0 1

1 0

 (B.32)

In the previous section we have shown that the nontrivial topology leads to a quantized spin

Hall conductance on the x′z′ planes. The quantized spin Hall conductance implies that the external

gauge fields Ac
µ and As

µ couple to spin and charge currents, respectively. In the presence of these

external gauge fields, we add minimal coupling in the action by taking

1

i
∂µ → 1

i
∂µ + Ac

µ +
σy′

2
As

µ, (B.33)

and the action can be written as

S1[A
c, As] =

∫
d3xψ†

1

[
−i
(
1

i
∂τ + Ac

τ +
σy′

2
As

τ

)
+ 2tτ zc

(
1

i
∂z′ + Ac

z′ +
σy′

2
As

z′

)
−τx∆0 + σy′τ y

W0

2
a′
(
1

i
∂x′ + Ac

x′ +
σy′

2
As

x′

)]
ψ1, (B.34)

where we set e = ~ = c = 1. The nonvanishing transverse spin conductance implies that the low

energy effective action for the gauge fields is given by

S
1,eff =

i

2π

∫
d3x ϵµνλAc

µ∂νA
s
λ, (B.35)

and the charge current is induced by the spin gauge field

jcµ =
1

2π
ϵµνλ∂νA

s
λ. (B.36)

Notice that the prefactor comes from the quantized spin Hall conductance σspin
x′z′ = e

2π
, so this is a

physical charge current.

Consider a static configuration of the N̂ field with Pontryagin index one,

N̂(r, θ) = [sinα(r) sin θ, cosα(r), sinα(r) cos θ] , (B.37)

where (r, θ) is the polar coordinate defined on the x′z′ planes and α(r) satisfies the boundary

conditions α(r = 0) = 0 and α(r → ∞) = π. This field configuration corresponds to a skyrmion,
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and now the action is

S1 =

∫
d3xψ†

1

[
−∂τ + 2tτ zc(

1

i
∂z′)− τx∆0 + (σ⃗ · N̂)τ y

W0

2
a′(

1

i
∂x′)

]
ψ1 (B.38)

We can perform a unitary transformation at all points in space such that

U †(σ⃗ · N̂)U = σy′ (B.39)

Defining ψ = Uψ′, and plugging into Eq.(B.38), we obtain

S1 =

∫
d3xψ′†

1 U
†
[
−∂τ + 2tτ zc(

1

i
∂z′)− τx∆0 + (σ⃗ · N̂)τ y

W0

2
a′(

1

i
∂x′)

]
Uψ′

1

=

∫
d3xψ′†

1

[
−∂τ + 2tτ zc(

1

i
∂z′)− τx∆0 + σy′τ y

W0

2
a′(

1

i
∂x′)

]
ψ′
1

+

∫
d3xψ′†

1

[
−
(
U †∂τU

)
+ 2tτ zc

(
1

i
U †∂z′U

)
+ σy′τ y

W0

2
a′
(
1

i
U †∂x′U

)]
ψ′
1

(B.40)

Equating Eq.(B.40) and Eq.(B.34), we have, as r → ∞,

1

i
U †∂x′U =

σy′

2
As

x′ , (B.41)

1

i
U †∂z′U =

σy′

2
As

z′ , (B.42)

and Ac
τ = As

τ = Ac
x′ = Ac

z′ = 0.

In the far-field limit, the unitary matrix is

U(r → ∞, θ) =

 0 −e−iθ

eiθ 0

 , (B.43)

so the spin gauge field will be

A⃗s = −2 sin θ

r
ẑ′ +

2 cos θ

r
x̂′ =

2

r
θ̂, (B.44)

which is in the x′z′ planes.

In other words, threading a skyrmion into the system is equivalent to adding an external spin

gauge field A⃗s with a flux of 4π in the y′ direction. Suppose we adiabatically construct the
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skyrmionic configuration N̂(r, θ) from the ground state ŷ′ in a very large time period τp → ∞.

During the process, we effectively thread a spin gauge flux of 4π adiabatically into the x′z′ planes.

The quantized spin Hall conductance implies that a radial current will be induced by the 4π spin

gauge flux of A⃗s(t), which is now time-dependent: A⃗s(t = 0) = 0 and A⃗s(t = τp) = A⃗s. That is,

jcr(t) = − 1

2π
∂tA

s
θ(t). (B.45)

As a result, charge will be transferred from the center to the boundary, and the total charge

transferred during the process can be computed by performing the integral

Qc =

∫ τp

0

dt

∫ 2π

0

rdθ jcr(t) = −2. (B.46)

Therefore, we obtain a skyrmion with charge 2e and flux 4π, as in the two-dimensional model [40].
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